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A digital method of deflecting a light beam using n optical modulators
and n uniaxial crystals to provide 2" positions of the beam is described. The
input-output relations for one special configuration are derived. Optical
problems and limitations are investigated and, in particular, it is found that
the upper limit to the density of positions is about 106/ sq. in. Presently avail-
able modulators are considered, and it is found that a KDP modulator has a
power limitation above 1 me operation for a total number of positions of
about 70,000. Finally, the applications of the method as a semipermanent
memory, a PCM decoder, and a digital delay line are briefly considered.

I. INTRODUCTION

It is desirable to substitute a light beam for the electron beam used in
the class of devices of which the flying spot scanner and the 'Williams
tube are examples. In this class of devices the electron beam is used to
probe a suitable target and read or store information on it. The substi-
tution is desirable because a light beam has negligible inertia and can,
in principle, be deflected rapidly. The subject of this paper*. t. is a new

* The contents of this paper were discussed by the author at the Twenty -First
Annual Conference on Electron Device Research (IEEE), Salt Lake City, Utah,
June 26-28, 1963.

t A brief description of methods that can be used to deflect a light beam is given
by U. J. Schmidt (Schmidt, U. J., The Problem of Light Beam Deflection at High
Frequencies, Proceedings of the Symposium on Optical Processing of Information,
ed. Pollack, 1). K., Koester, C. J., and Tippett, J. T., Spartan Books, Inc., Balti-
more, 1963, p . 98).

I Note Added in Proof. An article on some aspects of digital light deflection
has recently appeared in the literature: see Kulcke, W., Harris, T. J., Kosanke,
K., and Max, E., IBM Journal of Research and Development, 8, 1964, pp. 64-67.
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method of deflecting a light beam. This method, which is called digital
light deflection, employs n optical modulators and n uniaxial crystals.
By applying appropriate two -level electrical inputs to the n optical
modulators, it is possible to deflect a light beam to 2" positions. This
deflection technique is inherently digital and the required optical modu-
lator inputs are binary signals.

In the present paper we shall consider:
(a) the basic principles of digital light deflection
(b) the address logic for a special configuration
(c) optical problems which limit the density of positions that can be

achieved
(d) presently available optical modulators and the speed limitations

which they impose on a digital light deflection system
(e) experimental results that have been obtained with a four -unit (16 -

position) digital light deflection system.

II. PRINCIPLES OF DIGITAL LIGHT DEFLECTION

2.1 The Binary Unit

It is well known that uniaxial crystals have the property of displacing
light of one polarization, called the extraordinary ray, while the orthog-
onal polarization, the ordinary ray, obeys Snell's law. If the two rays
are parallel upon entering the crystal, they will be parallel upon leaving,
but are not parallel inside the anisotropic medium.

Fig. 1 shows a uniaxial crystal oriented so that its optic axis lies in an
xz plane. If the electric field vector of a plane -polarized beam is in the

MODULATOR UNIAXIAL CRYSTAL

z

OPTIC AXIS LIES IN
AN XZ PLANE

Fig. 1 - The binary unit.
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x direction, it will be displaced by an amount proportional to the thick-
ness of the crystal. The exact dependence of the deflection on the crystal
thickness and orientation is given in Appendix A. If the beam is polarized
in the y direction, its electric field vector is normal to the optic axis, and
the beam will pass through the crystal in a straight line.

If a modulator precedes the uniaxial crystal and is capable of rotating
the plane of polarization from the x direction to the y direction, and in-
versely, under the influence of an input signal, then it is possible to
switch the beam from one position to another. Furthermore, an error in
the input signal will cause the beam to be split and light transmitted
simultaneously to the two positions, rather than to some other position,
as would be the case with an analog deflector.

The combination of optical modulator and uniaxial crystal, in Fig. 1,
is referred to as a binary unit. _Because the use of a multiplicity of binary
units will be considered next, subscripts identify the variables of a par-
ticular binary unit. For example, ti represents the thickness of the uni-
axial crystal in the ith binary unit and xi describes the state of the ith
modulator. If xi = 1, then the plane of polarization of the incident light
beam is rotated 90° by the ith modulator; whereas if xi = 0 the rotation
is zero.

2.2 The Deflection Bank

If a linearly polarized light beam is made to traverse a sequence of n
binary units of the type described, then a maximum of 2n positions of
the beam can be realized. Such a combination of n binary units is desig-
nated as a deflection bank, and if the deflections are all in the x direction,
as the x -deflection bank. The resulting pattern of deflections produced
by a bank depends upon the thickness and orientation of the various
uniaxial crystals in the bank.

A linear pattern of 2' positions, uniformly separated, can be obtained
with an n -unit bank if all uniaxial crystals have the same orientation and
if their thicknesses are respectively to , 2to , , . If the beam dis-
placement in the thinnest crystal is do , then the separation between
positions is also do . Each binary unit in such a bank is unique, as its
uniaxial crystal differs in thickness from all other uniaxial crystals. The
binary units in such a linear deflection bank may be arranged in any
order, but we shall confine any further discussion to a configuration where
the light beam successively encounters uniaxial crystals of thickness
given by

ti = 2"-ito ; i = 1, 2, , n. (1)
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This configuration will be shown later to have interesting and desirable
properties.

A three -unit example of the configuration that has been singled out
is shown in Fig. 2. The polarization of the beam before it enters the bank
is orthogonal to the optic axes of the uniaxial crystals and the thickness
of successive uniaxial crystals decreases by two. The two columns at the
right of Fig. 2 give the positions of the beam in binary form and
the modulator inputs which are required to deflect the beam to these
positions.

2.3 Address Logic

In this section, a derivation of input-output relations and a discus-
sion of code conversion are given for the special linear bank configu-
ration which was mentioned in the previous section.

2.3.1 Input -Output Relations

For the purpose of deriving the deflection as a function of the modu-
lator inputs, it is assumed that the polarization of the beam, as it enters
the bank, is orthogonal to the optic axes of the uniaxial crystals in the
bank. Then if none of the modulators are operated, the beam is unde-
flected by the bank. Since the displacement of the beam by unit i is de-
termined by the plane of polarization of the beam after it has passed the
modulator in unit i, whether deflection occurs is determined by the num-
ber of times the polarization of the beam has been rotated up to, and

BINARY
REPRESENTATION
OF DEFLECTION

X2X3

000- --- 000-
-001 - - -- 001-

010 ---- 011-
s--- -011 ---- 010- -

1 00---- 110-
-101-- -- 111-

- -110 -- 101- -
-111 ---- 100- -

A

INPUTS 'TO THE
MODULATORS

Fig. 2 - Three -unit deflection bank.
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including, unit i. If we designate the deflection at unit i as a binary vari-
able, di , then the displacement of the beam is 2' do if di = 1 and 0
if di = 0. The general formula for the deflection is

and

di = Sodd(i , X2 Xi)

dz = E 2n-i di do

(2)

(3)

where dx is the total deflection of the beam in the x -deflection bank. Soda
is the notation for a symmetric switching function and its value is one
if an odd number of the indicated variables have the value one, and zero
otherwise.' Thus unit i will add its displacement to the total if the polar-
ization of the beam has been rotated an odd number of times up to, and
including, the ith unit.

The use of (2) and (3) is illustrated by considering the three -unit bank
in Fig. 2. Suppose the input to the modulators is

x1x2x3 = 111

and we wish to find the corresponding deflection. According to (2) we
count, starting from the left, the number of ones appearing up to and
including the position under consideration. If the result is odd we enter
a one at the corresponding position of the deflection variable. Hence in
this case

did2d3 = 101.

Substitution of these deflection variables into (3) yields that the total
deflection dz = 5d0 .

In general, the addressing or input-output relations have not been
completely specified until the inverses of (2) and (3) are given. If we
desire to have unit i add its contribution to the total displacement but
not unit i - 1, or if we desire the displacement of unit i - 1 but not
that of unit i, then it is clear that the modulator in unit i must rotate
the plane of polarization of the beam. This fact is the inverse of (2) and
is expressed by

xi = Sodd(di_i , di) (4)

The inverse of (3) merely translates the binary number x1 , x2 , , x.
from base two to base ten.

X = E .

i=1
(5)
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The use of (4) is apparent if we again consider the three -unit bank in
Fig. 2. Suppose a total deflection dx = 5do is desired and we wish to find
the necessary inputs; then (4) is appropriate. First, however, (3) is used
to obtain the deflection variables di . Use of (3) gives in this example, as
we have seen before, did2d3 = 101. According to (4), if an entry in the
deflection variable differs from the preceding entry, the corresponding
entry in the modulator variable xi is a one. Since the last two entries in
did2d3 = 101 are 01, then x3 = 1. Proceeding in this fashion we obtain

xix.21-3 ---- 111

which is the expected result.
An interesting and desirable property of the configuration that has

been considered is that it is always possible to switch the beam to ad-
jacent positions by changing the state of excitation of just one modulator.
This is apparent for the three -unit bank in Fig. 2. To show this in gen-
eral, consider the highest numbered unit, j, for which the number of rota-
tions of the plane of polarization up to and including unit j is even.
Evidently, all the units following j add their contributions to the total
displacement. Since

2' - 1 2;--2 4_ 2J -J+1 + 20 (6)

we have only to change the state of excitation to modulator j to increase
the total deflection by the incremental distance, do . Also, consider the
highest numbered unit, k, for which the number of rotations up to and
including unit k is odd. Then unit k adds its contribution to the total
deflection, but none of the units following k do. Hence, by changing the
state of excitation to the modulator in unit k, we decrease the deflection
by do . The reasoning breaks down in the first case if the excitation is
100  0, where the number of rotations is odd for all units, and in the
second case if the excitation is 00 0. However, the total deflection is
then either a maximum or zero, and these two conditions are reached
from each other by changing the state of excitation to the modulator in
unit 1. Hence the input-output relations for this configuration are cyclic;
i.e., adjacent positions can always be reached from each other by chang-
ing the state of excitation to exactly one modulator.

2.3.2 Code Conversion

One can ask, what type of operation can be performed on the input
signals to further simplify the input-output relations? If the inputs to a
switching network are designated by the Wi's and the outputs by the
xi's, which are, as before, the direct inputs to the modulators, one type of
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code conversion could be

xi = Sodd( , Wi) (7)
It is known from (4) that

xi = Sodd(di_i , di); (8)

hence, from an inspection of (7) and (8) it is evident that

di = TV i .

Thus, the deflection and input variables are caused to be the same binary
numbers. If the Wi's are the outputs of a series of bistable multivibrators
which are triggered from a series of harmonically related sine waves, then
W1 , W2 , , Wn and hence d1, d2 , , d assume the binary numbers
in increasing order, and a linear sweep would thereby be effected.

Fig. 3 shows the details of one switching network which can be used for

W, o

w2

0/3o

OR
GATE

AND
GATE

Fig. 3 - Code conversion network.

0 Xi

0X2

0 13

In
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such code conversion. Two AND gates and one OR gate per binary unit
are required, with the exception of the input to unit 1, which requires
no alteration.

III. OPTICAL CONSIDERATIONS OF DIGITAL LIGHT DEFLECTION

3.1 Incorporation of Lens System

Up to this point, consideration has been limited to plane waves; how-
ever, a higher density of resolvable positions is achieved with focused
light. If an x -deflection bank and a y -deflection bank are incorporated
into the object and image spaces of a lens as shown in Fig. 4, it is possible
to focus an aperture into the image plane in a rectangular array of posi-
tions. The extra modulator which precedes the y -deflection bank in Fig.
4 insures that the input polarization to the y bank is in the x direction.
To accomplish this, the input to the modulator, T, must then be given
by

T = Seven (X1 , X2 , , xn)

where Seven is a symmetric function whose value is one if an even number
of the indicated x variables have the value one, and zero otherwise. Thus,
the deflection in the y direction, dx,
same manner as the deflection in the x direction, dx, is related to the x
variables. Hence the input-output relations developed in the previous
section apply to both the x bank and the y bank.

If there are n units in the x bank and m units in the y bank, then the
resulting pattern is a matrix of 2" X 2' positions. The incorporation of a

y

_z
SOURCE POLARIZER LENS

APERTURE

T Y1 Y2

INPUT TO RECTIFYING MODULATOR, T=SEvEN (xi, 12

Fig. 4 - Incorporation of x bank and y bank into lens system.

IMAGE
PLANE
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lens into the system causes the rays through the system to have a range
of angles with the z axis. Since the deflection in the uniaxial medium is
angle -dependent, the maximum angle must be kept small. The optical
modulators also limit the range of angles that are tolerable.

For simplicity in the following discussions, the distance from the aper-
ture to the lens is assumed equal to the distance from the lens to the
image plane. That is to say, the optical system has unity magnification.
This simplifies some of our considerations with little loss in generality,
and also unity magnification probably would be used in any practical
system.

3.2 Diffraction Effects

Because of the anisotropy of the uniaxial crystals and possibly the
modulator crystals, we require a high f number for the system. However
the minimum resolvable separation between spots is roughly proportional
to the f number. If the ratio of the focal length of the lens to the diame-
ter of the lens opening is 15, that is, f/15, then the maximum angle any
ray through the system can have with the axis of symmetry is 3/r
degrees. The following calculations are based on this compromise.

We define the crosstalk ratio to be

C = 10 logio [P(0)/ P(d)] (9)
where P(0) is the integrated intensity falling on a circle of radius a, the
radius of the aperture, centered on the image and P(d) is the inte-
grated intensity falling in a circle of radius a separated from the image
by a center -to -center distance of d. Fig. 5 shows curves of constant cross-

0.8

Z 0.6
(6*

w

0.4
cc
w

LL

0 0.2
U)
D

25

C

20

15

=10 DB

0
0.5 1 0 1.5 2.0

SPACING,

25 3.0

Fig. 5 - Radius of aperture vs center -to -center spacing at constant crosstalk,
f/I5 and 6943 A.
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talk ratio plotted with a as ordinate and d/2a as abscissa. Fig. 6 is a plot
of the loss from the integrated intensity admitted by the aperture to that
falling on a circle of radius a centered on the image. These data were
obtained by numerically evaluating the integrals derived in Appendix B.
Figs. 5 and 6 are given for f/15 and X = 6943 A. Plane wave illumination
of the aperture was assumed, and small angle approximations were made.

From the standpoint of crosstalk, no optimum seems to exist, although
we find that for a = 0.3 mil and d = 1.1 mils, the value C = 20 db re-
sults. Therefore we find that the spot density, D, can be made as high as

D - -
(1.1 X 10-3)2

0.826 X 106/in'

at f/15, and 6943 A. Fig. 6 indicates that the loss would be 11 db for this
case.

3.3 Refractive Index Effects

In general, a deflected beam passes through some of the uniaxial crys-
tals as an extraordinary beam; hence it encounters a different refractive
index from the undeflected beam which passes through all crystals as an
ordinary beam. As a result the deflected image of the aperture will be
formed at a different z coordinate in the optical than the unde-
flected image. For paraxial imaging, which is consistent with our assump-
tion of a fairly large f number, a calculation yields that this shift in the
image is given by

AZ = (Zd - Zo) = (-/t - 1) cot ,p[dx dy] ( 1 1)
nr2 no

where Zd is the z coordinate of the deflected image and Zo is the z co -

co

5
LIJ
0
z

U)

0

3

0-

5

0
0 0.2 0.4 0.6

a IN MILS
08 10

Fig. 6 - Loss vs radius of aperture at f/15 and 6943 A.
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ordinate of the undeflected image. Here z is positive in the image space
and is measured from the center of the lens. Also, dx and dy are the x
and y displacements of the deflected image. In (11)

n -
2

r2 27102ne2/ 02

(12)

(13)

and for the orientation ik of the uniaxial crystal which gives the largest
deflection (see Appendix A)

cot Ili = 2neno/(no2 - n:). (14)

The refractive indices of calcite at 589 mi2 are2

no = 1.65803, ne = 1.4864 (15)

hence from (11), (12), (13), (14) and (15)

AZ = 0.36 dx + 0.36 dy. (16)

We should note that since this is indeed the equation of a plane, we
have merely to tilt any target to be used at the appropriate angle to get
a sharp image at each of the possible positions of the spot.

IV. OPTICAL MODULATORS

Two possible ways of achieving 90° rotation of the plane of polariza-
tion have been investigated. A high specific rotation is possible in yttrium
iron garnet in a magnetic field due to the Faraday effect. The necessary
fields are quite high, however, for 90° rotation in a crystal of reasonable
thickness; moreover, YIG has high optical attenuation at the wave-
lengths for which the specific rotation is greatest.3

Due to the linear Pockels effect, a ZO plate of KH2PO4 can cause 90°
rotation with the half -wave voltage applied in the z direction if the in-
duced principal axes are at 45° to the x and y directions.4 Since KDP is
a ferroelectric, the half -wave voltage is directly proportional to the tem-
perature above the Curie temperature.

Fig. 7 defines the dimensions and orientation of a KDP crystal to be
considered for a modulator.

The clamped dielectric constant, loss tangent, and half -wave voltage
in the z direction are,5'6

2.27 X 102 -I- 4.7T
T - 119 (17)
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tan 6
8.42 X 10-i

T - 119 (18)

1'X/2 42( T - 119) volts. (19)

The stored energy and the dissipated energy per cycle are

= 7('17'),/.22 (20)

11.77 + 3.67 X 10-371 (7' - 119) X 10-7(ab/c) joules (21)

117dis = 271-117, tan 6 (22)

Erz.-i, 10.938 + 1.94 X 10-3TI X 10-6(ab/c) joules (23)

where the dimensions a, b, and c are the dimensions of the crystal in the
x, y, and z directions, respectively, and are understood to be in centi-
meters.

INDUCED
--PRINCIPAL

AXES

Y

.3

Fig. 7 - Dimensions of KH2PO4 modulator.

In the section on diffraction, we noticed that the center -to -center
spacing of the spots would have to be greater than about one mil. If
there are eight binary units in the x -deflection bank and eight in the y
bank, then a square array of 65,536 positions results, 256 on a side. If
the incremental spacing is one mil, then with some loss in intensity to the
spots on the edge of the pattern we could choose the diameter of the
lens opening, and hence a and b, to be 1 cm.

For this relatively small number of positions, and for a KDP modulator
as thick as 1 cm, the dissipated energy per cycle will be on the order of

one microjoule. To reduce the stored energy per cycle to this value, we
would have to cool the modulator to about 6° above its Curie tempera-
ture. Thus a KDP modulator has a severe power limitation for nominal
system capacities, if operation above 1 me is desired.

V. EXPERIMENTAL RESULTS

In order to examine the optical limitations of digital light deflection, a
four -unit system has been constructed. Fig. 8 is a pictorial diagram and
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GREEN 1.0 -MILINTERFERENCE APERTUREFILTER

0.050 -INCH
POINT
LIGHT

SOURCE
CONDENSING

LENS

85 -MM FOCAL CALCITE
LENGTH LENS .--/LENSES

POLARIZER , X,' X3 X4

HALF -WAVE PLATES

833

MICROSCOPE

Fig. 8 - Pictorial diagram of four -unit deflection system.

Fig. 9 is a photograph of the experiment. The essential elements are: a
50 -mil point light source which illuminates a 1.0 -mil diameter aperture,
a 65 -mm lens which focuses the aperture at unity magnification into the
image plane, a four -unit deflection bank, and a microscope for viewing
the real image of the spot in the image plane. The four -unit deflection
bank consists of four rotators and four calcite disks. The rotators were
constructed by aligning two disks of Bausch and Lomb quarter -wave
plastic. The rotators were mounted so that they could be rotated through
45°. In one orientation the principal directions of the so -constructed half -
wave plate were parallel to the two possible polarizations of the beam
and there was no rotation. In the other orientation the principal direc-

Fig. 9 - Photograph of four -unit experiment.
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tions of the half -wave plate were at 45° to the possible polarizations of
the beam, and the polarization of the beam was rotated by 90°.

The system was designed to give 16 positions of the 1.0 -mil spot, with
center -to -center distances of 2.5 mils. This design called for calcite disks
of 0.0266, 0.0452, 0.0903, and 0.1806 in. thick. The disks obtained were
0.020, 0.045, 0.090, and 0.180 in. thick, the largest error occurring in the

thinnest disk.
It was found that, for the maximum deflection of nominally 37.5 mils,

the dispersion of the calcite in the deflection was about 1.0 mil over the
visible spectrum. The half -wave plates were found to pass appreciable
amounts of the unwanted polarization at the red end of the spectrum,
and the dichroic polarizes used was known to be less efficient at the blue.
For these reasons, the cleanest spot pattern was obtained with a green
filter. It was further found that the relative intensity of the diffraction
rings increased appreciably above an f number of 22. Figs. 10 and 11 are
photographs of the spot pattern for various modulator settings with
white and green light, respectively. The nomenclature x1x2x3x4 has
the same meaning as that described above. These photographs were taken
through the microscope at f/22 and f/16 of the lens and camera respec-
tively, and the exposure times are indicated. The photographs show that
the error in the thinnest calcite disk causes a noticeable "pairing" of the
spots.

In order to provide a check on the diffraction analysis, we set the lens
opening to f/15 and used a 666 -ma filter. The spot pattern was enlarged
six times, and a 6 -mil diameter aperture was centered at the position of
the first spot in the new image plane. The light transmitted through this
aperture was then detected by a photomultiplier. With this arrangement,
:1:4 was alternated, and the resulting change in photomultiplier current
noted. These first two spots are "paired," as may be easily seen by in-
specting Figs. 10 and 11. We measured their center -to -center spacing in
the red light to be 1.04 ± 0.25 mils. For f/15, A = 694 and d = 1.04
mils, the predicted value of the crosstalk ratio is 12.8 db, whereas the
measured value was 10.2 db.

VI. APPLICATIONS

There are many functions that could be performed by digital light de-
flection. We shall briefly discuss three: a semipermanent memory, a pulse
code modulation (PCM) decoder, and a digital delay line. In these appli-
cations, deflection banks similar to those described above can be used.
The principal differences reside in the numbers of possible positions of
the beam and the type of target used.
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amp 11111.0 0140

X, , X2, X3, X4 IN
INTERMEDIATE SETTINGS

20 SECONDS

X X2, X3 , X4 = 0000
5 SECONDS

4IP

X2, X, X4 = 0101
5 SECONDS

835

, X2, X3, X4 = i010
5 SECONDS
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X, , X2, X3, X., =1000
5 SECONDS

Fig. 10 -Microphotographs of spot patterns with no filter.

6.1 The Semipermanent Memory

Digital light deflection may be used to provide access to a target where
information is stored in the form of a matrix of potential light paths.
We place a photomultiplier tube, or some other photosensitive device,
behind the target. When one of the possible combinations of inputs is
applied to the modulators, the beam falls on the position of the target
corresponding to that combination. If the target is transparent at that
position, then we get an output from the photosensitive device which
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X,, X2,X3, X4 IN
INTERMEDIATE SETTINGS

10 SECONDS

Xi, X2 , X, , X, = 0000
5 SECONDS

X,, X2, X3, X4 = 0101
S SECONDS

Xi , X2, X3, X4=1010
5 SECONDS

X1, X2, X3, X4 = 1000
5 SECONDS

Fig. 11 - Microphotographs of spot patterns with green filter.

might represent a stored "one." If the target is opaque, the photomulti-
plier does not respond and a stored "zero" is inferred. A simple target
could be a card with holes punched through it at some of the positions
in the matrix. Since we could substitute cards with different information
content, this is a semipermanent memory. In a memory application, we
desire a very high storage capacity, and hence a matrix consisting of very
many positions of the beam. We have shown in our section on diffraction
that a high density of positions is possible; however, it then becomes diffi-
cult to position the target accurately, and this is an inherent problem
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with the device. This application has the virtue that raw binary numbers
serve as inputs to the storage element, and these are the type of signals
most immediately available in computing machines.

6.2 The PC111 Decoder

In the application of digital light deflection to the decoding of PCM
signals, the target consists of an array of 2" light paths, where n is the
number of bits in a code group. The transparency of the light paths is
quantized so that the amplitude of the output signal is different for each
position. The target could be a positive photographic plate partially
exposed at each of the accessible positions. The deflection banks could be
conveniently used to expose the plate. The output of the photosensitive
element would then be quantized PAM, and we recover the original
analog signal by the usual method of passing the PAM signal through a
low-pass filter. The target positioning problem is alleviated in this appli-
cation because the capacity of the system is low.

6.3 The Digital Delay Line

Fig. 12 shows an s -deflection bank, quarter -wave plate, polarizer,
delay line, analyzer, and photosensitive element arranged in line. The
s -deflection bank enables us to displace the light beam in a digital man-
ner along the x axis. Since the output light from the deflection bank is
plane polarized, and the plane of polarization alternates from one posi-
tion to the next, we use a quarter -wave plate and a polarizer to fix the
plane of polarization that falls on the delay line. At time zero we generate

X DEFLECTION BANK

xi x2

t

V  z

QUARTER ,'
WAVE PLATE

POLARIZER

A A

TRANSPARENT
ULTRASONIC
DELAY LINE

ANALYZER

PHOTOSENSITIVE
ELEMENT

Fig. 12 - Application of digital light deflection to a digital delay line.
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an ultrasonic wave in the delay line. In the absence of such a disturbance,
the delay medium is transparent and isotropic, but as the disturbance
passes through the position of the light beam the strain birefringence
causes the light beam to be elliptically polarized. The analyzer is crossed
with the polarizer and hence only transmits light to the photosensitive
element when the ultrasonic wave passes through the position of the
beam. Then we get an output from the photosensitive element. Thus the
time at which an output results is proportional to the displacement of
the beam, which in turn is determined by the state of the input variables.
Thus digital light deflection can be used to make an electrically variable
digital delay line. We should note that for a maximum delay line length
of one inch the range of the device would be approximately 10 //sec, since
sound travels in solids at roughly 0.1 in. per Asec. The time resolution
would depend on the bandwidth of the delay line and the shape of the
amplitude over the cross section of the light beam.

VII. CONCLUSIONS

A simple method of deflecting a light beam in a digital manner has been
demonstrated. The method has the virtue of requiring only n two -level
inputs for a set of 2n possible outputs, and thus the inputs to the deflect-
ing mechanisms are binary signals. Deflection rates above about 1 me
and with reasonable power requirements will depend on the development
of optical modulator materials substantially more efficient than KDP.
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APPENDIX A

Fig. 13 shows the angles and directions in the uniaxial crystal with
which we shall be concerned. The faces of the crystal are normal to the
z axis; the optic axis of the crystal lies in an xz plane and at an angle 0
with the z axis. The incident light is assumed to be a plane wave propagat-
ing in the z direction. In general the beam will be split into the ordinary
ray, which passes through the crystal in a straight line, and the extra-
ordinary ray, which is displaced.

Fig. 14 is a diagram showing the geometrical configuration of the wave
normal, 8, and the optic axis, c. We have chosen to solve the more general
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EXTRAORDINARY RAY
A
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Fig. 13 - Angles and directions in uniaxial crystal.

Fig. 14 - Wave normal and the crystallographic direction in the uniaxial
media.

problem since the added complexity introduced is not great. In the uni-
axial medium, we have'

Va = V b = Vo = c/no

and

Vc = Ve = .

Making use of Fresnel's equation of wave normals,
2 2 2

Sa Sb Sc
0,

IT 17.2 V Vb2 Vp2 Vc2

where Vp is the normalized phase velocity, we find the two solutions
v p2 02

V
p2 v 02 cos2 + v sine

(24)

(25)

(26)

(27)

(28)
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Born and Wolf give the relations between the components of the ray
vector and the components of the wave normal

2

tk - sk (V 2 ± ( 29)
V,V, P

vp2 Vk2

where

g2= T72( Vr2 - V:)
1 (30)

2 2

Sa Sb Sc

\ Va2) + (Vp2 Vb2) + (VP2 Ve2)

Substituting in Vp2 = Vo2 we find that

2 = 0
Vp2 v02

tk = Sk

(31)

(32)

(33)

Thus, for the ordinary ray, the ray vector and wave normal coincide.
If we substitute our second solution for the phase velocity into (29) and
(30) we find

g2 (Ve2 V02) 2 sin2 e cos2 e (34)

v
TT

e 01,1
4 ±VO4 cos2

Ve2 Sin2 0 + V 02 cos2
(35)

r Ve2 (Ve2 Vk2 ) sin2 0 ±
22 2

COS2 01
tk TT I

(36)
-TTvprrL Ve2 sin2 e+ Vo2 cos2 - Vk2

This is as far as we care to carry the general case. For our more special
consideration, let the b axis of Fig. 14 coincide with the y axis of Fig. 13;
of course, the c axis is the optic axis, and the wave normal g points along
the z axis. Thus s lies in the ac plane so that

sa = sin 0, sb = 0, Sc = cos 0. (37)

If io is the angle between the ray vector and the c direction, then by use
of (36), we find

tan so = (Ve2/V02) tan 0 = (n02/nee) tan 0. (38)

Then the tangent of the angle between the ray vector and the z axis will
be

tan co - tan 0tan 1k = tan (io - 0) =
1 + tan so tan 0

(39)
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(up -

Also, (35) becomes

- 11tan0
nO2

1 tan20

1 ! , 1

o4

r,

n
S 112 U COS- 0

Vr2
1

=
V7-2 1 7, 1

Sill- 0 + COS 0
n 0

hence

(40)

(41)

2

1
n-

tan2 0
nr2 =

/4
(42)not-1 -tan20

no- 74'

where Tir is the refractive index for the extraordinary ray. By setting the
first derivative of tan with respect to tan 0 equal to zero, we may find
the orientation which gives the greatest displacement of the extraor-
dinary ray. This results in

tan n,= - (43)
no ,

2 2

tan 4/ - ne
(44)

2neno

2no2ne2
nr = (45)no2 4.. 742.

If t is the dimension of the uniaxial crystal in the z direction, then the
displacement, d, of the extraordinary ray will be

d =

(2 2

n°
net

(46)
2neno

if the crystal has the optimum orientation.
We may note that in the negative uniaxial crystal, where no > ne ,

the extraordinary ray propagates away from the optic axis, whereas the
situation is reversed in the positive crystal.

APPENDIX B

The light incident on the aperture, of radius a, is assumed to be a plane
wave with wave number k = 27/X and amplitude A. The distance S
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from an element of area in the aperture to a point, P, on a sphere of
radius R is expanded in a Taylor series expansion about the radial dis-
tance, p, from the center of the aperture (and sphere) to the element of
area in the aperture.

S = R - p sin 0 cos c13 . (47)

Here 0 is the angle between the radius vector to the element of area on
the sphere and the cylindrical axis, Z; and (1) is the angle between the
plane containing R and the cylindrical axis, and the radius vector to the
element of area in the aperture. Fig. 15 shows these elements in their

-
e

R SIN/1/

P, ON SURFACE OF SPHERE
OF RADIUS R,WITH
CENTER AT 0 IN
OBJECT PLANE

Z AXIS

Fig. 15 -- Angles and dimensions used to determine E(0).

proper relation to one another. If the incident light has an electric field

vector of the form

E = A e-ik (48)

then the electric field intensity on the sphere as a function of 0 is, for
small 0

E(0) = k few fa A exp [-ik(R - p sin 0 cos 43)]
p dp d4). (49)

27r o o R - p sin 0 cos 43

Since p sin 0 cos 4 « R, only the phase contribution is significant.

E(0) - kAe-ikR
27R J

fa
p exp (ikp sin 0 cos (1)) d p dcI). (50)

o

Equation (50) is a standard integral with the value
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ka2Ae-ikR Ji(ka sin 0))E(@) -
R ka sin 0 (51)

Since the case of unity magnification is to be considered, it is assumed
that the only significant function of the lens would be to cause the image
and object spaces to be mirror images of each other if there were no stop
at the lens. Thus, we have a section of a spherical wave to consider with
a known phase and amplitude distribution. Fig. 16 shows the angles and
distances under consideration. The angle 0 retains its original meaning
and 4) is once again a dummy variable; p now is the distance from the

SPHERE OF RADIUS R,WITH
CENTER AT CY IN IMAGE PLANE

Z AXIS

Fig. 16 - Angles and dimensions used to determine E(p).

center of the image to the point in the image under consideration. Here
is the distance from an element of area on the sphere to the point, P,

in the image plane, and is expanded about p.

S = 1? - p sin 0 cos 4) + (52)

Hence the intensity at p is

E (p) =
k 16"' 2r E(0) exp [- ik (R -p sine cos 40)]

R sin 0 de c/4). (53)
2r Jo Jo R - p sin 0 cos 4)

The approximation is once again made that p sin 0 cos 40 <<

kRe-i" Tem 2E(p) = E(0) cxp (ikp sin 0 cos 43) sin 0 d0 d(i) (54)
27 J0

f

and, putting in the previously determined expression for E(0),
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T
E(p) = (lca)2 Ae-i2kR

fon, 2' Ji(ka s' 0)

0 J. ka

 exp (ikp sin 0 cos 4)) dB d(13

and integrating first over 4D,

(55)

on,

E(p) = (ka)Ae-12kR Ji(ka sin 0),10(kp sin 0) dO. (56)

The integral in (56) is not available analytically; hence we resort to
numerical procedures. The f number of the system and Om are intimately
related,

and for small angles,

1

tan Om =
F

1

Om 4F.

(57)

(58)

Since we wish to evaluate the crosstalk ratio, it is also necessary to
integrate [E(p)]2 over a circle of radius a located in the image plane.
Fig. 17 defines the center -to -center separation as d and the local cylin-
drical coordinates p' and co. We find by the usual geometrical considera-
tions that

p = [d2 - 2 dp' cos (p (59)

However, no approximations are in order here, as p' and d are of the same
order of magnitude. Therefore the integral

P(d) = f 2' fa p'E2([d2 - 2dp' cos co dp' dcc (60)
o o

results in the power falling on the circle of radius a and being displaced
from the center of the image by distance d. The crosstalk ratio, C, will

Fig. 17 - Circle of integration for determining crosstalk ratio and loss.
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be defined as

C = 10 logio (4) db. (61)

Also, we are in a position to evaluate the loss through the system
2 2

L = 10 logio (62)

that is, the db ratio of the power admitted to the system by the aperture
to the power falling on a circle of radius a centered on the image. The
amount of light lost from that emitted by the source depends strongly on
the type of source and focusing at the aperture. If the source is focused
on the lens system in the absence of the aperture, then our equations are
still good approximations, although such illumination would not be
plane.
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Perturbation Methods for Satellite Orbits
By F. T. GEYLING

(Manuscript received October 14, 1963)

The literature in astrodynamics abounds with perturbation techniques
for satellite orbits. Various formulations have been generated in terms of
orbit elements, the satellite position and velocity vectors, or combinations
thereof. The computational effectiveness of any perturbation scheme depends
largely on the definitions used for the dynamic state variables. Some meth-
ods are aimed at long-range predictions and orbit lifetime studies, others
at short-range predictions for guidance. This paper may serve as an intro-
duction to this field for the nonspecialist, in that it reviews the classical
variation -of -parameters technique and discusses several engineering analy-
ses that were generated in the post -Sputnik era. It also points to some con-
nections between these relatively simple approaches and more elaborate
methods of celestial mechanics. Thus it may contribute toward a comparison
of several "professional" approaches whose relative merits are often de-
bated among experts.

I. INTRODUCTION

This paper is a discussion of various perturbation techniques for
satellite orbits which were investigated by the author and his colleagues
during the past few years. The effort began with a tutorial "orbit
seminar" several years ago and it seemed appropriate to collect some
of this material here as a companion paper for R. B. Blackman's "Meth-
ods of Orbit Refinement."

It is a symptom of our times that aerospace engineers are taking a
new look at the established methods of dynamical astronomy. The
orbital geometries and vehicle characteristics encountered with arti-
ficial celestial bodies often require departures from the formulations of
classical astronomy and, in fact, have stimulated several new (or at
least independent) approaches during the post -Sputnik era. The number
of publications in this time has been formidable, and in many discus-
sions the names attached to various formulations serve as passwords
for the ideas they represent. The uninitiated find themselves at a loss

847
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concerning the methods that stand behind these names, their degree of
originality, and their relations with each other.

In view of this situation the following article is addressed to two kinds
of readers:

(i) The newcomers in the field of orbital mechanics who seek a tutorial
survey and an introduction to some of the literature. A bare minimum
of definitions is given for their benefit; a discussion of basic order -of -
magnitude relations and certain intuitive notions which would strengthen
the beginner's grasp of the physical problem had to be omitted for lack
of space but can be found in the literature.1'2

(ii) The specialists in orbital mechanics who have not had occasion
to correlate some of the better-known contributions in the literature
and who may find this work a step in that direction. Typical issues
in such comparisons are the choice of coordinates, the accuracy and
elegance achieved by various transformations of the variables, and the
precision obtainable from series expansions of the solution in terms of
various small parameters.

The simultaneous need for conciseness of presentation and discussion
of certain analytic detail presents somewhat of a dilemma. As a com-
promise, much of the development between the explicitly quoted re-
sults is covered in a descriptive way and the reader is referred to the
literature for all standard derivations.' -4 Most of our discussion con-
cerns orbits of moderate eccentricity, which are representative of satel-
lite missions. However, in many places an extension to the highly ec-
centric orbits of space probes follows readily.

We begin by devoting Section II to a statement of the fundamental
equations of motion, the definition of so-called orbit parameters, and a
description of various disturbing functions. Section III summarizes
the classical treatment of satellite perturbations as gradual changes
of the orbit parameters. (From a general point of view, this formulation,
due to Lagrange, is derivable from the canonical systems governing the
satellite problem.) It is hoped that this covers a sufficient amount of
standard material to introduce the concepts and the parlance of orbital
mechanics.

In Section IV we examine several perturbation methods for aero-
space applications which are based on variously defined spherical and
moving Cartesian coordinates. This includes the well-known contri-
butions by Blitzer et al., Anthony et al., and Roberson. They could
serve as an introduction to the discussion of more elaborate formula-
tions by King-Hele et al. and Brenner et al. In Section V we treat one
more formulation in this general category which was specifically de-
signed for guidance studies.
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A logical continuation of this paper would cover the methods of
Breakwell et al. and Diliberto, Kyner's averaging technique, and the
one suggested by Struble. Ultimately the hierarchy of perturbation
methods leads to the Hamilton -Jacobi techniques expounded by Brou-
wer, Garfinkel, and Vinti. These represent a very popular approach to
higher -order perturbations and the coupling between simultaneous
disturbances of satellite orbits.

II. PRELIMINARIES AND DEFINITIONS

We remember that the underlying phenomenon of undisturbed satel-
lite motion (in a central force field, i.e. around a spherically symmetric
body) is Newton's law of inverse square attraction. In a Cartesian co-
ordinate system this spells out to be

= - (Gmcx/r3) (1)

= - (Child/ft') (2)

= - (Gmez/r3) (3)

where G is the universal gravitational constant, me the central mass,
and we shall usually take Gm, = le for brevity. me shall be the mass of
the earth in all our discussions. [Strictly speaking, formulas (1) to (3)
should show the sum of me and the satellite mass instead of just me .]
r is the distance from the origin, and dots indicate time derivatives.
The x -y plane is usually taken to coincide with the equator, while the
positive x axis points to the vernal equinox. The above equations
simply state that each acceleration component is due to the correspond-
ing component of the gravitational attraction - the minus signs indi-
cating a direction toward the origin. The solutions of (1) to (3) are
the well-known Kepler orbits - ellipses, parabolas, and hyperbolas.

Such orbits can be conveniently described by a set of six parameters
that give the plane of the motion, the shape of the orbit and its orien-
tation in that plane, and the timing of the satellite motion along this
path. These quantities may be considered the constants of integration
for a solution of (1) to (3). A standard set of such orbit elements for
elliptic motion is illustrated in Fig. 1. They are:

a, the semimajor axis,
e, the eccentricity,
co, the argument of perigee, (4)
i, the inclination,
11, the nodal angle, and
T, the time of perigee passage.
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Fig. 1 - Standard set of orbit elements for elliptic motion.

The last quantity establishes a time scale for the entire motion in that
it serves as "epoch" and fixes one particular passage through perigee.
If the satellite has swept out the angle f since that passage, the elapsed
time is given by

t- T= (a3/k)4 {2 tan-' [(1 e)1 tan
1 e 2

e2)1 sin f
1 e cos fj o

where t is the time pertaining to the position 0'. f is known as the true
anomaly and (5) holds for all values of this angle. If we set f = 2r
this corresponds of course to a full revolution around the orbit, and the
elapsed time interval is

(5)

= 2r (cta/k)1, (6)

which is known as the anomalistic period. The instantaneous position
0' can also he defined in terms of other angles, the so-called eccentric
anomaly E or the mean anomaly /II, which will be defined later. They
can be related to time in similar ways.

The parameters in (4) represent a typical set of orbit elements. The
position and velocity vectors at some epoch are an alternative suggested
by (1)-(3). Most astrodynamical theories use variations and combina-
tions of all these, but from the general standpoint of analytical dynamics
most sets of six parameters (if they are independent of each other) may
be regarded as sets of canonic variables. Before we proceed to detailed
formulations we examine briefly the various physical disturbances which
cause these parameters to change in time.
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2.1 The Effect of Extraterrestrial Gravitation

If we consider the attractions from masses other than the earth we
speak of "extraterrestrial" gravitation. In the presence of a disturbing
body P, (1) becomes

G774X - XP + Xz''=
7.3 7.i .7 3

where

(7)

m = the mass of P,

rip = [(x - xp)2 (y - yp)2 (z - zp)14,
the distance from the satellite to P, and

[xp2 zp21;,

the geocentric distance of P.
The corresponding equations for g and 2 are obvious. Now it is often
convenient in analytical dynamics to express the disturbing terms in

g, 2 as partial derivatives (Wax), (aR/ay), (aR/az) of a disturbing
function R. For the present case we would have

= Gm, [ 1 xx y?/ zzp]
(8)r 7.7'3

as can be easily verified.
We see that the ratio of the second term in (7) to the first is of the

order mpra/mer' = K. Typical values for K in the planetary system are
equal to or less than 10'. Its smallness is vital to the entire rationale of
a perturbation technique.

2.2 The Effect of the Earth's Oblateness

The potential field for the nonspherical earth can be represented to
various levels of accuracy by a series of spherical harmonics. If we
restrict ourselves to terms with rotational symmetry about the polar
axis, we obtain the following disturbing function

R - - 3 sine co)
Ge2m7'3R

3

H R 3±
r

(3 sin (p - 5 sm co) + 

where

(9)
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R = the earth's equatorial radius,
so = the geocentric latitude of the satellite,

J = 1.6239 X 10-3, and
H = 6.04 X 10-6.

This two -term series is sufficiently accurate for our purposes.

2.3 The Effect of Atmospheric Drag

The resistance encountered by a satellite from the atmosphere is a
subject of considerable uncertainty and continued research. For one
thing, the density of atmospheric gases as a function of geographic
location, altitude and time is not well known; moreover, the laws of
interaction between a satellite and this rarefied medium are incompletely
understood. Doubts exist as to the transition from a continuum be-
havior of the atmosphere to the gas -kinetic regime and the extent to
which electric interactions play a role. Nevertheless, the classical drag
law yields useful results in many cases and we shall concentrate on it.
We let

FD = - (C DA /2)pv.2 (10)

where

FD = the total drag force on the satellite
A = the frontal area of the satellite

CD = the drag coefficient
p = the atmospheric density
v. = the satellite velocity relative to the atmosphere.

The monotonic decay of p with altitude covers approximately ten
orders of magnitude within typical satellite altitudes and remains the
subject of extensive study. The relative velocity va is simply the difference
between the satellite's inertial velocity vector v(±, ?,z) and the rotational
velocity of the atmosphere V = iv cos co, where a can usually be taken
as the earth's angular motion (the diurnal rate) and V always points due
east. One is frequently justified in employing an approximate vector rep-
resentation of (10) :

FD (C DA/2) p v(V - v). (11)

For typical earth satellites this force is at least two orders of magnitude
smaller than the central attraction, i.e., K < 10-2.
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2.4 The Effect of Radiation Pressure

As the reader knows, solar illumination exerts some pressure on
every satellite. The magnitude of this force depends on the reflectivity
and geometry of the satellite and, strictly speaking, on the distance
from the satellite to the sun. It frequently suffices to represent this dis-
turbance as a constant force /3 per unit mass and to note that it is many
orders of magnitude smaller than the central gravity force.

III. PERTURBATIONS IN THE ELEMENTS

The six orbit elements [see (4)] were constants for the case of central
inverse -square attraction. However, if any additional forces act on the
satellite these parameters will be subject to change. To emphasize their
time dependence we might write them as a(t) , e(t) etc. In fact, their
numerical values at any time t describe the ellipse the orbiting body
would follow if all perturbations vanished as of that instant. This
trajectory is obviously tangent to the actual flight path at t and is
known as the "osculating" orbit. The relation between the satellite
position in the osculating orbit and in the x, y, z frame follows from the
geometry of conic section trajectories:

a(1 - e2)x -
1 e cos f

[11 cos f /2 sin f]

a(1 - e2)
Intl cos f 7/22 sin f] (12)

1 e cos f

a(1 - e2)z -
1 e cos

f[n1 cos f n2 sin .11

where 11, /2 , n2 are functions of i, w, and S2. Hence x, y, z are repre-
sentable as functions of a, e, i, w, SI, f. [As mentioned with (5), we
could also work in terms of the independent variable E or 111 instead
of f.] However, the complete definition of the osculating orbit also entails
that

x df
x = aw

(a,e,i,w,&2,f) I
df# = ay

(a,e,i,c0,0,f)

az dfI = -q (a i,cop,f)»e iii

(13)
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where a, e, i, w, SI, r are treated as constants. In other words, the ve-
locity as well as the position in the osculating orbit are representative
of the actual motion. This is the full extent of the "condition of oscula-
tion."

A large part of classical celestial mechanics has been based on the
concept of osculating orbits, and during the post -Sputnik era Lagrange's
classical treatment of the perturbations in these elements has been
exploited ad ultimo. Its inclusion in this article is justified mainly by the
need for completeness in an introductory survey such as this. It also
serves as a point of reference for the nonclassical "perturbations in the
coordinates" in the next section and for the Hamilton -Jacobi techniques
frequently used by astronomers.

In essence, the Lagrange method consists of transforming the basic
equations

Gmex aR
7.3 ax

Gmey aR- -
r2 ay

anteZ
r3 az

(14)

to six first -order equations in the orbit elements and approximating
their solutions by quadratures. Remembering that these parameters
represented the constants of integration for the Kepler problem, (1)-
(3), we note that the transition to a(t), e(t), is nothing but La -
grange's "variation of constants" designed to accommodate the terms
[on/a(x,y,z)] in (14). In the process of transforming (14) by means of
(12) we avoid the occurrence of second derivatives of the orbit elements
by demanding that

dx _ ax .- ,

ax . ax . ax ai ax ax ax-+ = o (15)
as ae z di aw aft Or

etc. This of course results in the reduction of the system of three second -
order equations (14) to six first -order equations. Equations (15) are
simply a restatement of (13), the condition of osculation.

In principle, (14) could be transformed by a straightforward substi-
tution of (12). In order to simplify the algebra, however, one may
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symmetrize these equations to a form where all the labor reduces to the
evaluation of such quantities as

(at at at at
a««; 8a;a«;aa_

; i

(ay ay_ ay ay

aai 8a;Oa; aai
az az az az = [ai
aai aai ax; aai

(16)

with i, j = 1 6.
The shorthand symbol that we have adopted for this expression is
known as a Lagrange bracket, and a; and ai stand for any two of the
orbit elements. These brackets have the properties

[a, , a,] = 0, , ai] = - [a, , ad (17)

and

dt
[ai , = 0,

which make them useful devices in numerous manipulations of analytic
dynamics. With their help the equations (14) become

2a2 or?d = -
Tr

(18)

a(1 - e2) afl 1 1 -e2 aRe = - (19)
Ice a T e ka 8(.4

di 1 (20)
dt [ka(1 - e2)]1

cos i -

stt -
aR (21)

[1m,

1

- e2 Ai sin i 8i

- (1 - e2 y 1 [8 e cot i (22)w
ka e ae 1 - e2 ai

and a corresponding equation for T which will be discussed a little later.
The five equations given here describe the changing geometry of the
satellite orbit. All six equations together are known as Lagrange's
planetary or "variational" equations.

In (18)-(22) we assumed that the perturbing forces were conserva-
tive, i.e., expressible as (a/ax), (a:/ay), and (an/az). In some
situations, as for example in the case of drag, this is not so. Under these
conditions it is convenient to represent the disturbing force by com-
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ponents S, T, N which are in the radial direction, the direction of in-
creasing true anomaly, and normal to the orbit plane, respectively. The
derivation leading to (18)-(22) can be repeated with the appropriate
modifications to yield a set of differential equations with S, T, N in the
right-hand sides. For example

3a
k(1 e2)

ci = 2 [S e sin f T (1 + C cos f)], etc. (23)- ]
These are known as Gauss's form of the planetary equations. We note
that they contain the true anomaly as an independent variable. More
will be said about this presently.

It is possible to show that the planetary equations, especially in the
last form, lend themselves to an alternative derivation which appeals
to intuition. It is based on the idea that any continuously acting per-
turbation may be interpreted as a sequence of infinitesimal impulses
whose cumulative time response can be represented by a convolution
integral. This approach leads to equations like (18)-(23) without the
manipulations involving Lagrange brackets.'

Inspection of (18)-(22) shows that their nonlinear right-hand sides
preclude an exact solution except for very special forms of R. Unfor-

none of the perturbations encountered in nature fall into this
category. One therefore resorts to a process of successive approxima-
tions.

Assuming that all disturbances represented by /7 are small in relation
to the central attraction (i.e.,

\a (x,y,z)f / r(0)3

as discussed in Section II) we consider the solution for the undisturbed
motion, i.e. the Kepler problem, as a "zero -order" approximation to the
actual case. Let its parameters be denoted a(°), e(°)  . If we insert
them into the right-hand sides of (18)-(22), these equations reduce to
quadratures yielding a first approximation to the effects of R on the
orbit. These results are denoted am, e(1)  and known as "first -order"
perturbations. We observe that (a(1)/a(°)), (e(1) / e(°)), -  = 0(x). In prin-
ciple, this process can be repeated indefinitely by substituting a(n-1)  
into the right-hand sides to integrate for a(") . The limit is usually
reached when the results for a, e  have settled or human endurance
is exhausted. (The latter constraint may be eventually eliminated by
computer routines for symbol manipulations.) The convergence of this
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process to the exact solution has been established by Poincare and is
of fundamental interest to the mathematician. Suffice it here to say
that the "smallness" of perturbations discussed in Section II should be
such as to justify the iterative process.

When the right-hand sides of (18)-(22) are written out explicitly
for any particular case, they tend to become awkward because a trans-
cendental angle -time relation like (5) enters. Since the geometric de-
scription of a perturbation R (or S,T,N) usually involves an angle like
one of the anomalies very directly, it is convenient to use one of them
as independent variable. The time relation which interconnects the
anomalies for an osculating orbit (Kepler's equation) can be stated in
terms of the eccentric anomaly E, the true anomaly, f and the mean
anomaly M as follows:

e(1 - e2)1 sin fT- e sin T= 2 tan -1 Ri -
e

tan fl -
2 1 e cos f (24)

= (k/ce)1(t - r) = M.

This may serve as a definition of B and M. The quantity (k/a3)1= n
is referred to as the "mean angular rate."

If we work in terms of the true anomaly, we can write the left-hand
sides of Lagrange's equations as

a - -da
d-f
dt '

etc.f
where an expression must now be found for f. If we choose to consider f
as the true anomaly in some osculating orbit valid at time to, then it
can he related to time by (24) in terms of the unperturbed elements
a(0) a0 , e(0) eo etc. We call it an "unperturbed" anomaly and
designate it by f")). From (24) one finds

!co) [ k
31 (1 ± eo cos f(0))2

ao (1 - Cu -)

which transforms (18)-(22) to

da")
dfo) 2 [a0(1

- 0)2)31
1e

(25)

a
eo cos fro)) -2 , etc. (26)

When integrated, these expressions represent first -order perturbations
in terms of the unperturbed anomaly, i.e., a(1)(P)), etc.

They suggest the following procedure for generating a first -order
satellite ephemeris: if to is the starting epoch we evaluate a(1)(fm) etc.
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between the limits fo(°) and Am. The time Li at the upper limit follows
from (24) in terms of a0 , eo . Using t1 and al = ao aa)(r),
etc., in (24), we find , the true anomaly for the new osculating orbit.
Changing the notation from ai to al , etc., and to fi(°), we can now
repeat the procedure for the next integration interval. The "updating"
of orbit elements in the right-hand side of (26) amounts to a partial
allowance for higher -order perturbations, while the recalculation of f
at the beginning of each step represents essentially a first -order pertur-
bation of the true anomaly.

Instead of doing the latter by discrete increments, we can work with
a "perturbed" anomaly by differentiating (24) with proper allowance
for the time dependence of a, e and T. Using (25) one finds that

df f
dro) f(0) = 1 - 2(1 - e2)4a2 (aR\ a(1 - e2)2 aRk(1

e cos f)2 as ek(1 e cos f)2 ae

l (1 - e2) [
( + cos f) tan+

k4(1
1

e cos f)3 2

- (2e2 - 1) sin
f(1 - e2)e sin f cos fl

1 e cos f

X
[a(1 - e2) OR

+
(1 - e2V

ke Or c ak oc. 0

where (aR/aa) means that R is to be differentiated with respect to the
semimajor axis wherever the latter appears explicitly but not when it
is contained in n. This avoids the occurrence of a term with (t -
An expression analogous to (27) can be derived in terms of S,T,N; see
for example Ref. 7, p. 4. Now, it is immaterial in a first -order approxi-
mation such as (27) whether we consider f or f(0) as the independent
variable in the right-hand side. Let us assume the former and use the
symbol df/dr) = v(f). Then (26) becomes

dam -2 [a07 (1 - e02) 31 -2 aft+(1 eo cos f) - , etc.
df v k3 aro

The integration procedure now runs between consecutive limits fo ,
, f , with updating being required only in the orbit elements.

The corresponding epochs t; are of course computable by substituting
(11, e;  f; into (24). The relative advantages of integrating the per-
turbative equations in terms of f (0) or f depend on the problem at hand.
As we shall see later, the choice between an unperturbed or perturbed
independent variable is available in most perturbation methods.

Up to this point we have restricted our discussion to the first five

(27)

(28)
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orbit parameters, which describe the geometry of the osculating orbit.
Wherever T appeared, as in (24), we assumed that it would be avail-
able from a suitable sixth equation. This parameter is needed to corre-
late the independent variable, such as f, with time.

An equation for T, corresponding to (18)-(22), can be obtained by
the process outlined before, which yields

2a2 aft. a(1 - e2) aft
7 = k as ke ae

(29)

Sometimes it is convenient to work with the slightly different parameter
x= -nr. The differential equation for it reads

= -2(a/k)i e2 aR
as e(alc)i ae (30)

[A superficial comparison of these two equations gives the startling
impression that (30) is obtained by multiplying (29) with -n, thus
neglecting then term that should appear. This term is really absorbed
in the difference between (aR/aa), andjaR/aa)x , as implied by the
two equations; i.e. partial derivatives of R with respect to the semimajor
axis, holding T or x constant as required.]

One could transform (29) and (30) to f (or E) as independent
variable and pursue the quadrature as we did before. However, since
af?/aa involves af/aa (or aE/aa), we notice from (24) that this in-
troduces the factors tali"' {[(1 - e)/(1 + e)]1 tan (f/2)) (or E)
into the integrands for 7") (or x")). They can he quite awkward.

Several devices have been developed to circumvent this difficulty.
According to one approach we transform (29) from T to ill = n(t - 7).
The necessary compensating factors arise thereby which eliminate all
aperiodic terms. Transforming the integrated equation back to T, we
have

X3/1 - ea2)3 ilo)
= Tono + ti()ii - n0) ± [11

{
k3k-1

(1 + eo cos f) -
2a0

0)i
if.(0)

co, -2
el.° (-kaen0)21 aa1:04 a1

+

+ 2(ao/k) 4 (g)} dfcco
aao

where

nl = (k/e)i, no = (k/a03)1, Tl = TO ± 1.1(1), = as) +

(31)

and (afi/aao) has the previously established meaning. Equation (31) can
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be obtained in terms of the perturbed anomaly f if it is understood that
a16 in the quadrature and in a1 is obtained by (28) and if the integrand
of (31) is multiplied by 1/v.

3.1 Oblateness Effects

We briefly illustrate some results from Lagrange's method. In the
well-known example of oblateness perturbations, the first -order solu-
tions for a, e, and i turn out to be entirely periodic and not very in-
teresting.8 The remaining elements, however, exhibit secular terms.
Using only the J -term of (9) we find from (21), (22) and (31)

JR2
(21 = - (cos io) - fo) + periodic terms (32)

Wi = coo - (cos io) (f2i -l)JR2a02(1 - e02)2

Ti

R2(A- f2)
ao-,e0(1J - e02)2 X p.t.

1 -
2

sine io)

no no JR2
n1 n1 (42(1 - eo2)3

X { t(1 eo cos f)8 [1 - 3 sin2 io sin2 (Wo

1
+ -.7 (1 - e02)4 [(COI - C00) + (cos i0)(f21 001

ni

(33)

(34)

JR2 ( 3 2

- (1 - eo2)' 1 --2 sin to) (f fa ) + p.t.

where f, fo represent the unperturbed anomaly. (We have omitted
the superscript zero for convenience.) Equation (32) confirms the well-
known secular behavior of the node. It turns out to shift westward for
0 < io < r/2 and eastward for r/2 < io < r. At io = r/2 it remains
stationary, as would be expected from symmetry.

The secular component of cow, according to (33), reduces to the well-
known term

JR2 (5 cos2 4 - 1)
2a02(1 - e02)2

It represents an advance of perigee for 0 < io < 63°26' and for 116°34' <
io 5 W. For 63°26' < io < 116°34' perigee regresses, and at the "critical"
angles 63°26' and 116°34' it is reduced to periodic motions (as far as
the first -order analysis indicates). We note that the periodic terms in
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(33) contain eo in the denominator, and we expect 0)(I) to behave un-
stably for near -circular orbits (as one might expect for geometric
reasons). Indeed, this singular behavior can be expected also in other
examples, according to (19), (22) and (31). Furthermore, some diffi-
culties will arise with small values of io, according to (20) and (21).
These cases of near -circular and near -equatorial orbits can be accom-
modated by redefining the orbit elements in various ways. While such
modified elements are less accessible to a geometric interpretation, they
do not encumber the calculation of perturbed satellite positions as a
function of time. For the sake of brevity we must forego additional
details here.

3.2 Luni-Solar Gravitation

We omit a discussion of al , since it shows periodic perturbations
only. Substitution of (8) into (19)-(22) and (31) yields

3 L f)-11 f
el

15mpao e0.61.2= eo - (1 - co`) tall{tan -1 [(1 -°) tai
5men, 1 iff, (35)

where

hi = 11x, + iniy, niz1,

h2 = 12x2 M2Yp 7/2Zp

3mpao3
1, = jo [Os 4e02)hih2, - (1 - eil2)h2h1,1

inerp5V1 - eo2

1 - eo f fi
{tal tan -1} p t[(1 eo) z !o

C21 = P3m

a03R1 + 44) (h12)i + (1 -e0) (h22)
2mer,5 sin io(1 - eo2)1

{taril [C. - tan 11' p.t.
1 ± eo 2 fo

c;)1 0)0 + cos io (Q0 - -21)

:3)it,a03
(1 - 032) [,1//12 - h22 - 7p`]mer,5

{tan -1 R1 tan
Jo

. p.t.1 + 2 f

(36)

(37)

(38)
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no (1 - eo2)1
= TO - -f- [Cui + - 00) cos 41

t,
no\ 3Gin,(1 - en2)2(ti - to)
nl 2norp5(1 eo cos .f0)2

-

The subscripts i in (36) and (37) denote partial differentiation with
respect to the inclination. The secular term of ea) is a significant feature
of our present results. It indicates that even near -circular satellite orbits
can experience an unstable buildup of eccentricity due to luni-solar
perturbations. The rate of this perturbation is proportional to the factor
mpa03/meri,3 and is usually very small; moreover, the coordinates x,
y, , z of the perturbing body are really time -dependent, which would
modify the first -order result. Nevertheless, a long -period change of the
eccentricity due to luni-solar gravitation has been observed in some
satellite orbits.

The explicit form of the periodic terms in aw and e") contains the
factor 1/e0 , while St"), w(1) and T(1) contain 1/(sin io). Again this necessi-
tates the use of specially modified elements for low eo and io . One set of
elements which is particularly suited to the problem of interplanetary
perturbations is due to Stromgren. He utilized the fact the 0, i, w are
nothing but a set of Euler angles orienting a system of orbital coordi-
nates with one axis through pericenter, one at I = r/2, and one normal
to the orbit. The rotation of these axes with respect to inertial space
conveys the same information as the perturbations of 11, i, w. The idea
is akin to Roberson's method for anticipating secular terms in the
perturbation of coordinates (Section 4.3 and Ref. 15).

- :3(h1 cos fo h2 sin
,

fo)2} (39)
2n7Gm02iiirp3

+[ 23e0 - 3h1 /a
2

+ 402)1
3h22

2
f - e02)1

7.2,2

--tan{
1[(1 - o\

tan foeo 2)

3.3 Higher -Order Analyses

The preceding examples are indicative of results to be found in the
vast literature on perturbations in the osculating elements. We have
merely covered the gist of this approach and several ideas which will
be useful in the appraisal of other methods. Some of the better-known
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contributions in terms of osculating elements are contained in papers
by Krause, O'Keefe, Kozai, and Iszak.

In principle the quaclratures (18)-(22) and (31) could be evaluated
iteratively to generate higher -order results. This procedure rests directly
on Poincare's convergence proof, and a formal technique based on this
approach is commonly attributed to Poisson. In several aerospace
publications this has been done to obtain second- and third -order secular
terms for oblateness effects. The algebraic labor is considerable, though
typical secular terms such as (40) and (41) tend to be reasonably com-
pact (see Refs. 7 and 9) :

Act(2) -
j2R4e0

(1 - 3 sin"' i0 sin 00)11 ± e0 sin (w0 00)122a03( 1 -e02)5(40)
X (5 sine i0 - 4) cos (coo + 00)

9/rJ2R4 sin 24 1 2

4a04(1. - CO2)4 1 co sin 100 - (5 sine i0 - 4)

Reo2 sin 2w0 - eo cos wo(cos 80 ± -I cos 30o)

- e0 sin w0(sin 00 - I sin 300)11.

These results represent secular increments
tral angle measured from the node, where 0 is the initial value of 0.
Considerable emphasis must be placed in the derivation of such expres-
sions on checks from the conservation of energy and angular momentum
and duplicate execution of the algebra. (One likes to think that more
elaborate explicit expressions will be attainable with the advent of com-
puter algebra.) A notable contribution in this area was made by Merson,5
who presents second -order secular terms for J and first -order secular
terms for the next four higher harmonics of the earth's potential. He
also advocates the use of "smoothed" elements which reduce the ampli-
tude of first -order periodic terms that might otherwise be inimical to
prediction accuracy.

IV. PERTURBATIONS IN THE COORDINATES

(41)

We turn now to a description of satellite motions directly in terms
of the position and velocity vectors. While these are dynamically equiv-
alent to the instantaneous orbit elements, we note that the time de-
pendence of the dynamic state variables in this form reflects the anom-
alistic motion as a primary effect. Therefore the long-time, secular
changes of the orbit may not be obtainable with the same clarity or pre-
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cision as in terms of the osculating parameters. On the other hand, the
position -time history gives a direct account of the satellite motion in
space and is useful for many aerospace applications. This prospect has
stimulated several engineering analyses in recent years.

To the analyst with a general background in mechanics it would seem
quite natural to approach a system of equations of the type (14) by
standard perturbation techniques. Thus one could assume the pertur-
bation series

x(t) = x(°)(t) icx")(t) ic2x,(2)(t) + 

y(t) = ym(t) K y")(t) K21/2)(0 (42)

z(t) = zm(t) Kz")(t) K2z(2)(t)

and determine successively higher -order terms from the appropriate
governing equations, following essentially Poisson's procedure. The
traditional Encke method pursues this line of attack. However, Cartesian
inertial coordinates have not enjoyed as much popularity as spherical
ones, which seem more compliant with the geometry of satellite orbits.
In the following, therefore, we shall concentrate on reference frames of
this general type.

4.1 Perturbations in Equatorial Spherical Coordinates

A rather well-known perturbation analysis for oblateness effects is
that due to Blitzer, Weissfeld, and Wheelon.i° It uses the conventional
equatorial spherical coordinates, r, so, # (see Fig. 2) in terms of which
the equations of motion read:

. 2 k 3JkR2
- rco - 1' COS = - -2 - sin co] (4:3)

2d 2 2JkR
(r (to) r2 sin so cos (pip - sin io cos cc (44)

dt 7.3

d 2

dt
( cos SO = 0. (45)

Here we have considered the first aspherical term in the earth's poten-
tial only. Since this is a zonal harmonic and does not contain 0, the last
equation has a vanishing right-hand side. Then a first integral of this
equation

r2 cos2 cok = p = const., (46)
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Fig. 2 - Equatorial spherical coordinate system.
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representing the conservation of angular momentum about the polar
axis, permits a change to tk as independent variable. In addition, it is
convenient to introduce the definitions

1/r = u, tan co = and [1/(r cos co)] = TV. (47)

Equations (43) and (44) now become

TV + IVlc 3JkR2u2
"

[ 1 21
(48)p20 82)1 p20 sy

and

5" 2JkR2 Su

S2 3

(49)
p2 (1 + S2)2

where "primes" denote differentiations with respect to IV In this form
they are readily accessible to a perturbative procedure. We let

Q0

S E err s(n)
n=1

21_- + E 1"21(")
n=1

co

(50)

TV = IF"" E ply").
n=i

Now we note that 4, in (46) was understood to represent the actual,
i.e. perturbed, longitude of the satellite at all times. In order to make
the connection between this perturbed independent variable and the
time we find that
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dwitc ; w10:02 (1 ;riv

= t(o) E tin (n )

n =1

(51)

i.e. the time itself evolves as a perturbation series. In the zero -order
solution of (48) to (51) the right-hand side of (49) vanishes and we get

S(°) = A sin (11/ (5),. (52)

where A and (3 are integration constants. On the right-hand side of
(48) we retain the first term after substitution of Sm. Then Wm follows
in a straightforward manner. Substituting it into (51), the usual trans-
cendental expression for time in Keplerian orbits results. It is somewhat
obscured by the fact that its argument is given in terms of the longitude
rather than one of the anomalies. We record the simplified form of these
results for circular orbits, where u(°) = 1/ro :

le) = [1 A2 sine (1,& (5)]3 (53)
ro

t(°) =
ro2

2p (1 + A2P
tan -1[(1 + A2)1 tan (# (5)] . (54)

)00

It is important to note that the expressions (52) and (53) represent
Keplerian (in fact circular) motion only for the unperturbed case: i.e.,
if (54) represents the entire time equation and no higher -order terms
as in (51) exist. For any perturbed motion, where # is perturbed in
relation to time, the zero -order terms of course retain the Keplerian
forms (52) to (54), but they do not actually represent Keplerian motion.

If we now proceed to the first -order solution and retain only terms of
0(J) in (48) and (49), we find

so)" s(1) 2kR2
s(0)%1(0)

P2 [1 + S(0)212

and

TWO" w(1) -3kSmS(1)
P2[1 s(0)21)

3kR2U(°)2 I 1 21
+ p2[1 S(0)211 L 1 + S(0)2 aj

(55)

( 56)

Since the right-hand side of (55) contains only zero -order quantities,
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we begin our solution there and the result is

so) kR2A sin (0 + 6) cos (# a)
p2r0 ± A2 sine + 01 1 + A2

1

V1 ± A2 tan 1[A/1 + A2 tan (# + 5)] (57)

1 -I- A2 sine (# (5)}

Here we do not show a complementary solution, since it is of the same
form as Sm and can be absorbed with the constants A and 3. We could
now substitute (57) into ( 56) to find IV") and then use (51) to calcu-
late the time. However, the inverse tangent in AS(') constitutes a secular
term, which is considered an objectionable feature for some applica-
tions.

This disadvantage can be avoided by inserting an additional trans-
formation between' and the argument of S10). Instead of using' +
for the latter let it be

sin 2(# + a)

0- +S (58)

where

= 1 + E JnX
n

and the X are constants. This device is commonly attributed to Lind-
stedt.I2 To obtain the zero -order solution we need only substitute a for
the angular arguments in (52) and (53). However the equation for S")

changes significantly, viz.:

S(1)" ± so) -2kR2Smu(0)
p2[ 8(0)212 2X1S(0)" (60)

where the primes now denote differentiations with respect to a. Thus we
find

= X1 A sin a
(61)

- cos a {XiAa -
p2 ( 1 + A2) 2

tan-' [(1 A2)1 tan aq.kR2A

kR2 (A2 cos2 a - 1 - A2)
p2Aro(1 + A2)(1 + A2 sine cr)

The appearance of the free parameter Al in this result gives us the
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opportunity to suppress the secular term. Thus, if we choose

kR2
X1 = 2/.0 ( I + A2)4p

(61) becomes

kR2A cos a _1
2

p2r0(1 d- A2)-4
S = {tan [(1 ± A)4 tan u] - 01.

Here we have again omitted all terms of the same form as S(°). The net
contribution from the terms in braces is cyclic and has the period 2r in o.

According to (58) and (62) this amounts to a period of

27

JkR2
rop2(1 A2)i

in IP. In effect, Lindstedt's transformation distorts the independent
variable to absorb the secular effect. We shall see more of this later.

In principle we could transform (56) to a and solve for W in a straight-
forward manner. However, to simplify the algebra, a redefinition of W
will be convenient. We may backtrack to the explicit form of (48) in
terms of S, u, and a.

(62)

[1 + S(0)2]2u0)// 2[1 saois(o)8(0),710),

+ [sm" + 8(0)2 + nun)

(63)

(64)

3kR2 (0)2 1 (65)
u s(0) 3

[
P2

- 2[S(°)8(') s (0'8(1)'

and take
.117(1) s(0)2) 1u(1).

,(0), 2 (0)sXiln

(66)

Then we obtain*

W(1) kR20)2[1 - 28(0) 2]

(67)
p2 L5

(2u0) [8(0)8(n even, s(0),2x1i

A3

where A = (1 -I- A2 sine

Substituting (63) and ignoring the complementary solution for 117(1) we

* Note that the formulas (36) and (38) in Ref. 9 contain several misprints.
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have

'/47(1) -kJ?- [4A4 (A4 - 1) sin' a
3p3r02(1 ± A2)26,8 (68)

± A2(9214 2A2 - 7) sin2 ± 5A4 + 2A2 - 3].

Now it only remains to find a relation between a and time. From (46)
it is clear that

dut -to= r2 cost co =
P 00

712(1 (69)

which we expand up to 0(./). This results in
2

tffi)
p(1 + A2)1

tan-' [(1 ± A2) tan alro

and

to) - r22_ r 1Al 2:213 (I) 2A sin (5 S(1)1
do -

P Jao A2 L A
6,2

kR2ro 1(1 + A2)i
733(1 + AT 1202

[A2 sin 2a + 12(1 + A2)1a]

+ [2 - 3A2 6((i + A2) sing a - 2COS al

tan1 [(1 A2)1 tan a]}

(70)

(71)

and completes this analysis of near -circular orbits.
Throughout the foregoing discussion we have used a perturbed

coordinate, or a, as the independent variable. In principle, we could
have done without Lindstedt's device, and we could have used the un-
perturbed longitude 4'"" as the independent variable. This approach
has the attractive feature that the zero -order solution (in terms of #(°))
represents true Keplerian motion. The perturbed longitude could be
expressed in terms of Om as

,(0) V. Tn.L(n)(4(0)).
trA

(72)

However, if one develops the governing differential equations for SO)
and W"), he discovers that they are completely coupled for this par-
ticular example. This approach, therefore, loses its practical value.

In conclusion we note that, in spite of various transformations, the
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final results (63), (68), (71) of this analysis seem rather awkward,
considering the fact that they represent the relatively trivial first-order
oblateness perturbations of a near -circular orbit. This is of course due
to the choice of spherical equatorial coordinates to represent the motion
in a nonequatorial orbit. That disadvantage was eliminated in other
formulations, to be considered next.

4.2 Perturbations in Orbital Spherical Coordinates

As the title of this section indicates, it is more natural to use the
plane of unperturbed motion as the fundamental plane for inclined
orbits. A typical analysis in this category is that by Anthony, Fosdick
et al.1334 The coordinates r, 0, # of their reference frame (see Fig. 3)

take the place of r, (7/2) - in Fig. 2. The angle a = (r/2) - sp

(Fig. 3) is introduced occasionally for trigonometric simplifications.
The left-hand sides of the equations of motion of course are not al-

tered by this change of coordinates, but the right-hand sides (represent-
ing oblateness perturbations) acquire the forms shown in (73) to (75).

As usual, we introduce u = 1/r and p = 7.26 = e/u2 and change the
independent variable from t to O. We note that 0 is the perturbed cen-
tral angle in the nominal orbit plane. Thus, the equations of motion
become

(pu') pu(0'2 sin2 Q)= (k/p)[1 ./R2u2(1 - 3 cos2 a)] (73)

(p0')' -p sin $ cos )3 = (-kJR2u/p)Rsin2i sin2 0

- cos2 i) sin 2$ (74)

+ sin 2i cos 20 sin 0]

(p sin2 $)' = ( -kJR2u/p)[sin2 i sin2 $ sin 20

sin 2i sin 2$ cos 0]

where primes denote derivatives with respect to 0. We subject this
variable to the first -order Lindstedt transformation

6 = 0(1 + AI) (76)

and use the "ansatz"

U = u(' (a) + Ju")(17)
p(0)(a) jp(1)(0.)

= (ri2) J/3")(0)

(75)

(77)
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FIG. 3 - Orbital spherical coordinate system.
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Without an excessive loss of generality we may assume a horizontal
launch at the node and, by the definition of the 0 plane as nominal
orbit plane, the initial velocity vector vo lies in it. Thus, at t = 0: r =
ro , t = 0, f3 = r/2, 8 = 0, and 6 = vo/ro . In general, vo will be such as
to produce an elliptic orbit. The zero -order results are

co)p = rovo

atid

U(0) = (k/revo2)[1 e cos al

where

(78)

e = (rove /k) - 1

and has the form of a Keplerian eccentricity. As in Section 4.1, the
zero -order solution (78) will represent Keplerian motion only for the
unperturbed case, i.e. when a = 0 = 0")). Now the first -order solutions
follow in a straightforward manner:

p(1) = ( -k2/2rove)(R/r0)2 sin2 i (1 + 4-e - e cos a - 3c cos 30-

- cos 2a)

u(1) = (leR2/ro've) {1 le2 sin2 i( - *e - -1-e2)
(e2 sin2 i) cos 2a - mtie sin2 i cos 3a (80)

- e2 sin2 i cos 4a

- [1 + 3e2 - sin - 14e + 3e2)] cos al,

(79)
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where we had to select the Lindstedt parameter as

- - -4,2R21,04,04) sin2 i - 1)

to avoid a secular term in (80). Finally

(81)

130) -
k2R2 sin 2i [(1 + le) sin - a cos 0- - 4--e sin 20-]. (82)

2r04vo4

It is clear that the secular term which was absorbed by the Lindstedt
parameter has to do with the apsidal precession. In the absence of addi-
tional Lindstedt parameters we have no countermeasures against the
secular term in (82), which reflects the nodal regression. (Note that the
latter was counteracted by the Lindstedt transformation of Section 4.1,
since it was the only secular effect to be considered for near -circular
orbits.)

The time equation for this example can be written in a straightforward
fashion. From the definition of p it follows that

- to - (1 - JX1)
fro Pu2

where cro and al correspond to the time limits to and 11 .

to first -order terms yields

da
t(°) ./t = p(o)u(o) 2

This leads to

An expansion

1 p(1) ( )

(83)

-J (0) ( ) 2

0 P u [X`u)+
n

u(0)-Ida.

3 3

(0) 1.0 1)0 -e sin
k2 (1 - e2) (1 + e cos a)

2
Han -1 [(1 e)j (1 - e-) 1 + 2 co

(84)

which we recognize as being of strictly Keplerian form but in terms of
the perturbed angle a. Similarly
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2 fsin u(4 - e2 + 3e cos cr) [1 + +rovo 1 (1 - e2)2(1 e cos (r)2

(61 - -1- le + -3c2 sin

sin cr [2 - 4-e + le2 (85)(1 - e2) (1 e cos a)

+
(-2 - + - sin2

3e

[2(1 + e)3 -te3 sin2 i] tan-,
-

tan !--1}61
(1 - e2) 1 2 00

The set of results (78) to (85) gives a reasonably convenient descrip-
tion of first -order oblateness perturbations which might be useful in the
targeting and guidance of space vehicles. Extensions to near -parabolic
and hyperbolic trajectories follow quite readily. As in Section 4.1, we
note that the analysis might have been executed in terms of an unper-
turbed independent variable, viz. 0'1)) instead of 0, and in that case the
zero -order solution would represent true Keplerian motion.

The inclusion of secular perturbations in the independent variable ()-

serves the same purpose as the definitions of "mean elements" intro-
duced by Breakwell et al., by Hansen, in the von Zeipel method, and in
modern averaging techniques. The Lindstedt transformation is not the
most powerful device in this category but it can be extended to absorb
secular effects in more than one coordinate. This will be illustrated in
the next section in terms of "secular rotations" of the reference frame.

4.3 Perturbations in Rotating Spherical Orbital Coordinates

The idea of using suitable coordinate transformations with arbitrary
parameters to neutralize secular trends was exploited in a more general
way by R. E. Roberson!' His approach uses the orbital coordinates r,
0, 6 [= (r/2) -)31, in agreement with Section 4.2, but assumes that
the entire reference frame will he subjected to three monotonic rota-
tions, corresponding to three Euler angles, such that the satellite motion
relative to this reference frame exhibits only periodic perturbations.
This kinematic outlook on secular trends forms an interesting parallel
to several classical procedures. Roberson himself makes some illuminat-
ing comparisons between engineering analyses such as Refs. 9, 10, and
12 to 16 and traditional formulations in terms of mean variables. He
restricts his analysis to first -order perturbations, realizing that a con-
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sistent higher -order theory would have to include contributions from
other physical effects and various coupling terms. Some of his remarks
seem quite perspicacious in comparison with the other aerospace litera-
ture of that time.

The angular velocities stipulated for the reference frame must of
course depend on the secular effects that need to be absorbed. In the
presence of several physical disturbances the different angular motions
of the coordinate system can he superposed to first order, and the re-
sultant motion of the reference frame will succeed in neutralizing all the
secular effects simultaneously. This seems intuitively obvious and can be
demonstrated in a straightforward fashion.15

In Fig. 4 the angles ft and I define a mean orbit plane, in that each of
them manifests a secular rate. Now the satellite position is given in
terms of the orthogonal system 2, g, 2, which displays a secular variation
with respect to the node (and this corresponds to the third Eulerian
rotation). Let the three secular rotations be denoted KO), K(di(1)/dt),

Kth' where K is the perturbation parameter. They will in general be
functions of ft, I and the characteristics of the perturbation source.

Turning to the problem of first -order oblateness perturbations, we set
= J and assume the appropriate form for the perturbing potential.

Now let

0 = Oo = 00 + f") + Jr", (86)

where f = 0 at t = 0. We adopt / as independent variable and let de -

z

y

FIG. 4 - Rotating spherical orbital coordinates.
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rivatives with respect to it be denoted by primes. Assuming that the
secular rates are constants, we let

SZ
g(0) ATV

j(0) ji(of

0 + jez).(17.

As usual, the equations of motion are transformed by means of

(87)

u = 1/r and p = 1.2f (88)

and we find:

(pu')' puRe - f10) cos 0 sin i)2

+ (cos 8 + 4,0) cos 8 + St"' cos so cos v)2] (89)

- /)) [1 3JR2u2(1 - 3 sin' co)] = 0

[p(6' - St(" sin i cos 0)]' + p[( + (.0"1))2 sin 6 cos 6

+ (1 + 6(1))0)(sin 8 cos v cos io + cos 8 sin co) (90)

f2(1)2 sin co cos v cos 40] (JkR26u/p) sin go cos io cos v = 0

[p cos 6 (Ce cos 8 + (.2(1) cos 40 cos v)]'

p[(1 C.)(1))K20) sin 5 cos 6 sin i cos 0

+ n(02 cos 0 sin i sin 5 cos v cos co (91)

- en(1) sin i sin 0]

(6JkR2u/p) sin tio cos 8 sin i cos 0 = 0,

where co is the latitude and v is defined in Fig. 5. We have made a slight
digression from orderly progress in this step by setting io) = 0. This is
prompted by previous experience with this problem - viz., that no
first -order secular perturbations occur in i - and would have developed
from the later calculations in any event.

Using the forms

= + JO)
p(o) jp(to

= J5(1)

(92)
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Fig. 5 - Definition of v.

we reduce (89)-(91) to equations of 0(1) and 0(J). The zero -order
solution is of course

a") = 0, p(0) = const.,

u(o)and = (k/p(w2)[1 e cos (f - a)].
(93)

As in previous examples, we see that this will represent Keplerian
motion only in the absence of perturbations, i.e. if f = j(°) and ST") =

(I)
co = 0, yielding an inertial reference frame. We assume that the con-
stants of integration (p"", e, a) are chosen such that (93) with = 0
yields the satellite position and velocity at t = 0.

Proceeding with the solutions to 0(J) in the usual fashion, we re-
quire that

/1,2 D2 cos i((i)
(0)4

ill order to avoid a secular term in 5(1) and

Cu(1) 3R2k2/2p( 0) 4 ) (5 cost i(0) - 1)

(94)

(95)

to avoid one in u(1). These of course reflect the nodal and apsidal pre-
cessions. The complementary solution for p(1) introduces one constant
of integration, and the complementary solutions for Su) and u(1) have
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the form

A sin B cos J. (96)

Since the zero -order solution already accounts for the dynamic state of
the satellite at t = 0, the first -order solution encounters homogeneous
initial conditions as far as they do not reflect the rotation of the reference
frame. Thus at f = 0:

u°) = 60) = 0, uc0' = 0

6" - n(" sin i(°) cos 00 = 0,

and

(1/r)) (2uo)u(o)p(o) u(o)2p°)) ± an)

+ no (cos Jo) - sin i(0) sin 00) = 0.

These govern the first -order constants of integration. [A little reflection
shows that the forms (96) for 6") and um can be interpreted geometri-
cally as constant changes of Si and 0 to 0(J). Roberson anticipates this
by introducing such constants in (87) and using them in place of two
of the integration constants for Su) and u"). However, nothing seems to
be gained by if anything, it distracts from a
procedure.]

Finally, the time equation follows as usual in terms of I to 0(J).
Roberson proceeds to invert it, though the computational gains do not
seem to justify this algebraic labor.

So much for our sketch of Roberson's procedure. Its extension to
higher -order analyses is fairly obvious. At every level of refinement,
0(P), three coordinate rotations may be introduced - which are com-
mensurate with the three degrees of freedom of the satellite problem
whose secular trends we are trying to neutralize.

For "medium -range" prediction formulas it seems an open issue
whether the rationale described in this section and traditional astro-
nomical devices (like the "auxiliary ellipse" used by Hansen or the von
Zeipel transformations based on Hamilton -Jacobi techniques) offer a
computational advantage over the straightforward development of the
Poisson method for successive higher -order terms. With the advent of
computer algebra the latter technique may be quite satisfactory for
many applications. However, for "long-range" predictions and life-
time studies it seems advisable to employ the accredited astronomical
techniques of "extracting" secular effects and anticipating long -period
terms in one way or another.

(97)
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V. MOVING RECTANGULAR ORBITAL COORDINATES

We close this article with a formulation which calculates the posi-
tion offsets for a satellite from its unperturbed orbit in an explicit
form.18'19 Instead of reckoning the perturbations in terms of the quan-
tities r, 0, Q or 5, which are defined relative to the center of the
earth, we now consider a coordinate system whose origin is the nom-
inal satellite position 0' on the unperturbed orbit (see Fig. 6). The
latter may be defined by the initial conditions at time to , viz. 1.0

and vo . We establish an orthogonal triad about the moving point 0'
with i in the radial direction, n in the direction of anomalistic motion,
and I- normal to the orbit plane. In the guidance engineer's language

FIG. 6 - Moving rectangular coordinates centered at nominal satellite posi-
tion.

these represent offsets in altitude, range, and cross -range. Any non -
vanishing coordinates in this system are the effects of errors in the
initial conditions or of geophysical forces. It is clear that this description
of the perturbed motion can be quite useful in guidance studies, e.g.
to exhibit the relative motion between a space station (given by 0')
and a transfer vehicle (located at E, n, I-) in a homing maneuver. In the
subsequent discussion f will always represent the unperturbed true
anomaly in the nominal orbit and 0 = w f the unperturbed central
angle.* No Lindstedt transformations or perturbative coordinate rota-
tions will be employed to develop this theory into a more sophisticated
prediction scheme. Instead, we concentrate on the geometric interpre-
tation of various results.

* We depart from earlier notations by omitting the superscript (0) from un-
perturbed quantities for simplicity.
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The equations of motion can be derived by the standard Lagrangian
or Hamiltonian formalism,18 and their linearization to 0(t, n, r) yields

t" - 2n1 - -2[t e(t' - n) sin f]/(1 e cos f)

a3(1 - e2)3 (98)
17E/(1+k. e cos f)4

n" 2t' - n - [- n 2e(n' t) sin f]/(1 e cos f)

- a3(1 e2)3
V,,/ (1 e cos

(99)

+ - 21''e sin f]/( 1 -1- e cos f)

a3(1 - e2)3 fr/(1 e cos f)4 (100)

where primes denote derivatives with respect to f and V is the perturba-
tive potential, which exists in addition to the central body term - k/r.
The subscripts of V denote partial derivatives with respect to t, /I, or

The solution of the homogeneous set (98) and (99), where V 1=- 0,
represents a complementary solution for the cases where V 0 0 and
will be needed to satisfy the initial conditions. For an elliptic nominal
orbit this solution has the form

= ba [ 1 - e2 3e k 4

1 e cos f 2 - e2)a3
( ) (t - r) sin f]

? I =

- Se a cos f - or e ((1 - e2)a) sin f

- (Sa
3 (

(1
k y

(1 + e cos f) (t - T)2 k -
e cos f) ( k \I+ Se a sin f (2 + - Sr1 + e cos f (1 - e2)af

all - e2) (1 + c cos D + Ow
1 ± e cos f

(101)

(102)

a(1 -e2)-
1 e cos f)

[Sit sin 0 - OS2 sin i cos 0] . (103)

This result can be adapted to hyperbolic, parabolic, and near -parabolic
orbits without much trouble. The constants of integration Oa Sr are
of course just a set of numbers to be determined from the initial condi-
tions, but the symbols we use for them indicate the parameter changes
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of the nominal orbit that they represent. Alternatively, these constants
could be given in terms of o t'o', the perturbations of the position
and velocity at to . That form is more descriptive for various guidance
applications. Thus we find for nominally circular orbits

E =2770' 4to - (2no' no) cos (f - fo) W sin (1 - fo) (104)

n = 770 - 2t0' - 3( no' + 26)(f - fo)
± 2 (2no' 3E0) sin(/' - fo) 2E0' cos (f - fo)

= ro' sin (f - fo) ro cos (f - fo). (106)

(105)

(Since a nominal perigee does not exist for this case, we assume that
the angle co, whose existence is still implied by the notation f, has some
arbitrary value L.). Without loss of generality we can set fo --= 0 so that

0o = Co.)
In a guidance application Eo ?.o might represent the errors result-

ing from a position and velocity determination or a corrective thrust
maneuver and (104) to (106) would then describe the "run -out" as a
function of time. In an "orbit sensitivity" study these expressions can
be used to demonstrate the effect of to ro, on the orbit parameters.
In a homing maneuver the same expressions would represent the rela-
tive motion between the two vehicles attempting a rendezvous. In
principle, two relative position measurements X: t, n, r at separate
times suffice to determine all the constants in (104) to (106), and a
corrective maneuver could be planned to drive the residuals to zero at a
specified instant or by successive approximations.

Particular solutions of (98) to (100) can be found in a straightforward
manner if e = 0. For e 0 we construct these solutions as power series
in e, for lack of a better expedient. We consider the series to 0(e) and let
them be denoted by

t= e E
1

= E9;j = 1, 2, 3 (107)
1

= r e Eh;

where

the complementary solution (104) to (106)
&2i2 T2 = a particular solution representing V to OW

= solution reflecting e (t1, , TO on the right-hand sides of
(98) to (100)
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.f2g2h2 = solution reflecting e  (&2 , , ) on the right-hand sides
f3g3h3 = solution reflecting e.(VE, V,, VI-) on the right-hand sides.
The following explicit general forms can be given for these solutions:

= (a3/k) [-2 + 2 cos f f V', cos f df

+ cos f 1TE sin f df + 2 sin f f V,, sin f df

- sin f f ft cos f df]

= (a3/1..)[:1 ifVn df df + 2 f Vt df - sin f f T7,7 cos f df (108)

- 2 sin f f ft sin f df + 4 cos f f V,, sin f df

- 2 Nis"' 17, cos f df

T2 = (a3/k) [cos f
1

V. sin./ df - sin f Pr cos f dfl

where we take Jo = 0 for the lower limit of all quadratures.

= (no - 26') sin f - 4.1(1701 + 26) cos f - 3(no' 2E0)

f sin f

= 7(n0' + 2E0) sin f (no - 2W) cos f - 3 (no' + 26) (109)

t cos f - (t072) cos 2f - Eo) sin qf

hi = - (W2) - 2 I sin 2f - go/2) cos 2f.

The terms12, g2, and h2 are obtainable from expressions analogous to
(108) but with the following substitutions:

2(&2' - n2) sin f - 242 cos f for ( -a2/k)T;

2 ( &2) sin f n2 cos f for ( -a3/k) 17, (110)

2T-2' sin f T-2 cos f for ( -a3/k) V.

and f3g3h3 follow from (108) if we substitute

(4ce/k)T7E,,,,r for ( . (111)

Since the differential operators for all of these partial solutions are of
the' form
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"-`fin' -3
(112)

no explicit complementary solution of 0(e) is provided: i.e., the con-
stants E, will be used to satisfy the i.c.'s to all levels of accuracy.
These will differ from zero only if the nominal orbit is taken to differ
from ro and vo at to .

Specific results may now be obtained by the above formulas, which
lend themselves to a geometric interpretation of perturbed satellite
motions. For the oblateness effect one finds

S2 = (JR2/a)[-1 sin2 t- cos 20n

7)2 = (J R2 /a)[(2 - 3 sin2 i)f sin2 i sin 20] (113)

= (JR2/2a) sin 2i[f cos 0 - i sin 0].

The terms in 20 reflect the doubly symmetric distortion of the orbit
clue to the oblateness of the gravitational field. The constant term in
t.2 and the secular term in tj2 reflect the additional mass of the equatorial
bulge. Combining (113) with (104) to (106) into a complete solution,
we observe that the constant term in E is

An, = (J R2 /a)[-1 sin2 2no' + 4E0

and the secular term in n (114)

a00 = f[(JR2/a) (2 - 3 sin2 i) - 3(no 21;0)],

which represent the differences between the nominal circular orbit
and the mean circular orbit resulting from the perturbations. Since
Act = 0 and A0 = 0 do not yield linearly independent conditions for
to and no we cannot effect a launch so that the radius and the mean
angular rate coincide with the nominal ones (determined for a spherical
earth) unless sin i = A/Vg. On the other hand, it turns out that we
can preserve the nominal inclination of the orbit by choosing to = 0 and

= ( JR2/2a) sin 2i cos 00 . (115)

Now, if we designate Af.2 = [T-2]B=o", we find for the nodal regression

3
2

T2/1St - - -nJ (f') cos i (116)
sin i 2ra' a

and this agrees with the well-known result.
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In the case of drag perturbations one replaces -17. , f , of ( 110 )

by the appropriate components of (11) :

FE = 0

F, = - (CDAp0/2m)[(k/a)1 - ga cos i](k/a)4 (117)

/111- --= - (CDA po/2m) a sin i(ka)1 cos 0

and finds

= (2a3/k )

7)2 = (a3F ,/k){4 - te]

T-2 = a3Fr/ 4k) [2f tan 0 - cos 0].

Noting that

(118)

rr. 10=27r D 0

LS 2/J 0=0
C Ap a -o- sin i

(119)
1 di

27ra df 4mki

we have agreement with standard results for the orbital precession
due to diurnal winds.

If we extend this drag analysis to 0(e) we find

A + f3 = (a3F,J2k)[i sin - .1 cos f - sin f]

g2 g = (a3F,/210[6f sin f 9 cos f - 3.12 cos .f]

h2 + h3 = [a3F./(4k cos 0)][- cos (Co 21) - -2- cos a) -I sin Co

-f sin (Co + 2f)],

which are simple enough to permit a further extension to cases where
po = p(f) is variable around the orbit. The details are straightforward!'

It is of course understood that any of these results should be ac-
companied by if a general solution is desired. This, however,
adds nothing to the characteristics of a particular perturbation. The
formulas (104) to (106) and (108) to (111) can also be applied to a
variety of other effects such as luni-solar perturbations and radiation
pressure.

The motivation behind the results of this section was to give a geo-
metrically tangible account of perturbed satellite motions over a frac-
tional period or just a few periods. This may be useful in various tar-
geting, intercept, and rendezvous operations. On the other hand, the
formulations of Sections III, 4.2, and 4.3 form the beginnings of ephem-
eris computing techniques and orbit lifetime studies. These subjects

(120)
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have been pursued further in several higher -level methods (see Section
I), some of which deal partly with the elements and partly with co-
ordinates and make occasional use of contact transformations. They
may be considered a stepping stone to full-fledged astronomical pertur-
bation analyses, about which there exists an extensive literature.
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Methods of Orbit Refinement
By R. B. BLACKMAN

(Manuscript received January 20, 1964)

During the past six or seven years, several methods of orbit refinement
were developed specifically for use with artificial satellites and spacecraft.
This article describes these methods, and the classical method, in a uniform
mathematical formalism in order to facilitate comparisons of their relative
advantages and disadvantages for practical systems applications. However,
such comparisons are made in this article only to the extent that motivated
the development of the new methods.

I. INTRODUCTION

The accuracy to which the position of a satellite or spacecraft can be
predicted depends upon the accuracy to which the "initial" position and
velocity vector, or related orbital parameters, are known. Since these
parameters can be determined only from observational data which in-
evitably contain observational errors, the accuracy to which they can be
known depends upon the nature, the quantity, the accuracy, and the dis-
tribution (in space and time) of the observational data, and the way in
which these data are processed. The accuracy of the orbital parameters,
and of prediction, depend also upon the accuracy to which all of the forces
acting on the satellite or spacecraft are known and taken into account.
Clearly, the term "accuracy" must be taken largely in a statistical sense.

Orbit refinement is essentially data smoothing for the purpose of ac-
curate prediction. Given the nature of the observational data, and the
statistical properties of the observational errors, it is possible to formu-
late a method of data smoothing and prediction which is optimum in the
sense of giving predictions with the greatest possible accuracy. However,
such an optimum method will, in general, be useful only as a standard of
comparative performance for more practical methods. The reason for
this is that it has not been difficult to find simpler and therefore more
practical methods which are nearly as accurate as the optimum method.
(For example, see Ref. 1.)

It should be noted also that in the practical applications of data -
885
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smoothing and prediction methods each application is usually character-
ized by a unique set of practical constraints. Thus, it has been a frequent
experience that a method which was judged to be the most practical for
one application was usually not judged to be the most practical for an-
other application. In fact, it has frequently happened that a new method,
perhaps new only in the sense that it is a composite of parts of older
methods, was developed for a particular system.

The classical method of orbit refinement, the so-called "differential
corrections" method (which is essentially the method of least squares,
developed by K. F. Gauss in 1795) has served astronomers very well for
over 150 years. However, this method becomes quite unwieldy for large
quantities of observational data. Hence, the quantity of data to be proc-
essed was frequently reduced by the supplementary use of "normal
places" and/or "smoothing," described briefly in Section 6.6.1, pp. 141-
142 of Ref. 2, and later in this article. Thus, up to about 1955 no need

was felt for another method of orbit refinement, although the basis for
the development of alternative methods was implicit in a number of

articles published in the field of general statistical analysis, such as Refs.
3-6.

With the development of artificial satellites and space probes, the
need for alternative methods of orbit refinement began to be felt in
some quarters. The first definite proposal of an alternative method, as
far as the author is aware, was made by P. Swerling (Refs. 7-9). A some-
what different method, independently developed by the author (Ref. 10)
was used in the Telstar I experimental satellite communications system
(Refs. 11, 12). Some difficulties experienced with this method after about
four weeks of successful operation led A. J. Claus (Ref. 13) to develop
another method which is slightly different from Swerling's method. In
addition to these methods, it is worthwhile to include a method of space
navigation described by R. H. Battin (Ref. 14) because it involves a prac-
tical detail which, under favorable circumstances, may be profitably
introduced into the other methods.

The essential details of these methods will be described here in a uni-
form mathematical formalism in order to reveal their basic similarities
and differences, and in order to facilitate comparisons of their relative
advantages and disadvantages for practical systems applications.

Ii. CLASSICAL DIFFERENTIAL CORRECTIONS METHOD. LEAST SQUARES

Let 0 be an n -rowed vector representation of the observational (angu-
lar) data. Every component of this vector is assumed to be labeled to
identify it as either a declination angle or a right ascension angle, and to
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specify the time at which it was observed. Let e be the 6 -rowed vector
representation of a set of values of the orbital elements, and let v(e) be
an n -rowed vector representation of the angles which would have been
observed, assuming that the actual orbital elements are exactly repre-
sented by e, and assuming that observations are made with ideal ac-
curacy. If the observational errors are independently and normally dis-
tributed, with zero means and equal variances, the best estimate of the
orbital elements is that value of e which minimizes the quadratic form

Q = [40" - so(e)1'[,,B - v(e)],

where the prime stands for transposition. This quadratic form is simply
the sum of the squares of the components of the vector difference

- so(E).
Let eo be an initially assumed value for E, close to the true value. Then,

to the first -order term in ( e - eo),

40(e) = co( eo)  (e - ee), (1)

where J is the n by 6 matrix symbolized by

J = aco(0)/aEo (2)

Hence, to second -order terms,

Q = [r - ( e - 0).1'fr - J(e -
where r is the n -rowed vector residual

r= - so( e0).

Now, Q is a minimum with respect to e if

[r - J  ( e - to)] = 0.
Written in the form

(3)

J'  J  (e - eo) = J' r,
this corresponds to the set of 6 equations commonly called "normal equa-
tions." If J'  J is nonsingular, and if the value of e which satisfies this
equation is denoted by E, then,

= eo (J'  Jr'  J'  r. (4)

This E is then substituted for eo in (2), in (3), and in the right-hand mem-
ber of (4), in order to obtain another E. This substitution procedure is
iterated until E has essentially converged. The final E is the least squares
estimate of the orbital elements.
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In a statistical sense, this estimate is unbiased to the first order in the
observational errors, assuming that the errors are not biased. It is only
asymptotically unbiased to the second order, but it is a "consistent"
estimate in the sense that the probability is unity that it will be correct
to the second order as n -> oo . (See Section 4.3 for clarification.)

2.1 Classical Method. Weighted Least Squares

The method described in the preceding section is quite unwieldy for
large values of n on account of the size of the J matrix. Some relief was
obtained by resorting to various artifices. For example, if a number of
observations were made at sufficiently short intervals of time, a straight
average of these observations would be taken and treated as a single
observation called a "normal place." (More elaborate methods of deriv-
ing normal places directly from the observational data are called
"smoothing" by Baker and Makeinson in Ref. 2.) Since normal places
would be more accurate than single actual observations, in proportion
to the number of actual observations which went into each of them, it
was necessary to generalize the differential corrections method to some
extent.

The quadratic form to be minimized is now

Q = Ec2,' - co(e)1'T v -[0 - r(0],

where W is an n by n diagonal matrix. In expanded form, it is

Q = E wie - (pi( or,
where the w 11 are the components of W. Thus, the quadratic form is
simply a weighted sum of the squares of the components of the vector
difference co - co( e).

The analysis in this case will not be pursued beyond this point, since
it is a special case of the analysis given in the next section. Suffice it to
say that if the analysis were carried out for this special case, the results
would be equivalent to the method used by astronomers when they deal
with normal places, or with uncorrelated observations of different de-

grees of accuracy.

2.2 General Form of the Classical Method.

If the observational data are not all of the same nature (angles, ranges,
and range -rates), and especially if some of the errors in the data are cor-
related, let (I) be the n by n covariance matrix of the n -rowed vector 0.
For further generality, let E be an m -rowed vector representation of a set
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of values of parameters which, in addition to the 6 orbital elements, may
include such quantities as the frequency of a satellite -borne Doppler
source, and instrumental biases. Then the quadratic form to be mini-
mized is

Q = [co - v(e)]'.(1)-'[0. - v(e)]. (5)

Under the assumption that the components of co obey a joint n -dimen-
sional normal (i.e., Gaussian) distribution with covariance matrix .:13,
the value of e which minimizes the quadratic form (5) is the maximum
likelihood estimate of the true value of the parameters. Under any other
symmetrical probability distribution of the errors in the observational
data, this value of e is simply the weighted least squares estimate of the
parameters.

Substituting (1) into (5) we get

Q = [r -el  ( - fo)]'-(1)-117* -J  ( - eo)], (6)

where J and r are defined by (2) and (3) except that J is now an n by
m matrix, and eo is an m -rowed vector. Now, Q is minimum with respect
to e if

43-1  [7. -J  (e - 0)1 = 0.
Denoting the value of e which satisfies this equation by E, we have

= (0 + CP,
where

C = (J'.(1)-14)-1, an m by m matrix,

an m -rowed vector.

(7)

(8)

(9)

Equation (7) is the generalization of (4) and, as in the case of (4), it
is to be used iteratively until e has essentially converged.

After E has converged, C is its covariance matrix. This follows from
the fact that (6) may be expressed in the form

Q = (e - e)'C'(e - + terms independent of e. (10)

In case the data are all of the same nature (all angles, or all ranges, or
all range -rates), are all of the same accuracy, and the errors are not
correlated, then, C = (52. (J'  J

The availability of the covariance matrix C of the estimate E offers the
possibility of using the classical method in the intrapass stage of the pass -
by -pass method described in Section IV, in order to reduce the amount
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of observational data to be processed at any one time. However, it is not
the only way to reduce the amount of observational data to be processed
at any one time. There are other ways which, in particular, avoid the
computation of the n by m matrix J, where n may be of the order of 400
for each pass. One such way is Swelling's method described in the next
section. Another such way is cited as an example in Section 4.3. A modi-
fied form of the second way is described briefly in Section V.

III. SWERLING'S METHOD

Let el be a 6 -rowed vector estimate of the osculating orbital elements
at epoch 11 , and let C1 be its covariance matrix. Let be the n -rowed
vector of new observational data more or less centered at epoch 12 ,

where 12 > t1, and let J be its covariance matrix. To obtain the least
squares estimate of the osculating orbital elements at epoch 12 , we must
first update (i.e., extrapolate) El and CI . If it is the result of updating
El , the updated C1 is

Cl =  Cr M',

where IV is the 6 by 6 matrix symbolized by

M = agda1 
Then, assuming that the errors in the new data are not correlated with
the errors in the old data, the quadratic form to be minimized is

Q = (E - (E - El) [SB - So( )}' 1[g - so( E)1. (11)

This is essentially the sum of the right-hand members of (5) and (10).

Now, to the first -order term in (E - ii),

co(f) = So(gi) ./'( (12)

where .1 is the n by 6 matrix symbolized by

./ = ih,o(g1)/N1 . (13)

Then, to second -order terms,

Q= (e - il)'01-1(E - ii) [r - .1  (E - ii)1' 4-1  [r -J  (e -

where

r = ri6 - (14)

Now, Q is minimum with respect to e if

01-1- (e - - J'43-4 [r -J  (e - ii)] = 0.
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Denoting the value of e which satisfies this equation by z, we have

= C  p, (15)

where

C = [CV' ./' .43-1 (16)

p = J' c1,-17% (17)

Finally, since the quadratic form, to second -order terms, may be ex-
pressed in the form

Q = (E - E  C-1  (e - i) + terms independent of e, (18)

it follows that C is the covariance matrix of E. Equations (11), (15),
(16), and (17) correspond respectively to equations (16), (25), (19),
and (23) in Swerling's JAS paper (Ref. 8). Further, since el and C1 may
have been computed at the preceding stage in exactly the same way as

and C at the last stage, (11) corresponds also to equation (30) in
Swerling's JAS paper.

With regard to the updating of ei and C1 it should be noted that esti-
mates of "time of perigee (or nodal) passage" should be labeled with
the serial number of the passage. Thus, even in the hypothetical case of
a purely Keplerian orbit, unless the serial number of the passage is in-
tended to be the same in E as it is in el , the vector El will differ from the
vector E. . The component T1 (time of perigee or nodal passage) of el
will be increased to Pi in El , where Pi is T1 plus an integral multiple of
the period estimate 27a13/2/1/;, where al is the semimajor axis component
of el . The matrix 31 will therefore be a unity matrix except for an off-

diagonal component at/Oai which is an integral multiple of 31-1/a1ht.
In this connection, A. J. Claus has found advantages in using the period
instead of the semimajor axis as a component of el , especially when per-
turbing forces are taken into account.

In the classical method n must be at least equal to the number of
orbital elements, and it must include all of the available observational
data - old observational data (which has been processed at least once
before) as well as new. In Swerling's method n may be less than the num-
ber of orbital elements (possibly n = 1), and old observational data are
represented by the 6 components of ei , the 21 distinct components of the
symmetrical matrix Ci , and the epoch ti . The chief objection to Swerl-
ing's method, as far at least as some applications are concerned, is its
inability to omit any part of the old observational data without reproc-
essing the remainder of it. This objection is less serious if Swerling's
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method is used only in the intrapass stage of the pass -by-pass method
described in the next section.

IV. PASS -BY-PASS METHOD

This method consists essentially of two stages per pass. (These stages
are not quite the same as Swerling's stages.) In the first (or intrapass)
stage, a set of estimates of the orbital elements, and an associated co-
variance matrix, are computed from the observational data for each pass.
In this stage, any method of computation which yields a covariance
matrix for the estimates of the orbital elements may be used. In the sec-
ond (or interpass) stage, the sets of single -pass (i.e., intrapass) estimates
of the orbital elements are combined cumulatively (and possibly selec-
tively), by a method in which the single -pass (i.e., intrapass) covariance
matrices play important roles.

Let E1 and Cl have the same significance as in the description of Swerl-
ing's method, but let the new data be processed separately to obtain an
independent vector estimate e2 of the osculating orbital elements at
epoch t2 , with covariance matrix C2 . Then, the quadratic form to he
minimized is

Q = (e - (e - El) (e -e2)'C21 (e - e2). (19)

This is the sum of two terms similar to the right-hand member of (10).
Now, Q is minimum with respect tore if

01-1.( - c21

Denoting the value of E which satisfies this equation by E, we have

= C. (011.ii + C21. 2) (20)

where

C = (01-1 + (21)

Finally, since (19) may be expressed in the form

Q = ( - 0'  (e - i) ± terms independent of E, (22)

it follows that C is the covariance matrix of e. (See Appendix for a more
illuminating derivation).

Note that a "fading memory" can be introduced into the pass -by-pass
method (or any other method in which the old data are represented by
El , C1 , and ti) simply by substituting kC1 for CI , where k is a scalar
constant (k > 1) or

k = exp  (t2 - ti)]
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where 7 is a constant (7 > 0). However, at the cost of storing a number
of single -pass estimates of the orbital elements and the associated co-
variance matrices, old single -pass estimates of the orbital elements may
be completely omitted at any time without having to reprocess any of
the observational data on which the more recent single -pass estimates
are based.

4.1 An Example

It is illuminating to see how the method of combination described in
the preceding section works out in a simple problem. Consider an object
traveling along the x axis at a known acceleration a. Let

[Xi]
VI

X2

62 = [V21

be the estimates of position and velocity at epochs ti and t2 , and let

If t2 - ti = r, then

whence

Then,

El =

2

CI = C2 =
or

=

0
21

0-,

[X1 V1T

ail =M =
'9'

T1

T

2

Cl = M.C1.111' = [ff; T 2 2Gry2
TO",

Note that the correlation coefficient, which is

1

A/1 + (0-x/rcr,)2

is very close to unity for large values of T. For this reason, or for other
reasons, we may expect serious difficulties in numerical computations
based on (20) and (21) as they stand. These difficulties are considerably
reduced by the transformations described in the next section.

In the example under consideration there is of course no difficulty
about inverting matrices analytically. It is found finally that
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= [ _ at epoch /2 ,v]

where

= 10:[2(xi ± +x2) T(vi + v2)] + a.272x21 ,
44'7x21 r2cr2

V = 1202(vi + v2 + aT) 0-2T0-2 - ./.1 lar2) } ,

4crr2 r2cr2

and

C - crx2
2a.r2 T2.7:

2
Tat,

TO",

2a,,2
40..2 + 7.2o.v2

Under the assumptions implicit in C1 and C2 that x1 , v1, x2 , and v2

are not correlated, the equations for and v may be verified by a more
familiar method. We have in fact two independent estimates of the
position at epoch t2 , viz.,

2 2

V1

2

+ V2
X1 ± r with variance crx2 + Gr

2y '

and

x2 with variance Q.2.

Taking the weighted average of these two estimates, each estimate being
weighted in inverse proportion to its variance, we get t, as expressed
above. The variance of z is the harmonic mean of the two variances, so
that

Grx2 T2crv2)

var {x} -
x2 7.2,v2

in agreement with the equation for C.
Similarly, we have three independent estimates of the velocity at epoch

t2 , viz.,

and

v1 aT with variance cr.2,

v2 with variance cr.2,

3C2 - x1 1+
2-

ar with variance
20-2

.

T2
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Taking the weighted average of these three estimates, each estimate
being weighted in inverse proportion to its variance, we get 0, as expressed
above. The variance of 0 is the harmonic mean of the three variances, so
that

var {0} 2020.v2/ (40.2 + ,20.v2)

in agreement with the equation for C.
The covariance of X and 0 may also be verified, but the algebra is more

involved.

4.2 Transformation of Equations

Omitting the explicit notational reference to updating (i.e., extrapola-
tion) in (20) and (21), we have

= C. et + C2'  2), (23)

where

C = (C1- + (24)

These equations require the inversion of three matrices which, at least
in the case of angles -only data, are usually extremely ill -conditioned.
Hence, they have been transformed in order to reduce this difficulty.
The transformations described here were developed by A. J. Claus and
the author.

Introducing the identity

into (23), we get

Now,

CI'  el = (Cr' + C21) ri- 2  ei

= i -C  C21  ( - 2).

C  c2' = (cc' + c2-1)-'  c2' = [C2 +
= (1 + c2. cci)-i = Re, + c2)  ci1-1
=  (CI + C2)-1.

Next, let

P1 =  Cl  AS, P2 = S  C2  AS, (25)

where S is a diagonal matrix in which each diagonal term is the reciprocal
of the square root of the sum of the corresponding diagonal terms of
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C1 and C2 . (Thus, every diagonal term of Pi + P2 is unity.) Then,

CI. (CI + C2)-' = (Pi + P2) -'.S.

Hence,

= El - PI  (PI + P2)-1  S  ( - 2).
Similarly,

= E2 S-1. P2. (Pi + P2)-1 S  ( - 2) 
Next, let W1 and W2 be arbitrary square matrices whose sum is a unity
matrix. Then,

= W1 ei -4- W2 ' e2 -R (El - 2) I

where

R = (Wl S-1  P1 - W2. S-4  P2)  (P1 + P2) -'S.

Since Pi + P2 may yet be ill conditioned for inversion, we now use a
well-known artifice, and write

R = [Wi S-1  (Pi -G) - 1172- S-1  (P2- G)]  [(Pi + P2) G]-1  8,

where G may be regarded square matrix
it merely represents a set of rules for combining rows and/or columns of

Pi + P2 as well as of P1 and P2 individually. [The normalization of the
matrix sum C1 + C2 to PI + P2 and the preservation of its symmetry
by the introduction of the matrix S, as in (25), simplifies the implementa-
tion of the matrix G as a set of operational rules.] Finally, W1 and W2
are restricted to diagonal matrices, so that

R = ,S-'[W1(P1G) - W2. (P2G)][(Pi + P2) G]-1  S. (27)

Noting that the right-hand member of (23) reduces to 2C if El is re-
placed by Cl and E2 is replaced by C2 it follows from (26) that

C = 2[W1 C1 + W2 ' C2 R  (Ci - C2)]. (28)

For further details, see Ref. 12.

4.3 Debiasing Single -Pass Estimates

Depending upon the method used to obtain single -pass estimates of
the orbital elements in the first (or intrapass) stage of the pass -by-pass
method of orbit refinement described in Section IV, the single -pass
estimates may be biased on the average even if the errors in the observa-
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tional data are not biased. Unless these biases are tolerable, they must
of course be removed. In this section we will describe a method of remov-
ing these biases in the single -pass estimates of the orbital elements.
However, biases in the single -pass estimates of the orbital elements due
to biased errors in the observational data will not be removed by this
method.

In the interest of simplicity, the description will be by analogy with
a much simpler problem which involves only one observable coordinate,
one parameter to be estimated, and does not involve time at all. We will
consider two methods of estimation, of which the first is analogous to the
classical method of orbit refinement, and the second is analogous to any
method of obtaining single -pass estimates which are biased on the aver-
age even if the errors in the observational data are not biased.

Let y be a function of the observable coordinate x, and let

xi = xo Ei (i = 1, 2, , n)

be the observed values of x, where the e's are uncorrelated random er-
rors with ave 21 = 0 and var { 4 = 62 for every i. The most direct way
of estimating yo = y(xo) is obviously to compute first

= (1/n) E xi ,

and then y(). The nature of the estimate obtained in this way is deter-
mined as follows. Since

= xo + a,

where

a = (1/n) E ei ,

then, to second -order terms in the ei's,

y(1) = yo aoa t-boa2,

where ao = dyo/dxo , and bo = d2yo/d.ro2NOW,

ave [0} = 0, ave I ot21 = 62/n.

Hence, to second -order terms in a,

ave ty(2)1 = yo (bo62/2n),

and

var {y(:Z)} = ave {[y(ti).1 2- [ave iy(x))] = ao262/n.
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If (7.2 is not known, an estimate of var y(d;)) is given by
2

var {y(x)}
n(nao 1)

E(xi -

Since

lim ave {y(5';)} = yo,
n

the estimate is asymptotically unbiased; and since

lim var {y(i)} = 0,

the estimate is "consistent" in the sense that the probability is unity
that it will be correct to at least the second order as n 00. These re-
sults are indicative of the nature of the estimates of orbital elements
obtained by the classical method of orbit refinement, in which the esti-
mates are such as to "predict" values of the observable coordinates
which agree with the actual observations in the least squares sense.

Now, consider another way of estimating yo . We compute y(x) for
each observed value of x, and define the estimate of yo as

ijo = (1/n) E yi where yi = y(xj).

The purpose of estimating yo in this way is to permit the estimation of
var {90} without using ao . Thus,

1

var {go} n(n - 1) ERi2

where

Ri = yi - go

The importance of this is that the analog of ao in the computation of or-
bital elements from, say, two complete radar fixes (each fix consisting of
a range and two angles) is the inverse of a 6 by 6 matrix whose compo-
nents are functions of the epochs of the two fixes. The computation of

this matrix may be avoided by computing a set of orbital elements from
each pair of radar fixes, averaging over the sets, and estimating the co-
variance matrix from the residuals.

The nature of the estimate go is determined as follows. Since, to sec-
ond -order terms,

y, = 2yo aoi lbo,,
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then

yu = yo ao« + 2 bole

where a is as previously defined, and

13 = (1/0 ei2.

Now,

Hence,

and

2ave 1#1 =

ave = yo (b00-2/2),

var = ave 1[90.121 - [ave jo{]2
aoym

Thus, go is a biased estimate of yo . In particular, it should be noted that,
while the variance of this estimate decreases with increasing n, the bias
in the estimate is independent of n. Hence, the variance bears no rela-
tion to the accuracy of the estimate.

The bias may be removed by the following supplementary procedure.
1. Compute :to such that

y(4) = yo .

This is analogous to computing' artificial tracking data (at the same
epochs as the actual tracking data) from the biased single -pass estimates
of the orbital elements analogous to go . The method of computing track-
ing data from orbital elements must of course be numerically compatible
with the method of computing orbital elements from tracking data in
the absence of observational errors.

2. Compute

= ato - , i = 1, 2, , n.

This is analogous to combining the actual tracking data with the arti-
ficial tracking data computed in the preceding step. ( The choice of a
combination such that the random error in each ii is equal in magnitude
but opposite in sign to the random error in the corresponding xi was
suggested by D. R. Brillinger.)

3. Compute

Ji = y(rti), i = 1, 2, , n.

This is exactly the same procedure used in computing yi = y(a.4).
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4. Compute

gi = 2(3Yi -

5. Compute

i = 1, 2, n.

yo = (1/n) Egi as the estimate of yo .

The nature of the estimate go is determined as follows. To second -order

terms,

Hence,

:to= + a - ob 2

(a

Si = xo - (fi - 2a) - (a2 [3), i = 1, 2, , n,
ao

Iji = yo - ao(fi - 2a) +20 (i2 - 4aei 2a2 + 2(3),

2

= yo + ao(2ei - a) +
o

(Ei 2ai a2 1),

go = yo aoa ib0a2

Thus, to second -order terms in the ei's, go is the same as y (ft) . It is asymp-
totically unbiased, and it is a consistent estimate of yo . It may be abso-
lutely debiased, to second -order terms in the 2's, by changing step 4 of

the supplementary procedure to compute

1 1

= 2 [0 + n - 1)yi - (1 + n -1 1.)4ya

Then, in determining the nature of the estimate yo , we now have

= yo n
a°

1
[(2n - 1) Ei na]

2(n
bo

1)
[(n - 1) Ei2 2naEi - na2 - n/3],],-

,
yo = yo + Goa + 2(n

bo

1 )
(na- - 13).-

Hence,

ave {gol = yo .
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Generally, if step 2 of the supplementary procedure is changed to
compute

= 1[(1 w)fgo + (1 - w)xil,

and step 4 is changed to compute

yi = .1[(1 + (1 - 1V)y4,
then,

(1 - Inbo {1 - w'
a2

[3 + W2 1 + /1714
9'0 = Yo aoa

4 4 4 1 - 117.11

whence,

(1 - Inbocr2 p _ w2 3 ± w2 1 ± 1171ave {go) = yo
4 L 4n 4 1 -W

Hence, the estimate go is asymptotically unbiased if

-
2

W I
IV

and is absolutely unbiased if

-

202 1

w2 ± 7n ± 1n - 1
w2 1

The choice of w should be made with some regard to the fact that

var -0.2 1
-(n- 1) (1+w) (3 -[

4n

The choice is w = 3 in step 2 of the supplementary procedure, and
IV = 2 in step 4, so that var { = cr2 = var {xi} .

V. CLAUS'S METHOD

The pass -by-pass method described in Section IV was used at the An-
dover, Maine, station of the Telstar I experimental satellite communica-
tions system. The intrapass estimates of the orbital elements were
computed from angles -only data by a method described in some detail
in Refs. 11 and 12. Suffice it here to say that a set of orbital elements is
computed from each set of four sightlines (of which there may be as
many as 200 in a single pass), the sets of orbital elements are averaged,
and an estimate of the covariance matrix is computed from the residuals.
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(Compare this outline with that of the example cited in Section 4.3, which
uses complete radar fixes, including range. It should be noted that unless
the number of sets of orbital elements is at least equal to the number of
orbital elements the covariance matrix will be singular.) This method
gave excellent results for about four weeks. After that period it began to
give sporadically bad results - typical errors of 105 feet in single -pass
estimates of the semimajor axis.

Extensive simulation studies by W. C. Ridgway III showed that most
of the trouble was probably due to the sensitivity of single -pass estimates
of the orbital elements to a bias error in the elevation angles, where these
estimates are derived from single -tracker angles -only data. This result
was subsequently confirmed by some formal analysis by the author.
Ridgway's studies showed, in particular, that the sensitivity increases
rapidly with decreasing length of pass, and with increasing maximum
elevation angle, although sightlines at elevation angles over 82.5 degrees
(or under 7.5 degrees) were not used. This is consistent with the fact
that the sporadically bad results began to occur when the perigee of
Telstar I had precessed sufficiently to make the passes at Andover sub-
stantially shorter than they were during the first week, and a substan-
tially larger proportion of the passes had high maximum elevation angles.
Ridgway's studies showed that, under these conditions, an error of 105
feet in the single -pass estimate of the semimajor axis could easily be due
to a bias of 0.01 degree in the elevation angles.

In order to overcome the sensitivity of a single -pass single -tracker
angles -only method to a bias error in the elevation angles, on short passes
with high maximum elevation angles, A. J. Claus has developed a method
of orbit refinement which permits the use of a few, perhaps only one or
two, measurements of range in each pass. This method was intended
to be used in the intrapass stage of the pass -by-pass method described in
Section IV, but it may be used as a self-sufficient method, just as Swerl-
ing's method may be used either in the intrapass stage of the pass -by-
pass method or as a self-sufficient method.

Although Claus developed his method with no foreknowledge of
Swerling's method, it turns out that his method differs from Swerling's
method only in the explicit introduction of an iterative routine which,
as in the classical method, improves the estimates of the orbital elements.

Instead of (12) now substitute (1) into (11) so that

Q = ( glr1- El)
( 29)

[r - J'( - 01' 4-1 - ( - 0)],
where J and r are defined by (2) and (3), and E0 has the same signifi-
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cance as in the classical method. Now, Q is minimum with respect to E
if

01-1. ( e - ii) - ,/' c13-1 [r -J  ( e - co)] = 0.
Denoting the value of E which satisfies this equation by z, we have

= ('  [61-1 413-1  J  co +

where

(30)

C = [el Jr, (31)

p = .P -013-1r.

Equation (30) may he expressed in the form

= C  if 41 .1  ( 0 -

(32)

(33)

where C, J, and p ( the latter through r as well as J.) depend implicitly
on eo . Comparing this with (15), it will be seen that the iterative use of
(30) or (33), substituting E for eo at each iteration, until the difference
between EO and E is negligible, is precluded in Swerling's method by the
constraint eo

Finally, since (29) may be expressed in the form

Q = (E - ?)'  (E - i) + terms independent of e, (34)

it follows that C is the covariance matrix of E.

VI. BATTIN'S METHOD

This method, as described in Ref. 14, is essentially a special case of
Swerling's method. However, by introducing new data one at a time,
Battin's method avoids the inversion of matrices. (Swerling's JAS article
contains equations whereby matrix inversions are avoided if new data
are introduced one at a time, but these equations appear at the end of the
section entitled "Statistics of Propagated Errors," and their use for
avoiding matrix inversions is not explicitly stated.)

In the notation of Section III, (15) may be written in the form

= G'201-11-1  .1' (35)

where c2 is the variance of the scalar 45, J is a 1 by 6 matrix (i.e., J' is a
6 -rowed vector), and r is a scalar. Now, if

a = ./  CI + o (a scalar),

then,

(36)
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J'j,.
a

[1 jl
Cl

j/
a

[ ji 0.201 11 Cy,

a

Substituting (37) for the last .P in (35), we get

E = E1 ± e1 ,/' .

a

Further, since (16) may be written in the form

then,

cy 2 0.2011]-i

C - -01 = 0.2p,
0.20111-1 _ 0,

and, therefore,

6201--1](c - C1) = -J'JC1.
Substituting (37) for .1' in the right-hand member, we get

1 -
C = - -a Cc J -

.

(37)

(38)

(39)

Equations (36), (38), and (39) are equivalent to equations (30), (29),
and (33) in Battin's paper (Ref. 14).

From this description of Battin's method, it is evident that the in-
version of matrices may be avoided also in Claus's method if new data
(perhaps only the range data) are introduced one at a time. Comparing
(33), (31), and (32) with (15), (16), and (17), it is clear that (38) and
(39), with (36), are valid in Claus's method if

= - co(o) J (co - (40)

and

= aso(eo)/aeo (41)

The initial value of Eo may be taken equal to gi, but thereafter E is re-
peatedly substituted for co until the difference between z and eo is negli-

gible.
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VII. MOD -S AND MOD -C METHODS

Swerling's method and Claus's method can be modified to permit the
introduction of new data n at a time, where n < 6, at the cost of having
to invert a matrix of order n. This might be worthwhile for n = 2 or 3.

With regard to Swerling's method, let

A = J  Cl J' (an n by n matrix). (42)

Then,

J ' 4-1 = J' 4-1  [J  Cl J' (11

= [J',4,-1 J J'  A-1.

Substituting this into (17), substituting the resultant expression for p
into (15), and taking account of (16), we get

= J'  A-1. r. (44)

Equation (36) is a special case of (42), (38) is a special case of (44), and
(39) is a special case of

C = C1 - Oi J'  A-1  J  01 . (45)

With (42), (44), and if r
and J are defined by (40) and (41), and the repeated substitution of

for eo is carried out until the difference between eo and e is negligible.

VIII. SUMMARY AND CLOSING REMARKS

(43)

8.1 Summary

The classical "differential corrections" method of orbit refinement,
occasionally supplemented by the use of "normal places," is appropriate
for astronomical bodies whose relative positions change very slowly,
whose relative angular positions, viewed from the earth, can be measured
with extreme optical precision, and which therefore require compara-
tively small quantities of observational data to establish their orbits with
great accuracy. However, that method is very unwieldy for artificial
earth satellites or short-range space probes, where the relative inaccuracy
of the observational data must be offset by greater quantities of observa-
tional data.

For artificial earth satellites or short-range space probes, Swerling's
method is more practical, chiefly because it does not require all of the
observational data to be processed together. However, to omit any part
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of the old observational data which has been processed by Swerling's
method it is necessary to start all over again in the sense that all of the
old observational data which are to be retained must be reprocessed in

the same way, along with any new observational data which might be
available.

The pass -by-pass method, on the other hand, operates on the princi-
ple of computing an independent set of estimates of the orbital elements
for each pass, and combining the sets of single -pass estimates in an opti-
mum way. Thus, entire blocks of observational data may be omitted
without actually reprocessing any of the old observational data from
which single -pass estimates of the orbital elements have already been
computed. The method of obtaining the single -pass (intrapass) estimates
is optional. In the Telstar I experiments, it consisted in dividing up the
data (no range data) into mutually interlaced independent sets of four
sightlines, computing a set of orbital elements from each set of four
sightlines, averaging over the sets of orbital elements, and computing a
covariance matrix for the average set, from the residuals. This particular
intrapass method introduces biases (apart from the biases in the data)
and a method of eliminating these computational biases was developed
but was not used in the Telstar I experiments. After four weeks of suc-
cessful operation, a more serious source of trouble arose, which was
traced to the increasing sensitivity to bias (residual boresight error and
sample bias) in the elevation angle data. This increasing sensitivity was
associated with the precession of perigee to latitudes close to that of the
tracker.

To overcome the sensitivity of the angles -only intrapass method to
bias in the elevation angle data, Claus developed a method, intended to
be used chiefly in the intrapass stage of the pass -by-pass method for
Telstar II, which could accept occasional range data. This method is
essentially Swerling's method supplemented by an iterative routine
which improves its accuracy.

In Swerling's or Claus's method, the inversion of six -by -six or higher -
order matrices can be avoided by borrowing a detail from Battin's
method of spacecraft navigation, provided that the observational data
are processed only one at a time, as in Battin's method. However, at the
cost of inverting n -by -n matrices, where n < 6 (say, 2 or 3), the observa-
tional data may be processed n at a time, by modified forms of Swerling's
or Claus's method.

The comparisons of the methods described in this paper have been
made only to the extent that motivated the development of the newer
methods. The practical details of these methods are interchangeable to
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a large extent, so that different and more appropriate combinations of
these details may be made for other specific practical applications.

8.2 Closing Remarks

Claus has pointed out that, in principle, none of the alternative meth-
ods described in this paper, including the use of normal places in the
classical method, can be as efficient, in a statistical average sense, as the
classical method without normal places. The reason for this is simply
that the classical method without normal places allows the maximum
possible freedom in fitting the estimates of the orbital elements to the
observational data. Hence, the choice of a method, or combination of
methods, for a particular application, usually involves a small sacrifice
in accuracy.
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APPENDIX

Equations (20) and (21) may be derived in another way (essentially
that used by Aitken in Ref. 3) which does not depend upon the minimiza-
tion of a quadratic form and provides further insight into the signifi-
cance of these equations.

Let x be the true value of an n -rowed vector (one -column matrix).
Let x be an unbiased estimate of x, with

ave (1 - x)  ("± - x)'} =
where the prime stands for transposition and "ave" stands for ensemble
average. The nth -order square matrix C is the covariance matrix of x.

Let be another unbiased estimate of x, with

ave {( - x) -x)'} = 0,
and let it be assumed that x and are independent, so that

ave 1(1 - x) - xr} = 0.
Now, consider the weighted linear average

= T + ITT (46)



908 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

where W and f7 are nth -order square matrices, with

117 = (47)

where I is the nth -order unit matrix. Since

- x = 117.(x- x) -117.(d. - x),
it readily follows that if

= ave { (2 - x)  (2 - x)1

then

C = W  C  W' TY IP (48)

Each of the diagonal elements of C, viz.,

Cii = E (Iri.i jk W ik ij jkf ik)
j,k

will be minimized under constraints on IPik Wik by minimizing

Cii - 2 E X ik  ( Wik Tkik)

where the ?to's are Lagrange multipliers. This requires that

jk = Xik E ij jk = X ik

for every i, k. In matrix notation,

WC = X, = X

where X is the nth -order square matrix of the X,k's. Hence,

W= X = X  C-',

where, to satisfy (47),

By (48) and (49)

A = + C-`)-'.

C
0-1)

= X' by (50),

but, since X is a symmetrical matrix,

C = X.

Finally, by (46), (49), and (51),

= CCO-12

(49)

(50)

(51)

(52)
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where, by (50) and (51),
0-1)-1.

(53)

This derivation shows that the diagonal elements of C, which are the
variances of the components of a% have been minimized independently
of one another.
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On the Response of Nonlinear Control
Systems to Periodic Input Signals

By I. W. SANDBERG

(Manuscript, received June 20, 1903)

In this paper we study a broad class of nonlinear control systems con-
taining a single memoryless nonlinear element. We present conditions
under which there exists a unique periodic response, with a given period,
to an arbitrary periodic input with the same period, and we derive an upper
bound on the mean -square error incurred by applying the describing -
function technique. The expression for the error reflects the intuitive en-
gineering arguments that are often employed to justify the use of the de-
scribing -function method. Conditions are also presented under which
subharmonic response components and self -sustained oscillations cannot
occur.

I. INTRODUCTION

The describing -function technique is often used to determine the
response of nonlinear control systems to sinusoidal input signals. In
this approach,* which is applicable to systems of any order but which
is ordinarily restricted to systems containing only one nonlinear ele-
ment, it is assumed that the response is periodic, with only the com-
ponent at the input frequency significant.

Although the describing -function technique is of considerable prac-
tical value and indeed is one of the most powerful analytical tools
available to the control system synthesist, it appears that, except with
regard to predicting the existence of self -sustained oscillations,8 there
has been no rigorous discussion of its validity.f

In this paper we study a broad class of nonlinear control systems
containing a single memoryless nonlinear element. We present condi-
tions under which there exists a unique periodic response, with a given
period, to an arbitrary periodic input with the same period, and we

* The describing -function technique was discovered independently by engineers
in at least five different countries.1-6

t However, some interesting relevant ideas have been presented by Johnson.?

911
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derive an upper bound on the mean -square error incurred by applying
the describing -function technique. The expression for the error reflects
the intuitive engineering arguments that are often employed to justify
the use of the describing -function method. Conditions are also presented
under which subharmonic response components and self -sustained
oscillations cannot occur.

Some mathematical preliminaries are considered in Section II. In
Section III we describe the physical system to be studied, introduce
some assumptions and notation, and discuss the describing -function
technique. The remaining sections are concerned with mathematical
results relating to the functional equation that governs the behavior
of the physical system.

II. MATHEMATICAL PRELIMINARIES

Let at = [0,p] be an arbitrary metric space.' A mapping A of the
space at into itself is said to be a contraction if there exists a number
k < 1 such that

p(Ax,Ay) kp(x,y)

for any two elements x,y E O. The contraction -mapping fixed-point
theorem' is basic to much of the subsequent discussion. It states that
every contraction -mapping defined in a complete metric space CR has
one and only one fixed point (i.e., there exists a unique element z e 0
such that Az = z). Furthermore z = lim Anx0 , where xo is an arbitrary

n

element of 0.
Let 71 be a real positive constant. The space of real -valued periodic

functions of t with period T which are square -integrable over a period
is denoted by 3C. The norm of g e 3C is denoted by II g If and is defined by

11 g 112 = f g2c11
T

(i.e., II g 11 is the rms value of g). With this norm 3C is a Banach space.
If g E 3C,

g = Egnc incoot

oo n

where wo = 27/ T and the Fourier coefficients g are given by

gn = g(t)e-in"tdt.
T
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Parseval's identity reads:

I 9. 12 = 112.

Two elements of 3C, g and 11, are equivalent if II g - h II = 0.
In accordance with the usual notation, the norm of a linear operator

Q defined on 3C is denoted by II Q II
The symbol cein denotes the space of real -valued absolutely integra-

ble functions defined on the real interval ( -COoo . We take as the
definition of the Fourier transform of f (t) c ceitR

= f(t)e-iwidt.

The symbol I is used throughout to denote the identity operator.

III. DESCRIPTION OF THE PHYSICAL SYSTEM, THE DESCRIBING -FUNCTION
TECHNIQUE, AND THE PROJECTION OPERATOR P

We shall be concerned with the familiar nonlinear control system
shown in Fig. 1.
Assumption I: It is assumed throughout that F (in Fig. 1) is a linear
operator. Let a = { , F_2 , F_1, Fo , F1 , F2 ,  ) denote a countable
set of complex constants such that sup I F I < 00 and F is equal to the

complex conjugate of F_ . Unless stated otherwise, it is assumed that the
restriction of F to 3C is a bounded linear mapping of 3C into itself with the
property that if g e 3C and h = Fg, then h = Fg in which g and h ,

respectively, are the nth Fourier coefficients of g and h. (According to the
Riesz-Fischer theorem, F is completely defined on 3C by a.)

The class of operators consistent with Assumption I includes the
important special case in which

Fg = f f(t - r)g(r)dr, g e 3C

where f(t) E .eut (see Appendix A). Here F = F(incoo) where F(ico)
is the Fourier transform of f (t) .

yo Tw V F
O

I

Fig. 1- Nonlinear control system.
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Assumption II: The nonlinear function 11, in Fig. 1, which introduces
the constraint v(t) = Cw(t)], is assumed throughout to be real -valued,
independent of t, and such that there exist two real constants a and 13 > 0)
with the properties that 1(a 13) = 1 and

a(;11 - 122) 5_ 0(ti) - 442) -5 P(Ai - 112)

for any real µl > 122 .

The normalization I(« + 13) = 1 permits some simplification in the
subsequent statements of results.

In Fig. 1 the input signal y is related to the output signal x by the

functional equation

x = Ft* y].

3.1 The Sinusoidal Response of the System in Fig. 1

The response of the system in Fig. 1 to a sinusoidal input is frequently
of engineering interest. Typically the system is of high order* so that
the well-known special techniques applicable to second -order systems
cannot be used. The describing -function approach simplifies the prob-
lem by assuming that the output is periodic and that the only signifi-
cant frequency component of the output is that component at the
input frequency. Hence it is assumed that the input to the nonlinear
device is a sinusoid and that is characterized by the ratio of the funda-
mental component of its output to the amplitude of the sinusoidal
input (this ratio is called the describing function for t/i). Thus the non-
linear element is treated as an element with a gain that varies with
input signal level, and to the extent that the describing -function ap-
proximation (sometimes called the "first harmonic approximation")
is valid, the usual frequency response methods can be employed.

The first harmonic approximation is often "justified" on three grounds:
first, no significant subharmonic components of x(t) are ordinarily
present; second, the harmonics of the output of are ordinarily of
smaller amplitude than the fundamental and, third, in most feedback
systems F behaves as a low-pass filter with the result that the higher
harmonics are significantly attentuated.

Aside from at least two computational difficulties' associated with
the describing -function method, which can be remedied to a consid-
erable extent with machine aids, "The third and most basic difficulty
is related to the inaccuracy of the method and, in particular, to the

* That is, the nonlinear differential equation governing the system is typically
of high order.
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uncertainty throughout the analysis about the accuracy. There is
[in the literature] no simple method for evaluating the accuracy of
the describing -function analysis of a nonlinear system and no definite
assurance that the results derived with the describing function are even
approximately correct."9 However, it should not be inferred that the
accuracy is necessarily poor.9'19 "Indeed the correlation between ex-
perimental and theoretical results is in many cases better than the
accuracy of the design data."'

3.2 The Role of the Projection Operator P

A moment's reflection will show that the describing -function tech-
nique as applied to the system in Fig. 1 amounts to analyzing the
approximating system that results by replacing the operator F with the
operator F defined by

1
7'

fo Png , n = ±1

=0, n ±1

where g e 3C, gn is the nth Fourier coefficient of g and 7' = 21r/wo is the
period of the input sinusoid.

At this point it is convenient to introduce
Definition I: Let 91. denote a set of integers such that -m e 1 if m e 9/.
Let g be an arbitrary element of 3C with nth Fourier coefficient g
The projection operator P is a linear mapping of 3C into itself defined by

1 fy
T o

[Pgje_i""tdt = gn, n e 91

= 0, n,eG.

An obvious generalization of the describing -function technique is to
take as the approximating system the system that is obtained by re-
placing F in Fig. 1 with PF. The results to be presented relate to this
more general situation. Of course in the case of principal interest,
91 = -1,11 and PF = P.

IV. RESULTS RELATING TO THE FUNCTIONAL EQUATION = Fi*
The proof of the following simple preliminary result is given in Ap-

pendix B.
Theorem I:

IIFII = suP F i
fi
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If inf I1 - F,,
I

> 0, the operator (I - F) possesses a bounded inverse

on 3C and

11 (I - F) -iFII = Slip 1 -
The principal result of this section is

Theorem II: Let F, Ili, and [3 be as defined in Section III. Let y e 3C.
Suppose that

= sup
11

17"

1 - Ft, 1(13 - 1) < 1.

Then there exists a unique x e 3C such that x = Ftgx y]. In fact, x =
lim x, where
77i

x,n+i = (I - YI - x.)
and xo is an arbitrary element of 3C. The mth approximation x,n satisfies

m

Ilxm-x 1 r - xo II.

Proof:
Let 4/[w] = lkow 4;[w], where 00 is a real constant such that

inf I 1 - 00/7
I

> 0 (since r < 1, there exists such a 4.0. According to
It

Theorem I, (I - tfroF) possesses a bounded inverse on X. Hence the
functional equation x = FIP[x y] can be written as x = Mx where

Mx = ( I - ip0F)-W[x y] + 00(i - F )-'Fy.

In order to prove Theorem II it is sufficient to consider the case in
which ;to = 1. However, we prefer to bring out the fact that this choice
of , the median of a and 13, is optimal in a significant sense.

It is evident that M is a mapping of X into itself. Let us consider
the determination of a condition under which M is in fact a contraction -
mapping of X into itself. Let g,h E 3C and observe that

11 Mg - Mh = 11(1 - 11/0F)-IFICg ± - IA II

-5 II(1 - - -F MIL

Since

1T[g - 11;[h y] = (&[g ± - 111 -,y (o
g - h

11.;[g y] - 1T[h y]ll 77(00)11 g - hIl

- h)
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Thus
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n(00) = 0 - 40 ,

II Mg Mh

= - a,

I-tki,F)-'FII77(11/o)IIg-hII,
and M is a contraction if

q(00) = II (1 - ifroF 1-IF !I n(1,1/0) < 1.

Using Theorem I,

q(00) = sup
F

1 - 00F. 7/(G0).

Assuming that there exists a tko such that q(00) < 1, the following
result, which is proved in Ref. 11, implies that inf q(00) = q(1).

too

Lemma I: Lett be a complex number and suppose that I -1,&01-17/(11,0) < 1.
Then

-001-1714) >
I - l1-177(

).

From this point on we assume that ;Go = 1 and we set q(1) = r.
Thus the assumptions stated in Theorem II imply that M is a contrac-
tion. In view of the contraction -mapping fixed-point theorem, this
establishes the existence and uniqueness of the function x(t) and the
fact that it can be determined in accordance with the stated iteration
procedure.

The upper bound on II x, - .v II follows directly from the fact that
x can be written as

ao

.V = E ku+0 - x 11,-0

in which, for all j >= 1

II x +1) - x = II Mx -
Remarks:

Observe that a nontrivial self -sustained periodic oscillation with
period T cannot exist in the system of Fig. 1 if the hypotheses of Theorem
II are satisfied and OM = 0 (since then y = 0 implies that x = 0).

When F is defined by

Mx(; -011 5 r II x, -

Fg = f f(t - r)g(T)dr
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where f(t) E ceiR , Theorem II implies the following simple necessary
condition for the occurrence of jump -resonance phenomena' in the
system of Fig. 1:

sup
F (i0.)) - 1) 1.

1 -
For example, let F(ico) -14(iw a)(ico 1)]-1 where k and a
are positive constants. Let

4,[w] = 2w, IwI <c
= 2c sign(w), Iwl >c

where c is a positive constant. Then it is a routine matter to show that
jump -resonance phenomena can occur only if k > 1(1 + a2).

4.1 Two Further Consequences of Theorem II
Corollary I: Suppose that the hypotheses of Theorem II are satisfied. Then

x II <1 1 11(1 F)-iFiP[Y] Il

Proof:
Set m = 0 and So = 0 in the upper bound for II :Cm - X II*

Corollary II: Suppose that the hypotheses of Theorem II are satisfied and

that I; r 3C satisfies = PF1,14 y]. Then

II x - II 1 !RI - FrF(I - P)1//[1'; y]

Proof:
With m = 0 and so = i, the upper hound for - x II yields

II x - 11 5 11(I- F) -1F 14/[ y] -

- (I - PF)-jPFIV,[1' + y] -
Since (I - PF)-I = (I - P) (I -F )-113 and ( I - P).i: = 0,

x - 1 11 (I - F)-'F(I - P)1,0S; y] II.

Remarks:
Note that the hypotheses of Theorem II imply that there exists a

unique E 3C such that = PF#[ y].
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The bound on 11 x - i II can be expressed with the aid of Parseval's
identity as

1 FnII X - II 1-Fpn (1)

where p is the nth Fourier coefficient of 1,1/1.P yl. Consider the usual
describing -function case in which 91 = -1,11, and y is a sinusoid with
period 7'. Assuming that is an odd function so that po = 0, (1) clearly
shows that 11 x - i II is small when the amplitudes of the harmonics*
of OP y] are sufficiently small or when the attenuation of the har-
monics by F is sufficiently large. Thus subject to the key inequality

Fn
SUnP 1 -F. - 1) < 1,

(1) makes precise the usual intuitive engineering arguments regarding
the applicability of the describing -function method for determining the
sinusoidal response of the system in Fig. 1.

It can be shown12 that if a > 0, = 0, and y = Py:

Pori; + a 1117 +

Under these conditions

11(1 - P)OLP = (ii Y1112 - ± il1112)1

(132 - ty2 II y

and

x 1 1 - - P)I1(02' - a2)111

1
< sup- J. - r not 1 -F

(132 cx.)

Under the conditions stated in Theorem II, the response x(1) can
be determined in accordance with an iteration procedure for which the
successive approximations converge in the mean -square sense at least a
geometric rate. In particular, if we take xo = the solution given by
the describing -function method, the second approximation is

xi = (I - F)-IF{OP y] -
* Of course here all even harmonic components vanish.
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which can be evaluated in a relatively simple manner once has been
determined. Using Theorem II and the expression for xi - xo ob-

tained above,

II X -
1

11(I - F)-1F(I - P)101 ;- r

4.2 An Observation Relating to the Necessity of the Assumptions in The-
orem II

The basic assumption in Theorem II is:

sup
n

Fn

1 -Fn - 1) < 1.

This inequality is satisfied if and only if the numbers (F7 )-j are bounded
away from the disk centered in the complex plane at (1,0) and having
radius (fl - 1). It is of interest to note that there is a function 0, in
fact a linear 0, that satisfies Assumption II and possesses the property
that there is no function x(t) E 3C such that x = FIP[x y] if, for some

integer k:
(i) F k 0

(ii) F k, is a point on the real -axis diameter of the disk mentioned
above, and

(iii) the kth Fourier coefficient of y does not vanish.
To prove this assertion observe that if the three conditions are satisfied,

a < (Fk)-i 13, and x = Fikx y] with ip[w] (Fk )-itv, possesses

no solution belonging to 3C.

This observation suggests that the assumptions made in Theorem
II are not too far from being necessary.

4.3 On the Boundedness of the Solution

Theorem III: Let F be defined by

Fg = f f(t - r)g(r)dr, g E 3C

where f E ceiR and let satisfy Assumption II. Let x e 3C satisfy x
y], y E 3C. Suppose that (1 + I t pf(t) is square -integrable on

(- co ,00 ) .
Then I x(t)I is uniformly bounded on 0 < t < T.

Proof:
Let h = 11/[x y] and note that h e 3C. Using the Schwarz inequality,
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(1 + I T Df(T)
h(t.

T)
( 1 + 1 T I)

dT

v(7)]2d7
JAA

h(1 - T) 2

± 71

The last integral can be bounded as follows:

L ,0

h(t -
+ 1 ,

2

(IT

00 (±i),
E

n=-00 fn T

h(t - T)
1+ITi

2

(IT

ao 7.

2 (1 + (T)-2 E n-2 I h(t)I2c/T.)
Thus I x(t)I is uniformly bounded on 0 < t T.
Remarks:

The hypothesis regarding f(t) is almost always satisfied in cases of
engineering interest.

If the hypotheses of Theorem III are satisfied and I y(t)I is uniformly
bounded on [0, T], it follows that x(t) is continuous on [0,T], since

h(01 is uniformly bounded on [0,T] and
00

col f (t + a) -f 0 as 3 -* O.

V. RESULTS RELATING TO AN IMPORTANT SPECIAL CLASS OF CONTROL
SYSTEMS

One frequently encounters949 discussions of systems of the type shown
in Fig. 1 in which is an odd function and the operator corresponding
to F is characterized in the frequency domain by a transfer function
(typically a real rational function in iw) with at least one pole at co = 0.
The techniques presented earlier can be applied to situations of this
type if F is replaced with F', the restriction of F to the subspace*

= g g 3C; f g(t)e-i""`dt = 0, n even} .

The operator F' is completely defined on 3C' by the set of complex
numbers a, = . , F_1 , Fl , F3, .1. The result analogous to
Theorem II is
Theorem IV: Let F' and 3C' be as defined above. Let IP and 13 be as defined

* It is a simple matter to show that the linear manifold 3C' is in fact a subspace
of 3C. Consider any Cauchy sequence of elements of 3C'. Since 3C is complete, the
sequence converges to a function g belonging to 3C. However, a direct application
of Parseval's identity shows that this is impossible unless g e
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in Section III, with the further qualification that i'(-µ) = -0(A) for
any real IL Let y E 3C'. Suppose that

q = sup
n odd

F,,

1 - F (13 - 1) < 1.

Then the conclusion of Theorem II remains valid if 3C is replaced with
3C', r is replaced with q, and F is replaced with F'.
Proof:

The proof is essentially the same as for Theorem II. The assumption
that >ji is odd is needed to verify that the operator corresponding to
M (with = 1) is a mapping of the Banach space ac' into itself.*

Of course Theorem IV implies results entirely analogous to Corol-
laries I and II.

VI. ON THE LACK OF SUBHARMONIC COMPONENTS IN THE RESPONSE

One of the key assumptions relating to the describing -function analy-
sis of the system in Fig. 1 is that the response x(t) (assuming it exists)
is a periodic function with period T when y(t) is a sinusoid with period
T. In particular x(t) is assumed not to contain subharmonic compo-
nents. The techniques described earlier can be used to obtain explicit
conditions under which this assumption is valid. The following theorem
contains one such result. A preliminary fact" that is needed is: if f(t)
e ceut and F(iw) 0 1 for all real w, then there exists a function h,(t) E
ceiR with Fourier transform F(iw) [1 -F(iw)]-1.
Theorem V: Let n denote the space of bounded real -valued measurable

functions defined on (- 00 , co). Let F be defined by

Fy = f f(t - T)g(T)(17-, g E n

where f e CiR and let tfr and (3 be as defined in Section III. Suppose that
F (ico) 0 1 for all real w and that

(0 - 1) f j h(t) I dt < 1,

where h(t) has Fourier transform F (ico) [1 - F (ico)]-1. Let y E n. Then
there exists a unique x E n such that x = F1,14.t. y]. Further, x(t) is
continuous and if y(t T) = y(t), then x(t T) = x(t).

* If g e 3C', g (t) = -g(1 T) for almost every t. Since IP is odd, M preserves
this property and hence M maps 3C' into itself.
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Proof:
Arguments very similar to those presented in Ref. 13 can be used to

show that under the conditions stated in the theorem, F is a bounded
mapping of n into itself, that the operator (I - F) possesses a bounded
inverse on n and that

(I - F)-1Fg = it(t - r)g(r)dr, g E n.

Thus, paralleling the proof of Theorem II, the functional equation
x = F[x y] can he written as x = Lx where

Lx = (I -F14{4 y] - .

Let the norm of an element of n be defined by

11 I/ IL = suP I g(t) I , g n

With this norm n is a Banach space. It is a routine matter to verify
that under the conditions stated in the theorem L is a contraction
mapping of n into itself. This implies the existence of a unique solution
X(t) E n.

fact that = Flk[x y]
in which Ifr[x y] is bounded and f e L,R .

If y(t T) = y(t), L is a contraction mapping of the following sub-
space of 77 into itself: {g I g E n, g(t) = g(t T) and hence there exists a
unique solution belonging to this subspace. * This completes the proof
of Theorem V.

VII. FINAL REMARKS

It seems likely to this writer that the contraction -mapping fixed-
point theorem, and more generally the techniques of functional analysis,
can be exploited with considerable profit by the control system syn-
thesist. Indeed one objective of this paper is to stimulate engineering
interest in these techniques.

The results in this paper can be extended to cover the analogous
multiloop multi -nonlinear -element case (i.e., the case in which y, w, v,
and x in Fig. 1 are N -vector valued functions of t, and lb represents N
nonlinear elements of the type considered earlier). In particular, the

* Alternatively, observe that x(t T) is a solution of the functional equation
when y(t T) = y(t). Since the solution is unique, x(t T) = x(t).
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corresponding extension of Theorem II is given in Theorem IV of Ref.
14.*

The writer is indebted to V. E. Bend and H. 0. Pollak for reading
the draft.

APPENDIX A

Let F be defined by

Fg = f f (t - r)g(r)dr, g

where f (t) e L1R
We show first that F is a bounded mapping of ac into itself. Consider

h(t) = f f(t - r)g(r)dr.
00

Using Schwarz's inequality,

I h(t) I f: 19(t - r)
1

1 J(T) I f(T) Ildr

(fI g(t - r) 12 I f(r) I dr) f 11(r) I
dry

from which

f I h(t) rdt < LT [f I g(t - 7-) 12 I f(T) dr] dt f :1 f(r) I dr. (2)
00 00

Since g has period T and f e ,

T oo

f :[f oT g(1 - T) 12dt] I f
0

(T) I dT = Ig(t)12 dt I f(r) I dr < 0.

Hence Fubini's theorem implies that the order of integration in (2) can
be interchanged. Thus

oo

.10T I h(t) 12d1 j. g(t) fdt f (r) drY
0

and since h(t) is clearly real -valued and periodic in t with period T, F is
a hounded mapping of 3C into itself.

Consider now the relation between the Fourier coefficients of h and g

* In Theorem IV of Ref. 14, the basic functional equation is written in terms
of what corresponds here to w (since x = w - y, this is, of course, an unimportant
difference), and the nonlinear functions are permitted to depend periodically on
t with period T.
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stated in Section III. We have
/'Section

Ii(t)e "g dt = J (T) g- e-i"`dt.

By the same argument as before, the order of integration can be inter-
changed. Thus

h(1)e-inwottit
IT - 7)e--""`dtlf(r)dr

= [ 7 u(t - r)e-i"""--r)dt --inw°1f(T)d.r.

= F(inwo)
J

g(t)e-i""`dt

in which, clearly, sup I F(inwo) I < co .

APPENDIX B

Proof of Theorem I
The norm of F is: sup ; Fg II ; g E 3C, I g II = 11. Using Parseval's

identity, II Fg II2 = E I2 I g,, 12. Thus II F II < sup I FI , and

since it is clear that there exists a g e 3C such that II g II = 1 and II Fg II
sup F I - 5, where 6 is an arbitrary positive number, II F II =

sup I F I.

Next, consider the invertibility of the operator ( I - F) when
inf I 1 - F I > 0. Let to E 3C. The hypothesis implies that

72

Ell - F1-2Iw12 < co,

where w is the nth Fourier coefficient of w. Thus, according to the
Riesz-Fischer theorem, there exists a z e 3C with Fourier coefficients
z = w(1 - Parseval's identity implies that z satisfies the
equation (I - F)z = w (in the sense that II (I - F)z -w II = 0) and
that

z II 5_ sr I - w

Thus (I - F) possesses a bounded inverse on 3C.
The expression for II (I - F) -'F II given in Theorem I follows from

arguments similar to those used to obtain the expression for II F II.
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Digital Computer Simulation of a Four -
Phase Data Transmission System

By M. A. RAPPEPORT

(Manuscript received June 21, 1963)

This paper discusses the performance of a four -phase data transmission
system in the presence of delay distortion and impulse noise. The tool used
in this investigation is digital computer simulation, including a new tech-
nique for introducing impulse noise.

The noise studies indicate the usefulness of the eye aperture for measur-
ing the degrading effects of delay distortion on such a four -phase system.
Using the eye aperture as a criterion, the effects on performance of sinu-
soidal, parabolic, quartic, and parabolically bounded sinusoidal delays are
studied. Curves showing the resulting degradation in performance are
obtained. These are used to find bounds on allowable delay for a certain
allowable degradation for lines typical of equalized voice or group band-
widths, usual nonequalized voice -bands, and loaded cable type voice -bands.

I. INTRODUCTION

1.1 Nature of Simulation and of the Telephone Plant

Digital computer simulation can be a powerful tool in the study of
data transmission systems. This paper begins with a discussion of the
techniques that have proved useful in applying this tool to various
data transmission systems, including a new technique for studying the
effects of impulse noise. These methods are then used for a detailed
simulation study of a four -phase data transmission system.

Digital computer simulation, in general, aims at studying some
physical system by a mathematical model of the system on a digital
computer. In particular we are concerned with a real data transmission
system in a real telephone plant. The scope of this paper is thus the
performance of data systems over a time -stationary transmission path
chosen at random from an ensemble of such lines.

The major forms of interference which concern us are this time -
927
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invariant transmission distortion and random additive impulse noise.
Transmission distortion is characterized as nonuniform attenuation
and/or nonlinear phase as a function of frequency across the transmis-
sion band of the system. Nonlinear phase is commonly characterized in
terms of nonuniform envelope delay, i.e., envelope delay distortion.
Impulse noise is defined here as any randomly occurring voltage (or
current) disturbances characterized by the occurrence of larger numbers
of high peaks or pulses of noise than would be present in Gaussian
noise of the same power, interspersed with long, low -power ("quiet")
periods. There are, of course, many other forms of disturbance in the
telephone plant, ranging from line dropout and frequency offset to the
special case of undersea cables where Gaussian background noise is the
significant disturbance. While some of these factors are amenable to
simulation, this paper is concerned only with the effects of transmission
distortion and impulse noise.

1.2 Reasons for Using Simulation

The underlying reason for studying data transmission by digital
computer simulation is the complexity of the data system itself. This
includes the range and nature of the ensemble of possible telephone
transmission facilities, difficulties both in specifying and working with
impulsive type noises in closed form, and the analytic difficulties in
investigating real modulators and demodulators. This complexity pre-
sents problems both in analytic and experimental approaches.

In the laboratory there are two major difficulties: first, obtaining
insight into the basic workings of the system in an environment which
is very difficult to control in the laboratory; second, obtaining sufficient
flexibility to provide a controlled investigation of the wide range of
conditions encountered in actual practice.

Whereas in the experimental approach one of the difficulties is to
see the forest for the trees, the analytical approach has the problem of
having to clear away too many of the trees to make the forest visible
at all. That is, the analytic approach often has to make a large number
of assumptions about the performance of a real system in order to make
the analysis tractable in closed form. For example, analytical approaches
generally substitute the more easily handled Gaussian noise for the
actually present impulse noise.

It is an attempt to get the best of both worlds that leads one to simu-
lation. One hopes that the environment and all the factors in it can be
controlled, without forcing the investigator into too many simplifying
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assumptions that may lead to misleading results. Because of this sort of
hybrid approach, simulation has two major goals. First, insight is
sought into how a system really works. Among other particular aims,
one seeks the allowable assumptions that can be made in analyzing a
system, the basic and secondary factors affecting system performance,
possible new directions in design and so on. Second, simulation hopes to
produce a catalog of the expected performance of a real system for a
realistic range of transmission and noise environments.

II. SCOPE OF FOUR -PHASE RESULTS

Sections III and IV describe the simulation techniques used and the
particular four -phase system considered. In this section the results
obtained are briefly listed for purpose of reference. The results can be
grouped in four classes: modem (modulator -demodulator) design,
choice of criterion, numerical specification of performance for particular
transmission conditions, and application of these numerical results to
give general transmission design specifications.

The modem design results obtained (Section 5.1) are on the modu-
lation envelope shaping. In particular, the desirable amount of overlap
between successive pulses is obtained. The same results were obtained
simultaneously and independently in a laboratory test of the physical
system by P. A. Baker,' and thus are useful also as a check on the ac-
curacy of the simulation.

Section 5.2 presents results on the choice of a criterion for measur-
ing performance of the system. The factors underlying choice of a
criterion have been considered elsewhere.2 The basic aim is to find a
simple measure which will have the property of correlating with the
performance of the system over a range of transmission facilities in the
presence of impulse noise. It is shown that the aperture or opening of
the "eye" pattern (see Fig. 7 of Section 5.2) is a reasonably satisfactory
criterion. Therefore, the eye pattern is used for the presentation of
results in the remainder of the paper.

Whenever applicable, general transmission design specifications are
intertwined with the specific numerical results. Section 6.2 presents
numerical results on the distortion produced when delay can be defined
as a sinusoidal function of frequency. These results are interpreted
to show general transmission design requirements for group (i.e.,
40-kc or greater) bandwidths. Section 6.3 gives numerical results for
the distortion effect of a variety of other delay shapes, for example,
parabolic delay, as a function of frequency.
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Sections 6.4 and 6.5 consider two general design questions. The first
is: given some means of specifying allowable delay, that is, some class
of transmission lines, find the line producing maximum degradation in
performance. With this information one can then give bounds on
performance, if bounds on the delay are specified. For a wide class of
classical delay specifications, the result is essentially a two-cycle sinu-
soidal delay across the band. The next section considers the width
of the band over which delay must be specified to predict system per-
formance. It is shown that, for a system transmitting N bits per second,
it is necessary to specify the delay over about 0.7N cycles of bandwidth,
i.e., from the carrier ±0.35N cycles.

Section 6.6 sums up the results on delay distortion to produce general
transmission design specifications. The results are given in the form of
curves of allowable delay vs maximum degradation. Three sets of curves
are given to correspond to various shapes of delay in real facilities.

The final section gives some results for attenuation distortion. These
latter results are not intended to be a systematic presentation, but show
the magnitude of the effects.

III. SIMULATION TECHNIQUES

3.1 Introduction

This section considers those general simulation techniques appro-
priate to the study of a data transmission system. Many of these tech-
niques were introduced by R. A. Gibby.3 The main new approach is
to introduce impulse noise to obtain the conditional probability of error
given a noise of a specified nature present. The system is considered
in blocks. For each block we attempt to duplicate mathematically the
action the real system performs in shaping, or more generally in operat-
ing on, an electrical signal. This is not an attempt to duplicate the
action of a particular capacitor or resistor but rather to present mathe-
matically the performance of an entire system block. Further, advan-
tage is taken of characteristics of certain system blocks to materially
simplify the real system. For example, blocks in sequence which are
commutative can be reversed without affecting the simulation results.

Fig. 1 shows two block diagrams of a data communications system.
The upper figure is a common representation of a physical system. The
lower figure is an equivalent model useful for simulation analysis. This
equivalence is presented as an aid in understanding the nature of com-
munication system simulation. Hereafter, we will call the upper figure
the P (or physical) model and the lower figure the S model.
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Fig. 1- Block diagram representations of communications
physical (P) model, (b) simulation (S) model.

3.2 The Modulator and the Transmission Line

EVALUATION

systems: (a)

The first box in the S model provides a catalog of all possible indi-
vidual pulses used in the system. Since a digital computer is a discrete
system, each pulse is defined by a sequence of sample values at a suc-
cession of evenly spaced time points. For a binary FSK system, for
example, such a catalog would be one pulse each at the basic (mark
and space) frequencies of the system.

The next step in the S model is to pass each pulse through the trans-
mission medium. We emphasize that the pulses are acted on by the
medium before they are encoded into a pulse train. This is justified by
the commutative properties of filtering (i.e., action by the transmis-
sion medium) and adding together individual pulses displaced in time
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( i.e., encoding of information). The third box in the S model then forms
a pattern of pulses corresponding to the given pattern of encoded in-
formation.

The operation of the transmission facility on each pulse in the catalog
is simulated in the frequency domain for reasons to be discussed shortly.
Therefore, first a Fourier series of a particular pulse is formed in the
computer. Next this Fourier series is modified by the attenuation and
phase characteristics of the transmission facility. This operation will
be discussed in greater detail in Section 5.3. The distorted pulses are
then reformed in the time domain. These distorted pulses are then used
to form a signal wave train corresponding to encoded information.

While the legitimacy of reversing blocks 2 and 3 follows from the
commutativity of the two blocks, it is not yet clear why we should
want to do this in a simulation. The basic motivation is the tremendous
increase in speed when a simulation is performed in this way. Instead
of having to process a long train of pulses through the transmission
medium, it is now necessary to process only the small catalog of pulses
inherent in the modulation technique. The superposition of the string
of pulses is then a simple operation ( which would in any case have to
be done, no matter what the sequence of the blocks).

In addition, this approach gives a bonus of defining clearly individual
pulses and their spectrums. We will see, in the section on sinusoidal
delay distortion, the insight that is possible into performance of a system
by the examination of individual pulses.

It is worthwhile to consider also why the transmission medium char-
acteristics are simulated in the frequency and not the time domain.
The underlying reason is that most practical knowledge of the plant is
presently known in frequency domain parameters. By substituting for
a Fourier approach a convolution of the impulse response of the line
with each of the possible input signal pulses, a simulation can be easily
modified to operate in the time domain. The advantages of reversing
the sequence of boxes 2 and 3 of the S model hold just as strongly, and
for the same reasons, in the time domain as in the frequency domain.

To make the greatest use of the long bit patterns available by simu-
lating in this way, we desire a 'bit pattern that is representative of a
random pulse train. What we actually use is what we will hereafter
call a pseudo -random pulse train. For some integer h we desire to obtain
every possible sequence of h bits the same number of times. For example,
if h equals 3 there are eight possible combinations:

000, 001, 010, 011, 100, 101, 110, 111.

Any sequence in which each of these possible combinations of N
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bits occurs exactly the same number of times will have the same distri-
bution as a random sequence for all bit sequences of length up to and
including N. For example, a sequence where each of the above occurs
exactly once is given by

1 1 1 0 0 0 1 0 1 1.

A discussion of generation of such sequences can be found in Peterson.'

3.3 The Demodulator

Discussion of box 4, the introduction of noise into the simulation,
will be postponed until later in this section. Box 5 of the S model repre-
sents the demodulator of the data transmission system. The signal
processing of the demodulator is simulated on the computer. The basic
approach is to duplicate the action of each block of the demodulator
on the sequence of amplitude samples representing the data line signal.
The output of the demodulator in the S model is then a sequence of
amplitude samples representing the restored but distorted data pulse
train.

Timing recovery in the S model is done in two separate steps. The
first step, represented by box 6, is basically synchronization of the data
train. The aim is to find the optimum sampling point relative to some
criterion. Several criteria might be considered, but regardless of what
criterion is used a synchronized or optimum timing point is obtained.

The second step in timing, represented by box 7, is to introduce the
timing jitter which would occur in a physical system. Thus this box
represents the physical timing recovery error, both that due to the
jitter inherent in the circuits themselves and the jitter due to distortion
of the data signal. The effect is to duplicate the degradation in perform-
ance due to imperfect timing. In keeping with methods used physically,
the timing recovery signal can be generated either from the received
line signal or the signal out of the demodulator.

3.4 Noise Impairment - Performance Evaluation

The last step in a simulation is to evaluate or measure the performance
of the system. Some criterion of performance is chosen and is imple-
mented in the simulation. For example, an eye pattern to measure
system performance by the eye aperture might be formed. The eye
pattern is formed by superimposing all possible three -bit intervals. In
Fig. 7(a), a reference eye is shown. Fig. 7(b) shows some of the traces
of a distorted waveform, and the resulting eye. The complete distorted
eye would include all possible three -bit traces. The eye aperture is de-
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fined as the minimax opening-that is, the maximum opening of the
"worst" bit pattern. Various coding schemes can be introduced at
this point, and the improvement they produce evaluated according
to the chosen criterion.

We return now to discussion of box 4, the noise input, postponed in
the previous presentation. Consider a noise burst of some particular
size and shape introduced into a data system. We are interested in
determining the conditional probability of error given this noise. In
simulation the random occurrence of the noise pulse is replaced by the
systematic introduction of a noise pulse at each of a large number of
points in the data pulse train. As discussed above, the pulse train itself
has each data sequence of a certain length, say 10 bits, occurring the
same number of times; i.e., the possible sequences of N bits have uniform
probability of occurrence. This pseudo -random data train is then mixed
with noise by assuming the noise to be additive. Since a particular
noise pulse is introduced at a very large (e.g., 4500) number of points,
and uniformly along the data train, the effect is to introduce the noise
randomly with uniform probability at all points in the data train.

The major difficulty in using an approach of this type is to choose
noise pulse shapes which are representative of the telephone plant.
In the mathematical sense this problem is at present unsolved. However,
despite this present restricted knowledge, useful results are obtained for
the following reasons. First, there is a range of system transmission
conditions of interest for which relative performance is reasonably
invariant under a range of different noise shapes. That is, although the
absolute performance (i.e., the conditional probability of error) of

each system changes from noise shape to noise shape, the relative per-
formance, or ranking, of the systems stays the same over this range
of noise shapes. Thus the degradation introduced by a particular trans-
mission medium can be measured. Second, it is quite possible to handle
a fairly large number of noise shapes. For example, in the four -phase
case nine noise shapes were handled in quite reasonable computer times.
Thus performance may be catalogued for various kinds of noise pending
further knowledge. Finally, this implies a third basic use, which is that
even if the system does perform differently under different wave shapes,
this very information is useful in indicating both the basic nature of
and possible improvements in a system.

The introduction of noise into the simulation can be used in various
ways in measuring performance of the system. First, if the noise allows
some ranking of transmission facilities, such as discussed in the para-
graph above, it may be possible to directly correlate these rankings
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with some criterion of performance of the system. This would then
justify using this criterion in practice. For example, a justification for
use of the eye aperture as a criterion for expected relative performance
in four -phase transmission will be presented later. Second, it may be
possible to use such a simulation in the design of better error detecting
and correcting codes. That is, in the process of analyzing a long sequence
of bits of a pseudo -random nature, it may appear that certain patterns
of errors are more likely to occur in a realistic noise environment. Using
such information, simpler error detecting and correcting codes on real
lines might be obtainable. This is one approach to the construction of
error codes on lines in which the memory is of a very complicated nature.

IV. FOUR -PHASE SYSTEM

4.1 Physical

We come now to the four -phase system which will be our prime con-
cern for the remainder of the paper. The physical system we consider
has been described by P. A. Baker.' The modulator of this system is
shown in Fig. 2. Eight sine waves with the relative phases shown in the
diagram are generated. These occur in two groups of four, as shown,
and the data are encoded by choosing alternately from these two
groups. The information is actually contained in the change in phase

ENVELOPE
MODULATOR

rig. 2 Modulator.
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between successive pulses. Since each pulse encodes two bits of infor-
mation, it has been given the name "dibit." The two alternating channels
are used to insure there is always a change in phase between successive
dibits. From the diagram it can be seen that this change is always one of
four odd multiples of irkl. The actual shaping of the envelope of the
sine waves is shown in the diagram. Just what this shaping should be
to optimize performance was the first major check on the accuracy of
the simulation. It will be considered in detail in Section 5.1.

The demodulator of the system is shown in Fig. 3. The information
is recovered by comparing successive dibits to determine the change in
phase between them. For this purpose the modulator uses two quite
similar channels. We consider in detail only the upper one of the figure.
The incoming signal is delayed by an interval of 1 dibit and then multi-
plied with the new incoming signal. This therefore results in a multi-
plication of successive dibit intervals. The output of the multiplier is
then integrated. The result will be either positive or negative, depending
on the relative phase of the two successive dibits. A truth table to re-
create the encoded information is shown on the figure. This truth table

DIBIT
N+1

FROM
LINE

MULTIPLIER
CHANNEL 1

DIBIT N

[I DIBIT
DELAY LINE

L90° PHASE
SHIFT

MULTIPLIER

HIGH-PASS
FILTER

LOW-PASS
FILTER

CHANNEL 2

LOW-PASS
FILTER

CHANNEL 1
+ -
00 0I

I0 11

LOW-PASS
FILTER

TUNED
CIRCUIT

REGENERATES
BINARY FROM
TRUTH TABLE

Fig. 3 - Receiver.
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also demonstrates the result of the lower channel, which differs from
the upper channel only in that it uses an extra 4 cycle of delay. For
greater detail the reader is referred to the paper by Baker.'

4.2 Simulation

This section is concerned with the application of the general tech-
niques of simulation to the specific four -phase system. The simulation
processes a data input train of 512 dibits. This corresponds to 1024 bits
of input information, or to all possible combinations of four successive
dibits. An extension of the exhaustive pattern technique mentioned
above had to be developed for this four -phase case. It is no longer
sufficient to make a choice between 0's and l's for each information
time slot. In the first time slot it is possible to pick any one of the eight
possible signal waves, as shown in Fig. 2. Due to the alternation be-
tween the two channels of the modulator, it is possible to choose any
one of four signals for each time slot after the first one. Thus, there are
a total of (8 X 4 X 4 X 4 = 512) possible four-dibit combinations in
the pseudo -random data train. For each sequence of four dibits there is
another sequence different only in polarity; i.e., sequence A is simply the
negative of sequence B. Since the multiplier eliminates this polarity
difference, there is a seeming redundancy in using a pattern of this
length. However, the noise introduced is of one polarity only. Thus this
redundancy is necessary to obtain representative results with noise
present.

There are two channels shown in the demodulator of Fig. 3. Initially
both channels were simulated. It seems intuitively reasonable that the
over-all results in these two channels should be essentially the same.
For example, the signal sequence of initial phases -90, 45 should, with
the extra 90° delay, give approximately the same results in the lower
channel as the signal sequence 0, 45 gives in the upper channel. This is
true within the limitations of slightly differing end effects between the
two possible data sequences. There is such an image in the lower channel
for every data sequence in the upper channel. One of the first tests
performed with the working simulation was to check this hypothesis of
approximately the same over-all results from the two channels. Over a
fairly wide range of cases considered, no substantial difference in the
performance of the two channels on an over-all basis was found. There-
fore, the results given in this paper were obtained using only the upper
channel of Fig. 3. The results apply to either channel operating alone,
or to the system operating with both channels.

The results presented were obtained using nine basic noise wave-
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shapes. These are shown in Fig. 4. In the first row are shown three
sinusoidal pulses. These pulses differ in the ratio of their frequency to
that of the dibit speed (or equivalently the carrier frequency) of the
system. Similarly, the second row shows sinusoidal pulses subject to a
one-sided exponential decay, and the third row shows two-sided ex-
ponentially decayed sinusoids. Each noise was considered over a range
of noise to signal amplitudes. This range will be described more fully
in Section 5.2. The noises shown were picked for two reasons. First,
they represent a fairly wide range of parameters and shapes. Second,
impulses idealized in this way are suggested by experimental studies of
the telephone plant such as that of J. H. Fennick.5

V. BASIC SIMULATION RESULTS

5.1 Simulation Check - Envelope Shaping

The first step in using a simulation must be to check its performance
against the physical model it represents. In the case of four -phase
simulation this first check was provided by an investigation of the
optimum envelope shaping (in some particular class of functions) in
the modulator.

4

2

ONE DIBIT

SINUSOIDS

5

SINGLY ATTENUATED SINUSOIDS

DOUBLY ATTENUATED SINUSOIDS

6

9

Fig. 4 - Noise waveshapes; all shapes are shown prior to detection but sub-
sequent to transmission.
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Prior to the envelope shaping the basic four -phase pulse is given by

At) = sin [weart n(7/4)] n = 0,1,2,3,4,5,6,7 (1)

where n represents the information content of the wave. Consider first
a raised -cosine envelope shaping. Then a four -phase pulse is denoted by
(upper indicates upper channel of modulator)

/upper (t) = Sin (COcart n
4
7-r -1

2 2
[ + cos cL) dibit`i

2
n = 0,2,4,6

(2)

flower(t) = sill (cocurt n )
4

[ - 1 cos dibit]
2 2 2

n = 1,3,5,7

A typical sequence of such pulses is shown in Fig. 5(a). However, as
can be seen in Figs. 2 or 5(a), this full raised -cosine envelope builds in an
overlap between successive dibits. One alternative to such shaping is
phase shift keying-that is, a jump from one phase to another at dibit
intervals. However, since the transmission lines have finite bandwidth,
such phase jumps would be distorted in transmission. To provide a
controlled smooth transition, rather than the uncontrolled distortion
resulting from the action of finite bandwidth on phase jumps, while
minimizing the effect of the built-in overlap of the raised cosine, the
basic functional form of the envelope given by (3) was considered

1 welt 1 WdTcos - - cos
2 2 2 2env,or(t) -

=0

1 1 cod717 - cos

0

Tr

Wilt

-5_ 1

Wdt

2

cod = dibit radian frequency

and similarly for the lower channel envelope. The parameter T controls
the amount of built-in overlap of the modulation envelope. The opti-
mum value for T agreed when found independently in a laboratory test
of the working system by Baker and on the computer. This provided a
check on the simulation.

The optimum value of 7' is 1. This corresponds to a modified raised
cosine with about 4 dibit overlap, as shown in Fig. 5(b) (that is, about
50 per cent of the maximum overlap of Fig. 5a). The shaping of this
modulation envelope in effect determines the amplitude spectrum of the
line signal. In the course of subsequent investigation on the computer,
another class of amplitude shaping was also considered. A typical mem-
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rl 7 3 n-2 n-1 DIEM' n n+i n+2 n+3 n+4

(a)

(b)

Fig. 5 - Envelope shaping: (a) full raised -cosine shaping, (b) modified shaping
used in present data terminals.

ber of this class of squared -off raised -cosine amplitude spectra is shown
in Fig. 6 along with the spectra resulting from a complete raised -cosine
shaping (that is T = 1) and for the optimized T = 1. A sequence of
values of the parameter b (see Fig. 6) of the squared -off raised cosine
was considered. No value of b gave performance as good as the modified
raised cosine with T = 4.

5.2 Criterion - Eye Pattern

The measure of performance used in obtaining the results described
in the above paragraph was the eye pattern (Fig. 7). However, while
the accuracy of the simulation can be checked by comparing the eye
obtained in a laboratory test to that obtained by the simulation, this
does not in itself justify the eye as a suitable measure of performance
for the four -phase data system. This justification of the eye depends in
the final analysis on demonstrating a correlation between the expected
performance of the system in a. real noise environment and the opening
or aperture of the eye.

Impulse noises of nine different shapes were introduced into the
simulation. Each of these was considered over a signal-to-noise ratio of
about 14 db, from noise of +5 to -9 db relative to the signal. The
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Fig. 7 - Eye patterns. (a) Undistorted eye: tracings result from patterns
000, 001, 010, 011, 110, and 111; A is eye aperture normalized for undistorted eye
to 1.0. (b) Distorted eye: figure shows some tracings; total eye formed from all
possible three -bit intervals.
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signal-to-noise ratio was defined as the peak undistorted signal amplitude
relative to the peak noise amplitude.

The arbitrary nature of this definition is not significant, since it does
not affect the ranking or relative performance of various lines. A sample
of the many cases considered is shown in Fig. 8 for two noises and two
transmission lines (one of which is back-to-back or reference trans-
mission). As might be expected, all of the lines perform approximately
the same at very high noise levels. At such levels the noise completely
swamps out the signal, and the resulting performance is then the totally
random effect of the noise alone. We therefore choose the range of con-
ditional probability of error for which the results are meaningful in
terms of degradation in performance. To avoid misunderstanding, we
note that while performance is certainly sensitive to noise waveshape,
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Fig. 8 Conditional probability of error I PN(e)I vs S/N [db (peak undis-
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and an undistorted transmission line.

'I,

,

'1,

:So
T.)

0,

is

_

..-k

T'
"Z.
v.

0
,',
1.

d',
V/

- --,---

kr
6i

lPN

0
'1,

Z-11

0 DEGRADATION

98



FOUR -PHASE DATA TRANSMISSION 943

much of the difference seen in Fig. 8 collies from defining SIN using
the peak value, and not some average total power measure for the noise.

The range of conditional probability of error chosen for these tests
was between 0.005 and 0.125. For a particular transmission line and
conditional probability of error, there is a range of degradation of
performance as measured by the change in signal-to-noise ratio for
various noise shapes. A sample of the noise results obtained is given in
Table I for a range of transmission lines in the following manner. First
the transmission line is described with a sufficient number of parameters
to characterize it. For example, sinusoidal delay is described in terms of
its amplitude (Bm), its frequency (m) and its phase 8 relative to the
transmission band. A detailed discussion of each parametric representa-
tion will be described later. Numerical results are then given for each
of three levels of conditional probability of error, namely 0.005, 0.025,
and 0.125. These results are the range in degradation and signal-to-
noise ratio due to the nine noises considered for the given transmission
line relative to back-to-back performance. The correlation in perform-
ance between results obtained using conditional probability of error and
the eye aperture can be seen by comparing the degradation in perform-
ance measured by successively smaller P(e) (i.e., for successively smaller
noises) with the degradation measured by the aperture shown in the
last column. It is seen that the eye seems to give a limiting value.

Figs. 11-13 of Section 6.2 are presented in terms of eye aperture. Pres-
entation in this form is justified by the fact that, for the range of trans-
mission lines and noise considered, the value of eye aperture correlates
consistently with the degradation in performance obtained by keeping
constant conditional probability of error. This justification is one of the
principal results of this paper. While this does not demonstrate that the
eye will be a good measure of performance for all possible distortions,
the wide range of noises and transmission facilities considered indicates
the eye to be an appropriate criterion for four -phase transmission, at
least over lines whose principal distortion is nonuniform delay.

5.3 Transmission Line Simulation

A typical four -phase data pulse is given by the product of f(t) of
(1) and envelope (t) of (3). As mentioned previously, passing these
pulses over a transmission line was done in the simulation in the fre-
quency domain. Thus for each of these pulses a Fourier series was
formed. A typical example of such a series is given in (5), where wo ,

the fundamental frequency of the Fourier series, determines the spacing
of the spectral lines which represent the wave:
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TABLE I RANGES OF CONDITIONAL PROBABILITY OF ERROR
All numbers are degradation in db relative to no distortion - range repre-

sents variation over nine noises.

Delay

Degradation (in db) Measured Using
Conditional Probability of Error

P(e) = 0.125 P(e) = 0.025 P(e) = 0.005

Sinusoidal
Bin = 0.5, in = 0.5, 0 = 7r/2 0-0.3 0.5-0.8 0.7-1.2

1.5 0.5 0 1.4-1.8 3.1-3.7 3.8-4.5
1.5 0.5 7r/2 2.9-3.5 6.2-6.6 8.2-8.9
1.0 1 0 1.3-1.7 3.1-3.8 4.2-5.0
1.0 1 7r/2 2.8-3.7 6.4-7.0 8.6-9.3
1.0 1.25 7r/2 3.0-3.8 7.1-7.6 9.7-10.5
0.5 1.5 0 0.6-1.0 1.8-2.2 2.5-3.1
1.0 1.5 0 3.9-4.4 8.5-8.8 11.4-11.7
1.0 1.75 0 4.5-5.1 9.8-10.5 13-14.5
0.5 2.0 ,r/2 0.3-0.7 1.5-1.8 2.1-2.8
1.0 2.0 7r/2 2.0-2.7 5.6-6.3 8.1-9.0
1.5 2.5 0 5.6-6.1 12.1-12.7 17.5-19.0

Parabolic
1.0 bit delay at Wear ± 0.35 whit 0.3-0.4 1.1-1.2 1.6-1.9
1.5 bits delay at wear ± 0.35 Whit 0.8-1.0 2.1-2.5 3.3-3.4
1.5 bits delay at wear ± 0.275 whit

wear - 0.425 whit
1.1-1.7 3.2-3.7 5.0-5.1

1.5 bits delay at wear + 0.2 whit 2.5-3.1 6.6-6.8 10.3-11.3
Wear - 0.5 whit

Quartic
1.25 bits delay at wear ± 0.35 whit 0.2-0.8 0.8-1.3 1.7-2.2
1.25 bits delay at wear + 0.275 cobit

wear - 0.425 Whit
0.7-1.3 2.5-2.7 3.5-4.0

1.0 bit delay at wear + 0.2 omit
wear - 0.5 cubit

2.1-2.6 5.3-5.8 8.5-9.8

Band cutoff cases
quadratic delay to wear ± 0.35 whit -

then delay uniform
0.6-0.9 1.4-1.7 2.3-2.5

Delay of Fig. 22, curve a 2.0-2.8 4.6-5.0 7.8-8.4
Delay of Fig. 22, curve c 1.1-1.6 3.6-3.8 5.2-5.9
Delay of Fig. 22, curve f 1.0-1.2 2.6-2.8 3.5-4.0

Attenuation cases

Sinusoidal delay
3m = 1.0, in = 2.5, 6 = 0
i-db slope atten. of Fig. 9(a) 2.4-3.2 5.2-6.0 7.8-8.5

Sinusoidal delay
3ni = 0.5, m= 2.0, 0 = 0
i-db slope atten. of Fig. 9(a) 2.6-3.2 4.6-6.2 7.5-8.1

1

Degradation
(in db)

Measured
Using

Aperture

1.1
4.9
9.6
4.8

10.2
11.7
3.1

12.8
15.8
3.1

10.1
24.5

1.8
3.7
5.8

12.4

1.9
4.8

11.3

2.5

8.8
6.3
4.4

8.9

9.9
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f(t) env (t) = g(t) (4)
N

g(t) = E A(nwo) cos [nwo t kncoo)].
n=0

(5)

A (nwo) and tk(ncoo) are the amplitude and phase of the spectrum of the
pulse across the transmission band of interest. The effect of passing
such a pulse through a transmission medium is to yield an output
pulse which can be represented by:

N
h(t) = A(ncoo) R(nwo) cos [ncoo t #(nwo) io(nco)]. (6)

Here, R(ncoo) and v(ncoo) represent the attenuation and phase of the
transmission medium. The envelope delay D(co) is the derivative of
40(co) with respect to w.

(a) C

C(WCAR)

WL WCAR WH
W- (C(0.-1C(W)=t (,) (0L C(w)-1 _ LOG 20

"'L.= WC
WBIT WC

wc+

B SIN (27rM WBIT t)

D = m 7rBcos (2ril w-cul-*
wBri-

(d)

WMIN WCAR 0-1H

= S4 (-- D(wH)

D = a4 (co - wm,N)4 a

H

(0 > WL

WM WCAR 6-1H

(i) = WMIN)3
D(wH)

D = a 2 (co- omiN)2 a2 (wH wp,A,N)2

WCAR

D = [aps(w- cocAn)2 + K] COS (27rM(w- wcAn)

B RELATIVE TO WCAR

Fig. 9 - Attenuation and delay shapes.
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The parametric forms of R(wo) and D(w) are given in chart form in
Fig. 9. Aside from a flat passband, the primary form of attenuation
considered was one which seems to be typical of a large part of the
voice -band plant. It consists of a flat passband out to some cutoff
frequency, followed by a slope attenuation of so many db per cycle. We
note that this is not db per octave; that is, the curve is linear with
respect to frequency and not with respect to the log of frequency. In
addition, some attenuations previously introduced, whose spectra are
shown in Fig. 6, were also considered. Among these is the effect of
varying the built-in overlap or intersymbol interference, which is, of
course, also a variation in the amplitude spectrum of the pulses.

The general forms of delay considered were sinusoidal, parabolic,
quartic and a parabolic bounded sinusoid. In addition, many of these
forms were also used with variations in the band edges of the delay.
For example, sinusoidal delay might be used across 70 per cent of the
band and then a relatively sharp cutoff delay used at the band edge.
Finally the simulation is set up to handle frequency by frequency read -
in of both phase and attenuation across the transmission band.

VI. DELAY RESULTS

6.1 Introduction

The remainder of this article is a presentation of the results achieved
using the simulation to investigate performance of a four -phase system
over a telephone channel. While some raw data results on impulse noise
are presented in Table I, for the reasons described above the remainder
of the discussion will refer to the eye aperture results shown in curve
form in a group of figures.

6.2 Multicycle Sinusoidal Delay - Group Band Transmission Design

We begin our discussion with the results obtained in an application
which is at once the simplest to explain, has perhaps the clearest in-
tuitive explanation of the effects of delay, and yet is of definite practical
importance. This is the case illustrated in Fig. 9(b), in which the delay
is a sinusoidal function of frequency across the transmission band of
interest.

Such a sinusoidal delay is defined in terms of three parameters.
First is the amplitude of the delay (Bm of the figure), which charac-
terizes the peak delay in bit times. Second is the phase (0), which
represents the position of the sinusoidal delay relative to the carrier
frequency of the system. Finally, the number of cycles of the sinusoid
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across the transmission band of interest is given by m. This characteriza-
tion is of particular interest in group bands. Typical delay shapes which
arise due to group band separation filters might be those shown in
Fig. 10(a). In order to permit transmission of data over group band
channels these delay curves are equalized. The results of equalization
typically yield a number of cycles of sinusoidal delay, such as shown in
Fig. 10(b). The designer often has some control both over the magni-
tude and the number of ripples of delay, with a compromise to be made
between technical factors and economics. That is, the greater the
number of ripples required, in general, the more stages of equalization
are needed, and thus there is an economic constraint involved.

The basic results on multicycle sinusoidal delay are shown in Figs.
11 through 13, where Fig. 13 is an overlay of the preceding two figures.
A number of conclusions can be drawn from these results. For design

z 0
r 6

5

0

(a)

(b)

("CAR- 0356)13IT WCAR WCAR+ °35(4)13IT

Fig. 10 - Group bands: (a) unequalized, (b) equalized.
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purposes, two of these are most significant. First is the general improve-
ment in transmission as the number of cycles of delay is increased while
holding the peak delay in dibits constant. Second is the relative pref-
erence for an odd number of cycles of delay across the passband. This
is clearest if 0 = 0 (i.e., the aperture for in = 3, 0 = 0 is larger than
for m = 4, 0 = 0). If 0 = /2 there is not much difference between
m = 3 and m = 4. However, since the larger m will generally be more
expensive to achieve by equalizing, m = 3 would again be preferred.

We consider first the improvement in transmission for constant peak

delay. To a first -order approximation this can be explained on the basis
of echo theory.6 Since the delay is sinusoidal, the interference intro-
duced is due primarily to echoes. In particular, simulation shows the
first echo on each side of the pulse transmitted to be the primary cause
of interference. The amplitude of any echo is proportional only to the
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amplitude of the sinusoidal phase (B), and is independent of the other
parameters of the delay. Thus as the number of cycles of sinusoidal
delay increases, holding the product Bin constant, B decreases and so
does the interference. Fig. 14 shows a typical four -phase system pulse
and the echoes produced by the sinusoidal delay for various numbers
of cycles (in frequency) with constant peak delay. The advantages of
the simulation being able to show individually distorted pulses in
such clear detail is most evident at this point.

On the other hand, the position of the echo is determined solely by
the number of cycles of sinusoidal delay across the band; that is, the
distance of the echo from the main pulse is directly proportional to m.
The preference for odd numbers of cycles of delay can be explained, to
a first -order approximation, as follows. The primary interference is the
first echo in each direction. As the number of cycles of delay increases,
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the effect on this echo is to move it farther and farther from the main
pulse. We note that the amplitude of the echo is decreasing for a con-
stant value of peak delay. In practice, this means that as the number of
cycles of delay is increased, the interference progressively phases in and
out with respect to the time at which the demodulated pulses are
sampled. In other words, while the echo is always present, its major
point of interference oscillates between the sampling instant and midway
between the sampling instants of the demodulated pulse train. This
oscillating phasing in and out with respect to the sampling time of the
interference from the echo produces alternately more and less inter-
ference at the sampling instants.

An example is shown in Fig. 14. The peak of the first echo comes
midway in the adjacent time slots of the two-cycle interference. This
produces a maximum distortion in phase in the adjacent time slot -
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Fig. 14 - Effects of sinusoidal delay in terms of echoes: (a) basic four -phase
pulse, (b) echoes from two-cycle/band sinusoid, and (c) echoes from three -cycle/
band sinusoid.

that is, at the sampling instants. For the three -cycle interference, the
echo reaches a peak midway between time slots. It therefore produces
less distortion in either of the two time slots it interferes with, and a
correspondingly lower maximum distortion.

6.3 Delay Results Useful for Voice -Band Design

This section introduces and discusses results over a variety of delay
characteristics. The curves representing these characteristics share the
property that they have no more than 3 minima. Their general shapes
are such that they can be made to represent a wide variety of voice -
band channels.

The first set of curves, shown in Fig. 15, is simply an enlargement
of the effects of sinusoidal delay for less than two cycles of sinusoid.
Fig. 16 shows some typical voice -band delay curves. For each an ap-
proximating sinusoid ( with its associated parameters) is given. The
results in Fig. 15 are for 0 from zero to 7r/2 radians. However, since the
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results repeat in successive quadrants (i.e., 0 = 71* gives essentially the
same results as 0 = 0) the curves represent the full range of 0.

Figs. 17 and 18 give results for quadratic and fourth -power delay
distortion. The curves represent delay symmetric with respect to the
carrier, and displaced from the carrier by varying percentages of the
bandwidth of interest. It is worthwhile to note again that these curves
are, as are all the curves given in the results, normalized with respect to
the carrier frequency and the bit speed. Thus one can apply the results
to any frequency range and corresponding bit speed. The curves are
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normalized for a 1-1 carrier cycle per dibit system. Thus, for example, a
typical system at this speed would have an 1800 cycle carrier and
transmit 2400 bits per second, i.e., 1200 dibits per second. Again, the
same curves apply to a 48,000 -bps system using a 36-kc carrier.

The results presented to this point represent relatively simple delay
shapes-that is, sinusoidal, quadratic, or quartic delays. It will be shown
in Section 6.5 that the same results apply within very reasonable limits
to any delay curve which is identical with one of the delays considered
over a minimum of 70 per cent of the band. In addition one class of
relatively complicated delay shapes was also investigated. These delays
are parabolically bounded sinusoids, and are described in Fig. 9(e). As
the product of a parabola plus a constant with a sinusoid they can be
used to represent a wide class of various delay shapes. The results are
given in Figs. 19 and 20 for in = 2 and in= 3 and for a range of values
of the ratio a, to K. It will be seen that these ratios are particularly
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useful in the setting of curves of maximum degradation for per-
formance in the voice band.

6.4 Line in a Given Class Producing Most Degradation

The simplest generally used way of characterizing delay is to specify
the maximum allowable delay across some percentage of the trans-
mission band. For example, one might say that the maximum delay
across 70 per cent of the transmission band is to be no more than I
dibit (making a tacit assumption that the minimum delay is 0). It is of
interest to specify the worst possible delay shape meeting such a re-
quirement - that is, to find the delay shape falling within this allow-
able maximum which produces the worst degradation in performance.
For a line of reasonably good performance, say for eye openings greater
than 0.6, an answer to this problem has been provided by R. W. Lucky.'
However, since the lines he allows include such pathologies as discon-
tinuities in the delay, the limiting cases must often for our purposes be
considered nonrealizable. It is therefore of interest to find the worst line
out of the classes we have considered, using the above criterion of
"worst." For a check this worst line then can be compared to that
obtained by Lucky.

If the limiting value of delay is defined across 60 per cent of the band
or greater, the worst performance in the classes discussed above is that
obtained with a slightly less than two-cycle sinusoid across the trans-
mission band. Fig. 21 shows in graphic form the difference in perform-
ance between such a two-cycle sinusoid and various other delay charac-
teristics having the same maximum delay across a given percentage of
the band. For the range of reasonably good transmission lines which
Lucky has considered, Lucky's "worst" line produces only about one
db greater degradation in performance as measured by the respective
aperture values (or equivalently by the impulse noise performance; see
Section 5.2) than this two-cycle sinusoid. When one remembers that
Lucky's lines are in general quite drastic in their shapes, it seems rea-
sonable to use this two-cycle sinusoid as an upper bound through the
remainder of this paper.

6.5 Effect of Delay at the Edges of the Band

Examination of the spectrum of an individual pulse shows that the
energy falls off very rapidly toward the edge of the band. Now when
timing is performed using the line signal, the energy near the sides of
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the band can (and for certain nonrandom patterns does) * contain a
great deal of the necessary information. On the other hand, for timing
performed from the data signal, in general for timing from random data,
and for recovery of the data itself, the edges of the hand contain only a
relatively small amount of the information. Thus it would not appear
necessary to specify the delay as accurately across the entire trans-
mission band of interest.

A number of delay curves were used to check this supposition. Fig. 22
shows some of the cases which gave the widest variation in performance.
These lines have respectively quadratic (curves a, b, c) and fourth -
power (curves d, e, f) delay as a function of frequency for the frequency
range coe., - 0.35 (obit to Wear + 0.35 cob it However, the eye apertures

* Timing for random patterns even when using the line signal gets most of its
energy from the center of the band where the spectrum has much greater ampli-
tude. This fact was pointed out to the author by M. A. Logan.,
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for even the extreme cases shown vary by less than 2 db, and in most
cases that seem to be of practical interest a variation of less than one
db was found. The same results held for the impulse noise performance
discussed in Section 5.2.

Similar results were found for delays in which the center band delay
was a sinusoidal or parabolically bounded sinusoidal function of fre-
quency. Therefore, one concludes that if delay is specified for the fre-
quency range from Wear - 0.35 Whit to Wear + 0.35 whit , then for the
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recovery of the data signal it is not worth the cost or effort to try to
equalize delay beyond about 70 to 75 per cent of the transmission band.

6.6 Voice -Band Transmission Design

Historically, the specification of delay has been given in a staircase
arrangement. This is equivalent to setting a sequence of pairs of check
frequencies and the limitation on delay between them. Thus, for ex-
ample, a typical delay specification might be

Wear - 0.3 (obit Wear + 0.3(obit

Wear - 0.4 Whit Wear + 0.4 (obit

Wear - 0.5 Whit Wear + 0.5 (obit

1.5 dibits delay

2.5 dibits delay (7)
4.0 dibits delay.

When delay is specified in this manner, no account is taken of the wide
variation in performance of delays of various shapes all meeting the
basic requirements. Thus, for example, the delays shown in Fig. 21 all
meet the requirements listed above, yet have eye apertures ranging from
0.45 to 0.85. In effect, one is faced with the choice of either placing too
strict a requirement for many delay shapes, or not in truth being able
to guarantee that delays meeting a particular requirement will have no
more than a certain allowable degradation.

These results suggest a somewhat more complicated specification of
delay requirements for good transmission design. One way of doing this
is to use a single equation and vary the parameters of this equation to
allow for various delay shapes - for example, to bound the delay by
a w2 + K. By choosing various ratios of a, to K one can allow for a
wide variety of delay shapes.

In the voice band there are three major shapes of delay which must
be considered : namely, the usual single -minimum parabolic -type delay
shape which arises from carrier transmission, the slope -type delay
which arises from loaded cable, and the more rectangular delay with a
ripple across the transmission band which results from equalizing. The
three curves of Fig. 21 are examples of these types of curves. To repre-
sent these classes, consider three values of the ratios of a to K. For the
equalizer ripple -type line a ratio of a to K of 1 to 1 was chosen. For a
carrier transmission delay a ratio of a, to K of 4 to 1 was taken. For the
loaded cable -type delays a ratio of 8 to 1 was chosen. For each of these
delay shapes a set of design curves for various allowed degradations was
derived. In each case the maximum delay was found such that a specified
degradation in performance would not be exceeded. As usual, the
allowable degradation is in aperture or equivalently in impulse noise
performance. These curves are shown in Figs. 23, 24 and 25.
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It is not necessary for the delay of a particular line to meet all the
requirements of all three sets of curves in order to have a particular
allowable degradation. On the contrary, if a given delay falls within any
one curve for a particular allowable degradation in performance then it
will meet this degradation requirement. Thus, in the field or in design,
it is necessary to consider three curves of allowable delay to determine
if a particular delay shape will meet a particular degradation require-
ment.

In the curves, delay has been specified only up to 70 per cent of the
band. This is in keeping with the previous results on the non -necessity
of specifying delay beyond this point. However, it is true that there is
some range in the actual performance due to the effect of delay beyond
the 70 per cent limit. In addition, as discussed in the section on worst
lines, these delays are not the actual worst lines as found by Lucky.
To allow for these two factors, an additional 1-db margin is built into
each of the curves. It is felt that only in the very rarest of circumstances



1.6

1.4

1.2

1.0

0.8

0.6

cn- 0.4
cTo

z 0.2

>-

_J

O
-0.2

<-0.4
_1

cc -0.6

-0.8

1.0

-1.2

1.4

-1.6

FOUR-PHASE DATA TRANSMISSION 961

MAXIMUM
DEGRADATION IS 9DB

pO
41

...

'0°3
"11111111111111111.Mille

4

r v

4'
OB

MAXIMUM
DEGRADATION 5 9DB

-0.3(.3 -0.2w5 -0.1cog WCAR 0.1wg 0.2w8 0.3cue

Fig. 24 - Design curve no. II. Maximum allowable delay for «/K = 4 to
give indicated degradation:

D = [a,/ (co - wcar)2 cos (nw + 0).

Curves give maximum degradation; in general, degradation should be less for
delays falling within bounds shown. Note that flat delay introduces no distortion.

will this margin be insufficient, and then only by a very small additional
amount of degradation.

VII. ATTENUATION RESULTS

The scope of this study did not include a systematic investigation of
the distortion due to attenuation alone or to a combination of attenua-
tion and delay. However, certain representative results are discussed
here to indicate some of the effects of attenuation. The simulation can.
of course, handle any desired attenuation.

The spectrum has symmetric components with respect to the carrier.
Thus for symmetric delay (in particular for no delay distortion), slope
attenuation across the transmission band [i.e., attenuation = k1 (fre-
quency) + k2] should produce an effect equivalent to a flat loss of value
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equal to the attenuation at the carrier frequency. This line of thought
was essentially verified using the simulation. In the presence of delay
unsymmetrical with respect to the carrier frequency, however, this is
no longer true. This also indicates the nonadditive nature of the effects
of attenuation and delay. In any study of the combined effects of at-
tenuation and delay distortion, it is this nonadditive nature of the
interaction which is the most important single fact.
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The general form of attenuation considered was linear on a plot of db
versus frequency as shown in Fig. 9(a). This attenuation shape was
found to be typical of voice -bands by Alexander, Gryb, and Nast.' The
cutoff frequency was taken as the carrier minus 20 per cent of the hit
speed. For example, with an 1800 -cps carrier operating at 2400 bps, this
would be at 1800 - (0.2) (2400) = 1320 cps. The slope was measured
from this cutoff frequency (co,a, - 0.2 "bit) to coca, ± 0.35 wbit . Slopes
ranging from 4 to 12 db over this range were investigated.

Table II shows clearly the nonadditive interaction of the attenuation
plus delay. Both delays shown in Table II are sinusoidal and respectively
of odd and even symmetry with respect to the carrier frequency. The
results are normalized to zero attenuation at the carrier.

TABLE II- INTERACTION OF ATTENUATION AND DELAY

Amplitude Delay

Bin
1.0 0 2.5

Bin 0 in
0.5 w/2 2.0

Attenuation Aperture
Delay Only

0-(11.) slope

6-db slope

0.45

0.70

Aperture
Delay +

Attenuation

0.36

0.32
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NEASIM: A General -Purpose Computer
Simulation Program for Load -Loss

Analysis of Multistage Central
Office Switching Networks

By R. T. GRANTGES and N. R. SINOWITZ

(Manuscript received November 7, 1963)

Blocking probability is the most frequently required performance charac-
teristic in traffic studies of complex central office switching networks. Deter-
mining this quantity without actual measurement is a difficult task. To aid
the communications system designer, a simulation program has been prepared
which produces useful estimates of blocking probability for a large class of
networks. The program is based on a simplified mathematical model for the
analysis of switching networks developed by C. Y. Lee, and thus differs
from conventional simulators in that it simulates a mathematical model
rather than a traffic -handling system.

Although Lee's model is widely used, its utility has been limited by com-
putational difficulties encountered in networks of realistic size and com-
plexity. This limitation is in most practical cases removed by the program,
which features rapid input preparation, short computer runs, and specifica-
tion of the desired precision of the results as an input parameter. Moreover,
the program allows for the incorporation of more a priori information
about the actual behaviour of switching networks than is included in Lee's
model, thereby leading to a more accurate estimate of blocking probability.

The simulator has been programmed for the IBM 7090 computer, but
the concepts are machine independent.
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I. INTRODUCTION

Determining the traffic performance of complex multistage central
office switching systems without actual measurement can be a major
problem for the communications engineer. While probability theory has
been successfully applied to a wide variety of telephone traffic prob-
lems,"" a precise formulation of a mathematical model completely
describing the multistage switching system has thus far not been found.

No systematic approach exists which completely accounts for the
gross complexity encountered in large-scale congestion systems, but
several authors have contributed significantly to the theory, notably
C. Jacobaeus,4.6 K. Lundkvist,5 A. Jensen,' C. Y. Lee,8 A. Elldin,' R.
Fortet,") and P. LeGall." IVIore recently, V. E. Bene6"-'5 has initiated
"an attempt to describe a comprehensive point of view towards the
subject of connecting systems." Although the engineer does not yet
have a comprehensive theory, he does have a valuable tool in computer
simulation.

Simulation of telephone traffic flow has a long history in the Bell
System. As early as 1907, a rudimentary simulation was undertaken to
improve switchboard performance. Artificial traffic was generated by a
card -drawing technique, and the simulation was used to verify a semi -
mathematical analysis of the loads which could be handled by a team
of operators meeting an average delay criterion. In the ensuing years,
simulation techniques have been aids in the study of complex traffic
problems, such as the effect of limited sources on graded multiple capac-
ities, the efficiency of random slipped multiples, the capacities of various
alternate routing plans, and the distribution of delays under various
trunking plans. The traffic load capacity of the No. 1 crossbar network
was largely determined by the load -loss relationships in the link and
junctor patterns obtained from elaborate simulations begun in 1936.
This was the first time that the capacity of a largely complete system
had come under study by simulation methods. A 10,000 -line No. 5
crossbar office was simulated in 1948 by a specially designed machine
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which coordinated the efforts of four operators, providing significant
data for the traffic engineering of this system."

In recent years the high-speed electronic digital computer has proved
an effective tool in large-scale traffic simulations.'7-22 For this class of
simulations, special computer programs are written which usually con-
tain:

(i) a logical description of the system under consideration,
(ii) a procedure for generating and offering traffic to the system, and

(iii) a method for extracting and recording the desired system charac-
teristics.
These programs may be called "special-purpose" simulators - in the
sense that they are written for the purpose of studying a specific traffic -
handling system. A variety of performance data may be obtained, in-
cluding:

(i) probability of blocking at various loads (load -loss data);
(ii) delay distribution, including average delay on calls delayed; and

(iii) mean queue lengths.
Of these, the most frequently required datum is the probability of loss
(or delay).

These simulation programs have produced a large amount of useful
information, but their application has not been widespread because of
the considerable programming effort required. To reduce programming
effort, various "general-purpose" traffic simulation programs have been
written.",25 ,26 However, it must be understood that each program is
only "general" with respect to a particular class of traffic systems.

The multistage central office switching system is an example of a class
of traffic -handling systems for which no general-purpose simulator has
heretofore been written, although much has been accomplished by
special-purpose simulations written for specific switching network
arrangements.27 Because the use of these network simulation programs
has been greatly restricted by the cumbersome programming and input
preparation required, a strong need has developed for a quick, easy -to -
use, general-purpose simulation technique.

To meet this need, the authors have developed a computer program
which, with a minimum of user effort, will produce useful estimates of
blocking probability for a very large class of multistage switching net-
works. The program is based .on a simplified mathematical model of
switching networks developed by C. Y. Lee,8 and differs in approach
from programs referred to earlier in that a complete description of the
traffic -handling system itself is not given to the computer; rather, the
program simulates the behavior of Lee's analytical model. Deriving its
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name from this view of its operation, the program has been acrony-
mously named NEASIM - NEtwork Analytical SIMulator.

While Lee's model is probably the most widely used analytical model
for multistage matching networks, its utility has been severely limited
by the computational difficulties associated with networks of realistic
size and complexity. This limitation is in most practical cases removed
by the program, which features rapid input preparation and short (hence
economical) computer runs. Furthermore, unlike many simulations in
which the reliability of results must be assessed on an a posteriori basis,
the analytical simulator admits of an a priori appraisal so that desired
precision becomes an input parameter.

The probability linear -graph model, basic to the NEASIM approach,
is described in Section II, where its use in switching network analysis
is explained. The philosophy of the program together with a general
description is presented in Section III. Two key program routines are
described in Section IV. Reliability considerations are given in Section
V. Finally, Section VI discusses program modifications which can in-

crease the validity of the NEASIM estimate.

H. THE PROBABILITY LINEAR -GRAPH MODEL

In 1955 C. Y. Lee,8 extending the earlier work of Kittredge and
Molina, presented a simplified mathematical model for the analysis of
switching networks. Since the NEASIM program simulates the be-
havior of this model, a description of the model is given (Section 2.1).
An example to illustrate how the model is applied is given in Section
2.2; the computational difficulties which may be encountered in the
analysis of practical networks are then discussed - thus pointing up the
need for the simulation program. Section 2.3 explores further the notion
of blocking probability for a network and the use of the linear -graph
model in determining this quantity.

2.1 The Model

Consider a crosspoint network in which each input can be connected
to any output by the operation of appropriate crosspoints. Let Pg(j,k)
be the probability that all paths through the network between input j
and output k are busy at time t.

Associate with each link li of the network a binary -valued random
variable Xt(') whose value represents the state of the link at time t.
The NEASIM convention is: 0 represents idle and 1 represents busy.
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Since the concern of telephone traffic engineers is with "busy -hour"
traffic, it is usually assumed that

(a) the busy -idle distributions of the link random variables are sta-
tionary (or homogeneous) in time.
That is, for any N,

PriXt") = o ; n = 1, , /V) = PO X -4,+h") = 6 ; n = 1,  NJ
for all h, where (5 = 0 or 1 and the index i runs over all the links in the
network. A consequence of this assumption is that Pg(j,k) is also sta-
tionary in time, for all j and k, and the subscript t will henceforth be
omitted.

Let us now fix our attention on two terminals, one on each side of
a crosspoint network in which

(b) all of the switches are nonblocking,*
and in which

(c) there is no connection path between any switch and itself.
Then the configuration of possible paths through the network between
the two terminals can be represented by a two -terminal cycle -free linear
graph with directed branches, in which the nodes of the graph represent
network switches and the directed branches of the graph represent
network links. Consider, for example, the network depicted in Fig. 1.
The possible path configuration seen between terminals A and B is
indicated by heavy lines, and the corresponding graph is as shown in
Fig. 2(a).

Next, assume that
(d) P(j,k) is independent of j and k,

and we can speak of P(j,k) = B as the probability of blocking of the
network. The notion of blocking probability will be further explored in
Section 2.3.

Finally, Lee makes the simplifying assumption:
(e) the link random variables, X`'', are independent.

This assumption, which is frequently made to render analysis managea-
ble, is the principal weakness of the model and will cause the results to
depart from reality in varying degrees - depending on the particular
network. In general the model will tend to overestimate blocking. The
problem of obtaining realistic results is discussed further in Section VI.

Each of a large class of switching networks can therefore be repre-

* Lee's requirement that the switches he nonblocking is actually not restric-
tive, and can be relaxed by an appropriate adjustment of the link occupancies.
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seated by a simplified model called, by Lee, a two -terminal probability
linear -graph in which

(i) switches are represented by nodes, and links by directed branches,
and

(ii) assumptions (a)-(e) hold.
The mathematical object, the two -terminal probability linear -graph,
will be referred to as GRAPH in the sequel.

Once the GRAPH of a network is obtained, the calculation of the
blocking probability can proceed in a straightforward manner.

2.2 An Example

As a first illustration, consider the GRAPH of Fig. 2(a). Let E be the
event that there is a path through the GRAPH,* Ei be the event that
branch bi is idle, and pi = PI{b, is busy}. Then

E =AIUA.2UA3UA4

where the paths, A i , are

A1=B1fE3flE7
A2 =E1 n E4 n Eg

A3 = /32 n Bg n E7

A4 = B2 Eg n Eg .

The blocking probability is then

B = 1 - POE}

= 1 P ti 4 L1 4 U 1- r _ _ -
4

= 1 - PrtAil E Pr{Ai n A;}
i<J

4

- E AinAjn Ak1 + n A2 n A3 n A41.

i<j<k

Now the assumption of independence gives

Pr{E, E;} = Pr{.Ei} Pr{.E;)

= qi q; qi = 1 - pi
* Having adopted the GRAPH model, we speak of a "path through the

GRAPH" rather than "a path through the network," and say that "a branch is
busy or idle" rather than "a link is busy or idle."
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whence, for the case in which pi = p for all i,

B = - 4g7 2q6 4g5 - 4q3 + 1. (1)

In general, given a GRAPH G with m different link occupancies

p1 , , p the procedure just illustrated will yield the blocking
polynomial of the GRAPH:

130 = BG(Pi, '  'Pm).

As a computational tool the utility of the GRAPH model decreases
with increasing complexity of the GRAPH's geometrical structure.
When the GRAPH geometry grows more complex, the blocking poly-
nomial B0 becomes cumbersome - admitting a greater possibility
for error in its determination. Moreover, once Bp is found, one still has
to substitute numerical values for pi , , pm into the polynomial
to obtain a result. As an example, for the GRAPH of moderate com-
plexity shown in Fig. 3, the blocking polynomial is

OCCUPANCY = p Pa

Fig. 3 -A GRAPH of moderate complexity.
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13 = 7)8

 p 7q(8214)

( 4A 8 + 24A 4B2)

 p8q3 (24A4 134 32A3 133C )

+ (8A4C4 48A2 B4C2 8B6D ti Bs )

 p3 q5 (32A BVI) 24B4C4

 p2q6(4C8 24B2C4D2)

 pq7 (80D4 )

+ q8(D8)

where:

(2)

A = p + qp2

B = p qp22

C = p + qp2a

D = p + qP24

q = 1 - p.
Faced with computing B in (2) over a range of occupancies, an engineer
would surely resort to a computer. The essential computational diffi-
culty is that one is confronted with expressions of the form

PriAiU  UAA
where the paths A, , , Alare not disjoint.

It is interesting to note that the method of approach just described -
which may be called the "path enumeration approach" - is not the
only way to proceed and is indeed not the most efficient. A second pro-
cedure for finding the blocking polynomial may be called the "combi-
natorial approach" and is best illustrated by example.

Since all the branches in the GRAPH of Fig. 2(a) are busy with proba-
bility p, a moment's reflection shows that the blocking probability can
be written as

2 2B = p qp  Bs Li abgr ph I pq Bs u bgra p h 2 ± q  Bsubgraph 3



974 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

where Bsubgraph 1 B.ubgraph 2, Bsubgraph 3 are, respectively, the blocking
probabilities of the GRAPHs indicated in Fig. 2(b). But by inspection
we have

Bsubgraph 1 = (1 - (12)2

Bsabgrsph 2 = (1 - q2)2
2Bsubgraph 3 = [1 - (1 - p2) q]

so that
B p2 q2)2

q2[1
(1

p2)q]2

is the blocking polynomial (1) expressed in another form.
The GRAPH of Fig. 4 is more representative of the type of GRAPH

Fig. 4 - Typical GRAPH geometry of realistic central office network.



NETWORK ANALYSIS SIMULATION PROGRAM 975

encountered in modern central office networks. Determination of the
blocking polynomial in this case - by either the path enumeration or
combinatorial approaches - is a formidable task indeed. If the GRAPH
model is to be useful to the modern engineer, some means of handling
such complex GRAPHs must be made available.

When seeking performance measures of a network, the engineer
is not really concerned with the explicit polynomial representation
Bo (pi , p,); what he would like is a curve (or set of curves) dis-
playing this functional relationship. The simulation program described
in the following sections, when given the link occupancies PI , , pni ,
produces, with predictable precision, a numerical estimate of Bp .

2.3 Blocking Probability and the Linear -Graph Model

When several kinds of traffic are handled with different disciplines
in a network which may have several characteristic graphs, blocking
probability for the network can only be meaningfully defined relative
to the persons or terminals encountering blocking. For example, the
blocking encountered by a call originating and terminating in the same
central office may not be the same as the blocking encountered by an
incoming call. In general, a network is required to handle several
"classes" of connections and the engineer is concerned with the blocking
probability for each of these classes. We shall limit our discussion of
blocking probability to one class, that is, a subset of all input-output
pairs in which each input-output pair has the same graph and for which
it is reasonable to suppose that the traffic between every input-output
pair is identical* with that of every other pair. Without loss of generality
we can therefore assume that the network has one class, so that when
speaking of the blocking probability of the network, we shall mean the
blocking probability of the class. ( These remarks form the basis of
assumption (d) of Section 2.1. )

Having thus limited ourselves to one class of connections, we have still
to define the blocking probability of a network in a manner which is
in agreement with the generally familiar definitions. Here we again en-
counter difficulty. The authors agree wholeheartedly with BeneA (Ref.
15, p. 2805), that "In fact, not even the definition (let alone the calcu-
lation) of the probability of blocking has received adequate treatment

.

Syski (Ref. 3, p. 198), after a long series of prefatory remarks, defines
two quantities, time congestion 8(t) and call congestion 7(t) for the case

* That is, every input calls every output at the same rate with the same hold-
ing time distribution and with the same lost calls disposition.
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of a simple full -access trunk group. The time congestion is the probabil-
ity that all trunks in the group are busy at time t; the call congestion
is the conditional probability that the group is blocked when a call
arrives at the instant t. Under the input assumptions and for equilibrium
conditions, time and call congestions are independent of time and are
denoted by S and 7, respectively. S is equivalent to the fraction of time
during which congestion is encountered, while it is equivalent to the
fraction of calls encountering congestion, and the two quantities will, in
general, differ.

Of these, of course, the measure of most concern to the network de-
signer is call congestion. Now if it is assumed that calls originate com-
pletely independent of the state of the network, time congestion will
equal call congestion. Such an assumption is unjustified if calls cannot
originate from busy lines, since time congestion conventionally includes
busy line periods while call congestion excludes them. It is, however,
reasonable to assume that idle pairs of terminals originate calls at a
constant rate independent of the state of the network. In particular,
there must be no change in the calling rate after a blocked call. If, under
this assumption, time congestion is modified to include only periods in
which both lines are idle, it will be equal to call congestion. Actually,
even if the foregoing assumption is not met, the time between calls is
likely to be much longer than the time taken by the network to return
to equilibrium, so that, again, the modified time congestion will be close
to the call congestion.

With a suitable choice of branch occupancies, Lee's model allows the
computation of call congestion. Alternatively, the branch occupancies
may be chosen so as not to reflect the requirement that only idle ter-
minals are to be considered, thus allowing the computation of time
congestion. In either case the computed results will be subject to the
error introduced by inaccurate assumptions in the model.

Before viewing the probability linear -graph model in the light of the
above remarks, it is well to make an observation on the underlying
philosophy of the model. Let us perform the following conceptual experi-
ment in a real network under a particular set of (equilibrium) traffic
conditions. Suppose that we fix our attention on a particular representa-
tive input-output pair (j,k) and examine closely that portion of the
network seen between them, i.e., their graph. It is reasonable to believe
that, were we to examine the detailed traffic pattern within the graph
for a sufficiently long time, we would ultimately come to have complete
knowledge of the busy -idle state behavior of the graph links under the
particular traffic conditions. The experiment could be repeated under
other equilibrium traffic conditions, so that we would eventually be able
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to describe completely the behavior of the graph links under all equilib-
rium conditions. Assuming that the particular input-output pair and
connection graph studied are truly representative of the entire network
(or at least of an entire connection class), we could then "discard" the
rest of the network and determine the blocking probability of the net-
work under various equilibrium conditions by computations or simula-
tions based only on the connection graph and our complete knowledge
of its behavior.

That such complete knowledge could he obtained is a practical im-
possibility. In the absence of complete knowledge, assumptions can be
and, indeed, must be made about the detailed behavior of the graph
based on such a priori knowledge as we have. It is reasonable to suppose
that, as the assumptions made approach the real behavior of the graph,
the blocking probability determined from the graph will approach the
real blocking of the network. A belief in the fundamental soundness of
this reasoning constitutes the basic philosophy of the graph model
approach to the determination of blocking probability, beginning with
Molina and continuing with C. Y. Lee and the NEASIM program.

The assumption made by Lee of link independence [(e) of Section
2.1], while obviously omitting much a priori knowledge of graph be-
havior, possesses the practical advantage of allowing computation of the
blocking polynomial where graph geometry does not prohibit. The basic
NEASIIVI program allows evaluation of the polynomial for all graphs
meeting Lee's restrictions.

The utility of the results obtainable from Lee's model is well known.
When the specific branch occupancies are chosen rationally,* the calcu-
lated blocking agrees well enough with real blocking figures (obtained
from full-scale simulation or measurement) for many engineering and
design purposes. Accuracy can he improved by "calibrating" Lee's
results against real values where they are available. Furthermore, com-
puted values lacking in absolute accuracy will reveal relative differences
between networks and between various traffic conditions in the same
network.

The NEASIM program, to which the remainder of this paper is
devoted, is basically designed to estimate the value of the blocking
polynomial. This portion of its design and use is described in Sections
III-V. The design also allows additional assumptions regarding the
detailed traffic behavior of connection graph link states to be incor-
porated in the graph model. When more a priori information is included,

* That is, chosen to reflect the requirement that the input-output terminals
j,k are idle by (usually) subtracting the load contributed by the terminals j,k
from the assumed carried link loads.
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the validity of the simulation results improves as anticipated. This
aspect of the NEASIM program is described in Section VI.

III. THE NEASIM PROGRAM

This part of the paper is devoted to a presentation of the program.
The basic viewpoint or philosophy of the NEASIM approach is given
in Section 3.1. A general description of the program is contained in
Section 3.2.

3.1 Philosophy of the Program

We saw in the preceding section how the GRAPH model provides -
in theory at least -a method for the analysis of a large class of switching
networks and how the model is impractical as a tool for networks with
complex geometrical structure. To evolve a practical tool, we shall
change our method of approach.

Suppose we are given a GRAPH G with branch occupancies

' m 

Until now we were concerned with the explicit blocking polynomial
BG = BG(pi , , pm). However, we can think of BG(pi , , pm) as a
curve in Euclidean (m 1) -space, and set as our goal a precise ap-
proximation to this curve. This point of view immediately suggests the
use of simulation techniques.

For example, if all the branches in the GRAPH of Fig. 2(a) are busy
with probability p, then B0 = B0(p) is a curve in 2 -space. If a com-
puter simulation were to be performed to give an approximation to
Ba(p), then we would require a computer program containing an
algorithm which, when repeated n times, will produce an estimate
B0(") (p) such that

lim Bo(n)(p) = B0(p)
n-soo

and for which we have confidence limits on the absolute error,
I

BG(n)(P) Ba(P) I ,

for all n.
Consider the eight branches of the GRAPH of Fig. 2(a). Although

all of them are busy with probability p, at any one instant each of the
branches is either busy or idle - and for this particular configuration
of busy and idle branches there is or is not a path through the graph.
Thus, in each repetition of the above mentioned algorithm,



NETWORK ANALYSIS SIMULATION PROGRAM 979

(i) we assign busy -idle states to each of the eight branches in such
a way that probability of busy in each case is p;

(ii) after the assignment has been made we determine whether or
not there is a path through the graph for the given assignment.
Let BG(n) (p) represent the proportion of n repetitions of the algorithm
when no path through the graph was found. We would then expect that
lim B0(1') (p) = BG(p); that is, we would expect our estimator to
n

converge to the true blocking curve. In general, if the GRAPH G has
m different occupancies pi , , p the program should produce an
estimator Bc(")(pi , , pm) converging to BG(731 , , pm).

The preceding heuristic remarks were intended to outline the essential
approach taken by the NEASIM program. The remainder of Section
III is devoted to a description of the program itself. Sections IV and V
contain the arguments which show that the estimator indeed converges
to the true blocking curve, and how confidence statements about the
precision of the results are obtained.

3.2 Program Description

The following four sections describe the NEASIM program. Section
3.2.1 takes a "macroscopic" point of view, beginning with an account of
the input and then proceeding to give a broad outline of the program.
Section 3.2.2 sketches the layout of data in the computer memory.
Section 3.2.3 discusses the organization and operation of the NEASIM
algorithm. The salient features of the program flow are shown in Fig.
5. Storage requirements and execution speed are given in Section 3.2.4.

3.2.1 Macroscopic Description

NEASIM was written for the IBM 7090 computer. The input con-
sists of punched cards which we categorize as Graph Definition Cards
and Simulation Definition Cards. Since the notion of a probability-

linear graph implies a geometrical configuration together with an oc-
cupancy assignment on the branches, the computer must be supplied
with both these types of information. The geometrical configuration is
read into the computer via the Graph Definition Cards and the various
occupancies are read in via the Simulation Definition Cards.

Graph Definition Cards

The information punched on these cards includes
(1) the total number of nodes,
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Fig. 5 - Flow diagram for the NEASIM program.
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(2) the total number of hranches,
(3) the total number of branch occupancies,
(4) the occupancy associated with each of the branches, and
(5) the interconnection scheme between the various nodes.

Simulation Definition Cards

Suppose there are m different branch occupancies for the GRAPH
in question. These m values are punched on a Simulation Definition
Card. For every set of values of the occupancies pi , , p, - that
is, for every point on the blocking curve BG(pi, ,p,,,) - there is
one Simulation Definition Card.

The estimator 1-3,1") (pi , , p,) will converge to BG(pi , p,)
as n ---> co . But the computer must be instructed as to when to terminate
the run. Now, the NEASIM process is such that it is possible to request
that the error I BG(n) - BO I lie within a given percentage of the true
value BG . This "desired precision" information is also punched on the
Simulation Definition Card. It may happen, however (as will be the
case whenever BG is very small) that, in order to obtain the requested
percentage error, the total number of repetitions of the NEASIM
algorithm will perforce be exceedingly large. Since a lengthy computer
run is economically undesirable, and since a high degree of precision is
usually not needed when the blocking probability is so very low, an
upper limit on the number of repetitions, n, is also supplied to the com-
puter by being punched on the Simulation Definition Card. If, after a
run has been made, a greater degree of precision is still needed, it is
possible to "pick up where we left off" and continue the simulation in
another computer run.

The Program

The Graph Definition Cards are read into the computer first. With
this information the program constructs, in effect, a map in the com-
puter memory of the geometrical configuration of the GRAPH. More-
over, the program associates with each branch an occupancy pi - whose
value is as yet unspecified. The first Simulation Definition Card is then
read in, and the program now assigns the appropriate values to

, , p, . Once this information is obtained, the program is ready
to execute the NEASIM algorithm, which consists essentially of two
parts:

(i) a busy -idle assignment is made on all of the branches in accord-
ance with the specified occupancies pi , , pm ;
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(ii) the presence or absence of a path is determined for the particular
assignment.
These two steps are repeated again and again until such time as the
estimate BG(n)(pi , , pm) has been found.

The results for this point on the blocking curve are printed out, and
the second Simulation Definition Card (if there is one) is read. The
program then goes through the preceding steps for this second set of
values of pi , , p, until the estimate for this point on the blocking
curve has been obtained. When all the Simulation Definition Cards
have been processed, the program run ends.

3.2.2 Memory Organization

After the Graph Definition Cards have been read in, the program
prepares five main tables as follows:

(1) Node table
(2) Node -Link table
(3) Branch tables
(4) Occupancy tables
(5) Linkage table.

The Node Table

The size (i.e., the number of words) of the Node table is equal to the
number of nodes in the GRAPH, there being a one-to-one correspond-
ence between the words in this table and the nodes in the GRAPH.
These words are used by the program to indicate, after a particular
iteration of the NEASIM algorithm, whether or not there is a path
from each particular node to the first node.

The Node -Link Table

The size of the Node -Link table is also equal to the total number of
nodes in the GRAPH, with each word corresponding to a particular
GRAPH node. For each node the table indicates

(i) the number of branches leaving the node - connecting to nodes
more distant from the origin, and

(ii) a reference to a section of the Linkage table where further infor-
mation on each branch is stored.
The Node -Link and Linkage tables together constitute the program's
map of the GRAPH geometry. The other tables provide storage for
busy -idle indications and path information.
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There are as many Branch tables as there are different occupancies
in the GRAPH. For occupancies PI , , there will be m Branch
tables, which we denote by BRT(i) , , BRT(7,0 . The size of BRT(i)
equals the number of branches in the GRAPH which are busy with
probability pi . There is a one-to-one correspondence between a particu-
lar word in BRT(i) and a particular branch in the GRAPH. The associ-
ation between the words in the Branch tables and the particular GRAPH
branches is part of the information stored in the Linkage table. The
Branch table words are used by the program to store the busy -idle state
of every GRAPH branch on each iteration of the NEASIM algorithm.
The total storage required for the Branch tables equals the number of
branches in the GRAPH.

The Occupancy Tables

There are m Occupancy tables, OCT (i) , , OCT(,) , corresponding
respectively to BRT(i) , , BRT(m) . The size of OCT (i) is an input
parameter of the program chosen to be large compared with BRT(i) .
Every bit in the table OCT (i) contains a binary one with probability
pi . The Occupancy tables are used by the program to supply random
busy -idle states for assignment to the branches of the GRAPH on each
iteration of the NEASIM algorithm.

The Linkage Table

As previously mentioned, this table contains the detailed interconnec-
tion information between the various nodes in the GRAPH. The size
of the table is equal to the number of branches in the GRAPH. Each
word in the table represents a branch, say b , in the GRAPH and
contains

(i) the address of a word in the Node table which corresponds to
the node to which b.; leads, and

(ii) the address of a word in a Branch table which stores the current
busy -idle state of the branch b .

Consider, for example, the GRAPH of Fig. 2(a) and suppose that
the occupancy of branches b1 and b2 is PI ; the occupancy of branches
b3 , b4 , b5 and b6 is 132 ; and the occupancy of branches b7 and b8 is p3 .
The tables which the program would prepare are indicated in Fig. 6.
The symbolic addresses, such as NW1, BRW3, etc., have been chosen
for illustrative purposes only.
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NW6

NW5_
NW4

NW3

NW2

NW1

BRW2
BRWI

L

L8
L7

L6
L5
L4
L3

L2
LI

- 0
L 1

L8 1

L7 2

L5 2

L3 2

NODE TABLE NODE -LINK TABLE

BRT(,)

P1

OCT(1)

BRW6

BR W5

BR W4

BRW3

BRT(2)

P2

BRW8 NW6

BRW7 NW6
BRW6 NW5
BRW5 NW4
BRW4 NW5

BRW3 NW4

BRW2 NW3
BRWI NW2

LINKAGE TABLE

0 CT( 2 )

BRW8
BRW7

BRT(3)

P3

OCT(3)

Fig. 6 - Computer memory layout for the GRAPH of Fig. 2 with occupancies
, p2 tunl .

3.2.3 Organization of the NEA SIM Algorithm

In a previous section it was mentioned that the NEASIM algorithm
requires

(i) an assignment of busy -idle states on the branches, and
(ii) a method of searching for the existence of a path.

These tasks are performed by three program segments which we shall
call

(i) the PROBABILITY GENERATOR,
(ii) the BUSY -IDLE ASSIGNMENT, and

(iii) the MATCH routine.
For the sake of program efficiency (speed) the task of assigning busy -
idle states to the branches is divided into two parts. The function of
the PROBABILITY GENERATOR is to generate tables of busy -idle
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bits - the Occupancy tables. The BUSY -IDLE ASSIGNMENT rou-
tine assigns busy -idle states to branches on each iteration of the algo-
rithm. The function of the MATCH routine is to find whether or not
there is a path, given a particular assignment of busy -idle states on the
branches. Discussion of the internal logic of these programs will be
deferred to Section IV. For the present we will be concerned only with
their functions.

After the Graph Definition Cards have been read, enough information
is available for the program to reserve appropriate space for the Node,
Node -Link, Branch, Occupancy and Linkage tables. Once space allot-
ment has been made and the necessary entries filled into the Node -Link
and Linkage tables, the program reads the first Simulation Definition
Card. Among other parameters, this card specifies the m different branch
occupancies desired. At this point the PROBABILITY GENERATOR
fills in the Occupancy tables. When this routine has completed its task,
each bit in OCT(S) , i = 1, , m, will contain a binary one with proba-
bility pi and a zero with probability 1 - p2 . (Recall that the NEASIM
convention is that one represents busy and zero represents idle.) The con-
tents of the Occupancy tables remain unaltered for the entire time that
the program is seeking an estimate for one point on the blocking curve.

The storage of many computers is organized into sequentially num-
bered words, each of which consists of a fixed number of contiguous
bits, and each of which is addressable by the stored program for logical
and algebraic manipulation. The number of bits in an IBM 7090 word
is 36, so that each word in the Occupancy tables represents 36 independ-
ent busy -idle states - thus allowing for 36 independent repetitions of
the NEASIM algorithm.

After the Occupancy tables have been prepared, various counters are
set to zero and the Node table is initialized. As the contents of the Node
table indicate for each node the presence or absence of a path from the
particular node to the origin, the program takes the attitude of the man
from Missouri and assumes there is no path until one is proven to exist.
Thus the words of the Node table are initially set to all 1's except for
the first node, which always contains zeros.

At this point the program enters the BUSY -IDLE ASSIGNMENT
routine. To assign busy -idle states to the branches, this routine steps
through each of the Branch tables and for each word in BRT() , a
word from OCT(I) is selected at random and its contents duplicated in
the Branch table word. When BUSY -IDLE ASSIGNMENT has been
completed, the program enters the MATCH routine.

Using the linkage information stored in the Node -Link and Linkage
tables, the MATCH routine performs its logic on the Branch and Node
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tables to find whether or not there is a path through the graph for each
of the 36 independent busy -idle configurations. The operation of this
routine is analyzed in Section 4.2.

When MATCH has completed its work, the number of Vs in the word
of the Node table corresponding to the terminal node in the GRAPH
(NW6 in Fig. 6) will be the number of times there was no path through
the graph in the 36 trials. This number of blocked attempts is noted and
36 is entered into a "run -length" counter. The Node table is reinitialized,
busy -idle states reassigned and the algorithm repeated again and again.
The repetitions will terminate when one of two situations occurs at the
end of the MATCH routine. Either

(i) enough attempts have been scored to guarantee the precision
called for on the Simulation Definition Card, or

(ii) the maximum number of attempts specified on the card has been
exceeded.

When the repetitions terminate, the proportion of blocked attempts
is calculated and the results are printed out. The next Simulation Defini-
tion Card is read and the process starts over for the next point on the
blocking curve.

3.2.4 Storage Requirements and Execution Speed

The largest GRAPH that can be handled by the present version of
NEASIM is determined by the core storage available in a particular
computer. Total storage required is given by the expression

P 2(N ± B) 0

where:
P is the number of storage locations required by the NEASIM

program itself (about 2000 words),
N is the number of nodes in the GRAPH,
B is the number of branches in the GRAPH, and
O is the storage required for Occupancy tables - typically m X 1024

where 1 < m < 8 is the number of occupancy tables.
The NEASIM algorithm is designed for rapid execution on the IBM

7090. Average speed depends principally on the size of the GRAPH.
Typical speeds range from about 600 trials per second (550 -branch
GRAPH) to about 5000 trials per second (48 -branch GRAPH).

IV. PROBABILITY GENERATOR AND MATCH ROUTINES

The functions of the two routines called PROBABILITY GENERA-
TOR and MATCH were mentioned in the previous section. The present
section is concerned with the internal logic of these programs.
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The algorithm used by PROBABILITY GENERATOR is clue to
W. C. Jones.28 It is felt that this heretofore unpublished algorithm is of
sufficiently widespread interest to be included in this paper.

A word on notation: throughout Section IV we shall use the notation
C[A] to mean "the contents of A," where A represents some bit in the
computer memory. (The reader is therefore cautioned to distinguish
between "bit A" and its contents C[A].)

Two computer instructions which will be referred to repeatedly are
the logical (inclusive) "OR" and logical "AND" instructions. Instruct-
ing the computer to perform an OR on two bits will guarantee that the
result will be 1 if, and only if, either or both of the bits contain 1; while
an AND yields 1 if, and only if, both bits contain 1. When we OR bit A
to bit B, then we shall say that we "perform [A] OR [B];" when we AND
bit A to bit B, then we say that we "perform [A] AND [B]."

4.1 The PROBABILITY GENERATOR

The purpose of PROBABILITY GENERATOR is to generate the
occupancies p1 , , p, . We mentioned in Section 3.2.2 that this
subroutine will fill up OCT(i) (i = 1, , m) with 36 -bit words each
of whose bits contains 1 with probability pi(i = 1, , m). In the
sequel we will focus our attention on (a representative) one of these
36 hits - keeping in mind that the program is actually working on
36 hits independently and in parallel.

Suppose we wish to generate a random binary variable which takes
the value 1 with probability p(0 < p < 1) and to place our result in
bit X. The algorithm, when terminated, will give Pr[C[X] = = p.

The first action taken by PROBABILITY GENERATOR is to ex-
press p as a binary fraction to 10 places.* This fraction is then scanned
from right to left until the first bit is found which contains a 1. The
algorithm uses this binary fraction of n < 10 places determined by the
scan. We can therefore, without loss of generality, express p as

p = 0.bbn_1 b2b1 b2 , , b. = 0 or 1.

A digit selected from a random binary number will be referred to as a
"random bit" in the following algorithm. In a random binary number,
the value of each digit is 1 with probability 1.

Algorithm:

(i) Set j = 1. Generate a random bit, say r1, and store it in X.
Thus C[X] = r1 .

* The number of places is arbitrary. Ten was chosen to make the round -off
error smaller than 0.001, since occupancies are specified on the Simulation Defini-
tion Cards to three decimal places.
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(ii) If j = n, go to step (vii). Otherwise, increase j by 1 and con-
tinue.

(iii) Generate another random bit r; and store it temporarily in some
bit, say H. Thus C[R] = r .

(iv) If b; = 0, go to step (v). If b.; = 1, go to step (vi).
(v) Perform [R] AND [X]; store in X. Go to step (ii).

(vi) Perform [R] OR [X]; store in X. Go to step (ii).
(vii) Stop.
We observe that step (ii) is performed (iterated) exactly n times.

Let P be the probability that C[X] = 1 after the jth iteration. The
assertion is that P. = p - i.e., after the algorithm is terminated, X
will contain 1 with probability p.

Proof of Algorithm:

Consider two bits A and B, and let PA = Pr{ C[A] = 1}, and pQ =
Pr{ C[B] = 1). When the contents of A and B are independent, if we
perform [A] AND [B], the probability of the result being 1 is

p Ap B

while if we perform [A] OR [B], the probability of the result being 1 is

Pi + pa - papa 
Now, Pr{ r; = 11 = Pr{ r; = 0} = i j = 1, , n.

Therefore if step (v) is executed,

PJ-1-1 =

while if step (vi) is executed,

1'5+1= P, -2P;

j = 1,

j = 1,

, n - 1

, n - 1

(3)

(4)
= 1P; -F

But step (v) is executed only if bj+1 = 0, and step (vi) is executed only
if bi4.1 = 1. Hence (3) and (4) can be combined into

Pi±i = iPi 21),+1 J = 1, , n - 1.

Since P1 = 1, it follows by induction that

b b2 bi
p

and our assertion is proved.
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4.2 The MATCH Routine

The MATCH routine is entered by the program after the busy -idle
states have been assigned to the branches. Its purpose is to find whether
or not there is a path through the graph for any particular assignment.
In the present section we first derive a recursive set -theoretic formula
which may be used to determine whether there is a path. The remainder
of the section shows how the recursion is carried out by the computer
to produce an estimate which converges to the blocking probability of
the GRAPH.

In Section 2.2 we saw how the "path enumeration approach" could,
in theory at least, be employed in determining the blocking probability.
We again take the path enumeration approach, but from a slightly
altered point of view:

Instead of trying to find whether there is a path through the entire
graph at one fell swoop ( which amounts to finding whether there is a
path from the first node to the last node), we shall try to find whether
there is a path from the first node to each of the nodes in the GRAPH.
While this approach may appear to inject an unnecessary complica-
tion, we will see how, by stepping through the GRAPH in an orderly
fashion, this approach lends itself naturally to computer programming.
We begin by investigating, somewhat further, the geometrical structure
of a GRAPH.

Consider the general GRAPH ( whose structure is shown schematically
in Fig. 7) and suppose that there are a total of v nodes. Each GR APH
has a first node, N1 , a last node, N and several intermediate "stages"
of nodes. The notion of "stage" is made more precise by the following
definition: a node N is said to be in stage s(s = 1, 2, ) if, and only if,
all paths from N1 to N contain no more than s - 1 branches, and there
exists at least one path from N1 to N which contains exactly s - 1
branches.

Any GRAPH will thus contain some number S >= 2 of stages, where
the first and last ( Sth stage) consist, respectively, of the single nodes
N1 and N. Let n8 he the number of nodes in stage s, s = 1, , S (thus
nl = ns = 1); and define a quantity in8 by

m. = Ens.
i=1

We choose to order the nodes of the GRAPH
to each of the n8 nodes in stage s (s = 2, ,

uniquely, one of the integers

± 1, m8-1 + 2, , n8

in the following manner:
S) assign arbitrarily, but

s = 2, , S.
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5 = 1 5=2 S=3

Fig. 7 - A general GRAPH.

5=S-1 s=S

The nodes of the GRAPH are hence totally ordered and may therefore
be denoted by Ni , where i = 1, , v.

When Ni and N are connected by one or more parallel branches,
where Ni N; are arbitrary nodes, we say that, for i < j, Ni is directly
connected to N through each of these branches and write Ni -, N .
We shall suppose, without loss of generality, that if Ni -> N , then
there is only one connecting branch, b/. ( This restriction is assumed in
order to avoid introducing yet another index, but will not affect the
subsequent results. When a computer instruction involving b/ is de-
scribed, we shall understand that the computer is to execute this in-
struction for all the bi' for which Ni -> N .)

Let us now examine the graph, asking the question for every node
N , "Is there an available path from N1 to N ?" Our objective is to
answer the question for j = v.

For each node N;(j> 1) consider the branches b/ for which Ni N1.
Clearly, for each of these branches, if there was no available path from
N1 to Ni or there is no available path through the branch bi), or both,
then, and only then, will there be no available path from N1 to N; which
passes through Ni . More precisely, let

X; be the event: there is no available path from N1 to NJ,
be the event: there is no available path from N1 to N;

which passes through N
be the event: branch b/ is not available (busy).

Then
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17 if= Xi U B

X; = n Yij = n U B/).
N1 -.A r

Consider all the nodes Ni such that NiN; . Suppose there are k;
such nodes. Call them

1
, N1,, where i1 < i2 < < ik, 

Next, define an event Z;(m) recursively by

Z;(m) = (Xi. U B12) n Z ;(77'-1) m = 2,

N N

j= 2,
and

Z (`) = 1 i, U Bi, Ni

j= 2,

It then follows that

Z;(ki) = X; j = 2,
and in particular

, k ; (5)

,

(6)

, v.

, (7)

Zy(kr) =

where Xp is the event "there is no path through the graph." The MATCH
routine is based upon these formulas.

We now focus our attention on (a representative) one bit in each
word of the Node and Branch tables - again keeping in mind that the
program is actually working on a full word of bits independently and in
parallel. The program will thus execute 36 simultaneous iterations of
the MATCH algorithm, which we now proceed to evolve.

When MATCH is entered, the following state of affairs prevails:
(i) To each node Ni and to each branch b/ there has been uniquely

assigned one bit of computer memory, so that we can henceforth refer
to these bits as bit Niand bit b,'.

(ii) C[V] = 1 with the appropriate occupancy pi' = Pr{ branch
b1' is busy}. (These pi' were called pi , , pm in Sections II and III.)

(iii) The linkage information between the node bits Ni and the
branch bits b/ is stored in the Node -Link and Linkage tables.

It follows that representation of the event Z;(1) = Xi, U Bi1l of for-
mula (6) can be achieved in the computer by performing

[Ni1] CH [bi,1
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provided that we always set C[N1] = 0; and the event Z5(kj) = XJ of
(7) can be represented by executing the following steps.

(i) Perform [N11] OR [b111; store in N .
(ii) Set m = 1.

(iii) If m = k; go to step (vi). Otherwise, continue.
(iv) Increase m by 1.
(v) Perform ([Ni.] OR [b 31) AND [N;]; store in NJ. Go to step

(iii).

(vi) Stop.
We observe that the algorithm may be condensed if we initially set
C[Ni] = 1(j 2):

(i) Set m = 1.
(ii) Perform ([Nim] OR [b i,,,']) AND [N 5]; store in N .

(iii) If m = kJ , go to step (v). Otherwise continue.
(iv) Increase m by 1. Go to step (ii).
(v) Stop.

This initialization of the node bits - C[N1] = 0, C[NJ] = 1 for j =
2, 3, , v - was mentioned in Section 3.2.3 and can be interpreted as
meaning "there is always a path from N1 to N1 ; there is no path from
N1 to N (j > 1) until proven otherwise."

Summarizing, the steps that the computer may take to represent the
event Z(kv) = X, are

(M1) Set C[N1] = 0. Set C. [N,] = 1, 1 > 1.

(M2) For each bit N , j = 2, , v, and in the order

N2 , N3 , , N,

find all bits Ni for which Ni N and perform

([N1] OR [b15]) AND [N1]; store in N; .

Now, the statement "find all bits Ni for which Ni--4 NJ" implies
that the input to the program is such that it specifies to the computer
which nodes N1 are directly connected to N . It was felt that a more
straightforward input format would be to specify to which nodes, N ,
each node N1 connects. With the linkage information stored in this
fashion,* step (M2) may be replaced by the equivalent step

(M2') For each bit Ni, i = 1, , P - 1, and in the order

N1 , N2 , , Nv-1

* A careful perusal of Section 3.2.2 will show that this is indeed the way the
linkage information is stored in the Node -Link and Linkage tables.
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find all bits N1 for which Ni N1 and perform

([Ni] OR [b J) AND [N;]; store in N .

Steps (M1) and (i\'12') constitute the MATCH algorithm for deter-
mining whether there is a path through the graph. When the MATCH
algorithm is terminated, C[NY] = 1 if, and only if, there is no path, so
that PrIC[Ary] = = Pr{ no path}.

Suppose. the algorithm is iterated n times. In any one iteration the
event C[bil = .1 is generated with probability pi' and independently of
the event C[bil = 1 in any other iteration. But PrfC[Ny] = 11 after a
given iteration is clearly only a function of the probabilities Pr{ C[bil
1}. Hence, Ny will contain 1 with the same probability, B, after each
iteration, and we conclude that n iterations of the algorithm constitute
a sequence of n Bernoulli trials with probability B of success on each
trial. Leti be a random variable such that

= 1 if C[Np] = 1 after the ith trial

= 0 if C[NY] = 0 after the ith trial

and let

Bn = E2  + En 
An application of the Law of Large Numbers (Ref. 29, p. 189) gives

lim (B/n) = B.
n -1.00

Identifying B/n with /30(")( , , p,) of Section 3.1 and B with
, , p,,,) of the same section, this last result is equivalent to,

and proves the assertion that,

lim B0(n) (P1 ) m) = BG(111 ) m)
-÷co

Repeating the experiment often enough and dividing the number of
times C[Ny] = 1 (i.e., the number of blocked attempts) by the number
of iterations n (i.e., the number of attempts) will therefore yield a
precise estimate of the blocking probability of the GRAPH. How
large n has to be in order to attain any given degree of precision is dis-
cussed in the next section.

V. RELIABILITY CONSIDERATIONS

Since any simulation is nothing but an experimental measurement,
and hence subject to statistical fluctuations, it is necessary to assess the
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reliability of the results. Unfortunately, most of the testing for a given
simulation must be done on an a posteriori basis and there is, in general,
rarely sufficient a priori information on which to base the decision of how
long the run is to be. The need for such information becomes even more
important when the cost factor in computer simulations is considered.
It will be shown below that the NEASIM procedure is one which allows
for a priori determination of run length. The decision of how long the
run is to be is based on the desired precision and is made by the com-
puter.

In Section 4.2 we introduced the random variable B. , the number of
times C[Np] = 1 in n repetitions of the experiment. B. will now be
called "the number of calls blocked in a simulation run of n calls."*
The estimator Bnin was seen to converge to the blocking probability
B, and is indeed a maximum likelihood, mean -unbiased, minimum
variance estimator.

To generate the random binary numbers of Section 4.1, NEASIM
uses the well-known multiplicative congruential method. This method
for pseudo -random number generation has been discussed, tested, and
used by numerous investigators3"6 since it was first proposed by
Lehmer.37 Although the method has been demonstrated to generate
35 -bit random binary numbers, there is some measure of cyclic behavior
in the low -order bits. NEASIM forms a word of 36 random bits by
combining the most random halves (18 high -order bits) of two 35 -bit
words generated by this method. A further check on the randomness is
provided by NEASIM itself, which, as part of its output, prints the
generated branch occupancies. We therefore assume that the events
C[Nv] = 1 are independent for individual trials of the experiment. The
results of any given computer run should thus be binomially distributed
(see also Section 4.2), and hence asymptotically normal.

As an illustration, we again turn to the GRAPH of Fig. 3. For a
branch occupancy of p = p2 = 0.5, formula (2) yields B = 0.0525.
The NEASIM program, for a run of n = 201,600 calls, gave B =
0.0529 - an error within 1 per cent. ( This run took some 40 seconds of

* The new nomenclature is chosen to indicate a different interpretation of what
NEASIM is doing: NEASIM looks at the configuration of possible paths through
the network between two subscribers, takes "snapshots" of the current busy -idle
states of the links in these paths, and then finds if there is a path for each snap-
shot. Thus the program is essentially running calls through a portion of the
network - the portion of the network being a representative one, and hence one
from which significant statistical data can be extracted to describe the perf orm-
ance of the entire network. A similar approach was taken by A. Feiner, W. C.
Jones, and others," who wrote "abbreviated'.' simulations in which the busy -
idle state data were taken from previously run full-scale simulations, but for
which a new program had to be written for each new network to be simulated.
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computer time.) To study the normality, the number of blocked calls
was noted for every 1008 calls run. Since Bn is the number of blocked
calls in a run of n calls, the binomial distribution function in this case is

xc1

Pr 1/37, )31

(1008) Bk(1 - B) 1°°8-k
k

and the approximating normal distribution function (Ref. 29, p. 172)
is (1) (.r 0+1) , where

= (t - 1008B)h

h = [1008/3(1 - B)]-1

and

_,,.(x) = _coe dy

is the standard normal distribution function. Fig. 8 is a plot on proba-
bility paper of the cumulative frequency distribution determined by the
computer, and the theoretical normal distribution line for B = 0.0525.

In order to obtain meaningful results, it was felt that the run -length
should be determined by the following criterion: the number of trials
shall be large enough so as to give 95 per cent confidence that the esti-
mator lies within a fixed percentage of the true value of B. Since the
blocking probability is unknown at the outset, this criterion is more
useful than requiring the estimator to lie in a fixed interval about B.
Thus, we wish to choose n large enough so that
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Fig. 8 - Cumulative distribution for GRAPH of Fig. 3 (p = p2 = 0.5) in a
run of 201,600 calls in which the number of blocked calls was noted for every
1,008 calls run. The points are experimental data; the line is the theoretical dis-
tribution, 1(x8+3)
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Pr { -B 0.95

where a is an input parameter to the program representing the desired
percentage. Rearranging terms, we get

Pr
Bn - nB

a 1 - B} 0.95VnB(1 - B)
where, for n sufficiently large, the distribution of the random variable

- nB
VnB(1 - B)

approaches the standard normal. Our requirement will therefore he
satisfied if

or

nB
1.901 -B

n
3.84 1 ) (8)
a' V3

It follows that the number of trials should be increased as the blocking
probability decreases in order to maintain 95 per cent confidence that
the estimator lies within a fixed percentage of the true value - as
intuition dictates. On the other hand, for a fixed B, as n increases, the
95 per cent confidence limits will narrow. This is displayed in Fig. 9,
where the program results for the GRAPH of Fig. 3, for B = 0.0525,
are seen to lie within the confidence limits.

Furthermore, since (1/B) - 1 < (1/B) for all B in the unit interval,
the requirement will be met if

3.84 1
n - a' B

But for large n, B ti (B,,/n). Hence, making the substitution we obtain

3.84
a2

As long as the number of simulated calls is large enough so that the
number of blocked calls is at least 3.84/a2, there is 95 per cent confidence
that B./n is within aB of B.

NEASIM was written to accept several values of a ranging from 0.05
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(p = p2 = 0.5, B = 0.0525).

to 1.00. From the specified value, it determines the minimum number of
blocked calls necessary to guarantee this precision. Fig. 10 shows the
results of the simulation of the GRAPH of Fig. 3 for a = 0.10 and 0.50.
In GRAPHs where B is very small, it is usually unnecessary to estimate
B with a very high degree of precision - especially at the expense of
costly computer runs. An upper limit for n is therefore also specified.
The computer then proceeds with the simulation until it either exceeds
the lower limit on Bn or the upper limit on n.

In the latter case, the reliability can be assessed as follows. Since

YI

13 - nB
VnB(1 - B) 1.96} > 0.95

we can rearrange terms and obtain

Pr{ d./32 eB f < 0) > 0.95

where
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f = B2.
It is easily verified that for all n, B. > 0, the parabola dB2 eB f
is concave upward, has real roots, and that B,,/n lies between the roots
whenever B < n. Thus for any simulation run, the 95 per cent confi-
dence interval can be obtained by solving for the roots.

Now in all cases of interest, the product of the roots,
poi B2/(n2 + 3.8416 n),

can be closely approximated by (B./n)2, so that B/n can be taken as
the geometric mean of the roots. Suppose the higher root is B1 and the
lower root B2 ; then
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B1 = kB/n

B2 = (1/k)B/n.

The roots were calculated over a range of values of B and n, and the
results are displayed in Fig. 11, where k is plotted as a function of .8,,/n
for various values of n. As an example, suppose that in a run of 80,000
calls, B,, = 80 were found blocked. Then Bln = 0.001 and Fig. 11
gives k = 1.244. Hence B1 = 1.244 (0.001) = 0.00124, B2 = 0.001/
1.244 = 0.000803, and there is 95 per cent confidence that 0.000803
B 0.001244. The importance of the case under consideration would
then determine whether a longer simulation is necessary.

Since the GRAPH geometry may he as complex as indicated in Fig. 4,
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it is important to be able to verify that no error was made in mapping
the geometry into the computer memory. To this end, a program was
prepared by Miss D. Logan which, using the Graph Definition Cards
as input and an SC -4020 Microfilm Recorder, draws a picture showing
the GRAPH geometry.

VI. POSSIBILITIES FOR INCREASED REALISM

In the preceding section it was shown that the NEASIM program
produces precise, reliable results in comparison with Lee's probability
linear -graph model of switching networks. Unfortunately, in complex
switching networks, substantial differences may exist between the
estimates obtained with Lee's analytical technique and actual perform-
ance determined by field measurement or full-scale (complete) simula-
tion. These differences appear to be largely attributable to the unreality
of the assumption [(e) of Section 2.1] that the link random variables are
independent.

The dependence that exists between the different links in a network
stage and between the links in adjacent stages is incompletely under-
stood, but nonetheless real. Attempts to take account of interlink de-
pendence by judicious modification of link occupancy values have been
moderately successful in calculations and may, of course, be employed
in NEASIM runs. However, the nature of the NEASIM process suggests
alternate approaches which may ultimately prove to be more fruitful.
While considerable success has been obtained with some of the tech-
niques discussed in this section, much remains to be accomplished.

6.1 Dependence Effects within a Switching Stage

Two possibilities for increased realism within the confines of a single
link stage appear worthy of mention. The NEASIM program typically
assigns link stage busy -idle states from a binomial distribution. An
obvious suggestion (but one upon which little work has been done)
would be to modify the PROBABILITY GENERATOR and /or
BUSY -IDLE ASSIGNMENT routines in such a way as to produce
busy -idle state assignments taken from various distributions - Ja-
cobaeus' E distribution,4.6 for example.

A second approach, which has been extensively used, is to incorporate
program routines between BUSY -IDLE ASSIGNMENT and execution
of the MATCH routine. These routines examine the random busy -idle
assignments and make appropriate assignment changes where GRAPH
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geometry or other considerations indicate. An example of such a routine
is one which is designed to insure that there exists at least one "sure -
idle" branch out of an n X n input switch. If calls are only placed be-
tween idle network terminals, at least one branch out of an n X n input
switch must be idle. But if the branches leaving the initial GRAPH
node are specified at occupancy p, then the program would normally
make all these branches busy with probability p". The SURE -IDLE
routine, upon finding such an assignment, will select an initial branch at
random and make it idle. This action, of course, disturbs the otherwise
binomial distribution of branch states and should be taken into account
when branch occupancy values are specified.

6.2 Interstage Dependence Effects

An interesting technique for introducing interstage dependence exists
within the NEASIM framework and is based upon an obvious extension
of the SURE -IDLE routine just described. Briefly stated, a routine
could be designed to examine the busy -idle assignments made on the
input and output branches of each node of the GRAPH. Acting on
knowledge of the switch geometry and other factors, the "dependencing"
routine could change the initial busy -idle assignments where necessary
to make them more realistic. Only a very simple and admittedly in-
accurate routine has been used to date with, however, a remarkable
increase in the "realism" of the results obtained.

The simple-minded DEPENDENCING routine currently employed
assumes that every GRAPH node is in reality an n X n switch. It
observes that in an n X n switch each input branch has probability 1/n
of being connected to any particular output branch. It attempts to
implement its idea of reality by, for each input branch, examining each
output branch and forcing the output branch state to agree with the
input branch state with probability 1/n. While this routine can produce
rather quaint effects, such as duplicating the state of one input branch
on all output branches, it does possess the virtues of simplicity (rapid
execution) and a basically correct notion of interstage dependence.

That the use of the SURE -IDLE and DEPENDENCING routines
can be effective is demonstrated in Fig. 12. The results shown in the
figure are for a moderately complex eight -stage switching network whose
GRAPH has 232 branches. NEASIM results with and without de-
pendencing and sure -idles are compared with the results of a full-scale
simulation. The improvement in realism possible with the rudimentary
routines just described appears quite dramatic.
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VII. CONCLUSION

The NEASIM approach to switching network simulation has achieved
its major goal, the mechanization of a widely employed - if somewhat
unrealistic - technique for load -loss analysis. The applications of the
GRAPH model need no longer be restricted by the overpowering com-
putational difficulties brought on by GRAPH complexity.

Furthermore, the simulation of an analytical model concept basic to
NEASIM seems to open new areas for profitable exploration in the
analysis of switching systems - and perhaps other stochastic systems
as well. The success of the elementary realism -injecting routines suggests
that further research along this line may be rewarding.

Finally, the degree of realism in results attained so far, coupled with
the ease of application, has produced what amounts to a new tool for
use in both the design and engineering of new switching networks. It is
now feasible to achieve relatively complete and accurate load -loss
engineering data on complex switching systems well in advance of actual
field experience.
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Filling Factor and Isolator Performance of
the Traveling -Wave Maser*

By F. S. CHEN and W. J. TABOR

(Manuscript received December 16, 1963)

In designing a large gain and simultaneously large instantaneous band-
width traveling -wave maser (TWM), the filling factor and the isolator per-
formance should be optimized.

The filling factor is a measure of the efficiency of interaction between the
spin system of the maser material and the RF magnetic fields of the slow -
wave structure. For the TWM using the 90° operation of ruby and the
comb as the slow -wave structure, the c axis of the ruby should be parallel to
the z axis of the structure (the direction of the signal wave propagation)
for the largest filling factor. The improvement of the filling factor by the
proper orientation of the c axis of the ruby is larger at the lower signal
frequencies because the transition probability of ruby is more nearly linear
at those frequencies.

The isolator should provide sufficient reverse absorption to make the
TWM short-circuit stable and yet add the minimum forward absorption to
the TWM. Both the reverse and the forward absorption of the isolator de-
pend critically on the size of the ferrite disks and the position in which they
are imbedded in the comb structure.

An analysis of the filling factor and isolator performance and its com-
parison with measurements was made. Together with Refs. 1 and 2,
this paper is intended to reduce the amount of experimental work involved
in developing traveling -wave masers. Although the discussion is centered
on the comb -type ruby TWM, the data provided also apply to other tape
slow -wave structures using different active crystals.

I. INTRODUCTION

In order to make a large gain and simultaneously large instantaneous
bandwidth traveling -wave maser (TWM), it is necessary to orient the

* This work was supported in part by the U. S. Army Signal Corps under
Contract No. DA 36 -039 -SC -89169.
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active material so that the susceptibility tensor has a maximum inter-
action with the RF magnetic field of the slow -wave structure. Quantita-
tively this is expressed as a filling factor, F, where:'

F = FF, . (1)

F, is the volume filling factor and represents the fraction of the RF
magnetic energy that is inside the active material. If all of the RF
magnetic energy is within the boundaries of the active material, then
this factor can have its maximum value of one. Fp is the phase filling
factor and represents how well the RF field can couple to the suscep-
tibility tensor of the active material. For example, if the active material
is represented by a susceptibility with a transverse component of
magnetization which is circularly polarized, and a structure with the
RI' magnetic field that is circular and in the same sense of rotation,
then Fp is equal to one. It is clear therefore that the maximum value of
the total filling factor F is one.

The present design for a TWM uses a comb structure that is loaded
with active material on both sides and nearly fills all of the available
space. There are, however, some regions that are not filled with active
material; for example, the space occupied by the isolator, the space
between the fingers, and the region near the wall of the waveguide
housing that is important for the shaping of the w -i3 response of the
structure. However, these spaces are considered small, and therefore
the volume filling factor is taken to be nearly one. Since the volume
filling factor has nearly its maximum value, no further consideration
will be made on le ; instead, our attention will be directed to Fp .

Since the comb structure has almost no RF fields in the direction of
the fingers2 and the ruby has no susceptibility component along the dc
magnetic field when used in the 90° operation,' it is clear that the de
magnetic field must be placed parallel to the fingers of the comb for
maximum efficiency. Therefore, the only degree of freedom for the c
axis of the ruby is a rotation about an axis parallel to the fingers. In
the comb structure the RF magnetic field changes with position and
with 0, where 0 is the phase difference between adjacent fingers of the
structure and can have values from 0 to r over the passband of the
structure. In addition, the susceptibility of the active material is a
function of frequency. Hence Fp varies in a complicated fashion over
the passband of the structure. It is our intention to find an expression
of F, as a function of the various dimensions of the structure, the angle
between the c axis of the ruby and the z direction of the comb structure,
and the phase difference 0.
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The isolator incorporated in the comb structure consists of a linear
array of ferrite disks arranged to have the same periodicity as the comb.
The disks are so shaped that the ferrimagnetic resonance occurs at the
same dc field and frequency as that required by the ruby. Two require-
ments of the isolator are: first, the isolator should provide reverse ab-
sorption at least equal to the round-trip gain provided by the ruby and
second, the ratio of the reverse to forward attenuation should be high.
Our objective in this part of the analysis is to find the effect of the
various structural parameters of the comb on the performance of the
isolator and to provide a guide toward the optimum design of the iso-
lator. It is found that the structure that provides maximum gain per-
formance is not the same as that for optimum isolator performance.
Therefore, the attitude has been to design the structure for maximum
gain performance and then to optimize the isolator within the constraints
imposed by this structure.

In this paper, the attention will be centered on the comb as the slow -
wave structure, a ferrimagnetic material such as YIG as the isolator,
and ruby as the active material, where the latter is only considered in
the 90° operation; i.e., the dc magnetic field is perpendicular to the
crystalline c axis of the ruby. However, the analysis applies equally well
to other types of taped structures and active materials, since the results
are expressed as a function of 0 and not of the frequency. The connection
between the frequency and 0 is made through the co -0 relations of the
particular structure.

The assumption is made that the RF field configuration of the struc-
ture is unperturbed by the presence of the spin system of the ruby and
the ferrite disks. This is justified, since the spins in ruby are very dilute
and the ferrite disks are thin.

Under the following two conditions :2 (i) no RF fields in the direction
of the fingers and (ii) the field on that part of the z axis between the
adjacent fingers independent of z (uniform field assumption), the RF
magnetic fields in region 2 (see Fig. 1) can be expressed as:

00

Hz = j E A. cosh an (D - x)e-ifinz cos TY:00 2h
00

H. = E An sinh 13 (D - x)e-ifinz cos TY
2h

,3n1

/e, 1E0 sin -2 1

'Vµ L #1 sinh 13D
2
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8 + 2nir- (5)

Vo 0E0 = -2j sin (6)

where the voltage on the mth finger is taken as V , = V oe- '"'B, and h
is the sum of the finger length and the correction due to the fringe
capacitance at the finger tips. The rest of the notation is shown in Fig.
1. Equations (2) and (3) also assume W = D, which is a good approxi-
mation to the TWM with a large -gain, instantaneous -bandwidth
product now in use.

Neglecting the copper and dielectric losses of the structure, the
microwave signal power in the TWM can be expressed as:

T ?II

co {f H xi"  H* dv f H x2"  H* dv}
PO = P exp - (7)

vt, fHH*dv

where Pi and Po are the input and output power, respectively, LT
is the total length of the structure, v, is the signal group velocity and
xi" and xf are the imaginary parts of the susceptibility tensor of the
ruby and ferrite disks, respectively. The volume integral in the de-
nominator with the subscript v encloses the whole volume of the struc-
ture per period, and the volume integrals in the numerator with the

(a)

s'

IrJW),9.11111

W
D ;

* *

UT
D I

AS,

z=mL z =(m+i)L

(b)

Fig. 1- Comb structure loaded with ruby. The c axis of ruby makes an angle
a with the z direction.
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subscripts m and i enclose the volume of ruby or ferrite per period,
respectively.

By performing the integration in (7) using the RF fields expressed in
(2) and (3), the filling factor and the isolator performance can be found.
The filling factor will be derived in Section II and the isolator perform-
ance will be discussed in Section III. In both sections the results of
theory are compared with the measurements. In Section IV, concluding
remarks will be made.

II. FILLING FACTORS

2.1 Analysis and Discussions

The susceptibility tensor in (7) is a classical expression, whereas the
properties of ruby are given in terms of the spin Hamiltonian; it is
therefore necessary to establish a connection between Xi" and the
quantum mechanical properties of ruby. The subscript one will now be
dropped from Xi". Throughout this paper MKS units will be used.

Classically, the absorbed power is given by

= -blow f Hx"H* dv (8)

where µo is the permeability of free space, w is the frequency in radians
per second, and H is the RF magnetic field. The quantum mechanical
expression for absorbed power is given by:

Pabs = f 1471-2(pi - P2)/lw dv (9)
ni

where pl and p2 are the densities of spins in levels 1 and 2 respectively,
h is Planck's constant divided by 27, and W1-2 is the transition proba-
bility between the levels in question. TV1_2 is in general a function of the
position.

Equating (8) and (9) and dividing through by the total RF energy,
tiofin  li*dv, one obtains:

H  x" H* (11, f 1I71 -2(p1 - p2)11 dv

fH  H* (h) µo f H  H* (Iv
(10)

The left-hand side of (10) is exactly the expression occurring in (7).
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One can further define:

fH  H* dv
F,,

fH  H* du

Fp =
fH  x"  H* dv
Ai

xy,y,") f H  H* dv

where F. and F, are the volume and the phase filling factors, respec-
tively, and xxix,", xy,,," are the diagonal elements of the susceptibility
tensor. xez," is not present in (12), since this term is zero for the 90°
operation. The prime in the subscripts of x" refers to the crystal axes
of ruby. The x' axis is taken parallel to the crystalline c axis. (see Fig.
1). In general, both the RF magnetic field and the spin magnetic mo-
ment have elliptic polarizations, and when these ellipses have the same
sense of rotation, the same principal axes and the same shape (i.e.,
H = H y2Xxxll), then F, as defined above has its maximum value
of one. The actual value of Fp for the comb structure will then be a
measure of how the fields depart from this ideal case.

Comparing (10), (11) and (12) one obtains:

F7, -
2 f TV1-2(pi - p2)11 dv

7ri

iio (X.'.," xy,y,") H  H* dv

(12)

(13)

It is now necessary to calculate the detailed expression for W1-2 . One
starts with an unperturbed Hamiltonian jeu and the time -dependent
Schrodinger equation

Kok = iii(4/430 (14)

whose solutions are exp - [(iEx/h )t]. For this calculation the #A ei-

genfunctions are those obtained from the spin Hamiltonian for ruby.'
A perturbation term is now added which will represent the coupling of the
spins in ruby to the RI' magnetic field. If this perturbation is called
3C1 , then the equation that must be solved is:

(3C0 Xi) tr = at) (15)

where



TWM FILLING FACTOR 1011

= ti -11 (16)

tt is the magnetic moment of the spin, and H is the magnetic field.
t is given by:

= (17)

where g is the spectroscopic splitting factor, 13 is the Bohr electronic
magneton, and S is the spin angular momentum operator.

The RF magnetic fields are given in (2) and (3). For convenience
they can be expressed as:

H, = cos
2h
7Y

'
E L(0 x) (- [exp i(cot 13z)

2

- exp /3z)]

Hr = cos 7211 E M(e x) () [exp i(cot 13z)
2h, n 2

exp -i(cd (3z)]

where

(18)

(19)

L = An cosh i3(D - x)
= An sinh (3 (D - x).

The coordinate system for the ruby and comb structure is shown in
Fig. 1. For an angular separation of a between the z and x' axes, (16)
becomes:

= gORSz, sin a + S, cos (OH (Sx, cos a - Sy, sin a)H,J. (20)

Equation (15) will be solved in terms of an infinite series of unper-
turbed solutions Ox , i.e.,

U = E Cx(t) exp - [i(Ex/11)t] (21)

where the expansion coefficients depend on the time. I Cx(t) 12 is the
probability of finding the spin in the state at the time 1. Initially the
spin is assumed to be in the state , i.e., I C1(0) 12 = 1, 1 CX(0) 12 =
O for X > 1. The perturbation is then turned on and a solution for

C2(t) 12 is sought. 1 C2(t) 12 is the probability of finding the spin in
state 2. For weak RF magnetic fields this term is equal to:

1 C2(t) 12 = H71_21. (22)

The process of obtaining 1 C2(t) 12 is a standard one in quantum
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mechanics'' and will not be given in detail here. The result is
921327

W1-2 =2h2 g(, - wo) E (ono, + PEP,) (23)
n,m

where Ow - w0) is a normalized line shape function such that:

fp: g(co - co0) dco = 1

and

O = ((S,)/11 (Se )L) cos a cos Snz

- ((Sx,)/1/. (S, )L) sin a sin 13,,z

P ( (Se)M  + (S,)L) sin a cos g3z

((S- )M (Se)L)cos a sin 137,z

(S.,,) = f IhSe02* dv, (Sys) = f CS 1,2* dv.

Substituting (23) into (12), one obtains:

ilf327rg(co - wo) (P1 - P2) f E (ono. + PnPm) dv
n,mF,, -

1440(Xxix' Xy'v'N) f H  H* (iv

If we were to examine just one element of the x tensor, say xx,x,,
and subject it to a simple field, Hz, sin cot, then by going through the
same procedure [using (13)-(22)] one could establish that:

xx,x , = g(co - wo) (pi - p2) (11 Se 1 2)12 (25)

and similarly for the other elements in the tensor.
Using (25) to simplify (24), one obtains:

. (24)

fE (OnOm + P.P.) dvF  -m(26)
(0.302 f H  H* dv

The phase filling factor will now be calculated for two cases: (1) a
ruby TWM loaded on one side and (2) a ruby TWM loaded on both
sides. In both cases it is assumed that the ruby entirely fills the gap
between the fingers and the outer waveguide wall and extends to the
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open tip of the fingers. In addition, it is assumed that, in the case of a
Twm loaded with ruby on one side only, the opposite side is still
filled with a material whose dielectric constant equals that of ruby.
In practice this assumption is fulfilled very closely with recently de-
veloped masers.' By performing the integration in (26), one obtains

F 2,(4) = (8e)(8v) E (1)
(802 + 2

[(Sz.)2 - (Sy )2] cos 2« E (1)
2[(802 + (542]

for the structure filled on one half side, and

Fp(1) =z + [(8x,)2 - (S,)2I cos 2a E (1) (28)
2[(&)2 + (5,42]

for the completely filled structure. E (4) and E (1) are defined as
follows:

E (4) =

E (1) =

Doe
2

sine (-3-1/)

OnD (13l\2
2 )

z 51112 (Li)
Do

2

0cosh D
f.1D

(V)2
sinh 0D

(V)E
E02

1

onD (19_2_12 sinh2 (3D

Doe sin2 (V)/
c

osh [3 D
4-1 OnD 612 sinh 07,Dn

(27)

(29)

(30)

The ± sign of the second term in (27) determines the nonreciprocal
behavior of the ruby TWM. In the direction of propagation where the
elliptically polarized fields of the comb structure are in the same sense
as the near circular transition of ruby, the plus sign applies. In the oppo-
site direction, where the fields are not as well matched, the minus
sign applies.
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The E's are ill general functions of the parameters 1/ L, and D/L
and 0, where the terms 1, L and D are defined in Fig. 1. E(2) and E(1)
are plotted as a function of 0 in Figs. 2, 3, 4 and 5. Fig. 6 is a plot of
the absolute values of the matrix elements, (Si.) and (S,), as a function
of frequency. The matrix elements are calculated between the levels
--4 4-> -1 for the 90° operation of ruby. With the data presented in
Figs. 2 to 6 and (27) and (28), the phase filling factor for a ruby loaded
comb structure can be closely estimated.

Equation (28) shows that the phase filling factor for the completely
filled structure is i if the transition probability of the ruby is circular
(i.e., (S,) = (S,)) regardless of the angle a, or, if a = 7r/4 radians,
regardless of the ratio (Sz,)/(Sy,). This can be shown to be the con-
sequence of the symmetry of the RF magnetic fields about the plane
of the fingers. Equation (28) also shows that the filling factor does not
depend on the sign of a, i.e., cos 2a is an even function of a. This
result is a consequence of the symmetry of the RF fields about a plane
parallel to the .r -y plane and centered between the fingers.
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The filling factor increases as D/L becomes smaller (see Fig. 3) if
(Si') is greater than (S'). This is due to the fact that the RF magnetic
fields become more linear as D/L gets smaller.

The ratio of the electronic gain of the TWM with both sides loaded
with ruby to that with only one side loaded with ruby is shown as a
function of 0 for different frequencies in Fig. 7. The curves are obtained
assuming D/L = 0.75, 1/L = 0.5 and FL, = 0.5 for a half loaded and
F = 1.0 for a fully loaded comb. Even at 10 gc, where the transition
probability of the ruby is becoming fairly circular, a 30 per cent in-
crease in gain can be obtained by loading the second side with ruby.
As an example, let us consider a structure with 30 db electronic gain
when the ruby is loaded on one side only. The round-trip gain would
be 30 + 0.3(30) = 39 db, (assuming 0 = 7/2). An isolator of at least
39 db would be required to assure short-circuit stability, and since the
reverse -to -forward loss ratio of an isolator is about 20, the forward
loss of the isolator would be approximately 2 db. If the structure were
now loaded on both sides, the forward gain would increase to 39 db
and the round-trip gain would be 78 db. The forward loss of the isolator

r-ui 2.0
0

1.9
0

o 1.8
0
w0

2 1.7

co
O 1.6

(7) 1.4
I
co 13

0
1.2

o

1.1

100

I

U=0°
t/L =0.5
D/L =0.75

= 2 GC

5 GC

10 -GC

i

0 0.1 0.2 0.3 0.4 0.5 0 6
Ohr

0 7 0.8 0.9 1.0

Fig. 7 - The ratio of the electronic gain (in db) of a maser when loaded on
both sides to that when loaded on one side. The structures are otherwise identical,
with a = 0°, 1/L = 0.5, D/L = 0.75.
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for this structure would be approximately 4 db. The net gain (excluding
the common copper loss) is therefore 28 db for the single -sided loading
and 35 db for the double -sided case. It is therefore clear that two-sided
loading is more efficient at least up to X -band, although not by a very
large margin.

2.2 Experimental Verification

Equation (27) was checked experimentally by measuring the para-
magnetic absorption in a structure loaded on one side with ruby. The
other side of the comb structure was loaded with alumina which has
about the same dielectric constant as ruby. The measurements were
performed in absorption so that complicating factors such as a micro-
wave pump and isolator could he avoided. Equation (7), of course,
defines the absorbed power as well as the gain of the TWAT. The pass -
hand of the structure was centered at approximately 5.4 gc. Since
(27) is a function of the angle between the c axis of the ruby and the
z direction of the structure a, two different pieces of ruby were used:
one with a = 67° and another with a = 20°.

In the evaluation of Fp the volume filling factor, F, , was taken to be
exactly 1. All the measurements that enter into (7) were performed at
4.2°K. vg was calculated from the (.0-0 response of the structure. The
co -13 plot was obtained by a bridge technique in which the difference in
path length of the two arms of the bridge was carefully accounted for
and subtracted from the measurement. In this way, the correct co -t3
response of the comb structure was assured.

The term (pi - p2) that enters into the susceptibility formula (25)
is difficult to determine exactly, since it depends on the chemical analy-
sis of the ruby. Since the major concern of this experiment is the filling
factor and not the accuracy of the chemical analysis, the concentration
was left as a parameter to be used as a best fit to the calculated value of
Fp . The assumed concentration was then compared with that obtained
by chemical analysis.'

Figs. 8 and 9 are plots of the experimentally measured and calculated
values of F, . Table I compares the assumed concentration to that
obtained by chemical analysis.

Figs. 8 and 9 both show the same type of behavior. The ratio of ex-
perimentally measured values to the calculated values decreases as 8
increases. Part of this may be explained by the fact that the value of
the volume filling factor, F, , was taken to be exactly I for all values of
0. This is a good approximation when 0 = 0°, since no RF fields exist
between the fingers, but at large values of 0, RF fields do exist between
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fingers where there is no ruby, and therefore F, < 1. If F,, becomes
less than I, the experimentally determined value of Fp would corre-
spondingly increase and approach the calculated one.

The assumed chromium concentrations compare very well with those
determined by chemical analysis. In fact, in the case where a = 20°
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TABLE I - COMPARISON OF ASSUMED CONCENTRATION TO
CONCENTRATION DETERMINED BY CHEMICAL ANALYSIS

a

67°
20°

Assumed Conc.
(Cr/A1 Atomic %)

0.032
0.028

Chemical Analysis
(Cr/AI Atomic %)

0.030
0.028

the concentrations are the same and therefore Fig. 9 can be considered
to be free of all adjustable parameters. However, the concentrations
determined by chemical analysis cannot be considered highly accurate
on an absolute basis, and therefore this agreement could be fortuitous.

III. ISOLATOR PERFORMANCES

The isolator consists of thin ferrite disks imbedded periodically in-
side the ruby slab as shown in Fig. 10. The de magnetic field is applied
in the y direction, and it is normal to the plane of the ferrite disks. The
ferrite disks are usually thin and have square cross sections. The ratio
of the side dimension to the thickness of the square (aspect ratio) is so
adjusted that the ferrite resonates at the same de magnetic field as ruby
for a given frequency.

In Section 3.1, the analysis and the result of the machine computation
will be presented. The calculation is compared with the measurements
in Section 3.2.

3.1 Analysis and Discussion

Since the dielectric constant of the ferrite is about the same as the
surrounding ruby. the ferrite disks are thin, and the plane of the pre-
cessing spins coincides with the plane of the RI.' magnetic field before
the introduction of the ferrite disks, then the disturbance of the RF
fields due to the presence of the resonating ferrite disks should be small.

FERRITE DISK --

=t-FINGERS-

-yi

t

Fig. 10 - Ferrite disk isolators imbedded in the comb structure.
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Perturbation theory, which assumes the RF fields inside the ferrite to
be the same as those present if the ferrite were replaced by the ruby,
should be appropriate for the analysis here.

We shall regard the ferrite square block as an approximation to an
ellipsoid. Then the demagnetization factors Nz, N,, and NZ in the x,
y and z directions, respectively, can be defined in the usual manner.
In this approximation, the demagnetization factor of a square disk
will be approximated by the demagnetization factor of a circular disk,
i.e., Nz= N. Even if the disk is not square, Nzr.,'Nzr.', 0 if the disk
is sufficiently thin. In such cases, the imaginary part of the external
susceptibility tensor X2" becomes diagonal when the RF fields are
expressed in circular components.

From (2) and (3), the positive and negative circular components
of the RF magnetic field can be defined as

1
-72= (Hz - jHz) = et An en(D-1) e-lthiz cos 2-116 (31)V2

1
772 (H1 +jHZ) = 7-6 E A Can(D-') 7rY(32)

v e cos a, .

Let x+" and x_." be the diagonal elements of the diagonalized X2".
They can be expressed as7

comT-'
X+ = (coe (.0)2 T-2

WmT1
x-" (We0.)2 + T-2

(34)

We = WO + (N1 - NO41-1111 (35)

co, = (36)

(33)

9
T =

,y6,1/ '
= 2.8 mc/oe (37)

where 47/1/ is the saturation magnetization, Ho is the externally ap-
plied dc magnetic field and OH is the linewidth of the ferrite. In terms
of the circular components the absorption due to the ferrite is given
by [see (7)]

- (OLTr X4-11 f 11+114-* dv x-" f HMI_* dv
a+

V9
f(H+H+* H_H_*) dv

neper (38)
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H H * dv x_" f H4.114.* dv
coLT A+ -a_ - neper (39)

vg
L(H+H+* H_H_*) dv

where a+ and a_ are the reverse and the forward absorption of the
isolator, respectively. For most of the ferrites used in TWM's, x_"
x+". Therefore, the terms containing x_" can be neglected. Substituting
(31) and (32) into (38) and (39) and performing the integrations, one
obtains

= 27.3 -1-j-2: db (40)
vg toeI

where f is the frequency and (Lis defined as

1/Q+ = t/h [cos (iryi/2h)]2 x+" A (41)

1/Q_ = t/h [cos (ryi/2h)]2 x+" B. (42)

A and B are ratios of the energy of the RF magnetic field due to the
positive and the negative circular components over the area occupied
by the ferrite disk to the total RF magnetic field energy contained over
the area in the x -z plane per period, respectively. They can be expressed
as

Al 1

2sinh2/31)E I A,
7t= -o0 21(3d)

(Om - 0 )(d - c) (lam-/3)(d c) (43, 44)
oc 5111 cos

2X E E AAm*
7/1=-00 n =-co (0.2 - 132) LD

X [exp (f3. /3.) (D -a)][1 F exp (3. + On) (b - a)]

where the upper and the lower signs are for A and B respectively. The
notations a, b, c and d are defined in Fig. 10. In (43) and (44), the RF
field energy contained in the region between the fingers (region 1 in
Fig. 1) is neglected, since this is usually small compared to the RF
field energy contained in the ruby.

Equations (43) and (44) were computed and the results are shown
in Figs. 11-14. Note that A is a quantity proportional to the reverse
absorption and A/B is the ratio of the reverse to the forward absorption
of the isolators. Large A and A/B over a large range of B are desirable
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for the isolators. Since Figs. 11-14 are shown in terms of Ohr rather
than the frequency, the frequency -phase relation (w-13 diagram) of
the structure has to be known in order to convert 0 into the frequency.
All the dimensions involved were normalized by the length of a period
of the structure L. In order to provide an easier understanding of the
numerical data, we shall assume L = 0.08 inch (the commonly used
size in our laboratory) and discuss the data with the parameters ex-
pressed in inches.

Since the isolation ratio becomes worse when the width of the wave -
guide housing gets narrower, we shall study the structure with small D
first (D/L = 0.75). In Fig. 11, A and A/B vs 0/ir are shown when
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Fig. 11 -A and A/B vs Ohr for the following parameters: D/L = 0.75, 1/L =
0.5; ferrite size, (b - a)/L = (d - c)/L = 0.125 (0.01 X 0.01 inch); solid curves
for (D - a)/L = 0.6875 (a = 0.005 inch); broken curves for (D - a)/L = 0.625
(a = 0.01 inch).
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Fig. 12 -A and A/B vs Ohr for the following parameters: D/L = 0.75, 1/L =
0.5; ferrite size, (b - a)/L = (d - c)/L = 0.125 (0.01 X 0.01 inch); (d c)/L =
1.0 (ferrite on an axis midway between the adjacent fingers).

ferrite disks of 0.01 X 0.01 inch are placed in different positions of the
structure. Solid lines are for the case where one edge of the disk is 0.005
inch away from the surface of the fingers, i.e., a = 0.005 inch (see Fig.
10). If the center of the disk is exactly at the position midway between
the adjacent fingers [(d c)/L = 1.0], the isolation ratio A/B can be
as large as 140 over a small range of O. If the disk is shifted in the z
direction by 0.01 inch [(d c) / L = 0.75], the isolation ratio decreases
to values less than 20 while A remains almost the same. Next, let us
take a = 0.01 inch (see the broken lines). At the position (d c) / L = 1.0,
the isolation ratio again reaches over 140. Again, shifting the position
in the z direction by 0.01 inch decreases the isolation ratio to about 20.
One sees readily that the isolator disks have to be positioned carefully
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at the position midway between the adjacent fingers. A small displace-
ment from this position deteriorates the isolation ratio rapidly. This
has been known experimentally for a long time, and indeed the position
of the largest A/B for a given a dimension is found in practice by moving
the bar imbedded periodically with the isolator disks until the minimum
forward attenuation results. Hence we shall assume the center of the
ferrite disk to be on the line midway between the adjacent finger (z =
L/2) in all of the following discussions.

Next, let us consider how the isolator performs as a is increased
further. Fig. 12 shows A and A/B vs 9/7r for 0.01 X 0.01 inch isolator
disk as a is increased to 0.005, 0.01, 0.015, 0.02 and 0.03 inch [corre-
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sponds to (D - a)/ L = 0.6875, 0.625, 0.5625, 0.5, 0.375]. The maximum
isolation ratio A/B is about the same from a = 0.005 to 0.015 inch
and then it decreases for a larger a. This can be understood by noting
that the RF magnetic field becomes linearly polarized at the wall of
the waveguide housing, and hence A/B approaches one if the ferrite
disk is placed near the wall. The value of 0 at which the maximum
A/B occurs gradually increases with the increase in a. If this were not
so, a large value of A/B would still be maintained for ferrite disks of a
larger cross section. Due to the spread of the peaks of A/B the ferrite
disks of a larger cross section give small values of A/B. Larger values
of a also reduce the reverse absorption (smaller A) since the RF energy
is concentrated near the fingers.

In practice, the isolator disks of 0.01 X 0.01 inch cross section are
too small to fabricate and also too small to provide enough reverse
absorption. In order to see to which direction the size of the ferrite
disks should be enlarged, let us consider two rectangular disks of 0.01 X
0.03 inch. One of them has a longer side parallel to the z axis and the
other has a shorter side parallel to the z axis. Both disks have a = 0.005
inch. Then one can show from Figs. 11 and 12 that for the former case
A = 9 X 10-2, B = 3.2 X 10-3 at 0 = 0.37 where A/B is maximum,
and for the latter case A = 8.1 X 10-2, B = 1.08 X 10-3 at 0 = 0.357
where A/B is maximum. Apparently the latter is the better way to
place rectangular ferrite disks.

Fig. 13 shows A and A/B vs 0/7 for the ferrite disks of 0.02 X 0.02
inch. The edge of the ferrite disks is placed a = 0.005, 0.01 and 0.015
inch away from the surface of the fingers. As the ferrite disks are moved
away from the surface of the fingers, the isolation ratio improves and
then gets worse again. The reverse absorption steadily decreases at the
same time. The sharp reduction of the isolation ratio by enlarging the
size of the ferrite disks can be understood from the following considera-
tions. At a given 0 (or frequency), part of the ferrite disk at the position
where B is small contributes little to the forward absorption, while the
rest, located at the position where B is large, absorbs much of the for-
ward -wave energy. Hence the forward absorption of the whole ferrite
disk is larger. In another words, the peaks of A/B vs 0/7 curve occurs
at a different 0/7 for different portions of the ferrite disk (see Fig. 12)
The ferrite disks of this size are still not large enough to provide suffi-
cient isolation for the high electronic gain attainable in present TWM's.

Fig. 14 shows A and the isolation ratio A/B vs 0/7 when the size of
the ferrite is increased to 0.03 X 0.03 inch (see the solid lines). The
constant A increases almost twice from the value for 0.02 inch square
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ferrite. Assuming the thickness of the ferrite t = 0.1 (d - c) (aspect
ratio of 10), the reverse absorption of the isolator increases about
2 X 1.5 by increasing the size of the disk from 0.02 inch square to 0.03
inch square. However, the isolation ratio reduces from the maximum
of 29.5 to 19.5 (the forward absorption increases 4.5 times).

It is clear by now that the isolation ratio of the isolator improves
rapidly as the size of the ferrite disks gets smaller. On the other hand,
the size of the ferrite has to be large to provide enough reverse absorption.
Thus in order to improve the performance of the isolator, one faces
contradicting requirements. One approach to circumvent this difficulty
is to look for a ferrite of much larger susceptibility. Another solution
is to look for a proper dimension of the structure to provide a larger
area of circular polarization of the RF magnetic field. In Fig. 14 A
and A/B vs 0/u- are shown with a larger spacing between the fingers
(ferrite size is 0.03 inch square). It is increased from 1 = 0.04 to 0.05
and to 0.06 inch while L is kept at 0.08 inch. The isolation ratio improves
gradually.

Next consider the effect on the isolator performance when D/L is
increased from 0.75 to 1.0. This will in general increase the group veloc-
ity.2 From (7) and (40), the net db gain of TWM G is

G0:1(Flx"I-(12-7) (45)

where F is the filling factor and I x" is the susceptibility of the inverted
spin system of the ruby. For the TWM to be short-circuit stable,

1/Q+ > 2F I x" . (46)

The isolator incorporated in the TWM should satisfy the condition (46)
first, and then comes the consideration of how to reduce 1/Q_ . The
change in vu will change the net gain and the reverse and the forward
isolator absorption but not the stability condition (46). Hence, we shall
confine our discussion here to the effect of Q± as D/L is increased.
Suppose the condition (46) is satisfied with the isolator of 0.03 X 0.03 X
0.003 inch, a = 0.005 inch, 1/L = 0.5 and D/L = 0.75. If D/L is in-
creased to 1.0, one sees from the irregular dashed curves in Fig. 14
that A remains almost the same, while the ruby filling factor reduces
(see Fig. 4). Thus the TWM is still stable. However, the isolation
ratio A/B increases from 19.5 to 25 (i.e., 1/Q_ decreases). Therefore
the isolator performs better with larger D/L. Unfortunately, D/L is
usually made small to provide a small group velocity near the center
of the passband instead of being sized for the consideration of the
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optimum isolator performance. Even if the forward absorption of the
isolator increases with a smaller D/L, the net gain of the TWM may
increase.

3.2 Comparison of the Calculation with Measurements

Isolators of 0.02 X 0.02 X 0.002 and 0.03 X 0.03 X 0.003 inch
polycrystalline YIG disks were made and imbedded inside the comb
structure of the dimensions shown in Fig. 15. The forward and the

80

75

oo 65

60

55

50

25

20

15

10

5

0.060" 14E-- 0.198"--
f- V--,

,r; 0.79" iffiZrA
YTTRIUM-

IRON
77il J

GARNET 1..

--,4 0.045"
r -

o

0

A

\
A //

/
/ \---A----/ \

/ \
/

....,Y
.....er''' O

0 0 02 03 0.4
0/7r

05 0.6 0.7

50

40

30

20

10

0
08

5.3 5.4 5.5 5.6 5.7

FREQUENCY IN KILOMEGACYCLES PER SECOND

Fig. 15 - Measured and calculated forward and reverse losses. Ferrite disks
0.02 X 0.02 X 0.002 inch (71 pieces). L = 0.08 inch, D = 0.06 inch, 1 = 0.04 inch,
a = 0.016 inch, Ali = 223 oe, 47r/If = 1750 oe. Solid lines are the calculated of
and the circled points are measured. Broken line is the calculated cr..,../a_ and
the triangles are measured points.



1030 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

reverse absorption were measured and shown as discrete points in
Figs. 15, 16 and 17. The polycrystalline YIG has 47/17 = 1750 oe at
room temperature. Its linewidth Ali was determined by measuring the
dc magnetic fields at which the reverse isolator loss in db is one-half
of the maximum. It is more than twice the usual linewidth. This is
presumably due to the variation of the aspect ratio among the YIG
disks and also partly due to the shape of the ferrite disks being square
instead of ellipsoidal. The finger length of the structure was 0.198 inch
but in the calculation of a± it was assumed that h = 0.22 inch to correct
for the fringe capacitance at the finger tips.

The 0.)-# relation of the comb structure was measured by a phase
bridge technique described in the previous section. This makes it possible
to relate w to B and also gives the group velocity.
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Fig. 17 - Measured and calculated forward and reverse absorption. Ferrite
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culated a± and the circled points are measured. Broken line is the calculated
a+/a_ and the triangles are measured points.

Figs. 15 and 16 show the calculated and the measured data with
0.02 X 0.02 X 0.002 inch ferrite disks. Fig. 15 is for the case a = 0.016
inch and Fig. 16 is for a = 0.01 inch. The curves of Fig. 13 show that,
by decreasing a from 0.016 to 0.01 inch, the reverse absorption increases
more strongly at large 0 than at small 0, and that the maximum value
of a+/ a_ occurs at a smaller 0. These theoretical predictions are con-
firmed by the measurements, as can be observed from the data in Figs.
15 and 16.

The measured and the calculated a± and ail a_ for the ferrite size
of 0.03 X 0.03 X 0.002 inch are shown in Fig. 17. a+ for the 71 pieces
of ferrite disks was too large to be measured in our equipment. There-
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fore every other ferrite disk was removed to reduce a+ by half. Com-
paring the measured data shown in Figs. 16 and 17, one notices that,
by increasing the size of the ferrite disk from 0.02 to 0.03 inch square,
the reverse absorption a+ increases about 1.6 times while the maximum
isolation ratio a+/a_ decreases by a factor of 2.4. These are approxi-
mately the values expected from the calculation.

The measurements agree well with the calculation in general. It should
be mentioned that in calculating a+ , use was made of parameters
which can be measured only within an accuracy of 10 per cent.

IV. CONCLUSIONS

It has been shown that the filling factor increases as the c axis of the
ruby approaches the z axis of the structure for the usual 90° operation
in ruby. The increase is more significant near the 0 = 0 end of the
passband of the comb structure than near the 0 = r end. For the for-
ward -wave structure (df/d0 > 0), this corresponds to larger increase
of the filling factor near the lower cutoff frequency than near the upper
cutoff frequency. The increase in F,, as the c axis of the ruby becomes
parallel to the z axis of the structure is more pronounced at lower
frequencies, since the transition probability of the spin is more linear
at those frequencies.

The ratio of the reverse -to -forward absorption of the isolator in-
corporated in the TWM can be over a hundred if the size of the ferrite
disks is very small compared to the width of the waveguide housing,
2D d, and the size of the fingers. At present, the isolation ratio is
far from the best due to the necessity of using large -size ferrite disks
to provide enough reverse absorption. The size of the ferrite disks can
be kept small and yet provide a large reverse absorption if the imaginary
part of the susceptibility of the ferrite, x", can be increased. Since at
resonance x" = 47M/al, one should look for a material with a large
4r/1/ and a smaller al. The saturation magnetization, however, can-
not be made arbitrarily large, since the de magnetic field, which is
fixed by the ruby resonance, must be greater than 4r3/ in order to
saturate the isolator disks. AH of the ferrite should be about 20 oe,
which is approximately the linewidth of ruby. Ali of polycrystalline
YIG at the temperature of 4.2°K is over 200 oe. This can be reduced
to a certain extent by minimizing the scattering in the aspect ratios of
the ferrite disks and the use of round disks instead of square disks,
since the internal field of a round disk is more uniform than that of a
square one. A single -crystal YIG with al enlarged to about 20 oe
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has good possibility as an improved isolator material for TWM ap-
plication.

The analysis also shows that the isolation ratio gradually improves
and then gets worse, while the reverse absorption steadily decreases,
as the ferrite disks are moved away from the surface of the fingers
toward the waveguide wall. Also, the optimum isolation ratio gradually
shifts to a higher value of 0.

In order to provide enough reverse absorption, more than one iso-
lator deck is usually stacked on top of another. It may seem as if the
forward insertion loss of the isolator can be kept small over a wider
range of 0 if a composite isolator with different a's is used instead of
one with the same a. However, by adding the curves of different a's
in Fig. 12 one will find that this is not so.

The analysis and the curves provided in this paper enable one to
estimate the increase in electronic gain obtained by a proper orientation
of the c axis of the ruby and by the use of ruby slabs on both sides of
the comb. The size of the ferrite disks necessary to provide sufficient
isolation and the dependence of the isolator performance on the position
of the ferrite disks are also discussed. Together with the Refs. 1 and 2,
this paper constitutes part of an effort to reduce the experimental work
involved in developing traveling -wave masers.

V. ACKNOWLEDGMENTS

We wish to thank W. J. C. Grant and M. Berry for the programming
of the computation, and R. C. Petersen and R. P. Morris for their ex-
pert help in the measurements.

REFERENCES

1. Harris, S., DeGrasse, R. W., and Schulz -DuBois, E. 0., Cutoff Frequencies
of the Dielectrically Loaded Comb Structure as Used in Traveling -Wave
Masers, B.S.T.J., 43, Jan., 1964, p. 437.

2. Chen, F. S., B.S.T.J., this issue, p. 1035.
3. Schulz -DuBois, E. O., Paramagnetic Spectra of Substituted Sapphires - Part

I: Ruby, B.S.T.J., 38, Jan., 1959, p. 271.
4. Schiff, L. I., Quantum. Mechanics, McGraw-Hill, New York, 1955.
5. Tabor, W. J., A 100 -Mc Broadband Ruby Traveling -Wave Maser at 5 Gc,

Proc. IEEE, 51, August, 1963, p. 1143.
6. Dodd, 13. M., Wood, D. L., and Barns, R. L., Spectrophotometric Determina-

tion of Chromium Concentration in Ruby, to be published.
7. Sub!, H., and Walker, L. R., Topics in Guided -Wave Propagation Through

Gyromagnetic Media, Part I, B.S.T.J., 33, May, 1954, pp. 579-659.



/111111011. Ake 10.,tlz



The Comb -Type Slow -Wave Structure For
TWM Applications*

By F. S. CHEN

(Manuscript received December 5, 1963)

The space harmonic analysis of the dielectrically loaded comb structure
as used in traveling -wave masers (TWM) is presented. The frequency -phase
characteristics (the co-# diagrams) are computed by regarding each finger
of the comb structure as a capacitive loaded transmission line. The impedance
of the line is based on the space harmonic analysis. Computed data are found
to be in agreement with experimental results and, in particular, it is con-
firmed that the w -j3 relation depends very critically on certain dimensions
of the dielectric loading. The results of the analysis are used to derive pre-
scriptions Jor the design of dielectrically loaded TWM comb structures,
especially of structures with low group velocity which are suitable to pro-
vide simultaneously large gain and large instantaneous bandwidth.

I. INTRODUCTION

The comb -type structure has been used successfully as a slow -wave
structure for traveling -wave masers (TWM).1 In a TWM the small -
signal gain in db is inversely proportional to the group velocity. Gener-
ally the gain obtainable from present maser materials is small. Therefore,
a great deal of effort in developing a TWM is concerned with deriving a
comb structure design with small group velocity at the frequency of
interest. Both the group velocity and the passband of the comb structure
can be found from the co -i3 diagram. The shape of the w-$ diagram of the
comb structure loaded with "masing" crystal depends very critically on
the various dimensions of the structure as well as of the crystal. In this
paper, an analysis of the comb structure will be presented. It should
serve as a guide for a reasonably accurate determination of the dimen-
sions of the comb structure, of the active maser material and of other
dielectrics which give rise to a required co -13 diagram. Some additional

* This work was supported in part by the U. S. Army Signal Corps under Con-
tract No. DA 36 -039 -SC -89169.
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experimentation may be needed in practice for small corrections of the
resulting co -,3 characteristic.

Various tape structures with the tapes perpendicular to the direction
of signal propagation have been proposed and analyzed? .3.4.5 in the past.
The space harmonic analysis originally introduced by Fletcher' was
used to obtain the w-$ diagrams of these tape structures. It assumes no
RF field components in the direction of the tape (TEM wave approxima-
tion); that is, the tape can be regarded as a transmission line supporting
the TEM wave in the direction transverse to the direction of signal
propagation. An impedance matching condition for the TEM lines in the
transverse plane can be derived (transverse resonance). The resulting
equation implicitly contains the co -13 relation. The authors mentioned
treated only the case where the structure is immersed in a uniform di-
electric, that is, mostly vacuum. For the TWM application, the structure
is alway partially loaded with dielectric and the TEM approximation no
longer holds. However, when the structure is nearly filled with dielectric,
as in TWM's for a large gain and simultaneously large instantaneous
bandwidths,' one finds that the TEM approximation can also be success-
fully used to calculate the w-13 diagram of the dielectric -loaded tape
structures. An "effective dielectric constant" is then defined to take into
account the fact that the structure is only partially loaded with dielec-
tric. This approach was used in earlier calculations of the upper and
lower cutoff frequencies of the comb structure by Harris, DeGrasse and
Schulz -DuBois.' The analysis to be presented here extends their work to
cover the entire co -13 diagram.

The col3 diagram of the comb structure' and the "Karp structure"' for
TWM applications had also been discussed previously, using the
equivalent circuit method. However, the field analysis to be presented
here gives a more detailed understanding of the structure. For instance,
the filling factor of the active crystal and the performance of the isolator
embedded in the structure are readily obtained by this analysis.

In the next three sections, the w-$ diagram of the comb structure, the
impedance of the tapes (or fingers) and the effective dielectric constant
will be derived. This is followed by a more detailed discussion of various
properties of the comb structure, including the techniques available for
reducing the bandwidth of the passband, higher -order transmission
bands of the structure and practical design considerations. The calcula-
tions are usually compared with experiments, and they are found to be
in good agreement.

The impedance of the finger and the effective dielectric constant are
defined as a function of 0, the phase angle between adjacent fingers. The
phase angle 0, or equivalently the phase propagation constant 0, are
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related to the frequency w by the co -13 relation which is obtained from the
transverse resonance matching condition. Only the ruby -loaded comb
structure is treated here up to and including numerical details. It is
easily possible, however, to extend the same type of analysis to other
types of tape structures. This is particularly easy since both the im-
pedance and the effective dielectric constant are evaluated here as
functions of 0 and not of w.

II. THE w-f DIAGRAM

Let us consider first a comb structure without dielectric loading
(empty comb). The open end of the fingers has fringing electric fields
terminating at the surrounding conductors. The effect of these fields can
be expressed by a capacitance C (Fig. 1) which in general is a function
of 0, C = C(0), where 0 is the phase angle between the adjacent fingers
and takes values from zero to 7 radians over the passband. It will be
assumed that the RI' electric and the magnetic fields vanish in the
direction of fingers (y direction) except at the finger tip. Then the finger
can be regarded as a TEM transmission line with a characteristic im-
pedance K and supporting a wave propagation in the y direction with
velocity c, the velocity of light in free space. K is a function of 0, K =
K(0). At the finger tip (y = h), the impedance looking in +y and -y
directions must have the same magnitude and the opposite sign; there-
fore there exists a matching condition

1

coC(0)

(oh- K(0) tan . (1)

According to this equation, the grounded finger presents an inductive
reactance at the finger tip. The length of the finger h is therefore limited
by

D
VV

C(0)

2

e71. 102WW\NX\MNANO00116

z = M L z = m +i)L

Fig. 1 - Cross sections of the comb structure.
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(in - 1)7r < wh/c < (m - 1)7r, m = 1, 2, 3, . (2)

For a given 0, one can find the frequency from (1), provided the func-
tions K(0) and C(0) are known, and in this way the co-# diagram (or
co -0 diagram) may be derived. For m = 1, the finger acts essentially as
a quarter -wave resonator and (1) gives the lowest passband for a given
geometry of the comb structure. For m = 2, the finger behaves as a
three-quarter wave resonator and the next higher passband appears.
Thus the comb structure provides a series of passbands separated by
stop hands.

When the comb structure is partially loaded with dielectric as in Fig.
1, there appear components of RF fields in the y direction, and the finger
no longer behaves as a TEM line. However, when the structure is al-
most completely loaded with the dielectric, the fields are again approxi-
mately TEM waves in the y direction. We will adopt this TEM approxi-
mation for the loaded structure and modify the impedance K and the
propagation constant w/c of (1) by a factor -0). (0) is called the
effective dielectric constant and it will be defined more rigorously in Sec-
tion IV. Then the dispersion equation for the loaded comb can be ex-
pressed as

1 K(0) tan colt 1/e(0)
(3)

wC(0) -Om
for the case where the structure is loaded with dielectric of uniform thick-
ness from y = 0 to y = h as in Fig. 1. For simplicity K(0), C(0) and
(0) will be abbreviated as K, C and e from here on. The TEM approxi-
mation offers a further advantage, since it enables one to analyze the
various "finger tip loadings" in a simple way.

It turns out that, in practical realizations of the comb structure, the
fringe capacity C is always small, so that cohO/c is close to (m - 1)7r
with m = 1, 2, 3, . Hence (3) can be simplified by defining a quan-
tity a, through

co -6(h + Ah)/c = (m -
Substituting (4) into (3) and using the fact that Oh < h, one obtains

(KCc/E)

(4)

(5)

where it should be noted that Ah is also a function of 0. Equation (4)
becomes

(2m - 1) KCc\
E

(6)
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where X = c/f is the free -space wavelength. For the empty comb, the
w -t3 diagram can be obtained from (6) by letting e = 1. Equation (6)
states that, in the passbands, the finger length h plus the correction due
to the fringe capacitance at the finger tip should be (2m - 1)X/4 when
measured with the scale \/;.

III. IMPEDANCE OF THE FINGER, K(0)

The admittance of a single finger as a TEM line is a somewhat ab-
stractly defined quantity. One considers transmission lines having the
cross section shown in Fig. 1(b), but without dielectric and infinitely long
in the ±y directions, or alternatively suitably terminated. On this set of
identical transmission lines one considers waves of equal amplitude
traveling, for example, in the +y direction and phased by 0 between
adjacent lines in the +z direction. Under these conditions, the admit-
tance of a single finger is defined as the ratio of current to voltage on a
anger and is a function of 0.

Consider a comb structure as in Fig. 1, but without the dielectric and
with the structure divided into three regions as shown. Then the current
on a finger is the sum of the current on the surface of the finger in region
1 (between the fingers) and the current on the surface of the finger in
regions 2 and 3. Thus the admittance of the finger is the sum of two
admittances:

Y(0) = Y1(0) + Y2(0) (7)

where Y1(0) is the admittance due to the current on the surface of the
finger in the region 1 and Y2(0) is the admittance due to the current on
the surface of the finger in the regions 2 and 3.

The current on the finger can be found by a line integral of the RF
magnetic fields, which in turn can be found by matching boundary con-
ditions in the x -z plane.

The potential on the mth finger may be written as

V. = Ve-ime (8)

where 0 is again the phase angle between the adjacent fingers and may
vary from 0 to r. Then, as will be shown in Appendix A, the potential
along the z axis between the mth and the (m + 1)th finger can be ex-
pressed as

V(0,z) = Ve-j(m+w[g(z) cos -°
2

- jf(z) sin
9 (9)



1040 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

where g(z) and f(z) specify the symmetric and the antisymmetric part
of the potential distribution respectively. g(z) is also the potential dis-
tribution when 0 = 0, and f(z) is also the potential distribution when

0 = 7. It should be added that the representation of the 0 -dependent
potential distribution by a combination of 0 -independent symmetric
and antisymmetric functions, g(z) and f(z), is at best a good approxi-
mation or, to use a more appropriate term, a guess. The representation
is strictly correct only for 0 = 0 and 0 = 7. However, it is bound to be
a good approximation near 0 = 0 and near 0 = 7 where one of the func-
tions dominates. The calculations show that the detailed shape of the
potential distribution assumed is of little influence in the midband re-
gion near 0 = 7/2 and in fact up to 0 = 7. It is in this sense that the
expression into a symmetric and an antisymmetric part, which is a power-
ful tool in other electromagnetic problems, is justified here.

The RF electric field on the z axis becomes

EZ = 0,

avEz = --
az

L - 1 L - 1- < z <
2 2

(on the fingers)

(m 1)L - < z < (m 2)L

(10)

(between fingers).

The Ez field in region 2, Ez2 , may be expressed by a space harmonic or
generalized Fourier sum

00

E = E F shill f3(11' - x)e--113"zejk"

where 13L = 0 + 2n7r, TV is the height of the waveguide as shown in
Fig. 1, and F is the amplitude of the nth space harmonic component.
Each term of the sum is the electric field of a TEM solution to Maxwell's
equations, and the z dependence, exp (-j/3z), assumes periodicity of
the resulting field pattern from finger to finger as required by (8). The
as yet unknown amplitude coefficients Fn are determined by letting
x = 0 in (11) and equating the resulting expression with the field on the
z axis (10). Thus,

Ve
(m+i) L- F (112)

0 . 01 jpnz
dz (12)Fn = g cos - -3f sin - e

L sum pn VV (m -1-1)L-(1 /2) 2 2

where g' = dg/dz and f' = df/dz. The current on the surface of the mth
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finger facing regions 2 and 3 can be found from the line integral of
the z component of the RF magnetic field there, and finally Y2 becomes

)

L - / Sill 134(112-
Y2(64) = 2Y. L

loth(3,4TV
n=-oo /3,z (L - 1)

2 (13)

x[COS° 1(1'1-1)12 g sin Onz dz sin ° ("1)12
(L-1)2 2 (L-1)12

f' cos Onz dz

where Yo = -g4-7- mho.
In the case of constant -field approximation, as has been assumed by

Fletcher,2

g = 1

f = (2z/l) - (0).
The integration in (13) can be readily performed. For the case where

L - 1 = L/2 and d = 1 (square finger cross section),

0Lsin
Y2(0) - 2 sin 2° (-1)"Yo11.m-co 1374/.

\

2

(14)

cotll /.3 TV. (15)

Y1(0) becomes, in the same constant -field approximation

171(0) d- 4
LYo

(16)

The impedance of a finger K(0) = (Y1(0) + Y2(0))-1 in the constant -
field approximation is plotted in Fig. 2 in dashed lines as a function of
0/7 for W /L = 1.25 and 0.75.

The constant -field assumption does not take into account the singu-
larity in the field at the corner of the finger. It will be shown later that
the calculated co -13 diagram using the impedance thus obtained disagrees
severely with the measured one for 0 < 0.57. Harris et al.' used the con-
stant -field approximation for region 1 only and assumed the field pro-
duced by an infinitely thin tape for regions 2 and 3. This will be referred
to as the thin -tape approximation. The calculation used conformal map-
ping and it is applicable directly only for 0 = 0, 7/2 and r. The thin -tape
approximation assumes a 180° singularity at the corner of the finger and
thus exaggerates the actual 90° singularity there. A further difficulty in
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this approach is that the fields on the boundaries between the regions
2, 3 and the region 1 are not matched.

A third alternative would be to base the calculations on experimental
data. The potential distribution functions g(z) and f(z) in (9) may be
measured directly with a large scale two -finger model in an electrolytic
tank. This is probably the most reliable method, although data are ob-
tained with only limited accuracy and only numerically. In addition,
the data are applicable directly with good accuracy only for 0 = 0,

The second (thin -tape) approximation will be used here, and it will
be extended to cover the whole range of 0. With the thin -tape approxi-
mation, the functions g and f, which specify the potential distribution
along the z-axis, for 0 = 0 and r respectively, can be found by Schwarz-
Christoffel transformation. They have a quite complicated form involv-
ing elliptic functions, and therefore the integrals in (13) are difficult to
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evaluate. Fortunately, at 0 = 0, r/2 and r, K(0) can be found directly
by Schwarz-Christoffel transformations without resort to (13 ). One can
arrive at a good approximation of Y2(0) for the whole passband of the
structure from (13) and the knowledge of Y2 at 0 = 0, T/2 and r with-
out evaluating the integral. The procedure is described in Appendix B,
and the result is shown in Fig. 2 with solid lines for various values of
W /L. Both the constant -field and the thin -tape approximations give
about the same K(0) for 0 r/2 but there is a large difference near
0 = 0. It will be shown later that K(0) resulting from the thin -tape ap-
proximation yields a reasonably good agreement with experimental data.

IV. THE EFFECTIVE DIELECTRIC CONSTANT (0)

If the comb is not entirely immersed in an isotropic medium, some
RF field components appear in the direction of the fingers. The TEM
assumption which has been used in Section II no longer holds. However,
if the medium is only slightly nonuniform, the TEM assumption is still a
good approximation. Fortunately, TWM's designed for high gain and
large instantaneous bandwidth are so heavily loaded with an active
crystal that the TEM approximation is reasonably valid and may be
used in the structure analysis. In this section, an effective dielectric
constant is defined. It is a function of 6 - that is, of the details of the
RF electric field configuration. At a particular value of 0, the effective
dielectric constant of (0) is defined as the dielectric constant of a uniform
medium filling the same comb structure, which results in the same total
charge per comb finger as that produced by the true, incomplete dielec-
tric loading (this definition is meaningful only for heavy dielectric loading
such that the TEM approximation holds). It is obvious that this quantity
e(0) is a very helpful one for the analysis.

Referring to Fig. 1, a slab of dielectric of thickness D is placed in the
regions 2 and 3. Its dielectric constant is assumed to be isotropic and
equal to e. TEM-type solutions of Maxwell's equations are assumed in
regions 2 and 3, both inside and outside the dielectric slab. The com-
ponents of the field vary as

exp [±13x - jky - ji3nz]

where k is the plane wave propagation constant for the respective media.
Boundary conditions have to he matched at x = 0, D and W in the y -z
plane. The constant -field approximation expressed in (14) is explicitly
used for the boundary condition at .r = 0.
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Then the charge per unit length on a finger is given by
(L -1)I2 -d

Q = 2e 1 Ex2dz + 2 Ezidx (17)
-(L-0/2

where E12 is the x component of the electric field in region 2 at x =
and Ea is the z component of the electric field in region 1. An effective
dielectric constant e(0) is now defined by requiring the same amount of
charge Q to exist on the finger as if the whole structure were immersed
in a medium of dielectric constant e( 0). The resulting formula can be
given for combs with rectangular fingers; however, for simplicity, only
the result for equally spaced square fingers (L - 1 = d = L/2) is given
here

e(0) -

13742
sin

4. 0sin - e- 2_, (-1)n
2 2 13L

\ 4

X
(1 &E coth UV - D) coth 13.D)

tanh 0,,D (18)1 + e coth 137,(47 - D) tanh OnD

/sin A'
sin ° 1 ( -1)n

n #71-L
coth 0 IV

The result of machine computations of (0) using (18) and assuming a
dielectric constant of the loading dielectric of e = 9 (approximately the
value of ruby) is shown in Fig. 3(a), ( b), and (c). To facilitate other
computations which will be discussed later, the square root V70 is
shown in these graphs rather than e(0). For a fairly complete loading
(D/W > 0.8), e(0) approaches 5 near 0 = w. Near 0 = 0, (0) varies
widely, depending on D/W. This can be understood by noting that near

= r the RF fields concentrate near the fingers and hence e(0) is little
changed by a change in the width of the air gap near the waveguide wall.
On the other hand, near 0 = 0 more of the fields reach the waveguide
wall. Thus the width of the air gap there affects the magnitude of (0)
more drastically than that of e(r).

V. PROPERTIES OF THE COMB STRUCTURE

With the knowledge of K(0), C(0) and e(0), one can calculate the
(4-13 diagram of both the empty and the loaded comb structure. The
calculation reveals a number of interesting properties of the comb struc-
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ture and also suggests various techniques for narrowing the passband
of the structure.

5.1 Empty Comb Structure

As a maser structure, the comb is always loaded with one or more
dielectrics. However, the study of the empty comb is of some interest to
us, since it offers the possibility of checking the accuracy of our im-
pedance calculations by measurements.

The fringe capacitance C(0) for 0 = 0, and 0 = r has been measured
in the electrolytic tank. Values for C(0) and C(r) are shown in Fig. 4.
They were obtained by resistance measurements on a large scale model
of a comb finger in a tank. The values are plotted versus the distance
between the finger tips and the opposite waveguide wall, s. The data are
valid for fingers of square cross section, L/2 X L/2 = 0.040 X 0.040 inch,
spaced center -to -center by L = 0.08 inch and contained in a housing of
width 2W + L/2 = 0.240 inch (aspect ratio W / L = 1.25). It should be
mentioned here that these data can be applied to dimensions other than
those indicated if one observes two facts. First, if all linear dimensions
are scaled simultaneously by some factor, the capacity is scaled by the

0.1
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Fig. 4 - The fringe capacitance at 0 = 0 and 0 = vs the spacing between the
finger tip and the waveguide wall for the case where L - 1 = 1 = d = 0.040 inch.
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same factor. Second, experience has shown that the fringe capacity is a
very slow function of the ratio W/L; no noticeable errors were found
when these capacity values were used for W/L values ranging from 0.75
to 1.5. Unfortunately, C(0) for 0 other than 0, r/2 and 7 cannot be
measured in a simple tank model. However, some indication of how C(0)
changes with 0 may be obtained experimentally. One would start with a
measured dispersion curve of an empty comb; one would assume that the
values K(0) in Fig. 2 for the thin -tape approximation are sufficiently
accurate; then (1) offers a possibility of evaluating experimental values
of C(0). In practice it turns out, however, that this approach does not
yield values C(6) of sufficient accuracy to determine the exact shape of
the C(0) function.

In Fig. 5, calculated dispersion curves of several empty comb struc-
tures with dimensions as shown are given in solid lines. The calculation
is based on K(0) of Fig. 2 using the thin -tape approximation. C(0) is
assumed to change linearly with 0 from 0 = 0 to 0 = r. Measured points
of the dispersion curves are also shown in Fig. 5. The measurements and
calculation agree well.

One case of a dispersion curve calculated by using K(0) from the
constant -field approximation is also shown in Fig. 5 by the dashed line.
It deviates considerably from the measured points for 0 < 0.5 r.

One may conclude that both the impedance of a finger calculated by
using the thin -tape approximation and the assumption that C(0) changes
linearly with 0 are sufficiently accurate for the present analysis.

The passband of the empty structure can be narrowed by reducing the
width of the waveguide housing 2W + d. Then the impedance values
K(0) at 0 = r approach each other more closely and so do the Ah,
values at 0 = 0 and 0 = r. From (6), one readily sees that a narrower
passband results.

5.2 Loaded Comb Structure

In this section, the discussion is restricted to the case of dielectric
loading on both sides of the comb. Both loading slabs are parallelepipeds
of equal thickness D. Both slabs cover the full finger height from the
root to the tip, i.e., the height h of the fingers is also that of the loading
slab. In addition, a comb of equally spaced square cross section fingers
(L - 1 = 1 = d) is assumed.

Since (3) is only an approximation and also since the dielectric con-
stant of ruby is neither a scalar nor exactly 9, one cannot expect to
obtain a close quantitative agreement between the measured and the
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calculated co -0 diagrams. However, the effects of various loading dimen-
sions on the co -0 diagram are correctly predicted by the theory, and the
present analysis provides a reliable basis for an initial choice of design
parameters.

It will be convenient to define f(7) and f(0) as the frequency at which
0 = 7 and 0, respectively. For a forward -wave structure (df/d0 > 0),
f(ir) > f(0), and for the backward -wave structure (df/d0 < 0) f(ir) <
f(0).
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In Fig. 6, calculated dispersion curves are shown for W/L = 1.25,
K(r)C(r)c/h = 0.05 and various values of D/W. The frequency scale
is normalized to fo(7), where fa(7) is the frequency of the empty comb
(D/W = 0) at 0 = r. Without loading (D/W = 0), the structure is a
forward -wave structure. Relatively thin slabs of ruby loading (see the
curve for D/W = 0.2) make it a backward -wave structure of a compara-
tively wide bandwidth. This can be understood by observing that the
RF fields near 0 = 7 are more concentrated near the fingers than the
RF fields near 0 = 0. Hence, the RF fields at 0 = 7r see more of the pres-
ence of the thin ruby slab than the fields at 0 = 0. In this way f(7r) is
reduced while f(0) remains essentially unchanged. Further increases in
the width of the loading (see the curves for D/W = 0.4 and 0.6) reduce
the bandwidth of the backward -wave structure. This happens because
the RF fields near 0 = 0 begin to interact with the dielectric slab, while
the fields near 0 = 7r are almost completely contained in the initial thin
slabs. This again changes the frequencies at 0 = r and 0 to a different
extent and thus reduces f (0) more than f(r).

At a still greater dielectric slab thickness (see the curve for D/W =
0.9) the structure is forward with a fairly narrow band and finally, with
complete loading (see the curve for D/W = 1.0), it is forward with a
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Fig. 6 - Calculated 00 diagram as the thickness of the dielectric is changed.
It is assumed that L - 1 = 1 = d, W/L = 1.25, K(r)C(r)c/h = 0.05, and e = 9.
The frequency scale is normalized to fo(r), the frequency at 0 = r for the empty
comb.
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somewhat wider band. The explanation is again based on the fact that
increasing the dielectric width reduces the lower cutoff frequency while
leaving the upper one the same.

The most important aspect of this behavior is seen by comparing the
curves for D/W = 0.6, 0.8, and 0.9 in Fig. 6. It is apparent there that
the transition between backward and forward structure does not involve
backward -wave structures of gradually decreasing bandwidth, and then
forward -wave structures of initially very narrow and eventually wider
bandwidths. If this were so, it would be very easy to design comb struc-
tures with extremely high slowing of the group velocity. Instead, it is
seen that the transition from backward to forward -wave structures
takes place via intermediate structures showing "fold -over." By this,
we mean a structure which for some range of 0 is forward, whereas it is
backward in the remainder of the 0 range. It has been pointed out9 that
such a situation leads to instability and oscillations in a traveling -wave
maser amplifier in spite of the incorporated isolator. Thus, for all
practical applications, the occurrence of fold -over has to be avoided.

It may be added here that dispersion curves of combs with other di-
mensions vary in a similar fashion as the thickness of the dielectric slab
is varied. It is of interest, however, to find out how the onset of fold -over
is related to the comb geometry, i.e., to the ratio W/L, and to the finger
end capacity. Here it is particularly desirable to have analytical data
which indicate what choice of the W/L and D/W ratios and of the finger
end capacity will result in the greatest slowing of the group velocity
near the center portion of the passband, but still avoid fold -over. For this
purpose, a number of dispersion curves normalized to f(Tr) were calcu-
lated and are shown in Fig. 7. One notices that fold -over takes place
rather abruptly for D/W < 0.9 for all cases. In addition, one sees that
the minimum group velocity [a(df / dO)] attainable near the center of the
passband without fold -over decreases by reducing W/L and Alt(r)/h.
The group velocity near the center of the passband is more or less ar-
bitrarily defined as

V = L 2ir (I. 10=0.7,- f 10..0.30
0.4r

It is shown as a slowing factor S = c/v, in Fig. 8 vs W/L for D/W = 0.9
and for different values of Ah(r) /h. The largest slowing is obtained for
the smallest W/L. It should be pointed out, however, that our present
calculations were not carried out for W/L ratios of 0.5 or smaller, al-
though such values would increase the slowing still further. Values of
W/L < 0.5 appear unsuitable for practical maser designs for various
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reasons, among them the difficulty of incorporating an isolator into a
comb structure with such dimensions. Larger slowing results also from
reducing Ah(r)lh. Oh (,r) can be varied over a narrow range by varying
C, which is a function of s, the distance between the finger tip and the
opposite waveguide wall. For the comb geometry used for measuring the
fringe capacity, COO does not appreciably decrease for s beyond
s > 0.040 inch. More generally, this would be done if s exceeds a value
comparable to the finger "diameter." This therefore sets a minimum for
Ah(7)/h at a given operating frequency.

To illustrate the significance of Fig. 8, consider two TWM's A and B
with exactly the same dimensions except that the finger length h of A
is twice that of B. This difference in h makes the operating frequency of A
about one-half of that of B. For the time being, assume also that the
magnitude of the magnetic Q of the active crystal is independent of fre-
quency. With the values W/L = 1.0 and Oh(7)/h = 0.02 for A, Fig. 8
shows that SL/X(r) = 3.2. For B, Oh(w)/h = 0.04, so that SL/X(r) =
2.5. The db gain of a TWM is proportional to fS/Q., which in turn, for
constant Q, is proportional to SL/X(r). Thus one should expect that
the db gain of maser A is larger than that of maser B by a factor 1.28
( = 3.2/2.5). In practice, however, I Q. I usually increases toward lower
frequencies, so that the gain of the lower -frequency maser A tends to be
lower.

It should be added that the slowing itself, S, is inversely proportional
to a scale factor L/X (7) where X(7) = c/f(r) is the free -space wave-
length of fir). Thus for combs with a given period length L, the slowing
is greater for lower frequencies. It follows that the slowing factor S is a
meaningful parameter in comparing different comb structures only if
they have essentially the same period length, L, and operating frequency
range, f.

Consider another hypothetical case. Suppose the fringe capacity
vanishes, C(7) = C(0) = 0, so that Alt = 0. Experimentally, this situa-
tion could be realized by a X/2 ladder structure where fingers of twice
the comb structure finger length are anchored at both ends in a wave -
guide enclosure. Without dielectric loading, this case would be that of the
Easitron structure (see Ref. 7) which is characterized by a zero pass -
band. With dielectric loading, however, a finite passband results never-
theless. This is due to the variation of E( 0) with 0, and in particular the
difference between e(7) and e(0). Under these circumstances one might
expect that the bandwidth is smaller and hence the slowing greater than
in the case of a structure with finite fringe capacity and finite Ali. This
is indeed the case. There is no curve shown in Fig. 8 for the parameter
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Oh = 0, but it is obvious that this curve would lie above that for

MOO /h = 0.02.

Measurements of dispersion curves of several comb structures loaded
with alumina (e = 9.3) were made and they are shown in Fig. 9. Those
parts of the dispersion curves where 0 7/2 depend very little on W /L
and D/W. The fold -over takes place at D/W between 0.85 and 0.90.
The maximum slowing factor near the center of the passband which is
attainable without fold -over increases with smaller W /L. These general
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features agree with the results of the calculation. There is a deviation
of typically about 4 per cent near 0 = 7, and of about 10 per cent near

= 0 between the absolute values of measured and calculated frequen-
cies. These discrepancies are not too disturbing, however, since (3) is
only an approximation; the fringe capacitance data derived for an empty
comb change when the comb is loaded up to the tip of the fingers, and the
dielectric constant of alumina is not exactly 9 as used in the calculations.
The slowing factors calculated from these measurements are also shown
in Fig. 8 as circled points. The measured slowing factors are about 30
per cent smaller than those calculated, but the dependence of S on W/L
is correctly predicted by the theory.

VI. TECHNIQUES FOR REDUCING THE STRUCTURE BANDWIDTH

Since a structure with smaller bandwidth gives a larger slowing factor
and thus a larger maser gain, the bandwidth of the structure should be
kept as small as possible. It is necessary, of course, that the structure
bandwidth exceed the required instantaneous or tunable design band-
width of the maser amplifier by some reasonable, safe margin. This
restriction was not important until recently. In earlier phases of travel-
ing -wave maser development, it was difficult to design comb structures
for sufficiently high slowing without running into the fold -over condition.
More recently several techniques were developed which make it possible
to design loaded comb structures with almost arbitrarily narrow band-
widths, down to structure bandwidths of only twice the instantaneous
amplifier response.' These techniques were derived both by experimenta-
tion" and by the theoretical considerations reported in this paper. They
include the following: (i) Near the tip of the fingers, the ruby may be
shaped as in Fig. 10(a) or (b) by a step or bevel undercut. (ii) A strip of
dielectric material of a high dielectric constant may be added next to
the finger tips as in Fig. 10(c). (iii) The thickness of the comb fingers, d,
may be reduced (see Fig. 1). These three techniques may be applied
either independently or together to reduce the bandwidth of the struc-
ture.

By shaping the dielectric near the finger tip as in Fig. 10(a) and (b),
the effective dielectric constant (0) is reduced. The reduction is not
uniform across the band, but e(0) is more drastically decreased for 0 near
0. Thus, for a forward -wave structure where the lower cutoff frequency
occurs at 0 = 0, the lower cutoff frequency increases without much
change to the upper cutoff frequency. The bevel shape of Fig. 10(b) can
be considered as a series of small steps, as indicated by the dashed line.
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The dielectric shapes of Fig. 10(a) and (b) are approximately equiv-
alent in their role of narrowing the bandwidth.

The finger tip loading may take the form shown in Fig. 10(c). A thin
slab of dielectric material with high dielectric constant is imbedded in
alumina or ruby near the finger tip. In our experiments, a ceramic with
e = 34 manufactured by American Lava Corporation was used. This
material will be referred to as K34. This type of finger tip loading in-
creases the effective dielectric constant (0) near 0 = r faster than near
0 = 0. For the forward -wave structure, this means that the upper cutoff
frequency can be decreased faster than the lower cutoff frequency, and
thus a narrowing of the bandwidth results.

Let h' be the length of the stepped dielectric (Fig. 10a) or K34 (Fig.
10c), C' be the capacitance looking toward the finger tip at the plane
A -A, e' be the effective dielectric constant of the section h', and D' be
the thickness dimension as shown. The capacitive impedance looking
toward the right side at the plane A -A, 1/0)C', can be found by regarding
the section h' as a TEM transmission line with the characteristic im-
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pedance K(0) / e' (0) and a propagation constant co E' (9) and
terminated by C at the end. If the electrical length of the modified sec-
tion of finger line (which has the physical length h') is small compared to
a quarter wavelength,

tan coN/ e' (0)
h

co -V E' (0)
hI,

and if the fringe capacity loading at the finger tip is small,

1 KO)
e' (0)

then the effect of the stepped dielectric can be expressed by an effective
capacity C'

C' + (E'h' /KCc)] (20)

which effectively terminates the regular TEM finger transmission lines
of length h -h' . From (6) and (20) one obtains the following formula,
which contains implicitly the co -0 relation

(2m - 1) KC c - E
4

VE(0) h) (21)

For the stepped ruby as in Fig. 10(a) where D > D', (E' - )/VE
is negative. This quantity can be calculated from Fig. 3 and it is shown
in Fig. 11 in solid curves. Measured values are also shown as circles.
The measurements and calculations of ( E' - E)/Ve agree well except
near 0 = 0. In practical design work, it is often convenient to keep one
of the cutoff frequencies unchanged while shifting the other cutoff fre-
quency by shaping the dielectric. This requires a large ratio of

I ( e - /v;
at the two cutoff frequencies. In Fig. 11, the curves for D /W = 0.95
and 0.4 < D' /W < 0.6 satisfy this requirement. As a special case of
stepped ruby, the value D' = 0 may also be considered. This corresponds
to a ruby loading of rectangular cross section which does not cover the
full finger height h. Then E becomes unity and the value (1 - E)/NIE
is also plotted in Fig. 11 in the top curve marked D' /W = 0.0. Since the
ratio (1 - 6)/V6 at both cutoff frequencies, that is at 0 = 0 and at
0 = r, is not large, the reduction of the ruby height does not appear a
promising way to narrow the bandwidth of the comb structure.

For K34 loading, (E' - E) /VE becomes positive and can be evaluated
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from measured data with the help of (21). Two of the measured curves
of (ei - e)/-6 are shown in Fig. 11 in broken lines. ( - e)/Are is
larger near 0 = 7 than near 0 = 0. For the forward -wave structure this
causes the upper cutoff frequency to decrease while leaving the lower
frequency almost unchanged.

The upper cutoff frequency of the forward -wave structure can also be
reduced by using thin rectangular fingers (i.e., d < L - 1). (0) of the
comb structure with fingers of square cross section was shown in Fig. 3.
It was also shown that D /1V = 0.9  0.95 is usually the best choice to
reduce the bandwidth of the passband and yet avoid fold -over near
0 = 0. For this value of D/TV, one notices in Fig. 3 that (0) > E(7).
In order to reduce the bandwidth further, one may increase e(r) so that
it approaches (0). This can be done by reducing the dimension d of the
fingers. Since the fields between the fingers are almost negligible at
0 = 0, the thickness dimension of the fingers does not affect (0). On
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the other hand, near 0 = r the fields see more of the ruby with thin
fingers than with square fingers; thereby (7) increases.

In Fig. 12, Ve(r) vs d/(l. - 1) using the expression given by Harris
et al.' is shown. Three measured points are also indicated. The expression
of e( 7r) in Ref. 7 assumes a uniform field between the fingers. This ap-
proximation is less justified as the fingers become thin, although it should
be qualitatively correct even for (1/ (L - 1) < 0.5.

Both the K34 loading and the choice of finger thickness affect the fre-
quencies near 0 = 7. Band narrowing by thin fingers has the additional
advantage that the filling factor improves somewhat compared to the
use of K34 loading and of square fingers.

All the three techniques described here can be combined to narrow the
passband very effectively in such a way that fold -over is still avoided.

VII. HIGHER -ORDER MODES

It has been shown in Section II that there exists a series of higher -order
passbands for a comb structure.

Let us compare the first and the second modes of operation from two
different approaches. Equation (6) shows that for a given 0 the free -space
wavelength of the first mode is three times longer than that of the second
mode when all of the dimensions of the structure are kept the same. Thus
the percentage bandwidth of the passbands is approximately the same
for all modes. By using a frequency scale for the first mode which is
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FIG. 12 - The square root of the effective dielectric constant at 0 = for "thin
fingers." It is assumed that e = 9.
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one-third that for the second mode, the (4-# diagram of the first and the
second modes should coincide. This is indeed verified from measured co -13
diagrams of the first and the second modes of the structure designated as
A in Fig. 13.

On the other hand, when W /L, D/W and s are kept unchanged while
the length of the finger h is made three times longer, the passband of the
smaller structure operating in its first mode will be in about the same
frequency range as that of the larger structure operating in its second
mode. However, the bandwidth of the smaller structure in the first mode
is larger than that of the larger structure in the second mode. This is due
to a larger Ah/h for the structure with the smaller h. A structure B with
a finger length of one-third that of structure A was built, and the co -13
diagram of its first mode is also shown in Fig. 13. One notices that the
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Fig. 13 - Comparisons of the first and the second passbands of the loaded
comb structures. The fingers arc 0.040 x 0.040 inch in cross section and / = 0.040
inch.
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first mode of B has a larger bandwidth than the second mode of A. The
larger slowing factor associated with the smaller bandwidth is one of the
advantages of higher -order modes, but it is not an essential factor, since
there are more efficient techniques of reducing the available bandwidth.
However, the higher -order modes may be advantageous when the re-
quired microwave frequency of the passband is so high that it becomes
difficult to fabricate comb fingers of a quarter -wave electrical length,
provided the waveguide modes which may propagate in such a struc-
ture can be suppressed. Then the larger structure would permit reduced
mechanical tolerances.

VIII. DESIGN CONSIDERATIONS

Since the gain of the maser increases as the bandwidth of the passband
of the structure is reduced, it is preferable to design a structure having
the narrowest bandwidth compatible with the requirements on the useful
bandwidth of the maser.

The choice of various dimensions of the structure to obtain a given
center frequency and to approach the narrowest bandwidth possible
without fold -over will be discussed here.

From the curves in Fig. 8, a small value of W/L is preferred. Other
design considerations may dictate the smallest permissible W/L value.
In all our experiments, for example, a period length L = 0.080 inch was
chosen. For W/L smaller than 0.7 it would seem rather difficult to in-
corporate a high-performance isolator into the structure. Thus W/Lrr:-.10.7
is a compromise optimum value.

With given dimensions of the empty comb and without ruby shaping
near the finger tip, the bandwidth is reduced by gradually reducing D/W
until fold -over sets in near 0 = 0. This happens at about D/W Pr:id 0.9.
Fold -over appears more readily if additional "ruby shaping" is applied
to the structure. Thus D/W should be larger than 0.9 in order to allow
for some latitude in ruby shaping. From our experience D/W = 0.95 is
a suitable value.

For the step in the ruby near the finger tip (Fig. 10a), D'/W may be
taken between 0.4 and 0.6. Then I (E' - e) /-NA I at 0 = 0 is large, and
the ratio of its magnitude at 0 = 0 and 0 = r is also large.

The frequency near the 0 = r end can be easily controlled by using
thin fingers. The curve in Fig. 12 may serve as a guide in the choice of a
suitable finger aspect ratio d/ (L -1).

The final parameter yet to be determined is the length of the fingers,
h. For an initial design, one may use the midband value of VET, ---r/2)
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from Fig. 3. Then

h
4A/ e r/2 )

where X is the free -space wavelength of the given center frequency.
The three techniques discussed above for narrowing the bandwidth affect
primarily the frequencies near 0 = 0 and 0 = 7, i.e., close to both cut-
offs; but the frequencies near 0 = 7r/2, i.e., close to midband, remain
nearly unchanged.

Following the suggestions given here, one should arrive at a first -order
design for a TWM which will perform fairly close to the theoretical ex-
pectation. Experience has shown that a small additional amount of fine
adjustment is needed in order to have the traveling -wave maser perform
according to the specifications. This may involve control of the center
frequency, adjustment for more or less slowing in order to obtain the
design gain, or adjustment of the curvature in the co -i3 diagram so as to
realize a fiat gain -versus -frequency characteristic. The theoretical data
provided in this paper make it rather easy to determine the appropriate
design modifications.
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APPENDIX A

The Potential Distribution on the z Axis

Consider the coordinate axes shown in Fig. 14. The potential on the z
axis for - (1/2) < z < (1/2) can be expressed as

2

(m)th

.

z
2

(rn + t h

Fig. 14 The coordinate system used in Appendix A.



1062 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

V(0,z) = V8(0)g(z) Va(0)f(z) (22)

where V8(0) and Va( 0) are those parts of the potential which are sym-
metrical and antisymmetrical with respect to the x axis, respectively,
and g(z) and f(z) describe their variation along the z axis. They are
defined so that

g (-0 g = 1

Gi)

Substituting (23) and (24) into (22), the potentials of the mth and

(23)

(24)

(m 1)th finger become, respectively,

= V8 - V. (25)

Ae-j(7"4-1" = V. + Va. (26)

From (25) and (26),

= Ae-j("4+4)° cos (0/2) (27)

V. = -jAe-j(m+1)° sin (0/2). (28)

Then (22) becomes

V(0,z) = Ae-j("a+1)°[g(z) cos (0/2) - jf(z) sin (0/2)]. (29)

Assuming the fingers to be infinitely thin, g(z) and f(z) can be found
from a Schwarz-Christoffel transformation. This transformation is de-
scribed in Ref. 7. The result can be given in closed form for the derivatives
g' = dg/dz and 1' = df/dz:

rz
cos

7r
g

L sine 2l - 0.5
W- In -0L

7
f' - 1

L sin2 712. - 0.5
1.854

2/

(30)

(31)

where it is assumed that 1/ L = 0.5. In deriving (30), an elliptic function
has been approximated by a sine function. This approximation becomes
better with larger W/L. The origin of the z coordinate for (30) and (31)
is the same as originally indicated in Fig. 1, which differs from that shown
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in Fig. 14. It is seen that an infinity occurs both for g' and f' at the finger
corners, z = ±1/2.

APPENDIX B

Impedance of (1 h'invr Based on the "Thin -Tape" Approximation

It was shown in Section III that the admittance of a finger can be
found by adding the admittance between the fingers Yi , and the admit-
tance between the finger and the waveguide Y2 . Y2 can be expressed in
terms of the potentials f and g along the z axis of Fig. 14. f and g are the
potentials at 0 = ir and 0 = 0, respectively. We shall assume f and g
to be those obtained by conformal mapping of the thin -tape geometry.

By separating the term with n = 0 from the remaining summation,
(13) may be rewritten in the following form

0
sin 7 //2

172(Yo01 coth B
L L

X 2-
0

[sin f
/2

f' cos
L-

z dz
0

4

for

where

0 "'y / 02
+ COS 77 g sin dz

z - t I 2
E (-1)

n =-oo
nO

n+r

(0 , tor\
sin -r 2) .

z -
e) 2 / 2

0 nr sin f
//2

f' cos (0 + 2nr) L dz

+

L - 1 = 1 = d

r = 0 for n > 0

r=l for n < 0.

(32)

The terms involving g are omitted except for n = 0, since usually g' f'.
The coordinate origin used in this equation is at the position shown in
Fig. 14.

Let YL , Ym and Yu be Y2(0)/ Yo at 0 = 0, 7/2 and 7, respectively.
These quantities can be obtained directly by conformal mapping. YL
and Yu are shown in Ref. 7. Ym is obtained by a similar procedure and
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Fig. 15 - The impedance K(B) of a finger at 0 = 7/2.

the result is shown in Fig. 15. For 0 other than these three values, (32)
should in principle be used to find Y2(0). Fortunately, Y2(0) can be ex-
pressed approximately in terms of YL and YM or Yu in an interpolation
formula, and thus the tedious evaluation of (32) can be avoided.

Letting 0 = 0 and then 0 = 7/2 in (32), one obtains,

.1'112
2(1 (1Z (33)

-1/2
YL =

1
//2

dz
2

W -//2 11

7
sin 1/2

YM = coth sill -
7 2L 4 L - //2

8

f' cos 7rz dz
2L

//2 52.g' sin g 2dz] + (- i.r+r
-1/2 ALL) n =-00

6111 (7 ± -117) //2
8 2 7rf cos 2n7r -z dz.r

We shall assume that approximately

f- 112

1/2 1/2
Oz

f' dz f-112 f' cos -dz

(34)

(35)
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sin
4

(f-/- ni_r) sin
-g

(71- nr
2 2 /

0 nir r 12

4, 2 8

for n 0 (36)

f- 1/2 -//

2 1/2

f cos (0 + 2n7) dz f
1/2

f' cos (-2 ± 2n7) dz'

for n 0

f-1/2 -

1/2 // 2
i . Oz 2

g sin- dz =LI ---, i
1/2

g' z dz.

Then (32) becomes

0
sin

7
2

sin /--
W

sin 7Ti
8 7W) 2W

--Y2(0) YM + --Lx- coth 0 coth 2L7 0 L 7
sin -

4 4 ii -

sin -2

0
sin

4 //2

0 T- (C0111 01 0 o(cos
2 2 :V t/2

- sin zf

(37)

(38)

(39)

4

The last term of (39) is small compared to the other terms, and it can
be found by numerical integration of g' in (30).

One notices that Y2(0) of (39) becomes YL and YM when 0 = 0 and
0 = 7/2, respectively. One may estimate the error involved in (39) by
letting 0 = 7 and compare it with Yu obtained by conformal mapping.
For W / L = 1, 172(7r) obtained from (39) gives a value 10 per cent smaller
than that obtained directly by conformal mapping. The admittance of a
finger which is the sum of Y2 and Y2 thus has an error of about 4 per cent
at 0 = 7. For other values of 0, the error would be even smaller.
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A Comparison of Permanent Electrical
Connections

By G. W. MILLS

(Manuscript received February 10, 1964)

A study has been completed which compares four types of permanent
electrical connections (soldered, solderless wrapped, percussive welded, and
resistance welded) under environmental conditions of vit ration, shock, tem-
perature extremes, corrosion, humidity, and bending. Only good -quality
connections were included in this study, and they represented the current
state-of-the-art for each type. Under these conditions the connections showed
no significant degradation in their electrical characteristics as long as they
remained mechanically secure. Differences in the four types of connections
were therefore assessed in relation to their mechanical characteristics. Con-
sequently, one of the more important results of the study was the recognition
of fatigue life as the most important mechanical connection characteristic
when comparing connections which meet the high standards of the Bell Sys-
tem for electrical stability. Using fatigue life as a basis for comparison and
soldered connections as a reference standard, the major conclusions with
regard to general wiring (the connection of wires to terminals, such as sur-
face and local cable wiring) are as follows for the conditions that existed in
this study:

(a) monitored percussive welded connections are superior to soldered
connections;

(b) over-all, solderless wrapped connections are essentially equivalent
to soldered connections;

(c) resistance welded connections are significantly inferior to soldered
connections.

Although differences were found among the types of connections, no evi-
dence was obtained that any of the connection types are not satisfactory as
presently used in normal Bell System applications.

I. INTRODUCTION

The Bell System uses many types of electrical connections. The best
connection for a specific application is chosen on the basis of the relative
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merits of the connections in the following general areas:
(1) adaptability of each connection for the application under consider-

ation,
(2) reliability or life required from the connections under the environ-

mental conditions in which the equipment must operate, and
(3) relative cost of each connection.
This study was concerned with obtaining information on the compara-

tive reliability or life of the four main types of permanent connections
(solderless wrapped, soldered, percussive welded, and resistance welded)
under various environmental conditions. The probability of the occur-
rence of substandard connections was recognized as a factor in deter-
mining the reliability of a given type of connection. However, only good -
quality connections of each type were compared in this study, and all
present manufacturing standards were followed in making them.

All four types of connections are considered adequate for the applica-
tions in which they are presently used, and the results of this study should
not be construed as a recommendation to change to a different type of
connection in these applications.

The scope of the program is illustrated by Fig. 1. It shows general
wiring application (the connection of wires to terminals such as surface
and local cable wiring) and the environments considered.

Some of the environments chosen are more severe than those normally
encountered in a central office. This was necessary to produce a measura-
ble effect in a reasonable time and should not alter the results, because
this was a comparison study.

GENERAL WIRING APPLICATION

DESCRIPTION:
CONNECTION OF SUBASSEMBLIES

EXAMPLE:
LOCAL CABLE AND SURFACE
WIRING

CONNECTIONS COMPARED:
I. SOLDERED
2. SOLDERLESS WRAP
3. PERCUSSIVE WELD
4. RESISTANCE WELD

ENVIRONMENTS

I. VIBRATION
2. SHOCK
3. TEMPERATURE EXTREMES
4. CORROSION
5. HUMIDITY
6. BENDING

Fig. 1 - Test program for permanent connection comparison.
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The end result from each of the environmental tests was the establish-
ment of an "order of merit" for the four types of connections in that
particular environment. Thus the connection which suffered the least
degradation in an environment would be placed at the top of the "order
of merit" list and the connection which showed the greatest degradation
would be on the bottom.

Early in the test program, it was observed that none of the test en-
vironments caused any electrical failures and that very few of the test
environments caused mechanical connection failures. Thus, it was con-
cluded that the establishment of an "order of merit" would have to be
obtained from some observed mechanical degradation in destructive
tests. Two types of tests always led to connection failure, i.e., breakage,
and these were the vibration and bending fatigue tests. The establish-
ment of an "order of merit" for these tests was very simple: the connec-
tions which lasted the longest were the best and those which failed first
were the poorest.

Since both of these tests are essentially fatigue tests, it was realized
that the fatigue life of a connection could be a better basis of comparison
than an ultimate -strength test, since all the test connections had met the
rigid Bell System standards for electrical stability. Further analysis, as
described in Section 3.1, led to the conclusion that fatigue life should be
used as the comparison basis throughout this study for the following
reasons:

(1) A comparison based on fatigue life offers an absolute comparison
scale for the types of connections studied.

(2) Electrically stable permanent connections can be characterized by
their fatigue life.

II. TEST PROCEDURES AND RESULTS

2.1 General

The quality and uniformity of each group of connections was deter-
mined by destructively testing approximately half the group and thus
establishing the strength distribution of the remaining half, or test con-
nections. The destructively tested or control connections were generally
selected alternately by order of manufacture, from the whole group of
connections. The destructive strength control data are presented in the
Appendix along with a description of the destructive strength method
used for each type of connection.

Because of the statistical nature of the data collected in a program of
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this type it is necessary to present the data in the form of probability
distributions, as shown in Fig. 2. The ends of the bar represent the 10
per cent and 90 per cent points on the distribution and the projecting
line between represents the 50 per cent point.

2.2 Environmental Tests

Typical examples of the four types of connections compared in this
study are shown in Fig. 3. Since this study is basically a comparison of
the four types of connections, every effort was made to hold all of the
unknown parameters to an absolute minimum, and this was accomplished
to a great extent by subjecting all of the connections to the same en-
vironment at the same time. The connections were mounted on fixtures
to facilitate the handling and the mounting during exposure to the vari-
ous environments. These mountings were of two types, as shown in Fig.
4: (a) connections with insulation, consisting of 3 -inch loops of wire con-
necting two terminals, the group thus containing forty connections, i.e.,
20 loops of wire; (b) connections without insulation, the wire having a
90° bend near the terminal and being fastened directly to a standoff
insulator. This last type was designed for the resistance change measure-
ments (AR) which were required for the temperature, corrosion and
humidity test environments.

This study consisted of the sixteen general wiring tests listed in Table
I. Most of these were of the comparison type, but a few were studies con-
cerned with only one type of connection. All of the vibration fatigue
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SOLDERED

PERCUSSIVE WELD

SOLDERLESS WRAP

RESISTANCE WELD

Fig. 3 - Typical examples of general wiring connections.
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tests, with the exception of test 14, used the vibration configuration
shown in Fig. 5.

The first footnote of Table I requires some explanation. The vibration
fatigue life determinations in this study were spread over a considerable
number of months because of the long exposure times for some of the

3 -INCH LOOP
/OF INSULATED

WIRE

(a)

STANDOFF
INSULATORS

(b)

BARE
WIRE

Fig. 4 - Typical general wiring connections: (a) with insulation, (b) without
insulation.
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TABLE I - LIST OF GENERAL WIRING TESTS

Test Description Test
Number

Insulation Fatigue Method .
N
0_0-00 ,.,

...c..y 4

,« 'o
s., c,'
.nza.Eo),
O Viz

.,-,0
t.-,'

3
',-4 2

r:,,..7)
vcq
bGZ

GI:

4g)
..e

. .* .:

^=
..*;"

15
ct«

.J0

Ti g
7-1.3=.. oti
tc.4 CO

; : .1

Y
bo

--cs=>0.
V, .4 PI
x

Vibration test without insu-
lation

1 X X 80 6

Vibration test with insula-
tion

2 X X 40 6

Shock test, laboratory (fa-
tigue life)

3 X X 40 7

Shock test, laboratory (de-
structive test)

4 X 40 8

Shock test, railroad non-
cushioned

5* X X 20 9

Shock test, railroad cush-
ioned

6* X X 20 9

Temperature test, central
office conditions

7 X X 40 10

Temperature test, outside
plant conditions

8 X X 40 10

Three months corrosion test 9 X X 20 11

Six months corrosion test 10* X X 20 11

Humidity test 11 X X 40 12

Lightly loaded bending test 12 X X 40 14

(30° angular displace-
ment)

Heavily loaded bending test 13 X X 40 16

(45° angular displace-
ment)

Configuration test 14 X X 40 17

Ultimate strength as a func-
tion of fatigue life

15 X X 120f 18

Inferior weld test 16 X X 20f 19

* Test conducted after recalibration of the vibration machine.
f Only percussive welded connections tested.

tests. Toward the end of the testing, the mounting springs on the table
of the vibration machine had to be replaced and the machine recali-
brated. This recalibration seems to have affected the fatigue life deter-
mination of some or all of the subsequent tests; however, it has not been
possible to determine the extent of this difference or even to prove that

SOLDERED (S) SOLDERLESS
WRAP (SW)

PERCUSSIVE
WELD ( P)

Fig. 5 - Standard vibration configuration.

RESISTANCE
WELD (R)
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it does or does not exist. If a difference does exist, it would introduce an
error in the comparisons between the vibration fatigue life data of some
of the later tests and the control fatigue life data (test 1 or 2) but would
not affect the comparison among the four types of connections on a
particular test, since they all experienced the same vibration environ-
ment.

2.2.1 Vibration Tests

The vibration tests have been divided into two general classifications:
(a) those for wires without insulation and (b) those for wires with insula-
tion.

The results of these two tests are shown in Fig. 6, and they cover the
fatigue life of the four types of connections, with and without insulation.
The connections which were connected with a loop were grouped in
pairs. They were vibrated according to the schedule listed in Table II
and used the vibration configuration illustrated in Fig. 5. The actual
motion of the wires was a function of the mass of the loop as well as the
acceleration of the connection; therefore all loops were made as close to
the same size as possible.

In test 1 (without insulation) it was necessary to solder loops on the
connections, since these were set up for resistance change (SR) measure-
ments as shown in Fig. 4(b) and therefore had no loops. Care was taken
to control the size and weight of these loops so that they would closely
approximate the loops with insulation in test 2, shown in Fig. 4(a).
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Fig. 6 - Vibration fatigue life results. (a) Test number. 1 (without insulation);
order of merit, based on vibration fatigue life. (b) Test number 2 (with insula-
tion); order of merit, based on vibration fatigue life.
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TABLE II - VIBRATION SCHEDULE
The vibration was sinusoidal in wave shape and its frequency varied from 5

cps to 500 cps and back to 5 cps in 2 minutes. The displacement, acceleration,
and running time schedules were as follows:

Displacement (Inches) Acceleration (G's) Running Time (Hours)

0.1
0.2
0.3
0.4
0.5

5
10
15
20
25

2
2
2
2

to destruction

Note: The cross -over frequency was approximately 30 cps: that is, 5 to 30
cps controlled displacement and 30 to 500 cps controlled acceleration.

Since the connections were grouped in pairs and the weakest connection
of the pair failed first, no usable fatigue data could be obtained from the
remaining connection and it was clipped off, leaving a stub which could
be destructively tested.

2.2.2 Shock Tests

The shock tests can he divided into two general classifications: (a)
laboratory shock and (b) railroad shock. Two laboratory shock tests
were conducted, one using the vibration fatigue life after the shock test
as a measure of the connection degradation, and the other using the
destructive strength as an indication of any degradation suffered by the
connections. These tests consisted of subjecting all four types of con-
nections to 90 high-level shocks. All of the shock test connections were
mounted on a fixture and experienced the same shocks at the same time.
Half sine wave shocks were used with a peak amplitude of 500 to 600
G's and a duration of 2 to 3 milliseconds. There were no connection
failures due to this shock environment. In the case of the fatigue life
part, test 3, the connections were then subjected to the vibration sched-
ule (Table II) and their fatigue life determined. The results of these
tests are presented in Fig. 7.

In the case of the destructive strength part, test 4, the connections
were destructively tested after the 90 shocks, each in accordance with
the method prescribed for it, as described in the Appendix. The results
of these tests are compared to a destructive strength control and are
shown in Fig. 8.

It should be noted that the order of merit for test 4 could not be based
on any absolute strength scale because of the differences in the destruc-
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Fig. 7 - Vibration fatigue life after laboratory shock tests. (a) Typical con-
nection orientation during shock tests. (b) Test number 3 (with insulation);
order of merit, based on vibration fatigue life.
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tive strength tests. It was therefore based on the percentage degradation
indicated by the difference between the mean of the control sample and
the mean of the sample which had been exposed to the shock.

The railroad shock tests were of two types: (a) noncushioned, test 5, and
(b) cushioned, test 6. These tests consisted of sending the four types of
connections in a rigid plywood box from Columbus, Ohio, to New York
City by railway express for a total of ten round trips. The connections
from both tests, numbers 5 and 6, were shipped in the same container;
however, the noncushioned connections were fastened directly to the
plywood box, whereas the cushioned connections were supported by
rubberized hair in the center of the container. The fatigue life of the con-
nections was determined after the ten round trips by vibrating them ac-
cording to the vibration schedule (Table II). The results of both tests
are presented in Fig. 9. There was very little difference in degradation
observed for the two tests, and they resulted in identical orders of merit
based on the vibration fatigue life.

The vibration fatigue life determination for these two tests was con-
ducted after recalibration of the vibration machine as discussed in Sec-
tion 2.2, and this could affect the comparison between these tests and the
control; however, it will not affect the comparison of each type of con-
nection within tests 5 and 6.

40
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Ems]
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6 -SW 8-P

5 5-R
(a) (b)

0

2-R

6C3
6 -R

Fig. 9 - Vibration fatigue life after railroad shock and vibration. (a) Test
number 5 (noncushioned); (b) test number 6 (cushioned). The order of merit,
based on vibration fatigue life, was the same for both tests.
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2.2.3 Temperature Tests

The connections were subjected to two types of temperature tests:
(a) central office conditions, test 7, and (b) outside plant conditions,
test 8.

The central office temperature test consisted of subjecting forty con-
nections of each type to a temperature of 105°C for a total of 154 days.
Once a week the connections were removed from the oven and allowed
to come to room temperature (20°C). Every two weeks the connections
were mechanically disturbed (plucked) and the change in resistance,
AR, was measured. After the 154 days, loops were carefully soldered to
the connections and they were subjected to vibration according to the
vibration schedule (Table II) and their fatigue life determined. The re-
sults are presented in Fig. 10. All forty connections of each type sur-
vived the 154 -day test without developing a change in resistance, AR,
of 0.001 ohm, which would have constituted an electrical failure. The
solderless wrap connections, however, did develop a considerably higher
number of AR's, as shown in Table III.

The soldered, solderless wrap, and resistance welded connections
showed a small but significant loss in fatigue life due to test 7. The
percussive welded connections, however, showed a larger, more signifi-
cant loss in fatigue life due to the temperature test.

The outside plant temperature test, test 8, was very similar to the
central office condition temperature test. The differences were that test
8 ran for 168 days and that when the connections were removed from the
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Fig. 10 - Vibration fatigue life after temperature tests. (a) Test number 7
(central office conditions); (b) test number 8 (outside plant conditions). The order
of merit, based on vibration fatigue life, was the same for both tests.
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TABLE III NUMBER OF OR VALUES OBSERVED FOR
EACH TYPE OF CONNECTION

Soldered Solderless Wrap Percussive Weld Resistance Weld
IR Values in

Milliohms
CO OP CO OP CO OP CO OP

0.2 6 none 42 44 1 1 3 1

0.3 none none 8 9 none none none none
0.4 none none 1 2 none none none none
0.5 none none 4 1 none none none none
0.6 none none none 1 none none none none

Note: CO = central office conditions, OP = outside plant conditions.

oven at 105°C they were immediately placed in a cold box at -40°C
and allowed to stabilize at this temperature. After approximately an
hour at -40°C, they were removed and allowed to come to room tem-
perature (20°C). Resistance change data and vibration fatigue life in-
formation were obtained in the same manner as the central office tem-
perature test; the results are presented in Table III and Fig. 10. The
changes in resistance and fatigue life data for the outside plant condi-
tions were similar to the results obtained from the central office condi-
tions, except that the soldered and solderless wrapped connections sus-
tained less degradation. Both temperature tests yielded the same order
of merit.

2.2.4 Corrosion Tests

The corrosion tests were of two types. (a) three months, test 9, and
(b) six months, test 10. These tests were identical in all respects with the
exception of the exposure time, as indicated in Fig. 11. They consisted of
exposing all four types of connections to the corrosive atmosphere of
New York City on the roof of the Bell Laboratories building at West
Street. Resistance change measurements were made on all of the con-
nections before and after exposure. All corrosion test connections sur-
vived the environment without developing the 0.001 -ohm resistance
change which would have constituted an electrical failure.

The apparent increase in fatigue life of all the connections, except
for percussive welded connections, in the six months corrosion test is
unexplainable except for the recalibration of the vibration machine dis-
cussed in Section 2.2. This is the most probable cause of this incon-
sistency, since there is no reason to expect that exposure to a corrosive
atmosphere can improve the fatigue life of any type of connection.
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Fig. 11 - Vibration fatigue life and orders of merit after corrosion tests. (a)
Test number 9 (three months); (b) test number 10 (six months).

2.2.5 Humidity Test

The humidity test, test 11, consisted of subjecting all four types of
connections to controlled temperature and humidity conditions accord-
ing to the following schedule: they were exposed to 90 per cent relative
humidity and 85°F dry bulb temperature for six consecutive days, then
dried at 140°F for two days. This cycle was repeated eight times for a
total test time of 64 days. Resistance change measurements were made
before, during, and after the test with no electrical failures being ob-
served. The fatigue life of the connections was determined by carefully
soldering loops of wire to the connections and vibrating them according
to the vibration schedule (Table II). The results are presented in Fig. 12.
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Fig. 12- Vibration fatigue life and order of merit after humidity test, test
number 11.
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2.2.6 Bending Tests

All four types of connections were subjected to two bending tests:
(a) the lightly loaded bending test, test 12, and (b) the heavily loaded
bending test, test 13.

Bending, in the lightly loaded bending test, took place in a horizontal
plane as shown in Fig. 13. The load on the connections came from the
tension in the wire and varied from approximately 0 to 4 grams. The wire
was moved 30° in one direction from its equilibrium position and then
returned, and then moved 30° in the other direction and returned to its
equilibrium position. This constituted one cycle. The number of such
cycles to failure for each connection was the fatigue data. Forty con-
nections of each type were tested and the results are presented in Fig. 14.

The heavily loaded bending test consisted of determining the bending
fatigue life of all four types of connections by bending in a vertical plane
with 300 grams hanging on the connection, as shown in Fig. 15. At a
relatively slow rate the terminal was rotated 45° from its originally hori-
zontal position and then returned. This constituted one cycle. The
number of such cycles required to cause failure of each connection was the
fatigue data. Forty connections of each type were tested for all connec-
tions except solderless wrap, of which 32 were tested; results are presented
in Fig. 16.

2.2.7 Additional Tests

There were three additional tests conducted in this study; (a) con-
figuration test, test 14, (b) ultimate strength as a function of bending
fatigue life for percussive welded connections, test 15, and (c) inferior
weld test, test 16.

The configuration test consisted of determining the vibration fatigue
life of the four types of connections, using a different configuration. The
90° bend used in the configuration shown in Fig. 5 was eliminated and the
wire was brought straight from the terminal as shown in Fig. 17 (b). Vi-

SOLDERED(S) SOLDERLESS WRAP PERCUSSIVE WELD RESISTANCE WELD
(SW) (P)

Fig. 13 - Lightly loaded bending configurations.

(R)
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Fig. 14 - Lightly loaded bending fatigue life, test number 12 (with insulation);
order of merit, based on bending fatigue life.
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Fig. 17 - (a) Vibration fatigue life with configuration omitting 90° bend in the
lead-off wire, test number 14 (with insulation); order of merit, based on vibra-
tion fatigue life. (b) Vibration configuration omitting 90° bend.

bration still took place in a vertical plane and the vibration schedule
(Table II) was followed. The results of this test are also shown in Fig.
17(a). All four types of connections showed a deterioration in their fa-
tigue life when the 90° bend was omitted. This bend apparently partially
isolates the connections from external wire movements and therefore
improves their fatigue life.

The objective of test 15 was to determine the ultimate strength of
percussive welded connections as a function of the bending fatigue life.
The fatigue method selected was the lightly loaded bending type. A
total of 240 percussive welded connections were used in this test; they
were divided into two groups of 120 each. The first group was destruc-
tively tested immediately after manufacture to determine their strength,
and these data are included in the destructive strength control presented
in the Appendix. The remaining 120 connections were divided into eleven
groups: one group of 20 connections and 10 groups of 10 connections
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TABLE IV - SCHEDULE FOR TEST 15
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Number of lightly
loaded bending cy-
cles

500 600 700 800 900 1000 1100 1200 1300 1400

Surviving connections 10 10 9 10 9 9 7 3 6 2
Average strength of

surviving connec-
tions in pounds

11.1 11.1 11.1 11.2 10.8 10.9 11.1 10.7 10.5 10.7

each. The 20 -connection group was fatigued to failure by the lightly
loaded bending method to establish the fatigue life of the connections.
The other ten groups were each fatigued to a predetermined number of
bending cycles according to the schedule shown in Table IV. After the
connections in each group had been fatigued for the number of cycles
assigned to that group, the connections remaining were destructively
tested using the combined test.

The results of this test, presented in Fig. 18, indicate that at 100 per
cent of the average fatigue life the surviving connections show only an
approximate 5 per cent reduction in their ultimate strength. This indi-
cates that the mechanical quality of a percussive welded connection is
characterized better by its fatigue life than by its ultimate strength.

The object of the inferior weld test, test 16, was to determine the ulti-
mate strength and fatigue life of inferior percussive welds and to com-
pare these characteristics with those of good welds. The welds were made
inferior by using insufficient capacitance in the welding power supply
during their manufacture. The results are presented in Fig. 19. The
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Fig. 18 - Ultimate strength as a function of bending fatigue life for percussive
welded connections, test number 15 (without insulation).
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Fig. 19 - Inferior weld test, test number 16: (a) destructive strength - in-
ferior welds show 55 per cent of the strength of good welds, based on the means
of the distributions; (b) bending fatigue life (without insulation, lightly loaded
bending) - inferior welds show 17 per cent of the bending fatigue life of good
connections, based on the means of the distributions.

combined destructive test was used to determine the ultimate strength of
the connections, and the fatigue method selected was of the lightly loaded
bending type.

The welds used in this test showed only 55 per cent of the strength of
good connections, and the fatigue life of the inferior type welds showed
17 per cent of the fatigue life of good connections. These results indicate
that, for percussive welding, bending fatigue life is a much more sensitive
indicator of weld quality than the strength of the connection as measured
by the destructive combined test.

III. DISCUSSION

3.1 Importance of Fatigue

The measure of life expectancy chosen for this study was the fatigue
life of the connections. The effect of the various nondestructive environ-
ments was measured by determining the loss of fatigue life caused by
them. During testing, no significant electrical degradation was observed
on any of the test connections as long as they remained mechanically
secure. Comparison of the four types of connections was therefore made
on the basis of their mechanical characteristics. Fatigue life was found
to be the most important mechanical characteristic of permanent elec-
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trical connections, as well as being one of the most sensitive indicators
of connection degradation.

Fatigue life was measured in both vibration and bending. The vibration
fatigue life was measured by the number of hours the connections sur-
vived a specified vibration schedule, and the bending fatigue life was
measured by the number of cycles to failure of the connections in the
lightly loaded and heavily loaded bending configurations. A comparison
based on fatigue life offers an absolute comparison scale for all types of
connections and facilitates the determination of an order of merit.

A given connection is better than another if, under identical environ-
mental conditions, its life is longer. The life of a connection has ended
when for any reason it fails to provide an adequate path for electrical
current. In general, a connection may fail in two ways, electrically or
mechanically. An electrical failure occurs when the connection develops
an electrical characteristic such as a large constant or variable resistance
which is incompatible with the equipment in which it is used. This type
of failure is generally important only for pressure type connections;
with properly designed and applied connections of this type it poses no
serious threat to long life.

A mechanical connection failure occurs when the conducting path is
physically broken. Most of the failures that are found in normal use fall
into this group, and these are very small in number. Mechanical failures
can be further divided into two groups, excessive force failures and fatigue
failures. An excessive force failure is defined as a failure due to the appli-
cation of a destructive force greater than that which a new, average, good
connection can withstand. The probability of such a failure for good
connections is directly related to the care with which the connections
are handled and is generally very low.

A fatigue failure is defined as any mechanical failure in which the re-
duction in fatigue life was the primary cause of failure. If a connection
is repeatedly stressed to a value below its breaking point, by definition
it is being fatigued, and its time of ultimate failure will have been signifi-
cantly influenced by its fatigue history. Thus most mechanical connec-
tion failures are due to fatigue, and since most connection failures are
mechanical, it is apparent that most of the connections which fail in
service do so because of fatigue.

The basic measure of quality of a permanent connection is its life.
Any adverse environment to which the connection is subjected usually
results in a reduction in either its electrical or mechanical life. There is
no environment present in a typical central office which will cause a
significant reduction in the electrical life of connections of the types and
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qualities considered in this study so long as the connection remains
mechanically secure. Two of the most severe environments in a central
office are the small -amplitude vibrations due to equipment operation and
the occasional bending of the connection during testing and wiring
changes. These are both of a fatigue nature, and if the connection pre-
maturely fails, it will probably be due to fatigue. Other environments
such as temperature, corrosion, and humidity will in general not cause
connection failure but will reduce the fatigue life, as shown in this study,
and thus hasten the failure of connections. It follows, therefore, that
most connection failures in service will be fatigue failures and that the
basic measure of mechanical quality of a permanent connection is its
fatigue life.

The results of this test program offer a number of arguments support-
ing the hypothesis that fatigue life is the most important mechanical
characteristic of a good connection. These will be presented in the form
of statements and then the supporting data and reasoning will be dis-
cussed.

(1) The ultimate mechanical strength of a connection is a poor meas-
ure of the fatigue life remaining in the connection.

Test 15 (Fig. 18) illustrates the above statement for percussive welds.
In this test, connections were fatigued a predetermined number of cycles
by the lightly loaded bending method and then the surviving connections
were destructively tested. The results show that, at 100 per cent of the
average fatigue life, the average strength of the surviving connections
was approximately 95 per cent. In other words, when almost all of the
fatigue life of the connection was expended, it showed only a 5 per cent
loss in strength. The surviving connections were actually in bad shape,
but a destructive strength test would have indicated hardly any degra-
dation.

A second statement, closely associated with the first, is as follows:
(2) Loss in the ultimate mechanical strength of a connection is gener-

ally coincident with an even greater loss in its fatigue life.
Test 15 supports this statement. Further support is provided by the

inferior weld test, Fig. 19. Inferior percussive welds were manufactured
on purpose by using insufficient capacitance in the welding power sup-
ply, and the destructive strength and bending fatigue life distributions
determined for these inferior welds. The results show that the destruc-
tive strength average dropped to 55 per cent of the good weld value and
the bending fatigue average dropped to 17 per cent of the good weld
value. Thus the fatigue life is approximately three times as sensitive an
indication of inferior welds as destructive strength tests.
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3.2 General

The most important factor affecting the fatigue life of a permanent
connection is the manner in which the wire is brought from the terminal
or its configuration. The configuration test, test 14, showed that when the
90° bend in the standard configuration was omitted, the fatigue life of all
four types of connections was drastically reduced. The configuration
used in test 14 may or may not have been the worst possible fatigue life
configuration for the connections, but there can be no doubt that it is
possible for the configuration to alter the fatigue life by approximately
a factor of two. The results of the configuration test lead to the conclu-
sion that the 90° bend in the standard configuration apparently partially
isolates the connection from external wire movements and therefore
improves the fatigue life of connections.

In general, the results of the shock tests indicate that all of the con-
nections suffered some mechanical degradation from this environment.

The laboratory shock test (fatigue life) and both railroad shock tests
show that in general it is the high fatigue life connections, i.e., those on
the high end of the distribution, which are most affected by the shock
environment.

Laboratory shock tests 3 and 4 afford one of the few opportunities for
a direct comparison of the fatigue life and destructive strength test
methods of measuring the degradation of the connections. The connec-
tions of both tests were exposed to the same shock environment and the
degradation due to this environment was measured in two ways, (1)
vibration fatigue life (Fig. 7) and (2) a destructive test (Fig. 8). Table
V summarizes the results of these two tests and presents the degradation
as a percentage of the control value.

Inspection of Table V indicates that for all four types of connections
fatigue life is the more sensitive indicator for the measurement of shock
degradation. This table thus further substantiates the statement that the

TABLE V - SHOCK DEGRADATION AS MEASURED BY FATIGUE LIFE
AND DESTRUCTIVE TESTS (PERCENTAGE DEGRADATION DUE

TO SHOCK)

Connection Type Fatigue Life Destructive Test

Soldered 23% 15%
Solderless wrap 24% 10%
Percussive weld 23% 1%
Resistance weld 22% 8%



1088 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

mechanical strength of a connection is a poor measure of the fatigue life
remaining in the connection.

The results of the central office and outside plant temperature tests,
7 and 8 respectively, showed, in general, a small but significant loss in
fatigue life for all types of connections except for percussive welded
connections. The degradation experienced by percussive welded connec-
tions from both temperature tests was greater than that of the other
three types and amounted to approximately 30 per cent of the control
fatigue life. Even this significant loss, however, did not prevent percus-
sive welded connections from placing second in the order of merit.

3.2.1 Composite Vibration Fatigue Life

The vibration fatigue life data from all of the tests without insulation
have been added together to form a composite or summary for each type
connection. This summary is presented in Fig. 20 and Table VI; the
table contains a list of the tests and the number of connections of each
type which were included. The order of merit based on the vibration
fatigue life for the connections without insulation is as follows:

1. percussive weld
2. soldered
3. solderless wrap
4. resistance weld.

A similar summary for the connections with insulation is presented
in Fig. 21 and Table VII. It should be noted that the data scatter, as
indicated by the length of the bar in the soldered and solderless wrap
distributions, has increased, compared to the distribution without in-
sulation, whereas the scatter of percussive and resistance welded data

25

20
Cr

15
U.

0
10

cr

0
5

0

S

SW
'17

1. PERCUSSIVE WELD (P)
2. SOLDERED (5)
3. SOLDERLESS WRAP (SW)
4. RESISTANCE WELD (R)

R

Fig. 20 - General wiring vibration fatigue life summary (without insulation);
order of merit, based on vibration fatigue life.
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TABLE VI - VIBRATION TEST DATA SUMMARY (WITHOUT INSULATION)

Test Description Test Number

Vibration
Temperature

central office
outside plant

Corrosion
3 months
6 months

Humidity

Totals

1

7

8

9

10
11

Number of Data Points From Each Test

Soldered Solderless
Wrap

Percussive
Weld

Resistance
Weld

40 40 37 40

20 20 20 20
20 20 20 20

10 10 10 10
10 10 10 10
20 20 20 20

120 120 117 120

30

25
w
cr

-I 20

LL

0 15

cr0 10
0

5

0

SW
S

1. SOLDERLESS WRAP (SW)
2. SOLDERED (5)
3. PERCUSSIVE WELD (P)
4. RESISTANCE WELD (R)

P

R

Fig. 21 - General wiring fatigue life summary (with insulation); order of
merit, based on vibration fatigue life.

TABLE VII - VIBRATION TEST DATA SUMMARY (WITH INSULATION)

Test Description Test Number

Number of Data Points From Each Test

Soldered Solderless
Wrap

Percussive
Weld

Resistance
Weld

Vibration 2 20 20 20 20
Configuration 14 20 20 20 20
Shock

Laboratory 3 14 20 18 20
Railroad

Noncushioned 5 10 10 10 10
Cushioned 6 10 10 10 10

Totals 74 80 78 80
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has remained about the same. This is probably due to the insulation
effect on the soldered and solderless wrapped connections. These con-
nections were manufactured with the insulation in close proximity to
the terminal, which is the normal wiring procedure; however, the exact
location of the insulation was not accurately controlled and this resulted
in a somewhat random insulation effect.

The order of merit based on the vibration fatigue life of the connections
with the insulation is as follows:

1. solderless wrap
2. soldered
3. percussive weld
4. resistance weld.

It is the opinion of the author that the "without insulation" data is
more important than the "with insulation" data, because the presence
of insulation close to the connection cannot be depended upon in the case
of soldered and solderless wrap connections. The worst case, without in-
sulation, is therefore the most important. Inspection of the bar graphs in
Fig. 20 and 21 shows that there is very little difference in the low end of
the soldered and solderless wrap distributions, which indicates that the
low fatigue life connections in the "with insulation" distribution were
essentially without insulation. Since it is the low fatigue life connections
which are most vulnerable to early failure, it follows that the most mean-
ingful comparison should be based on the "without insulation" data.

If the presence of insulation could be assured, as in the case of the
modified solderless wrap which has one turn of insulated wire as part of
the connection, the fatigue life would undoubtedly be consistently higher
and the "with insulation" data would be more meaningful.

The above two summaries were obtained by adding the fatigue life
data of the tests involved to form a composite distribution. This pro-
cedure weights the final distribution according to the number of connec-
tions in each type of test, and this is certainly not the only way to treat
the data. However, all four types of connections were treated equally,
and so a comparison between them is meaningful.

3.2.2 Orders of Alerit

An order of merit based on vibrational fatigue life statistical distribu-
tions was obtained from all environmental tests which compared the
four types of connections and which used vibrational fatigue as a meas-
ure of degradation. It is also possible to obtain an order of merit for these
tests from the number of stub connections of each type which survived
the complete vibrational fatigue life determination. When one connec-
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tion of a pair failed during the vibration test, the loop was clipped off,
leaving the remaining good connection with a wire stub long enough to be
destructively tested. Then the vibration test was continued until all
pairs of connections had at least one failure. This additional vibration
caused some of the stubs from the surviving connections to fail. Since all
four types of connections initially had the same number of test connec-
tions, au order of merit can be obtained from the number of surviving
stub connections by assigning the first position to the connection type
which had the highest number of surviving stubs, second place to the
type having the next highest number, and so forth. This procedure has
meaning because all stub connections remained on the vibration machine
until the end of the vibration period. Table VIII compares the orders of
merit obtained from the number of stubs remaining with those obtained
by consideration of the fatigue life distribution of the four types of con-
nections.

In combining the orders of merit in Table VIII, it seems reasonable to
assume that the soldered and percussive welded connections are of ap-
proximately equal merit and should share the number 1 position in an
over-all vibrational order of merit as follows:

soldered
percussive weld

3. solderless wrap
4. resistance weld.

It seems desirable to establish an over-all order of merit, shown in
Table IX, for the four types of connection considered in the general
wiring portion of this study. It is possible to do this because approxi-
mately equal numbers of all four types of connections were subjected to
the various environments at the same time and under identical condi-
tions. It should be remembered, however, that the best connection in the

TABLE VIII - ORDER OF MERIT COMPARISON

Order of Merit

Based on Number of Surviving
Stubs Based on Fatigue Life

First Second Third Fourth First Second Third Fourth

Percussive weld (P) 3 2 3 0
Soldered (8)
Solderless wrap (SW)
Resistance weld (R)

4
1

0

6
3
0

1

7
0

0

0
11

8
1

0

2
3
0

1

7
0

0
0

11

Numbers represent the number of firsts, seconds, thirds, and fourths for
each rating method.
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TABLE IX - OVER-ALL ORDER OF MERIT

Description Number of
Connections

Order of Merit

First Second Third Fourth

Vibrational fatigue 1600 S &P - SW R
Lightly loaded bending fatigue 160 P SW S R
Heavily loaded bending fatigue 152 SW P S R
Over-all order of merit based on

fatigue
1912* P S SW R

Legend: 5, soldered; SW, solderless wrap; P, percussive welded; R, resistance
welded.

* Sum of above three groups of connections.

over-all order of merit was not necessarily the best under every environ-
mental test, but was best only in an average sense.

Percussive welded connections were assigned first place because they
shared first place with the soldered in the most important group of
tests, vibrational fatigue (1600 test connections), and were also first
in the lightly loaded bending tests. Soldered connections were assigned
second place on the basis of their sharing first place in the vibrational
fatigue tests. Resistance welded connections were assigned last place
for obvious reasons, leaving third place for solderless wrapped connec-
tions.

It should be remembered that the soldered and solderless wrapped con-
nections used in this study were of the same quality as those in wide -
scale use in the telephone plant today. These connections have given
and continue to give satisfactory service in the central office environ-
ment.

On the other hand, the percussive welded connections used in this
study were of higher quality than those which have been used in special
applications. This higher quality results from the use of the monitoring
technique described in Ref. 1. These monitoring criteria are strongly
recommended for all applications of percussive welding to assure the
high quality of which the process is capable.

3.2.3 Summary

Table X, connection suitability as a function of environment (based
on fatigue life), attempts to present the results of the general wiring
portion of this study in a manner which would aid in the selection of a
connection for a given environment. A rating number, based on the
fatigue life of the connections, is assigned to each type of connection for
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TABLE X - CONNECTION SUITABILITY AS A FUNCTION OF ENVIRONMENT
(BASED ON FATIGUE LIFE)

Test Description Test
No.

Fatigue
Method*

Without Insulation With Insulation

Sol-
dered

Sol-
der-
less

Wrap

Per-
cus-
sive

Weld

Resis-
tance
Weld

Sol-
dered

Sol-
der-
less

Wrap

Per-
cus-
sive

Weld

8
6

6

7

4
6

Res's-
tance
Weld

Vibration test
Shock test labora-

tory
Shock test railroad

noncushioned
Shock test railroad

cushioned
Temperature test

central office con-
ditions

Temperature test,
outside plant con-
ditions

Three months cor-
rosion

Six months corrosion
Humidity tests
Configuration test
Composite

1&2
3

5

6

7

8

11

12
13
14-

VIB
VIB

VIB

VIB

VIB

VIB

VIB

VIB
VIB
VIB
VIB

7

6

7

7

7
7

7

5

4

5

5

5
5

5

8

6

6

8

8.
7

8

4

3

3

4

1

3

4

10
8

9

9

4
7

8
7

7

7

6
7

4
3

3

3

2
3

Lightly loaded
bending test

12 LLB 3 5 10 2

Heavily loaded
bending test

13 HLB 8 10 8 5

* Fatigue method: VIB - vibration; LLB - lightly loaded bending; HLB -
heavily loaded bending.

each test conducted. The table is divided into three general areas defined
by the double lines. The top area is concerned with the vibration fatigue
life both with and without insulation, the middle area is concerned with
the lightly loaded bending fatigue method, and the last area at the bot-
tom is concerned with the heavily loaded bending fatigue method. The
rating numbers within any of the three areas are consistent among
themselves. However, comparison of rating numbers from different
areas has no meaning.

The rating system used is as follows: the number 10 was assigned to
the highest value of fatigue life in a given area. The other rating numbers
in the same area were generally assigned according to the percentage of
fatigue life they had, compared to the highest value. Some adjustment of
the rating numbers has been made to take into consideration the orders
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of merit. In general, the rating numbers are closely associated with the
fatigue life of the connections involved and offer a reasonably good index
as to how well a connection will perform in a given environment.

Table X should be particularly valuable in selecting a connection for
a given environment. The value of Table X is derived from the fact
that, within a given fatigue area, valid cross comparisons can be made.
Thus it is possible to get an idea of the degradation caused by shock on
a percussive welded connection as compared to that caused by tempera-
ture or humidity or some other environment totally different from shock
on, say, a soldered or solderless wrapped connection. These cross com-
parisons are possible because the common parameter chosen to measure
degradation was fatigue life.

The "composite" listed under test description in the vibration fatigue
area of Table X was obtained from the results of the vibration fatigue
life summaries of Section 3.2.1.

The effect of insulation on the wire in the vicinity of a connection is
apparent from the vibration portion of Table X. The percussive and re-
sistance welded connections are relatively unaffected by the presence or
absence of insulation. This result was expected, since the manufacture
of these connections requires the insulation to be removed from the
area near the welds. The soldered and solderless wrapped connections
show a significant increase in their fatigue life when insulation is close
to the connection.

Since improved vibration fatigue life is obtained when a soldered or
solderless wrapped connection has insulation close to the terminal, it
seems reasonable to inquire about the possibility of manufacturing
these connections with the insulation always close to the terminal in
order to take advantage of the increased fatigue life. It seems unlikely
that this could be done for the soldered connections, because of the ad-
verse effect of the heat on the wire insulation. In the case of the solderless
wrapped connection, however, modified wrapping bits are available
which place a turn of insulated wire around the terminal. The average
vibration fatigue life of these modified wraps would undoubtedly be
greater than either the "with" or "without" insulation connections
tested in this program. It is the opinion of the author that the modified
solderless wrapped connections could show enough improvement in
their fatigue life to take over first place in the order of merit as opposed
to third place without the modified wrap. In summary, it can be stated
that a significant improvement in vibration fatigue life could be obtained
on solderless wrapped connections by using a modified wrap.

It should be pointed out, however, that the need for this increased
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fatigue life in normal Bell System field applications appears unnecessary
in view of the fact that billions of solderless wrapped connections are in
use in the telephone plant today and have given excellent service since
their introduction ten years ago.

IV. CONCLUSIONS

4.1 General

The following three conclusions apply to all four types of electrical
connections covered in this study. These connections were made with
one size and type of terminal (0.025 by 0.062 inch nickel -silver) and
with one type of wire (24 -gauge solid copper); consequently, the con-
clusions may not hold for all types and sizes of terminals and wire.

(1) Assuming adequate electrical stability, a permanent electrical con-
nection can be characterized by its fatigue life. Thus, if the fatigue life
of a connection is well defined for various fatigue methods and the effect
of adverse environments is determined on these fatigue lives, the me-
chanical quality of the connection has been established.

(2) A bend in the wire in the vicinity of the connection partially iso-
lates it from external wire movements and significantly improves its
fatigue life.

(3) The u It i mate mechanical strength of a connection is a poor meas-
ure of the fatigue life of a connection.

4.2 Specific

(1) Using fatigue life as a basis of comparison and soldered connections
as a reference standard, it is concluded that:

(a) monitored percussive welded connections are, in general, superior
to soldered connections for the conditions which existed during this
study,

(b) over-all, solderless wrapped connections are essentially equivalent
to soldered connections, for the conditions which existed during this
study, and

(c) resistance welded connections are significantly inferior to soldered
connections for the conditions which existed during this study.

These conclusions represent over-all averages for all of the conditions
tested. In some specific environments they may be interchanged or re-
versed. See Table X for details.

(2) Table X gives a good estimate of the comparative fatigue life which
can be expected from the four types of connections under the various
environmental test conditions.
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(3) All four types of connections show loss in fatigue life and destruc-
tive strength due to repeated high level shocks.

(4) The shock and vibration experienced by all four types of connec-
tions when shipped by railroad express can result in loss of fatigue life.

(5) In general, all four types of connections show some loss in fatigue
life due to the temperature tests environment. Percussive welded con-
nections show the most significant loss.

(6) A significant improvement in the fatigue life of solderless wrapped
connections can be expected through use of a modified wrap which
places one turn of insulation around the terminal.
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APPENDIX

Connection Manufacture and Quality Control

This appendix describes the destructive strength testing methods used
for each type of connection. It also presents the data resulting from these
tests in the form of statistical distributions.

A.1 General Wiring

All of the connections were made using one type of terminal and wire
from two spools.

The terminal was of the solderless wrapped type shown in Fig. 22. It

0.50"

0.025"

0.0625"

Fig. 22 - General wiring terminal; material is nickel -silver.
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was made of nickel silver 0.025 inch thick and -A inch wide in the area
of the connection. The soldered and solderless wrapped connections were
made to this terminal in the conventional manner and the percussive
and resistance welded connections were made on the A inch wide side.

The wire used in all general wiring connections was standard switch-
board wire, 24 -gauge, solid, tinned copper wire with polyvinyl chloride
insulation. Toward the end of the test sequence, the first spool of wire
was exhausted and it was necessary to use another spool. The elongations
of the two wires, measured over a 10 -inch length, were as follows:

1. first spool 16 to 19 per cent elongation
2. second spool 15 to 18 per cent elongation.

A.1.1 Soldered

The soldered connections were manufactured in accordance with the
present standards. They were actually of the wrapped and soldered type,
since more uniformity could be obtained by wrapping three to three and
one-half turns on the terminal with a wrapping tool and then soldering.

In the case of the soldered connections, there was no generally accepted
method for determining the strength of a connection, so a testing pro-
cedure was devised. The testing procedure consisted of mounting the
test terminal in a universal joint type of arrangement as shown in Fig.
23 and measuring the peak force required to pull the wire completely
off the terminal.

This procedure for determining the strength of soldered connections
was evaluated by using it to measure the strength of the extreme condi-
tions of soldered connections: (1) a good connection and (2) an extremely
poor soldered connection made by wrapping 3 to 31 turns around the
terminal and applying no solder to the connection. Twenty-five connec-
tions of each type were tested, and the results are shown in Table XI.

A total of 1040 soldered connections was manufactured for this test
program under conditions which assured high quality and uniformity.
Half of these were used in determining their vulnerability to various
environmental conditions, as described in the main body of the report,

TABLE XI - STRENGTH OF SOLDERED CONNECTIONS

Type Connection
Force Reading in Pounds

Maximum Minimum Mean

Good connection 7.5 4.8 5.76
Poor connection 3.5 2.6 3.04
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AND PULL IF

tt=
-TERMINAL -

COMBINED TEST
F = MEASURED PEAK FORCE

NECESSARY TO BREAK
THE CONNECTION

RESISTANCE WELDED

Fig. 23 - Destructive tests.

and the other half were destructively tested according to the procedure
outlined above. The results of these destructive tests are presented in
Fig. 24.

A.1.2 Solderless Wrap

The solderless wrapped connections were manufactured according to
present standards, using qualified wrapping bits and wire of the proper
elongation. The operator and wrapping bit effect on connection quality
was minimized by having half the connections made by each of two oper-
ators, who in turn made half of their connections with one qualified bit
and half with another. A total of 1040 connections was manufactured,
half of which were destructively tested immediately after manufacture
in order to determine the quality of the remaining connections, which
were used in the comparison tests. The destructive tests were of two
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Fig. 24 - Soldered connection destructive strength distribution, general wir-
ing; 590 data points.

types: (1) a standard strip -off test, shown in Fig. 23, which measures the
maximum force required to strip the connection from its terminal and
(2) a standard unwrap test, which requires that the wire shall be capable
of being unwrapped completely from the terminal without breaking.

The distribution of strip -off values for the 260 connections destruc-
tively tested in this manner is shown in Fig. 25.

A.1.3 Percussive Welded

All of the general wiring percussive welds, with the exception of the
inferior weld test, were made using the monitoring criteria developed by
J. C. Coyne and reported in Ref. 1. These criteria resulted in welds of
high quality, and a quantitative measure of this quality was obtained by
destructively testing alternate welds (by order of manufacture). The
destructive test used was the combined test, illustrated in Fig. 23, which
consists of bending the vertical weld 90° to a horizontal position and de-
termining the peak force necessary to break the connection. A total of
1540 welds (not counting the inferior weld test connections) was manu-
factured for this test program, and the destructive test data are pre-
sented in Fig. 26.
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Fig. 25 - Solderless wrapped connection destructive strength distribution,
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A.1.4 Resistance Welded

Although resistance welding has been used for electrical connections
for a number of years, no generally accepted quality requirements or
standard method of measuring the weld strength could be found. The
resistance welds used in this test program were the best which could be
produced after a reasonable amount of experimentation with the process.
The destructive strength test chosen was similar to that used for percus-
sive welds - that is, the horizontal wire was bent 90° to a vertical posi-
tion and the peak force necessary to break the connection was deter-
mined. This procedure is illustrated in Fig. 23. Some consideration was
given to a test which consisted of pulling the wire horizontally along its
original manufactured direction. This type of test yielded very little in-
formation about the weld, however, because the connections almost al-
ways broke in the wire, well away from the weld area. The destructive
test chosen always broke at the weld and thus gave a much better indi-
cation of the weld strength.

The weld quality was evaluated by destructively testing alternate
connections, by order of manufacture, and thus assuring the quality of
the remaining connections for the environmental testing program. A total
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Fig. 27 - Resistance welded connection destructive strength distribution,
general wiring; 520 data points.
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of 1040 resistance welds was manufactured for this test program, and the
destructive test data are presented in Fig. 27.
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Evaluation of Solar Cells by Means
of Spectral Analysis
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An approach toward testing of solar cells is outlined, and a test set and
evaluation procedure of lest results arc described. Outer space short-circuit
current is calculated from spectral response measurements performed on the
cells. From this and additional measurements that determine the forward
diode characteristic, the maximum obtainable power and the voltage at
which maximum power is delivered are computed. The accuracy of outer
space short-circuit current predictions is ±2 to 3 per cent when suitable
standards are employed.

I. INTRODUCTION

The solar cell is a device which converts light energy into electrical
energy. The electrical output of the cell, or response, depends on the
spectral composition of the incident light. For space applications, de-
termination of the response of solar cells to sunlight not filtered by the
atmosphere is of great importance.

In characterization of the performance of a solar cell under outer space
illumination, the most important parameter is the short-circuit current
under such illumination. Once this current is known, the current -voltage
output characteristic can be measured under a light source of arbitrary
spectral distribution but of an intensity adjusted to produce the outer
space short-circuit current.

This paper shows that it is practical to obtain the outer space short-
circuit current from measurements of the spectral response of solar cells.
Of the alternative approaches, one method relies on measurements under
terrestrial sunlight while another method attempts to simulate the
spectrum of the sun. Each of these two methods has practical difficulties
that offset its inherent simplicity.

The direct sunlight measurements must be made outdoors unless
* Sandia Corporation, Albuquerque, New Mexico.
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special buildings or sun tracking facilities are available and should be
made at high mountain altitudes. Only a few hours around noon on clear
days can be used for precision work. These requirements constitute a
considerable difficulty, especially for laboratories located on the East
Coast. Even if measurements are made at high altitudes, corrections
must still be applied for the alteration of the spectrum and the reduction
of over-all intensity by atmospheric absorption and scattering.

Direct solar simulation requires a light source which is constant in

time and which has a spectral composition equivalent to that of the sun.
Absolute spectral measurements of high accuracy are required for
calibration and maintenance. This problem is eased, however, if cali-
brated solar cells are available against which the calibration of the
simulator can be checked.

The only information available from a solar simulator, as well as from
direct sunlight measurements, is the total current of a solar cell; detailed
spectral response information is not obtained.

In the method which is described here, spectral response measurements
are performed on the solar cells themselves. The spectral response at a
given wavelength, multiplied by the sun's intensity at the same wave-
length, gives the contribution to the short-circuit current at this particu-
lar wavelength. The total short-circuit current is obtained by integration
of these contributions over all wavelengths. The spectrum of the sun is
thus introduced only in calculations; the problem of building and main-
taining a sun simulator is avoided. The accuracies with which the spec-
tral response of the cells can be measured are, in principle, comparable
to the accuracies with which the spectral distribution of the output of a
solar simulator can be measured. However, if appropriately calibrated
standard solar cells' are used, the accuracy of the outer space currents as
determined by the test equipment can be considerably higher than that
of the spectral measurements themselves.

An automatic testing facility based on such principles has been de-
veloped which, in addition to the spectral measurements, evaluates the
current -voltage characteristic of the solar cell under test. The measure-
ments are recorded on IBM cards to facilitate data handling. Evaluation
of the measurements and any statistical analysis of the results is then
easily done on an electronic computer.

This paper gives a description of the test equipment and the testing
procedure. First, a description of the theory is given that relates spectral
information and short-circuit current. There follows a detailed account
of the design of the test set. The procedure for evaluation of the test
results is described in the last section.
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II. THEORY

In the derivation of the relation between the spectral response of solar
cells and short-circuit current it is convenient to represent spectral re-
sponse in terms of quantum efficiency, defined here as the number of
electrons delivered into a short circuit per photon incident on the solar
cell. This represents an over-all efficiency and includes the effects of light
reflection at the surface, internal carrier -pair generation efficiency, and
loss of carriers due to recombination.

If the quantum efficiency is known, the outer space short-circuit cur-
rent, I.,08 can be calculated by integration over all wavelengths of the
product of the incident outer space photon flux density2 o(A) and the
quantum efficiency Q(X) of the cell

Isco, = Aq f Q(X)co(X) dX (1)

where A is the cell area and q the electronic charge. The quantum effi-
ciency of a solar cell is a smoothly varying function of wavelength. For
this reason it is adequate to sample the quantum efficiency only at a
small number of discrete wavelengths. The integral can be approximated
by a sum

I. = (2(X)v(Xi)Ai (2)

where the photon flux entering the sum must be smoothed according to
the intervals at which the quantum efficiency is sampled.

The Xi are the wavelengths at which the quantum efficiency is meas-
ured, and the Ai are determined by the wavelength intervals between
these points and the integration scheme used, e.g., trapezoidal approxi-
mation, Simpson's rule, Gaussian quadrature, etc.

The quantum efficiencies are measured as shown schematically in
Fig. 1. Light from a tungsten light source is passed through interference
filters which are mounted on a turntable. To eliminate the influence of
fluctuations and drift in the light level, the ratio of the response of the
cell to be measured to that of a monitor cell is taken. In terms of such
ratios, It; , the quantum efficiency of the sample cell can be expressed as

Q(X) = RiQref(Xi) (3)

where Qrof(Xi) is the quantum efficiency of the monitor cell. The sum (2)
can thus be written:

/8,08 = Ri[AqQref(Xi)so(Xi)Aii (4)
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IBM CARD
PUNCH

Fig. 1 - Method of measuring ratio of quantum efficiencies.

Defining the quantities in the brackets as "weighting factors"

= A Wref(Xi)co(Xi)Ai

one obtains for the outer space short-circuit current

/Rees = ERiwi 

(5)

(6)

The weighting factors include the spectral composition of outer space
sunlight and the quantum efficiency of the monitor cell. In the deriva-
tion, outer space sunlight served only as an example. Clearly, the method
is not restricted to outer space illumination but can be applied, with
appropriate weighting factors, for any illumination of fixed spectral
composition and intensity. Practical schemes for obtaining the weighting
factors in connection with the calibration of a set of solar cells will be

discussed below.
As a preliminary step in obtaining weighting factors for outer space

current prediction, a set of weighting factors referred to as terrestrial
weights was determined for the short-circuit current of solar cells

measured on a clear day near noon at a high altitude. The set of solar
cells which were to be calibrated as standards had a wide range in spec-
tral response, as shown in Fig. 2. It included cells bombarded with

various fluxes - up to 2 X 1016/cm2 - of 1-Mev electrons and virgin

cells.
To find the terrestrial weighting factors, first the quantum efficiency

of the monitor cell at the various wavelengths is measured on a relative
scale by comparison of the monitor cell output with that of a spectrally
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fiat detector, such as a thermocouple. Combining this information with
relative spectral intensities of the sun under which the observation was
taken, one obtains the short-circuit current to within a common constant
factor for all cells. This factor is readily determined from the actual
measurements of the short-circuit currents. It is significant that only

0.5 0.6 0.7

WAVELENGTH,
0.9

Fig. 2 - Quantum efficiencies of set of cells used as standards.

1.0
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the current measurements determine the absolute scale, while all other
measurements need to be performed on a relative scale.

However, if the set of solar cells used in such measurements has a suf-
ficiently wide spread in spectral response characteristics, it is possible to
find the weighting factors even without any prior information on the
quantum efficiency calibration and on the spectral composition of the
sun. The appropriate weights are simply those which reproduce the cur-
rent of all cells with the least error.

In the present work, the terrestrial weighting factors were determined
by a judicious combination of the two methods. Fig. 3 shows the result-
ing comparison of the measured short-circuit current and the calculated
current. In this figure the most heavily prebombarded cells appear at the
lower left-hand corner.

To convert the terrestrial weighting factors into outer space weighting
factors, it is necessary to increase the weighting factors at each wave-
length by the ratio of outer space solar intensity to terrestrial solar in-
tensity at this particular wavelength. Such information is readily avail-
able from solar spectral recordings performed by the Smithsonian
Institution.' For the set of solar cells shown in Fig. 2 an outer space

60
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_- I 40

Z - 30

Er
cr

U
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U 10

0
0 10 20 30 40 50

MEASURED CURRENT IN MILLIAMPERES
60

Fig. 3 - Comparison of directly measured current with current calculated
from spectral information.
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extrapolation was performed by this procedure. Thus, weighting factors
were determined for the prediction of outer space short-circuit currents
from the spectral measurements performed on the test set.

The calibrated cells serve as standards for the weighting factors. Thus,
the monitor cell in the test equipment need not provide the long-time
standard. It serves only as a short -time standard that can be compared
readily with the calibrated cells.

For further characterization of solar cells, additional measurements
under tungsten light filtered through heat -absorbing glasses, later referred
to as "white light," are performed. These are the short-circuit current,
the open -circuit voltage, the current delivered into a 10 -ohm load, and
the current delivered into 0.45 volts. The reverse leakage and the forward
voltage with 50 ma passing through the solar cell are measured in the
dark.

In a special mode of operation the test equipment can form the
weighted sum, thus giving the short-circuit current directly. In general,
however, it is preferred to evaluate all the test results on a digital com-
puter.

The obtained outer space short-circuit current is then used in con-
junction with the measurements under the white light to calculate the
over-all output characteristic for outer space illumination, in particular
the maximum -power point and the voltage at maximum power.

In addition, the short-circuit current under the white light source is
also calculated from the spectral response with an appropriate set of
weighting factors. The percentage difference between the calculated and
the measured short-circuit current is determined and recorded. Gener-
ally, this difference is small, indicating that the outer space short-circuit
current calculation can be trusted. Occasionally, solar cells are observed
in which the calculated current deviates substantially from the measured
current. This indicates that the particular solar cell has a nonlinear
response, e.g., its quantum efficiency is light level dependent. The results
for the outer space short-circuit current obtained on such solar cells are
correspondingly in error. Alternative methods of calculation that are
applicable to such nonlinear cells are described in Section IV.

III. TEST EQUIPMENT

As mentioned, two groups of measurements are performed in the test
set. One group of eight measurements evaluates the spectral response of
the cells, while the measurements in the other group evaluate the cur-
rent -voltage characteristic of the solar cell.
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For those tests in which the output is porportional to the incident light
intensity, the ratio of the response of the sample cell to that of a reference
cell is measured. This eliminates the effect of drift and fluctuations in
the light source and the interference filters.

The set consists of the following major components:
1. optical system comprising light source and interference filters,
2. mechanical system providing for optical filter transport and actua-

tion of control switches,
3. electronics and ratio -formation,
4. control system, giving control commands for operation of counters

and punch -out, and providing for the routing of the signals through
appropriate amplifiers and attenuators, etc., and

5. output channels: printer or translator and card punch.

3.1 Optical and Mechanical System

The optical system is shown schematically in Fig. 4. A 1 -kw incan-
descent projection lamp (General Electric type PH/1M/T2OMP) serves
as the light source. The light is focused by a spherical mirror (diameter
12 inches, focal length 51 inches) and directed by a plane mirror towards
the sample and reference cells, which are placed adjacent to each other
in a light -tight box. To insure uniform illumination of both cells, dif-
fusing glass is interposed into the light beam. Long -wavelength light is
attenuated by heat -absorbing glass and nearly monochromatic light at
various wavelengths is selected by narrow -band interference filters.
These filters are mounted on a disk that is driven intermittently by a
Geneva motion and interposes the filters sequentially into the optical
path. The filters have transmission bandwidths of the order 0.01 II. For
the evaluation of silicon cells, filters at the following wavelengths are
used: 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 A. For measurements on the
solar cells in the dark, four positions are blocked; the remaining four
positions admit white light for measurements of additional solar cell
characteristics. The white light intensity is adjusted to generate in a
typical solar cell a short-circuit current that is comparable to the short-
circuit current expected in outer space.

The important factors of the mechanical system are also shown in
Fig. 4. A 1-rps motor drives the Geneva motion, which advances the
filter disk. Thus the time available for any individual test is 1 sec. The
motor axle contains a set of adjustable cams that actuate microswitches
for the timing of various functions within a single test cycle. The wipers
of a set of 16 -position rotary switch decks are driven by the filter disk
axle to permit the selection of the different types of tests to be performed.
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Fig. 4 - Optical and mechanical system.

3.2 Electronics and Ratio Formation

The various signals encountered are measured by a combination of
voltage -to -frequency converter (Dymec 1122B) and counter. This com-
bination, when used in both the sample and reference channel, makes
fast and accurate ratio formation possible.

If the input voltage at the sample channel is V8 volts (see Fig. 5), and
if the voltage -to -frequency converter (vfc) gives A cycles per second
per volt, the total count N, obtained in t seconds is

N8 = VAt. (7)

Similarly one obtains in the reference channel

N, = V rAt. (8)



1112 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

INPUT Vs

INPUT V5

VOLTAGE - TO -
FREQUENCY
CONVERTER

COUNTER

DIGITAL VOLTMETER

VOLTAGE - TO -
FREQUENCY
CONVERTER

STANDARD
TIMING

PULSES

-1 VOLTAGE -TO -
INPUT V,. FREQUENCY

CONVERTER

COUNTER

RATIO FORMATION:Vs/Vr

SCALER
1 TO 1000

Fig. 5 - Method of ratio formation.

To form the ratio V8/ V the reference counter is used as a scaler, in
such a way that it gives an output pulse for every 1000 input pulses. The
time between output pulses is then

1000t=
AV,

(9)

The output pulses from the scaler gate the counter in the sample
channel in such a way that one pulse turns it on and the next one turns
it off. Thus tin (7) is identical to that in (9). This leads to

N8 = 1000 ( Vs/Vr) (10)

i.e., the count in the sample channel counter gives the desired ratio of
the voltages with adequate resolution.

The voltage -to -frequency converter and counter combination, when
used as a voltmeter, gives an output that represents the input voltage
averaged over the time of measurement. Thus fluctuations are smoothed
out. The effective noise bandwidth is therefore the reciprocal of the time
of measurements. In spite of the small noise bandwidth, however, this
combination has a fast transient response. Thus, high -resolution, low -
noise measurements during short time intervals are possible. With a
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wideband amplifier (Lintel type 112) preceding the voltage -to -fre-
quency converter, the equivalent noise at the input that actually has
been observed is of the order of 1µv for 0.1 -second measurement in-
tervals even after an estimated 750 hours of operation of the system. The
chopper at the input of the preamplifier deteriorates with time; for a
new chopper the noise may be considerably below 1µv.

The signals to be measured are in the range 0.5 my to 10 my except
for the spectral response measurement at the shortest wavelength, 0.4 JA,
where the output of the light source is low and the signal is about 100 Av.
For all other wavelengths the amplifier noise thus contributes less than
0.2 per cent to the measurement error. Since the contribution of the
0.4 AI spectral region to the total short-circuit current is small, the
error contributed by the amplifier to the total short-circuit current is
also below 0.2 per cent.

The short-circuit current is obtained from the measured voltage drop
across a shunting resistor. The resistor has to be of sufficiently low value
that the voltage developed across it would result in a forward current in
the dark that is negligible compared to the short-circuit current. For the
spectral measurements, a resistor of 10 ohms is adequate, while for the
white light measurements a 0.1 -ohm resistor is used. The switching of
resistors at the low signal levels has to be done carefully to prevent in-
troduction of spurious thermal emf's. Mercury relays are employed in an
arrangement shown in Fig. 6. For the measurement of the open -circuit
voltage ( volt) and other voltages of comparable magnitude, the pre-
amplifier is bypassed and the signal is fed directly into the voltage -to -
frequency converter.

3.3 The Control System

The programming of the various tests is accomplished through the 16 -
position switch coupled to the axis of the drive motor. Microswitches
control reset commands at the beginning of each test; approximately
in the middle of each test, (after the amplifier transients have died down)
a new counting cycle is initiated. The last operation within each test is
the print command to the printer or IBM punch.

The switching of the signal paths for the various tests is accomplished
by relays which are activated from the 16 -position switch through a
diode matrix as shown in Fig. 7.

The following quantities are measured in the tests: in the eight spec-
tral readings, the ratio of the short-circuit currents of sample cell and
reference cell at eight wavelengths,
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/rev the current flowing through the cell when a reverse voltage of
5 v is applied through an 800 -ohm resistor,

VL , the voltage developed across a load resistor RL (c-:,'10 ohms) when
the cell is illuminated by white light (see optical system),

V, the voltage across the cell when a forward current If normally
50 ma, is passed through the cell in the dark,

IeC , the short-circuit current measured directly under white light.
/..R , the ratio of the short-circuit current of the sample cell under

white light to that of the reference cell (In this measurement the ampli-
fier gains are set such that for proper adjustment of the light source the
numerical value of 18cR is the same as that of ./ac .),

I45 the current delivered by the cell under white light illumination
into a 0.45 -volt voltage source, and

V0c , the open -circuit voltage of the cell under white light illumination.
The short-circuit current is measured both directly (Lc) and nor-

malized (Lae). In the linearity test, the normalized current is to be used,
as it is compared with the normalized spectral readings. In the evalua-
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tion of the output characteristics, the unnormalized short circuit current
is used in conjunction with the open -circuit voltage and the voltage
across a load resistor.

IV. EVALUATION OF THE SHORT-CIRCUIT CURRENT

The short-circuit current is evaluated from the raw data according to
(6). This evaluation can be performed either directly by the test equip-
ment concurrently with the measurement of the Ri or by a separate
calculation, preferably on an electronic computer.

For the evaluation in the test set the counter is not reset between the
spectral response measurements R.. The multiplication by W, is carried
out by interposing attenuators between the preamplifier and voltage -
to -frequency converter of the sample channel. Such attenuators are
switched by the 16 -position switch, which is coupled with the axle of
the filter disk. The number added into the counter at each filter position
equals the current contributed by the wavelength band represented by
the filter, and the final number on the counter gives the total short-circuit
current.

The direct test set evaluation of the short-circuit current is of impor-
tance if no computing facilities are available or if results are needed

RELAY
POWER
SUPPLY

8 SPECTRAL
POSITIONS

Al GI 61 D1 E1 ci FJ

tC7

VEOR

Vf

isciR

Ias

0

Fig. 7 - Diode matrix for activation of relays.
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immediately. On most other occasions, it is preferable to have the com-
puter process the raw Ri data, since one set of data can then be analyzed
for cell response under various light sources.

In addition to providing short-circuit current under outer space il-
lumination, the computer program, as used for routine evaluation of
solar cells at Bell Telephone Laboratories, evaluates the short-circuit
current for the white light that is used in some of the tests of the output
characteristic, as discussed in Section II. For a check of consistency, the
program then computes the percentage deviation of this current from the
short-circuit current measured directly under white light. This check is
important for the detection of cells whose short-circuit current changes
nonlinearly with light intensity.

As an additional feature, the program computes the ratio of the com-
puted outer space current to the computed white light current. This
quantity, CC, is of interest for a number of reasons. If the maximum in-
tensity of the white light falls at a different wavelength than the maxi-
mum intensity of outer space sunlight, then CC provides a "color index"
for the cells. In the test set described here the white light is deficient in
infrared and red light due to filtering with heat -absorbing glass. There-
fore, red -sensitive cells have large CC numbers while blue -sensitive ones
have smaller CC numbers.

In the standard procedure for calculating the outer space short-circuit
current, the measured Ri values are multiplied by proper weighting
factors Wi and summed as in (6). Fluctuations in intensity and spectral
composition of the light source cause no first -order error, since the R,
are ratios. However, if the cell current varies nonlinearly with light in-
tensity, the current at full solar illumination, as calculated from spectral
measurements at low light intensity, is in error. From the comparison of
measured white light response and calculated white light response one
knows whether or not a cell is linear. Nonlinear cells are encountered
rarely enough so that they present no serious problem. Nevertheless, the
program can be used - if required - in such a way that errors due to
cell nonlinearity are minimized; however, errors will be introduced if the
spectral content of the white light changes. The procedure is to multiply
the measured white light current /R by the factor CC. Since nonlineari-
ties cause errors in both numerator and denominator, the influence is re-
duced to second -order effects.

V. THE OUTPUT CHARACTERISTIC

As discussed before in connection with the short-circuit current for
outer space illumination, the output characteristic of the solar cell could
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be established under a light source of arbitrary spectral composition but
adjusted in intensity to produce the known outer space short-circuit
current. To do this, however, would be a very tedious and time-consum-
ing procedure. As an alternative, one measures the output characteristic
under a light source that generates a short-circuit current close to, but
not necessarily equal to, the outer space short-circuit current. It then is
possible to calculate the outer space response from these measurements
and the known outer space short-circuit current.

For such calculations of the output characteristic the following model
of a solar cell is used:

/ = I -/o {exp [q (V IRO] -
nkT

(11)

Here I is the output current at voltage V, Iss is the light induced cur-
rent (under the given illumination) and corresponds to a current gener-
ator in parallel with the solar cell diode. Rs is a lumped resistance ap-
proximating the contact resistance and sheet resistance in the front
layer of the cell. Io , the diode forward -current constant, is orders of mag-
nitude smaller than ISC ; therefore the term ( -1) in (11) can be neg-
lected. With this simplification one can express I0 in terms of the open -
circuit voltage, V0, , i.e. that voltage for which the left side of (11) is
zero, which leads to

/ = Ise [1 - exp q( ± RsI -
(12)

nkr11

An ideal diode would have a value of 1 for the coefficient n in the
exponent. A number of effects* cause deviations from this simple be-
havior, and frequently the output curve cannot be fitted by a constant
value of n over the entire voltage range and for different light intensities.
However, one may fit the output characteristic over a limited range near
the maximum power point with a constant n for a particular light in-
tensity. Only small errors are introduced if one uses the same value of n
near the maximum power point under slightly different illumination.

Similarly the value of the resistance R8 in (12) is not strictly a con-
stant, since it involves a spreading resistance in the thin diffused layer.
Nevertheless, in general R, will be a very weak function of current and
light level so that, for this calculation, it can be treated as a constant.

With these assumptions the output characteristic under outer space
illumination is determined by the four quantities /Sc , V. , n, and Rs ,
which must be established by measurement. The first two of these de-

* Among these effects are space -charge recombination and sheet resistance. See
also Ref. 3.
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pend on the particular light level. From the measurements of L. VOC

and VL under the white light, and from the measurement of Vf in the
dark, all four quantities can be extracted. By replacing I , in (12) by
the known outer space short-circuit current /.8 and setting I = 0, one
obtains the open -circuit voltage V0 for outer space illumination. The
parameters LCO8 V 0008 n, and R, are now used to characterize the output
characteristic of the cell under outer space illumination. This permits a
calculation of all quantities of interest according to (12), in particular
the maximum power point. An approach for performing these calcula-
tions on an electronic computer is given in the Appendix.

Most of the measurements on the test are reproducible over periods of
hours with an rms deviation from the mean of about 0.5 per cent. If
calibrations on the test set are to be made to an accuracy approaching
0.5 per cent or less, the fine adjustments become very tedious, as the
criterion has to he the result of a statistical analysis of several measure-
ments.

A preferable procedure is to make adjustments on the test set to a
moderate accuracy and to have the computer apply fine corrections.
Two modes of operation are used. In one mode these corrections are ap-
plied manually as parameters that are entered with the data. In the
other mode, a set of standard cells is measured along with the cells to
be evaluated. The data cards of the standard cells also contain their
calibrated outer space short-circuit current value. The computer can
then determine the percentage deviation of the calculated value of the
outer space short-circuit current from the calibration value for each of
the standard cells. The calculated values of 188 for the cells under test
are then corrected on the basis of the average of these deviations. A
similar correction is applied to the white light current.

With the latter mode of operation, the long time standard is provided
by a group of standard cells, and the built-in monitor cell serves only as
a short -time reference. If there are no uncertainties introduced by long-
time drifts of the standards, absolute accuracies of outer space short-
circuit current predictions of 2 to 3 per cent should be realizable. Com-
parison of preflight predictions with flight data on the Telstar satellites
and the Anna 1B satellite confirm that an accuracy of 3 per cent or
better has been achieved.
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APPENDIX

A.1 Method of Calculation of n and R.

The quantity n is determined by fitting the output characteristic be-
tween VL and V. . As one has to make allowances for R, , the series re-
sistance, an iterative scheme is convenient. Assume for a moment that
the series resistance R. is zero. One can then compute the value of n. or
nkT /q from (12)

nlT Voe -V
q In (1 - 277.1"

L..ci

(13)

Using this value of nkT /q one can compute the value of the voltage
across the cell for a current I. - If through the illuminated cell

Vc = V" -r - in T) .

nkT f

q

If there were no series resistance, then the measured voltage Vf should
be equal to Vc . Because of the series resistance, the voltage Vf is higher
by R,If . One thus obtains an initial estimate of the resistance

R8 - Vf VC.(15)
If

Now this value of R8 is used for an improvement of (13). During the
measurement of VL , current is flowing out of the cell, and the junction
voltage is the measured voltage V L increased by the voltage drop
( VL/fiL)/R . Thus one obtains

nkT
Voc - VL(1 -1-R-14)

(16)
In (1 - 8)

The new value of nkT/q thus obtained can be used to compute an im-
proved value of V , and in turn, of R. , and so on. The convergence of
this procedure is quite rapid, since nkT/q in (14) is multiplied by
In (////8,) and If was chosen to be near Inc

(14)

A.2 Method of Calculation of Outer Space Quantities

Using the quantities / , Von , (nkT/q) and R. , as determined in the
previous section, the outer space quantities are evaluated as follows.
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Outer space open -circuit voltage:

nkT Isco.
Vows = Von + In .

q Ise
(17)

For further evaluation of the characteristics it is convenient to introduce
the following normalizations:

qVy= nkT

u= I
se,,,s

T rico 1X -
scos - I 1 U

z -
nkT

qVoco.

- qR,I,cos

nkT

(18)

(19)

(20)

(21)

The normalized current u at the normalized voltage y is obtained from
a solution of the equation

u = 1 - (22)

In the computer program, this equation is again solved by iteration.
The power at the voltage corresponding to y is now given by

P = (nkT /q)1. scosyu. (23)

To obtain the maximum power, (22) is rewritten so that the normal-
ized voltage appears as a function of the normalized current

y = z - Ou ln (1 - ). (24)

The normalized power r is obtained by multiplying (24) by u

u[z - I3u ln (1 - u)]. (25)

The maximum is obtained by equating the derivative to zero. This
yields the condition

z- + 2,3u - ln (1 - u).1 -u (26)

In (25), u is required as a function of z and /3. Again, on the computer
a solution is conveniently found by iteration. To get (25) into a form
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suitable for this, a switch is made to the variable x, defined in equation
(19). Then

x z + 1 - 1- x1) - ln x (27)

and in this form the equation can be solved by iteration, starting with
x = 1 on the right-hand side. One now obtains for the maximum power

- (
Pmax = SCO8V 0008

(x 1)2
1 (28)

x x

and for the voltage at which maximum power is delivered

nkTV., = (x - 1) (1 + .
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A Theory of a Unilateral Parametric
Amplifier Using Two Diodes

By J. I IAMASAKI

(Manuscript received December 18, 1963)

This paper describes the theory of a unilateral parametric amplifier which
contains two variable -capacitance diodes separated by a quarter wavelength
at the signal frequency and a half wavelength at the idler frequency. It is
shown that a broadband signal circuit is essential in order to obtain uni-
lateral gain, and that matching conditions are obtainable even with a high
gain. The optimum noise figure is slightly worse than that of a single -
diode reflection -type amplifier; however, this amplifier has advantages if it
is refrigerated at liquid helium temperature, because it does not require a
circulator in front of its input port. The amplifier usually requires an
isolator at its output port, since it does not have substantial loss in the
reverse direction.

I. INTRODUCTION

The performance of a single -diode reflection -type parametric amplifier
is often limited by the availability of a good circulator, which is essential
to a practical amplifier. This becomes a more serious problem when the
amplifier is to be refrigerated clown to liquid helium temperature, since
satisfactory circulator performance is then difficult to obtain.

A unilateral parametric amplifier with two diodes, originally proposed
by Baldwin,' does not require any circulator or isolator in front of the
amplifier if the signal source impedance is reasonably well matched.
Therefore, this amplifier might avoid the difficult circulator problems.

This paper is prepared to show the theoretical characteristics of a
unilateral parametric amplifier with two diodes separated by a quarter
wavelength at the signal frequency. In Section II, an exact expression
for the scattering matrix of a simplified model of the amplifier is ob-
tained. In Sections III and IV, expressions for power gain, noise figure
and bandwidth are calculated. In Sections V and VI, the optimum noise
figure and some design considerations of the amplifier are described.

1123
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II. PRESENTATION OF THE SCATTERING MATRIX OF THE AMPLIFIER

Fig. 1 shows a basic configuration of the unilateral parametric ampli-
fier. The black box shown in Fig. 1 is a symmetrical lossless reciprocal
two -terminal -pair network whose image impedance Z and phase con-
stant 0 are assumed to be real quantities. Stationary susceptances of the
diodes are considered as a part of the black box, and losses in the diodes
are included in the external loads. C and C' in Fig. 1 represent the sinus-
oidally varying shunt capacitances which play an essential role in the
mechanism of amplification. Parameters concerned with the right -side
arm of the black box are indicated by primed letters, and those of signal
and idler frequencies are indicated by suffixes 1 and 2 respectively.

b b1
a-,,,. at,

A

jB
I.

Fig. 1 - Basic configuration of the unilateral parametric amplifier.

Currents and voltages of the varying capacitance C are related by the
following equations:

= jwi(c/2)v2*

ic2* = - jw2(c*/2)vi

where w is angular frequency and the asterisk indicates a complex
conjugate. The terminal currents and voltages of the capacitance C are
expressed in terms of incident and reflected waves a, b, ai , and bi normal-
ized by Z as follows:

v = 2(a b) = b1)

1i - z (a - b) (2)

1
= (a3 - bi).

(1)
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The directions of flow of these waves are indicated by arrows in Fig. 1.
The continuity equation of current at the terminal C is given by

i= (3)

Combining (1), (2), and (3), we obtain the following equations:

ail = al - johica2* - jw1icb2*

bil = b1 johica2* jcolib2*

* . .*an = a2 3W2K a1 + jc.o2k/)1

bi2* = b2* jCJ2K*a1 jc,,,,k*1)1

where k is a complex number defined as:

. C a7:2
K

2 2

(4)

(5)

Equations similar to (4) are obtainable for the varying capacitance C'
by replacing unprimed parameters by primed ones in (4).

Waves of the lossless reciprocal two -terminal -pair network are related
by the following equations.

bi =

bi' = e-f°ai .

Substituting (4) and the similar equations for C' into (6), we obtain the
following set of equations:

b1 johicb2* jwik'e-401b2'* = - jovia2* - jo),Ve-JOla2'*

b1' jo1ice-filIb2* jco1kib2/* = - jco1ie-J8ia2* - ju1ea21*

-j(.02k*b1 - johic'*el°2b1' b2* = jo)24.*al jw21:1*ej°2a1' el82a2'*

-juhecie2bi - jw2e*bi' b2'* = jc02k*ei°2a1 jw2ecti e102a2*

Assuming the same magnitude for the complex quantities x and lc', and
solving (7) with respect to b1 , b1', b2*, and b2'*, we obtain an exact form
of the scattering matrix for the circuit shown in Fig. 1. The matrix is
as follows:

(6)

(7)

I) 811 812 813 814
-

al

821 822 823 824 a,'
(8)

831 832 833 834 I a2

841 842 843 844
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S13  A

824  A

S14  A

S23  A

and

Su  A = 822  A = 2coico2K2 exp (-A) [cos 01 exp (j02) cos Op]

- 4(.0120;22K.! exp [j( 02 - 01)] sin 01 sin 02

833  0 = 844  0 = 2w1co2K2 exp (j02) [cos 02 exp cos Op]

- 4w12w22K4 exp [j(02 - 01)] sin 01 sin 02

812.0 = exp ( -j0i) { 1 + j2coice2K2

exp [j(02 4)] sin 01}

821 = exp ( { 1 + j2fi,

exp [j(02 - 0,)] sin0 }

j2wiw2K2

02}sintc2exp [-j(01
S34. = exp (j02) { 1 - j2

843  A = exp (j02) {1 - j2co1co2K2

exp [-j( 01 - Op)] sin 021
(9)

= - (C01/ (02) 842' A = exp (j0/2)

 {1 + exP [j (e2- 9, - Or)] - 4co1o2K2

exp [j(02 - 01)] sin 01 sin 021

- (0)1/(42) Su' = -jwitc exp ( -j0p/2)

 11 exp [j(02 - B1 + Op)] -

 exp [j(02 - 01)] sin 01 sin 021

= - (c00-02) S32' A = exp (j 0p/2) I exP (02)

 exp [-j(01 0p)]1

= - (COI/ W2) SW A = -johic exp -j0p/2) {exP (j02)

 exp [ -1(01 - 0)]}

A = 1 - 2w,c02k20 exp [1(02 - 00} cos 0p)

40Jial2K2

4,012c022K4 exp [j( - 00] sin 01 sin 02
(10)

where K and 0 are real numbers, and represent the magnitudes of k and
k', and a difference of pump phases at two diodes respectively as shown
in the following equations:



UNILATERAL PARAMETRIC AMPLIFIER 1127

K = 01.09"

e-j0p12

Assuming the following phase relationships

01 = (2m + 1)(7r/2)

02 = 117

Op = (2m + 2n + 1)(r/2),

we obtain the following special relations for the waves:

01 = r+1jai'

bl 2WICO2K2
al

1 - 2w1w2K2 +
. 2wiKe.-l8P/2

a2,,,
1 - 2W1W2K-

w.2 IKe-j8P/2 a2*-) - 2c8.4(420

(12)

. 2w2Ke-leP/2 9w1
2

w. K2 1 (")b2* =
1 - 2coico2K2al + 1 - 20.4w2K2 a2* (- )"

1 - 2w1w2h2
-lop/2

- )n
1 - 2wiw2K2

a2
1

1 - 2w1w2K2

2wico2K2
a2 *.

- 2wiw2K

In (13) it is found that signal waves are completely matched in each
direction, and that the signal incident wave al' propagates from the
right to the left with no gain nor loss and has no interaction with the
other three waves. When both idler ports are properly terminated, the
transducer gain of this amplifier for the incident wave al - that is,
1 8,112 equals the square of the ratio (1 + 2w1w2K2)/(1 - 204w2K2). If
the surge impedance of the circulator of the reflection -type amplifier at
the signal frequency equals the image impedance Z1 and the idler load
impedance at the idler frequency equals the image impedance Z2 , the
gain formula is identical to that of a single -diode reflection -type ampli-
fier, I (1 + 4ww2K2)/(1 - 4W1CO2K2) 12, except for a factor of 2 in the
pumping term 2wiw2K2. Thus, a perfectly matched and unilateral para-
metric amplifier can be achieved by means of the phase synchronization
shown in (12).

If all frequency characteristics of 01, B2 , Z1 and Z2 are known, it is
possible to calculate the frequency characteristic of the amplifier from
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(9) and (10). Since this method is rather tedious, a simplified method
will be developed in the following sections.

III. EFFECTS OF REFLECTIONS, BANDWIDTH

For the sake of analytical simplicity we first assume that phase con-
stants are frequency independent and satisfy the condition given by
(12), but we introduce the frequency -dependent reflection coefficients of

the external loads. These reflection coefficients can be modified to include
the effects of frequency -dependent phase constants.

The incident and reflected idler waves are related by the idler reflection
coefficients r2 and 1'2' as follows:

a2* = r2*b2*

a,2'* = r2'*b2*.

Substituting these relations into (13) and eliminating a2*,

b2'* from the equation, we obtain the following equations:

bi = S12 a1'

blI = 8211a1

where

512/
r+li

2

821' = ( - ) m -Hi
1 ± 20)10.12K
1. - 2C010.12K2

+
8.4(.020 {i + 21 (r,I*

1

r21*/1

(14)

al'*, b2* and

1 - 2COICO2K2)2 1 - 2WiCs)2K2) (0 2

(2W10J2K - GWICO2K - -
r2* 1'21* 1].

(15)

(16)

Equation (15) shows that any reflection in the idler circuits does not
deteriorate the unilateral characteristic of the amplifier. (A change in
idler phase, 02 , however, causes deterioration in the unilateral charac-
teristics of the amplifier : see Appendix.)

Next let us consider a special case in which the amplifier has sym-
metrical idler terminations, F2 = r2 . Substituting this condition into
the second equation of (16), we simplify the equation as follows:
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S21 - m+1.i

1 101(.02K2
r2*1 - 2 6)1CO2K2

1 -1-- 263-1W2K2 - r2* - 2.-1..)2K2

(17)

The reflection coefficient r2 is expressed in terms of the image impedance
Z2 and the idler load admittance YT2 as follows:

where

r2 -
1 + YT2Z2 '
1 - YT2Z2

Y T2 - T2 --i- T2 

(18)

(19)

This admittance may include parasitic elements of the diode. Substitut-
ing (5), (11) and (18) into (17), we obtain the following relation :

2 r71

s21/ r
3 v+i
 YT2 * I WICO2 C I Li 1 (17')

2 T2* - C01CO2 1 C 12 Zi 

This equation shows that the idler image impedance Z2 does not affect
the gain. Only the idler load admittance, YT2 , is of primary importance
for transmission gain of the amplifier. Therefore, we can assume here-
after that the idler image impedance equals 1/GT2 in order to avoid the
reflection at the center frequency of amplification. The square root of
the power gain at the center frequency, -\/3G, is given by the following
relation:

G72 CO1CO2 I c 12 Z
(20)

= g = GT2 - -18-w1a2
I
c 12 Zi

and a half -gain bandwidth, (Af)3db is approximately determined from
the frequencies where the susceptance component of the idler load equals
the denominator of (20), i.e.,

I BT2I = G T2 - IgC0102 I C 12Zi (21)

where the right-hand side of (21) is a slowly varying function of fre-
quency in comparison with B T2 

Now let us consider effects of small reflections in the signal circuit.
We assume that both the signal source and load admittances are repre-
sented by (1/Ro1) jB1 as shown in Fig. 2, and waves aoi , bol , ctoi and
b01' are normalized to Rol instead of Z1 . Expressing voltages and currents
in terms of waves as was done in (2), we obtain the following equations
from the equations of continuity of currents and voltages:
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where

a1 = (k1 - jtil)aol -I- -
b1 = + + (k1 + jihi)boi

( /Rol
2 VI/ z, V Rol

= 71(4/ Zi
-

B1
= RDA 

Substituting (23) into (15), we obtain the following relations:

boi = Sii(No1 812(0)a01

boi = 821(0)a01 822(°)ao1

-r,* + 2,21s2iir,
k1 += s22(°) - k1

jigi 1 - 812'821'r?

812°) = k, - jµ1 8,2/(1 - I r1 12)

k1 + jµ1 1 - 8121821'r12

(22)

(23)

(24)

(25)

s21(°) -
kJ. - .441 8211( 1 I Ili 12)
k1 + ilk 1 - 8121821'r12

where r, is a reflection coefficient of the signal source and load normalized
to Z1 , and is defined as follows

1

- + iB
r, -

,)

lcl + jp, +
21 Rol

p3,)
(26)

Equation (25) reveals that any reflections in signal circuits cause an

Rol I

WI

43'0,

A
SHOWN IN Z,

FIG. 1
B 1

Fig. 2 - Forward and reverse waves in the signal circuits.
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2.5

1131

Fig. 3 - Normalized forward gain for various values of a2/g vs normalized
idler reflection coefficient

internal feedback and deteriorate the unilateral characteristic. To sim-
plify the analysis, we assume that r1 is proportional to r2 and that both
of them are small imaginary numbers, i.e., 112 = 172 ri = jwy2 , I riI2
1, and I r2 I « 1. Substituting the first equation of (16) and (17) into
(25), we obtain the following scattering matrix elements, which charac-
terize the frequency dependence of the amplifier if g > 1:

reflection:

811'0'

reverse gain:

forward gain:

= I s22' I

I si2m I

s21(0)

ti

ti

lal I g72 I

V {1 -11 (g72)2}2 (g72)2

+ (g72)2

/1/{1 - .c12i (g72)2} + (g72)2

g

/1/ {1 - (g72)2}2 + (g72)2

(27)
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5.0

2.5

0
co

w
a

- -2.5
ON

0
_J

o -5.0
6.1

-7.5

-10 00

a2.
g '

0.5

0

05 10

gY2

15 2.0 2.5

Fig. 4 - Reverse gain for various values of a2/g vs normalized idler reflection
coefficient gy2 .

The characteristics of these elements with various values of the parame-
ter a2/g, as a function of 0,2 , are shown in Figs. 3, 4, and 5.

It is shown that the amplifier has a maximally flat gain characteristic
when a2/g = 1, as follows:

521(0)

1/ 1 + ("2)4 (28)
4

A half -gain bandwidth is determined from the frequencies where the
following relation is held:

11Y2 I .0.
Similarly, for the amplifier with a matched signal source and load, the
bandwidth is derived from the following equation :

gY2Iird, 1.

Therefore, by introducing a proper mismatch in the signal source and
load and assuming that 72 is proportional to a frequency change, we can
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obtain about times larger bandwidth than that of the matched
amplifier. But this enlarged bandwidth is obtainable only at the expense
of deterioration of unilateral characteristics, as shown in Fig. 4.

IV. EFFECTS OF LOSSES; NOISE FIGURE

In the previous discussions, losses in the diode have been considered a
part of the external circuits. However, in order to study the noise per-
formance of the amplifier the diode losses have to be separated from the
external circuits.

In Fig. 6, Gd and GI represent the equivalent loss conductance of the
diodes, and they are accompanied by the noise current generators ind
and id'. GL and G8 represent the load and signal source conductance,
respectively.

In order to eliminate feedback effect due to mismatches at the signal
ports, we assume that the signal output port is perfectly matched to its
image impedance Z1. Thus, we can eliminate any feedback effect even
if there is mismatch at the signal input port. The matching condition at
the signal output port is expressed as follows:

(GL Gd')Zi = 1. (29)

In order to feed the maximum power into the black box A shown in Fig. 6,
the signal source impedance has to be matched to the input impedance
of the amplifier, which includes the diode loss conductance Gd . This
matching condition is expressed as follows:

0

- 2.5
w
co

U

z- 5.0

0
_J

0 -7.5
N

-10.0

-.
0.5

If

0 05 10

g Y2

1.5 20 2.5

Fig. 5 - Normalized input reflection coefficient for various values of a2/g vs
normalized idler reflection coefficient gy2 .
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Ls

A
SHOWN IN

FIG. 1

Fig. 6 - Noise sources of the unilateral parametric amplifier.

G8Z1 = 1 + GdZi . (30)

Note that the condition in (30) does not necessarily mean that the signal
source impedance is matched to Z1 

The maximum power available into the black box A of Fig. 6 is given
by

al I 2 - -Pa (31)
G8Z1 1 + GdZi'

where Pa is the maximum available power from signal source. The power
delivered to the load, denoted by Po , is given by the following equation:

Po = GLZ1 I bi' 12. (32)

Therefore, from the second equation of (13), and assuming no input
signal at the idler frequency, we obtain the following gain expression:

Po Gal 2PG- - , (33)
Pa 1 ± GdZi

where g is given by (20). [In (20) we assumed that the idler loads are
not necessarily matched. However, as stated there, we can assume the
matched idler loads without loss of generality.] This gain expression is
very similar to that of a single -diode reflection -type amplifier, as men-
tioned in Section II.

Assuming noise sources are thermal and the temperatures of the am-
plifier, the signal source and the load are the same, denoted by T°
Kelvin, noise currents and noise wave are expressed in the following

relation:

2nd2 in/2 2

= 1 a212 = 1 a2' 12 = kT Af (34)
4Gd = 4G" = I al I

where le = 1.38 X 10-23 joulefaelvin is Boltzmann's constant and Al
is the infinitesimal bandwidth concerned.

Though we have a mismatched signal source with respect to Z1, the
difference between the noise power from a matched signal source and
that from the mismatched signal source is exactly the same as the noise
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power reflected at the terminal of this mismatched signal source. This
reflected noise power is originally from the perfectly matched signal out-
put network through the amplifier without gain nor loss in the reverse
direction. Therefore, the resultant incoming noise wave into the
amplifier is the same as mentioned in (34)

1 al 12 = kT Al. (34')

Substituting (34) and (34') into the second equation of (13), we
obtain

b1'12 = 92 {i + (11
(42

1

kT Af.g2

Therefore, the noise output power due to 1 th' 12 is given by

Poi = GLZig2 {1 - kT Af.
co 2 g2

The directly radiated noise power into the load from Gd' is also the other
part of the noise output power. We obtain the following equation for
this noise output power:

P02 = GLZIGd'Zik77

Therefore, we obtain the following expression for the noise figure of the
amplifier:

P01 + P02
(PG)krf

= (1 ± GdZi) {1 ± Gi'Z col

g- 0)2

1g2.
(35)

It is shown in (35) that GdZI and col/o22 should be smaller in order to
obtain a better noise figure. And the expression for the noise figure is
very similar to that of a single -diode amplifier. Note that (35) was ob-
tained on the assumption that the temperature of the resistive load
or isolator after the amplifier is T° Kelvin, and the noise figure is also
normalized to T° Kelvin. If the load temperature is 0° Kelvin, we have
to subtract Gd2ZI2GLZ1/(1 GdZi) from the right-hand side of (35),
which comes from the noise power from the load at T° Kelvin.

If the load or isolator temperature, 77/ , is higher than T, the noise
power generated in the isolator travels toward the input side of the
amplifier, reflects back at the input diode, and is amplified. Therefore,
the higher the isolator temperature is, the smaller reflection must be
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kept at the input diode. If the isolator temperature is much higher than
the amplifier temperature, a matched condition to Z1 at the input diode,
i.e.

G,Z1 Gd 1 (30')

must be held in order to keep the effect of the hot isolator small. In this
case, the power gain and the noise figure normalized to T° Kelvin are
approximately obtained in the following equations:

PG ti GLIZIGeZig2 (33')

1 Gd'ZI wi (1 _ 1)
1 - GdZI g2 g2

(G8Z1 + u -dui - 1 )2} ->>
T 4

+ 77/ LZ1 n 7 r Tr
1.

The last term in parentheses represents the deterioration of noise figure
due to input mismatching.

V. OPTIMUM NOISE FIGURE OF THE AMPLIFIER WITH LOSSY DIODES

Fti
(35')

To simplify the analysis, we assume that a variable -capacitance diode
is represented by an equivalent circuit shown in Fig. 7(a). The junction
capacitance C; is the only variable element and is given by the following
equation:

C; = C; c cos copt (36)

where co, denotes the pumping angular frequency and equals col + co2 -
The characteristic quantities of the diode, co , wo and Qo are defined as

follows: the critical angular frequency

1 1 ic I (37)cocr = - - -2 CIR, Ci cu

where is a dynamic quality factor of the diode; the self -resonant angular
frequency

1

VL8C;

and the diode Q at the resonant frequency

woL,
Q0 =

.

(38)

(39)
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S

(a) (b)

Bd

Fig. 7 - Equivalent circuits of a variable capacitance diode.

1137

Transforming the circuit of Fig. 7(a) into the form shown in Fig. 7(b),
where ceff is an equivalent sinusoidally varying shunt capacitance, the
new circuit parameters at frequencies away from the self -resonant fre-
quency fo are given by the following relations:

Bd
1 Cow 1

R,,(20 Cj WO wo

WI) w j

1 1
Gd

R.Q02 (WOco

CO

CO3)"

2
Wo

W1W2
Ceff C.

(C01 WO) (W2 WO)

WO (01 WO W2

Figs. 8 and 9 show the frequency characteristics of Bd and
spectively for various values of a parameter Co/C; .

From (40), we obtain the following relation:
2 2

W1W2 I CeffI Wcr 1,1
d1U-d2 

4 wiw2

(40)

C'1 re -

(41)

For a high -gain amplifier, the following condition should be satisfied
from (20) :

Gr2 = (1 ± L2)Gd2 10)1(02 I Ceff 124. (42)
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where L2 is an external idler loading factor of the amplifier.* Substituting
(41) into (42), the high -gain condition is expressed as follows:

1 Wer2 Gd1Z1

03

00
10

4

2

1.0

0.8

0.6

0.4

0.2

- 0.2

- 0.4

- 0.6

- 0.8

-1.0

-2

4

10
00

0

2 o)1co2 1 L2
1.ti (42')

1 orFoi
.._,

Go

.,_

Co Q0
----''-''MAX. R500 Bd CJ

Q 0
MIN. R5Q0Bd ----t cjCo - 2

AROUND f = fo

f
01 0.2 03 04 06 0 8 1.0

f0
1.5 2 3 4 6 10 00

Fig. 8 - Frequency characteristics of an equivalent shunt susceptance of a
diode.

From (35), a noise figure expression for a high -gain amplifier is approxi-
mately given by the following equation:

F Rd., (1 + Gd1Z1) (1 + -61) . (35")
402

Eliminating GdIZI from (35") by using (42'), and differentiating (35")

* Originally introduced by M. Uenohara.
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with respect to (...)2/wi , we obtain the optimum ratio of idler -to -signal
frequency for the optimum noise figure, and the optimum noise figure
for a given signal frequency h , a diode critical frequency f and an idler
loading factor L2

ifTopt = {I + \/2(1 + L2)y 1- v2(1 + L2)} (43)
cr Ot

c r

(02 CO1 01 (44)
;1) 01,1 V2(1 + L2) V2(1 + L2)

Fig. 10 shows the numerical values of (F) opt and (co2/coi)opt
It is shown in (43) that the optimum noise figure is fairly good but

slightly higher* than that of a single -diode parametric amplifier. The
reason for the higher noise figure is attributed to the fact that, to obtain
the same amount of gain with a given ratio of reactance swing, the
quarter -wave coupled amplifier needs a lower idler frequency than that
of a single -diode reflection -type amplifier. However, for reflection -type
amplifiers it may not be possible to use the optimum idler frequency in
order to obtain a wide bandwidth, and a small difference in thermal noise

* For a single -diode parametric amplifier, the optimum noise figure and the
optimum ratio of idler -to -signal frequency are obtained in terms of a critical fre-
quency and idler loading factor, as follows:

Poet =

ti

01 072 L -{1 ± CT (1 ± 2) -I- -V1 + L24/ 1

1.

+ L2 1

+ L2
(2- 12

+ 1

2

+

.

(wcr)2 1

) 1 ± L2±
1 - 1

1
-61

1/1 ± L2 V1
+

1 + L2 VI ± L2
Qls (51

If 01 >> 1, these equations yield

Fop, (1 +Q= + L2)2
i

(1/1WI Op tW

01

+ L2

These are the same shown in (43) and (44) if Qi is replaced by 1/1/2
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00
10

4

2

NO
1.0

C 0.8

0.6

0.4

0.2

0

MAX.

61111.11s.. -

RsQgGd ---1 Qg
A -r f =f,

02 04 06 0 8 1.0

f/ f0
1.5 2 4 6 10 00

Fig. 9 - Frequency characteristic of an equivalent shunt conductance of a
diode.

becomes negligible in comparison with the noise contribution from
antenna circuit losses when the amplifier is refrigerated at a very low
temperature; therefore, the disadvantage of slightly higher noise per-
formance of the unilateral amplifier seems to be not always a serious
problem in practical applications.

VI. DESIGN CONSIDERATION OF THE AMPLIFIER

In previous sections, we discussed the amplifier characteristics in
general terms. Now we have to consider what kind of diode is necessary
and what image impedance we have to choose in order to obtain a pre-
scribed gain at a prescribed impedance of the system. And also we have
to consider what characteristics the amplifier should have without pump-
ing in order to have gain with pumping.

From the equivalent circuit of the diode shown in Fig. 7, the equivalent
change in shunt susceptance AB due to a static change in the junction
capacitance AC; is given as follows:

aB coo AC -
AB Pe, c; Aci = (20Gd - tfj

(45)

If the static change in the junction capacitance AC; equals the amplitude
of sinusoidal variation, I c I, (45) yields the resultant change in the
equivalent susceptance as follows :

AB = 2( cocr,/w)Gd (46)
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Multiplying (46) by Z1 and substituting it into (42'), we obtain the
following equation :

ZDABI 4 w-1 (1 + L2). (47)
COcr

It is seen in (47) that in order to obtain a high -gain amplifier, when the
diode bias is varied over the entire range for making a passive test of the
amplifier, the susceptance change normalized by the image impedance
Z1 at the signal frequency should be twice as much as the amount given
in the right-hand side of (47). Also, the amplifier network should be a
piece of matched transmission line if it is not pumped, and the two diodes
in the amplifier should have the opposite direction of change in suscept-
ance at the signal frequency when the bias voltage is changed in the
same direction. If we have external idler ports for loading the amplifier,
the two diodes should have the same direction of change in susceptance
at the idler frequency. In Fig. 11 are shown required amounts of suscept-
ance, which are twice the amount shown in (47), to fulfill the condition
of unilateral amplification, as functions of idler to critical frequency ratio
for various idler loading factors.

The bandwidth problem of this amplifier is not so straightforward as
the noise figure problem. As mentioned in (21) of Section III, the ap-
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Fig. 10 - Optimum noise figure of the unilateral parametric amplifier.



1142 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1964

30

20

10

9

8

7

05 6

NY 5
N

3

2

1

0.08 0.1

A,

92.4Pr

0.2 0.3 0.4 0.5 0.6
(02

(OCR

0.8 2 3

Fig. 11 - Required susceptance change at the signal frequency for high -gain
amplification.

proximate bandwidth is determined by the idler circuit that can be im-
proved by a multiple -tuning technique. However, in order to utilize a
broadband idler circuit, the signal network should have a broad enough
bandwidth to prevent any oscillations. The reason for this is as follows:
in order to obtain a unilateral amplification a larger capacitance swing
is needed than for a reflection -type amplification. Thus, wherever im-

pedance conditions outside the signal frequency band become favorable
for ordinary reflection -type amplification, the amplifier tends to change
its mode of operation and breaks into oscillation. For this reason, not
only must the image impedance of the network at the signal frequency be
flat, but the phase constant also must be less frequency -sensitive in the
frequencies where the amplifier has a gain. [For a closer investigation of
the stability problem, we have to study (9).]
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If both signal and idler frequencies are far from the self -resonant fre-
quency of the diode, an unloaded Q of the diode at a given angular fre-
quency w, which is approximately given by

w aBd
Qud r" -d

2G d
(48)

is an important factor in determining the bandwidth of the amplifier.
This factor is expressed by the following equation:

2
CO0)0 Cow wp

Q "4-.1 Q-n { w- -r- - - (- --- /
2 coo co ceo coo co

(48')

Fig. 12 shows the frequency dependence of Qd for various values of
Co/G; . In Fig. 12, it is shown that the idler frequency should be close
to the self -resonant frequency in order to obtain a large bandwidth. If
the idler circuit is a single -tuned circuit with a loaded Q of Q L2 , the gain -
bandwidth product is roughly given by

(Affi)3dh
- VPG f. 2

Q1,
(49)

6.1

Suppose the signal and idler frequencies and diode parameters are
given as follows:
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Fig. 12 - Frequency characteristic of a normalized unloaded Q of a diode.
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fl = 4 gc

f2 = 8 ge

C; 0.65 pf

L8= 0.6 nh

Co = 0.15 pf

fc, = 30 gc

I c I 0.5.
Ca

From (38),

1
8.07 gc.

-VL,C; =

Therefore fo is very close to f2.
From (37),

From (39),

11 1 ICI
30 ge =27r C 1R8 C;

R., = 2.05 ohms.

Qo = 14.8.

From the values of Co and Ca ,

Co/Ca = 0.231.

From the values of fi , f2 and fo ,

Allo = 0.496

f2/fo = 0.992

fdfo = (fi f2)/fo = 1.488.

From Figs. 8 and 9,

RsQ0Bd1 = 0.80 .' Bdi = 26.3 m mhos

R.Q0Bo = -0.85 Bdp = -28.0 m mhos

RsQ02Gd1 = 0.46 Gdj = 1.02 m mhos

RsQ02Gdp = 1.44 .% Go = 3.20 m mhos,
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where the subscript p denotes a quantity for the pumping frequency.
From (46),

ABl = 15.3 m mhos.

Assuming L2 = 0, the right-hand side of (47) yields

4(c02/c0) = 1.07.

Therefore, in order to have a good gain, the following condition should
be held

ZIABI > 1.07

> 70 ohms.

Suppose we use 80 ohms for Z1, which satisfies the above condition. The
expected noise figure at room temperature is obtained from (35") as
follows:

F= 1.081 X 1.49 = 1.61 = 2.1 db.

If the amplifier and isolator are both refrigerated at 78° Kelvin, the
noise temperature defined by

7', = (F - 1) x 290°K
becomes

7', = 48°K

If the amplifier is further refrigerated at 42°K, the amplifier noise tem-
perature is

Te = 2.6°K.

If the input mismatching VSWR normalized to Z1 is 1.2, the noise
temperature of the amplifier increases by 1° Kelvin even with the
isolator refrigerated at 78° Kelvin [cf. (35')].

When we use a single -tuned idler circuit without external loading,
Q L2 174:21 (20 I the percentage gain bandwidth product obtained from (49) is

( gill ) 3 d b PG rr:i 27 per cent.

If we choose 16 db gain, the bandwidth is calculated as

(Af/fi)3db 4 per cent or (g)3db 160 mc.

With a double -tuning technique, the bandwidth may be improved up
to 300 mc.
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VII. CONCLUSION

Performance characteristics of a unilateral parametric amplifier with
two diodes separated by a quarter wavelength at the signal frequency
have been theoretically investigated on the basis of a scattering matrix
representation. It is shown that a broadband signal circuit is essential
in order to obtain a unilateral gain; otherwise, the amplifier may easily
oscillate. The reason for this is that a unilateral amplifier requires a
larger capacitance swing than an ordinary bilateral amplifier. It is shown
that it is possible in principle to obtain any amount of low noise ampli-
fication without adjusting an input and output matching network of
this amplifier, though the optimum noise figure is slightly higher than
that of an ordinary reflection -type amplifier. This higher optimum noise
figure does not always present a serious problem for practical applica-
tions, because the idler frequency is often determined by other factors
such as broadbanding or pump availability. The bandwidth is primarily
determined by the idler circuit. Broadbanding by introducing a mismatch
in the signal circuit is not practical because it deteriorates the unilateral
characteristic. A numerical example is given to show the potentiality of
building an amplifier at 4 gc which has a 2.1 db noise figure and more
than 300 me bandwidth at 16 db gain. Since this amplifier does not have
substantial reverse loss, it usually requires an isolator at its output port.
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APPENDIX

Substituting the following relations

81 = (2nt + 75 +

82 = ?or + 52 (50)

Op = (21n, + 2n + 1)
2
- 6,

into (10), and assuming O's are small quantities, each coefficient of the
scattering matrix is modified as follows:

A = 1 - 2(41(022 - j2colco2K2(2co1co2K262 Sp)

t
511.0 = S22* A = j2w1c022(51 + 204032K2 02 op)

(51)
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Sit ( - ) - 2040)22 - ,7161( 1 - 2wice2K2)

2w...)22(62 ap) H

521  A = ( - ) "1-"k1 2wice2K2 - :7{6 ( 1 + 2c410:22)

- 2colcovc2(62 - (5,,) } I

S12  A = - Wi/CO2) 842  A = - WiK eXp lep0/2)

1451 32(4WiCesK2 - +
S1.1. A = - (col/w2) S32 = (-) "colic exp (i0p0/2) + 12 + bp) (52)

etc., where

Apo = (2nt + 2n + 1)(7/2).

Equation (52) shows that the unilateral characteristic is deteriorated
by the imperfect phase synchronization. And the amount of coupling
between the signal wave in the reverse direction and the other three
waves is determined by E, + 62 + (5,, for a high -gain amplification where
201w2K2 Er:, 1. An imperfect pump synchronization represented by 6 shifts
the center of the amplification band as shown in (51). It is also shown in
(51) that the bandwidth is affected mostly by a frequency -dependent
idler phase constant if K is kept constant.
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The Use of Wollaston Prisms for a
High -Capacity Digital Light Deflector

By W. J. TABOR

Manuscript received March 23, 1964

A digital light deflector was recently proposed by T. J. Nelson' in
which n optical modulators and n uniaxial crystals were used to provide
2" positions of the beam. Each uniaxial crystal was used to deflect a
beam of light into either of two beams, with the light at the output
remaining parallel to the input but displaced by an amount proportional
to the thickness of the crystal. For a large number of positions it was
found that a lens had to be employed in order to focus the beam into a
small spot. The use of the lens requires that converging or diverging
light must pass through the uniaxial crystal. In this brief we point out
that this converging beam, when passing through the crystal as an
extraordinary ray, is subjected to an index of refraction which varies
rapidly with angle. The digital light deflector using this type of deflection
therefore has appreciable image distortion, and the limiting spot densities
that can be achieved are less than would be predicted if only diffraction
were important.

A system which has less image distortion than the above can be con-
structed by using Wollaston prisms2 (similarly Rochon or Senarmont
prisms) and parallel light. (See Fig. 1.) Only the first two prisms are
shown in Fig. 1. A Wollaston prism has the property that a collimated
beam incident to its first face will be deviated, depending on its polariza-
tion, into either of two collimated beams. In this case the output beams
will have an angular separation, whereas in the Nelson proposal the
two output beams were laterally displaced without a change in angle.
In general, n prisms will be used to provide 2" resolvable angles, and
these angles can be displayed as 2" focused spots of light by means of
a lens. This system has several advantages: (1) the parallel bundles of
light contain only the angular variation implied by diffraction theory,
which can be made small; (2) the light rays are always either nearly
parallel or perpendicular to the optic axis where the index varies only
slowly with angle and (3) the Wollaston prism contains much less mate-
rial than the equivalent blocks of uniaxial crystal.
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Fig. 1 - Use of Wollaston prisms in a digital light deflector.
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One disadvantage of the Wollaston prism is that the deviation angle is
not constant as the incident angle of the parallel bundle of light is varied
from the perpendicular direction. This may necessitate placing the Wol-
laston with the smallest deviation first, the next largest second, etc. With
this arrangement no Wollaston prism will have an incident angle differing
from the perpendicular direction by amounts as large as the deviation
angle of that prism. In this way the problem of the varying deviation
angle should be minimized.
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