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The advantages of the ferreed as a switching network crosspoint led to an
early decision to adopt it for use in electronic switching systems. The
prospect of large-scale use of the device gave impetus to a search for an
economical, easily fabricated component. This paper describes the con-
siderations which influenced the choices of a suitable magnetic material,
magnetic circuit geometry, and coil design that were made for the produc-
tion model.

I. INTRODUCTION

The concept of the ferreed was presented in an earlier article in this
journal.' The purpose of this paper is to describe the evolution of this
device during its further development.

To recollect, a ferreed is a device born of marriage between miniature
sealed reed contacts (see Ref. 2) and an external magnetic circuit
containing remanently magnetizable members. Operation or release of
the sealed contacts can be controlled by setting the remanent members
in one of two magnetic states by means of short current pulses.

Among the several useful properties that can be brought about in
the ferreeds by selection of the proper magnetic configurations and coil
design is the ability to respond to coordinate excitation -a vital re-
quirement for any device considered for a network crosspoint.

Recognition of the potential advantages of a switching network cross -
point with metallic contacts, absence of holding power and the ability
to operate in times much shorter than prior electromechanical devices
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led to an early decision to adopt it for the network of No. 1 ESS (Elec-
tronic Switching System) - the new telephone switching system sched-
uled for its commercial debut in 1965.

The intended application of the ferreed in the switching network of
No. 1 ESS, where it would appear in very large numbers (14-20 cross -
points per line), gave impetus to a search for an economical, easily
fabricated embodiment. Several important choices had to be made with
regard to the geometry of the magnetic circuit, the winding configuration
and the remanent magnetic material. At the same time, the require-
ments of the sealed reed contact were reexamined, and a modified ver-
sion of it known as the 237B contact was adopted for ferreed use.

II. THE CROSSPOINT FERREED

2.1 Choice of Remanent Material

All original work on the ferreeds was based on the use of a specially
developed cobalt ferrite as the remanent material. In time, certain
inherent difficulties became apparent: notably, a strong temperature
dependence of the magnetic properties and low flux density, leading to
structures of large cross section and poor efficiency. Furthermore, as
more thought was given to the ferreed as a system component, it was
found that the originally postulated microsecond speeds for the actuation
of the ferreed were neither required nor practical from the standpoint
of driving requirements.

These considerations opened the way to a search for a metallic sub-
stitute. Several chromium and tungsten steel compositions were investi-
gated and found wanting due to lack of squareness and fullness of the
hysteresis loop - properties whose importance were stressed in Ref. 1.

The attention soon centered on a recent addition to the list of cobalt -
iron -vanadium alloys - Remendur. The name of this alloy refers to its
primary magnetic characteristic, i.e., a remanence greater than 17,000
gauss. This is coupled with a square hysteresis loop and a coercive force
from 1 to 60 oersteds. With a nominal composition of 48 per cent cobalt,
48 per cent iron, 3.5 per cent vanadium and 0.5 per cent manganese,
Remendur bridges the gap between the high coercive force of Vicalloy
and the low coercive force and high permeability properties of 2V-
Permendur and Supermendur. Fig. 1 shows a hysteresis loop obtained
on a Remendur strip developed for ferreed use. Of importance to the
ferreed application is the squareness Br/B, and fullness 1/H0Bo/I-1,B,
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of the hysteresis loop. This property implies that the energy expendi-
ture in establishing a desired end state approaches a minimum, and
that the excess flux generated in the same process is small-important
in view of the interference problems present in ferreed arrays.

2.2 Choice of Geometry

There exist two basic forms of ferreed structures - the parallel and
the series ferreeds. These are illustrated in Fig. 2. The choice of Remen-
dur, the need for tight magnetic coupling between the remanent mem-
bers and the reed contacts, and the relative ease of fabrication led to
adoption of the series structure for the crosspoint ferreed.

That structure is shown in Fig. 3 in the form used in the ESS network.
Mounted on each side of the reed contacts, which are molded together
in plastic to form a single piece part, and extending approximately over
the length of the glass envelopes, are two flat plates of Remendur.
Notches on the plastic and on the plates permit accurate relative posi-
tioning of the two.

The reeds and the remanent plates are inserted into plastic coil forms
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PARALLEL
FERREED

SERIES
FERREED

OPERATED RELEASED

Fig. 2 - Principles of parallel and series ferreeds.

molded into a steel plate. This steel plate acts as a common shunt
the whole array - it divides each crosspoint magnetically into two
separately controllable halves, greatly reducing the energy requirement
for producing the release state in which, as shown in Fig. 4, the two
halves of the remanent members are magnetized in opposing directions.
The same steel plate acts as the mechanical backbone of the whole
array.

2.3 Coil Design

The differential excitation mode was selected to provide coordinate
addressing of crosspoints. Fig. 5 reviews this principle as applied to a
series ferreed. Each crosspoint has two sets of windings - one for each
coordinate. Each set contains a winding of N turns on one side of the
shunt plate and one with a larger number, typically 2N, on the other
side. The 2N -turn winding is connected series opposing the N -turn
winding. One pair of windings is in series with the corresponding pairs
of all crosspoints in the same row, while the other is in series with the
pairs of all crosspoints in the same column of the array. As the paired
windings oppose each other, energization produces the release state in
every crosspoint energized, except the one where both pairs of windings



THE FERREED 5

are energized simultaneously - the crosspoint at the intersection of the
energized row and the column.

The logic inherent to differential excitation was found to be well
suited to network array operation, in which, in general, only one cross -
point in each row or column need be operated.

No separate release actions are required, as operating a crosspoint
automatically releases other crosspoints associated with the same row
and column.

The design of the coils has to take in account the energization re-
quirements of a single crosspoint as well as the system requirement

1.(, HORIZONTAL
___-> STRAPS

237B SEALED CONTACTS
2 PER MOLDED ASSEMBLY
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REMENDUR
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o
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Fig. 3 - Exploded view of the two -wire crosspoint ferreed.
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Fig. 5 - Winding configuration for differential excitation of the series ferreed:
(a) winding pattern, (b) mirror symbol notation.

calling for simultaneous pulsing of 32 winding pairs in the process of
establishing a connection through two stages of ferreed switches.

In ESS, these considerations led to the adoption of coils with windings
of 18 and 39 turns wound with 25 -gauge copper wire. With these coils,
the nominal operating current pulse of 10 amperes peak amplitude and
250 microseconds duration insures adequate margins for both operation
and release of the crosspoint.

The coils are wound directly on the coil forms by a machine that
winds eight rows (or columns) of crosspoints simultaneously in a con-
tinuous succession, each with a single length of wire. This eliminates



8 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

soldered connections between coils, thus reducing the winding cost and
improving the reliability of the assembly.

The winding sense is reversed in adjacent crosspoints. This magnetic
"checkerboarding" was found to be an effective means for reducing
magnetic interaction phenomena as well as the noise pickup in the
transmission pairs due to ferreed energizing pulses.

2.4 Crosspoint Arrays

Switching network considerations led to selection of an 8 X 8 cross -
point array as a basic network building block. In Fig. 6, such an array
is shown. In addition, specifically for the concentrating stages of the
network, several other array types were required: a switch providing
each of 16 input terminal pairs with an access to 4 out of 8 available
outputs, and 8 X 4 and 4 X 4 switches. It was found that each of these
arrays could be derived from the basic 8 X 8 apparatus unit by suitably
changing the connections of the control windings and the voice -pair
strappings. Fig. 7 shows these connections for all the developed ferreed

Fig. 6 - An 8 X 8 ferreed switch with covers removed.
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switch types. As can be expected, this standardization of the physical
size and component parts of the switches has eased the manufacturing
and the network equipment design problems.

The connections shown between the ends of the row and column
control winding chains stem from the access scheme adopted in the
network design. In this scheme, identical current is applied to both
coordinates by connecting them effectively in series when energizing a
crosspoint at their intersection.
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III. DESIGN TECHNIQUE

When the problem of designing the ferreed was first approached, it
was found that the usual lumped -constant, linear magnetic circuit
approach, while sufficient to yield a workable device, did not provide
the means for its optimization; neither did it give an assurance of
margins in face of tolerance allowances that have to be made for the
whole structure, and variations in reed contact properties and in the
magnetic properties of Remendur. Several attempts were made to refine
the analytical tools toward this end. While providing qualitative in-
sight into the operation of the device, they were frustrated from attain-
ing the ultimate goal of a quantitative, explicit solution by the complex-
ity of the problem caused by the rather difficult geometry and the
essential nonlinearity of the magnetic materials.

As a result, the refinements in the ferreed design had to be based
largely on experimental techniques. Over the years, numerous experi-
mental ferreed study techniques have been devised. These include the
use of search coils with integrators, hysteresis measurements of reeds
and the remanent magnetic members, Hall probes in the crosspoint
structure and the reed gap, and reversible permeability measurements
of the reeds. Supplemented by experiments in which the component
parts of the structure, their positioning and the driving conditions
underwent systematic variations, these techniques were instrumental
in arriving at the present structure.

The use of Hall probes provided two study techniques. First, Hall
probes were employed to measure longitudinal magnetic field intensity
along the ferreed axis, after applying varying operate and release pulses.
Second, via the use of specially constructed sealed reeds with Hall
probes mounted in the gap of the reed, it was possible to measure the
resultant magnetic flux density in the reed gap under varying operating
conditions. The drawback of the techniques lies in the upsetting of the
ferreed magnetic circuit by the absence of the reed or introduction of a
permanently open reed structure.

Reversible permeability measurements of the sealed reeds, accom-
plished via inductance measurements of small sense coils at about 100
kc, provided a convenient means of determining the instantaneous ap-
plied mmf to the sealed reeds under varying operating and interference
conditions. The technique was especially useful because it permitted
the use of ordinary sealed reeds under actual operating conditions, and
it was free of drift problems since no integrator circuits were involved.
On the other hand, the nature of the reversible permeability character-
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istic of the sealed reed is so insensitive in the released state of the sealed
reeds as to make its use not suitable in that region.

IV. OTHER FERREED TYPES

4.1 The Bipolar Ferreed

In the process of designing a ferreed switching network, the need
arose for a device containing a pair of contacts that would be indi-
vidually controllable. A typical use for this device is disconnection of the
line current sensing element at the line circuit whenever a connection
is established in the switching network (cutoff relay function). A postu-
lated property of this device - to respond to control current pulse polarity
to open or close its contacts - was found to permit integrating the con-
trol access with the one for the crosspoints.

An adaptation of the parallel ferreed principle, shown in Fig. 8,
provided a suitable embodiment meeting this need. Of the two parallel
remanent members, one consists of a permanent magnet material,
Cunife I; the other, surrounded by a single coil, of Remendur. Con-
tact closure or release depends on the polarity of the current pulse
applied to the coil. Eight such devices packaged together form a single
apparatus unit compatible in its length with the crosspoint units.

4.2 The Four -Wire Crosspoint Array

For use in switching networks requiring two separate directions of
transmission, the two -wire crosspoint design has been extended to
permit the operation of four contacts at every crosspoint location. The
four contacts are arranged in a square pattern and are surrounded by an
open-ended box formed by four remanent plates. The windings are
similar to those of the two -wire array and again an eight -by -eight size
has been chosen; Fig. 9 shows an individual crosspoint and an over-
all view of the unit.

V. SUMMARY

Out of the original concept of the ferreed originated a whole class of
useful switching devices. Characterized by small size, high speed of
operation and absence of holding power, they permit retaining the
desirable aspects of metallic contacts in the environment of electronic
switching machines without creating undue time compatibility problems.
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TABLE I - SUMMARY OF FERREED CHARACTERISTICS

Switch Dimensions (Inches) ROeFeearsaetepaLde Contact Characteristics

Code Type Height Width Length PeakAmpl.rgeA(A) Width
'

200
to

500

Max'
(ohms)

0.2

Max.
°Per-
Time

Max.
Su

rent
Life

242 A 2 -wire 8 X 8

694 2% 9% 9

3 3A* 2 X 1061

242 B 2 -wire (2) 8 X 4

242 C 2 -wire 16 X 4/8

252 A 4 -wire 8 X 8 9% 2% 9% 9
200
to

300

241 B 2 -wire 1 X 8 1% 238 9% 6
200
to

500
5t 3 3A 2 X 106

* To protect the contacts, crosspoints are operated and released in a dry cir-
cuit - maximum surge current refers to current value applied to closed contacts.

t Minimum life of 2 X 106 operations with contact resistance below 0.2 ohm.
I This contact breaks a maximum of 40 ma in its operation.

Table I gives a summary of the characteristics of the ferreed codes now
in existence.
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Recent Developments in Bell System
Relays Particularly Sealed Contact

and Miniature Relays
By A. C. KELLE R

(Manuscript received February 25, 1963)

Relays are among the most important electromechanical devices. They
have been in use for many years and continue, in modern form, to be essen-
tial elements in modern Bell System and military applications, including
electronic switching systems.

The most important recent developments are miniaturization, sealed con-
tact relays using glass -enclosed contacts, and "remanent" type devices.

Ferreed and bipolar ferreed coordinate arrays and individual units are
new and important switching elements. These devices make use of minia-
ture glass -enclosed contacts in combination with "square loop" magnetic
material* such as ferrite or certain iron alloys. They are magnetic "latch-
ing" units and are operated or released by short pulses.

I. INTRODUCTION

An important article entitled "Relays in the Bell System" was pub-
lished' in the B.S.T.J. in 1924. This was a comprehensive article on
relays which were then in use in the Bell System, and it gave some in-
formation on typical applications. Since that time, a few articles have
appeared in the B.S.T.J. covering relays, particularly the article' in 1952
describing the general purpose wire spring relay. This is the most widely
used relay in Bell System equipment at the present time. In addition
there have been several comprehensive publications on the design of
relaysm and several new forms of the wire spring relay, namely the
"two -in -one" relays and a magnetic latching form of this device. Minia-
ture wire spring relays have been and are being studied.

* In this paper, this is a remanent material of suitable coercive force range,
generally intermediate between the common permanent magnets and the mate-
rials used for memory, such as cores, thin films, etc.

15
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It is the purpose of this paper, in part, to bring together in one article
some of the newer relays of importance to the Bell System, including a
few which are experimental at this time. In this survey, the most im-
portant recent developments are miniaturization, sealed contact relays
using glass -enclosed contacts, and magnetic latching devices. Frequency
sensitive relays' are included, as are ferreed7 and bipolar coordinate
arrays. Such arrays consist of individual units of miniature glass -enclosed
contacts (typically 2 or 4 at each crosspoint) in combination with a
suitable "square loop" magnetic material such as certain ferrites or
certain iron alloys which have controllable magnetic remanence. These
devices are magnetic latching devices and can be operated or released
by pulses as short as 5 microseconds. Arrays of this type are important
units in Bell System electronic switching systems such as No. 1 ESS."

Relays are made in larger quantities by the Bell System than ever
before, and also more relays are made by more manufacturers outside
the Bell System than ever before. The increasing use of relays is of
interest in view of the rapid development of solid-state switching devices
and systems and their higher switching speeds. In general, solid-state
devices operate in microseconds or better compared with milliseconds or
longer for electromechanical devices. The reasons' for the continued use
and expansion of the uses of relay type switching devices are: (i) relays,
with their large ratio of open to closed contact impedance, often result
in equipment designs which are simple and inexpensive yet fast enough
to make unimportant any increase in switching speed; (ii) relays can be
used singly and in small numbers without the associated common con-
trol equipment often required to take full advantage of the sensational
speeds of solid-state switching devices; (iii) the rapid expansion of
switching of all kinds requires more of many types of switching equip-
ment, including both solid-state and electromechanical types; and (iv)
relays and solid-state devices are developing a compatibility, and in
fact combinations of both have been developed, notably the ferreed.
Compatibility has accelerated the miniaturization of new relay designs
because they are often used together. Relay size reductions of TV, or more
in volume have been achieved.

Reliability is also becoming increasingly important, and lower failure
rates are often required under more severe operating conditions. In
military applications, this relates particularly to vibration, shock,
temperature and humidity. Miniature relays often perform better under
vibration and shock conditions than larger types because of the lower
inertia of the moving parts and the higher natural frequencies of their
smaller parts.
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II. MINIATURE SEALED CONTACTS AND RELAYS USING THESE

There are two general classes of sealed contacts of the glass enclosed
type. These are the dry reed" type and the mercury -wetted" type.

Relays using the larger form of dry reed sealed contacts have been
described in previous papers." Two new miniature dry reed sealed con-
tacts are shown in Fig. 1, and for comparison the larger 224A type,lo
which has been in Bell System applications for a number of years,
particularly in the digit register package in the No. 5 crossbar system.
All of these sealed contacts, shown in Fig. 1, consist of two magnetic
reeds sealed in a glass tube. Dry reed sealed contacts are free from ex-
ternal influences such as dust, corrosive atmospheres, and ambient
pressures, and are relatively free of temperature effects. They do require
a high degree of care and control during manufacture if maximum per-
formance and uniformity are needed. In general, the mating contact
surfaces are plated with gold, silver, rhodium, etc., or combinations of
these, sometimes diffused under a controlled atmosphere. These opera-
tions are necessary in order to achieve a low and stable contact resistance
and to avoid sticking, which may be the case with certain soft precious
metals. The 237A (or G29) was the first of the miniature dry reed
sealed contacts to be applied in systems applications. As described in
Ref. 10, it is essentially a scaled -down (1 to 3) version of the larger
224A sealed contact.

nimmisimotliEm

Fig. 1 - Dry reed sealed contacts: top, miniature type 237A (G-29); center,
miniature type 237B; lower, standard type 224A.
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The 237B miniature dry reed sealed contact was developed specifically
for the crosspoint contacts of the switching network in electronic
switching systems, although it is now also applied in certain relays in
such systems and is suitable for general applications. The new require-
ments for the crosspoint application are: (i) higher breakdown volt-
age - of the order of 880 volts, (ii) closer operate and release values,
and (iii) contact resistance of less than 0.2 ohm during 1,000,000 opera-
tions. These new and more severe requirements made it necessary (i) to
pressurize the sealed contacts, (ii) to control tolerances more closely,
and (iii) to improve the contact life by combinational plating of gold and
silver. In addition, the reeds of the 237B design have been simplified
by eliminating the "hinge" sections at a slight sacrifice in size. The in-
crease is from the 237A length of 0.875 inch to 1.00 inch.

Operation of such contacts is by the application of a magnetic field,
and several different methods are shown in Fig. 2. Fig. 2(a) shows, the
operation by passing the current through a winding surrounding the
sealed contact. Fig. 2(b) shows one elementary form of ferreed where
the operation results from pulse operation and magnetizing a "square
loop" ferrite element. In this case the sealed contact remains closed with-
out holding power because it is "magnetically latched." Release is by a
pulse smaller in magnitude and of opposite polarity. Figs. 2(c) and 2(d)
show other ferreed structures.

Typical values for the operating characteristics of these sealed con-
tacts in air core coils are as shown in Table I. These operate ampere -
turn values are minimum values in a simple air core test winding and,
in general, faster speeds are obtained by increasing the applied ampere -
turns. The minimum operate times as listed result, in general, by apply-
ing several times* the minimum operate ampere -turns.

Although sealed contacts can be operated by pulses of sufficient dura-
tion in the circuit shown in Fig. 2(a), the contact will remain closed
only during an interval approximately the time that the current flows

through the winding. Pulse operation of most interest is associated with
"magnetic latching." This can be done by using a magnetic bias either
by a suitable remanent member - as shown in Fig. 2(b) - or by a
biasing winding. The operating time of such devices can be of the order
of that obtained with normal neutral operation of sealed contacts.
However, the ferreed type of operation can result in "effective" operat-
ing times very much faster and in the microsecond region.

There is another form of magnetic latching of sealed contacts which
uses remanent reeds for the elements of the sealed contact. In this case,

* Operate time is a function of applied power (El).
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TABLE I - TYPICAL OPERATING CHARACTERISTICS

Sealed Contact Operate
(Ampere -Turns)

Release
(Ampere -Turns)

Approximate
Minimum Operate Time

(milliseconds)

224 A 90 ± 12 34 ± 8 about 1.0
237A (G29) 34 ± 12 18 ± 8 " 0.5
237B 30.5 ± 5.5 15 ± 4 " 0.5

discussed in Refs. 7 and 12, the contacts are also locked by residual
magnetism. As is the case with series or parallel ferreeds using non-
remanent reed contacts, remanent reed sealed contacts may be operated
by pulses shorter than the time of contact closure, but they may also be
operated with longer pulses of lower power because the operation is
dependent essentially on the input pulse energy. The advantage of
remanent reeds is chiefly in the lower energy levels when they are used
as crosspoints in a switching network, although these energy levels are
somewhat higher than required to operate soft reeds in permanent
magnet latching relays of this type. In comparing remanent reed sealed
contacts and remanent sleeve crosspoints, the minimum energy in
microwatt seconds, EIt* for operate and release, is important. Estimates
are shown in Table II.

The energy relations also show how it is possible, in a given ferreed
or remanent reed device, to trade time for the magnitude of the pulse
current. For example, a 5 -microsecond operate time would require a
pulse of about 10 times the current value of that required to operate
the same device (with a different winding) in 50 microseconds, etc.

Conventional type relays using the miniature 237A and 237B sealed
contacts are shown in Fig. 3. Fig. 3(a) shows the 237A (G-29) sealed
contact in a 2 -make relay (GA 53702) as used in certain missile systems.
Fig. 3(b) shows the 311A relay, which is a 3 -make switching system
relay using the 237B sealed contact. These relays are operated, under
nominal conditions, at about 0.2 watt and 0.32 watt, respectively. Other
designs with break contacts or transfer contacts have been made of
similar size. Such relays make use of permanent magnets to bias the
break contacts closed in the unenergized condition. By energizing the
coil, these contacts are caused to open. Break and transfer contacts of
this type have been made using the larger 224A sealed contact and have
been described in a previous article." There are limitations relating to

* E = applied steady-state voltage in volts
I = peak current in amperes
t = time in seconds
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TABLE II -INPUT REQUIREMENTS FOR OPERATE AND RELEASE
FOR TWO SEALED CONTACTS PER CROSSPOINT
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Operation Release

NIp Ellmin NIA Ellmia

Remanent reed contact 32 94 36 80
Remanent sleeve crosspoint 100 1900 70 900

reoperation at high currents through the coil and also to variations with
operating current of the break and make sequence in such transfer con-
tacts. In particular, break -before -make contacts cannot always be
assured under all operating conditions. For this reason several forms of
3 -element transfer sealed contacts have been studied to provide break -
before -make action under all conditions. One such experimental dry
reed transfer14 sealed contact is shown in Fig. 4(a). In this particular
form, all 3 reeds are made of magnetic material. Fig. 4(b) shows the
design relations required for good operation and a sketch of the device.
Other dry reed transfer sealed contact forms are also under consideration.

III. FERREEDS AND BISTABLE DEVICES USING MINIATURE SEALED CON-
TACTS

Ferreeds were first described in an article' in the B.S.T.J. in 1960.
Figs. 5 to 7 show several ferreed units. Fig. 5(a) shows one of the origi-

Fig. 3 - Relays using miniature sealed contacts: (a) 2 make contact missile
relay GA 53702, (b) 3 make contact relay type 311A.
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Fig. 5 - Ferreed designs: (a) photograph of 1960 design, (b) drawing of 1960
design.
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nal parallel type ferreeds described in the 1960 article. Fig. 5(b) is a
drawing of the same device. Fig. 6(a) shows another later series ferreed
in which a sleeve of a "square loop" material (Remendur*) of the iron
alloy type is used. Fig. 6(b) shows the flux patterns for the ferreed
shown in Fig. 6(a). Fig. 7 shows a crosspoint using Remendur plates.
An important characteristic of all of the ferreeds shown in Figs. 5 to 7
is the balanced magnetic release arrangement that eliminates marginal
requirements on the release current.

In all cases one remanent member remains magnetized (half the
remanent member in the series ferreed) while the field in the other
member (or half member) is reversed in changing states. The field

* Remendur is an alloy of vanadium -iron -cobalt.
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energy* which must be supplied to the operating coils to reverse mag-
netization is of the order of 3 to 5 times the remanent field energy of the
remanent member and of the order of 10 or more on a pulse energy basis.

There should be no inherent difference in the performance of the
parallel and series type ferreeds except (a) due to the energy require-
ment and (b) due to the dynamic characteristics in the sleeve or plate
series ferreed where the flux through the reeds is necessarily reversed
during each pulse. In this case the field due to the operating winding is
in the opposite direction to the field supplied by the remanent members
when the winding is not energized. The energy requirement mentioned
in (a) can be less for the parallel type due to somewhat smaller air.
return reluctance, but on the other hand, the sleeve or plate series type
provides better magnetic coupling.

The ferreeds having operate times down to about 5 microseconds use
"square loop" ferrite magnetic materials. Somewhat simpler, less ex-
pensive and less temperature -sensitive forms of ferreeds use iron alloy
metallic remanent materials in sleeve, plate, etc., form at some sacrifice
in speed. However, speeds of about 50 microseconds or less are quite
feasible. In any of these ferreeds, the magnetic material is set to the
magnetized condition in microseconds. As a result of this, the sealed con-
tacts close about 0.2 to 0.5 millisecond later. For almost all practical
circuit conditions, this can be taken as operation in microseconds be-
cause circuit elements of this type are not usually required to release
until other circuit operations are completed. Typical important ferrite
characteristics for ferreed operation are coercive force, He, of 30-35
oersteds at maximum field, H, of 1000 and saturation flux density, B,
of 4500 gauss, with corresponding remanence BR about 2800. Typical
magnetic characteristics of an iron alloy (Remendur) used with ferreeds
are : H., 37-42 oersteds at maximum field, H, 100 and saturation flux
density of 21,000 gauss, with corresponding remanence BR of 17,000.

3.1 Ferreed and Bistable Arrays

In switching networks for electronic switching systems,8 arrays and
equipment assemblies of individual ferreed units are needed, for ex-
ample 8 by 8, 1 by 8, etc. These have been needed in 2 -wire and 4 -wire
forms. Accordingly, in the 8 by 8 array of the 4 -wire type, 256 sealed
contacts are needed. In one form, such arrays use four flat plates of

* The field energy is proportional to the product of the saturation flux for the
reeds and the magnetomotive force required to develop this flux. Better magnetic
coupling between the remanent members and the reeds will reduce the field energy
required.
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Remendur which are rolled in such a direction as to give the maximum
magnetic properties in the direction of the reed axes.

The operation of a ferreed array is somewhat similar to that of a
crossbar switch in that a particular crosspoint is operated by the simul-
taneous operation of particular vertical and horizontal rows. A particu-
lar crosspoint is thereby operated and held in this condition without
holding power. The winding arrangements of the ferreed elements are
such that the other crosspoints remain unoperated. To release the cross -
point, in effect, reverse currents reset the magnetic material to the un-
magnetized condition; hence the sealed contacts open. Fig. 8 shows an
8 by 8,2 -wire array or switch.

The ferreed shown in Figs. 6(a) or 7 is the basic crosspoint element of
the array shown in Fig. 8. This form contains 2 miniature dry reed sealed
contacts surrounded by a sleeve (flat plates are more recent) of remanent
magnetic material (Remendur). The magnetic shunt plate, positioned at
the midpoint of the sleeve, separates the sleeve or plates magnetically
into two independent halves. When the two halves are magnetized
series -aiding, the flux return is through the reeds, causing the sealed
contacts to close. When they are magnetized in series -opposition, the
sealed contacts open.

Each end of each crosspoint has two windings. A winding on one end
is connected in series -opposition, with the winding of half the number
of turns on the other end, as shown in Fig. 6(a). When either of the two
sets of windings is energized, the two ends of the sleeve or plate are
poled oppositely and the sealed contacts are opened. When the two sets
of windings are energized simultaneously with equal currents, the two
ends are poled series -aiding and the sealed contacts close.

In a typical switch, 64 ferreed crosspoints are assembled together to
form an 8 by 8 switch. Internal to the switch, the windings of rows and
columns form a common multiple. To close a crosspoint, current is
passed in one column and out one row via a common multiple. The cross -
point at the intersection of the column and row then closes. At the same
time, current passes through one of the two windings of all other fer-
rends in the same row and column, causing any that are operated to
release. This is a differential mode of operation, called "destructive
mark"; it is characterized by the absence of specific network release
operations, i.e. "taking down" connections. Connections are "taken
down" as a direct result of, and at the same time as, connections that
are set up.

Bipolar ferreeds are also needed in switching systems. Fig. 9 shows
the magnetic circuit of one form of an individual bipolar element. A
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combination of a "square loop" material is used together with a perma-
nent magnet arranged as shown in relation to the sealed contacts. In
this case more than one sealed contact may be used at each crosspoint.
The bipolar unit gives a cutoff relay action. Fig. 10 shows a 1 by 8 unit
of the 2 -wire type. These open or close the reed contacts in response to
the polarity of the current through a single winding.

IV. MERCURY -WETTED SEALED CONTACTS AND RELAYS

Fig. 11 shows a number of mercury -wetted sealed contacts of the
transfer contact type. The 226D type is one of the smallest and most
recent types. It is different from the others shown in that it is a break -
before -make contact. The break -before -make action is the result of
design changes, Fig. 11, of the pole -piece contact elements. Sealed con-
tacts with mercury -wetted contacts are important because they have
been shown to have the least contact chatter, often none, also have the
longest operating life of any relays yet designed, and can exceed one
billion operations.

The small size of the 226D mercury sealed contact can be packaged
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Fig. 10 - 1 by 8 assembly of 2 -wire bipolar ferreeds.

in a small -size relay. However, two new relay designs using the new
mercury sealed contact, the 314A and the 315A, do not require size
reduction because they are chiefly expected to replace larger Bell System
relays, namely the 255 and 280 types in certain applications where im-
proved performance is needed.

The 314A is expected to replace the 255 type polar relay in telegraph
circuits and to reduce maintenance in these. Fig. 12 shows the 255 re-
lay and the new 314A relay. As can be seen, these are plug-in types and
are interchangeable.

The 315A shown in Fig. 13 is a plug-in type and is expected to replace
some of the codes of the 280 type polar relay, particularly those used in
the No. 5 crossbar system, in order to improve performance and reduce
maintenance. This is important in that the 280 type relays used in the
No. 5 crossbar system show the highest relay trouble rate in terms of

troubles per 1000 relays per year. However, 280 type relays are used in
smaller numbers, in such systems, to perform special and exacting func-
tions.

All of the mercury sealed contacts discussed, or used by the Bell
System up to the present time, are required to operate in a vertical
position within certain limits, usually ± 30 degrees. Military applica-
tions, particularly, would be served by an "all -position" mercury sealed
contact. Several forms of such contacts have been built and studied.
Most of these have been judged to be rather complicated and relatively
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expensive to control and manufacture. A more recent and simpler ex-
perimental design is shown in Fig. 14. Basically, this is a modification of
the 226D sealed contact shown in Fig. 11 but modified in two ways:
(i) excess mercury is removed during manufacture, including the usual
pool of mercury, and (ii) armature changes have been made to improve
the contact performance under shock and vibration conditions. By re-
ducing the amount of available mercury for replenishment at the contact
surface, the life of the sealed contact is reduced, but several million op-

Fig. 11 - Mercury -wetted sealed contacts: left, 218 type; left center, 222 type
make -before -break contact; right center, 226B type make -before -break contact;
right, 226D type break -before -make contact.
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I

1 2 3

Fig. 12 - Telegraph relays: left, standard 255 type; right, new 314A type us-
ing 226D sealed contact.

erations are possible. For many applications this is adequate. This relay
is described in detail in an article15 in the Bell Laboratories Record.

V. MINIATURE ARMATURE TYPE RELAYS

5.1 Rotary Armature Relays

A miniature relay of this type was described in a paper" in 1959.
Fig. 15(a) is a photograph of this relay and Fig. 15(b) is a drawing of its
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Fig. 13 - Polar relays: right, standard 280 type; left, new 315A type using
226D sealed contact.

1 2

Fig. 14 - Experimental "all position" mercury -wetted sealed contact model
T-116.
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major elements. It has been in manufacture for military applications as
the GS 57668 relay. It is of the "crystal can" size and has a rotary
armature operating two transfer contacts symmetrically arranged. As
compared with similar relays it has the following advantages: (i) im-
proved contact reliability, particularly in dry circuits, by the use of
twin precious metal contacts in a separate sealed contact chamber free
of all organic materials; this eliminates the so-called "brown powder"
problem in which organic polymers are formed with resulting high -re-
sistance contacts; (ii) elimination of bearing friction and the associated
erratic performance; this is accomplished by using a reed type spring
armature suspension; and (iii) a magnetic design of improved sensi-
tivity with corresponding reduced effect due to stray magnetic fields.

5.2 Telstar Satellite Type Relays"

Fig. 16 shows a relay similar to the "crystal can" relay shown in Fig.
15 except that it operates or releases on pulses. It uses magnetic latch-
ing so that no holding power is required. This relay is used in the Bell
System Telstar satellites; in fact nine each are used in Telstar I and
Telstar II. Fig. 16(a) is a photograph of the relay, and Fig. 16(b) is a
drawing of the chief features. It is characterized by the dual armatures
in which the two armatures are connected together by a small permanent
magnet. Fig. 16(c) shows the control circuit in Telstar I using the relay.

5.3 MA and MB Miniature Relays's

A new series of relays known as MA and MB types has recently
been developed, primarily to save space for equipment installed on the
premises of Bell System customers. Manufacture of these was started at
the Western Electric Co. plant at Kearny, N. J., in 1962. Fig. 17 shows
the MA and MB relays. The MA relay has a maximum contact capacity
of 4 transfer contacts and the MB, which uses some of the same piece
parts, has a maximum contact capacity of 6 transfer contacts.

These relays have most of the basic features of the standard wire
spring relay (Ref. 2), namely: (i) code card operation to provide a simple
means for a wide variety of contact combinations; (ii) low stiffness,
pretensioned springs; (iii) coplanar spring groups to simplify welding
and handling and to standardize assembly in manufacture; (iv) contact
materials and contact forces identical with the standard wire spring
relay; (v) essential elimination of locked contacts because of the card
operation; (vi) twin precious metal contacts; etc. The basic contact
springs are shown in Fig. 18 before and after shearing the ends of the
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I 21

Fig. 18 - Contact springs for MB type relay.

contact spring groups. Typical contact and winding information and
operating currents are given in Table III. As is the case for the standard
general purpose wire spring relay, a few code cards are sufficient for a
large number of contact combinations.

The MA and MB relays do not have the sensitivity* or the contact
capacity of the wire spring relays, but they are much smaller, i.e., about
io the volume, and they are suitable for mounting on printed circuit
boards. One such typical plug-in printed circuit package is shown in
Figs. 19(a) and 19(b). The same principles used in the MA and NIB
relays can also be used in crossbar switch designs to reduce the size and
weight to about 15 per cent of the present types.

* Ampere -turn sensitivity of the 6 transfer MB relay is about 185, compared
with 160 for the AF wire spring relay and 220 for the AK (5 transfer) relay. How-
ever, because of the larger coil on wire spring relays, the relative power sensitivi-
ties for 6 transfer relays are about: 0.45 watt for the MB, 0.18 for the AF, 0.14 for
the AJ, and 0.55 for the AK relay.
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TABLE III -SOME TYPICAL MA AND MB RELAY CODE
INFORMATION
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Code Springs Winding Resistance Operate Current

MA 1

MA 3

MA 4

4 transfers
2 makes
2 breaks
3 transfers 1

1 continuity

(ohms)

915
590

915

(amperes)

0.016
0.013

0.016

MA 7 3 makes 1
1 transfer

210() 0.0078

MA 11 2 transfers
2 continuities

590 0.021

MB 1 6 transfers 590 0.024
2 transfers

MB 3 1 continuity
2 makes

915 0.018

1 break
MB 4 6 makes 915 0.016

2 continuities
MB 6 2 makes 915 0.0175

1 early break
MB 7 3 transfers

3 continuities
590 0.024

VI. FREQUENCY SENSITIVE RELAY-THE VIBRATING REED SELECTOR

Another miniature device, shown in Fig. 20, is a frequency sensitive
relay called the 215 type tuned reed selector.° Fig. 21 shows a drawing of
the basic operating principles. The selector shown in Fig. 20 has been in
manufacture at the Western Electric Co. in North Carolina, starting in
1962, primarily for the Bell System BELLBOY radio paging service." The
selector is basically a highly precise and stable miniature tuning fork
associated with a lightweight contact. It is smaller and more stable,
and is an improved design for manufacture compared with an earlier
similar device known as the type 212 selector.2° These devices are very
sensitive, responsive only to sustained frequencies of the order of 0.5
second, and insensitive to noise interference. Fig. 22 shows the data over
a wide temperature range for two of these devices, operating at nominal
frequencies of 517.5 and 997.5 cycles per second and at corresponding
bandwidths of about 1.1 and 1.3 cycles per second. Sufficient stability
has been achieved so that, for the BELLBOY service, 33 different fre-
quencies spaced 15 cycles apart are provided in less than one octave
between 517.5 and 997.5 cycles. By using three different frequencies at
a time, more than 5000 combinations are possible for selective ringing
of a particular customer.
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(a)

(b)

Fig. 19 - Plug-in printed wiring board with MB type relays: (a) apparatus
side, (b) wiring side.

Stability of materials and design have been measured, and these
show the total frequency change from -40°C to +80°C to be less than
0.5 cycle and the bandwidth change to be less than 0.2 cycle. At operat-
ing power levels of 100 microwatts, the intermittent contact will close
to a low -resistance level over 20 per cent or more of the cycle time. An
important factor in this has been the use of a nickel -iron -molybdenum
alloy" (Vibralloy). This material has controlled elastic and magnetic
properties.



BELL SYSTEM RELAYS

SPACER

REED (2)

CONTACT
SUPPORT-

CONTACT

POLE PI EC

COIL

I

FRAME

SLIDERS

FIXED CONTACT

1

Fig. 20 - Tuned reed selector (BELLBOY) - 215 type.
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The lightweight contact is essential so that the selector frequency is
unchanged when the intermittent contact is made. The contacts are
rhodium against platinum rhodium. Clearly, contact life is important
and circuits are used typically to change the potential on an electron
tube or transistor to trigger a switching or signaling function without
exceeding a contact current of a few milliamperes. In the BELLBOY appli-
cation a transistor oscillator is triggered to give an audible signal.
However, the short contact closures occurring at a rate of hundreds per
second may therefore control pulses that have an integrated or average
power that is a substantial fraction of a watt. For example, only small

MAGNET -Y

POLE PIECE

COIL

- CONTACT

R
ss.

REEDS

Fig. 21 - Tuned reed selector schematic.
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changes in frequency or sensitivity were measured over a test period of
1500 hours in a 12 -volt circuit with a 240 -ohm resistor giving a closing
current of 50 milliamperes. The power capacity of the contacts can, in
fact, be used to operate relays or other devices directly: for example,
mercury sealed contact relays with large contact current capacity. One
such circuit is shown in Fig. 23. In this circuit the selector contact is
used as a synchronous rectifying means to generate de from the same
ac source that operates the selector. When the input frequency corre-
sponds to that of the selector, the contact closes in synchronism once
each cycle to send unidirectional pulses to the capacitor and relay in
parallel. The capacitor serves to smooth the pulses so that the relay
winding has nearly a constant current in it. Combination circuits using
reed selectors and mercury -wetted contact relays provide a simple
means of selectively controlling substantial powers to perform a mul-
tiplicity of functions over a single pair of wires.

VII. REMARKS

In the telecommunications field, rapid advances are being made in
many new areas of technology. Devices and systems based on these will
naturally be compared and evaluated for Bell System applications with
older devices and systems. In such comparisons, care is needed to do
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this, not only with devices at hand but with the possibilities that pres-
ently exist on the basis of general advances made in the older fields.
One of the older and important areas is that of electromechanical devices
such as the relays discussed in this article. Decisions can then be made
and devices chosen, not on the basis of technology, but on the basis of
the best performance, cost, and over-all systems requirements. Relays,
in modern form, sometimes in miniature form, can be expected to be
important devices in the future as they have been in the past.
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Overflow Traffic from a Trunk
Group with Balking*

By PETER LINHART

(Manuscript received April 18, 1963)

A stream of telephone calls is submitted to a group of trunks, the first -

choice group, according to a recurrent process. We allow balking on this
trunk group; i.e., if a call finds k of the first -choice trunks busy it may be
served, with probability pk , or may fail to be served, with probability qk .

A call which fails to receive immediate service on the first -choice trunk group
is submitted to a second -choice trunk group, the overflow group. We also
allow balking on the overflow group. Calls which fail to receive immediate
service on the overflow group are lost to the system. Holding times have
negative -exponential distribution.

We give methods for finding the joint distributions of numbers of busy
trunks on the first -choice and overflow groups, at overflow instants (i.e.,
instants at which calls are submitted to the overflow group), at arrival in-
stants, and at arbitrary instants. We consider the transient as well as the
limiting distributions (and demonstrate the existence of the limiting distri-
butions).

The methods developed are illustrated by several examples. Numerical
results are given for the blocking in the particular case that the first -choice
group constitutes a random slip, while the overflow group is full -access
(common).

I. INTRODUCTION

1.1 Balking and Overflow Traffic

A telephone call is submitted to a group of m trunks. This call may
fail to occupy a trunk, even though not all m trunks are busy. There
may be a number of reasons for such a failure, e.g.: the calling line may
not have access to any idle trunks, some equipment other than the

* This paper represents part of a doctoral dissertation submitted to the Sub-
committee on Applied Mathematics, Columbia University.
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trunk itself may be required to complete a connection and this equip-
ment may be busy, or the m trunks may be merely first -stage links in
a connecting network and there may be no free path through this net-
work. Whatever the cause of the failure, we shall say that the submitted
call balks (although the word is perhaps more appropriate in queueing
theory applications). In this paper we shall restrict ourselves to the case
in which the probability of balking depends only on the number of
busy trunks: if an arriving call finds k trunks busy, it is served, with
probability pk , or balks with probability qk (pk qk = 1). If all trunks
are busy, an arriving call cannot be served, and therefore qm = 1. Thus
we subsume blocking under the term balking.

The traffic which overflows from a trunk group with balking has
different characteristics from that which overflows from a full -access
group. [By a full -access trunk group we mean one for which qk = 0
(k < m), qm = 1.1 Suppose recurrent traffic is submitted to a full -access
group (when we refer to recurrent input traffic we mean that the inter-
vals between arriving calls are independent, identically distributed
random variables). Suppose further that the holding times of calls have
negative -exponential distribution. Then, as Conny Palm' has shown,
the overflow traffic is also recurrent. This is not the case for traffic
overflowing from a trunk group with balking.

The traffic which balks on the first -choice group may be submitted
to an overflow group of, say, M trunks. There may also be balking on
the overflow group. Now L. Takacs2 has treated in detail the process
of numbers of busy trunks in a trunk group with balking to which a
recurrent stream of calls of negative -exponential holding times is sub-
mitted. Thus, if the first -choice group is full -access, we know how to
describe what goes on on the overflow group. However, if the first -choice
group is not full -access, the stream of calls submitted to the overflow
group is not recurrent, and therefore further analysis is required to
describe the process of numbers of busy trunks on the overflow group.
We attempt to treat this problem in the present paper; in so doing, we
are led to consider the joint distribution of numbers of busy trunks on
the first -choice and overflow groups, which is also of interest in itself.

1.2 Mathematical Description of the Problem, and Some Notation

Calls are submitted to a group of m trunks, the first -choice group, at
successive instants Ti -r9 , , Tn . The interarrival times, On =
Tn - .-1 (n = 2, 3, 4, ), are independent, identically distributed
random variables with common distribution function

P10 5_ = F (x),
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and we specify further that Pi 71 = F (x). We assume that the
%I are not lattice variables (i.e., that the interarrival times are not
confined to multiples of a constant), that F(0) = 0 and that

0 < a < 00,
where

a = xdF(x)
 o

is the mean interarrival time.
Note that the class of recurrent inputs just described includes, among

others: Poisson arrivals, equally spaced arrivals, and, as previously
remarked, arrivals which are themselves overflows from a full -access
trunk group to which a Poisson process of calls with negative -exponential
holding time is submitted.

If the nth call receives service, then its holding time is a random varia-
ble, x . The x1 are independent and identically distributed, with
common distribution function

1 -e rfor .r 0P=
0 for .r < 0

and are independent of the arrival process 1 .

Note that we are measuring time in units of the mean holding time;
thus a = 1/a is the submitted traffic in erlangs.

An arriving call which finds k trunks of the first -choice group busy is
served with probability pk , or balks with probability qk . We have

Pk qk = 1 (k = 0, 1, , nz)

= 1.

A call which balks on the first -choice group is immediately submitted
to a second group of M trunks, the overflow group (we allow the case
M = 00). We denote the sequence of instants at which calls are sub-
mitted to the overflow group by TN} (N = 1, 2, 3, ). If such a
call finds K trunks of the overflow group busy, it is served, with prob-
ability GK, or balks, with probability HK. We have

GK HK = 1

HM = 1

(K = 0,1, , M)

(iflll < co) .

We make the following plausible restriction on the balking proba-
bilities
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pk > 0 for k < m
GK > 0 for K < M.

A call which balks on the overflow group is said to be blocked. It im-
mediately disappears from the system and is not resubmitted; i.e., lost
calls are cleared.

We now define the following random variables:

E(t) = number of busy trunks on first -choice group at time t
En = t(rn - )

En° = t( TN -) (the superscript "o" means "overflow".)
Z.1.,(t) = number of busy trunks on overflow group at time t

Zn = Tn )

a' N0 = ,E1( K -

We also define the following probabilities, which it will be our object
to determine:

PttN° = k, 5N° = = P°(k,K,N)

lim P°(k,K,N) = P°(k,K)
N.00

P{n=k,Zn=K} P(k,K,n)

lim P(k,K,n) = P(k,K)
n-oo

P{E(t) = k, '4(0 = K} = P(k,K,t)

lim P(k,K,t) = P*(k,K).

When one of the variables k or K in one of these probabilities is not
written, it is understood to be summed over, e.g.

P(k,t) = P(k,K,t).

A quantity of particular interest in applications is the blocking

B = qkIIKP(k,K).
k=0 K=0

We shall also have occasion to refer to the blocking on the first -choice

group

b = qkP(k).
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Further notation will be introduced as it is needed. The notation will
as far as possible conform to that of Taketcs.2 We shall, when possible,

ruse lower-case letters to refer to the first -choice group and the corre-
sponding capital letters for the overflow group. Equations of Ref. 2
will be denoted by a T: e.g., "(T44)." We note here only the following
definitions:

00

co(s) = f e-" dF(x)

Vs( j)
3=1 1 - (p(j)

C 148)
V(S j)

1=0 1 - (P(s j)

1.3 Previous Results

(Co = 1)

(C_i(s) . 1).

Let us denote the interoverflow times by ON = TN - TN_i. As we
have mentioned, if the first -choice group is full -access, the f ON) are
independent and identically distributed. In this case let us denote their
common distribution function by

G(x) = PION 5 x}

with Laplace-Stieltjes transform

7(s) = c1G(x).
0

Talies3 solves a recurrence of Palmi to obtain

rti 1o- (r) Cr_1(s)
7(8) 4. 1 1 ( 1 )In 1

r Cr-i(s)
A. Descloux4 gives convenient recurrence formulas for calculating

-y(s) and the moments of G(x) in the case of Poisson input, i.e., when

- Cur (x 0)
F(x) =

0 (x < 0)

Some results exist for P(k,K) in the case of Poisson input [for which,
and only for which, as we shall see, P*(k,K) = P(k,K)]. The first of
these is due to L. Kosten.° He considers a full -access first -choice group
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and an infinite full -access overflow group. Let us denote binomial
moments with respect to the overflow group by

M K
U(k,R) E P(k ,K).(no) P( ,K)

K=R

Then Kosten finds

U(k,R) = CoR (a)
Com(a)CRk (a) (2)

C Rm(a)C Ri_im(a) 

(See also the appendix by J. Riordan to a paper of R. I. Wilkinson!)
The polynomials in (2) are defined by

EC Kk (a) = E ± R - 1 a
(3)(k - j)!

(-1)
so that Cok(a) = ak/k!, if we agree that = 1. J. Riordan (Ref.

0
7, p. 120) remarks that these polynomials are closely related to the
Poisson-Charlier polynomials C.(x,a); in fact

C,,k(a) = Ck(-R,a).

E. Brockmeyer,8 N. Bech,9 and K. Lundkvise consider a problem
which differs from Kosten's only in that M is finite (GM = 0). Brock-
meyer finds

where

IP (k,K) = (-1)sYsi,(8 ± 9cK+sk-s(a) (4)

(-1)j-s
J=S

1
Yo - Cim+(a)

Cy/14(a) J - 1 u

1 if (L - 1) c_ni+L (a).
Cim+M(a)

1.

We do not consider here more complicated trunking situations (graded
multiples, alternate routing arrangements in which the overflow group
is at the same time the first -choice group for other sources of traffic).
See, however, Wilkinson,6 and R. Syski (Ref. 11, chapters 7, 8, 10).

Takacs2 gives, for arbitrary qk , methods of finding P(k,n), P(k),
P(k,t), and P*(k). Thus in what follows we shall take the attitude that

aJ -

(Is ---- 11)
aJ (S = 1, 2, , M)
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everything we need concerning the first -choice group only is, in principle,
known.

1.4 An Example

This paper grew out of the following problem, in which both balking
and overflow are involved. Subscriber lines are connected to the m
trunks of the first -choice group in such a way that each line has access
to only 7 of them. We refer to a particular set of -y trunks as the access
pattern for a particular line or group of lines. Equal traffic is submitted

to each of the m possible access patterns. When a connection is made,(
7

any idle trunk in the subscriber's access pattern is equally likely to be
selected. This arrangement is referred to as a random slip, or Erlang's
ideal grade. It is easy to see that the balking probabilities are

qk = 0, for 0 < k < -y, and

(k\
1qk = Y

, f()r y < k < in.

(m7)
Traffic which balks on the first -choice group is submitted to a full -

access overflow group of M trunks. If a call is blocked on the overflow
group, it is lost.

Such an arrangement may be economically desirable. The average
traffic carried per trunk (for a given blocking probability, B) is less than
for a full -access group of m M trunks, but the traffic per crosspoint
is greater. Knowing the costs of trunks and of crosspoints, and given
m M and the desired value of B, one wishes to select -y and m so as
to minimize the cost per unit of carried traffic. We shall give some nu-
merical results for this arrangment.

II. THE STATE OF THE SYSTEM AT OVERFLOW INSTANTS

2.1 Transient Behaviour

Unless the first -choice group is full -access, the overflow process { TN}
is not recurrent and the sequence { EN°} is not a Markov chain. However,
the sequence of pairs of random variables {EN°, Zi',N°} is a homogeneous
Markov chain. This may be seen as follows. Suppose we know that
E( TN-) = k and 4.1( TN-) = K. TN is an arrival instant; because the



52 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

arrival process is recurrent and independent of the holding times, the
history of the system before TN has no effect on the epochs of future
arrivals. TN is an overflow instant; whether or not the overflowing call
is accepted by the overflow group depends only on the value of K. Be-
cause of the exponential distribution of holding times, the stochastic
behaviour of the system after TN is independent of the ages of calls in
progress at TN . Thus the values of t( TN-) and 1,1 ( TN-) determine the
whole future stochastic behaviour of the system. Therefore we are led
first to a consideration of the probabilities P°(k,K,N).

If t(t) = k, 2.1,(t) = K, then we say that at time t the system is in
the state (k,K). The values of tN° are limited to those k for which qk > 0.
We denote the set of such integers k by Ct. As initial conditions we take
t(0+) = ) = I < 00 . (It is not required that i E a.) Under
these initial conditions, we seek P°(k,K,N) for k E Ct; K = 0, 1, 2, ;

N = 1, 2, 3, .

Let us now define the following quantities:

Gik(x) = PlN+1° k, N41 x I E(T N-1-) =

= PIEN_Fi° = le, eN+i Ls_ x I N = ji

= 131E1° = k, T1 =< x I E(0+) =

with Laplace-Stieltjes transform

7.a e-(s) = f ax dGik (x)
0

K)
U°(k,R,N) = K N) = 0, 1, 111)

K=R R

V°(k,R,N) = E
R

GKP°(k,K,N) (R = 0, 1, , M)
K=R

V°(k,-1,N) = 0.

We may now state:
Theorem 1: The distribution P°(k,K,N) is uniquely determined by

the binomial moments (1°(k,R,N); the latter are determined by

(r)(k,R,1) = (1)70(R) (5)

U°(k,R,N 1) = -yik(R)[w(i,R,N) + r(j,R - 1,N)]. (6)
E et
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Proof: The transition probabilities for the homogeneous Markov
chain f EN, 2:4N} are given by

p°(j,J; k,K) = PI = k, 11.N+1° = K I EN° = j, SN° =
00

P N+1° = K I 2',N° = J, = X dGjk(X).

It is easy to see that

ziN+1 = K I z/NO = J, 0N+1 =

(J 1

K
= Gj c-rK e-s)+1-1C

Thus

+ II, CrK (1 - e-x )j-K

p°(j, J; k, K) =
0

dGik(x)[G1(j -11.: c-rK(1 - e')J1-1-ic

(7)
+ j(jK) -

Nov

P°(k,K,N 1) = p°(j,J;k,K)P°(j,J,N). (8)
j=-0

Substituting (7) in (8), and taking the Rth binomial moment with
respect to the overflow group, we obtain

M 00

U° (k, R, N 1) = E E dGA(x) [G.,(j R+ 1)
/Ea .7=0 0

H.1(RC-YR P°( j, J, N)

= E E -yik(R) [(j) + P.(i, J, N)
Ea

= E -y.ik(R) [U°(j, R, N) (j, R - 1, N)],
a Ea

which is (6).
For N = 1, we have
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so that

oo

P° (k, K, 1) = l dGik(x) (kr) e-zic(1 -e x)r-x

oo ) -Rx
(k, R, 1) = dGik(x)

I
ef

which is (5).
From the definition of U°(k,R,N), we have

M

(-1)R-K (R)U°(k,R,N)

= R)i.k(R)'

= (-1)R-K (R) (j) P°(k, N).
R=K \IC/ J=R \RI

Now, for any finite N the double series on the right contains a finite
number of terms, even if M = 00 . This is so because

P°(k,J,N) =0 for k i I + N ,

(9)

and we have assumed I < 00 .
Thus the double series can he rearranged, and one obtains readily

that the binomial moments determine the probabilities according to
Af

P° (k, K, N) = i)R-K (R) U° (k, R, N). (10)
R=K

In (5) and (6), the quantities ;k(R) occur as coefficients. We regard
these coefficients as known because they can be expressed in terms of

certain quantities determined by Takacs.2 Let

M ik(x) = E (number of T in (o,x] for which E. = k I t(o+) = i},

with Laplace-Stieltjes transform

/2a(s) = f e-sx ik(x).
0

Taketcs gives a method for finding the ttik(s) [(T70), in which, however,
the index i is implicit]. The way in which the quantities ilik(R) deter-
mine the 7;k(R) is expressed in the following lemma (in which, it is to
be noted, values of the indices j,k, etc. are no longer restricted to the

set a).
Lemma 1: Define M ik°(x) = E (number of TN in (0,x] for which =
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k E(0±) = i}, with Laplace-Stieltjes transform

ilik0(s) = f dMik0(x).

Let te'R be the square matrix with elements 120°(R); j,k = 0, 1, ,

Let TR be the square matrix with elements 7;k(R); j,k = 0, 1,
,

Then, for R = 1, 2, ,

71? 120 ,1? 120 ,R)-1

where E is the (m 1) by (m + 1) unit matrix.
Since, obviously

qkikik(R)) (12)

(11) provides the desired relation between the 7A (R) and the tto(R).
Proof: We shall first show that

µ;k(R) = 7,k(R) -y,i(R)pie(R)
1-0

(13)

for R = 1, 2, .

Suppose E(0+) = j, and consider a given R-tuple of trunks on the
overflow group which are all busy at t = 0+. If T1 = x, the probability
that the overflow at T1 will find this R-tuple still busy is e-Rx.

Thus

ym(R) = f CR' dG1k(x)

is the probability that this R-tuple is still busy at T1 and that t( T1- )
= k.

Again, if this R-tuple remains busy just until t = x, the expected
number of overflows from k to find it busy is Mik°(x). Therefore the
unconditional expectation of the number of overflows from k to find
it busy is

ro Mik(x) d(1 -eRr) = CR' d31- ik°(x) = ige(R).

Denote (temporarily) by [µ;k°(R) I 1] the expected number of overflows
from k to find this R-tuple still busy, on the condition that E( T1-) = /
and the R-tuple is still busy at t = T1- .

Then, by the principle of total expectation,

A° (R) = *IL [1.4;k° (R) lb' Ji(R). (14)
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Now because of the exponential holding -time distribution

[µ;k°(R) Am' (R) for / (15)

and

[AJk°(R) I
= 1 + tikk°(R). (16)

Substituting (15) and (16) into (14), we obtain (13). Equation (13)
may be written

o,R R o,R
14 = + 7 (17)

Thus, to prove the lemma., it remains to show that (E le,R) is

nonsingular.
From (17)

Therefore

7R)12,0,R 71?

7R). Ao,R) E

det (E - 7')  det (E + te'R) = 1.

Since clearly both det (E - 7R) and det (E 'n) are finite (for
> 0), it follows that det (E - 7R) 0 and det (E µ°'R) 0,

which completes the proof of the lemma.
We note, for later use, that we have also shown that

µo ,R (E 7R)-10yR (18)

We need a separate method for finding 70(0), the above argument
being invalid because tzik°(0) = co for all k E a.

We notice that Tik(0) = Gak( ) = PIE(T1-) = k (O+) =
The quantities 'y0(0) are determined by the following system of

equations:

TAW = qk f (11-7(x) () e -k (1 - e=);-k tn 71+1,k(0) 
0 1=0

fdF(x) (3)
0

(19)

This may be seen as follows:
The event I t( T1-) = 10 can occur in these mutually exclusive ways:
(i) the first arrival after t = 0 encounters k busy trunks on the first -

choice group, with probability
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00

dF(x) (k) Ckr (1 - e')j-k ,

and overflows, with probability qk ;
(ii) the first arrival after I = 0 encounters 1 busy trunks and does

not overflow [so that t( T1+) = 1 + 1]; the next overflow following
this occurrence is from k [probability 7/4.1,k(0)].

For each k, (19) is a set of linear equations in the ,yak(0). These
equations determine the 7.0,(0) uniquely if the coefficient matrix is
nonsingular (for each k). Call this matrix A. If we can show that
I A 11k) I > E Ai,(k) for each j, it will follow from the theorem of Levy-

zo.;

Hadamard-Gerschgorin (Ref. 12, p. 79) that det A (k) 0. That is,
we want to show that

gpi jo dF(x) Cir (1 - < 1.

The left side of (20) is evidently strictly less than

E dF(x) (i) Cir (1 - e -x).1-1 = 1, for each j, Q.E.D.
o

(20)

Equations (5) and (6) may be solved, in some cases, by means of
generating functions.

Let

U°(k,R,w) = E U°(k,R,N)wN
N=1

cc

nk,R,W) = E nk,R,N)wN
1

Note that it follows from (10) that

P°(k,K,N)wN = -1)R -K (R)U° (k,R,W). (21)
N=1 K=RK

From (5) and (6) we obtain

U°(k,R,,w) = w{(R)-y'k(R)
a Ea
E -yik(R )[U°(j,R,w)

r(j,R - 1,7v)]}.

We illustrate the use of (22) by a simple example.

(22)
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Example 1:
If the first -choice group is full -access (the only element of a is m),

then U°(k,R,N) and V°(k,R,N) vanish except for k = m. For sim-
plicity, we assume that i = m; then the only relevant element of the
matrix TR is y,,(R), and (22) becomes:

Up (m,ll,w) = w7,,(R)[(i) U°(m,R,w) V°(m,R- 1,w);

whence

U° (m, R, w) =
1

w 7,n,((R)R) I
LAR

) ± V° (m, R - 1, w)]. (23)
w 7

7,n,(s) is the Laplace-Stieltjes transform of the interoverflow-time
distribution, i.e., it is just the function 7(s) given by (1). Thus (23)
is exactly equivalent to (T32), and merely serves to illustrate our remark
(Section 1.1) that if the first -choice group is full -access, we can use the
methods of Ref. 2 to describe the behaviour of the sequence fr,, N°).

2.2 The Limiting Distribution P°(k,K)

Theorem 2: The quantities P°(k,K) = lim P°(k,K,N) exist, are
N -.°o

strictly positive, form a probability distribution independent of the initial
state, and are uniquely determined by the binomial moments U°(k,R) =

M K()P°(k,K); the latter are determined by
A_RR

U°(k,R) = qk E 1.4.,(R)vo(j,R - 1) (R = 1, 2, , M) (24)
'Ea

and

U° (k, 0) - (IkPb(k)

where

(25)

V° (k,R) = .:4(KR) GKP° (k,K).

Proof: We first show the existence of the limiting distribution.
In this section, we use theorems given in Feller,13 chapter 15, sections

5 and 6.
The Markov chain {tA,°, Z,N°} is evidently irreducible (since pk > 0

for k < m) and aperiodic. Therefore lim P°(k,K,N) exists. Since it is
N.co
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irreducible, the chain has either all transient, all recurrent null, or all
recurrent non -null states.

If a state (k,K) is transient or recurrent null, then lim P(k,K,N) = 0.
N-070

Therefore, to show that all states are recurrent non -null it will suffice
to show that for some state (k,K), lim P°(k,K,N) > 0. It will then

N-bco

follow that this is so for all states, and that E P°(k,K) = 1. We look
k E a

at the state (0,0):
To see that lim P°(0,0,N) > 0, we compare our system (with arbi-

N-sco

trary balking probabilities) to the special system for which m = 0,
M = GO HA = 0 (always assuming the same input process). For this
special system, write P{ EN° = K} = P°(K,N), and take as initial
condition: M (0+) = i I.

It is clear that for any system with M = and with the same
initial condition,

P°(0,0,N) /3°(0,N),

for each N, whence

lira P°(0,0,N) > Jim/3*(0,N).
N -boo

But it is known3 that lim P°(0,N) > 0; thus
N-. o0

lim P°(0,0,N) = P°(0,0) > 0
oo

and all states are recurrent non -null. Hence, since the chain is also irre-
ducible and aperiodic, it is ergodic.

We now know also that a unique stationary distribution exists and
that it coincides with the limiting distribution. From (6), we must
have

nk,R) = E 7,k(R)[U°(.7,R) r(j,R - 1)]. (26)
Ea

Denote by U° the row -vector with components U°(k,R), 0 < k < m.
Then (26) may be written

uo ,R ((Jo ,R vo

Thus, from (18),

uo ,R vo ,R-1 ,R (27)
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Writing out (27) in components, and using (12), we obtain (24).
We now prove (25). Denote by C(n) the event that the nth arrival

overflows. Thus,

= lim pt c(n)}
It -.00

Now,

P°(k,K) = lim Pi EN° = k, ZN° = K} = lim PIE. = k, = K I On)}

But

Therefore

and

N-1.co n -pea

lim
= k, = K1 P {On) = k, a = KI

= plcool

P{C(")
I

E = k, 7-4 = PIC° E = k) = qk

po(k, K) - qk P(k, K)

41I

qk E
U° (k, 0) = i P°(k, K) - K-4)

K=0

qk P(k)

P(k, K)

(28)

To complete the proof of Theorem 2, it remains to show that the
binomial moments U°(k,R) uniquely determine the probabilities
P°(k,K). This proof will be easier after we have discussed the stationary
distribution at arrival moments, P(k,K), and we therefore defer it
until then.

It is sometimes convenient to work with the double binomial moments

13°(r, R) = E U (k, R)
k=r

C° (r, R) = V° (k,R).
k-r r

In terms of these, (24) and (25) of Theorem 2 become
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B°(r,R) = to[hr(R) - g fr(R)r(j,R - 1)
(29)

(I? = 1,2, , M)

B°(r, 0) = 1 ( "'k P(k). (30)b ifrr

Here we have used the following definitions: fh.(s) and gir(s) are the
lth differences of 4,0,.(s) and Tor(s):

c(s) = E C.) 4),-,-(s) (31)
3

gir(s) = E *jr(s) (32)

where cki,.(s) and NIfir(s) are defined, following Takacs [(T59), (T60)], by
772

°PIT

1,

= (;) (8)k-r

A

and must satisfy [(T61) and (T62)]

4',o(s) 141(8)1 - co(s)
and

(33)

(34)

(35)

1',,.(s) rm i(s)]
(36)Cr(s) Cr-i(s) r

as well as the relations in r implied by their definitions [see (T25)],

4'.fr(s) = (1) (A1-rPr)(1);/(8). (37)

Examples of the application of the methods of this section will be
found in Section V.

III. THE STATE OF THE SYSTEM AT ARRIVAL INSTANTS

3.1 Transient Behaviour

The sequence f , E) is clearly a homogeneous Markov chain. We
assume initial conditions E(0+) = i, Z(0+) = I, and seek the dis-
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tribution P(k,K,n). We no longer restrict our attention to states (k,K)
for which qk > 0, but consider all states (k,K), 0 < k <= m < co
0 KSM....0o.

We shall prove the following:
Theorem 3: The distribution P(k,K,n) is uniquely determined by the

double binomial moments

B(r,R,n) =
k

2_, E (,) P(k,K,n);
IC -le 1. 11

the latter are determined by

B(r,R,1) = cor+R (r.) (IR)

(r = 0,1,  ,m;R = 0,1, , 111)

B(r,R,n 1) = cor+J?[B(r,R,n) D(r - 1,R,n)
(r,R - 1,n) - E(r,R - 1,n)] (39)

(r = 0, 1, , m; R = 0, 1, , ; n = 1, 2,

Here
m

lc
C(1',R,n) =

M

(179 GKP(k,K,Th)
k=r r - -

m M

D(r,R,n) = (1c) (19 pkP (k,K ,n)
k=r S=Rr

) 

(38)

(lc) (19
E (r,R,n) k,K,n)

K=Rker r/ I?

and all these quantities are defined to be zero if r < 0 or R < 0.
Proof: If the arrival at T. finds the system in the state (j,J), it may

either get on the first -choice group, with probability pi , or balk on the
first -choice group with probability q1 ; in the latter case, it may get on
the overflow group, with probability G1 , or balk there too, with prob-
ability H . Thus the transition probabilities are given by

p(j,J;k,K) = PlEn+i = k, En+1 = K I tn= j, =

= f dF (x) {pi (1. ± e'k(1 - e')).+1 -k (j) e'K(1 - e-z)J-K

k -x. Co --x).14-1-K(1k) e---xk [r if(

(j) -,K(1 e-xy-K1}.

(40)
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P(k,K,n + 1) = p(j,J;k,K) P(j,J,n). (41)

Substituting (40) in (41) and taking binomial moments with respect
to both the first -choice and overflow groups, we obtain:

{ ()B(r,R,n 1) = cOr+ 11

Pi
± j1
r R

q1 +
)+11.1C 01} P(j,J,n).

Note that the quantity in braces in (42) is

{0 (TR) Pr -j 1) G)(R.-1 1)}

(42)

(43)

Substituting (43) in (42), we obtain (39).
For n = 1, we have

P(k,K,1) = f dF(x) c -IL - (jj K (

taking binomial moments with respect to both trunk groups, we obtain
(38).

From the double binomial moments, one obtains the probabilities
P(k,K,n) by using:

U(k,R,n) = E (-I)' -k (70 13(r,R,n) (44)
r -k

and

P(k,K,n) = (-1)11-K (R) U(k,R,n). (45)K

Clearly P(k,K,n) = 0 for k K > i + I + n; it follows that the
sums in (44) and (45) contain a finite number of terms for finite n,
even if M = co , and there are no problems about convergence.

Equations (38) and (39) may be solved, in some cases, by means of
generating functions; we give an example.

Example 2:
We consider the simplest possible case, in which

qk = 0 (k = 0, 1, , m - 1)

qm = 1
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In this case,

and

M=Co
= 0 (K = 0, 1, 2, ).

C(r,R,n) = B(r,R,n),

E(r,R,n) = D(r,R,n),

(46)

(47)

D(r,R,n) = B(r,R,n) - (m) B(m,R,n). (48)

Substituting (46), (47), and (48) in (39), we get

B(r,R,n ± 1) = vr+R[B(r,R,n) B(r - 1,R,n)

47. m 1.) B(m,R,n) (7) B(m,R - 1,n)].

Let

From (38) and (49):

wv,+R r(i)()± B(r - 1,R,w)
1 - wcor+R R

i)/B(m,R,w) 4- (7) B(m,R

The solution of (50) is

B(r,R,w)

00

B(r,R,w) = I B(r,R,n)wn.
nil

B(r,R,w) =

k., inz,\ 1

1,r+R(w) ,,.f. \j) r 2+.(w) .i(i) E (i

ri+R(w)
1 s -o 8 ,_0 j) ri+8_1(w)

ice-

(j

(W.G\

(W)
8-0 S J-0 (0)

J"`r+1 ri+R-1 z (I)

J-0 3 rii-R-1(W)

- (R) I + ri-ER1i(w)t

(49)

(50)
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rr(v) =

r -1(w) = 1.
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Wcoi

- wsoi
(r= 0, 1, 2,  )

3.2 The Limiting Distribution P(k,K)

Theorem 4: The quantities P(k,K) = lim P(k,K,n) exist, are strictly
n-sce

positive, form a probability distribution independent of the initial state,
and are uniquely determined by the double binomial moments B(r,R) =

its U(k,R), where U(k,R) = 41" (Km,)P(k,K); the B(r,R) are given
k=r r K=1; It

B(7.,1?) = bC,4.R
ZI.B°U,R) C°( j,R - 1)[2_,
jar UJ-ER )--r-t CJ+R--1 (51)

(r = 0,1, , M; R = 0, 1, , M).

Here

"L KC(r,R) = E () G (A. ,K)
k=r

Proof: That the limits P(k,K) exist and are independent of the initial
state again follows from the fact that the Markov chain { En , Z, j (n =
1, 2,  ) is irreducible and aperiodic. To show that the P(k,K) are
strictly positive and form a probability distribution, we must show that
there exists some state (k,K) such that P(k,K) > 0. This can be done
by a method similar to that used in the proof of Theorem 2; we omit the
argument. It follows that a unique stationary distribution exists and
that it coincides with the limiting distribution. We express this stationary
distribution in terms of the stationary distribution r(k,K) in the
following way :

Consider the arrival which occurs at rn (under equilibrium conditions).
It either overflows, with probability b, or does not, with probability

(1 - b).
If it overflows, the probability that it encountered the state (j,J) is

P°(j,J).
If it does not overflow, let us denote the probability that it encountered

the state (j,J) by Pi(j,J).
We note that

P(j,J) = bP°(j,J) + (1 - b)130(jI). (52)
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Suppose that 0+1 = x.
If the arrival at T encountered the state (j,J) and overflowed, the

probability that the arrival at r,1+1 encounters the state (k,K) is:

(j)e-7k (l. - j-krj(ff 1)e-xic( e-x)J-Fi-K

lti

H.,(1e-rK _ czy-K, a(x), say.

If the arrival at T,4 encountered the state (j,J) and did not overflow,
the probability that the arrival at r+1 encounters the state (k,K) is:

e-xK(1 - e-x)r-K 13(x), say. (54)
Iv li

Taking account of both these possibilities, and removing the condition
011 On+1

m M nio

P(k,K) = E E f dF(a,)[bP ( J,J)41,) + (1 - op0(i,J)/3(x)].
j=0 .1=0

Using (52),

P(k,K) =
nc 111

E E
j=0 J=0

Taking binomial moments with respect to both trunk groups, and
using (53) and (54),

(53)

(11?(.t) tbl (.le 0Iga( z) - Cr)] j,J))3(x)}.

m M

13(1.,R) = F E E ro) (a, (1 + + (1)
i=0 v./ \ R

+ 1) (j )1 + I ( ) (55)

= sof-FRIB(r,1?) B(r - 1,R)

b[C°(r,R - 1) - B°(r - 1,R)H.

The solution of (55) is

-B(r,R) B (m' R)
b

,Bo(,R)' - (,( j,R - 1) (56)
Cr-FR Um_FR 1=r j+R i=r+1 C j+R-1

Now note that, from (28),

bB°(m,R) = B(m,R). (57)

Substituting (57) in (56), we obtain (51).
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To complete the proof of Theorem 4, it remains to show that the
double binomial moments B(r,R) uniquely determine the probabilities
P(k,K). It is clear that the B(r,R) uniquely determine the U(k,R)
through the equation

U (kJ?) = E (-1)r-k (1.) B(r,R) (58)

because m is finite. Thus we must show that

P(k,K) = (-1)R-K GRt7) U (A.,R) (59)
R=Ir

when M is infinite; it will suffice to show that the series on the right
converges absolutely.

From (39) we have

B(0,R) - [C (0,R - 1) - E(0, R - 1)]. (60)
1 -'PR

Now,

C(0,R) - E(O,R) =

Therefore,

Now

whence

Thus

"1

Sr

(I (? 11
kE GKP (k,K) < B(0,R). (61)

A-)k- r 1,:=1

B(0,R) B(0,R - 1)
1 - (pR

lim 0R = lim To(s) = F(0+) = 0
R-.00 s -woo

lim
1

'PR - 0.
- 'PR

B(0,R)
RunB (0,R - 1)

Equation (63) is sufficient to insure that

Rt (KR) B(0,R)

converges.

(62)

(63)
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Consider for simplicity the case m = 1. Then we have

B(0,R) = U (0,R) + U(1,R).

At least one of the statements

U (0,R)
R -.co U (0,R - 1)

UR-'(i'R)
_0

U (1,R - 1)

must be true, for if both failed to be true, then
would be terms for which

(64)

(65)

(66)

for some E > 0 there

U (0,R)
U (0,R - 1) 6

U(1,R)
U (1,R - 1) 6

for arbitrarily large R; it would follow that for arbitrarily large R

B(0,R) U (0,R) U(1,R)
B(0,R - 1) U (0,R - 1) U(1,R - 1) 6

which contradicts (63).
Say (65) is true. Then the series

m R
U (0,R)

converges; thus

Xic
U (1,T?) = XK(K) B(0,R)m R R

converges, and this proves (59) for m =
arbitrary m is straightforward.

Corollary: We can now easily complete the
remarking that [using (28)]

bU°(k,R) b (j)P°(k,J)j- R

211"

= E '0) qkP(4.,,I)
J=It

so that the series

- U(O,R)
R=K K

1. The generalization to

proof of Theorem 2 by

R
P(k,J) U (k,R)
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P°(k,K) = Rt(-1)R-K (Ric) U° (k,R)

converges absolutely, Q.E.D.
We again defer examples to Section V.

IV. THE STATE OF THE SYSTEM AT ANY TIME

4.1 Transient Behaviour

Let

B(r,R,t) = (1;) P(k,K,t)
k= r K=R I. n.

with Laplace transform

gr,R,$) = e-"B(r,R,t)dt.

Let MikiK(t) be the expected number of arrivals in (0,1] to encounter k
trunks busy on the first -choice group and K on the overflow group, on
the condition that t(0-1- ) = i, E(0+ ) = I, with Laplace-Stieltjes
transform

1K f e-sx dmanc(x).

We also define several kinds of double binomial moments:
m 3f

crIR (s) E E
k=r K=1,1

m M

E1= E E
k -r K=R

(8) E E
k=r K -k

m M
y ,11? (s) E E

K=R

Theorem 5:

trlR(s) cp(s r R)
1 - co(s r

(67)

[(ri) (IR) + Ti.r-11R(S) Xir"-1(S) - '11-1(S)1.
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Proof: Consider a certain set of r first -choice trunks and a certain set
of R overflow trunks. We shall call the union of these two sets an (r,R)-
tuple of trunks, and if the r first -choice trunks and the R overflow trunks
are all busy at time t, we shall say that this particular (r,R)-tuple of
trunks is busy at time t. Thus, when the system is in the state (k,K),

the number of busy (r,R)-tuples is (kV
r R

). Let us make the conven-

tion that there is always one busy (0,0)-tuple. The expected number of
busy (r,R)-tuples at time t is evidently B(r,R,t).

Let us now calculate the expected total number of encounters between
arriving calls and busy (r,R)-tuples in the interval (0,1]. Denote this
expectation by &IR (t) .

If the nth arrival occurs in (0,1], and if an = k, = K), then the

nth arrival encounters (1/() busy (r,R)-tuples. Thus

JOB
fr u, E = k, =

n=1 k=r K=R I \RI
But

n=1

Therefore

P{T. < u, n = k, Zn = If} = MikIK(u). (68)

n"

, v
Eir"(t) = XR() (ARL) MikiK(t)

k=r

with Laplace-Stieltjes transform

eirIR(s)
cpirl R (69)

But eirIR(s) can be found in another way. If = k, = K), then
at time r, +, the system is in the state (k + 1,K) with probability Pk ,

the state (k,K -I- 1) with probability qkGK , or the state (k,K) with
probability qkHK. Thus the expected number of busy (r,R)-tuples at
time T+, under the stated condition, is

k+1r ) (R K)
q k ?C.) [GK -1R4 ) H KPk

(1If?) + pk
) (I

qkGK
lc K( R(

) r) - 1),

and the expected number of busy (r,R)-tuples created by the nth arrival,
under the stated condition, is
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ph (r -1' 1)(1.0 pk)GK (17) GI-C 1) '

Now the probability that the life of a busy (r,R)-tuple will be longer
than x is exp ( -(r -I- R)x). Thus the expected number of encounters
between arriving calls and created (r,R)-tuples in the interval (0,1] is:

E E E ,

dP {rn < u.  = 16 '7,,,,' = K}
n=1 le ----r-1 K=R -1 0

( ! 1) GtC) + (1 - (10.) (RK 1)1

.10

where M(x) is the expected number of arrivals in an interval of length
x, when there was an arrival at the start of the interval. M(x) has
Laplace-Stieltjes transform

e-.
Cfr+R)x dill (x)

y(s) - (s)
1 - yo(s)

Equation (70) is a convolution. Recalling (68), we see that (70) has
Laplace-Stieltj es transform,

m ht

[pk r _k 1) (Ile)k=r-i

+ (1 - pk)GR (kr) (R11- 1)1
1K

(s)µ(s ± + R).

We must not forget the (r,R)-tuples which were busy initially; the
expected number of encounters between arriving calls and these is

(i) (1\
< u}e--(7-1-mu

m
dM(u)e-"R)u\r,1 \RI n=1 0 r 0

with Laplace-Stieltjes transform

(ri) GI)µ(sr R).

Adding (71) and (72) we get

firIR (10(8 r R)
1 - go(s r 1?)

j'r-1

R (s) x ,R -1(s) (s)].

Now comparing (69) and (73), we obtain (67).

(71)

( 7 2 )

(73)
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Theorem 6: The distribution 1)(1c,K ,t) (t > 0) is determined by

1 - so(s r + R) 1

(3(r,R,$) -

Proof: We have

'14) rIR (S) - (74)
Cp(S 7. + R) S + + R

,t) (i) e-lk e-tvi-k (I) e-tIC(1 e-i)l-K
K

- F(t)]

m M 1

E f dris, = j, za = J, T < u}
7,--1 J=0 J-0 .0

(3. ± -(i--.)k e-ct-u));+1-k .1()
e-ci-o)J-K (T) e- (I -0k

a - c± 1)
e_(,_),K

 (1 - e -(t -u) ) J+1 -K +HJ(j )c-('-u)K

 (1 - e-(t-"))"-xl} [1 - F(t - u)].

(75)

This may be seen as follows: either no calls arrive in the interval (OA
or the last call to arrive in that interval is the nth (n = 1, 2,  ), i.e.
the nth call arrives at time u and no calls arrive in the interval (u,t]. If
this call encounters the state (j,J) it may get on the first -choice group
(probability p1), the overflow group (probability TiG,), or neither
(probability q;.11,). Then enough calls must end in the interval (u,t] so
that the state at time t is (k,K).

From (75), and keeping in mind (68),

B(r,1?,t) =
I m M

(u)
t IJ( ) (3-1(r+R l i F (0 1 EV?)

e-(g-u)r-i-n) {0
r R

J
(I? - 1)}

- F(t - 'Oh

and taking the Laplace transform,

I
1) (jR) giGj(i r)



OVERFLOW TRAFFIC 73

0(r,li,$) =1 +(s 7+, ±r R) [(i,) (IR) + 'Fir"? (s) (s)

+ X irl.R - iri.1?-1(8)].

(76)

From (76) and (67) we obtain (74).
It remains to show that the double binomial moments uniquely de-

termine the probabilities P(k,K,t). As in the proof of Theorem 4, it will
suffice to show that for all t > 0

B(0,R t)h
B (0,R - 1,t) - 0. (77)

From (67), for R > I,

coIR < cO(S R) ef,

1 - (p(s R)

But, for all s > 0,

Therefore

lira w(8 R) -.0.
R -..co 1 - g^(S R)

4 0711 (S)Jim- 0.
(13,01.R1(8)

(78)

(79)

Now from (74),

f3(0,R,$) 1 - co(s R) (p(s + I? - 1)
13(0,R - 1,$) so(s R) 1 - so(s + I? - 1)

s R - 1 (No' (s)
s R (Piol

and so

lim 13(0,R's) - hm stioIR(8) - 0
It co )3(0,R - 1,$) cpie,R-1(3)

since

(8o)

llnlC°(8) - 1.
IN-...0((s - 1)

From (80), and the inversion formula for the Laplace transform, the
result (77) follows.

Example 3:
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Consider the case

qk = 0 (k = 0, 1, , m - 1)

q,, = 1
M = 00

= H, GI; = G (G H = 1) (K 0, 1, 2,  ).

This example may be of some practical interest. It represents a situa-
tion in which some equipment, other than a free trunk, is needed to set
up a connection on the overflow group. If this equipment is serving a
large number of trunk groups, the chance of its being idle may be sub-
stantially independent of the situation on the particular overflow group
being considered here, and may be represented by a constant, G.

In this case we have
Xit.IR(s) = GCTIR(s)

YifiR(s) = GIFiriR(8)

and

1'irin(8) 4),,,Tie(s) (m),,m/R(s).
r

Equation (67) becomes

cr/R(8) co(s r R) JR\ (I\
1- c(s + r R) 1V) 1?,) (ilir-11"(s)

m iR(s) G(m)
r - 1

The solution of (81) is:
rm

1(m)

(Dirm(s) = CH -11(S)
1j i+R(S)

(i)RG C,4 k( s)

m (in) 1

i=r-iE-1
JJ

CJ-4--R-1(s) 'v
s=o(m. 1

J CRC i+R_1(s)

(81)

2 (1:,)

i 1 (82)
i+s-1(s)S J-0

- (Ili) jar- 1 ( i li) C j+ fe 1(8)

J
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The expression for ft(r,R,$) can now be obtained from (82), using (74).

4.2 The Limiting Distribution P* (k,K)

Theorem 7: The quantities P* (k,K) exist, are strictly positive, form a
probability distribution, are independent of the initial state, and are uniquely
determined by the double binomial moments

B*(r,R) = E E Pic(/,K);
r K-R

the latter satisfy

- a 1 - B(r,R), for 7' + 1? > 0 (83)r R 'Pr+R

B*(0,0) = 1.

Proof: To prove the existence, we consider the limit of (75) as I
Clearly the first term goes to zero, and we have

M t in

P*(k,K) = line E f E dmilf(u)
0 j=0

f j + 1 e-(t-Ok
k (1 -

( e0-0K e-(t-u)y-K li)

 e--(i-ok (1 _

-(t-u)K )1-1-1-K e

.c(1 -0K (1 e--(t-u) )J -K3 - F(t - u)l

ci)

(84)

It follows from Smith's "fundamental theorem,14 the assumption
that F(x) is not a lattice distribution, and the fact that P(j,J) > 0 for
all j and J, that the limit in (84) exists and is given by
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P*(k,K) = PoJ) du{1 - F(u)]
j=0 .1=0 a f

e
ik (1 -ti ) j+l-k

(J) e741C0 cuy-K
`13

(i) -u); -k

[o'
(7. 1).e-uK(1 e-u)./A-1-K

K

+ H j (j) e-"(1 - e -u )j-Kl} .

It is clear from (85) that P* (k,K) > 0 for all (k,K), since the integrands
are all strictly positive. (Note also that we have assumed a > 0.) The
dependence on (i,I) has disappeared, and it is easy to show from (85)
that

(85)

m Af

E E 13*(k,K) = 1.
1c=0 K=0

Thus B*(0,0) = 1. To show (83), we take a different tack:
Consider any state (k,K). Transitions into the state (k,K) are of four

types:

(k - 1,K) (k,K)
(k,K - 1) (k,K)
(k 1,K) (k,K)
(k,K 1) (k,K)

(type a)
(type b)
(type c)
(type d).

Transitions out of the state (k,K) are also of four types:

(k,K) (k - 1,K)
(k,K) (k,K - 1)
(k,K) (k 1,K)
(k,K) (k,K ± 1)

(type a')
(type b')
(type c')
(type d').

Denote by Nv(t) the expected number of transitions of type y in the
interval (04].

If we consider the process only at times when the state (k,K) exists,
transitions of type (a') form a Poisson process of density k, and transi-
tions of type (b') form a Poisson process of density K. Thus,

N,,(t) = k f P(k, K, t)dt (86a')
0



Similarly,

Now En =
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N1) -(t.) = K f P(k,K,Odt. (86/j)

N c(t) (k 1) f P(k 1, K, t)dt (86c)

tNd(t) = (K 1) i P(k, K 1, t)dt. (86d)0
k, 74%, = K} is a recurrent event, with mean recurrence

time [a/ P(k,K)] > 0. Thus, from the "elementary renewal theorem,"15

line
M (t) P(k,K)

a

But clearly,

so that

Similarly,

Nd,(t) = gkGK MiL. (t)

Nd-(t) qkGKP(k,K) bGlir(k,K)lim
a a

h
b.

m N (t) Gic_ibP(k, K - 1)
t a

lim
N ,(1) pkP(k,K) P(k,K) - bP(k,K)

a a

(86(r)

(86b)

(86c')

Na(t) P(k - 1, K) - bP°(k - 1, K)lim - (86a)
t a

We now notice that in any interval (0,1], the number of transitions out
of the state (k,K) can differ from the number of transitions into the
state (k,K) by at most 1. From this remark, and all the equations (86),
it follows that

(k K)P*(k,K) aP(k,K) - abHKP°(k,K)

= abrOk_iP°(k,K - 1) - P°(k - 1,K)] aP(k - 1,K) (87)

(k 1)P* (10 + 1,K) (K 1)P* (k,K 1).

Taking the double binomial moment of (87), one obtains
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(r,R) = a {B(r - 1,R) - m +r 1) B(m,R)
(88)

1)b[C°(r,R - 1) - B°(r - 1,R) + (14 +r B°(m,R)1}

We now note that, according to (51),

a [B(r - 1, R) - m +r 1) B(m,R)1

= aber+R_i 13°(
C(,j, R - 1) (89)

L Cj+R ;=,. Ci+R-1

- ab m ± I) B°(m,R).

Putting (89) into (88), we obtain (83).
It is now easy to see that the B*(r,R) determine the P* (k,K). For

from (83)

11
*.

M
B (0,R) = lim

R - 1 coR-1 B(O,R)
B*(0, R - 1) R ao r R (pR B(0, R - 1)

R)B 0,= lim - O.
R_.. B(0, R - 1)

Corollary: For Poisson input, P*(k,K) =
Proof: For Poisson input, F(x) = 1 - 0 < a < (x) ; a = 1/a.
Thus

p(s) -
a a

a +s'car - a + r

B*(r,R) -ra
R

r B(r,R) = B(r,R) ,+
a

R

and since the double binomial moments determine the probabilities
uniquely, the result follows.

Examples will be found in the next section.

V. EXAMPLES FOR THE STATIONARY PROCESS

5.1 Categories of Examples

In this section we will try to find the stationary binomial moments
B°(r,R), B(r,R), and B* (r,R) for certain special cases, or categories
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of cases. In the easiest cases we will succeed in finding explicit expressions
for all these moments; in a harder case we will find explicit expressions
only when R = 1 or R = 2; in the most complicated example (the ran-
dom slip with overflow group, mentioned in Section I), the treatment is
numerical, and only the results for the over-all blocking, B, are reported.

If the first -choice group is full -access, the situation is particularly
simple, since overflow can only occur if Si = m; the vector equations

(24) for U°(k,R) then become scalar, and B°(r,R) = (m)

If the balking on the first -choice group is arbitrary, but the overflow
group is infinite with no balking, or with constant balking probability,
as in Example 3 above, some simplification occurs. For then,

V°(k,R) = GU° (k,R)

and hence (24) becomes a recurrence relation, although the quantities
it relates are vectors. In such a case it is straightforward to find the first
few moments of the distribution OD the overflow group.

In cases in which neither of the above simplifications occur, the form
of the balking probabilities may still he such as to facilitate calculation;
an example of this is the random slip with overflow group.

5.2 Full -Access First -Choice Group

We suppose

qk = 0 (k = 0,1, , m - 1)

qm = 1.

Equations (24) reduce to the single equation

U°(m,R) = Am,(R)V°(m, R - 1)

and from (13),

Ainni(R) - 7(R) (R = 1,2 ,  ).1 - 7(R)

7(R) is given by (1); it easily follows that

(m) 1

C,_1(1?)
iimm(R) =

771 (m) 1

ci(R)

(90)

(91)
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Noting that, from the definitions,

(91) becomes

C *-ER
C j(R) =

t' R-1

,u,,(R )

We also know [from (25)] that

m 1O
C-

(in) 1

J=0 \i C j+ R

( 92)

(93)

n P(m)m,0) = - 1. (94)

Example 4:
We now consider a slight generalization of the system considered by

Brockmeyer (see Section I). Namely, let

qk = 0 (k = 0, 1, , m - 1)

= 1

HK = H (K = 0, , , - 1)
H,1, = 1.

In this case we have

17°(ni,R) = 0[U'On,1?) - CRI) 11 (7,,111)

Thus, from (90),

U°(m,R) = kt,,(R)G[U°(m,R - (RM U°(111'.31)1

(1? = 1,2, 3/).

The solution of (95) is

U*(m,R)

Now, from (93),

(31\

=

[G'fiII

"m(Q)1
-1 U.

[Gj umnt

(95)

(96)
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Q=1

Thus,

= (111)GR
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(I? = 1,2,  ). (97)

Of\
n) 1

J=RGJ ;=.0 \j / C,+.7

771

(Ti)J=0 GJ j=0:1
We notice [see (TM)] that

(//t 1 1 _ 1

Cri P(m).
Thus, from (51),

B(r,R) = GRG+R

/71

=r (i C R j=r+I Cj+R-12 1j -F

nt 1

j = C 1 -FR

111.) 1

1-0 C

(nt 1

1.

C1 -4-J

j (R = 1, 2,  , M).

(98)

(99)

B* (r,R) follows from (83).
When G = 1, (99) is the generalization to recurrent input of Brock-

meyer's result, (4). It can indeed be verified that (99), for Poisson input
and for G = 1, agrees with (4).

For infinite full -access overflow group (M = cc , (1 = 1) , (99) becomes

It (m) 1
. (nt, 1

C i -r i C'
+R

i=r-f-1 j C j -1 -1? -1

(m) 1 mE 1

1-0 i Cj -I -R 1=0 ( i ) Cj+R-1

771 in

Equation (100) is the generalization to recurrent input of Kosten's

(100)
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result, (2). Again it can be verified that (100), for Poisson input, agrees

with (2).

5.3 Constant -Balking Overflow Group

We suppose that M = 00

Gk = G (K 0, 1, 2,  )
Then (24) becomes

U°(k,R) = qkG E Aik(R)u.(i,R - 1) (R = 1, 2, 3,  ). (101)
iEa

Example 5
Suppose further that

qk = (k = 0, I , , m - 1)

= 1 

This might describe a system in which some auxiliary equipment is
needed to set up a connection on the first -choice group, some other
auxiliary equipment is needed to set up a connection on the overflow
group, and the probability that the auxiliary equipment is idle is con-
stant, but this probability is different for the two groups. This is a rather
plausible system, except that the overflow group is infinite.

We note that the blocking for such a system is
m o0

B = L E qkH KP(k,K) = H[q PP(m)]
k,-0 K-0

It is easy to show by the methods of Ref. 2 that in this example

(m) 1

B(r,0) = pre, j -r \3 PiC5 (102)
(m)1

i-0 \J p2C

so that in particular

Thus,

P(m) = B(m,0) -
n. n.)1

/-0 p7C;

1

B = H [q p
07.1)

j=0 \.7 P7C
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Instead of (101), we use (29), which in our case becomes

B°(r,R)[fir(R) - gir(R))13°(.7,R - 1)

(R = 1, 2, ).

In this case we have, from (37),

`Fir(s) = p [cDir(s) - (nri) cl'im(s)].

We can solve (35), (36), and (104) to obtain

prCr(s) J 1 ±
1 11- " I P C1-1( S) Pet(s)

p1Cz(s)

o(T 1) PICi(s)1[1 I() 1(s)1}

(103)

It follows from (31) that

fir(s) = prCr(s) C(s' 1(mlo) kk11

p1Ct_1(s)

(mk) pkelk(s)

1

(104)

(105)

if 1 > r

if / < 7'
From (105), fo(s) - gir(s) can easily be calculated by observing

that in this example

fir(s) - gir(s) = gfir(s) + p fim(s).

Then, from (103) one obtains

ip (nr) qprCr(R)
kr.= (rikz) pkCkl(R)Ir(r,R) =

,:t1 0(7)
1

pkCk(R)

1B°(J,R -1)BqprG(R)
7°)(,c`i' i(-R)1)i-o piCi_1(R)

(106)
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Noting that, from (30) and (102),

qB(r,O) p (17.1) B(ni3O)

B°(r,0)
q pB(m,0)

[(11; C r lnc) p4c, P (7)][q
771 (in) 1 ,1-1

k=0 k pkek

(107)

we can use (106) to find B*(r,1), B°(r,2), etc., and in particular, the
first and second moments of the distribution on the overflow group only,
at overflow instants, r(0,1), B°(0,2). The formulas are long; we quote
only:

B°(0,1) = G
E + kg) (41

C ( m1 k -O
. (108)

m

) pkCk-f-i kP r.0 k ,kch

5.4 Other Cases

Once B°(r,R) is known, it is straightforward to determine B(r,R)
and B*(r,R), using (51) and (83) respectively. [If B°(r,R) is known,
C°(r,R) can be determined, for use in (51), from the relation, which
follows from their definitions:

C4)(r,R) = E
j

(Aj-RGR)B°(r,J); (109)
J=

see (T45).] The problem is thus to determine B°(r,R), from (29) and
(30), or equivalently to determine U°(k,R) from (24) and (25). We
consider the latter method.

To use (24) and (25), one must first of all determine Ajk(R) for all
relevant j, k, and R [say, from (T70)], as well as P(k) [say, from (T44)
and (T45)]. Then the Vc(k,R) must be expressed in terms of the
U°(k,R); in general V°(k,R) can be expressed in terms of the U°(k,J),
with J > R, by a relation analogous to (109) :

M

(1)V°(k,R) = E D (Aj-R GR)U°(k,J). (110)
j=R

When (110) is substituted in (24), one obtains a set of simultaneous
equations for the nk,R). Equation (25) serves as a boundary condi-
tion. If M is finite, (24) can be used to express nk,M - 1),
W(k,M - 2), , U°(k,0) successively in terms of U°(k,M), and
(25) can then be used to determine U°(k,M).
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When the U°(k,R) are known, one finds the B°(r,R) by taking bi-
nomial moments, and then the B(nR) from (51). The probabilities
P(k,K) then follow by inverting the binomial moments, and the over-all
blocking is determined by

m 3f

B = >2 >2 (pH KP(k,K).
k=0

Example 6
We consider the system described in Section I

qk
(k) (7)

= (k = 0, 1, , m)

H = 0 (K = 0, 1, , M - 1)
HM = 1.

The IBM 7090 computer at Murray Hill was programmed to find the
blocking probability B for certain values of the parameters, namely :

m M = 10

-y M = 6.

The calculations were carried out for two kinds of input:
(i) Poisson
(ii) That sort of recurrent input which is itself the overflow from a

group of mo trunks to which a Poisson stream of calls (with negative -
exponential holding times) of mean intensity ao is submitted. Note that,
since Poisson traffic is completely characterized by one parameter (its
mean, in our case ao), this sort of recurrent input is completely charac-
terized by two parameters (ao and mo).

Note also that this program allows one to calculate B for certain more
complicated trunking arrangements, in the case of Poisson input, e.g.,
2 common trunks overflowing to a random slip of 3 on 7 which in turn
overflows to 1 common trunk. (This arrangement also involves a total
of 10 trunks and 6 crosspoints per line.)

The results (blocking probability B as a function of input traffic a)
are shown in Tables I and II and Fig. 1. The cases treated were mo = 0
(Poisson input, a = ao) and mo = 2, in which case, of course,

3 ao2

a= / (1 ao ;

was given the values 2,3,4,5,6. (Note that if 7 = 6, then M = 0; there
is no overflow group.)
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Before commenting on the results, we mention parenthetically several
special features introduced into the calculation by the special form of the
balking probabilities and by the kind of input process considered in this
example. First, as to finding the P(k): (T44) and (T45) read, in our
notation

B(r,O) - D(r - 1,0) (111)1 -

D(r,0) = (j) (Ai-pr)/3(j,0). (112)

In the present example,

c'r a0 Cr"Nao)
1 - (pr r CH?' (cto)

(r = 1,2, ) (113)
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and

j - 7( )0'-rpr =

(m7)

(j = r 1,r + 2,  ). (114)

Also, since the overflow group is full -access (although finite), the
relation (110) becomes

-17°(/o,R) = U°(k,R) - (1/R1) U°(k,M). (115)

In Tables I and II and Fig. 1, we have used the notation 'y/m, 111

to describe a random -slip configuration in which each line has access to
y out of the in first -choice trunks and all the overflow trunks, except that
the case 7 = 6, in = 10, M = 0 is referred to as 6/10. The curves in
Fig. 1 have been drawn, to avoid crowding, only for 4/8 + 2 and 6/10.

The following conclusions can be drawn from these results:
(i) The blocking is higher, for the same mean traffic, when mo = 2

than when mo = 0. This is consistent with the intuitive notion that
overflow traffic is "peaky".

(ii) In a practical range of blocking (B = 0.001 or 0.01), 4/8 + 2

is the "best" arrangement and 6/10 is the "worst" of those considered,
from the point of view of the traffic capacity of the system for a fixed
blocking probability. It can be seen from the curves that if one wanted
an arrangement using 6 crosspoints per line and 10 trunks, one would
gain about 8 per cent (for mo = 2) or 6 per cent (for mo = 0) in traffic
capacity at B = 0.01, by using the arrangement 4/8 + 2 instead of
6/10. At a blocking probability B = 0.001, these gains would be about
16 and 11 per cent respectively. Such increases in traffic capacity are
not negligible; they seem to be larger for peaky traffic than for Poisson
traffic.

(iii) For higher blockings ("overload" conditions), the advantage of
4/8 + 2 relative to 6/10 diminishes.

A study for a practical case would involve calculations of the block-

ing for other values of y M, a knowledge of the relative costs of trunks
and crosspoints, and of course many other considerations, such as the
relative costs of building and controlling 4/8 + 2 and 6/10 switches.
Also, in such a study, one would want to keep in mind the approxima-
tions implicit in the model used in this paper. For example:

(i) In reality, blocked calls may wait or be resubmitted.
(ii) In reality, the number of traffic sources (lines) is finite, so that
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the arrival process after any instant is dependent on the number of
trunks busy at that instant; thus the input is not, in reality, recurrent.

(iii) As a further result of the finiteness of the number of lines, the

(complete set of m access patterns required for a perfect random slip
'Y

probably could not be used, and even if it could, equal traffic would not
be submitted to each access pattern (so that the blocking experienced
by different subscribers would be different).
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On the Properties of Some Systems
that Distort Signals -II

By I. W. SANDBERG

(Manuscript received April 19, 1963)

In this paper we study the recoverability of square -integrable bandlimited
signals (with arbitrary frequency bands) that are distorted by a frequency -
selective time -variable nonlinear operator and subsequently are bandlimited
to the original bands. The distortion operator characterizes a very general
class of systems containing linear time -invariant elements and a single
time -variable nonlinear element. The subsequent bandlimiting of the sys-
tem's output signals can be thought of as being due to transmission through
a channel that performs filtering.

Our principal result asserts that, under certain conditions that are satis-
fied by many realistic systems, it is possible to uniquely determine the band -
limited input to the system from a knowledge of the bandlimited version of
the output, in spite of the intermediate distortion which generally produces
signals that are not bandlimited to the original frequency bands. We show
that the input signal can be determined by a stable iteration procedure in
which the approximating functions converge to their limit at a rate that is
at least geometric.

I. INTRODUCTION

In this paper we study the recoverability of square -integrable band -
limited signals (with arbitrary frequency bands) that are distorted by a
frequency -selective time -variable nonlinear operator and subsequently
are bandlimited to the original bands. The distortion operator character-
izes a very general class of systems containing linear time -invariant
elements and a single time -variable nonlinear element. The subsequent
bandlimiting of the system's output signals can be thought of as being
due to transmission through a channel that performs filtering.

Our principal result asserts that, under certain conditions that are
satisfied by many realistic systems, it is possible to uniquely determine
the bandlimited input to the system from a knowledge of the band -
limited version of the output, in spite of the intermediate distortion

91
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which generally produces signals that are not bandlimited to the original
frequency bands. Of course the distortion operator is assumed to be
known. We show that the input signal can be determined by a stable
iteration procedure in which the approximating functions converge to
their limit at a rate that is at least geometric. When the physical sys-
tem consists of only a single nonlinear element, our result reduces to
that of Landau and Miranker,' and Zames.2

In the electronic circuitry of a communication system, it is often the
case that an ideally linear amplifier is supplied with an approximately
bandlimited input signal and that the circuitry subsequent to the ampli-
fier introduces approximate bandlimiting. Under the assumption that
the bandlimiting is ideal, our results imply that in many cases it is possi-
ble to completely reverse the effect of nonlinear distortion that may be
introduced by such an amplifier due to the malfunctioning of, for ex-
ample, a transistor or its bias supply, even though, as is typically the
case, the transistor may be in a feedback loop. Of course it is necessary
to know the properties of the distorting circuit. Results of this type may
be useful in situations in which received signals are recorded and the
time delay introduced by the recovery scheme is not important. For
example, it is conceivable that this type of result may be useful in im-
proving the quality of distorted signals obtained from a transmitter in
a space vehicle containing a television camera, in which the distortion
is due to a faulty video amplifier.

Section II considers some mathematical preliminaries. In Section III
we state our principal results after discussing in detail a mathematical
model of the physical system to be considered which focuses attention
on the influence of the time -variable nonlinear element. Sections IV
and V are concerned with the proof of the results. In particular, Section
V considers the rate of convergence and stability of the recovery proce-
dure. Section VI is concerned with some results that relate to the neces-
sity of the conditions introduced earlier.

II. PRELIMINARIES

It is assumed that the reader is familiar with the contraction -mapping
fixed-point theorem stated in Part I.3,4

As in Part I, 22 denotes the Hilbert space of complex -valued square -
integrable functions with inner product

(f,g) = f:fg dt
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in which 9 is the complex conjugate of g. The norm of f [i.e., (f,f)1] is
denoted by II f M. The intersection of the space 22 with the set of real -
valued functions is denoted by 22R .

We take as the definition of the Fourier transform of f (t) in 22 :

F(co) = f(t) C" dt

and consequently

f(t) =
2r f F(w) et" dco.

With this definition, the Plancherel identity reads:

2r f f(t)g(t) dt = f F(co)G(co) do).

As the notation above suggests, lower and upper case versions of a letter
are used to denote, respectively, a function and its Fourier transform.

We shall be concerned with the following subspace of ce2n :

(BM = I f(t) a 22R F(w) = 0, co e S2)

where Sl is a union of disjoint intervals. The measure of ft is denoted by
AM, which, unless stated otherwise, is not assumed to be finite. In par-
ticular, St may be the entire real line.

The operator that projects an arbitrary element of £2R onto 63(S2) is
denoted by P. In electrical engineering terms, P is an ideal filtering
operation.

The symbols I and 0 denote, respectively, the identity operator and
the null operator (i.e., Of = 0 for all f e 22).

III. MATHEMATICAL DESCRIPTION OF THE PHYSICAL SYSTEM AND STATE-
MENT OF PRINCIPAL RESULTS

Consider a nonlinear time -variable element imbedded in a linear phys-
ical system. Let si and s2 , respectively, denote the system's input and
output signals, and let v and w, respectively denote the input and output
signals associated with the nonlinear device, which is assumed to be
characterized by the equation

W = co(V,i) = ( 1)

where v(v,t) is a real -valued function of the real variables v and t.
It is assumed that v, w, s2 E £2R Si r )33(S2), and that there exist well-



94 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

defined linear operators r and A, with domain 63(S2) X 22R , such that t
v = r[si , w] and s2 = A[81 , w].

We shall be concerned throughout with the four linear operators A,
B, C, and D derived from r and A in the following manner:

v = r[si , = r[s, , 0] + r[0,w]

= As' + Cw (2)

s2 = A[si , w] = A[si , 0] + A[0,w]

= Ds1 Bw. (3)

3.1 Representation of the Operators A, B, C and D

We assume throughout that

Af = f a(t - r) f(r)dr, Bf = I:b(t - f(r)dT

C f = f c(t - f(r)dr, Df = f:d(t - r)f(T)dr

where each of the real symbolic functions a(t), b(t), c(t), and d(t) is
most generally the sum of an element of ce2R and a delta function. It
is assumed throughout that I C(w) I and B(w) I are uniformly bounded
for all w and that I A (w) I and D(w) I are uniformly bounded for all

E a It follows that C and B are bounded mappings of £2R into itself
and that A and D are bounded mappings of 63(U) into itself.

3.2 The Projection Operation and the Basic Flow Graph

We shall suppose that s2 the system's output signal, is the input to a
device that projects signals in 22R onto the subspace 63(0). This device
may be thought of as representing an ideal transmission channel of the
low-pass, bandpass, or multiband type. If the output of the device is
denoted by s3 , then clearly

where

S3 = Ps2 = T-1PTS2

P = P(w) = 1,

= 0,

w c 52

w,eSZ

and Ts2 denotes 82 , the Fourier transform of 82 .

(4)

This assumption is almost invariably satisfied in mathematical models of
physical systems of interest.
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Fig. 1 - Signal -flow graph characterization of the relation between 81 , 82 , s3 ,
v, and w.

The equations we have introduced give rise to the signal -flow graph
shown in Fig. 1 which summarizes the basic situation.

Our primary interest is in (i) obtaining conditions under which 83
uniquely determines s1, when si is known to lie in the same subspace as
s3 [i.e., in 63(0)], and (ii) obtaining a technique for recovering s1.

3.3 The Time -Variable Nonlinear Element

We shall denote by 4'(w,t) the inverse nonlinear characteristic; that
is, 4'(co[v],t) = v for all v and t. It is assumed throughout that tk(0,t) = 0
for all t, that b [w(t)] is a measurable function of t whenever w is measur-
able, and that there exist two positive constants a and /3 with the
properties that i(a + /3) = 1 and

a(wi - w2) < 4/(wi - Cw2 , 13(wi - w2) (5)

for all t and all wi w2. Of course no loss of generality is introduced by
the normalization 1-(a + i3) = 1, which happens to be convenient for our
purposes. Observe that 0 < a < 1.

It follows from (5) that

r(vi - v2) < co(vi , 1) - co(v2 , t) - v2)

for all t and all vi > v2 . Observe that w e £2R if and only if v e 22k .

3.4 Assumptions Regarding I A (w) 1, I B(w) I, and I D(w)

In addition to the uniform boundedness of I A (w) I, I B(w) I, I C (w) I,

and I D(w) I mentioned earlier, it is assumed, unless stated otherwise,
that there exists a union of disjoint intervals RD such that SID C

ID(w)I=0
I B(w) I > k1 co t SID ,

I A(co) I
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and

k3, we (0 - UD)

where k1, k2 , and k3 are positive constants. In most cases of engineering
interest either RD = St or SID is the null sett

3.5 Statement of Principal Results

Our main result is
Theorem I: Let A, B, C, D, a, and ik be as defined in Sections 3.1, 3.3, and
3.4. Let

inf C- AD -1B - 1 1> 1- a
we(o-oD)

inf C - 1 I > 1 - a.
won

Then to each s3 E 63(2) there correspond unique functions s1 c 63(0) and
w, v, s2 c ce2R such that

S3 = PS2

S3 = Dsi Bw

v = Asi Cw

v = [w]

[i.e., such that (1), (2), (3), and (4) are satisfied]. Furthermore if

8.3 = 13:§2

g2 = + BID

i)" = Cti/

=

where 2D, v, ,§3 E £3, and gi g3 E 63(ct),

II si - k4 II S3 g3 11

where k4 is a positive constant that depends only on A, B, C, D and 0.

Suppose that IP[w] = Cw Asi {i.e., (2) with v = CO possesses a
unique solution w E 22R for any si c CO) and that if 0[0] = Ciu + M1

f The assumptions in this section facilitate a common treatment of these two
important cases. Observe that, with the exception of these cases, it is assumed
here that I D(w) I is discontinuous on 0. However, as indicated in the Appendi'x
this is by no means a necessary condition for the recoverability of si .
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in which si E ea(u) and iv E 22R 11 11) II 14 kb!! S1 - si , where 14
is a constant that does not depend on si or si . [A direct application of
Theorem II (in Section IV) shows that this is the case if inf I C - 1 I >

(1 - a).] It follows directly from the properties of ifi  and the assump-
tions regarding A, B, C, and D that if si E (BM, there exist unique
functions v, s2 , S8 E 22R such that (1) (2), (3), and (4) are satisfied.
Let 41 denote the operator that associates with each s1 e 433 (SI) the corre-
sponding s3 . The assumptions regarding 4/[w] = Cw As' together with
the boundedness of B and D imply that 4) is a bounded mapping of 63(D)
into itself. Under the conditions stated in Theorem I, (1) possesses a
bounded inverse.

The invertibility conditions are established in Section IV and the
boundedness of 01 is considered in Section V.

The method used to establish the invertibility conditions is construc-
tive. In particular, 4)1s3 can be computed in accordance with a stable
iteration procedure for which the successive approximations converge
in the ,22R norm at a rate that is at least geometric. The approximations
converge also in the supremum norm at a rate that is geometric or
greater if µ(C1) is finite.

As indicated earlier, in most cases of engineering interest either
StD = St (the single -loop feedback system case), or OD is the null set
(i.e., the magnitude of the "direct transmission" D(w) is uniformly
bounded away from zero on II). The invertibility conditions stated
above are satisfied in many cases of practical interest.

The situation considered by Landau and Miranker,1 and Zames2 cor-
responds to one in which A = B = I, D = C = 0, and S1D = a The
inequalities are obviously satisfied in this case. In fact they are satisfied
when SZD = SZ and C( w) = 0, w e St. More generally, observe that the in-
equalities are met if and only if (C - AD -1B), for all W E - OD), and
C, for all w e ft, are bounded away from the disk centered in the complex
plane at [1,0] and having radius 1 -a where 0 < a S 1.

IV. DERIVATION OF INVERTIBILITY CONDITIONS

In the following discussion we shall denote by PD the operator that
projects elements of .22R onto 63(gD). That is,

PDf = T-1PDTf, f e .C2R ( 6 )

where

PD = P D(W) = 1, Co E

= 0, w 1.2D
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and, as before, Tf denotes the Fourier transform of f. Recall that D is
an invertible mapping of Ca (St - SID) into itself, that A and B are in-
vertible mappings of 63(12D) into itself, and that D annihilates 63(S2D).
We shall denote by D' the inverse of the restriction of D to CU - OD),
and by A-1 and 'Cr% respectively, the inverses of the restrictions of A
and B to ea(aD)

From (3) and (4)

S3 = Dsi PBw, si E Ci3(0) (7)

and from (2) and 4/[w] = v

4[w] = Cw As1 . (8)

Our objective is to determine w in order to find Si from (7) and (8).
The corresponding functions s2 and v can of course be computed from (3)
and v = Cw].

Since D annihilates 63(0D), PDs3 = PDBW and, since PD and B com-
mute,

PDw = 173-1PDs3 (0)

The problem therefore reduces to the determination of (I - P) w.
Before proceeding it is convenient to set wa = PDw and wb = (I - P) u',
and to introduce

Definition I: Let

,1(x) = - x, x<1
= - a, x > 1.

From (8),

(I - PD)Cw. wb] = Cwb + A( P - PD)si , (10)

since C and A commute with (I - PD). From (7),

(P - PD)s3 = D( P - PD)sl (P - PD)BW,

and

(P - P)si = b-1( P - PD)s3 - 15-1(P - PD )Bw. (11)

Thus,

(I - PD)Cwo wb] = Cwb - AD -1(P - PD )13/1% + AD -1(P POS3

from which
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(I - PD) [ 1k[wa wb] - 4/0wb)

= [C - A1.5 -1(P - PD)B - 1,1/0I]wb + A15-4( P - PD)s3

where th is a real constant to be chosen subsequently.
Thus, regarding [C - AD -1(P - PD)B - #01] as a mapping of the

orthogonal complement of CUD) into itself, and assuming that it pos-
sesses a bounded inverse [C - AD-1(P - PD)B - 1101]-1,

RW1, = wb

where

Rwb = [C - AD P - PoB - 001]-1(I - PD)Mwa tub] - kowb)

- (C - AD-1(P - PD)B - OcIrA15-1(P - PD)s3

The operator R is a mapping of a complete metric space into itself.
We next establish a condition under which R is a contraction. Let H =
[C - AD -1(P - PD)B - 1101]-', and let f and g belong to the orthogonal
complement of 63(C2D). Then

II Rf - Rg II II H(1- Pi)) 11.11 4,1wa + - + gl - tko(f - 9) II

11(I - PD) n(00) 11f - g II,

since

Om, fl - 4,[wa g]

- g - 1,to n(4,0).

Thus R is a contraction for some 4/0 if

r = inf H(I - PD) II n(00) <1.
*0

(12)

It turns out that the optimal choice of th is unity, the median of a and
8. Consequently we could have simply set iko = 1 at the outset. However,
we prefer to establish the significance of this choice.

4.1 Evaluation of II Ha - PD)

Let H = [C - AD -1(P - PD)B - 4,0]-' with the understanding that
D -1(P - PD) = 0, w e - CD). Our result ist

Lemma I:

IIH(I-PD)II =esssuplH(w)I
wonD

t The notation ess sup Q(w) denotes inf sup Q(w) where 91 is an arbitrary zero-
es coat

measure subset of the real line.
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Proof:
The norm of H(I - PD) is sup{ II z f = 1} where z = H(I -

PD)f and f e 222 . An application of the Plancherel identity yields, in
terms of the frequency domain representation of H,

Hence

ll
112 21-71. Lop H(w) 12.

L' (w)
12

suP111 z 11; 11 f 11 = 1 f
_15 ess sup 111(w) I.

WORD

However if ess sup H (w)
I

< co, for any E > 0 there exists a set of
woc2D

nonzero measure 8 which is disjoint from RD and such that I H(w) 1
ess sup I H(w) I - e, w c 8. Since I F(w) I is permitted to he nonzero only

weilD

on 8, it follows that

sup{ II z1r; 11 f II = => ess slip 1//(w) I - E.
weE/D

Thus if ess sup I II (w) I < co,
WorlD

H(I - PD) = ess sup I 1 (w) I. (13)
wes/D

It is clear that (13) remains valid if ess sup I H (co) = cc . This proves
wis2D

the lemma.
It follows from (12) and Lemma I that

r = inf ess sup I IC - A D -1(P - D) B - ti/ or I n(4/0). (14)
iko .0//)

4.2 Determination of Rio and Statement of Theorem II

The following lemma indicates that the optimal choice of tko is inde-
pendent of [C - AD -1(P - PD)B].

Lemma II: Let be a complex number and suppose that

hi I -1774o) < 1.

Then

- 1-10(0) - 1 1-177(1).

Proof:
Suppose first that 'o 1 and that

> k(i3 - Iko), k > 1.
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Then, since I -thd< 5 - + I 1 - I,

- 1 I + I 1 - 00 I - k(1 - ) > k( - 1),
and hence I - 1 > k(t1 - 1). Suppose now that 1 and that

I Ifro I > k(lPo - a), k > 1.

Then,

1E-11+1 - 1 I - k(00 - 1) > k(1 - a),
and hence I t - 1 I > k(1 - a).

It follows from (14) and Lemma II that if r < 1,

r= ess sup I [C - AD -1(P - PD)B - 1] In(
6,011)

= ess sup I [C - AD -1(P - PD)B - 1]-1 I (1 - a).
wenD

At this point we are in a position to state

Theorem II: Let A, B, C, and D be the bounded linear operators defined in
Section 8.1. Let D, but not necessarily A and B, have the properties stated
in Section 3.4. Let denote the inverse of the restriction of D to Cap) ,

and let PD denote the operator that projects elements of £2R onto 63(11D). Sup-
pose that

r = max [r1, r2] < 1,

where

r1 = ess sup I [C - AD -1B - 1]-1 I (1 - a)
wE(R-RD)

r2 = css sup 1[C - 1]-1 I (1 - a).
cog SI

Then for any wa and g, respectively elements of 63(SID) and its orthogonal
complement with respect to 22R , there exists a unique wb in the orthogonal
complement of 63(S4) such that

(I - P0)4[w. wb] = [C - AD -'(P - P D)1311vb g.

In fact, wb = lim wbi where
i-woo

Wb(j+1) = [C - AD-'(P - P1,1B - - PD)144w. wbil - wbi}

- [C - AD -1(P - PD)B - I] -'g

and wbo is an arbitrary element in the orthogonal complement of 63(QD).
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If Wb is a solution corresponding to fv and g,

wb
Ipb II 1

rllwa-wall ± (1 - r)r(1 - a) II g II*

Proof:

With the exception of the last inequality, the proof follows from the
fact that if r < 1, R (with afro = 1) is a contraction mapping of a complete
metric space into itself.t The inequality is obtained as follows. Let
J = [C - AD -1(P - PD )B - IF' (i.e., let J be H with afro = 1). Then,
since

wb = J(I - PD){ t[w. + wb] - wb} - Jg,

wb - wb = J(I - PD){0[w. + wb] - + TN] - (w. + wb)

+ + 14)1 - - 0).
Therefore

wb - PD) II n(1) II wa - + - ti)b II

+ II J(1 - PD) H .11 g - g II,

and since r = II J(I - PD) II n(1), n(1) = (1 - a), and

wa - + wb - 'ebb II 5- wa 713. II + II wb - IT)b II,

r r
wb 7i)b -1 rIIwa (1 - r) (1 - a) g-

With regard to the "essential supremum" notation used in the state-
ments of Lemma I and Theorem II, it is of course true that

ess sup I H(co) I = sup I H(w)
woD wenD

in at least almost all cases of engineering interest.

4.3 The Complete Recovery Scheme

Let us now consider our over-all objective, the recovery of sl . From
(8) and (11), using the definition of

(P - PD) s, = i5-1( P - PD)s3 - 15-1( P - PD)Bw

PDsi = A-IPD{ik[w] - Cw}

f In particular, our assumption regarding the inverse of [C - AD -1(P - PD) -
B - I] is satisfied, since I C - AD -1(P - PD) - 1 is bounded away from zero
for all w in the complement of 2/, .
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Therefore,

sl = (P P) s1 PDsi = 1( P - PD) - tr3 'Pis,
+ A -1P{ 4,1f3-1PDs3 + wb]} - ]5-1 P - PD )Bwb

where we have used (9), the fact that (P - PD)Bwa = 0, and the
identity A -1P DelriP DS3 J5 PDS3 . This proves the first part of
Theorem I. The second part, which is concerned with the boundedness
of 0-1, is considered in Section 5.1.

We define 8171 , the nth approximation to si , by

= 0-1(P - PD) - A-1C11-1PD]sa A-IPDICh-1PDs3 wb]}

- i5-1( P - PD)Bwb

( 15)

(16)

where wb is the nth approximation to wb as defined in Theorem II. Ob-
serve that

sin SI = A -1P 14/[1-1P DS3 wb] P S3

- P - PD)B( wb - wb),

from which, using the right inequality of (5) satisfied by tp,

- si II II A-1PD II + II 15-1(P - PD)B wbn - wb II. (17)

An argument very similar to that used in the proof of Lemma I suffices
to show that

II A -1P II = ess sup I A-1 I (18)
wenD

i3 -1(P - PD)B II = ess sup I D-1131. (19)
wto-nD)

Our assumptions regarding A and B imply that the right-hand side of
(18) and the right-hand side of (19) are bounded. Therefore, since wb =
lim wb , (17) implies that s1 = lim sin .
71-6,0 n-.00

The convergence of sin to s1 established in the last paragraph is in
the mean -square sense. If i.L(S1) < 00, it is also true that sin converges
to Si pointwise uniformly in t, that is

lim sup sin - Si I = 0.
n 0

This result follows from the inequality :t

t This inequality is proved in Ref. 1 for the case in which Si is a single interval
centered at the origin. The extension to arbitrary sets of finite measure is trivial .
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0 as,

cii-1 pp]

L, Wbn -15-'(P-PD) B
9

I

Wa

- PD
o

Fig. 2 - Idealized recovery scheme.

sup I f(t) 1127,1 f

and the fact that s17, si E 6302).

Wa

f E 63(12)

Fig. 3 - The iterative operation L. .

Sin

4.4 Signal -Flow Graph for a Complete Recovery Scheme

One complete idealized scheme for obtaining the nth approximation to
s1 , based on (16) and the solution for wb given in Theorem II with g
15-1(P - P D)s3 and wbo = 0, is summarized in Fig. 2. The iterative
operationt Ln is shown in detail in Fig. 3 in which, as defined earlier,

t In the special case in which 52D is the null set and C - AD-1PB = 0 identically
in w, w = co[AD-1.33] and hence the iteration stage is not required. The condition
that C - AD-1PB vanish identically in co, under which 41 is by no means a trivial
mapping of MO into 03(0), is equivalent in engineering terms to requiring that
the feedback transmission, for w t St, and the null feedback transmission, for Co E

both vanish.
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J = [C - AD -1(P - PD) 13 z- Ir. Fig. 4 shows a flow -graph representa-
tion of J in terms of [C - AD -1( P - PD)B] and elementary operations.
The flow graphs in Figs. 2 and 3 simplify in obvious ways in the impor-
tant special cases in which D = 0 on 63(U) or D possesses a bounded
inverse on ed(g).

The analog implementation of the scheme presented in Fig. 2 requires
consideration of the time delay inherent in the approximation of the
impulse response functions corresponding to the nonrealizable operators'
P and PD as well as the time delay that might be required in the ap-
proximation of J. These considerations imply that time delay sections
must be inserted at various points in the recovery system and that the
time variation of the nonlinear elements must be staggered. Of course
the output of the recovery system will be a delayed version of an ap-
proximation of Mt).

0
I

0

[c -A15-103-9,3131

Fig. 4 - Flow -graph representation of the operator J.

There are many variations possible in the implementation of the re-
covery system. For example, the iteration can be performed with a
recording device and a single typical stage of the type used in Fig. 3.

V. RATE OF CONVERGENCE AND STABILITY OF THE RECOVERY SCHEME

The key element in the recovery scheme is of course the iteration pro-
cedure. We show first that the approximating functions wbf converge to
their limit wb at a rate that is at least geometric. This type of convergence
is a direct consequence of the fact that wbi = lewbo where R is a con-
traction mapping.

Since

Wbi = Wb0 [Wb1 W1,0] [142 Wb1] '  + [Wbi Wb(i-1)])

fII Wbi Wb II = _Wb(i+1) WW1 [Wb(i+2) Wb(i-I-1)1 + 11

6 II Wb(i+1) Wbi II + II Wb(i+2) Wb(i+1) II + 
Repeated applications of the inequality :

f Of course we are ignoring the cases in which P = I or Pt> = 0.
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lead to

If wbo
hence

II Wbi Wb(1-1)II =II - RWb(1-2) II

r II Wb(1-1) Wb(1-2) II; 1 2

wbi tvb I I
1 rI wbi - Ivo I I. (20)

= 0, wbi = J l I - PD)Ci§-113031 - JA15-1( P - PD)s3 , and

Wbi-wall
2

J(1 - PD){1,01§-1PD831 - 13-1PDs3- r
- AD-1(P - PD)s31

II -PD)II k(1) II 11-'PD- 1 - 7'
 AD -1(P - PD) III II S3 II

b-1PD
Al5-1(P - PD) 11

I

s3II
}

+ 1 -a
where, in accordance with the arguments used in the proof of Lemma I,

II ij-'PD II = ess sup I /3-1
weaD

AD-'( P - PD) II = ess sup I AD -1 I.
cor(-(D)

5.1 Stability of the Recovery Scheme

We consider here the degree of immunity of the recovery scheme to
two important types of errors.

It is assumed first that the input to the recovery system, which we
shall denote by s3, differst from 33. Let overbarred symbols denote signals
due to the input ga . We have from (15)

II si - gi II = II [15-1(P - PD) - A-'CB-1PD](s3 -

.- A-1PDI[/3-1Ps3 + in)] - Or-'PA 71'611

- [j5-'( P - Pi) )B](wb - 33b) Ii

(21)
I I f5 ( P - PD) - s3 - ,§3

+ A-1PD 01 II fj-IPD II "II 83 - + wb -

+ II f5 -1(P - PD)B II .11 tvb - wb II.

t The departure of g3 from s3 might he due to the presence of noise in either
the transmission channel or the initial stages of the receiver.
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However, from Theorem II with g = A15-1( P - PD) s3 ,

ri wb - IT4 II - 1 rr II friPD -

107

(22)

- r)(1 -a)II Afr(P - PD) II II 83 g3

In view of our earlier assumptions which imply the boundedness of all of
the norms in (21) and (22), it is evident that there exists a positive
constant k4 such that

IIS1II k4II 83 g3 it (23)

f r all 83 , g3 c 63(1). In other words, our assumptions imply that 0-1
i bounded. This means that the error in the recovered signal is at most
p oportional to the error in the input to the recovery system. In par-

ular, the recovered signal depends continuously on the input to the
r covery system.

We show next that the recovery scheme is not critically dependent
u on either an exact knowledge of the operator J or the projection prop-
erty of PD . Specifically, we shall compare the functions wb and 'Cob
defined by

wb = Rwb , Rwb = J(I - PD){ Ova ± wb] - wb}
(24)

- JA15-1(P - PD )83

wb = R211b , 1114 = + fob] - ibb} - SA15--.1( P - PD) s3 (25)

where Q and S are bounded linear mappings of ce2R into itself. We assume
that r < 1 and that

= II Q II n(1) < 1. (26)

Hence ft is assumed to be a contraction mapping of ee2R into itself. Note
that inequality (26) is satisfied if r = 11E1 - PD) II n(1) < 1 and

J(I - PD) - Q II is sufficiently small. A comparison of wb and 'thb
yields an estimate of the error, due to the departure of Q from J(I - PD)
and to the departure of S from J, in the limit function approached by
the iteration procedure in the recovery system.

From (24) and (25),

wb - = (S - J )A15-1( P - PD) s3 J(I - PD hgto wb] - 701

- cobli[wa -I- 1/7bi - Ind -- + Tod - to,} - Q{Cw + -
from which
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11 Wb - 12)1,11 II (S j)10 -1(P - PD)S3I1 II [J(I PD) - Ql

{4,[w] - wb} + II n(1) II wb - 72)b

and

IIwb-bbll 11 rII(S - DA15-1(P - PD)s3

± 1
1_

fit - PD) - QIIIP[w] - wb)

Therefore, if the departure of Q from J(I - PD) is not too large (i.e.,
if "7' < 1), the error in the limit function approached by the iteration
technique is, for fixed s3 (and hence fixed w), at most a linear combina-
tion of two terms, one that approaches zero as II S - J II approaches
zero, and another that approaches zero as II J(I - PD) -Q II approaches
zero.

VI. SOME NEGATIVE RESULTS

In this final section we consider some results that relate to the neces-
sity of the conditions introduced earlier.

The equation '[w] = Cw As1 , in which s1 c 63(0), a central
role in defining the mapping (D. As stated in Section 3.5, Theorem II
implies that this equation possesses a unique solution w e £2R if

inf I C - 1 I > 1 - a. (27)

It is of interest to note that there exists a function ik such that the
equation ,y[w] = Cw Asi possesses no solution w e 22R for any non -
identically zero As1 if (27) is not satisfied, SZ is a bounded set, and C =
cI where c is a real constant. This follows directly from the fact that if
(27) is violated, a 5 c (2 - a) = 0. Specifically, throughout a
neighborhood of the origin let be independent of t and linear in w with
slope c. Then clearly, #[w] - cw = 0 whenever lwl <f where  is some
positive constant. Since Asi is assumed to be nonzero almost everywhere,
the validity of our assertion is evident.

Let U denote the mapping of the orthogonal complement of 63(12D)
into itself defined by Uwb = (I - PD) Cw. - Ewb , where wa E
63(2D) and E = C - AD -1(P - PD)B. Theorem II asserts that U
possesses a bounded inverse if E(w) = C - AD-1(P - PD)B, for all w
contained in the complement of OD is bounded away from the disk in
the complex plane centered at [0,1] and having radius (1 - a).
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Theorem III: Let 7 be a real constant and let 51 denote an open interval
contained in the complement of t2 D such that E(w) is continuous on E1 and

inf E(w) - I = 0.
coca.,

Let 4 be independent of t and continuously differentiable with respect to x
on an interval 2 where

jiff
x cF4,2

th,t (.0 -
dx

71= 0.

Then U does not possess a bounded inverse.

Remark: Note that the hypotheses regarding are satisfied if 4 is inde-
pendent of t, continuously differentiable with respect to x, and #y is any
point on the real -axis diameter of the disk mentioned above. Of course
we assume that

. L. digx) dtgx)- cy, and sup
dx dx

Proof of Theorem III:
We need the following lemma.

Lemma III: Let. AI denote the real interval [-T,7], let el and e2 be real
positive constants, and let h(t) be a continuous real function defined on AI .

Then there exists a function g(t) in the orthogonal complement of (B( Stn)
(assuming that SID is a proper subset of the real line) such that

h(t) - g(t) I <el, E (Al - A2)

where 02 is a set of points contained in disjoint intervals of total measure
not exceeding 2 .

Proof:

If the complement of OD contains an interval centered at the origin,
the result is known and in fact is true with 02 the null set. The following
very direct argument makes use of the known result to treat the case in
which the complement of OD does not contain an interval centered at the
origin.

Let oh and oh be real positive constants such that the interval [col - w2 ,
04 where col > (42 , is contained in the complement of OD . Let S2'

be an interval of length 2w2 centered at the origin. Let (1' be an interval
of length 2w2 centered at the origin. Let ti , t2 , , = It I t e ;

cos wit = 0) . Let I; denote an interval of length 2/n centered at ti . For
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any e3 > 0, there exists a function 1(t) e 63(S2') such that

h(t)1(t) - <= 3 t e (Al - ,A2)
cos wit

Z12 = U . Choose e3 such that e2 = E3 inf cos w2t. It is
j=1 te(1-0.2)

evident that 1(t) cos wit possesses the properties of g(t) stated in the
lemma.

To prove Theorem III it suffices to show that for any e > 0, there exist
two functions wib and w2b , belonging to the orthogonal complement of
03(2D), such that II w II = 1 and II Cm, wid - w2b]- lb - w2b
E (W lb - w2b) II < E.

Let e4 , es , and e6 be arbitrary positive constants. Since inf I E(w) -
wezi

= 0 and E(-0.) is equal to the complex conjugate of E(w), there
exists an co3 e Ei such that I E( ±w3) - I 2E4 . Let IL and II2 denote
two finite intervals of equal length 1.1(11) contained in ~1 and centered,
respectively, at -co3and -Fw3. Let (wit, - w2b) es33(111 U II2) with II wib -
w2b II = 1. Choose ,u (111) and T such that

sup I E(w) - I 6. 4 , IIWlb 2'2b !Ili I >
to 3

where 6.3 is any subset of Ai = [ T,T] with measure not exceeding k6
a sufficiently small positive constant. The second inequality can always
be satisfied since, in accordance with the inequality stated in Section
4.3, sup

I
wit, - w2b I [11A(M)]

Since inf
I

[thfr(x)/dx] -y I = 0, there exists a real constant xo e
za.2

such that

1CW. + Wid 0[Wa W2b]
ces

wib
W25

(28)

whenever I W. wib - xo I and I wib - w2b I are sufficiently small. We
may assume that ti,( Hi) is so small that the condition on I wlb - w2b I is
satisfied. Choose wib in accordance with Lemma III so that (28) is
satisfied on (AI - ,6,2) where 02 is a set of measure not exceeding ko
Let (Al - 6,2)* denote the complement of (Ai - A2). Observe that

ma] - w2b] - E(wlb - w2b) II

II thwo wib] - w2b] - 7(w)b - w2b) II

+ (E - 7I) (Wm - W2b) II
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13 11 Wlb W2b 11 + 114/1.Wa W1b1 lk[Wa W2b] 7(W]b W2b) II (A -312).

+ II (E 7I)(wib - w2b) II

es + + I 7 1 )es + 11 (E - -yI)(wib - w2b) 11

< E6 + 17 1 ) E4

This completes the proof.

APPENDIX

The purpose of this appendix is to briefly indicate an alternative
technique for determining sufficient conditions for the recoverability of
Si

Instead of the assumptions stated in Section 3.4 suppose that for some
real constant 00

inf I D - B(11/0 - C)-1,4 I >O
cue SI

11 401 - C)-1 1I n(40) = ess sup - n(k()) = < 1.

These inequalities imply that { PD PB ( - C) -'A} possesses a
bounded inverse on 63(2) and that for any g s 4.),2R the equation OM =
Cw g possesses a unique solution w e oe2R

From

ik[w] = Cw As1 , PBw + Ds, ,

and ;GM = Ikow -1- CA we have

s3 = {PD PB(00I - C)-IA)si - PB(11/0I -

Equation (30) can be written as

sl = Ms1 PD PB(001 - C)-iAris3

where

(29)

(30)

Ms1 = I PD P13(1,0I - C)-1A1-1PB(00I - C)-V[w].

Of course the dependence of the right-hand side on si is through w.
Let lb be the solution of CA = Cw As1 corresponding to si = s1

Then by arguments similar to those leading to Theorem II,

II w -21)11 < 1 1 (tkoi - C)-.1 AP 11'11 II-  
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Thus M is a contraction mapping of 63(51) into itself if

p = 111PD + PB(001 - CriAripB(001 - C)-i
II

n(00)11/(1 - q)] - C)-'AP II < 1.

Hence if the received signal s3 is known to be related to the transmitted
signal s1 E 03(2) by (29), si can be recovered if our assumptions are
satisfied and if p < 1. Using arguments similar to those leading to
Lemma I,

p = ess sup
wc0
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Existence of Eigenvalues of a Class
of Integral Equations Arising

in Laser Theory
By D. J. NEWMAN and S. P. MORGAN

(Manuscript received March 19, 1963)

/1 is proved that the integral equation

f G(x)F(xy)H(y)f(y) dy = Xf(x)
-1

has at least one nonzero eigenvalue if F is any integral function of finite
order, G and H are any bounded functions on [- 1,1], and the trace of the
kernel G(x)F(xy)H(y) does not vanish. In particular, this theorem furnishes
the first rigorous proof that the kernel exp [ik(x - y)2], which arises in the
theory of the gas laser, has an eigenvalue for arbitrary complex k.

I. INTRODUCTION AND SUMMARY

In an idealized model of the gas laser or optical maser, as studied by
Fox and Li' .2 and others, electromagnetic radiation is reflected back and
forth between two infinitely long metal strips which are mirror images of
each other. A typical field quantity, such as the current density, at the
surface of each reflector satisfies the integral equation

Iexp{i[k(x - y)2 - h(x) - h(y)]) f(y) dy = Xf(x), (1)
-1

where k is a dimensionless real parameter which depends on the width
and spacing of the reflectors and the wavelength, and h(x) is a real func-
tion specifying the departure of the reflecting surfaces from parallel
planes.

The eigenfunctions of (1) represent the field distributions at the re-
flectors of the possible modes of oscillation of the laser, and the eigen-
value X corresponding to a particular mode represents the complex factor
by which the field strength is multiplied as a result of one reflection and
transit between the reflectors. From the magnitude of A one can deduce

113
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the amount of amplification which would have to be provided by an ac-
tive medium between the reflectors in order just to sustain oscillations
in the given mode, while the phase of A determines admissible reflector
spacings for oscillations at a particular frequency.

The mathematical interest of (1) centers around the fact that its
kernel K(x,y) is complex symmetric but not Hermitian;* that is,

K(x,y) = K(y,x) but K(x,y) K(y,x). (2)

The ordinary theory of Hermitian kernels does not even suffice to prove
the existence of eigenvalues of complex symmetric kernels. Fox and Li'
have made extensive calculations of the eigenvalues and eigenfunctions
of (1) for h(x) = 0 by iterative numerical techniques up to about k = 60
(in applications k may be as large as a few hundred) ; but heretofore there
has been no formal mathematical proof of the existence of solutions
exceptt for I k I << 1, which is not a case of physical interest.

This paper contains a proof of the following
Theorem: Let G(x) and H(x) be any bounded functions on the interval

-1 <= x < 1, and let F(z) be any integral function of finite order such that

1G(x)F(x2)H(x) dx 0.
,

(3)

Then the integral equation

G(x)F(xy)H(y)f(y) dy = Xf(x) (4)
-1

has at least one nonzero eigenvalue.
As a corollary, it follows that the integral equation (1) has at least one

eigenvalue for arbitrary complex k, provided only that

-2 ih (.) 0. (5)
--1

Furthermore if h(x) is an even function of x, then (1) has at least two
eigenvalues for all but certain exceptional values of k, a particular excep-
tional value being k = 0.

The idea of the proof is quite simple. The assumption that F(xy) in
(4) is an integral function of finite order means that ultimately the coeffi-
cients of its Taylor series in powers of xy fall off with extreme rapidity.

* The kernel is normal in the special case h(x) = kx2. The eigenfunctions of
exp (-2ikxy) are prolate spheroidal wave functions, as pointed out in connection
with lasers by Boyd and Gordon.3

t If I k I << 1 then exp [ik(x - y)2] is nearly unity, and the existence of at least
one eigenvalue follows from perturbation theory; see Sz.-Nagy.4
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If we truncate the Taylor series after a finite number of terms, (4) is
replaced by an integral equation with a kernel of finite rank. The eigen-
values of such a kernel are merely the latent roots of a finite matrix, and
these are not all zero if their sum, which is the trace of the matrix, does
not vanish. The limiting value of the trace is just the left side of (3),
and does not vanish by hypothesis. By taking more and more terms of
the series for Pixy), we obtain a sequence of larger and larger matrices,
whose elements ultimately vanish very rapidly with distance from the
upper left corner. We show that it is possible to pick one eigenvalue from
the set of eigenvalues of each succeeding matrix in such a way that the
resulting sequence of numbers has a nonzero limit point. This limit point
is an eigenvalue of the infinite matrix, and hence an eigenvalue of the orig-
inal integral equation.

Details of the argument just sketched are given in a series of lemmas
in the next section, followed by the proof of the main theorem. Since the
existence proof makes heavy use of asymptotic inequalities, it does not
generally provide a practical technique for obtaining numerical results.
The important practical question of finding approximate expressions,
valid for large k, for the eigenfunctions and eigenvalues of equations such
as (1) is a separate problem, as is also the question whether any particular
equation has a finite or infinite number of eigenvalues.

For a gas laser with finite (not strip) mirrors of arbitrary, dissimilar
shape and size, the integral equation still has a complex symmetric
kerne1,2 although the domain of integration is two-dimensional and the
kernel is more complicated than that of (1). The existence of eigenvalues
in the most general case still remains to be settled.

II. MATHEMATICAL DETAILS

We shall use the following notation referring to an n X n matrix:

A(n) = (ai1), i = 1, 2, , n; j= 1, 2, , n;
n

Ani) = E a1 I, i = 1, 2, . , n; (6)
j=1

S(A(")) = .4(")(i) = E I a.,;
i=1 j=.1 j=1

If the superscript is omitted, n is understood to he infinite.
Lemma 1:

1Z

det A"'I < A(")(i) (7)
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Proof: Using Hadamard's inequality,

det A") I

Lemma 2:

ajj
n n /2

II LE I 12
i=i j=1

i [ (j=E I ailI
=

n

= fl A(n)(i).
i=1

(8)

det(A(n) B(")) - det A (n)

(9)
H [A(n)(i) + Boom] - 11 A(")(i).
i=1

Proof: The lemma is obviously true for n = 1. To proceed by induction,
assume it is true for all determinants of order n - 1, and expand the
determinants in (9) by minors of the first row. Let C15 be the algebraic
complement of al; + b12 in A(n) B(n) and let A15 be the algebraic com-
plement of al; in A(n). Then

72

det(A(") /3(°) = E (a11 b13)(11;
j=1

By Lemma 1,

n n

= det A(") E - Au) E .

5=1 J=1

C11 I [t aik bik 11
i=2 k=1

i=2

By the inductive hypothesis,

[A(")(i) + B(n)(01.

(10)

I Cij -A15 I [A(n)(i) + B(")(i)] - Aw(i). (12)
i=2 i=2

where we have used the fact that the right-hand side is increasing as a
function of the A(n)(i) and B(n) (i) . Hence (10) gives
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I det(A(n) .13(n)) - det A") I

A")(1) {11 [A")(i) B(n)(i)] - A(")(i)}
i=2 i =2

117

B(n) ( 1 ) [4(")(i) B(n)(i)] (13)
i

= [A(")(i) + B(n)(i)] - A(n)(i),

and the induction is complete.
Now let os be the Banach space* whose elements are all bounded se-

quences of complex numbers, e.g.,

X = (X1 , X2 , )

with norm

x II = sup I xi I.

Let A be a linear matrix operator on the space 63, defined by
CO

(14)

(15)

(Ax)i = E ai,x, , i = 1, 2, . (16)
j=1

Ax will be an element of ea provided that sup A (i) is finite. The norm of

A is defined by

II A II = sup { II Ax II;

and it is easy to show that

II A

xII = 1}, (17)

= sup Al (i). (18)

Henceforth we shall restrict our attention to matrix operators for
which

S(A) stiA(i) < 00. (19)

Such operators are completely continuous, because they can be ap-
proximated by the sequence {A")} of completely continuous operators
which converges in norm to A. Here A") is a matrix whose elements co-

* The standard definitions and theorems which we shall require from functional
analysis may be found in Kolmogorov and Fomin.,



118 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

incide with those of A for 1 < i < n and 1 j < n, and are zero other-
wise.

A complex number A is said to be in the spectrum of an operator A if
the operator A - AI has no inverse. An eigenvalue of A is any value of
A for which there exists a nonzero x satisfying the homogeneous equation

Ax - Xx = O. (20)

If A is completely continuous and if A ( 0) lies in the spectrum of A,
then A is an eigenvalue of A. In finite -dimensional space the eigenvalues
are the latent roots of the matrix A ("); that is, they are the roots of the
characteristic equation

det (A(n) - X/(")) = 0. (21)

Lemma 3: If A(n) has A as an eigenvalue, then A(' B(") has A',
where

r n (n) (n)
I - I [A (i) B (2) + I A I]

(22)

- [2(")(i) I X IJ .

i=i

Proof: Denote the eigenvalues of A") 11(") by X1, X2 , X .
Then

- xi)(x - A2) (A - An) I

= I det (A") 13(") - AI(")) - det (") -AI"))I
(23)

the second determinant being equal to zero because A is an eigenvalue of
A("). Let

so that

D(") = A( n) - Xi(n), (24)

D(")(i) = E I ai; - X6i; I
< A(")(i) + I X I. (25)

5=1

Then, using Lemma 2,

11 I A - x I < IJ [D(")(i) B(n)(i)] -II D(n)(i)
k=1 i=1 i=1

[A (n)
(i) + 13( n) (i) + I A 11

-II A n)(i)d- 'XI])
i=1

(26)



EXISTENCE OF EIGENVALUES 119

since the right side of the first line is an increasing function of D(n)(i).
It follows from (26) that for at least one of the factors I A - Ak the
inequality (22) holds.

Lemma 4: Let A be an infinite matrix with S(A) < 00 . Suppose that
from the eigenvalues of the sequence of finite matrices {A(n) } we can pick a
sequence Pt(n) } such that X(n) does not approach zero as n -> 00 . Then A has
a nonzero eigenvalue.

Proof: The A(n) are bounded, since in fact

I x(n) I 5_ II A(n) II = max A(n)(i) S(A). (27)

Also for sufficiently large n we can pick a subsequence which is bounded
away from zero, and which therefore has at least one nonzero limit point.
Suppose that the subsequence X`r) converges to the limit point A 0 0,
as p runs through some increasing sequence of integers. We assert that
A is an eigenvalue of A. If it were not so, then (A - AI) -1 would exist
and therefore be bounded. Suppose (A - AI) -1 were bounded, and let
x(P) be the characteristic vector of A(P) corresponding to X. Then we
would have

x(P) = (A - XI) -1(A - Wx(P)

= (A - AI)-1[A(P)x(P) - X(P)x(P)

± (A - A(P))x(P) - (A - X(P))x(P)]

= (A - NI) -1[(A - A(P))x(P) - (A - X(P))x(P)j,

where in the last equation A(P) represents an infinite matrix which coin-
cides with A in a square of side p in the upper left corner, and has zeros
elsewhere. Taking norms, we have

11.r(") 11 5_ 11(A - AI)-' 1111(A - A(P))x(P) - (A -X(P))x(P)11

11(A - >J) - [ii A - A(P) !! ± I x - x' I] II x(P) IL (29)

or

(28)

1

II (A - x-0-1 H (30)
II A - A(P) ± x - x(P)

But since both II A - A(P) II and I A - X(') go to zero as p cc, we
derive a contradiction.

Theorem: Let A be an infinite matrix with S(A) < CO and with Tr(A)
0. If

S(A) - S(A(")) < (c/nE)", (31)

for some c, E > 0, then A has a nonzero eigenvalue.
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Proof: Since Tr(A) 0 0 and Tr(A (14)) -> Tr(A), it follows that for
n > n1 (say) and some 3 > 0, we have I Tr(A")) I > S. Since the trace
is the sum of the eigenvalues, A(71) must have at least one eigenvalue
X(n) such that

10) I >..= (32)

We shall in fact show that if n1 is a sufficiently large fixed integer, and if

n, = j 1, 2, 3, (33)

then for each j there exists an eigenvalue which is uniformly bounded
away from zero, i.e..

X(ni) > 3/2n1 . (34)

Then by Lemma 4 the theorem will be proved.
We substitute into Lemma 3 as follows:

n

aI = Pk(nd I= t,

A(n) = A(nd
B(n) A(ni+1) A(nd

where it is understood that A(nd now represents the original matrix
A eni) augmented below and to the right with enough zeros to give it
dimensions nj4.1 X ni+i . Then (22) becomes

x(nd - 0,+1)
ni

[A(ni+1)(i) - [A(ni)(i) + d}lin'+1
i=1 i=1

n,
tl 1/711+1

[A(i) t] - t"1-"-ni IT [A("i)(i) +
i=i

Since

(35)

(36)

X(ni) X(ni÷1) I> t A(ni+1) 1, (37)

we can rearrange (36) to get
ni

X(ni+1) I t -
(n1 1 [A (i) t] - IT [A (ni)(i)

i=i

Hence
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I x ( "1+1) 1

' => 1 - {7A1 [1, + A41 - fi [1 A( ni)(i)yini+1
i=i t

L_, 1 {hi [i j_ ?OW]
(39)-PI: a(ni)(i)iyina+11=1 1 6

since we already know that t ..-. 6/n; .
Now consider

Also

11 1+1n njA(i)1
exp niA(i)] exp

n;S(A) (40)[ 5L

niA(i)1
exp A(i)]

S

exp SES(A) - S(A(ni))] (41)

"1< exp )1 2n; c ni

nif n:*

provided that n1 and hence n; are sufficiently large, where in the next
to last step we have used (31) and in the last step we have used ex

1 -I- 2x for 0 x s 1, say. Finally,

injA(nl)(i
S

)1

=II
i=1

II

75-j [A(i) - 21`").)(i)}1

" ni A- n
{[A(k) - A(ni)(k)] 11 [1 -I- ni 5(i) (42)1}S 1=1

n.21(1n[1
5

-s[S(A) - S(A" i))] 11 Li

2n;
i+ ni6")].

+
niA(i)1
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Substituting (40), (41), and (42) into (39) yields

X(ni±'' I {ni(2 + ni) c exp
vni) - \n,;6 a I

[72,j(2 92,1112

3
nie/2

where in the last step we have used the fact that n1+1 = 2n; and have

set

(43)

cl = c1/2 exp [S(21)/26]. (44)

If we assume in advance that

< 2, n1 max (2, 4/), (45)

then

where

[(2 4- ni)1112ni
2.ni2 1/2 n

n; Cl

nje/2 = 5 ni12

2c<
- aniE/4 2(j -1)e/4 ,

2c,
C2 -

oni'i4'

Hence (43) and (46) imply

and by induction

x( n i+i)

X (nd

r = 2-'/4 < I.

i
C2r-1

(46)

(47)

(48)

x(nJ) 1

x(no 1 =' > fli [1 - codl. (49)

But if c2 -- IA, say, then

II (1 - cg'-l) = exp [E log (1 - c21.3-1)1
. .

i=-1 J-1

E 2C2-exp -2 c2rj-1[
=i

= exp 1 - 1
> M2

(50)

where the last step requires

c2 < 1A(1 - r) log 2 = 1A(1 - 2-'/s) log 2, (51)
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and by (47) this inequality can always be satisfied for large enough n1.
But (49) and (50) imply

x(ni) > X('") 6/(2n1) > 0 (52)

for all j, and so the theorem follows from Lemma 4. Q.E.D.
An integral function of finite order p is a function F(z) which has no

singularities in any finite region of the z -plane, and whose maximum
modulus M(r) on the circle I z I = r satisfies

log M(r) < rk (53)

for all sufficiently large r when k > p, but not when k < p. Such a func-
tion may be expanded in a Taylor series,

F(z) = anz", (54)
n=0

which converges for all z, and whose coefficients satisfy6

a. < 1/n' (55)

for all sufficiently large n, where E is any fixed number less than 1/p.
Alternatively, for any fixed e < 1/p, there exists a constant c such that
for all n > 0

[ 1)e

in -1-1

a I +(n (56)j
We are now ready to prove the result stated in Section I.

Theorem: Let G(x) and H(x) be any bounded functions on the interval
-1 <= x 51, and let F(z) be any integral function of finite order such that

1G(x)F(x2)H(x)dx 0 0.

Then the integral equation

G(x)F(xy)H(y)f(y)dy = Xf(x)
1

(57)

(58)

has at least one nonzero eigenvalue.
Proof: Expand F(xy) in a Taylor series, so that the integral equation

becomes

Let

1

E [a.--i"G(s)xn-ii[a.-11/21/(Y)Y"-lif(Y)dY = Xf(x). (59)
1 71 = 1
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f(x) = G(x) E fnan_an
n=1

(60)

where Ifni is a bounded sequence of complex numbers; the an's tend to
zero fast enough so that f(z)/G(z) will be an integral function of finite
order.

Since the powers of x are linearly independent, (59) is equivalent to
the matrix equation

Af = kf, (61)

where

= a51 = (a1_ia;_i)1/2 f G(t)H(Oti+3.-2dt, (62)

i = 1, 2, ; j = 1, 2, .

Since G(x) and H(x) are bounded in -1 < x < 1 and the Taylor co-
efficients of F(z) satisfy (56), it is clear that

i/2)
ai; I .

1
(63)

+ (7,'

In preparation for an application of the preceding theorem, consider
co i

S(A) - S(A(")) 2 E F,
i=n+,

c)i12 C /5/2

2:'/j - 1

= 2 M E
i/2

1

(64)

j - 1 \j'i=n-{-1[(Ci;- j.
Now (c/f)ji2 is bounded as j 00, and

2i-i
1 dx

log - (65)
=, + -1- L -x

which is bounded for i > n + 1 2. Hence with a new bounding con-
stant we have

00

S(A) - S(A(")) E
i=n+1

(c"2 1)

Choose log n (2 + log c)/E, so that n0 > ce2; then
00

i=n+1 v6/2 n X 'E 4-)
,_1/2\ i 00r

dxC -;72
n
-(c1/2 dx

)x
4

(c/no) n/2 C1/2\ n

(log c - e log n)/2 = no)

(66)

(67)
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and so from (66)

125

71

8(A) - S(A(")) , (68)

where c1 is a new bounding constant and el = e/2.
Finally we have

Tr (A) = E aii
i-1 i=1

G(t)11(t)t2i-2 dt

= G(t)H(t)F(t2) dl,f1
(69)

and this does not vanish by hypothesis. Hence all the conditions of the
previous theorem are satisfied, and the integral equation has a nonzero
eigenvalue. Q.E.D.

Since exp (-2ikz) is an integral function of finite order 1, it is an obvi-
ous corollary that the kernel exp i[k(x - y)2 - h(x) - h(y)] has a non-
zero eigenvalue for arbitrary complex k, provided only that h(x) is
bounded and that

-1
e-2i/t (x) dx 0. (70)

Furthermore if h(x) is an even function of x and if f(x) is an even func-
tion which satisfies

fo
exp (i[k(x2 + y2) - h(x) - h(y)]) cos (2kxy)f(y)dy = 3AXf(x), (71)

then f(x) also satisfies (1). But the theorem just proved obviously holds
for arbitrary finite limits of integration and applies to the kernel of (71),
so (71) has at least one nonzero eigenvalue if

fo

1

exp 2i[kx2 - h(x)]) cos (2kx2)dx 0. (72)

Similarly if h(x) is even and if f(x) is an odd function which satisfies

exp {?[k(a,2 y2) - h(x) - h(y)] I sin (2kxy)f(y)dy = (7:3)

then f(x) also satisfies (1), and (73) has at least one nonzero eigenvalue
if

exp {2i[kx2 - h(x)]} sin (2kx2)dx 0. (74)
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At least one of (72) and (74) will be satisfied whenever (70) holds. Except
for certain particular values of k, one of which is evidently k = 0, both
(72) and (74) will be satisfied, and (1) will have at least two distinct
eigenfunctions corresponding to nonzero eigenvalues.
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Deposition of Tantalum Films with
an Open -Ended Vacuum System

By J. W. BALDE, S. S. CHARSCHAN, and J. J. DINEEN

(Manuscript received July 19, 1963)

New devices using vacuum -deposited metal films require a high-speed,
low-cost method of vacuum deposition. The capability of the open-ended
multiple -chamber deposition equipment has been investigated to determine its
suitability for depositing tantalum nitride thin films. This was accomplished
by examining the measurable electrical properties of the deposited film and
by determining the stability of resistors made from these films.

Tantalum films produced by the open-ended deposition system were found
comparable to those produced by many bell -jar systems. It was possible to
control the addition of nitrogen to the films, and tantalum nitride films of
satisfactory stability were obtained. Because the open-ended deposition
method can produce large quantities of suitable thin films, it is expected
that this will be an important process in the manufacture of future products.

I. INTRODUCTION

Tantalum thin film circuit techniques developed at Bell Telephone
Laboratories' can produce resistor and capacitor circuit elements and
associated interconnections. Such tantalum film circuits have high sta-
bility and good reliability, superior to that of discrete components with
their multiple interconnections.'

The Western Electric Company has developed a continuous open-
ended vacuum system for deposition of these tantalum films. This sys-
tem provides for the passage of substrates through a sequence of cham-
bers which vary in pressure from atmospheric pressure to high vacuum
and then back to atmospheric pressure. The design of this system and the
details of its operation have been previously reported.'

This open-ended system has advantages for quantity deposition of
thin films. All vacuum chambers remain at their operating pressures; no
time is lost pumping down prior to deposition. Work chambers need not
be exposed to room atmosphere and possible contamination. Degassing
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and preheating operations can be restricted to the substrates and asso-
ciated carriers; repeated degassing of the system is unnecessary. Sub-
strate motion is continuous through the system; no operator handling
or manipulation is required.

The open-ended deposition process differs in a number of ways from
earlier work with batch processes using bell -jar vacuum chambers.
Chamber materials and hardware are very different from those devel-
oped for round bell -jar enclosures. Substrates move through the sputter-
ing glow zone, continuously passing the cathode. This motion pro-
duces thermal gradients which result from the dynamic equilibrium con-
ditions for a given substrate speed. Deposited films are the result of an
integration of the effect of each part of the cathode, rather than the re-
sult of a static pattern of deposition. Film thickness can be controlled
by the length of chamber and the speed of substrate motion as well as
by deposition rate.

II. TEST PROCEDURE

To investigate the effects of these changed deposition conditions, the
product of the open-ended machine was examined to ascertain whether
the films have satisfactory properties, and also to determine that there
was no adverse effect on the subsequent processing operations. The evalu-
ation of the quality of film deposition in the open-ended system consisted
of the following parts:

First, examination was made of the tantalum film deposited without
any intentional nitrogen addition. The properties of tantalum film could
be strongly altered by contaminant gases from atmospheric leaks or by
outgassing of material in the sputtering chamber. Examination of this
tantalum film quality should reveal any inadequate cleaning or adverse
effect from the deposition method.

Second, the properties of the films were examined as a function of the
amount of nitrogen added to the sputtering atmosphere. This establishes
the ability to add sufficient nitrogen to produce useful resistor films, as
demonstrated by stability, resistivity, and temperature coefficient meas-
urements.

Third, the reproducibility and control of the tantalum nitride deposi-
tion process were examined by repeat depositions at the same operating
point, and by the examination of many depositions which deviated
only slightly from the operating point for most suitable film properties.

Fourth, an examination was made of uniformity of deposition over the
width and length of the substrate.
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III. MEASUREMENT PROCEDURE

Satisfactory film quality is judged initially by measuring three film
properties: thickness (A), specific resistivity (p), and the temperature
coefficient of resistance (a). In order to insure that the variability of film
properties is due to the machine processing system and not to errors in
the measurement of the properties, the test details and procedures were
evaluated.

A test pattern was developed to insure that all films would have their
properties measured on the same effective area and at the same position
on the substrate. The zigzag test pattern for a 1.5 -inch by 3 -inch substrate
is shown in Fig. 1. It consists of 20 resistors with a nominal line width of
0.015 inch, each having a path length of 144 squares. The resistors are
interconnected by a center stripe and have separate terminal tabs for
each resistor. The test resistors are defined by using silk-screen techniques
to apply a resist to a tantalum -coated substrate. The unwanted film is
removed by etching.

3.1 Film Thickness Measurement

In preparing films for thickness measurements, hot sodium hydroxide
is used to remove the unwanted tantalum film without appreciable etch

Fig. 1 - Resistor pattern for film property evaluation.
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of the glass substrate surface beneath the deposited film. After the resist
has been removed, the films are measured using a Talysurf instrument.4
For thickness measurements of the 1200-A films deposited in this open-
ended vacuum system, the la error of measurement is 56 A.

3.2 Specific Resistivity

The specific resistivity is computed as follows

p = R. A X 10-2 microohm-cm

where R. is sheet resistance in ohms per square and A is thickness in
angstroms.

The sheet resistance of an unetched film is determined by a four -point
probe measurement in ohms per square. For convenience, these measure-
ments are made using a simplified direct -reading meter of 1 per cent ac-
curacy.

3.3 Temperature Coefficient of Resistance Measurement

After the test resistor pattern has been defined by etching, connections
are made to the center stripe and the appropriate tab areas. The resist-
ance is measured at, 30°C and at 60°C. The temperature coefficient of
resistance is then computed as follows :

TCR(a) - R60R30AT- R30 X 106 ppm/°C

where R30 and R50 are in ohms and AT is in degrees centigrade. Error of
measurement studies indicate a la error of 3 ppm/°C.

IV. ANALYSIS OF UNDOPED TANTALUM FILM

In order to show that the machine process is reproducible at a useful
quality level, a series of experiments were run. For this experimental
work, one 1.5 -inch by 3 -inch coated lime glass slide was produced per
minute. A carrier 5 inches in length was used to bring the substrate
through the chambers. The chamber lengths were such that the carrier
and substrate remained in the first four chambers for a total of 15 minutes
of high temperature preheating at four decreasing pressure levels. The
pressure levels used for this experiment are shown in Fig. 2. Table I gives
the preheating power and the sputtering conditions used.

The results of these experiments, shown in Fig. 3, indicate that films
deposited in this manner have a specific resistivity of 240 microohm-cm
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TABLE I - EXPERIMENTAL OPERATING CONDITIONS

Preheat Stations *1 *2 *3 *4

Preheat lamp input, watts 300 300 300 220

Sputtering potential, vdc 4500
Sputtering current, ma 500
Sputtering pressure, microns (gauge) 32
Cathode -anode spacing, inches 2.0
Experimental cathode area, in' 158

Deposition rate, A/min 300

and a temperature coefficient of resistivity of +56 ppm/°C at a nominal
thickness of 1190 A. The quality of these films is comparable to that ob-
tained by batch processes using bell -jar systems.

4.1 Process Controllability
The process controllability for these films was estimated from control

charts to have a standard deviation of 11 microohm-cm in specific re-
sistivity and 27 ppm/°C in temperature coefficient of resistance. Film
thickness was shown to be controllable, with a standard deviation of 50
A about a mean of 1190 A. Based on these results, the process was deemed
to be controllable and reproducible for tantalum films.

V. NITROGEN DOPING

Tantalum films without intentional additives are used primarily to
make capacitors. Work done by Gerstenberg and Mayer' has established
that the resistors with the best stability were made when one to five per
cent of nitrogen is added to the sputtering atmosphere, the amount de-
pending on the pumping and geometry characteristics of the particular
system. This nitrogen reacts with the tantalum, and the resulting film
contains appreciable tantalum nitride. Having established that the open-
ended vacuum deposition system could produce satisfactory tantalum
films, it was next necessary to investigate the ability of the system to
produce nitrided tantalum resistors with suitable component properties.

The properties of the films of tantalum nitride depend on the environ-
ment in the sputtering chamber. Geometry, voltage, current, pressure,
gas composition, and gas thru-put all affect the film properties. Slight
differences in chamber materials, glow region, gas flow paths, or thermal
gradients can also have a major effect on the amount of nitrogen needed
to produce film with satisfactory properties. It is customary, therefore,
to investigate the relationships between film properties and nitrogen
quantity in any new deposition system. This is done by experimentally
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determining the characteristic curve for each of the important nitrogen -
film property relationships. These characteristic curves must be deter-
mined for each vacuum system, and the proper operating point chosen
for each. The influence of trace impurities of nitrogen in the open-ended
vacuum system was therefore explored by a series of characterization
experiments in the machine processing system. The experimental pro-
cedure did not materially differ from that used in the earlier undoped
experiments. The operating conditions previously stated in Table I
were again held in all cases. The only additive was the controlled flow
of nitrogen gas, which was mixed with the argon prior to entering the
sputtering chamber.

A single experiment, of the series used for this purpose, consisted of
establishing an operating point by adjusting the flow of nitrogen gas
until the sheet resistivity was some desired value, and holding it at that
value to within 1 ohm/square. Sample slides were sent through the
machine at 10 -minute intervals to determine that the sheet resistivity
was in control, thus assuring that drifts were removed from the system.
Then 20 consecutive slides were given a film deposition in the machine.

Each experimental lot was sampled as follows: four consecutive slides
in the center of the lot were processed into resistors; four slides were used
to determine the initial film characteristics; and four more were used to
examine such physical properties as adhesion, visual defects, and the
anodizability of these films. The remaining slides were held as spares for
future exploratory studies.

5.1 Nitrogen -Doped Film Characteristics

The influence of nitrogen on the characteristics of these resistors after
processing is shown by the curves in Fig. 4. The data presented here show
that doped films from this machine processing system exhibit a charac-
teristic form similar to that previously reported for tantalum nitride films
produced in bell -jar systems.' Films with low resistivity and high posi-
tive temperature coefficient are formed in the vicinity of 0.30 to 0.40
per cent nitrogen.

5.2 Accelerated Life Test Data

The ultimate criteria for satisfactory films are the observed qualities
of the circuit elements made from the films. Resistors made of tantalum
and tantalum nitride should have a stability characteristic of less than 1
per cent drift in resistance in a 20 -year lifetime Accelerated aging tests,L

used by J. S. Fisher,7 permit relative judgm nts to be made much
earlier than 20 years - in fact, tests of standard pattern resistors at



136 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

twice rated load can differentiate between performances of resistors in
about 3 months.

The resistor pattern used for accelerated life testing consists of 24 re-
sistors, each rated at 0.5 watt. This resistor pattern is shown in Fig. 5.
Twelve resistors are arranged on each side of a common center strip on
the 1.5 -inch by 3 -inch alkali -free glass substrate (Corning Code 7059).
Each resistor is formed by a zig-zag pattern of lines 0.008 inch wide, con-
taining 364 squares. The components are defined by using a conventional
photo -resist (KMER) * and etched in a hydrofluoric -nitric acid mixture.

Fig. 5 - Product stability test pattern.

Nichrome and gold are evaporated in turn onto the terminal areas. The
films are bath -anodized to 30 volts in citric acid.8 Oven baking at 250°C
in air for five hours is used to stabilize the films. Resistors are then sepa-
rated into individual units and trim anodized to 15,000 ohms ±1
per cent wherever possible. For initial sheet resistance of greater than
40 ohms/square, it is necessary to trim anodize to a maximum of 20,000
ohms ±1 per cent.

The stability of resistors, for the range of nitrogen additive from 0.0
to 1.84 per cent, was studied by placing eight resistors under double-

* Kodak Metal Etch Resist, Eastman Kodak Company.
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rated power life test, four from each of two slides in the center of the lot.
This life test consists of a de power load of one watt in ambient air at
30°C ± 5°C, and corresponds to 40 watts/in' of tantalum film.

The performance of these films under such conditions can be seen in
Fig. 6. The stability characteristics change rapidly with slight varia-
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tions in amounts of nitrogen doping. The data shown here for resistance
change (AR/R) were obtained on the same films whose nitrogen doped
characteristics prior to life tests were shown in Fig. 4.

The 0.0 per cent nitrogen lot shows almost 9 per cent increase in 1000
hours. The 0.2 per cent nitrogen film appears to be more stable. The 0.44
per cent nitrogen film, at the bottom of the figure, exhibits a decrease in
resistance in the first 1000 hours. However, as more nitrogen is added,
the decrease in resistance is reduced until it has almost disappeared in
the vicinity of 1.56 per cent nitrogen.

These data can be analyzed in a different manner by plotting time
cross sections of the data against per cent nitrogen. Fig. 7 shows that
this data -display technique produces a curve with the same charac-
teristic form as the tantalum properties previously plotted. The dip in
the curve occurs at the same per cent nitrogen for AR/R as it does for
the other film properties. This minimum in each property has been previ-
ously observed in product produced in bell jars. It is believed that in the
vicinity of the dip the product possessed greater metallic purity than at
other nitrogen levels.

The films that were made with about 1 per cent nitrogen added to the
sputtering atmosphere seem to provide the least total resistance change
on this plot. Re-examination of Fig. 6 shows, however, that these films
went through a large negative change in resistance before returning to
original value. If films with consistent behavior are chosen instead, those
with a nitrogen additive of about 1.48 per cent are to he preferred.

When changes in resistor films having 1.44 to 1.56 per cent nitrogen
are examined on a log -log plot (as in Fig. 6), the drift behavior is found to
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be quite linear, with a trend line that can be defined by the equation:

logio AR/R = -3.74 ± 0.63 logio t.

This drift rate produces resistance changes at 1000 hours that are com-
parable to those reported from batch process bell -jar -deposited films.

Many research workers are expending considerable experimental work
to establish equivalency of accelerated power aging rates to the aging
rate of resistors when used at the more normal power dissipation of 20
watts/in2. Such work indicates that the 1.48 per cent nitrogen resistors
should have an average change of 0.4 per cent in 20 years under normal
load. With allowance for the variability of film from run to run, this
group of films should be processable into resistors with maximum aging
change of less than 1 per cent. Of course, considerably more time must
elapse and more correlations must be established before the exact equiva-
lency of normal aging to such accelerated aging can be determined.

VI. NITROGEN DOPED FILM REPRODUCIBILITY

Since nitrogen doping adds a new and major variable to the operating
conditions of the machine processing system, experimental runs were
made to demonstrate the reproducibility of the doped film properties.
Over a typical five -month period, for example, six runs were made at a
particular nitrogen level of 1.28 per cent. The machine processing system
was adjusted to the standard operating conditions previously mentioned.
The average values of the three resistor characteristics a, p, and R8 for
each run are shown in Table II.

6.1 Reproducibility of Life Performance

The stability of tantalum resistors was discussed previously in connec-
tion with the characterization curves of Fig. 6. To evaluate the ability

TABLE II - NITROGEN -DOPED FILM REPRODUCIBILITY

Sputtering Date Temperature Coeff. of
Resistance a ppm/°C

Specific Resistivity p
phi -cm

Sheet Resistance
Raft/0

10-2 -79 300 25.2
10-25 -81 375 26.6
11-1 A.M. -82 334 26.5
11-1 P.M. -87 374 27.9
1-23 -78 392 27.6
2-15 -73 318 28.1

Average -80 349 27.0
Std. dev. ±5.5 ±33 ±1.1

(These standard deviations were estimated from the range of the data.)
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of this system to produce films of consistent stability, the aging charac-
teristics of tantalum films with 1.48 ± 0.08 per cent nitrogen were
examined. Resistors were processed from 8 separate runs of film having
the previously mentioned nitrogen levels. The results of accelerated
aging tests of these resistors are shown in Fig. 8. Sufficient power was
applied to each resistor to produce a power dissipation of 40 watts per
square inch of tantalum area. While there is some spread of resistance
change due to the variation in nitrogen content, these resistors do con-
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sistently exhibit closely similar aging rates. The difference between
films shows up as changes in resistance at the 20 -hour measurement.

VII. FILM UNIFORMITY

Post -deposition processing of tantalum films requires that the resistor
film be anodized to achieve stability and to adjust the resistance of the
film to a required value.8 Using etch techniques, multiple networks can
be produced from a single substrate. Economical processing should be
performed on the full substrate area, rather than on an individual re-
sister or network. Economic production of large volumes of stable thin
film circuits, then, requires not only that the deposition process produce a
high output of film -coated substrates at a low cost, but also that the
properties of the deposited films be uniform over the area of the sub-
strate.

The resistance of the tantalum -nitride film produced in the open-
ended system has a variation of 5 per cent over an effective length of
2.8 inches (see Fig. 9). This variation is comparable to that of bell -jar
product, and makes possible production of resistor networks with a toler-
ance of ±3.0 per cent on the individual resistors. The resistance variation
is not random, but has a definite pattern of higher resistance near the
ends of the substrate. Since the substrate moves through the deposition
zone at a constant speed, this suggests some effect of the substrate
carrier on the film uniformity.

Typical tantalum -nitride film properties from a single open-ended
system, under controlled production conditions, may vary 50 microohm-
cm in resistivity, 100 A in thickness, and 20 ppm/°C in temperature
coefficient. This variability in film properties does not contribute signifi-
cantly to the complexity of subsequent processes. However, if film deposi-
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tion is accomplished by using the larger number of bell -jar systems which
would be required to meet the same production demand, the film prop-
erties would be influenced not only by the variability of a single chamber,
but also by the chamber -to -chamber variability of the associated bell -

jar systems. Compensation for this total variability will significantly
influence the complexity and even the design of some of the subsequent
process equipment and hence the over-all manufacturing cost of thin
film resistor networks. The use of the open-end system to deposit tan-
talum should simplify quantity manufacture and reduce costs signifi-

cantly.

VIII. CONCLUSION

At the present stage of the developmental work, it can be concluded
that the open-ended in -line vacuum concept can be used to deposit large
quantities of tantalum for thin film resistors. Each machine can coat
two 5 -inch by 5 -inch substrates per minute. One such machine, on one -
shift operation, can therefore produce approximately 4,000,000 square
inches of metal film per year. Such films have exhibited the required
stability, uniformity and reproducibility. Further work is in progress to
optimize film characteristics. The work to date has established the feasi-
bility of manufacturing production using this new deposition concept.
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Digital Troposcatter Transmission
and Modulation Theory
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(Manuscript received May 20, 1963)

In tropospheric scatter transmission beyond the horizon, the amplitude,
phase and frequency of a received sine wave exhibit random fluctuations
owing to variable multipath transmission and noise. The probability of
errors in digital transmission over such random multipath media has been
dealt with in the literature on the premise of fiat Rayleigh fading over the
band occupied by the spectrum of transmitted pulses. This is a legitimate
approximation at low transmission rates, such that the pulse spectrum is
adequately narrow, but not at high digital transmission rates. The proba-
bility of errors is determined here also for high transmission rates, such that
selective fading over the pulse spectrum band must be considered. Such
selective fading gives rise to pulse distortion and resultant intersymbol
interference that may cause errors even in the absence of noise.

Troposcatter transmission can be approximated by an idealized multi -
path model in which the amplitudes of signal wave components received
over different paths vary at random and in which there is a linear variation
in transmission delay with a maximum departure ± from the mean
delay. Various statistical transmission parameters are determined on this
premise, among them the probability distribution of amplitude and phase
fluctuations and of derivatives thereof with respect to time and with respect
to frequency. The probability of errors in the absence of noise owing to such
fluctuations is determined together with the probability of errors owing to
noise, for digital transmission by binary PM and FM. Charts are pre-
sented, from which can be determined the combined probability of errors from
various sources, as related to the transmission rate and certain basic param-
eters of troposcatter links.
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INTRODUCTION

In tropospheric transmission beyond the horizon, narrow -beam
transmitting and receiving antennas are used in a frequency range from
about 400 to 10,000 megacycles. The received wave can be considered
the sum of a large number of components of varying amplitudes, re-
sulting from a multiplicity of reflections within the common volume at
the intersection of the antenna beams. These various components arrive
with different transmission delays owing to path -length differences,
and each will exhibit a variation in amplitude owing to structural
changes within the common volume, caused largely by winds. When a
steady-state sine wave is transmitted, the received wave will conse-
quently exhibit variations in its envelope and phase, commonly referred
to as fading. When a signal wave is transmitted, its various frequency
components will suffer unwanted amplitude and phase variations with
resultant transmission impairments that depend on the particular
carrier modulation method. These impairments are discussed herein
for digital transmission by carrier phase and frequency modulation.

Various properties of the transmittance of troposcatter channels
have been dealt with in several publications.1,2,a .4 These properties
include the expected average path loss and systematic seasonal varia-
tions from the average, together with the probability distributions of
slow and rapid fading or fluctuations from the mean. Other important
properties from the standpoint of systems design and performance are
the distribution of duration of fades and the fading rapidity or rate.

The above various properties relate to transmittance variations with
time at a particular frequency. Of basic importance is also the variation
in transmittance with frequency at any instant, i.e., the amplitude and
phase characteristics of trophospheric channels. These will be highly
variable quantities, as illustrated in Fig. 1. At a fixed instant the
characteristics may be as indicated in Fig. 1(a) and at a later instant
as in Fig. 1(b). Such fluctuations will give rise to a distortion of the
spectrum of received signals, with resultant transmission impairments
of various kinds, depending on the modulation method. In addition,
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random noise at the receiver input must be considered as in conventional
stable channels. Owing to the above random fluctuations, diversity
transmission is ordinarily required to insure adequate performance.

At present, frequency modulation is used for transmission of multi-
plexed voice channels over troposcatter links. With this method, pro-
nounced intermodulation noise is encountered5.6 owing to the types of
transmittance variations with frequency indicated in Fig. 1. With digi-
tal transmission, these variations will give rise to pulse distortion and
resultant intersymbol interference that may severely limit the trans-
mission rate.

In evaluation of error probabilities in digital transmission, it is neces-
sary to consider variations in the average path loss over a convenient
period, such as an hour, relative to the average over a much longer
period, say a month. These slow fluctuations in loss are closely approxi-
mated by the log -normal law; i.e., the loss in db follows the normal
law.' In addition, consideration must be given to rapid fluctuations in
loss relative to the above hourly averages. These are closely approxi-
mated by the Rayleigh law, which also applies for the envelope of
narrow -band random noise. They are ordinarily more important than
slow fluctuations, particularly in digital transmission, in that they cannot
be fully compensated for by automatic gain control. Nearly all theoreti-
cal analyses of error probabilities in digital transmission over fading
channels are based on a Rayleigh distribution together with various
other simplifying assumptions, as outlined below.

The simplest assumption is flat or nonselective Rayleigh fading over
the channel band, in conjunction with a sufficiently slow fading rate
such that changes over a few pulse intervals can be disregarded. These

ATTENUATION

PHASE

t= t,

(a)

CdO

FREQUENCY, 6)

(b)

ATTENUATION

PHASE
11

t=t2

FREQUENCY, Id

Fig. 1 - Illustrative variations in attenuation and phase characteristics with
frequency at two instants ti and t2 .
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are legitimate premises in transmission over line -of -sight radio links,
where fading is much slower than on tropospheric links and is virtually
nonselective over rather wide bands. With these simplifying assumptions
Turin7 has determined error probabilities in binary transmission over
noisy channels with ideal synchronous (coherent) detection and envelope

-----(PoAcoherent) detection. His analysis includes the effect of correlation
between successive pulses and also postulates a nonfading signal com-
ponent, such that the results in one limit also apply for nonfading chan-
nels.

On the same premise of slow, flat Rayleigh fading, Pierce' has deter-
mined the optimum theoretical diversity improvement for frequency
shift keying with dual filter reception employing coherent and non-

coherent detection of the filter outputs. Dual filter detection is ordi-
narily assumed in place of the usual method of frequency discriminator
detection that does not lend itself as readily to theoretical analysis.

The error probability with two-phase and four -phase modulation
with differential phase detection has been determined by Voelcker9 on
the premise of flat Rayleigh fading at such a rate that the change in
phase over a pulse interval must be considered. Moreover, he considers
the probability of both single and double digital errors, with both single
and dual diversity transmission.

Voelcker's analysis is applicable to transmission at a sufficiently slow
rate such that amplitude and phase distortion can be ignored over the
relatively narrow band of the pulse spectra. However, it does not apply
to high-speed digital transmission that requires sufficiently wide pulse
spectra such that the amplitude and phase distortion indicated in Fig.
1 must be considered. For this case the duration of pulses will be so
short that the phase changes considered by Voelcker can be disregarded.
Instead, it now becomes necessary to take into account pulse distortion
and resultant intersymbol interference caused by the erratic variations
with frequency in the amplitude and phase characteristics illustrated
in Fig. 1. An evaluation is made herein of error probabilities on the
latter account, which has not been considered in previous publications. *

From the solutions for the above two limiting cases of low and high
transmission rates, it is possible by simple graphical methods to esti-
mate the error probability for the general case in which both time and
frequency variations in the amplitude and phase characteristics must
be considered. Charts are presented of error probabilities in digital
transmission by binary PM and FM as related to various basic param-
eters of tropospheric scatter links and of the signals. Among these

* For reference to a recent related paper, see Section 8.9.
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parameters are the average signal-to-noise ratio, the bandwidth of the
pulse spectrum, the fading bandwidth of the troposcatter link, and the
maximum departure from the mean transmission delay, which is re-
lated to the length of the link and the antenna beam angles.

The analysis shows that a principal source of pulse distortion and
resultant transmission impairments is a component of quadratic phase
distortion. On this premise, an evaluation has been made in a companion
paper* of intermodulation distortion in analog transmission by FM and
PM, that conforms well with the results of measurements.5'6

I. CHANNEL TRANSMISSION CHARACTERISTICS

1.1 General

Transmission performance with any modulation method depends on
the statistical properties of the signals and of channel noise, together
with various properties of the channel transmittance or transmission -
frequency characteristic. When the latter varies with time, the usual
methods of determining network response to specified input waves must
be modified in various respects, that result in appreciable complications
in the analytical methods" and in certain conceptual difficulties. How-
ever, when the time variations in transmittance are slow in relation to
those in the input waves, it is legitimate to assume that the trans-
mittances are constant over an appreciable number of pulse intervals.
With relatively slow random fluctuations as encountered in troposcatter
systems at representative transmission rates, it is thus permissible to
determine the responses for various essentially time invariant transmit-
tances that can be encountered. In evaluating transmission performance,
the various transmittances that can be encountered must be weighted
or averaged statistically in a manner that depends on the signal prop-
erties and the modulation method.

Among the statistical properties of troposcatter transmittances are
the probability distribution of the envelope of received carrier waves
together with the autocorrelation function of the envelope with re-
spect to time and with respect to frequency. These are discussed here,
while other statistical properties will be considered in later sections.

1.2 Tropospheric Scatter Waves

To determine an appropriate model for the random process in trop-
ospheric scatter transmission, it is necessary to consider the physics

* See part 2 of this issue of the B.S.T.J., to appear.



DIGITAL TROPOSCATTER 149

of this phenomenon, as dealt with in various publications. Though these
may differ in their assumptions regarding the exact mechanism of the
reflections, they appear to agree that they occur as a result of hetero-
geneities within the common antenna volume indicated in Fig. 2. If the
transmission medium were uniform, no reception would be possible.
Owing to the numerous heterogeneities in the common volume, a very
large number of reflections will occur, and the received wave can be
considered the sum of a large number of components of different ampli-
tudes and different transmission delays. Over any short interval, the
envelope of a received sine wave will depend on the frequency, as will
the phase. Because of variations in the heterogeneities caused largely
by winds, the envelope and phase of a received carrier will vary with
time.

Fig. 2 - Illustrative antenna beams and common antenna volume.

The transmittance of troposcatter channels is dealt with here, based
on an idealized model discussed further in the Appendix, and certain
statistical parameters obtained from experimental data are discussed.
Two limiting cases that permit simplified analysis are considered. In
one case the transmission band is assumed sufficiently narrow, such that
the attenuation characteristic can be considered constant and the phase
characteristic linear over the narrow band. There will then be fluctua-
tions with time in the attenuation accompanied by independent varia-
tions in the slope of the phase characteristic, a condition referred to
as nonselective flat fading and ordinarily assumed in random multipath
digital transmission theory. The other limiting case is that of digital
transmission at a sufficiently high rate so that time variations in the
transmittance can be disregarded over an appreciable number of pulse
intervals. In this case it is necessary to consider erratic variations with
frequency in both the attenuation and phase characteristics.
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Fig. 3 - Illustrative dependence of envelope and phase of transmittance with
frequency u from a reference frequency wo at a specified time 1,

1.3 Troposcatter Transmittance

Let a sine wave of frequency 0.) be transmitted, and let w = wo u,

as indicated in Fig. 3, where wo is a conveniently chosen reference fre-
quency. In complex notation the received wave is then of the general
form

e(u,t) = r(u,t) exp[-ico(u,t)] exp(iwt) (1)

where r(u,t) and so(u,t) are random variables of the time t for a fixed
w or u, and of U for a fixed time t. The channel transmittance is then

T (u,t) = r(u,t) exp[-ico(u,t)].

The following general relations apply

r(u,t) = [U2 (u,t) V2(u,t)]i

yo(u,t) = tan:' [V(n,t)/U(u,t)].

(2)

(3)

(4)

As shown in the Appendix, in the case of idealized tropospheric
channels the functions U and V can be represented in the following form

u, A)sin (jr (5)
j-co 37 - uA
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sin
(jar tta

Jr -246,
where

(6)

O = maximum departure from mean transmission delay
owing to path length differences.

In (5) and (6) the coefficients a; (t) and Mt) vary at random with
time t and for a given t vary at random with j. Owing to the latter
variation with j, there will be a random variation in U and V with the
frequency u taken in relation to the reference frequency coo .

Equations for an idealized troposcatter channel, as given in the
Appendix, show that a1(1) is related to the sum A(x,t) A(-x,t) of
two random processes and Mt) to the difference A (x,t) - A(-x,t).
The two random processes A(x,t) and A(-x,t) will have equal rms
amplitudes, in which case a;(1) and Mt) will have zero correlation
coefficient. They will then also be independent random variables, pro-
vided A(x,t) and A(-x,t) have a Gaussian probability distribution,
which appears to be a legitimate approximation since each will be the
sum of waves from a large number of reflections.

A further assumption underlying (5) and (6) is that there is an in-
finite number of transmission paths. An additional approximation that
will be made in the following analysis is that there will be independent
random fluctuations in the signal components received over the various
paths. Actually there will be some correlation between the fluctuations,
particularly for paths with small separation. In effect, there will be a
limited number of essentially independently fading paths.

The above assumptions entail certain statistical properties of tropo-
scatter channels, as outlined below for time and frequency variations.

1.4 Transmission Loss Fluctuations

On troposcatter links there is a certain average transmission loss over
a year, which depends on the length of the link, on the properties of the
terrain and on climatic conditions. Experimental data indicate that
there will be systematic monthly and seasonal departures from this
yearly average, owing principally to slow temperature changes. The
average loss during a winter month may thus be up to 20 db greater
than the average during a summer month. That is, the departure in
transmission loss from the yearly mean may be ±10 db.

During each month there will be a more or less random fluctuation
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in the hourly average loss from the mean of the month. This fluctuation
has been found to be almost independent of frequency and seems to be
associated with the variations in average refraction of the atmosphere
and resultant variation in the bending of beams. This fluctuation in
the hourly average loss relative to the monthly average has been found
to follow closely the log -normal law. That is to say, let the monthly
median loss be

am = -In rm2
(7)

and the hourly average loss be

a = -ln e (8)

where In = loge I.m is the monthly rms amplitude of the envelope
r(u,t), and f the rms amplitude over an hour. ( Other reference times
could have been chosen, as will appear below.)

The probability that the average hourly loss exceeds a specified value
al = In f12 is then given by

1 al -
P(a > al) =

2
1 - erf (9)

where erf is the error function and cra the standard deviation in trans-
mission loss expressed in nepers, when a and am are expressed in nepers
as above. For links 100 to 200 miles in length, a representative value of
as appears to be about 0.9 neper (8 db).

In addition to the above slow variations in the average hourly loss,
there will be more rapid fluctuations in the envelope r(u,t), owing to
changes in the multipath transmission structure caused principally by
winds. This type of fluctuation follows a Rayleigh distribution law.
According to this law the probability that the instantaneous value r
of the envelope exceeds a specified value r1 is

P(r > r1) = exp(-712 /7=2) (10)

where f is the hourly rms value referred to above.
It may be noted that while the log -normal law for slow variation has

been determined solely by measurements, the Rayleigh law for rapid
fluctuations follows by theory when the received wave is the sum of a
large number of variable components.

The probability distribution (10) can be related to the monthly rms
value of r(u,t) with the aid of (9) by

P(r > ri) = J
p(f) exp( -r12/f2) df
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where p(f) is the probability density function corresponding to (9),
which is

2i2/2,21.p - 1
exp - [ln /1., (12)

arcraf

It will be recognized that (11) will yield the same result regardless
of the period over which the rms value f is taken, since f simply plays
the role of an intermediate parameter that disappears after integration.

The above probability functions relating to average loss or the dis-
tribution of the instantaneous values of r(u,t), are independent of the
frequency. In addition to the above distribution there are others which
are important from the standpoint of transmission systems design and
performance, as discussed in the following section.

1.5 Time Autocorrelation Functions of Transmittance

Expressions for the probabilities of rapid changes in the amplitude
and phase of the transmittance with time will be considered in Section
II. These involve the autocorrelation functions of the components U
and V defined by (5) and (6), or the corresponding power spectra. Both
have the same autocorrelation function and power spectrum, so that
only U(u,t) needs to be considered.

The time autocorrelation function of U(u,t) depends on the variation
in a; (t) with time. These are related to changes in the physical structure
of the common volume and to resultant variations in the heterogeneities
that are responsible for tropospheric transmission. The rate at which
these occur depends on the velocity and directions of winds and on
temperature changes. Under these conditions the autocorrelation func-
tion will vary with time, and it becomes necessary to consider a certain
median autocorrelation function and corresponding power spectrum,
as discussed in Section 1.6.

Let N1,( T) be the autocorrelation function of variations in U(u,t) with
t. The corresponding one-sided power spectrum is then

2 fW(y) --= - If(r) cos -yr dr (13)
7 0

where y is used to designate the radian frequency of spectral compo-
nents to avoid confusion with the frequency w of the transmitted wave.

The autocorrelation function if( 7) or the corresponding power spec-
trum W (-y) of the components U and V cannot be determined as readily
by measurements as the autocorrelation function Niir r) of the envelope.
The latter is related to 11,(7-) by"
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xlif( r) = xlf (0) 2E[K( r)] - [1 - K2( TA/C[147)n (14)

where

K(T) = xif(T)/4,(0) (15)

E = complete elliptic integral of second kind

K = complete elliptic integral of first kind.

For r = 0, gir(0) = 2*(0). Hence the autocorrelation coefficient of
the envelope can be written

Kr( T) = E[K(T)] - 1[1 - K2(7-)]K[K(T)]. (16)

With the aid of (16), the autocorrelation coefficient K( T) of each
quadrature component can be determined from measurements of Kr( T).

1.6 Observed Time Autocorrelation

Observations of the autocorrelation function of rapid fluctuations
indicate that the autocorrelation function *(r) of the components U
and V is nearly Gaussian and is given by

*(7) = *(0) exp( -0-272/2). (17)

The corresponding power spectrum obtained from (13) is

W(7) = *(0)(2/7ra2)1 exp( -72/20-2) (18)

where x1,(0) is the average power in each component as obtained with
T = Din (17) .

The equivalent bandwidth of a flat power spectrum W(y) = W(0)
is given by

= 1/(r/2) c ti 1.25cr. (19)

As noted in Section 1.5, there will be a certain median autocorrelation
function and corresponding median values of the power spectrum, of
a and of -y. Measurements2 indicate that these median values depend on
the antenna beamwidths and that the fading rate is not quite propor-
tional to frequency. Furthermore, there can be appreciable departure
from the median values. From measurements of the median number of
fades per minute, the median value of cr can be determined, with the aid
of equation (26) in Ref. 2. These measurements indicate that for a
particular antenna arrangement a 0.1 cps at 460 mc and about 1.3
cps at 4110 mc. The corresponding equivalent bandwidths of a flat
power spectrum are thus .5 ff:-/, 0.125 cps, or 0.8 radian/sec. at 460 mc,
and Fr c -z-: 1.6 cps, or about 10 radians/sec. at 4110 mc. The measurements
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further indicate that there is a probability of about 0.01 that the fading
rate exceeds the median value by a factor of about 7 at 460 mc and a
factor of about 3.5 at 4110 mc.

1.7 Frequency Correlation Function of Transmittance

Returning to (5) and (6), let the time t be fixed, and consider varia-
tions in U and V with u. The coefficients a; and b, will then have certain
values that vary with j, and there will be a certain variation in U and
V with u. At a different time there will be another set of coefficients
and a different variation with u. The form of (5) and (6) indicates that
if u is regarded as a time variable and A as a frequency, U(u) would
be the variation in time owing to impulses of amplitudes a; and b1
impinging at time intervals 7 on a flat low-pass filter of bandwidth A.
That is to say, the autocorrelation function of components U and V
for a difference v = 0,2 - wi in frequency is

NY( v) = 11/(0)(sin vA/vA). (20)

The corresponding power spectrum of the variation in U and V with
frequency (5 is

Tv(s) = ?" r .1,(p) cos pa di,
J o

=4/(0) for 0 < < A

=0 for A < 5.

(21)

(22)

When Alf( v) is given, it is possible to determine the autocorrelation
function NIfr( v) for variations in r(u,t) with u. Expression (14) applies
with v in place of r, for the autocorrelation function of time variation
with frequency.

For an autocorrelation function (20), the corresponding correlation
coefficient is

K( v) = (sin vA/vA). (23)

The corresponding autocorrelation coefficient of the envelope, as ob-
tained from (16), is

Kr(y) = Li.
,, sin vA lr sin' ,,i w(sin vA-) (24)

vA - 21: - (vA)2 vA

For various values of vA the correlation function of the envelope is
given in Table I and is shown in Fig. 4.
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TABLE I - AUTOCORRELATION FUNCTION OF ENVELOPE

pA = 0 T/2

Kr (v) = 1 0.9 7r/4

3,r/2

0.78 7/4

The autocorrelation functions (23) and (24) apply for certain idealized
conditions outlined in the Appendix and in Section 1.3. For one thing,
the average power received over each elementary path is assumed the
same. For another, a linear variation in the transmission delay with
angular deviation from the mean paths is assumed, with maximum
departures ±0 from the mean delay. Furthermore, an infinity of trans-
mission paths is assumed, with independent random fluctuations in the
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Fig. 4 - Frequency autocorrelation coefficient Kr(v) of envelope for autocorre-
lation coefficient K(v) of components U and V.

signal components received over the various paths, though there will
be some correlation between the fluctuations in the signal components
received over various paths.

In spite of the various approximations, it appears possible to obtain
a reasonably satisfactory conformance with the results of measure-
ments of the autocorrelation functions of the envelope, as shown in
Section 1.9.
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1.8 Differential Transmission Delay A

Exact determination of the equivalent maximum departure from the
mean transmission delay requires consideration of the beam patterns
as affected by scattering. On the approximate basis of equivalent beam
angles a, the following relation applies, with notation as indicated in
Fig. 5

0 +,..,,La -P )3( a + 11)
(25)

2 2

where f3 < a, v is the velocity of propagation in free space, L is the
length of the link, and

e = L - L
2R 2RoK

(26)

where Ro is the radius of the earth and the factor K is ordinarily taken
as 4/3

The equivalent beam angle a from midbeam to the 3-db loss point
depends on the free -space antenna beam angle ao and on the effect of
scatter, which is related in a complex manner to ao and the length L,
or alternately 0. Narrow -beam antennas as now used in actual systems
are loosely defined by ao s 20/3. For these a Et:di ao on shorter links,
while on longer links a > ao owing to beam -broadening by scatter.
Analytical determination of a for longer links appears difficult, and only

HORIZON

t OF BEAM

HORIZON

Fig. 5 - Definition of antenna beam angles a, take -off angle and chord angle
0 to midbeam. With different angles at the two ends, the mean angles are used in
expressions for A. In applications to actual beams, a would be the angle to the
3-db loss point.



158 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

limited experimental data are available at present. For broad -beam
antennas, ao > 20/3 and beam -broadening by scatter is in theory in-
appreciable.

By way of numerical example, let L = 170 miles and K = 4/3, in
which case 0 = 0.016 radian. Since ao = 0.004 radian << 28/3, it is
permissible to take a = ao . With 13 ao , (25) gives A = 0.08 X 10-6

second.

1.9 Observed Frequency Variations in Transmittance

In Fig. 6 is indicated the shapes of the envelope vs frequency varia-
tions that can be obtained from (3) when the components U and V
are given by (5) and (6). These fluctuations will vary with time but
will have the characteristic shapes indicated in Fig. 6, which resemble
shapes obtained in sweep -frequency measurements on a link of the
length for which the above value of A applies.'

A better indication of the adequacy of the present idealized tropo-
scatter model is obtained by comparing the autocorrelation coefficient
of the envelope as given by (24) with the correlation coefficient derived
from observations. In Fig. 7 is shown the theoretical coefficient for
A = 0.08 X 10-6 second together with coefficients obtained from three
experimental runs considered representative.'

The bandwidth capability can be defined as the maximum baseband
signal spectrum that can be received with some coherence between
spectral components at the maximum and minimum frequencies. This

Fig. 6 - Illustrative rectified envelope vs frequency characteristic r(u) ob-
tained with expressions (5) and (6) in (3). The amplitudes c1 at the radian fre-
quencies ui = 3r/A from the carrier are c-' = (a12 VA The amplitude of the
envelope at any intermediate frequency u depends on the amplitudes and phases
of all ci between j = -co and j = 00. In sweep -frequency measurements with a
radian frequency sweep from -n -/A to rta from the carrier, the envelope varia-
tions might be like that in any of the intervals a -b, b -c, c -d, etc.
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Fig. 7 - Theoretical vs observed envelope autocorrelation functions. Above:
autocorrelation coefficient obtained from (24) with A = 0.08 X 10-6 second. Be-
low: autocorrelation coefficients given in Fig. 70 of Ref. 2 and derived from meas-
urements of envelope variations with narrow -beam antennas on four days: 1.
Sept. 13, 1957; 2. Sept. 30, 1957 (considered very unusual); 3. Oct. 15, 1957, and
4. Nov 8, 1957. The value of A derived from (25) for the experimental link is A =
0.08 X 10-6 second.

bandwidth is equal to the separation between c; and c;+1 in Fig. 6, which
corresponds to the separation between null points in (23), for which
K( v) = 0 and Kr( v) 7/4. It is given by 1/2,A cps and for A =
0.08 X 10-6 second is 6.3 mc/second.

With a smaller spectral bandwidth, distortion will be reduced and
transmission performance improved. A more realistic appraisal might
be half the above maximum bandwidth, or 3.15 mc/second, for which

v) = 0.9. In Ref. 2 the criterion k2( v) = 0.6 corresponding to Kr( v) =
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0.904 has been selected, and twice this spectrum bandwidth as required
in double sideband transmission is quoted in Table VII of the reference.

The mathematical model represented by (3) to (6) is based on certain
idealizations outlined in Section 1.7 and in the Appendix. It appears
from the above that certain theoretical transmittance variations based
on this model conform sufficiently well with observed variations for the
model to be acceptable.* In order to determine expected performance
with digital transmission, it is necessary to consider certain other sta-
tistical properties of tropospheric channels based on the above model,
as discussed in sections that follow.

II. TRANSMITTANCE VARIATIONS WITH TIME

2.1 General

As discussed in Section 1.2, the transmission vs frequency charac-
teristic of a tropospheric scatter channel is a highly variable quantity,
as indicated in Fig. 1. One way of avoiding transmission impairments
owing to variations in transmittance with frequency is to transmit by
narrow -band modulation of a number of different carriers. The amplitude
vs frequency characteristic can then be regarded as virtually constant
over each narrow band, and the phase characteristic as linear, as indi-
cated in Fig. 1. With this method, it is permissible to assume flat fading
within each narrow band, but the various narrow channels will not fade
independently. In addition to such flat fading there will he variations in
the phase and frequency of each received carrier with time. Owing to
the narrow bandwidth of each channel, the duration T of a signal or
sampling interval may be relatively long, and it becomes necessary to
consider the above amplitude, phase and frequency variations over this
interval T. The probability distribution of these variations are basic
to later considerations of various digital transmission methods and are
discussed here. They can be obtained from expressions given by Rice
for narrow -band random noise."

2.2 Amplitude and Phase Distributions

Let the frequency w and thus u = co - coo be fixed, and consider only
time variations in r and co. The probability density of co is simply p(,p) =
1/27-, since each phase is equally probable. Since the components U and
V are the sum of a very large number of independent random variables,
in accordance with (5) and (6), each component U and V will have a

* This conclusion appears to be supported by the results of recent measure-
ments of K(v) for a 100 -mile path."
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normal law or Gaussian probability density. The probability density
of the envelope in this case follows the Rayleigh law, and the probability
that the envelope r exceeds a specified value r1 is given by

P(r r1) = exp( -r12/f2) (27)

where f is the rms amplitude of the envelope or the transmittance taken
over an appropriately long time.

The average received envelope power is in this case F-2 = S = 2S,
where S is the average carrier power, i.e., the average power within
the envelope. The probability that the received envelope power at any
instant exceeds a specified value SI = 2S1 is

P(S > Si) = exp( -S1/S) = exp( -81/8). (28)

The median value S, of S is obtained from P(S > S,) = 1, which
gives S. = S In 2. Hence, in terms of the median value

P(S > Si) = exp[- Si/S.) In 2]. (29)

The distribution represented by (28) or (29) is shown in Fig. 8.
The above distribution of rapid fades is to be distinguished from the

distribution of slow variations in the envelope, or in attenuation, dis-
cussed in Section 1.4.

2.3 Distribution of Envelope Slopes (r')

One measure of the rapidity of the above amplitude variations is the
fading bandwidth discussed in Section 1.6. From this fading bandwidth
can be derived the probability distribution of the slope r' = dr(t)/dt
in the envelope.

The rapidity of changes in the envelope and phase depends on the
time rate of change in the heterogeneities in the common volume - that
is to say, the variations with respect to time of the coefficients ai(t)
and b At) in (5) and (6). These changes are characterized by the auto -
correlation function of U(t) and V(t), or by the corresponding power
spectrum. When the power spectra of U and V are the same, and are
specified, the probability distribution of r' = dr(t)/dt and co' = dv(t)/dt
can be determined. These distributions are the same as for random noise
of specified power spectrum. The probability that I r' I exceeds a speci-
fied value I ri I follows the normal law"

P( I r' I > I I ) = erfc (k/24) (30)



162 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

99.99

r, 9

t.9

96

90

80

70

60

50

40

30

20

10

5

2

1

0.5

0.2

0.1

0.05

0.02

0.01
-10

linininlIIIIIIIIIVIOVIIIIIIMOININOINIIIIIIMIONI
0111111111,111111111111111111111111111111111111111
laiiIIIIIIIIAIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
MOMOOMMOIONOMMOMOMONIMMOMOMMOMMOI OMMIUMMOMMI
milommm mommummommummilimmompimmommummimmimm
in.= CC
IIIMMIUMNIIMMIOMMENIMOMMIMMOMMOUNI MOIVOIMIVOI
MMOMMLIUMMEMMEMMEMMEMMINIMEMMEMMIIMMOMM MMEMINIMMOMM
mommEmmommommimmmommmommommommommmummi mommimmmimm
MEMMOMMNIMMMOMMOMMEIMMOMMOMMEMMOMMOMME OMMEMMEMMEM
mommmommummmummmEmmmommommummommmmommommommimmmimimmimmmmommommimm.mmommommisammmimimmommmommommomms
mmommommaimmommommilimmmimmisimmommlimmmimimmmimmomm
INIMMEMEMMVAEMOMMEMMEMEMMEMMEMEMENMEMMEMMIIMMEMEMEM
immlumMffiamilmmimmisimmOMEmmimmommommillmimmEmmmlim
MEMEMEMMINIMLUMMEMMEMMINMEMMOMMEMEMMEMMINOMMEMMEMMEM
WIMMEMMEMMOVEMMEMMOMMEMEMEMOMMOMMOMMOMMEMOMMEMMOMM
OMMEMOMMINIMEMOMMOMMEMOMMIUMMEMOMMMOMMMOMMEMMEMMOMM
IMOOMINOOMMOINOOMMUMWOMMOMMEMOOMMIMMOOMMOMMEMMI
11111111111111011111111111111111111111111111111111
11111111111111101111111111111111111111111111111111

11111111111111111111111111111111111111111111111111mimmmmommmommommmommmommmmommommummommmmwommommumimmommmummommoMMEwmmommmonwommilmommommimmoMmENMEMMII
MMEMMEMMEMEMEMMEMMINMEMMIIMMENMEMMOMMEMOMMEMOIMMEMEM
MMEMMOMMEMMOMMMOMMOMMEMMEMIIMENEMOMMEMOMMEMEMMEM
IIIMMOMMOMMEMOMMUVOMMOMMOMMOMMENOOMMOOMMEMNOMMO

11

11111111011111111111101411111111111111 111111111111

111111111111111111111111111111111111

111 11111111

II11111111111111111111111iiiiiIIIIIIIIIIIIIIIIii
iiimin

I

al ummumm
............................1... .1........
.......m........mu

Imi

mosomomoo
11111111111IIIIImImIMIE

l

11 111111111111

1111111111111111111111111 III limullimill

1111111111111111111111111 III IIIIIIIIIIIIIIIII

iiiiiiiiiiimilliiiiiiiiiiiiimillilimumn
................................1...............loommommoomolm000lsommompos mosoloommomommo
111.1111.111112111101111011110111 1111011111111111

I

1111111111111111111111111111111111 11111 11111111

1111111111111111111111111111111111 11111 1111111
-5 0 5 10 15 20 25

DECIBELS BELOW MEDIAN VALUE
30 35

0.01

0.1

1

4

10

20

30

40

50

60

70

80

90

95

98

99

99.5

99.8

99.9

99.95

99.98

99 99
40
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a received carrier owing to multipath propagation.
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in which

= ri/fi
= rms amplitude of r'

= [2(b2 - b12/bo)l4

where

(31)

b. = Jo W(7)7n d7. (32)

The above result (30) follows from equation (4.6) in Ref. 12 for Q = 0,
by integration with respect to R = r between 0 and co, and in turn
with respect to R' = r' between r1' and co .

Expression (30) can alternatively be written

P[ I r' I = erfc (k/21). (33)

In the particular case of flat power spectrum W(y) = W of band-
width -1, (32) gives

bo = WY; b1 = Wi2/2; b2 = W93/3

and (31) becomes

= /6' 0.405F-11. (34)

The fading bandwidth in the above case is y radians/second.
With a Gaussian spectrum (17) expression (32) gives

bo = 41(0); b1 = cr(2/7)141(0); b2 = o-2*(0)

and (31) becomes

ry

0.42f o- ,`"Z 0.347^T,

where ti is the equivalent bandwidth given by (19).

(35)

2.4 Distribution of Phase Derivative ((p')

In considering a small phase change A40, and over a small interval
Ar, it is legitimate to use the probability distribution of the phase
derivative 40' = Aco/Ar, which is given by [Section 5 of Ref. 12]

P(I vi I) = 1 - k2 (36)
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in which

k = (bo/b2) s03.' = (bo/b2)1(Acci/ AT) (37)

where bo and b2 are given by (32).
Expression (36) can alternatively be written

p(I so I k(b2/b0)') = 1 - -V1
k

k2
(38)

1ti for k >> 1.
2k2

For a flat power spectrum W(7) = TV of bandwidth

(b2/bo)4 = (39)

For a Gaussian spectrum (17)

( b2/b0) = r.:.; 0.8y (40)

where 'y is the equivalent bandwidth given by (19).

2.5 Distribution of Frequency Derivative (ye)

The probability of exceeding a small variation Ow in frequency over
a brief interval Or can be determined from the probability distribution
of = Aci.)/AT.

The probability that co" exceeds a specified value col" is given by

P(1 (P"I
I'1)= (I V I kb0/b2)

= - 2k fe°
dx

r o [g(x) k219(x) (41)

2 10° tan -1 (k1g1(x)) dx
r Jo (1 + x2)I

where

k = bo601"/b2 (42)

g(x) = (a - 1 4x2)(1 + x2) (43)

a = bob4/b22. (44)

Expression (41) is obtained from relation (6.10) of Ref. 12 for
p(r,i0,(p',40") for Q = 0, by integration with respect to r, cp and co', be-
tween 0 and co , 0 and 2r and -co and +00, respectively, and in turn
by integration with respect to co" between ,p1" and co . Considerable
simplification is required to obtain (41).
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For very large values of k the following approximation applies

p(1 soft > 1,b2/1)0) ^1' 771- [1 + In + 1)1 (45)

where In = loge .
For a flat spectrum W(7) = IF of bandwidth 1,

a = 9/5 and b2/bo = 'Y A2/3. (46)

For a (laussian power spectrum (18)

a = 3 and b2/bo = (72. (47)

The quantity (b2/b0)1 is the rms frequency of the power spectrum
and b2/b0 is the "variance."

The probability distribution (41) as obtained by numerical integra-
tion is shown in Tables II and III for flat and Gaussian power spectra.
For large values of k, approximation (45) is shown in parentheses.
These probability distributions are shown in Fig. 9.

III. TRANSMI TTANCE VARIATIONS WITH FREQUENCY

3.1 General

In the previous section a sufficiently narrow signal band spectrum
was assumed such that amplitude and phase distortion over the narrow
band could be neglected. In this case it was necessary to consider time
fluctuations in the transmittance over a pulse duration T that would be
relatively long owing to the narrow spectrum bandwidth.

The other extreme of wideband transmission will now be considered,
in which the duration of a pulse would be short enough for fluctuations
in transmittance over a pulse interval to be disregarded. In this case
it becomes necessary to consider variations in the transmittance with
frequency over the much greater signal spectrum band. The variations
in the amplitude and phase characteristics with frequency will fluctuate
with time, so that it becomes necessary to determine the resultant

TABLE II - PROBABILITY DISTRIBUTION P( I co" I > 142/3)
FOR FLAT POWER SPECTRUM

k= 0 1 2 3 4 5 10 20 50 100

1 .538 .381 .321 .269 .238 .158 .100 .051 .031(.03)
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TABLE III - PROBABILITY DISTRIBUTION P(I cc" I > ko-2)
FOR GAUSSIAN POWER SPECTRUM

k= 0 1 2 3 4 5 10 20 50 100

1 .595 .447 .369 .317 .280 .182 .113 .057 .033(.03)

transmission impairments on the basis of certain probability distribu-
tions.

In a first approximation the departure from a constant amplitude vs
frequency characteristic will he a characteristic with a linear slope, as
indicated in Fig. 10, that will vary with time. Similarly the departure
from a constant transmission delay over the channel band can be approxi-
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Fig. 9 - Probability that (*,6 exceeds "variance" of fading power spectrum by
factor k for flat power spectrum with bandwidth y and "variance" i2/3 and for
Gaussian power spectrum with "variance" .72.
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Fig. 10 - First approximations to random departures from constant amplitude
and delay characteristics are represented by linear variations with frequency.

mated by a linear variation in transmission delay. The probability
distributions of the slopes of these linear variations in the amplitude
and delay characteristics are the same as for corresponding variations
with time, with appropriate modification of the basic parameters, as
discussed in the following.

3.2 Amplitude and Phase Distributions

Let the time t be fixed, and consider only variations in r and io with
the frequency w of a number of transmitted sine waves.

Each sine wave could be regarded as a spectral component of a carrier
pulse of very short duration with an essentially flat and continuous
spectrum about the carrier frequency. In this case u rather than t is
changed in expressions (5) and (6) for the two components U(u,t) and
V(u,t). There will in this case be a particular variation with u for each



168 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

time t. When observations are made for a sufficiently large number
of specified times, the resultant probability distribution of the amplitude
and phase will be the same as discussed in Section 2.2 for variation in
time for a given frequency u.

3.3 Slope in Amplitude Characteristic (t)

At a particular time, the envelopes r(u,t) of the received sine waves
will vary with frequency u. The slope of the envelope will be designated
dr(u,t) /du = r. It will have a probability distribution as given by (30)
for the time rate of change in r(u,t). This probability distribution is

P( Iti> ) = P( !PI > 0) = erfc (k/21) (48)

where erfc is the error function complement and

k =

= rms value of t

= [i(b2 -bit/bo)]'(49)
except that now

b =
J

W (5)6" d8 (50)
0

where W(S) is the power spectrum given by (21). When W (B) is given
by (22), (50) gives bo = If(0)/6.; b1 = (0)02/2; b3 = W(0)6.3/3 and
(49) yields

# = f0/64 (51)

where r = 4(0)4 is the rms amplitude of the envelope.

3.4 Envelope Delay Distribution

The envelope delay at a particular time t and frequency u is given
by s'o = dr(u,t)/du. The probability distribution of this delay c is given
by (36) or (38). Thus

P(14.0 I > I ) = Pf I c.c. I k(b2/bo)3]

(52)
= 1 - v/1 ±

where as before

k = (bo/b2)4in (53)

where bo and b, are given by (50).
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For a flat power spectrum (22)

(b2/b0)1 = A/3i ti 0.580. (54)

3.5 Distribution of Linear Delay Distortion

The slope c = at a particular time represents linear delay
distortion. The probability that exceeds a specified value g, is given
by (41), or

Po > I,;,;, I ) = 1-'(1 so kb2/b0)

rdx= 1
7r 0 (g(x) k2)g(x) (55)

2 f' tan -1 (k/gi(x))
dx.

r Jo (1 + x2)1

For very large values of k (45) applies, or

P(I i; I >= kb2/bo) ti1[1 + In
2

(- 1)1 (56)

where now

k = 141/b2 (57)

g(x) = (a - 1 + 4x2)(1 x2) (58)

a = boba/b22 (59)

and b8 is given by (50).
For a flat power spectrum (22)

b2/bo = 02/3. (60)

The probability distribution (55) as a function of k is given previously
in Table II for a flat power spectrum and is shown in Fig. 9.

IV. ERRORS FROM TRANSMITTANCE VARIATIONS WITH FREQUENCY

4.1 General

As discussed later, the error probability in digital transmission over
noisy channels with selective Rayleigh fading can be approximated by
combining the probability of errors from three basic sources. One of
these is errors from random noise determined in the presence of flat
Rayleigh fading. The second source is errors from time variations in the
transmittance, which is important at low transmission rates. The third
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source is errors from transmittance variations with frequency, which
becomes important at high transmission rates and puts an upper bound
on the transmission rate for a specified error probability. In this section
an approximate evaluation is made of errors on the latter account.

As a first approximation, the statistical properties of transmittance
variations with frequency, ordinarily referred to as selective fading, can
be represented by the probability distribution (48) of 1. and (55) of
The first of these represents a linear slope on the amplitude vs frequency
characteristics, and the second represents a linear variation in trans-
mission delay. Errors will occur even in the absence of noise, when
or exceeds certain maximum values. These maxima will depend on
the spectrum of pulses in the absence of distortion, on the pattern of
transmitted pulses and on the carrier modulation method. After these
maximum values are determined, it is possible to determine the proba-
bility of encountering them with the aid of the probability distributions
of r and given in Section III.

4.2 Carrier Pulse Transmission Characteristics

It will be assumed that a carrier pulse of rectangular or other suitable
envelope is applied at the transmitting end of a bandpass channel. The
received pulse with carrier frequency ct)o can then be written in the
general form"

Po(t) = cos (wot - Iko)Ro(t) + sin (wot - 1,1/0)(20(t) (61)

= cos [wot - 1Po - coo(t)]P0(t), (62)

where

Po(t) = [Ro'(t) Qo2(tW, (63)

soo(t) = tan1 [Q0(t)/Ro(t)], (64)

Ro(t) = Po(t) cos vo(t), (65)

Qo(t) = Po(t) sin goo(t). (66)

In the above relations Ro and Qo are the in -phase and quadrature
components of the received carrier pulse and Po(t) the resultant enve-
lope. The time t is taken with respect to a conveniently chosen origin,
for example the midpoint of a pulse interval or the instant at which
Ro(t) or Po(t) reaches a maximum value.

Let So(u) be the spectrum of received pulses at the output of the
receiving filter, i.e., at the detector input, and tko(u) the phase function
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of the spectrum, as illustrated in Fig. 11. The functions Ro(t) and
Qo(t) are then given by"

Ro = Ro Ro+, Qo = Qo - Qo

Ro "= - So( -u) cos + ( -u)] du, (67)7 11

Ito+ =
7r
-1 f So(u) cos [ut - 1,0(u)] du, (68)

Qo = So( -u) sin [Zit1,0( -u)] du, (69)

Qo+ 7rf So(u) sin [ut - 4,0(u)] du. (70)

The upper limit wo can ordinarily be replaced by 00, since So( -coo) = 0.
Let S(u) be the spectrum in the absence of amplitude distortion,

and A (u) the amplitude characteristic of the channel. The received
spectrum is then, for a time invariant channel

So(u) = S(u)A(u). (71)

4.3 Ideal Pulse Spectra and Pulse Shapes

In carrier pulse transmission over an ideal channel the sideband
spectrum of carrier pulses at the detector input will be symmetrical

AMPLITUDE
CHARACTERISTIC OF

SPECTRUM AT CHANNEL
OUTPUT

CARRIER
,--FREQUENCY

_PHASE CHARACTERISTIC OF
SPECTRUM AT CHANNEL

OUTPUT

WO
FREQUENCY, W

Fig. 11 - Amplitude and phase functions of pulse spectrum at channel output,
i.e., detector input.
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about the carrier frequency. As discussed elsewhere,14 it is possible to
realize optimum performance in binary transmission by AM, PM and
FM with an infinite variety of pulse spectra at the detector input, with
the general properties illustrated in Fig. 12. With all of these spectra,
pulses can be transmitted without intersymbol interference at intervals

T = it/S1 = 1/2B (72)

where B is the mean bandwidth in cps to each side of the carrier fre-
quency, as indicated in Fig. 12.

A desirable pulse spectrum in various respects is a raised cosine
spectrum as illustrated in Fig. 13, given by

8(u) = S(-u) = SZ cos27r
4 i2

U

= 277 B

(u)

u

H

w
cool -12

W. W

52(w)

S2( -W)= -S2(w)

SO = S I + 52

(73)

Fig. 12 - General properties of ideal spectra of carrier pulses at channel out-
put (detector input) that permit pulse transmission without intersymbol inter-
ference at intervals T = 7/ft = 1/2B.
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Fig. 13 - (a) Raised cosine bandpass pulse spectrum and (b) carrier pulse
transmission characteristic, i.e., envelope of a carrier pulse.

The corresponding carrier pulse at the detector input as shown in
Fig. 13 is given by

where

Po(t) = Po(t) cos (coot - coo)

sin gt cos SgtPo(t)= Po(t) -
Slt 1 - (52thr)2.

4.4 Linear Variation in Amplitude Characteristic

Let #0(u) = 0 and

(74)

(75)

A(u) = 1 ± cu (76)

where c is a constant. In this case (71) becomes

So(u) = S(u)(1 cu). (77)
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When the received spectrum in the absence of distortion has even
symmetry about the carrier frequency coo , such that S(-u) = S(u),
(77) in (67) to (70) gives

f
Ro(t) =

2- S(u) cos cot du
o

2
00

Qo(t) =
c

0
uS(u) sin ut du

7

= c Ro(t) = cR01(t).
dt

(78)

(79)

(80)

In the case of a raised cosine spectrum, Ro(t) is given by (75) and
(80) yields

cos 2S-lt sin 2I2t
Qo(t) = c2S2 2041 - (2c11/7)2]

- c2S2 (81)
(2002[1 - (2S2thr)2]2

= 0 for t = 0. (82)

At the first sampling points before and after t = 0, t = ±T =
± (7f/O) and(81) yields

(20( ±T) = ±d2/37.

At the next sampling points t = ±2T = ±27r/S1

Q0(±2T) = ±62/30r.

(83)

(84)

From (83) and (84) it appears that only the first sampling points
t = ±T need to be considered in determining the effect of linear am-
plitude distortion.

4.5 Probability of Errors from Linear Amplitude Distortion

The rms amplitude of the component (20(±T) is given by

Q0( ±T) = at2/37 = a13 / 3 (85)

where B = 252/27 and a is the rms amplitude of r as given by (51) or

a = r = fA/61. (86)

Thus (85) becomes

(20(±T) = f(EA/34). (87)
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The rms amplitude of Ro(0) is f. Hence

Qo(T) EA

Ro(0) 3.64

This is the ratio of rms intersymbol interference at the first sampling
points to the rms value of the peak pulse amplitude.

The probability of exceeding the above ratio by a factor k is, in ac-
cordance with (48)

(88)

P(n = erfc (k/2i). (89)

The probability of error will depend on the carrier modulation method.
In general, however, the approximate allowable peak value of i in the
absence of noise is

n :A.:a. (90)

The probability of exceeding this value, corresponding to
lc = 3.64/2/30 is

Pc = erfc (3.3i/2/30) czai erfc (2.6/f3A). (91)

This probability is much smaller than that resulting from a linear

cps and A = 10-7 sec, 1/BO = 10-' and P. = erfc (26), which is negligi-
ble.

4.6 Linear Variation in Envelope Delay

It will be assumed that the phase distortion component is given by

= cue,

which corresponds to a linear delay distortion given by

T0'00 = 2cu.

(92)

(93)

In this case expressions (67) to (70) give for a raised cosine spectrum
x/2

R0(
4= Ro(t) = - f cost x cos ax cos bx2 dx (94)
7 0

(2o(-t) Qo(t) = -4
1r/2f

cost x cos ax sin bx2 dx,
7 0

where

a = 4(t/T), b = (4/7) (d/T); T = (1113)

in which the delay d is defined as in Fig. 14.

(95)
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--PULSE SPECTRUM

B=28=1/T-

-LINEAR DELAY
DISTORTION

Fig. 14 - Raised cosine pulse spectrum with linear delay distortion.

The above integrals have been evaluated by numerical integration
and are tabulated elsewhere." The functions Ro(t) and QM are shown
in Fig. 15, as a function of t/T = tB for various values of d/T =
The phase has been adjusted to 0 at t = 0, hence the notation Roo and
Qoo

4.7 Maximum Tolerable Linear Delay Distortion

Intersymbol interference at sampling points owing to linear delay
distortion is significantly greater than that resulting from a linear slope
in the amplitude characteristic. Moreover, pulse patterns that cause
maximum intersymbol interference with linear delay distortion will not
give rise to intersymbol interference from a linear slope in the am-
plitude characteristic, and conversely. For this reason it suffices to
consider the more important component, i.e., linear delay distortion.

The reduction in tolerable noise power owing to linear delay distor-
tion has been determined elsewhere" for binary AM with envelope
detection, binary PM with synchronous detection, and binary FM with
frequency discriminator detection. For these methods the reduction
in noise margin is shown in Fig. 16 as a function of the parameter
X = d/T = d.E. In the same figure is shown the reduction in noise
margin for two-phase and four -phase modulation, with differential
phase detection as determined by methods similar to those for the other
modulation methods in the above reference. These methods essentially
consist in determining the maximum intersymbol interference that can
be encountered, considering the pulse shapes shown in Fig. 15 and all
possible pulse patterns over the number of pulse intervals that contribute
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Fig. 15 - Carrier pulse transmission characteristics for raised cosine pulse
spectrum and linear delay distortion. For negative values of t/T = t B the char-
acteristics are the same as shown for positive values.

significantly to intersymbol interference. Exact analytic determination
of the maximum impairments does not appear feasible, and it becomes
necessary to resort to trials for selection of the worst condition. It should
be noted that with binary PAI with differential phase detection the
optimum threshold level differs from zero owing to a bias component
in the demodulator output." The curve in Fig. 16 and the analysis that
follows assume automatic adjustment to the optimum threshold level,
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and a significantly greater error probability would be encountered with
zero threshold level.

It will be noted that the noise margin is reduced to zero for certain
values Xo of X. These values apply for certain combinations of baseband
pulses in about four pulse positions. The probability of this and other
pulse patterns must be considered in evaluating error probability as
discussed below.

4.8 Probability of Errors from Linear Delay Distortion

As A is increased slightly above the value X0 mentioned above, inter -
symbol interference increases rapidly. Thus errors will occur for a value
X. of A only slightly greater than Xo , for certain combinations of two
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pulses, occurring at times -T and -1--T relative to the sampling instant
= 0. There are four possible combinations of these two pulses. For

one of these (say 1, 1), an error will occur if X > Xe . For another (say
-1, -1), an error will occur if X -Xe . For the other combinations
( -1, 1) and (1, -1), intersymbol interference will cancel so that the
probability of error is zero. The probability of error is thus

Pe = + PP( iXen

= +P( !Xi
where P(I X I >= I X, I) is the probability that the absolute value of
X is greater than X..

For a given value Xe = a the corresponding slope 45 of the linear
delay distortion is

= de/27d3

= X,./24732.

The following relation applies

Ptei)=P(Is.bl>= keel).

(96)

(97)

(98)

The probability distribution represented by the right-hand side of
(98) is given by (55) with = q), . For small probabilities (56) applies,
so that in view of (96) and (98) the error probability is

Pe = 1P(kfl kbel)
().,

27rk, L

where

ke = :3(1),16.2

= 3Xe/2702132.

With (100) in (99)

(99)

(100)

A213 2

Pe = [1 ± In (I + (101)

From

-

From Fig. 16 it will be noted that for binary AM and FM, and for
binary PM with differential phase detection, Ao cz-1., 1.8. For these cases
it appears a legitimate approximation to take Xe = 2. On this premise
the error probabilities given in Table IV are obtained for various values
of the parameter AB.
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TABLE IV - PROBABILITY OF ERRORS IN A DIGIT OWING TO LINEAR
DELAY DISTORTION IN ABSENCE OF NOISE FOR BINARY AM, FM

AND PM (WITH DIFFERENTIAL PHASE DETECTION)

3.1 X 10-8

10-2

2.4 X 10-6

10-2

1.6 X 10-4

10-1

8 X 10-3

The above error probabilities are shown in Fig. 17 as a function of
AB. If, for example, A = 10-7 second and B = 105 cps, then AB = 10-2
and P8 = 1.6 X 10-4. Pulses could in this case be transmitted at a
rate of 100,000 per second with a minimum error probability P. = 1.6 X
10-4. In the presence of noise the error probability will be greater, as
discussed in a later section.

10-2

10-3

0
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0

10-4
tL

>- 5
F -

lo -5

5
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10-6
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,...g

lo -4
2 io-3

2 5
10-1

Fig. 17 - Error probability in binary AM, FM and PM owing to linear delay
distortion for maximum departure D (seconds) from mean transmission delay.
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The error probability with four -phase modulation and differential
phase detection can be determined in a similar way. In this case Xo 0.9
and X, 1 in (101).

V. ERRORS FROM TRANSMITTANCE VARIATIONS WITH TIME

5.1 General

As mentioned in Section 4.1, transmittance variations with time is a
second basic source of error in digital transmission. In transmission at
low rates the bandwidth B of the pulse spectra will be narrow, so that
fading can be regarded as constant over the spectrum band. Errors
from selective fading, as considered in Section IV, can then be disre-
garded. On the other hand, the duration of a signal interval T may then
be sufficiently long so that consideration must be given to random
fluctuations in the amplitude, phase and frequency of the carrier between
one signal interval and the next. Errors may occur owing to such fluctua-
tions even in the absence of noise. The probability of errors in this
account is evaluated here.

5.2 Amplitude Variations

The amplitude of a received wave will fluctuate with a Rayleigh
distribution (10). Because of the great range of fluctuation, it is essential
to provide automatic gain control at the receiver to prevent overloading
and resultant adverse effects. Such gain control is activated by circuitry
that integrates the received wave over a number of signal intervals T.
With FM and PM only a few pulse intervals are required, for the reason
that the received carrier wave is essentially independent of the pulse
patterns. It is thus possible to provide effective gain control against rapid
variations in the received carrier wave that occurs over a few signal
intervals. Moreover, with FM and PM the distinction between marks
and spaces is made by positive and negative deviations from zero thresh-
old level in the detection process. This permits the use of limiters at
the input to the detectors, to prevent the adverse effect of rapid fluctua-
tions in the amplitude of the received carrier wave owing to fading. These
advantages in applications to fading channels are not shared by AM,
for reasons outlined below.

In binary AM or on -off carrier transmission, the received wave may
be absent over a large number of consecutive signal intervals T. Hence
automatic gain control must be activated by circuitry that integrates
the received pulse train over a very large number of signal intervals T;
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otherwise gain would be increased during long spaces, regardless of the
fading condition. For this reason automatic gain control is inherently
slow, in relation to the duration of a signal interval. It may thus be
ineffective as applied to transmission at slow rates. With transmission
at high rates, however, such that variations in the received wave owing
to fading are inappreciable even over a large number of signal intervals,
it may be possible to implement effective gain control.

At low transmission rates, such that fading is virtually constant over
the band of the pulse spectrum, intersymbol interference can be made
inappreciable.. In this case it is possible to employ limiting prior to
detection, and this method may then be more effective than automatic
gain control, or could be used in conjunction with it. The limiter would
slice the received wave at an appropriately selected level L. In the
choice of the optimum slicing level it is necessary to consider the proba-
bility of errors during a mark owing to fading such that the received
wave is less than L. In accordance with (101 this probability is

P(r < L) = 1 - exp (-12/e)
L2/f2.

A second consideration in the choice of L is the probability of errors
owing to noise during a space, which is increased as L is reduced. The
optimum threshold level considering both effects is determined in Sec-
tion 6.9.

Owing to even small intersymbol interference, the use of a limiter as
postulated above may be precluded in actual systems. For example,
let L be 10 per cent of the rms signal amplitude f, and let intersymbol
interference be 5 per cent of L when the received signal is just equal to
L. When the received signal is increased by a factor 20, intersymbol
interference would be increased correspondingly and would be equal to
L. Hence errors would occur even in the absence of noise. This is the
inherent reason why limiting is generally ineffective as applied to binary
AM. However, even if intersymbol interference could be disregarded,
the error probability in the presence of noise will be greater than with
binary PM or FM, as shown in Section 6.9.

(102)

5.3 Carrier Frequency Variations

In transmission over troposcatter links, random fluctuations will
occur in the carrier frequency, which may be important from the stand-
point of receiver implementation with any modulation method. Such
fluctuations can be limited at the input to the IF filter with the aid of
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signal -tracking oscillators for demodulation of the received radio fre-
quency wave. The frequency of such oscillators may be controlled by
feedback from the mixer output or from the detector output. The follow-
ing expressions apply for the probability distribution of carrier fre-
quency fluctuations without such frequency control at the receiver.

The probability distribution of frequency variations is given by
(38). For a Gaussian fading power spectrum, the probability that the
frequency variation 90' = Aco exceeds ka is thus

P( I Au) I > kcr) (1/2k2). (103)

The equivalent fading bandwidth is in accordance with (19) 1, ti 1.25c.
The probability that Aw exceeds is thus

1'(I ow I Iv?) (1/3k2). (104)

Since a and y are nearly proportional to the carrier frequency, it
follows that the frequency fluctuations encountered with a specified
probability will be nearly proportional to the carrier frequency. By
way of example let -1, 2 radians/second or about 0.3 cps. The proba-
bility that the frequency fluctuation exceeds 30 cps is in this case ob-
tained from (104) with k = 100 and is 3 X 10-5. It appears that for

of the pulse spectra in excess of about 5000 cps, frequency
fluctuations will not be important. However, for narrow band spectra
the random frequency excursions may become excessive and give rise
to errors, particularly with frequency modulation, as discussed below.

5.4 Frequency Variations over a Signal Interval

It will be assumed that the carrier frequency excursion is limited with
the aid of a signal -tracking oscillator, or that a demodulation process is
used in binary FM in which the change from mark to space is based on
comparison of the frequencies in adjacent signal intervals of duration
T. If the separation between mark and space frequencies is 2001, an
error will occur if the frequency is changed by +ci01 for a space and
by --S/01 for a mark.

From (41) it is possible to determine the probability of errors owing
to frequency changes ±goi over a signal interval of duration T. The
maximum permissible value of so" is determined from

= ±.Qoi (105)

where the positive sign applies for a space and the negative sign for a
mark.
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With an ideal pulse spectrum the pulse interval is given by T = 7/0,
so that (105) can be written

so" n,ax = ±QoiQ/7r. (106)

5.5 Error Probability in Binary FM

The error probability is in this case

Fe= v" °max" I) (107)

where the factor 2 occurs when the probability functions is defined in
terms of the absolute values as in (41).

The parameter k defined by (42) in this case becomes

= max" /0-2

S201S2/7cr2.

With frequency discriminator detection, S201 = Q. For a raised cosine
spectrum, B = 2B = f2/7 and

kma. = ri.32/a2. (109)

Employing (45), the probability (107) of an error becomes

Pe = -)2 [1 + 1 n (1 ± 7A2)1
IrE 20-2

(108)

(110)

In the above relation, a is in radians/second while B is in cps. The
equivalent fading bandwidth is, in accordance with (19), ry 1.25u.
The ratio of the maximum bandwidth B in cps toy in cps is thus

.13 20'3 5B= ti - .'Or 1.250- o-
(111)

The probability of error (110) is given in Table V for various ratios
These error probabilities are shown in Fig. 18.

TABLE V - ERROR PROBABILITIES WITH BINARY FM FROM
FLAT RAYLEIGH FADING IN ABSENCE OF NOISE

µ = 10 100 1000 10000

11/.7 = 2 20 200 2000

6 X 10-3 9.3 X 10-6 1.4 X 10-8 1.8 X 10-8
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Fig. 18 - Error probability in binary FM in absence of noise, owing to fre-
quency variations over a pulse interval T resulting from flat Rayleigh fading.

5.6 Phase Variations over a Signal Interval

The probability density of the carrier phase is 1/2r, such that any
phase may be encountered unless the carrier phase wander is limited
by phase tracking oscillators in the demodulation process. In a digital
phase modulation system where appreciable phase wander may be
expected, the preferable demodulation method is differential phase
detection. With this method the phase error will be limited to that
encountered over a signal interval T.

From (36) it is possible to determine the probability of an error for
a given maximum tolerable phase change 9 over an interval T. For
k>> 1 the following relation applies
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PO (PI 115,0 I) = (112)

b2 T2
= 2/4 02.

(113)

With a Gaussian fading power spectrum (40) applies and

P[ 1 vi (soi)] = (0.2772/202).

5.7 Error Probabilities in PM

(114)

With two-phase modulation 0 = E (.71-/2), while with four -phase
modulation 0 = ± (7r/ 4). Hence the probability of error with these
methods as obtained from (114) is, for two-phase modulation

2/7r2)0.2T2 ti 0.2a2T2

and for four -phase modulation

Pe 8/72
11.2 0.820-2T2.

(115)

(116)

These expressions apply provided the signal duration is sufficiently
short so that the change in phase is small and can be considered linear
over the interval. More accurate expressions that do not involve this
assumption have been derived by Voelcker9 for the error probability.
Thus, with two-phase modulation the error probability is actually

P. = 2[1. K(T)] (117)

and with four -phase modulation

Pe = .51 - -2 K(T)[2 - ic2(T)]-1 tan -1
[2

K(T)T)P (118)
7 - K2(

where K(T) = K(r) 1.01' T = T, i.e., the autocorrelation function for
each quadrature component as defined by (15).

For a Gaussian fading spectrum, K(T) as obtained from (17) is

K(T) = exp ( -0.2712/2). (119)

For aT << :

K(T) rr::: 1 - 0-2T2/2. (120)

With the latter approximation in (117) and (118), the error proba-
bility with two-phase modulation becomes

lay
0.25(7.2 T2 (121)



DIGITAL TROPOSCATTER 187

and with four -phase modulation

Pe = 2 + -2.1) 0-2T2 0.82o -2T2 (122)

which are to be compared with (115) and (116), respectively. The
somewhat greater inaccuracy with two-phase than with four -phase
modulation comes about since the phase change ± (7r/2) cannot he
considered small as required for (114) to apply.

In the above relations T is the interval between phase changes, which
is related to the bandwidth of the baseband pulse spectrum. With
idealized spectra of the type shown in Fig. 12, the interval is

T = 1/2B (two-phase) (123)

= 1/4B ( four -phase) (124)

where B is the equivalent mean bandwidth.
In the particular case of pulses with a raised cosine spectrum, the

maximum bandwidth is

so that

B = 2B (125)

T = 1/ (two-phase)

= 1/2k (four -phase).

In terms of the above bandwidth the error probabilities (115) and
(116) are thus the same for both two-phase and four -phase modula-
tion and are given by

Pe 0.05(a / B)2

ti 0.2(cr/f3)2.

(126)

(127)

(128)

The above relations apply for any number of phases. For this reason
the capacity of a noiseless channel could be increased indefinitely by
increasing the number of phases. There will, however, be certain limita-
tions in this respect owing to intersymbol interference, as in stable
channels.

The above error probability is shown in Table VI for various values
of B/a and µ = 5B/a, where IA is the ratio defined by (111). It will be
noted that these error probabilities are somewhat smaller than with
binary FM as given in Table V.

The above probabilities of an error in a single digit are shown in Fig.
19, as a function of /A.
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TABLE VI - ERROR PROBABILITIES WITH DIFFERENTIAL PM
FROM FLAT RAYLEIGH FADING IN ABSENCE OF NOISE

p = 10 100 1000 10000

I3/. = 2 20 200 2000

2X:10-3 2X 10-6 2X 10-7 2X 10-9

As noted in Section 1.6, there will be a certain median value of ry and
thus a certain median value of au and corresponding median error proba-
bility. During certain intervals, the error probabilities will be signifi-
cantly smaller or significantly greater than the median error proba-
bilities.
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Fig. 19 - Error probability in binary PM with differential phase detection
in absence of noise, owing to phase variations over pulse interval T resulting from
flat Rayleigh fading.
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VI. ERRORS FROM NOISE WITH FLAT RAYLEIGH FADING

6.1 General

189

As mentioned in Section 4.1, a third basic source of errors in tropo-
scatter transmission is random noise. The probability of errors from
noise depends on the modulation and detection methods and on their
implementation. For optimum performance it is in the first place neces-
sary to have appropriate pulse spectra such that intersymbol inter-
ference is avoided in transmission over ideal channels. Moreover, the
error probability depends on the division of spectrum shaping between
transmitting and receiving filters. The minimum error probabilities
with various modulation and detection methods as quoted here are
based on optimum design in the above and various other respects, such
as accurate sampling of pulse trains. The probability of errors from
noise in actual systems will be greater owing to various imperfections in
implementation.

6.2 Signal -to -Noise Ratios

In carrier pulse transmission over an ideal channel, the sideband
spectrum of the carrier pulses at the detector input will be symmetrical
about the carrier frequency. As discussed elsewhere," it is possible to
realize optimum performance in binary transmission by AM, PM and
FM with an infinite variety of pulse spectra at the detector input with
the general properties discussed in Section 4.3.

The error probability in digital transmission over noisy channels is
ordinarily specified in terms of the average signal-to-noise ratio at the
input to the receiving filter that ordinarily precedes the detector. This
signal-to-noise ratio is ordinarily taken as

p= S/N
S = average carrier power at detector input

N = average noise power in a flat band B = 1/27' at
input -to -receiving filter.

When S represents the average signal power in a fading channel, the
designation /5 = S/N will be used in place of p.

The above reference band B is the minimum possible bandwidth in
baseband pulse transmission without intersymbol interference. The
minimum possible bandwidth in double sideband transmission as used
in binary AM, PM and FM is 2B.

The error probability as related to p will depend on the division of
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spectrum shaping between transmitting filters and the receiving filter
at the detector input. With optimum division, the error probability is
the same as for transmission over a flat band B to each side of the carrier
frequency.14 Such a flat channel band is ordinarily assumed or implied
in theoretical analyses, though not feasible in actual systems.

6.3 Error Probabilities with Flat Rayleigh Fading

Let r be the signal amplitude and Pe°(r) the error probability of errors
owing to random noise in transmission over a stable channel with signal
amplitude r. In the presence of fading, let the probability density of
various signal amplitudes be p(r). The error probability in transmis-
sion over fading channels is then

P, = f /3:(r)p(r) dr. (129)

With Rayleigh fading the probability density p(r) is the derivative
of (27) with respect to r1 . With r in place of r1 the probability density is

p(r ) = (2r/f2) exp ( -r2/f2)

= (r/ 8) exp (r2/28)

where S = f2/2 is the average signal power.

(130)

(131)

6.4 Binary PM with Synchronous Detection

In binary PM, marks and spaces are transmitted by phase reversals.
With ideal coherent or synchronous detection the error probability
in transmission over a stable channel is

P.° = 2 erfc (p/2)4. (132)

The error probability with Rayleigh fading as obtained from (129)

is, in this case7'9

Pe [1
±P 1 4p

efij

(133)

where p = S/N = ratio of average received signal power with Rayleigh
fading to average noise power as previously defined.

6.5 Binary PM with Differential Phase Dection

With binary PM and differential phase detection the error proba-
bility in transmission over a stable channel is's

p.0 (134)
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The error probability with Rayleigh fading is, in this case9

Pe = 1/2(p + 1). (135)

6.6 Binary FM with Dual Filter Detection

With this method two receiving filters are used, centered on the space
and mark frequencies col and W2 , as indicated in Fig. 20, with sufficient
separation to avoid mutual interference between the space and mark
channels. Complementary binary amplitude modulation is used at the
two carrier frequencies, and the two baseband filter outputs are com-
bined with reversal in the polarity of one.

The error probability in transmission over stable channels with co-
herent detection isl°

Pe° = z erfc (p1/2)

and with noncoherent detection is'6

Pe° = 2 exp ( - p/2 ).

MARK

Wi

MARK

4 B = 4/T

(a)

(b)

SPACE

4B

W2

SPACE

(136)

(137)

Fig. 20 - Comparison of channel bandwidth requirements in binary FM with
(a) frequency discriminator detection and (b) dual filter detection.
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Comparison of (136) with (132) shows that the error probability
P. with Rayleigh fading is obtained by replacing in (133) p with p/2.
This yields for coherent detection

Pe 2 [1 - (1)-±-/2)11

1

Comparison of (137) with (134) shows that P. is obtained by re-
placing in (135) p with p/2, in which case, for noncoherent detection

P, = 1/(p + 2). (139)

(138)

6.7 Binary FM with Frequency Discriminator Detection

With this method a single receiving filter is used, with space and mark
frequencies as indicated in Fig. 20. Pulse transmission without inter -
symbol interference over a channel of the same bandwidth as required
for double-sideband AM is in this case possible for certain ideal ampli-
tude and phase characteristics of the channels, as shown elsewhere!'

The error probabilities in the absence of fading depends on the charac-
teristics of the bandpass channel filters and the post -detection low-pass
filter, and are difficult to determine exactly. Approximate evaluations"
indicate that for a given error probability, about 4 db greater signal-
to-noise ratio would be required than for binary PM with coherent
detection, when no post -detection low-pass filter is used. Recent exact
evaluations by Bennett and Salz," indicate 3 to 4 db increase in the
required signal-to-noise ratio over a variety of filter shapes. With an
optimum post -detection low-pass filter, a small improvement may be
realized, such that about 3 db increase over binary PM with coherent
detection would be expected. On this basis it appears that the error
probability will be virtually the same as for binary FM with dual filter
coherent detection, such that the principal advantage over the latter
method is a two -fold reduction in bandwidth.

6.8 Binary AM with Ideal Gain Control

It will be assumed that the receiver can be implemented with ideal
automatic gain control, such that the output in the presence of a mark
would have a fixed level 1 and in the presence of a space would be zero.
This condition can be approached at sufficiently high transmission rates,
such that the received wave prior to gain control changes insignifi-
cantly over a large number of pulse intervals of duration T. Under this
condition the fading bandwidth is negligible relative to the bandwidth
of the baseband pulse spectrum.
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On the above premise and with ideal coherent (or synchronous)
detection, the optimum threshold level for decision between marks and
spaces would be 1/2. The tolerable peak noise amplitude before an error
occurs would be 1/2, as compared with 1 for binary PM, resulting in
6 db reduction in noise margin. On the other hand, the average trans-
mitter power is 3 db less than with binary PM. Hence this method
would have a 3 db disadvantage compared to binary PM with synchro-
nous detection.

Accordingly, (132) would be replaced by

Pe° = 2 erfc (p/4)1 (140)

and (133) would be replaced by

Pe = 1 _r ( 15. Y1
2 L 2) _1 

The above relations are the same as (136) and (138) for binary FM
with dual filter coherent detection, and (141) is virtually the same as
(135) for binary PM with differential phase detection. Hence binary
AM offers no advantage in signal-to-noise ratio even at sufficiently
high transmission rates such that ideal gain control could be imple-
mented.

(141)

6.9 Binary AM with Optimum Fixed Threshold Detection

At low transmission rates, such that the received wave can change
appreciably over a few pulse intervals owing to fading, gain control
cannot be effectively implemented, as discussed in Section 5.2. Without
effective gain control, there will be a certain optimum threshold for
distinction between marks and spaces. This optimum level and the cor-
responding signal-to-noise ratio is determined here on the premise that
no gain control is used. This threshold level could be implemented by
either a predetection or a postdetection limiter. Assume a probability

of a mark being present; in the absence of noise, the probability of
errors in marks is, in view of (102)

P e(r < L) = H1 - exp ( -L2/2S)] (142)

where L is the threshold level. In the presence of noise the error proba-
bility will be only slightly greater than (142).

A second consideration in the choice of L is the probability of errors
during a space. This error probability is obtained from (137) with
p = 1,2 /N and is

P e(n > L) = z exp ( -L2/2N) (143 )
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where n is the instantaneous noise amplitude and N the average noise
power.

The combined error probability is

P, = El - exp (-µ/2) exp ( - pi.4/2)] (144)

where

= L2/S; p = S/N. (145)

The optimum L or /I is obtained from the condition dP,/diA, = 0. This
yields the following relation for the optimum value µo

exp ( -A0/2) = p exp ( - pµ0/2) (146)

or

2 In p 4.606 logio
kto (147)

p - 1 p- 1
In practicable systems p >> 1, in the order of 100 or more, and 1.10 < 1.

With (147) in (144), the following approximation is obtained for the
minimum error probability

[
Pe, min ',"-%

1 In s exp (-In p)1 . (148)
2 p - 1

The above error probability is significantly greater than with binary
PM or FM. The error probability (148) is thus greater than for binary
FM with dual filter coherent detection by a factor of at least In p.
For p = 1000 (30 db) this factor is about In p 7. Hence about 10
logio 7 8.5 db greater average signal power would be required than
with binary FM. This assumes that excessive intersymbol interference
is avoided, which may not be feasible for reasons mentioned in Section
5.2. Since it is evident that binary AM is at a considerable disadvantage
in signal-to-noise ratio as compared to binary PM and FM, it will not
be considered further herein.

6.10 Combined Rayleigh and Slow Log -Normal Fading

In the previous determination of error probabilities, rapid Rayleigh
fading was assumed, with a fixed mean signal-to-noise ratio p over the
interval under consideration. It will now be assumed that in this interval
there is a slow log -normal variation in path loss and thus in signal-to-
noise ratio at the receiver, in conjunction with rapid Rayleigh fading.

Let P, he the error probability with Rayleigh fading as previously
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related to the mean signal-to-noise ratio A = 'S2/712, where g is the rms
signal amplitude and n the rms noise amplitude. If p( g) is the proba-
bility density of the rms amplitudes with slow fading, the probability
of error in an interval during which the rms amplitude exceeds gi is

P.,1 = fl3.(g)p(0 (149)

For p>> 1, the expression for 13e(g) is of the general form

Pe(g) C/p = g2/n2 ( 1 50 )

For binary PM with differential phase detection and for binary PM
with coherent dual filter detection, c = 2.

The probability density p( g) is given by (12), or in the present
notation

1 1
P (8) =

N/ 27r as
exp [ - (In ,A))2120-2] (151)

where go is the median rms amplitude and a is the standard deviation
of the fluctuation in g.

With (150) and (151) in (144)

1 [-Pe,1 = C h exp (111 g/g0) 2/ 20.21 dg (152)

= -- exp [-(z In p/p0)2/2a21 p (153)
41

1 1

/27r PI 13"

where Po = so /n on P1 = '177,2/2.
Solution of (153) yields the relation

Pea = Pe n(0-, K) (154)

where

K = pi/po

and

(155)

n(u, K) = Z exp (2172) erfc {virgu [40-2 + In . (156)

For p1 = 0, In K = -co and erfc (- cc) = 2. Hence for this case

= ('x") (2(72). (157)
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This is the factor by which the error probability taken over a long inter-
val is greater than without a log -normal variation in signal-to-noise
ratio and only rapid Rayleigh fading.

Instead of modifying the error probability as above, an alternative
method is to use an equivalent mean signal-to-noise ratio T. that is
smaller than /5 by the factor exp( -2(72). Thus

pe = p exp ( (158)

When Te , r) and a are all expressed in db, expression (158) can alterna-
tively be written

,db = Pdb adb2/8.69. (159)

For example, with a representative value adb = 8 db, the last term
in (159) is 7.4 db. Thus the charts in the later Figs. 21 and 22 apply
when p is taken 7.4 db less than the median signal-to-noise ratios with
log -normal fading.

VII. COMBINED ERROR PROBABILITY

7.1 General

In Sections IV to VI, three basic sources of errors in digital transmis-
sion over troposcatter links were discussed, and expressions were given
for the probability of error from each of these sources in the absence
of the others. In a first approximation, the error probability considering
all three sources can be evaluated by taking the sum of the three error
probabilities. Approximate expressions are given here for the resultant
error probabilities, together with charts that facilitate determination
of error probability as a function of the binary pulse transmission rate,
when the basic system parameters are known. These are the average
signal-to-noise ratio p, the mean fading bandwidth ry, and the maximum
departure A from the mean transmission delay. The error probability
for a given transmission rate can be reduced by various means that may
or may not entail an increase in total transmitter power or bandwidth
or both. For a given total transmitter power and bandwidth, the most
effective means to this end is diversity transmission over independently
fading paths, as discussed briefly herein.

7.2 Combined Error Probability

As a first approximation, the error probability is given by

Pe p ea) 0(2) (160)
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where

P0(1) = probability of errors in the absence of noise owing to inter-
symbol interference caused by frequency selective Rayleigh
fading (Section IV)

P.(2) = probability of errors in the absence of noise owing to random
variations in carrier phase or frequency (Section V)

Pe(3) = probability or error owing to random noise with nonselective
Rayleigh fading (Section VI).

As will be evident from the preceding discussion, and from charts
that follow, P,") can be disregarded when Pe(2) must be considered, and
conversely, for error probabilities p6(3) in the range of practical interest.
Hence in actual applications (160) will take one of the following forms

PQ pea) Pe(3) (161)
pe pe(2) 1'`3'. (162)

In addition, there are intermediate cases in which P,
In an exact determination of the error probability (161) it is neces-

my to consider the net effect of random intersymbol interference on
the probability of errors owing to random noise, and similarly an exact
determination of the error probability (162) the probability distribution
of random phase deviations is involved. Intersymbol interference at a
particular sampling instant may reduce or increase the tolerance to
noise, and the net effect considering all pulse patterns may be such that
(161) is a legitimate approximation. Similarly, random fluctuations
in the slope of the phase characteristic may decrease or increase the
tolerance to noise at a particular sampling instant, and the net effect
considering all sampling instants may be such that (162) is a valid
approximation. This is evidenced by the following exact relation derived
by Voelcker2 in place of (162) for binary PM with differential phase
detection

P. = [PAP + 1)]P0(2) P.`". (163)

Since P would ordinarily exceed 100 (20 db), it follows that in this case
(162) is a very good approximation to (163).

The exact error probability (161) depends on the probability distribu-
tion of phase distortion in conjunction with the probability distribution
of intersymbol interference, which involves consideration of all pulse
patterns. The combined probability distribution, and in turn the exact
error probability, would be very difficult to determine, and hence the
inaccuracy involved in (161) cannot readily be assessed. However, if
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the probability distribution of intersymbol interference were the same
as that of the reduction in tolerance to noise owing to random fluctua-
tions in the slope of the phase characteristic, the inaccuracy in (161)
would be no greater than that indicated by (162) versus (163). In
most engineering applications, substantially greater inaccuracy would
be permissible in the estimation of error probability, such that (161)
and hence (160) can be considered permissible approximations in the
present context.

The above expression (160) is applied below to binary PM and FM.

7.3 Binary PM with Differential Phase Detection

For binary PM with differential phase detection Pe") is given by
(101) with X = 2 or

ppm A2:32[1 + +In (1 3 .. )1.
2T -6,2B2

(164)

This error probability is given in Table IV as a function of AP.
The error probability 1)(2' is obtained from (117), or approximation

(121)

P.(2) = 10- - K( (165)

ti 0.25(0T)2 0.06(0-/f3)2 (166)

ti 0.039(VE)2. (167)

The error probability Pe(3) is given by (135) or

Pe(3) = 1/2(p + 1). (168)

7.4 Error Probability Charts for Binary PM

In Fig. 21 are shown the error probabilities Pew, P6(2) and /3(3) as
a function of the transmission rate, for a raised cosine spectrum. The
error probability Pew depends on the maximum deviation A from the
mean transmission delay, and curves are shown for a number of values
of A. The probability Pe(2) depends on the mean fading bandwidth
and curves applying for several values of -5,* are shown. Finally, the error
probability /3(3) depends on p, and is shown for a number of different
values of p.

By way of illustration, the combined error probability obtained from
(170) is shown by the dashed line in Fig. 20 for the particular case in
which A = 10-7 second, ;y" = 2 cps and p = 104 (40 db).

The error probability as a function of transmission rate shown by
this dashed line could apply to a variety of tropospheric scatter links,
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Fig. 21 - Probabilities of errors in binary PM with differential phase detec-
tion: 1, curves for various departures from mean delay show error probabilities
in absence of noise owing to pulse distortion from selective fading; 2, curves for
various mean fading bandwidths y show error probabilities in absence of noise
owing to random phase variations caused by flat fading; 3, curves for various
mean signal-to-noise ratios p show error probabilities owing to noise for flat Ray-
leigh fading; 4, dashed curve shows approximate combined error probability for

= 40 db, A = Uri second, and y = 2 cps.

since A depends on the length of the link and on the antenna beam
angles. Moreover, -# depends on the transmitter power, the length of
the link, and the antenna beam angles. Hence, given values of A and is
can be realized for a great variety of conditions.

7.5 Binary FM with Frequency Discriminator Detection

With frequency discriminator detection, the minimum required band-
width for a given pulse transmission rate is the same as for binary PM,
and half as great as that required with dual filter detection.
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The error probability Pe' is in a first approximation the same as
(161) for binary PM with differential phase detection. For the error
probability P.(2), approximation (110) applies, or

2

B
[1 + In (1 )1 .

2o-2
(169)

This error probability is given in Table V as a function of f3/0-.

The probability of error owing to noise is, in a first approximation,
the same as given by (139) for dual filter detection with coherent detec-
tion, or

Pe(2)

/36(3) 1/2p. (170)

7.6 Error Probability Charts for Binary FM

In Fig. 22 are shown the error probability Pe(' , Pe(2) and Pem for
binary FM as a function of the transmission rate. The curves apply for
a raised cosine pulse spectrum, and the same basic parameters o-, 1, and

as shown in Fig. 21 for binary PM. The error probability for the partic-
ular set of parameters previously assumed in Section 7.4 is shown by
the dashed curve.

Comparison of the curves in Figs. 21 and 22 shows that the error
probabilities are the same with both methods except at very low trans-
mission rates. This applies only as a first approximation and with ideal
implementation of both methods.

7.7 Diversity Transmission Methods

In diversity transmission, either space, frequency or time diversity
can be used. The performance would be the same with these methods,
and is an optimum when there is no correlation between the diversity
paths. This entails adequate separation of receiving antennas in space
diversity, adequate frequency separation in frequency diversity, or
adequate time intervals between repetition of signals in time diversity.

With any one of the above three methods, different combining or
decision procedures can be used at the receiver, as discussed in considera-
ble detail by Brennan.17 The optimum method from the standpoint of
minimum required signal power for a specified error probability is known
as "maximal ratio combining," in which the gain of the receiver in each
path is made proportional to the input signal-to-noise ratio. This method
is difficult to implement, and a simpler but somewhat less efficient
method is "equal gain combining," in which the various receivers have
equal gain and the demodulator baseband output are combined linearly.
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Fig. 22 - Probabilities of errors in binary FM with frequency discriminator
detection: 1, curves for various departures A from mean delay show error proba-
bilities in absence of noise owing to pulse distortion from selective fading; 2,
curves for various mean fading bandwidths -3, show error probabilities in absence
of noise owing to random frequency variations caused by flat fading; 3, curves
for various mean signal-to-noise ratios )3 at detector input show error probabili-
ties owing to noise for flat Rayleigh fading; 4, dashed curve shows approximate
combined error probability for /3 = 40 db, A = 10-i second and -I, = 2 cps.

This entails a demodulator in each diversity channel and common gain
control of the various channels. The need for a demodulator in each
diversity channel and common gain control is avoided with "selection
diversity," in which the receiver having the largest signal is selected.
Though this method is somewhat less efficient than equal gain combin-
ing, it has greater flexibility in that it can be used in conjunction with
both linear and nonlinear modulation and detection methods, with path
selection on the basis of predetection as well as post detection signals.

The principal diversity techniques would thus be space, frequency
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or time diversity, in conjunction with "equal gain combining" or "selec-
tion diversity." The error reduction afforded by the two latter methods
is discussed below.

7.8 Error Probabilities with Equal Gain Diversity

The error reduction afforded by equal gain diversity transmission has
been determined by Pierce8 for binary FM with coherent and nonco-
herent dual filter detection, on the premise of sufficiently slow flat
Rayleigh fading, such that errors from noise alone need to be considered.
For binary PM with differential phase detection, the error probability
with equal gain diversity transmission has been determined by Voelcker,9
considering both errors from noise [Pen and errors from time variations
in the transmittance [P,(2)]. Voelcker has also determined the error
probability with dual diversity transmission for four -phase modulation
with differential phase detection, considering errors from transmittance
variations with time alone. For all of the above cases, the following
approximation applies for the probability of single digit errors with
dual diversity transmission over independently fading paths

Pe,2 3Pe,12 (171)

where Pea is the error probability for transmission over a single path
(no diversity). For four -phase modulation, Voelcker's more exact
expression, when reduced to small error probabilities, gives a factor
4r(3 r)/(2 r)2 3.13 in place of 3 in (171).

The mechanism responsible for error reduction by diversity trans-
mission in the above cases also applies to transmission over channels
with selective fading when the errors are caused principally by inter -
symbol interference. With independently fading transmission paths
there will be no correlation between intersymbol interference in the
various channels, even though the signals are the same. Hence relation
(171) would also be expected to apply for the combined error probability
P. given by (160).

For small error probabilities, the following approximate expression
is given by Pierce8 for the error probability owing to noise with flat
Rayleigh fading for binary FM and multidiversity transmission

(2m - 1)!
Pe,. e (172)

m! (m - 1 ) !

Pe,2ti 3Pe,12 (173)

(174)

(175)

Pe,3 10Pe,13

Pe,4 35Pe,14.
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The optimum number of diversity paths will depend on a variety of
considerations, among them the available bandwidth and transmitter
power, system complexity, and the source of errors. When the errors
are caused by noise it is possible to realize a certain minimum total
average signal power for a specified error probability P, , by appro-
priate choice of m. As shown by Pierce and Harris,19 the minimum
total average signal power is attained for any specified error probability
when m is so chosen that in each diversity channel p ti 3, or about 5
db, for binary FM with dual filter noncoherent detection. The number
of diversity paths required to realize the minimum total average signal
power is rather large, and the signal power reduction that can be realized
with more than four paths is fairly small. For example, Pierce shows
that for an error probability P,,, = 10-4, the minimum average signal
power is realized with m = 16, for which the total signal-to-noise ratio is
16.7 db, corresponding to a signal-to-noise ratio per channel of 4.7 db
(p = 2.95). With m = 1 the average signal-to-noise ratio is 40 db and
with m = 4 is 19.4 db. Hence only a small additional reduction in signal
power is realized when the number of diversity paths is increased from
m = 4 to m = 16.

7.9 Error Probabilities with Selection Diversity

Equal gain diversity as considered above entails a linear addition
of the baseband outputs of the various demodulators, and would be less
effective in conjunction with nonlinear demodulation methods, such
as binary FM with frequency discriminator detection. With the latter
method, switch or selection diversity reception would probably be pref-
erable, in which only the receiver having the largest signal is selected.
With this method the following relations apply for m -diversity transmis-
sion when the errors are caused by noise and when receiver selection is
based on the largest carrier signal at the detector input8

Pe,, r-lm!Peani (176)

Pe,2 4P (177)

Pe,3 N 24P..13 (178)

Pe ,4 192P0,14. (179)

For equal error probability, the average signal power with selection
diversity must be greater than with optimum diversity by a factor
equal to the mth root of the ratio of the factors in (176) and (172). The
power must thus be increased by 0.62, 1.27 and 1.85 db for m = 2, 3
and 4, respectively.
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7.10 Multiband Digital Transmission

The curves in Figs. 21 and 22 suggest that for a given total transmitter
power and channel bandwidth, the error probability can be reduced by
transmitting at a slower rate over each of a number of narrower channels
in parallel. An approximate optimum bandwidth for each channel would
be such that Pe") + P,(2) is minimized. This can be accomplished with
separate transmitters and receivers for each channel, such that mutual
interference between channels is avoided. Hence the adverse effects of
selective fading can be overcome with the aid of more complicated
terminal equipment, without the need for increased signal power or
channel bandwidth.

An alternative method that is simpler in implementation is to trans-
mit the combined digital wave from the parallel channels by frequency
or phase modulation of a common carrier, as ordinarily used for trans-
mission of voice channels in frequency division multiplex. This method
entails some mutual interference between channels, as well as greater
channel bandwidth and carrier power than with direct digital carrier
modulation, as discussed below.

With the above method, the spectrum of the modulated carrier wave
will have greater bandwidth than with direct digital carrier modulation.
To avoid excessive transmission distortion of the combined wave, the
bandwidth between transmitter and receiver must be at least twice
that with digital carrier modulation. Hence, at least 3 db greater average
carrier power is required in order that the noise threshold level of the
common channel be comparable with that of direct digital carrier modu-
lation.

With such multiband transmission, intersymbol interference owing
to selective fading is avoided, in exchange for mutual interference be-
tween the various channels owing to intermodulation distortion caused
by selective fading. Such intermodulation distortion is dealt with else-
where (this issue, part 2) for a modulating wave with the properties of
random noise, which is approximated with a large number of binary
channels in frequency division multiplex. The results indicate that
under this condition intermodulation distortion will cause less trans-
mission impairment than does intersymbol interference in direct digital
transmission. Hence multiband transmission by common carrier modula-
tion permits a reduction in error probability in exchange for at least a
twofold increase in bandwidth and carrier power. However, this reduc-
tion in error probability may be less than can be realized with direct
digital carrier modulation in conjunction with a twofold increase in
bandwidth and signal power with dual diversity.
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Error probabilities in binary multiband transmission by frequency
modulation of a common carrier are dealt with by Barrow21 on the premise
of slow flat fading over the combined band, so that only errors owing to
noise need be considered and intermodulation distortion can be dis-
regarded.

WIT. SUMMARY

The objective of this analysis has been to develop a transmission and
modulation theory for troposcatter systems, applicable to digital trans-
mission by AM, FM and PM at any speed and based on a realistic
idealization of troposcatter transmittance properties. The basic model,
together with the analytical procedure and certain basic assumptions,
are reviewed here.

8.1 Troposcatter Transmittance

Based on certain physical considerations, an idealized multipath
transmittance model is developed in which the received component
waves vary at random in amplitude and phase and have transmission
delays owing to path length differences which vary linearly with angular
deviation from the mean path with maximum deviations ± from the
mean delay. With this type of model, a Rayleigh probability distribu-
tion is obtained for the envelope of a received carrier wave in conform-
ance with observations.

To facilitate determination of transmission performance, two basic
statistical parameters are required aside from the signal-to-noise ratio
at the receiver. One of these is the autocorrelation function of envelope
variations with time at a given frequency. The other is the autocorrela-
tion function with respect to frequency at a fixed time.

The first of these, the time autocorrelation function, depends on the
rapidity of changes in the atmospheric structure within the common
antenna volume. It has been determined by a number of observations
with some theoretical support, as given in certain publications.

The second basic parameter, the autocorrelation function with respect
to frequency, has been determined by observation on a particular link.
These observations conform well with the autocorrelation function
determined analytically herein on the premise that the maximum delay
deviation ±6, noted above is given by the path length differences
based on the beam angles between the 3-db loss points.*

With the aid of this idealized model, endowed with the above basic
parameters, as determined by observation or theory, it is possible in

* This conclusion appears to be supported by the results of recent measure-
ments on a 100 -mile path?*
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principle to determine analytically the associated idealized transmission
performance with any modulation method. Though an exact solution is
possible in principle, it appears intractable and is not essential for
engineering purposes. An approximate solution for transmission at
any digital rate is derived herein. To this end certain basic statistical
parameters are determined from the above two autocorrelation func-
tions.

8.2 Variations in Transmittance with Time

In Section II, distributions are given for the time rate of change in
the envelope and for the first and second derivatives of the phase func-
tion. These probability distributions permit approximate evaluation of
changes in the envelope, phase and frequency over a signal or pulse
interval for narrow -band signal spectra.

8.3 Variations in Transmittance with Frequency

The corresponding probability distributions with respect to varia-
tions in transmittance with frequency are given in Section III and permit
approximate determination of random attenuation and phase distortion
over the band of the signal spectra owing to the selectivity of fading.
From these random variations it is possible to determine the correspond-
ing pulse distortion together with resultant intersymbol interference in
carrier pulse trains and error probability in the absence of noise.

8.4 Errors from Selective Fading

As a next step in the determination of error probability, an approxi-
mate evaluation is made in Section IV of the probability of errors from
intersymbol interference with selective Rayleigh fading in the absence
of noise. In a first approximation it turns out that attenuation distortion
can be neglected in comparison with phase distortion. Furthermore, the
latter can be approximated by a component of quadratic phase distor-
tion, or corresponding linear delay distortion. Intersymbol interference
owing to quadratic phase distortion is determined for various carrier
modulation methods, and an approximate relation is derived for the
resultant error probability in the absence of noise.

8.5 Errors from Nonselective Rayleigh Fading

With transmission at sufficiently slow rates, errors can occur in the
absence of noise, owing to changes in amplitude, phase or frequency over
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a pulse interval, caused by nonselective Rayleigh fading. The, proba-
bility of errors on this account is determined in Section V on the approxi-
mate basis that changes over a pulse interval are proportional to the
time derivatives of the amplitude, phase or frequency, depending on the
modulation method. Comparison with available exact solutions for
phase modulation shows that the inaccuracy resulting from this approxi-
mation is inappreciable.

8.6 Errors from Random Noise

In Section VI expressions are given for the probability of errors from
random noise with flat Rayleigh fading, as derived in various publica-
tions for different digital carrier modulation methods. In addition, an
expression is derived for error probability with rapid Rayleigh fading
in conjunction with slow log -normal fading, as encountered on tropo-
scatter links.

8.7 Combined Error Probability

In the final Section VII the combined error probability is determined
on the approximate basis that it is the sum of the error probabilities for
the three basic sources assumed above. Charts are presented from
which can be determined the approximate combined error probabilities
for binary phase and frequency modulation over a single path, and
approximate expressions are given for the error probability with diversity
transmission over independently fading paths.

8.8 Basic Approximations

The idealized model of troposcatter transmission assumed herein is of
course an approximation, as are the idealizations regarding the per-
formance of the carrier modulation methods. Even with exact mathe-
matical analysis based on this model, the predicted performance would
not conform entirely with that observed on actual systems.

In determining error probability from the idealized model, two basic
approximations were used to obtain numerical results. One is that the
maximum departures ±i from the mean transmission delay can be
determined from the beam angles taken between 3-db loss points. On
short links with narrow -beam antennas, these are virtually equal to the
free -space antenna beam angles, but for long links are greater owing to
beam broadening by scatter. The second approximation is that errors
from distortion owing to selective fading are caused principally by a
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quadratic component of phase distortion. This is the first component
that gives rise to distortion in a power series expansion of a nonlinear
phase characteristic as a function of the frequency from the carrier.

The same two basic approximations have been used in a companion
paper (this issue, part 2) in a determination of intermodulation noise in
analog transmission by FM of signals with the properties of random
noise. Theoretical predictions based on free -space beam angles are in
this case in reasonable agreement with measurements on two tropo-
scatter links 185 and 194 miles in length, with narrow -beam antennas.
Measurements on links 340 and 440 miles long give intermodulation
noise that would correspond to beam angles and maximum delay differ-
ences ± that are greater than for free space by factors of about 1.35
and 2.15, respectively.

The above measurements also show that as the bandwidth increases,
actual intermodulation noise will be progressively smaller than predicted
on the premise of quadratic phase distortion. Translated to digital
transmission, the error probabilities 136(1) owing to selective fading as
determined here on the premise of quadratic phase distortion would
represent an upper bound, that should conform well with actual error
probabilities when the latter do not exceed about 10-2 in Figs. 21 and 22.

s.s Comparison with Recent Related Publications

Since the completion of the galley proof of this paper an article by
Bello and Nelin22 has appeared, dealing with errors in binary transmis-
sion owing to frequency selective fading by a different analytical pro-
cedure than used here. Numerical results are presented for error prob-
abilities in dual and quadruple diversity transmission by binary FM
with dual filter incoherent detection and binary PM with differential
phase coherent detection. These results are based on an assumed Gaus-
sian correlation function, or power spectrum, of the selectivity of fading
with frequency. A comparison is made below of the above numerical
results with those obtained on similar premises from relations presented
here.

For a Gaussian power spectrum of correlation bandwidth Bc as used
in the above paper, the corresponding value of a2 in (18) is a2 = 2(7rfic)-2.
Expression (55) applies with b2/bo = a2 in place of A2/3. With this sub-
stitution and with T = B-', expression (101) and Fig. 17 apply, with
A  B = 0.79(./3,71)-', where (BET) -1 is the parameter appearing in Figs. 5
and 9 of the above paper for the irreducible error probabilities.

Binary FM with dual filter detection as assumed in the above paper
can be considered equivalent to ideal complementary binary AM over
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each of two channels. When the frequency selectivity of fading is suffi-
cient to cause errors in one or the other of these channels, the above
method is essentially equivalent to dual diversity transmission by AM
over two independently fading channels. On this basis, binary FM with
dual diversity and dual filter noncoherent detection is approximately
equivalent to binary AM with quadruple diversity. The error probabil-
ities determined on the latter premise with i.B = 0.79(B,T)-I in (101),
or in Fig. 17, in conjunction with (172) for m = 4, conform reasonably
well with those given in Fig. 5 for dual diversity with = 0 and n = 1.
Complete agreement is not possible for the reason that the results in
Fig. 5 assume a rectangular shape of undistorted pulses, whereas the
present analysis is based on a more realistic pulse shape with a raised
cosine spectrum, as indicated in Fig. 13.

In the case of binary PM with differential phase detection, the rela-
tions presented here with 0 B = 0.79(BeT)-1 yield error probabilities
that are significantly smaller than those given in Fig. 9 of the above
paper. This is to be expected, since the present relations are based on
detection with an optimum threshold level, whereas those in the above
paper assume zero threshold, which is not the optimum owing to the
presence of a substantial bias component in the demodulator output,
when pulse distortion is pronounced.13 Moreover, the shapes of the un-
distorted pulses are different, as noted above.

It is evident from the above considerations that apparently unrelated
and possibly misleading results can be obtained unless comparisons are
made of binary modulation methods of equal bandwidths with optimum
implementation of each, as was done in Fig. 17.

The above article called attention to another paper23 by the same
writers that refines Voelcker's original analysis9 of errors in transmission
over narrow -band channels owing to transmittance variations with time.
Their results show that for a Gaussian power spectrum of the fading
rate as assumed herein, Voelcker's analysis is exact, though this is not
true for all forms of power spectra.
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APPENDIX

Transmittance of Troposcatter Channels

Owing to the differences in path length from transmitter to receiver
via the various heterogeneities in the common volume, the various
components of the received wave arrive with different delays. For
analytical purposes it is convenient to assume a certain mean reference
path with delay To and to express the transmission delay via other
paths relative to the delay To . Actually there will be a large number
of paths with the same delay To as the mean path and a large number
of paths for each other delay. In the present analysis the approximate
model indicated below is assumed, with a single vertical scatter plane
midway between transmitter and receiver.

The amplitude of the wave component arriving over a path at the
distance x above the mean path is taken as A(x,t) and the delay over
this path as

T(x) = To + 8(x).

The wave component arriving via this path is then

ez(co,t) = A(x,t) cos w[t - To - 13(x)]. (180)

Let, L be the distance between transmitter and receiver and H the
height of the mean path. In this case

o(x) = s(x)/v (181)
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where v is the velocity of propagation and s(x) the path length difference
given by

1.2s(x) =
4

[- (H x)2] - (- H2) . (182)
4

In actual systems H << L. Furthermore, the maximum value / of x is
ordinarily much smaller than H. On these premises the following ap-
proximation applies

(5(x) = (2H /Lv)x = x/c (183)

where c = vL/2H.
It will further be assumed that there is an infinite number of paths,

in which case the received wave becomes

e(co,t) = f A(x,t) cos co(t - To - x/c) dx (184)

= cos (0(1 - To) fx
[A(x,t) -I- A( -x,t)1 cos (cox/c) dx

-I- sin w (t - To) f [A(x,t) -A( -x,t)] sin (cox/c) dx.

It will now be assumed that

[A(x,t) -I- A( -x,t)] dx = 0.

(185)

(186)

This appears to be an appropriate physical requirement, for the reason
that reflections occur as a result of variations in the electrical properties
of an elementary volume, relative to that of the common volume. No
reflections occur with a uniform common volume. In a heterogeneous
common volume, each positive reflection must be accompanied by an
equal negative reflection, which is reflected in condition (186). More-.

over, under this condition there is no reflection along the mean path of
the transmitted beam. That is, with x = 0 in (185), e(t) = 0 provided
(186) applies.

Condition (186) can be insured if the following Fourier series repre-
sentations are used for x

and

A(x,t) A(- x,t) E a(m,t) cos mrx/S; (187)
171=1

A (x,t) - A( -x,t) = E b(n,t) sin mire/:c. (188)
in=1
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With m = 1, 2, 3, etc., as above, the area under each harmonic com-
ponent vanishes, such that condition (186) is satisfied.

With (187) and (188) in (185), the following relation is obtained

e(w,t) = cos w(t - T)U(w,t) + sin co(t - T)V (4) (189)

where
. ±.

u(w,t) = E a(m,t) f cos m7rxg cos cox/ c dx (190)
.-1 0

x
V(w,t) = E b(m,t) f sin m7rx/I sin cox/ c dx (191)

m-i 0

Evaluation of the integrals yields the following expressions
.

u(0,0 = E 1 A (m,t) [sin (nir - ") + sin (1117 ± ")] (192).-I mr - coA m7r + ad
.. [sin (m7r - wA) sin (m7r + coA)V(w,t) = E IB(m,t)(193).-I m7r - coA m7r + wA

where

A (m,t) = ta(m,t)

B(m,t) = &b(m,t) (194)

A = i/c.

It will be noted that A is the maximum departure from the mean
delay To .

In evaluation of (192) and (193) it is convenient to introduce a new
reference frequency wo in place of 0, and to choose this reference fre-
quency such that

w0A = nir. (195)

Thus

wA = n7r + ui (196)

where -7r < uA < 1r, and u is the deviation in frequency from wo .

The functions (192) and (193) are then replaced by
. fsin [(m - n)7r - uA]U(u,t) = E 1 A(m,t)

m=1 (m - n)7r - mak

sin [(m + n)7r + uA]l
sin (m + n)7r ± ILA

(197)
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v(u,t) = E iB(n,,t) {sin [(m - -
m=1 (m - n)7r -

sin [(m n)ar u.A]

sin (m n)2- nA

In troposcatter transmission it turns out that m is of the order of
100 to 1000. For this reason the second terms in the above series, in
(m n)lr, can be neglected. With this simplification and with m -
n = j, expressions (5) and (6) are obtained.

Expression (189) can then be written in the form

e(co,t) = r(u,t) cos [w(t - T) - go(u,t)] (199)

where r and go are given by (3) and (4).
The channel transmittance is accordingly given by (2).
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Au -n -Type GaAs Schottky Barrier and
Its Varactor Application

By D. KAHNG

(Manuscript received July 19, 1963)

Evidence is presented to show that Au -n -type GaAs rectifying contacts
are majority carrier rectifiers of the Schottky type. These diodes may be
characterized by a Richardson constant of 20-60 amp/cm2deg2 and barrier
heights of 1.03,0.97 and 0.91 volts, corresponding to the (111), (111) and
(110) orientations of GaAs substrate.

GaAs Schottky barrier varactor diodes constructed on epitaxial films may
be designed to yield a high cutoff frequency. Performance calculations in a
practical case yield a "dynamic quality factor" of 50 at 6 gc under favor-
able conditions. A "dynamic quality factor" of about 20 at 6 gc should be
obtainable with present fabrication technology.

I. INTRODUCTION

It has been demonstrated that under suitable conditions a metal -to-

semiconductor rectifying contact may exhibit characteristics predictable
from the simple theories advanced by Schottkyl and Bethe.2 An example
of this type of system is the Au -n -type Si Schottky barrier which was
reported earlier.' In the present paper evidence is presented to show
that Au -n -type GaAs is also such a case.

The main features of a metal -to -semiconductor contact are that it
may be designed as a majority carrier rectifier, i.e., noninjecting recti-
fying junction, and that the junction is accurately describable in terms
of an ideal step junction. The first feature implies that the frequency
response of the diode is limited only by RC charging time or transit
time rather than by minority carrier lifetime. High cutoff frequency
can be achieved through the use of an epitaxial structure. Such diodes
may find application in high-speed switching, microwave detection and
mixing, harmonic generation, or parametric amplification using the
diode as a varactor. The first of these applications, fast switching, has
been discussed elsewhere.4

215
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The second feature, the ideal step junction, makes the Schottky bar-
rier highly promising as a varactor. The step junction configuration
when combined with epitaxy yields advantageous varactor performance
in that its capacitive sensitivity with voltage is much higher than that
of a graded junction; yet no loss in Q and breakdown voltage results
from the high capacitive sensitivity. The case of a retrograded junction'
is less favorable.

The choice of GaAs as the semiconductor part of the Schottky bar-
rier varactor is based on two facts. First, its electron mobility is the
highest among the common semiconductors available, thus allowing
realization of minimum RC product while maintaining the capacitance
of the unit small to facilitate diode broadband coupling to a microwave
circuit. Secondly, doping close to degeneracy permits its operation at a
low temperature without deterioration in performance due to carrier
freeze -out.

In the following, the physical properties of the Au -n -type GaAs
Schottky barrier are examined and a simple theory of a varactor design
on the basis of the barrier properties is presented. The theory is used
to calculate the expected performance of the varactor subject to prac-
tical considerations such as the thickness of the epitaxial layer, parasitic
resistances arising from the wafer and the contact, and available pump
power.

II. PHYSICAL PROPERTIES OF Au -n -TYPE GaAs SCHOTTKY BARRIER

Vacuum deposition of gold 1000 A thick confined to a circular area
of 2 X 10-3 cm2 on suitably etched n -type GaAs surfaces results in
diodes whose typical forward characteristics are as shown in Fig. 1.
Notice that the characteristics follow the equation

If = exp [(q/kT)V] (1)

very closely, indicating nearly ideal Schottky barrier behavior. Here I f
is the forward current, I8 the saturation current, q the electronic charge,
k the Boltzmann constant, T the absolute temperature, and V the for-
ward voltage.

Note also that /8 depends on the substrate orientation. Ie is smallest
for a (111) -directed* substrate and increases for the (111) and (110)
directions in that order. This suggests that the barrier height is sensitive
to GaAs orientation.

* The (111) direction is defined to he perpendicular to the surface which gives
a smoother appearance after an etch.
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Fig. 1 - Semilog plot of typical forward characteristics for three substrate
orientations; n is the slope parameter, namely,

d(ln II) 1 q

dVir n kT.

For a uniformly doped substrate, the barrier capacity depends on the
reverse voltage in accordance with the well-known equation

C eqN\1
(2)A= \2-17r)

where C is the capacity, A the junction area, e the permittivity, N the
donor concentration, and VT the total voltage across the junction in-
cluding the built-in voltage, VD . This is demonstrated when 1/C2 vs
VR (applied voltage, reverse direction positive) plots are made as shown
in Fig. 2. Such plots should be linear if (2) is closely followed, and they
yield information on the diffusion voltage (built-in voltage) of the barrier
as well as on the ionized donor density. Table I shows data for the three
orientations mentioned earlier. Two separate evaporation runs were
made for each orientation. Each set of N and VD corresponds to a single
diode. For the narrow range of donor concentrations measured, the
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Fig. 2 - 1/C2 vs applied voltage for diodes constructed on (111) -oriented GaAs
surface.

equilibrium Fermi level of the substrate is about 2 kT below the con-
duction band edge. The energy difference of these two levels is denoted
by Epc . The barrier height, c, is determined from

= VD + EFC (3)

where VD = Vint + kT /q (Vint is the measured voltage intercept from
Fig. 2. For details of this procedure see Ref. 3). Since I. in (1) can be
written as

I. = ART2 exp - (qco/kT) (4)

one may proceed to calculate AR , the Richardson constant, to check
the validity of the model which led to (1) and (2). I. can be determined
from the forward characteristics by plotting [In if - (qV/kT)] vs I f .

The resulting calculated AR's are shown in the last column of Table I.
The expected AR is of the order of 100 amp/cm2deg2. Since the calcula-
tion of AR is very sensitive to co values, the results may be deemed to
be in satisfactory agreement with this expectation.

It is of interest here to calculate the minority carrier contribution to
the forward conduction. The hole injection efficiency, 7, can be written
as 6

- qPn (DP /7 )17
ja

( 5 )
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Orientation N
1066 cm-,

VD
(volts)

0
(volts)

Ave 4,
(volts)

AR
(amp/cm2 deg2)

111 5.8 0.95 1.03
5.8 0.95 1.03
5.8 0.95 1.03
7.1 0.95 1.03 1.03 45
9.02 0.94 1.02

111 7.2 0.93 1.02
7.2 0.87 0.95
7.2 0.88 0.96 0.97 20
8.4 0.90 0.98
8.4 0.88 0.96

110 5.0 0.84 0.92
5.0 0.84 0.92
5.0 0.83 0.91
5.3 0.83 0.91 0.91 20
6.2 0.80 0.88
6.4 0.82 0.90
7.6 0.89 0.97

where is the hole current density, j8 the electron saturation current
density, pa the equilibrium minority carrier density of the substrate,
D, the diffusion constant of holes and r,, the hole lifetime. The upper
limit of -y estimated, using D, = 20 cm2sec-1, Tp = 10-12 sec, and j8
2 X 10-1' amp/cm2 for n -type GaAs of 1016 carrier concentration, is
5 X 10-4. Indeed, the assumption of 7 = 10-12 sec implies that the holes
do not diffuse any appreciable distance. If one makes an assumption of
longer hole lifetime, -y then would be even lower than the value above.
The -y calculated above applies, strictly speaking, only at the origin of
the V-/ curve. For high forward current range, the calculation ought to
be modified to include hole drift as well as diffusion.'

The Au -n -type GaAs Schottky barrier then can be characterized by
the set of physical parameters co and AR as given in Table I for the
various substrate orientations. It can also be treated as a noninjecting
rectifier, at least for small forward currents.

III. EPITAXIAL SURFACE BARRIER VARACTOR PERFORMANCE

Assume that the surface barrier diode is constructed on an epitaxial
film of thickness d grown on a substrate material of a resistivity pi, .

For the sake of simplicity assume that for the maximum applied reverse
voltage V,a , the space charge just extends through the entire thickness
d of the epitaxial n region so that

d = [(2e/qN)V,]1 = [(2e/TV)(Vo - Vi)i}. (6)
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Here Vo is the de bias voltage including the built-in voltage VD , and
Vi is the pump amplitude.

The series resistance, I?,8 at a voltage V < T7, is given by

R8
pe(d - s) = Pe Ine/ 7\T \ if I T711 (7)

A A '`"`""vm R83

where pc is the resistivity of the epitaxial film, A is the junction area,
R., is the contribution from the substrate and contacts, and s is the
space charge width corresponding to V given by

s = [(2e/qN)V]l. (8)

The assumption used in arriving at (6) does not lead to loss of generality,
since the series resistance due to unswept-out epitaxial region may he
incorporated into R88 in (7). The performance may now be calculated
in terms of the "dynamic quality factor," Q, of the diode as defined by
Kurokawa and Uenohara.8 This formulation is based on the assump-
tion that the undesired sidebands are open -circuited. Experimental re-
sults are in closer agreement with the open -circuit assumption than with
the closed-circuit assumption.9

The figure of merit Q as defined in Ref. 8 may be modified to include
the variation of the resistance, (7), to give

Q
1 DI

2w Ro
(9)

where D1 is the Fourier coefficient of the first harmonic of the elastance,
1/C, w is the operating frequency, and Ro is the zero -order term of the
Fourier expansion of R, , [cf. (7)]. Equation (9) may be rewritten in
combination with (2) and (7) as

Q
1 A

1- (2E/ qN) v1)

2w pe
(2E/ qN)iao(V - V1) + R88

(10)

where the symbols go and £1 are used to indicate the zero- and first -
order terms of the Fourier expansion of the expression inside the brackets
following the symbols. Since

V = Vo + T71 cos co,/ (11)

and

V, = Vo V1 (12)
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where co is the angular frequency of the pump, (10) can be expressed
as

1. 1 - [11(1 + cY)]4go(1/i + a cos .4)= 9 Cilep.
Q [1/(1 a)1Ti(V1 + cos copt)

20).41?(EqN /2V,)1

[1/(1 + a)Ni.(1/1 + a cos (opt)

where

(1:3)

a = Vi/Vo (14)

The first term of (13) is the 0 associated with the average loss in the
epitaxial film region, and the second is the Q associated with the external
loss. We have

1 1 1

= 6+ Qe
(15)

Fig. 3 shows the pertinent values for 50 and of 1/1 + a cos copt as
functions of a. Since these quantities show weak variations with a, one
may take the values at a = 1. (By definition a is never greater than
unity.) Then

0.58 1
W Pe

0.21 (2vm/0)4
=Owl

1

-AR..0.214RsaCm J
(17)

where C. is the minimum capacity corresponding to V fn, is the cut-
off frequency corresponding to C and f is the operating frequency.

More accurate calculation of Qi and Q. is possible whenever the pump-
ing condition is specified. Namely, when Vo , the sum of the built-in
voltage and the dc bias, and the pump amplitude are specified, the value
of a is fixed. Now, corresponding to this a, more accurate numerical fac-
tors in (16) and (17) can be obtained from Fig. 3.

It is interesting to note that Q is a function of a but not of Vo or VI
separately, provided the change in R.8 due to changes in Vo or VI is
taken into account. Nonuniform epitaxial film doping would not allow
the use of Fig. 3 for the numerical values in (16) and (17). However, the
essential form of these equations is retained and the appropriate values
of the numerical factors are calculable once the doping profile is specified.

The optimum Qi is determined by smallest Pe one can practically use

(16)
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subject to the maximum static capacity for circuit matching require-
ment. We now define the static capacity of the unit as

C - go(1/C)
2.8C, cc j1s

m

Equation ( 18) indicates that V, should be made as large as possible for
this purpose. The extent to which V, can be made large depends on two
quantities, the breakdown voltage corresponding to a given doping level,
N, and the pump amplitude. Let us examine the case where the maxi-
mum conductivity usable is limited by the breakdown voltage and the

(18)
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epitaxial film thickness. The relationship between the breakdown field,
Eb , assumed here to be a constant for simplicity, and the maximum space
charge thickness, (or the epitaxial layer thickness), d, is

(q/ E)Nd. (19)

If dm is the smallest thickness of epitaxial film practically attainable, then

1/ pc = µqN < (µeEb/d.) (20)

where µ is the electron mobility. For Eb E 5 X 10-7 volt-fd/cm2
and dm = 10-4 cm, (20) yields an optimum doping level of 3 X 1016
cm -3, which corresponds to pe ti 0.04 ohm -cm, assuming 1.4 = 5000 cm2/
volt -sec. These figures will lead to Q 390 at 6 gc.

Now let us calculate Q, , using the doping level obtained above for
A = 2 X 10-5 cm2 (0.002 -inch diameter circle). Also assume that
R,8 ti 0.5 ohm. Then (17) yields Q, 57, and (15) gives a Q of 50.

The above calculation of dynamic quality factor was made assuming
no limitations on the pump amplitudes and ideal breakdown voltage of
about 25 volts. If one now assumes that only one-half of the epitaxial
layer is penetrable, due to high leakage current, then Q, becomes 24 and
Q = 22. If one is able to reduce the epitaxial thickness to 5 X 10-5 cm,
the improvement is not very significant, in that Qa becomes 29 and (2" = 27.
In addition, if Rs. = 0.8 ohm this would affect Q drastically, yielding Q
of only 17. These figures for Q would undoubtedly deteriorate in actual
cases because the package capacity is not taken into account, although
the additional external circuit loss ( for instance, the cavity loss) may be
incorporated in Rss .

Clearly, the ultimate value of (2' attainable is more heavily dependent
on Qc than on Qi . Qe is determined by Rss and C. . In a low -noise ampli-
fier V. may be advantageously made small, say about 10 volts or less.
V. should also be such that no appreciable reverse current flows. This
means that the epitaxial layer thickness should be slightly larger than
that dictated by (20), although Q, is somewhat sacrificed. The relaxation
on V. leads to a higher optimum epitaxial layer doping than that previ-
ously calculated. This is compatible with the necessity of having the
layer thickness in excess of that dictated by V. . Equation (20) gives
optimum doping of 8 X 1016 cm -3 or 0.02 ohm -cm for V. = 10 volts
and a corresponding layer thickness of 0.4g. If the total layer thickness
is 1g (compatible with present technology), then there is a contribution
to R88 from the 0.6 g thick unswept-out layer. This could be partially
compensated for by reducing the capacitance through use of a smaller
junction area. The smallest junction area usable is, in turn, limited by the
package capacity. Choice of an 0.001 -inch diameter circular area leads
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to an unswept-out layer resistance of 0.2 ohm and Cm , corresponding to
Vm , of 0.13 pf. The total Rs, then is approximately 0.8 ohm, which
leads to 0, of 52 at 6 gc. Oi is increased to 780 by virtue of lowered epi-
taxial resistivity, yielding an over-all Q of 50 at 6 gc. These figures are
optimistic, since the influence of package capacitance is again neglected.

IV. CONCLUSIONS

The Au -n -type GaAs Schottky barrier can be characterized by the
physical parameters, barrier height go, and Richardson's constant AR .

The values of these parameters were found to be A R = 20-60 amp/cm2
deg2 and go of 1.03, 0.97 and 0.91 volts, corresponding to (111), (111) and
(110) orientation. It was shown that the barrier is essentially noninject-
ing for small forward currents.

The combination of the surface barrier rectifying junction with a GaAs
epitaxial structure may lead to a dynamic quality factor, Q, of 20 at 6 gc
with the presently available technology. In fact, one may look forward
to achieving Q of as much as 50 at 6 gc, either for low-voltage varactors
( Vm < 10 volts) or high -voltage units ( 25 volts). The latter may
be useful for high -power applications such as harmonic generation, as
opposed to low -noise operation, for which the former is more suitable.
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Gold-Epitaxial Silicon High -

Frequency Diodes
By D. KAHNG and L A. D'ASARO

(Manuscript received July 19, 1963)

A diode based on the properties of an evaporated gold contact on n -type
epitaxial silicon has speed comparable to point contact diodes. The space
charge region at zero bias can be designed to penetrate up to the impurity
tail at the interface, thus reducing series resistance. An encapsulated diode
was made with a 1 -mil diameter gold contact on an epitaxial layer 1.5 mi-
crons thick having a surface doping of 1 X 10" donors per cm3. The zero -
bias RC product of this diode is less than 1 X 10-12 second. Under forward
bias the electron transit time through the epitaxial layer is less than 2 X
10-" second. The breakdown voltage of experimental diodes is greater than
10 volts. Stress aging experiments in an inert atmosphere show no deteriora-
tion of electrical properties at temperatures up to the gold -silicon eutectic
(370°C). This diode was used as a harmonic generator at 11 gc with an
efficiency comparable to that of a gallium arsenide point contact diode.

I. INTRODUCTION

The metal -semiconductor rectifying contact in a variety of configura-
tions called "point contact" has long been used for microwave rectifica-
tion and amplification. This investigation shows that metal -semicon-
ductor diodes can be designed and fabricated by large -area techniques
with speeds adequate for application as fractional nanosecond switches
or microwave mixers. In particular, a gold n -type silicon contact will be
considered here. An estimate of the response time can be obtained from
a calculation of the transit time of electrons through the space charge
region and the RC time. The series resistance and capacitance of the
diode are made small by using an epitaxial structure. Since the hole in-
jection in these diodes at low currents is negligibly small, the response
time can be independent of hole lifetime. In what follows, design of these
diodes will be discussed, and the predictions of the preliminary design
will be compared with experiment.

225
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II. DIODE STRUCTURE AND FABRICATION

The structure of the diode is shown in Fig. 1. An epitaxial layer of
n -type silicon is grown on an n+ substrate. A layer of gold is evaporated
in a small dot over the epitaxial layer. The metal -semiconductor con-
tact formed in this way has an internal potential which results in a space
charge region in the silicon near the gold. The doping and thickness of
the silicon is chosen so that at zero bias the space charge region of thick-
ness w occupies most of the epitaxial layer. The remaining portion, s, is
a region of high doping due to diffusion of impurities from the substrate.' '2

Experimental diodes were fabricated as follows. Silicon wafers of re-
sistivity 4 X 10-s ohm -cm with faces perpendicular to the (111) direc-
tion were deposited with epitaxial layers of silicon by the hydrogen re-
duction of silicon tetrachloride.',' The film thickness in a typical diode
is 1.5 microns. The surface doping of the n -type layers is 2 X 10'4 to

1 X 10's donors per cm3. The undeposited side of the wafers was provided
with gold -antimony evaporated and alloyed ohmic contacts. These
wafers were then subjected to cleaning consisting of oxidation and oxide
removal steps. The wafers were cleaned immediately prior to gold evap-
oration. Gold evaporation was carried out in a vacuum of less than 2 X
10-6 mm Hg. Gold was evaporated through a molybdenum mask, con-
fining the gold to a circular area 1 mil in diameter. After evaporation
some of the diodes were etched, using the gold dots as masks. The etch-
ing removes the epitaxial region outside of the gold dots, thus prevent-
ing formation of large -area channels near the gold dots.

III. RESPONSE TIME

The low -current response time is determined by the transit time of
electrons through the space charge region and the RC charging time. The
transit time is given approximately by T c = IOUs , where w is the space
charge width and v3 is the average scattering limited velocity in the space
charge region. The RC charging time can be estimated from the resist -

d -

WI fl-TYPE
EPITAXIAL LAYER

Fig. 1 - Structure of a gold -silicon epitaxial barrier diode.
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ante of the unswept-out region of the epitaxial layer plus the spreading
resistance in the substrate and the capacitance of the contact

ap,dRC= C,, f p, dx C2 (1)
region

a

where C. is the capacitance per unit area of the diode, P. is the resistiv-
ity of the epitaxial layer in region s, P. is the resistivity of the substrate
and d is the diameter of the contact.

Calculation of the response time can be made for a case where the
donor distribution in the epitaxial layer is known. In layers a few mi-
crons thick, the effect of diffusion from the substrate and the effect of
the process of epitaxial growth on the distribution of impurities' need
to be considered. The doping profile (concentration N versus distance x)
may be approximately characterized by the form"2

N =
Zaerfc 2v Dt + No* e-`1' + A(1 - e -41x) (2)

where the first term is due to diffusion from the substrate of doping
N, with an effective diffusion coefficient D for a time t (an approxima-
tion), the second term is the substrate contribution to the film doping
through the exchange of dopant between the solid and gas phase with
parameters No* and 0, and the last term is the gas phase contribution
to the film doping with an asymptotic value A for thick films. An exam-
ple of an impurity distribution obtained in the fabrication of experi-
mental gold -silicon epitaxial diodes is given in Fig. 2. The diffusion
and exchange contributions to the doping are much larger than the gas
phase contribution in the thicknesses used here. Within the lower doped
region, one may approximate by a uniform doping for estimates of per-
formance, since the film thickness is smaller than 1/0.

The width of the space charge region at equilibrium in a uniformly
doped material is given by

(2VD\I
qN

where e is the dielectric constant, VD is the diffusion potential (shown
in Fig. 3), q is the electron charge, and N is the donor concentration.
In a typical case for these diodes the donor concentration in the region
in which the exchange contribution dominates may be 1 X 1015. The
barrier potential for the gold -silicon contact ( Vo in Fig. 3) is known
from measurements of the forward and reverse characteristics and the

(3)
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Fig. 2 - Impurity profile components for an epitaxial silicon film.

capacitance -voltage relation,' and is 0.79 ± 0.02 ev for silicon dopings
from 0.1 to 10 ohm -cm. At Nd = 1 X 10', the Fermi level is 0.25 volt
below the conduction band, leading to VD = 0.54 volt, and w = 0.67
micron. Since the edge of the space charge region falls in the diffusion
tail, the series resistance of the diode is due to the doping in this tail.
Integration over the doping distribution in Fig. 2 yields a zero -bias
series resistance of 4.0 ohms.

Vo FERMI LEVEL
FORWARD BIAS

V0

FERMI LEVEL ZERO BIAS

Fig. 3 - Shape of the potential barrier under zero and forward bias.
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The zero -bias capacitance can be found from

C = (e/w)A (4)

where A is the diode area. For a 1 -mil diameter diode, the expected zero -
bias capacitance is about 0.05 pf. The capacitance of the encapsulation
raises the total to about 0.3 pf, making the zero -bias RC product equal
to 1.2 X 10-12 second for the diodes with a series resistance of 4 ohms.

The transit time of majority carriers through the space charge region
at zero bias leads to an upper limit on the response time. For the case
given above under zero bias, the transit time obtained from an assumed
scattering limited velocity of 5 X 106 cm/sec is 2 X 10-" second. Under
forward bias the width of the space charge region decreases, and hence
the response time may be shorter than this estimate.

IV. HOLE INJECTION CONSIDERATIONS

The hole injection ratio is defined as

= ± in) (5)

where j, is the hole current and jn is the electron current crossing the
junction. Diffusion theory6 allows this expression to be written as

= qDppn/Lpj (6)

where D, is the diffusion constant for holes, pn is the equilibrium con-
centration of holes in n -type material, Lp is the diffusion distance for
holes, and j,, is the saturation value of the electron current, which can
be obtained in terms of "diode" theory6 as

j = AVe-"°. (7)

For Nd = 1 X 1016 and the experimental values of A (-40) and Vo
( =0.79 ev) from Ref. 4 one obtains 7 r -Z-1., 1 X 10-7. Under low -current
conditions the hole injection will not have a significant effect on the re-
sponse time.

With increasing forward bias, the series resistance increases as the
space charge region moves towards the gold -silicon junction. In the case
of an extreme forward bias, the assumptions used earlier are not valid,
and the hole current increases? The series resistance may then be con-
ductivity modulated and falls with continuously increasing current.

V. BREAKDOWN VOLTAGE

The avalanche breakdown voltage can be roughly estimated from the
published ionization rate of electrons.8 One may obtain the breakdown
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voltage in terms of empirically derived constants a and b as

VB = bw/ln aw (8 )

which gives VB = 36 volts with w = 0.9 micron. Experimental diodes
show breakdown voltages which occasionally approach this value. Newer
data based on microplasma free junctions would predict higher values.9

VI. ELECTRICAL MEASUREMENTS

Experimental diodes in encapsulations typically show the following
properties : breakdown voltage at 10 /lamps, 25 volts; series resistance
at 100 ma, 3 ohms; zero -bias capacitance, 0.35 pf. These diodes have
a forward V -I characteristic given in Fig. 4. The forward characteristic
can be described by the empirical relation

I = Ia exp nkT
(V-IR) (9)

in which n is an empirical quantity and R is a series resistance. The
"diode" theory' predicts the forward characteristics of the form of (9)

with n = 1. The departure of n from unity may be attributable to cur-
rents generated at traps within the space charge region.4 Experiments on
diodes of larger diameter suggest that these traps are located around the
periphery of the diode, at the gold -silicon interface. In general, n is a
continuously varying quantity with the current. The series resistance
may decrease in the high current density region due to increased minority
carrier injection.' Characteristics of other diodes normalized to 1-mil
diameter mesas are given for comparison in Fig. 4.

VII. RESPONSE TIME MEASUREMENTS

The response time of the experimental diodes was examined by a pulse
recovery measurement. No storage time as large as the resolving time
of the equipment, which is 1 nanosecond, was found.

A further measurement of an experimental diode was made by A. F.
Dietrich using a method previously described for generating carrier
pulses at a frequency of 11 gc." In this method the RF pulses are gener-
ated directly from the harmonics of the envelope frequency that is found
at the beginning or the end of the pulse transient of the diode. The power
output at 11 gc was comparable to that previously obtained with a sili-
con snap -back diode (FD -100) or a GaAs point contact diode. These
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Fig. 4 - Forward bias voltage -current characteristics of a gold-epitaxial sili-
con diode, in comparison with other diodes. Diode diameters are 1 mil, except for
the GaAs point contact. The dotted line has a slope of n = 1.2.

results indicate that the response time of the diode under forward bias of
(10 ma is roughly 0.1 nanosecond.

VIII. STRESS AGING EXPERIMENT

A group of eight diodes was subjected to stress aging in an effort to
establish the expected reliability of the gold -silicon contact. These diodes
were all mounted on the same header in order to provide an equal stress
condition. Heating them in an inert atmosphere for one -hour periods at
increasing temperatures up to the gold -silicon eutectic temperature
(370°C) produced no significant degradation in their forward or reverse
characteristics. Another group of eight diodes was heated at 360°C for
64 hours. These diodes also showed no significant degradation in their
V -I characteristics. In another experiment, diodes heated in air showed
rapid degradation above 200°C. These experiments indicate that the
gold -silicon contact can probably be made adequately stable for device
use.
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IX. CONCLUSIONS

The design described above has been found to yield experimental de-
vices which are sufficiently fast and stable to be useful as computer di-
odes or as microwave mixer diodes. Another design in which the space
charge region penetrates part way through the epitaxial layer may also
be of interest as a varactor. One may expect that the large -area tech-
niques used in the design and fabrication of these diodes will lead to more
reproducible and stable devices than point contact diodes with similar
frequency response.
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On the Discrete Spectral Densities
of Markov Pulse Trains

By R. D. BARNARD

(Manuscript received August 12, 1963)

General formulae and existence criteria are derived for the discrete power
spectral densities of first -order Markov pulse trains, viz., infinite pulse
trains in which each pulse corresponds to one member of a finite set of speci-
fied waveforms and depends statistically on the previous pulse alone. These
results are obtained through a distribution theoretic decomposition of the
spectral formulation given for such pulse trains by Huggins and Zadeh.

I. INTRODUCTION

An important problem related to first -order Markov pulse trains is
that of calculating the discrete and continuous power spectral densities
of such processes. The spectral formulation first given by Huggins' and
later extended by Zadeh2 is perhaps the most appropriate and straight-
forward solution of this problem, the results being conveniently expressed
in terms of the customary flow diagrams and recurrent event relations
associated with Markov systems. As regards discrete spectra, however,
their formulation lacks complete generality in two respects: (i) the limit
notions of distribution theory, although essential for discrete components,
are not incorporated; (ii) discrete components do not appear explicitly.
In this paper we reformulate the Huggins-Zadeh result on a distribution
theoretic basis, and derive both explicit relations and existence criteria
for the discrete spectral densities. It is intended also that the analysis
illustrate the distribution theoretic techniques required in cases involv-
ing more general spectral formulations.

II. BACKGROUND

The infinite pulse trains under discussion are treated as first -order
Markov processes in that each pulse is assumed to correspond in wave -

shape to one member of a finite set (alphabet) of real time functions
233
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gi(t), and to depend statistically on the previous pulse alone. More
precisely, we consider random processes of the form

x(t) = E c/n(t - 1), t e (- 00, ) (1)
n moo

where

tn < tn-1-1 (2)

dn(t) e {Mt) ! g, e L,(- oo, oo ); i = 1, 2, , MI (3)

P{ do = g, I = g ; d_2 = gk ; = Pfd,, = g, I dn_i = gil (4a)

PI (tn+i - tn) r do = gi ; d.+1 = gi ; r cii(r) (4b)

with tn signifying the nth occurrence time, and ci; the cumulative transi-
tion distributions.* For fixed i and j, ci; gives independently of n (i.e.,
the pulse position) the conditional probability of a direct transition from
pulse gi to pulse g; within T seconds after the occurrence of the former.
As in related studies, the statistical and combinatorial structure of (1)
is represented by the usual flow diagram of Fig. 1 in which nodes, or
"states," symbolize pulses gi , and directed links indicate possible
transitions. t

The flow diagram in conjunction with signal flow graph techniques
yields directly the more complex probability functions of general inter-
est.t Most important to the development here are the cumulative dis-
tributions for first occurrences or recurrences, viz.

- tn) r for some m > 1 i dn±, = g., ; do = gi

dni_m Mir/ = 1, , ???, - 1);T 0) qi;(r).

As indicated, qi; denotes the conditional probability of a first occur-
rence (recurrence if i = j) of state j within T seconds after an occurrence
of state i. Although less basic than ci; , functions qi; are entirely suffi-
cient for the calculation of spectral densities; consequently, in this paper
the set fqi11 is regarded as initially specifying the Markov process in

* As applied here, the terms "cumulative distribution" and "distribution"
pertain to probability theory and distribution theory, respectively.

Zadeh2 identifies the occurrence of state i with the generation of a unit impulse
at node i, the impulse in turn functioning as the input to a linear filter with im-
pulse response gi ; the corresponding responses due to all the nodes of the system
are added directly to give the original pulse train.

The expositions by Huggins' and Aaron' illustrate in detail the various flow
diagram methods by which transition and recurrent event probabilities of higher
order are calculated.

(5)
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Fig. 1 - Flow diagram.
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accordance with the following constraints:
(i) To comply with the usual probability conventions, we assume qi;

to be monotonically increasing, sectionally continuous, and such that

0 DJ( T) 1,

qii(T) = 0,

r [0, CO)

T e(-00,0).
(6)

Under these conditions both qi, and the probability densities hi( 7)
cil( 7) exist as distributions, or generalized functions.* (Earlier in-
vestigations have used f; exclusive of qi,.)1,3

(ii) For pulses to occur with certainty and at distinct times (t. <
in+i), it is required that

go(T) 1 (7- co ) (7)

qi1(0) = qi1(0+) = 0. (8)

Condition (7) merely asserts that every state is accessible from every
other state, i.e., that the system is irreducible.

Assuming the specification of pulse trains x(t) by either qii or f,, and
denoting the spectral density of x(t) by Szr(f), we prove below that

* Briefly, an ordinary function f(t) is an element of the space of distributions, or
generalized functions, provided [1 + t2J-Nf (t) c L1(- 00 ,00 ) for some N Z 0; more-
over, for such functions as f (t) there exist distribution derivatives of all orders
and generalized Fourier transforms.° .5 .6
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szz(f) =a0{E E Gi(g)G;(s) [pi (1 _FilF(sii)(s) + 81)

± Pi (1 -Fiigi)(g))1}

where

Gi(s) = f g,(r)e"dr = cegi

Fii(s) = fe8Tdqii(r) f e-"fii(r) dr = cefi;

(9)*

s = a + 2irif, s = a - 2irif, i = /-1, f = frequency
-1

1

pi = [f rdqii(T)1 = lim
l

8 -
L0 Fii(s) Fii'(0)

a>0

fi (i = j)
at; =

o (2: j)

and lim(D) { }
signifies a distribution limit (cf. Ref. 4, p. 107, and Ref.

5, p. 183). The presence of lim(D) and the conjugated variable in rela-
tion (9) is especially significant, both features constituting the essential
modification of the spectral density expression given by Zadeh (cf. Ref.
2, Eq. 9, and Ref. 1, Eq. 10b). These two formulations prove equivalent,
however, relative to continuous spectra. Specifically, if f is such that
Fii(27rif) 0 1, then the distribution limit reduces to an ordinary limit,
and Szx represents the same point value of the continuous spectral
density as results from Zadeh's expression. On the other hand, analyzing
discrete spectrat requires a proper interpretation of functions

1

1 - Fii(s)
in the vicinity of points s = 2irif for which Fii(27rif) = 1; hence, the
notion of distribution limits is in general necessary. Another item to be
noted in (9) is the functional form of g, . Although it is assumed that
gi e L1 , one can relax this restriction in certain cases by first considering
an infinite sequence of functions gi(m) e LI such that gi(m) gi e Ll
(m 00), and then performing a second limit operation on the corre-

* The quantity [Fif(1 - Fii)-1 o1 f] = Uii(s) in (9) corresponds to the Laplace
transform of what Huggins terms the "expectation density" [cf. Ref. 1, Eq. (10b),
p. 80].

t The term "discrete" relates to both the discrete power spectrum and the line
spectral density composed of Dirac delta functions.
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sponding density functions Ssz(m). An example illustrating this approach
appears in Appendix A.

The following development deals primarily with the distribution
theoretic formulation of (9) and its decomposition into discrete and
continuous components. A detailed proof of this formulation and an
analysis of the two types of components are given in Sections III and IV,
respectively. Discrete spectral density expressions for the basic classes
of first -order Markov pulse trains are derived in Sections 4.3, 4.4, 4.5,
and 4.6 (cf. Theorems II -VI).

II L THE HUGGINS-ZA DEH SPECTRAL DENSITY FORMULATION

In deriving Sxx , we find it convenient first to decompose x(t) into M
separate pulse trains which consist individually of identical pulses; i.e.,
we set

where

x(1) = 4(1 - 1.) = xi(1) (10)
sroo i=1

00

xi(1) = E gi(t - t'"))

t,(0 i I Cjn = gi)

tn,") <(1)
tna(i) < 0 < 0)

1.") > (m 0).

Therefore, by standard spectral theory7 Szx can be written as

Szx(f) = EE
where

Szixi ( f) = EMI (D) 1
El [a  xiT][a  xiTi }

7,-.) 2T
Ni

x,r(t) = E g,(t - t,n(i))
m=Af

N; = sup {m t,(') e [- T, 71)

Mi = inf fm t,") c [-T, 711
00

g  = dt e2xin(i = -V=1).



238 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

It is noted here that Sziri , the cross -spectral density of xi and x; ,
holds for both stationary and nonstationary processes.

Combined with the relation
N

axi, = G2(27rif) E exp ( -2riftm"))
Mi

(11) reduces to

Sxx(f) = Gi( -27rif)G;(27rif)Sti(f)

where

1 {Nit -I-.4
Sii( f) = lim(D) E E exp [ -2rif(t(') -

T .611
2_,

Mi M

To transform the summation indices in (14), we let
CO (i) (ii)

bin = Tm,k

where integer k > 1 indicates the number of occurrences of state j in
the interval (tm"), t,,(1; further, to eliminate the variation of summation
indices across the ensemble, we define a weighting factor n,,k(") such
that

(ij)

nm,k - im(i) and tn(i) E [- T ,T], tm(i) < tn(l)

0; tm") or tn(j) z [- T ,T], tm(i) < tn(l) .

These definitions along with condition (8) relating to distinct occurrence
times yield

Ni Ni co co

E ex [-27rif(0) - t."))1 = E E nm,k" exp ( -2rifr,k(i")
Mi Mi k=lm=-co

co co

+ E E ui) exp (27rifT,n,k(li)n.,k

(16)

(17)

k=1 m=-co

with NiT equal to the number of occurrences of state i in the interval
[- T ,T].

As random variables for the time difference between occurrences,
T,,k(if) are characterized statistically by the cumulative distributions

 In particular, (15) and (5) imply that

/3{ = qii(r) (18)

Moreover, since the quantity

qi,(T - T')[q,(T' 1 AT) - q,;(71)]
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gives the approximate probability of two specific occurrences of state
j within r seconds after that of state i, it follows that the total probability
of all such mutually exclusive events is expressed as

1irm,2"j) 5 r} = f qij(r - r')dqii(r') qi,(2)(7). (19)

Generally

P{Tm.k(ii) =T} =rrJ qij(k-1)(r - dq,,(r') = qii(k) (T) (k 2)
(20)

(1)
qii (7) qii(T)

At this point we introduce a basic device with which to simplify the
summations in (17) as well as justify the interchange of various limit
operations employed below. If functions qt; are specified so as to vanish
not only for T < 0 [cf. (6)] but also in an arbitrarily small neighborhood
( - E, e), then there can be only a finite number of states in any finite
time interval (i.e., P{ -T < inz(i) < T} = 0 for all I m I sufficiently
large), and the summations in (17) remain finite. Despite this initial
restriction on Di , the spectral density proves continuous in e; conse-
quently, the resultant spectral formulation is viewed as having a final,
nonexplicit limit corresponding to E 0. Such a limiting procedure is
entirely sufficient for physical pulse trains.

For evaluating the expectation in (14), we first define

Hence, for any state i

1
--T

lim(D) E di 1( 1)T2 m -T

= lim(D)
T 2T

= lim(D) E
T 2T

Cr

= IE ft.") -
1

dx

r

t} (21)

(x 0 )
(22)

(x < 9)

(23)

t) - ( -T - t)] dPm(t)
(24)

- t,) dt' liras -E iT}2T
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On the other hand, since

1 - C"
S

1 - e-"

-+ T (s -*0)

T (Re s = a>> 0)
S

the dominated convergence theorems yields

lim
r (1 - e-")

1 - Fii(S) \S
a>0 a>0

=

[f00 --1

0
rdqii(r)

.

=
1

EINiTI.

Thus, again by the convergence theorem, there results

pi
0

e-27ifr dqii(k)(7)

(25)

T-r
lirn(D) -±- [E f dPm(t)1e-27r dqii(k)(r) (26)

T 2T o m -T
2T

liM (13) -1 E
T

dP (0 e-27rifr dqii(k) (T).
1

T 2 L

Fundamental to the analysis of (26) is the following distribution the-
oretic identity, a detailed proof of which appears in Appendix B:

lino) fp' dqq(k)(,) limo))
Fi,(s) (27)

k---1 0 .-0+ 1 - Fii(s)

From (26) and (27) it is found that

f.lim(D) E pi e-2'irr dqii(k) (T)
N k=1

N o0 2 T T-7
lim(D) lim(D) I f dP,(t) e-21rifT dqii(k)

-
(r)

N k=1 r 2T 0 T

oo oo 2T

LL
iim(D) E E dPm(t)1 dqjj(k)(T)

T 2T k=im--. 0 T

= lina(D)
1 E E E nm,k(") exp ( -27rtfrm.k ("))

T 2T { k m

= pi lirn(D) F"(S)
a-.0+ 1 F ii(s) 

Hence, (13), (14), (17), (25), and (28) combine to give

(28)
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s..(f) = {E E Gi(g)Gj(8)
a-.0+ i

(29)
Fii(s)

a[Pi u) P' - Fii(g) )1}\fi(s) / Fii(g)
1 -F

IV. DISCRETE AND CONTINUOUS SPECTRA

The evaluation of the distribution limit in relation (9), as shown be-
low, centers mainly on analyzing the asymptotic behavior of functions

Fif(s) (Res = a > 0) (30)1 - Fo(s)
as the variable .s approaches singular points along the frequency axis,
viz., points s = 27rif for which F;;(27rif) = 1; the results of this analysis
together with certain general properties of F11 serve to resolve S.. into
discrete and continuous components.

Considering singularities of (30) first, one notes that

F (0) = f clqii(T) = lim qu(r) - TH(0) = 1
0

Fii(s) I e-("dgii(r) = a f Carq.u(r)dr
0

<a f' c urdr = 1 (Re s > 0)
0

F -27rif) = Pii(27r2f).

Consequently, for all processes point s = 0 is singular, points in the open
half plane Re s > 0 are nonsingular, and the existing singularities on the
frequency axis occur in conjugate pairs. In establishing notation, we
define

8,, c is I ii(s) = 1;
si,n = 27ri j, =

< f n

fJ,o=0

[fo'

= PL-n

= P1

Re s = Oil

T exp ( -sj, r) dq.u(r) = -

(34)

(35)
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Then, as in (25)

1

-11 -F
. .

- [f exp ( -si,nr) dqii(r) -f e dq,-;(7)
1fi(s)0 0

1 I 1°' I-1 - exp [-(s - si,n)r]]
s - si,n tJo L 8 - si,n

1
7),,n8 -

 exp ( -si,nr) dqii(r)

(s , Re s > 0)

}-1

(36)

On the basis of this asymptotic result it is found convenient to rearrange

(30) as

where

Fii(8) - Qii(s) Ro(s)1 - FJ;(s)
(37)

Qii(s) - Fii(s) E p,,n I-
s +

1s
n s

1 (38)
i2 L, -

Rii(s) = Sij(s) - E pa.Tn(ii)(8) (39)
n

Fi.(s)
Sii(s) \ Fi.(s) E Pj,n

1 - jjksi n s - Sim
(40)

Tn(o(s) Fii(s) 1 1 (41)
2 Lg + si,n s- si,j

The summations in (37) are considered for the moment to be finite and
to involve only those singularities present in a frequency interval

(-f A y f A) 

4.1 Functions Qi; and Ri,

It is shown next that for f e ( -fA , fA ) functions Qi, and Ri; can be
identified as contributing respectively to the discrete and continuous
spectra:

(i) That functions Qi, give rise to only discrete components follows
immediately from the relation
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Lim(D) Gz(OG,(8)Qii(s)
a-. 0+

= iiGi(-27riDG;(27rinFii(27rin]

2a.E pi, lim(D)
[a2 470(i -f

= 1[6 iGiF jif E pj, lirn(D)a .exp [-(a
a

I 1) 27ri f i,ntJ (42)

= E pi,n5iim(D)  exp [- (a I t I) 2rif ,,nt]a
n

= 2[01G,Fijf E  exp (2221;m1)

= E Pima(/' fi.n)

(ii) As regards functions Ri; , we first determine the behavior of func-
tions Si; in the neighborhood of points si,n . Substituting definition (35)
into (40) yields

s,,(s) P'2, 1 -F;; s - s,,,,[

- ..Fi, f r
-

- exp [- (s - si,)711
1 - F11 L s -

 exp ( -si,nr) dqii(T)}
(43)

Pj.217jj(Sj,n) f
T2 exp ( dw(T)

0

(s si,n , Re s > 0)

which implies that functions Si; are both bounded and integrable in
( -f A , fA), and that points si,n correspond to simple poles with residues
pi,nFii(si,n) Since functions Si; are integrable, they can contribute to
only the continuous portion of the power spectrum. Regarding functions
Tn(ij) next, we note that
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lim(D) Gi(g)G;(s)T(ii)(s)

= iim(D) [ 471-i( f -
a2 47r2 ( f - ,)2

= .1[6 iGy ii] f lini(D) y. RA u( t) )
a

 exp (-a I t I ariff t)

5] f5 [ ( ( - ) - u(1)) exp (27riff,0]

= 1 ]-+ oo
272(f - fi,,i)

Hence, in a deleted neighborhood of s;,. , functions 777(il) appear to pre-
dominate all other terms of S... For showing that functions T." in
fact sum so as to remain bounded, we set all pulses equal to zero except
one, viz., gi . If under this condition S. becomes unbounded as f ,

then (44) and (9) give

(44)

-÷

Szr(f) rs.-' Pill ill) f
-1

[27,i(f fi,n)])

(I -4 fi.n)
However, since the factor in braces is continuous at h.. , the sign re-
versal of the unbounded factor indicates that Srz assumes, contrary to
definition, arbitrarily large negative values; therefore,

- 13;.7F1J( = 0

which by (34) becomes

j,n = j ,ri = P1. -n

(45)

(46)

[The trivial case pi,. = 0 need not be considered inasmuch as the associ-
ated terms in (37)-(41) vanish identically under this condition]. Condi-
tion (46) is sufficient as well as necessary for the ratio

Fii(271-if ) - F11( -27rif ) [F,),(85.0 F1/(§1,n)] + 0(i - h,n)
27ri ( -

- [ 1 + 0(f - fi,n) (47)
Pi.n

= 0(f fj,n) (f
to be bounded in a neighborhood of point fi, . Similarly, allowing two
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pulses to be nonzero and arbitrary yields

six( f) pipi.n[CiGiFii - [27ri (f-11 fi,n)]

+ pi , pi,n,[0;GiFji - [27ri(fi1 (f f),)
sm

where the second term is present provided fj,n = fi,m . It is evident that
with the second term absent and both gi and g; arbitrary the first term
cannot be made to vanish identically at hn ; thus

245

Sj,n = Si,rn = Si,n = Sn

(48)

(49)

and

+ i[p - = 0. (50)

Again because of arbitrary gi and gi there results

PiPi.nFii(27rifn) = -27rif). (51)

As in (47), this is a necessary and sufficient condition that (48) be
bounded in a neighborhood of point f = = fn ; thus, for f e ( -fA , fA)
functions Tn", Si; , and sums Ri; contribute to only the continuous
spectrum. It is important to note that although the use of Ri; is neces-
sary for an appropriate decomposition of Sex , the complete continuous
spectrum can be obtained directly from relation (9) with f fn [cf.
(9) et seq.]. Nevertheless, from a computational standpoint functions
Ri; might be more suitable.

4.2 General Formulation for Discrete Spectra

At this point we consider in detail both formulae and existence criteria
for the discrete spectral density. With respect to the complete spectral
density, the substitution of definition (37) into (9) gives at once the
decomposition

S.(i) =a0+ Gi(g)Gi(s)iPz(2,J(s) PJQ/i(g)1}

liM(D) 1 E pi I Gi(s) 12 + [ThRi,(s) p,R,i(g)1} (52)
a--.0+ 1

where according to the properties of functions Qii and Ri; [cf., (42),
(51) et seq.] the first term in braces consists of discrete components only,
and the second is bounded for f e ( -fA , f A ). Consequently, on letting
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Sxx(d)(f) denote the discrete spectral density in the interval ( -fA , fA),
we obtain

S.(d)(f) = lim(D) IEE Gi(g)Gi(s)[piQii(s) + p ,Q ii(S)} (53)

which by (42), (46), (49), and (51) becomes

S..(d)(i) = 2 E CA[PiFia P.i,a5(f -

 P3P3i pi,no(f + In)]
71

= L EE E pi,o(f - In)

 P ji E pi-nof +
71

EE E pipi.no(/ - In)
z 3

= [E -274)
n

G;(27rif)Fi5(27if)15(f -

(54)

Since the interval ( -f A , fA) is arbitrary, the sum over n in (54) can be
extended as a distribution limit to include all the singular points along
the frequency axis; hence, this expression represents the general formula
for the discrete spectral density. In the sections immediately following,

formula (54) is applied to the two fundamental classes of first -order
Markov pulse trains: entirely random and stochastically uniform pulse

trains.

4.3 Discrete Spectra of Entirely Random Pulse Trains

We define the processes under discussion to be entirely random if for
at least one state i

qu(r) = 4ii(r) + E ak(ii)iler -
k

fii(T) = (7) = diAr) + E ak(ii)

0 5 ak(ii) 5 1

+ E ak(ii) = 1
k

rk(ii)

(ii)
rk ) (55)
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where eh, is either continuous and strictly increasing in some interval
(TA, TB), i.e.

4,/(7) > 0 T C TB) (56)

or 4i, vanishes identically and the set of parameters TIP) consists of two
or more incommensurate elements. Processes of this class are character-
ized more completely by the following theorem:
Theorem I: A pulse train is entirely random if and only if for any state i

F ii(27rif) 0 1 (f 0)

Fii(0) = 1.

For such processes all first recurrence distributions qii have the same form.
Proof: The second condition of (57) is merely a restatement of the gen-
eral result given by (31). To establish the sufficiency of the first condi-
tion, we consider the only possible form for qii not representable by (55),
viz.

00

qii(T) = E ak(") pier - k711)
k-1

fii(T) = E ak(ii)(5(7 - i).
k

This yields

(57)

(58)

F = E «k(it)e( -21-ifkTi) (59)

whence

Fii (27ri, --;11;) = 1 (n = 0, ±1,  ). (60)

Therefore, any qii satisfying (57) must be representable by (55), and the
process entirely random. To establish necessity, we consider (55) to be
satisfied for at least one state i. Under condition (56)

e
-2rifr

dQ'ii(T)
TA

whence

TA

Fi,(27rii) I <i d4ii(T)

-2rifril t
qii

dr

erg TB

< = d4ii(r) (f 0)
7A TA

ak(ii) fo
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On the other hand, with aii 0 and rk(") incommensurate

F ii(27rif) I = E ak(") exp ( -27rifrk(it)) < 1 (f 0).

Thus, (57) is necessary for state i. Finally, since Fii(27rzfi,n) = 1 and
fin = fn for all i [cf., (31), (34), and (49)], the realization of (57) for
any qii necessarily implies the same realization and consequently the
same form for all qii

Theorem I, although essential to the treatment of discrete spectra, is
not the only test for identifying entirely random processes; a somewhat
more direct test is afforded by the cumulative distributions ci; . In par-
ticular, functions gi; have form (55) provided at least one of the functions
cif does also. This fact follows from a basic property of irreducible
processes, viz., the property that each density fii = Di( T) equals a
specific combination of positive sums and convolutions of all the densities

As regards singular points sn and discrete spectra, it is clear from The-
orem I and (34) that the point s = so = 0 constitutes the only singularity
of entirely random processes; therefore, the formulation given by (54)
becomes

Szz(d)(f) = PiPLoG;(0)G;(0)Fif(0)15(f)

= [ pip ,Gi(0)G j(0)18(f).

This expression leads immediately to the following result:
Theorem II: The discrete spectral density of entirely random pulse trains is
given by

S..(d)(f ) = {f pigi(t)1 dt} SU) (62)
2

which vanishes if and only if

pigi(t)idt = 0.

(61)

(63)

Comparing (62) with (54), we note that Theorem II applies to the
3(f), or dc, component of all the processes treated in this paper.

4.4 Discrete Spectra of Stochastically Uniform Pulse Trains

Processes not classified as entirely random are defined here to be
stochastically uniform. It is evident that the only first recurrence dis-
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tributions representing the uniform process, i.e., satisfying neither defini-
tion (55) nor the criteria of Theorem I, must be of the form

qii(r) = E ak(")µ(r - kT i)
k=1

0 < ak(") 1 (64)

Eak(ii) = 1

where parameters Ti are assumed to have the largest values possible.
Under this specification

1?(27rif) = E ak" exp (-27rifkTi)
k=1

Hence, on letting 10 denote the state for which

T,0(i = 1, 31)

we find that all the singular values fn satisfying

Fioio(27rifn) = 1

are given by

=

Furthermore, since

Tio

(65)

(66)

(67)

(n = 0, ±1, ). (68)

= 1

for all states [cf. (34) and (49 )b then

= Ti = T = 1, , 111)

(69)

(70)

which in turn implies that all Fii are periodic over an interval of length
and all functions gii have the basic form

qii( r) = E ak(ii)g - kT). (71)
k=.1

Considering also relations (65), (68), and (35) it is seen that

Pim = LE Tak = pi,o = pi. (72)

Finally, results (68), (70), and (72) combine with (54) to give the
following theorem:
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Theorem III: The discrete spectral density of stochastically uniform pulse

trains is given by

Sxx(d)(f)

= [EE pipiGi( -27rif)G;(27rif)F;;(27rif)1 E a(f - n/T) (73)
n =--co

T=
Fii(27rif.) = 1

which vanishes if and only if

or if

PiP jF =

[EE = 0

At this point we consider a special but very important subclass of uni-

form pulse trains, namely, that of uniformly positioned pulses.

= 0, ±1, ) (74)

(-00 < f < ). (75)

4.5. Discrete Spectra of Uniformly Positioned Pulse Trains

Pulse trains are defined to be uniformly positioned over a reference
interval of length To if the time intervals between successive pulses can

assume only the discrete values kTo(k = 1, 2,  ), i.e., if function qi;
take the form

qi.;(7-) = E ak"gr - kTo) (i, j = 1, , M)

0 ak(ij) 1 (76)

E ak(if) = 1
k

where To constitutes the maximum value for which this representation
is valid. With qi; so specified there results

F ii(27rif) = E ak" exp ( -27rifkTo) (77)

Consequently, for a particular state i the condition

airk,(") Z 0 (k' = 1, 2, )
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o
akci = u (k Kk') (78)

holds for some maximum K > 1, the corresponding function Fit is
periodic over an interval of length (KT0)-1, and the singular values f,
satisfying (69) are given by

n n
fn = K To =

In addition, as values f are independent of i, condition (78) must for all
states hold for the same value of K, the specific value in any particular
case being determined either from one set of coefficients ak(") , from (79),
or from the recurrence pattern associated with one node of the flow
graph. For all K > 1, relations (77) and (79) yield the general condi-
tions

Fii (27ri
jo

= 1

Fii (27i -k - on = Fii(27rifn) =

)Fij(27ri nK+To" = Fif (ri 16

K710

(79)

K > 1; i,j = 1, 'if; (80)n = 0, ±1, *)

Combining these conditions with (79) and Theorem III, we obtain

Sz.(d)( f) = [E E E (- KT)
K-1 co

= [E E E 6f -
TO

16 kKT0
k=0 n =-ao )

00

= [E E piMAGi r E 6
i n--00

K-1

+ E E E PiPiGi( -27rif)G;(27rif)
k=1 i j

( . k n KleT)}
F" Vari KToij

(81)

The following theorem is based on this last expression:
Theorem IV: The discrete spectral density of pulse trains uniformly posi-
tioned over a reference interval of length To is given by
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s xx(d) E piG,(27rif) 2 E 6 -
7 To2)

K -1

+ E {[E E PiPiGi( -27rif)G;(27rinFii 2iri Ki--1370)]
k=1 i j

K -
Tofii

F = 1

which vanishes if

7,-. \ To K7101

(K > 1; i, j = 1, 111; n = 0, +1,  ) (82)

E pigi(t) = 0 (83)

E pip,Fi, (27ri k f gi(T)q t) dy 0
KTo '

(k = 1, , K - 1).
A special case of Theorem IV is noted as follows:

Theorem V: The discrete spectral density of uniformly positioned pulse
trains corresponding to K = 1 is given by

Sx.(d)( f) = E piGi(21-if )2 t 8 f - -n)
Ton

fn
=

To

which vanishes if

(84)

(85)

E pigi(t) = 0. (86)

Titsworth and Welch' have proved Theorem V for special pulse trains
in which pulses are nonoverlapping and transitions occur every To
seconds. This theorem is also implicit in the classic work of Bennett on
synchronous pulse trains [cf. Ref. 10, Eq. (35), p. 1509].

4.6. Aaron's Discrete Spectral Formulation for Special Classes of Pulse
Trains

The analysis in Sections 4.3 and 4.5 yields the following theorem, a
result first obtained by M. R. Aaron:3
Theorem VI: The discrete spectral density of entirely random pulse trains
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and uniformly positioned pulse trains for which K = 1 [cf. (78) et seq.] is
given by

2
Szx(d)(f) = E {Res [E Gi(s)Uji(s) 6(f fn) (87)*

n an

where

Uji = Fii[1 - Fii] dii (88)

and Res [1 denotes the residue of the quantity in brackets at s = sn =

2rifn
Proof: From relations (36), (72) and Theorem I we find that

G.(s)F -(s)
R., Jens [i F:(s) = piGi(271-ifn)Fii(27rif) (89)

for either the entirely random or K = 1 case. On the other hand

Fii(27rifn) = 1 (i, j = 1, , M) (90)

in both cases [cf., (79) and (80)]; thus,

1.1e6 [ E = E pai(27rilf,),

Inserting this expression into either (61) or (85) gives formula (87).

V. SUMMARY

(91)

Theorems I through VI, which constitute the principal results of the
preceding sections, give explicitly the discrete spectra of first -order
Markov pulse trains. As presented, these theorems provide fundamental
existence criteria for not only the analysis but also the synthesis of such
processes. It is important to emphasize again that the distribution the-
oretic techniques employed in extracting discrete components from the
Huggins-Zadeh formulation are applicable also to more general spectral
formulations.
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* Huggins has shown that the sum Ei G:U,1 represents the Laplace transform
of the average signal following the occurrence of state j [cf., Ref. 1, Eq. (23a), p.
821.
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APPENDIX A

Entirely Random Square Waves

For illustrating the techniques that often apply to cases in which

gi z Li, we consider a random square wave process of the form

x(t) = a E (-1).-1[A(/ - 4,1) - µ(t - in)] (92)

Xi(t)= y(t) = 2a E (-Ong/ - tn) (93)

where y represents a two -state pulse train with pulses related by

gi = = 20(0 e L1

a = constant > 0

and an entirely random statistical structure (cf. Section 4.3) specified

by c12 , e21 , and

(94)

C11 = C22 = 0. (95)

(Note that states 1 and 2 can be identified with the +a and -a portions
of the square wave x.) Thus, in accordance with definitions (4b) and (5)

q12 = C12 , q21 = C21

qii = ci2(7- - 7-')dc2i (7-') = q22
0

whence

(96)

F11 = F22 = F12F21
oo (97)

0 Fii' (0)
= dq11(r) - P2 == p.

We next construct a set of "smooth" approximations to x; i.e., we
smooth out the corners and discontinuities of each of the pulse trains x

into a sequence {x,(1) of continuous waveforms such that

Sx.(f) = lim(D) Sx...(f) (m = 2,  )

x,' (t) = ym(t) = E (-1)"g(m)(t - tn)

where

(98)
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g(m) E

limO) g(m) = 2(6(0
m

(99)

g(m) (m) (no
g = 91 = -g2

Since pulse trains ym and y have the same transition properties and
therefore the same statistical specification ci; , the former process is
classified as entirely random; it then follows from the condition

E p i(m) = p(g1(m) + 92(m)) = 0

and from Theorem II [cf. (62)] relating to entirely random pulse trains
that S,, has no discrete components. Consequently, relations (9),
(97), (98), and (99) yield

471.2f2sz.( limo)) [472f2sxmxm(f )] lima*
m m

= lim(D) {2p I G(m)(27rif) 12
m

Re [(1 - F12)(1 - F21)1
1 - FI2F21

= 8pa2 [(1 - F12) (1 - F21)
1 - FI2F21

The most general function Szz satisfying this last expression is given by

2pa2 p (1 - F12)(1 - F21)
+

K1 (c) = K2e(f) (101)
R.2f2 [ 1 - F12F21

where the first term on the right represents a continuous component, and
constants K1 and K2 are to be determined. As spectral densities must be
even functions, K2 = 0. Regarding the discrete term, constant K1 is the
square of the de, or average, component of x; hence, with

roo

f: T dci2(r) - a dc2i(T)

ave[x(t)] -
dqn(T)

0

f= ap { r (1[(112(r) - q21(r)[}
0

ap [F21/(0) - F12/(0)]

(100)

(102)
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(101) becomes

S(t ) 2pc?
Re [(1 - F12)(1 - F21)

1 - F12F21 (103)

a2p2[F21(0) - F121(0)]26(f ).

It is important to note here that the discrete component in (103) arises
from the pulse structure of x and not from the singularities of [1 - Fu]-'.
A more extensive treatment of this particular pulse train has been given
by Aaron."

APPENDIX B

A Distribution Identity

Essential to the formulation of the spectral density is the relationship
between functions Fi; and the limit of

NN

E qii(k)(T) IM(T) (104)
k=1

as N 00 [cf. (11) and (18)]. It is convenient to consider initially the
integral

yN(T) dr = zN(T). (105)

Inasmuch as functions qij(k) and, consequently, yN are sectionally con-
tinuous, then

zN'(T) = yN(T) (106)

almost everywhere in the classical sense or identically in the distribu-
tion sense. Also, with qiik) > 0 [cf. (20)] function yN > 0, and

0 zN(T) zN(T + AT) (AT > 0)

0 -5 zN(T) zN+1(T). (108)

Considering the limit conditions on sequence IzA, we note first from
definition (20) and the properties of Stieltjes convolutionu that

0

N

e-" dzN(r) = E e" d[f go(k)(r) dT
k=1 0

= E 1
_ Fii(s)F1ik-1(s)

k=1 S

= N
Fi; - re,vN

k=1 S L1 - (Re s = a > 0).

(109)
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Therefore, the inverse Stieltjes transform12 yields

1 r, [ Fij ]e" ds
27ri a_i. s2 1 -F ;5

I fa -Fie° 1 rpFaiNi
ds.

2irt e Li - F1;
Finally, since (6), (8) and (9) imply

feif(s) f e-aT dqii(T) = a f Cargo(r) dr

< a f Car dT = I > 0; i,j = 1
0

then

1
a-Fioo r Fi;

27ri fa_i. s2 Li -

i27ri a_ i. 82 1 - Fij
[FiiFfiN le.,

ds
1

esr (Is sup
Fo(s)

1 - Fii(s)
r df

< co
Le. a2 + 47r2f2

Fii(s)Fit(s)
sup 1 - F B(s)

0 (a > 0)
N -> 00

and, hence, the limit

(110)

(112)

(a > 0)

df
a2 4r2f2

(113)

1 1 Fi;a-Fice

lim zN(T) = f [ le" ds E--- z(T) (a > 0) (114)
N-.00 2ri a-im 82 1 - Fii
exists. Relative to the asymptotic properties of function z we obtain
from (25), (114), and (107) the conditions

f0e°
e " dz(r) _ 1 Fij(s)

s 1 FI.7( 8) ST

z(T) S z(T OT)

(s - 0, a > 0) (115)

(AT > 0) (116)

which by Karamata's Tauberian Theorem12 give

5(\ Pi 2T) ""*..1 -2 T (T co) (117)

This asymptotic result together with (112) and (114) implies that

[1 T2]-2z(T) e Li( - 00,00 ). (118)
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Thus, function z is a proper distribution, or generalized function (cf.
footnote, Section II and Ref. 6, pp. 21-23). In addition, since

0 G zN(T) 5 zN+1(T) G z(T) (119)

then

lim(D) zN(T) = z(T). (120)

The functional properties of z as given by (112) and (117) imply also
that

lim(D) e'z(T) = z(T) (a > 0).
a-.0+

In combining (104), (105), (106), and (120), there results

5.z"(r) = liM(D)  g  ZN" T = 11111(D) ' yN'

(121)

N N

N oo

- rzfr dlij(k)(T).lim(D) E (122)

N k=1 0

On the other hand, (114) and (121) give

5-z"(T) = 5. 2
lim(D) [Ccrz( r )1

dr2

= a. lim(D) -K
2

+ 2a ce2) [Carz(T)1}
dT dr

= lim(D) {[(2irif2 + 2a(27rif ) «2]5[e-"z(T)]} (123)

= lim" {825. [e'z(T)]1
a

Ern (D) Fii(s)
a 1 - Fij(s)

We finally obtain from (122) and (123) the following identity

N - FiiN(27rif)1
iim(D)E e-2"fr dqjj(k)(T) = 11111(D) Fij(27if)F1

N-4.co k=1 0 N
(124)

L 1- F,;(27rif

= lim(D) Fi)(8)
«-.01- 1 - Fu(s)



MARBOV PULSE TRAIN SPECTRA

APPENDIX C

Definitions of symbols

x(t) - cf. equation (1)
xi(t) - (10)
4(0 - (1)
to - (1)
t,") - (10)
gi(t) - (3)
Gi(s) - (9)
8,g - (9)

= s, - (34), (49)
a - (9)
1 - (9)
ft.,' = - (34), (49)
cij(r) - (4b)
D1(T) - (5)
qij(k)(7) - (20)
Fii(s) - (9)
Ssz(f) - (9), (11)
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Imperfections in Active
Transmission Lines

By H. E. ROWE

(Manuscript received July 30, 1963)

The effect of discrete imperfections on the behavior of active transmission
lines (i.e., lines with distributed gain) is considered. Two cases are studied:

1. Lines with identical, equally spaced reflectors. The transmission and
reflection gains versus frequency are studied as functions of the magnitude
of the reflectors. Limits on the magnitude of the reflectors to guarantee sta-
bility are investigated.

2. Lines with random reflectors, having random position and/or magni-
tude. The statistics of the transmission are studied; in particular, the average
value and the variance and covariance of the transmission are determined for
small reflections. If the reflections become large enough, instability may oc-
cur, and these calculations may become invalid. Stability of active distributed
systems is studied in a companion paper.'

I. INTRODUCTION

In the present paper we consider the theory of active transmission
lines (i.e., lines with gain) with discrete imperfections. Both equally
spaced, identical imperfections and random imperfections will be con-
sidered. This study was suggested by R. Kompfner as a rough mathe-
matical model for the effects of imperfections in certain types of optical
maser amplifiers, in which the optical signal is reflected back and forth
through the active medium on essentially nonoverlapping paths by an
array of mirrors. A. G. Fox has suggested that this mathematical model
will also provide a description of a one-dimensional active medium (e.g.,
maser) with (one-dimensional) random inhomogeneities.

Consider an active transmission line that provides exponential gain to
both forward and backward waves, and further provides distortionless
amplification. The voltage (and current) then vary as

-rz
e - forward wave,
e+r. backward wave,
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(1)
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Since the line has gain,

F = -a +j13.

a > 0.

(2)

(3)

Since we assume distortionless transmission, the propagation constant
is related to the angular frequency co by

= co/v (4)

where the velocity of propagation v is a constant independent of the
frequency w. Further, the gain constant a is independent of w. We

may thus interpret 13 either as the propagation constant or as the
normalized frequency.

Consider a line with N discrete reflectors, as illustrated in Fig. 1.
The wave traveling to the right at a distance z is denoted by Wo(z),
the wave traveling to the left by W1(z), as indicated in this figure.
We take Wo(Lk+ ) and Wl(Lk+) as the right- and left -traveling waves
just to the right of the kth reflector ck , Wo(Lk- ) and WI(Lk- ) as
the right- and left -traveling waves just to the left of the kth reflector.

Each reflector is characterized by a scattering matrix relating inci-
dent and reflected waves. Thus for the typical reflector illustrated in
Fig. 2 we have

[w.(Lk_)]
Sk

LIVO(Iik+) IN -Lk+)

8
[S11 S12

S12 822

r LN

14-

Lk 1 I

14-11414- - 12 - -14- 13-'1 _1-k-41 14- 1N1
O '

I r
CI C2 C3 Ck-1 Ck CN-1 CN

k

Lk =
1=1

(5)

(6)

Wo (L k+)-- Wo(LN+)---)1

k- (L k+) - ( N+)

Fig. 1 - Line with N discrete reflectors.
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wo (L k-) wo (L k+)

WI (Lk-) WI (Lk+)

Fig. 2 - Typical reflector.

The incident and reflected wave amplitudes are assumed normalized
so that the power in any wave is simply the square of its absolute
magnitude. For example, if the reflected wave is absent at the left of
the obstacle in Fig. 2 the power in the incident wave is 1 Wo(Lk- )12;
similarly, if the incident wave is absent the power in the reflected wave
is 1 Wi(Lk- )12. We make the following assumptions:

1. The powers in the forward and backward waves are additive;
for example, the total power P flowing in the +z direction at the left
of Fig. 2 is given by

P = I Wo(Lk- )12 - w )12
(7)

2. The reflectors are lossless, and consequently have unitary scat-
tering matrices.2 For a reflector of a given magnitude there is a single
arbitrary phase parameter in the scattering matrix; this phase has
been chosen in such a way as to yield a scattering matrix for the obstacle
of the following form:

jc - c21
S =

V1 - c2 jc (8)

0<Ic 1 1.

c is a measure of the magnitude of the reflection; for c = 0 the reflec-
tion is zero and the guide is perfect. c is assumed to be independent of
frequency, although this assumption is not compatible with physical
realizability. We note that the matrix of (8) is correct only for co (or /3)
> 0. For w (or /3) < 0 the signs of the diagonal terms of the matrix
must be changed, so that the various responses will be real, even though
unrealizable; alternately, we may change the sign of c for negative w
(or /3).

Next consider the cascade connection of reflectors and ideal guide
sections shown in Fig. 1. We require the wave matrix A corresponding
to the scattering matrix of (8) for an obstacle. Referring to Fig. 2,
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[WO(Lk+)1
= Ak

W1(Lk-) Wl(Lk+)

1 1ck2rfick (10)

The wave matrix for the kth line section of length /k between reflectors

ck_i and ck is given by

[er'k 0
(11)

0 rrk TVI(Lk- )

Thus the matrix Xk for the cascade connection of the kth line section
of length /k and the kth reflector is given by

o(Lk±)-1,
x,

Wl(Lk+

(9)

, - 1 e+rlk -jCke

V1 - ck2 jeke-rtk e-rlk

(12)

The over-all wave matrix X for the line consisting of N sections in

Fig. 1 is

Wr 0,,,+)]
= x ,

L iv,(0) Wi(Liv+)

Setting

= X1X2  XN = 11 Xk ( 13 )

x
=[X11 X12]

521 X22
(14)

and referring to Fig. 1, the (complex) transmission and reflection
losses LT and LR or corresponding (complex) gains GT and GR are given

as follows:

LT = -1 TV0 )
XII ( 15 )

LR

GT Wo(LN+ )

1 Wo(0)=
GR I171 (0) X21

W0(0), W1(0) and Wo(LN+), the incident, reflected, and transmitted
waves for the entire structure, are illustrated in Fig. 1.

It has been necessary to state the above analysis in terms of wave

(16)
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matrices that give the input as a function of the output (instead of
vice versa) because the boundary conditions are known at the output.
The output is assumed to be matched, so that in Fig. 1

Wi(LN-E) = 0. (17)

In contrast, the reflection coefficient at the input is not known in ad-
1-Wo(LN-F )1
LW1(LN-F)J

vance, and so it is not convenient to express the output

as a matrix product times the input [Wo(0)1
WO)

We consider below two cases of interest:
(a) Identical, equally spaced reflectors,
(b) Independent reflectors with random magnitude and/or position.

II. IDENTICAL, EQUALLY SPACED REFLECTORS

We now assume that all reflectors have identical magnitude and equal
spacing. Setting

Ck =c, lk = 1

in (12), from (13) and (14) the over-all wave matrix becomes

X =

By the usual methods we find:

2'n X12x12 1 e
+rt N

221 X22 (1 - C2)NI2 [H-jc
e

---F1 e-ri (18)

1
xn = (K+a+N - K_a_N), (19)(1 - c2)N12(K± - K_)

1
S21 - (a+N - a_N ), (20)(1 - c2)N/2(K± - K_)

ct = cosh ri ± Vsinh2 ri + c2, (21)

jc e÷ri oe± - e-rt
- - a± jc (22)

With the help of (15) and (16) the transmission and reflection gains or
losses may be determined.

Consider the various xi; of (18), and in particular x11 and x21 of (19)
and (20), to be functions of j$1, where we recall from (4) that )3 is
proportional to the angular frequency co. We recall from the discussion
following (8) that these results are valid only for positive frequencies,
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/3 > 0. The xi; have certain general properties of interest. First, we have:

xi1[.i(i3/ + 7r)] = (

- X)] = (
Further,

0, (23)

0 < /3/ 7r. (24)

xi;[-.713/1 = xiMji3/1. (25)

Equation (23) shows that xi; is periodic in the normalized frequency /3,
of period 27r//. Equation (25) guarantees that the over-all response
to a real input is real. Taken together, (23) and (24) show that the
magnitudes of the losses I LT I and I LB I of (15) and (16) are periodic
in $ of period 7r//, and are symmetric about the points 131 = 0, 7r/2,

r, 37r/2, .

Consequently in studying the magnitudes of these losses
at real frequencies we need consider only the range 0 < #1 < 7r/2.

Next, from (19)-(22) it might appear that the various functions
xi; have branch points in the complex frequency plane because of the
radicals in these equations. This is not true, however; a little study of

these equations shows that the radicals really disappear for all (integral)
N. Alternately, by considering the matrix multiplication of (18) it
becomes clear that all the xi; are single -valued functions of r, and that
no branch points can appear.

We may thus determine the exact expression for the transmission
or reflection gain via either (19)-(22) or direct matrix multiplica-
tion in (18). However, we shall most often be interested in cases where
the reflection parameter c is small in some suitable sense; application of

perturbation theory to (19)-(22) greatly simplifies these relations
and permits a useful interpretation of these results.

Consider the radical in (21). If

lc k< I sinh rl I (26)

then we may expand the radical in a power series and retain only the
first correction term. Since

sinh 1'/ 2 = at + sin #1

(26) will be satisfied for all /3 if

c sinh al.

Therefore

Vsinh2 ri c2 sinh ri

sinh2 al, (27)

(28)

c2 (29)
2 sinh ri
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Then (21) and (22) become:

Cy
CYO v er 1 ± 9 sinh F/ '

K+ j2er1 sinh Fl

K_ j1eri

sinh Fl

Substituting (30) and (31) into (19) and (20) and neglecting various
small quantities, we obtain the following approximate results:

1- (1 c2)N/2
eNrt [

F

521 =

2 sinh Fl
(c ---2N11

1)

jc _rz sinh NFl
- c2)N/2 Fl

(32a)

(32h)

(33)

We make one further assumption, often used below, that the total gain
in the absence of reflectors (c = 0) is large; i.e., referring to (2) and (3),

eNal

>> 1.

Then (32b) becomes

(34)

2

(F =
e

>>
2NTI

eNat 1.

2 sinh Fl) (35)

So far we have ignored the question of stability; it is clear that such
an active device can oscillate under some conditions. If the device does
oscillate, our present results for loss (or gain) lack physical significance,
for reasons discussed below. Instability can occur only if the gain func-
tions of (15) and (16) have poles in the right -half complex frequency
plane; if all poles of GT and G. are in the left -half plane the device
will be stable. Since from (15-16) the poles of the G's are the zeros of
x11, we investigate the zeros of rl, as given by the approximate expres-
sions of (32a) and (35).

For c = 0, i.e., with reflections absent, the device will be stable, and
consequently the zeros of xi, lie in the left -half plane. It seems obvious
on physical grounds that the device remains stable for small enough
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values of I c I , and will oscillate only when I c I exceeds some critical
value. Assuming this to be true, we determine the conditions for stabil-
ity by finding the minimum value of I c for which a zero of x11 appears
on the real frequency axis, i.e., for some value of 13.

From (32a) the zeros of x11 occur when

F = -1. (36)

Equivalently,

II' = 1; (37a)

= ±r, ±:;r, . (37b)

Noting that

sinh2 Fl = sinh2 ( - a -I- j(3)/ = (sinh2 al -I- sin2 131) e -j4, (38a)

-1
tan 0/=tan tank al

(38b)

where the principal value of tari-' is implied, we have from (35)-(37)
the following approximate relation for a zero of x11 lying on the real
frequency axis.

Thus

e2Nal e -j(2101
-2,p) -1.F (39)

4(sinh2 al ± sin2 (31)

Ni3l = cc + (r/2) mir; In = 0, ±1, ±2, (40a)

C2 2Nai = 1. (40b)
4(sinh2 al -I- sin2 e

c is given by (38b). We now fix al and find the smallest value of I c I

for which (40) has a solution. Equation (40a), together with (38b),
can be readily seen to have 2(N - 1) roots (X); for 0 < $1 < 2r.
For each of these roots there is a corresponding solution c = ± I ci I

for (40b). It is obvious that the smallest of these c; I corresponds to
the smallest (PO which is that root lying closest to $1 = 0 and which
we denote (0/)1 .

For convenience we summarize the approximate results derived above
in the present section.



From (41d) and (44)

and consequently
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xi' - (1_1C2)N12 e'a't±[1 Fj

F = e21,1112 sinh ri

C2
e2Na 6 0l -j(21-20

4(sinh2 al + sin2 /31)

(41a)

tan /3lco= tan--
tanh al (41b)

Conditions:

c I << Vsinh2 al ± sin2 fit (41c)
eNal

(41d)

The results of (41a) and (41b) will he valid for all /3 if the condition of
(41c) is replaced by the more restrictive condition of (42):

c I « sinh at. (42)

The maximum value of the reflection coefficient magnitude I c I that
yields a stable amplifier is given as follows, subject to the conditions of
(41d) and (42)

N(13/)1 = tan-' tan (fli)1 + (principal value of tan -1) (43a)tanh al
2c-Nal 1/sinh2 al ± sin2 (3/)1. (43b)

In deriving (43) we required that the results of (41a) and (41b) be
valid for all /3. Consequently the more restrictive condition of (42)
must hold; however, it is not obvious in advance that (42) will end up
being satisfied in all cases. However, it is easy to show that this is in-
deed so, so that the approximate limits on I c imposed by the require-
ment of stability are indeed given by (43), so long as (41d) is satisfied
(i.e., the high -gain case). From (43a) we have

(3/),. < r/N. (44)

(001 « a/ (45)

sin2 (PI « sinh2 al. (46)



270 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

Equation (43b) thus guarantees that the more restrictive bound of
(42) will always be satisfied in the high -gain case.

The general behavior of the gain -vs -frequency (or 131) curve is readily

seen from (41a) and (41b). In the second line of (41a) the first factor
and co vary slowly with [31, while the factor e-'2 N'51 varies rapidly. The
angle of F increases steadily as 131 increases from 0 to 27; the magnitude
of F is largest at $1 = 0, 7, 27, , and decreases rapidly away from
these points. Therefore the gain GT of (15) plotted vs Q1 (or frequency)
will have an oscillatory behavior, with the magnitude of oscillation

greatest near 01 = 0, 7, 2r, , and quite small elsewhere. The larger
N, the more rapid will be the rate of oscillation.

It is instructive to consider a few numerical examples. We consider

the following two cases:

20 logio eNal

(1) 20 logio eat =
N=

(180/7)  MI =
lc Imax =

(ii) 20 log10 eat=
N=

(180/r)  (#01 =
C Imax =

20 logo eaLN
30 db, total gain in (i) and (ii) below
1 db, gain per section
30, number of sections
4.05°, phase shift per section at oscillation
0.00860, maximum value of reflection coefficient
for stability
0.1 db, gain per section
300, number of sections
0.405°, phase shift per section at oscillation
0.000860, maximum value of reflection co-
efficient for stability.

The total gain in both cases is large, and hence I c I max has been com-
puted by (43). The transmission gain GT plotted versus the normalized
frequency 31 for these two cases is shown in Figs. 3 and 4 respectively
for several values of c. These results are computed by direct matrix
multiplication [see (18)] rather than via (19)-(22) or via the approxi-
mate results of (41). Figs. 3(a) and 4(a) show the gain vs normal-
ized frequency for three values of I c I less than I c Imax as well as for

c = I c Imax [computed via the approximate results of (43)], which
corresponds to the limiting case of stability. It is readily seen how the
device approaches instability as c approaches I c Imax . Figs. 3( b) and
4(b) show computed curves of the "gain" versus frequency for a value
of c greater than I c 1... . Under these conditions the device is unstable,
so that these curves have little direct physical significance; however,
these curves do not look too different from the stable ones of Figs. 3(a)
and 4(a). This should provide explicit warning against taking any such
computed curve seriously without first investigating stability.
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1'1It.,I 0.00711 (a)
STABLE

/

e - 0.00465
I

...0.00860 (a)
STABLE

0 10 20 30 40 50 60 70

180 81 ,NORMALIZED FREQUENCY IN DEGREES

80 90

Fig. 3 - Transmission gain vs normalized frequency for one-dimensional ac-
tive medium with identical, equally -spaced reflectors. N = 30, number of sections;
20 logio ea = 1 db, gain per section; total gain = 30 db; c = magnitude of reflectors,
parameter indicated on curves.

A detailed picture of the behavior of these devices could be worked
out in terms of the poles of the gain function in the complex plane. For
small I c I the poles lie in the left -half plane. As I c is increased the
poles move toward the j -axis, causing greater oscillation in the gain -

frequency curve. As I c I c I, the closest pole touches the j -axis,
causing the gain to approach infinity at one frequency. Finally, as

c I becomes greater than I c Imax this pole moves to the right -half plane
and the "gain" -frequency curve becomes finite. As I c I increases further
the first peak decreases, but the next pole approaches the j -axis, so that
the second peak increases, approaches infinity, and eventually decreases.
The different peaks in the gain -frequency curve behave in a similar
manner as the various poles cross the j -axis in succession.

Figs. 5 and 6 show similar curves for the reflection gain GR . GR
approaches infinity for the same values of I c and f31 as does GT ; this
must be so, since for the limiting case of stability, power must emerge
from both ends of the device in the absence of any incident wave. As in
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a-- 0.000815
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STABLE

200
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18077- AL, NORMALIZED FREQUENCY IN DEGREES

(b)
UNSTABLE

8 9

Fig. 4 - Transmission gain vs normalized frequency for one-dimensional ac-
tive medium with identical, equally -spaced reflectors. N = 300, number of sec-
tions; 20 logio eal = 0.1 db, gain per section; total gain = 30 db; c = magnitude
of reflectors, parameter indicated on curves.

Figs. 3(b) and 4(b), the curves of Figs. 5(b) and 6(b) correspond to
instability and hence lack direct physical significance.

If the total gain in the absence of reflectors is not large, then the
above results of (43) are not valid, and the approximate results of (41)
are not valid over the entire range of permissible values of c. It is in-
teresting to examine the exact computer solutions for one such case.

(iii) 20 logio eat = 0.1 db, gain per section
N = 50, number of sections

20 logio ea' 20 logio e0LN
= 5 db, total gain

(180/7)  ($01 = 5°, phase shift per section at oscillation
c 'max = 0.065, maximum value of reflection coefficient for

stability.

Gain -frequency curves for several values of c are shown in Figs. 7 and
8. The values of (CI and I c Imax given above have been determined
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ii
I t

t

1

(a)
STABLE

/ \\
A , -0.00711

\....../\
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\

-....._
N 0 00465 14--------_-...-__--.---_

""

1E---0.00860

--0.00815

(a)
STABLE

10

(b)
UNSTABLE

10 20 30 40 50 60 70 80 90
180
7-7-51, NORMALIZED FREQUENCY IN DEGREES

Fig. 5 - Reflection gain vs normalized frequency for one-dimensional active
medium with identical, equally -spaced reflectors. N = 30, number of sections;
20 logic ea' = 1 db, gain per section; total gain = 30 db; c = magnitude of reflec-
tors, parameter indicated on curves.

from these curves. As above, Figs. 7(a) and 8(a) show the transmission
and reflection gains for the stable case, I c I c J,,, , while Figs. 7(b)
and 8(b) show the "gains" for an unstable case. The general comments
given above for examples (i) and (ii) apply also to this case. The
approximation of (43), which was valid in examples (i) and (ii) above,
would have predicted (131)1 = 3.37°, I c Imax = 0.0135 for the oscilla-
tion conditions; this approximation is quite inaccurate in the present
low -gain case, particularly for I c

Straightforward calculation based on (18) or (19)-(22) in the peri-
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flectors, parameter indicated on curve.

odic case, or (12) and (13) in the general case, will of course always lead
to some definite result for x11 as a function of frequency, whether or not
the device is stable. However, only if we are assured that the device is
stable will have the desired physical significance of the steady-state
loss function LT . If the device is unstable it will of course oscillate, and
ultimately the linear behavior assumed here must break down. However,
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by demanding that the device be at rest at t = 0 and examining the
initial build-up of oscillation, the mathematical significance of x11 may
be examined in the unstable case. Suppose the device is initially at rest,
and a sinusoidal input is applied at t = 0. The total response may be
divided into a steady-state response, whose envelope is constant with
time, and a transient response, whose envelope ultimately grows or
decays exponentially with time in the unstable and stable cases re-
spectively. The steady-state response is given by x11 in both cases. In
the stable case, since the transients ultimately decay with time, only
the steady-state response remains. In the unstable case the steady-state
response retains the same mathematical meaning, but since the tran-
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sient response grows exponentially with time, the steady-state response
loses much of its physical significance.

III. RANDOM REFLECTORS

In the present section we consider active devices with reflectors having
random position and/or magnitude; different reflectors are assumed
statistically independent. Since the imperfections are random, the loss
(or gain) is also a random variable, and we seek various statistics of the
loss -frequency curve. The loss LT is determined from (12)-(15) ; we study
the average loss and the second -order statistics of the fluctuations about
the average, i.e., the variance and covariance of the loss fluctuations. The
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form of (12)-(15) requires us to study the loss statistics rather than the
gain statistics, which are of more direct interest. However, if the loss
fluctuations about the average are small, then the loss and gain fluctua-
tions will be almost identical (except for a change in sign), and their
statistics will thus also be approximately identical.

As discussed above, (12)-(15) yield the transmission loss LT only if the
device is stable. If the device is unstable so that oscillation occurs, then
the steady-state response LT given by (12)-(15) loses much of its physi-
cal significance, as discussed in the previous section. The statistics of
LT computed below are effectively averaged over all cases, so that these
results will not be meaningful unless the probability of oscillation is so
small that for practical purposes it may be ignored. Thus the results be-
low are valid in the limit of very small reflections, in analogy to the per-
turbation case of the previous section. In a companion paper' useful
sufficient conditions guaranteeing stability are obtained; these stability
conditions extend the range of validity of the present calculations to finite
reflections.

Three different statistical models of an active device with random
reflectors are considered in the present paper:

(i) random magnitude and spacing
(ii) equal magnitude, random spacing

(iii) random magnitude, equal spacing.
Thus for case (i) in (12)-(15), ck and ik will be random variables with
appropriate distributions; we assume that the different ck and /k are
independent random variables. In case (ii) the ck are all equal to the
same constant co , the /k are independent random variables. In case (iii)
the ck are independent random variables, the /k equal to the same con-
stant /0 . Case (ii) has been suggested by R. Kompfner as being appli-
cable to certain optical maser amplifiers.

In cases (i) and (iii) we will assume that ck is symmetrically dis-
tributed about 0, with a distribution narrow compared to 1.

We assume in the present paper that /k is always a large mun her of
wavelengths, so that

)3/k >> 2r. (47)

We further assume in cases (i) and (ii) that the distribution of ik about
its mean is very narrow with respect to the mean, but wide compared
to 27r/i3. These assumptions are compatible with conditions existing in
certain optical amplifiers to which these results might be applied. For
certain calculations we need assume in addition only a smooth, sym-
metrical distribution for ik about its mean. However, for certain other
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calculations we must be more specific; here we will assume a Gaussian
distribution for /k , as follows:

-(1k-10)12cr 2

73(1k 1/2-i e
where 10 is the expected value and o-12 the variance of lk ,

= (1k),

(48)

(49)
0.12 (42) (102.

In accord with (47) and the discussion immediately following, we assume
that

27/0 << o << 10 ; cases (i) and (ii) . (50)

Note that in case (iii) lk = 10, as stated above, and a/ = 0.
In the following work we make use of the Kronecker matrix product.'

For convenience we define this product and summarize some of its
properties.

Consider two matrices A and B with elements ai; and bi; . The ma-
trices A and B need not be square, have the same dimensions, or be
conformable; their dimensions are completely arbitrary, so that the
ordinary matrix products AB or BA may not exist. The Kronecker
product, written as A X B, (as opposed to the ordinary matrix product,
written as AB) is defined as follows:3

ailB a12B a13/3

A X B =[a2113 a22B a23B (51)

A X B has been written in (51) in partitioned form, with each sub -
matrix consisting of a scalar element of A, ai; , multiplied by the entire
matrix B.

Kronecker products have the following useful properties:3

AxBxC= (AXB)XC=AX(BXC) (52)

(A+B)X(C+D)=AXC+A XD+BXe+BXD (53)

(A x B) (C X D) = (AC) X (BD). (54)

As stated above, products without X's in (52) indicate ordinary matrix
products, and the two matrices to be so multiplied must be conformable.
Equation (54) may be extended to yield

(A1 X BO (A2 X B2)  (AN X BN)

= (.114A2  A N) X (BIB BN).
(55)
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We now return to the results of Section I for the transmission of a
general active device. From (13) we have (see Fig. 1)

Lw,(0)
x.,[wo(L,+)=

]
w1(LN+).1

(56)

The output is assumed matched [see (17)], so that

Wi(LN-F) = 0. (57)

In computing the loss LT of (15) we might as well set

Wo(LN+) = 1, (58)

so that by (15) LT = Wo(0); (56) then becomes

[ LT
(0)

= X1X2  XNW1 0
(59)

Now, in determining the average loss and the loss fluctuations about
the average we are not particularly interested in the phase variations
caused by the variation in total length, which may be large compared
to the optical wavelength but is small compared to the average total
length. Further, the variations in gain per section will also be small
compared to the average gain per section. These considerations suggest
the following transformations of (59), which remove these more or less
irrelevant contributions to the loss and phase variations. From Fig. 1,
the total length LN is

LN = E
k=3.

(60)

Next define oCT and (R, as follows:

27, =
y

 iaT (61)

W1(0) e LN (51, (62)

From (12) we define a new matrix Yk in terms of Xk as follows:

where

1
Y

e+rrk. yk

i.

(63)

(64)k - V1 - Ck2 2rik
8-2rik
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Then from (60)-(64), (59) may be written

e+rLN[21= e+rt, yie+r12. y [11

e-FrLN.yiy2 y 1.N[°

Cancelling out the c+FLN factor on both sides of (65),

[261
= YiY2 Y1011

(65)

(66)

where eCT is defined in (61), Yk in (64).
Equation (66) is suitable for studying the statistics of the normalized

loss ZT, which contains the essential information regarding the loss
fluctuations of the device. The quantity (Ft has to do with the reflected
Wave at the input corresponding to a unit output wave, and will not be
of further interest here. The factor erl.ar e-aL,NeoLN removed from
the unnormalized loss LT in (61) is of course a random variable, but
for a. given amplifier it has constant magnitude and delay.

We now compute (2r), the expected value of the normalized loss cer
Since the ck and /k are assumed independent random variables, the
different Yk of (66) are independent random matrices in all three cases
discussed above. Taking the expected value of both sides of (66), and
noting that the different Yk have the same distribution, we have

[r617))1 (y), [fl

where (Y) is obtained from (64) as

(V11- C2/- C2/.7 c

(Y) = [
,  / c \

\e
-2F/ \ / 1

- C2/\ \e-21'1\+ I - C2/

(67)

. (68)

Note that the independence of ck and /k for a given k has been used in
obtaining (68); the subscript k has been omitted in the above relations,
since the statistics of the different ck's and of the different /k's are iden-
tical. Finally, since we neglect the small variations in the gain per
section, we may set

-21't
ce C2alo (e-j20/) (69)
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where /0 is given in (49) as the average length of the sections. Then (68)
becomes

(Y) =

/ 1 \
- C2/

C

u \-V1 e/
05(e-;2

(Vie- C2)

2a1 / 1 \
e - c2/

Now in cases (i) and (iii) above we have

c \ -- c2/ 0'

(70)

(71)

since the distribution of c is assumed symmetric about 0. In cases (i)
and (ii) we have

(Cm) 0, (72)

in view of the assumptions about the distribution of 1. Consequently
(70) becomes in the three cases:

/ 1

c- ',/ 0 01'

(Y)
1 [1 -ic°

1/1 - 0 0

/ 1 \ F1
\ - c2/ Lo

0

e2a to ej20 /0

case (i)

case (ii) (73)

case (iii) .

From (67) and (73) we have the following final results:

/ 1 \N

\V' - c2/ '
(Z T) \N

CO2

cases (i) and (iii)

case (ii).
(74)

The result for case (ii) in (74) may be regarded simply as a special case
of the results for cases (i) and (iii). Since in cases (i) and (iii) the
distribution of c is assumed narrow compared to 1, we may in some
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calculations make the following approximation in (74):

1
C2) 1 + (c2) (75)

where (c2) is the mean square value of the magnitude of the reflection
coefficient.

Equation (74) shows that in all three cases the presence of random
reflections has increased the expected value of the loss; further, the
average loss is independent of # and hence of frequency. Since (ZT) 0,

if the deviations of £T from its expected value are very small (as they
must be in useful amplifiers), then we will have approximately

I (2) I tr'd ( I cer I ). (76)

This approximate relation permits us to estimate the variance of the
magnitude of the loss, as discussed below. We note that

I (27.) I ( I 2,, I ). (77)

Next consider the mean square value of the loss, (127,12) = (2Teer*).
First note from (51) that

[ =

ri 2T12
27.-1 xr oeTa* °era*

j j ace T* [ (RAT*
I

12dia*

(78)

From (66), (55), and (78) we have

[1

citeT*
27.61*

= (Y1 x YI*)(Y2 x 172*) (YN X YN*) (79)

I e a 12 Lo°

where Yk is given in (64). Taking the expected value of both sides of
(79), again making use of the independence of the different Yk matrices
and the fact that they have the same distribution, we have

12T 1

(ce Ta* )
= (Y X IT*)N

[0
(80)

aceT*)

( 1 d112) Lo

where (Y X Y*) is obtained from (64) and (51) as shown in (81).
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We again omit the subscript k in the above, since the statistics of the
different ck's and of the different lk's are assumed identical.

We now apply the same assumptions used above to (81). As in (69),

neglecting the small variations in gain per section leads to
-2r1) e2a/0(e-mi),

(e2r.1) e2.1a(e+An)

(e4a/) , e4a10

where lo as before is the average length of the sections [see (49)]. Further,
we make use of (71) for cases (i) and (iii), and (72) for cases (i)
and (ii). The resulting forms for (Y X Y*) differ in the three cases,
but after some simplification the final quantity of interest, (1 2712) =
(2T2T*), is given by the following single relation in all three cases:

/

1 - c2/

1 \ 2/ C \ -N

\1 - C2/
210( c \ 4a10 / 1 \

2

e

.

1 - e2/ e \l - c2/_-
In case (ii), we have in (83)

/ 1 \ _ 1 / c2 \ co2

- c2/ 1 - co2.c2/ 1 co2'

[0]

(82)

(83)

(84)

Equation (83) gives the desired result ( 1..er 12) in terms of the nth
power of a real matrix. The matrix power may of course be written out
explicitly in the usual way, but for the sake of simplicity this will not
be done here. Some numerical examples are worked out in the next
section. The variance of the loss, denoted 0.272, is given by

a.c T2 = 27 - (27)12)

= (127'12) - 1(2T )12.

The variance of the magnitude of the loss is given by

0-127,12 EE ([1 eeT (I 27 I)]2) = (1 2712) - (1 ce T I )2

=CT 12) I (27') 12 ffoc7,2,

where the approximation of (86a) follows from (76). From (77) we have

2 < 2

ZT
cr= oeT

(85)

(86a)

(8Gb)

In these results (122.12) is given by (83), (27) by (74); the approxima-
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tion of (86a) should be good when ouTi/(27) << 1. We see that for all
three cases (I 22,12) and cr.er2 are independent of /3 and hence of fre-
quency.

Finally we study the covariance of the loss 2T, denoted RzT(r), de-
fined by

RzT(7) = (2T(13 T).er*(N)) = RzT*(-7) (87)

It will appear below that the expected value in (87) is indeed dependent
only on T, and not on 13, within the approximations of the present treat-
ment. If we regard the loss £T(/3) as a random process, then the Fourier
transform of &T(T) yields the power spectrum of the random processes
£T(13). RzT(r) thus gives information about both the de and ac com-
ponents of eer()3); of particular interest are the mean square magnitude
and the rate of fluctuation of the ac component of the loss. The total
"power" (dc plus ac) PT of the random process £T(13) is

PT = RzT(0) = (1 27.(#) 12). (88)

The dc "power" Pao of 24(3) is

P de = RzT ) = keg- °°) (89)

where the limits as T ± 00 exist. Both ac and dc "powers" are neces-
sarily pure real, and are of course independent of 13, since ker(r) is
independent of in general. Let us define the dc component of a given
2T(13) curve as

1 m
2Tdo = £T(f3) = Ihn

i27.(13)
dth

M-.ao if
(90)

where the bar indicates an average over 13. Then it is easy to show that
the de power of (89) is also equal to

Pao = R. 7(°°) = R.Cr(- °°) (1 oerdo I2), (91)

where 2_Tdo is given by (90). Let us now define the ac component of a
given eer(0) curve by

2T,(13) = £T(13) - 2Tdo (92)

Then the covariance R2T.0(r) of the ac component £T.,(/3) and the ac
"power" P. of the normalized loss £T($) are given as follows:

= (27..(N + T ),Crac*(M) = R.er(T) - Rocr( , (93a)

P. = (I cenic(13) 12) = R274) - keT(co) = kera.(0). (93b)
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For convenience we define the covariance of .2(j3) as an auxiliary
quantity, although this quantity is not of present interest to us:

Rat(T) = (R(# 7 -)&*((3)). (94)

We have

[/F270 + 7-)1 1-27,*(#)1\ (27,63 + 7-)61*(13))

\L 1:51(s + 7.) J
X 61*(0) i/ - (RO + T)27.*(a))

Rat( T)

RZT( r)

(95)

From (66), (55), and (95)

R.eT(T) 1

(270 ± TWO)) [0
= (17(# r) X 17*(0))N (96)

ORO T)27.*(#)) 0

Rai(r) 0

where we again make use of the independence of the different Yk and
the fact that they have the same distribution. Using the various assump-
tions given above in (69), (71), (72), and (82), and making appropriate
simplifications in the different cases, we obtain the following final
common result for cases (i), (ii), and (iii):

c2

R.cr(r)
I

62/ \1 - C2)
. (97)

Rat(T)

In addition to

4a/o / C2
ej27/) 4a/0

/ 1 ie-j27/ \\
e (e -

\1 C2) \1_ c2/
the usual approximations, we have used

(e--flos+iv) (98)

in cases (i) and (ii) in obtaining the result of (97). This approximation
implies that I T I << 13, i.e., we examine the covariance and hence the
loss over only a relatively narrow (electrical) band. In the analysis we
often use the quantity RzT( cc ), which gives the de "power" [see (91)];
this is justified because the covariance computed from (97) will approach
its asymptotic value R2 T( co) for values of T satisfying the requirement

r I

<< 0. We assume the distribution of / is the Gaussian distribution of
(48), and note that (e-'2'') is simply related to the corresponding charac-
teristic function.' Thus

(e--;2,1) e--;2,10e-2(r,i)2.t (99)

t Note that this result justifies the approximations of (72) and (98) [subject to
the condition of (50)]. A similar result for (eri), where r is complex, may be readily
derived, and justifies the approximation of (69) and (82).
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In case (iii) we have az = 0 in (99). Thus we have as our final result:

LR,R(,)]

4cdo

e \1

/
\

/ 1 \ C2

(1
N

1

(100)

\1 - c2/ ... C2)

C -j2r/0 -2(rcri )2 4a10 /
e

1
e

-2(v:1)2
0e e- c2/ 1

e-j2r- c2)

1 \ 1 / C2 \
-

CO2 (ii)- C2/ Co2 \ - - CO2'
case

(101)

0-1 = 0; case (iii).

Certain general properties of R,c,(r) are readily deduced from (100).
First, keg r) is independent of # and dependent only on T, as assumed
above in (87). Second, for T = 0, (100) becomes identical to (83), as
it must. Finally, for r co, we have incases (i) and (ii) from (100) and
(101)

/ 1 \N case (i)
\1 - c2/ ' [also case (iii) - see below]

keg = \N

1 -1 CO2)
case (ii).

(102)

Re g 00 ) is real, as stated above. We recall from (91) that ke,(00) is
the de "power" of 27.(0). The ac "power" is given by (93).

Now, in case (iii) the covariance R.er(r) is periodic, which implies
that the random process £T($) is periodic;4 however, this is obvious
from the original formulation of the problem. keg co ) no longer exists
in the strict sense; the de "power" is now the average value (over r)
of keT(r). It turns out that we may approach case (iii) by considering
case (i) and allowing (7/ to approach 0 in (100). [This violates the con-
dition imposed by (50) and used in the approximations of (72) and (98)
and so the limiting process cri - 0 is forbidden in some of the above
results; careful examination shows that it is valid to allow cri 0 in
(100).] Then ker(r) does approach the limit of (102) as T -4 CO ; and
so we take the first result of (102) as the de "power" in case as
well as in case (i).
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In general

(2,(o))2 Pcie = (I 2,(13) 12)

cr.CT2 Pac = ( I £T.0(3) 12)

(103)

(104)

However, in case (ii) only - i.e., reflectors of identical magnitude and
random spacing - (103) and (104) are true with the replaced
by = , as seen from (74) and (102).

The matrix power of (100) is easily written explicitly in the usual way,
but the results would be rather complicated. Numerical examples are
worked out in the next section.

IV. NUMERICAL EXAMPLE - RANDOM REFLECTORS

Consider an optical amplifier with random reflectors of the type given
in case (ii) of Section III: i.e., the reflectors have identical magnitude but
random spacing. Assume:

20 logio el° = 1 db, nominal gain per section

N = 30, number of sections

20 logio eNai10 = 30 db, nominal total gain.

Fig. 9 shows the average normalized loss and the rms fluctuation of the
normalized loss about its average value, plotted versus co , the magni-
tude of the reflectors. As seen from example (i), Section II, instability
is possible if I co I > 0.00860. Therefore the curves of Fig. 9 are solid
for co <0.00860, dotted for co > 0.00860. However, this is intended only
as a symbolic reminder of the question of stability. We do not know
whether or not instability can occur for I co I < 0.00860. Even though
we know that instability can occur for I co I > 0.00860, the probability
of instability might remain so small for some greater range of co that
these curves would provide a useful approximation. In Ref. 1, Section
VI, equations (122)-(131) we show that stability is guaranteed for
I co I < 0.00590, assuming that the maximum fractional variation in
spacing of the reflectors [v in (124) of Ref. 1] is small compared to 1.
This is indicated in Fig. 9.

All of the above results have been independent of the precise distribu-
tion of the /k , the spacing between reflectors, except that the conditions
of (47) and the following sentence must be satisfied. However, the
covariance of the loss depends explicitly on the probability distribution
of the /k . For our present example we therefore assume that the differ-
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Fig. 9 - Average normalized loss and rms fluctuation about the average for
one-dimensional active medium with randomly spaced reflectors of identical mag-
nitude. N = 30, number of sections; 20 logio cab') -= 1 db, nominal gain per section;
nominal total gain = 30 db.

ent ik are independent, with the Gaussian probability density given in
(48)-(50). We further assume the following numerical values:

(0-00) = 0.01, co = 0.005. (105)

Thus, the spacing between successive reflectors is accurate to about 1
per cent, and the magnitude of the reflectors would guarantee stability
in the equally spaced case of Section II. Of course a practical device
would probably be built much more accurately, but the values in (105)
are suitable for illustrating the general behavior. Fig. 10 shows the
(complex) covariance Rcerao(T) of the ac component eeTac(0) of the
normalized loss for this case as a function of the normalized variable
(10/7)7, for 0 < (lo/lr)T < 4. Fig. 10(a) shows the magnitude

keTac(T) I and Fig. 10(b) the phase L R27...(T) 58 /07-; note that
the linear component of phase has been removed in the plot of Fig.
10( b). The covariance is seen to be approximately a damped periodic
function of T; Fig. 11 shows a plot of the magnitude of the covari-
ance at the points T = //(7//0), which correspond closely to the max-
ima of I RLT.0(T) .



290 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

1.0-r
TT

(a)

Fig. 10 - Covariance of ac component of normalized loss for one-dimensional
active medium with randomly spaced reflectors. at/lo = 0.01; co = 0.005, magni-
tude of reflectors; N = 30, number of sections; 20 logio eazo = 1 db, nominal gain
per section; nominal total gain = 30 db.

We would expect some resemblance between the covariance of Figs.
10 and 11, for reflectors with identical magnitude but random spacing,
and the (nonrandom) case of Section II for reflectors with identical
magnitude and spacing. For the nonrandom case we have seen that
the loss is periodic; consequently the covariance will also be periodic,
and will look something like that of Figs. 10 and 11 for the random case
except that it will not be damped. Note that the large linear component
-58 /or that has been removed from the phase curve of Fig. 10( b)
implies that the power spectrum of the random process 27,(0) is con-
centrated around the angular "frequency" -58 10 ; this angular "fre-
quency" corresponds to the rate of variation of the loss for two reflectors
whose separation is equal to the nominal spacing of the two end re-
flectors in the random case.
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Fig. 11 - Approximate maxima of covariance of ac component of normalized
loss for one-dimensional active medium with randomly spaced reflectors (see Fig.
10). c1/lo = 0.01; co = 0.005, magnitude of reflectors; N = 30, number of sections;
20 logio eat° = 1 db, nominal gain per section; nominal total gain = 30 db.

V. DISCUSSION

The question of stability has been discussed for the periodic case at
the end of Section II. There it is pointed out that these calculations are
valid only if the device is stable, i.e., does not oscillate. The same is true
in the random case. In the periodic case we can determine by calculation
the limits of stability, and this has been done in the examples of Section
II. Stability in the random case is studied in Ref. 1.

Various higher -order transmission statistics may be calculated by
methods similar to those used above, but the complexity of the calcu-
lations increases with the order of the statistics. In addition, statistics of
the real and imaginary parts of the normalized loss ceT may be readily
determined by similar methods.
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Stability of Active Transmission Lines
with Arbitrary Imperfections

By H. E. ROWE

(Manuscript received August 23, 1963)

Two sufficient conditions for the stability of one-dimensional active
transmission lines with arbitrary imperfections (i.e., discrete or continuous
reflections) are derived. The first stability condition guarantees stability
for any arbitrary distribution of reflection. The second stability condition is
restricted to a special case of interest that includes discrete reflectors with
nominally equal magnitude and spacing; the stability condition for this re-
stricted class is greatly improved over the general stability condition de-
scribed above.

These results, aside from their own interest, provide rigorous justifica-
tion for previous calculations for the gain statistics of such a device with
random discrete reflectors.' They may also be used to find an upper bound
on the probability of instability of such a device with random reflectors.

Certain types of optical maser amplifiers and traveling -wave tubes pro-
vide examples of practical devices with distributed gain to which these re-
sults, or similar ones, might be applied.

I. INTRODUCTION

The preceding paper' has considered the theory of active transmis-
sion lines with discrete imperfections. First, lines with equally -spaced
identical reflectors were studied; in particular, gain -frequency curves
were determined as functions of the various parameters, and the sta-
bility of the device was studied under these special conditions. It was
pointed out that the mathematical expression for gain would yield a
perfectly definite result for any values of the parameters, but that this
mathematical result would have physical significance only if the device
is stable, i.e., does not oscillate.

Next, the case of random imperfections was studied.' Here the statis-
tics of the transmission were determined in terms of the statistics of the
discrete reflectors, which were assumed to have random position and

293
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magnitude. Again, these results have physical significance only if the de-
vice is stable (or if the probability of instability is negligible). However,
in the random case no precise information about stability was given;
the computed statistics of the transmission were felt to be valid if the
rms magnitude of the discrete reflectors was sufficiently small, but only
intuitive feelings of what was "small enough" were available.

In the present paper we derive a sufficient condition for stability of an
active transmission line with arbitrary reflectors; we further show (by
one example) that this sufficient condition cannot be greatly improved
(if at all) in the general case. This result gives useful information re-
garding the range of validity of the calculations of the preceding papers

for the transmission statistics of active transmission lines with random
reflectors. This general bound on stability may be improved if additional
information is known about the distribution of reflectors; one such case

of interest is treated.
The mathematical model chosen for this problem is discussed in detail

in Ref. 1. A line with N discrete reflectors is shown in Fig. 1 (which is
identical to Fig. 1 of Ref. 1). The wave traveling to the right at distance
z is denoted by Wo(z), the wave traveling to the left by W1(z); Wo(Lk+ )
and Wi(Lk+ ) are the right- and left -traveling waves just to the right
of the kth reflector, as indicated in this figure, while Wo(Lk- ) and
Wi(Lk - ) are the right- and left -traveling waves just to the left of the
kth reflector.

In the absence of reflections the forward and backward waves vary as
Wo(z) e-rz

W1(z)
el-rz

- forward wave

- backward wave

LN

Lk

12-14- 1.3-1
14--1-k1 h-14,1--)1

0

Wo (0)

4 --WI (0)

I
C1 C2 C3 Ck-i Ck CN-1 CN

I 1 1 I,

Wo(Lk+)----'1 Wo(LN+)---4,

Lk =
1=1

iF (Lk+)

Fig. 1 - Line with N discrete reflectors.

(1)

- ( L N+)



where
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r= -« j(3, a > O. (2)

The line has gain, so that a > 0. From (12) of Ref. 1, the wave matrix
for the cascade connection of the kth line section of length /k and the
kth reflector is

-Frik
I [ e

X k
ck2 +icice-r/k

Lwi(Lk_i+)

_icke+rlk

crlk I Ck 1, (3)

x-,..
wak+)

(4)

where I ck I is the magnitude of the reflection coefficient for the kth re-
flector. The over-all transmission matrix for the entire line of Fig. 1,
denoted by X, is given by the matrix product of (13) of Ref. 1:

X = IJ x , (5)
k=i

p V 0(0)1 W0(LN+)

1:W1(0) LW1(LN+)

For convenience, denote the elements of the over-all transmission
matrix X as in (14) of Ref. 1.

(6)

xii xi2
X = (7)

X21 X22

X is given by (3) and (5). Assume the device is operated as an amplifier
with matched input and output; setting WI(LN-F ) = 0, the complex
transmission gain GT is given by

Wo(LN+) 1GT - (8)
Wo(0) xii

Now x11 is a function of r and of all of the /k's and ck's. We may concep-
tually investigate stability in the following way. Imagine that ck is re-
placed by eck throughout this analysis; e is a variable parameter that
scales the magnitudes of all of the coupling coefficients. Let e be increased
from 0, and for each value of E examine x11 [which in (8) is the reciprocal
of the transmission gain, and so may be regarded as the transmission
loss] as a function of frequency w (or of the phase constant #, which is
assumed proportional to frequency, since the line is distortionless)1 over
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the entire range -co < w < +00. We determine in this way the mini-
mum value of 1 x111 for each value of e. As E increases, this minimum value
of 1 x111 will eventually just drop to zero, for a critical value of E which
we denote by E, . Thus, as e ec the gain 1 G TI CO for a particular
value of w, and the device oscillates. ec is the dividing line between sta-
bility and instability; if Ec > 1, the original device, with the parameters
ck and /k , is stable.

Such calculations have actually been carried out in Ref. 1 for devices
with identical, equally -spaced reflectors. In this case the gain G T is a
periodic function of frequency w, so that only a finite portion of the fre-
quency axis (i.e., one period) must be investigated. In general, however,
G T is not periodic; since we cannot investigate numerically the entire
co -axis, it is not obvious how to investigate stability for the general case.

In the remainder of this paper we determine a sufficient condition
that guarantees the stability of a general active line with arbitrary dis-
crete imperfections. In particular, consider such a device, illustrated in
Fig. 1, characterized by (3), (5), and (6), with arbitrary a, ck , and /k .

We show below that any such device satisfying the condition

N -aLN

E tanh-1 e
1
ci 1< 2 sinh

i-1
(9)

must be stable. Many practical devices will have large gain, and hence
must have small reflections. In such cases CaLN < 1 and 1 cil << 1; under
these conditions a slightly poorer stability condition derived from (9)
is useful.

1 e-aLNtanh [2 sinh-1
V 2

. (10)

In the high -gain case the right-hand side of (10) may be made simpler
still by further degrading this stability condition. We may show, for
example, that

-XLN

tan h

Thus

[2 0.932 V2 CaL N ,

version of (10) is

8.686aLN 10 db. (11)sinh-1

a slightly poorer

EIcil 15_ 0.932 Ni`j e-aLN, 8.686 aLN > 10 db. (12)

The stability condition of (12) is valid when the one-way gain of the
active medium exceeds 10 db. As the lower bound on the one-way gain
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of the active medium increases beyond 10 db, the numerical factor 0.932
on the right-hand side of (12) increases, approaching 1 as the lower bound
on the gain approaches infinity. This is readily seen from (10) ; as
aLN -> 00 ,

N so that the sinh-1 and tanh functions in (10) may
be approximately replaced by their arguments for sufficiently large ceLN
However, direct calculation with (10) is straightforward; the result of
(12) (or similar equations) is intended principally to illustrate the gen-
eral behavior.

Thus (9) or the successively poorer versions of (10) and (12) guaran-
tee that the device will be stable, even for the worst possible choice of
the ck, and /k, . Equations (9), (10), and (12) are each sufficient, but
not necessary, conditions for stability. These results are derived in
Sections II, III, and IV. In addition, a better bound is obtained for a
special case in which the reflection coefficient is distributed more or less
uniformly with distance z along the active line, in a certain sense to be
described more precisely in Section V below; these results include many
cases of interest. Finally, some numerical examples illustrating the use
of these two different types of bounds are given in Section VI.

II. DIFFERENTIAL EQUATIONS EQUIVALENT TO MATRIX RELATIONS

Consider the following differential equations:

Wo'(z) = - rWo(z) jr(z)Wi(z)

Wi (z) = -jr(z)Wo(z) I1W1(z).

These relations have the form of the coupled line equations with a gen-
eral continuous coupling coefficient. In the present case, Wo(z) and W1(z)
are the right- and left -directed traveling -wave complex amplitudes, and
r(z) is the continuous reflection that couples the two waves to each other.
Equation 13 is readily obtained as a limiting form of the matrix relations
of (3), (5), and (6) by assuming very small, closely spaced discrete re-
flectors whose magnitude varies slowly with distance. Thus in the matrix
relations of Section I above set

ik = Z.

Assume that ck varies slowly with k. Then we set

ck = r(IcAz)  Az,

(13)

(14)

(15)

where r(z) is a continuous function. We now let Az 0 so that the num-
ber of discrete reflectors co ; during this process the continuous func-
tion r(z) is fixed and the ck determined by (15), so that the magnitudes
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of the individual reflectors -* 0 as Az -* 0, Then the matrix relations of
(3), (5), and (6) will yield the continuous differential equations of (13).
The analysis is straightforward and quite similar to that of Ref. 2 for a
similar problem, and so will not be given here. The above discussion of
(13) as an appropriate limiting continuous form of the matrix relations
of Section I is given only to provide some physical motivation for con-
sidering (13), and plays no part in the mathematical analysis to follow.

The case of isolated, discrete reflectors, characterized by (3), (5), and
(6), may conversely be regarded as a special case of continuous reflection
in (13), in which the continuous reflection r(z) becomes a sum of suit-
able 8 -functions, one located at each discrete reflector. Thus we show
that if r(z) in (13) is given by

r(z) = E tanh-1 ciS(z - Li), (16)
i-1

where in Fig. 1 Li is the total distance from the input of the line to the
ith reflector, then the solutions to (13) at the output of the line, i.e.,
Wo(LN± ) and WI(L,v+ ), are given in terms of the input conditions
Wo(0) and W1(0) by (3), (5), and (6).

Consider the typical kth section of line, of length /k , followed by the
kth discrete reflector, as illustrated in Fig. 1. In the line section between
the (k - 1)th and the kth reflectors r(z) = 0, from (16). Therefore in
this region the solution to (13) has the form of (1); the forward and
backward waves are uncoupled, and have the same propagation constant.
We may thus write the solution between the (k - 1)th and kth reflectors
in the matrix form

0 Wo ( Lk )

(17)
wi(Lk_i+ 0 crik 1171(14-

where W(Lk- ) indicates a wave amplitude evaluated just to the left of
the kth reflector, W (Lk+) just to the right.

We next evaluate the transmission matrix for the kth reflector, i.e.,
the kth 8 -function of (16). This calculation may be performed by setting

tanh-1 ck L. <z < Lk, A
r(z) = A (18)

0, otherwise.

We then determine the matrix T(0),

rWo(Lk + A)]
= T(A) 

Wr o(Lk)-1
(19)

LWI(Lk A) JW1(Lk)i
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Then as A 0, r(z) tanh-1 ck5(z - Lk), and lira T(A) = T(0)

yields a matrix relating the wave amplitudes Wo and W1 on the two sides
of the kth 5 -function of r(z) [see (16)]. This analysis is again similar in
motivation, although different in detail, to that of Ref. 2 for a similar
problem. Since r(z) in (18) is constant throughout the region of interest,
(13) becomes a linear differential equation with constant coefficients, and
is readily solved by the usual techniques. The solution for general A may
be written in matrix form, yielding T(0) of (19), as follows:

T(A) =

1

K+ - K_ -
[e-K_erAv + K+e-rAv el'AV- rAN/- (20)

-erA,/- -- Kniv+erAv - K_Cr° V-

--

If± - j1 ± V-
'

K+K_ = 1
tanh-1 ck

PA

tanh-1 ck

K+ - K_ 2 N/

(tanh-' cky

Taking the limit as A -> 0, (20)-(23) yield

rWo(Lk+)] )1= T(0) 
Lwi(Lk+) Tv,(Lk-)]

where

(24)

T(0)

Inverting (24),

lim T(A)

Livi(Lk-)

-
1 1

-iCk

Eck
(25)

(26)

1/1 -

= 7-1(0)

Ck2

[wo(Lk+)]
TvI(L,+)]

where, from (25)

77-1(0) = 1

1 -jck
(27)

V1 - ck2 -1-jek 1
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From (17), (26), and (27) we now have

rwo(Lk_,±)] [wo(Lk+)]
= Xk. (28)

LW1(Lk-i+) W1(Lk+)_1

where Xk is as given in (3). Equation (28) is identical to (4). Finally,
the solution to (13), with r(z) given by (16), is given by (3), (5),
and (6).

The equivalence of (13) and (16) with (3), (5) and (6) is useful be-
cause the original matrix problem may thus be regarded as a special
case of a pair of differential equations. Stability appears to be more
readily studied for the more general continuous case described by the
differential equations; these results may then be applied to the special
discrete case of interest here.

III. SOLUTION BY SUCCESSIVE APPROXIMATIONS (PICARD'S METHOD)

We summarize the solution of (13) by successive approximation, fol-
lowing the same general approach as in Ref. 3 for a similar problem. First,
it is convenient to make the following transformations:

1470(z) = e-rz Go(z)

Wi(z) = e+nGi(z).

Substituting (29) into (13), we have
Goo(z) jr(z) e+2rz6,1(z),

Gj'(z) = -jr(z) e-2rzGo(z).

Assume that the device is operated as an amplifier with matched input
and output. It proves convenient in the following analysis to take the
input at the right-hand end of the amplifier, i.e., at z = LN , where LN
is the total length, and the output at the left-hand end, i.e., z = 0; this
is just opposite to the choice made in Ref. 1 and in Section I above
[particularly in (8)]. The useful output is then the left -directed traveling
wave at z = 0, i.e., W1(0), corresponding to an input taken to be the
left -directed traveling wave at z = LN , Wl(LN). Since the device is
matched at both ends, Wo(0) = 0; Wo(LN) 0, since this quantity
corresponds to the reflected wave at the input end (i.e., at z = LN)
of the amplifier.

Now assume for convenience a unit -amplitude output wave:

W1(0) = 1. (31)

(29)

(30)



TRANSMISSION LINE STABILITY 301

As noted above, since the output is matched,

W0(0) = 0. (32)

We seek W1(LN), the input corresponding to the output of (31); since
unit output has been assumed in (31), the complex transmission gain
GT will he

1
GT (33)

where Wl(LN) is the solution to (13) subject to the initial conditions of
(31) and (32).

The transmission gain is readily stated in terms of the solutions to
(30), which were obtained from (13) via the transformation of (29).
Thus, consider (30) subject to the initial conditions

G0(0) = 0,

G1(0) = 1,

obtained from (31) and (32) via (29). The complex transmission gain
GT of the amplifier is then given by

GT =1,LN 1

GI(LN)

where GI(LN) is the solution to (30) subject to the initial conditions of
(34)

We now seek the solution to (30), with the initial conditions of (34),
via Picard's method of successive approximations.4'5 Assume the
(n - 1)th approximation to the solution is available; let us denote this
approximation by Goc.--1)(z) and Gi(.-1)(z). Then the (n - 1)th
approximation is substituted into the right-hand side of (30) and the
right-hand side integrated to yield the nth approximation.

Goo)(z) = j f 7.(s) e+2r8Gio(s_i),,) ds.
0

(34)

Guo(z) = 1 - j f r(s) e-wRG00-1)(s) ds.
0

(35)

(36)

We take the initial (0th) approximation as simply the initial conditions
of (34):

Go(o)(z) = 0,

Gi(0)(z) = 1.
(37)
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Writing

we have

GO(n ) ( Z ) GO (n- 1) ( Z ) = go(n)(z),

Gl(n)( Z) - GI (n-1) ( Z) = g1(n)(Z)

GO(n)(Z) = E go(k)(z),
k=1

Gi(n)(z) = 1 + E gi(k)(z).
k-i

From (36) and (38), the g's of (39) are given as follows:

(38)

(39)

go(n)(z) = jf r(s) e+2r8gun-u(s) ds, n 1. (40)
0

gi(n)(z)-j r(s) e-2rz 8. ds, n > 1. (41)
0

go(o)(z) = 0, (42)gion(z) = 1.

From (40)-(42)

g0 (n ) ( Z ) = 0,

gi(n)(z) = 0,

It even.

n odd.
(43)

Thus only odd terms appear in the top summation of (39), and only
even terms appear in the bottom summation of (39).

We next obtain bounds on the magnitudes of the terms in the series
of (39), thus showing that these series converge as n -p 00 for all finite
z, so that the solutions to (30) subject to the initial conditions of (34)
are

00

Go(z) = E go(n)(z),

(44)

Gi(z) = E gi(n)(z),
n=0

with go(n) (z) and gi(n) (z) as given by (40)-(42). The analysis is sug-
gested by that of Ref. 3. We show that:

n=0

= 0,

I go. (z) I uz I r(s) ds
o

n!

n even.

n odd.

(45)
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r(S) I (IS]
71

n even.

303

eta-
°

(46)n!
I gl(n)(Z) I

= 0, n odd.

where from (2)

= -a j13, a = -Re > O. (47)

Suppose that (46) is true for some -even n.

Z

Then from (40)

I r (S) I dST[
I gO(n+1) (Z) I 15 l I 7'(/) I e-201 e+2at

0 dtX!

11=1.1:
n !

r(s) cis]
t

r(s) ds
0

(48)

T+1
I r(s) I ds

(n + 1)!

in agreement with (45). Substituting this result into (41),
n+1

f 17*(8) ds]
gl(n-}-2) (2)

I 5- f r(t) e+2at L ° dt(n + 1)1
t=z

in+1
r(s) ds(n + 1)! o0
d[1 I r(s) I cis]

= c
(n + 2)!

+2 [f I r(s) Ids

(49)

in agreement with (46). Noting (42) and (43), the results of (45) and
(46) hold for all n by induction.

The bounds of (45) and (46) guarantee the convergence of the series
solutions of (44) under quite general conditions. It is readily seen that

Go(z) < sink [f I r(s)
0

ds],
(50)

Gi(z) I< e'2": cosh
0

[f r(s) ds] .
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The series solutions of (44) converge for all finite z, so long as the con-
tinuous reflection coefficient is absolutely integrable,

r(s) I ds < 00. (51)

In particular, note that r(z) may contain 6 -functions, as in (16), ,so that
the above bounds may be applied directly to the discrete case of Sec-

tion I.
The solutions to (30) given by (44) and (40)-(43) thus converge for

all finite z in the case of interest. However these formal mathematical
solutions have physical significance only when the device to which they
apply is stable, i.e., does not oscillate. In the following section we use the
bounds of (45) and (46) to obtain a sufficient condition guaranteeing
stability in the general case.

IV. BOUNDS ON STABILITY - GENERAL CASE

Consider a general amplifier described by (13) or equivalently by
(30). Assume the total length is given by LN . We may investigate
stability as indicated following (8). Replace the continuous reflection
coefficient r(z) by Er(z), where E is a numerical parameter. Let e be
increased from 0, and for each value of E determine the maximum value
of the transmission gain I GT I as a function of frequency w. From (35)

the maximum value of I GT I
corresponds to the minimum value of

Gl(LN) I. As E approaches a critical value, denoted above by ec ,
I GT 'max and I Gl(LN) Imin --* 0; if Ee > 1 the original device is
stable.

From (40)-(44),
co

Gl(LN) = 1 + E gico(LN) (52)
n=2

n oven

Noting that r(2) has been temporarily replaced by Er(z), for sufficiently
small E a lower bound on the magnitude of Gl(LN) is given by

I GI(LN) 1 - E I gloo(LN) I.
n=2

n even

(53)

Both sides of (52) and (53) are functions of frequency w, through their
dependence on the propagation constant 13. Using the result of (46) in

(53),

I GAN) I 1 -

0,

n=2
n even

rLN

e2a LN Jp

n

er(s) I ds

n!
(54)
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Since the expression on the right-hand side of (54) is independent of
the propagation constant [3 and hence of the frequency w, this expression
is also a lower bound on I G1(LN) Irvin , the minimum value of I Gl(LN)
as a function of w.

I GL(LN) I min > 1 -
'YJ

2aLv 0

2

even

LN

er(s) I (is

n!
(55)

As e increases from 0, the lower bound on I Gl(LN) Ifnin given by (55)
steadily decreases, and for some particular value of E approaches 0.
Therefore if

LN

U0
I er(s) Ids]

n

-ly< e 2aL

n2 n!
n even

(56)

stability is guaranteed. If (56) is satisfied for E = 1, then stability is
guaranteed for the original amplifier, with reflection coefficient r(z).

Consequently, a sufficient stability condition for an active transmis-
sion line with a general continuous reflection coefficient r(z), described
by either (13) or (30), assuming the device to be matched at both ends,
is given by

ao

71=2
n even

This may be written

or further

[
LN

f0
I r(s) Ids

n

n!

[...1,:,.CO Sh i r( S) 1 (IS

shill
r(S) I (Is

< e-2a LN

e2a

I e2a

Finally, taking the square root of both sides of (59) we obtain

sinh ' '
I r(s) 1 (1s1

.>
<

e-aLN

.,
r

(57)

(58)

(59)

(60)
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or equivalently

fo

L N

Ir(s)
I
ds < 2 sinh-I e-aLN (61)

as sufficient conditions for stability for a general active transmission line
with an arbitrary continuous reflection coefficient r(z).

We may now apply the result of (61) to the discrete case of Section I
above by making use of the results of Section II. As noted in Section II,
if the continuous coupling coefficient r(z) is a series of 6 -functions of
the form given in (16), then the solution to (13) is identical to that for
the discrete case, given in (3), (5), and (6). Since the stability condition
of (61) holds true in general, it may be applied to the discrete case by
substituting (16) into (61), yielding

N e-aLN
E tanh-1 I ci I < 2 sink -1 . (62)

Equation (62) is a sufficient condition for stability for a general active
transmission line with arbitrary discrete reflectors, having reflection co-
efficients ci located at arbitrary positions along the line. Equation (62)

is the result stated in Section I as (9). This inequality is a sufficient con-
dition for stability; if the inequality is satisfied, the device must he
stable. This condition is not necessary for stability; many devices that
violate (62) or (9) are stable.

The weaker bounds of (10) and (12) are readily obtained from the
basic result of (62) or (9) by straightforward use of inequalities. From
(62) or (9) we must have

tanh-1 I ci I < 2 sinh--1
e-aLN

2,  N. (63)i = 1,

Since the function y = x is

xmtanh-lx < tanh-1

concave upward for x > 0,

x, 0 < x < x. < 1. (64)
x,

Therefore, from (63),

2 e -a"sinh-1
tanh-1 I I ci I

(65)ci I <
tanh

a
--[2 sinh-1
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Therefore if the relation

E I c1 I < tanh 2 sinh-1 (66)

is satisfied, then the condition of (62) must also be satisfied, so that (66)
is a slightly poorer sufficient condition for stability; this result was given
in (10). Finally, since the function y = tanh [2 sinh-1 x] is concave
downward for x > 0,

tanh [2 sinh- , tanh [2 sinh-lx.] 0 < x 5 x, . (67)x.

As a particular instance let us choose x. = (1/-0()) = 0.2236; then
(67) becomes

1
tanh [2 sinh-1 1.863 x, 0 < x - V20 = 0.2236. (68)

By using (68) to decrease the right-hand side of (66), we obtain the
slightly poorer sufficient condition for stability
N e-aLN
E I ci .s 1.863 \/--

= 0.932 -0 e-"LN , 20 logio eaLN 10 db

given in (12).

(69)

V. BOUNDS ON STABILITY - SPECIAL CASE, INCLUDING REFLECTORS OF
NOMINALLY EQUAL MAGNITUDE AND SPACING

The bounds on stability derived in Section IV in the general case
guarantee stability for the worst possible arrangement of reflectors.
Thus in many cases the sum of the magnitudes of the reflectors may far
exceed the bound given by (9), (10), or (12) without causing instability.

These general bounds guarantee stability even if we have no informa-
tion whatever about the distribution of reflectors. If we do have such
additional information, it should be possible to make use of it to find im-
proved bounds. As a trivial example, in the treatment of equally spaced,
identical reflectors in the previous paper' exact stability conditions were
obtained; we will see in Section VI that for this case the sum of the
magnitudes of the reflectors at the boundary of instability may far ex-
ceed that given by (9), (10), or (12).

In the present section we consider a somewhat restricted special case
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in which the reflection coefficient is almost uniformly distributed in a
certain sense. We assume that

R  (z - f) < f I r(s) Ids R
(70)

R > 0, f>0, g>0,
where R, f, and g are constants. Equation (70) states that the indefinite
integral of the absolute magnitude of the reflection coefficient is con-
strained to lie between two straight lines of the same slope R, separated
by the horizontal distance h given by

h= f g, h> 0. (71)

It turns out that the final bounds of this section are better the smaller
the separation it. This is to be expected, since the smaller the separation
of the two straight lines given by the right- and left-hand sides of (70),
the more constrained is the reflection coefficient r(z).

The presence of sufficient length of perfect (i.e., reflectionless) active
line at either end will needlessly increase! and hence h in (70) and (71),
and hence needlessly degrade the final stability condition given below.
Such a length of perfect line cannot affect the stability, but merely alters
the gain of the device (assuming it is stable). Therefore for purposes of
the present stability analysis sufficient lengths of perfect active line
should be removed from each end so that h is minimized, and hence the
best possible bound is obtained. Removal of any additional lengths of
perfect active line from either end will do neither good nor harm to the
final stability condition.

A few examples serve to illustrate the general nature of the restriction
of (70). First suppose that r(z) is equal to a (positive) constant,

r(z) = ro . (72)

Then (70) is true with

R = ro

f = 0, g = 0 (73)

h _= f g 0.

The separation h [of (71)] between the straight lines of the two sides of
the inequality of (70) is zero in this case. Equations (13) or (30) are
readily solved exactly for the reflection coefficient of (72) by slight modi-
fication of the results of (18)-(23), in particular by first replacing
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tanh-1 ck roA and subsequently replacing any remaining A's by
A L, where L is the total length, in these equations. From this exact
solution precise stability conditions may be obtained for the case of
constant ( continuous) reflection coefficient; we expect the bounds of the
present section to agree with this exact result when we set f = g = 0.

Similarly, the parameters of (73) apply to the bounds of (70) when
the (continuous) reflection coefficient is a square wave of constant
absolute value r0 , with arbitrary transitions between the +7.0 and the
-r0 sections.

The above two examples utilize a continuous reflection coefficient.
However, our particular present interest lies in some of the discrete cases
of the preceding paper.' First, consider the case of identical, equally -
spaced reflectors of Section II, Ref. 1; the relations of (70) are illustrated
for this case in Fig. 2. A less -restricted case is provided by the case of
reflectors of identical magnitude but random spacing, where the fluctua-
tion in spacing is very small compared to the average spacing, treated in
Section III of Ref. 1. The relations of (70) for this case are shown in
Fig. 3; the randomness in spacing has resulted in a slightly wider separa-

NK

hEf\ +9

4K -

3K z
R.(z+g)-. Ir(s)Ids

2K 0

1K
/<R(z-f)

0

r(z)

N

r(z)=KE 6(z -L.1.0)

0 0 31-0 410 N10
Z

PARAMETERS OF EQUATION 70
R=KA, f=1,0 g=o

Fig. 2 - Identical, equally spaced reflectors.
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7K

6K

hEf +g ,,,--
1',1.--

5K -
R  (z+g),, '4K - ),--

3K - ,- \>z
2K - j Ir(s)Ids

o

iK -
II

/ '-'1:2(Z-f)

0 I VI I I 1 I

r (z)

N

r (z) =K d(Z-LL)
1=1

0 I L, IL,

to 210
3

1_41 IL5 L6 I

31,0 41.0 51,0 61,0

PARAMETERS OF EQUATION 70

R=KA0 f =1.251,0 g =O.41,0

Fig. 3 - Identical, randomly spaced reflectors.

lion than in Fig. 2 between the dashed lines that enclose the staircase
curve of

z

r(s) Ids.

Since in this case the magnitudes of the reflectors are strictly constant,
the "risers" of the staircase have the same size, while the "treads" vary
in length. It is clear that if the magnitudes as well as the spacings of the
reflectors vary slightly, both the "risers" and the "treads" of the stair-
case will vary slightly, but otherwise the behavior will be much the same
as in Fig. 3, so that the restriction of (70) may be satisfied with small
separation between the straight-line bounds.

While the discrete cases of the preceding paragraph, which have re-
flectors of nominally equal magnitude and spacing, are of principal in-
terest here and supply the motivation for the analysis of the present
section, discrete reflectors having quite different distributions from the
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above may also fall within the restriction of (70) with small separation
of the bounding lines; one such case is illustrated in Fig. 4. (Note that
reflectors of both signs are indicated in the lower drawing of this figure,
by /5 -functions with both positive and negative magnitudes.)

The above cases, which satisfy the restriction of (70), may be re-
garded as having the absolute magnitude of the reflection coefficient
more or less constant in a certain sense, in that

rz r(s) I ds

is approximately proportional to z [see (70)]. Thus we seek hounds on
stability in the case of (70) that are similar to those obtained for constant
reflection coefficient [see ( 72 )].

We again use the solution by successive approximation given in Sec-
tion III above. The discussion of (29)-(43) remains appropriate for our

r (z)

R(z+g)-,

g

rzIr(s)I ds

r(z)= SUM OF 6 -FUNCTIONS

I 1 u 1 I III ILI

z

Fig. 4 - More general case satisfying the restrictions of (70).
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present purposes. However, greatly improved bounds over those obtained
in (44)-(51) may be obtained because of the additional restriction of
(70) imposed in the present section; in contrast, the bounds of (44)-(47)
of Section III hold true in general, and specifically when the restriction
of (70) is not satisfied.

Consider the series solutions of (44). From (42)

gi(o)(z) = 1, go(o)(z) = 0. (74)

Note also (43). We show that:
2

I gl(n)(Z) I
< - e2«.

{R2
/ 1

[z + - 1)h ( n12)-1
2«

- !

I gi(n)(z) I = 0,

I go(n)(z) I = 0,

go(n)(z) I <R +

{R2 (12a+h [z (n -2 1) hly

n even, n 2.

n odd.

tn - 1

\ 2 )

n even.

n odd.

In (75) and (76), R and h are the parameters of (70) and (71).
First, from (40), (42) or (74), and (47),

go(1)(z) I < f e 2" r(s) I ds =
0 0

e-2"8 d[j. 8I r(t) dt]
0

c2az f
0

r(t) dt 2a f e-2"
0

[ I r(t) dtids,
0

where we have made use of integration by parts. Using (70) in (77),

(75)

(76)

(77)
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go(1)(z) C2c"  R(z g) 2aR e-2" (s g) ds

= e2"'  R(z g)

R1
2a

ze-2' (1 - e-2')]
L

2
e-2az) R

2a

(78)

where in the final step we have used the fact that f > 0. Finally, substitut-
ing the definition of h from (71) into (78),

90(1) (z) J < R . (79)

Equation (79) agrees with (76) for n = 1.
Next, from (41), (47), and (79),

1
gi(2)(z) I <

2a
(- h) f e+2" r(s) ds

o

z

= R -I + h 1 e±2as d 8 I r(t) I dt
a 4 0 o

]

( 1 4-9,r,=R + it) c - - foz I r(t) I dt

-R ( 1 +h.) 2a f z e+2" [ f 8 1 r(t) I dtids.
0 0

(80)

Using (70), (80) becomes

g1(2)(z) I < R2 G", -x e2az  (z g)

- R2 h) 2a f e2 "(s - f) ds
2a

= R2 (2--( h) e2"' (z (81)

- '
2a-

R2 ( 1 + h 1 e2) [ ze2 f (1 - e2"' )1
2a

R2 1 11) c2az 1gl
2a 2a
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Finally from (71), (81) becomes

g,( 2)(z) I < R2
1

2

e2az

2a
(82)

which agrees with (75) for n = 2.

We now establish the bounds of (75) and (76) by induction. Suppose
that (75) is true for some even n 2. Then from (40) and (47),

/21

Rn
2«

1

goo+i)(z) < (83)

2

where

I f [s
0

(72

72 -

Integrating (84) by parts,

.

d I r(t) I dt].

[z + - hT/2)-1[Jr04 ( I) 1 (id

(84)

1) f [s
oz

2- 1.) hI
021-2

(85)

[.I r(t) I dt]ds.

Using (70) and (71), we have from (85)

...,5

R(z ± g)

\ 1(1112)-2

- H
(1`1; - 1) f, [s ± 0 - 1) hi (s f) ds

h(7,12)-1
= [z ±

-`-2-

R(z + g)

(n/2)-1[-R f - f) d + -
0
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[ it
(1-2 - 1) h

- ie(z - ) [z

+ le I + (1±0
0

(n 2-1 ( yi '2, --I

= Rh[z -1-- 0 - 1) h - Rf[(14' - 1) h

+ (1) - 1) hi 1-1) [(11' - 1) hi"'
//,) L 9(

(n /2)-1

R(z g)

(i2)-1
-1. h

j.[(n
9 1) h

'....,-1 (86)
- i) 11 (1s

R
-1- 12: - 1 h

n/2 n
(2n) Z (2 ) 1 +

?,h[z + (11"

n /2)-1- 1)
2

where the last step follows from the preceding one because n z 2 [from
(75)], f > 0 [from (70)], and h .__,. 0 [from (71)]. Using the inequality

xk + exk-' < [x + (/k) r, x _-_. 0 and e > 0, (87)

(86) yields

n/2 RI < -R [z + (--.1 - 1) h ± h = [z -1- nhY112.(Ii) 2 0) (88)

Substituting (88) into (83),

go(n+i)(z)
1

< R (2a 11)

[1R2 (-1 + (z nh)
_a

( In\

\2/

n/2

(89)

Recalling that n is some even integer > 2 in (89), (89) agrees with (76).
Next, from (41) and (47), using the result of (89)

R" 1( h)(n/2)+1

I 910+2)(z)
2a< (90)(n)
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where
r Z fR

.1 e-1-2"(s
0

nhr12 d[j r(t) dd.
0

Integrating (91) by parts,

(91)

rz

.1 = c2a2(z + nh)"/2 j[ I r(t) (id
0

Z

- 2a .1 e+2« + nh)'12[f I r(t) 1 ddds (92)
0 0

z s

- 7-1

2-'

i e+2 "(s ± nh)(n12)-1 [.f I r(t) 1 dtids .

0 0

Using (70) and (71), we have from (92)

J< e2"(z nh)nl2R(z g)

- R2a e+2«8 (s nh)n/2 (s -f) ds

R12 e+2«s(s no(n12)-1(s - f) ds
12.0

= ('' z nh)""R( z

-R
fo

(s - f) d [e+2"(s nh)"12]

= e2c"(Z nh)n/2R(z g) - R(z - 2a2(z nh)n12

- Rfinhrl2 R f -F2as (s nh)"12 ds

= Rhe2a2(z ith)"/2 - Rfinh)"12
Z

-R f (s nh)"12 d (e2")
2a

= Rhe2'(z nh)n" Rfinh )n/2
2a

e2"(z nh)ni2

- (nh)n12 -
R n e2aa(s no(n/2)-1 ds.

2a 2a 2 fo

From (71), h 0, so that (93) yields

(93)

< R 1 e2"(z nh)ni' 2 .

.T - C;

(94)
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Substituting (94) into (90),

1

n/2

(
[R2 (--,..., ± h) (z + 7101

1Igl(n+2)(Zn<R2-11 C2a:
2a

2« (01 (95)

Recalling that n is some even integer 2 in (95), (95) agrees with (75).
Noting (79) and (82), the results of (75) and (76) hold for all n by
induction.

We now use the results of (75) together with (74) to obtain bounds
on stability for those cases where the reflection coefficient r(z) is re-
stricted as in (70). This analysis is almost identical to that of Section IV,
(52)-(57), for the general case, modified by replacing the relation of
(46) by that of (75). Thus, making the substitution

I r(s) dsT
1

n! -4 R2 -9 +11)
_a

{R2 (1a + 11) [Z

-

1}(n
/2)-1

11

(96)

throughout (54)-(57), we obtain, corresponding to (57), the following
sufficient condition for stability in the present case, after a minor modi-
fication of the summation index:

I
1«2 [R2 ( ( LN mh)1

R2 (-+Iz E 2
< 2-af, N (97)

2a m=0 m!

LN is the total length of the device. The summation of (97) is found in
closed form by the analysis given in the Appendix. Using the final result
of the Appendix (137), the final results of this section may be sum-
marized as follows:

If the reflection coefficient r(z) (continuous, discrete, or a combination
of both) satisfies the condition

Z

R (z - f) i 17*(0 I ds I? ( z g); R>0,.f __0,g 0
0 (98a)

h f g; h O.
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then a sufficient condition for stability of the active line (with reflection)

is

(1 1
-I-

± 67.1[-2aLN (1 2.7x/-)
(98b)2 < exp

1 - Sri

where

-= R2 hh <
2« e

(98c)

and r1 is given by

7'1 = earl, r1 < e. (98d)

The results of (98) are illustrated in Fig. 5, which shows the maximum
value of R for which stability is guaranteed by (98) versus the nominal
total gain 20 logio eaLN with 20 logio ea'` as a parameter.

A greatly simplified but slightly poorer version of the stability condi-
tion of (98) may be obtained in the high -gain case. As one example,

suppose the one-way gain of the active line exceeds 10 db,

e2aLN 10, 8.686 aLN 10 db, aLN 1.151. (99)

If S satisfies the sufficient stability condition of (98b), it must also

satisfy the weaker inequality

3 <

Substituting (99) into (100),

2 ah -2aLN (100)

(101)

1 ± 2ah e

8 < 0.1.

From (98d), r1 is a monotonic increasing function of 3. Therefore

r1 < 1.118. (102)

Further, since from (98d)

6/.1 = In rl , (103)

bri is a monotonic increasing function of r1, so that

67.1 < 0.1118. (104)

Now writing out the right-hand side of (98b),

[-20ELN (1 +2-ah)1exp
=exp

(- 2aLN) exp (- -LN 8r1) , (105)
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Fig. 5 - Exact and approximate bounds on R for which stability is guaranteed.

we investigate the exponent of the second factor on the right-hand side
of (105). From (100),

2aLN< C 'A r1 < 2aLN c2"LNri (106)
h 1 + 2ah

The right-hand side of (106) is a monotonic decreasing function of 2aLN
for 2aLN > 1. Therefore, substituting from (99) and (102), (106) yields

Lt
6/.1 < 0.2574. (107)

- an > 0.7731.exp [ - (108)
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Finally, using (104) and (108) in (98b), we obtain the following suf-
ficient condition for stability, subject to (98a) ;

2a
R < 0.8287 1 + 2ah

e
aL-

'
N. 8.686aLN > 10 db. (109)

The stability condition of (109) is slightly poorer than the stability con-
dition of (98b), (98c), and (98d), from which it was derived. As the lower
bound on the gain of the active line increases beyond 10 db and ap-
proaches co , the numerical factor 0.8287 in (109) increases and ap-
proaches 1. Equation (109) or a similar result is useful in illustrating the
general behavior; however calculations using the basic result of (98) are
straightforward. The result of (109), with the numerical factor 0.8287 -> 1,
is also shown as the dashed curves of Fig. 5, illustrating the way in
which this approximate stability condition approaches the exact result
of (98) in the high -gain case.

VI. EXAMPLES AND DISCUSSION

Consider first an active line with two discrete reflectors of equal mag-
nitude c at the ends of the line, z = 0 and z = L2 . c is of course real;
for convenience we assume c > 0. In this simple case the exact stability
condition is readily found, and may be compared with the two bounds
derived above. From (8) of Section I, the transmission gain of this de-
vice in the stable region is

where from (1)-(7)

1GT = -
X11

erL2(1 c2e-2rL2).

(110)

The condition for stability is readily found as described following (8)
[this procedure is similar to that used in Section IV, (52)-(57), and
Section V, (96)-(97), in obtaining bounds on stability]. Replacing c
by fc, where E is a numerical parameter greater than 0, and using (2),

er.L.2[1 (E02e1-2aL2e-j2pL2]. (112)

For small enough e the minimum value of x11, and hence the maximum
value of gain G, of (110), occurs at

2i3L2 = ±7, ±37, . (113)
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-2aL2[1
I Ill Im in (114)

As e increases from zero, instability will take place at a value of E for
which

.c11 = 0,
1.

Hence the original device (with E = 1) will be stable if
L 2

(115)

(116)

Equation (116) is an exact condition for stability for the active line
described above, with two equal reflectors at the ends. We now compare
this exact result with the bounds described above.

Consider first the bound of (9) or (62). This result is a sufficient con-
dition for stability for any arbitrary distribution of discrete reflectors,
and so must apply to the special case above. Setting N = 2, c1 = c2 = c,
this general bound guarantees stability if

Equation (117) yields

o-aL2
tanh-1 c <

V 2

1
2

c < -0 V 1 + e-2"2

(117)

(118)

as a sufficient condition for stability for an active device with two equal
reflectors of magnitude c at the ends. Comparing the bound of (118)
with the exact stability condition of (116), we see that the general
bound of (9) or (62) is conservative in the present special case; i.e.,
the device with two equal reflectors at the ends remains stable for the
reflector magnitude c larger than that guaranteed by the general bound
of (9) or (62) by a numerical factor that varies from V5 to V2 as the
gain aL2 varies from 0 to 00. Therefore the general bound on stability
given in (9) or (62) cannot be improved by a factor greater than
[i.e., this factor to multiply the right-hand side of (9) or (62)]; of course
it may be that no improvement at all is possible, and that some distribu-
tion of reflectors can be found for which (9) is satisfied as an equality at
the boundary of instability.

Next, consider the bound of Section V, (98), applied to the above
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special case, i.e., two discrete reflectors of identical magnitude c at the
ends of the active line. In (98) we set h = L2 R = (tanh-1 c)/L2 ,
to yield the following (precise) bound on stability:

Sr12aL2 e-2aL 2

1 - Sri 1 -I- 2aL2

where

and r1 is given by

1 2 1 + 2aL2(tanh- )
2aL2

rit= eb , r1 < e.

(119a)

(119b)

(119c)

The bound on c for stability is readily determined numerically from
(119) as a function of aL2 . However, when the one-way gain of the active
line is large, aL2 > 1, the bound of (98) takes on the form of (109),
with the numerical factor 0.8287 --> 1 since aL2 > 1 (i.e., the gain is
taken to be very large, not simply greater than 10 db). Thus the ap-
proximate bound on stability in the present case becomes

-1 CX..,2 L2 e"2tanh c < aL2 >> 1. (120)
1 + 2aL2

The symbol Zs indicates that the relation of (120) is not a precise bound,
but merely gives a good numerical approximation to the precise bound
if aL2 is large enough. Comparison of the (imprecise) bound of (120)
with the exact stability condition of (116) shows that in the high -gain
case, aL2 >> 1, where c << 1, the specialized bound of Section V, (98),
yields bounds on the magnitude of the reflection c in the present special
case (two equal reflectors at the ends of the active line) that approach
those of the exact condition for stability. Consequently the bounds of
(98) cannot be further improved (in their present form).

The case of N identical, equally spaced reflectors was studied in Sec -
II of Ref. 1, where simple expressions for stability were found in the high -
gain case. If the total gain is large and the gain per section small, com-
parison of (109) (with the factor 0.8287 -> 1) and (98a) with (43) of
Ref. 1 shows again that the bound on stability of (98) cannot be
further improved. It is of interest to see how close the bounds of (98)
come to the exact value corresponding to instability in a few cases of
interest. For this purpose we consider examples (i), (ii), and (iii) of
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Section II, Ref. 1. In (98) we set

= 1, R - tanh-1 c

323

(121)

and compute upper bounds on I c I that guarantee stability. It is also of
interest to compare the general bound of (9) or (62) for this case.
Table I summarizes these results. The bounds of (98) are quite good
when the total gain is high, aLN >> 1, and when the gain corresponding
to the distance / is small, al << 1; for these conditions the stability condi-
tion of (98) gives much better results than the more general stability
condition of (9), because in the former we have made use of additional
information regarding the distribution of reflectors.

TABLE I - IDENTICAL, EQUALLY SPACED REFLECTORS
N = number of reflectors
Gain (db) = 20 logo eNal = 20 logo eaLN = one-way gain of active line

in db
c = maximum value of I c I for stability, as determined in Section

II, Ref. 1
Bound on I c I - (98) = maximum value of I c I for which stability is

guaranteed by (98)
Bound on I c f - (9) or (62) = maximum value of I c I for which sta-

bility is guaranteed by (9) or (62).

Case I c Imax Bound on I c I Bound on I c
(Sec. II, Ref. 1) N Gain, db (Sec. II, Ref. 1) (98) (9) or (62)

(i) 30 30 0.00860 0.00590 0.00149
(ii) 300 30 0.000860 0.000710 0.000149

(iii) 50 5 0.06501 0.01105 0.0130

t Note that for this case in Ref. 1 the high -gain approximation given there was
inappropriate, so that this result was obtained by use of a computer.

Finally, we consider the application of the above stability conditions
to some of the problems involving random reflectors studied in Ref. 1.
The stability of the various deterministic cases discussed above in the
present section has been treated exactly here or in Ref. 1 without using
the new results of the present paper; these cases have been discussed in
the present section both to show that any possible improvement in these
general stability conditions must be quite small, and to provide partial
confirmation of these results. However, the application of (9) and (98)
to cases involving random reflectors provides the principal motivation
for the present analysis, since no other information whatever is available
regarding stability in these cases.

Let us consider the example of the first part of Section IV, Ref. 1, in
which the average normalized loss and the rms loss fluctuation were
determined for an amplifier with reflections having identical magnitude
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but random spacing. The following parameters were chosen for this
illustration:

/k = spacing between (k - 1)th and kth reflectors [(3) and Fig. 1]
/0 = (/k), average value of /k , independent of k
ck = magnitude of kth reflection coefficient [(3) and Fig. 1]
ck = co ; all reflectors identical, co > 0 (122)
N = 30, number of sections
20 logio eN "1° = 30 db, nominal total gain
20 logio eal° = 1 db, nominal gain per section.

The following assumptions were made in these calculations of Ref. 1:
(a) /k is always a large number of wavelengths;

Sik >> 27, f3/o >> 2r. (123)

(b) The distribution of the /k about their mean /0 is very narrow with
respect to the mean, but wide compared to 2r//3; further, this
distribution is smooth and symmetrical about /0 .

The probability density for /k did not have to be further specified for
the calculation of average loss and rms loss fluctuation in Ref. 1. (Note
however that in the calculations of Ref. 1 for the covariance of the loss,
the specific form of the
was assumed to be Gaussian in Ref. 1.) The average loss and the rms
loss fluctuation for the amplifier of (122) were given in Fig. 9 of Ref. 1
versus co , the magnitude of the reflections. These curves were shown
dotted for co > 0.00860, because it was known that instability is possible
in this range, in particular for /k = /0, i.e., equally spaced reflectors [see
Section II, Ref. 1 and case (i), Table I]. However it was noted that this
was only a symbolic reminder of the unsolved question of stability; these
results are valid for small enough co , but how small was not known from
the results of Ref. 1.

We illustrate the utility of the results of the present paper by applying
them to this problem; these results provide useful information concern-
ing stability in this case, and of course in many similar problems. For
convenience we make one further assumption in addition to those
mentioned following (122) :

(c) The distribution of /k about its mean to is strictly bounded; in
particular

/k - /0 I < v/0

further, we assume for convenience that

v < 1.

(124)

(125)
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v is in (124) the upper bound on the fractional deviation in spacing from
its average value; the restriction of (125) requires that /k 0, and so
prevents the order of the reflectors from being altered. In practical cases
we will be interested in small values of v,

v<<1. (126)

We determine upper bounds on the reflector magnitude co that guaran-
tee stability, as a function of v, the maximum fractional deviation in
spacing between reflectors. For P = 0 the reflectors are equally spaced;
Ref. 1 or Table I shows that stability is guaranteed if

co < 0.00860, v = 0. (127)

Next, the bound of (9) guarantees stability independently of the par-
ticular distribution of reflectors. Since however the total length may
vary somewhat, we must in (9) set

L N -== L30 = 3010(1 + v), ( 128 )

yielding

co < 0.00149(0.03162)`' (129)

condition.
Finally, we apply the bound of (98) to this example. We set

tanh-1 coR - (130)
io

h = (1 + 60v)/0 (131)

and make use of (128) in (98) to obtain a sufficient stability condition.
The sufficient stability conditions of (127), (129), and (98) are

plotted in Fig. 6; the result of (129) is identified as originating from (9),
and that of (127) from Section II of Ref. 1. The curves of Fig. 6 have
been plotted out to fractional spacing variations v of 10 per cent; over
this region the stability condition of (98) is superior to that of (9).
However the bound of (9) [i.e., (129)] will be superior to that of (98)
for large enough P. Note that the factor (0.03162)' in (129) arises from
the fact that the total length and hence the total gain is subject to
statistical fluctuation [a similar factor occurs in using (98) for the
problem]; in the range of probable interest, i.e., for very small fractional
spacing fluctuations v, this numerical factor will be close to 1. The fact
that the limit of the bound of (98) as v -4 0 is substantially below the
maximum value of co given by (127) is due to the fact that the nominal
gain per section in the example of (122) is 1 db, which is not too small;
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as the gain per section decreases these two quantities will approach each
other, as indicated above.

These results, plotted on Fig. 6, show that the range of co over which
the calculations of Section IV of Ref. 1 are guaranteed to be valid. If the
maximum fractional variation in the spacing between reflectors is very
small, then the results plotted on Fig. 9 of Ref. 1 are valid for co up to
approximately 0.00590.

The stability conditions of (9) and (98) may be applied to a variety
of similar problems. In the above example we have found the maximum
value of co for which stability is guaranteed, i.e., for which the probability
of oscillation is zero, as a function of the maximum departure of the
spacing between reflectors from its average value. The results of (9)
and (98) may also be used to determine an upper bound on the proba-
bility of oscillation in similar problems where no absolute guarantee of
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REFERENCE 1,
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Fig. 6 - Bounds on magnitude of coupling coefficient to guarantee stability
for amplifier of (122), with reflectors of identical magnitude and nominally equal
spacing.
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stability can be given, e.g., perhaps in cases where the probability dis-
tribution for the spacing deviations is not strictly bounded.

The main emphasis of the present paper has been on the discrete
case; the continuous case was introduced only as an intermediate step
leading to the desired results. However, it is clear that related problems
with continuous reflection may be studied for stability using the general
results derived above.

Finally, the present calculations have assumed for definiteness a rather
special model; i.e., the forward and backward gains have been assumed
equal and a particular form has been taken for the matrix of the dis-
crete reflectors. These assumptions are not essential to the analysis;
similar results can be derived for many related cases of interest, such as
systems using isolators to partially attenuate the backward waves, etc.

VII. ACKNOWLEDGMENT

The author would like to thank S. 0. Rice for first summing the series
of (97), and the unknown referee for the shorter analysis of the Appendix
for this series. He would also like to thank Mrs. C. L. Beattie and Miss E.
Richardson for programming various numerical calculations.

APPENDIX

Summation of the Series S = (z 3n)"
n-.0 n!

The summation of (97) was initially performed by a method suggested
by S. 0. Rice, employing contour integration; this method is straight-
forward but lengthy. A much shorter analysis presented by the unknown
referee is given here. It has been shown that6

where

eaz = 1 a(a nb)" "n n!

y = xebx and yb < (1/e).

(132)

(133)

Differentiate (132) with respect to y and then set y = 1 to obtain

e(a-b)x [(a - b) - nb]n- _,1 + bx n n!

where

(134)

x = e-bz and I b < (1/e). (135)
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Finally, set

a = z - (3, b = -6, x = r1 (136)

to obtain

(z + ertz
0 < 1

tto n! 1 -
where r1 is given by (137)

Ti = earl,
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Quantum Efficiency of the
Green and Red Electroluminescence of GaP

By A. Pfahnl

(Manuscript received November 19, 1963)

Gallium phosphide crystals were grown from polycrystalline material
in a solution of gallium contained in evacuated and sealed -off quartz
tubes.' For the regrowth, the tube with the GaP-Ga mixture was heated
to 1250°C and cooled at a rate of 1.5°C per minute. After separation of
the GaP crystals from the adherent Ga, Zn was diffused into the crystals,

Fig. 1 - Red el ectroluminescent gallium phosphide crystal photographed in its
own light; p -n junction prepared by diffusion of Zn at 800°C for four hours. Length
of the straight side of the crystal about 1.5 mm.
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leading to red (7000 A) electroluminescent junctions. The diffusion was
done in an evacuated and sealed -off quartz tube using as a source' a
Zn GaP mixture. The efficiency of the emission was determined with
an integrating sphere and a photomultiplier with S-1 response calibrated
in absolute units, and was found at room temperature to be about
1.0 X 10-3 photons per electron for the best samples. Red electrolumines-
cence in GaP was previously reported to have efficiencies of about 10-4
(see Ref. 3) and 10-4 - 10-3 (see Ref. 4).

If silver contacts are alloyed onto the rough side of the solution -re-
grown GaP crystals, green electroluminescence can frequently be ob-
served at the contact area. The efficiency of the green emission was
found to be 4 X 10-5 photons (5550 A) at 300°K observed outside the
crystal per recombining electron -hole pair for the best samples. This com-
pares with efficiencies of 3 X 10-5 measured by Gershenzon et al.' and
efficiencies smaller than 10-4 as indicated by Allen et al.3

The figure shows one of the red electroluminescent crystals with a Zn-
diffused junction photographed in its own electroluminescent light.

REFERENCES

1. Wolff, G., Keck, P. H., and Broder, J. D., Phys. Rev., 94, 1954, pp. 753-754.
2. Foy, P. W., private communication.
3. Allen, J. W., Moncaster, M. E., and Starkiewicz, J., Solid -State Elect., 6, 1963,

pp. 95-102.
4. Gershenzon, M., and Mikulyak, R. M., Solid -State Elect., 5, 1962, pp. 313-329.
5. Gershenzon, M., Mikulyak, R. M., Logan, R. A., and Fey, P. W., to be pub-

lished in Solid -State Elect.

Matching of Optical Modes

By H. Kogelnik

(Manuscript received November 19, 1963)

In experiments with coherent laser light it is frequently necessary to
transform a given Gaussian beams .2 into a Gaussian beam with certain
desired parameters. It is required, for example, to transform the light
beam emerging from a laser oscillating in a fundamental mode in order
to provide for optimum injection into a,,light transmission line2,3 (con-
sisting of a sequence of lenses), or for optimum coupling into a spherical
mirror interferometer.' In these cases one has to "match" the incoming
beam to the natural mode of the system in question. Lenses inserted in
the beam perform the matching transformation. The design of a match-
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ing configuration has to take full account of the laws',2,3 that govern
optical modes. This leads to a somewhat complex analysis.6 The results,
however, are quite simple matching formulae which are presented in
this brief. A matching experiment is described for illustration.

The given beam is characterized by its minimum beam radius1,6 (spot
size) wi and by the location of the beam waist. The problem is to trans-
form this beam into another with a minimum radius w2 . The quantities
w1 and w2 determine a characteristic "matching length" fo given by

W1W2= 7
A

(1)

where X is the wavelength. One beam is transformed into the other if a
lens with a focal length f larger than fo is spaced between the two beam
minima as shown in Fig. 1. The distances d, and d2 between the lens and
the beam minima have to satisfy the following matching conditions

di 0= 1 ±W2 (2)
/2

=
wi f2Vi - fo2

(3)
d2

where the same sign should be used in both equations. From (2) and (3)
it follows that matching is not possible if f < fo . If one chooses f = fo
then di = fo and d2 = fo ; the beam minima are located in the two focal
planes of the lens.

When one uses more than one lens to achieve the desired beam trans-
formation, the above matching formulae are still applicable. Then f is the
focal length of the lens combination, and d, and d2 are measured from
the principal planes. If the modes of two given optical systems are to be
matched, one need not evaluate the beam parameters wi and w2 , which
are functions' 'n of X and the system parameters: the matching parame-

4C-

WI

di

V
f

d

Fig. 1 - Matching configuration.

W2
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ters fo , wi d, , and d2 are independent of X and can be expressed in
W2

terms of the system parameters alone.
In our experimental study the light beam was taken from a He-Ne

gas laser oscillating in a fundamental mode at X = 0.63 micron. The
laser cavity consisted of a concave mirror of 1 meter focal length and a
flat output mirror. The mirror spacing was 1.7 meters. The (minimum)
beam radius at the flat is computed' as w, = 0.37 mm. This beam was
passed through a matching lens and then injected through a slit into a
mirror system formed by two concave mirrors of 12.5 meters focal length

(a)

(c)

(b)

(d)

Fig. 2 - Photographs of beam spots on mirror.

spaced 50 centimeters apart. The injection angle was so chosen that the
beam was reflected hack and forth between the mirrors many times be-
fore it was finally intercepted, with the points of beam impact on each
mirror forming a circular pattern. Such a beam configuration was
described and analyzed in Ref. 7. As the beam passes back and forth
between the mirrors its radius is changed in the same way as for trans-
mission through a sequence of lenses2.3.8 with corresponding parameters.
The minimum beam radius of a fundamental mode of this sequence is

computed as w2 = 0.7 mm.
From the above data one obtains a matching length of fo = 1.3 meters.

A lens of a focal length off = 1.3 meters was available and was used as
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matching lens. Therefore, spacings d1 = d2 = Jo = f = 1.3 meters were
required for matching.

A mirror of the multiple -pass system was slightly transparent and
Fig. 2 shows photographs of the beam -impact points taken through this
mirror. In Fig. 2(a) the arrow marks the point where the injected beam
strikes the mirror first. After one return trip the point of impact is the
neighboring point to the right. Subsequent impact points after a cor-
responding number of return trips appear counterclockwise on a circle.
The beam was intercepted after 14 return trips. For illustration we show
Fig. 2(b), where the beam was intercepted after 12 return trips. In both
cases mode -matching conditions were fulfilled and all beam radii at im-
pact are seen to be the same. In Fig. 2(c) one can see how the beam radii
at the mirror vary periodically9 if some mismatch is introduced

: the
spacing d1 was misadjusted by about 25 cm. Fig. 2(d) shows the elliptical
pattern obtained for another injection angle. Here the modes were
matched again and all beam spots are of equal size.
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leading to red (7000 A) electroluminescent junctiow. The diffusion was
done in an evacuated and sealed -off quarts tube using as a source' a
Zn  GaP mixture. The efficiency of the emission was determined with
an integrating sphere and a photomultiplier with S-1 response calibrated
in absolute units, and was found at room temperature to be about
1.0 X 10-' photons per electron for the best samples. Red electrolumines-
cence in GaP was previously reported to have efficiencies of about 10-4
(see Ref. 3) and 10-4 - 10-3 (see Ref. 4).

If silver contacts are alloyed onto the rough side of the solution -re-

grown GaP crystals, green electroluminescence can frequently be ob-
served at the contact area. The efficiency of the green emission was
found to be 4 X 10-5 photons (5550 A) at 300°K observed outside the
crystal per recombining electron -hole pair for the best samples. This com-
pares with efficiencies of 3 X 10-6 measured by Gershenzon et al.' and
efficiencies smaller than 10-4 as indicated by Allen et al.'

The figure shows one of the red electroluminescent crystals with a Zn-
diffused junction photographed in its own electroluminescent light.
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Matching of Optical Modes

By H. Kogelnik

(Manuscript received November 19, 1963)

In experiments with coherent laser light it is frequently necessary to
transform a given Gaussian beam' into a Gaussian beam with certain
desired parameters. It is required, for example, to transform the light
beam emerging from a laser oscillating in a fundamental mode in order
to provide for optimum injection into alight transmission line's (con-
sisting of a sequence of lenses), or for optimum coupling into a spherical
mirror interferometer.' In these cases one has to "match" the incoming
beam to the natural mode of the system in question. Lenses inserted in
the beam perform the matching transformation. The design of a match-
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ing configuration has to take full account of the laws".' that govern
optical modes. This leads to a somewhat complex analysis.' The results,
however, are quite simple matching formulae which are presented in
this brief. A matching experiment is described for illustration.

The given beam is characterized by its minimum beam radius' (spot
size) wi and by the location of the beam waist. The problem is to trans-
form this beam into another with a minimum radius w2 . The quantities
wi and tel determine a characteristic "matching length" fo given by

WM/
Jo = >r (I)

where A is the wavelength. One beam is transformed into the other if a
lens with a focal length f larger than fo is spaced between the two beam
minima as shown in Fig. 1. The distances dk and d2 between the lens and
the beam minima have to satisfy the following matching conditions

± n 4/.
Joy

w2

w2 1-02

wa y r

(2)

(3)

where the same sign should he used in both equations. From (2) and (3)
it follows that matching LA not possible if J < Jo . If one chooses f = fo
then d, = fo and d2 = fo ; the beam minima are located in the two focal
planes of the lens.

When one uses more than one lens to achieve the desired beam trans-
formation, the above matching formulae are still applicable. Then .1 is the
focal length of the lens combination, and di and d2 are measured from
the principal planes. If the modes of two given optical systems are to be
matched, one need not evaluate the beam parameters wi and tol , which
are functions" of A and the system parameters: the matching parame-

- d -

-.1-

A

a

Fig. I Matching configuration.
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to,tern A, - , d, , and d2 are independent of A and can be expressed in
toe

terms of the system parameters alone.
In our experimental study the light beam was taken from a He-Ne

gas laser oscillating in a fundamental mode at A = 0.63 micron. The
laser cavity consisted of a concave mirror of 1 meter focal length and a
flat output mirror. The mirror spacing was 1.7 meters. The (minimum)
beam radius at the flat is computed' as w, = 0.:37 mm. This beam was
passed through a matching lens and then injected through a slit into a
mirror system formed by two concave mirrors of 12.5 meters focal length

(a)

(c)

(b)

(d)

Fig. 2 - Photographs of beam spots on mirror.

spaced 50 centimeters apart. The injection angle was so chosen that the
beam was reflected hack and forth between the mirrors many times be-
fore it was finally intercepted, with the points of beam impact on each
mirror forming a circular pattern. Such a beam configuration was
described and analyzed in Ref. 7. As the beam passes back and forth
between the mirrors its radius is changed in the same way as for trans-
mission through a sequence of lensest.3.8 with corresponding parameters.
The minimum beam radius of a fundamental mode of this sequence is
computed as w2 - 0.7 mm.

From the above data one obtains a matching length of fo 1.3 meters.
A lens of a focal length of f = 1.3 meters was available and was used as
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matching lens. Therefore, spacings di = d2 = fo ^ f =-- 1.3 meters were
required for matching.

A mirror of the multiple -pass system was slightly transparent and
Fig. 2 shows photographs of the beam -impact points taken through this
mirror. In Fig. 2(a) the arrow marks the point where the injected beam
strikes the mirror first. After one return trip the point of impact is the
neighboring point to the right. Subsequent impact points after a cor-
responding number of return trips appear counterclockwise on a circle.
The beam was intercepted after 14 return trips. For illustration we show
Fig. 2(b), where the beam was intercepted after 12 return trips. In both
cases mode -matching conditions were fulfilled and all beam radii at im-
pact are seen to be the same. In Fig. 2(c) one can see how the beam radii
at the mirror vary periodical!y ° if some mismatch is introduced: the
spacing di was misadjusted by about 25 cm. Fig. 2(d) shows the elliptical
pattern obtained for another injection angle. Here the modes were
matched again and all beam spots are of equal size.
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Demodulation of Wideband, Low -Power
FM Signals*

By SIDNEY DARLINGTON
(Manuscript received October 3, 1963)

Some theoretical aspects of the demodulation of wideband, low -power
FM signals are discussed. It is assumed that a band -limited, continuous,
analog signal is supplied to the modulator and is recovered to a fidelity
suitable for television, telephone, or carrier telephone. Much of the paper
assumes that the baseband signal is sampled and clamped before it is applied
to the frequency modulator. The combination has been called PAM -FM
and is characterized by a piecewise constant transmitted frequency.

PAM -FM can be demodulated by spectrum analysis means not suitable
for continuously varying frequencies. It is shown that a spectrum generator
can be derived from the techniques of radar pulse compression, and is equiv-
alent to an infinite set of correlators or matched filters plus means for scan-
ning their terminals.

The spectrum analysis circuit forms are compared with demodulators
using frequency detectors, with and without FM feedback, in regard to the-
oretical noise sensitivities. The theoretical sensitivities are quite similar for
spectrum analysis and FMFB under conditions assumed. The comparisons
disclose that frequency detectors (followed by filters) enjoy a disguised but
efficient use of a differential phase coherence which is a characteristic of
FM signals. A combination of spectrum analysis and frequency detection
is described which has some of the theoretical advantages of both.

I. INTRODUCTION

This paper discusses some theoretical aspects of the demodulation
of wideband, low -power frequency modulated signals. A wide trans-

* Parts of the material of this article were discussed by the author in lectures
at the University of California at Berkeley during May, 1963.
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mitted bandwidth permits a saving in power. Frequency modulation
implies a constant power level, which makes peak power identical with
average power. It is advantageous, for example, when the practical
restrictions on peak power determine system power levels rather than
restrictions on average power.

More specifically, the paper is concerned with FM systems subject
to the following external requirements: A band -limited, continuous,
analog signal is supplied to the input of a coder or modulator, which
produces the transmitted signal. A demodulator reproduces the original
baseband signal to a fidelity suitable for a television channel, a telephone
channel, or a carrier system combining a number of telephone channels.
For such purposes, for example, the average errors in the output must
be more than 40 db below the baseband signal. It is assumed that a large
FM index is used, to conserve signal power. These conditions are im-
plicit in many of the conclusions. They will be referred to collectively
as "the conditions assumed here."

Several different techniques and circuit forms are compared. The
comparisons are concerned primarily, but not exclusively, with sensi-
tivities to noise. Conventional FM receivers and circuits using FM
feedback (FMFB) are included. However, more attention is paid to
techniques which are closer to (but significantly different from) so-called
frequency shift keying (FSK), a well-known method of data transmis-
sion.' Thus banks of correlators or matched filters appear in some of
the proposed circuits, somewhat (but not exactly) as in FSK systems.
Alternatively, the correlators or matched filters can be replaced by
circuits resembling the pulse compressors of so-called Chirp radars,2
and one (but not the only) purpose of the paper is to note how it can
be done.

Circuits of different kinds are compared not only among themselves
but also with theoretical bounds derived from general information
theory. Thus the paper draws on four major disciplines within the gen-
eral field of communication theory and practice, namely: conventional
FM and FMFB, discrete data transmission, pulse compression radars,
and information theory.

An expert in any one of the four disciplines may find some of the
discussion quite familiar, and perhaps superfluous. However, it is un-
likely that many readers will be thoroughly familiar with the pertinent
parts of all the disciplines. Hence a somewhat tutorial approach has
been adopted. However, some of the relations between disciplines and
some of the circuit forms appear to be novel.

The purpose of the paper is to describe and compare the various
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techniques and circuit forms in simple terms. Mathematical proofs are
outside the intended scope. Except in the Appendix, only the simplest
formulas are stated explicitly, and circuits are represented only by simple
block diagrams. A complete analysis is long, tedious, and mathematically
uninteresting; a good deal of it differs only in detail from established
applications to other problems. Some of the circuit forms have not
actually been built; the block diagrams can be filled in with circuit
details in many different ways, and best ways have not all been deter-
mined. The Appendix outlines very briefly some analytical and circuit
details, which may be needed for an appreciation of some of the conclu-
sions.

II. DEMODULATION BY SPECTRUM ANALYSIS

Much of the paper concerns systems in which the analog baseband
signal is sampled, as part of the initial modulation, but is not quantized.
Fig. 1 is a corresponding block diagram. Each sample is clamped during
the sample interval, and is supplied to a frequency modulator. Then
the transmitted frequency is constant over each sample interval, but
changes from interval to interval. Curve B of Fig. 2 illustrates the
variation in frequency with time. It differs from frequency shift keying
in the following way: The transmitted frequency may be anywhere in a
continuum of frequencies; it is not restricted to a finite number of dis-
crete frequencies. The distinction has important repercussions through-
out the paper.

If the sample interval is no greater than the Nyquist interval of the
baseband bandwidth, the sampling destroys no information (at least in
principle). It is assumed here that the sample interval equals the Ny-
quist interval.

Referring again to Fig. 1, the sequence of clamped samples at the
input of the frequency modulator may be called a pulse amplitude
modulation, or PAM representation of the original signal (with no gaps
between the pulses). The corresponding output of the frequency modu-
lator has been called PAM-FM.3 It is a known means of adapting time

BASEBAND
SIGNAL SAMPLE

AND
CLAMP

PIECEWISE
CONSTANT VOLTAGE

CLOCK

PIECEWISE
FREQUENCY CONSTANT FREQUENCY
MODULATOR

Fig. 1 - Block diagram of a PAM -FM modulator.
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division multiplex to frequency modulation.* (For multiplexing, signal
samples are clamped for only fractions of sample intervals and are
interleaved with the samples from other channels ahead of the frequency
modulator.) We are concerned here with a quite different feature of
PAM -FM. The piecewise constant transmitted frequency can be demod-
ulated by means of circuitry which cannot handle the continuously
varying frequency of the more usual FM signal.

It is assumed that the demodulator is synchronized to the constant
frequency intervals, as received. Some synchronization means are sug-
gested in the Appendix (Section A.9). Then either correlators or matched
filters may be used to estimate the piecewise constant frequency, sample -
by -sample. The block diagram in Fig. 3 illustrates the concept, without
filling in circuit details. A set of correlators or filters, tuned to a sequence
of closely spaced frequencies, furnishes a spectrum analysis of the signal
plus noise received over each sample interval. The signal is estimated by
finding the frequency at which the spectrum is largest.

The operation is complicated by the fact that the true frequency is
anywhere in a continuum, and must be estimated to closer than 1 per
cent of the bandwidth of the continuum. This implies something like
100 correlators or filters, or else means for interpolation which compare
the outputs of adjacent units.

2.1 A Spectrum Generator

The set of correlators or filters furnishes an analog representation of

the desired spectrum, in which positions along a sequence of output
terminals correspond to discrete values of frequency. The techniques
of radar pulse compression can be used to represent the same spectrum,
with time as the analog of frequency, at a single output terminal. Ex-
ternally, the circuit is equivalent to an infinity of correlators or filters,
with scanning means to convert the spatially distributed outputs into

a function of time.
The spectrum generation hinges on a sequence of two operations.

Fig. 4 is a block diagram. The first operation beats the received signal
with a varying -frequency local oscillator, to obtain the difference fre-
quency. Fig. 5 illustrates the frequencies of the true signal, of the local
oscillator, and of the signal at the output of the mixer. The true fre-
quency is constant over each sample interval, as before. The oscillator
frequency varies periodically, in synchronism with the signal samples.
In particular, it varies linearly over each sample interval. Thus, at the

* For example, in telemetry systems.
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t
3

A -ORDINARY FM

B -PAM - FM

TIME, t

Fig. 2 - Instantaneous signal frequencies.

output of the mixer, the variations in frequency are the same over
every sample interval, but the average varies from sample to sample.

The second operation transmits the modified signal through a pulse
compressing (dispersive) line. The nominal delay (phase slope) varies
linearly with frequency. Over any one sample interval, the instantaneous
frequency varies linearly with time. Thus the nominal delay varies
linearly with time. Fig. 6 illustrates the variations in delay with fre-
quency and time.

The variations in delay are so scaled that the tail end of the signal
sample just catches up with the head end. Then, on the basis of nominal
delays, the entire signal sample emerges from the line in a single instant
of time. Actually, of course, the nominal delay does not apply exactly
to the time -varying instantaneous frequency. Thus the signal sample
does not actually emerge from the line all at a single instant. However,
under the conditions assumed it is squeezed into a small portion of the
sample interval.

CORRELATORS SELECTS TERMINAL RECONSTRUCTS
PAM -FM OR FILTERS GIVE WITH MAXIMUM BASEBAND SIGNAL

SPECTRUM AS A SIGNAL AT ON BASIS OF
FUNCTION OF APPROPRIATE TERMINALS

TERMINAL SAMPLING TIMES SELECTED

Fig. - PAM -FM demodulation by correlators or filters.
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Fig. 4 - Spectrum generation.

The compression of a signal sample into a short pulse depends only
on the variations in the instantaneous frequency, which are the same
for each sample interval. On the other hand, the time of arrival at the
output end of the line depends on the average frequency, which is the
frequency of the true signal and varies from sample to sample. The
baseband bandwidth and the FM index restrict the signal frequencies
to a utilized RF bandwidth. With a suitable choice of circuit param-
eters, the corresponding variations in arrival time cover a little less than
one sample interval. Then the true signal produces one pulse per sample
interval, whose position in a (somewhat delayed) sample interval is a
measure of the signal frequency. Fig. 7 illustrates the situation. In
other terms, beating with a swept frequency and then pulse compressing
converts PAM -FM into pulse position modulation, or PPM.*

It is now time to note specific formulas. For simplicity, let time t be
zero at the center of a typical signal sample interval. Let the true signal,
for that interval only, be

s(t) = V2Ps cos (cost + (3s), -T/2 < t < T/2. (1)

Here T is the length of the sample interval, cos and 138 are the frequency
and phase of the true signal, and PB the signal power. Let the correspond-
ing output of the mixer be

= -OP, cos (cost ± 138 - 2 qt2), - T/2 < t < T/2 (2)

where q is an arbitrary constant. The instantaneous frequency is now
cos - qt, linear with respect to time. [Actual circuitry may introduce
constant changes in amplitude, carrier frequency and phase angle,
between (1) and (2), but these are trivial for present purposes.]

* In practice, the compressed pulse will have small side lobes, omitted in Fig. 7
for simplicity. See Fig. 8 below and also Section A.9 of Appendix.
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Fig. 5 - Frequency conversion.

The corresponding output of the pulse compression line is approxi-
mately

S(1) = -V21), (0), - wk) cos (coct qt` + - 0,1
co, + (it

T
S111 X

-`j

X

The expression assumes that w, is large compared with I co, - I and
- we I . For present purposes, co, and cok lie in the utilized RF band,

and co, is the midband, or carrier, frequency. A derivation of (3) from
(2) is outlined in the Appendix (Section A.1).

The processed signal S(t) may be described as a high -frequency
sinusoid multiplied by an envelope function. The frequency, co, + qt,
varies with time, but it is independent of the received signal. On the
other hand, the phase angle is OR - (3, , in which (3c is a property of the
transmission line, but 138 is the phase angle of the unprocessed signal
s(t). The envelope is VTJP, F(co, - wk). It is a function of time, but

(3)
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I. END OF SAMPLE
2. MIDDLE OF SAMPLE
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FREQUENCY, CJ

SAMPLE NUMBER, j SAMPLE NUMBER,j 4-1

INPUT TIME, t

Fig. 6 - Delay vs frequency and time.

the time is an analog representation of the frequency variable wk . The
signal frequency w8 enters the envelope function as a parameter.

Fig. 8 is a qualitative plot of F(w. - cok). The abscissae correspond
simultaneously to time and wk . The largest F occurs at wk = Thus
the frequency w8 may be determined by noting the time of the maxi-
mum F, and interpreting the time in terms of wk . The envelope F may
be separated from the sinusoid by means of an envelope detector at
the output of the line. Fig. 9(a) is a block diagram.

For some purposes, it is convenient to divide S(t) into two com-
ponents, as follows:

S(t) = V2P. F(w. - wk) cos 138 cos (wit + 2 qt2 - Oc)
(4)

- V2P. F(ws - wk) sin 0. sin (wct + z qt2 - fic).
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1

,,

1

1 1
ke--- ONE SIGNAL SAMPLE -- ...I

TIME, t -.

Fig. 7 - Signals at terminals of dispersive line: 1, input signal, before pulse
compression; 2, output signal, after pulse compression.

The two sinusoids are independent of the signal s(t). Physically, the
two envelope functions can be resolved by means of phase detectors.
Fig. 9(b) is a block diagram.

Consider the Fourier transform of a time function equal to s(t) in the
one sample interval, and zero elsewhere. More specifically, consider the
transform at positive frequencies Wk near we . If the same approximations
are made, as in the derivation of (3), the real and imaginary parts of
the transform are the same as the two envelope functions in (4). The
envelope function in (3) corresponds to the transform of the envelope
of the original time function.

The same remarks apply a little more generally. Suppose the ampli-

t
2
3

LL
0

cds

SPECTRAL FREQUENCY, Wk .--,,..

Fig. 8 - The function F(co, - cok).
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Fig. 9 - Detection of envelope and components: (a) envelope, (b) components.

tude of the received signal s(t) is modified, as well as the frequency,
before it reaches the pulse compressor. Then g(t) becomes

§(t) = -V2P8 A (t) cos (wet + 132 - qt2 ) , -T / 2 < t < T/2. (5)

Suppose the envelope A (t) is symmetrical about the center of the sample
interval. Then (3) and (4) apply except that F( X ) is now the transform
of a time function equal to the new envelope during the sample interval,
and again zero elsewhere. For the analogous radar application, see Ref. 2.

The operations which convert (1) into (3) and (4) are all linear opera-
tions on the signal. If s(t) is generalized to a sum of many constant -
frequency sinusoids, the spectrum corresponding to a single sample
interval can be generated by summing the results of the operations on
the individual sinusoids. Referring again to the block diagrams, in Fig.
9(a) the output is the amplitude of the transform, and in 9(b) the two
outputs are the real and imaginary parts. We will use the collection of
sinusoids as a representation of the signal plus noise, received during

one sample interval.
Thus pulse compression techniques generate analog representations
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of the transforms of signal samples. The transforms are generated as
functions of time. The constant q determines the time -vs -frequency
scale, and can be chosen so that the utilized RF band is scanned in less
than one sample interval. The width of the peak in Fig. 8 is merely the
familiar "spectrum line width" of a sinusoid of finite duration. The de-
tailed shape (in particular the tails) can be modified to some extent
through initial multiplication by an envelope function (or, alternatively,
by a shaping circuit at the output of the dispersive line).

The same remarks apply to infinite sets of correlators or matched
filters, except that the spectra are generated at specific instants as
functions of position along arrays of output terminals. One result is:
all three embodiments are equally sensitive to noise accompanying
the received signal. A choice between the three must depend on practical
compromises, limitations, etc., associated with the design of actual
circuits. (For the external equivalence between correlators and matched
filters, see, for example, Ref. 4.)

III. SENSITIVITIES TO NOISE

Demodulation by correlators, matched filters, or spectrum generators,
as described in the previous section, will be referred to collectively as
demodulation by spectrum analysis. This section compares the effects
of noise in such circuits and in conventional FM receivers and FMFB.
Between conventional FM and FMFB, some effects of noise are quite
similar and some quite different. The two circuit forms will be referred
to collectively as demodulation by frequency detection.

It is assumed that the noise is Gaussian and that it is added to the
signal before it reaches the demodulator. It may be, for example, thermal
noise associated with first stages of amplification in the receiver. In
demodulation by spectrum analysis, the noise adds random processes
to the spectra analyzed. These may be described as two independent
Gaussian processes added to the envelope functions in (4). The inde-
pendent variable in the random processes is the spectral frequency
wk. , which is also represented by time in the pulse compression embodi-
ment. The processes are described in a little more detail in Section A.2.

It is convenient to normalize the error formulas in terms of param-
eters r, R, and T, defined as follows:

cob = baseband bandwidth (0 frequency to cutoff)
wr = full excursion of instantaneous signal frequency (maximum -

minimum)
= cor/cob = bandwidth expansion ratio (6)



350 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

P. = signal power (6) (cont.)
P = noise power in a frequency interval equal to one baseband
R2 = P./ = "signal power to noise density ratio" at the input of

the demodulator
T = w/cob = baseband Nyquist interval.

Under the conditions assumed here, the bandwidth expansion ratio,
r, is fairly large - order of 10 or 20. Power thresholds (defined in the
next section) set lower bounds on R, in the neighborhood of 14 to 16 db.
In practical applications, practical compromises may require a somewhat
larger R, and the bandwidth of the receiver must be a little greater than
w,. (whether demodulation is by spectrum analysis or frequency de-
tection). The power spectrum of the noise is assumed to be uniform at
the input of the demodulator, over the pertinent frequency interval.

3.1 Two Different Effects of Noise

For present purposes, one must examine two different effects of the
noise, on the recovered baseband signal at the output of the demodula-
tor. Under the conditions assumed here, the effects of the noise on the
demodulated baseband signal are quite small most of the time. These
may be called small noise errors, and their rms is one measure of circuit
performance. On the other hand, during occasional brief intervals,
peaks in the noise have a dominant effect and temporarily replace the
true signal by a random false signal. This is commonly called blocking.
It usually persists over intervals comparable with a baseband sample
interval. The average number of blockings per second is the blocking
frequency.

Fig. 10 illustrates the two effects in terms of probability densities.
It is a qualitative (not quantitative) plot of the probability density of
the error, due to noise, in the demodulated baseband signal at any one
instant. The peak near zero is substantially Gaussian and corresponds
to the small noise errors. The long tails are flat and correspond to the
probability that blocking will replace the true signal by a random
signal. The transitions between the Gaussian peak and the flat tails are
not considered further here. They are very difficult to calculate and
must be strongly dependent on design details.

The blocking frequency decreases very rapidly as the power ratio R
increases. A related parameter is the power threshold. Thresholds of FM
circuits (and also phase lock) have been defined in numerous ways for
numerous purposes. The definition which best suits our present needs
is the following: The power threshold is the signal power just sufficient
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to meet a specified limit on the portion of the samples which are blocked.
It can be expressed in terms of the corresponding ratio, R, in db. Under
the conditions assumed here, the specified limit on the blocking rate
may be perhaps one in a thousand or one in ten thousand.

3.2 Small Noise Errors

Consider first the demodulation of individual signal samples by spec-
trum analysis. Both phase coherent and phase incoherent circuit forms
are possible. More than one kind of phase coherence is of interest here.
However, it will be simplest to start with the classical kind in which
the phase of each constant frequency sample is independent of other
samples and is determined uniquely by a rule known to the demodulator.
This kind of phase coherence requires a degree of synchronization which
may be impossible in practice. However, its theoretical properties bear
on what follows.

Under the conditions assumed here, the corresponding small noise
errors are approximately as follows:

For phase coherent demodulation:

rms [small noise errors] 2.0 1
max [true signal] it rR

For phase incoherent demodulation:

rms [small noise errors] 4/ 1
max [true signal] 7 rR

(7a)

(7b)
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(The maximum true signal is here one half of a full signal excursion

between equal + and - maxima.) Derivations are outlined in Section

A.3.
According to (7), the small noise errors of phase coherent spectrum

analysis are about 6 db smaller than those of phase incoherent spectrum
analysis, assuming that the phases of signal samples are determined
individually and uniquely by a suitable rule known to the demodulator.
How do these compare with the small noise errors of demodulation by
frequency detection?

Between conventional FM and FMFB, the small noise errors are
approximately the same. More exactly, they are approximately the
same functions of power level and bandwidths, which may themselves
be quite different in practical applications of the two circuit forms. An

approximate formula is

For demodulation by frequency detection:

rms [small noise errors] _ 2 1

max [true signal] 3 rR 

A well-known derivation is reviewed in Section A.4.
Superficially, conventional FM and FMFB appear to be phase

incoherent. However, the (theoretical) small noise errors are almost the
same as in the phase coherent, sample -by-sample spectrum analysis.
They differ only by a voltage ratio 7r/3, or 0.40 db. This makes demodu-
lation by frequency detection 5.62 db better, in regard to small noise
errors, than the phase incoherent spectrum analysis. * It suggests that
a more subtle form of phase coherence is at work, which perhaps can be
realized also by a more subtle use of spectrum analysis.

Further evidence is as follows: Consider the usual description of
noise reduction by conventional FM demodulation. (See again Section
A.4.) The frequency detector, as such, produces a demodulated baseband
signal plus a substantial amount of noise. However, when the FM
index is large, most of the noise power is at frequencies above the base -
band. Fig. 11 illustrates the usual form of the power spectrum. Then a
filter which passes only the baseband eliminates most of the noise.

To approach the noise levels of phase coherent spectrum analysis,
one must use an almost ideal baseband filter. But then the filter com-
bines past outputs of the frequency detector over a "memory time"
substantially longer than the baseband Nyquist interval. (Ideally it

(8)

* The 6-db difference has been noted before, with different interpretation, by,
for example, KotePnikov.,
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Fig. 11 - Small noise errors in frequency detection.

should be infinite.) Fig. 12(a) is a qualitative illustration of the appro-
priate weight function, or impulse response.

What happens if the filter is constrained to have a memory no longer
than one baseband Nyquist interval? Suppose the true signal frequency
is constant over that interval. Then the best weight function, within the
constraint, is the parabola illustrated in Fig. 12(b).* The corresponding
small noise errors turn out to be exactly as in phase incoherent spectrum
analysis.

It is not at once clear how the longer memory of the ideal, uncon-
strained filter can reduce the (small noise) errors by anything like 5 or
6 db. The original baseband signals are substantially uncorrelated over
intervals longer than one Nyquist interval. The effective correlation
time of the noise process is even shorter. However, it is the frequency
of the FM signal which has the correlation characteristics of the base-

band. The phase is further characterized by the continuity of phase
rotations required for a constant amplitude sinusoid of varying fre-
quency. This may be regarded as a subtle kind of phase coherence
which, in fact, is used effectively by the filter in demodulation by fre-
quency detection.

The interpretation is clarified and supported by the following argu-
ment: Consider demodulation by spectrum analysis, and suppose the
transmitted signal is generated by applying a piecewise constant control
voltage to a frequency modulator. (See again Fig. 1.) Because the output
of the modulator is a continuous sinusoid, the instantaneous phase
rotation is continuous, even though its rate of change (which is the
frequency) is discontinuous. The continuity of phase rotations, from
sample to sample, has been called differential phase coherence.

* "Parabolic smoothing" is best for a finite interval, and a constant signal
plus noise power proportional to O. See, for example, Ref. 6.
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TIME

Fig. 12 - Filter weight functions: (a) ideal band -limiting filter; (b) optimum
when constrained to one sample interval.

Fig. 13(a) illustrates the differentially coherent phase rotations. The
slope of each straight line segment is the frequency during one signal
sample interval. In contrast, if the transmitted signal is differentially
phase incoherent, the phase rotations are discontinuous between samples,

as in Fig. 13(b). This corresponds, for example, to forming a piecewise
constant frequency signal by successive selections (or keying) from a set

of phase incoherent oscillators.
Referring to Fig. 13(a), consider sample number k. The frequency

can be estimated by an incoherent spectrum analysis of signal sample
k by itself. [See again (7b) for the rms small noise errors.] Further
information can be gleaned from spectrum analyses of samples k - 1
and k 1. Specifically, estimates can be obtained from these samples
of the phase rotations at the beginning and end of sample interval k.
Only the difference between the two phase angles is actually needed,
and hence the absolute phase reference required for the phase coherence
of (7a) is no longer necessary.

The difference between the two estimated angles is the net phase
rotation, modulo 2r, over sample interval k. Dividing by the duration
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Pia. 13 - Phase rotations: (a) differential phase coherence; (b) differential
phase incoherence.

T of the sample interval gives a second estimate of the frequency, but
only to modulo 2r/T. When the noise is small, as assumed, the first
estimate is accurate enough to resolve the ambiguity. Then a weighted
sum of the two estimates gives an improved estimate of the true signal
frequency. (The small noise errors in the two estimates are substantially
uncorrelated.) Small further improvements can be derived from fre-
quency and phase estimates for additional sample intervals.

An optimum combination of phase and frequency measurements of
all samples, -00 to 00, gives a 4.365-db theoretical improvement
over sample -by -sample phase incoherent spectrum analysis. (The
power ratio is 1 + -O.) Of this, 3.979 db can be realized by using only
samples k - 1, k, k 1 to estimate the frequency of sample k. A deriva-
tion is described very briefly in Section A.5.

Why does one not realize the full 5.62 db apparent in conventional
FM demodulation? It can be interpreted as a curious effect of the sam-
pling of the original baseband signal, which is not part of the conven-
tional FM system. The interpretation is supported by what follows.

Suppose the piecewise constant frequency is applied to the frequency
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detector in an (idealized) conventional FM receiver, and that the noise
level is low enough to justify the usual small noise approximations. The
output is a piecewise constant true signal, like curve A of Fig. 14, plus
noise. The noise can be reduced by sampling the output of a suitable
filter, as suggested by Fig. 15. Can the ideal baseband filter be used, as
for an unsampled signal?

Elementary information theory includes the following: If the samples
were represented by a sequence of very short impulses, like curve B of
Fig. 14, the ideal filter would be as effective as for the unsampled signal.
However, because they are represented, in fact, by a piecewise constant
signal, like curve A, the ideal filter has two shortcomings. It produces
intersample interference. It responds to the wanted sample less effi-
ciently than to an ideal impulse.

Suppose the filter is constrained to give no intersample interference,
assuming each sample to be a constant signal over its entire sample
interval. The best filter within the constraint gives 4.365 db improve-
ment over incoherent sample -by -sample spectrum analysis, which is

A- PIECEWISE CONSTANT SIGNAL

B- SEQUENCE OF IMPULSES

B

TIME

Fig. 14 - Filter inputs.
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Fig. 15 - Filter and sampler after frequency detector.

exactly the same as the figure for multisample spectrum analysis using
differential phase coherence. A derivation is outlined in Section A.G.

3.3 Thresholds

Consider first the thresholds of sample -by -sample spectrum analysis.
Fig. 16(a) illustrates the spectrum of the usual signal -plus -noise sample.
Fig. 16(b) illustrates the spectrum of the occasional sample which blocks.
It assumes that the frequency of the spectral maximum is used as the
estimate of the true frequency, as before. The blocking occurs when the
spectrum of the noise sample has a peak, at a random frequency, which

0

2
CC

0

(4)s (a)

COn

(b)

SPECTRAL FREQUENCY, Wk

Fig. 16 - Spectrum of a single signal -plus -noise sample: (a) tile usual sample;
(b) the occasional sample which blocks.
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exceeds the spectrum of signal -plus -noise at the true signal frequency.
The remarks apply to both phase coherent and phase incoherent sample -
by -sample spectrum analysis, provided the pertinent spectra are used
for each.

The corresponding blocking probabilities are approximately as follows:

For phase coherent spectrum analysis:

r - 2
P 2Ni: R exp 82/4).

(9a)

For phase incoherent spectrum analysis:

-P - r
4

2 exp ( -R2/4). (9b)

Here P is the probability that a typical sample is blocked, and blocking
of different samples is uncorrelated.

Part of the derivation is the same as for the (gross) error rates of
quantized frequency shift keying (FSK). However, there is an extra
complication. In FSK, one is interested only in the spectrum at a finite
set of discrete frequencies. The random process which is the noise
spectrum is at most weakly correlated between the pertinent frequencies.
Thus error rates have been approximated, for example, by assuming
either zero correlation7'8 or a manageably simple form of correlation.9

For our purposes, we must consider the spectra at all frequencies in
a continuum, with the certainty that correlations are high across small
frequency differences. An exact calculation would be extremely difficult.
As an approximation, one can proceed as follows: Divide the pertinent
frequency interval into, say n equal subintervals. Approximate the true
spectrum in each subinterval by a constant. Assume that the constants
for then subintervals are independent random variables (over the
ensemble of noise samples). Now one can estimate blocking probabilities
as error rates in an n -frequency FSK system. Differences between (9)
and equations in Refs. 7 and 8 reflect further approximations, appro-
priate under the conditions assumed here. They are described briefly
in Section A.7, together with some further analytical details.

The approximation to the spectrum may be described further as
follows: The covariance of the spectrum of the noise sample is approxi-
mated by perfect correlation over each subinterval and zero correlation
between subintervals. The actual correlation across the (radian) fre-
quency difference W2 - oh is
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sin (w? - co1)
T

, T
642 - coo

(see Section A.2). Equations (9) correspond to subintervals of width
2cob , which is the I co2 - wl I at the first zeros of the true covariance
function.

We have defined the threshold as the signal power required to meet
a specified limit on the blocking frequency. The corresponding power
ratio R, used in (9), must give the single -sample blocking probability P
which corresponds to the specified blocking frequency.

Under the conditions assumed here, P is very small, say 0.001 or
0.0001. Then the exponentials in (9) are very small, and small per-
centage changes in R produce much larger percentage changes in P.
As a result, changes in the coefficients, multiplying the exponentials,
can be compensated by much smaller changes in R. For example, a
two -to -one change in a coefficient is offset by something like a 1-db
change in R. Two consequences are as follows: The threshold changes
only slowly with the bandwidth expansion ratio r. The threshold is
rather insensitive to the size of the frequency subintervals used in the
approximation described above.

Numerical examples of thresholds will be tabulated in Section IV,
together with small noise errors.

Slepian" has derived from general information theory some important
upper and lower bounds on the thresholds (as here defined) of quantized
systems, constrained to code baseband samples individually, for trans-
mission over channels wider than the baseband. It is interesting to
compare the thresholds (9) with Slepian's bounds, even though (9)
refers to unquantized systems. Since the bounds depend on the number
of quanta, one must first decide on the appropriate quantization.

Transmission and demodulation of a quantized signal, as such, in-
volve no counterpart of the small noise errors in unquantized systems.
However, when the original baseband signal is unquantized, transmis-
sion in quantized form implies quantization or round -off errors relative
to the original signal. Then, in judging system quality, one can compare
the quantization errors in a quantized system with the small noise errors
in an unquantized system. Thus it is interesting to compare thresholds
determined by (9) with Slepian's bounds for quantized systems such
that the rms quantization errors match our rms small noise errors.

Our present purposes are served by a very rough comparison, using

(10)
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graphical data in Slepian's paper. Under the conditions assumed here,
the thresholds (9) are only very little above Slepian's lower bound. The
differences are very roughly I db for sample -by -sample phase coherent
demodulation and one db for the phase incoherent form.

In principle, the thresholds can be reduced even a little further by
combining phase and frequency estimates derived from more than one
sample interval. We have seen that a second estimate of the frequency
of sample k can be derived from the phases of samples k - 1 and k ± 1.
The same is true of the phase of sample k. This permits the phase
coherent threshold to be approximated with only differential phase
coherence. More complicated operations yield a further improvement.
Referring again to Fig. 16(b), blocking occurs when a noise peak exceeds
the signal peak, in the spectrum of the signal plus noise, and is chosen
in its place. The additional phase information can be used to improve
the choice between the two peaks. However, the 27 phase redundancy
severely limits the improvement. For the conditions assumed here, a
rough estimate is a ten -to -one reduction in the blocking frequency, or
something like a one-db reduction in the threshold at the old rate (rela-
tive to phase incoherent spectrum analysis). A few further details are
noted in Section A.8.

The improved threshold may he slightly below Slepian's lower bound.
This is not improper, since it is obtained by violating Slepian's assump-
tion of sample -by -sample coding and decoding.

Now consider the thresholds of conventional FM demodulators and
FMFB. Fig. 17 compares simplified block diagrams of the two circuit

WIDE -BAND
FILTER

MIXER

FREQUENCY
DETECTOR

NARROW -BAND
FILTER

(a)

BASEBAND
FILTER

FREQUENCY
DETECTOR

VOLTAGE -
CONTROLLED
OSCILLATOR

BASEBAND
FILTER

(b)

Fig. 17 - Demodulators using frequency detection: (a) conventional FM
demodulator; (b) demodulator using FM feedback.
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forms. The blocking phenomenon is a well-known characteristic of
these circuits. Under the conditions assumed here, the thresholds are
significantly lower (permit lower signal power) in FMFB circuits than
in conventional FM receivers. The advantage derives from the relative
bandwidths of the filters just ahead of the frequency detectors, and
thereby depends on a fairly large bandwidth expansion ratio, r (which
is here 10 or 20). This is, of course, the reason why FMFB is of current
interest, for example for satellite communication systems.n

Because of the nonlinear feedback loop, it is extremely difficult to
calculate for FMFB the quantitative thresholds required for specific
blocking rates. However, important parameters have been identified
and studied, for example by Enloe." Good circuits have been built and
demonstrated for voice and television channels, with thresholds which
are not far above the theoretical lower bounds. Since the quantitative
blocking rates have not been determined, the margins above the bounds
are not known exactly.

3.4 Comparisons with Other Methods

At noise levels and blocking rates appropriate for television, telephone,
and carrier telephone, FMFB and spectrum analysis of PAM -FM have
lower theoretical thresholds than binary PCM. The binary symbols
are less sensitive to noise than, say, PAM -FM samples received at the
same rate. If this were the whole story, binary phase modulation would
have the smaller threshold by a power ratio of about two.* Actually,
of course, the symbol rate must be greater than the baseband sample
rate by a factor, say p, equal to the number of binary symbols per
sample. This, in itself, raises the power threshold by factor p. Thus, if
there are more than two symbols per sample, the theoretical threshold
for binary phase modulation is larger, by a power ratio of about p/2.

The threshold ratios are about the same if one compares the binary
PCM with the following FSK system: A set of, say, 10 discrete fre-
quencies is used, spaced orthogonally in the usual signal theory sense.
One frequency from the set is transmitted during each baseband sample
interval. But this system has only 10 quantum levels. To obtain, say,
100 quantum levels one must either transmit two symbol intervals per
sample (which raises the threshold 3 db), increase the channel bandwidth
by a factor of 10, or pack the frequencies much more closely than the
orthogonal spacing. With close spacing, errors of one quantum level

* Binary phase modulation requires less power than binary frequency modula-
tion. See, for example, Sunde."
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are more probable than larger errors, and there comes a point where they
are more like the small noise errors of the analog systems.

In principle (but not likely in practice) thresholds can be reduced
by using systems with fewer symbols or samples per second than the
baseband sample frequency. For example, two baseband samples can
be transmitted as a single analog sample provided the signal-to-noise
ratio can be doubled (> 80 db instead of > 40 db). Transmission at the
reduced sample rate yields a small reduction in threshold. It is paid for
by an enormous increase in the channel bandwidth, which is required
for the higher signal-to-noise ratio.

If more and more samples are combined, Shannon's fundamental
channel capacity is undoubtedly approached. Turin14 and Golay"
have demonstrated that two closely related systems do, in fact, approach
the theoretical capacity.*

Our formulas for demodulation by spectrum analysis assume that the
true signal is estimated by finding the maximum point in the pertinent
spectrum. The same is true of the analysis of FSK error rates in Refs.
7, 8 and 9. A well-known substitute for the determination of a maxi-
mum uses a circuit whose output is zero except when a signal -plus -noise
(in this case the spectrum) exceeds a preset threshold. The threshold is
set so that, most of the time, the peak due to the true signal and only
that peak gets through.

Under the conditions assumed here, the threshold circuit form in-
creases the theoretical power threshold by very roughly 3 db. More
exactly, the blocking probability is dominated by an exponential factor
exp (-R2/8) as opposed to exp (- R2/4) in equations (9).

IV. CONCLUSIONS

The techniques of radar pulse compression can be used to generate
spectra of signal samples as analog functions of time. It can be done in
real time in the sense that the spectrum of each signal sample is scanned
in a time no greater than the sample interval. The spectra are the same
as would be generated by infinite sets of correlators or matched filters.
Spectrum generation of this sort may be useful for various purposes,
particularly where the parameter ranges are suitable for the sort of
hardware which has been developed for radar pulse compression.

Demodulation by frequency detection (with or without feedback)
reduces the small noise errors by a disguised but efficient use of differen-

* The increase in channel bandwidth as Shannon's limit is approached is merely
a property of these specific modulation schemes. In principle, it is necessary only
to increase the length of the pieces of the signal which are coded as units.
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tial phase coherence, which is a characteristic of FM signals. Demodula-
tion by spectrum analysis can also take advantage of the differential
phase coherence, although the pertinent operations are fairly compli-
cated. The piecewise constant signal frequency, needed for the spectrum
analysis, reduces the effectiveness by 1.24 db in the theoretical small
noise errors (which can be offset by a 15 per cent increase in the FM
index).

Under the conditions assumed, and for thresholds as defined here, the
theoretical power thresholds of the spectrum analysis are very close to
Slepian's lower bound. The power threshold of FMFB appears to be
quite close, but just how close has not been determined.

Thus, under conditions appropriate for television, telephone, and
carrier telephone systems, the theoretical noise sensitivities are very
little different in FMFB and in PAM -FM with demodulation by spec-
trum analysis. Both techniques pose numerous practical problems,
relating to, for example, stability requirements, switching time require-
ments, synchronization to signal samples, over-all complexity, non -
linearity in response to true signal, etc. FMFB has the advantage that it
has already been used, although under somewhat special conditions.

Some theoretical thresholds and small noise errors are collected in
Tables I and II, for various blocking probabilities P and bandwidth
ratios r. They were calculated by (7) and (9) and refer to demodulation
of PAM -FM by phase coherent and incoherent, sample -by -sample
spectrum analysis. A few remarks on circuit problems are collected in
Section A.9.

The noise figures obtainable with practical circuits are of course
somewhat poorer. The degradations may be due to rather different
practical compromises in circuits using spectrum analysis and in FMFB.
Comparisons between practical noise figures may be different for differ-
ent applications.

Under some conditions, a combination of spectrum analysis and
frequency detection may be preferable to either alone. Fig. 18 is a block
diagram of one out of many possible arranagements. A spectrum ana-
lyzer furnishes a first estimate of the frequency of a PAM -FM signal,
using phase incoherent, sample -by -sample spectrum analysis. The
estimated frequency variations are generated locally by a voltage -

controlled oscillator. A mixer subtracts the oscillator frequency from
the frequency of the received signal. (The block labeled "delay" allows
for the operation time of the spectrum analysis.) Then the output of the
mixer is very low index FM, corresponding to the errors in the first
frequency estimate, plus noise.
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TABLE I - THRESHOLDS AND SIGNAL-TO-NOISE RATIO
FOR PHASE COHERENT SPECTRUM ANALYSIS

Probability of Blocking Bandwidth Ratio
=

Threshold
Ratio P./Pn

rMax. Demod.
L rms Small Errors j

(db) (db)

0.01 10 12.1 31.3

0.005 10 12.7 31.9

0.002 10 13.4 32.6

0.001 10 13.9 33.0

0.0005 10 14.3 33.5

0.0002 10 14.8 33.9

0.0001 10 15.2 34.5

0.01 20 12.8 38.0

0.005 20 13.4 38.5

0.002 20 14.0 39.1

0.001 20 14.4 39.5

0.0005 20 14.8 39.9

0.0002 20 15.3 40.4

0.0001 20 15.6 40.7

0.01 40 13.4 44.6

0.005 40 13.9 45.0

0.002 40 14.4 45.6

0.001 40 14.8 46.0

0.0005 40 15.2 46.3

0.0002 40 15.6 46.8

0.0001 40 15.9 47.1

* At threshold signal power.

Because of the low index, it is now appropriate to use a narrow -hand
filter (passing something over two baseband bandwidths) followed by a
frequency detector and a low-pass filter. The sampled output of the
filter furnishes a correction to the first frequency estimate. The theoreti-
cal threshold of the combination is the same as for phase incoherent
spectrum analysis. The theoretical small noise errors are the same as
for demodulation of PAM -FM by frequency detection. The theoretical
improvement over the small noise errors of the first frequency estimate
is 4.365 db.

If the spectrum analysis is accomplished by correlators or matched
filters, a moderate number may be sufficient even though the over-all
errors must be > 40 db below the true signal. The error determination
by frequency detection can correct for a fairly coarse quantization of
the first estimate at the same time that it reduces the errors due to noise.

The over-all circuit may be described as open -loop tuning to the pass -
band of the narrow -band filter, as opposed to closed -loop tuning in
FMFB.
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TABLE II - THRESHOLDS AND SIGNAL-TO-NOISE RATIOS
FOR PHASE INCOHERENT SPECTRUM ANALYSIS

Probability of Blocking
P

Bandwidth Ratio
r = cor/cob

Threshold
Ratio P./P

rMax. Demod. Signal*
L rms Small Errors

(db) (db)

0.01 10 13.3 26.5
0.005 10 13.8 27.1
0.002 10 14.4 27.6
0.001 10 14.8 27.9
0.0005 10 15.2 28.4
0.0002 10 15.7 28.8
0.0001 10 16.0 29.3

0.01 20 13.9 33.1
0.005 20 14.3 33.5
0.002 20 14.9 34.0
0.001 20 15.3 34.4
0.0005 20 15.6 34.7
0.0002 20 16.0 35.1
0.0001 20 16.3 35.4

0.01 40 14.4 39.6
0.005 40 14.8 40.0
0.002 40 15.3 40.5
0.001 40 15.6 40.8
0.0055 40 16.0 41.1
0.0002 40 16.3 41.5
0.0001 40 16.6 41.8

* At threshold signal power.
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Fig. 18 -A combination of spectrum analysis and frequency detection.
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APPENDIX

A.1 Spectrum Generation by Pulse Compression

For a signal sample, modified by the local oscillator, assume:

g(t) = 1/2P8 E(t) cos (cost - 2 qt2 + 13e)

E(t) = 0 outside of interval - T/2 < t < +T/2

E(-t) = E(t).
For the the pulse compression line, assume:

w(t) = cos (wet + 2 qt2 - (3,).

When I w - co, I << co, the frequency function is

Y(ico) = ( ) exp [ Wc)21 .

2q

The output of the line is g*w. Integrate only over E(t) 0:

-1-T/2

8(t) = 1/21)8 f E(T) cos (0.47-- 4(172 13,)
T T/2

cos koc(t - r) q(t - 7)2 - t3c1 dr.

Express the integrand as a sum of cosines. Neglect the high -frequency
term. Then:

+T/2

S(t) = 1/21,
7

4E(r) cos [cot + qt2 + -
=- T/2

(w, - we - qt) r] dr.
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Resolve into components per sin, cos [(w8 - co, - qt) Ti.
Recall that E(r) is even. Then E(T) sin [(co. - co. - (it) 71 is odd ill T.

S(t) = 1/2P. F ((.08 Wc qt) COS (COt qt2 08 - )

F(X)
+T/2

fr=-T12
= 1E(r) cos (XT) dr.

When E(T) = 1, -T/2 < r + T/2, F(X)

A.2 Noise Contributions to Observed Spectrum

Following Rice," but sacrificing some details of rigor to brevity, let
the noise at the demodulator input be:

.2 (42

n(t) = x(co) cos (cot ± fin) dw y(co) sin (wt + 13n dw.
wi

The interval w1 to (02 includes all signal frequencies co .

Phase fin = an arbitrary parameter in noise representation.
x(w), y(co) = uncorrelated, zero average random variables, with

uniform variances, and zero autocorrelations except across infinitesimal
frequency intervals.

Let Ave denote an ensemble average, or expectation.
Let Wu)) and w2(w) be arbitrary, except for the pertinent conditions

of integrability.

. T
5111 A

Ave {f x(w) w1(w) dw f x(co) w2(w) dwml

wl

Ave
ff.2

y(w) wi(co) dw f
.2

Y(w) w2(w) dw}

X

w2

= 0-2 f tvi(w) w2(w) dw

0-
2

WI(W) W2(W) dw

602 .2
Ave )1 I x(w) wi(0.) dw I y(w) w2(w) dw = O.

 wi

Pb = noise power in one base bandwidth = wbo.2.

Let N(cok) = the noise part of the spectrum of one signal -plus -noise
sample.

Apply Section A.1, with co, = w and co, qt = wk , to integrands in
n(t).
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N(1) = ) cos (w,/ + q2 - )

± N2( COk ) sin (wet + Z (12 - fic)

.2
Ni(wk) = x(w) F(w - 04) (1w,

N2(w1) = (w) F(w - wk) du)

N1(wk), N2(wk) = independent Gaussian random processes in wk .

Appropriate choices of w1 , w2 in the above expectation integrals give
autocovariances of N1 N2 

.2
Ave [N,(wk) N,(wi)] = 0-2 f F(w - WI) F(w - wi) dw, =--- 1, 2.

Approximate the integration by integrating from -co to + co 
Refer to Section A.1 and use E(t) = 1, -T/2 t + 772.

sin (cok - 5)

Ave [N7(w1) N7(6)1)] =
7r0.2

(cox - coi)

Let co; = , refer to (3), and recall that R2 = P8 = P8
Pb WW2 Cdb

=R, = 1, 2.Max of Signal Spectrum
rms N,(04)

A.3 Small Noise Errors in Sample -by -Sample Spectrum Analysis

Refer to Fig. 4, 5(t) of (3), and N(cok) of Section A.2.
Use WI, = qt and 13. = .

8(t) N(t) = [OF, F(04 - Ni(cok.)]

X cos (wt + qt>+ e(3 - oc)
N2(wk) sin

Assume (for small noise errors only):
N12, N22 2p8F2(0), wk - w8 = E, e2 < C0b2

Phase Incoherent Spectrum Analysis. Neglecting N22, the envelope is
F(w8 - WI) Ni(cok).

Form a power series in e and solve for max with e small.

qt2 ± Os )
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Ave N2
ucokAve 2 -

2P
82F (e) 2

13E2 )e=0

Evaluate by (3) and Section A.2 to get (7b).
Phase Coherent Sample -by -Sample Spectrum Analysis. Refer to (1).

Make the phase 138 a linear function of w8 :

S(1) = 1/2P8 cos [c081 + (co, - we)(T/2)].

Find the components of 5(1) and N(t) in phase with a locally
generated cos {[w, -I- q(T/2)]t + 2 q12 - fie).

Refer to (3). Let Sc be the component of S.

Sc(t) = V2138 F (co, - wk) cos [(co:, - wk) (T/2)]

= F[2(6)8 - Wk].

It can be shown that the frequency variable is also doubled between
covariances of N1(wk) and its counterpart here. Hence noise is accounted
for with a the frequency errors E.

If the frequency -dependent signal phase appears artificial, change
the time scale to t = t T/2.

. 718(t) = 1/2P, cos (cost - Wc) 0 < t < T.

A.4 Small Noise Errors in Frequency Detection

The FM signal is now unsampled. For simplicity assume a constant
signal frequency. Resolve the noise per signal phase.

s(t) n(t) = [-V213. na(t)] cos (wet + 138)

nb(t) sin (w8t )(is)

s(t) n(t) = p cos [w8t -I- 03 + so(t)],
nb(1)tan 0 =

-V2P, na(t)

The unfiltered frequency error is 0. Refer to Section A.2 to get:
2

When n2 < 2P Ave 2 Ave *2- (co - cos) dw.
2P, 2P 8

The ideal baseband filter passes only I w - co, I .
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Ave (Filtered e)2 = f+wb X2dX 0'2(48 Wb2Pb
2

2Ps 3/38 3P. -
cob3R2

A.5 Small Noise Errors in, Multisample Spectrum Analysis

Refer to (1) and Fig. 13(a). Let (coa , 13,) = cog and the midsample
phase (38 of sample cr. With differential phase coherence,

Na - (30-1 = (coa coa_i)(T/2).

Let ?la ,ma = noise contributions to observed cog , (2/T) .

Define xa , ya , za and note the relation to errors:

xa = wa -1- n, , y, = (2/T)0a -I- ma

za = (xa xa_1) - (yg - yg_i) = (na - - m(7-1).

Let cog E = the following estimate of cog :

+00

cog e = x, - Qizi

Let crn2 = Ave nag, an! = Ave mat

Ave e = [1 - 2(Qa Qu+i) (Q; (2J-1-02] ant

+ [ (QJ -

Choose the Q's for min. Ave E2 by the calculus of variations.
Compare with Ave 62 for xa alone, which is (72.

Min Ave 62 of sum
Ave e2 of xa alone o

Further analysis like that of Sections A.2 and A.3 gives
un2

3Q
m2

Min Ave e of sum 1
or - 4.365 db.

Ave E2 of xa alone 1 +

A.6 Small Noise Errors in Multisample Frequency Detection of PAM -FM

Refer to Section A.4 but assume only a piecewise constant signal
frequency. Refer to Figs. 13(a) and (15).

Let w(t) = filter weight factor, referred to the output sample time.
Assume w (E co) = 0.
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+00

Filtered error = f w(t) 0(t)dt = -f 7b(t) co(t)dt.

Use r(t) = [nb(t)10-15:] and a white noise approximation.

Ave 2 - [w(ordt.v2P
Find w(t), which gives
(a) normalized response to constant frequency in sample cr,
(b) zero response to constant frequencies in samples other than 0-,
(c) minimum Ave e within constraints a, b.

The calculus of variations makes w(t) quadratic over each sample
interval and continuous at the boundaries. Then Ave 2 is a quadratic
sum of the boundary values. Minimizing the boundary values is like
minimizing the coefficients Q in Section A.5 (with ant = 3a,n2) and
gives the same result.

A.7 Blocking Probability in Sample -by -Sample Spectrum Analysis

Refer to Sections 3.3 and A.3. Approximate Nl(wk), N2(wk) by
processes piecewise constant over m subintervals.

Approximate V2/38 F(co. - wk) by V 2P8 F(0) over the subinterval
s and zero elsewhere.

Let xx , yx = the components of the signal -plus -noise spectrum, scaled
(normalized) to unit variances. The probability densities are:

1 (T. - R)2 y21
-

27r- 2

2

Dx = exp -xx2 -r )
27 2 X 8.

Phase Coherent Sample -by -Sample Spectrum Analysis. Rotation of
the xx , x8 axes through 7/4 gives quickly

P{x), > x, I X 8} = -1 [1 - )1,
2

/72 i r U2Erf ( r ) =
V

- exp (- ) du.
7r 0

This is the probability of a specific xx > x8 , out of n - 1 xx's, s.

Under the conditions assumed here, the probability of any one or
more is:
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P (n - i)Pfp, > x8) - n - 1 [1 Erf
2

R )1

mil- 1 ( R2exp -
Per Section 3.3, use

=
rw& r

-

2wb 2

Phase Incoherent Sample -by -Sample Spectrum Analysis

P ( xx2 yx2) (x82 + y82) exp (-T) .

Under the conditions assumed here, for one or more X's, X s:

- 1 ( R2P
2

exp , use n = r/2 as before.

The last approximation is here a simplification, not a necessity. For
an exact formula (given DA , Da as above) see Ref. 7 or 8.

A.8 Reduction of the Blocking Rate of Spectrum Analysis

Refer to Section A.5. Use x, y of A.5. For a second estimation of co, ,

cos = (1/T)(138+1 - 08-1) - 2 (0)8+1 co8-1)

co. e = z (y8-1-1 - y8-1) - 2 (x.+1 + x8_1) + (2v7r/T)

v = unknown integer due to phase ambiguities.

Refer to Fig. 16( b ). Find the integers v for the best fits to frequencies
of the two peaks in the signal -plus -noise spectrum.

With no weighting for the heights of peaks, the probability that the
closest is the correct choice is of the order of 0.9 (under the system
conditions assumed here).

The actual choice must use also the relative heights of the peaks.
Let Pm(1118, Mn) = the probability density of the maxima M. 7 M.

at the peaks due to signal -plus -noise and noise only (respectively).
Let P,(e. , en) = the probability density of the observed deviations

Es , e of the second co, from the location of the peaks, using best v's.
Use subscripts 1, 2 for the M's and e's before the identification of

which peak is signal -plus -noise and which is noise only.
The best identification corresponds to the larger of

Pm(MI,- Al -2 , - M -P 2 , ei)k2) /=%(1, 2) and P 1-11
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PM gives a strong weighting except when M2 is close to M1
But when M > M, , the difference is usually small, and 137, only

very rarely gives a strong weighting to a wrong choice.

P)
)

Let u = M,
P(

(uuThen eR u.-
A complete calculation of the probability of a correct choice would

require integration over a complicated portion of the 4 -dimensional
space of M,, , E,, .

A.9 Some Circuit Considerations

A few circuit considerations are described below in brief, purely
qualitative, terms.

Synchronization of Spectrum Analysis to PAM -FM Samples. Assume
the following: The spectra represent signal -plus -noise received during
intervals locally selected by a precision oscillator or clock. The length
T of the intervals is almost right, without synchronizing means. The
problem is to synchronize the start time to the start times of the true
signal samples.

Synchronizing signals might be obtained by any of several means.
One uses a very narrow band transmission channel, to send synchroniz-
ing signals from the transmitter. Others derive synchronization error
signals from the communication signal itself, which must fluctuate
sufficiently to supply the necessary information. (When the true signal
is constant from sample to sample, there is nothing to indicate the
boundaries between samples.) An error in synchronization reduces the
height of the peak in the signal spectrum (on the average). It also pro-
duces a discrepancy between values of co, obtained from the single
sample spectrum and by the second method described in Section A.5.
In principle at least, a synchronization error signal can be derived from
either effect and can be averaged over many sample intervals to reduce
the effects of noise on the synchronization.

Shape of the Signal Sample. In (3), the tails of the function F are
neither small nor short. By Section A.1, they can be reduced by shaping
the envelope E(t) of the signal sample before forming its spectrum. A
suitable filter in the output of the spectrum generator has the same
effect. Since the best spectral maximum corresponds to the F of (3), a
practical compromise is needed. The pulse shaping problem is an old
one, but here intersample interference due to the tails is not the im-
portant problem, but rather the way the tails can increase the blocking
probability (noise -plus -tails exceeding signal -plus -noise).
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Channel Bandwidth. For both ordinary FM and PAM -FM the channel
bandwidth must be a little wider than the full excursion, co of the
instantaneous signal frequency co, . The so-called Carson's Rule calls
for a channel width of co, -I- 2Wb for ordinary FM, and the appropriate
rule for PAM -FM is at least not very different. FMFB and PAM -FM
spectrum analysis can tolerate wider bands without significant changes
in thresholds and small noise errors.

Transition Intervals. In idealized models of spectrum analysis, certain
operations happen in zero time. In any actual circuits there will be
nonzero switching times. Very roughly, if a fraction a of each sample
interval is lost due to the switching times, the signal power must be
increased by factor 1/(1 - a). Thus 2 per cent lost time requires roughly
0.1 db more power. In a sense, switching times are spectrum analysis
counterparts of feedback stability problems in FMFB, although the
comparison is purely qualitative.
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Data Transmission over a Self -Contained
Error Detection and Retransmission

Channel

By F. E. FROEHLICH and R. R. ANDERSON
(Manuscript received December 10, 1962)

Error control of the detection and retransmission type requires an internal
storage buffer when the data source cannot be stopped. With finite capacity
there will be occasions when this internal buffer is overfilled. This paper
investigates the relationships among the error statistics of the channel, the
storage capacity of the buffer, the round-trip transmission delay and the bit
rate from the source. It is shown that the process can be treated as a Markov
chain. The solution algorithm is programmed for machine computation,
and representative cases are solved numerically. For typical values selected
from the telephone plant, it is found that buffer capacities of a few hundred
bits would be adequate.

The technique described should be useful for solving other problems in
queueing theory.

I. INTRODUCTION

Studies during the last few years have shown that in the transmission
of digital data over telephone lines, high accuracy can be achieved when
the message is encoded in an error detecting code. Correction can then
be accomplished by a repeat transmission of the portion of the informa-
tion containing the errors. These so-called "feedback" techniques have
been shown to be very effective in controlling errors.",3.4

For some sources of data it is inconvenient or impossible to have the
source wait while previous data are being retransmitted. There are also
cases where it is required that the output from the receiver be at a
uniform rate. This memorandum describes a self-contained error detec-
tion and retransmission channel capable of accepting data from the
source at a steady rate, or at any rate less than a specified maximum, and
of delivering it to the sink at this same rate. The channel is "self-con-
tained," meaning that the channel itself provides enough storage of in -

375
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formation to permit the detection of errors and their correction by re-
transmission without the data source and sink being aware that these
processes are going on. The data source merely puts data into the trans-
mission system at its own rate, and the data sink accepts highly reliable
data from the system at the same rate. The relationships among system
delay time, error probability, bit rate, and storage capacity are investi-
gated.

The use of feedback error control with a data source which cannot be
interrupted was briefly discussed by Reiffen, Schmidt, and Yudkin.5 A.
B. Fontaine has simulated such a system on a computer, using error data
collected on private wire circuits.' Our analysis has indicated that shorter
blocks could well have been used in the experimental simulation, which
would have reduced the required storage capacity or increased the time
to overflow.

II. THE DATA CHANNEL

A block diagram of the self-contained data channel is shown in Fig. 1.
The transmitter consists of a buffer store, an encoder, a modulator, a
reverse channel receiver and some logic. The transmission channel itself
has a forward path and a reverse path, the latter carrying very little in-
formation compared to the former. The receiver consists of a detector,
a decoder, a buffer store, and a reverse channel transmitter plus logic.

The forward channel carries data (plus any necessary redundancy and
starting codes) ; the reverse channel carries information indicating
whether retransmission is required. Errors in the reverse channel will
not appreciably affect the operation. The small amount of information
required over this channel permits a high degree of redundancy. In ad-
dition, a "fail-safe" code can be used, so that any undetected errors on
the reverse channel result in unnecessary retransmissions (subsequently
eliminated at the receiver) to ensure against loss of data.

To facilitate discussion, a specific model, chosen for its relative sim-

plicity, is described. Modifications and improvements are apparent and
will be briefly discussed. The method of operation is to accept data from
the source continuously at a constant rate, Rs bits per second, which is
less than the maximum rate, RL , allowed by the data transmission sys-
tem. The efficiency then, without considering the error -detecting code,

is

E = Rs/RE, . (1)

The data are transmitted at an effective rate of Rs until a retransmis-
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sion is requested. After a retransmission request, data are sent at the
higher rate, Rz, , until the system is returned to normal.

The change in rate could be made by switching the transmitting speed
of the data set. Another method to achieve the data rate change is con-
tinuous transmission at rate RL with interspersed dummy or "fill-in"
bits as needed. The two methods are mathematically equivalent, and
we shall assume the latter for the discussion in this paper. Thus, in the
transmitting buffer the data are organized into blocks of N bits each
and sent to the encoder at a rate, RL , faster than the maximum allow-
able input rate. In order to equalize the input and output rates of the
buffer, "fill-in" bits containing no information are inserted between the
blocks of message bits as shown in Fig. 2. The data then pass through
the encoder, where additional redundancy is added to allow for error
detection. At the encoder, one may either ignore the fill-in bits or en-
code them, but will probably use them to transmit additional useful
information. It is of course possible to place the error control encoder
before the buffer, but this increases the required buffer size without gain-
ing any apparent advantages. The signal is then modulated for transmis-
sion over the forward path.

Each block of information is retained in the transmitting buffer until
it is certain that there will be no retransmission request from the re-
ceiver. When a sufficient time interval has elapsed and no retransmis-
sion request is received, the block of data is erased from the transmitting
buffer. This time interval is taken to be TD , the maximum round-trip
delay for which the system is designed. This includes the transmission
time in both directions plus any additional time for logical operations at
either end.

The system as described has a sort of natural block length, the number
of bits emitted by the source at rate Rs in time TD

N = RsTD . (2a)

With this block size, it is known that a retransmission request must apply
to the immediately preceding block of data bits.

It is shown later that shorter blocks have an advantage in reducing
the required buffer size, and hence we let

N = RsTD/k (2b)

where k is an integer. For these shorter blocks, the system must assume
a maximum TD or must include some provision for determining the ac-
tual round-trip delay time so that retransmission requests can be associ-
ated with the proper blocks of data.
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SOURCE MESSAGE (RATE Rs)

BICI D I
E I F I

b* -N

TRANSMITTED MESSAGE (RATE RL)

RETRANSMISSION
REQUEST

-J

ILLS
A I B B' C D

EFFICIENCY, E = Rs/RL

BLOCK SIZE, N= RsTD

[4-4'1 TD

BITS I -TD TD

__NORMAL RETRANSMISSION 31 NORMAL
MODE MODE MODE

E F

-J
-J

G

TD

Fig. 2 - Example of time sequence at transmitter.

The number of bits, including both data and fill-in, from the buffer
in the same time TD/k is

N M = 1?LTD/k. (3)

In the receiver the demodulated signal is decoded and checked for
errors. If no errors are found, the data block, with all redundancy re-
moved, is placed in the receiving buffer. In case an error is detected in
the received block of data, a retransmission request is sent to the trans-
mitter via the reverse data channel, and no data are sent to the receiv-
ing buffer.

In the transmitter we impose the operating rule: in case a retransmis-
sion request is observed, the transmitter will complete the transmission
of the current block of N M bits and then revert to the beginning of
the block detected to be in error. t The transmitter then enters the re-
transmission mode and retransmits information starting with the block
in error. During this period, the transmitting buffer continues to receive
and store data from the source, thus increasing the quantity of informa-
tion stored. In order to return the transmitting buffer to its normal state,
the fill-in bits are now omitted between the transmitted blocks of data,
so that bits will be removed faster than they arrive. This reduces the

f Another way to say this is that the transmitter takes no action on a retrans-
mission request until the end of a full round-trip delay time, TD , after sending the
last bit of the block to be retransmitted. In this form the statement is also true
when the transmitter is already in the retransmission mode. Note that in the latter
case the time of decision is not necessarily at the end of a block.
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information stored in the transmitting buffer and at the same time tends
to refill the receiving buffer. The fill-in bits are omitted until both buffers
have returned to their normal state.

The above sequence is illustrated in Fig. 2. Block A has been received
in error. The retransmission request is noted by the transmitter before
the completion of block B. At the conclusion of block B transmission,
both A and B are retransmitted. Fill-in bits are now omitted until such
time as the transmitting buffer returns to its normal state. This occurs
after transmission of block F, if there are no additional retransmission
requests.

We note immediately that, in case a number of nearby data blocks are
found to be in error, the transmitting buffer may overflow. Similarly, the
receiving buffer may empty out, so that for some time no information will
be available to the data sink. The frequency of occurrence of these events
depends, of course, on the error statistics of the channel, the storage
capacity of the buffers, the round-trip transmission delay, the number of
fill-in bits allowed between data blocks, and the size of the data block.

Questions to be answered about the self-contained data channel are:
How often does the transmitting buffer store overflow and the receiving
buffer empty completely? What delay is encountered by the information
prior to delivery to the sink? What efficiency can this system achieve?
What buffer store capacity is needed? In general, what are the relation-
ships between buffer store size, block length, transmission efficiency,
transmission delay, and average time between overflows, in any given
message?

III. THE MARKOV PROCESS

In the following development, it will be assumed that retransmission
requests are independent with probability Pr . For digital data trans-
mission over telephone lines, individual bit errors are known to be not
independent; however, for blocks which are long with respect to the bit
error dependence, the retransmission requests will be nearly independent.
There is some evidence that over voice telephone circuits at 1000-2000
bits per second the correlation among bit errors becomes so small after
10-15 bit intervals that the assumption of block error independence is
acceptable.' An estimate of the probability of a retransmission is avail-
able, since the block error rate cannot be greater than the bit error rate
times the block length. t

f Let X be the bit error rate in B bits. Then XB is the number of bits in error.
The number of blocks in error cannot be greater than XB. The total number of
blocks is B/N so an upper limit of probability of block error is
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We shall now devote ourselves to the question of the relationship be-
tween the storage capacity of the buffer and the average time between
overflow of the buffer. It is evident that, since the number of data bits
transmitted per unit time is not constant, an actual time calculation is
inconvenient. We therefore quantize time into unequal units, such that
the number of data bits transmitted per quantum is always the same.

The possible number of bits stored in the buffer form the states of a
stochastic process. It will now be shown that, if these are considered only
at certain moments of decision, the buffer states, y, form a finite Markov
chain.

The only time a decision is made is exactly TD seconds after the last
bit of a block has been transmitted, and the decision consists of three
parts:

(a) Which block shall be transmitted?
(b) Shall fill-in bits be transmitted following the data block?
(c) May the transmitting buffer erase a block of data?
The decision depends only on the state of the buffer and on whether a

retransmission is requested; there are four cases:
(i) Normal - The system is not in the retransmission mode, and retrans-

mission is not required. The buffer erases one block; the transmitter sends
fill-in bits and then the next block in sequence from the source. By the
time of the next decision, the buffer will have replaced the erased block
with one block from the source. Thus, at the moment of the next deci-
sion, the total change in the buffer storage is zero. The time to the next
decision is TD/k.

(ii) The system is not in the retransmission mode, but a retransmission is
requested. The buffer does not drop any bits. The transmitter backs up
to the block at the beginning of the buffer in order to retransmit the block
received in error. The transmitter shifts its mode and no fill-in bits are
sent. The next decision will be made after one block has been completely
transmitted plus TD seconds, to allow time for another retransmission
request to be received. During the retransmission time, EN bits come

XB

B/N
= XN.

There may he multiple bit errors in a block, and some of the block errors may not
be detected, so

P, XN.

For the special case where bit errors are independent

Pr= 1- (1 - X)N XN.

for X much smaller than 1.

(4a)

(4h)
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from the source, and during TD , RSTD bits. The total increase in storage
due to one retransmission is thus

I = RsTD + EN = RsTD(1 Elk). (5)

The time to the next decision is TD(1 E/k).
(iii) Off -Normal - The system has previously entered the retransmission

mode and no additional retransmission is requested. The buffer can drop
the block which was received correctly. The transmitter continues with
the block following the one just sent, without fill-in bits. The next deci-
sion will take place after the time required to transmit one block, in
which time EN bits are added to the buffer. Since the buffer has dropped
a full block, the amount of data in the buffer has decreased by

D = N(1 - E). (6)

The time to the next decision is TDE/k.
(iv) The system is in the retransmission mode and another retransmission

is required. This is similar to case (ii), except that the transmitter shift is
not required since it is already in the retransmission mode. The same
number of bits will be discarded at the receiver, but, being already in the
retransmission mode, none of these are fill-in bits, so the number of
blocks to be retransmitted is greater by the ratio (N 111)/N. The trans-
mitter remains in the retransmission mode and fill-in bits will not be
sent. The increase in storage is given by (5), and the time to the next
decision is TD(1 E /k).

Let C be the total storage capacity of the transmitting buffer. When
the source rate is constant, the transmitter can send the block as it is
received. In this case, the smallest useful capacity, Cm in , includes the
one block to which the retransmission request applies, if received, plus
the data which arrive from the source during the round-trip delay
preceding the request

Crain = N RsT D (7)

If the source rate may fluctuate and the start of transmission must be
delayed, C must be larger. The worst case is that in which the source
may intermittently stop so the transmitter must wait until the full block
is received, in which case the minimum C is one block more. This addi-
tional block of storage to compensate for an intermittent source should
probably not be charged to the error control system. The ability to pro-
vide this feature in a simple mariner is, however, an advantage of the
system.

There is another meaning for Crain In the normal mode of operation
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there must be just this many bits in storage at each time of decision.
In setting up the Markov states below, we do not count this irreducible
storage, but it is included in the final results for total storage capacity.

We have defined the state of the buffer, y, as the number of bits
stored at any instant of decision. With a capacity of C bits, the range
of this variable is

0< y C 1. (8)

The normal state is y = 0; overflow is y = C 1.

We can now write down the transition probabilities, pi; , of going
from buffer state yi to state y; . Starting in the zero or normal state, the
buffer stays in the normal state with probability 1 - Pr and increases
by I with probability Pr

Po.° = 1 - Pr po,r = Pr (9a)

If the buffer is within D states of normal, at the next decision it will
either return to normal or will increase by I

Py ,0 = 1 - Pr , py,+, = Pr for 0 < y D (9b)

If the buffer is more than D states from normal and more than I states
from overflow, it will decrease by D or increase by I, but can neither
return to normal nor overflow

Py,y-D = 1 - Pr pv,u+r = Pr for D < y S C - I. (9c)

If the buffer is within I states of overflow, the buffer will either decrease
by D or go to overflow

Py,y-D = 1 - Pr Py,C+1 = Pr for C -I < y<C 1. (9d)

In order to calculate the time to overflow, we force the buffer to stay in
the overflow condition once it enters this state; i.e., the overflow state
is made "absorbing"

Pc+i, c+i = 1.

For all other transitions pi; = 0. The transition matrix is

=

(9e)

(9f)

In addition, we let the process start in the normal state with prob-
ability 1. The buffer state, in response to the retransmission signal, de-
pends only on the buffer state at the previous moment of decision. This
is the fundamental property for a process to be a Markov chain.

A schematic representation of the Markov chain described by &ilia-
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tions (9) is given in Fig. 3. The over-all operation of the transmitter
may be seen in Fig. 4, which shows the internal state diagram of a se-
quential machine which might be used to implement the transmitter.
The states of the sequential machine are the same as the states of the
Markov process, except that several of the latter may map into a single
one of the former.

The arrow labels - A,B/C,D - are identified as follows. In all cases,
a dash means the item is immaterial.

Transmitter inputs:
A - Has a retransmission request been received?

0 - no 1 - yes
B - What is the state of the buffer?

0 - empty (except for Crain)
I - partially filled
1 - over -filled

Transmitter outputs:
C - May a block be dropped from storage?

0 - no 1 - yes
D - Which block shall be sent next?

D_1 was the block which was just sent. D is the next block
in sequence, and D_, is the mth block before.

F1 and F2 are fill-in bits. Note that if F1 = F2 two states
may be combined.

Fig. 4 also applies to the receiver, except for reinterpretation of the
labels.

Receiver inputs:
A - Has an error been detected?

0 - no 1 -yes
B - State of receiving buffer

0 - full
I - intermediate
1 - empty

Receiver outputs:
C - Shall this block he sent to output store?

0 - no 1 -yes
D - Shall a retransmission request be sent?

These will all be 0 except the two labelled D -n, and Dn-m-1 ,
which will be 1.

For certain relations among the quantities involved, the matrix can be
partitioned into several closed sets' of states, such that it is not possible
to make the transition from a state in any one closed set to a state in
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1 -Pr

21+D
C -I

31
C-2I+D

Fig. 3 - Markov state diagram.

any other such set. The states which cannot be entered from the normal
state by any path may be removed from the matrix, thus reducing its
size. This can be done by dividing out the greatest common factor in
D, I, N, and C. A large number of the cases of interest are still included
when this "normalizing factor" is made equal to D.

IV. CALCULATIONS

Following the method outlined in Kemeny and Snell,8 we let Q be the
transition matrix of all the transient states, i.e., matrix T, excluding the
overflow state. Let J be the identity matrix. Then

G= (J - (10)

exists and is called the fundamental matrix of the Markov process, with
the following interpretation. Each element ni; of G is the mean number
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Fig. 4 - Diagram of internal states for transmitter.

of times the process is in state j, given that it started in state i. With i =
0 for starting in the normal state, the row sum over j is the mean number
of times the process is in any of the transient states, from which we can
calculate the mean time to the first overflow. Thus, the average number
of decisions before overflow is

(n) = E no; . (11)
J -o

Higher moments, in particular the second, can be found by additional
operations on the fundamental matrix.'

A computer program was written to do the matrix arithmetic, and a
few representative cases were solved numerically. The program computes
the average number of blocks transmitted before overflow and the
variance about this mean. The standard deviation is usually large,
nearly equal to the mean. Typical examples are : when mean number of
blocks before overflow was 23, standard deviation was 19; when mean
was 949, standard deviation was 943; and when mean was 4795, standard
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deviation was 4792. Thus the mean is a poor estimate of the actual time
to overflow for any specific message, but is meaningful when a large
number of transmissions are considered.

The calculations to this point have been in terms of the number of
blocks, and we now convert back to actual time. Instead of a straight
sum on no; , we multiply each term by the actual time taken.

There are four terms corresponding to the four cases described under
the Markov process. The average time for each of the four cases is

(i) noo(1 - 13,.)TD/k

nooP ,(1 E/k)TD

(10 ?toil 1 - Pr)ETD/k

(iv) [i no; - 1.1P,(1 E/k)TD

The average time to overflow is the sum of these four:

TD
= moo (Pr +k Pr + B-1.13) E/k)

(12)
- Pr(1 E/k).

V. RESULTS

As expected, the average time before the buffer overflows will increase
when the buffer capacity is increased, and when the following variables
are decreased: the bit rate, the round-trip delay, the probability of re-
transmission, the efficiency, and the block size. The number of variables
can be reduced by measuring time in units of TD , the round-trip delay,
and bits in units of RLTD , the number of bits from the buffer in time
TD . Since the block error rate depends on the length of the block, the
probability of retransmission is modified by the block length. The varia-
bles of the system, all of which are now dimensionless, become

C* = C/RLTD

N* = N/RLTD

E

P* = PrRLTD/N

t* = t/TD
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A number of curves are plotted to show the expected time between
overflows as a function of the probability of retransmission. For each
curve, the size of the buffer, the block size, and the efficiency are held
constant. When the expected time, t/TD , is greater than about 100 (cor-
responding to several seconds of transmission for reasonable values of
TD), the curves are nearly linear on log -log paper, and only this portion
is plotted.

To use the curves, it is assumed that the transmission line parameters,
RL and TD , are known. In order to facilitate interpretation of the curves,
some reasonable specific values have been assigned to these parameters
and the corresponding values of time, buffer size, and block length have
been calculated. The assignments are as follows: Let RL be 2000 bits
per second; this could be a 2400 bps data set with an 831 per cent effi-
cient error -detecting code. Let TD be 120 ms. Then RLTD = 240 bits,
the total number of bits sent in one round-trip delay time. Some other
parameters are given in Table I.

Fig. 5 shows the time gained by increasing the capacity of the buffer
store. For this set of curves the efficiency is 0.5 and the block length is
0.5 RLTD ; that is, the block is as long as the maximum round-trip delay.
When the efficiency is increased to 0.75 and 0.9, with the same block
length (0.5 RLTD), the results are as shown in Figs. 6 and 7, respectively.
The storage capacity required to provide a specified time to overflow at
a given probability of retransmission increases markedly with efficiency.
The same effect is shown in Fig. 8, where the capacity is held constant
for several efficiencies. The source bit rate at E = 0.75 is 50 per cent
greater than at E = 0.5, and at E = 0.9 the bit rate is up by 80 per cent.
The cost of this increased bit rate is either the extra buffer storage or the
reduced time between overflows. Some of the data from Figs. 5-8 are

TABLE I - OPERATING PARAMETERS
(Given that RL = 2000 b/s and TD = 120 nine)

E
(bitsTsec)

N
(bits) (bits)

Cm in
(bits)

0.5 1000 20 130 140
120 180 240

0.75 1500 20 195 200
120 270 300
180 315 360

0.9 1800 20 234 236
120 324 336
216 410 432
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shown in Table II, using the arbitrary assignments RL = 2000 b/s,
TD = 120 ms, and N = 120 bits.

In all the above cases, the block lengths have been the same, 0.5 RLTD
(120 bits). Only when the efficiency is 0.5 does this represent the so-called
"natural" block, i.e., the number of bits from the source in one round-
trip delay time; at the increased bit rates of the higher efficiencies, the
natural block length is also increased. The effect of increasing the block
length in one case is shown in Fig. 9, which can be compared to Fig. 6.
The required capacity for a given time to overflow has increased mark-
edly. We therefore investigate the effects of shorter blocks.

Fig. 10 illustrates the case where each natural block is divided into
three shorter blocks. A decision is made at the end of each arrow, and
the fourth block back is either dropped from the buffer or is retrans-
mitted. For example, when a retransmission is received while sending
.133 both A,. and 142 have been dropped and A 3 is the next block to be
sent. With sufficiently inexpensive logic in the terminals, improved per-
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formance is possible on short loops by using the actual value of TD . In
the example, we might have already dropped A3 and therefore start the
retransmission with B1.

In Fig. 11 we show the effect of decreasing the block size, at constant
capacity and efficiency. Similar results for a larger capacity and efficien-
cies of 0.5 and 0.75 are shown in Fig. 12.

It is somewhat difficult to visualize all of these effects when plotted
separately. We attempt to summarize some of the results in Fig. 13.
For these curves the normalized retransmission probability, P*, is held
constant, and buffer storage capacity is held to the minimum usable
value, as given by (7) ; that is, the capacity is the natural block length
plus the actual block length, and therefore decreases with either the block
size or the efficiency. Both the latter are allowed to vary and we show
the effect on the time to overflow.

There is little effect from changing the block size - except on the
buffer capacity. One would therefore choose the smallest practical block.
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However, as the efficiency is increased, the required buffer capacity is
increased, although not rapidly, and the time between overflows de-
creases. As shown earlier (Figs. 5-7, 9) it is possible to regain this loss in
time to overflow by modest increases in buffer capacity over the minimum
used here. Since the increased efficiency increases the maximum source
rate, this is certainly the direction to go, up to the point where the in-
creased rate is worth less than the cost of the additional storage required.

VI. DELAY

For smooth flow to the sink the receiving buffer must have the same
capacity as the transmitting buffer, and will normally be kept full. Thus
the receiving buffer will introduce a delay in the message of

T = C/Rs. (14)

This is in addition to the delay of TD/2 from the transmission line.



392 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

2

Z 5

0

CC 2

a_
_1 0-2

z
O
(7) 5
0

0
Z 2

10-3

u.
O 5

2

1 0-4

5

2
2

5 104 2 5 106 2 5 106
TIME, t/T.0

TIME TO OVERFLOW IN HOURS
I 10 100

PARAMETER VALUES GIVEN:
RL= 2000 BITS/SEC
TD = 120 MS

0.5

0.6

0.75

C = 2 RLTD (480 BITS)
E - VARIES
N =0.5 FILTE, (120 errs) E= 0.9

2 5
107

Fig. 8 - Effect of efficiency: buffer capacity fixed.

2

TABLE II - MEAN TIME TO OVERFLOW
(Given that RL = 2000 b/s, TD = 120 msec, N = 120 bits)

108

E = R8/RL C (bits)
Ave. Time to Overflow (Hours)

P5 = 0.01 P5 = 0.001

0.5 Cm in(240) 0.67 66.6
0.75 C. in (300) 0.12 11.2
0.9 Cm in(336) 0.03 2.90

0.5 360 44.4 >1 year
0.75 360 0.15 14.9
0.9 360 0.04 3.14

0.5 480 245.3 >1 year
0.75 480 0.42 44.1
0.9 480 0.06 5.32

0.5 600 >1 year >1 year
0.75 600 6.29 >1 year
0.9 600 0.15 17.93
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There are other choices for operating the receiving buffer which will
decrease the delay at the expense of irregularity of flow to the sink, which
may be tolerable in many cases. If there were no receiving buffer at all,
the delay would be zero except when retransmissions were required.
When retransmissions are required, however, there would be additional
delay until the block is received correctly, up to a maximum given by
(14). The flow to the sink would not be smooth; each block would be
delivered at rate RL , followed by an interval when no data are being
delivered. Various compromises between these extremes are possible.
For example, buffer capacity of a single block would permit data to be
delivered to the sink at the source rate with no interruptions until a
retransmission is requested. Then the sink must alternately wait and
accept data at the higher line rate until the process returns to normal.
The delay is variable, the minimum being

T = N/Rs (15)

with the maximum again given by (14).
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This is one case where it has been possible to develop a calculable rela-
tionship between the message delay involved in error control and the
resulting error rate.

VII. OTHER MODIFICATIONS

The system may be designed to take any of several actions when an
overflow of the buffer occurs. The source and sink may be stopped, re-
quiring manual resetting; they may be temporarily halted for a time
sufficient for the system to clear; or, without stopping the source, the
uncorrected data block may be delivered to the data sink, with or with-
out an indication that the particular block contains errors.

One desirable modification would be to act sooner on receipt of the
retransmission request. The transmitter would not continue to the end
of the current block, but would immediately back up to the beginning
of the block in error. This procedure could be quantized by using blocks a
fraction of N in length. As indicated above, this procedure would require
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either a knowledge of the actual round-trip delay or inclusion, in the re-
transmission requests and the retransmission, of an indication of the
exact block (or fraction) involved. Another modification which would
improve performance on shorter loops would be to make a preliminary
measurement of the round-trip delay and adjust the operation accord-
ingly. This could be done automatically.

Earlier, we mentioned the problem of an irregular input sequence and
indicated that one additional block of storage was necessary. If this block
is not counted, the performance level will be as given for a regular source,
except for the possible gain arising from the probability of the intermit-
tent source being stopped during the time when retransmissions are re-
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quired. The output will be delayed an additional time corresponding to
one block of data, but will be smoothed considerably - the rate will be
constant except when waiting for the source.

It has been assumed that, once an error is detected, all subsequent
received data are ignored until that block has been retransmitted and re-
ceived correctly. With more complicated bookkeeping it would be possi-
ble to save some of these blocks, reducing the amount of retransmission
required. On the other hand, since errors do occur in bursts on many
transmission channels, the immediately succeeding block would have a
higher -than -average error rate, and so might not be worth saving.

VIII. CONCLUSIONS

It has been shown that it is possible to calculate the performance of a
self-contained error -control system by treating the system as a Markov
process when the system consists of (a) an error -detection code, (b) pro-
vision for requesting and accomplishing retransmissions as necessary,
and (c) buffer storage to allow smooth, uninterrupted flow from the
source to the sink. Failure occurs when a sufficient number of retrans-
missions are requested in a short enough time that the total information
to be stored exceeds the capacity of the buffer.

Whenever an overflow is about to occur, we could ignore the retrans-
mission request and deliver the block as -is, in which case it appears to the
sink as an error. It seems reasonable to require that this type of error
should have about the same frequency of occurrence as undetected er-
rors. For voice channels using reasonably simple codes, we might assume
an undetected error rate of 10-8 or about one error per day.' .3 We might
also require the efficiency to be about that of the error detecting code.

With these criteria, it appears clear that one should not try to work
with minimal storage, because of the relatively short time to overflow.
Neither should one try to push the efficiency very high, or the required
capacity grows out of bounds. A reasonable compromise for voice chan-
nels would be a buffer capacity somewhat less than 1000 bits.

We get a slightly different answer if we consider instrumentation. It is
likely to be economically infeasible to build a buffer of this size with in-
dividual bit storage devices, especially since serial access is adequate.
However, with bulk storage such as a circulating delay line or a magnetic
tape loop, moderate increase in buffer size is not costly, and several
thousand bits would be available about as cheaply as a few hundred.
This would permit buffer efficiencies close to unity.

Results for any other specific cases can be easily calculated with this
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computer program. It is apparent that a number of modifications in the
model are possible and would serve to reduce the required storage. The
transition matrix would merely have to be changed to correspond to the
new model; the matrix arithmetic would be the same.

The details of the chosen model and the examples were taken from a
specific data transmission problem. The techniques, both the model and
the method of solution, are applicable to a wider variety of problems
where buffering is a consideration.

We should like to acknowledge the assistance of H. 0. Burton in con-
sultation on the mathematics of the Markov process. We appreciate the
continued encouragement of G. W. Gilman, who suggested the use of
feedback error control with a data source which cannot be interrupted.
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Intermodulation Distortion in Analog
FM Troposcatter Systems

By E. D. SUNDE

(Manuscript received May 20, 1963)

In broadband transmission over troposcatter paths, selective fading will
be encountered with resultant transmission impairments, depending on the
modulation method. An analysis has been made in a companion paper of
such selective fading, based on an idealized model of troposcatter paths. It
indicated that selective fading will be accompanied by phase nonlinearity
which in a first approximation can be regarded as quadratic over a narrow
band. A probability distribution for such quadratic phase distortion was
derived. On the premise of quadratic phase distortion, the error probability
owing to selective fading was determined for digital transmission by vari-
ous methods of carrier modulation.

The same idealized model and basic premise of quadratic phase distor-
tion is used here to determine intermodulation distortion in FM for a sig-
nal with the statistical properties of random noise. An approximate ex-
pression for intermodulation noise owing to specified quadratic phase
distortion has been derived, applying for any method of frequency pre -
emphasis in FM. In turn, median intermodulation noise as well as the
probability distribution of intermodulation noise has been determined, as
related to certain basic system parameters.

A comparison is made of predicted with measured intermodulation noise
in four troposcatter systems with lengths from 185 to 440 miles. The results
indicate that phase nonlinearity owing to selective fading can be approxi-
mated by quadratic phase distortion, or linear delay distortion, over an
appreciable part of the transmission band ordinarily considered for tropo-
scatter systems, with a probability distribution that can be determined from
certain basic parameters of troposcatter links, such as the length and an-
tenna beam angles. However, to predict intermodulation distortion on any
system, further experimental data than are now available are required on
beam broadening by scatter.

The present random multipath FM distortion theory is shown to afford

399
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a significant improvement over an equivalent single-echo theory that has
been applied on an empirical basis to troposcatter systems.

INTRODUCTION

An analysis has been made elsewhere' of error probabilities in high-
speed digital transmission over idealized troposcatter paths, consider-
ing both random noise and intersymbol interference owing to pulse
distortion caused by selective fading. The above analysis indicated that
a principal cause of intersymbol interference is a quadratic component
of phase distortion, or linear delay distortion. On the same basic prem-
ise an evaluation is made herein of intermodulation noise in analog
transmission by frequency modulation, as now used for transmission of
voice channels in frequency division multiplex. Expressions and curves
are given of intermodulation noise in an idealized troposcatter channel
for a signal with the properties of random noise, as related to certain
basic system parameters and comparisons are made with the results of
measurements on four troposcatter systems.2'3

In random multipath transmission the received wave can be considered
the sum of a plurality of echoes, arriving over the various paths with
varying amplitudes and different delays. Although this view is con-
ceptually simple, it does not facilitate analysis of the statistical proper-
ties of the received signal and of signal distortion. In the combination
of a number of time functions, such as echoes, the analysis is greatly
facilitated by the use of Fourier transformation to determine the cor-
responding spectra. The latter can in turn be combined directly with
appropriate attention to phase relations to obtain the resultant wave.
For this reason it is preferable from the standpoint of analysis to regard
the received wave as a multiplicity of sine wave components, rather
than signal wave echoes, arriving over the plurality of transmission
paths with varying amplitudes and phases. This is the method ordi-
narily used in the analysis of the statistical properties of narrow -band
random noise, which has properties that with appropriate translation
of the basic parameters are also applicable to random multipath trans-
mission. It is the method underlying both the previous determination
of error probabilities in digital transmission owing to noise and selec-
tive fading, and the present analysis of intermodulation noise in FM.

In certain radio systems the received wave can be considered the sum
of a principal signal wave and a weaker echo, and comprehensive theo-
retical analyses have been published of intermodulation noise in FM
owing to such echo distortion,4.5.6 together with the results of simulative
tests.' For these reasons this two -path model has been adopted as a
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coarse simile to multipath transmission in some interpretations of the
result of measurements of intermodulation noise in troposcatter sys-
tems.' The limitations of this simile are recognized in the latter publica-
tion,' in which it is suggested that a more refined analysis is desirable.
The idealized multipath model used in the analysis of troposcatter
digital transmission affords a significant improvement, though it has
certain predictable limitations, as shown herein.

I. TRANSMITTANCE PROPERTIES OF TROPOSCATTER LINKS

In tropospheric transmission beyond the horizon the received wave
can be considered the sum of a large number of components of varying
amplitudes resulting from a multiplicity of reflections within the com-
mon volume of the antennas. Owing to variations in the structure of
the common volume, caused largely by winds, there will be relatively
slow changes in the many reflections and thus in the amplitudes of the
component waves. When a steady-state sine wave is transmitted, the
received wave will thus exhibit random variations in its envelope and
phase, known as fading.

In addition to such transmittance variations with time at a particu-
lar frequency, there will be transmittance variations with frequency at
any given instant, as illustrated the ampli-
tude and phase characteristics of the transmission path may be as indi-
cated in Fig. 1(a) and at a later instant as in Fig. 1(b).

Let u = w - coo represent the radian frequency relative to a reference
frequency coo . When the transmission vs frequency characteristic of a
troposcatter channel varies slowly with time t, it can be represented by

ATTENUATION

PHASE .....-"".....
t= t,

(a)

Wo
FREQUENCY, CO-*

(b)

ATTENUATION

PHASE

t=t.e

WO
FREQUENCY, CO

Fig. 1 - Illustrative variations in attenuation and phase characteristics with
frequency at two instants 11 and t2 .
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T (u,t) = A (tt ,t) cu

where

(1)

A (u ,t) = amplitude characteristic as a function of t for a fixed
u, or as a function of u for a fixed time t

co(u,t) = phase characteristic.

If u = uo is fixed, both A (uo , 0 and co(uo , t) are random variables of
the time t, as are the time derivatives A' (uo , t) , A" (uo , t) , co' (uo , ,

co" (uo , t) . The probability distributions of A (uo , 0 and So (uo , t) can be
determined on the premise that they are the sum of a large number of
randomly phased components. This results in a Rayleigh probability
distribution of A (uo , t) , in conformance with observations of rapid fad-
ing. To determine the probability distributions of A', A", co' and co",
statistical information is required regarding the rapidity of fades. This
ordinarily takes the form of the time autocorrelation functions of A (t) ,
or the related power spectrum of changes in transmittance amplitude.
Such power spectra can be characterized by a certain equivalent fading
bandwidth.

If the time is assumed fixed at t = to, then A (u,to) and co(u,to) will
have certain random fluctuations with the frequency u that can be char-
acterized by probability distributions. This also applies to A(u,to),
A(u,to), cp(u ,to) , and igu,to), where the dots indicate differentiation with
respect to frequency u. The probability distributions of A, 0, and A and

depend on the frequency autocorrelation functions, or the correspond-
ing power spectra of variations with frequency. The latter depend on
differences in transmission time over the various paths, and can be re-
lated to the maximum departure A from the mean transmission delay.

The amplitude and phase characteristics as a function of u at any time
to can in general be represented by a power series as

A (u, to) = ao -F aiu a2u2 -F a3u3 + ( 2 )

so(u,to) = bo biu b2u2 b3u3 . (3)

Certain basic relations have been developed by Carson and Fry' and
by van der Pohl,' for transmission impairments in FM resulting from
attenuation and phase distortion. With the aid of these relations it can
be shown that intermodulation noise is caused principally by phase dis-
tortion rather than by amplitude distortion. Moreover, it can be shown
that the principal contributor is quadratic phase distortion represented
by b2u2, which corresponds to linear delay distortion 2b2u.
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II. PROBABILITY DISTRIBUTION OF QUADRATIC PHASE DISTORTION

From (3) it follows that

0(u,t0) = 2b2 6b3u (4)

For u = 0, i.e., at the reference or carrier frequency, the probability
distribution of b2 is the same as that of 0(0,0. The latter probability dis-
tribution has been determined elsewhere' on the approximate premise of
a linear variation in transmission delay, with maximum departures ±
from the mean delay. In Fig. 2 is shown the probability that Co, or 2b2 ,

exceeds 02/3 by a factor k. For example, there is a probability p = 0.5
that 0 exceeds 02/3 by a factor k 1.2, and a probability p = 0.1 that
0 exceeds A2/3 by a factor k rrza, 19.

Thus in general

SPn = 2b2(p) = k02/3 (5)

where kpA2/3 is the value of 0, or 2b2 with a probability p of being ex-
ceeded.

Alternatively, the value of b2 with a probability p of being exceeded is

b2 (p) = A2'

Thus

1.2
b2(0.5) = 0.202

6

19
b2(0.1) D2 = 3.2A2

0
b2(0.01)

40
A-2 = 6702.

6

(6)

(7)

(8)

(9)

Thus, when A is known, together with intermodulation noise for
quadratic phase distortion, it is possible to determine the median value
of average intermodulation noise, or the value exceeded with any other
specified probability p.

III. INTERMODULATION NOISE FROM QUADRATIC PHASE DISTORTION

In a first -order evaluation of intermodulation noise, only the quadratic
term b2u2 in (3) would be considered, since it will be the principal con-
tributor. The ratio of nonlinear distortion power to average signal power
at the frequency w will depend on the signal properties and on the pre-



404 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

5

2

5

2

10-2
1.)

5

Al
2

10-3

5

2

10-4

5

2

lo -5

1

FACTOR, k(-)
2 5 2 5 IV 2 5 lu- 2 5 eu

\\

\`

,,,

,.

, 2 5 w 2 5 . 2 5 _. 2 5

FACTOR, k(---)

3

101

Fig. 2 - Probability that Y; or 2b2 exceeds 02/3 by a factor k.

emphasis used in frequency modulation. It will be assumed that the orig-
inal message wave has a flat power spectrum of radian bandwidth
SZ = 2irB and the statistical properties of random noise, and furthermore
that the message wave is passed through a transmitting filter with a
power transfer characteristic

1(w) = 1 + c(0.)/S2)2

= 1 + c(f/B)2.

At the receiving end a complementary filter is used to restore the mes-
sage wave.

As discussed in the Appendix, exact determination of intermodulation
noise from quadratic phase distortion presents formidable difficulties,
except on the premise of slight phase distortion, which is not generally
applicable to troposcatter systems. However, it is possible to obtain an

(10)
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approximate solution without the above limitation. The following rela-
tion is derived in the Appendix for the ratio p(f) of intermodulation
noise to average signal power at the frequency f = co/27r

2p( f) =
D-2

G(c,a)H (7) (11)

where c is defined by (10)

a = f/B = w/S2
B = bandwidth of baseband signal = 0/27
D = rms frequency deviation = CZ/27r

and
b2g2 27r)2b2D2. (12)

The function G(c,a) depends on the pre -emphasis and is given by
expression (108) in the Appendix, which is

3a2G(c,a) - (F c,a)
(1 + ca2) (3 c)

2c c2a2
[] ( 1 - a)3]F(c,a) = 2 - a + (13)

52a

(1 - a)4] ± (1 - a)1

This function is shown in Fig. 3 for pure FM and PM and for c = 16.
The particular case of c = 16 and a = 1 will be considered further in
the following, and for this case

G(16,1) = 0.192.

The function H(y) is shown in Fig. 4 and represents an approximation,
as discussed in the Appendix. It will be noted that this function departs
from proportionality with y2 for y > 0.5, reaches a certain maximum
value and then diminishes.

IV. INTERMODULATION NOISE IN TROPOSCATTER PATHS

In accordance with (6), the value of b2 with a probability p of being
exceeded is b2(p) = kp42/6. The corresponding value of y is given by
(12) as

kpA2 2 2yp - (2r) D
6

= 6.6kp(AD)2.

(14)
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Thus

1/0.5 ti 8 (AD)2 (15)

125 (AD)2 (16)

= 2600 (AD2). (17)

The corresponding ratios p(f) at f = B with a probability p of being
exceeded

Pp(13) = 0.192 G13-)2H(7p)

P0.50) = 0.192 (la H(8,62g)

(18)

(19)
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B 2po.1(B) = 0.192 (T) H (125A2V) (20)

B 2
P0.010 ) = 0.192 () H(2600AD2). (21)

V. DIFFERENTIAL TRANSMISSION DELAY A

Exact determination of the equivalent maximum departure from the
mean transmission delay requires consideration of the antenna beam
patterns as affected by scattering. On the approximate basis of equiva-
lent antenna beam angles a, it follows from the geometry indicated in
Fig. 5 that

..La -1- 0 (0 a ± 1 (22)
v 2

where (I :5_ a, v is the velocity of propagation in free space, L is the length
of the link, and

L L0 =
2R

-
2RoK

(23)

where Ro is the radius of the earth and the factor K is ordinarily taken
as 4/3.

The equivalent antenna beam angle a from midbeam to the 3-db loss
point depends on the free -space beam angle ao and on the effect of scat-
ter, which is related in a complex manner to ao and the length L, or al-
ternatively 0. Narrow -beam antennas as now used in actual systems are
loosely defined by ao < 20/3. For these, a ao on shorter links, while on
longer links a > ao owing to beam -broadening by scatter. Analytical
determination of a for longer links appears difficult, and only limited ex-
perimental data are available at present. For broad -beam antennas,
ao >> 29/3 and beam -broadening by scatter is in theory inappreciable.

By way of numerical example, let L = 170 miles and K = 4/3, in
which case 0 = 0.016 radian. With ao = 0.004 radian << 20/3 it is per-
missible to take a = ao . With = a = ao , (22) gives A = 0.08 X 10-6
second.

The differential delay A in general varies with time and for narrow -
beam antennas can be considered the sum of two components

A (t) Ai(t) (24)

where Ao is a fixed component obtained from (22) by taking a = ao ,

the free -space beam angles. The variable component Al(1) depends on
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scatter variation with time, as does path loss, and will have a certain cor-
relation with path loss variations. Owing to the fixed component Ao , a
weaker correlation exists between A( t) and path loss variations.

Because of the dependence of A on path loss, the ratio pp of intermodu
lation noise to average signal power will depend somewhat on path loss
However, for a given path loss pp is independent of the average trans-
mitter power and thus of the average signal power at the receiver.

VI. LIMITATIONS ON FIRST -ORDER DISTORTION THEORY

The above first -order approximation applies for sufficiently narrow
signal bandwidths at the detector input such that terms in (3) of higher
order than u2 can be neglected. Results given by Rice for random vari-
ables (Section 3.4 of Ref. 10) indicate there is no correlation between
and 6, so that distortion owing to the term b3u3 will combine on a power
addition basis with distortion resulting from b2u2. Moreover, there is a
negative correlation factor between a and so that on the average b4
is negative whenever b2 is positive, and conversely. Hence distortion pro-
duced by b4u4 will on the average subtract directly on an amplitude basis
from that resulting from b2u2. In the range where the function H(7)
increases linearly with 72, intermodulation noise owing to the term b2u2
increases as b22( AD)4. In the same range, intermodulation noise from the
term b4u4 will vary as b42 ( AD )8 and may hence have a significant effect
for adequately large values of AD even though b4 be much smaller than
b2 . As shown later, comparisons of measured intermodulation noise with
predictions based on the above first -order theory indicate the increasing
importance of the term b4u4 in reducing intermodulation noise as AD is
increased.

VII. TWO -PATH VS MULTIPATH DISTORTION THEORY

The above first -order distortion theory is a mathematically derived
approximation that in principle yields valid results with appropriate
limitations on signal bandwidth and frequency deviation, and which
retains the multipath feature that is essential to this end. By contrast,
the two -path or single -echo simile mentioned in the introduction has
no such basis but has been adopted principally because of the conven-
ience of available theoretical analysis.4'5'6 A second reason is that single -
echo distortion theory yields results that in some respects are quite
similar to those obtained with multipath transmission, as shown below.

It is noteworthy that, by proper choice of echo amplitude and delay,
results similar to those for median quadratic phase distortion can be
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obtained. This is illustrated in Fig. 6, which shows the median ratio
p(B) obtained from (19) as a function of D for B = 1 me/sec with
A = 0.1 and 0.5 microsecond. In the same figures are shown the ratios
p(B) obtained on the premise that the received wave consists of a main
signal and an echo of equal amplitude delayed by 0.07 and 0.4 micro-
second. The ratio p(B) for the latter condition is obtained from a chart
given in Fig. 9 of Ref. 3, applying for FM with virtually the same pre -
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emphasis as assumed herein and given by (10). The above charts are
based on echo distortion theory applying for echoes that are much
weaker than the signal, but this premise is ignored here in extending
the theoretical results to a fictitious echo of the same amplitude as the
signal. In this connection it may be noted that simulative tests9 indicate
that intermodulation noise is nearly proportional to echo amplitude,
even when the latter equals the signal amplitude. With both quadratic
phase distortion and single -echo distortion, intermodulation noise is
virtually proportional to the second power of signal bandwidth. Hence,
the relative comparisons in Fig. 6 could also apply for other bandwidths
than B = 1 inc/sec.

The above comparisons indicate that in applying equivalent single -
echo FM distortion theory to multipath transmission as in troposcatter
systems, with physically tenable echo delays, certain dilemmas will be
encountered. The theory could be extended beyond its validity to fic-
titious echoes of the same amplitude as the signal, to obtain virtually
the same median intermodulation noise as for quadratic phase distor-
tion. This would exclude the possibility of greater intermodulation noise
than the median value, since the greater echo is by definition the main
signal. The other procedure would be to assume an echo that is smaller
than the main signal, which is physically more acceptable and does not
violate the basic premise underlying echo distortion theory. In this case
intermodulation noise predicted on the basis of echo distortion theory
would, at least in certain cases, be much smaller than actually observed
and could not be made to conform with observations, unless the echo
amplitude is increased to the same amplitude as the signal.

Thus, if the ratio of echo amplitude to signal amplitude is r, inter -
modulation noise power based on single -echo theory will be less than
for multipath transmission by a factor r2. Hence it becomes necessary
to introduce a factor 1/r2 to make single -echo theory applicable to multi -
path transmission. In Ref. 3, this factor has been determined empirically
from measurements to be discussed later, and is given as 9 db.

VIII. OBSERVED MEDIAN INTERMODULATION NOISE

Measurements have been made on four troposcatter links of the me-
dian value of intermodulation noise at the frequency f = B. The modu-
lating wave in these tests had a. flat power spectrum, and pre -emphasis
was used that closely corresponded to c = 16 in (10).

The basic parameters of the systems on which the measurements
were made are given in Ref. 3 and are summarized in Table I. In this
table ao is the free -space antenna beam angle from midbeam to the 3-db
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TABLE I - BASIC PARAMETERS OF TROPOSCATTER TEST
SYSTEMS IN CARIBBEAN (A) AND IN ARCTIC (B,C,D)

System A B C D

Length, miles 185 194 340 440

Radio frequency, me 725 900 900 800

Antenna/diameter, ft 60,60 30,60 120, 120 120, 120

ao (radian) 0.0115 0.017 0.0058 0.0058

0 (radian) 0.015 0.016 0.031 0.034

A0 (microsecond) 0.12 0.21 0.185 0.255

loss point, which may not conform with the angle a in (22) when scatter
is considered. The values of K and 0 are taken from Ref. 3, and 0 differs
slightly from that obtained from (23) owing to differences in antenna
elevations. The take -off angle 13 is virtually zero and has been neglected.
The value Ao of A given in the table was calculated with a = ao , rather
than the actual beam angle with scatter. Systems A, B, C and D corre-
spond to paths 1, 2, 4 and 3 in Ref. 3.

In Figs. 7 and 8 are shown the ratios pi (B) expressed in db as a func-
tion of the rms frequency deviation D for different bandwidths B of the
baseband signals.

IX. COMPARISON OF THEORETICAL WITH OBSERVED MEDIAN VALUES

In the same Figs. 7 and 8 are shown median values of intermodula-
tion noise obtained from (19) for each case, based on values An, of A
that afford the best average approximation to the measurements. The
latter values are somewhat greater than Ao , as indicated in Table II.

A ratio 0z/A0 or am/ao > 1 is to be expected owing to beam -broaden-
ing by scatter, and the above ratios appear reasonable in the light of
present knowledge. Thus, if the actual angles a were known so that A

could be determined, it appears plausible that satisfactory conformance
with observed intermodulation noise would be obtained.

As noted in Section V, A includes a component Al(t) that varies with
time depending on scatter conditions and which is correlated with path
loss fluctuations. The ratio p thus depends on path loss as affected by
scatter and has a certain correlation with path loss variation, as shown
elsewhere.' Hence, if measurements had been made under different
path loss conditions, the derived values A, would have been somewhat
different.

From Figs. 7 and 8 it will be noted that with the above choice of A =
A, it is possible to obtain better agreement between predicted and ob-
served intermodulation noise for small bandwidths B of the baseband
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signal and small deviations D than for large bandwidths and frequency
deviations. This probably resides in the circumstance that the phase
distortion terms of higher order than b2u2 have been neglected in the
above first -order theory, as discussed in Section VI.

The measured median ratios given in Figs. 7 and 8 are plotted in
Fig. 9 against the ratios predicted by first -order theory. It will be noted
that measured intermodulation noise is less than predicted for signal -
to -interference ratios less than about 30 db, owing to reduction in inter -
modulation noise by phase distortion of higher order than b2u2 that has
been neglected in first -order theory. The results in Fig. 9 permit an
approximate empirical correction to first -order theory.

As discussed in Section VII, with single -echo distortion theory vir-
tually the same median intermodulation noise is obtained as with the
above first -order theory, provided the echo is equal in amplitude to the
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mean signal. For smaller echoes, predicted intermodulation noise must
be less. This conforms with results presented in Figs. 12 and 14 of Ref.
3, which show that intermodulation noise predicted from single -echo
theory is significantly smaller than observed. To obtain a satisfactory
average relation between predictions and observations, the predicted
values must be increased by 9 db, as in Fig. 15 of Ref. 3

TABLE II - RATIO Am/Z0

System A B C D

Length, miles 185 194 340 440

Ao , microsecond 0.12 0.21 0.185 0.255

, microsecond 0.12 0.25 0.25 0.55

Am/AO 1.0 1.2 1.35 2.15

am /a 0 1.0 1.1 1.35 2.15
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X. PROBABILITY DISTRIBUTION OF INTERMODULATION NOISE

From (18) it is apparent that the probability distribution of p is di-
rectly related to that of 1/(7,). This function is shown in Fig. 10 as re-
lated to (AD)2 for p = 0.5, 0.1 and 0.01. It should be recognized that
this function as given herein is approximate, and that the errors are
likely to be greater for small values of p than for median intermodula-
tion noise as considered previously.

From the curves in Fig. 10 it is possible to obtain approximate curves
of the probability distribution of intermodulation noise, applying for
various values of 6,2D2 as shown in Fig. 11. These curves show that the
probability distributions vary markedly with the above parameter, in
conformance with a few probability distributions derived from observa-
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tions.2 Because of the approximations involved in the present first -order
distortion theory, the above probability distribution curves should be
considered illustrative and may not be accurate enough for certain
engineering applications.

XI. PREDICTION OF INTERMODULATION DISTORTION

The present first -order intermodulation theory indicates that inter -
modulation distortion depends on the delay difference A, and this would
apply also for an exact theory. For various troposcatter links with differ-
ent angles ao and 0, intermodulation distortion would be the same for
equal values of A. This is exemplified by comparison of intermodulation
noise in systems B and C as shown in Figs. 7 and 8. Though these sys-
tems have different angles ao and 0, intermodulation noise is virtually
the same since A is the same. Thus, if A could be determined, the above
first -order theory, in conjunction with the above experimental data,
would permit determination of intermodulation distortion for a variety
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of conditions other than those in the tests. The above experimental
data were confined to intermodulation noise in the top channel, i.e.,
for a = 1 in Fig. 3, and for a particular pre -emphasis, c = 16. The ex-
pression for G(c,a), or the curves in Fig. 3, permit approximate deter-
mination of intermodulation noise at other frequencies, and also for
other kinds of pre -emphasis. For example, for a = 0.3, intermodulation
noise would be greater than for a = 1 by an approximate factor 0.32/
0.19 r:!, 1.7. If pure FM (c = 0) had been used in the tests, intermodula-
tion noise at a = 1 would have been increased by an approximate fac-
tor 1/0.19 r-zdi 5.2.

At present there is a principal obstacle to prediction of intermodula-
tion distortion for other values of ao than in the above experimental
systems. This is the lack of comprehensive experimental data on the
beam angle a as affected by scatter for troposcatter links of various
lengths. When and if such data become available, it will be possible to
determine A and in turn intermodulation distortion in the manner indi-
cated above for any kind of system.
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XII. APPLICATION TO DIGITAL MULTIBAND TRANSMISSION

The distributions in Fig. 10 apply for average intermodulation noise
over brief time intervals, as determined by changes in phase distortion
with time. During each such interval the instantaneous amplitudes of
intermodulation noise will fluctuate about the average value. For a
signal with the properties of random noise, as considered here, the proba-
bility distribution of this fluctuation is approximated by the normal law.
The distribution of instantaneous amplitudes or intermodulation noise
is important in transmission by FM of a number of digital channels in
frequency division multiplex, as discussed below.

In digital transmission over troposcatter paths, the error probability
for a given signal-to-noise ratio of the receiver depends on the trans-
mission rate, as discussed elsewhere.' As the transmission rate is in-
creased, the error probability is ultimately determined by intersymbol
interference owing to selective fading, and may be excessively high.
The error probability can in this case be reduced, for a given total trans-
mitter power, by transmitting at a slower rate over each of a number
of narrower channels in frequency division multiplex. This could be
accomplished by individual transmission over each channel, which
would entail a number of independent transmitters. An alternative
method would be to use a common amplifier and to transmit the com-
bined digital signal by frequency modulation of a common carrier, as
now used for transmission of voice frequency channels in frequency
division multiplex. In the latter case, it is necessary to consider the
possibility of additional transmission impairments owing to intermodu-
lation noise.

With a sufficiently large number of digital channels in frequency divi-
sion multiplex, the combined wave will have virtually a Gaussian ampli-
tude distribution, like random noise. Hence the probability distribution
of average intermodulation noise amplitudes would be as indicated in
Fig. 11 for various conditions. The instantaneous amplitude will fluctu-
ate with respect to the above average values, as noted in Section X.

In binary transmission it is often assumed that the error probability
will not be excessive if the average noise power from all sources is about
12 db below the average signal power, or 18 db below the peak signal
power in on -off binary pulse transmission. From the previous curves
and expressions it appears that intermodulation noise power averaged
over short intervals will be at least 10 db below the average signal power,
with a small probability that it exceeds -15 db. It thus appears that
intermodulation noise will not be a limiting or predominant factor even
when a large number of binary channels are combined in frequency
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division multiplex for transmission by frequency modulation of a com-
mon carrier.

XIII. SUMMARY

In broadband transmission over troposcatter paths, selective fading
will be encountered with resultant transmission impairments, depending
on the modulation method. A previous analysis has been made of such
selective fading, based on an idealized model of a troposcatter path. It
indicated that selective fading will be accompanied by phase distortion
that in a first approximation can he regarded as quadratic, and a proba-
bility distribution curve for such quadratic phase distortion was derived.
On the premise of such quadratic phase distortion, the error probability
owing to selective fading was determined for digital transmission by
various methods of carrier modulation.

In the present study the same basic premise of quadratic phase dis-
tortion has been used in determining intermodulation distortion for a
signal with the properties of random noise, based on the same idealiza-
tion of a troposcatter path. An approximate relation for intermodulation
noise owing to quadratic phase distortion has been derived, applying
for any frequency pre -emphasis in FM. In turn, median intermodula-
tion noise as well as the probability distribution of intermodulation
noise has been determined, as related to certain basic system parame-
ters.

Median intermodulation noise predicted on basis of free -space antenna
beam angles conforms well with observations on links 185 and 194 miles
in length. For links 340 and 440 miles long it is necessary to use antenna
beam angles that are greater than the free -space angles by factors of
about 1.35 and 2.15, respectively. On long links employing narrow-beam
antennas, beam broadening is expected because of scatter. Thus if the
beam angles had been determined by independent observations or by
more elaborate theory, it is probable that predicted intermodulation
noise would conform reasonably well with observations.

The results of intermodulation noise measurements thus appear to
confirm the conclusion in a previous theoretical analysis of troposcatter
transmittance, which indicated that phase distortion owing to selective
fading could in a first approximation be represented by a component of
quadratic phase distortion, with a probability distribution that can be
determined from certain basic system parameters. This affords a simpli-
fied first -order theoretical model of selective fading in troposcatter paths
that is applicable to evaluation of resultant transmission impairments
in both analog and digital transmission.
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It can he shown analytically, and it is confirmed by observations,
that the above first -order distortion theory yields intermodulation
noise that in the case of large signal bandwidths and frequency devia-
tions will be greater than observed or obtained with a more exact dis-
tortion theory. An empirical curve presented here permits determination
of the expected correction for large bandwidths and frequency devia-
tions.

It has also been demonstrated that the first -order multipath distor-
tion theory presented here affords a significant improvement over single -
echo distortion theory applied to random multipath transmission, in
that it is simpler and accounts for the probability distribution of inter -
modulation noise without certain contradictions that are inherent in
single -echo theory. Taken in conjunction with presently available data
on observed intermodulation noise on certain troposcatter links, as dis-
cussed herein, it affords a means of predicting intermodulation noise on
any system when more comprehensive experimental data become avail-
able on antenna beam broadening by scatter.

APPENDIX

Intermodulation Noise from Quadratic Phase Distortion in Pre -Emphasized
FM

General

To facilitate analysis of intermodulation noise in FM owing to attenu-
ation and phase distortion, it is customary to introduce two basic ap-
proximations. One is the use of "quasistationary theory" in conjunction
with the concept of instantaneous frequency, which is permissible when
the signal bandwidth B is negligible in comparison with the carrier fre-
quency, so that the frequency changes imperceptibly over a signal in-
terval T = 1/2B. The other customary approximation is that distortion
a(co) 0(co) is sufficiently small to permit the approximation exp
[-a(co) - i$(w)] ti 1 - a(w) - OM over the bandwidth of the
modulated carrier wave. The latter is a legitimate approximation for
most transmission systems, and greatly simplifies the analysis, but may
lead to appreciable errors in applications to tropospheric paths where
pronounced attenuation and phase distortion can be encountered. For
this reason an alternative approximate analysis is adopted herein to de-
termine intermodulation noise from quadratic phase distortion, in which
no limitation is placed on the phase distortion.

Two limiting cases are considered, from which it is possible to make an
approximate determination of intermodulation noise as related to phase
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distortion, rms frequency deviation, and bandwidth of the baseband
signal. In the first case, phase distortion is assumed adequately small,
such that the maximum phase distortion in the carrier signal band is less
than 7r radians. Under this condition it is possible by use of "quasista-
tionary" theory to determine the power spectrum of intermodulation
noise without much difficulty. In the second case, no limitation is placed
on phase distortion, in which case determination of the power spectrum
becomes excessively difficult or laborious. It is possible, however, to de-
termine total intermodulation noise power at the detector output, prior
to post -detection low-pass filtering. From the manner in which total in-
termodulation noise power behaves with increasing phase distortion, it
is possible to obtain an approximate evaluation of intermodulating noise
in a narrow band, such as a voice channel.

A.1 Power Spectrum of Phase Modulation

In FM the transmitted wave is of the general form

V = cos [wot CO]
where the phase q(t) is related to the modulating wave m(t) by

ty(t) = k f m(t) dt
0

(25)

(26)

where k is a constant.
The instantaneous frequency deviation is accordingly

0(t) = 11/(t) = km(t). (27)

If the original signal wave has a power spectrum s(w) and power pre-

emphasis p(w) is used, the power spectrum of the modulating wave is

Wm(w) = 8(0))PM (28)

The squared rms frequency deviation 1,/,'( t) is

St = k2 f s(w)p(w) dw.
o

(29)

In accordance with (26), OM is the integral of m(t). Hence the power
spectrum of #(t) is given by

.1474,( co ) = k2s(w)p(o))/w2. (30)
From (29) and (30)

s(w)p(w)/w'

s(w)p(w) dw

The power spectrum of #'(t) is 0.,21V 0(0)).

(31)
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=

A.2 Autocorrelation Function of Phase Modulation

The autocorrelation function of 4'(t) is

R#(r) = f Wo(w) cos wr dw (32)

k2 .fc° 8(CO)P(CO)
cos COT dw. (33)

CO2

When the constant k is determined from (29), the following relation
is obtained

Ro(T) = iie[f** s(w)P(w) cos wr d(.41 [ S (W)p (CO) dC01 . (34)
0 w2 0

When the baseband power spectrum s(w) has a bandwidth St, (34) can
be written

Ro(r) =µ2[02 s(w)p(w)
cos COT dCd

11-0
S(CO)p(W) dCd (35)

 0 (.42

whereµ is the rins deviation ratio

= = D/B. (36)

In the special case of a flat power spectrum, s(w) = s and ( 35) yields

R0(r) = ,22[E22 I

rn
P:' cos wr (/w1/ [111 p(w) dud (37)

0

With pure FM, p(w) = p = constant and (37) reduces to
f I COS S

dx (38)
0 X2

where x = w/a From (38) it follows that

1 cos Grx
dxRo(0) - = µ2 f I

 0 X2

AL2[OT Si(OT) + COS Slr - 1] (39)
(2,02 (c2r)2

2 36

where Si is the sine integral function.
With pure PM, p(w) = w2 and (37) yields

Ro(T) = 312 f cos ilrx dx
 0

= 3u2 sin 12T/S2r

(40)
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14(0) - Ro(r) = 3/22[1 -sin SZT/SZT]
(2r)2 (Q,),

=
2 20

A.3 Intermodulation from Phase Distortion

It will be assumed that the phase characteristic is of the form

v(u) = bo biu b2u2 bd + .

Phase distortion is then represented by the term

13(u) = b2u2 b3u3 ± 

(41)

(42)

(4:3)

where u = w - coo is the frequency relative to the carrier frequency wo

When the transmitted wave is of the form (25), the instantaneous
frequency deviation is

u(t) = 1,1/(t)

and the corresponding variation in phase distortion with time is

13[10)] = b2[1,1/ (t)] b3[11/ (O]3 + .

(44)

(45)

In the above relation 4/(t) is given by (27) and the power spectrum of
4/(t) by (28) multiplied by 102 or

W,/,,(u) = k2s(0.)p((.0). (46)

In determining intermodulation distortion it must be recognized that
distortion increases in the range 0 < 13[u(t)] < 7, diminishes in the range
r < 13[14(/)] < 2r, increases in the range 27 < f3[u(t)] < 3r, etc., as
illustrated in Fig. 12.

To determine intermodulation distortion it is thus necessary to evalu-
ate the distortion obtained when a wave with the power spectrum (46) is
applied to a device with the output vs input characteristic illustrated
in Fig. 12. Two limiting cases will be considered below.

A.4 Intermodulation Spectrum for Small Quadratic Phase Distortion

With quadratic phase distortion only, (45) becomes

O[it(t)] = b2[ "(t)]2. (47)

It will be assumed that the probability that (3[u(0] exceeds 7 is so small
that it is permissible to assume O[u( < 7, and furthermore that u(
changes at a sufficiently slow rate such that 0'[u(t)] = 2b2'" (t) < r.
For signals with the properties of random noise, these assumptions are
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Fig. 12 - Instantaneous phase distortion 1(1) vs instantaneous frequency
deviation 1/(1) of signal.

permissible provided the rms phase error y defined by (12) and appearing
in Fig. 4 is much less than 1. With these assumptions, the autocorrela-
tion function of the output phase distortion is the same as for a square
law device and is given by (Ref. 10, Equation 4.10-1)

b22[R,v2(0) 2R,,,2(T)]. (48)

The first term can be identified with a dc component that does not give
rise to noise. The power spectrum of the nonlinear output phase distor-
tion is obtained from the second component in (48) and is given by

1474, (2) ( ) = 2b22 f Re2(T) cos WT dr. (49)
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The ratio of average intermodulation noise power at the frequency co
to the average signal power becomes

w 0) 2b22 f 14,2(r) cos WT dr

W#(w)P(w)
-

°V1)(w)s(w)10)2

In view of (46) the following relation applies

R4,, (r) = A.2 s(w)p(w) cos WT (10).

Expression (50) can be written

p(w)

where

2b22k4 f lc-4R*,2(r) cos WT dr

- 272a2

k2p(w)s(w)/w2

Le* 1r4R,p2(r) cos or dr
2 roo

P(C0)8(CO) s(w)p(w) dw

(50)

(51)

(52)

(53)

a = co/S2 17B (54)

= b2µ202 = b 2O2 = (27r)2b2 D2. (55)

The following relation applies*

f: R4/2 co(7) cos r dr = f 117 )117
2 1 #1

- u) du (56)

where 1474,,(u) is the power spectrum given by (46).
In view of (56) and (46), expression (53) can be written

ay/ A2

p(w)s(w) f p(o))8(co)dco
(57)

P(w) -

f s(w)p(w)s(w - u)p(w - u)du.

In the special case of a flat power spectrum s(co) = s of bandwidth

* Ref. 10, Eq. (4C-6). In this reference the autocorrelation function is defined
differently from the definition used here and has a factor 4 in integral (51), so that
an additional factor appears in (56).
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SZ = 2rB, (57) becomes

p(w) =
a2 -y2

/
,u2 1 1

p(u)p(w - u)du
p(w) f p(w)dw

o

(58)

2 a2
1 f p(x)p( a - x)dx. (59)

p(a) f p(x)dx0
When p(x) is of the form

p(x) = 1 + C(U/0) 2 = 1 + cx2

relation (59) becomes

ca j(3

I

p(w) - 122 ( 1 + ca2)(3 cf ( 1 + cx2)[1 c(a - x)1dx

,y23a2
F(c

A2(1 ca2) (3 + c)

where

F(c,a) = 2 - a + 2c + c2a2
( 1 - a)1

3

2

-2 [1 - - a)1 + 5 [1 (1 - a)5J.

(60)

(61)

(62)

In the particular case of pure FM, c = 0 and F(c,a) = 2 - a, so
that (61) yields

2 2

p(w) = (2 - a)

(B)2
D

72a2(2 - a)
(63)

where a = (.0/0 = f/B,D = SI/27r and 7 = b2S/2 = b2(27rD)2.
The above result (63) conforms with an expression derived by Rice for

this limiting case (Ref. 11, Equation 5.6).

A.5 Total Intermodulation from Quadratic Phase Distortion

The previous analysis of the power spectrum of intermodulation noise
was based on the assumption that the maximum phase distortion in the
transmission band is substantially less than 180°. Without this limita-
tion, numerical determination of the power spectrum becomes very diffi-
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cult, though a formal solution may be feasible. However, it is possible to
determine total intermodulation distortion without too much difficulty,
without limitation on the phase distortion, as shown below.

Let x designate the instantaneous amplitude of "(t) = km(t), and
let x have a probability density

( 2
x2

)4p(x) =
.n.a.

exp ( -.x2/2ax2) (64)

For large instantaneous frequency deviations 4/(0 the derivative Ik"(t)
is on the average sufficiently small to be neglected. The total intermodu-
lation distortion in the received signal prior to post -detection low-pass
filtering is then for a nonlinear characteristic as illustrated in Fig. 12.

I = f(b2x2)2p(x)dx + IL' (27 b2X2)2p(x)dx
0 Li

f
Lb

(4r b2X2)2P(X)dX +  + (2rnt b2X2)2P(X)dX
L3 L2r,-1

where

L; = (j7/b2)1.

With b2x2 = u2, y = b2a..2 and

4p(u) = -2y( ) exp (-u2/2y)lr
expression (65) can be written

t, t3

I = u4p(u)du f (27 - 11.2)2p(u)duf
13

where

23

(471" U2)2p(u)du
13

(65)

(66)

(67)

= (i7r)1. (68)

Writing 2mir - u2 = -7, 2u du = dr, expression (67) can be trans-
formed into

f: cr 2

/ _LT p,TIGT 1T-17 L (2, + P(7)dr
2

e-27/7 p(7)(17- + (4r +

(69)
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where

p(r) =
(1 )1 e-r/27.

ary

Total distortion I includes a mean or dc power component /0 that
must be subtracted from I to obtain the nonlinear component. The mean
amplitude component /04 is given by

L La

roe = b2x2p(x)dx (2ir - b2x2)p(x)dx
0 L

L6

(4r- b2x2)p(x)dx + 
1,3

where L, and p(x) are defined as before.
With the same notation as before, (71) can be transformed into

p(r)dtroi = f Tp(r)d-r + e T/7
(27r ±I- 'T.10

e-21117
I T

(47 + r)i P(T)dr *

(70)

(71)

(72)

In the above relations y is the phase distortion corresponding to the
rms frequency deviation as given by

= b2o-x2 = b202 = b2A2S22. (73)

The last relations follow from (29) since crx2 is the variance of 41(0.
The total average signal power is

S = /4,(0) = µ2[122 f Pwi dcol/[f p(w)dcd = /22/C (74)
0 co2 0

where C is a constant depending on p(c0).
The ratio of total nonlinear intermodulation noise to total average

signal power becomes

I -Io-
C

I -
2

(B)2

(75)

A.6 Total intermodulation for Small Phase Distortion

For sufficiently small values of y = b2S-22, such that 7r/7 > 1, only the
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first integral in (69) needs to be considered. Hence

/ frip(r)dr
0

where

= 372 erf (z) - 3.21-y.1 exp( -z2) - exp (z2) (76)

Z2 = r/27. (77)

With a similar approximation (72) yields

Ion}

J
7-1p(r)dr

0 (78)

= y erf (z) - 21 exp ( -z2).

For z 2, or 7 < 7r/8:

/ ti 372 and /01 = -y.

Hence I - /0 = 272 and (75) becomes
2

p = C  2 -7
1,2 (79)

where the constant C is defined through (74).
It will be noted that (79) is of the same basic form as (61) for the

ratio p(w) at the frequency w. In (61) the multiplier of 72/112 is a constant,
as is the case in (79).

A.7 Total Intermodulation for Large Phase Distortion

When 7 >> 1, it is permissible to approximate p( 7) as given by (70)
with

P(r) ti(27ry (80)

This approximation is valid in evaluation of the various integrals in (69)
and (72) provided that for the minimum value of 7 = r, exp ( -7127)
<< 1. This is the case if

it/2y << 1 or -y >> 7r/2.

With (80) in (69)

1 \I
, f T2dTI= T T C (81)

(27r7) 0 71,-1 J T (27rm
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In (81),
rr

TACIT 9 .- [(2m + 1)1(32m2 - 8m 3)
LT (2mr 7-)1 15

- (2m + 1)1(32m2 + 8m. 3)]

1 2YT- for m 1. (83)

For m = 1, (82) gives about 0.5 and (83) about 0.47. Hence (83) repre-
sents a good approximation of (82).

With (83) in (81)

(82)

= (1 f T3 (IT ± E e (84)
0 , m3

T-

As a first approximation the summation can he replaced by an in-
tegral, in which case

y [2 , w
G7ry

5
7 ' (85I )

o 1711 J

With »t = U2

I= 1 y [2 . 21.2 r e_u27r,7 it ]- r-
27ry o 3

7

(SG)

(27r1)47r1 ± 24; 77-4 erfc (4/)1

= [erfc(A/7) (87)
3 -y  2.272

r,v for >> 47r. (88)

By a similar approximation /01 as given by (72) becomes

101f1.

r co

= [ 71 (17 + E
__dry .0 (2m7 T)

(89)
T (1T

(2717Y Pi 2'7-7-"" erfc /17)]
(90)

(91)) Hie 6/71) r-21, 7r1]
9 7 7'

for y >> 4r . (92)
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The ratio p is obtained from (75) with I as given by (87) and fol by
(91). In the limit of 7 00 the ratio becomes

= I -C)C
1,2

(71-

3
1

4p

(93 )

2.5 - .

IA

A.8 Approximation for Total Intermodulation

The general expression for the ratio p of total intermodulation noise
power to average signal power can be written in the form

P =
C

1160 (94)

For the limiting case of 7 0, the function h is in accordance with (79)
72.

(95)

For the other limiting case in which 7 00 the function h is in accord-
ance with (93)

h = 2.5/2 = 1.25. (96)

In Fig. 13 are shown the above two limiting cases, together with the
function h obtained from (75) as i = I - Io , when I and /0 are deter-
mined from (86) and (91). The approximate function h(y) is obtained
by drawing a transition curve between the above twp limiting cases, as
in Fig. 13.

A.9 Approximation for Intermodulation Spectrum

The function h(y) in Fig. 13 is proportional to the total intermodula-
tion noise power and can he related to the power spectrum W1(0)) of
intermodulation noise by

h(7) = Co r i(co) deo (97)0

where co is a constant. Relation (94) can thus be written

2c0Cp = Wi(co) dc (98)
o

For 7 -4 0, (98) must conform with (95), which is possible provided
the power spectrum is of the general form
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ii7,(1(w) c1'y2

where Fo is any functional relation dependent only on the ratio a. =
With (99) in (98)

7p = -1 Fo(co/2) dw
52
f

00

= 2coc1C f F0(71) du.
1,2

This yields relation (95) provided

cociC f Fo(u) du = 1.
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Fig. 13 - Functions h(7) and H(y): 1, functions h(y) and H(7) for y << 1; 2,
function h(7) for -y >> 1; 3, approximate interpolated function h(7); 4, function
H(y) for y >> 1; 5, approximate interpolated function H( -y).
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From (100) it is apparent that the ratio of intermodulation noise
power to average signal power in a narrow band dw at w is

2

p(w) = 2C0C1C F (W/U) . (102)

Comparison of (102) with (61) shows that in this case

3a
(3 ± c)

2

2cociC 0-1 Fo(c0/0) (1 -I- ca2)
F(c,a) (103)

where F(c,a) is given by (62).
In summary, for y 0 the power spectrum has a fixed shape inde-

pendent of y and an amplitude proportional to 72.
Consider next the limiting case in which 7 -> 00 . In accordance with

(96) h then approaches a constant, which is possible for various power
spectra of the general form

W i(w) (w) = .(cohn) (104)

where F.(coh") is any functional relation dependent only on the ratio
(co/7"). In this case (104) in (98) yields

2cociC 1

122

oo(co/-y)nP F dw

2cociC
1,2

Jo

F(u) du
(105)

where u = cohn.
The exponent n can be determined from consideration of the input vs

output characteristic shown in Fig. 12. If b2 is increased by a factor k,
the intervals between zero points are multiplied by a factor lc -1, as indi-
cated in Fig. 14 for k = 4. For a given frequency deviation, the band-
width of the power spectrum is then multiplied by a factor 1c1 and the
amplitude of the spectrum at each frequency multiplied by a factor
O. Hence in the case of quadratic phase distortion as considered here,
n = z in (104).

Based on the above considerations, the power spectrum at any fre-
quency w for the above two limiting cases would vary with 7 as indicated
in Fig. 13. The shape of the curves between these two limiting cases
would in a first approximation be represented by the function H(7)
shown in Fig. 13.
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Fig. 14 - (a) Relation of instantaneous phase distortion OW to instantaneous
frequency deviation u(t) for a given b2 ; (b) relation of instantaneous phase dis-
tortion to instantaneous frequency deviation with fourfold increase in b2 .

A.10 Approximation for p(co)

The ratio p(w) of intermodulation noise power in a narrow band at w
to average signal power in the same narrow hand can be written

p(co) -
2C(w) H(7) . (106)

12 -

This relation differs from (94) in that h(7) as shown in Fig. 13 is re-
placed by H(7) shown in the same figure, and C is replaced by C(w).
The constant C defined through (74) depends on the frequency pre -
emphasis p(w). The function C(w) depends both on the frequency pre -
emphasis p(w) and the frequency under consideration.

For the particular type of frequency pre -emphasis represented by
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(60), expression (106) must conform with (61). This results in the fol-
lowing approximate relation

Byp(w) = G(c,a)H(-y) (107)

where H( -y) is the function shown in Fig. 13 and

3a2G(c,a) -
(1 ca2) (3 c) F(c,a) (108)

where F(c,a) is given by (62).
In the particular case in which c = 16 and a = f/B = 1

G(c,a) 0.192 (109)

and (107) yields

B
P(B) = (--D) X 0.192H(7) (110)

)- X 0.192- 72 for << 1. (111)
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Cutoff Frequencies of the Dielectrically
Loaded Comb Structure as Used in

Traveling -Wave Masers*

By S. E. HARRIS, R. W. DEGRASSE and E..0. SCHULZ-DUBOIS

(Manuscript received June 27, 1963)

The subject of traveling -wave maser design is reviewed and a first step
towards an analytical design procedure is presented. A method is derived
for calculating the upper and lower cutoff frequencies of a comb -type slow -

wave structure of simple geometry. It is based on the electromagnetic field
pattern and the equivalent impedances which are calculated for these fre-
quencies, both for the dielectrically loaded and the empty comb structure.
The design procedure resulting from these calculations permits the predic-
tion of a dielectric loading geometry that shifts the upper and lower cutoff
frequency of the empty comb to new, lower values which can be arbitrarily
specified within certain limitations. Frequencies calculated by this pro-
cedure are compared with the results of measurements, and it is found that
cutoff frequencies can be predicted to better than 10 per cent.

I. INTRODUCTION

In the early development of the traveling -wave maser (TWM),1 the
design procedures used were largely empirical. Short TWM model sec-
tions were built, tested and modified in order to meet the desired per-
formance specifications. By this cut -and -try method, a satisfactory de-
sign was finally derived which was applied in the construction of
full-length TWM's.

However, a more satisfying approach is possible if the relevant the-
oretical aspects regarding the maser active material, the ferrimagnetic
isolator and the electromagnetic behavior of the slow -wave structure
are known, either rigorously or approximately. Then a TWM can be
designed on the basis of analysis before actual construction. Most at-
tractive in the analytical approach is the inherent flexibility and versa-

* This work was supported in part by the U.S. Army Signal Corps under Con-
tract DA 36-039-sc-85357.
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tility. Thus, a large number of design ideas may be explored and a near
optimum configuration can be found before any hardware is built.

The present paper is a step in the direction of a more analytical ap-
proach. Using reasonably accurate approximations to the field pattern
at both cutoff frequencies, the equivalent TEM line impedances, the
"effective" dielectric constants and, finally, the cutoff frequencies are
calculated. This results in a numerical design procedure for the TWM
structure. The analysis is made for a comb having fingers of rectangular
cross section and for dielectric loading with maser material in the form
of one or two rectangular parallelepipeds as shown in Fig. 1. Compari-
son of cutoff frequencies calculated by this method with experiment
shows agreement to usually better than 5 per cent.

u u L.J u L.1"

TOP CROSS SECTION

, NV

SIDE CROSS SECTION

PERSPECTIVE VIEW

Fig. 1 - Typical comb structure.

END CROSS SECTION
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1.1 The Significance of Cutoff Frequencies in TWM Design

Consider the TWM electronic gain formula'

G(db) = 27.3( -x")fFI/vg . (1)

Here ( -x") is the inverted susceptibility of the maser active material,
f the signal frequency, F the filling factor, 1 the length of the maser
structure and vg the group velocity. The TWM net gain is obtained by
subtracting from (1) the slow -wave structure loss (copper loss) and the
ferrimagnetic isolator loss ( ferrite loss).

In the development of a practical TWM, the design frequency f and
the structure length 1 are generally determined by the application. The
susceptibility ( -x") is a property of the active material which cannot
be theoretically predicted and must be experimentally determined.

-x") is redefined as

-x" = ixo" (2)

and the quantities I and xo" are determined by two independent measure-
ments. Here, I is the inversion ratio, i.e., the ratio of electronic gain
from the activated maser material to electronic loss in the same material
at thermal equilibrium. J. E. Geusic and W. J. Tabor have carried out
inversion measurements for ruby maser material in a helix test structure,
and the method and results will he described in a forthcoming paper.'
The susceptibility at thermal equilibrium, xo", is measured by standard
resonance techniques3 or may he calculated from the material composi-
tion and linewidth. In this way, - x" can he determined to about 10
per cent, which is adequate for the present design procedure. Complica-
tions can arise in practice, however, if nominally identical crystals show
variations in the active ion concentration or in the crystalline perfection.

The filling factor F may he factorized into two expressions

F = F,F, (3)

where

Fp =[IA, I H* 2dA I H dA1 (4)

and

F, = [fMI H 12 dA1/11. IH2 (5)

Here, is the magnetic dipole moment associated with the maser signal



440 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

transition and H is the RF magnetic field in the TWM structure. The
asterisk * denotes the conjugate complex time dependence. The integra-
tion is performed in the cross-sectional plane where 31 denotes the cross
section of the maser material and A the total structure cross section.
Fp may be called the polarization efficiency factor and F the volume
filling factor. F, expresses the excitation efficiency of the signal transi-
tion by the RF magnetic field present in the maser material. For example,
if both µ and H are of circular polarization in the same direction, then
F, is unity. Similarly, for maser material symmetrically loaded on both
sides of the comb and with a circular transition perpendicular to the
finger direction, a symmetry argument shows that Fp = 12. F. indicates
what fraction of the total magnetic field energy is contained within the
maser material. Fp and F, are functions of frequency across the pass -
band of the comb structure. Usually, however, it is sufficient to consider
F at some midband frequency where it is only a slowly varying function
of frequency.

Experience suggests that it is possible to estimate F to fair accuracy
from the TWM geometry and a qualitative estimate of the RF magnetic
field pattern. For example, it is estimated that in TWM's designed in
this laboratory for 5.6, 4.2, 2.4 and 1.4 gc the filling factor F varies over
the relatively limited range from 25 to 45 per cent. Thus, from the view-
point of the analytical design of the TWM, a detailed computation of
the RF magnetic field configuration is of no great value unless the other
factors entering the TWM gain formula are known with comparable
accuracy.

Up to the present time, this was not the case, the factor least amenable
to analytical prediction being the group velocity vg . It is well known
that a wave traveling through a slow -wave structure has field com-
ponents varying like exp [i( cot - (z)], where (.0 = 2rf, t is the time,
the phase propagation constant and z the length coordinate along the
structure. In the comb structure, each finger is an energy storage element
capable of resonant storage in the same way as a quarter -wavelength
coaxial resonator. As a general rule, the phase shift between adjacent
elements may assume values between 0 and ±r as the frequency is
varied across the passband. The phase shift values 0 and ±7r are as-
sociated with the cutoff frequencies. The comb structure is normally a
forward -wave structure, where +7 is the phase shift at the upper cutoff
frequency and 0 that at the lower. It is possible (although not of practical
importance in TWM design) to make the comb a backward -wave
structure, in which case -r is the phase shift at the lower cutoff fre-
quency and 0 that at the upper. In the normal forward -wave comb
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structure, the phase propagation constant then varies from 0 = 0 to
f3 = (N - 1)r/1 across the passband; where N is the number of fingers
and / is the structure length measured between centers of the first and
last finger. The group velocity is given by

= dco/c113. (6)

Typical diagrams of 0 as a function of w are shown in Fig. 2(a). As the
curves approach the cutoff points, they assume infinite slope, correspond-
ing to zero group velocity. There is a range at midband, however, where
the group velocity is fairly constant. These graphs are typical of most of
the structures studied but exceptions occasionally were found, as in-
dicated in Fig. 2(b). These exceptions include backward -wave structures
where phase and group propagation take place in opposite directions.
They also include "mongrel" structures where, over part of the band,
/3 is a double -valued function of w; these, therefore, are forward and
backward at the same time. This latter case is a very undesirable one;
as discussed in Ref. 4, the existence of two propagation modes at the
same frequency, one a forward wave, the other a backward wave, allows
for propagation with gain in both directions despite the presence of an
isolator. As a result, the maser will oscillate instead of offering stable
gain. Empirically, however, this situation can be easily diagnosed and
there are remedies to rectify it. Therefore, double -valued co -0 relations
may be excluded from the present considerations.

With this proviso, it can be seen from Fig. 2(a) that the midband
group velocity can be estimated reasonably well from a knowledge of
the two cutoff frequencies alone, viz.

vo = 2a0f/A N - 1) = 2a0fA/. (7a)

Here Of is the frequency width of the passband, A/ is the center -to -center
spacing between comb fingers and a is a numerical factor which takes
into account the detailed shape of the w-13 curve. Equation (7a) may be
rearranged in terms of the group velocity slowing

S = c =1 X/2 f-
v, a A/ f (7b)

indicating that slowing is partly a geometric effect, i.e., the compression
of a half wavelength into one period of the structure, and partly the ef-
fect of compression in the frequency domain, sometimes expressed by a
loaded Q. a assumes values of one for a straight line co -0 relation, 1.57
for an inverse cosine, and may in practice be as high as four for a
"sagging" co -0 curve. In other words, the uncertainty in estimating the
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Fig. 2 -(a)Typical forward co -13 diagrams of loaded comb structures with nor-
malized cutoff frequencies. (b) Exceptional w -fl diagrams found in comb structures
with extreme dielectric loading.
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group velocity or slowing from the cutoff frequencies is not very large,
usually less than a factor of two.

Thus, it is clear that a method for calculating the two cutoff frequencies
would be an important first step towards an analytical design procedure.
Such a mathematical method should be carried out as rigorously as
possible. The reason for this may be demonstrated in the following way.
If fringe capacity at the finger tips and dielectric loading effects are
neglected, the comb structure is electrically equivalent to the Easitron*
structure. In this approximation, the comb would be a zero passband
structure with identical cutoff frequencies like the Easitron. In reality,
they differ only because fringe capacity and dielectric loading affect
both frequencies to different degrees. Thus, the width of the passband
[If is obtained as a small difference between large numbers, the upper
and lower cutoff frequencies, f u and f L . To obtain Al with fair accuracy,
j u and f L must be known with good accuracy. Similarly, a small change
in the dielectric loading may change f u and f L each by a small percentage,
but w by an appreciable factor. Experience has shown that comb struc-
tures with different dielectric loadings may have a passband width Of
anywhere between 1 and 50 per cent of the midband frequency. In other
words, as long as the cutoff frequencies are not known, the uncertainty
in an estimate of v, may be almost two orders of magnitude. The compu-
tation of the cutoff frequencies would be very useful if it could reduce
this uncertainty to about a factor of two. Besides determining the group
velocity and hence, indirectly the electronic gain, the cutoff frequencies
also define the center frequency and the tunable bandwidth of the TWM.
Since it is impossible to match a structure right up to the cutoff frequency,
the useful tunable band is well inside the structure passband Of.An
analytical design procedure that allows a reasonably accurate prediction
of the cutoff frequencies would clearly be desirable, as center frequency
and tunable bandwidth are among the primary TWM specifications.

1.2 The Function of Slow -Wave Structures in Electron Beam Tubes and
'PTV M's

A considerable amount of work, both theoretical and experimental,
has gone into the study of slow -wave structures for tubes. It would be
gratifying if this knowledge could he used in TWM work. Unfortunately,

* The Easitron was analyzed by L. R. Walker, unpublished manuscript, quoted
in Ref. 1. This structure consists of a rectangular waveguide with an array of uni-
form, identical conductors in the H plane connecting both short walls. It has zero
passband, nonpropagating resonances of frequencies where the conductor length
is one or more half wavelengths.
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this work has only limited applicability to the TWM. This is more readily
understood if slow -wave structures for electron beam tubes and for
TWM's are compared.

In tubes, slowing factors between 10 and 100 are typical, while in the
TWM, slowing of 50 to 1000 is used. This difference influences primarily
the mechanical tolerances, which are tighter for higher slowing.

A more fundamental distinction concerns the applicable slowing con-
cept. In an electron beam tube there must be synchronism between the
electromagnetic mode propagated on the slow -wave structure and the
interacting mode characterized by a charge distribution on the beam.
Therefore, the analysis of tubes is concerned with the phase velocity of
the slow -wave structure mode. Similarly, in a traveling -wave parametric
amplifier there must be synchronism between pump, idler and signal
propagation, requiring a phase velocity relation for these three fre-
quencies. In filter circuits the condition of synchronism is usually satis-
fied only over a small fraction of the total structure bandwidth. By
contrast, the amplification by the maser material does not depend on the
existence of phase relations along the TWM structure. The maser
material may be considered as an incoherent, long-time energy reservoir
from which energy is withdrawn upon stimulation by an incident signal
and added to the incident signal in a coherent phase preserving fashion.
The function of the slowing is merely to "give the signal more time" to
interact with the energy stored in the maser material, i.e., to enhance
the stimulating gain interaction. Thus, the analysis of TWM's is con-
cerned with the signal group velocity in the structure rather than phase
velocity. It is not necessary that v, be constant over the tunable band.
If the gain over the tunable band is required to be constant, then the
product - x"Ff/vo (neglecting copper and ferrite losses) should be con-
stant over the band. Experience has shown that this condition can be
met over almost the entire passband.

Another point is the interaction mechanism between the active ele-
ment and the slowing structure. An electron beam interacts with a struc-
ture mode via the RF electric field, and the interaction is conven-
tionally represented by an interaction impedance. The interaction of the
inverted spins in the maser material with the structure mode takes place
via the RF magnetic field, and its strength is measured by the filling
factor.

All the differences mentioned have no bearing on the question whether
the knowledge of slow -wave structures accumulated in studies directed
towards electron beam interaction can be applied to TWM structures.
For example, the degree of slowing is not essential for a theoretical anal-
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ysis, the group slowing is easily derived by differentiation from the phase
propagation, and electric and magnetic interaction terms can be obtained
equally well from the field analysis.

The chief difference in slow -wave structures for these two applications
lies in their relation to dielectric loading. In a tube, dielectric loading is
undesirable and is usually avoided as far as possible. By virtue of its
dielectric constant, the glass envelope of a TWT, for example, drags
away from the beam some of the electric field energy carried by the helix
and thus reduces the gain interaction. In fact, most studies of slow -wave
structures for beam tubes pertain to metal structures surrounded by
vacuum.

Dielectric loading, being an undesirable side effect for tubes, is an
essential and rather beneficial feature in maser structures. Since the gain
interaction is magnetic in nature, the interaction of the electric field
with dielectrics may be used to advantage without deteriorating the gain
interaction. Indeed, it is being used for reducing the over-all maser size,
tuning the band center frequency, adjusting the tunable bandwidth or
increasing the gain by increased slowing (of course, the items mentioned
are not independent). Thus, a high degree of design flexibility can be ob-
tained, even with the identical copper comb, merely by changing the di-
electric loading.

For this reason, dielectric loading must be included in any treatment
of TWM structures. The present paper is a first contribution to the the-
oretical treatment of maser structures taking dielectric loading into ac-
count. To keep the mathematics reasonably simple, the maser comb ge-
ometry, including the dielectric loading, was chosen to be fairly simple.
In the laboratory, dielectric loading techniques were developed in which
the loading consists of more than one dielectric and has more complex
shapes. Work to be published by F. S. Chen has generalized the analysis
to take these modifications into account. It also expands the present
analysis of the cutoff frequencies into a more general one which allows
the prediction of the entire w-13 diagram. This will be particularly valua-
ble in finding criteria to avoid structures having a double -valued "fold -
over" or "mongrel" w-f3 diagram.

II. GENERAL PROBLEM AND APPROACH TO SOLUTION

The problem is to find by analysis the upper and lower cutoff fre-
quencies of the comb -type slow -wave structure as used in a traveling -
wave maser (TWM). In particular, this implies taking into account the
dielectric effect resulting from loading the comb with maser material or
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possibly some other dielectric material and the effect of the fringe ca-
pacity at the tips of the comb finger. It was pointed out before that, in a
zero -order approximation neglecting both effects, the comb is a zero
passband structure.

In the course of this treatment it will be necessary to introduce a num-
ber of restrictions and approximations. These are mostly required in
order to keep the mathematics manageable. Some other restrictions are
introduced in order to have the geometry underlying the calculations
correspond to the type of TWM geometry which is presently investi-
gated in the laboratory. These various restrictions and approximations
are labeled with lower-case roman numerals for reference in this discus-
sion.

(i) The first restriction pertains to the cross section of the comb fingers.
The treatment used here is applicable only to combs with fingers of rectangu-
lar cross section.

This means that it is not possible to apply this type of analysis to a
comb having round fingers as used in the original TWM's. It may be
mentioned here, however, that it is possible to treat the round -finger
comb as long as certain simple frequency or impedance data are available
from measurements on scale models, resistance cards or measurements
in the electrolytic tank.

Besides being better suited for mathematical analysis, there is another
justification for treating combs with rectangular fingers. This has to do
with fabrication of combs. There is indication that it is possible to
fabricate combs with rectangular fingers not only with greater ease but
also with greater perfection. The subject of these fabrication techniques
may be discussed at some later date.

A typical comb structure as treated here is shown in Fig. 1. The fingers
shown are of square cross section and are spaced by a finger width. It
should be emphasized that the general method used here is applicable
to any rectangular cross section and spacing, although a great many of

the computations are concerned with square fingers spaced by a finger

width.
(ii) The next restriction is that maser material (or some other dielectric)

is inserted into the comb in the shape of a single rectangular parallelepiped.
The restriction to parallelepipeds is rather definite. There is a possi-

bility, however, of considering more than one slab of maser material
loading the comb. No change in the general analysis is required if two
identical slabs are considered which are loaded symmetrically on both
sides of the comb. This is shown in Fig. 3(a). The analysis could be carried
out also for the case shown in Fig. 3(b) where the maser material is in-
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(a) (b)

Fig. 3 - Loading geometries.

serted in the form of two pairs of identical slabs. It should be mentioned,
however, that the calculation will be appreciably more cumbersome in
this case. Although it will not be described in detail, it will be fairly ob-
vious to the reader how the calculations have to be modified to take into
account geometries like the one of Fig. 3(b).

(iii) A further simplifying assumption is that the dielectric loading is
assumed to have an isotropic dielectric constant, at least for field components
perpendicular to the finger direction.

This assumption is not too restrictive. An effective dielectric constant
may he estimated in the case of a tensor dielectric constant. This estimate
will usually be different for either cutoff frequency, since it depends on
the electric field configuration. As the tensor components are always of
the same order of magnitude, the estimated effective dielectric constant
should turn out to be sufficiently accurate for most cases of practical
interest.

No provisions have to be made for magnetic permeability. Outside the
maser signal line, i; = 1 for the maser material. Even within the fre-
quency range of the signal line, the deviation of tt' from unity is so small
that it can be neglected for all practical purposes as a factor influencing
the cutoff frequencies. A similar reasoning applies to the ferrimagnetic
isolator. Even though the values of A' - 1 are larger there, they are less
effective due to the very small ferrimagnetic filling factor.

The starting point for the calculation is the phase shift. At one cutoff
frequency the phase shift between fingers is zero. This has the conse-
quence that an instantaneous electric field pattern within the comb may
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look like Fig. 4(a). Usually, although not necessarily so, this is the case
at the lower cutoff frequency, IL . Throughout the paper this case will be
referred to as the "lower cutoff," although the term "zero phase shift
case" would be more appropriate. The field pattern is repetitive and
shows no field lines from finger to finger since they are on the same po-
tential. It is symmetric with respect to a cross-sectional plane in the
structure which contains either the center line of a finger or the center
line in the space between two fingers. Therefore the same field pattern is
obtained with a single finger if the section of the comb containing this
finger is enclosed by a "magnetic wall." A magnetic wall is a fictitious
plane on which the electromagnetic field components obey boundary
conditions such that the electric field is tangential and the magnetic field
normal to the plane. These boundary conditions are opposite from those
on a perfect conductor. The perfect conductor is closely approximated

I 11
fI

,MAGNETIC WALLS,

-'4

(b)

/METALLIC WALLS

A-1

JI 1C

(C) (d)

Fig. 4 - Field patterns showing phase shift conditions.
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in experiments by high -conductivity metals, whereas the magnetic wall
is a mathematical model only. Since the field patterns of Figs. 4(a) and
4(c) are identical, the frequencies will be the same, too. Thus the lower
cutoff frequency of the comb can be found as the resonant frequency of
the one -finger structure in Fig. 4(c).

A similar reasoning applies to the upper cutoff frequency fu . Here the
phase shift is w between adjacent fingers. An instantaneous field pattern
will therefore look like Fig. 4(b). Since adjacent fingers are subject to
opposite potential, there are strong electric field components going from
finger to finger. The field pattern is symmetric with respect to a cross-
sectional plane in the structure which contains the center line of a finger,
but antisymmetric with respect to a cross-sectional plane which contains
the center line in the space between two fingers. Thus the same field
pattern can be realized on a single finger if the section of the comb con-
taining the finger is enclosed by a perfectly conducting (or metallic) wall.
This wall will take the place of the plane of antisymmetry in the comb.
This is illustrated in Fig. 4(d). Again, identical field patterns require the
same frequency. Thus the upper cutoff frequency of the comb can be
found as the resonant frequency of the one -finger structure in Fig. 4(d).

The method of determining the resonance frequency of either one -finger
model, that of Fig. 4(c) or 4(d), is suggested by Fig. 5. The finger acts
essentially as this
TEM line is terminated in a short. At the finger tip the TEM line is
terminated by a nearly perfect "open." This is only slightly modified
by fringing electric fields between the finger tip and the surrounding
walls. The effect of these fields can be lumped into a fringe capacity C.
In principle, C will be different for both cutoff frequencies.

Unfortunately, both capacities Cu and CL cannot be calculated easily.
Therefore, measurements have been made in an analog electrolytic tank
setup. A scale model having the cross section of the one -finger lines in
Figs. 4(c) and 4(d) was built. This cross section is shown in Fig. 6(a) for
the upper cutoff frequency and in Fig. 6(b) for the lower. In the elec-
trolytic tank the electric field lines of the object under study are simu-
lated by the current lines in the tank fluid. No approximation is involved
in this analogy. In particular, it is possible to simulate a magnetic wall
like that of Fig. 3(c) by an insulating wall. This is done in the cross sec-
tion used in the lower cutoff analog measurement shown in Fig. 6(b).
In the analog measurements, the metal configuration was first lowered to
the insulating bottom of the tank as indicated in Fig. 6(c). The resistance
measured between electrodes in this fashion is proportional to the im-
pedance of the corresponding TEM mode of the one -finger line; it is
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inversely proportional to the capacitance of the line. For a second meas-
urement, the finger was raised to the proper scaled height and a metal
plate was placed on the bottom of the tank. The inverse of the resistance
so measured is proportional to the capacity of the appropriate length of
one -finger TEM line plus the fringe capacity arising from the diverging
field pattern beyond the end of the finger. [See Fig. 6(d).] The conduc-
tivity of the tap water used was measured also. From these measure-
ments it is possible then to evaluate the fringe capacity as well as im-
pedance and capacitance of the TEM mode on the one -finger line.

In Fig. 7, the fringe capacitance values CL for the lower cutoff fre-
quency and Cu for the upper cutoff frequency obtained from the tank

0.10

0.09

0.08

U)

< 0.07
cc

0
cc

0.06

0

5 0.05
z

0.04
0
z

0.03

0.02

0.01

0

CL

Cu

10 20 30 40
d IN MILS

50 60 70

Fig. 7 - Fringing capacitance CL for lower cutoff frequency and Cu for upper
cutoff frequency. The geometry of the comb used includes fingers of cross section
0.040 x 0.040 inch, spaced 0.080 inch on center in a housing 0.240 inch wide (ratio
Wu/Du = 1.25). Capacitance is plotted vs spacing d between finger tips and the
opposing housing wall.
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measurements are shown as a function of the distance d between the
finger tips and the opposite waveguide wall. The data are valid for fingers
of square cross section, Du/2 X Du/2 = 0.040 X 0.040 inch, spaced
center -to -center by Du = 0.080 inch and contained in a housing of width
2Wu + Du/2 = 0.240 inch (aspect ratio Wu/Du = 1.25). The Wu and
Du are the dimensions of the empty comb, as shown in Fig. 9 in Section
III. It should be mentioned here that these data can be applied to
dimensions other than those indicated if one observes two facts. First,
if all linear dimensions are scaled simultaneously by some factor, the
capacity is scaled by the same factor. Second, experience has shown that
the fringe capacity is a very slow function of the ratio Wu/Du ; no
noticeable errors were found when these capacity values were used for
Wu/Du values ranging from 0.75 to 1.5.

Another experimental method to determine the fringe capacity is
based on the availability of either a comb structure of exact size or a
scale model. The upper and lower cutoff frequencies, fEu and fEL , of the
empty, unloaded structure are measured by direct measurement. The
result of the measurement can best be expressed in terms of a new ef-
fective finger length, Lu or LL . This is based on the fact that a trans-
mission line of physical length L', shorted at one end and terminated
with a small capacity at the other, is electrically equivalent to a some-
what longer transmission line which is shorted at one end and open at
the other. The effective finger lengths are different for both cutoff fre-
quencies

Lu =4fEu = Alu (8a)

LL = = ± A/L. (8b)
j EL

Here c is the velocity of light.
The relation between these length dimensions and the fringe capacity

involves the characteristic impedance of the line. The fringe capacity
follows from

and

1

27r fE fie Li

1

2r f ELCL

271-fE uLl 27fEuAlu
7,Eu cot (9a)

- wZEL

tan 27fELL' '-' 2 fE/A/L- cot (9b)
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For the particular structure geometry investigated here in detail, the
fringe capacity was determined using these equations and the character-
istic impedances derived later in this section. The values of CL and C
obtained agree well with these from the tank measurement.

For the subsequent calculations it is assumed that the new effective
lengths, Lu and LL , are known. If, instead, the fringe capacities, Cu and
CL , are known, the new effective lengths can be calculated using the
impedances ZEU and ZEL . Since the capacities are small, (9a) and (9b)
can be approximated by

Alu = ZEUCUC

AIL = ZELCLC.

(10a)

(10b)

In this fashion, the problem of Fig. 5(b) is reduced to that of Fig. 5(c).
The cutoff frequencies, fL and fu , are found as resonance frequencies of
a transmission line LL or Lu long, where one end is shorted, the other
open, and a length 1 is partially loaded with dielectric.

The field pattern in the unloaded part of the transmission line is rigor-
ously a TEM mode. Therefore, the impedance of this line can be found
by a resistance card or an electrolytic tank technique. The electrodes are
shaped for the model in the same way as the conductors in the unloaded
TEM line. Then the impedance of the line is simply equal to the re-
sistance measured in the model provided the resistance per square is
adjusted to or scaled to 377 ohms. In addition to this measuring tech-
nique, these impedances, ZEU and ZEL , will be determined analytically
below. This involves a calculation with good accuracy of the electric field
pattern.

The dielectrically loaded section of the transmission line would, if
treated with the same rigor, require a much more involved procedure.
Therefore, at this point an approximation is introduced.

(iv) The field configuration in the loaded part of the transmission line
can be treated as a TEM mode.

In reality, this is not true. An exact solution of Maxwell's equations
for a TEM-type transmission line having a cross section partly filled
with dielectric is not a TEM mode. Instead, the process of matching
boundary conditions requires the presence of longitudinal field com-
ponents. It can be seen, however, that these longitudinal components will
become smaller with decreasing frequency and vanish in the zero fre-
quency limit. Thus this approximation implies the representation of a
dynamic field configuration by its static analog. The accuracy of such
an approximation, therefore, tends to be better the shorter the linear
dimensions involved are with respect to the wavelength. In the range of
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dimensions used here it is expected that no appreciable loss of accuracy
is incurred in this connection.

The consequences of treating the field configuration in the loaded part
of the one -finger model as a TEM mode are far-reaching and very helpful
for the subsequent analysis. Considering the same metal boundaries as
in the unloaded part, the field configuration in the loaded part has to be
the same. This follows from the fact that the TEM fields are given as a
unique solution to Laplace's equation for the appropriate geometry.
Thus one way to treat the loaded part of the one -finger model, consistent
with a TEM mode in the same geometry, is by an effective dielectric
constant. This allows for a reformulation of approximation (iv):

The part of the transmission line loaded partially by a high dielectric
constant material can be treated as if it were loaded uniformly throughout
the cross section with a material of a lower "effective" dielectric constant.

This effective dielectric constant will, of course, be different for the
upper and lower cutoff frequencies. Using these effective dielectric con-
stants, eu and EL , the impedances and propagation constants of the
loaded section are related to those of the empty section by

ZDL = ZEL/VTD

ODL = VTL OEL

Z DU = Z EU/VI1

13DU = VTU OEU 

(11)

(12)

Here the first indices E and D refer to the empty and dielectrically
loaded line, the second indices L and U to the lower and upper cutoff
frequencies. The propagation constants in the empty TEM line are, of
course, identical to that in vacuum

!3EL = (2WfL/C) EU = (2Wf U/ C) (13)

Assuming for the moment that the effective finger lengths, Lu and LL ,

the characteristic impedances of the empty line, ZEE, and ZEL and the
effective dielectric constants, eu and EL , are known, the cutoff frequencies,
fu and fL , can be calculated. The procedure is to match voltage and
current at the boundary between the loaded and unloaded section of
the line. This results in impedance equations

Z Eu cot Ev( LI' - = ZJ)u tan Om,/

ZED cot OED(LL - 1) = ZDL tan OD,./.

These are rewritten in a more convenient form

Vi;; = tan - ./ L L tan [1r - .14:71[
2 u Lu fEu 2 LU

L1/EL = tan k ./TLf I tan kIr - 1:-L1 ffElj .

( 14a )

( 14b )

(15a)

(15b)
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These equations are identical for lower and upper cutoff frequencies.
They do not contain the characteristic impedances explicitly. They are
solved in the following way.

Vi u or VT,, is considered a given parameter. Then the frequency
ratio fullEu or f Li./ EL is a function of l/LL or 1/ Lu . This function requires
the solution of transcendental equation (15a) or (15b). Numerical
values were obtained by machine computations using the IBM 7090.
The results are plotted in Fig. 8.

This graph can then be used to determine the upper and lower cutoff
frequencies of the loaded comb structure. It is assumed here that the
upper and lower cutoff frequencies of the empty comb, fEu and fEL , and
connected with them, the effective finger lengths, Lu and LL , are known.
They are best determined by measurement, but they could also be cal-
culated from the fringe capacity and the characteristic impedance. The
quantity yet to be evaluated is the effective dielectric constant, it, and
L , before the cutoff frequencies can be read from the graph in Fig. 8.

It will be necessary, however, to work out the electric field pattern within
the unloaded comb, then in the loaded section, including the respective
characteristic impedances, before the effective dielectric constant can be
obtained.

III. FIELD PATTERN AND CHARACTERISTIC IMPEDANCE OF UNLOADED COMB

3.1 Upper Cutoff Frequency

The electric field pattern of the unloaded one -finger model will look

about like Fig. 9(a). This geometry is, unfortunately, too complicated
for a closed analytical treatment. On the basis of the geometry and the
mathematical tools at hand, the following approach may be suggested.
The area available to the electric field is divided into four regions, two
equivalent regions of type A and two equivalent regions of type B, as
shown in Fig. 9(b). Two further approximations are then necessary.

(v) The electric field in the regions A can be represented as a homogene-
ous, parallel plate condenser field.

(vi) The electric field in the regions B can be represented by the field pro-
duced by an infinitely thin metal fin inserted in a rectangular enclosure of
corresponding dimensions.

These approximations are illustrated in Figs. 9(c) and 9(d). Along the
joints of regions A and B the field thus assumed is discontinuous. In
reality, it is inhomogeneous near the boundary of region A, and it is
less inhomogeneous than assumed near the boundary of region A because
there is only a 90° bend, not a 180° bend as in the model used. These
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discrepancies of the field model from what would be expected should in
reality be very small, particularly if the gap between finger and wall, the
dimension WA = 2(1 - r)Du defined in Figs. 9(a) and 9(e), is small
compared to other dimensions. This is so in cases of practical interest.

As far as the impedance is concerned, the two regions A and the two
regions B are in parallel. The impedance of a region A is simply the ratio
of its dimensions multiplied by free -space impedance. The impedance of
region B is not as easily found. It is possible, however, to use a conformal
transformation which maps the region B into a parallel plate geometry.
This is schematically indicated in Fig. 9(e). The transformation actually
utilized consists of the consecutive application of two transformations,
each using elliptical functions. The procedure, including the mathemati-
cal details of the conformal transformation by elliptical functions, is
outlined in the Appendix.

It is known from the theory of conformal mapping by functions of
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wu

B
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(b)

--Du -

HrDu-

(c)

CONFORMAL

MAPPING

(d) (e)

I  Wu'

Fig. 9 - Analysis for upper cutoff frequency: (a) real field patterns, (b) re-
gions used for analysis, (c) homogeneous field assumed in region A, (d) fin field
assumed in region B, (e) fin field equivalent to homogeneous field.

complex variables that the geometry is preserved in infinitesimal regions.
In particular, it is clear that infinitesimal squares with boundaries
formed by field lines and equipotential lines continue to be squares.
Since the impedance can be thought of as composed of the impedance of
these infinitesimal squares, partly in parallel and partly in series as in-
dicated by the over-all geometry, it follows finally that the impedance
of the two transmission lines of Fig. 9(e) is the same.

The geometry before transformation is characterized by the two ratios:
Wu/Du and r. Thus WD7Dui will be a function of both of these ratios.
So far only combs with r = I have been investigated in practice. For
convenience, therefore, the subsequent calculations are carried out for
this value of r. This implies a further restriction.
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(vii) In the numerical calculations to follow, only comb geometries with
the finger width as large as the gap between fingers are considered.

From a mathematical point of view, this restriction is somewhat
arbitrary. Any other choice of r, the ratio of finger width to length of
period, however, would necessitate another application of the elliptic
integral conformal transformation.

With r = Wu'/Dui is a single -valued function of Wu/Du. This
function is plotted in Fig. 10, An interesting feature of this graph is that
Wu'/Du' goes asymptotically to I; it reaches this value to within 2 per
cent at Wu/Du = 0.65. The physical interpretation of this observation
is as follows. For Wu/Du> 0.65, essentially all the field lines originating
at the center fin in Fig. 9(d) terminate on the side wall; none reach the
opposite end wall. Therefore, this wall can be moved out toward infinity
with no noticeable effect on the impedance at the upper cutoff frequency.

The characteristic impedance of the empty structure at the upper
cutoff frequency can now be given. It is

Dui
Zou = 377 ohms / DA + 2

WIT A *

(16a)

An important special case is one where, first, ItTu/Du is greater than
0.65 so that the asymptotic value Wu'/Dui = z applies and where,
second, have TVA/DA =
Then the characteristic impedance is simply

Zou = If X 377 ohms = 47.1 ohms.

0.8

0.7

0.6

0.5

WU'

DU' 0.4

0.3

0.2

0.1

0
0
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Fig. 10 - Conformal transformation for upper cutoff.

1.4 5



460 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

Since the partial impedances are equal, it also follows in this case
that the total stored energy is equally distributed between the four
regions A, A, B, B. This remark may be helpful in estimating the filling
factor.

3.2 Lower Cutoff Frequency

The procedure here is quite similar to that in the case of the upper
cutoff frequency. The field pattern is illustrated in Fig. 11(a). The
cross-section area available to the electric field is divided into four re-
gions, two electrically equivalent regions of type A and two regions of
type B, as shown in Fig. 11(b). Again two approximations are required.

(viii) The electric, field in region A is so small that it can be neglected.

B

(C)

(a)

A

B

B

(b)

A

1'1

DL
1.1

roL
I I I I

CONFORMAL

\IL
MAPPING

(d)

W

WL'

Fig. 11 - Analysis for lower cutoff frequency: (a) typical electric field pattern,
(b) regions used for analysis, region A assumed field -free, (c) fin field assumed in
region B, (d) fin field equivalent to homogeneous field.
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(ix) The electric field in region B can be represented by the field produced
by an infinitely thin metal fin inserted into a rectangular enclosure with ap-
propriate dimensions and boundary conditions.

It is apparent that the approximation (viii) is justified. Only very
small fringing fields, will exist in region A. The implication of approxima-
tion (ix) is indicated in Fig. 11(c). It should also be very well justified,
since there is no essential difference between the idealized field pattern
and the real one. Region B can be transformed into a simple parallel
plate geometry. This is indicated in Fig. 11(d). The transformation
again consists of two consecutive conformal mappings by means of el-
liptic functions. The procedure is outlined in the Appendix. The imped-
ance of region B is simply given by the aspect ratio Wi/DL' of the
parallel plate geometry resulting from the transformation, multiplied by
the free -space impedance. This resulting ratio WL'/DL' is a function of
two ratios, r and W/D. For mathematical convenience and because of
practical importance, only comb geometries with r = are considered
in the subsequent calculations. For other ratios r, a new evaluation of
the elliptical transformation is necessary. Thus restriction (vii) is in-
voked here, too.

(vii) In the numerical calculations which follow, only comb geometries
with the finger width equal to the gap width between fingers are considered.

The single -valued function WL'/DL' of WL/DL with the parameter
r = 2 is shown in Fig. 12. The characteristic impedance of the empty
structure at the lower cutoff frequency is then given by

ZOL = 2WL' X 377 ohms. (17a)
D

As long as WL/DL > 0.2, it is seen from the graph that this can be
approximated by

ZOL =
1 L ±0.11 377 ohms. (17b)

DL

The asymptotically linear curve in Fig. 12 and this last equation suggest
an almost obvious interpretation. The electrical behavior of region B is
essentially the same as that of a parallel plate geometry having the same
width D L' = D L , but a slightly greater distance between plates, WL' >
W L Also, the asymptotic slope for the curve is unity. Considering a
geometry with WL/DL > 0.2, this would mean the following. If WL is
increased further, the electric field pattern near the fin stays the same,
while the added volume away from the finger is taken up by a homo-
geneous electric field.
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IV. CAPACITANCE AND EFFECTIVE DIELECTRIC CONSTANT OF COMB PAR -
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It was mentioned that the electromagnetic field configuration in the
comb line partially loaded with dielectric should be treated as a TEM
mode. It was pointed out that this is equivalent to finding a static solu-
tion of the electric field problem. Thus the problem here is to find the
static value of the capacitance per unit length of the loaded finger line.
The difference in electrical behavior of the loaded line compared to the
unloaded line is then fully expressed by an effective dielectric constant.
This effective dielectric constant is simply the ratio of the static capaci-
tance of the loaded line to the capacitance of the unloaded line.
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4.1 Upper Cutoff Frequency

The field pattern in the presence of one dielectric slab is illustrated in
Fig. 13. It is seen that the dielectric is present in one of the regions called
B before. The usual boundary conditions for the continuity of the tan-
gential E vector and of the normal D vector have to be observed in
fitting together the electric field pattern inside and outside the dielectric.

At first sight it seems that no difficulty is incurred in this respect at
the boundary of the dielectric. In the model chosen for the field con-
figuration, the field lines run parallel to the boundary both in regions A
and B. The boundary condition for tangential electric field seems to ap-
ply, with the consequence that the field pattern remains the same in the
dielectric as before in the unloaded region B. Calculations are based on
this assumption, and they are presumably of sufficient accuracy for
present purposes.

There is a small error in this assumption. It was pointed out before
that the two models chosen to represent the field in regions A and B do
not match at the boundary. In the models, the field in A is homogeneous,
that in B strongly inhomogeneous. The real field at the boundary of A
and B should be somewhere between these two extremes. It is expected,

Fig. 13 - Electric field pattern at upper cutoff with dielectric loading present.



464 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

therefore, that the error in the impedance calculation of the empty comb
at the upper cutoff frequency is negligible. The same is not necessarily
true in the presence of dielectric. The real, inhomogeneous field in the
region near the boundary of A and B will be disturbed by the insertion of
dielectric. The deviations of the real field from that used in the calcula-
tions - homogeneous in A, elliptic function field in B - are now ac-
centuated by a high dielectric constant rather than evened out as in the
empty comb. This will lead to an error in the calculation of the capaci-
tance and the effective dielectric constant. Hence it is not trivial that
the approximations (v) and (vi) are still reasonably good in the presence
of dielectric. Fortunately, it can be argued that the error incurred by this
approximation is still negligible within the accuracy sought for here and
with respect to typical structure geometries and dielectric constants
considered. A formulation of the approximation follows.

(x) In the presence of dielectric loading, the static electric field can still
be represented by a homogeneous, parallel plate field in region A and the
field of a metal fin inside a rectangular enclosure in region B filled by the
dielectric.

The next concern is the other boundary of the dielectric away from
the finger. Here the field lines cross the boundary at all directions be-
tween tangential and perpendicular. It would be very difficult to apply
boundary conditions to this field pattern. Therefore another restriction
is introduced.

(xi) The calculation is restricted to dielectric loadings thick enough so
that essentially the total electric field energy of region B is contained within
the dielectric.

The numerical implication of this restriction follows directly from
Fig. 10. It is assumed that the fingers are as wide as the gap between
them. From the graph the following fact can be deduced. If a geometry
is considered where Wu is considerably larger than Du , then 98 per cent
of the electric field energy is concentrated in a rectangle near the finger,
Du wide and 0.65 Du deep. Restriction (xi) thus implies that only di-
electric slabs which have a thickness of at least 0.65 times the length of a
period of the comb are considered.

Fortunately, this restriction does not exclude any cases of practical
interest. Since the field configuration on the finger is treated here as a
TEM mode, the filling factor in the plane perpendicular to the finger
is the same for the dielectric and the magnetic field energy. Thus, slabs
thinner than indicated by restriction (xi) would also have a reduced gain
interaction near the upper cutoff frequency, since not all of the magnetic
field energy of region B would be contained in the maser material. Gain



TWM COMB STRUCTURE CUTOFF FREQUENCIES 465

is still at a premium in present TWM development, and thus it does not
seem to be necessary to treat cases other than those restricted by (xi).

It is now possible to write down the capacitance and the effective di-
electric constant. By comparison with (16a), it is seen that the capaci-
tance per unit length of the empty one -finger line is

DA Du'
CRU = eo [h - G

W W (11
(18)

(Lower case c is used to distinguish this quantity from the fringe ca-
pacity Cu.) With dielectric loading on one side of the finger

= 0 -r 7- 1 -1471
DA \ Du'

Similarly, if the dielectric is loaded on both sides of the finger

[ W
DA Du'

CDU = CO
2 A+ 2e . (lob)

The effective dielectric constant is then simply, for loading on one side

gu = [( -I- 1) + 2b]/[2 2b] (20a)

and for loading on both sides

gu = (E b)/(1 b) (20b)

with

b = DATVEI/WADo'. (21)

Most important perhaps for present applications is the case where, first,
the fingers are square so that (16b) applies and where, second, the di-
electric is ruby with an isotropic average dielectric constant of e = 9.
In that case, for loading on one side

and for loading on both sides

(19a)

eu = 3 (22a)

gu = 5. (22b)

4.2 Lower Cutoff Frequency

The field pattern in the presence of one dielectric slab is illustrated in
Fig. 14. The dielectric fills part of the region called B before. For the
evaluation of the capacitance it is significant that restriction (xi) is
applied here, too. Then the following approximation can be made.
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Fig. 14 - Electric field pattern at lower cutoff with dielectric loading present.

(xii) In the presence of dielectric loading, the static electric field can be
represented in the following way: There is zero field in region A; in the
dielectric there is a field like that produced by a metal fin in a rectangular
enclosure, having the dimensions of the dielectric and subject to appropriate
boundary conditions. The field past the dielectric is a homogeneous parallel
plate field.

It can be argued that these approximations are well justified. There
is no potential difference between fingers; hence region. A should be field -
free except perhaps for some very small fringe fields. In connection with
17(b) it was shown that the field has its inhomogeneities near the finger,
whereas the field region near the wall is reasonably homogeneous.

The capacitance per unit length of the loaded one -finger model can
now be given. For the empty line it is

cEL = 2co(DL'/WL') (23)

For the loaded line, the capacitance is obtained from two contributions
in parallel, one from each side of the finger. The capacitance of the loaded
side comes from two contributions in series: one from the dielectric, in-
volving an elliptical transformation using the dimensions of the dielectric,
and one a parallel plate contribution from the space behind the dielectric.
Thus, for dielectric loading on one side
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[Di! (TyD, wEvii
LIVL' EDD' DE

and for loading on both sides

(24a)

TVD'
CDL 2Eo/= (24b)

cup' L/E)

Here WD and DD are the physical dimensions of the dielectric cross sec-
tion per one -finger line, WE and DE the dimensions of the empty space
behind the dielectric. WD'/DD' is obtained from WD/DD by means of the
elliptical transformation illustrated in Fig. 11.

The effective dielectric constant can now be evaluated as the ratio
cDL/cEL . The formulas, however, turn out to be fairly long. They are
given here, therefore, only for the case that the approximation in ( 17b)
is valid both for the empty structure and the dielectric. It is further
observed that

DE = DD = DE = D

and

WL = WD + WE .

Then the effective dielectric constant for dielectric loading on one side is

2WL - ( - 1)WD
+

(E + 1)0.11D
EL

(25a)
2 ETV', - (E - 1)WD + O.11D

and similarly, for loading on both sides

TYL 0.11D
EL = E ETV', (E 1)TVD ± O.11D '

It is seen that the effective dielectric constant is a function of E, WD/TVI
and D/WL . Once a particular structure geometry has been picked, then
D/WL is known. If a particular maser material is selected, e is known.
Then EL is a unique function of the relative loading thickness, WD/WL

.

One example of such a function is given in Fig. 15. For convenience in
using the graph of Fig. 8, the square root ./ is given instead of iL .

Curves for effective constants based on other parameters can easily be
calculated using either (25a) or (25b).

V. EXAMPLE FOR DESIGN PROCEDURE

(25b)

In Sections III and IV the empty and the dielectrically loaded comb
structure were evaluated. Field pattern, impedance and propagation
constants were obtained for both the upper and lower cutoff frequencies.
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Fig. 15 - vs relative loading thickness, one side only, loaded at lower
cutoff frequency for parameters indicated.

With this information at hand, it is now possible to arrive at a numerical
design procedure. The aim is to predict the cross-sectional dimensions of
a dielectric parallelepiped which will simultaneously tune the upper and
lower cutoff frequencies of the comb structure to some predetermined
values. Of course, it is not possible to ask for completely arbitrary design
cutoff frequencies. Obviously there are limits to the amount of tuning
which can be achieved by a given dielectric material within a given comb
geometry. These limits can also be determined easily by the analysis.

The design procedure follows the outlines given briefly at the end of
Section II. It can now be described in general terms. Perhaps it is ad-
vantageous, however, to illustrate the procedure by means of an ex-
ample. The example to be described is a case of a "design on paper."
That is to say, the design calculations can be made entirely on the basis
of calculable values. It is not necessary to fabricate a size or scale model
of the comb structure under consideration in order to determine certain
values by measurement. The only empirical value required is the fringe
capacity between finger tip and the structure enclosure; this may be ob-
tained from Fig. 7.

One interesting and valuable feature of the design procedure is that of
independently setting the upper and lower cutoff frequencies. This is
possible because the upper cutoff frequency can be controlled by adjust-
ing the height / of the dielectric loading alone, and because it is not de-
pendent in any way on the dielectric thickness WD as long as WD ex-
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ceeds a certain small minimum value. Then the dimension WD can be
used to control the lower cutoff frequency independently.

As an example for the design procedure, a comb structure is considered
with the following dimensions:

(a) finger length 0.400 inch
(b) spacing between fingers 0.040 inch
(c) finger cross section 0.040 square inch
(d) wall-to-wall spacing of enclosure 0.240 inch.

As further information, the fringe capacity was measured in an electro-
lytic tank model and was found to be (see Fig. 7 for gap spacing greater
than 70 mils):

(e) fringe capacity CL = 0.025 p,AF, Cu = 0.035
The problem considered is that of finding the dimensions for a single

ruby parallelepiped which brings the upper cutoff frequency to 4200 mc
and the lower cutoff frequency to 3210 mc.

First step: Find effective finger length at the upper cutoff frequency of
the empty comb.

Equation (10a) applies for the increase in length and (16b) applies
for the impedance; thus

Alu = Z EuCUC

= 47.1 X 0.025 X 10-12 X 3 X 10"

= 0.035 cm.

The effective length for upper cutoff is then [see (8a)]

= L' Alu

= 2.54 X 0.400 ± 0.035 = 1.051 cm.

This corresponds to an upper cutoff frequency for the empty comb [see
(8a)]

fRo = c/4Lu
= 7150 mc.

Thus the design specification

fp = 4200 mc
is equivalent to specifying a ratio of

f,./fEr, = 0.587.

Second step: Find in an analogous way the effective finger length at
the lower cutoff frequency of the empty comb.
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Equation (17b) applies for the impedance. From the dimensions given,
11-, = 0.100", DL = 0.080", hence

ZEL (hTW + 0.11) 377 ohms

= 256 ohms.

The addition to length is given by (10b)

A/L = ZELCLe

= 256 X 0.035 X 10-12
1010

= 0.268 cm.

The effective length for lower cutoff becomes

LL = L' A/L

= 0.400 X 2.54 0.268

= 1.284 cm

corresponding to a cutoff frequency for the empty comb

fEL = c/4LL

= 5840 mc.

The design specification of

fL = 3210 mc

is thus equivalent to specifying a ratio

f afEL = 0.55.

Third step: Satisfy the upper cutoff frequency specification by choos-
ing an appropriate dielectric height 1 without regard for WD , the thick-
ness of the loading. This is possible because, as mentioned before, the
effective dielectric constant at the upper cutoff frequency is independent
of loading thickness. The effective dielectric constant, eu , for one-sided
loading with ruby is 3 from (22a) ; thus

-0; = 1.73.

Consulting Fig. 8 for the dielectric height which makes fufizu = 0.59
with the parameter Viu , it is seen that

11Lu = 0.96.
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Hence, the dielectric loading height should be

1 = 0.96 X 1.051 = 1.010 cm

= 0.398"

In other words, the dielectric loading height turns out to he very nearly
the same as the finger length.

Fourth step: Satisfy the lower cutoff frequency specification by choos-
ing an appropriate thickness WD of the dielectric loading. This is done
by the following successive measures.

From the loading height 1 just determined find

l/LL = 1.010/1.284

= 0.79.

Enter the graph of Fig. 8 with //L L = 0.79 and filfEL = 0.55. The
value interpolated at the point having these two coordinates is

= 2.22.

The graph of Fig. 15 is valid for present calculations; entering this last
value into the graph it is found that

WD = W L

hence

WD = 0.100 inch.

The final answer, then, is that the comb described initially will have
the specified cutoff frequencies if a slab of ruby of height 0.398 inch and
of width 0.100 inch is inserted.

An experiment was carried out to check the ;exults of this calculation.
The two cutoff frequencies of a comb as specified above were measured
after inserting a single slab of polycrystalline high density alumina (di-
electric constant R -i9.3) with cross-sectional dimensions of 0.400 inch and
0.100 inch. The cutoff frequencies measured were 4200 mc and 3210 mc
respectively. These frequencies were then specified as design frequencies
for the above example. The close agreement between the actual dimen-
sions of the alumina slab and those calculated by the present recipe is
gratifying. It may be argued, however, that the obtained agreement is
somewhat fortuitous. In particular, one should expect that the fringe
capacity is altered if the dielectric loading extends all the way along the
fingers up to the finger tips. To investigate the accuracy of the present
analysis, a series of systematic measurements was made.
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For this study a number of short sections of comb structures were
built and tested. They all had finger dimensions of 0.040 X 0.040 X
0.445 inch, and the fingers were spaced 0.080 inch on center. The struc-
tures were loaded symmetrically with two slabs of high -density poly-
crystalline alumina (dielectric constant quoted to be 9.3) of full finger
height. The geometry and the result of the measurements are shown in
Fig. 16. In two series of measurements, the fraction of the housing width
filled by the alumina loading, WD/WL , was held at 0.90 and 0.95, re-
spectively, while the gap width between the finger and the housing wall,
W. = I'Vu , was varied in the range 0.75D = 0.060 inch, D = 0.080 inch,
1.25D = 0.100 inch and 1.5D = 0.120 inch. From the analysis, it is
known that fu should be independent of these dimensional changes. This
is borne out by the experiment. Both the experimental points and the
solid line for the theoretical value of fu show the frequency independence.
It is observed, however, that the experimental frequencies are 3.5 per
cent higher. A somewhat greater disagreement is found for the lower cut-
off frequency, which seems to indicate a systematic trend between theory
and experiment. It can be said, however, that the largest deviations are
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Fig. 16 - Examples of measured and calculated cutoff frequencies; the insert
shows the comb geometry used.
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10 per cent and that the typical discrepancy between theory and experi-
ment is less than 5 per cent. The chance for greater systematic errors in-
creases, of course, if comb and loading geometries are considered which
comply less rigorously with the restrictions and approximations made in
the text.

The numerical examples shown demonstrate that dielectric loading in-
deed decreases the fundamental passband frequency of the empty comb
by a very appreciable factor. A one-sided loading with ruby may reduce
the frequencies by a factor of 1.7, while double -sided loading may lead
to a reduction by a factor 2.5. Still greater reductions may be obtained
by using dielectric materials with higher dielectric constants and by
modified comb geometries, in particular by changing the finger cross
section from square to rectangular. It is also clear from this treatment
that the shaping of the dielectric loading can be used to vary the degree
of slowing within wide limits. These remarks may suffice here to illus-
trate the prominent role of dielectric loading techniques in the field of
TWM development which was pointed out in the Introduction.

Since the original derivation of this analysis in 1960,4 several TW1\'I's
have been developed in this laboratory. They include the TWAT for the
ground station receiver in the Telstar satellite communication experi-
ment' and radio astronomy TWM preamplifiers for hydrogen line work
at 1420 me.' In these cases, the analysis has proved to be a valuable aid
for arriving at a first -order design and similarly for providing guidelines
in the subsequent improvements of these designs.

APPENDIX

The conformal mapping transformations are derived and evaluated,
leading to the impedance transformation curves in Figs. 10 and 12. The
mathematical treatment given here is not too extensive, because the
type of transformation used is known from other areas of electrical en-
gineering. Yet the description of the mathematical procedure is made
reasonably complete so that it may be useful as a guide for treating other
related problems: for example, traveling -wave masers where the finger
width is not identical to the spacing between fingers.

4.1 The Schwartz-Christoffel Transformation

The particular conformal transformation used here is a special case of
the more general Schwartz-Christoffel transformation. The theorem
proved independently by these two mathematicians states that it is possi-
ble to find an analytical function which maps the inside of a polygon on the
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complex plane into the upper half of this plane. The boundary of the
polygon thus is mapped into the real axis. If two transformations are con-
sidered, one of the type mentioned, the other performing the inverse
function, it follows that the inside of a polygon can be mapped into the
inside of any other polygon.

The general Schwartz-Christoffel transformation is illustrated in Fig.
17. For purposes of discussion, it is perhaps easier to consider first the
inverse transformation of the upper half of the complex plane into a
polygon. The transformation will be accomplished by a function whose
derivative is given by a product of the type

dz = (w - a)(01.--1)(w b) c#1,1) (w c)(71.-1)  . (26)
dw

W- PLANE/
c

1-Lo3

b a .---.
00

(a)

ti -Loo
Z -PLANE

C

dz"

B

dz' 4.1 A
A dz

.4---.
-00 0 .--).too

j- Loo(b)
Fig. 17 - Illustration of the general mapping properties of the Schwartz-

Christoffel transformation.
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To demonstrate the transformation property, consider values of w and
dw on the real axis. Also represent each factor in the form rket'sk with a
real number rk for the magnitude and (1)k for the angle. It is seen then
that for values w such that w > a,b,c all the 4k on the right-hand
side of (26) vanish. Hence the angles of dz and dw are identical ; that is,
these line elements are parallel. Mathematically

Adz = 0 if w and dw are real and w > a,b,c . 27a)

For values a < w < b the first bracket changes sign; that is, its angle
is r. The angle of the first factor becomes a -

Adz' = a - 7 if w and dw' are real and a > w > b,c . (27b)

That is to say, the real axis of the w plane near a is transformed in the
z plane into a polygon corner at some as yet undetermined point A
including an angle a. Similarly

Adz" = a + f3 - 2r if w and dw" are real and a,b > w > c (27c)

indicating another polygon corner at B including an angle Q and cor-
responding to the point b on the real axis of the w plane.

In this fashion, it is shown that the transformation (26) indeed maps
the upper half of the w plane into the inside of a polygon having speci-
fied angles a, )3, -y  at points in the z plane corresponding to a,b,c
in the w plane. While it is thus easy to satisfy conditions on the angles
of the polygon, the difficulty is to find the points A,B,C  in the z plane
which correspond to a,b,c in the w plane. This requires an evaluation
of the integral of (26).

Even more typical for engineering applications, and important in the
present example, is the inverse situation. The corner points A ,B,C
of the polygon are given. Then the problem is to find the real numbers
a,b,c  which when inserted into (26) will transform this polygon into
the upper half of the w plane. In most cases, this problem can only be
solved numerically. The procedure would he to tabulate integrals of (26)
for some range of values a,b,c . Numbering such tables with the
given integral values A,B,C , the appropriate transformation
parameters a,b,c could be picked.

To keep the need for tabulation down to a manageable chore, the
number of significant parameters has to be restricted as much as possible.
The example of importance in this connection is the mapping of a rec-
tangle into the upper half of the complex plane. The number of significant
parameters here can be reduced to one, the length ratio of two adjacent
sides. Other parameters can be eliminated by trivial transformations
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such as scaling and rotation of the coordinate system, which is ac-
complished simultaneously by a complex constant factor in (26) or a
shift of the coordinate origin which corresponds to the integration con-
stant of (26).

A.2 Mapping of a Rectangle into the Upper Half of the Complex Plane

It is now possible to write down the transformation equation for a
rectangle. The conventional notation is illustrated in Fig. 18. The
corners of the rectangle in the z plane are the complex numbers K,
K iK', -K iK' and -K. In the w plane they correspond to the
points 1, 1/k, -1/k and -1 on the real axis.

D.-K +LK'
t+Loo

C=K+LK'

z-PLANE

_ =_ B = K --4.
+ oo

j-Loo (a)

+LOO

W- PLANE"

Fig. 18 - Illustration of the transformation of a rectangle in the z plane into
the upper half of the w plane, introducing the conventional mathematical nota-
tion.
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From (26) the transformation derivative is

dz . ( lycri_A- w - r (w - 10 (w ± W WI( -I-
1T

(28)
k '

When the constant A is chosen appropriately (A = -1/k) this becomes

and

dz -
(1 - w2)4(1 - k2w2)4

dw

z = - opo. kiwy 

This integral is an elliptical integral of the first kind. It, gives z as a
function of w and k, where k is referred to as the modulus of the integral.

From the definition adapted in the figures it follows that

K = (31)
dw

(1 - 0)4(1 - k2w2)1

(29)

and

(30)

iK'
111

do.)

.1-, (1 - w2)i(1 - k2o)2)i 
= (32)

K is called the complete elliptical integral. K' is the complete integral to
the complementary modulus obeying the functional relationship

K'(k) = K(k') (33)

where k2 = 1 is used to define the modulus k' as complementary to k.
The definition of the elliptical integral of the first kind as given in

in (30) is due to Jacobi. Many tables use also the notation of Legendre.
This is obtained by setting

w = sin 4), dw = cos 0 do

k = sin 0, k' = cos 0.

Then

dqfz = Lo (1 - sin2 0 sine 'T')

dx1,K=
fp-0 (1 - sin2 0 sin' 4/).1

ir 2

&ifK' =
fp=o (1 - cos' 0 sin2 xli)1

(34)

(35)

(36)

(37)

dw
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From this discussion it is clear that the transformation of a rectangle
into the upper half plane requires finding the modulus k or equivalently
the modular angle B of the elliptical integral from the given geometry of
the rectangle. It is further clear that K and K' are not independent, but
related through either (31) and (32) or (36) and (37). Therefore, it is
not possible to specify both length dimensions of the rectangle of Fig. 18

but rather only their ratio. The problem thus is reduced to finding the
dependence of the modulus k or 0 from the aspect ratio K'/2K of the
rectangle.

This functional dependence was evaluated using the Smithsonian
Elliptic Function Tables, in particular tables of complete elliptical
integrals. The result is presented in Fig. 19.

It should be added that frequently, instead of the elliptical integral
(30), its inverse is used. This inverse function is written

w = sn z modulo k (38)

which is defined to mean (30). This notation is reminiscent of the sine
function, with which the sn function is indeed identical in the special
case k = 0.

A.3 Mapping of the Upper Cutoff Frequency Configuration

It is now possible to carry out the mapping transformations used in
the comb structure analysis. The initial geometry for the lower cutoff
frequency is indicated in Fig. 20(a), where solid lines represent conduct-
ing electrodes. The final result is a parallel plate geometry like that of
Fig. 20(d). This figure represents the cross section of an idealized trans-
mission line for which the impedance is simply given by the ratio of the
length dimensions times free -space impedance. The transformation makes
use of two intermediate steps. The interior of the rectangle (Fig. 20a)
is first mapped into the upper half of the complex plane (Fig. 20b ).
Then a readjustment of the scale leads to Fig. 20(c). Then the upper
half plane is finally mapped into the inside of the desired rectangle
(Fig. 20d) with electrodes only on opposite sides.

To keep track of these steps, the relevant points in the original geome-
try and their transforms are denoted by capital letters O,A,B . The
first and second elliptical transformations are distinguished by indices 1
and 2 attached to the modulus and the complete integral values. The
mapping then proceeds as follows.

(a) From the z plane to the y plane.

y = sn z modulo k1 = sin 01 (39)
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Fig. 19 - Relation between the ratio of the length dimensions of the rectangle
to be transformed and the modular angle of the transforming elliptical function.

The modular angle O is found by entering the curves of Fig. 19 with the
aspect ratio W /D = Kr' /2K1of the original rectangle. The corresponding
coordinates in the z and y planes are given in Table I. The transformation
of points 0 through D requires only the graph of Fig. 19. For points A
and F, use has to be made of elliptic function tables. In the Smithsonian
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TABLE I - SUMMARY OF TRANSFORMATIONS
FOR UPPER CUTOFF FREQUENCY CASE

3 x w

0 0 0 0 0
1/(sn Kir mod k1) K2 + iK2'-Ki -1 -1/(sn Kir mod k1) -K2 + iK2'

D
iK2'

-Ki iKii
1/k1

-1/k1 } not of interest
A Kir sn Kir mod k, 1 K2
F -Kir -sn K1r mod k1 -1 -K2

k1 = sin 01
k2 = sin 02
02 = 4, = sin -1 [sn K1r mod k1 or Oil

Tables the Legendre notation ( 34 ) , (35 ) , (36 ) , and (37) is used. Entering
these tables with z = K1r and the angle 8,. , a value of in radians is
found. This valued) is converted to degrees and renamed 02 .

(b) From the y plane to the x plane.
This is a change of scale and is accomplished by dividing all values by

sink = k2 = sn Kir mod (40)

After this step the arrangement of the pointq OBEAF on the real axis
is the standard one for transformation of the upper half plane into a
rectangle.

(c) From the x plane to the w plane.
This transformation finally shapes the original electrode geometry

into the desired parallel plane geometry. The transformation is indi-
cated in Table I. However, since the interest centers only on the im-
pedance - that is, the length -dimension ratio of this final rectangle - it
is not necessary to carry out this transformation in detail. This ratio
W'/D' = K2 /2K2 is obtained from Fig. 19 by entering it with the
modular angle 02 = = sin -1 k2

Following these steps in the case r = 1, the curve of Fig. 10 was ob-
tained.

A short-cut is possible if 01 < 300; that is, if TV /D > 0.65. In that
case the sn function can be approximated by a sine function and K
r/2. Then 4, = 02 = r7/2; in particular, for r = Z, = 02 = 45° and
W'/D'=2.

A.4 Mapping of the Lower Cutoff Frequency Configuration

The procedure is quite similar to that used for the upper cutoff fre-
quency geometry. It is summarized in Table II and Fig. 21.
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TABLE II - SUMMARY OF TRANSFORMATIONS
FOR LOWER CUTOFF FREQUENCY CASE

x

0 0 0 0 0
B
E

K,
-Ki -11}

not of interest

D -Ki iKi'
1/k,

-1/ki
1/(k, sn K,r mod k,)

-1/(ki sn K,r mod ki)
K2 ± iK2'

-K2 ± iK2'
A
F

rKi
-rKi

sn Kir mod k,
-an Kir mod k,

1

-1
K2

-K2

= sin 01
k2 = sin 02
02 = sin-' [(sn Kir X sin 0,) mod k, or 0,]

(a) From the z plane to the y plane.
This step is identical to the first transformation of the upper cutoff

frequency configuration.
(b) From the y plane to the x plane.
This scaling is also the same as that used before. The difference is,

however, that now the points C and D are of interest, whereas before the
points considered were B and E.

(c) From the x plane to the w plane.
Here the transformation differs; now a different modulus

k2 = k1 sn Kir mod All

is used. The resulting complete integral values K2 and KY are not to be
confused with those obtained for the upper cutoff frequency case. Since
the interest centers only on the impedance value K2'/2K2 = 1177D' of the
resulting rectangle, it is not necessary to evaluate this transformation in
detail. The numerical evaluation is quite similar to the one of the upper
cutoff situation. Using Fig. 19, one finds the first modular angle 0i from
Ki/2Ki = W /D of the original geometry. Entering the tables with z =
Kir and 01 , an integral value ct. is found. This value is obtained in radians.
Then form

= sin 8, X (sin cl) mod 0k) .

Using this formula, the angle 02 is evaluated in degrees. Then the graphs
(Fig. 19) can be used again to obtain from 82 the length dimension ratio
W'/D' of the transformed rectangle.

Following this procedure for the case r = 1, the graph of Fig. 12 was
obtained.

k2 = sin 82 = sin 01 X (sn Kir mod k1)
(41)
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Permutation Decoding of
Systematic Codes

By JESSIE MACWILLIAMS

(Manuscript received September 4, 1963)

A symmetry of a systematic code is a permutation of bit positions in each
code word (the same permutation is applied to all code words) which pre-
serves the code as a whole. Permutation decoding makes use of these sym-
metries to build up a decoding algorithm for the code.

It is difficult to find an appropriate set of symmetries for a code picked
at random. For cyclic codes the problem is somewhat easier, and for some
special cyclic codes it is solved completely in this paper. For these codes, at
least, it is evident that permutation decoding is easy to implement and in-
expensive compared with other decoding schemes.

Permutation decoding as a rt eans of error control is evaluated for the
binary symmetric channel and for the switched telephone network as repre-
sented by experimental data. It is found to be extremely effective on the binary
symmetric channel and of very doubtful value on the present telephone net-
work.

INTRODUCTION

A systematic code of block length n is a subspace of the vector space
of all possible rows of n symbols chosen from a finite field. In this paper
such a code will be called an alphabet,' and the sequences belonging to
the alphabet will be called letters.

The parameters used to describe an alphabet are block length, n, num-
ber of information places, k, and error correcting capability, e: n is the
number of symbols in each letter, k is the dimension of the alphabet as a
vector space, and e is defined by the property that the minimum Ham-
ming distance between two letters is either 2e + 1 or 2e + 2.

It is well known' that an alphabet with parameters n,k,e is theoretically
capable of correcting all occurrences of <e errors in a block of length n.
However for e > 1, the process of error correction by decoding is com-
plicated, and likely to require expensive equipment. In this paper we

485
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describe a new decoding scheme, permutation decoding, which is con-
ceptually simple and quite easy to implement.

The decoding procedure consists of a sequence of permutations of the
received block of symbols, each of which is followed_by a parity check
calculation. We can thus make a rough comparison between the com-
plexity of the equipment required for encoding and decoding. The en-
coder uses one parity check register, and the decoder uses r (or uses one
r times), where r is the number of permutations in the decoding sequence.
Real time operation with a constant time delay is possible and perhaps
not too expensive.

Permutation decoding owes much to the previous work of Peter Neu-
mann2 and Eugene Prange.' It depends essentially on the symmetries of
the alphabet. A symmetry of an alphabet means a permutation of digit
positions which preserves the alphabet as a whole. The same permuta-
tion is applied to the digits of every letter, and each letter is changed, if
at all, into another letter of the same alphabet. Very little is known about
symmetries of alphabets in general, but it will be shown that even this
little is enough to enable us to apply the decoding scheme to a large class
of alphabets.

Permutation decoding differs from previous schemes in two important
ways. First, it becomes easier as the redundancy of the alphabet in-
creases; it is most useful for alphabets with high error correcting capa-
bilities. Secondly, it cannot correct more than e errors in n places. A

received sequence containing more than e errors either will be "corrected"
wrongly or will emerge unchanged from the decoder.

It will become apparent in Section III that permutation decoding pro-
duces many more undetected errors than does error control by detection
and retransmission. The simpler scheme of detection and retransmission
should be used when it is at all feasible.

The plan of this paper is as follows: Section I contains a description of
permutation decoding in general, without reference to the particular
alphabet we wish to decode. Section II is an example; it contains a de-
tailed account of a particular permutation group which will suffice to
decode many binary cyclic alphabets. Section III describes how the prob-
ability of improper correction and of detection without correction may
be estimated.

I. ERROR CONTROL AND PERMUTATION DECODING

Let V" be the set of all possible binary sequences of length n.* The
distance between two sequences is the number of places in which they

* The method will work equally well for multilevel codes. All that is needed is
to find a euphonious substitute for the term "binary sequence."
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differ; the distance between v1 and v2 is the minimum number of bits we
must change in v1 in order to convert it into v2 .

For purposes of error control, some sequences of V" are designated as
the sequences which will be transmitted. This subset of V" is called a
code. Error detection consists in finding out whether a received sequence
belongs to the code. Every method of error correction consists in map-
ping a received sequence onto the nearest member of the code, where
nearness is defined in terms of the distance function defined above. If
there are several nearest members, the correction procedure chooses one
in some arbitrary fashion or indicates that an uncorrectable error has
been found.

The strategy for choosing a code is usually to place its members as far
apart as possible in V". It will then take a relatively large number of
errors to cause a transmitted code sequence to be received as a different
code sequence. If the distance between any two code sequences is

2e + 1, it is theoretically possible to correct all single, double,
e -fold errors. This may be restated as follows: If v is a received sequence
in which <e errors have occurred, there is a unique code sequence a at
distance Se from v. Every other member of the code is at distance
>e from v.

The business of decoding is to find a, given v. To do this expeditiously
we need some additional structure in the code, and from now on we re-
strict our choice of codes to the kind described in the next paragraph.

An alphabet* (systematic code, group code) is one in which a fixed
number of fixed bit positions are designated as information places, and
the other bit positions contain parity checks, which are linear combina-
tions of the contents of the information places. For convenience, the first
k bit positions are taken to be the information places. From any k -place
binary sequence h we obtain a unique letter of the alphabet by adding
n - k parity checks. This letter will be denoted by m(h).

Leta stand for the first k coordinates of the n -place sequence a. a is
a letter of the alphabet if and only if a = m( a). Let r be a permutation
of bit positions in V" which preserves the alphabet; if a is a letter, so is
air. The first k positions of air are information places, and air = m(ar).

Let v be a received sequence containing < e errors. If no errors have
occurred in the first k places of v, ao = m(V) is the unique letter of the
alphabet at distance <e from v, and is the corrected version of v. On the
other hand, if one or more errors have occurred in the first k places of v,

the letter m( V) is not the corrected version of v, since it is the same as v
in the first k places. In this case m( v) is at distance >e from v.

* It has been shownl that every systematic code is a group code and that every
group code is a systematic code.
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The first step in the decoding procedure is to form ao = m(0), find the
distance between v and ao , and take ao as the corrected version of v if

this distance is
Let a denote the unique letter of the alphabet at distance :5 e from v.

Let 7 be, as before, a permutation of bit positions which preserves the
alphabet. Clearly the distance between air and vir is the same as that
between a and v.

Suppose that we can find a permutation 7i which preserves the alpha-
bet and which moves the errors in v out of the first k positions. Then
ai = m(vri) is at distance from yin , and is the unique letter of the
alphabet with this property. Consequently a = aarri is the corrected
version of v.

This suggests the following decoding procedure: Let I (the identity),
, , be a sequence of permutations which preserve the alphabet.

Form the letters

a° = m(a), a1 = M(Inri) , a2 = 771(7172),

and at each step find the distance between ai and V7i . Continue until a
letter ai is found which is at distance <e from V7i . Then aarri is the
corrected version of v.

A received vector which is at distance >e from all letters of the alpha-
bet will be detected as an error but not corrected by this procedure. Some
provision must be made for this eventuality. This is discussed in Section

III.

It is also possible for the decoder to make an incorrect "correction."
This will happen if an error pattern (of more than e errors) causes the
transmitted letter a to be received as a sequence v which is at distance

from a different letter a'. The probability of this occurrence is cal-
culated in Section III.

In order for permutation decoding to work, we must be sure that one
of the sequences VII% is correct in the first k places. If v = a f, f being
the error sequence, the permutation 71% must move all nonzero coordi-
nates off out of the first k places. In order for the procedure to be prac-
tical, it must be possible to move all sets of <e errors out of the first k

places with a fairly short sequence of permutations.
To correct all sets of <e errors in a block of length n, we need the fol-

lowing: (i) an alphabet of block length n, dimension k, and minimum
distance 2e + 1; and (ii) a set of permutations, in , 7r2 , which

preserve the alphabet and at the same time move any set of <e errors
out of the first k places.
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We emphasize that the reason for insisting that the permutations ri
shall preserve the alphabet is to keep the parity check calculation always
the same. The encoder (the parity check calculator) is a complicated and
expensive piece of equipment; it is desirable to use only one encoder in
the decoding scheme. If for any reason (such as real time operation) it is
necessary to have more than one encoder, we can, to a certain extent,
relax the restriction on the permutations 7ri .

It may seem to be quite a trick to find at the same time both a suit-
able alphabet and a suitable set of permutations; really the chief diffi-
culty is that neither alphabets nor permutation groups have been studied
from this point of view. It is shown in Section II that a very simple per-
mutation group will do for many cyclic alphabets.

We conclude this section with an example of permutation decoding
applied to the Hamming alphabet with n = 7, k = 4, e = 1.* The alpha-
bet is written out in Table I; it is seen to be invariant under cyclic per-
mutation.

TABLE I -A CYCLIC ALPHABET WITH n = 7, k = 4, e = 1
0 0 0 0 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

1 0 0 0 1 1 0
0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0
1 1 1 1 1 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 0
0 1 1 1 0 0 1

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

Let T denote the cyclic permutation. Clearly at most four applications
of T will move any single error out of the first four places. The decoding
sequence consists of the permutations I, T, r , T3, 74.t

Let the received vector be 1110100 ( the first nonzero vector of Table
I with an error in the first place). The successive stages of the decoding
process are shown in Table II.

* The example is chosen for simplicity. Permutation decoding is not the most
efficient way of correcting single errors.

t E. R. Berlekamp has pointed out that the shorter decoding sequence I, T3,
Te is sufficient.
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TABLE II DECODING PROCEDURE FOR THE ALPHABET OF TABLE I

V = 1110100
m(V) = 1110010

VT = 0111010
m(VT) = 0111001

VT2 = 0011101
m(VT') = 0011010

VT' = 1001110
m(VT') = 1001011

VT4 = 0100111
m(VT4) = 0100011

distance = 2

distance = 2

distance = 3

distance = 2

distance = 1

Thus a = 0100011 is the unique letter at distance 51 from VT4, and the cor-
rected version of V is aT-4 = aT3 = 0110100.

II. PERMUTATION DECODING OF CYCLIC ALPHABETS*

The coordinate places in Vfl are labeled by the numbers 0, 1, 2, ,

n - 1. This notation is convenient for describing permutations. If w
stands for one of these numbers, the cyclic permutation is

T: w ->w + 1 (addition mod n).

The powers of the cyclic permutation are

T2: CO CO + 2; 713: co -> w + 3, , Tn: co co n = w.

A cyclic alphabet in Vn is an alphabet which is invariant under T,
hence also invariant under T2, 77', etc. We assume that we wish to decode

a cyclic alphabet with parameters n,k,e.
Successive cyclic shifts will eventually bring any k consecutive bits to

the first k positions, and hence will move out of the first k positions any
error pattern in which there is a gap of length > k. In particular, the se-
quence I, T, Tn-1 will always correct all single errors.f

This sequence will not correct an error pattern in which there is no
gap of length > k. Suppose, for example, that n = 23, lc = 12. The error
pattern shown below cannot be corrected by cyclic shifts alone.

X 1 2 3 4 5 6 7 8 X 10 11 12 13 14 15 16 17 18 X 20 21 22

To deal with such cases we introduce another permutation U: w -+ 2w
(multiplication mod n), and its powers, U2: w 4w, U': w -p 8w, etc.
If n is odd, there exists a least integer t such that 2' = 1 mod n; and

= I. The choice of U is motivated by the following theorem.

* It is to be emphasized that this section is only an example. The permutations
described here will not suffice to decode all cyclic alphabets of odd block length. A
method of finding other permutations is given in Appendix A.

It will also correct all double errors if k < n/2, and so on.



PERMUTATION DECODING 491

Theorem 1: Every binary cyclic alphabet of odd block length is invariant
under U and the powers of U.

The proof of this theorem is given in Appendix A.
The error pattern 0, 9, 19 above is changed by U into 0, 18, 15. This

pattern is moved out of the first twelve places by 21 cyclic shifts.
The permutation group on 0, 1, , n - 1 generated by T and U will

be called G. . It is easy to check that TU = UT2; hence we may repre-
sent every permutation in Gn in the form U'T', with 0 < i < t - 1,
0 S j < n - 1. Now every power of U leaves 0 fixed, and no power of
T (except the identity) leaves 0 fixed; thus U'T' = UhTk if and only if
i = h mod t and j = k mod n. It follows that the group G. is of order
nt and consists of the permutations:

T, T2, 7'1
U, UT, UT2, UT -1

U2,
u2T, 074, u277n-1

0-1 Ut-1T, Ut-1712, ,

bre-177,i.

Let 0 S u, < u2 <  < u, < n - 1 (n odd), be a set of integers;
we suppose that errors occur in places u1, , u, . Let g( ui , , u8 n)
be the length of the maximum gap which can be inserted in this sequence
by repeated multiplication by 2 mod n.

If u,k denotes that integer less than n which is congruent to 2ku, mod n,
then

g(ui , , u$ , n) 1 = Max f uik - uA I ,
i,j.k

under the condition that the interval Nik , ufkl contain no other uvi
Let g(s,n) be the minimum value of this maximum gap for all possible
choices of the s values u1, , u, .

g(s,n) = Min g(ui , , us n).
u1,  ,u,

The group Gn then contains a permutation which moves any set of s
errors out of the first g (s,n) places. Clearly s' < s implies g (s' ,n) >= g (s,n) .

Hence a binary cyclic n,k,e alphabet with n odd may be decoded by Gn
if and only if k < g(e,n). The quantity g(e,n) has a few obvious prop-
erties.

The numbers 0, 1, , n - 1 can be partitioned into subsets which are
invariant under U.* For example, for n = 15, these subsets are

* The number of cyclic alphabets of block length n is determined by the num-
ber of these subsets; the dimensions of the cyclic alphabets are determined by the
sizes of the invariant subsets; see, for example, Ref. 4.
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(0), (1,2,4,8), (3,6,12,9), (5,10), (7,14,13,11).

The union of any number of invariant subsets is also invariant under
U; from these subsets we may obtain upper bounds on g(e,n) by in-
spection. In the example above we obtain:

g(2,15) < 9, since the invariant set (5,10) gives us a maximum gap
11,12,13,14,0,1,2,3,4 of length 9.

g(3,15) < 4, since the invariant set (0,5,10) gives us a maximum gap
1,2,3,4 of length 4.

g(5,15) < 2, since the invariant set (0,3,6,9,12) gives us a maximum
gap of length 2.

These upper bounds limit the usefulness of the group G . However
it is still sufficiently useful to be of interest.

The value of g(e,n) for various choices of e,n have been computed
on the IBM 7090. These are tabulated in Table III together with the
parameters n,k,e for several cyclic alphabets.

TABLE III - EFFECT OF PERMUTATION U FOR
DIFFERENT BLOCK LENGTHS

n
Code

k e g(2)
Gap Length
g(3) g(4) g(5)

47 24 5 26

31 21 2 25
31 16 3 19

31 11 4 12

23 12 3 17

21 12 2 13
21 9 3 6
21 5 4 6

17 9 2 13

15 7 2 9
15 5 3 4

The gap length g (s) is the maximum number of consecutive error -free positions
which can be inserted into an arbitrary pattern of s errors in n places by succes-
sive applications of the permutation w 2w mod n. If k 5 g (e) , the group gener-
ated by T and U contains a sequence of permutations which will suffice to decode
an n, k, e alphabet.

It is desirable, if possible, to use only part of G in the decoding se-
quence. As an example we consider the alphabet with n = 23, k = 12,
e = 3.* In this case one of the permutations, U, U2, Un will always
create a gap of length at least 12 in any set of 3 errors. The decoding
sequence is:t

* This alphabet is described in detail in Table V.
f It has been shown by E. R. Berlekamp that a subsequence of length 40 is all

that is really necessary.
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J, T, T2,  , T22

U, UT, UT2 ,  , UT22

U2, U2T, U2T2, U2T22
cTii U"T, unr, unT22.

The decoding procedure for this particular alphabet has been simulated
on the IBM 7090. A diagram of the logical program is given in Fig. 1,
and Table IV traces a particular sequence through the decoder. In prac-
tice it is convenient to add one more permutation (in this case TU) to the
decoding permutations, so that a sequence passing through the entire

INPUT = V

W = V, L= W- WT, L L+1

= 23

W = WU, L=o

23

= m(W

>3

=

3

W- WT, L - L +1

DISTANCE CCM

L= 23

W = WU, 1=

L< 23 >3

W=

<3

W- WT, L- +1

DISTANCE (71,W

I = 23

W = WU9, L=

L<23 >3

a = mCW

W= WT, L= L+1

DISTANCE a, w

L= 23

W= WU OUTPUT = W

I<23 >3

=

3

DISTANCE Ce,W

Fig. 1 - Logic of decoder for (23,12,3) alphabet. The contents of the boxes are
Fortran -type instructions; for example, i = + 1 is to be interpreted as "replace
i by i 1."
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set emerges in its original form. The final output of the permuting regis-
ter is then the corrected form of the received sequence.

The operation of the 7090 program is of course sequential-it employs
one subroutine to simulate the parity check calculation. It is clear from
the logic diagram that it is quite convenient to split the encoder into four
parallel sections, each of which contains a register capable of making a
cyclic permutation and an encoder to calculate parity checks. This idea
can be applied to speed up the decoding of any cyclic alphabet.

III. EVALUATION OF PERMUTATION DECODING AS A MEANS OF ERROR
CONTROL

Permutation decoding of an n,k,e alphabet a will map a received se-
quence v onto the nearest letter of a provided that this letter is unique.
This is the case if v lies at distance <e from some letter of a. If v is at
distance >e from every letter of a the decoder will detect an error but
will be unable to correct it.*

The decoder will also make mistakes. If f is an error sequence of more
than e errors, and a the transmitted letter, the received sequence a f
may lie at distance e from some other letter a' of a. The decoder will
then interpret a f as a'. The error sequences which cause such in-
correct decoding are characterized by the following theorem.

Theorem 2: The error sequences which cause the decoder to "correct"
incorrectly are exactly those sequences of weight >e which lie at distance

from some letter of a.
Proof: Let f be a sequence of weight >e such that f = l3 + f', $ E a,

f' of weight < e.

For any transmitted letter a

a+f=a+ 13 + f',

and the decoder will interpret a f as a±#.
Conversely, suppose that f is an error sequence such that a f is

decoded as a' a. Then

a + f = a' + f' a' E a, f' of weight

and

f = a' - a + f'.
Hence f is at distance from the letter a' - a of a.

* One is tempted to suggest that the decoder ask for retransmission of such de-
tected errors. This idea is of dubious value; error correction by decoding should
not be used at all if error correction by detection and retransmission is a possible
alternative. We must assume that retransmission is extremely awkward, if not
completely infeasible.
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Let A (s) , s = 0,1, , n be the number of letters of a of weights. Let
C(s), s = 0, 1, , n be the number of sequences of V" of weight s
which lie at distance <= e from letters of a. The C(s) are uniquely de-
termined by the A (s), and may be obtained from them by a simple
calculation; the exact formula is given in Appendix B. The values of
A (s) for a number of binary cyclic alphabets are tabulated in Table V,
and the values of C(s) for these alphabets are given in Table VI.

For s < e, C(s) = n and is the number of sequences of weight s

which are properly corrected by the decoder. For s > e, C(s) is the
number of sequences of weight s which are improperly corrected by the
decoder.

Let D(s), s = e ± 1, , n be the number of error sequences of weight
s which cause the decoder to detect an error that it cannot correct.

Clearly D(s) = 0 for s < e, and D(s) = (n) - C(s) for s > e.

P$ denotes the probability that a received sequence will be "corrected"
incorrectly by the decoder; PD denotes the probability that a received
sequence will be detected as an error but not corrected. We consider
first a binary symmetric memoryless channel with bit error probability
p. The probability of s specific errors in a block of length n is then
1)8(1 - p)", and this probability is independent of the location of
the errors. Hence

PD(B.S.) = E C(s)p8(1 - p)"-8 ,
8..6+1

PD(B.S.) = E mops(1 - p)' .
s=e+1

It is to be noted that if error correction by detection and retransmis-
sion is used, the probability of an undetected error is

A(s)p8(1 - p)"-g, d = 2e + 1 or 2e ± 2.

This sum starts with the first nonzero value of A (s) (for s > 0), i.e.
with s = 2e + 1 or s = 2e ± 2. It is obvious that for the values of p,n
currently in use in the Bell System, error correction by detection and
retransmission is the preferable scheme.

The values of PD(B.S.) and PD(B.S.) for a number of alphabets are
tabulated in Table VII; p is taken to be 3.22 X 10-5, the over-all bit
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error rate on the telephone network obtained from the Alexander, Gryb
and Nast task force data.'

Except for the first and last example, the alphabets in Tables V, VI
and VII occur in pairs. The second alphabet in each pair consists of
the letters of even weight in the first. Since the minimum distance of
the second alphabet is 2e + 2, its value of C(e 1) is zero. In other
words, every error of weight e 1 will be detected. If this is important,
it is advantageous to use the second alphabet.

The error rates of Table VI are fantastically low; unfortunately the
fantasy resides in the binary symmetric channel. The situation is very
different on the real telephone channel.

Let P(s,n) be the probability of s errors in n consecutive bits. [For

the binary symmetric channel P(s,n) = 001 - p )n-8.1 Tables of

P(s,n) for the telephone network have been calculated from the Alex-
ander, Gryb and Nast task force data.

The decoder will either detect or correct wrongly every error of weight
>e. Hence

PR + PD = E P(s,n).
ih=e+1

It is impossible to obtain exact formulae for PH and PD separately.
Using the methods of Ref. 5 we obtain the approximate formulae

PE(T.N.) = E C(s) P(s'n)
6=C+1 (s)

PD(T.N.) = E D(s) P(s,n)
.

(7,31)8=-c+1

These numbers have been computed and are tabulated in Table VIII.
This shows rather clearly that on the channel described by the Alex-
ander, Gryb and Nast data the word error rate with error correction
is greater than the bit error rate with no encoding.

Of course the average error rates of Table VIII conceal something.
Examination of the P(s,n) tables for the individual calls shows that
about half of the calls in which errors occurred would be handled suc-
cessfully by permutation decoding.
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TABLE VI - VALUES OF C(S)

n,k,e = 47,24,5* 31,21,2* 31,20,2 31,16,3 31,15,3

s = 1 C(s) = 47 31 31 31 31
2 1081 465 465 465 465
3 16215 2170 0 4495 4495
4 178365 13640 12555 5425 0
5 1533939 82274 5022 29295 26040
6 1997688 360964 339047 92225 13020
7 11700743 1276115 81685 329375 303180
8 58503719 3829585 3591040 1248525 86025
9 253516120 9788250 604655 3190675 2861455

10 1094459500 21506932 20159981 6790333 690525
11 3681363800 41087771 2569497 12963363 11812395
12 10764415000 68535730 64275400 21284445 1987720
13 28981118000 100106900 6245260 31108034 28201320
14 70307802000 128661310 120616350 40561485 3675360
15 154677160000 145890120 9085914 45969682 41569263
16 310193350000 145890120 136804210 45969682 4400419
17 565646700000 128661310 8044965 40561485 36886124
18 942103590000 100106900 93861645 31108034 2906715
19 1437947500000 68535730 4260330 21284445 19296724
20 2012287600000 41087771 38518275 12963363 1150968
21 2587226900000 21506932 1346950 6790333 6099808
22 3059047600000 9788250 9183595 3190675 329220
23 3325051800000 3829585 238545 1248525 1162500
24 1276115 1194430 329375 26195
25 360964 21917 92225 79205
26 82274 77252 29295 33255
27 ± symmetric 13640 1085 5425 5425
28 terms 2170 2170 4495 0
29 465 0 465 0
30 31 0 31 0
31 1 0 1 0

n,k,e = 23,12,3 23,11,3 21,12,2 21,11,2 17,9,2 17,8,2 15,7,2

s = 1 C(s) = 23 23 21 21 17 17 15
2 253 253 210 210 136 136 105
3 1771 1771 210 0 340 0 180
4 8855 0 2625 2520 1190 1020 540
5 33649 28336 10269 1008 3910 408 1413
6 100947 14168 24024 21168 7820 6936 2355
7 245157 216568 52440 4200 11560 1428 3135
8 490314 61226 92610 85050 14450 13005 3135
9 817190 715990 131530 12810 14450 1445 2355

10 1144066 138138 161196 146748 11560 10132 1413
11 1352078 1180774 161196 14448 7820 884 540
12 1352078 171304 131530 118720 3910 3502 180
13 1144066 1005928 92610 7560 1190 170 105
14 817190 101200 52440 48240 340 340 15
15 490314 429088 24024 2856 136 1

16 245157 28589 10269 9261 17 0

17 100947 86779 2625 105 1 0

18 33649 5313 210 210
19 8855 8855 210 0
20 1771 0 21 0
21 253 0 1

22 23 0
23 1 0

* This table is correct to eight significant figures.
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TABLE VII - ERROR RATES FOR THE BINARY SYMMETRIC CHANNEL

n,k,e Pg PD PE PD

47,24,5 2.23 X 10-" 4.56 X 10-2° 4.78 X 10-20

31,21,2 7.23 X 10-11 0.77 X 10-10 1.50 X 10-10
31,20,2 1.342 X 10-1' 1.50 X 10-10 1.50 X 10-10

31,16,3 5.83 X 10-16 2.80 X 10-'4 3.38 X 10-1'
31,15,3 9.01 X 10-19 3.38 X 10-" 3.38 X 10-11

23,12,3 9.59 X 10-15 0 9.59 X 10-15*
23,11,3 9.81 X 10-1° 9.59 X 10-16 9.59 X 10-15

21,12,2 7.00 X 10-12 3.72 X 10-" 4.42 X 10-11
21,11,2 2.70 X 10-16 4.42 X 10-11 4.42 X 10-11

17,9,2 4.54 X 10-12 1.80 X 10-11 2.27 X 10-11
17,8,2 1.11 X 10-12 2.27 X 10-11 2.27 X 10-11

15,7,2 6.092 X 10-12 1.078 X 10-1° 1.078 X 10-10

* This is a close -packed alphabet; every sequence of 23 binary bits is at dis-
tance from some letter of the alphabet.

CONCLUSION

Permutation decoding is a simple and feasible scheme for error correc-
tion without retransmission. It is particularly suitable for use with a
highly redundant alphabet. Like any such scheme it produces many more
undetected errors than error correction by detection and retransmission,

TABLE VIII - ERROR RATES FOR THE TELEPHONE NETWORK*

n,k,e Pg PD Pg + PD

47,24,5 4.65 X 10-6 3.51 X 10-s 4.08 X 10-5

31,21,2 3.17 X 10-5 3.73 X 10-5 6.9 X 10-6
31,20,2 1.23 X 10-5 5.67 X 10-5 6.9 X 10-5

31,16,3 7.34 X 10-6 3.99 X 10-5 4.72 X 10-5
31,15,3 3.06 X 10-6 4.41 X 10-6 4.72 X 10-5

23,12,3 3.69 X 10-6 0 3.69 X 10-5
23,11,3 1.52 X 10-5 2.17 X 10-5 3.69 X 10-5

21,12,2 1.82 X 10-5 3.13 X 10-6 5.05 X 10-5
21,11,2 8.72 X 10-6 4.18 X 10-5 5.05 X 10-5

17,9,2 2.36 X 10-6 1.89 X 10-5 4.25 X 10-5
17,8,2 0.98 X 10-5 3.27 X 10-6 4.25 X 10-5

15,7,2 1.83 X 10-5 2.0 X 10-5 3.83 X 10-5

* PE and PD are approximate values. PE + PD is exact.
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but it is quite adequate for a channel in which P(s,n) decreases rapidly
as s increases. It is of very doubtful value on the telephone network as
described by the Alexander, Gryb and Nast data.
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APPENDIX A

Idempotents and Automorphisms of Cyclic Codes

We give first a short summary of the properties of cyclic alphabets.
Let V be a finite field of characteristic q. Let V" denote the direct sum

of n copies of V.
Denote by V[y] the ring of polynomials in y over the field V. Let

V[x] = V[y]/(yn - 1) be the residue class ring of V[y] mod yn - 1.
V[x] consists of all polynomials of degree - 1 with coefficients in V.
Addition of polynomials is done as usual; to multiply two polynomials
we multiply in the usual way and then reduce exponents mod n.

A subset a of polynomials of V[x] is called an ideal if

(i) gi , g2 E a = aigi a2g2 E a; al , a2 E V
(ii) g E a = xg E a.

A polynomial is completely determined by its coefficients; it is possi-
ble, in fact, to identify V[x] and V". However, it is convenient to regard
them as separate entities, related by the (1-1) mapping

ao aix -I- + an_ixn-1 ao , al , ,a"-1

An An ideal in V[x] is, by property (i), a linear subspace of V". By
property (ii) it is invariant under a cyclic permutation of coordinates;
hence it is a cyclic alphabet in Vn. Conversely, a cyclic alphabet in Vn
is an ideal in V[x]. We represent the ideal and the alphabet by the same
letter, a.

The ring V[x] may be regarded as the group algebra of the cyclic
group 1, x, , x"-1 over V. The group algebra is semi -simple provided
that q does not divide n (Ref. 6, Section 10.8). In this case it is known
that every ideal contains a polynomial e with the following properties
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(i) e is idempotent. (e2 = e)
(ii) e is a unit for a,. (a ea, ae = a)

e generates a. (a consists of all polynomials
fe, f e V[x]).

e will be called the generating idempotent of a.
An automorphism o of V[x] is a (1-1) mapping of V[x] onto itself

which respects both addition and multiplication. If vl , v2 e V[x], then

(v1 + v2)0- = vio- v2o

(viv2)a = (vio-)(v2a).

Lemma 1.1: An automorphism o of V[x] preserves an ideal a if and
only if a preserves the generating idempotent e of a.

Proof: Suppose that a preserves e. Then as = V[x]  eo = V[x]  e = a.
Suppose that a preserves a. Then ea E a, and eue = ea by property

(ii).

Let b be the element of a such that bo- = e. Then

eae = euba = (eb)a = bar = e.

Hence e = eae = ea, and a preserves e.
Lemma 1.2: If q (the characteristic of V) is relatively prime to n (the

block length of a), then the mapping a: x' x" is an automorphism of
V[x].

Proof: Clearly this mapping respects addition and multiplication in
V[x]. We have only to show that it is 1-1.

If = xn, then (i - j)q = 0 mod n. Since q is prime to n, this
implies that i -j = 0 mod n or x' = x'.

This proves the lemma.
Theorem 1.3: If q is prime to 'it, every ideal in V[x] is preserved by the

mapping a: x' x".

Proof: Let a be an ideal in V[x] and e = E aix', the generating idena-
i-o

potent of a.

Qe = E oti x" = (E oti xi)g = eq,
i-o i-o

since q is the characteristic of V.
e = e2 = ea =  = eg; hence a preserves e, and by Lemmas 1.1 and

1.2, a preserves a.
Let the coordinate places of Vn be labeled 0, 1, , n - 1; the map-
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ping a: xi -+ xig in V[s] corresponds to the permutation Uq: w --> qw of
coordinate places in V".

Corollary: Every binary cyclic alphabet of odd block length is preserved
by the permutation U: w -* 2w.

This is Theorem 1 of Section II. The proof given here contains more
machinery than is necessary to prove Theorem 1. This is done on purpose,
in order to get Lemma 1.1, which suggests a method of finding other auto-
morphisms of V[x] which preserve a particular cyclic alphabet.

APPENDIX B

Distribution of Weights in the Cosets of a Group Code

Let a be an (n,k,e) binary alphabet, and let 133 be the orthogonal
complement (dual alphabet) of a in Vn. Let A(i), B(i) denote the
number of letters of weight i in a, 03 respectively. The quantities A (i) ,
B(i) are connected by the generating function.'

E A(i)(1 z)n-i(1 - z)2 = 2k E
i-o i=o

Since the A (i) are known, the B(i) may be calculated from this rela-
tionship.
Set

71

(1 + z)" --i(1 - z)i = E tp(i,j)zj.

Let C(s,j) denote the number of sequences of weight sin V" which
are at distance j from some letter of a. Then if j S e, C(8,j) and B(i)
are related by the generating function.'

71

E B(i)'(i,j)(1 xr-i (1 - .r)i = 2" E C(s,j)x8.
i-o8=0

Since B(i) and IP (i,j) are known, C(s,j) may be calculated from this
relation.
Clearly

C(s) C(s,j).
j=0

REFERENCES

1. Slepian, D., A Class of Binary Signaling Alphabets, B.S.T.J., 35. January,
1956, p. 634.



PERMUTATION DECODING 505

2. Neumann, P. G., A Note on Cyclic Permutation Error -Correcting Codes, In-
formation and Control, 5, March, 1962, p. 72.

3. Prange, E., The Use of Information Sets in Decoding Cyclic Codes, IRE Trans.,
IT -8, September, 1962, p. S-5-9.

4. Prange, E., An Algorithm for Factoring xi, - 1 over a Finite Field, Air Force
Cambridge Research Center, AFCRC-TN-59-775.

5. Elliott, E. 0., Estimates of Error Rates for Codes on Burst -Noise Channels,
B.S.T.J., 42, September, 1963, p. 1977.

6. Curtis, C. W., and Reiner, I., Representation Theory of Finite Groups and Associ-
ated Algebras, Interscience Publishers, New York, 1962.

7. MacWilliams, J., A Theorem on the Distribution of Weights in a Systematic
Code, B.S.T.J., 42, January, 1963, p. 79.





Optical Maser Oscillators and Noise

By EUGENE I. GORDON

(Manuscript received September 5, 1963)

The transmission line matrix formalism so useful for describing the
transfer properties of microwave networks is extended to the electromagnetic
fields associated with optical masers. The spontaneous emission noise of
the optical maser is examined and sham to be amenable to a thermal de-
scription. Taking the point of view, well accepted at microwave frequencies,
that a weakly nonlinear oscillator is a saturated amplifier of noise, the
power and linewidth of the noise radiation emitted by the optical maser is
calculated using the transmission line formalism. The significant param-
eters for any optical maser are shown to be the frequency, the single -pass
gain of the maser medium, the effective mirror reflectivity and the population
ratio. The pre -oscillation characteristics of the maser are examined and
the reason for the extremely sharp oscillation threshold of the gas masers
is discussed. Some observations concerning semiconductor optical masers
are also made.

I. INTRODUCTION

This paper represents an attempt to describe the optical maser or
laser from a microwave circuit point of view and is largely tutorial,
since many of the results obtained from a circuit viewpoint are already
known. The generality of the method of approach enlarges their area of
validity, however.

Many of the people working on optical masers who do not have a
background in microwave theory and techniques may find a fresh point
of view. In particular, they may find a very modest introduction to an
extremely well developed store of computational techniques which are
applicable to optical masers. This may save them the trouble of in-
venting their own.

On the other hand, those who have previously been working in the
field of microwaves may find that the analogies between optical masers
and more conventional microwave devices are more cogent than they
had appreciated. Finally, it is hoped that some of the distinctions be -

507
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tween oscillating and pre -oscillating or subthreshold masers will be
clarified.

II. THE CONVENTIONAL OSCILLATOR

Excluding strongly nonlinear oscillators with periodic but non -
sinusoidal waveforms, it is often stated that an oscillator is a device
having an internal gain which exceeds its total losses. Supposedly,
noise triggers it off and it then continues to put out oscillatory power at
a level determined only by saturation effects. The steady-state satura-
tion level is defined as that for which the internal gain just equals the
loss. An extensive discussion of microwave oscillators, based on this
point of view, is given by Slater.'

Although this point of view often constitutes a good working defini-
tion of a feedback oscillator, it is incomplete in that it neglects the
continuing presence of the noise. As a result, when the internal gain of
the oscillator exactly equals the losses, so that the effective lifetime of a
photon in the feedback loop is infinite, the noise power output of the
oscillator must increase without limit. Similarly, the associated line -
width of the noise output must be zero. Since this situation is physically
unrealizable, it is clear that the noise must be taken into account and
that the steady-state gain could never exactly equal the loss and must
always saturate at a slightly lower value. As a result, there could be no
continuing, self -sustained oscillation which starts from noise.

From these considerations, it appears that a better, but still incom-
plete, description of an oscillator would be to say that a steady-state
regenerative oscillator is a feedback amplifier driven to saturation by
a noise input. Internally produced noise is usually the driving force;
however, an additional source may be the noise entering through the
output port. The external gain of the amplifier, that is, the gain ex-
perienced by any input signal, is usually extremely large unless the
amplifier is saturated by the input signal. Since the amplification is
obtained regeneratively, that is, by the use of feedback, the bandwidth
of the gain is limited; the higher the gain the more limited it is. The
amplified, narrow -band noise output is the output signal of the oscil-
lator. When the large gain can be obtained without regeneration, the
noise output need not be narrow -band.

This concept of the oscillator as a saturated amplifier of noise is not
new and is well known in the microwave art. More recently, this concept
has been employed by Gordon, Zeiger and Townes' in their treatment
of the microwave maser oscillator, and by Wagner and Birnbaum,'
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Schawlow and Townes,' Shimoda,5 Blaquier6 and Fleck' in their treat-
ments of the optical maser oscillator.

While this definition of an oscillator is somewhat more satisfying, it
implies that an oscillator is merely an extremely narrow -band filter
with gain. As a result, the statistical properties of the noise input should
be preserved, except for the spectral narrowing. For example, a filtered
Gaussian noise input' would remain Gaussian. Since a narrow -band
Gaussian noise process shows amplitude fluctuations with a time con-
stant approximately the inverse of its spectral range,8 the output of a
filter with gain should exhibit this property also. The fact that a true
oscillator does not indicates that a correlating mechanism is operative.

Gain saturation is one mechanism that operates to eliminate fluctua-
tions in the output intensity. The action is similar to that of a limiter.
In an optical maser, gain saturation arises almost entirely from deple-
tion of the population inversion rather than from any nonlinearity in
the stimulated emission process. To a very high degree, the output wave-
form is sinusoidal and the saturation depends only upon the time -
average power, the time average extending over a time long compared
to the period of the output waveform but short compared to any relaxa-
tion mechanism or pumping rate.

Suppose now that the filtered output has a spectral range Dv so that
the input noise has power fluctuations with a time constant approxi-
mately Av-1. If the gain of the maser medium has a relaxation time
TD < AvI, then the input fluctuations will be virtually absent in the
output. On the other hand, if Tg > Dv1 the input fluctuations will
appear in the output.

Thus, for a true oscillator

while for an amplifying filter

TgA V <

> 1.

As will be seen later, for a weak optical maser Ov can be quite large,
while for a strong maser Ay becomes vanishingly small. The cavity
bandwidth Ave represents an upper limit for Av. For example, in a gas
maser Av, 106 cps and T 10-6, so that for unsaturated gains less
than the loss, iv Ay, , OPT et-,-) 1, and the device acts like an amplifying
filter. When the unsaturated gain exceeds the loss, AP becomes much
less than Av, and the device becomes an oscillator.

In the semiconductor maser, the lowest reported value is Dv 3 X 109



510 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964

cps, corresponding to 0.1A. Unless Tg < 3 X 10-'°, it is quite probable
that the device acts like an amplifying filter rather than a true oscillator.

The interested reader will find a short discussion of the effect of noise
on oscillators in a book by van der Ziel.9 His discussion indicates a
method of approach to obtaining a quantitative solution to a very
complicated nonlinear problem. However, the concept of the amplifying
filter probably yields a good first approximation to the spectral width
of the oscillator output.

In the following sections, the foregoing concepts will be exploited to
exhibit the circuit formalism and to study linewidth and threshold be-
havior. The basic results are applicable to any uniformly pumped, single -
mode maser or any multimode maser for which nonlinear mixing or
coupling of modes is not significant. Some remarks concerning the lack
of extremely narrow linewidths in the semiconductor maser will also
be made.

III. SINGLE MODE REPRESENTATION FOR AN OPTICAL MASER

The electromagnetic fields associated with the optical maser are very
close to being plane waves. To a very good approximation, each mode
of the electromagnetic field can be represented by field quantities,
E (z) and 1 (z) . These quantities can be normalized to have the dimen-
sions of voltage and current, respectively. The relationship between
E (z) and I (z) is obtained by specifying the value of the function Z(z) =
E(z)/I(z) at some point z. In the content of this paper, a mode is one
member of a complete set of transverse eigenfunctions which are appro-
priate for the geometry in question. No orthogonality with respect to
the z coordinate is implied.

If the various modes of the electromagnetic field are uncoupled and
E and I are represented as complex quantities, then a linear relationship
of the form

E(zi)
I(zi)

A Z oB

Z 0-1 C D
E(z2)
I(z2)

(2a)

or

(zi) = T(zi ,z2)  w(z2). (2b)

can exist for each mode.'°'11 The input side is taken at z1 and the output
side at z2 , as in Fig. 1. The quantity Zo is the characteristic impedance
associated with the transmission medium. The directions of E and I
are defined so that when the phase difference between E and I falls in
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E, t
T

NETWORK,

I

E2

Fig. 1 - Generalized linear two -port network for single mode representation.

the first and fourth quadrant, power is flowing in the direction zi -> z2 ,

while for the second and third quadrant, the direction z2 z1. The
choice of directions makes it possible to determine the result of cascading
a number of sections by writing

Ar(zi) = T(zi ,z2)  T(z2 ,z2)  T(zn_i ,z.)  Ir(z.) (3)

The complex quantities A, B, C and D are dimensionless and are
independent of time in the steady state. In general, they are functions
of frequency. For convenience, the characteristic impedance of the
transmission medium will be taken as unity, i.e., Zo = 1. The transmis-
sion medium between planes z. and z.+1 will be referred to as a "net-
work." The properties of the network are described uniquely by the
quantities A, B, C and D. General relations among these quantities
can be determined by specifying the transfer properties of the network.
These are reviewed in detail in Appendix A and are described below. t
For example, a matched network which produces no reflection from
side z, when terminated by the characteristic impedance on side zn+i
can be written

A

B A
BI

(4)

in which A and B are, in general, independent complex parameters.
A reciprocal network is characterized by the relation AD - BC = 1.

A reactive network has the transformation

a jf6

.17 S

in which the four independent parameters a, 0, 7 and 5 are real. A recip-
rocal reactive network, in addition, has at + 07 = 1, so that only three
of the parameters are independent. A matched reciprocal reactive
network has a = 5 and g = 7, so that only one parameter is independent.
The network of this type can be written

( 5 )

t The Appendix is included because there is no single convenient reference.
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cos so j sin so
j sin so cos so

in which the real parameter so is the phase shift from zn to z+1. A length
of transmission medium is an example of a matched reciprocal reactive
network. For this case, a = 271-p(z.+1 - zfi)/ci, in which c' is the phase
velocity of the radiation.

The most general unmatched reciprocal reactive network, which
has three independent parameters, can always be characterized as

a
j7

The network

cos 501

j sin Sol
j sin soi
cos sot

N

N
0 N-1

cos CP2 j sin SO2

j sin so2 cos 502

(6)

(7)

(8)

is known as an ideal transformer of turns ratio N. Thus, the most
general unmatched reactive reciprocal network, aside from phase shifts
col and 502 , is an ideal transformer.

A resistive network produces no phase shift and can be characterized
as having A, B, C and D all real. A matched reciprocal resistive network
has only one independent parameter and can be written

cosh 0 sinh
sinh 0 cosh 0 (9)

The matched reciprocal resistive network is known as an attenuator.
It is shown in Appendix A that the power attenuation is given by
exp -20. The parameter 0 is referred to as the attenuator line length.
The most general matched reciprocal network (resistance plus reactance)
has two independent variables and can be written

cos (so - j0) j sin (so - j0)
j sin (co- j0) cos (so - j0)

cos so j sin so
j sin so cos yo

cosh 0 sinh 0
sinh 0 cosh 0

(10)

Therefore, the most general matched reciprocal network consists of an
attenuator with phase shift. Note that the attenuation and phase shift
commute. As a result, a matched network with distributed attenuation
and phase shift can be lumped into a network with attenuation in
cascade with a network having only phase shift.
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The transmission factor or transmissivity of the network, denoted as
L, is shown in Appendix A to have the value

4L - (11)1A+B±C±D12.
For a matched reactive reciprocal network as in (6), L = 1. The factor
L is also known as the gain of the network. The transmission factor
equals the ratio of power transmitted to power incident when the net-
work is preceded and followed by matched terminations.

The reflection factor or reflectivity of a network is given by

R=iLIA-FB-C-DI 2. (12)

The reflection factor is the ratio of power reflected to power incident
when the input and output terminals are matched. For a matched net-
work, (A = D, B = C), R = 0.

The noise generated in a network can be represented by suitably
chosen current and voltage generators i and e at the input to the net-
work as in Fig. 2.12 The network itself can then be considered as noiseless.
For example, for a series resistor r, the noise generators are appropriately
i= 0 and I e I= [4p(v)dvd* in which

hvdvp(v)cly - (13)exp hp/kT - 1

is the thermally generated noise power in a frequency range dv centered
at frequency v when the resistor is at temperature T.13 The phase of e
is a random variable. For a shunt resistor, r, the noise generators are
e = 0 and I i I = [4p( v)dv/r]4. For reactive networks, e = i = 0.

For an arbitrary network containing lossy elements, the appropriate
values of e and i can be expressed in terms of the components of the
transformation matrix, A, B, C and D. Since an arbitrary passive net-
work can always be matched by suitable use of transformers and line
lengths, placed on either side of the network, the arbitrary network can

NOISELESS
NETWORK tE2

Fig. 2 - Equivalent external current and voltage generators for noiseless
network representation.
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always be made to appear matched and resistive. It follows that an
arbitrary lossy network can always be represented as a resistive matched
network imbedded in reactive networks!' The reactive networks on
either side of the imbedded network are the inverse in reverse order of
the networks required for matching the original arbitrary network.

It follows, too, that if the appropriate values of e and i can be deter-
mined for any resistive matched network, then the values can be deter-
mined for the imbedded network. These values can then be transformed
through the reactive networks at the input side of the imbedded net-
work to represent the appropriate values at the input side of the original
network.

Thus, it is only necessary to have a general formula for e and i perti-
nent to a resistive matched network. In Appendix B it is shown that the
appropriate values of e and i for any matched resistive network are
given by'6

ler = lir = AB4p(v)dv
ei* = e*i = i(A2 ± B2 - 1)4p(v)dv.

The values of e and i without the factor 4p( v)dv will be referred to as
the normalized values. The quantities, e 12, 1 i 12 and ei* commute
with a phase shift network (a length of transmission line). A value e
following a transformer of turns ratio N becomes, at the input side of
the transformer, Ne, while a current i becomes i/N. Thus, the procedure
in finding the values of e and i preceding any given network, T, is to
find the appropriate reactive transformations of the form

T = T(i01) T(N)  T(v2)T(r)  T(w8) T(.111)  T(404) (15)

in which T(r) is the imbedded matched resistive network, and find the
values of e and i appropriate to T(r) using (14). The values of e' and i'
appropriate to the input side of T are e' = Ne and i' = i/N.

In Appendix B, it is shown that the noise power into a matched load
following any given network at uniform temperature T (considering
only the noise arising from the given network and ignoring the noise
originating in the matched loads at the input and output side) is given by

dP = L le ii2p(v)dv (16)

in which L is the transmission or gain factor for the network, given by
(11), and e and i are the normalized noise generators at the input to
the network. For example, for an attenuator with transmission factor

(14)
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L, (16) yields

dP = (1 - L)p(v)dv (17)

as is shown in Appendix B.
Since the noise parameters commute with a matched phase shift

network, attenuation and phase shift can be lumped with respect to
noise properties as well as transfer properties.

IV. THE OPTICAL MASER

The maser medium has the property that light passing through the
medium once is amplified by a factor Gl( v). In addition, the light under-
goes a phase shift, co( v). Thus, the matched maser medium can be
characterized as an attenuator with a transmission factor G1 in cascade
with a matched reciprocal phase shift network.

Since the spontaneous emission from the maser medium can be con-
sidered as thermal noise,'6 the spontaneous emission power radiated into
a given mode by a uniform maser medium should be given by

dP(v) = [1 - Gi(v)]13(0dv (18)

as follows from (17). Since p( v) = hv/ (exp hvAT - 1), the question
naturally arises as to what temperature to associate with the maser
medium. In particular, one wonders whether a noise formula like (18),
which is valid for passive networks in thermal equilibrium, can be used
when the maser medium is active, i.e., when GI > 1. Normally, the
radiation temperature of the uniform maser medium is defined by the
Boltzmann factor's

n2(v)/n1(v) = exp -hv/kT (19)

in which n2 and n1 are the densities of upper- and lower -state atoms,
respectively. Using (19) as the definition of maser temperature, it
follows that (18) is precisely correct for a uniform medium.

To illustrate, one can write for the emission power, dP, into a given
mode in a frequency range dv, along the z-axis

adP /az = ltvwidP(n2 - n1) + 2dw8hPn2 (20)

in which wi is the probability per unit intensity per unit time for stimu-
lated emission into the mode and dw8 is the probability for spontaneous
emission in either direction for the same mode into frequency range dv.
The population densities for the upper and lower maser levels, n2 and
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n1, are assumed constant with z. t Solving (20) subject to the initial
condition dP = 0 at z = 0 yields

-1-(dwdwi)(1 - GI)dP(z) - (21)
(ni/n2) - 1

in which

G1 = exp hvwi(n2 - ni)z. (22)

Since the probability for stimulated emission is related to the probability
for spontaneous emission into frequency range dv by

dw8 = 2wihvdv (23)

for a given mode, (21) and (18) are identicall It follows that (18)
correctly accounts for the spontaneous noise into a single mode, so
long as one writes p(p) = hp/ (ni/n2 - 1). It also indicates the applica-
bility of the formalism described in the preceding section to maser media.

The fact that the maser temperature 71, as defined by (19), and p( v),
as defined by (13), are negative should not distract the reader from the
more significant fact that (18) or (21) correctly predicts the noise
power emitted by the maser medium. This quantity is never negative,
and varies smoothly as T goes from positive to negative values.

The noise output from the maser can be calculated using (16), and
this will be the aim of the following analysis. It is worth noting that the
only significant parameters characterizing the medium, assuming that
the maser medium is uniform and matched, are the total single -pass
gain, G1, the population ratio and the phase shift through the medium.
The effective attenuator line length, 0, is given by the expression G1 =
exp -20.

V. THE REGENERATIVE OPTICAL MASER OSCILLATOR

The mirrors forming the optical cavity, being reactive (except for a
small absorption loss which will be neglected) and reciprocal, can be
characterized as ideal transformers. The phase shift associated with the
mirrors on the cavity side can be added to the single -pass phase shift
of the maser medium. The mirror phase shift external to the cavity is
not significant to the problem at hand.

t This implies no saturation or uniform saturation.
Equation (23) is equivalent to the statement that the total rate of spontane-

ous emission is related to the total rate of induced emission per unit intensity by
dw, = wi8rItv3dv/c3, since the total number of modes per unit volume per unit
frequency interval is given by 871-0/c3. (See Ref. 16.)
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Since the reflection factor for an ideal transformer is, from (12) and (8)

R = (N2 - 1)2/(N2 1)2 (24)

it follows that the equivalent turns ratio for a mirror of reflectivity R
is given by

N2 = (1 + R1)/(1 - RI). (25)

The transmission factor Lm for the maser cavity with unequal mirrors
of reflectivity R and R' is obtained by combining the cascade of trans-
former with turns ratio N, attenuator with loss parameter 0 = In G1 ,

transmission line with phase shift co = 271,1,1c' + constant, in which
2L/c' is the equivalent round-trip time, t and transformer with turns
ratio M2 = (1 RA)/(1 - le), as in Fig. 3. The noise power

00

GI

Fig. 3 - Equivalent circuit for maser cavity with mirrors of unequal reflec-
tivity.

from one end of the maser is given by (16)

dP = LmINe I2p(v)dv (26)

where the normalized noise generators for the maser medium are given by

1e 12 = li12 = cosh 0 sink 0

ei* = e*i = 1(cosh2 0 + sinh2 0 - 1)

as follows from (14) and (9)
The cascade of mirror, maser medium and mirror takes the form

N 0 cos ((p - j0)
jsin(co-j0)

j sin (co - j0) I.
cos (q) - j0)

M-1
0 M

(N/M) cos (q, - j0) NMj sin (40 - j0)
(NM)-lj sin (co - j0) (111/N) cos (co - je)

(27)

(28)

t The phase velocity c' is a function of v and G1 by virtue of the anomalous
dispersion of the maser medium.
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Using (11), the transmission factor is given by

-
I (N/M M/N) cos (co - j0)

j(MN [M N]') sin ('p - .1.0)12

1

4

(29)

[(1 - RIRIG1)21G1(1 - R) (1 - R')i
[4/6-RV(1 - R) (1 - R')] sin'

Note that in the limit R = R' = 0 (no mirrors), L. = Gi as would be
expected; while in the limit R = R', G, = 1 (a transparent maser
medium)

1Lm- 1 + [4R/ (1 - R)2] sin2
(30)

which is the transmission factor for the Fabry-Perot or optical cavity
surrounding the maser medium.7'17 Equation (29), or versions of it
with R = R', has been derived before.' In these cases, however, it had
been necessary to assume that the maser medium uniformly fills the
region between the mirrors. No such restriction is necessary.

The noise power I Ne N-li 12 has the value, using (27)

Ne N-li 2 (N2 N-2) 2 2ei*

= (N2 + N-2) cosh 0 sinh 0 (31)

(cosh2 sinh2 0 - 1)

which after some manipulation yields
N-ii 2 (1 - GI) (1 + RGI)/G1(1 R). (32)

Combining (26), (29) and (32), the noise power in frequency range
dv leaving the maser cavity through the mirror R' can be written

(1 RG1)(1 - R')(1 - Gi)p(v)dv.dP - (33)
(1 - R4R'IG1)2 4RiR'iGi sin2

In the vicinity of a cavity resonance at frequency vo , the phase shift
cc. differs from some multiple of 7r by an amount Aco = 27r( v - vo)L/c'.
The free spectral range of the cavity mode at frequency vo is the range
vo - c'/4L v c' 14L as illustrated in Fig. 4; the mode spacing
is c' 12L. Thus, the total noise power leaving the cavity through R',
associated with one cavity mode, is obtained by integrating dP over
the free spectral range of the mode, yielding
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vo+c, 141.,

p(v)Ci cly
C12, + C3 sine 27(v - vo)1,1c/

yo -c' IL

With the substitution = 27( v - vo)L/c', (34) can be written
+./2

cico
P = P(P0) 27.1,f C2 + C3 sine co

-702

in which the quantities C1 , C2 and C3 are given by

C1 = [(1 RG1)(1 - R')(1. - GO],

C2 = [1 - RtleGi]2

and
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(34)

(35)

C3 = 1.
Since the integrand is large only in a very small range of frequencies
near vo , it can safely be assumed that p( v), G1 and R are constant with
frequency and have their values at v = vo

With this approximation the integral has the value irCi/r22 C2C314

(see Ref. 18), yielding

P(R') = [(1 RG1)(1 - R') / (1 - RR' G12)]
(36)

(1 - Gi)p(vo)(c'/2L).

d P

J
-Cl4L Vo + C% 4L

Vom-)0.

Fig. 4 - Free spectral range of cavity mode at frequency Po .
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From (18) it may be noted that [1 - G1( vo)]7)( vo)c'/2L is the spon-
taneous emission power that would be emitted by the maser medium,
in the absence of the cavity, into the spectral range c'/2L if the gain
were constant over that range. When G1 > 1, the spontaneous emission is
enhanced by stimulated emission. The noise power

[1 - Gi(vo)]p(vo)c'/2L

will be denoted as P.(vo). The noise power leaving the cavity through
mirror IT is, therefore

P(R') = P8(1 ± RG1)(1 - R')/(1 - RR'G12). (37)

The power leaving the cavity through mirror I? is given by (37) with
R and R' interchanged. The total power leaving the cavity is

Pt = 2P8[1 - RR'G1 I-(G1 - 1)(R ± R')]/[1 - RR'G12] (38)

so that the cavity enhances the spontaneous emission by the factor
following 2/3..

It should be noted that the integration of (36), which leads to (37)
and (38), is valid even if G1( v) varies over the range c'/2L, so long as
the frequency range over which G1 has a significant variation is large
compared to the spectral range of the noise power. This will always be
so, providing the natural linewidth of the transition is large compared
to the spectral range of the noise, independent of whether the transition
is homogeneously or inhomogeneously broadened. Equations (37) and
(38) are valid even when the gain profile is saturated, providing the
maser medium is uniformly saturated with respect to the axial direction.
In general, the saturation will tend to be uniform, assuming uniform
pumping, since the power in the cavity tends to be uniform with length.
For very high -gain maser media the latter statement is not valid.

It should be noted that (38) contains an implication which is not
immediately obvious. In the limit n1 = n2 with G1 = 1 and P. finite,
(38) states that P t = 2P8 independent of R or R'. Thus the total
spontaneous emission noise power leaving the optical cavity is inde-
pendent of its bandpass. The spectral distribution of the noise is altered,
however, to correspond to the bandpass. t

The preceding results can be used to determine the linewidth of the
oscillator. The spectral range or bandwidth of the noise power is ob-
tained from (33) by determining the frequencies at which dP falls to

t In the limit c' /21, very much less than the inhomogeneously broadened line -
width, (38) implies that the total spontaneous emission power into all modes is
independent of the mirror reflectivity since G1 = 1 over the entire line.
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half its value at v = PO . This occurs at frequencies vi defined by

4R1R'IGI sine 27r( v4 - 1/0).L/C1 = ( 1 - RIR'1G1)2

yielding a spectral width AP = 2( vi Po) given by

Av = (c'/L7r) sin -1 1(1 - RIR'1G1)/(RR'G12)1

(c72Lir)(1 - R1R'IGI)/(RR'G12)1.
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(39)

(40)

Equation (40) can be rewritten by substituting for 1 - (R/?')IG1 the
value given by (38)

1 - (RR/G1.2)1 = 2(./38//),)[1 - REM + 2(G1 - 1)(R + R')]/
(41)

[1 + (RR'G12)1].

The resulting expression is a function of the single -pass gain GI. For
the strong oscillator the gain saturates at a value such that RR/G12
differs from unity by a vanishingly small amount. Thus it is expedient,
in the expression for Av found by substituting (41), to write for the
saturated single -pass gain

[1 - (1 - (RR'G12)1)]/(RR')1 (42)

and then to replace 1 - (R/VG12)1 by its approximate value obtained
from (41). In the reiteration, the approximate value can be written

1 - (RleG12)1 (RI ± R'1)2 (1 - (R1e)4) 2rhpAy,
4(RR')I (RR')i (1 - ni/n2)P1

which follows by substituting in (41) the value G1 = (RR') -1 and re-
placing P. by its value (1 - GI) (c72L)hvi(ni/n2 - 1) . The cavity
bandwidth O vc is given by (40) with G1 = 1.

Combining (40-43) and performing the necessary algebra yields

Ay = 2r(hv/Pt)(60c)2(1 - n1/n2)-1z[1 (irlivAP, IP t)

 (1 - n1/n2)-1 ( - z[x + 3] + 1 + x)/x`]

in which

(44)

z = -I- R'1)2/4(RRY (45)

is a term which is identically unity when R = R' and remains close to
unity even for R and R' differing by a factor of ten, and the quantity
x = (RR' )1.

When hvApcIPt << 1 the linewidth is

AP 27r
/11)- (Ay )2 (1 - ni/n2)-1C (46)
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and differs from the well-known Schawlow-Townes4 formula by a factor
of two. The correction term (1 - ni/n2)-I approaches unity for the
ideal maser (n1/n2 = 0). This term has also been found by Shimoda.'
It should be noted that n1/n2 is the saturated value and in general may
be very difficult to evaluate. An approximate value may be found by
setting the single -pass gain given by (22) equal to the saturated gain
given by (42). Extracting the appropriate value of ni/n2 requires a
knowledge of the transition probability, the time constants for the
upper and lower states and the mirror reflectivities. The degeneracy
of the upper and lower levels should also be taken into account.

For the 6328 A gas maser, typical values for a one -meter -long dis-
charge are Pt 10-8 watts/mode, Av. 106 cps and ni/n2 = 0.98,
yielding a linewidth of 10-1 cps.

For the semiconductor optical maser, (46) predicts a linewidth of
approximately 5 X 108 cps, taking L = 0.06 cm and P./Pt 10-2.

The latter numbers are taken from the data of Quist et al.19 The cor-
responding wavelength range is 10-2 A. This estimate is probably a con-
servative lower limit because of the neglect of internal losses in the
derivation and the fact that the internal losses are significant in the
actual device. The lowest observed linewidths are about 10-i A. The
relatively large linewidths arise from very short spontaneous emission
lifetimes ( <10-9 sec). The relatively large amount of enhanced spon-
taneous emission available produces saturation at small values of PilPa.

As has just been shown, it is possible to write formal expressions for
the power output and spectral width of the noise emitted in a given
mode. Since the power, and hence the spectral width, depend on the
saturated single -pass gain, it is necessary to take the dynamic prop-
erties of the maser medium into account. This is illustrated graphically
in Fig. 5, in which the curve of P vs GI as represented by (38) is shown.
Also shown are a curve of 0v and three dashed curves representing the
dynamic properties of the maser medium. The latter curves may be
found by solving the rate equations for the maser medium to obtain a
relation between the power taken from the maser medium and the single -
pass gain. When large power is taken from the maser medium, G1 must
approach unity, since the population inversion must approach zero.
When the noise power taken from the maser medium approaches zero,
the single -pass gain approaches its small signal value G10 . The curve
representing the dynamics of the maser medium intersects the curve
representing the static characteristics of the cavity at some value
G1 < (1/RR') . This is the operating point of the maser. The value of
G1 at the operating point determines the value of Av.
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For a gas maser with small single -pass gain, the dynamic properties
of the maser medium can be shown to be controlled by an equation of
the f orre

G1 1 ± k°1/(1 + IcPc/P.) (47)

in which ko is the small signal gain parameter for the mode in question,
1 is the active length of the medium, ic/P, is a saturation parameter
dependent on the Einstein A and B coefficients for the maser levels and
P, is the power in the cavity. In most maser media K < 1, so that G1
varies quite slowly with Pc/P. . It should be noted that P. is essentially
constant and can be evaluated for G1 = 1.

The gain parameter /co varies with discharge current. For low cur-
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rents, ko is proportional to current." Thus, as the discharge current is
increased from zero, the output power increases. From Fig. 5 it would be
expected that as the discharge current approaches a value for which
1 -I- ko/ approaches (RR/) -1, the output power would show an extremely
sharp rise with current. This can be illustrated by writing for Gl as a
function of discharge current I, taking R = R' for convenience,

1 + - R)/R](///0)/(1 KPH./Ps) (48)

in which /0 is the current for which G1R = 1 in the absence of satura-
tion. From (38), taking Pc = P t/2(1 - R)

Pc/P. = 1/(1 - RG1). (49)

Solving (48) and (49) for Pc/P. yields

Pc/P. = [6,1 / lo V (A I a° + K)2 + 44/2K (50)

in which A/ = I - /0 . Note that when A///o) K = 0, Pc/P8 = ri.
When A///o) K has the value d(f - f-1), Pc/P8 has the value firi.
Therefore, the change in Pc/P8 by a factor f is larger than the change in
A///0 of Kl(f - f-') by a factor CI. Thus, when K << 1 the power output
shows a very sharp threshold with current. The value of K is of order
10-" for the 6328 A gas maser.

VI. THE NONREGENERATIVE OPTICAL MASER OSCILLATOR

Some maser media have such large single -pass gain that spontaneous
emission originating at one end can be amplified sufficiently to saturate
the maser medium at the opposite end. For example, the 3.39 µ transi-
tion in neon, in a helium -neon gas maser, has gains of order 50 db/meter
in small -bore tubing." The saturated output power is in the 1-10 mw
range. Xenon at 3.5 1.1, has even larger gain.22 Under these circumstances
the maser can behave as a saturated oscillator without an optical cavity.
The extreme line narrowing characteristic of the cavity oscillator will
be lacking, but the power levels and directionality will be comparable.

This type of oscillator is characterized by a peak output always at
the line center, independent of temperature and any physical dimension,
line narrowing over the inhomogeneously broadened line and an ex-
tremely stable output. The power per steradian per cycle will be much
greater than conventional light sources, and so these structurally simple
oscillators may be very useful as frequency standards and for calibra-
tion purposes.
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Some idea of the line narrowing possible with this type of oscillator
can be obtained by reference to (18), which describes the noise power
emanating from one end of the unsaturated maser medium in one mode
with no mirrors at either end, while (33) with R' = 0 gives the noise
power when one end has a mirror, but the other does not

dP = [1 + RG1(v)][1 - Gi(v)]p(v)dv. (51)

When R = 0, (51) properly yields (18); however, when R = 1

dP = [1 - G12(v)]p(v)dv. (52)

Since GI' is the gain of a maser of twice the length of a maser of gain
Gl , the perfectly reflecting mirror placed at one end serves to double the
effective length of the maser medium.

Assuming no saturation, so that the gain can be written

GI( v) = exp k(v)1 (53)

ii which / is the effective length of the medium, and assuming further
that the gain parameter k(v) has a Doppler profile

k(v) = ko exp - [2( v - vo)/AvD]21n 2 (54 )

in which vo is the frequency of the line center and Alin is the full Doppler
width, the spectral width at half power of the spontaneous emission
Ay can be determined by writing

1 - exp [kol exp - [Op/Ova In 2] = [1 - exp k01]. (55)

In the limit kol >> 1, (55) can be solved for Av/ziv, to yield

Ay/6,pp = (k0/)-1. (56)

The 3.39 µ maser is saturated by its own spontaneous emission by gains
of order 80 db, so that the maximum possible value of kol before satura-
tion is about 20, corresponding to 1 ti 2 meters. This yields AP Pt --1 Avo/4.5.
The Doppler width at 3.39 µ is about 300 mc, yielding iv 'Ad, 70 mc.
It would be possible to decrease this value somewhat by using several
lengths of maser media separated by attenuators to prevent saturation.
The slow dependence on 1 exhibited by (56) indicates the impracticality
of this scheme in achieving any more than a factor of four decrease in
linewidth unless ko can be increased drastically. Fortunately, there is
evidence that this can be done, and the nonregenerative oscillator may
turn out to be an extremely interesting device. In addition, it can be
tuned by application of magnetic fields.
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VII. CONCLUSION

The output properties of an optical maser oscillator have been de-
rived subject to the supposition that the oscillator is a saturated ampli-
fier of spontaneous emission noise. The most significant new results
concern an expression for the linewidth of the oscillating maser which
differs from the commonly accepted value. Some techniques, well-known
in the microwave art and used only in a limited way in optics (stratified
media), have been generalized to apply to the transmission and noise

properties of optical masers.
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APPENDIX A

Network Representations

The basic network of interest will be a linear two -port network which
will be represented schematically by Fig. 1. The major concern here will
be the relationships between the quantities /1 and B1 at port 1 and /2
and E2 at port 2. The linear relationship among these quantities will be
represented by the transformation matrix

/1

A B
C D

E2 (57a)

which will be abbreviated by

1 = TIF2 (571))

in which

w = Ei
Ii i = 1, 2, (58)

and

T= A B
C D (59)

Note that the direction of positive current flow is defined to be into the
network at port 1 and out of the network at port 2. This choice sim-
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plifies the discussion of cascaded networks. It is clear that two net-
works in cascade can be represented by 11,1 = Trvi2 = v's
The product T1  T2 follows the usual rules of matrix multiplication. In
general, T1* T2 T, Ti; that is, the two networks do not commute.
For a cascade of n networks

W1 = T1  T2  Tn  Wn-1-1 (60)

The determinant of the transformation will be a quantity of interest
and will be defined as A = AD - CB. The inverse of (57) is defined by

xr? = xri (61)

in which

D -B
T-' = (62)

-C A

is the inverse transformation matrix. Reference will sometimes be made
to the exchange network T, which is merely the network T with its
terminals exchanged so that port 2 becomes port 1 and vice versa. The
components of T are obtained
that for the exchange network
and E1 , Il become E21,
given by

-121.

by
the

As

writing
quantities

a result,

D B

'F2 = 'F1 and noting
E2 , /2 become .E1', -

the correct description is

B2'
= (63)

and

C A

D B
T=- (64)

C A

The net power into port 1 is given by

P1 = + ENO = Alr2 iIyl (65)

in which lir is the complex transpose of 'F and

= 0 1

1 0
(66)

Likewise, the net power out of port 2 is given by
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P2 = '72Z  11.2 (67)

Other transformations will be introduced as they are needed. In the
following, certain types of networks will be characterized in terms of
relationships among the components of the transformation matrix,
i.e., A, B, C and D. These networks will form the basic "tools" of the
analyses.

A.1 Matched Networks

If one of the ports of the network is terminated in a matched load
and it is then observed that the input impedance of the other port is
matched to the line, the network is said to be matched. First, consider
the input impedance of the network in Fig. 6. The line is assumed to
have unit characteristic impedance. The quantities B and C are thus
normalized with respect to the characteristic impedance and admit -

EZ
Z2 =

2

0

Fig. 6 - Terminating impedance for matched

tance of the line, respectively. Writing E1 = AE2 ± B12,1-1 = CE2 + D12
and

Zinput(1) = E1/I1 = (AZ2 + B)/(CZ2 D) (68)

in which Z2 = E2/12 is the terminating impedance. The network is then
matched if Zinput(1) = Z2 = 1, yielding the requirement A + B = C + D.
Likewise, the exchange network must also he matched, requiring
D±B=C+A. The two requirements yield the relations A = D,
B = C, and for a matched network

T= A B
B A (69)

A.2 Reciprocal Networks

A reciprocal network has the same transmission properties in either
direction. It follows that for a reciprocal network T and T must have
the same transmission factor and phase shift, which from (84) and
(72) implies D = 1. The simplest nonreciprocal network can be written
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T. = A 0
()1

with A 1; and all nonreciprocal networks can be written

T= A B
C D

Al 0
0 AI

AIAI B/&
C/A' D/ = Ta ' Tr .

(70)

(71)

The reciprocal network Tr is known as the reduced network; all the
nonreciprocity resides in T.. The network T. , known as the abstracted
network, commutes with all networks.

In general, A is complex and can be written A= 1A1 exp j 240. Since

T. =

and the exchange network

T. =
I I-

exp -jco 0
0 I A 1-4 exp -jgo

1 A 11 exp

0 IAI eXpjcP

it follows that argument co is the nonreciprocal phase shift.

A.3 Reactive Networks

(72)

(73)

Since a reactive network is lossless, it would be expected that P2 = P1
It follows that W2DIr2 = W2TLTAF2 , so that for a reactive network
TIT = Z. Performing the indicated matrix multiplication yields

A*C + AC* A*D + C*B I = 0 1

AD* + CB* BD* + B* D I = 1 0
(74)

It follows that A*C and BD* are imaginary and A*D + C*B = 1.
Note that multiplication of A*D + C*B = 1 by CB* yields CB* =
(A*C)(B*D) + IC I2 I B12, which is real. Likewise,

AD* = I A 12 I D 12 (AC*)(BD*)

is real. If the reactive network is reciprocal so that A = AD - BC =
1 = (AC*)(D/C*) - D*B(C/D*) = (A/ B*)DB* - (B/ A*)A*C, it
follows that both D/C* and A/B* are imaginary. Since AC* is imaginary
and C*B is real, A/B is imaginary. Thus B/B* is real, which can only
occur when B is real or imaginary. It follows that B and C are real
(or imaginary) while A and D are imaginary (or real). The question
of which set to choose real is decided by noting that the idemfactor
(no network) is a reactive reciprocal network. Thus, the appropriate
choice is A, D real and B, C imaginary, and the reactive reciprocal
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network can be written

a jf3

j'Y 5
(75)

for which ao + fry = 1. If the reactive reciprocal network is also matched
so that a = 6 and i3 = 'y, the network can be written

cos io j sin co (76)
j since cos (p

in which the parameter cp is known as the angular length or phase shift.
Note that the input impedance for this network is

Z2 + j tan (p
Zinput(1)

1 + Z2j tan io

which is recognizable as the impedance transformation for a transmis-
sion line of angular length go and unit characteristic impedance.

Next, certain basic passive circuit elements of interest will be charac-
terized.

A.4 Series Impedance (Fig. 7)

(77)

Since /1 = /2 and E1 = I2Z E2 , the transfer matrix is given by

T= 1 Z
0 1

(78)

A.5 Shunt Admittance (Fig. 8)

For the shunt admittance, El = B2 and /1 = E2Y + /2 ; thus

1 01
Y 1

(79)

Both networks are reciprocal but not matched.

Elf E2

L

Fig. 7 - Series impedance.
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I1
112 --)"

El
t E2Y

L J

Fig. 8 - Shunt admittance.

A.6 Ideal Transformer of Turns Ratio N :1 (Fig. 9)

For the transformer E1 = NE2 and I1 = 12/N1. Thus

T= N 0
0 N-1

-
N :

Ei
t

12

t E2

(80)

Fig. 9 - Ideal transformer.

A.7 Network Transmissivity

Consider a general two -port network which has a matched generator
on side 1 and a matched load on side 2. The cascade of networks may be
represented schematically as shown in Fig. 10, yielding

EU/ 1 1

0 1

I9 I

E9

MA,

:1 B
C D

D

1 0
1 1 0

2 = 0

0-

(81)

Fig. 10 - Circuit for two -port network with matched generator on side 1
and matched load on side 2.

Performing the indicated matrix multiplication yields

E
Io

A ±B±C±D B+D
C D

E2
0

(82)
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The network transmission factor is defined as the ratio

L = 1E212/ 1E2012 (83)

in which E20 is the voltage that would be measured if the network were
absent. In the latter case, the appropriate two -port transformation
must be the identity matrix, so that A = D = 1, B = C = 0. Hence

L = 1E, 12 Eg 12 4

IA+B+C+D12/ 4 IA +B+C+D12. (84)

A transmission factor greater than one implies gain. The network trans-
mission factor for a matched network is

L = 4 I 2A + 2B I -2 = I A + B -2. (85)

A.8 Network Reflectivity

When a network is followed by a matched load, the input impedance
to the network is given by Zinput = (A B)/ (C D). The power
reflectivity, R, is given by

R= 2 _IA±B-C-D12
1A+B+C-ED 12

12

in which L is the transmission factor of the network. Note that for a
matched network, A = D, B = C and R = 0.

(Zinput - 1)
(Zinput +

A.9 Matched Attenuator

(86)

An attenuator is a nonreactive reciprocal device. Thus, a matched
attenuator must satisfy the conditions A = D, B = C and AD - BC =
1, with A, B, C and D real. This is automatically satisfied by writing

I cosh 0 sinh 0
T (87)

sinh 0 cosh 0

The parameter 0 is referred to as the line length of the attenuator. The
attenuator commutes with a matched reciprocal reactive network (a
transmission line, for example) and the resultant network

cos c0

jsincp
j sin co

cos co

cosh 0 sinh
sinh 0 cosh 0

cos (co - je) j sin (co - j0)
j sin (co - j0) cos ((p - j0)

(88)
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is the representation for an attenuator with phase shift or angular length
v. From the fact that a lossy transmission line would have a phase shift
of the form exp - j0) = exp -0 exp -jv, it would be expected
that the transmission factor is given by exp -20. For an attenuator
the transmission factor is obtained by using (85) and (87)

L = I cosh 0 sinh 0 I-2 = exp -20. (89)

Thus, the attenuator matrix is specified completely by knowledge of
its transmission factor.

A.10 Isolator

An isolator is by definition nonreciprocal although it is matched.
Thus, an isolator with forward transmission unity and reverse trans-
mission exp -20 can be synthesized by cascading an attenuator of line
length 0/2, having a transmission exp - 0, with a nonreciprocal network
with transmission exp +0 in the forward direction and transmission
exp -0 in the backward direction. In its most simple form, the non -
reciprocal network (70) is given by

exp - 0/2
0 cxp -0/2

Thus, the isolator can be represented by

T= exp -0/2 0

0 exp -0/2
cosh 0/2 sinh 0/2
sinh 0/2 cosh 0/2

exp - 0/2 cosh 0/2 exp -0/2 sinh 0/2
exp -0/2 sinh 0/2 exp -0/2 cosh 0/2

and the transmission factor is unity in the forward direction and exp -20
in the backward direction. An ideal isolator is one for which the line
length 0 approaches infinity, yielding

(co)

T=

APPENDIX B

1 1

2 2

1 1

2 2

(91)

(92)

Noisy Networks

In the following, the source of noise will be considered to be spon-
taneous fluctuations which arise because of the thermal properties of
the material. At extremely high frequencies, the thermal noise is more
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commonly called black -body radiation. The noise spectrum will be
characterized by the following statement of Nyquist's theorem:" The
noise power available per mode at frequency v in a small frequency
interval, dv, is given by

dP = p(v)dv

p(v) = hv(exp hv/kT - 1)-'

for a passive circuit at temperature T. The constant k is Boltzmann's
constant (1.38 X 10-23 joules/degree) and h is Planck's constant (6.6 X
10-34 j oules-sec ) .

It is sometimes convenient to write the noise power in terms of equiva-
lent rms voltage and current generators e and i as shown in Fig. 11.
The internal impedance of the voltage generator is zero and for the
current generator it is infinite, and one can write

I e I= (4rp(v)dv)4, I i I= (4gp(v)dv)*. (94)

In the following, both e and i will have the units of (power)4 since r
and g are normalized with respect to the line impedance and admittance.

A systematic method of handling the noise produced by a network
will be developed next. First, the following theorem will be stated with-
out proof : Any can be replaced by an
equivalent noise -free network which has an added shunt current generator
and series voltage generator at the input or output terminals which represent
the noise contribution." Therefore, any passive noisy network can be
replaced by the representation shown in Fig. 2, in which the network
is now noise -free but the noise appears from equivalent voltage and
current generators at one of the terminals. A proof for the theorem can
be given, and although it is relatively simple, the proof is lengthy.

Next, a scheme for representing in a simple way the additional current
and voltage appearing at the terminal will be described. The following
technique is due to H. Seidel!' It is clear that one may always write

El = AE2 + B/2 e

I, = CE2 DI, i.

(93)

(95)

Fig. 11 - Noise -free representation of network with equivalent external
voltage and current generators at one terminal.
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The inclusion of the noise generators can be accomplished in an artificial
but, as will be seen, highly useful way by writing

E1

1

A B e
C D i
0 0 1

E2
/2

1

(96)

This representation results from adding the trivial equation 1 = 0 -I-
0 + 1 to the set in (95). No new information has been added, but the
bookkeeping advantages afforded by this change will become apparent
shortly.

Equation (96) will be the general representation for a passive noisy
two -port network. The problem now is to learn how to characterize the
noise quantities e and i in terms of the properties of the network repre-
sented by A, B, C and D. It will be seen that this can be done by com-
paring the network to some simple network whose properties are known.

First, it will be demonstrated that for any passive network, one may
take A, B, C and D either all real or all imaginary. This is equivalent
to saying that the network may always be taken to appear purely
resistive. This is clear since the input impedance is Zin = (AZ2 B)
(CZ2 D). If Z2 is real, then it would be expected that a resistive
network will have Zin real also. The proof follows from the fact that the
input impedance can always be made real with a suitable length of
transmission line. In addition, with an ideal transformer one may
match the input impedance to the line. It follows, therefore, that for
noise calculations, one only need consider matched networks (A = D,
B = C) with the ratio A/B real.

First, consider a matched network which is cascaded with a transmis-
sion line of arbitrary length 0. The latter network has no loss and has
no source of noise. In addition, the transmission line can change only
the phase but not the magnitude of the noise current and voltage
generators. Consequently, one expects that for a matched network

cos 0 j sin 0 0 A B
j sin 0 cos 0 0 B A

0 0 1 0 0

e

1

X X e cos 0+ ij cos 0
X X ej sin 0 i cos 0
0 0 1

has the same noise properties independent of 0. Thus, it is required that

1e 1 2 = I e cos 0 i sin 0 I 2 = lel2COS20+ Iil2sin20

e(ji)* e*(ji) sin 0 cos 0

or

(fie I 2- I 2) sin2 j(ei* - c*i) sin 0 cos 0 = O.
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Choosing 0 = 7/2 yields

and it follows also that

e
12 i 2

.* * et e

(97)

(98)

Next, the passive matched network at temperature T will be cascaded
with a shunt conductance at the same temperature and the open -circuit
noise voltage at the input terminals will be determined. The network
representation for the shunt conductance in the new formalism follows
from Nyquist's theorem as is shown in Fig. 11

i' I = (4Gp(v)(101

A B e 1 0 0
C D i G 1

0 0 1 0 0 1

Thus, the network to be studied is as shown in Fig. 12 with

E1 A B 1 0 0 E2

0 B A i G 1 0

0 0 1 0 0 1 1

yielding

so that

A + BG B
B + AG A

0 0

+ e B2

Ai' +i 0

1 1

E1= (A + BG)E2 + + e

0= (B + AG)E2 + Ai' i

E2 = -(Ai' + i)
(B + AG)

Er
=_.(A-(B+

AG)
Bi,

B +

At the open -circuited terminal at which the noise voltage E1 is meas-
ured, one must have from Nyquist's theorem, (94)

I Eli 12 = 4ZinputP( 10)dlt (103)

(99)

(100)

(101)

(102)
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0A Bo

oc

tE2

Fig. 12 - Passive matched network with shunt conductance for determina-
tion of open -circuit noise voltage.

since Zinput is resistive. Its value is

Hence, it is required that

+ BG
B + AG

) 4p(v)dv -

A + BG
Z input - B + AG 

A + BG
+ AG

) (Ai, + i) + + e

(104)

2

. (105)

Remember also that le12= lir and ei* is real. Since the noise arising
from the shunt conductance G is independent of the noise produced by
the network, cross terms like ei' , i* i' are zero, since their product repre-
sents a time average which must be zero. Solution of (105) yields
uniquely the values15

2 2
I = AB

ei* = 1(A2 + B2 - 1)
(106)

which are the desired relations measured in units of 4p(v)dv. The
veracity of (106) can be established by direct substitution into (105),
which yields an identity independent of the value of G.

The equivalent values of e and i for an attenuator are given by

AB = cosh sinh 0 = sinh 20

ei* = 2 (A2 + B2 - 1) = 2 (cosh' 0 + sinh2 0 - 1) = sinh2 0.

The phase angle between e and i* is cos.-' tanh 0. Since the phase angle
is always positive, the implication is that the noise sources radiate more
power toward the attenuator than away from it. This is reasonable,
since the noise power leaving each end of the attenuator should be equal
and the noise radiated toward the attenuator by the noise sources is
attenuated before emerging from the output end. In the limit of large
0, the phase angle approaches zero.

The equivalent values for an isolator are given by

(107)
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Iel2 = I
2

I = exp -0 cosh 2 sinh = z exp -0 sinh

0 0ei* = [exp -0 (sinh-
2-

+ cosh- 2) - 1 = - I e 12.

(108)

Therefore, the angle between e and i is always r, the implication being
that the isolator radiates noise power away from the attenuator, i.e.,
only in the direction in which it attenuates.

The noise radiated into a matched resistor by any network is ob-
tained by considering the network shown in Fig. 13

o A Bo

o g Ao

t E2

Fig. 13 - Noise radiated into matched resistor.

E1 1 0 0 A B e 1 0
0 1 1 0 C D i 1 1

1 0 0 1 0 0 1 0 0

0 .E2

0 0
1 1

A' B' e' B2

= C' D' 0

0 0 1 1

. (109)

The noise contributed by the matched input and output resistors is
neglected since this is additive. The primed quantities result from matrix
multiplication. The noise output dP is evaluated by noting that

0 = C'E2 i' and dP = E2I2= 2/ I C' 12.

Performing the matrix multiplication yields C'=A-1-B-1-C-ED
and i' = e i. Thus, the output noise power is given by

dP _ le il2 4p(v) dv
1A+B+C±Di2-2P(P) dv (110)

in which L is the network insertion loss [see (20)]. For a matched resis-
tive network (attenuator)

2_ le12+1I2 ± 2ei* = (2AB ± A2 ± B2 - 1)

= [(A + B)2 - 1] = - 1
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which follows from (9) and (21). Thus,

dP = (1 - L)p(v)dv (111)

is the noise power in frequency range dv emanating from a matched
resistive network. This result is well known in network theory. In
optics, it is known as one form of Kirchhoff's law.
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The 80 Diperiodic Groups in
Three Dimensions

By ELIZABETH A. WOOD

(Manuscript received December 10, 1962)

The low -energy electron diffraction work of L. H. Germer, J. J. Lander,
A. U. MacRae, J. Morrison and others is resulting in new information
about surface structures. These three-dimensional structures have periodicity
only in two dimensions. The 230 triperiodic space groups are not applicable
to the solution of these structures. The 17 strictly two-dimensional groups
do not admit the existence of a third dimension and may therefore not be
appropriate for these structures which are not strictly planar. The useful
space groups for these structures are the 80 diperiodic groups in three
dimensions.

Nowhere in the literature have these been put into a form convenient for
use, as have the other two sets of space groups. This has now been done and
the tables are available on request from the Circulation Manager, Bell
System Technical Journal, Bell Telephone Laboratories, Incorporated,
463 West Street, New York 14, N. Y. Sample tables are given in this paper.

I. BACKGROUND

Crystals grown under favorable conditions acquire an external shape
whose symmetry has long attracted attention. Nineteenth century
mineralogists systematically described the symmetry of these shapes in
terms of symmetry operations. For example, the operation of rotation
of a cube through 90° around an axis normal to a cube face brings the
cube into a position indistinguishable from its original position. An
operation that achieves this indistinguishability is called a symmetry
operation. In this example the cube will present an identical appearance
four times during a rotation of 360° around the axis, which is therefore
called "an axis of 4 -fold symmetry" or simply "a 4 -fold axis." A cube
has three 4 -fold axes, four 3 -fold axes (corner -to -corner) and six 2 -fold
axes (mid -edge -to -mid -edge) (Figs. la and b). Such axes are called sym-
metry elements. The terms "tetrad," "triad" and "diad" are also used
for them.
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Another type of symmetry element is a mirror plane, across which the
operation of reflection produces an object indistinguishable from the
original. Such a plane through the center of a cube parallel to two
opposite faces reflects the left half into the right half and vice versa;
that is, the two halves are mirror images of each other. Since there are
also diagonal mirror planes in a cube there is a total of nine planes
(Figs. lc and d).

There is also a center of symmetry in the center of a cube which re-
lates any feature located a given distance from it in one direction to an
indistinguishable feature located the same distance away in the opposite
direction. The operation is called inversion.

(a) (b)

(d)

Fig. 1 - The symmetry elements of a cube: (a) the three 4 -fold axes and the
four 3 -fold axes, (b) the six 2 -fold axes, (c) three mirror planes parallel to the
faces, and (d) six diagonal mirror planes.
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An inversion axis combines the operation of rotation with that of
inversion. The familiar regular tetrahedron which has neither a 4 -fold
axis nor a center of symmetry has a 4 -fold inversion axis because after
a rotation of 90° plus an inversion through the center point it occupies
a position in space indistinguishable from its original position. A center
of symmetry is equivalent to a one -fold inversion axis.

Note that during the entire group of "operations" on the cube, one
point (the center of the cube) remains unmoved. Another way of saying
this is to say that all of the symmetry elements pass through a single
point. This group of operations or the symmetry elements which repre-
sent them therefore constitute the point group symmetry of the cube.
When similar groups of operations are determined for all possible
crystals, it is found that there are only 32 possible crystallographic
point groups.

The symmetry of shape is the outward expression of the inner orderly
atomic arrangement of the crystal. Any property of any piece of the
crystal must obey the point group symmetry even though the piece be a
ground sphere a few tenths of a millimeter in diameter.

When we consider in detail the crystal structure - that is, the posi-
tions of the atoms relative to each other - we find that the symmetry
elements occur at well-defined positions in space and do not all go through
the same point. This is readily illustrated by Fig. 2, the projection of
the structure of calcite (CaCO3) onto a plane normal to its 3 -fold sym-
metry axis. Note that the 3 -fold axis cannot be randomly placed, normal
to the paper, but must pass through the black spots representing the
carbon atoms, and further that there is a 3 -fold axis through every
carbon atom. There are also mirror planes in calcite. We could make a
3 -dimensional model of the array of symmetry elements of calcite,
and the operation of any symmetry element would shift every other
symmetry element to a position indistinguishable from its original
position.

Such a self -consistent array of symmetry elements in space is called
a space group. Since location in space (not orientation alone) is of signifi-
cance here, two other kinds of symmetry operations become meaning-
ful: operations which combine translation with either rotation or reflec-
tion. The resulting symmetry elements are called, respectively, screw
axes and glide planes.

As in the case of point groups, the space groups are limited in num-
ber. There are 230 possible space groups, i.e., 230 possible self -consistent
arrangements in space of all the symmetry elements mentioned above.

Diagrams of these are given in the International Tables for X-ray
Crystallography (edited by Henry and Lonsdale, 1952; see References).
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Fig. 2 - The structure of calcite projected onto a plane normal to its 3 -fold
symmetry axis.

The one appropriate to the structure of calcite is shown on the next
page.* It is identified by the symbol Ric which states that the unit cell
(the repeat unit of the structure) is rhombohedral in shape (R), that it
has a 3 -fold inversion axis (5) with a glide plane parallel to it in which
the translation is in the c direction.t Of course the 3 -fold axis operating
on this glide plane generates two more. Additional symmetry elements
which are found to exist whenever the stated symmetry operations are
performed are also shown in the calcite space group diagram.

The space group of a crystal can in many cases be uniquely deter-
mined directly from x-ray diffraction data. Since, in any given space
group, the possible atom positions will be related in a well defined manner
by the symmetry operations, a knowledge of the space group is a very
powerful aid in determining the arrangement of atoms in the crystal,
i.e., the crystal structure.

One could repetitiously extend the space -group symbols in the dia-
gram, as we have the calcite structure in Fig. 2, by translation which
would be in three dimensions if we were not limited to the printed page.
(The translation vectors define the edges of the unit cell, the repeat
unit of the three-dimensional structure.) The three-dimensional lattice
of translation vectors which would represent this operation is called
a space lattice. There are only 14 such lattices possible.

If we limit our attention strictly to two dimensions we find that,
instead of 230 space groups, we have 17 plane groups and instead of 14
space lattices we have 5 nets. Here the periodicity no longer extends in
three dimensions (triperiodicity) but only in two dimensions (diperio-
dicity).

* Fractions on the diagram refer to positions of symmetry elements along the c
direction (normal to the paper). The unit is the unit length of c, i.e., the c di-
mension of the unit cell.

f For a very brief discussion of space group symbols see the Crystallographic
Data section of the American Institute of Physics Handbook.
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Symbols of Symmetry Planes

Symbol Symmetry
plane

Axial glide
plane

Graphical symbol

Normal to plane
of project ion

Nature of glide translation

c/2 along z-axis; or (a+b-l-c)/2 along [111] on
rhombohedral axes.

n Diagonal glide
plane (net)

(a+b)/2 or (b+c)/2 or (c+a)/2; or (a+b-i-c)/2
(tetragonal and cubic).

Symbols of Symmetry Axes

Symbol Symmetry
axis

Graphical
symbol

Nature of
right-handed
screw trans-
lation along

the axis

Symbol Symmetry
axis

Graphical
symbol

Nature of
right-handerht-handecg

trans
lation along

the axis

1

1

2

Rotation
monad

Inversion
monad

Rotation
diad

None

°

0(normal to
paper)

-0
(parallel to

paper)

None

None

None

21

3

31

32

3

Screw
diad

Rotation
triad

Screw
triads

Inversion
triad

0

(normal to
paper)

--.
(parallel to

paper)

Normal to
paper

AL

4
A

c/2

a/2 or b/
or (a+b)/

None

e/3

2c/3

None

2
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It is with still a third set of groups, the 80 diperiodic groups in three
dimensions, that the present paper is concerned.

II. DISCUSSION OF THE 80 DIPERIODIC GROUPS

The International Tables for X-ray Crystallography (1952)
("ITXRC") give two different sets of space groups: the familiar 230
triperiodic space groups and the 17 two-dimensional space groups in
which all operations are confined strictly to two dimensions. In the
latter set, any operation which admits the existence of the third dimen-
sion, such as a two -fold axis lying in the plane, is forbidden.

The existence of a set of groups which admit such operations, but
still refer to arrays that are infinitely periodic in only two dimensions,
was recognized by several authors at about the same time (Speiser,
1927; C. Hermann, 1928; Alexander and K. Herrmann, 1928; L. Weber,
1929; Alexander and K. Herrmann, 1929). These and subsequent authors
(see references at end of this paper) have used a wide variety of nomen-
clature, some giving some diagrams. C. Hermann gives point positions,
but in many cases chooses a different origin and in some cases a larger
cell than that given in ITXRC. This work and others contain errors
and omissions and none of the authors has given the groups in the form
currently used in the International Tables so that they could be con-
veniently used for structure determination. This has now been done.

Consideration of the restrictions imposed by the loss of periodicity
in the third dimension leads to the exclusion of the following symmetry
elements: (i) screw axes normal to the plane of diperiodicity, (ii) glide
planes with glide directions out of this plane, and (iii) n -fold axes not
normal to this plane, with n > 2. Since the upper side of our diperiodic
array may be like or unlike the lower side, mirror planes, glide planes,
two -fold rotation and screw axes may lie in the plane.

It is possible to choose the 80 diperiodic groups in three dimensions
from the pages of the existing International Tables for X-ray Crystal-
lography by using some of the "1st setting" monoclinic groups and some
of the "2nd setting" monoclinic groups as well as various orientations
of the orthorhombic groups, without deletion or addition of any sym-
metry operations. In the diperiodic-group case we always have a unique
direction in the plane -normal. Placing this direction along each of two
nonequivalent directions in a single (orthorhombic) triperiodic space
group gives us two nonequivalent diperiodic groups. This, of course,
requires the appropriate permutation of point coordinates and indices
of forbidden reflections.

Special positions of atoms with a fixed coordinate expressed as a frac-
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tion of the unit -cell length in the z -direction, other than zero, are not
allowed since fractions of a period are meaningless in this nonperiodic
direction.

The five nets (comparable to the 14 space lattices in three dimensions)
for these diperiodic groups are the same as those for the 17 two-dimen-
sional groups, namely, oblique (a b, 7 90°), primitive and centered
rectangular (a b, y = 90°), square (a = b, -y = 90°), and hexagonal
(a = b, 7 = 120°), where y is the angle between the a and b axes.

Alexander and Herrmann became interested in these groups because
of their work with the smectic state in liquid crystals where only two-
dimensional periodicity obtains. Cochran's interest in them grew out of
his use of "generalized crystal -structure projections" (Cochran, 1952, b)
and Holser's (1958, b) out of his investigation of the structure at the
boundary between two parts of a twinned crystal (1958, a).

The interest of the writer in making these groups available in con-
venient form stems from cooperation with those members of Bell
Laboratories who have been investigating surface structures by means
of low -energy electron diffraction, in particular, L. H. Germer, J. J.
Lander, A. U. MacRae and J. Morrison.* These structures are infinitely
periodic in two dimensions but lack periodicity in the third dimension
(normal to the surface).

Which set of diperiodic groups is appropriate for surface structures?
Certainly the structures are not strictly planar: the atoms of the surface
structure in many cases do not all lie in the same plane. But would an
atom above some plane (parallel to the surface) be symmetrically
related to an atom on the other side of the plane? Strictly speaking the
atoms could not be symmetrically equivalent since one is closer to the
substrate than the other and is therefore in a different force field. From
this point of view one would say that only the seventeen strictly two-
dimensional space groups would be useful. However, it is frequently so,
in triperiodic crystallography, that the symmetry of a crystal structure
closely approximates a symmetry that is higher than its true symmetry
and that the use of the higher -symmetry space group is of great help
in determining the structure. From this point of view one would say
that the 80 diperiodic groups in three dimensions are likely to be useful
in the solution of diperiodic surface structures. Their application to this
field was suggested to the writer by A. L. Patterson.

There follow (i) a summary tab!e, Table I; (ii) a diagram of net
types, Fig. 3; (iii) an explanation of terms and symbols used in the

* For a survey of some of this work, see Low -energy Electron Diffraction, by
A. U. MacRae, Science, 139, 1963, pp. 379-388.



TABLE I -SUMMARY TABLE OF THE 80 DIPERIODIC GROUPS
IN THREE DIMENSIONS

Net

Diper-
iodic
Group
(DG)
Num-

ber

Full Hermann -
Mauguin Symbols

Triperiodic-Group Schoenflies Symbol,
ITXRC Number and Orientation, if

other than that given in ITXRC

Symbol Pro-
posed by
A. Niggli

Weber
Num-
bee'

Oblique 1

2
3
4
5
6
7

P1
PT
P211
Pm11
Pbll
P2/m 11
P2/b 11

- 1
Cil - 2
C2' - 3
C.' - 6
C.2 - 7
C2h- 10
C2h- 13

1st setting
1st setting
1st setting
1st setting
1st setting

1P1
1PI
1P2
mPl
aP1
mP2
aP2

1

2
8
3
4

12
13

Rectangular 8
9

P112
P1121

C2' - 3
C22 - 4

2nd setting
2nd setting

1P12
1P12,

9
10

10 C112 C23 - 5 2nd setting 1C12 11
11 Pllm C8' - 6 2nd setting 1P1m 5
12 Plla C.2 - 7 2nd setting eba 1P1g 6
13
14
15

Cllm
P11 2/m
Pll 21/m

C.3 - 8

Cih - 10
- 11

2nd setting
2nd setting
2nd setting

1C1m
1P12/m
1P12,/m

7
14
15

16 C11 2/m - 12 2nd setting 1C12/m 16
17
18

Pll 2/a
P11 2,/a

C'th - 13
- 14

2nd setting eba
2nd setting eba

1P12/g
1P12,/g

18
17

19 P222 D21 - 16 1P222 33
20 P2221 D22 - 17 bca 1P2221 34
21 P2212, D23 - 18 1P22,2, 35
22 C222 Des - 21 1C222 36
23 P2mm Cb, - 25 1 P2mm 19
24 Pmm2 C,1 - 25 bca mPl2m 23
25 Pm2la C! - 26 eba mP121g 24
26 Pbm2i Cry - 26 cab aP12im 25
27 Pbb2 cg. - 27 aeb aP12g 26
28 P2ma - 28 1P2mg 20
29 Pam2 - 28 acb bP12m 27
30 Pab2i Cu ti - 29 aeb bP12ig 28
31 Pnb2 -30 bca nP12g 29
32 Pnnt 21 -31 aeb nP12int 30
33 P2b a -32 1P2gg 21
34 C2mm - 35 1C2mm 22
35 C mm2 Clt - 38 bca mC12m 31
36 Cam2 - 39 bca aC12m 32
37
38

P2/m 2/m 2/m
P2/a 2/m 2/a

Dlh - 47
- 49 cab

mP2mm
aP2mg

37
38

39
40

P2/n 2/b 2/a
P2/m 21/m 2/a

Dth - 50
rnh - 51 aeb

nP2gg
mP2 mg

39
40

41
42

P2/a 21/m 2/m
P2/n 2/m 2,/a

Dih - 51
Dh - 53 aeb

aP2mm
nP2mg

41
42

43 P2/a 2/b 2,/a - 54 cab aP2gg 43
44 P2/m 2,/b 2,/a D21- 55 mP2g g 44
45 P2/ a 2,/b 21/m Db; - 57 bca aP2gm 45
46 P2/n 21/m 21/m D1,1 - 59 nP2mm 46
47 C2/m 2/m 2/nt -65 mC2mm 47
48 C2/ a 2/m 2/m DU - 67 aC2mm 48

Square 49 P4 C -75 1P4 58
50 P4 841 -81 1P4 57
51 P4/m h -83 mP4 61
52 P4/n C:h - 85 nP4 62
53 P422 D41 -89 1P422 67
54 P42,2 D42 - 90 1P42,2 68
55 P4mm Cv - 99 1P4mm 59

548
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TABLE I-CONTINUED

Net

Diper-
iodic

Group
(DG)
Num-
ber

Full Hermann -
Mauguin Symbols

Triperiodic-Group Schoenflies Symbol
ITXRC Number and Orientation, if

other than that given in ITXRC

Symbol Pro-
posed by
A. Niggli

Weber
Num-
ber

Square (cont.) 56 P4bni CI, - 100 1P4gm 60
57 P42nt Did - 111 1P42m 63
58 P42int Ind - 113 1P42,m 64
59 P4m 2 DL - 115 1P4m2 65
60 P41)2 Did - 117 1P4g2 66
61 P4/ m 2/m 2/m D4h - 123 m P4mm 69
62 P4 in 2/b 2/m D11, - 125 nP4gm 70
63 P4/nt 21/b 2 int al h - 127 mP4gm 71
64 P4 in 21/m 2/m Di'', - 129 nP4mnt 72

Hexagonal 65 P3 C32 - 143 1P3 49
66 P3 Cli - 147 1P3 50
67 P312 D,1 - 149 1P312 54
68 P321 D32 - 150 1P321 53
69 P3nil CL - 156 1P3m1 51
70 P31m CL, - 157 1P31nz 52
71 P31 2/m Mid - 162 1P31m 55
72 P3 2 / nt 1 Dgd - 164 1P3m1 56
73 P6 C,1 - 168 1P6 76
74 Pil Ch - 174 mP3 73
75 P6/m CAI, - 175 mP6 78
76 P622 De - 177 1P622 79
77 P6mm Cg - 183 1P6m nt 77
78 P6m2 D1,h - 187 nzP3n12 74
79 Mitt Dgh - 189 mP32 nt 75
80 P6/m 2/nt 2/m Dth - 191 mP6ittm 80

* Useful for cross -comparison of this list with those of Weber (1929), C. Hermann
(1928) and Alexander and Herrmann (1929) since the equivalence among these three is
given in the last reference.

tables, Table II; (iv) samples of the systematic ITXRC "tables" for the
80 diperiodic groups in three dimensions, adapted from the three-dimen-
sional space groups by making the appropriate modifications; and (v)
an annotated list of references.

The full set of 80 diperiodic groups in three dimensions has been
bound separately and is available from the Circulation Manager, Bell
System Technical Journal, Bell Telephone Laboratories, Incorporated,
463 West Street, New York 14, N. Y. It is anticipated that these groups
will be included in a later volume of the International Tables.

III. TABLES OF THE 80 DIPERIODIC GROUPS IN THREE DIMENSIONS

In the sample tables, the usage and notation of the International Ta-
bles for X-ray Crystallography for the three-dimensional space groups
have been followed as closely as possible. Chosen directly from the
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OBLIQUE

SQUARE

RECTANGULAR,
PRIMITIVE

HEXAGONAL

Fig. 3 - The five nets.

RECTANGULAR,
CENTERED

ITXRC Tables for the 230 space groups, these tables carry the same
atom -position lettering. Letters of forbidden positions will therefore be

missing.
In the oblique and rectangular system, the ITXRC convention of list-

ing the symmetry symbols in the order a, b, c has not been retained.
Holser (1958,b) chose to permute these so that the first symbol referred
to the c axis. The justification for this is that in the plane groups the c
axis is unique and therefore should be put first as in, for example, the
tetragonal system (e.g., 4mm).

The possibility of confusion with the 230 three-dimensional groups
will probably be avoided in all cases by the context. However, to aid
in the distinction, the plane groups have been numbered, DG1, DG2, etc.
The same letters could be used to distinguish DGPmm2, for example,
from the three-dimensional C2' - Pmm2, but since, in all cases, the two
groups do in fact comprise the same symmetry operations, such a
distinction may be undesirable.

The order of the DG list is that of the ITXRC which, in turn, is the
Schoenflies order.

After this paper was in galley form a communication was received from
A. Niggli to whom a manuscript copy had been sent. Niggli favors plac-
ing before the lattice symbol (P or C) that symbol referring to the glide
plane or mirror plane which lies in the plane of diperiodicity and there-
fore occurs only once. This occurs in 37 of the 80 groups. This would be
another way of distinguishing these groups from the triperiodic groups.
The symbol proposed by Niggli is also listed in Table I.
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TABLE II- SYMBOLS USED IN THE 80 DG TABLES

Symmetry Elements

nirror

slide plane*

-fold rotation axis

4- and 6 -fold rotation axes

'-fold screw axis

enter of symmetry

-, 4- and 6 -fold inversion axest

enter, on 2 -fold axis

Diperiodic
Group
Symbol

nt.

a

n

b

3, 4, 6

1

3,4,fi

Symbol in the Symmetry Diagram

Normal to the Paper Parallel to the Paper

not allowed 
not allowed

0

A 4>

0

4-T47

not allowed

f

0

not allowed

4e-

* This operation combines reflection with translation of the length of the cell in the
lirection indicated by the letter. The diagonal glide, n, combines reflection with transla-
ion of # of the length of the cell in both the a and b directions.

t Combined rotation through 360°/n (for n) and inversion. Not equivalent to the two
perations performed separately.

IV. EXPLANATION OF TERMS AND SYMBOLS USED ON THE 80 DG SHEETS
(These are the same as those used in the ITXRC)

1. Top of sheet, left to right: Net -type, full Hermann-Mauguin di -
periodic group symbol, diperiodic-group (DG) number. The Hermann-
Mauguin symbol begins with a letter which indicates whether the net is
primitive or centered and is followed by symbols for symmetry elements
that relate to the c, a and b axis, in turn. The c axis is normal to the
paper in the diagrams, the a axis is directed toward the bottom of the
page, and the b axis is directed toward the right. In DG 46 (P 2/n
21/m 21/m), for example, the lattice is primitive, there is a two -fold axis
parallel to c with a diagonal -glide plane normal to c, a two -fold screw
axis parallel to a with a mirror plane normal to a, and a two -fold screw
axis parallel to b with a mirror plane normal to b. In DG 16 (C 11 2/m)
we have a centered net with a two -fold axis parallel to b and a mirror
plane normal to b.

2. Diagrams: On the right, the distribution of the symmetry elements
in the unit mesh. On the left, the distribution in the unit mesh of the
points in the "general position" (x, y, z and points symmetrically
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equivalent to it). Here, the value of x is taken, arbitrarily, to be a very
small distance and y, a slightly larger distance, except in the oblique
groups where the reverse choice has been made. The sign of z is indi-
cated beside the "point" (small circle). In both diagrams, the +x
direction (a) is down the page, +y (b) toward the right. A comma
within the circle indicates that that point is of opposite handedness to
the points without commas, as when derived from these by mirror plane
or inversion operation. Where two points are related by a mirror lying
in the plane of the paper, half of the circular symbol is marked with a
comma, half left blank.

Below the diagrams are the lists of all possible points in this diperiodic
group and equivalent point positions.

First column: Number of positions that are symmetrically equivalent,
given the first position in the series.

Second column: Arbitrary identifying letter, conventionally the same
as that first used by Wyckoff for this position.

Third column: The symmetry of each point in the group (if each
point lies on a two -fold axis, this will be "2"; if each point lies in a mirror
plane this will be "m"; etc.). This will always be "1" for the "general
position" which, by definition, is the position of a point not lying on
any symmetry element.

Fourth column: Coordinates of equivalent positions. Note that not
every group has "special positions." Special positions occur when a
particular value of x, y, or z results in a reduction of the number of
equivalent positions due to symmetry.

Fifth column: Conditions on hk which must be satisfied, for x-ray
reflection to occur when the point positions in column 4 are occupied.

(References on page 559)



Oblique

+O

O+
Number of positions,

Wyckoff notation,
and point symmetry

+O

P 2 1 1

O+

Co-ordinates of equivalent positions

2 e 1 x,y,z; I,g,z.

1 d 2 1,1,z.
1 c 2 1,0,z.
1 b 2 0,1,z.
1 a 2 0,0,z.

553

Conditions limiting
possible reflections

General:

h0: No conditions
Ok:

Special:
No conditions

DG3



Rectangular C 1 1 2/9n, DG16

-0 0-
+0

-0 0-
0+

0-

0+ +0

-0 0-
+0 0+

0- -0
+0 0+ +0 0+

Number of positions,
Wyckoff notation,

and point symmetry

0

0

Co-ordinates of equivalent positions

(0,0,0; 4,1,0)-1-

8 j 1 x,y,z; x,1i,z;

4 i m x,0,z; 2,0,2.
4 g 2 0,y,0; o,g,o.

4 e I Li,O;

2 b 2/m 0;1,0.
2 a 2/m 0,0,0.

;

554

Conditions limiting
possible reflections

0

-->

-->

General:
hk: h k = 2n
h0: (h = 2n)
Ok: (k = 2n)

Special: as above, plus
}No extra conditions

hk: h = 2n; (k = 2n)

}No extra conditions



Rectangular P 2/n 21/m 21/m DG4G

+0
+.0 0+

Number of positions,
Wyckoff nota-
tion,and point

symmetry

0+ +0
-0 0-
-0 G-

O+ +0

+0 0+
0+

0+
+0 0+

Co-ordinates of equivalent positions Conditions limiting
possible reflections

General:
8 g 1 x,y,z; - x, 4 - y,i; 4 - x, 4 + y,2; hk: h k = 2n

h0: (h = 2n)
2,y,z; x,g,z; .r, 4 ± y,2; x, 4 - Ok: (k = 2n)

Special: as above, plus
4 f na x,0,z; 2,0,z; 4 - .r, 4,i;
4 e m 01Y ,Z; 0111,Z; - y,
4 c LIM; LLO; LLO;

mm
2 a mm 0,0,z;
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no extra conditions

hkl: h = 2n; k = 2n

}no extra conditions



Square P 422 DG53

+0 0 -
-0

+0

o
0-+

-0 +
+o o°

0 +
-

-00

0 + -o
+0

+0 0 -
0 +0-

Number of positions,
Wyckoff notation,

and point symmetry
Co-ordinates of equivalent positions

Conditions limiting
possible reflections

General:
8 1 x,y,z; No conditions

y,x,z; y,X,z; Thx,z.
Special:

4 o 2 x,1,0; 2,1,0; 1,x,0; 1,2,0.

4 1 2 x,0,0; 2,0,0; 0,x,0; 0,2,0. No conditions
4 j 2 x,x,0; 2,2,0; 2,x,0; x,2,0.

4 i 2 0,1,z; 0,1,i; 1,0,z; 1,0,i. hk: h + k = 2n

2 h 4 4,4,z; i3,2.
2 g 4 0,0,z; 0,0,i.

}No conditions

2 e 222 1,0,0; 0,1,0. hk: h + k = 2n

1 c 42 1,1,0.
1 a 42 0,0,0.

}No conditions
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Hexagonal P3 DG65

o+

0+
Number of positions,

Wyckoff notation,
and point symmetry

+ o+

o+
Co-ordinates of equivalent positions Conditions limiting

possible reflections

General:
3 d 1 x,y,z; g ,x - y, z; y - x,x, z. No conditions

1 c 3 3,I,z.
1 b 3 1,1,z.
1 a 3 0,0,z.
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Special:
No conditions



Hexagonal P 6 DG73

+0 00+
+000+

Number of positions,
Wyckoff notation,

and point symmetry

+vr\ 0+
+00 0+

+

Co-ordinates of equivalent positions

6 d 1 ,y ,z

3 c 2 1,0,z;
2 b 3 1,I,z;
1 a 6 0,0,z.

- y,z; y - x,X,z;

y,y - x, z; x - y,x, z.

0,1,z; 1,1,z.
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Conditions limiting
possible reflections

General:
No conditions

Special:
No conditions
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