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This paper is concerned with phase contrast in electron images with
emphasis on a periodic scattering object. The Kirchoff diffraction or imaging
integral over the back focal plane is formulated in terms of the amplitude and
phases of the scattered wave, using coordinates adapted to numerical methods.
The integral was programmed for evaluation on the IBM 7090 and the
image plane amplitude displayed on a microfilm plotter. The effects of
spherical aberration, aperture size, defocus and thermal motion of the scatter-
ing atoms on image contrast of atom positions for chains of nickel and of
gold atoms were investigated for separations of 2 I and 8 A.

In the range of atomic separations, spherical aberration is the most de-
structive single factor in the loss of phase contrast. It appears that an ob-
jective lens with a spherical aberration coefficient less than 0.2 mm will be
necessary if phase contrast images of atom locations are to be attained. In
addition, a practical quarter -wave phase plate is essential for the objective
lens system and will be much more effective than defocus contrast. Even so
the contrast is marginal for photographic recording except for the case of a
thin perfect crystal. Amplitude contrast is very small for atom positions and
should be minimized by the use of a large objective aperture.

Phase contrast should improve with increasing accelerating potentials due
to reduced inelastic cross sections compensating the loss in elastic contrast
near 2 X 105 volts.
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I. INTRODUCTION

The resolving power and general quality of electron microscope images
are determined basically by image plane contrast. There are two distinct
contrast mechanisms:

(1) amplitude contrast - produced by removal from the image plane
of electrons scattered outside the objective half -angle, Fob;

(2) phase contrast - produced by suitable recombination at the
image plane of waves scattered within the objective aperture.

The first mechanism, amplitude contrast, is the one commonly operat-
ing in images of objects which are greater than about 10 in size. The
contrast between two image points for this type of object is either mass
thickness or diffraction and is given approximately by

AI /I = (Qt) = QAt or tiQ. (la)

for amorphous materials. (See Ref. 1, Ch. IX, for diffraction contrast.)
Here Q is the cross section for scattering outside the objective aperture
and t is the object thickness. In turn, the cross section for scattering out-
side the aperture is

Q - NOCratom (lb)
A

with No = 6.02 X 1023 being Avogadro's number. Here, A is the atomic
weight and p the density. The cross section per atom for scattering out-
side the aperture is aatom and consists of an elastic and an inelastic part

a atom = cr e 1 + (rine' (lc)

The cross section CT atom is the fraction of incident electrons scattered
beyond the objective half -angle, 00b; , and is the integral of the differen-
tial cross section, D (0), over the scattering angle 0

a atom = 2ir f D(0) sin 0 dO. (1d)
ifiobj

The differential cross section, D ((3), determines the intensity distri-
bution at the back focal plane of the objective lens. For elastic scattering
by an isolated atom D (j3) is simply the square of the atomic scattering
amplitude or

D(Q) = if(s)i 2 (2a)

where f (s) is the electron scattering amplitude per atom as a function of
the scattering parameter

s 47r
sin (0/2)

X
(2b)
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with )3 the scattering angle and X the incident electron wavelength. For
the small scattering angles encountered with fast electrons, sin (j9/2)
/3/2 and

s ti 4r
2X

. (2c)

Tables of scattering amplitudes [Ref. 2, Tables 3.3.3 A (1) and A (2)]
list values of f (s) in or cm for chosen values of the parameter 9/2X.

The differential cross section for a solid object is determined by inter-
ference among the waves scattered by the individual atoms composing
the object. This, in turn, depends upon the spatial arrangement of the
atoms. The differential cross section for a liquid or glass is diffuse, with
broad maxima corresponding to those interatomic distances occurring
most frequently. On the other hand, that for a single crystal is a discrete
set of spots.

The portion of the scattered amplitude distribution falling outside
the objective aperture determines the amplitude contrast of an image
point as sketched in Fig. 1. That part of the distribution falling within
the aperture is available for phase contrast at the image plane. The
extent to which the phase information can be used in the formation of
an image is presently limited by spherical aberration which essentially
"scrambles" the phases to a degree increasing as the fourth power of the
scattering angle. Phase information concerning the distance between two
object points is thus increasingly garbled as the distance between the
points decreases. This follows since the scattering angle for a distance
a in the object is

13 X/a. (2d)

Only values of a such that ,3 < I3 h; have any possibility of contribut-
ing to phase contrast.

Although numerical calculation of phase contrast is the purpose of
this paper, it is instructive to consider the limitations on amplitude
contrast in the region of interatomic separations before discarding it.

II. AMPLITUDE CONTRAST

The total amplitude contrast for a single atom in the object plane of
a perfect lens would be

A/
to

gel

r(Re12)

ginel

1T(Rex2)
(3a)

where Rd is the scattering radius for elastic collisions and Rex that for
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Fig. 1 - Schematic diagram showing amplitude scattered by single atom in
object plane. The diffracted amplitude at the back focal plane produces image
plane contrast depending upon the size of the aperture. The portion (shaded)
falling outside the aperture results in deficiency amplitude contrast. The portion
within the aperture can produce phase contrast.
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inelastic. If the resolving power of an imperfect objective lens is B, then
Ref S in (3a). Both terms of (3a) rapidly diminish with increasing
incident electron velocity and fixed aperture. The negative sign denotes
deficiency contrast for an image point.

Since the scattering contracts into the forward direction as the
electron velocity increases, it is advisable to consider the scattering
amplitude at constant values of 00N/2X (the scattering parameter).
This amounts to shrinking the objective aperture as the wavelength de-
creases so that the Airy diffraction disc from the aperture maintains a
constant radius. This is accomplished by changing the variable of inte-
gration in (id) from f to the scattering parameter s of (2b). The elastic
cross section for scattering outside the objective aperture (per atom)
becomes

Del

A2(1 72)-1

2/r orix)(3.b;

with y = v/c, the ratio of electron velocity to that of light. Here f° (s)
is the scattering amplitude based on the electron rest mass. It is noted
that the velocity dependence of (3b) results in a rapidly decreasing value
of 0-ei as the accelerating voltage increases, with consequent loss of elastic
amplitude contrast in (3a). The elastic cross sections as a function of
atomic number have recently been calculated by Burge3 and Smith
using numerical methods with (3b).

The second term of (3a) depends upon the inelastic cross section
Grine' and the inelastic excitation radius, R, . Williams.' arrived at an
excitation distance Rex for an atom of average excitation energy (SE)
having a velocity dependence

f° (s) 128 ds (3b)

.2vh
1R.

0
72)-1. (4)

For carbon, Rex is about 40 A at V. = 105 volts taking (AE) ,cz.di 44 volts,
so that the location of the energy loss event is very diffuse. For heavier
atoms, Rex is generally less, being about 4 A for Al at 105 volts with
(SE) 300 volts. The inelastically scattered electrons thus do not carry
localized information on atom locations (unless they are subsequently
diffracted). The relatively large values of Rex make the amplitude con-
trast due to inelastic scattering trivial except for relatively large objects
(50-100 A).

The amplitude contrast resulting from elastic scattering is so small as
to offer little hope of imaging single atoms. For example, the elastic cross
section for a nickel atom is about 7 X 1018 cm2 at V . = 5 X 104 volts
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for an objective aperture /30b; 5 X 10-3 rad. The contrast is only about
0.8 per cent for 8 ti 2 A, or so low as to be of little importance. The
chief hope for imaging atoms with the electron microscope lies in phase
contrast, wherein intensities are very sensitive to the relative phases of
the scattered waves reconstituted at the image plane.

III. PHASE CONTRAST

The dominant contrast mechanism for scattering objects exhibiting a
periodic structure or with a detail size approaching atomic dimensions
is that of phase contrast. This requires that the image plane amplitude
be evaluated by superposition of all the waves which are scattered by
the object and enter the objective aperture of the lens. In its most general
form this superposition is the imaging integral.' For a perfect, aberration -
free objective lens the imaging integral is the Fourier transform of the
diffracted amplitude distribution at the back focal plane, which is itself
the Fourier transform of the distribution of scattering potential in the
object. The imaging integral is thus a magnified representation of the
Fourier projection in the object plane of the electrostatic potential distri-
bution' in the object itself. In the case of a real objective lens, the
fidelity of the image plane amplitude distribution is determined by the
lens aberrations and by the size of the objective aperture. The objective
aperture limits the distance information available to the image plane,
removing the higher "spatial frequencies" in the diffraction pattern at
the back focal plane. This is in addition to its own diffraction pattern.

A description of the intensity distribution in the image plane involves
a consideration of three planes in the objective lens. These are: (1) the
object plane with rectangular coordinates, the x° -y° plane, (2) the back
focal plane or plane containing the objective aperture and (3) the
image or xi-yi plane. The three planes are normal to the optic axis z
as shown in Fig. 2. The object and image distances measured from the
lens plane are Lo and Li respectively. The distance from the lens plane
to the back focal plane is the focal length of the lens f. The magnifi-
cation of the image is M = Li/Lo, and f Lo when Li >> Lo

Assume a plane parallel electron beam of wave vector K along the
optic axis incident on the object plane from above. Let its amplitude be
unity. Electron waves scattered by the object in the object plane pro-
duce a diffraction or scattering pattern at the back focal plane. This
pattern is nearly a plane section through the reciprocal lattice of the
object with a scale factor LoX, where X is the electron wavelength and

K I = 27r/X. The diffracted amplitude distribution 1/. in the back focal
plane is in turn a source for Huygens wavelets which propagate to the
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Fig. 2 - The three planes - object, back focal and image - that are of con-
cern in contrast calculations. The scale in the back focal plane is for a periodic
scattering object with reciprocal lattice vectors gi and 2 .

image plane and recombine according to their phases and so produce the
image amplitude distribution. The entire process can be formally de-
scribed in terms of Fourier transforms, as already mentioned. However,
when lens aberrations are present the imaging integral describing the
image plane amplitude distribution for the imperfect image is no longer
identical with the object plane Fourier projection of potential in the
object. It is usually necessary to employ numerical methods in evaluating
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the image plane amplitude, since the integration cannot in general be
carried out in analytic form. The integral to be considered' is

) - Lo1 f OW, ) exp [ix( t', n')]
Lix

(5)
exp +,n'yi)/Li] dn'

x (s' n') is the phase of the amplitude at (e, ?I') in the back focal plane.
Since the primary concern is with crystalline or periodic scattering

objects, the coordinate system chosen in the back focal plane is adapted
both to this situation and to a formulation lending itself to numerical
evaluation. Distances R in the back focal plane are related to distances
d in the object by the relation I R I = LoX/d. LoX is the camera constant
or scale factor. A single -crystal object produces an array of diffraction
spots in the back focal plane located at R = LoAgi LoXg2 where g1
and g2 are the operating reciprocal vectors in the object plane. The
generating vectors in the object are al ,a2 ,a3 and the generating vectors
in reciprocal space are b1 ,b2 ,b3 , subject to the condition

(aibi) = Si;
=0 if i j (6a)

= 1 if i = j
so that I bi I = al -1 etc. and

g = hbi kb2 /b3 (6b)

where h,k,l are the Miller indices denoting the reciprocal lattice vector g.
Lett and n be numbers such that an arbitrary point in the back focal

plane is the terminus of the vector R

R (e, n') = ELoXgi nLoXg2 (6c )

If t and n are integers, R locates a diffraction spot at a distance

R = [(E-LoXg1)2 (nL042)2J1 (6d)

since the t and n axes are rectangular. The scattering angle 0 for electrons

to the point R is, for small angles (sin (3 0)

=
R

0 = xi(Egi)2+ (W2)211
(6e)

and the scattering parameter s is
47 .r/ vi)2 ng2 )214.S sin (60
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The amplitude at a point (xi, y1) in the image plane is the diffraction
integrals over the aperture

1( Xi, yi)- R)eix(R)
LobiX f-max

 exp [-27ri( ny°g2)] d(LoXtgi)d(LoAng2)

(LoX)2gig2 TR- 1"-j ,P(En)eix(R.")
LoLix maxmax (7a)

 exp [- 271-i( x°gt ny°g2) d dn.

In order to evaluate (7a) it is necessary to know the amplitude distribu-
tion il/(, n) and the phase x (t, n) in the back focal plane.

If the diffraction pattern has a center of symmetry at the origin of
the back focal plane, the periodic object likewise has a center of sym-
metry at the origin of the object plane. In this case the imaging integral
(7a) can be simplified for the purposes of calculation to

2Xmg2 f.".. f,max41(Xi, yi) - (,[cosIGn) x(,77) i sin x(E,n)]
0 0

X cos 271-Ex°g1 cos 27rny°g2c/E dn. (7b)

2Agig2 si
M

where S1 denotes the phase integral in (7b).
It is now necessary to choose expressions for the amplitude tk(E, n) at

the back focal plane occurring in (7b). This amplitude depends upon
the detailed spatial arrangement of atoms in the object plane and upon
the atomic scattering amplitude f (s). There are two approaches to

n) - the kinematic and the dynamical theories of electron dif-
fraction.'

The kinematic approach is much the simpler of the two and will
illustrate the pertinent features in phase contrast. Since the main
interest here is with scattering objects which are basically periodic, the
kinematic amplitudes at the back focal plane can be immediately written
down. Let the object be a crystal sheet with an atom at the origin of
coordinates in the object plane. If the lateral extent of the crystal is n1
atoms along x° and n2 atoms along y° and if the extent in the z direction
is n3 atoms, the kinematic amplitude is the familiar expression°

(1 72)--ifo(ort3 sin 7rniE sin irn2n
sin 7ri sin ern

(8)
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where n1 , n, , and n2 are odd integers. If even integers are employed,
phase factors must be included in (8). The discussion is therefore con-
fined to odd values. The atomic scattering amplitude t(s) is based on
the rest mass of the electron and (1 - 72)-1 is the relativistic correction
(with 7 the ratio of electron velocity to that of light). It is noted that

iritiE = K
2 gi

and

K /527rne/ - n2
9 2

.

The phase x in the back focal plane is made up of several terms"

x(t,n) -==. - Co04 irAff32. (9a)

The phase change upon diffraction by the object is 7/2, while the second
term is the phase due to spherical aberration. The third term is the phase
introduced by defocusing the lens an amount 4f. There is a fourth term
which is the phase associated with the electron scattering amplitude f (s)
for an atom, but it is small except for the heaviest atoms and at large
scattering angles and will be neglected here.

It should be mentioned that the spherical aberration phase term in
(9a) is four times larger than that commonly used in discussionsl" of
the effect of spherical aberration. The term in (9a) applies to a single
ray at angle 0 with a corresponding circle of aberration of radius CO'.
The unweighted average radius for a bundle of rays filling the range
0 </3 < /3.a is

0,x,) == -C 3
Co° . fi9max 3 1

0, max
13max

with a resultant average phase

27 C-0.2
<x).p °

X 4
(9b)

The use of (9b) in (9a) in evaluating the imaging integral is not correct,
since it suppresses the destructive effect of spherical aberration.

The total amplitude at an image point is the sum of the scattered
amplitude (7b) and the unscattered axial wave. If the incident amplitude
is unity, then in the kinematic approximation of weak scattering the
unscattered wave leaving the object plane is very nearly of unit ampli-
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tude. Its amplitude at the origin of the back focal plane is large, but at
the image plane it is (M)-i. Adding the unscattered amplitude to (7b)
yields the total image point amplitude

yi)toto
1

= -[l + 2Agig2(1 - y2) -'S` i . (10a)

The mass correction factor (1 - 72)-1 has been removed from Si so that
the velocity dependence of the amplitude can be easily seen. The expres-
sion (10a) does not apply when dynamical conditions" are realized in
the object, since then the axial wave may be weaker than the scattered
amplitude and the approximation is no longer valid.

The image point intensity obtained by multiplying (10a) by its
complex conjugate is

111(Xi, gi)I2 C")/
1

[ 1 -I- 4 Xgig2 (1 - -y2)-1Sireii (lob)

since the term in 1 Si 1 2 will generally be trivial compared to the cross
product term until the mass correction term becomes large at very high
accelerating voltages (,::106 volts). The imaginary part of the scattered
amplitude (7b) is here neglected.

The kinematic contrast G between two image points is defined to be
the intensity difference between the respective points divided by the
background intensity. Using (lob) the result is

G ^S 4Xgig2 (1 - 72)-4ASi (10c)

with all lengths in angstroms. OS' is the amplitude differential between
the image points in question obtained by numerical evaluation of

Si = n3 f
nuxf fo(s) sin ?tire sin n2rn

sin irk sin irn

X cos x(,n) cos 2ires°g1 cos 271-ny°g2 dE do

(10d)

at each point.
For the purpose of phase contrast calculations it is sufficient to con-

sider a single chain of atoms of spacing a lying along the x° axis. The
number of atoms in the chain is ni , with the middle atom on the optic
axis. Setting n2 = n3 = 1 in (10d) gives the integral to be evaluated at
a point on the xi axis as

fEmax fnmax
0 sin rnie

Si = f (s) cos x(07) cos 2r (a ) dE (177 (10e)
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having maxima at the image points corresponding to atoms or where
x = 0, tea, ±2a, etc. The amplitude maxima for atomic positions
approach

rmax rmax r

o

r

i i
q0 Sin 77-1/1

cosX( 01)(4 (in ff (s) (s) cos x,n)A do
o o 0 0

as the size of the objective aperture, Emax nmax , increases. The value of
the maxima is seen to be sensitive to the phase x (E, n). For a perfect
lens, the scattered amplitude in the Gaussian image plane vanishes,
since x 7/2, so there will be only background intensity. On the other
hand, the introduction of a quarter -wave phase plate" into the scattered
beams can make x = 0 or 7r and the amplitude will be a maximum. The
sign of the maxima will be that of cos x, so that atom positions can be
either bright or dark against the background, depending upon the phase.

IV. NUMERICAL RESULTS

4.1 Spherical Aberration at the Gaussian Image Plane

Numerical evaluation of the phase integral si in (7b) requires that
the phase (9a) be expressed in terms of the dimensionless coordinates
(E, n) using (6e) to give

x(E, m) = (7/2) - 27Cdt3[ (01)2 (ng2)12 7rAfX[(Egi)' (n*2)21.

For the single -atom chain of spacing a this reduces to

x(E, n) ti (7/2) - reale 71212 +7rOf'(e 772 (11a)

with Co' = 2C0X3/a4 and Af' = AfX/a2 being dimensionless aberration
and defocus parameters. It is noted that t-001 is the number of wave-
lengths of spherical aberration at the first diffraction maximum (E = 1,

= 0) while 14' is the number of wavelengths of defocus.
In the Gaussian image plane zf = 0 and (11a) becomes

x(E, n) = (7ri2) - IrCts'Et2 + 9712. (11b)

The real phase integral si along the chain, y° = 0, is now

Si = TP(01) cos Xq,71) cos 27Ex°/a dE do (12)
0 0

and the absolute amplitude is 2Xa2S2. If the phase (11b) is used in
co(12) it is evident that cos x = sin 7ri[e n2]2. The trivial contrast

observed is produced by spherical aberration. Fidelity contrast at the
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Gaussian image plane requires the use of a X/4 wave plate in the back
focal plane. If the plate advances only the diffraction spectra but not the
unscattered or zero -order beam, the phase term in (12) is

cos x = - cos IrCE:[E2
7712

and the image will display atom positions dark relative to the back-
ground.

Since analytical expressions for the atom scattering factors are not
available, the amplitude in the back focal plane for this purpose is ob-
tained numerically from tabular values as described in the Appendix.
A discussion of the choice of sampling intervals along the E, n and x°/a
axes is also found in the Appendix and some of the artifacts that may
occur are pointed out.

If Cot = 0 and ni = 1 in (12), it will be noted that Si is the profile
of the Airy disk° for a single atom in the object plane due to diffraction
by the objective aperture. Fig. 9 (b) of the Appendix shows a computer
plot (IBM -7090 microfilm plotter) of (12) for this case of a single
nickel atom. The absolute maximum amplitude is 7.7 X angstrom, or a
contrast of about 60 per cent relative to background for 100-kv elec-
trons. The value a = 2A was employed in (10c), since the scaled .r(s)
curve was at this value of a. The contrast is independent of the number
of atoms, ni , in the chain but is proportional to n3 , the number of atoms
along the optic axis if chains are stacked one directly above the other.

Since the electron microscope objective aperture imposes a finite
upper bound on the imaging integral the result is equivalent to termi-
nating or truncating a Fourier series to a finite number of terms. As a
consequence, the imaging integral does not converge to the value ex-
pected for an infinite upper bound but oscillates about this value. The
Gibbs phenomenon" in the particular case of the objective aperture
manifests itself as the experimentally observed diffraction pattern of the
aperture. The same phenomenon gives rise to artifacts between atom
positions in the image when a finite number of diffraction spectra are
admitted by the aperture.18

The devastating effect of spherical aberration upon phase contrast in
the image of an atom chain is illustrated in the series of amplitude pro-
files of Fig. 3. The numerical values are for nickel with a spacing of 2A.
Profiles were obtained for chain lengths of 5 and 17 atoms which are
within the transverse coherence length of double condenser illumina-
tion in present microscopes. Inelastic scattering and thermal motion are
neglected. The former is reduced by increasing the accelerating potential
and the latter by reducing the temperature. The profiles of Fig. 3 speak
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Fig. 3 -- Series of numerical image amplitude profiles for a 5 -atom chain of
nickel atoms with spacing a = 2 A. The effect of increasing spherical aberration
parameter Co' ( Co' is the number of wavelengths of aberration at the first diffrac-
tion maximum) is illustrated in the series (a) -(e): (a) Co' = 0, (b) 0.2, (c) 0.3,
(d) 0.5, and (e) 1.0. A quarter -wave phase plate is assumed present in the back
focal plane. The contrast of about 00 per cent in (a) falls rapidly to about 9
per cent in (b) for 100-ky electrons with f = 3 mm.
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for themselves, showing a loss in atom position amplitude from 15.5 A
with C01 = 0 to 2 A with the introduction of 0.1 wavelength of spherical
aberration at the first diffraction maximum where CE: = 0.2.

If the diffraction spectra in the back focal plane were points, as for an
infinite, perfect crystal, the phase contrast would be periodic with C0'
and would have maxima where (Ax°)sph = Coe is an integral number
of half -lattice spacings. For the finite chains of 5 and 17 atoms, the
damped periodic nature of the contrast is illustrated in Figs. 4 (a) and (b)
compared to that for a single atom. The aperture has been decreased
from 3.5 diffraction maxima in Fig. 4 (a) to 1.5 in Fig. 4 (b) with a
sizable reduction in contrast. The reduction in aperture size further
limits the amount of spherical aberration but this is more than compen-
sated for by the loss of distance information in the diffraction pattern
and the increased diffraction by the aperture. It must be concluded that
if useful phase contrast of atom positions is to be obtained spherical
aberration must be minimized. Other contrast enhancing devices cannot
overcome this defect of disturbed phase information.

4.2 Contrast by Defocus with Spherical Aberration

A case approximating the present state of the electron microscope ob-
jective lens is that for no phase plate with Cor-di 3 mm and contrast en-
hancement by defocus. This example is a chain of 5 gold atoms with a
spacing of 8 A and was chosen to approximate the situation of gold -
stained sites on a DNA molecule.2° No allowance is made for a substrate
or inelastic scattering.

The phase (11a) for this particular case retains r/2 (with no phase
plate) as well as the defocus term. The scaled aberration parameter is
now Co' = 0.74 or 0.37 wavelengths at the first diffraction maximum
using 100-ky electrons. A series of amplitude profiles was computed on
the IBM 7090 for a range of values 0 4. From these results the
relative amplitude of atom positions AS' was plotted against M' as
shown in Fig. 5. The oscillation of contrast with changing defocus is
typical with near zero contrast at exact focus. Maximum contrast is ob-
tained by weakening the objective lens (Af positive) as is well known.
Even so the contrast does not rise above about 6 per cent, which is sub-
marginal for seeing the gold atom positions in the image.

If the spherical aberration coefficient is reduced to 2 mm or Coyti 0.5
with 0.25 wavelengths at the first diffraction maxima, the maximum de-
focus contrast rises to around 9 per cent for a gold atom with 100-ky
electrons. The neglect of substrate, thermal motion and inelastic scatter-
ing again renders the visibility of single gold atoms marginal at best.
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Fig. 4 - Plot of AS' vs Co' = 2Co X3/a4 for nickel atom chains of 5 and 17 atoms.
The curves approximate damped, periodic functions. The kinematic contrast is
0 = 4.4 AS' per cent for f = 3 mm using 100-kv electrons. The upper bound
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Fig. 5 - Defocus phase contrast for a chain of 5 gold atoms with 8 A. spacing
and a spherical aberration parameter Co' = 0.74 or 0.37 wavelengths at the first
diffraction maximum (Co = 3 mm). The defocus is 4f' wavelengths or zif = 1730
Of' angstrom. The contrast is G 0.28 AS' per cent at 100 kv.

However, a clump of three gold atoms at the staining sites might be
visible in the image, since this would multiply the contrast by a factor of
roughly two. There might be also some benefit from amplitude contrast
providing the phase and amplitude contrast are the same sign and that
the image points for the two coincide. A small shift in image points by
unsymmetric phase would separate the phase and amplitude image
points, resulting in confusion.

If the diffraction spectra at the back focal plane are discrete points,
the condition for maximum phase contrast by defocus is that the phase
(11a) be nr where n is an integer. The optimum defocus parameter At
is then

Afi = (n - -1) C,51

a relation useful in estimating the amount of defocus for best contrast.
Because defocus can optimize only one object plane spacing at a time,
a phase plate is much to be preferred wherein all spacings are maximized
in the same image plane.

4.3 Effect of Thermal Motion

The scattering amplitude n) in (12) assumes that the atoms in
the object plane are stationary. This is not true, since they possess ther-
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inal motion which is temperature -dependent and zero -point motion at
the absolute zero of temperature. Detailed analysis of thermal vibration
amplitudes in a solid is a complex problem21 which need not be discussed
here. To a first approximation the effect of an isotropic thermal motion
is described by the Debye-Waller factor Cm to produce an effective atom
scattering amplitude

(1 - 72)-if(s)e-m.

This dependence has been recently experimentally verified by Horstmann
and Meyer.22 The uncertainty lies in the evaluation of M. For the iso-
tropic averaged vibration case, M is given by

28r
(u2)- sin2 13/2 271-2(u,,2)[( 002 (7/92)1x2

for small angles. For the simple one-dimensional grating (u0)2 is the
mean square atom displacement along the chain. The Debye factor
is then

M 27r2 (u2) E2 + n2)
a2

(13)

and the effect of thermal vibrations on contrast can be approximated by
introducing Cm into the phase integral (12). The thermal diffuse am-
plitude is neglected, as is the inelastic scattering, so that again the com-
puted contrast will be higher than could actually be expected. The effect
on contrast of thermal motion alone arising through diminution of the
diffracted amplitudes is illustrated using (12) and setting Co' = = 0
and inserting a quarter -wave plate in the back focal plane. Amplitude
profiles for a range of values of the relative mean square displacement
were computed. The results are summarized in Fig. 6, showing AS' as a
function of (u02)4/a. The contrast for stationary atoms is 60 per cent, as
before, but falls to 30 for a relative mean square thermal displacement of
0.1. If spherical aberration were introduced, the contrast of atom posi-
tions would rapidly fall below that necessary for visibility in the usual
microscope viewing system.

V. DISCUSSION

The foregoing numerical results serve to point up the rather severe
requirements for an objective lens system capable of yielding phase con-
trast images of atoms. The highly destructive influence of spherical
aberration is a major hurdle that must be reduced to a minimum. If an
objective lens with C r, 1 mm can he realized, the best contrast obtain-
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Fig. G - Effect of thermal motion on image profile maximum amplitude;
(UO2) # is the root mean square amplitude along the chain. The values are for
nickel atoms with a = 2 A and Co' = of = 0.

able with an ideal phase plate will be around 10 per cent for an individual
nickel atom in a chain. The situation is much more favorable for a thin
crystal of the order of 50 A thick, wherein the diffraction spectra are
greatly reinforced. For the single layer of atoms it may be necessary to
turn to image intensifiers in combination with communication tech-
niques of extracting a useful signal from background noise.

Practical considerations demand ultra -high vacuum to eliminate con-
tamination by electron bombardment. A cryogenic stage will be useful
to reduce loss of contrast due thermal motion. The problem of back-
ground noise in the image from a substrate can be circumvented either
by a self-supporting specimen over a small hole or by using thin single -
crystal substrates. The noise level from carbon substrates is intolerably
high for this purpose.

The rapid decline of inelastic scattering cross sections with increasing
accelerating voltage should offset the reduced elastic contrast predicted
by (10c), suggesting that potentials in the range 150-200 kv should be
appropriate. This is just opposite to the use of lower electron velocities
for amplitude contrast.

It appears necessary to develop a practical quarter -wave contrast plate
for the back focal plane. The thickness t of a region of potential Vo re-
quired to introduce a phase advance of 7/2 is23

r Vot r X V.
= or t=

2 2 Ve

where V. is the accelerating voltage. A material film of inner potential
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Vo is a possibility, but the elastic and inelastic scattering by the film
itself must be reckoned with.

The authors would like to acknowledge the invaluable aid of Miss
Barbara Dale, who programmed the imaging integral and carried out
the computational procedures and checks.

APPENDIX

The appropriate numerical values of the amplitude in the back focal
plane are obtained from tabular values of the atom scattering factors.
The scale factor for f° (s) in the back focal plane requires that

VE2 + n2 = 2a sin 3/2
X '

For a nickel atom chain with a = 2A, the first diffraction maximum is
at (sin /3/2)/X = 0.25 and Vt2 + n2= 1, for which f° = 3.22 A, corre-
sponding to a scattering angle = A/a Vt2 + n2 = 1.8 X 10-2 rad.
The empirical curve f° + n2) is obtained from the tabular values
using a third -order Lagrange interpolation24 stored on tape for use in
evaluating the integral (12) on the IBM 7090.

The phase integral Si is put into suitable form for machine computa-
tion by dividing each of three axes, t, n and x/a into equally spaced inter-
vals. The intervals along the three axes are At, An, and A (x/a) respec-
tively. A point in the plane now becomes a point in a grid with
coordinate (miat, m20n), where m1 and m2 are integers. The value of the
integral (12) is now approximated by a summation over the integers
m1 and m2

Sill rnimig
E E f° W(naD2 + (nI2-67)2) cos 2rx

a
miAt. (14)

ni l m2-0

The Fourier integral (12) is thus approximated by a Fourier series
(14). This raises the question of how well the series converges to the
integral, which in turn is determined by the size of the intervals At and
An and by m1 and m2 . Since a Fourier series is periodic, it not only
approximates the integral in the range of the function 8' but produces
repetitive images outside the range.

The importance of the intervals At and An in the back focal plane lies
in the fact that they set a limit to the information available at the image
plane. High fidelity of the image point amplitudes requires that At and
An be as small as possible relative to the amplitude detail in the back
focal plane. Along the n axis, the amplitude is a monotonic decreasing
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function with gradual changes in slope. Along the t axis the situation is
quite different, as seen in Fig. 7, where IBM 7090 microfilm plots of the
diffraction amplitude or Fourier coefficient in (10d) are shown for
n1 = 5 and n1 = 17 atoms. The interval along E is At = 0.01. The half
width of the primary maxima is (0t)1 = 1/ni , so that a good approxi-
mation first requires that

At « (At); = 1-ni

or

On1<< 1. (15)

Between the principle maxima of spacing unity there are (ni - 2) sub-
sidiary maxima and minima. The actual spacing of these subsidiaries is

1 - 2(0t)i 1

nl - 2 n1

and at least three points are required to locate a maximum, zero, and
then the minimum. If it is arbitrarily assumed that six points are a rea-
sonable sampling density between adjacent maxima and minima, the
sampling interval must be

01'

An' 6 -61 .

On this basis, then, At = 0.01 is adequate for n1 = 5. If n1 = 17,
however, then At < 1/102 or the interval At is just adequate. As the
number of atoms in the chain increases further the detail in the ampli-
tude distribution soon becomes smaller than At = 0.01. The interval
At = 0.01 is thus considered too crude for n1 > 25 atoms. This is ad-
mittedly rather arbitrary, and a more detailed analysis might discover a
better criterion.

Along the n axis, on the other hand, an interval An = 0.1 is quite ade-
quate and reduces the number of sampling points. Under these conditions
the number of sample points in the back focal plane for each image
point is

nmax Emax = 12.7 X 103; Emax = nmax = 3.5.
An nt
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Fig. 7 - Diffracted amplitude distributions at the back focal plane as ob-
tained from the microfilm tracer on the IBM 7090 for a sampling interval At =
0.01; the grating spacing is a = 2 (a) for a chain of 5 nickel atoms; (b) for a
chain of 17 nickel atoms.
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The remaining consideration relating to the sample intervals is

aliasing. This behavior can be illustrated by returning to (14). Writing
the coefficient as 4)(t, n), the series sums at (x/a) = 0 to

Sreali(0) = E E 4)(E,n). (17a)
m 1 0 m2=0

If the sampling interval along .r is A (x/a), then the sum at an image
point x = jA (x/a) with j an integer is

Sreali j4 X)) = E E 4)(E,n) cos 27-j0
x m,0 . (17b)(

a nt 1=-0 m 2=0 a

If 27rj0(x/a)mi0t = multiple of 2r then the cosine terms are unity
and (17a) and (17b) are equal. Thus

jA
(1) of = integer. (17c)
a

The aliasing period25 is then

=
1

or

1
alias period =

At
(17d)

Thus the critical sampling interval for these computations is PE, since
it determines both the resolution (15) and the aliasing period. The
effect is well illustrated in Fig. 8, comparing the profiles for n1 = 5 with
At = 0.01 and of = 0.1. The repeating nature of the image or aliasing
is evident for of = 0.1 when the aliasing period is only ten. With At =
0.01, the period is 100 and not seen on the plot. If the number of atoms
711 were now increased to nine the image profile with PE = 0.1 would
show no break at the end of an atom chain and so would appear to be
an infinite chain.

The sampling interval along the xi axis in the image plane has an
effect on the representation of the finer details in the profile. When the
detail approaches the interval length O (x/a) the representation be-
comes inaccurate with "bumps" and "angles" rather than a smooth
curve. This is illustrated in Fig. 9 for the case of a single atom, n1 = 1,
for which

Si
(6, (1) = n,,,E,2=oE.f(V(nirt)2 + (m207)

a
cos 27rj0 (xa-) mlAt
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Fig. 8 - Computer -drawn image plane amplitude profiles along the axis x°
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Fig. 9 - Profiles for equation (12) with ni = 1 nickel atom, Co' = 0 and upper
hounds Sr = n, = 2.5 diffraction maxima; At = 0.01 and An = 0.1. (a) Inter-
val (x/a) = 0.1 resulting in unresolved structure near origin. (b) Interval (x/a)
= 0.01 with expanded scale showing resolution of structure .



232 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

7.5

6.5

2v) 5.5
0
ir 4.5

OZ 3.5

Z 2.5

(n 1.5

0.5

-0.5
-10

**-4A-31.

'""'"'"""*"^"""*"*"..""/VNAN
-8 -6 -4 -2 0 2 4 6 8 10

Fig. 10 - Effect of upper bound on AS': n, = 1 nickel atom and Co = 0. The
upper bound is 1.5 diffraction maxima and A(x/a) = An = 0.1 and 0. = 0.01.
Compare with Fig. 9.

with AE = 0.01, = 0.1 and O (x/a) = 0.1. The profile is shown in
Fig. 9 (a). The number of points involved in this profile is

nmax Emax 20 = 25.4 X i05.

6777 (s)
al

The neighborhood of the central maximum shows irregularities that are
smoothed out to a more faithful representation when A(x/a) = 0.01 as
seen in Fig. 9(b). The number of points involved in the profile is the
same since the range has been reduced by a factor of ten.

The subsidiary maxima and minima near the principal maximum of
Fig. 9(b) are due to aperture diffraction and would smooth out if the
upper limit of the integral were extended to infinity. The radius of the
atom in the profile is not distinct, since the shoulder of the maximum will
approach the axis asymptotically.

The size of the aperture given by the upper bounds t..x and nmax is
reduced from 3.5 in Fig. 9 (b) to 1.5 in Fig. 10. The reduction in aperture
results in a loss of contrast to about 8 per cent. The upper bound 1.5
corresponds to an objective half -angle of 2.8 X 10-2 rad.
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Design of Bandlimited Signals for
Binary Communication Using Simple

Correlation Detection*
By B. R. SALTZBERG and L. KURZ

(Manuscript received July 8, 1964)

This paper considers the design of binary bandlimited signals for trans-
mission over a channel with additive white Gaussian noise, the signals to be
received by a memoryless correlation detector. A signal waveform is found
which allows communication at the Nyquist rate without intersymbol
interference and with 1.3 db degradation compared to an optimum com-
munication system. Other waveforms, consisting of the sum of a few pro-
late spheroidal functions, are also investigated.

1. INTRODUCTION

In the reception of serial binary data transmitted over a noisy band -
limited channel, errors result from the combined effects of intersymbol
interference and noise. Minimization of the error rate involves ap-
propriate design of both the transmitted signal and the method of
detection, taking into account the effects of both causes of degradation.

Nyquist has shown how bandlimited signals may be designed so as
to eliminate intersymbol interference when detection is accomplished
by periodic instantaneous sampling.' Sunde has shown that optimum
performance over a channel with white Gaussian noise is achieved when
the shaping is divided equally between the transmitter and receiver.2
Tufts has developed a technique of long memory detection which elimi-
nates intersymbol interference and optimizes noise performance subject
to that constraint, for an arbitrary transmitted signal.3 Kurz and Trahka
have studied the design of signals for transmission in the presence of
nonwhite noise without the problem of intersymbol interference.4'5

* This paper is based on parts of a thesis accepted by the faculty of the Grad-
uate Division of the School of Engineering and Science of New York University
in partial fulfillment of the requirements for the degree of Doctor of Engineering
Science.
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This paper discusses the design of bandlimited signals for communica-
tion in the presence of white Gaussian noise, when the detector is a
memoryless correlator. Memoryless correlation is a widely used sub -
optimum means of detection. It will be shown in Section III that we can
communicate without intersymbol interference at the Nyquist rate
using memoryless correlation. In Section IV we investigate another
form of signaling for communication with memoryless correlation.
Here signals are chosen which do not eliminate intersymbol interference,
but lead to low error probability for the most adverse message sequence.

II. PRELIMINARIES

In serial binary transmission, the nth binary digit of the message is
transmitted by sending either so (t - nT) or si (t - nT). We will as-
sume that the a priori probabilities of so and si are 1/2 and that all dig-
its are independent. The transmitted information rate is therefore
1/T bits per second.

If the signal is perturbed by additive white Gaussian noise, the
optimum detector is well known to be a simple correlator if so (t) and
si (1) are time limited to an interval of length T.° Such a detector
chooses so if and only if

v(t)so(t - nT)dt - 1 f scAt - nT)dt

> f v(t)so(t - nT)dt - f s12(t - nT)dt

where v (1) is the received signal and the integration is taken over the
interval of length T.

A polar signal leads to minimum error probability :7

so(t) = -si(t) = f(t)
The correlation detector then chooses so if and only if

fv(t)f(t - nT)dt > O.

If .f (t) is not time limited to an interval of length T, as is inevitable
if it is bandlimited, then the memoryless correlator is a suboptimum
detector because it does not make use of the signal energy outside the
interval. An infinite memory correlator or, equivalently, a matched
filter and sampler, is the optimum detector, provided that intersymbol
interference can be eliminated. The memoryless correlator, however,
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has found extensive practical application. With proper choice of f (t),
the degradation as compared with optimum detection need not be too
large.

Aein and Hancock have shown that some improvement of the memory -
less correlator can be obtained in the presence of intersymbol inter-
ference by modifying the correlating function.8 However, this pro-
cedure is sensitive to amplitude variations of both the signal and the
noise, whereas the simple correlation detector is not. We will therefore
use the simple correlator and seek to minimize error probability through
the choice of f (t).

We will shift the time axis so that the origin is in the center of the
bit to be detected, and assume that an infinite number of bits has been
transmitted both before and after the bit currently being detected.

v(t) = E akf(t kT) n(t)
k=-.0

where ak = ±1 and n (t) is a member function of a stationary Gaussian
random process with autocorrelation N[o (t The one-sided spectral
density of the noise is therefore N.

Since we are using a simple correlation detector, ao will be chosen as
T/2

fad = sgn f v(t)f(t)dt-T/2

where

The choice of ao when

sgn x =
x;--,

.

T/2

T/2
v(t)f(t)dt = 0

is not important, since this event occurs with zero probability.
T/2

Q =
-T/2

v(t)f(t)dt

is a linear functional of a Gaussian process and is therefore itself nor-
mally distributed for a given sequence [ak]. Its expected value is

T/2

E (Q) =
k=oo
E ak J fit + kT)f(t)dt,

T/2

which may be written as
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where

and

E (Q) = aod2 E akpkd2

T/2

d2 = f /2( t)di
T/2

1
T/2

Pk =
d2 v2

f f (t + kT)f(t)dt.

The variance of Q is

Var (Q) d2.

The probability density of Q is therefore

P(Q) = d exP [- Nd2 (Q
a°612

1 1

We may now calculate the probability of error as

iE akpoi2) 2

k0

(1)

(2)

1 f°
ao = +1) - exP [-Nd2 (Q d2 - akpkd2)21dQp(e

= = 1 c°ao -1)
exP

1

[- (Q d2 -
k

akpkd2)21dQ.p(e
Vr'N d o Nd2

These expressions reduce to

1

P(ei ao = +1) = erfc[Ni-Lg (1 + E akPk)]
/c(1

p(e f ao = -1) =
2 Verfc [ (1 - E akpk)1

-Kr /c0

where

erfc (x) = e-t2dt.

The maximum probability of error occurs when

ak = - ao sgn pk for all k 0 (3)

1

Minix = erfc (1 - E Pk 1)1 (4)
Ic*0

It may be noted that if pk = 0 for all k 0, then the probability of
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error is independent of the message sequence and is equal to

erfc (d/VET).

This is the case of no intersymbol interference, and the error probability
is a monotone decreasing function of d. If intersymbol interference does
exist, the error probability is greatest for the sequence (3) and is given
by (4). The average error probability is tedious to calculate, but may
be readily approximated.9

Equation (4) may be compared with the error probability for opti-
mum detection'°

p, = erfc (A/VN)

where

A2 = rt(t)dt).
It is extremely desirable that the system perform error -free in the

absence of noise, N = 0. Since

lim pmax = 0, if EIpkI <1

= E pi, I = 1
k/0

=1, if E pk > 1,
kO

we will reject any system for which E I pk I > 1, since in this case

there will be some sequence of binary digits that cannot be received
without error.

III. SIGNALS WITHOUT INTERSYMBOL INTERFERENCE

In order to avoid intersymbol interference with memoryless correla-
tion detection, it is necessary that

T/2

PA =
J -T12

f (Of (t + kT)dt = d28ok (5)

We will seek bandlimited functions f (t) which satisfy (5) by using
an unpublished method of H. 0. Pollak.

Let F (w) be the Fourier transform of f (t). If f (t) is bandlimited to
ICI< COc , then

f(t) = f I,' (w)ej`"dco2r -.c
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and

Let

Then

sin (co - x)
Pk

1 f '''F(co)F*(x)2
= ejwkTdw dx.4r -0, r(co x)

.0 sin (w - x) -T
G(co) = F*(s) 2

, dx. (6)
cup (w(GO - x)

Pk
1 rF(co)G(w)e'dw.
r -.,

We now divide the interval (- we, we) into subintervals of length
27,-/T

where

N (2n -}-1)7r / T

Pk = F (W)G(CO)eiwk2 Cht)
27 n=-N (2n-1) ir T

-
(coeT 1)

r
1

/ N 9nr 2nr
Pk = E F (co )G (co (7)hr n=-N

Equation (7) indicates that the pk's are the Fourier coefficients of the
function

H(co) =
N

(c0 2nr\ 2nr\
T T

(8)

Since Pk = 0 for all k 0, H (w) must be a constant independent of
w. Using (5) and (7), we find that

N
2n7r) (c0 2n7r\

Td2. (9)
T T

If cocT 7r, then we may choose N = 0, and (9) reduces to

F(co)G(w) = Td2, 7
T_

(10)

Equation (10) cannot be satisfied if F(w) = 0 for any co in the in-
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terval (-7r/T,r/T). Therefore intersymbol interference cannot be
avoided if co, <

Let us now investigate the case we = r/ T. Substituting (6) into (10)

rIT sin (w - x)
F(0)) F*(x) = Td2. (11)

--TIT r(o) - x)
In an unpublished work, Pedro Nowosad has proved that the quad-

ratic integral equation (11) has a continuous, real, positive solution
F (w).

Equation (11) has been solved numerically by assuming an arbi-
trary Fo (co) and iteratively finding

1 F_1(x)
IT sin (co - x) -T

2-
Fn(co) , IT ir(w - x) dx .

The resultant amplitude spectrum F (w) is plotted in Fig. 1. The
corresponding time function f(t) is plotted in Fig. 2. Since both F(w)
and f (t) are even functions, only the positive abscissas are shown. The
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Fig. 1 - Spectrum of the signal which permits transmission without intersym-
bol interference.
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signal has been normalized for unit total energy. This time function
does indeed satisfy (5) with d2 = 0.744.

Digital communication using bandlimited signals and memoryless
correlation detection can therefore be achieved without intersymbol
interference at the Nyquist rate, 1/T = wc/7r. The resultant degradation
in the presence of white Gaussian noise, when compared with optimum
detection of the signal sin wct/t, is -10 logio 0.744 = 1.3 db.

A disadvantage which f(t) as shown in Fig. 2 shares with sin coct/t
is that 2.1(t nT) does not converge absolutely. Very large amplitudes
may therefore be caused by certain sequences. If 6.),T > r, then signals
which converge more rapidly can easily be designed for detection by
sampling. It is expected that solutions of (9) exist which also make such
use of the additional available bandwidth. However, no such signals
have as yet been found.

IV. OTHER SIGNALS

It is not at all necessary that intersymbol interference be eliminated
in order to achieve reliable digital communication. For use with memory -
less correlation, a signal with some intersymbol interference may very
likely lead to a lower error probability than a signal with no intersymbol
interference but with less of its energy in the principal time interval.
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In this section we will drop the constraint of no intersymbol interfer-
ence. The probability of error is therefore dependent on the message
sequence. We will use a minimax type of criterion for designing the
bandlimited signal. That is, we will attempt to minimize the proba-
bility of error for the worst sequence. It is believed that the minimax
criterion may be more realistic than an average error rate criterion,
since the latter approach does not prevent the possibility of having
some extremely sensitive message sequences. It is possible that such
sensitive messages cannot be transmitted without error even over a
noiseless channel. A further advantage of the minimax criterion is that
it leads to a solution which does not require knowledge of the noise
level.

An additional constraint that will be imposed is that the signal am-
plitude remain bounded for any message sequence.

We will attempt to minimize per, as given by (4). From (4), Pmax
is a monotone decreasing function of

D = d (1 - E pk I). (12)

We can therefore satisfy the minimax criterion by maximizing the
separation function, D. It is convenient to scale the amplitude of f (t)
so that d = 1. Such scaling, of course, affects the total energy of the
signal. However, the quantity DIVE remains invariant under such
scaling, and we may accordingly maximize the quantity

1
T/2

D' = -
1

-
- ET 12

f(t)f(1 kT)dt (13)
k00

and the resultant f (t) may later be multiplied by the factor VA2/E
in order to satisfy the fixed energy requirement. Here, A2 is the required
energy, while E is the energy of the scaled signal.

It is also convenient to scale the time axis so that T = 2 and w, = c,
where the normalized bandwidth, c = 2 cocT. Note that c = 7r/2 cor-
responds to transmission at the Nyquist rate.

We will make use of the properties of the prolate spheroidal functions,
(t), which are extensively discussed and plotted by Slepian, Landau

and Pollak.11.12 Some of these properties are

J.:0,(t),,,,(t)dt= aq

f1

ic(omodi= xio,
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where Xi is the (i + 1)th largest eigenvalue of

sin c(t - v)4(0 = f11k(v) .
d11 .

yi(t) is the eigenfunction corresponding to Xi . Both Oi and Ai depend
on the parameter c.

Since f (t) is a bandlimited function, it may be expressed as a series
of prolate spheroidal functions'

f(t) = E 1,4nm .

If we set

On

7" - V /fin

then

(14)

ii (t)fit) = E -z- (15)
n V An

The functions Vin(t)/NiX,, are orthonormal over the interval (-1,1).
f (t) can be expressed as a vector F = [00 , , ], with orthonormal
basis

k°(t) ip,(t)
L '  _1

The energy in the interval (-1,1) is equal to
fi
Lit(t)dt = = /302 + 012 +  = 1,

where is the transpose of T. The total energy is equal to
ot) /4 2 2

E = f2(t)dt = "1 +  = F
X0 Xi

where A is a diagonal matrix with elements A.,; = Su/Xi .

Since f (t) is bandlimited, f (t) in the interval (-1,1) determines f (t)
for all time.

(t + 2kE On
ik )

f(t + 2k) = E
=0 -07,

(t + 2k )/07 can itself be expanded as
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+ 2k) 1,G,(t)- 1.k v x,
where

1 ri
Imnk - Lio.(04,.(t + 2k)dt

so that

f(1 + 01: = E /.3 E t,k
Pl 771 Xg

or, in matrix form,

(16)

Ft, = FTk1 (17)

where the elements of Tk are tip, as given by (16).
We can now express the intersymbol interference terms as

fi
Lif(t)f(t 2k)dt = FFk` = FTkFt.

Then

1 -E bkreTkpi
D'

FAF,

where

(18)

(19)

bk = sgn (FTkFt).

We seek suboptimum solutions by confining F to M dimensions.
That is, we will seek an optimum f m (t) of the form

Af-1 )3.#.(t)f m(t) = E (20)
71=0

Such an approach is justified if

lim fm( = 1(t),
M-oo

the true optimum solution, and this convergence is sufficiently rapid.
All vectors in the previous development are now M -dimensional and all
square matrices are M X M. Note that (17) is no longer strictly cor-
rect, but instead gives the projection of Fk in the M -dimensional space.
Equations (18) and (19), however, remain valid.

At this point we will introduce the constraint which requires that the
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total signal amplitude remain bounded for any message sequence.
This is highly desirable physically, because of the effects of inexact tim-
ing and the technical impossibility of handling unbounded signals.

For the worst sequence,
00

smax(t) = E I f (t 2101
k=-co

and we wish to constrain f (t) so that smax (t) remain bounded. We first
express 4, (t) as a multiple of the radial prolate spheroidal function:"

CM)
-Rinc(

where

Since"

we can also express Kn2 as

Then

f(t) =

Smax(t) =

K2 = f:Rn2(t)dt.

2c 2

X = - Rn ( 1 )

r f Rn20)dt
K,i2

2cR2 (1)

M-1

E Rn(t)
=0 KVij

co

k=--oo

M-1 on
R (t + 2k)-0 AAT.,

For large I t I, R (t) can be expressed asymptotically by"

IR(t) = (-1)1" sintct + 0(t-2),
C

R (t) = ( -1) (n+1)/2 cos Ct

Let us examine
00

s,(t) = E
IkIaN

ct
+ 0(t-2),

NnE
, K Rn(t + 2k)

=0 \AT,

n even

n odd.
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N-1
On 0(k-2)

n=0 K,iN/Xn

+ E
11,I=N

ao

+ E
1k1=N

E (_1)./2 on sin c(t + 2k)
n even c(t + 2k)

(.+1)12 On cosC(t + 2k)(_1)
It odd KVX c(t + 2k)
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The last two series diverge, except for isolated values of c and t.
Sufficient conditions for sn,..(t) to be bounded are therefore

E (-1)./2 - (21)
n even Ai- 71

On

V X ,a

and
E (_1) (n+1)12 On - 0. (22)

n odd Kn)Tn

These equations confine F to an (M - 2) -dimensional subspace
orthogonal to the two vectors

1 1 1

Vo = [ 0 - , 0,
K0-0-0 ' ' K2V-X2 K41/ A4

1 1
V1 = [

O' O' KAA3' °' ]
FVot = FV1` = 0.

We can form an orthogonal matrix V in which the first two rows are
CV° and K , and the remaining Ill - 2 rows are any vectors such
that the Ill rows form an orthonormal set. The last M - 2 rows may,
for example, be chosen by the Gram -Schmidt orthogonalization process.

We may then form

G = = FV-1

since V` = for an orthogonal matrix. Due to the above constraints,
the first two components of G, g1 and g2 = 0. Since V is an orthogonal
transformation, GG` = FF` = 1.

We may also form matrices Uk from Tk . Since Tk is used only in the
quadratic form (18), we need only consider its symmetric component,
Tk', in which /J o' = 40' = 2 (tijk tail:). Then

FTkr = FTZF' = GVTZV`Gg.

Let Uk = VT;VI. Uk is a symmetric matrix since it is congruent to
Tic% a symmetric matrix.
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If we also let e = VAV

FTkFt = GUkGg.

1 -E bkGukGt
D,

GOG'
(23)

We find the optimum M -dimensional signal f (t) by varying the unit -
length, (M - 2) -dimensional vector G so as to maximize D' given by
(23), and then perform the inverse transformation and scaling. Note

that if f (t) is constrained to be either an even or an odd function, only
terms of even or odd n appear in (14), and only one of the constraints
(21) or (22) is needed.

The resultant f (t) is of the form (20). Landgrebe and Cooper have
shown that the Fourier transform of Vin (t) is14

atp.(t)] = 2nre (cco)

=0, kI>c.
Therefore the optimum f (t) may be generated by passing an impulse
through a filter whose frequency response is

M-1

H (w) = K E 04. ,
n =0

IwI <c

=0, lad >c
If M is reasonably small, H (w) is well behaved, except at w = c,

and may be readily approximated by a physically realizable filter.
The optimum signals and their separation functions have been com-

puted for several low -dimensional cases, each for several values of c.
The total energy of the signals was set to unity in all cases.

The simplest signal is a two-dimensional even or odd function. It is
completely determined by its energy and constraint (21) or (22).
Three such signals have been examined. The components of these three
signals are tko and 1,1/2 Oil and 03 and 4.2 and 4/4 , respectively. For all
values of c, it was found that the first signal led to the highest value of
the separation function D, while the third signal gave the lowest value
of D. This result would be anticipated by energy considerations alone.

The To and 72 components of the optimum two-dimensional signals
are plotted in Fig. 3 as a function of the normalized bandwidth, c.
The values of the separation function for these signals are shown in
Fig. 5.
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A three-dimensional signal may be formed with to , 4/2 and 44 com-
ponents. One degree of freedom is available for adjusting the coefficients
of these components so as to maximize D. The optimum coefficients for
signals of this form are shown in Fig. 4. The resultant values of D are
plotted in Fig. 5. It is seen that substantial improvement over the two-
dimensional signal is obtained over a large range of c.

A four-dimensional signal consisting of , 1,1/1 11/2 and 4/3 components

was also investigated. Constraints (21) and (22) and the energy re-
quirement permit one degree of freedom in the signal design. It was
found that no significant improvement over the two-dimensional signal
could be obtained by using this form of signal.

For an ideal signal which has all of its unit energy in the interval
(-1,1), D = 1. Fig. 5 may be considered to be a comparison of the
worst error probabilities of bandlimited signals to the error probability
of an ideal signal. If D > 0, then the power of the bandlimited signal
must be increased by -20 login D db in order for its error probability
for the worst sequence to be equal to the error probability of an ideal
signal.

It should be noted that for these signals, D < 0 when c < r/2.
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We must therefore transmit slower than the Nyquist rate in order to
achieve error -free performance in the absence of noise.

V. CONCLUSIONS

Memoryless correlation is a suboptimum but useful method of de-
tecting binary signals. With proper choice of the transmitted signal,
the performance of a communication system using memoryless correla-
tion can be made to be almost as good as that of an optimum system.

Communication at the Nyquist rate without intersymbol interference
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Fig. 5 - Separation functions for optimum two- and three-dimensional band -
limited signals.

using memoryless correlation detection is possible when the function
shown in Fig. 2 is used as the transmitted signal. The resultant per-
formance in the presence of noise is 1.3 db worse than that of an opti-
mum system.

Bandlimited signals may also be designed so as to lead to low error
probabilities in spite of intersymbol interference. Signals consisting
of linear combinations of a finite number of prolate spheroidal functions
accomplish this purpose. These signals may be designed so as to remain
bounded for all message sequences.
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Four -Phase Data Systems in Combined
Delay Distortion, Gaussian Noise,

and Impulse Noise
By M. A. RAPPEPORT

(Manuscript received August 26, 1964)

The performance of a four -phase data system over delay- and attenuation -
distorted transmission lines in the presence of impulse noise has been simu-
lated on a digital computer previously. This paper describes an extension of
that simulation to performance with the additional degradation of additive
Gaussian noise. Results are presented for Gaussian noise alone in terms of
absolute error rate, and for Gaussian plus impulse noise in terms of con-
ditional error rate given the occurrence of an impulse. Some conclusions on
the limiting effects in various situations are given.

I. INTRODUCTION

A previous paper on digital computer simulation of a four -phase data
system' was concerned with performance in the presence of delay and
attenuation distortion, and impulse noise. This paper extends those
results to include Gaussian noise. Combinations of Gaussian noise,
impulse noise, and delay and attenuation distortion are presented and
discussed.

The prime effect of delay and attenuation distortion is to reduce
system margin against error. Adding Gaussian noise to the distorted
signal can have one or both of two effects. Either errors occur directly
due to the Gaussian noise alone, or the margin against other disturbances,
in particular impulse noise, is decreased. On most telephone lines it is
generally feasible to keep the direct errors produced at a very low level.
The generally steep slope of a. curve of signal to Gaussian noise (S/N)
versus probability of error, (as much as a factor of 10 :1 in error rate for
one db change in S/N) makes the system particularly sensitive to
changes in the amount of Gaussian noise. Thus, at least on land facilities,
Gaussian noise is usually kept to a level where it enters basically as a

253
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degradation in system margin, i.e., an increase in conditional prob-
ability of error given a noise impulse.

II. METHOD

The main problem in straightforward introduction of Gaussian noise
into digital simulations is the computation time. The accuracy of the
results basically depends upon the number of errors obtained. A suffi-
ciently large number of noise samples to give reliable information about
absolute error rates of the order of 10-5 or less is extremely time con-
suming. A rough estimate of the accuracy obtainable can be obtained
by considering a test as consisting of N independent trials each with
common probability of failure (i.e., of making an error). Call this prob-
ability p.

The estimate

number of errors- number of samples

has expected value p.
The standard deviation of i3 is

er(13) =
pq

(1)

(2)

since q 1. Thus for p = 0.001, 0-(13) would be 0.00014 for n = 50,000.
We emphasize that these results are very rough, since the assumption

of independent trials (i.e., independence of successive bit periods) is
clearly not too accurate. However, they do give an idea of the number of
samples required to obtain accurate results.

When impulse noise is present, this problem is solved by computing
the conditional probability of error given the occurrence of an impulse.
The long quiet intervals which characterize impulse noise in the tele-
phone plant are in effect taken as having an error probability of zero.
For Gaussian noise alone this procedure is not realistic, since the noise
amplitudes are not segregated into very large impulses and very low
quiet periods.

There are two problems: Gaussian noise alone and Gaussian noise as a
degrading factor in the performance of a system with impulse noise.
The solution to both of these revolves around a program which uses a
tape of approximately 25,000 one-dibit intervals of Gaussian noise
bandlimited by the input receiving filter of the data set. A train of
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512 dibits is used. * Fifty one-dibit samples of noise are introduced into
each signal dibit. To find the effect of Gaussian noise alone, the demodu-
lation is then performed and the errors simply counted. The result is
the error rate due to Gaussian noise.

For the second problem, Gaussian noise is introduced and the effect
of an impulse is systematically examined in a pseudo -random way.
The details of this process are essentially the same as those outlined in
Ref. 1 for finding conditional probability of error.

III. SIMULATION ACCURACY

For those facilities in which the effect of Gaussian noise alone was
desired, two tests were run for each pattern of delay distortion. Thus,
noise was introduced into 50,000 separate dibit intervals and the re-
sulting errors counted. As mentioned above, it is reasonable to trust
these results without further evidence only to about an error level of
10-s. At that level about 50 errors are obtained and the accuracy is
still quite good.

The curves can be directly extrapolated to perhaps 2 X 10-4, because
determining P(e) to an accuracy of perhaps 3:1 (e.g., from 10-4 to
3 X 10-i) is quite suitable for most applications.

However, we often desire results to error levels of 10-6 or lower. To
obtain such results we make use of a conjectured property of the P(e)
curves which we will call "convexity." If a P(e) versus S/N curve is
plotted on log vs db paper then the curve is convex down.

The justification for this conjecture is primarily experience. All ex-
perience on laboratory, field test, particular extended computer runs
shows this to be so. In addition, a preliminary proof by the author has
indicated that the second and third derivatives of the curve with respect
to the noise power are both < 0. The details of this proof are being clari-
fied, and should be presented in a future paper.

Therefore, an upper bound for any P(e) versus S/N curve can be
obtained by extending the curve with a straight line (i.e., second deriva-
tive = 0; see Fig. 1). Similarly, a lower bound can be obtained by setting
the third derivative = 0, that is, holding the second derivative constant.
The results given sharp bounds, since the curves at P(e) = 5 X 10-4
in general have a severe slope (i.e., 5 or 10 to 1 change in P(e) for 1 db
change in S / N). Taking into account that the allowable measured
error rate range generally increases, in practice, as the P(e) drops [e.g.,

* This length pattern gives all possible combinations of four dibits, where the
first dibit can take any one of the eight phases used in the modem.
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Fig. 1 - Undistorted performance with Gaussian noise, showing upper- and
lower -hound convexity projections.

perhaps a 5 :1 range in P(e) generally allowable at P(e) = 10-6], useful
estimates of P(e) can be obtained for P(e) as small as 10-' in most cases.
Fig. 1 also shows a laboratory test curve.

In an impulse noise environment, the simulation has inherently much
greater accuracy. This is because the aim is to produce conditional
probability of error P N(e) - that is, to count the errors per impulse -
and the desired performance range is more in the order of 10-2 or perhaps
10-2. Thus, the number of trials, i.e., the number of introductions of
Gaussian noise, is sufficiently large to give very good convergence to
real conditional probabilities of error.

IV. RESULTS

The four -phase system considered was one using a cycle and a half
of carrier per dibit, (e.g., an 1800 -cycle carrier with a 1200-dibit or a
2400 -bit per second system). In keeping with previous results on the
bandwidth in which delay distortion degrades the signal,' the delay was
specified from the carrier to plus or minus a number of cycles equal to
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the dibit speed. For example, for the system considered, delay was
introduced between (fc - 800) and (fc + 800) cycles. A sequence of peak
delays in this range was considered. Because the shape of delay (as well
as its peak magnitude) is significant, several delay shapes were con-
sidered. These were chosen, based on previous work, to give results
which are typical of a wide class of transmission facilities used for data
transmission. The delays used were respectively parabolic, centered at
the carrier frequency, and a sinusoidal shape with three cycles of sinusoid
across the transmission band.

The results are shown in Figs. 2 through 5. Fig. 2 shows the error
rates obtained for Gaussian noise alone for the parabolic and sinusoidal
lines respectively, with extrapolation obtained by using a compromise
between computed points and the derived upper bounds.

Figs. 3, 4 and 5 give the effect of introducing impulse noise and
Gaussian noise simultaneously with delay distortion present. Each set
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16

Fig. 2 - Probability of error vs Gaussian noise level for various delays. Para-
bolic delay specified by delay at w, ± 0.7 whit ; sinusoidal delay specified by de-
lay in passband of peak -to -peak 3 -cycle sinusoid.
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Fig. 3 - Conditional probability of error given an impulse noise for Gaussian
noise such that the error rate due to Gaussian noise alone equals 5 X 10-4. Curves
averaged over various impulse shapes and two delay shapes (see Fig. 2).

of curves gives conditional probability of error for a Gaussian noise
level chosen to yield some specific error rate. The Gaussian noise was
chosen to give error rates of approximately 5 X 10-4, 10-5, and 5 X 10-7.
Each curve was averaged over a variety of impulse noise shapes. More
exact information would have to be known on the noise expected on a
given transmission line before precise absolute error rates could be ob-
tained. However, reasonable results should be achieved in most practical
situations by specifying an allowable number of counts from the averaged
curves.

V. CONCLUSIONS

The curves as given, i.e., the results of the simulation, are primarily
useful for design purposes. They can be used to find the trade-off ob-
tainable between Gaussian noise, delay distortion, and number of im-
pulse noise counts. Thus the curves can be used for over-all design of
transmission facilities at given error rates with a four -phase data trans-
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Fig. 4 - Conditional probability of error given an impulse noise for Gaussian
noise such that error rate due to Gaussian noise alone equals 10-6. Curves averaged
over various impulse shapes and two delay shapes (see Fig. 2).

mission system. Here it is worth noting that the effects of frequency shift
on such a system were also investigated as part of the program, and fre-
quency shifts up to ±5 cycles were found to have essentially no effect.

One factor that stands out in the results is the rapid deterioration in
performance of the system as delay distortion is increased beyond a
certain amount. This is true either for Gaussian noise alone or for the
combined effects of Gaussian and impulse noise. It seems that, for the
data modern and conditions assumed, signal-to-noise ratios worse than
those actually occurring in most of the plant are not harmful for reason-
able delay ranges. Thus it seems reasonable that the prime consideration
in designing transmission facilities for four -phase data systems must be
the minimization of the effect of delay distortion, while the present level
of Gaussian noise, at least for land -line systems, does not seem too
critical. However, recent data on certain carrier systems show that for
data systems using a larger number of phases (e.g., eight- or sixteen-

phase systems), but maintaining constant signal element rates, the noise
levels might be high enough that the systems would be limited by Gaus-
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sian noise rather than delay. Thus caution should be used in systems
employing more than four phases or levels.

Indeed, this emphasizes that any comparison of multiphase and multi-
level systems which is based on their performance under certain deg-
radation (e.g., Gaussian noise) may be misleading. Instead, comparison
must be based on the critical factors, which for many systems may well
be how they are affected by delay distortion.
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Atomic Hydrogen as a Reducing Agent
By A. A. BERGH

(Manuscript received September 4, 1964)

Atomic hydrogen is a powerful chemical reducing agent. It may be used
to perform reductions at lower temperatures than those achieved in molecu-
lar hydrogen, and since it is electrically neutral it is not subject to shielding
effects. Because of the contradictory results reported in the literature, an
investigation was undertaken to determine optimum ways to produce and
transfer atomic species. It is concluded that electrodeless discharge is the
most reliable way of production, and that, although Teflon and phosphoric
acid coated glass have very low catalytic activities toward recombination, Py-
rex and quartz are satisfactory container materials. Reduction temperatures
in both molecular and atomic hydrogen were established for a variety of oxides,
and the latter were found to be substantially lower. Finally, the advantages
and limitations of atomic hydrogen as a reducing agent are considered.

I. INTRODUCTION

The removal of surface oxides is an important step in the manufacture
of electron devices. The objective of this process is usually to facilitate
the wetting of solid surfaces by molten metals or to improve some elec-
trical properties of the device by changing the surface properties of
certain components. Oxide -free surfaces can be obtained by wet chemi-
cal treatments, by bombardment with accelerated particles or by reduc-
tion in a gaseous ambient. Each of these processes exhibits certain
limitations. Liquid reagents leave residues and require additional clean-
ing, electron or ion bombardment is vulnerable to shielding effects, and
the high temperatures necessary for gaseous reduction restrict its ap-
plication on most assembled electron devices. A powerful gaseous re-
ducing agent capable of removing oxygen at relatively low temperatures
combines the virtues of all these methods.' A study was undertaken,
therefore, with such a reagent, atomic hydrogen, to establish the feasi-
bility of its use. The following discussion gives our findings on the follow-
ing three questions: (1) how to produce and transfer atomic species, (2)
how much decrease in reduction temperature can be expected compared

261
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with those observed in molecular hydrogen, and (3) what are the limi-
tations and advantages of using atomic hydrogen in device processing?

II. PRODUCTION AND TRANSFER OF ATOMIC HYDROGEN

To study reduction in atomic hydrogen, a source of atoms and a way
to transfer them to the oxide surface must be established. There are
several methods known to dissociate molecular hydrogen (ultraviolet
radiation, thermal or electrical energies, etc.). The data in the literature,
however, are contradictory to the extent that we found it necessary to
evaluate them for our purposes.

Dissociation of molecular hydrogen on hot tungsten filaments was
reported in 1911;2 experimental conditions have been well established,'
and the method has recently been employed in absorption studies."
Our experiments, however, showed it impractical for reduction purposes.
The water vapor evolved during reduction oxidizes the tungsten fila-
ment, deteriorating the wire and contaminating the system with evapo-
rated tungsten oxide.

Contamination is the major disadvantage of the electrical discharge
method first described by Wood.' The sputtering of the electrodes
gradually contaminates the walls of the apparatus and, by increasing
their catalytic activity, reduces the transfer of atoms to the probe.
Cooling the electrodes by compressed air delays wall poisoning only by
several hours. Similar observations were reported by Linnett and Mars -
dent for an oxygen discharge. Many previous investigations using Wood
discharges neglected this effect, suggesting that their results should be
treated with caution.

The theory of the electrodeless discharge was outlined by Thomson'
in 1928, and an efficient way to produce high concentrations of atomic
hydrogen was described by Jennings and Linnett." This is the method
we have essentially adopted. A schematic diagram of the apparatus is
shown in Fig. 1. The quartz or Pyrex discharge tube, 50 mm in diameter,
was surrounded by a gold-plated copper electrostatic screen to restrain
the plasma from spreading beyond the coil. The screen was connected
to ground and a distance of 3-4 mm was maintained between the screen
and the discharge coil with the help of a quartz -tube spacer. The dis-
charge was established with a variable -frequency (5-16 mc), 5 -kw Lepel
high -frequency generator, and the exciting coil consisted of eight
turns of 6 -mm copper tubing. The temperature of the tube was kept
below 300°C by a jet of compressed air. The apparatus was connected
to a mechanical vacuum pump, and a steady-state pressure of 200 11
was maintained by means of an adjustable leak. Pressure was measured
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Fig. 1 - Schematic diagram of the electrodeless discharge apparatus.

with a conventional Pirani gauge and a Wallace and Tiernan absolute
pressure indicator. Since all the experiments were carried out in the
side tubes, the flow of atoms in the reduction zone was purely diffusional.

The concentration of the atomic hydrogen was measured calorimetri-
cally by a method similar to that described by Wood and Wise." Since
the recombination on tungsten has been reported to change at lower
temperatures due to surface poisoning," the probe temperature was
always kept above 130°C by a constant -voltage de source (energy w1).
The heat evolved by recombination of hydrogen atoms increased the
filament temperature; this was measured by supplying equivalent
energy, w2, from the de source after the discharge was terminated.
The energy difference, w2 - w, = Ow, is directly proportional to the
number of atoms recombining on the probe. The side arms contained
identical filaments, one of them serving only to check the stability of
the atomic hydrogen concentration in the discharge tube. Considering
the high concentration of atoms obtained, the reproducibility of the
atomic level from one experiment to another and the stability of the
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atomic hydrogen concentration during individual runs, the electrodeless
discharge proved to be superior among the three methods tested.

III. THE TRANSFER OF ATOMIC HYDROGEN

The high reactivity of atomic hydrogen imposes serious difficulties
ill transportation and optimum utilization. Walls of low catalytic ac-
tivity are needed to prevent recombination on the wall of the apparatus
before reaction with the oxide. Many investigators have attempted to
prepare surfaces of low catalytic activities and have offered explanations
for the cause of this effect. Almost all have used, however, different
experimental techniques and arrived at contradictory conclusions. The
discrepancies are closely related to the question of whether or not
hydrogen atoms can be produced in an electric discharge from dry
gases.

Several investigators observed that the dissociation of hydrogen is
greatly reduced' or eliminated"," in the absence of water vapor. Coffin,14
on the other hand, found no appreciable decrease in the intensity of the
Balmer lines in dry hydrogen. One explanation for the effect of water
is that it poisons the catalytic activity of glass;3,6,15,16,18 however, two
independent measurements using wet" and dry.'" hydrogen show prac-
tically identical catalytic activities. Smith" obtained similar results
after cleaning his apparatus with KOH, KHCr04 , H2SO4 , or HF,
while others reported recombination coefficients different by three
orders of magnitude for Pyrex rinsed in HNO319 and Pyrex rinsed in
HF." It can be concluded, therefore, that the role of water vapor in
the production and recombination of atomic hydrogen is open for
further clarification. Several attempts were made to poison glass and
quartz surfaces by coating with phosphoric acid,' ."-17 with a mixture of
dimethylchlorosilane and methyldichlorosilane ("Dry-film),21,22 and
more recently with Teflon." No attempt was made, however, to eval-
uate the relative catalytic activities of the different surfaces.

In order to establish high concentration of atoms and walls of low
catalytic activity, a series of experiments was carried out using both
dry (water content <20 ppm) and wet hydrogen (by passing the gas
through a water bubbler at 25°C) while changing the wall surface of the
side arm. The inside diameter of the side arm was about 20 mm and the
probe was positioned at a distance of L/R = 10, where L is the distance
from the atom source and R is the radius of the tube. The stability
of the atomic concentration of the source was checked continually by the
probe in the second side arm. The results of all experiments are sum-
marized in Table I. It is important to note that the heat evolved at the
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TABLE I - THE ENERGY, OW, RELEASED BY THE RECOMBINATION OF
ATOMIC HYDROGEN ON THE TUNGSTEN FILAMENT AFTER

DIFFUSING IN CYLINDERS OF DIFFERENT CATALYTIC
ACTIVITIES. (L/R = 10, /Iwo = 150 mw.)

Cylinder Wall hay (mw) in Dry
Hydrogen

(mw) in Wet
Hydrogen

Teflon 86 85
Phosphorous coated Pyrex 80 81
Quartz rinsed with HNO3 77 78
Pyrex rinsed with HNO, 74 76
Pyrex rinsed with HF 75 74
Pyrex coated with dry -film 10-45 10-48

probe, Ow, is not a linear function of the catalytic activity of the wal124.26
and can be used only to establish a series of activities. Due to the limita-
tions of Teflon toward heat treatment and the tedious cleaning proce-
dures required with phosphoric acid coating,3 all the reduction studies
were carried out in HNO3-rinsed Pyrex or quartz tubes with dry hy-
drogen.

IV. COMPARISON OF THE REDUCTION TEMPERATURES IN ATOMIC AND
MOLECULAR HYDROGEN

The most important advantage of using atomic instead of molecular
hydrogen is that a substantial decrease in the reduction temperature
can be expected. An attempt was made, therefore, to compare the cor-
responding reduction temperatures in the two reducing atmospheres.
Although some kinetic data for the reduction of metal oxides in hydrogen
have been published before," we have carried out reduction in both
atmospheres to assure identical properties (impurity level, particle
size, etc.) of the oxides. Since the reduction temperatures in atomic
hydrogen were determined by observing the color changes of the oxides,
it was also necessary to establish corresponding color -change tempera-
tures in molecular hydrogen.

V. REDUCTION TEMPERATURES IN MOLECULAR HYDROGEN

Reduction in molecular hydrogen was carried out in the apparatus
shown in Fig. 2. Reagent grade oxides in quantities producing about
3 X 10-3 moles of water upon reduction were placed into a quartz tube
of 25 mm ID. The apparatus was flushed with dry nitrogen for several
hours at temperatures ranging from 100° to 250°C. After cooling to
room temperature the nitrogen flow was replaced by hydrogen (560
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cc/min) and the reduction cycle started, provided that the moisture
content of the emerging gas was less than 10 ppm. The temperature
of the tube furnace was raised at 5 ± 1°C/min, and the moisture con-
tent of the gas was monitored continuously. The change in the moisture
content as a function of temperature for the different oxides is shown in
Figs. 3, 4, and 5. The temperatures at which color changes occurred
were also noted. Reduction ranges and color change temperatures are
summarized in Table II.

VI. REDUCTION TEMPERATURES IN ATOMIC HYDROGEN

Several investigators3," reduced metal oxides in atomic hydrogen;
no attempt was made, however, to determine minimum reduction
temperatures. The role of the heat of recombination on the reduction
temperature was noted by Kroepelin and Vogel.' They could reduce
Cr203 only if the oxide particle contained catalytically active im-
purities and the heat of recombination raised the temperature above a
critical point. The control of oxide temperatures imposes difficulties in
atomic hydrogen. Since the recombination coefficient of Pyrex increases
with increasing temperature," the apparatus wall cannot be heated
along with the oxide without reducing atomic concentrations. Due to the
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various catalytic activities and accommodation coefficients (the fraction
of the heat of recombination transferred to the surface on which the
recombination occurs) of the different oxides the heat of recombination
yields different temperatures on each sample. Finally, the much higher
catalytic activities of pure metals than those of the corresponding oxides
result in a sudden temperature rise after reduction occurs. To over-
come these difficulties, all oxide samples, 0.1 cm' in area and several

10,000

8000

a- 6000
Q.

z

O

I 4000

2000

0

N10- -Fe203

sno2-,

M003

100 200 300 400 500 600
TEMPERATURE IN DEGREES CENTIGRADE

700 800

Fig. 4 - Reduction of NiO, Fe203 Sn02 , and Mo03 in hydrogen: 102 I in oxides
= 1.5 x 10-3 M; H2 flow rate = 560 cc/min; temperature rise ~ 5° C/min.
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Fig. 5 - Reduction of Pb0 and WO2 in hydrogen: I 021 in oxides = 1.5 X 10-3
M; H2 flow rate = 560 cc/min; temperature rise =-- 5° cc/min.

microns thick, were placed on identical ceramic wafers. The wafers were
0.7 mm thick, containing a hole for a thermocouple
probe. The oxides were taken from the same lots supplying the material
for the experiments in molecular hydrogen, and the reduction was con-
tinued until color changes - similar to those observed in H2 could
be detected. The ceramic blocks were placed near to the entrance of the
side arm and heated by the recombination of atoms on the block. The
temperature rise was about 20°C/min and, due to the small areas in-
volved, the presence of oxides did not influence this rate. The color

TABLE II - REDUCTION TEMPERATURES FOR DIFFERENT OXIDES IN
MOLECULAR AND ATOMIC HYDROGEN (Temperature rise

5 ± 1°C/min in H2)

Oxide Reduction Temp.
in Hs (°C)

Color Change in
H2 CC)

Color Change in
H (°C)

MOO 3 500-725 610 43
Ge02 500-700 560 35
W03 475-650 535 25
Sn02 400-675 490 100
Fe20 3 250-500 310 40
Pb0 225-475 300 25
Cu20 225-450 265 25
Ni0 225-325 250 62
CuO 100-225 140 25
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change temperatures with those obtained in molecular hydrogen are
listed ip-Table II. Although all reduction temperatures are substantially
lower in atomic hydrogen, no quantitative correlation could be estab-
lished between the two sets of data.

VII. DISCUSSION

The most important advantage of using atomic hydrogen is lower
reduction temperatures than those obtained in molecular hydrogen.
This can be especially significant for stable oxides, not reducible in
hydrogen below the melting point of the metal, such as A1203 , Si02
etc. Removal of the oxide from aluminum inside an electrodeless dis-
charge tube has been reported," and we have succeeded in removing
Si02 films more than a micron thick from silicon slices.

The high reactivity of hydrogen atoms toward organic compounds
makes it a potential remover of organic residues. Propane can be easily
converted to methane at room temperatures" by the use of atomic
hydrogen, and higher paraffins probably react in a similar manner.
The formation of gaseous hydrocarbons was also reported on exposure
of graphite to atomic hydrogen."

There are, however, several limitations to the use of atomic hydrogen.
One is the difference in catalytic activities of different oxides, and that
between metals and the corresponding oxides, those of the metals
being much higher. If a complex system containing different materials
were exposed to atomic hydrogen, it is likely that first the oxides with
the largest catalytic activities would be reduced, and that the heat of
recombination on the metals could melt some components before
more stable oxides could be reduced. To determine whether a system
can be exposed to certain atomic concentrations, a knowledge of the
respective recombination and accommodation coefficients is required.
While there is very little known about the latter quantity, the available
data on the former are highly contradictory, as shown in Table III,
and there are almost as many theories as authors for the property of the
material determining its magnitude.

Another potential difficulty arises from the embrittlement of metals
exposed to atomic hydrogen. Although no data are known about the
solubility of atomic hydrogen in metals, it is reasonable to assume that
it is greater than that of I-12 , especially for metals of group A (see Ref.
26, p. 518).

Finally, chemical interactions between atomic hydrogen and metals
and metal oxides other than reduction should be considered. Partial
reduction or hydride formation may occur with the formation of vola-



270 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

TABLE III - RELATIVE VALUES OF THE RECOMBINATION
COEFFICIENT OF ATOMIC HYDROGEN ON METALS

(YPt = 1.00)

Metal

Reference

27* 32 33 34 35 10

Pt A 1.00 1.00 1.00 1.00
Co 0.98 1.00 0.72
Pd B 0.87 0.80 3.5
Ni 0.91 0.83 0.72 9.0

C 0.70 3.0
Fe D 0.81 0.83 0.68
Cr E 0.71 0.60 0.64
Ag F 0.71 0.52
Cu G 0.74 0.66 0.76 5.5
Ti 0.68 0.40 19.0
Au 0.40 4.0
Al 0.47 2.5 X 10-2 13.5

* A, B, C, : decreasing order of catalytic activities

tile products. Pietschn formed compounds similar to lithium hydride
by reacting atomic hydrogen with silver, beryllium, gallium, indium,
and tantalum, while others" formed volatile metal hydrides with
germanium, tin, arsenic, antimony, and tellurium. In removing SiO2
films, sometimes a black deposit on the discharge tube could be detected,
the composition of which is not yet determined, and prolonged exposure
of silicon to atomic hydrogen produced a pitted rough surface charac-
teristic of gas phase etchings. It can hence be seen that the high reac-
tivity of hydrogen can yield undesired effects such as the removal or
damage of important surface areas and the contamination of certain
parts of the system.
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Measured TE01 Attenuation in Helix
Waveguide with Controlled Straightness

Deviations

By D. T. YOUNG

(Manuscript received September 1, 1964)

A helix circular waveguide 380 feet long has been deformed into three
Afferent curves. The added mode conversion loss for a TE01 signal mode
has been measured and calculated theoretically, with good agreement. For a
curve with 30 -inch deflection over a distance of 100 feet, peak -to -valley
(200 -ft period), the measured added loss at 55.5 kmc was 0.23 db/mile,
the calculated 0.20 db/mile.

I. INTRODUCTION

The added mode conversion loss in a circular waveguide due to random
straightness deviations of the guide axis has been calculated by Rowe
and Wafters.' These calculations show that if the mechanical spectrum
of the axis wiggles has high density near the beat wavelengths of the
coupling modes, then the transmission loss for a TEoi signal mode can
be excessive for axis deviations of fractions of a mil. However, as em-
phasized in this paper and in other calculations,2,3 the requirement
on the straightness depends strongly on the mechanical spectrum
of the deviations. If the significant part of the mechanical spectrum is
far from the beat wavelength of the coupling modes, then extremely
large deviations (several feet) do not seriously affect the TE01 trans-
mission. Here we offer experimental evidence of these facts for a 2 -inch
diameter helix waveguide, and associated theoretical calculations which
agree favorably with the experimental results.

In Section II we describe the experiment and discuss briefly the meas-
ured results of the experiment. Section III contains some theoretical
calculations and, finally, in Section IV we discuss the comparison of
experimental and theoretical results and some conclusions of the ex-
periment.
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II. DESCRIPTION OF EXPERIMENT AND EXPERIMENTAL RESULTS

A steel -jacketed helix waveguide 380 feet long which was constructed
at the Holmdel, N.J., Bell Laboratories' was used in this experiment.
The guide was bent in the vertical plane to conform to three different
curves. A photograph of the guide in one case appears in Fig. 1. The
first two curves were roughly sinusoidal and so had a very limited spec-
tral content. The first curve had a period of 40 feet, and the peak -to -
peak deflection was 2.4 inches. The second curve had a period of 200
feet and a peak -to -peak deflection of 30 inches. The third curve was a
simple model of a deviation which might be caused by random laying
errors; basically, the guide was supported every 10 feet by a support
which was either 1.2 inches higher or lower than the previous support
(mechanical nonuniformities such as the brass couplings prevented
rigid adherence to this format at four supports). The actual displace-
ments are given in Table I.

The electrical measurements were performed with the above -ground
waveguide test set at Holmdel, using the shuttle -pulse technique.'
The measured TEoi loss over the 50-60 kmc band is shown on an ex-
panded scale in Fig. 2. The measured added losses were 0.65 db/mile

Now Eye

Fig. 1 - 30 -inch peak, 200 -foot, period bend.



HELIX WAVEGUIDE ATTENUATION

TABLE I - ACTUAL DISPLACEMENTS IN EXPERIMENTAL
380 -FOOT HELIX WAVEGUIDE
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y (inches) x (feet) y (inches) x (feet) y (inches) x (feet)

0 . 0 0 1.2 130 2.2 260
0.6 10 2.4 140 2.4 270
1.2 20 1.2 150 3.6 280
1.2 30 0.0 160 4.8 290
0.0 40 0.0 170 3.6 300
1.2 50 1.2 180 2.4 310
2.4 60 2.4 190 1.2 320
3.6 70 1.2 200 0.0 330
2.4 80 0.0 210 0.0 340
1.2 90 1.2 220 1.2 350
1.2 100 2.4 230 0.6 360
0.0 110 1.8 240 0.0 370
0.0 120 2.4 250 1.2 380

0.23 db/mile, and 0.30 db/mile over the 2.55 db/mile measured at
55.5 kmc with the waveguide straight. The smallest added loss was
associated with the bend with the largest amplitude and longest period,
thus emphasizing that slow bends cause little added loss even for quite
large deviations of the guide axis.

III. THEORY

Calculation of the added iiiode conversion loss requires three steps:
(1) calculation of the curvature of the guide; (2) calculation of the wall
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impedance in order to determine the propagation constants and coupling
coefficients; (3) application of the Rowe-Warters perturbation calcula-
tion.

For the curvature calculation we assume the following mechanical
model: a uniform homogeneous circular tube of outer radius b and inner
radius a with a modulus of elasticity E and a distributed weight coo
pounds/foot. The moment of inertia about the axis is I = (r/4) (b4 - a4).
The tube is supported by (N + 1) point supports a distance 1 apart
and the ends are free, so that y" (0) = y" (Ni) = 0, where y (x) is the
vertical displacement from a preselected reference. Now the simple
bending equation for beams is

1/R = M /EI (1)

where /? is the radius of curvature, M is the bending moment and
1/R = y"/ [1 (y' )11. For the displacements of interest here J yi I << 1
and (1/R) y". Now we assume further that the external forces at
the supports are concentrated at discrete points. Then, if we differen-
tiate (1) twice, we have

N+1

Ely` E i(5(x - xi) (2)
i=i

where Fi is the force at the ith support, (5(x - xi) is the Dirac delta
function and xi is the location of the ith support.

The F i are difficult to measure and (2) cannot be solved in terms of a
simple analytic function. However, if we consider the equation between
supports the analytic form of the solution is immediate, and we need
to use our end and continuity conditions to evaluate the necessary
constants.

Let zi = x - xi and 0 < zi < / for all i; then for the ith section
(2) becomes

(zi) = -coo/E/ )

which has the solution

yi(zi) = - `00
24E/

zi4 Aizi3 Bizi2 Cizi Di . (4)

The conditions necessary to obtain the constants are: yi" (0) = 0,
y N" (1) = 0 and y , yi', yi" continuous at the supports. With N 1

supports we have to evaluate 4N constants. The continuity conditions
are 3 (N - 1) in number. These, plus the N 1 known displacements
at the supports and the two end conditions, yield a total of 4N conditions.
The actual calculation is long, but straightforward.
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H. -G. Unger6'7 has solved the helix waveguide problem of calculating
propagation constants and curvature coupling coefficients assuming a
model with the following boundary conditions at the helix:

Et? = 0

Ez = -ZI/0
(5)

Unger's analysis gives a very general solution if the wall impedance Z
due to a complex jacket outside the helix can be calculated. Strictly
speaking, the wall impedance will depend on the mode through the
propagation constant, so that an exact solution is not possible, but in
the oversize waveguide of interest here the wall impedance may be
calculated by assuming the propagation constant of each mode equal
to the propagation constant of free space. For the modes of interest
which couple to the TEN mode due to curvature, the angular wave
number is small compared to the longitudinal and radial wave numbers,
and neglecting angular variation allows a great simplification by per-
mitting consideration of the jacket structure in rectangular coordinates
with no variations of the field in the plane of the helix wires.

For the present helix, the jacket structure consists of a thin layer of
clear glass -fiber roving followed by a thicker layer of material that is an
aqueous formulation of graphite bonded to continuous filaments of
glass roving. A universal wrap gives a checkerboard array with the
fibers oriented at about ±45° with respect to the z axis of the guide.
These layers are enclosed in a steel jacket and are impregnated with
epoxy resin. We assume an equivalent transmission line circuit for this
jacket, as shown in Fig. 3. Z, is the shunt capacitance due to the helix
wires, region 1 is the lossless layer, region 2 the lossy layer, and the
line is terminated by the short circuit of the steel jacket. We calculate
the impedance and propagation constant of region 2 from a model
used by S. E. Miller,8 which assumes an infinite lossless region of fiber
glass in which are imbedded parallel resistive fibers of zero cross section,
spaced uniformly a distance t from each other. The conductance of the
fibers is deduced from the de resistance of the carbon -coated glass roving.
We multiply the measured conductance by cost 45° to include the effect
of the ±45° wrap. The formulas for the impedances and propagation
constants are:

(i) helix -wire capacitance :6

Z, =
1

jWed d
1n4 (6)

D - d 7
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Fig. 3 - (a) Physical structure of helix waveguide used in experiment; (b)
equivalent transmission line circuit.

where we have
D = 0.0055 inch (diameter of helix wires including insulation)
d = 0.0045 inch (diameter of helix wires)

= 2.77(0 (permittivity of Formvar insulation)
lossless layer: e = 4e0, 11 = 0.005 inch

Zl = 4/ -L's -9 = 1 Zo
4eo 2

= w iI710e0

lossy layer:8 e = 4(0 ; /2 = 0.033 inch

Z2 =
1

cost 45°

2R

tb.
cos2 45° {40

+
1 [cos2 45°12

µo4 R R tan cooeo t

= (lit) in [cos co1/4/20e0 t 1 ±
cos2 45°

cost 450)
R
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j4601/ - tan coV4A00 t }
+ izo

i 1 cost 45°\
Z2 R j -

where t = 0.0081 inch (average spacing of resistive fibers) and R = 234
ohms/square (from de resistance measurement). These parameters
correspond to a wall impedance at 55.5 kmc of

Z`"°" = 0.41 L -32°
Zo

where Zo = Vetio/Eo

From the wall impedance the coupling coefficients and propagation
constants of the spurious modes can be determined.' Then the TEoi
loss due to mode conversion can be computed approximately using the
method of Picard developed by Rowe and Waiters! Summing over all
spurious modes k, we have:

A (nepers) E Re U cAr k" du f ck(x)ck(x u) dx (8)
k=1 0

where

Ark = Aeek 3.6,13k = rTEo, - rk

and

ck(x) = (ckR)y" (x)

= (ek' jck" )Ry" (x).

The sum is over the infinite number of coupling modes; however
convergence of the coupling coefficients is rapid, and only three modes
contribute significantly, TEii , TE12, and TMii . Since each A« is
large and negative and the slowness of the bends makes the inner inte-
gral (8) a slowly varying function of u, we have,

L -u

eAP ku du ck(x)ck(x u) dx eArku du f ek2(x) dx. (9)

With this approximation and the fact that eAak" << 1, (8) becomes

Pk(-Aak) - QkAtikf Ey" (x)12dx E
0 k=1

where

(10)
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To evaluate

Pk = (Ck12 Ckll2 )R2

Qk = -1-2ck'ck"R2.

.
Ey"(x)12da:

we need the second derivative of (4):
L

[y (x )1 di = N
2 -5 4 N

0

[--Lw 1 - 4.± E As.

2E1 5 4E1 i=i

3 N
N

+3E (A,2 - °"' Bi) + 12 E AiBi + 1 i IV.
EI

The Ai and Bi are obtained from the mechanical boundary conditions.
After eliminating the Ci and Di from (4), we have the following 2N - 1
equations in A i and Bi :

4100

1410

0141

Al

A2 1

AN

B2

B3

1410 BN-2

0141 BN-1

014 BN

L

B2 - 0 ± 12
2E1

B3 - B2 + (A-L1 12
2E

0 - BN 12
2E1 _

6

/2

y3 - 21/2 ± Y1 - 12E/
COO 14

(11)

(12)

YN+1 - 2Y N YN-1
WO 4

12E/ _

(13)
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TABLE II - WALL IMPEDANCES

.a(nepers/ft) .0(radians/ft) P Q

TEit -0.072 -1.87 45.5 2.3

TMit -0.560 31.4 22.3

TE12 -0.133 65.6 -24.6

where yi is the measured displacement of the guide at the ith support.
The inverse of the square matrix in (11) may be found by solution of
difference equations and symmetry properties. The inverse matrix
has the following elements:

2i
2ik-i +1 1 - al k- i +1 1 - a2

a ik = Clal C2a2
1 - al2 1 a22

(14)
for + 1

i < N/2

where

al = -2 ±
a2 = -2 -

N

Ci = N
a2 - at

a2N

C2 = N
at - a2

and the remaining elements are obtained from the symmetry about
the main diagonal and the off diagonal.

The wall impedance 0.41 L -32° corresponds to the values given in
Table II. The computed loss and the experimentally measured loss are
listed in Table III.

TABLE III - COMPUTED AND EXPERIMENTALLY MEASURED
LOSSES

Case Period Max. Deflection Added Exp. Loss Added Cal. Loss

1 40 feet 2.4 inches 0.65 db/mile 0.69 db/mile

2 200 feet 30.0 inches 0.23 db/mile 0.20 db/mile

3 2.4 inches 0.30 db/mile 0.27 db/mile
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IV. RESULTS AND CONCLUSIONS

The experimental results agree favorably with the computed results,
considering the various approximations in the theoretical model. The
important result is that mechanical deviations of long wavelengths,
such as we might expect from random laying errors, contribute very
little to the transmission loss. Thus the tolerance on guide axis wiggles
changes several orders of magnitude when the mechanical wavelength
changes from two feet to two hundred feet.
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Losses Suffered by Coherent Light
Redirected and Refocused Many
Times in an Enclosed Medium

By 0. E. DELANGE

(Manuscript received September 30, 1964)

If a beam of light is to be transmitted for any considerable distance along
the surface of the earth, it will have to be redirected at intervals in order to
follow the terrain and focused repeatedly to counteract diffraction. The direct-
ing and focusing elements, whether lenses or mirrors, will introduce some
loss in addition to that produced by the transmission medium itself. The
experiment described in this paper was performed to determine the magni-
tude of the total loss encountered with such transmission and to determine
how much of this loss is due to each of the contributing factors.

A beam of light, enclosed in a metal pipe, was redirected many times by
confocally-spaced spherical mirrors, and the loss as a function of the distance
over which the beam had been transmitted was determined. At the operating
wavelength of 6328 I these losses, which were found to be almost entirely
due to mirror deficiencies, amounted to about 1 per cent per reflection. As a
result of the loss being largely in the mirrors the loss per mile depends to a
considerable extent upon the spacing between these optical elements. The
expected loss for a number of assumed spacings is tabulated.

The experimental results encourage the belief that beams of coherent light
can be redirected and focused many times without excessive loss, and that
the mechanical stability required can be obtained - in the laboratory at least.

I. PURPOSE OF EXPERIMENT

The advent of the optical maser as a source of coherent light has stimu-
lated considerable interest in the possibility of employing light beams
as extremely broadband carriers of information. If a beam of light is to
be transmitted along the surface of the earth it will be necessary to
redirect and focus it at intervals by means of lenses or mirrors in order
to follow the terrain. By employing a sufficient number of redirectors a
long-distance transmission system can be built up. A number of such

283
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systems have been proposed by Kompfner.' Goubau and Christian have
also described such a transmission system.' The experiment described
in this paper was performed to determine the amount of loss suffered by
a beam of light due to transmission through one such system. The ex-
periment has also provided an indication of some of the other problems
involved in light transmission, such as that of obtaining the necessary
alignment, stability, freedom from vibration, etc.

II. DESCRIPTION OF THE EXPERIMENT

Since the loss through a light -transmission system can be very low,
it is desirable when measuring loss to employ a long path in order to
obtain accurate measurements. One means of obtaining a long trans-
mission path in a limited space is to use a single path repeatedly, thus
making the effective path length many times the actual length. Since
mirrors are ideal for folding a transmission path back upon itself, they
were chosen as the redirecting elements for this experiment. They have
the additional advantages of being simple and available; if spherical
mirrors are employed, they can be made to refocus the beam at each
reflection.

To isolate the transmission medium from the surrounding environ-
ment, it was enclosed in an aluminum pipe 6 inches in diameter. Isola-
tion was the only purpose served by the pipe - it played no part in
the actual transmission. Also, since the maximum beam diameter was
less than z inch, a much smaller pipe would have been satisfactory.
Fig. 1 shows the experimental setup in schematic form. The pipeline,
which was approximately 330 feet long, was light -tight and was treated

MIRROR 2 hi -330 FT
R=300 FT

\ I

N 'IRIS
`PHOTO FILTER

DETECTOR

MIRROR
R=300 FT

I y
.4

)4r-
I

IRIS

FLAT

FLAT

Gam- ---- --
MASER
6328A

-----

Fig. 1 - Light propagation experiment, system arrangement.
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on the inside to minimize reflections. Each end was provided with a
spherical mirror with a radius of curvature of approximately 300 feet.
This radius was chosen in order to make the configuration nearly, but
not exactly, confocal. Each mirror was provided with an iris which made
it possible to adjust its effective diameter from practically zero up to
1.63 inches. The mirrors were coated with dielectric layers to produce a
reflectivity of about 99.5 per cent at the operating wavelength of 6328
angstroms.

The mirrors 1 and 2 arranged in the configuration shown on Fig. 1
constitute a confocal resonator as described by Boyd and Gordon3
and by Fox and Li.4 Some consideration was given to the idea of applying
light to the line continuously and determining losses by the usual method
of measuring the "Q" of the resonator. However, because of the extremely
high Q, the requirements imposed on mechanical stability would have
been formidable, so a more feasible method was sought. The stability
requirements were reduced to reasonable values by applying light to
the line in short pulses. The pulse duration was made less than the round-
trip transit time through the line so that there would be no overlapping
of pulses and hence no critical relationship between the light wave-
length and the mirror spacing.

With this configuration, when a pulse of light strikes a mirror some
of it is lost but most is refocused and reflected to the opposite mirror.
Here it is refocused and reflected back to the first mirror and so on in-
definitely. In this way each single pulse of light applied to the line re-
sults in a train of pulses decaying in intensity, with the rate of decay
providing a measure of the transmission losses.

Part of the light lost at each reflection was transmitted through the
dielectric coating of the mirror. The part transmitted through the mirror
at the far end of the line was applied to a photomultiplier, the output of
which was, in turn, applied to an oscilloscope or other measuring equip-
ment. We thus obtained an output from the line without increasing the
losses, since this light would have been dissipated in any case. Since
most of the light striking a mirror was reflected, and some of the re-
mainder absorbed, the loss from the line into the measuring equipment
was high, being about 26 db for the mirrors employed. For the same
reason we were able to get light into the line without increasing losses by
going in through the back of the mirror at the near end. Here, again,
the loss was about 26 db.

The light -signal source was a dc -excited helium -neon gas maser about
one meter long, of the type described by White and Rigden.5 One of
the maser mirrors was stopped down with an iris to such an extent that
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it could oscillate at only the fundamental transverse mode. The several
longitudinal modes present caused no difficulty since there were no fre-
quency sensitive elements involved. The output power was approxi-
mately 1 milliwatt.

The output beam was chopped into short pulses by means of a small,
flat, rotating mirror which could be driven at rates up to 40,000 rpm
(see Fig. 1). Pulses as short as 0.2 microsecond could be obtained, be-
cause the beam was effective in exciting the line only during the very
short time that it was accurately aligned with the axis of the pipe.
Since the round-trip transit time for the line was nearly 0.7 Asec, pulses
of 0.5 Asec duration were sufficiently short, and the chopper could be
run at considerably less than its maximum speed. The mirrors A and
B shown in Fig. 1 between the chopper mirror and the end of the line
served the purpose of focusing the beam to get it launched properly, as
discussed in the next section. Sweeping a light beam across the mirrors
of a system such as this undoubtedly produces many higher -order modes.
However, these modes are generated when the beam is out of alignment
with the axis of the line, are off -axis modes, and die out very rapidly.

III. BEAM LAUNCHING

Refs. 3 and 4 show that after many reflections in a confocal system
the light has a very definite distribution of intensity at each part of the
resonator. Further, this distribution is the one which provides the lowest
losses. If light is launched into the line with this distribution, losses and
starting transient effects will be minimized. Using equations (19) and
(24) of Boyd and Gordon' we calculate a beam diameter of 0.35 inch
at each end mirror and 0.25 inch at the center of the line. If the beam is
launched into the line in such a way as to fit these dimensions there will
be a minimum of loss. Launching conditions were controlled by two
spherical mirrors, A and B, shown in Fig. 1 mounted between the chop-
per mirror and the end of the line. These mirrors were spaced so as to be
nearly confocal, with the second mirror having twice the focal length of
the first in order to provide a two -to -one increase in beam diameter.
To minimize the distortion of beam shape produced by the spherical
mirrors the launching arrangement was set up to provide as nearly as
possible normal incidence on these mirrors. By proper adjustment of
the spacing between the focusing mirrors the beam was made slightly
convergent as it entered the line. It converged to the center of the line,
where it reached a minimum diameter and then diverged slowly until
it reached the mirror at the far end of the line. Here it was reflected
and again made converging, thus repeating the process.
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The beam was photographed at various points in the line in order to
determine its cross section. Some of the photographs, which were taken
with the beam not being chopped, are shown in Fig. 2. Fig. 2(a) shows
the beam as it entered the line. It was 0.37 inch in diameter in compari-
son to the calculated value of 0.35 inch. The ring segments directly above
the spot were part of an interference pattern produced by reflections
from the back surface of the output mirror of the maser. Fortunately
the reflected light left the maser at an angle slightly different from that
of the transmitted beam, and as a result the two beams were fairly well
separated in space at the center of the pipe line. This is seen in Fig. 2(b),
which shows the beam diameter to have decreased to 0.28 inch at this
point. Fig. 2(c) shows that by the time the beam reached the far end
of the line its diameter had increased to 0.4 inch. Figs. 2(d), (e) and (f)
show the beam after it had been reflected the first time from the mirror
at the far end of the line. The focusing effect of this mirror is quite evi-
dent. Although the measured beam diameters are somewhat different

(a)
NEAR END

DIAM. = 0.37"

(d)
FAR END

DIAM. = 0.40"

BEAM LAUNCHED IN LINE

(b)
CENTER OF LINE
DIAM. = 0.28"

REFLECTED BEAM

(e)
CENTER OF LINE

DIAM. = 0.26"

Fig. 2 - Beam cross sections.

(C)
FAR END

DIAM. = 0.40"

(f)
NEAR END

DIAM. = 0.37"
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from the calculated values, they differ by only about 12 per cent in the
worst case.

IV. DETERMINATION OF LOSSES

4.1 Two -Mirror Shuttle -Pulse

Fig. 3 illustrates the performance of a shuttle -pulse experiment de-
scribed above and shown in Fig. 1. For this figure, which illustrates the
decay of light power with successive reflections, each pulse on the oscil-
loscope trace represents one round trip of the light beam through the
transmission line, there being a total of 75 pulses shown. For Fig. 4 the
oscilloscope sweep was expanded to show individual pulses. Fig. 4(a)
shows the first 13 round trips. Fig. 4(b) shows pulses corresponding to
300 to 310 round trips for a distance of 37.5 to 39 miles. Pulses which
have made 400 round trips for a total distance of 50 miles have been
detected with little difficulty. The first pulse in the group shown on
Fig. 4(a) is the one applied to the line. It has a peak power of only
5 X 10-' watts when it arrives at the cathode of the photomultiplier
tube.

Fig. 5 is a typical plot of power loss versus number of trips through
the line. After about 40 trips the loss is seen to remain constant at the
rate of 0.046 db per trip, which corresponds to a power loss of 1 per cent
per trip. The fact that the loss was somewhat higher for the early trips
may be due to higher -order modes, present because of imperfect launch -

Fig. 3 - First 75 round trips; illustrates decay of light energy produced by
successive reflections.
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(a)

289

(b)

Fig. 4 - Individual pulses: (a) first 13 round trips, (b) round trips number
300 to 310.

ing of the beam. These results were obtained with effective mirror
diameters of 0.87 inch, which corresponds to a Fresnel number N of 2,
where N is equal to aVbX ; a is the mirror radius and b the spacing
between mirrors.

In order to determine the effects of diffraction on the measured losses
the value of N for the system was varied, in steps, from 0.5 to 4 by
adjusting the iris in front of each mirror, thus changing the effective
mirror diameter. The photographs of Fig. 6 illustrate the effect of N upon
losses. It is interesting to compare Fig. 6(e), for small mirrors at both
ends, with Fig. 6(f), where the diameter of the mirror at the receiving
end has been increased. When making comparisons involving an arrange-
ment of mirrors with different diameters the losses should be considered
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Fig. 5 - Power loss versus number of trips through the line.
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on a round-trip basis so as to include one reflection from each mirror.
For the case shown by Fig. 6(e) the loss was 14.5 per cent at each mirror.
For the conditions of Fig. 6(f) one might expect the losses to be 14.5 per
cent for the small mirror and 1.5 per cent for the larger mirror, to give
a total round-trip loss of 16 per cent. Fig. 6(f) shows this loss to be only
6 per cent. The lower loss resulted from the fact that the light redistrib-
uted itself to match the changed configuration, there being a smaller
beam diameter at the small mirror and a larger beam diameter at the
large mirror.

Fig. 7 shows a plot of measured loss versus N and also diffraction
loss as calculated by Fox and Li plotted against this same parameter.
It is evident that for values of N of 0.6 or less diffraction losses predomi-
nate, whereas for values of N greater than 1.0 other losses are more
important. The curve labeled "expected loss" was obtained by adding
the known mirror loss of 0.5 per cent to the calculated diffraction loss.

It can be seen that in the region of high losses the measured losses are
close to the diffraction losses as calculated by Fox and Li. The data of
Fig. 7 are somewhat inaccurate for two reasons. For the lower values of
N the mirror diameters were small and it was much more difficult to
obtain accurate system alignment, so that there are possibly some align-
ment losses included. Also, the losses become so high for low values of N
that we have only a few trips through the line before the signal becomes
comparable to the noise. As a result losses must be measured in a region
where higher -order modes are important. More accurate results could be
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obtained if enough power were available to make it possible to determine
the rate of decay after 50 to 100 trips where the higher -order modes
have had time to die out. The presence of higher -order modes probably
accounts for the fact that losses are still decreasing with increase of N
for values of N as great as 4.

4.2 Periscope System

If mirrors are to be used as beam directors in a practical system they
will need to be used in pairs. Kompfnerl has suggested pairs of cylindri-
cal mirrors; however, a plane mirror to direct the beam in combination
with a spherical mirror for focusing also appears to be a satisfactory
arrangement. A transmission path made up of such pairs is shown
schematically in Fig. 8(a). It is evident that this combination allows the
direction of the beam to be changed at any pair of mirrors.

In order to simulate the use of mirror pairs, two plane mirrors were
inserted near the center of the transmission path as shown in Fig. 8(b).
Except for the addition of the two plane mirrors the system was operated

(a)
N = 4

LOSS = I°/ PER TRIP

(d)
N= 0.6

LOSS= 6% PER TRIP

(b)
N = 1

LOSS = 2% PER TRIP

(e)
N = 0.5

LOSS = 14.5% PER TRIP

(C)

N = 0.8
LOSS = 2.5°/0 PER TRIP

(f)
N = 0.5 SENDING END

N = 2.0 RECEIVING END
LOSS = 3% PER TRIP

Fig. G - The effect of mirror diameter on loss.
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Fig. 7 - Comparison of measured loss with expected loss.

just as before, with pulses of light shuttled back and forth between the
two spherical mirrors at the ends of the line. With this configuration
there were three reflections per trip in comparison to one reflection for
the two -mirror case. For this arrangement the total loss was measured
to be 0.08 db, or 2 per cent per trip in comparison to 1 per cent for the
two -mirror system. The loss was thus increased by 0.5 per cent per
reflection from the flat mirrors, which is just the reflection loss of these
mirrors.

4.3 Multimirror Experiment

The two -mirror shuttle pulse experiment differs from a practical trans-
mission line in one other respect - the same two mirrors are used re-
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Fig.Fig. 8 - (a) Use of mirror pairs to change beam direction; (b) experimental
equivalent with flat mirrors at the center of the line.

peatedly, whereas in an actual system each reflection would involve a
different mirror.

In order to obtain a better simulation of an actual line a multimirror
experiment was planned. Mirrors were purchased for this experiment
but, unfortunately, upon delivery were found to be defective. The best
we could do was to set up a four -mirror experiment with the four good
mirrors available. These mirrors, which were of excellent quality, were
ground by the Schutte Optical Company, Incorporated of Rochester,
New York, and coated by W. L. Bond of the Murray Hill, N. J., Bell
Laboratories. The mirrors were first set up in a four -mirror shuttle pulse
experiment as indicated in Fig. 9(a). For this arrangement the light
traversed the path M1, M2 , M3 , M4 , M3 M2 , M1, M2 , etc. The same
four mirrors were also arranged in a circulating loop as shown in Fig. 9(b).
Here the light path was M1, M2 , M3 , M4 , Ml , M2 etc.

Fig. 10 is a plot of the losses measured for the four -mirror shuttle
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Fig. 9 - Some four -mirror experiments.

TO
DE T

M2



294 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

pulse, the four -mirror circulating loop and a two -mirror shuttle -pulse
system. After it has reached a steady value the loss is seen to be the
same, 0.05 db per trip, for all three systems.* A number of comparisons
have yielded no measurable difference between the losses for a two -
mirror system and a four -mirror experiment. This tends to indicate that
the shuttle -pulse data can be applied to a long, straight -through system.
Obviously more conclusive results could be obtained from an arrange-
ment using at least ten mirrors, set up either as a circulating loop or as
a shuttle -pulse experiment.
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Fig. 10 - Comparison of four -mirror system losses with two -mirror system
losses.

V. LOSSES

According to the best data available from other measurements our
mirrors have reflectivity of 99.5 per cent or a reflection loss of 0.5 per
cent. The measurements described here yield a loss of 1 per cent per trip
through the line when there is one reflection per trip. This leaves a 0.5
per cent loss per trip to be accounted for. We know, both from theory
and experiment, that for an N of 2 diffraction loss is negligible. The re-
maining half per cent of loss, amounting to 0.023 db per trip, must have

* This is slightly greater than the 0.046 db per trip for the two -mirror shuttle
pulse as plotted in Fig. 5. The two sets of data were taken at different times, which
could well account for the discrepancy.
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been due to the atmosphere contained in the pipe, to lack of perfect
mirror alignment and to beam spreading and scattering produced by
mirror imperfections, dust particles etc. All of these except atmospheric
losses should decrease with increasing mirror diameter. The plot of
measured loss of Fig. 7 shows this loss to decrease with increasing mirror
diameter for values of N up to 4 or more. This would indicate that at
least part of the loss is due to misalignment and the beam spreading
which results from the presence of higher -order modes.

In general, atmospheric losses result from absorption by water vapor,
carbon dioxide and oxygen, and from scattering by small particles of
dust etc. The losses measured for the 330 -foot line are slightly smaller
than those determined by the author from a similar shuttle -pulse experi-
ment in which the mirrors were only 110 feet apart. Any atmospheric
losses should, of course, be greater for the longer line. This indicates that
small, undetermined differences in mirror loss* were more important
than the atmospheric loss and that the latter is too small to measure
accurately by this experiment. From a study of data on the solar spec-
trum after transmission through the Earth's atmosphere, Long and
Lewis° conclude that atmospheric absorption losses should be negligible
at our operating wavelength of 6328 angstroms.

At first thought the conclusions stated above might be considered in-
consistent with experimental data obtained by Taylor and Yates.' For
a path over water they measured a loss of 1.1 db per mile for a 3.4 -mile
path and 0.63 db per mile for a 10.1 -mile path at our operating wave-
length. Even the smaller of these losses is considerably greater than the
0.37 db per mile which we are attempting to account for. The results
obtained by Taylor and Yates probably do not apply to our setup for
several reasons. In the first place, part of the losses they measured may
have been due to haze, water droplets, dust, etc. which we do not have
in the pipe line. Also, for their experiment, each determination of loss
was made over a band of wavelengths, whereas for the experiment de-
scribed here we are dealing with monochromatic light. Burch, Howard
and Williams' have pointed out that results measured for the wideband
case do not necessarily apply to the transmission of monochromatic light.

Taking all of the above factors into consideration we are led to the
conclusion that atmospheric loss in the pipe is much less than the 0.37 db
per mile which is unaccounted for.

Of particular interest to a system designer is the loss per mile which
can be expected. For a light -transmission system where the beam is re-

* The mirrors employed in the two experiments were supposed to be identical
except for radius of curvature.
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directed at intervals this loss will depend to a great extent upon the
spacing between directors. For the 330 -foot spacing and using the
periscope arrangement we have measured 0.08 db per trip for mirrors of
0.875 -inch diameter. This corresponds to 1.28 db per mile. This figure is
pessimistic, since three reflections per trip were involved in the experi-
ment, whereas in an actual line involving pairs of mirrors there would be
only two reflections per link. This should reduce the loss to 0.96 db
per mile.

From the experimental data it is possible to determine what the ap-
proximate value of loss would be for various spacings between directors.
Some of these values are listed in Table I along with the assumed condi-
tions. This table is based on the assumption that each director consists
of two mirrors, each with a reflection loss of 0.5 per cent, and, unless
otherwise stated, the loss produced by the atmosphere in the line is
assumed to be 0.1 db per mile. An additional 0.5 per cent is added for
each mirror pair to represent the loss still unaccounted for.

For all of the cases listed in the table the mirror diameter is great
enough to make diffraction losses negligible. Although decreasing the
mirror diameter to values somewhat less than those shown in the table
would not cause an appreciable increase in loss, such a decrease would
make alignment more critical and decrease stability.

VI. PROBLEMS ENCOUNTERED

A number of the problems encountered in this experiment will also be
present in any practical system. For this reason some of these will be
discussed briefly.

6.1 Alignment

If losses are to be kept small it is obviously necessary to obtain rather
accurate alignment. Not only must the beam be launched along the axis

TABLE I - LOSSES FOR VARIOUS SPACINGS BETWEEN DIRECTORS

Spacing between Mirror Pairs N Mirror Diameter
(inches)

Assumed
Atmospheric

Loss, db/mile
Total Loss,

db/mile

165 feet 1.3 0.5 0.1 2.02
165 feet 1.3 0.5 0 1.92
330 feet 2.6 1 0.1 1.06
330 feet 2.6 1 0 0.96
1,320 ft (0.25 mile) 2.6 2 0.1 0.34
1,320 ft (0.25 mile) 2.6 2 0 0.24
2,640 ft (0.5 mile) 1.3 2 0.1 0.22
2,640 ft (0.5 mile) 1.3 2 0 0.12
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of the line but each reflection must be such as to keep the beam on this
axis. Simple calculations show that, for the 330 -foot line, a tilt of 20
seconds of arc of one of the mirrors results in the displacement of the
beam by a full beam diameter at the opposite end of the line; greater
mirror spacings would be still more critical. In spite of the stringent re-
quirements it has been feasible to obtain satisfactory alignment for the
mirror spacings used in this experiment.

6.2 Stability

Both the shuttle -pulse experiment and the circulating loop described
here are affected to a much greater extent by mirror movement than a
carefully designed straight -through system of the same length would be.
For the experimental systems, rotation of a mirror through an angle 0
would shift the beam, for a single reflection, through an angle 20. For a
straightaway system employing pairs of mirrors, as shown on Fig. 8,
the situation would be quite different. If the two mirrors of a pair are
parallel and are mounted close together on a rigid mount, small rota-
tions of the mount will produce no angular deviation of the transmitted
beam, since both mirrors rotate together. At those locations where it is
desired to change the direction of propagation, the mirrors in a pair will
not be parallel and rotation of the mount will result in some angular
deviation. However, for small departures from parallelism the combina-
tion will still be very superior to a single mirror and deviations will be
small.

A system using mirrors in this way is sensitive to rotation of either
mirror with respect to the other mirror of a pair. Such relative motion
can be minimized by mounting each pair of reflectors on a very rigid
mount, made of material with a low coefficient of expansion. A pair
could be enclosed in a comparatively small volume, which would make
it practical to control the temperature of the complete mount and thus
assure additional stability.

The only precautions taken to provide stability in the experimental
set-up consisted of employing rugged mirror mounts and isolating the
mirrors from mechanical motions of the pipe line. The latter was accom-
plished by mounting the end mirrors on rigid platforms which were
only very loosely attached to the pipe. In spite of these shortcomings
of the experimental system, it would operate for hours without readjust-
ment. Only large temperature changes produced serious deflections of
the beam. It is evident that the inherently superior stability of a straight -
through system would go far toward compensating for its much greater
length.
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6.3 Atmospheric Turbulence

In spite of the fact that our experimental line is inside a building there
were point-to-point differences in temperature sufficient to produce air
currents inside the line. The resulting variations in index of refraction
as masses of air at different temperatures moved through the beam
caused random fluctuations of the position and shape of the beam arriv-
ing at the end of the line. This difficulty was overcome by applying a
one -inch layer of insulation over the line, which reduced fluctuations to
the point where they were no longer discernible.

The shuttle -pulse experiment is considerably less susceptible to turbu-
lence effects than a straight -through system of the same length would
be. Any movement of air masses will take place in times long in com-
parison to transit time through the line. Hence any displacement of the
beam by passage through a refractive region will be almost exactly can-
celed by passage through the same region, but in the reverse direction,
on the return trip. Conversely, air turbulence has a greater effect on the
circulating loop of Fig. 9 (b) than on a straightaway system. In the loop
the beam passes many times in the same direction through any discon-
tinuity and each time is deflected in the same way whereas, for the
straight -through system, there would be only one passage through any
one discontinuity and the resultant deflections would be random. In-
sulating the line reduced turbulence effects to the point where they were
insignificant - even with the circulating loop.

In a practical system air currents could be made negligible by partial
evacuation of the line or possibly reduced to a sufficiently low value by
other means. In any case the beam enclosure would most likely be in-
stalled underground, where temperature variations are much smaller
than they are out in the open air.

VII. THE LINE AS A RESONANT CAVITY

Some experiments have been performed with the chopper mirror
stopped in such a position that the beam was continuously lined up with
the axis of the line. There was evidence of resonance in that the intensity
of the beam transmitted through the line increased very noticeably when
the mirrors were properly aligned. This increase was very evident to the
eye even though it responds only to average intensity. The photomulti-
plier output as recorded in Fig. 11(a) shows that, as expected, the line
was continuously going in and out of resonance in a very random
manner. In this picture the most negative pulses correspond to the
greatest light intensity and result when the system is nearest to reso-
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Fig. 11 - Continuous light input, line near resonance: (a) photomultiplier
output, (b) beam cross section at one mirror. Mirror diameter 1.63 inches.

nance. It is seen that during the 50 -millisecond period represented by
the picture the system was out of resonance most of the time but went
into, or through, resonance for short intervals. A very slight tapping of
the maser produced a large increase in the number of pulses obtained,
probably by causing the frequency to sweep back and forth through the
resonant value. The peaks shown do not represent maximum buildup,
for two reasons. First, the output amplifier was obviously overloading
and, second, the true resonant condition probably never lasted long
enough for the intensity to build up to its maximum value. Peak in-
tensities during resonance have been measured to be as much as 100
times the intensity for the nonresonant condition. The calculated value
of the Q for this system is 9.9 X 1010 based on a loss of 1 per cent per
reflection. It is not surprising that adjustments are very critical.

Fig. 11(b) illustrates the effect of misalignment of the mirrors. The
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photograph shows the pattern formed on the mirror at the far end of
the line with light applied continuously at the near end and after an
attempt had been made to adjust the system to resonance. The rec-
tangular shape of the pattern indicates that there were higher -order
modes present. More careful adjustment resulted in a pattern corre-
sponding to only the lowest -order mode, i.e., a beam with a circular cross
section, similar to those shown in Fig. 2.

The photograph of Fig. 12 shows an example of exaggerated misalign-
ment. For this case the mirrors were deliberately tilted out of adjust-
ment and the beam was applied off axis. As a result the beam did not
double back on itself but followed a different return path, and therefore
made a different spot on the mirror for each round trip. The picture

3 5 7
w v

8 oft*
6 4

Fig. 12 - Multipath transmission: 1.25 -inch diameter tilted confocal mirrors.

shows that there were seven round trips through the line before the beam
was finally lost. It should be possible to obtain an adjustment which
produces a pattern of the type shown but which is repetitive and con-
tinues indefinitely without the beam becoming lost.' It is evident that
even the degree of misalignment shown on Fig. 12 does not cause exces-
sive loss as long as the beam is confined to the surface of the mirrors, but
that the greater the degree of misalignment the larger the mirrors must
be to meet this requirement. *

VIII. CONCLUSIONS

Results of the experiment described above show that, under proper
conditions in an enclosed path, coherent light can be transmitted with

* Figs. 11 and 12 were obtained from the 110 -foot line, which accounts for the
small beam diameters. The circular lines running through the beams result from
interference between reflections from the back and front surfaces of the mirrors.
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low loss even when it is necessary to redirect the beam at relatively short
intervals. Since a large part of the transmission loss is in the directors,
in this case mirrors, the loss per mile depends upon how close together
these directors must be placed. If future development produces better
directors, then losses should be even lower than those measured in this
experiment. Also, other devices may well prove to be superior to mirrors
as beam directors.

In a practical transmission line the spacing between directors will be
dictated to a considerable degree by the terrain being traversed. Another
very important factor involves the difficulty of keeping the directors
properly aligned in the presence of vibration and temperature changes.
There is also the problem of air currents in the line.

For the experimental system the vibration problem was solved by
ruggedizing all components. Insulation of the pipeline reduced air cur-
rents to the point where they produced no measurable effects. Although
temperature changes produced displacements of the beam, these devia-
tions were small enough, in the laboratory environment, to be tolerable
even though no other steps were taken to provide temperature stability.
The question as to whether or not these problems can be solved in a
practical transmission line has not been answered by this experiment.
The difficulties will be greater in the practical line and will call for more
sophisticated design; however, the fact that the problems were solved
with relative ease for the experimental set-up is encouraging.

The work described here represent only a fraction of the interesting
and informative experiments which could be performed using this
technique.
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The Structure and Properties of
Binary Cyclic Alphabets

By JESSIE MAcWILLIAMS
(Manuscript received July 8, 1964)

A code which is to be used for error control on a real data system is neces-
sarily restricted by the nature of the transmitting equipment. These restric-
tions have no connection with the primary function of the code; indeed,
they frequently eliminate most of the codes about which anything is known
at present.

For example, the code to be used for error control by detection and retrans-
mission on the trunks between data switching centers is required to be a
cyclic (or truncated cyclic) code with 744 information places and 20 parity
check bits. The computational problem in this case is to locate those cyclic
codes which have exactly 20 parity checks and a block length of 764 or
greater, and pick the one which is best suited for error control over a particu-
lar channel.

This paper outlines a procedure for attacking such problems. It describes
how to locate the cyclic codes with a fixed block length and a fixed number of
parity checks, if any such exist, and gives some methods of finding the
number of code words of each weight in a particular code. If one knows the
statistics of the channel it is then possible to estimate the error control proper-
ties of the code.

The procedure depends on an analysis of the algebraic structure of cyclic
codes, which is given in Section II of this paper. Section I contains step-by-
step instructions with no mathematical justification. It is hoped that the
theory presented in Section II may be useful in other applications.

INTRODUCTION

In this paper the word alphabet denotes a systematic code - one in
which each code word contains a certain fixed number, k, of information
places, the contents of which are arbitrary, and a fixed number, n - k,
of parity check places. Each parity check digit is the sum of the contents
of a particular subset of the information places. The number n is called
the block length of the alphabet. The individual members of the alphabet
are called letters.

303
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It is well known' that the letters of an alphabet of block length n form
a subspace of the vector space of all possible rows of n binary symbols.
This large space is denoted by V", V being the field 0, 1. The number of
information places, k, is also the dimension of the subspace occupied by
the alphabet.' A cyclic alphabet has the additional property that, if it
contains a letter a, it contains as well every vector of V" which is a cyclic
permutation of a.

Cyclic alphabets are popular for error control for several good reasons.
First, it is easy and relatively inexpensive to encode a cyclic alphabet.
Second, the "best" known alphabets are cyclic alphabets.* Third,
the cyclic property introduces a great deal of algebraic structure, which
may be used to predict the error -detecting properties of the alphabet
and to find alphabets with appropriate properties.

An alphabet to be used in a data transmission system must satisfy
certain requirements. There will certainly be restrictions on the size of
n and k, and one naturally requires also that the alphabet should be of
some use for error control. These restrictions cannot be completely ar-
bitrary; for a given pair of integers n, k there is likely to be no cyclic
alphabet at all, let alone one with desirable error control properties.

The Hamming distance between two vectors is the number of coordi-
nate places in which they differ. The distance between v1 and v2 is thus the
minimum number of changes one would have to make in vl in order to
convert it into v2 . The usual strategy for choosing an alphabet is to place
its members as far apart as possible in terms of the Hamming distance.
It would then require a relatively large number of errors to change a let-
ter of the alphabet into another letter of the same alphabet.

The weight of a vector of V" is its distance from the origin, which is
the same as the number of ones it contains. Let a, of weight s, be a letter
of an alphabet a. If f3 is another letter of a, so also is a + )3, since a
is a vector space; a + # is at distance s from /3. Let A (s) denote the
number of letters of a of weight s. A (s) is then the number of letters of

which are at distance s from an arbitrary letter of a.
The set of numbers A (0 ), , A (n) is called the spectrum of a.

The spectrum of a, combined with the statistics of the channel, may be
used to obtain an approximate estimate of the error control performance
of the alphabet.2

An alphabet used for error detection will fail to detect an error pattern
which is itself a letter of the alphabet. If A (i) = 0, the alphabet will

* The reason for this is very possibly that no other class of alphabets has been
so systematically studied.
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detect all n patterns of i errors in a block of length n. If A (i) 0,(
i

the alphabet win
n

fail to detect A (i) of these patterns. It is usual
i

to require that A (1) and A (2) should be zero; it can be seen from anal-
ysis of the available data2 that this makes good sense even on the tele-
phone network. For larger values of i it would be fortunate if the letters
of weight i were not the same as the most common error pattern, which
is usually assumed to be a "burst." This assumption leads to the vaguely
formulated requirement that letters of small weight should have their
nonzero digits spread out as much as possible. A cyclic alphabet satisfies
this requirement to a certain extent, since the letters of smallest weight
must spread over at least n - k ± 1 adjacent places.

Since it may actually become necessary to choose particular alphabets
for error control purposes, and since that the requirements which these
alphabets will have to satisfy are not yet known, it is desirable to be able
to obtain some rather detailed information about available alphabets.
This paper describes a computer -assisted procedure by which one may
locate the cyclic alphabets which have values of n and k within certain
bounds, and find the spectra of these alphabets. A considerable library
of computer programs which are useful in this procedure has been de-
veloped.

The plan of the paper is as follows:
Section I contains step-by-step instructions for locating cyclic alpha-

bets and finding their spectra.
Section II contains the mathematical justification for the procedures

of Section I, and is in fact a fairly complete account of the structure of
cyclic alphabets.

It is not necessary to read Section II in order to follow the recipes
given in Section I. However, in a troublesome case - which means a case
that involves a large expenditure of computer time - the material in
Section II may suggest a way out of the difficulty.

I. PROPERTIES OF CYCLIC ALPHABETS

In this section we outline a procedure to attack the following problem:
Given that the block length, n, and the number of parity checks, m,

of a binary cyclic alphabet are required to lie in the ranges

n < N2, 311 312,

find the alphabet (or alphabets) which have the greatest minimum dis-
tance.
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It is assumed throughout that n is an odd number. Many of the prop-
ositions quoted in this section, and justified in Section II, are not true
for even values of n.

Let an be the ring of polynomials mod x" - 1 over the binary field.
an consists of all polynomials of degree n - 1 with coefficients in the
binary field. Addition of polynomials is done as usual; to multiply two
polynomials, we multiply in the normal way and then reduce exponents
of x mod n.

A cyclic alphabet of block length n may be regarded as a set a of

polynomials of an , with the property that every polynomial of a is
divisible (mod x" - 1) by a fixed polynomial a(x) a(x) may, and will,
be taken to be a factor of x" - 1; then the number of parity checks for
a is the degree of a(x). a(x) will be called the generating factor of a.
We write a = aln  a(x).

Let w stand for one of the numbers 0, 1, , n - 1. Denote by Z2(n)
the permutation w 2w mod n. X2(n) divides the integers 0, 1, ,

n - 1 into a number of disjoint cycles; the cycles of L2(63), for example,
are shown in Table I.

Let fo(x), ), , ft_i(x) be the irreducible factors of xn - 1.
Since n is odd, these factors are all distinct. Lett be a primitive nth root
of unity. The cycles of F+2 (n) and the polynomials fi(x) are associated
in the following way: The zeros of f i(x) in a suitable* extension field of
the binary field are rt, r2, , rk, where (ri , r2 , , rk) is a cycle of
Z2(n) ; and each cycle represents in this way the zeros of one of the fi(x).
The number of irreducible factors of xn - 1 is, of course, the same as
the number of cycles of Z2(n). We say that the polynomial f i(x) with
zeros r', r2, , r' is associated with the cycle (r1 , r2 , , rk).

Let S be a set of cycles of Z2(n) ; let f it , , fir be the irreducible
factors of xn - 1 which are associated with the cycles of S. Let

a(x) = fii(x) fi2(x)  f 4(x)

be the generating factors of an alphabet a. We say that the cyclic alpha-
bet a = an a(x) is associated with the set S.

Let 1 < r1 < r2 <  < n be a list of the factors of n; Attach to
each cycle of Z2(n) an exponent ei = n/ri defined by the property that
each member of the cycle is divisible by ri mod n, and that ri is the
largest factor of n for which this is true.

A great deal of information about the cyclic alphabets of block length
n can be obtained by looking at the cycles of Z2(n).

* For example, the Galois field of order 2/, consisting of the roots of y2/ = y,
where t is the length of the cycle of 22(n) which contains 1. A proof of this "well-
known" correspondence is given in Section II.
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TABLE I - CYCLES OF Z2(63)

Cycles Exponent

1 2 4 8 16 32 63
3 6 12 24 33 48 21

5 10 17 20 34 40 63

7 14 28 35 49 56 9

9 18 36 7

11 22 25 37 44 50 63

13 19 54 38 41 52 63

15 30 39 51 57 60 21
21 42 3
23 29 43 46 53 58 63

27 45 54 7

31 47 55 59 61 62 63

0 1

Proposition I: Let no , n1, , nt_i be the cycles of Z2(n) and let mi
be the length of ni . The number* of cyclic alphabets of block length n is 2`.
The alphabet associated with a set S cf cycles has m = E, s mi parity
checks.

Proposition II: Let e be the least common multiple of the exponents of
the cycles contained in S. If e < n the alphabet associated with S has mini-
mum distance 2. If e = n the minimum distance of the alphabet is at least
31-

. Proposition III (Bose-Chaudhuri Bound): If S contains the numbers
1, 2, 3, , d - 1, d among its cycles, the minimum distance of the alpha-
bet associated with S is > d 1.

It should be noted that the minimum distance may be, and often is,
larger than the lower bounds given in propositions 2 and 3.

At this point one may, of course, be forced to conclude that there are
no satisfactory cyclic alphabets of block length n. The main purpose of
propositions 1 and 2 is to eliminate useless values of n. Suppose, however,
that we have a value of n for which there exist alphabets with the re-
quired number of parity checks and of minimum distance at least 3. It
is then useful to establish a 1-1 correspondence between the cycles of
Z2(n) and the irreducible factors of x" - 1.

The exponent of a polynomial f(x) is the least value of e for which
1 (x) divides se - 1. We find the irreducible factors of x" - 1,t and of
.r" - 1, (ei = njai) for each factor ai of n. Some of the irreducible fac-

* This number includes three "trivial" alphabets: the alphabet consisting of
all of (R,, , the alphabet containing only zero, and the alphabet containing only
zero and the vector of weight n.

t This has, in fact, been done for all odd values of n 5 1023.
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tors of x" - 1 have exponent ei ; these appear among the irreducible
factors of xe' - 1, and can be identified by inspection.

Any irreducible factor of x" - 1 which has exponent n can be chosen
to correspond to the cycle of 22(n) which contains 1. Let Ms) be this
polynomial; fi(x) has as a zero. If r is a proper factor of n, r is the least
member of a cycle of exponent e = n/r. The polynomial associated with
this cycle also has exponent e. Let g1 , g2 , , g8 be the irreducible fac-
tors of xn - 1 with exponent e. By picking fi(x) to correspond to the
cycle containing 1, we have implicitly chosen which of the gi(x) corre-
sponds to the cycle containing r. The choice can be made explicit in the
following way:

Proposition IV: gi(xr) is exactly divisible by fi(x) if and only if it
corresponds to the cycle containing r.*

We can now assign to each factor ri of n an irreducible factor fi of
.r," - 1, which will have exponent e1 = n/ri. We have not yet matched
every cycle of 22(n) with an irreducible factor of xn - 1; the remaining
work will be done by a different method. Before describing this we il-
lustrate the procedure so far.

Suppose that the restrictions on n, m are 52 < n S 64, m = 9. It is
found that

21(53) has two cycles, lengths 1, 52
22(55) has five cycles, lengths 1, 4, 10, 20, 20
22(57) has five cycles, lengths 1, 2, 18, 18, 18
22(59) has two cycles, lengths 1, 58
22(61) has two cycles, lengths 1, 60
22(63) has thirteen cycles, lengths 1, 2, 3, and 6.

By Proposition I, 63 is the only possible block length, since the lengths
of the cycles of the other numbers do not add up to nine. The factors of
63 are 3, 7, 9, 21. The cycles of 22(63) and their exponents are shown in
Table I. The nine parity checks are obtained by taking a cycle of length
6 and a cycle of length 3 or a cycle of length 6 and the cycles of length
2 and 1. 13y Proposition II, the least common multiple of the exponents
of the cycles should be 63; hence the cycle of length 6 should have ex-
ponent 63 or 9.t The Bose-Chaudhuri bound provides no information; a
minimum distance of three is guaranteed by Proposition II, and we can-
not assemble a collection of cycles containing the numbers 1, 2, 3 with
only nine parity checks. Hence we are faced with the possibility of hav-
ing to compute the spectra of 18 different alphabets. (It will be shown
later that this is not necessary.)

* This elegant and time -saving device was suggested by Mr. R. L. Graham.
t This case will he omitted because the author did not notice it in time.
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Suppose that m is allowed to be 12; we pick the first and second cycles,
because Proposition III then guarantees a minimum distance of at least
five.*

Table II contains a list of irreducible factors of x63 - 1 and their ex-
ponents. Associate the first polynomial (714) with the first cycle. One of
the polynomials of exponent 21 then corresponds to the second cycle;
by Proposition IV we find that 534 is the correct choice. For the sake of
completeness we use Proposition IV again to ascertain that the poly -

TABLE II - IRREDUCIBLE FACTORS OF X°3 - 1

Factor Exponent Associated Cycle

11

f2
f3
f4
f 5

f6

J.,
.1.,

f,
f , ,,

f ii
f i 2

fl3

714
414
700
554
534
634
444
664
724
604
600
540
640

63
63

3

63
21
63

9

63
21
63

1

7
7

1, 2, 4, 8, 16, 32

21, 42

3, 6, 12, 24, 33, 48

7, 14, 28, 35, 49, 56

9, 18, 36

The polynomials are in octal, which stands for a binary number denoting the
positions of the nonzero coefficients. The least exponent is on the left, e.g.

714 = 111001100 = 1 + x + x2 + x' + x'.

nomial 640 corresponds to the cycle beginning with 9. The unique poly-
nomials of exponent 9 and 3 must, of course, correspond to the cycles
beginning with 7 and 21.

To explain the next steps it is necessary to introduce some more defini-
tions.

Let q be an integer prime to n. The mapping a, : xi -) xql (exponents
mod n) is an automorphism of 61. . The effect of o on a cyclic alphabet
is to change it into an equivalent' cyclic alphabet; do-, = , and a, ott,'

have the same spectrum. The number of a, which have a different ef-
fect on a is rather small; if q1 , q2 are in the same cycle of M2(n), then

aa = acr .
(In particular if q is in the cycle which contains 1, au, = a.)

* It is not established mathematically that a different choice cannot give a
greater minimum distance. To be completely safe we should calculate the spectra
of all alphabets with 12 parity checks and exp7nent 63.
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We select one q out of each cycle of Z2(n) which contains numbers
prime to n. For n = 63 we choose the numbers underlined in Table I;
this choice is computationally advantageous, since 52 = 25 mod 63,
53 = 62 mod 63, 54 = 58 mod 63, 55 = 38 mod 63.

Every cyclic alphabet of a contains a unique polynomial c(x), the
idempotent of a which has the useful property that ao-, = a' if and only
if c(x)cr, = c/(x). For computational purposes it is much better to know
the idempotent of a than the generating factor of a. The idempotent of
the alphabet (R..fi(x), where fi(x) is an irreducible factor of x" - 1, is
denoted by 1 + Oi(x). The polynomials Oi(x), i = 1, 0, , t - 1 are
called the primitive idempotents of (R. , and have several useful proper-
ties:

(i) The Oi(x) are easy to compute, and in fact have been computed
for all odd values of n 5 1023. (The method by which this is done is
described in the next section.)

(ii) The idempotent of the alphabet with generating factor
f,(x) fi2(x) fir(x) is

1 + 0i,(x) ei2(x) +  + Oir(x).
(iii) The Oi(k) are permuted among themselves by the automorphisms

The alphabet with idempotent Oi(x) is a minimal alphabet of (R ( t
contains no subalphabet except 0). Its generating factor is (xn - 1)/
fi(x). The alphabet with generating factor fi(x) has generating idem-
potent 1 Oi(x) and is a maximal alphabet of (R. .

In the future the cyclic alphabet a will be identified by a sum of primi-
tive idempotents of (R. rather than by a product of irreducible factors of
xn

1.

Proposition V: If fi(x), f2(x) are irreducible factors of x" - 1 with the
same exponent, then 01(4a = 02(x) for some automorphism a, of Rn
Hence the minimal alphabets generated by 01(x), 02(x) are equivalent, and
the maximal alphabets generated by 1 + 01(x), 1 + 02(x) are also equiva-
lent. Conversely, if two minimal (maximal) alphabets have the same spec-
trum, they are equivalent under one of the automorphisms crg.

Proposition VI: The alphabet with idempotent (1 + e,, +  + Oir)
is equivalent to the alphabet with idempotent (1 + 9i,a' + -I- Oira,).

Proposition VII: Let 1 + Oi(s) be the idempotent associated with the
cycle of 22(n) which contains 1. Let u, v be integers prime to n such that
u  v = 1 mod n. Then 1 + Oi(x)cr. is the idempotent associated with the cycle
which contains v.

We illustrate again for the case n = 63. Table III contains a list of
primitive idempotents of (Ft63 . This list is parallel to the list in Table II.
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TABLE III - PRIMITIVE IDEMPOTENTS OF 6R63
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Associated Cycle

From Table II From Prop. 6

ei 321026251170 156307227 1, 2, 4, 8, 16, 32
02 010305172162 267315277 11, 22, 25, 37, 44, 50
03 333333333333 333333333 21, 42
04 044160277124 317353233 5, 10, 17, 20, 34, 40
06 012231301223 130122313 3, 6, 12, 24, 33, 48
06 375343166036 225150213 31, 47, 55, 56, 61, 62
07 044044044044 044044044 7, 14, 28, 35, 49, 56
08 331327363052 375016044 22, 29, 43, 46, 53, 58
09 323112032311 203231120 15, 30, 39, 51, 57, 60
010 375263355116 136243020 13, 19, 26, 38, 41, 52
011 777777777777 777777777 0
0,2 456271345627 134562713 27, 45, 54
01, 723516472351 647235164 9, 18, 36

The ith factor, fi(x) of Table II, is the generating factor of the alphabet
with idempotent 1 + 01(x) where 0i(x) is the ith primitive idempotent
of Table III. We associate some of the 0i with a cycle of Z2(63) by copy-
ing from Table II.

The automorphism 0-6 produces the following permutation of the set of
primitive idempotents of 6163

(01, 610, 08, 06, 02 , 04) (05, 09) (012, 013 )(03) (07) (011).

The other automorphisms, as already noted, produce powers of this
permutation; for example 0-62 = a53 gives

(01, 06) ( 010 , 02) (09, 04) ( 05 , 09) ( 012 , 013) ( 03) ( 07) (011).

Consider now the alphabet with nine parity checks which is associated
with the cycles (1, 2, 4, 8, 16, 32) and (9, 18, 36). By Table II the gener-
ating factor of this alphabet is fi(x)113(x), its idempotent is (1 +
01 + 013). The idempotents which can he obtained from this by the per-
mutations 0-5 and its powers are

1+010+012, 1+6s+613, 1+66+012, 1+02+613, 1+04+012
The generating factors of the corresponding alphabets are (including the
original alphabet),

/10 'f12 f8'f13 /6 'fa fvfn f4.f12 .

By Proposition VI these six alphabets are all equivalent. Similarly, the
alphabet associated with cycles (1, 2, 4, 8, 16, 32) and (27, 45, 54) has
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idempotent 1 + 01 + 012 , and is equivalent to the alphabets with idem-
potents

1 Om 7 1 +08-1-012, 1 ± 06 + 013 7 I + 02 ± 012 7 1 + 04 + 013

The third possibility for nine parity checks consists of the cycles (1, 2, 4,
16, 32), (21, 42), (0). The associated idempotent is 1 -I- 01 + 03 + On ;
equivalent alphabets are given by the idempotents

1 +010+03+011, 1 +08+03+011, 1 +06+03+011,
1 + 02 + 03 + On , 1 + 04 + 03 + Bll

Hence, among the 18 alphabets with nine parity checks and minimum
distance 3, there are actually at most three different spectra.

We observed before that the alphabet with twelve parity checks as-
sociated with cycles (1, 2, 4, 8, 16, 32) and (3, 6, 12, 24, 33, 34) has
minimum distance at least 5. The idempotent of this alphabet is 1 01

08 . There are at least* five equivalent alphabets with idempotents

1 + + 08 , 1 + 09+ Os , 1 + Os+ 09 , 1 + 02+ Os , 1 + 04+ Og .

It may very well happen that one of these alphabets is easier to instru-
ment than our original choice.

The 1-1 correspondence between cycles of Z2(63) and primitive idem-
potents of 6163 is completed by Proposition VII, and entered in Table IV.
For example, 5.38 = 190 = 1 mod 63 (38 = 55 mod 63) ; hence

01(76 = 010

corresponds to the cycle (13, 19, 26, 38, 41, 52).
It is now necessary to face the problem of actually computing the spec-

trum of a cyclic alphabet.
For a small alphabet this can be done by counting, without too large

an expenditure of computer time. An alphabet of block length 765 with
220 letters can be examined, a letter at a time, in 0.32 hours on a 7094.
This alphabet has 745 parity checks. Typically, however, one wishes to
know the spectrum of the alphabet with 27" letters and 20 parity checks;
to compute this by counting would take over a million computer years.
Fortunately there is a way out of this dilemma.

Let a(x), of degree m, be a factor of x" - 1, and let

b(x) = (x" - 1)/a(x).
* It is entirely possible that alphabets not contained in this list also have the

same spectrum, and are perhaps equivalent to the first alphabet under a permuta-
tion which is not an automorphism of an .
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TABLE IV - SPECTRA OF SMALL ALPHABETS OF R63
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01 + 012 29 letters

B(0) = 1
B(28) = 189
B(32) = 252
B(36) = 7
B(40) = 63

Ois 29 letters

B(0) = 1
B(28) = 252
B(32) = 63
B(36) = 196

01 + 02 + 012 29 letters

B(0) = 1
B(25) = 3
B(26) = 63
B(29) = 126
B(31) = 63
B(32) = 63
B(34) = 126
B(37) = 63
B(42) = 3
B(63) = 1

Bl + 0, 212 letters

B(0) = 1
B(24) = 210
B(28) = 1512
13(32) = 1071
B(36) = 1176
B(40) = 126

The alphabets a = (Ra(x) and 63 = (Rb(s) are called dual or or-
thogonal alphabets.* Let A (s), B(s) be the number of letters of weight
s in a, (B. We suppose that a with m parity checks is a large alphabet,
whose spectrum we wish to find; 63 contains 2' letters, and its spectrum
can be found by counting or by more sophisticated procedures. The

(s) can be found from the B(s) by the following proposition.'
Proposition VIII: The quantities A(s), B(s) are related by the expres-

sion

2' E A(s)z8 = E B(s) (1 z)'1-8(1 - z)8.
s=o a=o

* This is not quite the usual definition; the usual dual alphabet of a is equiva-
lent to (B, so has the same spectrum. The difference is explained fully in Section II.
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We now describe methods which are sometimes useful for finding the
spectra of small cyclic alphabets.

Let a be a letter of a cyclic alphabet a, and let a7' be the letter ob-
tained from a by one cyclic permutation to the right. For example, for
n = 7 one might have

a=(0110111), aT=(1011011),
aT2 = (1 1 0 1 1 0 1) etc.

The letters «Tv all belong to a. The set of distinct letters ar for fixed a
is called a cycle of a; a is a representative of this cycle; the number of
distinct letters is r(a), the period of a or the length of the cycle. Know-
ing the length of each cycle of a and the weight of a letter from each
cycle, we can at once compute the spectrum of a.

If a, (B are dual alphabets, and the idempotent of a is 1 + c(x), then
c(x) is the idempotent of (B. The alphabet 51ti with idempotent 01(x) is
the dual of the maximal alphabet with irreducible generating factor
fi(x). arti is called a minimal alphabet. The alphabet with generating
factor fi(x)f j(x) has idempotent 1 + ei(x) 0;(x); its dual alphabet
is the union of 1 and Olt; and has idempotent 0i (x) 0;(x). The pro-
cedure is to find cycle representatives for the FAL and then put them to-
gether to get cycle representatives for Orti U JR; . This is done by the fol-
lowing propositions.

Proposition IX: Every cycle (except that containing the zero letter) of
arti has length 7(0 i); further r(0i) is the exponent, ei , of the irreducible
polynomial fi(x).

For example, for n = 63, MI has one cycle of length 63. This cycle
contains the letter corresponding to 01(x), which has weight 32; the
spectrum of MI is B(0) = 1, B(32) = 63. The spectrum of the maxi-
mal alphabet 61.63A(x) is given by

63

26 E A(s)z8 = (1 + z)63 ± 63(1 ± z)31(1 - z)32.
s=0

Similarly DIZI2 has one cycle of length 7 which contains the letter cor-
responding to 012(x), of weight 36. The spectrum of art12 is B(0) = 1,
B(36) = 7, and the dual alphabet (R63A2(x) has the spectrum A(s)
given by

63
23 E A(8)? = + 0" + 7(1 + z)27(1 - z)36.

8=0

We note that
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8A (2)
(63) [(27) (36)]

2016,
2 2 2

agreeing with the statement of Proposition II that this particular alpha-
bet will contain letters of weight 2.

The alphabet 9115 contains three cycles of length 21. It is possible to
check by hand that 05 , 05 + 05T and 05 + 05T2 are in different cycles;
their weights are 24, 36 and 36, respectively; the spectrum of 9115 is
B(0) = 1, B(24) = 21, B(36) = 42.

The technique is useful only if 511i contains a rather small number of
different cycles; otherwise the process of finding cycle representatives
becomes extremely laborious.

Once the cycle representatives for 9111 and 911; are known, one con-
structs cycle representatives for the alphabet arti U 91z1 (with idem-
potent 0i + 0;) by the following proposition.

Proposition X: Let glti have cycle representatives m1, m2 , , of

period ei , and OTC; have cycle representatives n1 , n2 , , np , of period
ei . Let H, h be the least common multiple and highest common factor of
ei , e; . Then Oiti U 911; has cycle representatives m1, , ma , n1 , ,

, and in addition, for each pair i, j, cycle representatives mi
v = 0, 1, , h - 1 of period H.

For example, for n = 63 the alphabet Dili U 91112 has one cycle represent-
ative 01 (period 63), one cycle representative 012 (period 7), and 7 cycle
representatives 0 012r, v = 0, 1, , 6 of period 63. The alphabet
9111 U 911I3 is constructed similarly. The spectrum of the alphabet

9111U9113U91111

is obtained by constructing that of ffti U 9113 (cycle representatives 0, ,

03 , 01 + 03 , 0 + 03T) and adding the letter of weight 63 represented by
011 . The spectra of these three alphabets and their duals are given in
Tables IV and V. The dual alphabets are the three nonequivalent alpha-
bets of block length 63 and with nine parity checks which we set out to
find.

The alphabet art' U 914 has cycle representatives 01 , period 63, 05
05 + 05T, 0 + 057'2, period 21, and 01 + 05Tv, 01 + (0 + 05T) T",
01 + (0 + 05T2) T", v = 0, 1, , 20. The spectra of this alphabet and
its dual are given in Tables IV and V; the dual alphabet has minimum
distance 5 as predicted.

We now give a summary of the procedure:
(1) Obtain a list of the cycles of 22(n) for each allowable value of n,

and check to see whether an allowable number of parity checks can be
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TABLE V SPECTRAL PROBABILITIES* OF LARGE ALPHABETS OF R63

1 + 9i + 012 (9 parity checks)

a(0) = 1 = a(63)
a(1) = a(2) = a(3) = 0;
a(4) = 0.21153 X 10-2,
a(5) = 0.20973 X 10-2,
a(6) = 0.19243 X 10-2,
a(7) = 0.19571 X 10-2,
a(8) = 0.19526 X 10-2,
a(s) = a(n - s)
a(s) = 2-9 for other values of s.

1 + 0,, (9 parity checks)

a(0) = 1 = a(63)
a(1) = a(2) = 0
a(3) = a(4) = 0.15865 X 10-2,
a(5) = a(6) = 0.20077 X 10-2,
a(7) = a(8) = 0.19451 X 10-2,
a(9) = a(10) = 0.19544 X 10-2,

a(11) = a(12) = 0.19528 X 10-2,
a(s) = a(n - s)
a(s) = 2-9 for other values of s.

1 + Bi + +0,, (9 parity checks)

a(0) = 1
a(1) = a(2) = a(3) = 0,

10-2
a(6) = 0.19626 X 10-2
a(8) = 0.19502 X 10-2
a(i) = 0 all odd values of i

a(2i) = 2-9 other values of i.

1 + Bi + 0, (12 parity checks)

a(0) = 1 a(63) = 1
a(1) = a(2) = a(3) = a(4) = 0,
a(5) = a(6) = 0.26889 X 10--3,
a(7) = a(8) = 0.24119 X 10-3,
a(9) = a(10) = 0.24461 X 10-3,

a(11) = a(12) = 0.24404 X 10-3,
a(13) = a(14) = 0.24416 X 10-3,
a(s) = a(n - s)
a(s) = 2-" other values of s.

* The spectral probability a(s) is A(s)/(ns); the number A(8) is frequently
too large for the computer.

obtained as the sum of lengths of distinct cycles. Discard the values of
n for which this is not possible.

(2) Attach an exponent to each cycle of M2(n).
Let S be a set of cycles of suitable lengths. Find the least common

multiple of the exponents of the cycles in S. Discard the sets S for which
this number is less than n.
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(3) It is now necessary to set up a correspondence between the cycles
of Sand the primitive idempotents of an . This is done in two steps, as fol-
lows. Obtain a list of the irreducible factors of x" - 1, and of x" - 1,
ei = n/ri for each proper factor ri of n. Let fo(x), fi(x), , ft_1(x)
be the irreducible factors of x7' - 1. The irreducible factors of x" - 1
will be among the fi(x). Starting with the smallest value of ei , attach an
exponent to each of the fi(x) by comparing lists. Pick any fi(x) of ex-
ponent n to correspond to the cycle beginning with 1, and using Proposi-
tion IV, find the polynomial of exponent ei , which then corresponds to
the cycle beginning with ri .

(4) Obtain a parallel list of primitive idempotents of (R. , and trans-
fer to this the cycles whose position in the correspondence has been
found. Pick an integer q from each cycle of Z2(n) which contains num-
bers prime to n, and find the effect of the permutation cr on the set of
primitive idempotents. Use Proposition VII to complete the correspond-
ence between cycles and primitive idempotents.

(5) Let s1 , s2 , , .3, be the cycles of an allowable set S, fi(x), ,

fp(x) the corresponding irreducible factors of x" - 1, and 01(x), ,

0,(x), the corresponding primitive idempotents. The desired alphabet
has the generating factor f (x) = fi(x)f2(x) f,,(x). The orthogonal
alphabet has the generating idempotent

0(x) = 01(x) + 02(x) +  + 0(x).
Divide the allowable alphabets into automorphism classes by looking at
the effect of the automorphisms o- on the idempotent 0(x). Alphabets in
the same automorphism class have the same spectrum.

(6) The orthogonal alphabet (Ric 0(x) is frequently much smaller
than the desired alphabet (R. f( x). In this case it is advantageous to
compute the spectrum of IR.. 0(x) and to obtain the spectrum of (R.f(x)
from this by Proposition VIII. If 0(x) is the sum of two or three primi-
tive idempotents, its spectrum may be built up in the way described in
Proposition X. Otherwise the alphabet may be generated by the vectors
corresponding to polynomials 0(x), x0(x), , x'"6(x) [m = degree of
f(x)], and the spectrum obtained by counting.

II. PROOFS

In this section we give the proofs of the propositions of the first sec-
tion.

Let V be the binary field, and V" the set of all possible rows of n
binary symbols. Vfl is a vector space of dimension n over V. Let GL be,
as before, the set of polynomials mod x" - 1 over V. an is a commuta-
tive ring.
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We may relate Vfl and an by (1-1) mapping

a0 aix +  + an_ix n-1 ao , al , , an_i .

This mapping clearly preserves addition in both an and Vn.
A subset a of polynomials of (Rn is an ideal if
(i) gi 92  a gi + g2

g rg E a, for any r e 61n .

An ideal in an corresponds by property (i) to a linear subspace of V".
By property (ii), with r = x, this subspace in invariant under a cyclic
permutation of coordinates, hence is a cyclic alphabet in V". Conversely
a cyclic alphabet in Vn is an ideal in (R. . We represent both ideal and
alphabet by the same symbol, a.

Lemma 2.0: An ideal a of (Rn consists of all multiples (.in (Rn) of a
polynomial a(x) which divides x" - 1.* a(x) is the unique polynomial of
least degree in a.

The proof of this lemma can be found in Peterson,4 section 6.4.
a(x) will be called the generating factor of a. The polynomial b(x) =

(x" - 1)/a(x) will be called the reciprocal factor of a. This notation is
used throughout; the ideal named a always has a generating factor
named a(x) and a reciprocal factor named b(x). The degree of a(x) will
be denoted by m, and that of b(x) by k; of course m k = n.

Lemma 2.1: The dimension of a as a vector space of V' is k; the number
of parity checks for the alphabet a is m. For proof, see Peterson,4 theorem
6.11.

The number of different alphabets of an is the number of different
factors of X n - 1; the dimension of alphabet a is the degree of its recipro-
cal factor. However, if n is odd, (which we always assume) one can find
which dimensions are available in block length n without going to the
considerable trouble of finding all the factors of xn - 1.

Let w stand for one of the numbers 0, 1, , n - 1. Let X2(n) denote
the mapping w 2w mod n. Since n is odd, this mapping is a permutation
of the numbers 0, 1, , n - 1.

The permutation Z2(n) on 0, 1, , n - 1 factors into a number of
cycles; the cycles of M2(63 ) are shown in Table I, Section I. It is a fairly
trivial matter to find these cycles.

The relation between the cycles of E2 (n) and the factors of x" - 1
over V is a well-known part of Galois theory. It is described in detail
here only because of the difficulty of finding a concise reference.

* a(x) divides xn - 1 in the ring Vjx] of all polynomials over V. It is meaning-
less to say that something divides x" - 1 in (R,7 .
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Lemma 2.2: Let S be a subset of the integers 0, 1, , n - 1. S is
invariant under Z2(n) if and only if it is the union of a number of cycles
of Z2(n).

Proof: If S is such a union it is invariant under Z2 ( n ) , since each separ-
ate cycle is invariant.

Suppose S to be invariant under E2 (n) and let r belong to S. Then
2"r also belongs to S for any value of v. S contains with r the whole cycle
containing r. Thus S is a union of cycles of Z2(n).

Lemma 2.3: Let S be invariant under Z2(n), and let St be the set of all
sums r81 rs, +  + r , r8. e S, r8. 1. Then Sr is invariant under
Z2(n).

Proof: We need show only that Z2(n) maps Sr into itself; the mapping
must then be 1-1. Let rs, rs2 rar e Sr ; applying Z2(n) we
obtain 2r81 2r82 +  + 2r8r , which is again in S, . Hence the lemma
is proved.

Let (1,2,22, , 2'1) be the cycle of Z2(n) which contains 1.
1 mod n, or n divides 2'' - 1. Set N = 2' - 1. Every nth root

of unity is also an Nth root of unity. Let V(2") be the Galois field of
the Nth roots of unity over the prime field V. x" - 1 factors into linear
factors over V(2") and these factors are of the form x - r, where is

a primitive nth root of unity. . is not a primitive Nth root of unity
unless n = N .)

The automorphisms of V(2' ) over V are given by a -f a2 and its
powers, where a E V(2" ) ; further, a = a2 if and only if a E

The explicit connection between the cycles of Z2(n) and the factors
of x" - 1 is as follows:

Lemma 2.4:* Let S = r1 , r2 , , 7.m be a set of integers invariant un-
der Z2(n), with r . The polynomial f(x) = r(x -r ) has coefficients
in V , and is a factor of xn - 1 over V.

Let f(x) = (x - r) (x - ) be the factorization over V(2')
of a polynomial f(x) which divides xn - 1 over V. The set r1, r2 , , r,
is then invariant under Z2(n).

Proof: Let S = r1 , r2 , , r, be a set of distinct integers which is
invariant under Z2(n). f(x) = (x - ) (x - ) divides xn - 1
over V(2' ) since each linear factor divides x" - 1, and ri 7.1 . Let
a_, be the coefficient of x" -T in f (x). an_, is the rth symmetric function
of J1, , , or

s ieS
s jA9 I

* Note again that we are working in V[x], not in Gln
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2 N -N 2r + +2r
t 81 = an--, by 2.3.

flies
siAsi

Thus the coefficients of f (x) are in V, and f (x) divides xn - 1 over V.
Suppose that f (x) divides x" - 1 over V. The zeros of f (x) in V (2' )

are rl, r, , prm where t is a primitive nth root of unity, and r1 ,
, rni are integers mod n. Since by Lemma 2.3 all the symmetric func-

tions of r., r2, , rm are in V, the transformation - t2 preserves
f(x), and must be simply a permutation of the zeros of f(x). Thus the
set r1 , r2 , , 7.m is invariant under 22(n).

The smallest sets which are invariant under 22(n) are the individual
cycles of 22(n). Each such cycle determines, in the way described above,
the zeros of an irreducible factor of xn - 1; each irreducible factor of
xn - 1 corresponds in this way to a cycle of 22(n).

Proof of Proposition I

The number of cycles of 22(n) is t, and, by the above, t is also the
number of irreducible factors of x" - 1. These irreducible factors are all
different [(xn - 1) has no multiple roots over V if n is odd], and can be
combined by multiplication to give 2` different factors of x" - 1. Further,
these are all the factors of xn - 1. Hence there are 2` cyclic alphabets of
block length n. Let a (x) = h(x)  fy(x) be the generating factor of the
cyclic alphabet a. Let mi be the degree of fi(x). mi is the length of the
cycle of 22(n) corresponding to f i(x). By Lemma 2.1 the number of parity
checks for a is m = Eiv= mi.

The exponent of a polynomial a(x) is the least integer e such that
a(x) divides x6 - 1. Let

a (x) = - t") (x - rn ),

where is a primitive nth root of unity, and r1 , , ro., is a set of cycles
of Z2(n). The exponent of a(x) is then the least value of e such that

(ri = 1, or eri = 1 mod n, i = 1, , m.

e = n/a where a is the greatest common factor of r1 , , rm and n.
If a (x) is an irreducible factor of x" - 1 [r1 , , r, is a single cycle

of M2 (n)], the quantity a is the largest factor of n, which divides each
member of the cycle r1, , r, . e = n/a is said to be the exponent of
the cycle as well as of the polynomial a (x).

The exponent of a union of cycles or of a product of irreducible poly-
nomials is the least common multiple of their individual exponents.
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Proof of Proposition II

The ideal a with generating factor a(x) contains the polynomial
xe - 1 (= xe ± 1), where e is the exponent of a (x). If e = n, this poly-
nomial is the zero of a; if e < n, it corresponds to a letter of weight 2
in the alphabet a.

If a contains a letter of weight 2, the ideal a contains, by suitable
cyclic permutation, a polynomial xe - 1, e < n, which is divisible by
a (x); the exponent of a (x) is then less than n.

Thus a contains letters of weight 2 if and only if its generating factor
has exponent less than n.

Proposition III is a restatement of the Bose-Chaudhuri theorem; a
proof can be found in Peterson,4 Theorem 9.1.

There is considerable freedom of choice in setting up an exact cor-
respondence between cycles of Z2 (n) and irreducible factors of xn - 1.
This occurs because there are several primitive nth roots of unity; if
is one such, then so also is r, where v is any integer prime to n.

We pick any irreducible polynomial of exponent n to correspond to
the cycle (1, 2, , If this is to make sense, the alphabets gener-
ated by irreducible polynomials with the same exponent should be in-
distinguishable for our purposes. In fact they are equivalent;' this will
be proved later.

The choice of a polynomial to correspond to the cycle (1, 2, ,

2"'-') implicitly fixes the exact correspondence between cycles of M2(n)
and irreducible factors of x" - 1. It remains to make this correspondence
explicit, preferably by calculations involving only numbers in the prime
field V. This is done in two stages, the first of which is given by Proposi-
tion IV.

Proof of Proposition IV

Let fi(x) be the polynomial chosen to correspond to the cycle (1, 2,
, Over the field V (2m) fi(x) factors into (x - (x - i-2)

(x - . Let r be a factor of n and {gi(x)} the set of irreducible
factors of xn - 1 of exponent e = n/r. One of the gi(x) has as a zero
over V(2'), and corresponds to the cycle containing r. This gi(x) can be
identified by the following lemma.

Lemma 2.5: gi(1) is divisible by fi(x) over V if and only if gi(x) has
r as a zero over V(2m).

Proof: Let g(x) be any polynomial of exponent e. Since g(x) divides
- 1 over V, g(xr) divides x" - 1 = xn - 1. g(xr) is a product of

irreducible factors of xn - 1.
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Let cco , al , , cx8_1 be the cycle associated with g (x) , so that a
typical factor of g(1) is (I - ri). The cycle 13o , N i , , /3.-1 is
associated with g(xr) if and only if rib; = ai = ri] for a suitable
choice of i, j.

Suppose now that gi(1) is divisible for fi(x) over V. The cycle 1, 2,
, 2'1 is then associated with gi(xr), and .r = g-ai for some i; thus

r is a zero of gi(x).
Suppose that r is a zero of gi(x). The cycle associated with gi(x) is

then r, 2r, , 28-1r. Clearly, 1, 2, , 2'1 is a cycle associated with
gi(xr), and fi(x) divides gi(xr).

It may be noted that the proof of this theorem provides a way of find-
ing the factors of g(xr) which is useful in other applications.

Automorphisms and Idempotents of (R.

Let q be an integer prime to n, and let a, be the mapping of 61n onto
itself defined by h(x) h(e), exponents reduced mod n where neces-
sary. a, clearly preserves addition and multiplication in Oln , and is 1-1,
since with q prime to n, = x" implies iq = jq mod n, implies i = j
mod n. o is an automorphism of an , and awn is again an ideal.

In Vn, 0-, is a permutation of coordinate places, described by w -> qw
mod n [L2(n) is the special case ad. Thus cr, changes alphabets of Vn into
equivalent alphabets, and in particular changes cyclic alphabets into
equivalent cyclic alphabets.

The automorphisms a, are useful because it is easy to compute their
effect on the ideals of an .

Lemma 2.6:* Every ideal a of an contains a unique polynomial c(x)
with the following properties:

(i) c(x) = c(x)2; c(x) is idempotent
(ii) a = anc(x); c(x) generates a

(iii) c(x) is a unit for a.
(iv) c(x)cr, is the idempotent of ao-, .
Proof: Let a(x), b(x) be the generating factor and reciprocal factor of

a. Since n is odd, they are relatively prime. There exist polynomials
hi(x), h2(x) such that hi(x)a(x) h2(x)b(x) = 1, and hi(x), h2(x) are
relatively prime to b(x), a(x), respectively. We show that c(x) =
hi (x)a(x) is the idempotent of a.

(i) c(x)2 + c(x)h2(x)b(x) = c(x). The second term on the left is

zero since it contains the factor xn - 1. Hence c(x) is idempotent.
* In other words, (iin is a commutative, semisimple ring. It is, of course, the

group algebra over V of the cyclic group of order n; n odd implies that it is semi -
simple .6
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(ii) The generating factor of the ideal 61  c (x) is the highest common
factor of c(x) and xn - 1. This is a(x) by the construction of c(x).
Hence anc(x) = a.

(iii) If a(x) e a, a(x) = a'(x)c(x) by (ii). Then a(x)c(x) =
a'(x)c(x)2 = a (x)c(x) [by (i)] = a(x). Hence c(x) is a unit for a.
c(x) is then necessarily unique, since the commutative ring a cannot
have two unities.

(iv) c(x)o-, is idempotent because a, is an automorphism of Oin , and
is the unique idempotent of the ideal (Rc(x)cr, = ao-, .

We now associate with each ideal a a third polynomial c(x), the
generating idempotent of a.

Corollary 2.7: ao-, = a if and only if c(x)cr, = c(x).
Corollary 2.8: aa2 = a for every ideal a of Gin ; equivalently, the

permutation Z2 (n) preserves every cyclic alphabet of V".
Two vectors (ao , al , , an-1.), @o , 01 , , #n-.1) are said to be

orthogonal if
n-1
E = 0 (multiplication and addition in V).
t=o

The orthogonal complement (dual alphabet) ai of a consists of the
vectors of V" which are orthogonal to every vector of a. For our pur-
poses it is convenient to say that cyclic alphabets a, 63 are orthogonal if
63 is generated by b (x) = (s" - 1) / a (x). This is justified by the follow-
ing lemma.

Lemma 2.9: a1 is equivalent to the ideal generated by b (x) and is ob-
tained from it by the transformation x --> 1.

The proof of this lemma can be found in Peterson' (6.12).
Lemma 2.10: If a has idempotent c(s), the ideal 63 = 61.b(x) has

idempotent 1 + c(x).
Proof: By 2.6 the idempotent of 63 is

h2(x)b(x) = 1 + hi(x)a(x) = 1 + c(x).

Since we have agreed to say that a, 63 are orthogonal ideals, we may
also say that c (x), 1 c (x) are orthogonal idempotents. This is fortu-
nate, since it is a well -established convention in the theory of algebras to
say that two idempotents are orthogonal if their product is zero.'
[c (x) (1 c (x)) = c (x) c (x) = 0.] We shall adopt this convention.
It is to be noted that orthogonality for ideals is still not the same as
orthogonality for idempotents. The idempotents c1 (X , c2 (x) are orthog-
onal if c1(x)  c2(x) = 0. The ideals they generate are not orthogonal
unless also c1(x) c2(x) = 1.



324 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

Lemma 2.11: (i) The ideal al fl a2 has idempotent c1c2. (ii) The ideal
a, U 4a2 has idempotent c1 c2 cic2.

Proof:
(i) (t1 fl a2 is generated by the least common multiple of al (x), a2 (x),

say a (x). a (x) is the highest common factor of c1(x)c2(x) and x" - 1;
hence ci (x)c2(x) is the idempotent of the ideal an et (x)

(ii) Set d (x) = ci (x) c2 (x) c1(x)c2(x) . The c1(x)d (x) = ci (x) ,

c2(x)d (x) = c2 (x) . Thus d (x) is idempotent, and the ideal and (x) con-
tains a1 and a2 .

Leta be any ideal which contains a1 and a2 , and let j(x) be the
idempotent of -41. Since c (x) is a unit for a, ci (x) e- (x) = ci(x), i = 1, 2.
Then d(x)5(x) = d(x), and and (x) is contained in every ideal
Hence di.  d (x) = a1 U a2 .

An ideal of 614, is said to be a minimal ideal if it contains no subideal
other than (0). A minimal ideal of Can will be denoted by Olt , its gener-
ating factor by mi(x), its reciprocal factor by fi(x), and its generating
idempotent by 0i(x). The idempotent of a minimal ideal is called a
primitive idempotent.

Lemma 2.12:
(i) OTti is a minimal ideal if and only if fi(x) is an irreducible factor

of x" - 1.
n grt, = 0 if i j; the dimension of OR,: U OTC is the sum of

the dimensions of arti and 51t1 .

(iii) Any ideal a is the union of the minimal ideals continued in a.
In particular, an is the union of all its minimal ideals.

Proof:
(i) follows from 2.1, since the dimension of a minimal ideal is as small

as possible.
(ii) The generating factor of the ideal orthogonal to it n gni is the

highest common factor of fi (x) and f (x) , which is 1. Hence arti f 1 ma
is equivalent to Can't and is zero. The second statement follows im-
mediately.

(iii) Let b(x) be the reciprocal polynomial of a, and let b(x) =
fi.(4/2(x)  fy(x) where (since n is odd) the f i(x) are distinct irreducible
factors of xn - 1. a contains the polynomials (xn - 1)/fi(x), hence
contains the minimal ideals agi , i = 1, , v, hence contains their
union OTti U 2 U U 5TC . By (ii) the dimension of this union is the
sum of the degrees of fi (x), , f,(s) which by 2.1 is the dimension of
a. Thus a = 5rti U 51z2 U  U 5rtp

We note that this theorem is not true for even n.
Let 00 , 01j , 0i_i be the set of primitive idempotents of an .
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Corollary 2.13:
(i) Oi 0; = 0 i j.

(ii) Every idempotent of (R is of the form

where Ei belongs to V. In particular,
e-,
E 0, = 1.
=0

325

Proof:
(i) Follows from 2.12 (ii) and 2.11 (i).

(ii) Since any ideal in Gin is the union of minimal ideals, any idem-
potent can be obtained from the Oi by repeated applications of 2.11 (ii).
The product terms disappear by part (i) of this lemma. In particular

t-i
ain  1 = (fin ( 0)

i=o

Lemma 2.14:* If µl , 122 belong to the minimal ideal OK, and 1.11/22 = 0,
then either µl = 0 or 122 = 0.

Proof: Suppose that ,u2 0. Consider the set A of elements m in 511
such that m112 = 0. If m1 , m2 t A, so does m1 + m2 ; if m e A and µ E an
then AM E A. Hence A is a subideal of 311, so is either all of fflt or the zero
ideal. Let 0 be the idempotent of On; then 0./A2 = /12 0; hence 0 e A,
and A it. We must then have A = 0; consequently AI = 0.

It is clear that it will be advantageous to find the explicit forms of the
primitive idempotents 0i (x). Indeed if this were not easy the above
theoretical results would have little practical value; however it is easy,
and has in fact been done for all odd values of n through 1023. The
method used is due to Prange,' and is described below.

Let r = r1, r2 , , r be a cycle of Z2 (n) and let flr denote the
polynomial xri xr2 +  + ?Jr is an idempotent, since squaring
it simply rearranges the numbers which occur as exponents of x.

Lemma 2.14: The polynomial

n-1
E aixa ,
i=0

a; e V,

is an idempotent if and only if it can be written as a sum of the 717. .

* Alternatively we might quote the well known theorern4,6 that the minimal
ideal art is isomorphic to the Galois field V[y]/ f (y).
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Proof: Clearly any sum of the nr is idempotent. The "if" part of the
lemma follows immediately from 2.2.

Lemma 2.15: The number of primitive idempotents of Cit is the same as
the number of cycles of M2(n).

Proof: Let s be the number of primitive idempotents. By 2.12 (iii)
the number of ideals in Can is 28. Hence s is the number of cycles Z2(n).

Any idempotent may be expressed as a linear combination of the nr
(which we can find easily) or as a linear combination of the primitive
idempotents 0; . The 0; have the additional property that they are
mutually orthogonal. In particular, each nr is the sum of a subset of the
0; ; the problem is to split it into its components.

We observe that if S, T are nonempty subsets of the indices 0,
1, , t - 1, 8 T, then

ei/

 (E 60;) = E
\jeT / jeSnT

The product of two idempotents will contain fewer primitive idempo-
tents than either factor.

Let t be the number of primitive idempotents. Then
t-i t-i

1 = E e, , and if 1 = E
i=o

where the t; are orthogonal idempotents, then the E; are, except possibly
in order, the same as the 0; . We use this fact to set up an algorithm as
follows:

Suppose that we have at some stage a decomposition of 1 into T < t
mutually orthogonal idempotents;

r-1
1 = E E , Ei2 = 1, 2EJ = 0

i=0

Lett be an idempotent; set

t; = tit ± t;(1 t) = tai EJ2i = 0,1, , - 1.

til E12 are idempotent, and the new idempotents are mutually orthog-
onal. If the splitting is genuine (it may happen that t; = t or t; =
1 + t, in which case no splitting takes places) the result is a decomposi-
tion of 1 into more than T mutually orthogonal idempotents.

To start the algorithm we set 1 = ni + (1 + ni); the other ni provide
successive candidates for t. The computation is finished when there are
t components in the decomposition of 1. Since the nr are also a base for
the idempotents of Gt. , this stage must be reached by the time the set
of nr is exhausted.

i j.
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The primitive idempotent 9i (x) is the generating idempotent of a
minimal ideal Dili ; the orthogonal idempotent 1 + 9i (x) is the generating
idempotent of a maximal ideal Xi : the generating factor fi(x) of 3Ci is
an irreducible factor of x" - 1, and is the greatest common factor of
1 + 9i (x) and xn - 1. In this way we can produce the parallel lists of
primitive idempotents and irreducible factors of x" - 1 referred to in
Section I.

We return now to the automorphisms 0-, of a..
The set of automorphisms cr, is an Abelian group, with crgicr,, = o-,,

defined in the usual way. It is isomorphic to the (multiplicative) group
of integers mod n which are prime to n. Since o2 and its powers leave
the idempotents of GI unchanged, we may, for our purposes, factor
out this subgroup. In practice we choose one q from each cycle of E2 (n)
which contains integers prime to n. These q (and the associated cr,)
form a rather small Abelian group, whose structure may be found by
hand, as illustrated for n = 63. It is worthwhile to find a set of generators
for the group. One need only compute the effect of these generators on
the set of primitive idempotents of 61,, it is then simple to calculate the
effect of any automorphism on any ideal. Proposition VI is now estab-
lished.

Proof of Proposition VII: Let h(x) be the irreducible factor of x" - 1
associated with the cycle (1, 2, , 2"1-1). v is an integer prime to n,
and we wish to identify the polynomial fr (x) associated with the cycle
(v, 2v, , 2m -iv). Since v is prime to n the two cycles will be the same
length. fl (x) is the highest common factor of 1 + (x) and xn - 1.
1 + 01(x) is thus divisible by the polynomial (x - (x -
(x - Let u, prime to n, be such that uv = 1 mod n. Then (1 ±

(x) )o = 1 + 01(e) is divisible by
- -

i.2uy uv

which is divisible by (x - ) (x - J 2mv).

Thus fr (x) divides (1 01(x) )0 over V (2m), and since both poly-
nomials have coefficients in V, fr (s) divides (1 + 01(x) )a over V.
Hence fr (x) is the highest common factor of (1 + 01(x))cru and x" ± 1.

Spectra of Cyclic Alphabets

Let a(x), b(x) be the generating factor and reciprocal factor of an
ideal a in 61" . Let b (x) belong to exponent e, where n = ea, a > 1.
Let a' be the ideal in 61,* with reciprocal polynomial b (x).

* 31 is the ring of polynomials mod x° - 1.
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Lemma 2.16: Every letter of a consists of a repetitions of a letter of a'.
Proof: Let a (x) = (xe - 1)/b (x) be the generating polynomial of

a'. Then

xn - 1a(x) = (xn - 1)/b(x) = xe - 1 a' (x) .

= (i xl a' (x) .

\i-o

Let r (x)a (x) = E a o aixi (multiplication in (R.) be a letter of a'.
With multiplication in an , a contains

a
r(x)a(x) = (E x'") (E aixi)

1=0 i-o

Hence each letter of a' gives rise to a letter of a, which consists of a
repetitions of the letter of a'. It is evident that different letters of a'
give rise to different letters of a. Since the dimensions of a and a' are
both equal to the degree of b (x), all of a is obtained in this way.

Corollary 2.17: Let the spectrum of a' be A' (i) i = 0, , e. The

spectrum of a is given by the equations A (ai) = A' (i), i = 0, , e.

For example, let n = 15, and b (x) = 1 + x + 2. b (x) has exponent 3;
a' (x) = (x2 + 1)/b(x) = 1 + x; a(x) = (1 + X3 + Xfi + X9 + X12)
(1 + x). The ideals a', a are tabulated below.

0 1 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Let T denote the cycle permutation w -> w + 1 (mod n) of the num-
bers 0, 1, , n - 1. T shall also denote the mapping h (x) --> xh(x)
(exponents mod n) of GL . onto itself. Clearly V' is the identity mapping.
If a e a, the polynomials (or vectors) aT, a T2, , aT"-1 also belong
to a. The letters of a are divided into a number of nonoverlapping cycles;
to construct a we need to know only one element from each cycle.

In fact it would seldom be useful to construct a picture of a in this
way. We restrict ourselves to finding the spectrum of a.

The set a, aT, , aT n-1 does not always contain n different letters.
We denote by it (a) the number of different letters in this set; r (a) is
called the period of a. The set

a aT - , ar(")-1

is then a complete cycle of a, and the length of the cycle is r (a).
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Let r (x) E ; let a (x) be the highest common factor of r (x) and
xn - 1, and let b (x) = (xn - 1)/a (x).

Lemma 2.18: The period of r (x) is the exponent of b(x).
Proof: Suppose b (x) belongs to exponent e; set a (x) = [(x° - 1)/

b (x)], r (x) = h (x)a (x) , where h (x) is relatively prime to x" - 1.

r (x) (xe - 1) = h(x). a (x).b (x) a (x) = h(x)d (x) (x" - 1) = 0.
Hence xer (x) = r (x), and the period of r (x) is < e.

Suppose that e' is the period of r (x). Then e < n, and r (x) (xe' - 1) =
0; in V[x], h (x )a (x) (xe' - 1) = i (x) (x" - 1) = i (x )a (x)b (x) where
i (x) is a polynomial in V[x]. b(x) and h(x) are relatively prime since
b(x) is a factor of x" - 1. Thus b(x) divides (xe' - 1), and e > e.

Proof of Proposition IX: it (0i) is the period of 0i , and r (m) the
period of m E an  ei . Then mx"(ei) = mOix'r(ei) = m0i = m; hence 7r (m)
r i). Also 0 = m (xT(m) + 1) = m0i (x7(m) + 1) = m0i 0i (x7(m) + 1)
By 2.13, since m0i 0, we must have 0i(x7r(m) + 1) = 0. Thus 7r (0i)

(n), so that r (0 i) = it (m). By 2.18, r (0i) is the exponent of the
irreducible polynomial f i (x) .

If n = 2"i - 1, an irreducible polynomial f (x) of exponent n has de-
gree in, and a minimal ideal of period n contains just one cycle besides
the zero cycle. The maximal ideal with generating factor f (x) is a
Hamming code (a close -packed code of minimum distance 3).3 If n is
not of this form, the minimal ideals of period n contain more than one
cycle; it is then necessary to find several cycle representatives. No short-
cut for doing this has been developed; the particular cases which have
been studied have been solved by brute force.

If we have found a cycle representative for each cycle of 610i and 61.0; ,
we can construct cycle representatives for 61(0i 0;) with the help of
the following lemmas.

Let m E atei , n E (Rej .
Lemma 2.19: mT" = nT" if and only if =

and nT" = nT"'
Proof: The equation above may be written

mT" - mT" = - nT"'

The left-hand side belongs to 6R0i and the right-hand side to 61.0; . The
intersection of these ideals is zero.

Let r (m) , r (n) be the periods of m, n. Let H, h be respectively the
least common multiple and highest common factor of these numbers.

Lemma 2.20: (Proof of Proposition X ): The r (m)  r (n) elements
mT" + nT" are partitioned into h cycles of period H. The vectors mT" n,

= 0, 1, , h - 1 are in different cycles, and may be taken as cycle
representatives.



330 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

Proof: Let X be the period of the vector mT" nr. Then

(mg' nT") Tx = + nr ,

and by 2.19 v X = v mod 7 (m) and /./. + X = /A mod r (n). Thus X is
divisible by both 'yr (m) and ir (n) and X = qH, q an integer > 1.

n and mT" n are in the same cycle if and only if

(mT" n)T" = mT"' n,

or p = µ mod 7 (m) and p = 0 mod 7 (n). p and r (m) are both
divisible by h; hence µ - p mod r (m) implies that µ - 12/ is divisible

by h. The h vectors mT" n, µ = 0, 1, , h - 1 must be in different
cycles.

Thus there are at least h different cycles, and the period of each is
H. Since there are only r (m)ir (n) = hH elements altogether, the

only possibility is that there are h cycles of period H.
We now return to Proposition V, which was omitted earlier. We restate

the proposition as follows:
Theorem 2.21: Let Nti , 0112 be minimal ideals of (R . The following three

statements are equivalent:
(i) OiCi , DE2 have the same spectrum.

(ii) arci , ort2 have the same dimension and period.
(iii) There exists an automorphism 0-, of an such that 011iaq = 5E2 .
Proof: We show that (i) (ii) (i).
Let A(s) be the number of letters of weight s in urti . We prove that

the period of Dili is the highest common factor of A(s), s > 0.
Suppose first that the period of 1Z is n; let 2ki be the total number

of letters in arti . The orthogonal complement of art,: can contain no
letters of weight 1 since it is a nontrivial cyclic alphabet. By Proposition
VIII we obtain

iZ

E A (s) = - 1
8=1

E sA (s) = 2ki-1n.
8=1

By the first equation, k1 = k2 , so the dimensions of MI and a112 are
equal. Since every cycle of arc, , except that containing the zero letter,
is of length n, n divides each A (s) for s > 0. By the second equation,
any other common factor of A (s) is a power of 2. By the first equation,
there can be no such factor.

Suppose now that the period of Uni is ei , and n/ei = ai > 1. By 2.16
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and 2.17 there is a minimal ideal Mil in (Rei with period ei and spectrum
A' (s) such that the spectrum of arc, is given by A (ais) = A' (s). By the
first part of the proof, ei is the highest common factor of A' (s), s > 0;
hence ei is the highest common factor of A (ais), ais > 0.

(ii) (iii). Suppose first that the period of afti and 9122 is n. Let 9111
correspond to the cycle (1, 2, , 2"'-') of Z2 (n), and Nt2 correspond to
the cycle (v, 2v, , v must be prime to n, since the irreducible
polynomial associated with 0112 has exponent n. Choose u, prime to n so
that uv = 1 mod n. As in the proof of Proposition VII, Ala = 5E2 

Suppose now that Diti has exponent e, i = 1, 2, where n/e = r > 1.
Let MI , 9122 be associated with cycles (r, 2r, , -'7.) and
(s, 2s, , -'s). The lengths of these cycles are the same because
5121 and 9122 have the same dimension.

As in the proof of Lemma 2.5, s = qr, where q is prime to n. Applying
again the proof of Proposition VII, we see that Ntiag = 91t2 .

(i). If MI and 5E2 are equivalent they clearly have the same
spectrum.

We have thus shown that minimal and maximal cyclic alphabets of
(R which have the same spectrum are equivalent. It is not known
whether this is true for other cyclic alphabets. However many cases
have been found of cyclic alphabets which have the same spectrum but
which are definitely not related by one of the automorphism 0q .

CONCLUSION

Up to this time much of the theoretical work on binary cyclic alpha-
bets has been concentrated on alphabets with block lengths of the form
n = 2m - 1. Such numbers become rather sparse as n increases. On the
other hand, alphabets of long block length are important for actual use
on the telephone network, and for such applications the block length,
though large, is likely to be restricted to a narrow range. It is therefore
expedient to develop economical procedures which will pick out the alpha-
bets with preassigned properties if any such exist. The amount of in-
formation presented in this paper about the structure of the polynomial
ring 61 is no doubt formidable; it has, however, very practical applica-
tions.
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Eigenmodes of a Symmetric Cylindrical
Confocal Laser Resonator and Their
Perturbation by Output -Coupling

Apertures
By D. E. McCUMBER

(Manuscript received October 26, 1964)

Using a numerical technique which is different from the iteration method
of Fox and Li and which is more suitable for the analysis of high -order

modes, we have calculated the diffraction losses and the field distributions
at the reflectors of the low -loss modes of a symmetric confocal resonator for
Fresnel numbers 0.6 < N,,, < 2.0. We have also computed the modifica-

tions which result when the two end reflectors are perturbed by circular out-
put -coupling apertures centered on the cavity axis. For a range of small
but useful aperture Fresnel numbers No the aperture diffraction losses can

be estimated by first -order perturbation theory from the finite -N, results
appropriate to No = 0. Such estimates fail for those larger Fresnel num-
bers No for which the mode intensity patterns are significantly distorted

at the reflectors by the finite coupling apertures.

I. INTRODUCTION

Fox and Li' demonstrated by numerical iteration that modes in the
sense of self -reproducing field patterns exist for open Fabry-Perot
resonators. Using a numerical technique which is different from that of
Fox and Li and which is more suitable than iteration for the analysis
of high -order modes, we have calculated the diffraction losses and the
field distributions at the reflectors of the low -loss modes of a symmetric
cylindrical confocal resonator for Fresnel numbers 0.6 < Nm < 2.0.
The results are discussed below.

An axial section of the symmetric confocal resonator under examina-
tion is illustrated in Fig. 1. The cavity is bounded at each end by identi-

cal spherical (parabolic) mirrors whose perfectly reflecting surfaces
extend over the annular region ao < p < an, . While a comparison of

333
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b

ar,

ao

Fig. 1 - Axial section of cylindrical confocal laser cavity. The system is sym-
metric about the cavity midpoint; the two identical reflectors have radii of
curvature b; and the reflecting surfaces are confined to the annular region between
the two radii (a0 , am).

the ao = 0 and ao 0 eigenmodes is instructive as an example of the
perturbation of eigenmodes by mirror imperfections, this particular
geometry also has relevance to an aperture output coupling scheme
proposed by Patel et al.' Asymmetric resonators in which, for example,
only one reflector is pierced by a coupling aperture will be treated in a
subsequent article. Boyd and Gordon' have derived closed -form ex-
pressions for the eigenvalues and eigenfunctions of symmetric rectangu-
lar confocal resonators in terms of the angular and radial prolate spheroi-
dal wave functions. These results were extended to asymmetric
rectangular confocal systems with output coupling slits by Boyd and
Kogelnik.4 Generalized prolate spheroidal functions relevant to the
cylindrical confocal geometry have been defined by Slepian.5 Basic
expressions are summarized in a review article by Kogelnik.6

Assuming that the dimensions of the resonator in Fig. 1 are large
compared to the wavelength X of light in the cavity, we define the reso-
nator eigenmodes from the same scalar formulation of Huygens' princi-
ple used by other authors.1'3 For the cylindrical confocal geometry the
field amplitude at the reflectors for a typical mode can be written in
the form

Fzp(P,v) = ftp(P) exp (1)

where (p,so) are radial and angular coordinates in a plane perpendicular
to the resonator axis and where (l,p) are integral quantum numbers.
For a symmetric system with identical mirrors, the field amplitude at
one reflector must be a constant multiple of that at the other. This
self -reproducing requirement together with Huygens' principle gives
the following integral equation which must be satisfied by the radial
function fip(p):

Kipiip(P) = jam dp'
b

J (27PP') fip(p').
bA ao X

(2)
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Here .11(z) is the Bessel function of order 111, (ao ,ai) are the p radii
limiting the reflecting surfaces (Fig. 1), and b is the mirror separation
and radius of curvature.

The magnitude of the eigenvalue Kip determines the diffraction loss
of the (1p) mode:

power loss/pass = 1 - I Kip 12. (3)

The phase of the eigenvalue determines the resonant wavelength:

resonant X = 42-bi (1 + 1)7 - 2 Arg Kip - arni (4)

where n is an arbitrary integer.
If we normalize the functions flp(p) over the surface area of the mir-

rors, then

r2r m

b)t ao
dP PflP(P)hq(P) = bin, (5)

where opq is the Kronecker delta symbol (.5, = 1 if p = q, and ap, = 0
if p 0 q). The orthogonality indicated in (5) for p 0 q follows immedi-
ately from (2) when the eigenvalues Kip , Klq are nondegenerate and can
be imposed if they are degenerate. We choose the arbitrary sign of the
function fip(p) such that fi, (0+) > 0.

For numerical calculations it is useful to replace the radial variable
p by a dimensionless variable r defined such that

r2 p2ptb (6)

is the Fresnel number appropriate to the radius p. We characterize the
hole and mirror radii (ao , am) by Fresnel numbers

2 2
ro2 ao N, = r,2 am= (7)

Xb ' Xb 

In place of the function fip(p) we introduce a function

gip(r) = .fip(i-VXb) (8)

for which (2) and (5) become:

rm
Kjpgip( r = 27r

J
dr/ r'.11(271-rr')gip(r'); (9)

to

bp, = 27r dr rgip(r)gi,(r). (10)
ro

The sign convention fp(0+) > 0 requires gip (0+) > 0.
The eigenvalue equation (9) for the confocal geometry is atypical



336 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

in the sense that it can be transformed to an equation having a Hermit-
ian kernel: 27r (rr) . I (27rrr'). This fact implies that the eigenvalues
ich, are real and that the largest eigenvalue (characteristic of the mode
with lowest loss) can be computed by a variational method. These two
features do not obtain in other laser geometries for which the integral -
equation kernel is generally symmetric but not real - that is, not
Hermitian.' While we do therefore expect some qualitative differences
between the properties of confocal and nonconfocal geometries, we
can infer from the work of Fox and Li' and other authors8'9 that many
features are similar. Both the iterative technique of Fox and Li and the
kernel -expansion -truncation technique we describe below can be ap-
plied to nonconfocal as well as confocal systems.

If we assume that the set of functions gzp (r) is complete, we can under-
stand the iterative method of Fox and Li as follows. Given an arbitrary
initial field amplitude e)(r), we express it in the form

g(o) (r) ).

Substituting this expression into the right-hand side of (9), we obtain
on the left-hand side

g(1) (r) = ZpC,Kipgip(r),

the field amplitude after one transit of the optical cavity. Using this
function on the right-hand side of (9) and repeating this iterative pro-
cedure, we obtain after n iterations

g(n) (r) = ZC ptcipngjp(r), (12)

the field amplitude after n transits. In the limit of large n only terms
belonging to the eigenvalue of largest magnitude represented (C, 0)
on the right-hand side of (11) will remain. All other terms will be re-
duced in proportion to (I Kip I/I Kip I max) n. If the two largest eigenvalues
are sufficiently different, this procedure conveniently yields for each
angular quantum number / the eigenvalue of largest magnitude, the
eigenvalue of second-largest magnitude (through the rate of convergence
of the iteration), and the two amplitude functions belonging to these
eigenvalues. Results for the cylindrical confocal resonator are given by
Fox and Li.'

In our analysis of (9) we have chosen to apply a different technique
from that outlined above. Briefly, we expand the Bessel-function kernel
in (9) as a power series

(- m -12(m-1)tit (Z) = (Z) E
2 m=1 (m - 1) !(m - 1)! 2

(13)
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truncate the series after a finite number 1W of terms, and reduce the
integral eigenvalue equation (9) to an 1W -dimensional -matrix eigen-
value equation which we can easily solve numerically with standard
matrix-diagonalization routines. [The reduction of (9) to a matrix
equation is described in the Appendix.] A similar technique has been
used for the plane cylindrical geometry by She and Heffner.8 For the
confocal system for which real -number algebra is sufficient, our com-
putations require slightly less computer time than the iterative method.
Moreover, they give the eigenvalues and eigenfunctions of higher -order
modes, whereas for each / the iterative scheme of Fox and Li is practical
only for the two largest eigenvalues and their amplitude functions.

Related methods have been utilized in limited calculations by other
authors.9' 10 In place of the power -series expansion (13) it has been
suggestedl° that one utilize an expansion in associated Laguerre func-
tions. Because the associated Laguerre functions are the exact eigen-
functions of the infinite -mirror problem (ao = 0, a. = 00 ), one might
expect that fewer terms are required than for the power -series expansion
(13) and that one can thereby simplify the solution of the matrix
eigenvalue equation. While such considerations may indeed be relevant
for Fresnel numbers so large that the matrix eigenvalue problem based
upon (13) becomes prohibitive, the advantages are largely offset for
small Fresnel numbers (Ni< 4) by the increased effort required to
compute the necessary overlap integrals. A similar remark applies to
the Fourier-Bessel expansion used for the plane cylindrical geometry by
Bergstein and Schachter.'

One other numerical technique, different from both the iterative and
the expansion -truncation techniques, deserves brief mention. If one
approximates the integral in (9) by a sum over small but finite radial
intervals, one has in effect reduced the integral equation to a matrix
eigenvalue equation. If the number of intervals is not too large (<50)
it is practical to solve this problem directly, although for small Fresnel
numbers considerably less effort is required with the iteration or ex-
pansion -truncation techniques.

In the following section we present results appropriate to the sym-
metric cylindrical confocal geometry in the absence of coupling apertures
(No = 0). We compare those finite-Nm results with expressions derived
by first -order perturbation theory from the infinite-Nm eigenfunctions
and find significant discrepancies. In Section III we indicate how finite
coupling apertures (No 0) modify these results and derive simple
mathematical expressions which approximate the machine -computed
results in useful regions. In Section IV we briefly discuss the far -field
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output patterns of the aperture -coupled resonator. In the final section
we briefly recapitulate some of our conclusions.

II. EIGENVALUES AND EIGENFUNCTIONS WITH NO MIRROR APERTURES
(N0 = 0)

Using the kernal expansion -truncation technique outlined in the
preceding section and in the Appendix, we have computed the eigen-
values of (9) for Fresnel numbers N. in the range 0.6 2.0.
Where they overlap, our results agree with those of Fox and Li' and
other authors.1°

In our calculation we retained M = max (10N -I- 1,10) terms of the
truncated series (13), where, if r > r, is the maximum radius of in-
terest in the field amplitudes gzp(r), we define N = rmr/Xb > N, . This
choice insures that the remainder

(_1)._iorrr,),+2(m-,)
tr,(27,17') -E (14)(m + / - 1)!(m - 1)!

will never be greater than 0.001 for the relevant radii. We have indicated
in Table I for N. = 0.8 and No = 0 how the eigenvalues of the three
lowest -loss modes converge as the number M of terms increases from
1 to 10.

In Fig. 2 we have plotted the power loss/pass = 1 - I Kip 12 of the
least lossy modes for 0.6 < Nm < 2.0, No = 0. It is noteworthy that no
modes have less than 1 per cent loss/pass for N. < 0.7, that only two
modes have such losses for N. < 1.0, but that ten modes have less than
1 per cent loss/pass for N,,, < 2.0. The number of low -loss modes in-
creases very rapidly for N, > 1.0 so that, whereas N, < 1.0 is in one
sense a small Fresnel number, N. = 2.0 is already rather large.

In Figs. 3-8 we have indicated for various low -order modes how the
field amplitude and intensity varies with radius on the end reflecting
surfaces for No = 0 and N, = 0.8, 1.6. From the intensity plots it is
clear that the power loss/pass increases as the mode order increases
because the higher -order eigenfunctions have more intensity lying out-
side the reflecting mirrors (and hence lost) than do the low -order eigen-
functions whose intensity is more concentrated near the mirror center.

From (9) and (13) it follows [compare (32) in the Appendix] that as
r --> 0

gzp(r) Gi(lp)[114 117.', (15)



CONFOCAL LASER RESONATOR MODES 339

TABLE I

A. DEPENDENCE OF EIGENVALUES ON NUMBER M OF TERMS
IN SERIES (13)*

M KOO IC01 K02

1 1.25853309

2 0.90311672 -3.6815805
3 1.7198455 -0.32162843 0.83714554
4 0.98489118 -1.1885874 0.24997641

1.0010976 -0.71086465 0.20030462

6 0.99744669 -0.77432308 0.12014589

7 0.99780308 -0.76531222 0.13087265
8 0.99777117 -0.76618958 0.12962865

9 0.99777343 -0.76612108 0.12973537

10 0.99777330 -0.76612543 0.12972805

B. CHANGE IN EIGENVALUES AS NUMBER OF TERMS
IN SERIES (13) INCREASES*

M 000 001 002

2-1 -0.35541637 -3.6815805
3-2 +0.81672878 +3.35995207 +0.83714554
4-3 -0.73495432 -0.86695897 -0.58716913
5-4 +0.01620642 +0.47772275 -0.04967179
6-5 -0.00365091 -0.06345843 -0.08015873
7-6 +0.00035639 +0.00901086 +0.0172676
8-7 -0.00003191 -0.00087736 -0.00124400
9-8 +0.00000226 +0.00006850 +0.00010672
10-9 -0.00000013 -0.00000435 -0.00000732

* Tables IA and IB are computed for the case N, = 0.8, No = 0.

where G1(1p) is a constant. This 7.1 dependence of the field amplitude
and a corresponding r21 dependence of the intensity is apparent in Figs.
3-8. Because only the angular -independent (1 = 0) modes have nonzero
intensity at r = 0, we anticipate that the / = 0 modes are much more
sensitive to a coupling aperture centered at r = 0 than are the / 0
modes, a fact confirmed by the finite -No calculations to be discussed in
the following section.

For infinite mirrors without apertures (Na, 00 , No = 0),

and

gip(r) = 2p!
(1 p) !

= (-1)P

2 //2e-rr2Lp/ (2711.2),
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Fig. 3 (a) Field amplitude gip(r) and (b) field intensity g ON for modes
(1p) = (00), (01), (02), and (03) with N = 0.8 and No = 0.
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Fig. 4 - (a) Field amplitude gip(r) and (b) field intensity g 1,2(r) for modes
(1p) = (10), (11), (12), and (13) with N, = 0.8 and No = 0.
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Fig. 5 - (a) Field amplitude g 4,(r) and (b) field intensity gip2(r) for modes
(1p) = (00), (01), (02), and (03) with N,,, = 1.6 and No = 0.

where 1,1(z) is the associated Laguerre polynomial"
-I

ez z
p (p

p! dzP m=0 (p - m)!(l m)!m!

Low -order Laguerre polynomials are

Lol(z) = 1; L,1(z) = / 1 - z;

L2' (z) = + 2) (1 + 1) - 2z (1 + 2) + z2].

The finite -N. results we have computed transform continuously into
the solutions (16) as N,,, increases. If for No = 0 and arbitrary N, the

(17)
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Fig. 6 - (a) Field amplitude gip(r) and (b) field intensity gip2(r) for modes
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Fig. 7 - (a) Field amplitude gi(r) and (b) field intensity grpP(r) for modes
(1p) = (20), (21), (22), and (23) with N,,, = 1.6 and No = 0.

integer p 0 orders the eigenmodes of a given angular quantum number
1 with respect to increasing power loss/pass, then the eigenvalue

Kip = (-1)1' I KIP (18)

and the amplitude function has p zeros in the interval 0 < r < rm .
If we assume for finite N,,, that the low -loss eigeiifunctions approxi-

mate the limiting expressions (16b), we can estimate the deviation of
Kip from its infinite -N, value (16a) by first -order perturbation theory:

1 - (-1)PKip (pert) = dx xle-x[Lpi (x)]2. (19)
2TN,



346 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1965

2.0

-1.0

-2.0

-3 0

3.0

30

(b)

2.5

2.0

1.5

1.0

0.5

0
0.2 0.4 0.6 0.8

r
1.0 1.2 1.4 1.6

Fig. 8 - (a) Field amplitude gip(r) and (b) field intensity g ip2(r) for modes
(1p) = (30), (31), (32), and (33) with Nm = 1.6 and No = 0.

Two special cases are

1 - KOO (Pert) = e
22-Nns 1 ± Koi (Pert) = [1 + (27rN.)2je-2TNni.

We compare these estimates with computed values in Table II. The
errors between the computed and estimated values in Table II, while
small relative to the eigenvalues themselves, are nevertheless significant
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TABLE II - DEVIATION OF EIGENVALUES FROM INFINITE -MIRROR
VALUES (lob)

N,4* 1 - KOO 1 Koo(pert)t 1 - Koo(asy m)t t 1 + Koi 1 + Koi(pert)t 1 + Koi(asYni)tt

0.6 1.82 X 10-2 2.31 X 10-2 2.52 X 10-2 0.545 0.351 5.73
0.8 2.23 X 10-3 6.56 X 10-3 2.72 X 10-3 0.234 0.172 1.099
1.0 2.38 X 10-4 1.87 X 10-3 2.75 X 10-4 6.37 X 10-2 7.56 X 10-2 0.174
1.2 2.38 X 10-b 5.31 X 10-4 2.68 X 10-b 1.20 X 10-2 3.07 X 10-2 2.43 X 10-2
1.4 2.24 X 10-6 1.51 X 10-4 2.53 X 10-6 1.80 X 10-s 1.19 X 10-2 3.13 X 10-3
1.6 X2.7 4.31 X 10-6 2.34 X 10 2.40 X 10-4 4.39 X 10-3 3.79 X 10-4

X 10-v

*No = 0.
t Estimated values computed from (19) of first -order perturbation theory.
ft Estimated values computed from asymptotic (20).

The accuracy of KOO for N, = 1.6 is limited by machine rounding errors.

when compared to the difference 1 - (-1)PKip = 1 - I Kip I which for
these eigenvalues is roughly one-half the power loss/pass (13). The errors
arise because the real eigenfunctions are not identical to the limiting
expressions (16a). Slepian5 has derived more accurate asymptotic re-
sults appropriate to N, large:

(87rN ,)1+2P+1 -4" in [ ( 1 )11 - (-1) PK1p (asym)
P1(1 P)!e N (20),/

Two special cases are

1 - Koo (asym) 87.2Nme-47N, 1 + Koi (asym) = (87N,)3C4rNm.

Values computed from these expressions are also listed in Table II.
In Table III we have listed values at r = 0 of gip (r) for (lp) = (00),

(01), and (02). These values are consistently less than the values
predicted from the infinite -N, functions (16b) renormalized to the finite
interval (0,r,):

gip(r) =

for which

[ 2p! 1
(1 + /4!

(27rr2 )1 12 e--,r2Lpt (2702)

X {1 - pl fc' dx e -z [Lpi(x)12}
(1 + p)! 2r N

(21)

00)-i
gop(0) = 21 {1 -

2

dx e-x[L;(x)]21 . (22)
TN,

The differences between the calculated and estimated results again re-
flect the distortion appropriate to finite N,,, of the eigenfunctions (16b).5
For a given angular quantum number 1, this distortion is generally less
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TABLE III - FIELD AMPLITUDE AT MIRROR CENTER FOR 1 = 0 MODES

Nm* goo(0) got(0) go2(0)

0.6 1.277 1.225 1.616

0.8 1.321 1.125 1.373

1.0 1.346 1.151 1.193

1.2 1.360 1.209 1.089

1.4 1.369 1.253 1.081

1.6 1.375 1.281 1.130

2.0 1.384 1.315 1.220

ao = 1.414 1.414 1.414

*No = 0.

significant in low -order modes than it is in high -order modes. (The
former are usually the only modes relevant to laser oscillators.) That this
is so can be understood if we recall that for the cylindrical confocal
geometry gip (r) will have p zeros in the interval ro < r < r, . As the
interval (ro , r,) is compressed within the interval (0, co ) appropriate to
(16a,b), those functions gip (r) whose zeros initially lay outside (ro , rm)
will clearly be more distorted by the compression than will those func-
tions which have no zeros (p = 0) or those whose zeros lie well within
(ro rm). In Table IV we have tabulated the zeros within (ro , r,n) of
several low -loss eigenfunctions for different N,.

III. EIGENMODES FOR FINITE MIRROR APERTURES (No X 0)

In this section, in order to distinguish the No = 0 and the No X 0
results, we mark the eigenvalues and eigenfunctions for No = 0 by a
superscript "O": Kip° ,g ip(r)° . As in the preceding section, we assign the
integer p > 0 to the No = 0 modes in the order of their increasing
power loss/pass: I xi; I > I Kri,÷1 I . We identify the No X 0 modes by

TABLE IV - ZEROS OF gip (r) IN THE DOMAIN 0 = r0 <r <rm

Nu,* Nit
/ = 0 0 1 1 2 2

Pt = 1 21 22 1 21 22 1 21 22

0.6 0.775 0.434 0.318 0.662 0.573 0.432 0.699 0.641 0.502 0.718

0.8 0.894 0.433 0.339 0.735 0.604 0.474 0.792 0.705 0.560 0.821

1.0 1.000 0.425 0.345 0.772 0.606 0.496 0.859 0.734 0.599 0.903

1.2 1.095 0.418 0.342 0.780 0.598 0.504 0.897 0.737 0.621 0.965

1.4 1.183 0.414 0.336 0.774 0.590 0.501 0.909 0.729 0.628 1.002

1.6 1.265 0.412 0.330 0.766 0.585 0.493 0.905 0.721 0.626 1.016

w m 0.399 0.305 0.707 0.564 0.449 0.868 0.691 0.564 0.977

*No = 0.
t The function gip(r) has p zeroes in ro < r < .

r, = NmI.
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the indices that those modes would carry if they deformed continuously
from No = 0. As we shall see, it is not necessary that I Kip I > Kip+i

when No 0; however, the No 0 modes do have the properties (15)
and (18) of the No = 0 modes. In addition, the field amplitude gip(r)
will continue to have p zeros in the reflecting interval r0 < r < rm
(ro = 0 for No = 0).

Using perturbation theory to express the No 0 eigenfunctions ;ri
terms of the No = 0 functions, we have to first order:12

ro
}gip(r) = gzp(r)° {1 r f dr' r,[gip(r,)12

.9

gig(r)0- 2_, KNO27r fro dr' Igip(1)0gi,(1)°.
q29 Kip" - KNO

To second order, the eigenvalues are
r0

Kip = Kipo {1 - 27r f dr r[gip(r)0]2
0

0 0 rp 2V,/ Kip Klq dr rgip(r)°g1,(7.)°1,frp Kip° Kie[ fo

The factor multiplying gip (r )0 in (23) is a normalization correction
compensating for the fact that the gip (r) are normalized in (10) over
the interval (ro , r,), whereas the gip (r )° are normalized over the larger
interval (0,r,). The first -order correction to the eigenvalue in the first
term of (24) decreases the unperturbed eigenvalue Kip° by that fraction
of the unperturbed field intensity which falls on the aperture.

The second terms in (23) and (24) describe eigenfunction mixing by
the aperture. The amount of mixing depends upon the eigenvalue
difference as well as upon the strength of the perturbative coupling. The
circular apertures, centered on the resonator axis, do not mix modes with
different angular quantum numbers. Because the signs of the eigenvalues
alternate as in (18), mode mixing in the symmetric identical -mirror
cavity is strongest among modes with the same p parity (-1)P. The
situation is somewhat different in resonators with dissimilar mirrors
such as obtains in the apparatus of Patel et al.2 where only one mirror
is pierced by the output -coupling aperture. In such systems there is
significant mixing between even -p and odd -p modes.'

Whereas mode mixing will preclude two eigenvalues from actually
crossing (if the two modes are coupled by the perturbation), there is,
because of the sign property (18), no such restriction on the absolute
values I Kip I and I Kip+1 I or, equivalently, on the diffraction losses of the
(lp) and (lp ± 1) modes. For some special values of (No , N,) one can

(23)

(24)
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in fact reverse the power -loss progression of the No = 0 case to give
Kip+i I > Kip I ; however, it is always true for the identical -mirror

cylindrical confocal system that

Kip I > K1P+2 I

(25)

In more general geometries with more complicated eigenvalue phase
relations than (18) even this restricted condition can be violated.

Using the kernel expansion -truncation method outlined in the Appen-
dix, we have computed the effects of finite coupling apertures on the
properties of cavity eigenmodes. In Fig. 9 we have indicated for a Fresnel
number Nm = 0.8 how a finite coupling aperture with Fresnel number
No 0 affects the loss/pass of the lowest -order modes. In the confocal
geometry the finite aperture affects only the magnitude of the eigen-
values; their signs (phases) are still given by (18). In no case do the
eigenvalues belonging to the same angular quantum number / cross
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Fig. 9 - Power loss/pass versus aperture Fresnel number No for low -loss
modes with N, = 0.8. Dashed curves (00E) and (01E) are estimates based on
(26b).
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(the circular -aperture perturbations do not couple modes with different
1), although in Fig. 9 we do see for the (00) and (01) modes a reversal
of the No = 0 sequence I Koo I > I Koi I

in the interval 0.08 < No < 0.16.
Fig. 9 confirms our previous conjecture that the modes with angular

quantum number 1 = 0 are more sensitive to deleterious aperture loss
than are the 1 0 modes. When for N. = 0.8 the area of the aperture
is only 0.6 per cent of the total mirror area (No/Nm = 0.006), the loss/
pass of the (00) mode has increased to the point where it equals the
loss/pass of the (10) mode. For this same hole size the losses of the
(10) mode are virtually unaffected by the aperture.

In Fig. 10 we have indicated the intensity distribution of the (00)
mode for N. = 0.8 and No = 0, 0.01. Except for the normalization
correction implicit in the first terni of (23), the intensity distribution
for No = 0.01 is nearly identical to that for No = 0. We conclude for

= 0.8 and No < 0.01 that eigenfunction mixing in (23) is unim-
portant and, as a consequence, that the eigenvalues are accurately given
by the first -order term of (24). Using the infinite -N, functions (16b)
to approximate gi,,,(r)° in the first term of (24), we can estimate the
ratio Kip/Kip° analytically. For 1 = 0 this estimate can be considerably
improved if we renormalize the infinite -N. functions (16b) by the
factor gop (0) /V2 computed from Table III. Doing this, we estimate

=
27rNo

op° {1
2

hp(0)012 f
0

dx e-x[Lp°(x)]2} . (26a)

where Kip° and gi,(0)° are implicitly dependent upon N, . In the limit

2.0

1.5

1.0

0.5

r0' 0.5
r

1.0

Fig. 10 - Field intensity gip2(.7) of the mode (1p) = (00) for Nm = 0.8 with
No = 0 (solid curve) and No = 0.01 (dashed curve). (Nm = r.2; No = rol.)
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of small No , for which we can in effect replace gip (r)° by gz(0)° in the
right-hand side of (24), this gives

KOp = KOp{1 7-No[go, . (26b)

To the same accuracy, the r1 dependence of gip (r) noted in (15) implies
that Kip = Kip° for 1 s 0. The approximation (26b) has been used to
compute the dashed curves in Fig. 9. For No < 0.02 the fit to the ma-
chine -computed curves is excellent.

The effect of a finite aperture (No 0) on the losses of the low -loss
modes for N, = 1.6 is indicated in Fig. 11. More modes are shown than
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in Fig. 9 because at the larger Fresnel number more modes have low
loss (cf. Fig. 2). Observe for any fixed radial quantum number p that,
consistent with the ri behavior noted in (15), modes with low angular
quantum number / are more sensitive to a small aperture than are the
modes with higher angular quantum number. The sequence in Fig. 11
of upward breaks in the losses of the modes (00), (10), (20), is
particularly striking, as is that for the modes (01), (11), (21), .

In Fig. 12 we have redrawn those curves of Fig. 11 which pertain to
the angular -invariant / = 0 modes. The dashed curves in Fig. 12 derive
from the approximation (26b), which is here valid only for No < 0.0005
in the (00) and (02) modes and for No < 0.006 in the (01) mode.
[For N, = 0.8 it applied to all No < 0.02.] The approximation (26b),
based upon first -order perturbation theory, fails when eigenfunction
mixing becomes significant. Mixing is strong for the (00) mode when
the losses of that mode due to the finite aperture approximate the edge
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/ = 0 modes with N, = 1.6. Dashed curves (00g) and (01g) are estimates based on
(26b).
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losses of the (02) mode - that is, when /Coo ti Ko2 . If we recall that a
variational principle applies to the present eigenvalue problem [be-
cause, in contradistinction to more general resonator kernels, the kernel
in the integral equation (9) is Hermitian], we can view mode mixing
as an attempt by the field in the low -loss (00) mode to reduce its in-
tensity at the aperture and to reduce thereby the total (00) loss. Be-
cause edge as well as aperture losses contribute to the total loss, the
deleterious edge losses of the (02) mode preclude appreciable (00)- (02)
mixing until the aperture losses of the undistorted (00) mode approxi-
mate the edge losses of the (02) mode. Because edge losses decrease
rapidly with increasing N, (Nm = 1.6 is already quite large), the
aperture losses required for appreciable mixing decrease rapidly with
increasing N.. The relevance of mode mixing to the breakdown of
(26b) is clearly illustrated in Fig. 13, where we show the intensity
distribution of the (00) mode for N. = 1.6 and No = 0, 0.01, and 0.02.
[The same aperture Fresnel numbers No gave insignificant mode dis-
tortion for N. = 0.8 (Fig. 10).]

In Fig. 14 is shown the intensity distribution for three other low -order
1 = 0 modes besides the (00) mode for N, = 1.6 and No = 0.01. This
figure should be compared with Fig. 5b, which shows the intensity
distribution of the same modes for N, = 1.6 and No = 0. Note that,
whereas the intensity at r = 0 of the (00) mode decreased as a result of
aperture mode mixing, the intensity at r = 0 of the (02) mode increased.
This increase is reflected in Fig. 12 in the sharp rise of (02) losses as
the (00) and (02) eigenvalues "repel" for No > 0.003.

2.0

1.5

1.0

0.5

Nn = 0

No = 0.01 //2.
//11

jNo= 0.02o..Of

re, re"
L

0.5 r 1.0 rm

Fig. 13 - Field intensity gzp2(r) of the mode (lp) = (00) for N,,, = 1.6 with
Na = 0 (solid curve) and No = 0.01, 0.02 (dashed curves). (N r,,,2; fro ?Y.)
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Fig. 14 - Field intensity g 1,2 (r) of the low -loss 1 = 0 modes for N,,, = 1.6 and
No = 0.01. (N, = r,,,'; No = ro'.) Notice how mode mixing has changed the in-
tensity distribution near the aperture (0 < r < ro) from that in Fig. 5(b) where
No = 0.

In Figs. 15, 16, and 17 we have indicated how the power loss/pass of
the low -loss modes varies when for fixed aperture size No the Fresnel
number N,,, changes. Notice in the typical Fig. 15 that the losses of the
(00) mode decrease as N,,, increases from No until for N,,, c-:-% 0.7 those
losses saturate at about 11 per cent/pass, approximately the loss pre-
dicted from (26b) with goo (0 = V2 and Koo° = 1. As N, increases
beyond 1.3, mode mixing reduces the losses of the (00) mode as the
modified intensity distribution avoids both the aperture and the reflector
edges. While by N,,, = 1.6 the (00) mode again has the lowest loss of
the / = 0 modes, its total loss is greater than that of certain / 0 modes
and its intensity distribution (Fig. 13) is considerably different from
the simple Gaussian of (16b).

A quantity of interest in the design of lasers with aperture output
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Fig. 15 - Power loss/pass of low -loss modes versus Fresnel number N. for
aperture Fresnel number No = 0.01.

coupling' is that value Ark of No for which the losses of the (00) mode
equal the losses of the (10) mode. All other things being equal, the
laser will oscillate in the (00) mode for No < Ark whereas for No >
No, it will operate in the (10) mode or, for large values of No , in still
another mode (cf. Fig. 11). In Fig. 18 we have plotted Noc as a function
of N.. For N. > 0.6 this curve can be accurately reproduced by the
following expression based upon (26b):

Noe = (Koo° -
Kie)/inc000[goo )012. (27)

This result obtains even for large N. because Noe decreases so rapidly
with increasing N. that mode mixing is never relevant.
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IV. FAR -FIELD PATTERNS, APERTURE OUTPUT COUPLING

If we assume that the useful output coupling of the mode (lp) is
exclusively through one of the small reflector apertures of Fresnel
number No , then at a large distance d from the relevant output aperture
and in a direction making an angle 0 with the cavity axis (see Fig. 19)

the field amplitude will be proportional to
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27rb
Aip(0,c0) = Ci19 fr° rJ/[27rr(b/X )1 sin Olgip(r). (28)

o

Here so is the azimuthal angle used in (1); r is the radial variable defined
in (6); and gip (r) is the mirror -field amplitude function (8). The deri-
vation of (28) from the Fraunhofer formula parallels that of (2) and
(9).1 The basic approximation used is

[d' p' - 2pd sin 0 cos co 14 ti d - p sin 0 cos so. (29)

This approximation is suitable when d>> ao p and ae/Xd = bNo/d << 2.
In the important case for which To is so small (No < No, is sufficient)
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each Fresnel number N, is the loss/pass when No = Noe . This loss is approxi-
mately, but not exactly, proportional to Noe .
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Fig. 19 - Geometry appropriate to the analysis of the far -field pattern for
aperture output coupling of cavity.

that we can approximate gip (r) by the lowest -order term (15), we ob-
tain from (28):

i

Ai,(0,go) -
1 di g

driP
/kr //2

i- anivo
ti 1+1

(27a0 sin 0)
(30)

r=0 d sing X

The observed intensity pattern for a pure 1 mode will be proportional to

//, 0,so) =
[1 digip anN0112 2

cos2[/Gp - 301J/±1.2
(27rao sin 0)

, (31)(
1! dr' d sin 0

where Si is an appropriate phase angle. For 1 = 0 this gives the cele-
brated Airy diffraction pattern!'

V. SUMMARY REMARKS

We have computed the eigenmodes of a symmetric cylindrical con -
focal laser cavity of Fresnel number Nni 2.0 and have determined
how those modes change when a small circular element centered on the
axis is removed from each reflector. The calculation methods can easily
be adapted to cylindrical confocal resonators for which the two mirrors
and mirror apertures have different sizes. (Results relevant to a coupling
aperture in only one end reflector will be published in a subsequent
article.) The basic expansion -truncation methods outlined in Section I
and in the Appendix are quite general'° and can usefully be applied to
nonconfocal geometries for which complex -number computations are
required when the mirror surfaces are not surfaces of constant phase.

For the cylindrical confocal geometry the results reported above
indicate that, while the infinite -N, functions with appropriate nor-
malization do approximate the low -order finite -N, eigenfunctions,
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there are significant differences which influence the calculation of both
aperture and edge diffraction losses. For sufficiently small aperture
Fresnel numbers No the aperture diffraction losses can be estimated by
first -order perturbation theory based upon the finite -N, eigenfunctions
(or upon the infinite-Nm functions renormalized to the finite-Nm am-
plitude at r = 0). The value of No for which such first -order calculations
are valid decreases rapidly as the Fresnel number N. increases, because
for large apertures the field distributions distort (higher -order per-
turbation theory) to avoid the aperture. This distortion occurs at
approximately those values of No and N. for which an observer at one
reflector, using light of the relevant wavelength and optics limited by
the radius rn, = N.i, can resolve the aperture of radius ro = N04 at the
opposite reflector.''
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APPENDIX

Reduction of Integral Equation (9) to a Matrix Equation

Truncating the series (13) after M terms and substituting the result
into (9), we obtaing (1 = I 1 I in this Appendix)

Klpgtp(r) =

where

/

d?! 7! E -1 -)m -1(77'701+2(m-1)
ro - 1)!(m 0! go,(/)

M --1(70,)/-1-2(m-1)

27r E (in ± 1 - 1)!(m - 1)!

mfr di/(1)'711+2-1 gip( r')

rorry-v

L 1! _I [(m - 1 ) ! ( m 1 - 1)!/MiGin(lp),

(32)
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Gm(lp) =
[(m 1 - 1)!(m - 1)

r,
drir (v. /2)m-1+ //2 giv(rt).

ro

2ir

(33)

Solving (32) for gip(r) and substituting this expression into (33), we
obtain after simple manipulations

KI,Gm(lp) = E
k=1 [(m- 1)!(m + 1 - 1)!(k - 1)!(k -I- 1 - 1)]

[(7rNm)1+m-l-k-1 (7rNo)1+m+k-11

X Gk(lp)
(1 m k - 1)

We have used the definitions (7) to replace (re,rm2) by the Fresnel
numbers (No , Na,).

Equation (34) is a matrix equation which must be solved for the
eigenvalue Kip and for the ill vector components Gm (lp) appropriate to
that eigenvalue. When these latter components are used in (32), one
obtains the eigenfunction gip (r) appropriate to the M -term truncation
of (13). The normalization condition (10) on gip (r) is equivalent to the
condition

Kia = E (-1)"'-1Gm(lp)Gm(lg) (35)
m=1

on the real vector components Gm(lp). The sign condition Re gip (0+) >
0 becomes G1 (lp) 0 where, if G1(1p) = 0, G2 (lp) < 0, etc.

In programming the above equations for electronic -computer solu-
tion, one must insure that at each stage the computations maintain
sufficient numerical accuracy. The relevance of this remark is clearly
evident from the fact that, while the Bessel function .11(z) is of order
unity for all real z 0, some terms of the series (13) will for z > 1
be of order (e/2)2727rz >> 1. That is, J1(z) will be the small difference
of large numbers and care must be taken to insure that such small
differences are accurately represented.

The program utilized to compute the results reported in this paper
requires a nominal 0.0042 hr. of IBM 7094 running time to compute the
M different eigenvalues and eigenvectors of (34) for M = 20. Timing
for other values of M varies roughly as 3/.
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B.S.T.J. BRIEFS

A Silicon Diode Microwave Oscillator
By R. L. JOHNSTON, B. C. DE LOACH, Jr., and B. G. COHEN

(Manuscript received December 28, 1964)

Microwave oscillations have been obtained on a pulse basis from
silicon diodes. This brief reports fabrication details and performance
data. The similarities of this device to that proposed by Read' are
discussed.

The diodes were made by diffusing boron to a depth of approximately
25 µ into one face of a slice of 0.15 ohm -cm n -type silicon, and then
lapping the other face to a final slice thickness of 175 Electroless
nickel was then applied to both faces and sintered at 800°C for 5 min-
utes in N2. Nickel was then replated and followed by a final plate of
gold. The slice was then ultrasonically sectioned into squares 125 A X
125 A. To remove cutting damage the "wafers" were etched for about
10 seconds in CP-8 (3 parts HNO3 , 1 part HF), and were then incor-
porated into a microwave encapsulation. A sketch of a wafer before
encapsulation is shown in Fig. 1.

Oscillations are observed when a critical reverse voltage is applied
to the diode. This voltage has been observed on a variety of samples
to correspond to that required to produce enough reverse current to
create an electric field on the order of 2 kv/cm in the 150-µ n -type re-
gion. A typical reverse V -I characteristic obtained on a pulse basis
using a sampling oscilloscope is shown in Fig. 1. On samples which were
lapped to reduce the drift region length from 150 A to 75 /2, the required
voltage in excess of the avalanche voltage was halved. Voltages in ex-
cess of threshold produce more output until a maximum is reached.
Some lower frequencies in the 1-2-gc region exhibited several maxima,
but the higher frequencies (12 and 24 gc) had but one.

The fact that voltages considerably in excess of the "breakdown"
voltage are employed tends to deemphasize the role of microplasmas and
nonuniformities in the junction and thus contributes to the ease of
fabrication of these devices.

The diodes were tested in either a coaxial system, for the lower fre-
quencies (f < 12 gc), or in a reduced -height waveguide for the higher
frequencies (8-24 gc). The mounts incorporated a bypass capacitor
which allowed the introduction of a video pulse to power the diode.
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Microwave oscillations (when present) were coupled to a spectrum
analyzer.

The operation of a particular sample of the geometry shown in Fig. 1
will be described. It was placed in the coaxial circuit and driven with a
2 Asec pulse at a 10-kc repetition rate. When the applied pulse voltage
reached a critical value, microwave power output was observed. Power
was obtainable over a wide range of frequencies, but some frequencies
had particularly high amplitudes. A plot of some of these "high points"
is presented in Fig. 2. Included in this figure are two points obtained
from a similar sample operated in the waveguide mount. Fig. 2 can
also be interpreted as a rough plot of efficiency versus frequency, since
pulse powers between 15 and 30 watts were employed for all these points.
The 80 mw obtained at 12 gc represents 0.5 per cent efficiency. Similar
samples have been operated with duty cycles of 25 per cent (to burnout).

The higher -frequency operation for which the efficiencies are on the
order of 0.5 per cent is most likely an oscillation involving primarily
the space charge depletion width for the drift space. The extent of this
region is of the order of that predicted by Read for this frequency of
operation. The requirement of 2 kv/cm in the 150-A region for this
operation most likely assures that fields greater than this exist across
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the depletion region. This added length should then be removable with-
out changing the character of these oscillations and indeed should en-
hance the efficiency of operation. The circuitry employed in obtaining
the higher -frequency microwave power was crude, and thus the power
obtained in the X and K band regions (12 and 24 gc) should be taken
as a poor lower limit of that available.

We are uncertain at present as to the explanation for the lower -fre-
quency points exhibited in Fig. 2. The 2 kv/cm field required is high
enough that the mobility has decreased in the 150 -AL region. The usual
dielectric relaxation time of this material of 10-13 sec is thus increased
and some bunching of charge is preserved in the region, with charge
transport (1 X 107 cm/sec) becoming significant. This "stiffening" of
the conductive region could allow it to function as a drift region in the
same manner as does the swept region in the above. The approximately
linear increase in output power with frequency in this region could then
be due to a redistribution of ac field between the space charge depletion
layer capacity and the ac impedance of the drift region. That this mech-
anism is not very effectual can be deduced from the efficiencies of some
1 X 10-3 per cent in the region up to 2 gc.

Many helpful discussions with R. M. Ryder and J. C. Irvin are grate-
fully acknowledged.

Note Added in Proof:

Subsequent to the pulsed microwave operations described in this
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Brief, Lee et al.2 have obtained low -frequency cw operation in a silicon
diode with a npirp structure closely approximating the structures
described by Read.' Still more recently, continuous microwave oscilla-
tions have been obtained by Johnston and De Loach3 in structures
similar to those described herein.
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