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Concentrated study by the American Telephone and Telegraph Co. and
Bell Telephone Laboratories has resulted in several engineering and design
innovations that permit more efficient utilization of the exchange cable net-
work. As a first step, a mathematical model of the customer loop plant was
developed from survey data. With this model, studies have been made of
the transmission properties of the loop plant at both voice -band and carrier
frequencies via computer analysis. Results of such studies have been use-
ful in planning plant improvement programs and have also been used to
evaluate such new concepts as "dedicated outside plant" and "uniform -
gauge customer cable plant."

Other computer programs have been and are being developed to aid in
engineering cable routes for future growth and to evaluate alternatives to
placing new cable, such as concentrators and exchange carrier systems.
Studies to optimize the placement of new switching centers, taking into
account existing wire centers and forecasts of growth for the area, have
been made by computer analyses. These computer programs aid engi-
neers in making studies in much more depth and in less time than was
possible with older cut -and -try methods.

I. INTRODUCTION

Since World War II there have been major changes in exchange
outside plant cable networks. Polyethylene has replaced lead for cable
sheaths, and in the distribution plant, polyethylene insulated conductor
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cable (PIC) and ready -access terminals have replaced paper insulated
cable and sealed terminals. Concentrator and carrier systems permit
more efficient use of copper in feeder and trunk cables.

In the early stages of these wide -sweeping changes, the major ad-
vances were in hardware, as enumerated above; however, exchange plant
engineering methods were being analyzed and revised to take full ad-
vantage of these innovations. The PIC cable and ready -access terminals
had implications on exchange plant installation and maintenance much
broader than the purely hardware ones. For instance, the installation
of distribution terminals for access to the cable conductors could be
postponed economically until required to satisfy a request for service.

Concurrently, unrelated activities were producing results applicable
to the plant engineer's problem. Operations research techniques (which
aim to optimize an existing system) were being used. More sophisticated
electronic computers became available and provided the tools of calcu-
lations and machine decision logic on a scale impossible in the past.
All of these factors sparked a revolution in the tools and methods used
by the engineer to study and evaluate the exchange outside plant as a
system, with the ultimate objective of improved service for customers.

It is the purpose of this paper to show how these modern engineering
tools and methods are making possible new concepts in the engineering
and utilization of the exchange outside plant. Initially, the exchange
outside plant was studied as an integrated system. As the work pro-
gressed, it was necessary due to the size and complexity of the study to
consider each engineering activity as an entity rather than a part of a
system. Therefore, for ease of exposition, this paper covers each engi-
neering activity as it was developed during the exchange outside plant
engineering study.

II. BACKGROUND

An exchange outside plant cable network (Fig. 1) serves as a medium
to connect the central office and station equipment in a manner which
is compatible with signaling, supervision and transmission requirements.
These requirements usually are stated in terms of circuit resistance and
transmission limits. The cable networks are designed to keep within
these limits regardless of the distance between the office and the cus-
tomers. This is accomplished by planning the network around the several
options of wire gauges (19, 22, 24 and 26), carrier systems, and the many
loading arrangements (H88 and 1144, etc.).

Interface problems become quite complex with a cable network that
is laid out to connect all customers in an area to a central office. Such a
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network may serve a high -density area of 100,000 customers or more
per square mile, as in New York City, or a few hundred customers
spread over many square miles, as in some areas of the West. Regardless
of area size and type of switching equipment, each network must be
carefully designed for the customers it is to serve. Although the size
of an area or the number of customers may vary widely, the engineering
methods throughout the Bell System are similar. However, these
methods reflect the individuality and philosophy of the engineer and
the associated company far more than in any other part of the com-
munications system.

The job of engineering facilities in relatively small increments to
meet the unique conditions of the area and customer requirements
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inherently results in a specific network design. This in turn has made it
difficult to both obtain and analyze system -wide data about these net-
works and to set requirements for new systems with confidence that the
proposed system when developed would be of optimal usefulness to all
associated companies.

In the past, small segments of the plant judged to be representative
of the Bell System were studied in detail. These studies evaluated, from
the system viewpoint, transmission improvement characteristics or
economic advantages of a new development. This procedure was time-
consuming and unsatisfactory, and the time associated with obtaining,
processing, and analyzing system -wide data was prohibitive. However,
by 1958 the application of computer data reduction and analysis tech-
niques made it possible to obtain a much more comprehensive and ac-
curate picture of the exchange plant than had theretofore been possible.
This was one of the most basic steps in the application of the new
systems engineering concepts and led to several other surveys of the
physical and electrical chdracteristics of the telephone plant.

III. SUBSCRIBER LOOP SURVEY

In 1960 a sampling survey was designed to yield statistically sound
estimates of important characteristics of the customer loop plant. A
sample of loops, representative of the facilities provided to the ap-
proximately 40 million residential and business customers served by the
Bell System, was taken. The loop selections were made from a sampling
frame containing a complete list of all central office buildings in the
Bell System, together with the central office prefixes assigned in each
building, and the total number of customers served from each prefix.
From this list, in which each customer was implicitly numbered, 1000
telephone numbers were picked in such a way as to form an optimum
stratified random sample,' with heavier concentration in office sizes
expected to contribute the most variability.

The desired information concerning physical composition of the loop
plant was obtained from the outside plant cable and wire records main-
tained by the associated companies. Fig. 2 represents the kind of
information provided for each sampled loop.

To derive transmission properties the computer had to be programmed
to reconstruct each loop exactly as it appeared in the physical
plant. The computer converted the entire loop between the serving
central office and the sample telephone into an equivalent T network
at each frequency of interest in the voice band. More details on the
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method of computing transmission characteristics and specific results
are given in Ref. 2.

The more important survey results were summarized as statistical
distributions. As examples: (1) the average working distance to a custo-
mer in the Bell System was found to be 10,300 feet with 90 per cent
confidence limits on this mean value of ±450 feet, as presented in Fig.
3; (2) cumulative insertion losses at seven discrete frequencies in the
band from 200 to 3000 cycles are given in Fig. 4. At 1 kc the mean value
of insertion loss in loop plant was found to be 3.5 db with 90 per cent
confidence limits of ±0.1 db. (3) The degree to which exchange loop
input impedance (including station set) matches the toll network is
shown by using return loss at each of the six frequency distributions
shown in Fig. 5. The best return loss is at midband - around 1 kc,
where the mean return loss is 15.0 db with 90 per cent confidence limits
of ±0.15 db. The lowest return loss at 3 kc is representative of high
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Fig. 5 - Cumulative return loss distributions for Bell System loop plant,
500-3000 cps (measured against 900 -ohm + 2µf compromise balancing network
with loop terminated in actual station set impedance).

singing frequencies, where the mean value was found to be 7.2 ± 0.2
db.

One phase of this survey of particular significance was determination
of loops that had design irregularities. With these data (composed of the
percentage of irregularities by type), the magnitude of the job required
to correct these conditions could be estimated and a realistic plant im-
provement program planned.

In addition to providing guidance for an improvement program, the
survey made it possible to develop a statistically sound mathematical
model of the existing customer loop plant. This model has been used with
considerable manpower savings over the analytical procedures used by
Bell Laboratories in the past to determine accurately the transmission
effects of new developments designed to be used with the existing plant.
With this new tool, studies have been made of (a) effect of cable capac-
itance variation on transmission properties of loop plant, (b) input
impedance of loop plant both at the customer and office end of the loop,
(c) need for impedance compensation networks at the central office, (d)
characteristics of loop plant at carrier and PICTUREPHONE system
frequencies, and (e) the optimum telephone set impedance characteris-
tics. Other uses of these data have to do with the evaluation of new
methods of laying out a cable network such as "dedicated outside plant"
and "uniform -gauge subscriber cable plant."



380 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

1Y. DEDICATED PLANT

The dedicated plant concept involves the permanent assignment of a
cable pair from the central office to each main station. All party lines
are bridged at the central office. This new method of laying out plant
was preceded by a gradual but definite change in the composition of
telephone plant and customer requirements that began in the early
1950's. Developments such as PIC cable and ready -access terminals
provided greater possibilities of circuit availability than did the pulp
insulated cables and hermetically sealed terminals previously used.
The percentage of households without service was steadily dropping,
and at the same time there was an increasing demand for individual
line service (see Fig. 6). The labor costs were increasing rapidly for the
plant rearrangements necessary to satisfy the changing service requests
of customers. All of these favored a more permanent plan of outside
plant pair connection than current multiple schemes.

Cable and wire plant is sized on the basis of growth forecasts not
only to meet known requirements but to be adequate for some pre-
determined time in the future. It is difficult to predict the growth pat-
tern, the number of lines, and the type of service for a central office
area, and it is even more hazardous to estimate the growth along any
given cable route. These uncertainties, along with the inherent difficulty
of obtaining access to pairs of pulp insulated distribution cable used in
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Fig. 6 - Distribution of party line service for all associated companies at
end of year shown, with forecast for 1965-1970.
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the past, led to the multiple appearance of subscriber cable pairs, not
only in several cables, but also at a number of customer terminal lo-
cations following a predetermined pattern as shown in Fig. 7. (The
multipling of cable pairs is illustrated by the termination of the 1800 -
pair feeder cable with a 600- and 900 -pair branch feeder and a 900 -pair
main feeder.) Multipling was also necessary to achieve high cable pair
utilization and to provide party line association. However, as actual
demand does not always match the anticipated growth, it is necessary
under this system as growth develops either to rearrange the cable pair
layout and unmultiple the pairs, or to leave unused copper in the plant.

The use of multipled cables, cross -connect terminals, and rearrangement
of cable complements imposes technical problems and ever-increasing
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operating costs. For example, when plant rearrangements are re-
quired to provide service to a new subscriber cable, pairs must be me-
ticulously searched out, identified, and (often in more than one place)
cross connected or spliced. All of these activities require extensive labor.
The costs are high and the likelihood of error is always present along
with possible interruptions to service.

In view of the recent innovations in hardware and the increasing
demand for individual telephone service, this method of laying out
plant left something to be desired. Therefore it was necessary to come
up with a new scheme that involved completely new cable network
design principles capable of virtually eliminating cable rearrangements
while retaining the ability to handle growth on increasingly shorter
time intervals. Such a scheme was made possible by initially dedicating
a percentage of cable feeder pairs to serve a specific area along the
route and keeping the remainder in reserve as spares to be dedicated to
an area later, as required to satisfy requests for service. The optimum
percentage of feeder pairs designated as spares was determined by using
computer simulation techniques to study a number of actual plant
growth situations. Flexibility points ("control" and "access" points)
were conceived to permit ready access to the spare pairs as dictated by
future needs along the feeder route.

The use of this dedicated pair concept eliminates the need for multiple
appearances of the pairs and permits direct wiring of the customer's
residence to the central office while still providing sufficient flexibility
(Fig. 8 shows a multipled designed loop by dotted lines and a dedicated
loop by solid lines). Once a pair has been assigned to an address, it
remains dedicated to that location whether the pair is working or idle,
and regardless of class of service. Any required bridging of party lines
will of necessity be done at the central office, utilizing switch -like
devices to remove the effect of other party stations during conversation.
Theoretically, this connection arrangement would result in some ad-
vance in capital expenditures for additional feeder cable pairs and other
apparatus; however, the savings in the cost of day-to-day operation
derived with such a plant design will far outweigh the carrying charges
on the advanced capital. Also, ultimately less total capital will be in-
vested due to increased flexibility and the elimination of the multipled
portion of all circuits, which also results in an improvement in trans-
mission.

The feasibility of converting existing plant and of installing new
plant under the dedicated concept has been studied. The study results
indicate that this concept is economically attractive for all residential
loops up to approximately 30 kilofeet in length.
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Fig. 8 - Dedicated outside plant, typical feeder route.

The implementation of the dedicated plant technique throughout
the Bell System requires familiarizing practically every department
with the advantages of such a system and also with how it will affect
current methods of operation. Some of the advantages of the new
concept borne out by field trial and further confirmed by actual field
experience are:

(a) improved efficiency of over-all copper usage,*
(b) reduction in cost of installed cable, t
(c) better transmission through reduction in length of bridge tap, t
(d) virtual elimination of cable, service wire, and central office main

frame transfers, thus simplifying assignment and installation procedures
(see Table I), and

(e) simplified records, resulting in faster handling of customers'
orders.

Actual system application of this concept will be a gradual process,
but it is expected that the plant will be converted fully by about 1970,
and that large savings will be produced by the elimination of rearrange-
ments and changes in the cable plant, including changes that are at
present made for higher cable fills (see Table II).

* Since there are no end sections or multipled connections under the spare pair
concept, the entire length of all used cable pairs ultimately will be working.

t Fewer multiple wire connections to make when splicing cables together at
junctions of feeder and branch cables.

tt The unused copper in a subscriber's circuit is referred to as bridge tap.
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TABLE I - RESULTS OF STUDY AND FIELD TRIAL

Operation

Cable pair and service wire transfers
Cable pair transfers
Central office main frame transfers
Service order assignment - residential
Installation time

% Reduction

Predicted Actual

90
90
90
40

substantial

97
100
97

unknown*
65

* Conversion to simplified records had not been completed during first 7

months.

Dedicated plant will not, however, eliminate rearrangements and
changes necessary to reroute customer service to a different central
office due to shortage of switching equipment in a specific exchange area
or recovery of coarse (19 and 22) gauge cable plant.

V. MULTIGAUGE DESIGN

Before discussing the desirability of further reducing the number of
rearrangements and changes in the cable plant, it is appropriate to
explore another reason for such activity. The per pair cost of cable
conductors varies widely; first as to gauge of the conductors used and
second as an inverse function of the total number of pairs included under
a given cable sheath. With the coarser gauge the cost per pair rises rapidly
due to the increased cost of the copper used. On the other hand, as the
size of a cable of given gauge is increased the cost per pair in plant goes
down due to both the lesser relative cost of cable sheath and the more
or less common placing cost (see Fig. 9)

Because of transmission and resistance limits of both station and cen-
tral office equipment and the economic factors outlined previously, it is

TABLE II - RESULTS OF FIELD TRIAL CONVERSION TO
DEDICATED PLANT

Date

% Pairs in Use at Central Office

Working Assigned

Before dedication
January 1, 1962 75.8 75.8

After dedication
March 1, 1962 76.5 92.1
January 1, 1963 78.2 94.0



0
0

It

H
(f)

OUTSIDE PLANT ENGINEERING

19 GAUGE

22....\.........

24

26

0 400 800 1200 1600 2000 2400
TOTAL NUMBER OF PAIRS IN CABLE SHEATH

Fig. 9 - Installed costs per circuit mile of underground cable.

385

a common occurrence to find three or four gauges of cable (from 19 -
gauge to 26 -gauge) in a single exchange cable route (Fig. 2). Frequently,
the initial cable placed in the route is coarse -gauge in order to satisfy
the requirements of the longer circuits (see Fig. 10). To provide facilities
for a reasonable period of time, it contains more total pairs than are
currently required in the coarse -gauge area. Then, to postpone the cost
of also placing fine -gauge cables, these coarse -gauge pairs are used tem-
porarily for service in areas where fine (26) gauge is sufficient. (This
practice is usually followed rather than that of installing composite
cables with two gauges of conductors contained in a single sheath.)
Later, when customers' requests for service at the extreme end of the
route require the remaining coarse -gauge pairs, a finer -gauge cable is
placed from the central office, and the circuits which were temporarily
served by the initial coarse -gauge cable are transferred to the new
cable. Not only is such transfer work costly, but, in addition, the
handling of working cable pairs is always at the risk of interference with
customer service.

A similar problem arises with special design considerations necessary
to meet transmission requirements on the longer loops. Specific pairs of a
cable are selected and loaded at discrete distances along the pair. This
added complexity results in administration problems, particularly if
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Fig. 10 - Feeder cable route, illustrating gauge requirements.

the pairs are needed in the future for a different service. The loading
must then be removed or changed, depending upon proposed circuit
requirements.

VI. UNIFORM -GAUGE SUBSCRIBER CABLE PLANT

If it were practical to design and operate a cable feeder route contain-
ing only pairs of a single fine gauge and minimum loading, savings would
be realized both in capital investment and in operating expense. For
example, all the line growth in the route would be absorbed in the single
gauge rather than spread over several as is presently the case. An im-
mediate effect of this would be that cables placed in the route would
tend to be larger in total number of pairs. Thus not only would the ad-
vantage of per -pair cost reduction with the larger cables be realized, but
the total number of cables in the route would diminish. Also, fewer ducts
would be specified in underground cable structures (conduit) and exist-
ing conduit would be used more efficiently. Of course the need to trans-
fer branches to recover coarse gauge would be entirely eliminated, along
with its high expense and adverse effect on service.

The engineering of a single -gauge feeder cable relief project would be
tremendously simplified, with resultant reductions in engineering
costs. Also, the over-all efficiency of the route would be improved, as
spare cable pairs would be needed for only a single gauge, as compared
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to spare pairs for each of the four gauges which are considered as separate
entities under the multigauge plant. Naturally, there will be some off-
setting penalties resulting from the need to compensate for the added
loss and resistance of the finer -gauge cable.

Studies undertaken to explore the technical and economic factors
involved in realizing this objective indicate the feasibility of serving
customers within 30 kilofeet of No. 5 crossbar and No. 1 electronic
central offices with all 26 -gauge cable and less than half the loading
now required in loop plant. The customers located beyond 30 kilofeet
from their serving central offices would still require coarser -gauge facili-
ties and loading. Requirements for new gain devices and signaling range
extension equipment are being developed to implement this concept,
including the electronic devices necessary to meet special service trans-
mission objectives. When proven operational, this concept, combined
with dedicated plant, will result in a completely new method of laying
out customer loop plant, with a great reduction in the multigauge prob-
lems mentioned previously.

VII. COMPUTER METHODS

Along with these new engineering concepts, electronic computer
have been developed and others are being developed to

the engineer in making studies to determine the optimum plant layout
and how best to introduce new engineering and system designs into the
exchange network.

To engineer a cable addition to an existing network, data pertaining
to the status of each cable pair are gathered from the cable location
records. With this information and a forecast of growth requirements,
engineering plans are formulated for a number of possible solutions to
satisfy the demand for service. The conception of alternate plans and
the final decision require engineering judgment which is a function of
the engineer's training and knowledge of the area. Having selected a
number of plans, the engineer makes a detailed analysis of each possible
solution to determine its feasibility and cost. This repetitious analysis
is a major time-consuming task, particularly if several solutions appear
worth studying.

Careful review of the analysis and evaluation techniques revealed
that the modern digital computer was ideally suited to aid the engineer
in making these studies. It was possible to formalize parts of the engi-
neering know-how so that data (see Fig. 11) could be entered by simple
language into a computer, where its equivalent representation could be
manipulated more rapidly and precisely than by the engineer. Thus
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freed of the detailed calculations, the engineer could concentrate on the
design activities which could not be treated mathematically.

The resulting computer program (see Refs. 3 and 4) produces a com-
plete cable route design for each year of the study period. It is very
flexible, permitting the use of local cost data and design rules. Even
the most complex cable problems can be handled and an optimum solu-
tion obtained for the engineer's final evaluation. Fig. 12 illustrates in
schematic form the computer solution to a simple cable relief problem.
Although only fourteen sections are shown, the program is capable of
handling 99 sections. This program is available on a Bell System basis
and is now operational in most of the operating companies.

Of particular interest is the fact that the computer has the capability
of exploring the effect of modified rates of growth in a particular cable
section more rapidly and economically than possible by the engineer
repeating the numerous hand calculations. With this capability, the
engineer can consult frequently with the forecaster to obtain his views
with respect to areas having unusual growth potential, as well as any
substantial deviations from trend which may not have been reflected
in the forecast. Forecasting growth in an exchange area will be dis-
cussed in more detail later.

In the past when additional pairs were required in the cable route,
small increments of cable were added as needed. Now, in addition to
cable, new systems such as concentrators and carriers are beginning to
play an important role in providing relief facilities. Superimposing elec-
tronic equipment on the cable network will have far-reaching effects
upon construction and maintenance of the plant. Also, as each new
switching or transmission system creates another alternative solution
for each cable network growth problem, engineering becomes more
involved, time-consuming, and costly.

Therefore a computer program has also been written to explore the
cost of using multiplexing systems such as concentrators to postpone
cable relief. In addition, this program evaluates all important and unique
features of the route and determines an installation and removal date
for each of the concentrators.

VIII. WIRE CENTERING

Programs developed for engineering cable routes and evaluating the
use of concentrators are also valuable for calculating costs associated
with major switching additions to exchange networks. These costs
constitute a major factor in deciding where to add additional switching
centers in a growing community.
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Studies made to determine when and where new switching centers
should be established are commonly called wire centering studies. The
over-all purpose is to obtain the optimum economic combination of
outside plant and switching equipment in geographical areas as large
as several hundred square miles. More specifically stated, the problem
is to determine when and where to add new central offices in the area,
considering the configuration of the existing plant, the anticipated
growth and the costs associated with reinforcing and extending exist-
ing outside plant facilities.

Wire centering studies usually begin with a growth forecast by out-
side plant cable route sections and an estimate of traffic loads antici-
pated for the period under study. The first phase is known as a cross-
sectional study, an analysis of the situation at a specific future point in
time. This type of study gives some idea of the need for additional wire
centers and determines approximately their location to satisfy fore-
casted requirements for customer service.

Usually, the engineer estimates the cost of providing facilities to meet
anticipated customer demand from existing wire centers. This estimate
is needed as a basis for comparisons of alternate means of providing
service. Alternative solutions are then evaluated to determine if the total
cost of providing service at this point in time would be less if the area
were to be served by additional wire centers at a number of different
locations within the area. These cross-sectional studies are repeated
using various numbers of switching centers, several growth estimates
for the area, and different time intervals. The number of combinations
explored can number in the thousands, especially when four, five, or
six new wire centers are being considered.

The second phase of the study consists of determining more accurately
where and when additional wire centers should be added. This involves
making detailed present worth of annual charges (PWAC) comparisons
over a 20-30 year study period, first serving a study area by an existing
feeder route or routes from one or more existing wire centers and then
serving the same area from the combination of existing routes and wire
centers with one or more wire centers added. Until now, these studies
have been made on a cut -and -try basis and are time-consuming, costly
and laborious. Frequently, in fast-growing areas, it is necessary to reach
a decision and start the construction of either a new office or additional
outside plant before the study is completed.

The cross-sectional method for determining the number and approxi-
mate location of new wire centers has been studied and a computer
program developed which mechanizes many computations heretofore
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tediously performed by the engineer. The engineer is still required to
gather the same initial information as needed for a manual wire center-
ing study, except that with the wire centering program the data are
used as input to the computer. The required data are as follows:

(1) anticipated number of subscriber lines and their location for each
year to be studied (Typically, these data are required for 5, 10, 15 or
20 years into the future.)

(2) number of existing wire centers, their location, and other pertinent
characteristics

(3) trunk pattern between existing wire centers
(4) average cost of loops and trunks as a function of length
(5) number of proposed wire centers to be considered.
All of this information must be recorded so that the computer can

store and manipulate the data. This is accomplished by superimposing a
grid system over the area to be studied and associating all growth and
wire center locations with this grid system. The growth of 100 customers
at an intersection of grids 5,5 is shown in Fig. 13 as an example.

With the quantity and the location of subscriber lines determined,
the engineer is ready to proceed with the study by having the computer
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calculate the outside plant costs for the study areas considering only
the existing offices. After the outside plant costs are calculated for a
study area, the building additions, equipment, and additional land costs
are estimated by the engineer. Essentially, the entire plant required for
serving the customers with existing offices is priced out for each study
year. Costs for building additions are needed, since this is usually an
important reason for considering a new wire center in the first place.
These costs become the reference against which all other possible solu-
tions will be compared. The present computer program will handle
eighteen existing wire centers and six proposed centers in a study area.
Forty trial locations for each proposed center are possible.

The redistribution of customers to wire centers affects the traffic
load within and between centers. This is recognized, and the program
distributes the traffic loads in proportion to the customers transferred
into and/or out of each wire center.

The output of the computer includes (1) general information regard-
ing the problem, such as the study date, (2) existing wire center data
such as present trunk pattern and cost of providing service with exist-
ing centers, (3) a list (see Fig. 14) of the ten most economical proposed
wire center locations and their associated cost, and (4) a detailed de-
scription of the outside plant assignment and the trunk pattern for the
best solution. After several field trials of this program, it was accepted
as a useful planning tool and has been made available for Bell System
adoption.

The primary advantage of using the computer program is its flexi-
bility for examining quickly many alternatives and variations of a given
problem which previously could not be examined without complete
expensive manual recalculations. If changes occur which were not
originally anticipated, a restudy of the area can be made by simply
changing the affected information (stored on punched cards) and re-
submitting the problem to a computer center.

The program will aid in keeping future plans up to date with a mini-
mum of effort on the part of the planning engineer. Thus with current
engineering plans, decisions can be made more deliberately. In addition,
the engineer will be in an even better position with a computer program
now being developed to aid in determining when a new center can most
economically be constructed.

Along with the engineering of cable routes and wire centering studies,
other related factors are being considered. As an example, there exists
a close economic relationship between the switching techniques, the
degree of decentralization of switching equipment, and the configuration
of the interoffice trunk cable networks which may be combined with
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NO MIRE CENTER(S1 ADDED

LOOPS

TRUNKS

$ 3215722

$ 1195623

TOTAL - LOOPS ANO TRUNKS 4411345

LAND 0

0

CENTRAL OFFICE EQUIPMENT .....---...8 0

TOTAL

4 MIRE CENTERIS) ADDED

LOOPS 2313992

TRUNKS 1329133

$ 4411345

TOTAL LOOPS AND TRUNKS $ 3643125

LAND ----- 0

BUILDING ------ .0

CENTRAL OFFICE EQUIPMENT 0

3643125TOTAL 1

ECONOMIC ADVANTAGE OF ADDING WIRE CENTERS -$ 768219

LOOPS

LIST OF TEN BEST SOLUTIONS AND ANNUAL CHARGES

TRUNKS TOTAL PENALTY LOCATIONS) OF ADDED WIRE CENTER(S)

$ 2313992.22 $ 1329133.48 $ 3643125.72 1 0. 116.5,20.0) 118.5,23.01 112.0,22.01 113.0,26.01

$ 2323909.50 6 1326039.36 f 3649948.88 0 6023.16 (16.5.20.0) 117.5124.01 112.0,22.03 (13.0,26.0)

$ 2326183.09 3 1335968.23 $ 3662151.34 $ 19025.63 116.5,200) 119.5.24.0) 112.0,22.0) (13.0,26.0)

5 2361164.34 3 1318489.83 11 3679654.19 5 36528.47 (15.5,19.0) 118.5,23.0) 112.0,22.0) 113.0.26.01

$ 2347148.28 1 1333569.05 11 3680717.34 $ 37591.63 116.5020.01 118.5,23.0) 112.0,22.01 114.0,27.01

$ 2357065.59 $ 1330218.39 11 3687284.00 $ 44158.28 11665.20.01 117.5,24.01 112.0,22.01 114.0,27.01

$ 2359339.16 $ 1340834.95 5 3700174.13 3 57048.41 116.5.20.01 (19.5,24.0) 112.0,22.01 114.0,27.01

5 2373477.06 $ 1332824.52 5 3706301.59 f 63175,88 (16.5,20.0) (17.5,24.0) (12.0,22.0) 1/2.0.27.01

3 2394320.44 3 1322845.81 3 3717166.25 3 74040.53 (15.5,19.01 118.5,23.01 (12.0,22.0) (14.0027.01

3 2439273.81 $ 1283318.17 $ 3722592.06 3 79466.34 (14.5.20.0) 118.5,23.0) (12.0,22.0) 113.0026.01

Fig. 14 - Economic summary - annual changes, year 1990.

subscriber cable facilities. Potentially large savings in copper conductors
are possible, particularly through the location of switching equipment
near maximum subscriber density. These techniques must, of course,
be supplemented with reasonably accurate forecast of future customer
requirements.

IX. FORECASTING

A large segment of the Bell System's investment for new construc-
tion is spent each year on additions to exchange outside plant. The
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quality of techniques for making forecasts and decisions as I o where,
when, and what additional telephone facilities are required greatly
affects the efficiency of the large annual plant construction program and
may result in failure to meet customers' telephone needs on time. Present
forecast results are not altogether satisfactory in spite of much effort
on the part of both commercial forecast and development personnel and
plant engineering forces. Errors in prediction are costly, sometimes
sufficiently so to offset the advantages of the most carefully engineered
project. Outside plant forecasting therefore is an important function
worthy of the forecaster's best efforts - certainly it is an area where
improvement could result in substantial dollar savings.

Generally, the growth rate of an area is not constant, although there
are some patterns of cumulative growth which will be discussed later.
Wide fluctuations in the rate of growth can occur for a variety of rea-
sons. These include the location and accessibility of the land, owner-
ship and value of the property, availability of utilities (particularly
sewage disposal), development of adjacent areas, penetration of the
housing market, political or municipal climate or action, changes
in the level of business activity, employment opportunities, zoning
restrictions, tax structure, and a host of others. It is important that the
forecaster and the engineer recognize these factors. They also present a
good argument for considering each forecast section on its own individual
merits and against adopting a purely mechanical forecasting procedure
which might preclude sound business judgment.

Procedures for maintaining outside plant planning studies covering
fundamental feeder routes on a current basis have been implemented.
Cable facility charts which graphically display the relationship between
existing cable pairs, usable pairs, past trends of working pairs and fore-
casts of line growth have proved to be invaluable to both the forecaster
and the engineer of outside plant in interpretation and analysis (see
Fig. 15). Such charts permit more complete and sharper analysis of
growth, both past and forecasted, and its relationship to engineering
planning and programming.

An ideal forecasting method should be sensitive to the whole spectrum
of economic and demographic factors which influence the direction and
magnitude of population growth and also the extent of usage of tele-
phone service. Unfortunately, no such comprehensive solution is yet
in sight, although its achievement remains a desirable goal towards
which to work. In the meantime, work has been done and the search
continues for a worthwhile improvement over present methods.

Studies show that cumulative growth of a central office area over a
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period of years exhibits an "S" shape characteristic (Fig. 16). For
example, an initial period of slow growth in undeveloped areas is fol-
lowed by a transition into a period of sharply accelerated growth char-
acteristic in the development of large tracts. Next, the growth tapers
off (fill-in development takes place) as smaller developers working on
scattered parcels of land tend to predominate. Finally, a terminal con-
dition is reached during which little or no growth occurs, and even some
decline may be experienced. At some point during this latter period,
land usage may change and a new growth cycle begin in the form of land
clearance, rehabilitation, or conversion to higher -density residential or
commercial use.

100

80

60

40

20

UNDER- DEVELOPMENT OLDER
DEVELOPED UNDERWAY SECTION

DENSELY -
DEVELOPED

GROWTH IN
HOUSEHOLDS

0 mft...
0 10 20 30 40 50 60 70 80 90

YEARS AFTER INITIAL DEVELOPMENT

Fig. 16 - Urban land goes through a growth cycle.

The initial effort to improve forecasting was mainly directed toward
capitalizing on the existence of these growth patterns. The technique
proposed for growth prediction involved selection of a suitable mathe-
matical expression which exhibits the same general "S" shape (so far
the simple logistic function* has been used) and estimating the parame-
ters of the function in a particular area from records of growth and the
estimated level of the area's maximum development for the present
growth cycle.

* Cumulative growth, G = K/[1 exp (a + tit)] , of an area requires making
estimates of the three parameters K, a, and S. K corresponds to the maximum
development level of the area and can be estimated from knowledge of current
and anticipated land usage. Values of the parameters a and are estimated from
the growth records by using the linear transformation, loge[(K - G)/G] = a + pt.
In this form a plot of cumulative growth as a function of time appears linear. The
values of a and S can be derived by least square methods. This fitted function
would then be used to predict future growth.
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It should be pointed out that these procedures have proved most
useful in growth areas having the following characteristics: boundaries
which have remained relatively constant (or growth records which could
be readily adjusted to reflect changes), availability of good historical
information on households (or main telephones) and at least 20 per cent
but not over 80 per cent of ultimate saturation realized. Realistic esti-
mates of ultimate capacity based on sound business judgment and a
careful analysis of basic assumptions and growth factors are of course
the key to successful forecasts made by this method.

This technique, while of primary use in long-term projections, is also
useful in medium- and short-term forecasting. For the latter a forecast
may be derived by weighting current experience to reflect short-term
trends and to place more emphasis on the more recent growth patterns.
A computer program has been written which will allow the exponentially
weighted forecast to be programmed along with the logistic function.
This allows the weighting to be a function of the actual gain currently
being experienced.

Work is planned on an important related factor: timing plant addi-
tions requiring a short-term forecast. Of necessity, short-term forecasts
should project growth by months or quarters for at least the current
year and preferably the following year. To accomplish this, a good
short-term forecasting system must be sensitive to fine-grain fluctuations
in demand around the long-term trend. However, the forecast can-
not be made for an area and forgotten; adjustments are necessary
from time to time to reflect new growth data and any changes that affect
the saturation level.

As part of the short-term forecasting system, criteria need to be
developed for determining whether actual growth falls reasonably close
to expected demand, or whether deviations are large enough to warrant
review of the forecast.

X. EXCHANGE AREA PLANNING - SUMMARY

A very important function of the engineer in the associated company
is medium- and long-range planning of the exchange plant. He must
allocate the company's resources in such a manner as to maintain a
desirable relationship between cable network and central office equip-
ment investments and also make future additions in each area as needed
to meet service requests. To accomplish this task, the exchange feeder
route analysis program, the exchange line multiplexing analysis pro-
gram, the wire centering programs, and forecasting methods combined
will aid the engineers and planners in establishing plans for exchange
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areas as well as in administering the exchange plant. With these tools
the associated company will be better able to estimate current and
medium -term construction programs including manpower, materials,
and money.

XI. FUTURE WORK

The complete implementation of these new concepts in the Bell Sys-
tem will require extensive training, coordination, and the working out
of difficulties that will arise in any program of this magnitude. The
people involved will have accomplished an Herculean task if the adoption
is complete by the early seventies. The future extending past 1970 is
extremely difficult to predict, except that many worthwhile innovations
employing more sophisticated engineering skills and programming
techniques will probably be superimposed on the concepts discussed in
this paper. This is particularly true of some of the analytical techniques
used, as in this first application methods were selected to insure that
theoretical difficulties would be held to a minimum.

Bell Laboratories can use these same computer techniques in assess-
ing the longer -term requirements for new laboratory developments by
extrapolation of the data used by the associated companies for their
day-to-day planning. With this capability, systems engineering studies
can be completed more quickly and yield results more accurately reflect-
ing future development needs of the Bell System.
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Epoch Detection -A Method For
Resolving Overlapping Signals

By TZAY Y. YOUNG
(Manuscript received October 20, 1964)

The purpose of this paper is to discuss an epoch detection procedure
which is very useful for the resolution and detection of signals overlapping in
time. An epoch is the beginning instant of a signal. The epoch detection
procedure is based on the following hypotheses: On the null hypothesis Ho
that a certain instant t is not an epoch, analytical continuation exists at t,
and one may predict the signal in the future based on past experience
or vice versa. On the hypothesis H1 that t is an epoch, the analytic continua-
tion is disrupted at t.

Based on this idea and the assumption of a Gaussian noise, a test statis-
tic is derived from the maximum likelihood principle. The test statistic
may be obtained at the output terminal of a linear filter. The performance of
such a system is considered. Also discussed briefly are the cases of over-
lapping stochastic signals and overlapping radar signals. Some experi-
mental results obtained from a digital computer are shown.

I. INTRODUCTION

Consider a signal composed of a train of overlapping wavelets.* The
wavelets may, for one reason or another, arrive at the receiver (or
measuring apparatus) delayed by different amounts of time. The time
delays of the individual wavelets are unknown, but their differences may
he relatively small so that the wavelets overlap. The beginning instant
of each wavelet is called an epoch. These signals are corrupted with
Gaussian noise. Our problem is to detect the overlapping in time. In
other words, we wish to design a practical system which enables us to
resolve the received signal train into overlapping wavelets and to de-
scribe them individually.

The theory of statistical detection of signals buried in noise has been
well established.1-4 In the field of resolving overlapping wavelets, Hel-

* We use the word "wavelets" for the individual overlapping wavelets, and
reserve the word "signal" for the over-all signal train.
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strom5 discussed the optimum detection of two overlapping wavelets.
With his assumption that one wavelet is separated from the other by
known amount of time, the problem is considerably simplified and
relatively easy to handle. Nilsson' discussed the problem of resolving N
overlapping wavelets by deriving an equation to be maximized in an
N -dimensional parameter space. Even in the case N = 2, the maxi-
mization of this equation is very complex and practically unsolved.
Root' considered the general resolvability of radar signals, but gave no
decision rule. Other studies related to signal resolution place most
emphasis on the study of ambiguity functions8'9 and on the design of a
radar waveform which is inherently suitable for signal resolution.'°

Generally speaking, for N overlapping wavelets, an optimum detec-
tion procedure would always involve searching for the maximum value
of a likelihood function in an N -dimensional parameter space.' For N
large this is hardly practical, and furthermore, if the number N is un-
known, the problem becomes even more complicated. In a recent memo-
randum,1' the author suggested an- epoch detection procedure based
on the properties of the signal at the epochs. The basic idea was
to use a portion of the received signal in the past to predict the signal
in the future, and to announce the arrival of a new wavelet if the pre-
diction failed sufficiently badly. The present paper originated from that
work. We intend to formalize and to develop the principle of epoch
detection.

Consider a signal f(t) consisting of two overlapping wavelets as shown
in Fig. 1. The function f(t) is analytic everywhere except at the two
epochs ti and t2 . For any instant t which is not an epoch, it is possible
to use the signal immediately prior to t to predict the signal immediately
after. This is indeed the property of analytic continuation. However,
at the two epochs, the statement is no longer true. Indeed we may de-
fine an epoch as an instant at which analytic continuation is disrupted.

t, t2 t-p.
Fig. 1 - Overlapping signals.
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It is precisely this disruption of analytic continuation that enables us
to detect the epochs. In practice, we shall use the signal representation
technique to describe such disruptions.

We make the assumption that any wavelets, though close enough to
cause overlapping, are separated by at least T seconds, i.e.,

I ti - Id T, (1)

where t; , to are any arbitrary epochs and T is a predetermined quantity.
This assumption is necessary for our formulation, since for any instant
t we shall utilize the information in the time interval (t - T, T)
to determine whether t is likely to be an epoch. We further assume
that any 2T -second segment of the individual wavelets is representable
by a set of known component functions. Then the disruption of analyti-
cal continuation simply means that if an epoch exists in a certain 2T
interval the signal in that interval is no longer representable by the set
of component functions. Likelihood functions may be formulated in
accordance with these criteria. The instant which corresponds to a
maximum value of a likelihood ratio is then the estimate of the epoch.
This is of course the well-known maximum likelihood method of signal
extraction, which has some theoretical advantages.12'13 Other parame-
ters of the wavelet may be estimated simultaneously.

Using the epoch detection scheme, we have in fact reduced an N -di-
mensional problem to N one-dimensional problems. Undoubtedly, in a
process such as this, some information is lost, and one cannot expect
optimum signal resolution except for some extreme cases. However,
the simplicity and the practicality of the process justify our investiga-
tion. The process should be especially useful in the case of strong signals
for which the advantage of a simple system outweighs that of optimality.
In addition, the concept of epoch detection deserves to be studied and
developed on its own right.

II. STATISTICAL EPOCH DETECTION

Let us denote the deterministic signal by f.(t), the random Gaussian
noise by f(t), and the noisy signal by f.+,,(t). In this section, we shall
consider the case that the deterministic signal consists of N overlapping
wavelets with each wavelet being of the same waveform. Then we may
write

LA, = +

= E Akf,,(i - 1k) f(t),
k=1

(2)
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where Ak and tk are the amplitude and the true epoch of the kth wave-
let respectively. The function .1 (r) represents the waveform of the
individual wavelets.

To begin with, let us assume that each wavelet is representable by a
set of known component functions. This assumption presents no theo-
retical difficulty since, by using a set of component functions that
constitute a complete set, one may represent any continuous signals to
any degree of accuracy." However, practical considerations limit us
to use a set of a finite number of component functions. We are particu-
larly interested in the classes of component functions known as gener-
alized exponentials, which include real and complex exponentials, sinu-
soids, polynomials and possible sums of products of such functions.
The generalized exponentials have the following important property.
A finite and properly -chosen set of generalized exponentials, as a set,
goes into itself under the translation of time." As a result, if a wavelet
fw (r) is exactly representable by a properly chosen set of m generalized
exponentials io") (7), i = 1, 2  m, i.e.,

10,

(T) =
(T), 0 T

(3)

then the tail of fu, (r) is also exactly representable by the same set of
generalized exponentials,

fw (t r) = E cinp(z) 0 < t C 00 0 r 00 , (4)

-00 s T <0,

where ci(t) is the ith coefficient for a time translation of t seconds.
Obviously, under this condition our earlier assumption that every 2T
segment of the individual wavelets is representable by the set of com-
ponent functions is fulfilled. The full significance of this property will
be appreciated later, when we derive the test statistic for epoch detec-
tion.

The assumption of generalized exponentials is not as restrictive as
it first appears. For one thing, most physical wavelets may be represented
by a few terms of these functions. Furthermore, almost all commonly
used functions for signal representation or curve fitting belong to the
classes of generalized exponentials, and if we are willing to tolerate
some inaccuracies by an approximate representation, practically all
waveshapes may be represented by them. It is interesting to note that
for the generalized exponentials v(z) (r) analytic continuation exists
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everywhere except at T = 0. Consequently, the epoch of a wavelet
1, (T) described by (3) satisfies our earlier definition of disruption of
analytic continuation.

Next, consider the Gaussian noise f. (t) having a covariance function
/? (T) .16 The covariance function may be taken as the kernel of an
integral equation,

fo

2T

R (t - r )4/.1)(r)dr = (r). (5)

For our problem, R (r) is real and symmetric, the eigenvalues, X; ,
are positive, and the eigenfunctions, ik()) (r), are orthonormal real
functions. Both deterministic and random signals may be expressed in
terms of these eigenfunctions."'17 Thus, we may write

and

with

and

T) = E vi(t),k())(,),

L(t + r) = E si(t)#(.1)(,),

fn(t T) = E n1(t)0) (r),

410 (r) = E uipk(i)(T), 0 7

2T

V j(t) = fs+n(t r)11/(j)(r)dr,f
2T

Si(t) =
r

7)11(i) (T)(1T

2T

nj(t) = f f yi(t r)Iku)(r)dr,
0

2T

Ujj = c0(i) (T)11/(j) (T)C1T.
0

0 T 271,

< 2T,

(6)

(7)

(8)

(9)

It is essential to note that by this expansion, the random variables
ni (and also v;) are independent variables with variances X; . Since we
are not interested in the singular case," we assume that
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t si(t) 12
< GO

j=1 X;

u, 12 <ao,
X;

We are now in a position to derive the test statistic for epoch detec-
tion. Let us start with the simplest case.

(10)

2.1 Known Wavelet at Known Epoch

In this case, we assume that there are reasons to believe that a wave-
let in the form of Akfiv(t - tk) may arrive. Both Ak and tk are assumed
known. In assuming known tk , it is also implied that no epoch other
than tk may appear in the time interval (tk - T, tk T). Let us define
a function

- T), T T 2T,
(11)

0, elsewhere.

We wish to test the hypothesis H1 that the wavelet arrives against the
null hypothesis Ho that it does not. Thus, we write

Ho : f8(tk - 7' + T) E b icom (r), 0 < T < 2T, (12)

and

Hi : fa (tk - T + r) = LI(T) ajW(i) (T), 0 T .5 2T, (13)

with .fo(r) defined as

f1 (T) = Akfh (T) - Ak E rico") (r), 0 :5- T 2T. (14)

The constants ri will be defined later. Let us explain these two hypothe-
ses. In the first place, we notice that in using generalized exponentials
as component functions, it is implied that co") (T) and consequently
1,,,(r) extends from T = 0 to T = CO , as clearly indicated in (3). (The
case of overlapping pulses will be treated later.) Therefore, on the
null hypothesis Ho , although the new wavelet does not arrive, there
will be tails of previously arrived wavelets appearing in the time inter-
val (tk - T, tk T). Since every 2T -second segment of these previ-
ously arrived wavelets is representable by the component functions
co(i) (T) with 0 < T < 2T, we obtain (12) with the coefficients bi to be
estimated.

On the hypothesis H1 , the wavelet arrives at t = tk . The term Akfh (r)
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in (14) simply reflects this fact, since fk (T) = 0 for T < T, as shown
in (11). It is also this term that causes the disruption of analytic con-
tinuation at tk . In addition to the kth wavelet, there are also tails
of previously arrived wavelets, and we might have written for the
hypothesis H1,1, = Akfh + E goo(`). For reasons that will be pointed
out later, we simply split qi into two terms, qi = ai - Akri , and ob-
tain (13).

The random variables are independent when expressed in terms of
eigenfunctions, and consequently we expand, similar to (6), fh (T) and
f0(T) into

with

mr) = E hppu) o T 2T,

fg(r) = E g (T), 0 T 2 T,

T

it j = f ( )11; j) (T)C1T
0

= Akh; - Ak, E

(15)

(16)

density for the null hypothesis may then be
written as

Po(v;bi) =
(v; -E biuu)2

1

(27TX;)4 exP Ei 2X;
(17)

according to (6), (7), and (12). Similarly, we write for hypothesis Hi
the joint probability density

Pi(v;ai) = (217rxi)iexp -
(v1 -E aittv -

2X;
. (18)

In the absence of a priori information on the tails of previously arrived
wavelets, a reasonable test is the maximum likelihood test which is
given by

L -
max P1(v;a)

a
exP (n)max Po(v;b)

b

(19)

with the threshold i to be determined either by the Bayes criterion or
by the Neyinan-Pearson criterion. Equation (19) is equivalent to
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(v; -E aato2 - 2(v; -E amog; +
log L = max [- E

(v5 - E biu02
- max [- E

b j 2Xj

In order to simplify (20) somewhat, let us write

* UijUii = ,
Aj

(0*(T) = E u4*,p(D(r).

We assume that it is possible to write

utiu,

2

(20)

(21)

Oli (22)
Aj

where özi is the Kronecker delta. Remembering the orthonormality of
eigenfunctions, (22) may be written as

viiu, (.)
tp (r)0(j)(r) dr

i Xi

2T

E f Nok(k)(r)u,..i*,P(')(r) dr
j,k 0

9(1)(r)so(i)*(r) (IT

= 61i.

(23)

Thus (22) is simply a consequence of the fact that 49") (r) and co)* (r)
form a biorthonormal system.18 Furthermore,

co") ) = E uipP(j) (A)

= E
2T

= E - T){!/(j)/T) dr
0

R(1.4 - r)cp")*(r) dr.

(24)

Consequently, gyp(') *(r) is indeed the solution of an integral equation
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and may be obtained for given so") (A) and R (1. - T).19 Thus it is al-
ways possible to achieve the biorthonormalization of a set of known
component functions by means of a process similar to the Gram -Schmidt
process of orthonormalization. It is appropriate to point out here that
the assumption of a biorthonormal system is solely for the purpose of
mathematical simplicity.

Now let us define the constant ri as

Then, according to (16), we obtain

i xi i,/ x;

Akri - Ak E rzbil

(25)

(26)

= 0.

In other words, Mr) is orthogonal to co(i)*(T). Returning to (20),
we notice that because of (26), log L may be simplified into the form of

2

log L E - E ?Thj., + max -
(v5 -E2

i Ai j LA1 a i 2Xj
(27)

(v, -E biu,)2
- max -

2X;

However, the last two terms are indeed identical. Thus,

logL = E -E 9a2

, x; 2X;
(28)

The last term in (28) is only a constant, and we may use the statistic

G = E vA (29)
i Ai

for testing the arrival of the wavelet at the instant t = tk . Here is

the threshold for testing G.
The results may also be expressed in the form of integral equations.

Using a procedure similar to that used in (23) and (24), the statistic
shown in (29) may be expressed as

2T

G = - T T).10*(T) dr (30)
0



410 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

with J.,* (r) being the solution of the integral equation
2 T

ff9(µ) =
f

ROI TV0*(T) dr.
0

The function fg (A) has been defined in (14) and is rewritten here.

f0(µ) = A kfh (A) - Ak E Now (m).

(31)

(14)

The coast ants ri , written in integral form, become
2r

= fh(r)9(i)*(r) dr (32)

according to (25). For a white noise with a covariance function 5(r),
the results are considerably simpler since in this case,

V")*(T) = V") (T)

f g* (T) = fg(T)

The test statistic G shown in (30) may be obtained by a linear filter.
If we use a linear filter whose weighting function is characterized by
fg* (r) - or, in other words, if the impulse response of the filter is
fg*(- r) - then with L+7, (t) as input, the output of the filter gives us
the desired statistic G with a time delay of T seconds." As examples,
we show in Fig. 2 some wavelets and the weighting functions of their
corresponding "matched" filters for epoch detection in white noise.
(See Appendix.)

The weighting functions shown in the figure are calculated accord-
ing to (14). It is essential to note the difference between our "matched"
filter and the standard matched filter for the detection of non -overlap-
ping signals. Without interfering signals, the matched filter would be
fw (r), while in our case, a term in the form of Erop(i) (r) is to be
subtracted from the original waveform, as clearly shown in (14). It
is indeed the subtraction of this term that enables us to suppress the
effect of previously arrived wavelets. It is also this subtraction that
represents the price we pay.

We wish to compute the false alarm and detection probabilities for
the epoch detection system which is based on the statistic G. Since G
is obtained from a linear operation on a Gaussian -distributed variable,
G is also Gaussian -distributed.'' Under the hypothesis Ho , its mean
value is

(33 )

2T

E[G j Ha] = fo f g* (T) E bip(i)(T) = 0 (34)
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t
0

2T T-*

t 2T T

t-o\ 2T T

SIGNALS WEIGHTING FUNCTIONS

Fig. 2 - "Matched" filters for epoch detection in white noise.

since f,*(T) and co") (r) are orthogonal. Under the hypothesis H1
the mean value becomes

2T

E[G I = ft) f,*(TH, fo(T) Eai(p")(T)]dr

2T

= f 0* (TV (T)f (IT.

The variance of G under either hypothesis is
2T 2T

o o

Var G = fo*(TY,*(0f,,(r)f(1.04(17.

=

f2T r2T

0 JO

(35)

fg*(r)f,*(OR (7- - A)diudr (36)

=

fr2 T

f (TV 0(T)C1T
0

where we have used (31). Thus,
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f27'

d2 = fg*( )ffu(r )dT) ( 37 )
0

a dimensionless constant, plays the role of signal-to-noise ratio (SNR).3'4
The probability density functions of G are

po (G) = (27d2)-1 exp (-G2/2d2), (38)
(27rd2)--1 [- - d2)2/2d2].

and the false alarm and detection probabilities are, respectively'

Qo = erfc (E/d,),

Qd = erfc -
where erfc (x) is the error -function integral.

2.2 Unknown Amplitude and Unknown Epoch

In this case, the two hypotheses become

Ho : f a (t - T T) = E bico(s)(T),

Hi :f.(t - T T) = A (t)fo(r)

E aico") (7),

where

(39)

0 T 2T, (40)

0 T 2T, (41)

fo(T) = fh(r) -E rico") (r), 0 < r < 2T. (42)

Notice the slight difference between the definition of MT) shown in
(42) and that of (14). The joint probability densities are, similar to
the previous case,

(?), -E biu,)2
po(v;bi) = exp [ - E

(27,x;)1 2X 
3

(v, -E - A9, )2
1

Pi(v;ai , A) = exp [-
(2

E
7)01 i 2X;

(43)

Using the principle of maximum likelihood estimation, we first make
for each instant t an estimate of the amplitude, A (t), and then make
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an estimate of the epoch, 1, which corresponds to the maximum value
of the likelihood ratio of the hypothesis H1 against the hypothesis Ho .
Thus

max Pi(v;ai A)
L(A,t") = max L(A,t) = max 'max

Po(v;bi)b

By the same argument leading to (28), we obtain

log L(A,t") = max log L(A,t) = max [max log L(A,t)]
t A

Vx--,2 jA(Ogj A2(t)g;21
= max [2_,

t,A 2X;

Taking the partial derivative with respect to A,

0 log L(A,t)
aA

we get A(t), the maximum likelihood estimate of A (t),

A(t) =[EvigiyiEel.
XJ L Xj

(44)

(45)

(46)

(47)

It should be noted that the random variable v; is also a function of t,
as shown in (8). Substituting (47) into (45) gives us

2

log L(A,t) = max [1 A2(t) E . (48)
2 i Ai

If we normalize function f, (r) such that

then

and

2 2TE= ,*(r)fu(r)dr
Xj o

f
2T

= 0

R(7.- µ)fu(µ)fg(r)Cipidr
0

=

(49)

2T

A t ) = V12 = JOr fs+(t - T + T)f,*(r)dr, (50)

log L(A,t) = max log L(A,t) = max 1A(t) 12. (51)
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Thus the instant that corresponds to the maximum value of log L (A,t)
will be our estimate of the epoch. Indeed we may base our estimate on
the maximum value of A (t) I. Equation (50) may of course be gen-
erated by means of a linear filter. If f,, (T) and consequently Mr)
are properly "normalized" in the sense of (49) and (42), the signal-
to-noise ratio (SNR) for the kth wavelet is Ake. Following the
procedure used by Woodward and Davis," it can be shown that, for
the strong -signal case, the variance of the epoch estimate is in-
versely proportional to SNR and to the square of the filter bandwidth.

We notice that the performance of an epoch detection system is
related to the component functions only indirectly. It is the signal
waveform itself that is important. As a rule of thumb, the smaller
the absolute values of the constants ri are, the more effective the system
will be. In fact, we may define a useful figure of merit,

SNR for epoch detectionp =
SNR, for the detection of ,/,,(T)

fo2./(/*(r)h(r)dr (52)

/02

T

fh*(T)fh(T)CIT

as the efficiency of the epoch detection system, where A* (T) is defined
in the same way as we did for f u* (r). Using (42) and (49) and the fact
that f 0* (r) is orthogonal to cow (r), we have

1

p= 1 + E (53)

As a result, p < 1. In the limit as every ri approaches zero, p 1 and
the epoch detection system approaches the optimum detection system
for non -overlapping pulses of duration T seconds.

2.3 Overlapping Pulses

A pulse of duration To seconds may be regarded as two overlapping
wavelets with epochs separated by To seconds. For instance, an expo-
nential pulse, exp (- T) for 0 < T <= To , may be regarded as the sum
of two exponential functions, exp (- T) with 0 T 00 and
- exp (- T) with To T 00. We assume that several pulses may
overlap. Thus, arrival of a pulse is characterized by the simultaneous
existence of a wavelet ftob(r) at the beginning epoch tkb and a wavelet
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fwe (T) at the ending epoch tke where tke = tkb + To . For mathemat-
ical simplicity, we assume that the Gaussian noise in the time interval
(tkb - T, tkb T) and the noise in the interval (tke - T, tke T)
are uncorrelated. In other words, we assume

R (r) = 0 for T > To - 2T, (54)

thus enabling us to treat independently the random variables in the
two time intervals.

Again we formulate two hypotheses.

7' + T) b (s)
iC (r),

f3(t + To -T r) = E 0 r 27',
(55)

and

H1 : fs (t -T T) = A (t)f,b (r) E aiio")(r),

f8(t + To - T T) = A (Of; (r) E aieso(i)(r), (56)

0 r < 2T,

where

fub (r) = fhb (T) - ribco") (r),

foc (r) fhe (T) - E riCio")(r), (57)

T 27',

with fhb (r) and fhe (T) defined in the same way as fh(r), and the con-
stants rib and rie defined in the same way as ri . Let us define

fu (T) fgb (T) f (T - T0). (58)

Notice that fue (r - TO) = 0 for r < To . The function f, (r) is norma-
lized in the sense that

with

and

T

0

fg*(r)fg(r)dr = 1, (59)

fg*(r) = fgb*(r) + (r - To) (60)
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2T

ff7b(A) = f R(i1 TVgb*(r)dr,
0

2T

fge(A) = 1 R(// - T)fge*(T)dT.
0

Equations (58) through (61) can be justified only on the assumption
of (54).

Using the maximum likelihood principle, we write

max Pi(v; aib, a;6, A)
[L(A ,i) = max a'A (62)

t max Po( v; bib, bie) 1*
b

(61)

With a derivation parallel to that of 2.2, we obtain the final results
To+2 T

A(t) = E = f f,+(t -T TV,*(7-)dT, (63)
i Ai 0

and

log L (A, t") = max z 1 A (t) 12. (64)

Thus, based on the value of 1 A (t) 1, we may obtain the estimate of the
epoch t. Again a simple linear filter with a weighting function f,*(T)
defined in (60) will suffice to generate A (O.

III. OVERLAPPING STOCHASTIC SIGNALS

Again we consider a train of overlapping wavelets corrupted with a
Gaussian noise. Each wavelet is assumed to be representable by a set
of m known generalized exponential functions. However, the wavelets
are stochastic in the sense that their exact waveforms are unknown and
that each wavelet may differ from the other. As a result, the two hy-
potheses become

Ho

H1

: f8(t - T r) = E bico")(T),

:Mt - T r) = E ci(t)x")(,)

where

+ E aiv(i)(,),

0 :5 T < 2T, (65)

0 T 15 2T ,

x(i) (r) = E sav(1)(r - T) - E ago") (r)

(66)

(67)
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40(1) (7- - T) = 0 for 7 < T. (68)

The constants 13i/ and Tit are constrained by the biorthonormality re-
lationships. Let 0) (r) be the eigenfunctions of the covariance function
R (7). For the sake of the independence of random variables, we expand
the component functions, the noise, etc., in terms of 01) (r). For x(i) (r),
we then write

X(i) (r) = E xipet(j)(,), 0 6 r < 2T. (69)

The constraints of biorthonormality are

i Aj

i Xi

and

- Si,
Xi

A direct result of (70) and (71) is, similar to (25) and (32),
r2 T

yet = E u_j/ v(k)(T - ntk(i) (T)dT
j,k j

2T

= Eik
k 0

go(k) - flso(1)*(r)dr.

(70)

(71)

(72)

(73)

To illustrate the procedure for formulating x(1) (r), let us consider
the simple case of white noise for which the biorthonormality reduces
to orthonormality. The first step is of course to orthonormalize with
respect to the time interval (0,2T) the m component functions by means
of the Gram -Schmidt procedure. Next we may choose any value of Qit

for (67) as long as the m functions E (r - T), i = 1, 2  m
are linearly independent. Using (73) for the calculation of -y,/ guaran-
tees that x(i) (r) is orthogonal to v(i) (r). Finally, by means of the
Gram -Schmidt process, we may combine the functions x(1) (r) linearly
to make them orthonormal. In this way, all three conditions, (70),
(71) and (72), are satisfied. For colored noise, the procedure is similar.

Under these assumptions of biorthonormality, an application of
maximtun likelihood principle then gives us
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ei(t) = E iv xi;

where x(')* (T) is the solution of the equation

and

27'

2T
(i)

X kW = f R(lU - T)X")*(T)der,

f -}-(t - 71 + T)x")*(T)dr, (74)

(75)

log , 1) = max log (e,. , 1) = max [ 1
7_, E ei(t) 12]. (76)

e i

The estimated epoch / is the instant that corresponds to the maximum
value of log L (ai , t). The epoch detection system which generates
log L (6i , t) will then consist of a summing amplifier, m squarers and
m linear filters characterized by the m weighting functions x(')*(r).

For stochastic signals, a proper definition of SNR for the kth wavelet
is

2T
7 2 1 V'', \

0

(1): \ (1) ,
ak - ci9(tk) x kT)X ) (LT

In- E c,2(to,
m i=i

(77)

where we have used (72). The coefficient, ci (4), is defined by (66) with
tk , the kth epoch, substituted for t.

Let us now show some experimental results obtained from a digital
computer. Fig. 3 illustrates the detection of overlapping wavelets, each
consisting of two exponentials, Cr and e -2T . Although in our experiment
the three overlapping wavelets have the same waveshape, they are
regarded as stochastic since we do not assume the a priori knowledge of
the proportion of the two exponentials that constitute the wavelets.
The signals are additively corrupted with white noise as shown in the
second row. With the definition of (77), the signal-to-noise ratios for
our examples are, in decibels, 00, 15 and 8, respectively. Since we know
the component functions, eT and e -2r, , what we need to do would be
simply to estimate the coefficients ei(t) by means of linear filters pre-
scribed by (67) and then calculate log L (ei , I) according to (76).
What we actually did is based on a more primitive model;" nevertheless,
the basic philosophy is the same. Using this primitive model, the loga-
rithms of the likelihood ratios, log L1 (t ), are calculated over the noisy
signals, and shown in the third row. It is clear from the figure that the
estimated epochs t which correspond to the maximum value of log
LAO, almost coincide with the true epochs. However, for the 8-db
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Fig. 3 - Detection of overlapping wavelets.
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LOG Lf (t)
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case, the detection probability is low, and the peak corresponding to the
second epoch is almost not distinguishable from the peaks which are
due to the random noise alone. With the epochs estimated, one may
estimate in a piecewise manner the signal between the epochs, and the
signals fd (t) thus detected are shown in the last row.

IV. OVERLAPPING RADAR SIGNALS

The most important application of statistical detection theory is in
radar signal detection. We shall consider typical radar pulses which are
sinusoidal signals modulated by square waves. Each pulse, as discussed
in Section II, can be characterized by a beginning epoch and an ending
epoch. For simplicity, we treat them separately as two epochs.

For overlapping radar signals, we may write

1.(t) COS ((Act + 6) = Ado - tk) cos (wet Ok), (78)
k=1

where we have regarded L(t) and fu, (r) as envelopes of the sinusoidal
signals and Ok are phase angles. The pulse envelope fu, (r) is a square
wave. Similarly we consider f8+ (t) as the envelope of the noisy signal.



420 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

The epoch detection system developed previously is difficult to imple-
ment in this case because it is sensitive to radio -frequency phase. For
this reason, we assume the use of a perfect envelope detector to take the
signal envelope first!' The noise under this condition becomes narrow -
band noise. Let us designate, for a certain instant t, the envelope of the
sinusoidal signal by a and the envelope of the noisy signal by v. With
a variance X, the probability density for the envelope at time t on the
hypothesis that the sampled waveform is sine -wave plus noise is, ac-
cording to the classic work of Rice,21

v2

/0
2N

exp - ) '
-
X

0,
p(v,a) 2X (79)

otherwise,

where /0(x) is the modified Bessel function of the first kind and order
zero. It is known as the modified Rayleigh distribution or the Rice
distribution. On the hypothesis that the sampled waveform is noise
alone, a = 0 and /0(0) = 1, and (79) is reduced to the Rayleigh dis-
tribution.

po( v) =
exp ( v2- )

0,

v > 0,

otherwise,

(80)

We again formulate a null hypothesis Ho and a hypothesis H1 that
an epoch has arrived. Thus,

Ho: L(t - T T) = an, 0 < T < 2T. (81)

Hi : (t - T T) = {al
0 T T,

(82)
a2 , T S T 2T.

We may look for a coordinate system such that the random variables
on these coordinates are statistically independent. However, unlike the
Gaussian distribution, it is very difficult to find such a coordinate sys-
tem. The usual procedure, which we shall follow here, is to use for
coordinates samples of the envelope waveform taken at regular inter-
vals and far enough apart so that it is a reasonable approximation to
suppose them statistically independent. We take in the time interval
(t - T, t T) 2M measurements at 2M uniformly spaced instants
separated by AT seconds apart. Let us write for the instant t

v; (t) = f8+,, (t - T jAT). (83)

Then on the null hypothesis H0 , the joint probability density is
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2 M

PO ( V ;a0 ) = II - exp -
i=i X

v; v; -I- ee0
2 i

2X
/0 -, (a0v1

X ) '
(84)

while on the hypothesis H1 , we have

Pi(v,a1 , «2) = ri v." exp (- l
i=1 A 2X

0 -x-
_2 ai2

2 Af

+ II 12). exp - vi2 + a22) (a2v;
=m+I X 2X

/0 -) .

The maximum likelihood principle then requires

max P1(v,a1 , «2)
L(«, i) = max (86)

a

max Po(v;ao)

By considering the logarithm of the likelihood functions and taking
partial derivatives, we can easily show that

- +
xi-i

m [ «, v., x

x ag); \ \

/0' (aivd
= 0

A )

and

Af +1

L

/..' (11
x

X . X a2VA i = °'
Cx )

2 M [ a(.2)jX)1
E v-+- =0

x x oovA
of

(85)

(87)

(88)

where "(11 , 112, ao are the maximum likelihood estimates of ai , «2 , «0
respectively, and /0' is the derivative of /0 . The estimated epoch then
corresponds to

M A 2

log L(«, i) = max {E -
2X

+ log /0 (Ili
2M

&22+ E
1

[- + log (611 (89)
m+ X

2 M
2 11E [_«0 ± log /0 (ax1

2X
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It should be noted that a and v; are functions of t. Our problem would
have been solved if we had been able to solve (87) and (88) for a,
substitute them into (89) and then search for l that corresponds to
the maximum value of log L (&,t). An explicit solution in this case is,
to say the least, very difficult. Certain approximations are needed.
We shall discuss the case of strong signals and the case of weak signals
separately.

In the first place, we notice that if the signal-to-noise ratio is suffi-
ciently high - i.e., «12/2X > 1 and a22/ 2X > 1 [ (0/12 - a22 )/2X may be
small] - the Rice distribution approaches the Gaussian distribution
and the discussion in Section II is directly applicable. A linear filter
may thus be used. On the other hand, if 00.2/2X >> 1 and «22/2X small
or vice versa, we encounter the epoch of a large pulse. Therefore a sub-
optimal epoch detection scheme may be used, and again a linear filter
may be chosen for its simplicity.

Finally, consider the case that «12/2X << 1 and «22/2X << 1. It is well-
known that for small x (see Ref. 22),Y4/0(x) = 1 + (-1x2

+12122 2x
+...

2log /0(x) = Gx) - 41G1x)4

If we substitute (90) into (87) and (88) and retain only those terms
that involve il/VX and (1V-0)', we obtain as approximations

and

ai2 M ...2
'c _,/,

2X 2X`71

A 2 2M
.2a2

2X i=m+i 2X

A 2 2M
ao ti
2X

rv,2
L 2X

/ M
2)14

8X2

/ 2M vi4

i=M-1-1 8X2

2M

Similarly, substituting (90) into (89) gives us
A 2 M 2

log L(a,l) = max ,,a1 j2_7=1 -
t

1

A 2 2 M 2

a2 J

. 2X j= m+1 2X

A 2 2M 2
ao [2),

2X p--1 2X

8X2

-
X

1 i:e 12 V14

1 &22 v14

2 2X 8X2

2 2X 8X21}

1 Ix' 2 40 v,.

(90)

(91)

(92)

(93)
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An epoch detection system based on (91), (92), and (93) is very
difficult to implement. It needs further simplification. We notice that,
for M sufficiently large, the random variables take on nearly all possible
values of the probability functions. The summations then represent
an ensemble average. For example, with al2/2X << 1,

M 2 cc 2 2E v, 2
J p(;al) dX M 1 ± 9x)--1 2X

r 2)
2X )

It V3. 4

=1

11JM ()8X2

00 4

= 3/
8X2p(x,«I)dx

/11 ±
'

(94)

where p (x,ai) is the Rice distribution shown in (79). We may of course
do the same for a22/2X and a02/2X. It is indeed from this consideration
that we include the term

1 eY2 Vjl

2 2X 8X2

in (93), since it is of the same order as the difference of the remaining
two terms.

From the consideration of order of magnitude, it should be obvious
that for (91) and (92) the denominators may be replaced by M and
2M respectively. As a result, we may write

,, _02 , .,. .12 _ ., 22

!!!_. - -± L'___

2X 2 2X
+ a

2X)
(95)

Using (91), (92), (94), and (95) for (93) and simplifying, we finally
obtain

2 2 , A 2 2 (a0
2

a22log L(V) = max -1[- (41 - -M
2 2x)

111 a2
A 2 ail

= max - - - -
t 4 2X 2X

= m tax -1-
4M

2

cv12(t) t v12(t)
a= -M+1 2X 1=i 2X

2

(96)

A test may naturally be based on the quantity inside the absolute sign.
A large positive value for the quantity indicates the arrival of a be-
ginning epoch, and a large negative value corresponds to an ending
epoch. A pulse is of course marked by the arrival of both epochs. The
result is consistent with the conventional square -law detector for small,
nonoverlapping signals.
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V. CONCLUSION

We have investigated the problem of epoch detection. A test statistic,
which may be obtained from a simple, linear filter, has been derived for
Gaussian noise. In the derivation, we have assumed that each wavelet
is representable by a set of known generalized exponentials. This is not
as restrictive as it appears, considering the fact that any continuous
signal may be represented with a least -square error as small as we wish
by using a sufficient number of component functions.

The epoch detection scheme is particularly useful for the resolution
and detection of overlapping signals. For N overlapping wavelets, the
procedure reduces the resolution problem from an N -dimensional
problem to N one-dimensional problems. Some information is lost in
this reduction, and consequently it is not a scheme for optimal resolu-
tion. However, it has the essential advantage of simplicity and prac-
ticality.

The performance of the epoch detection system has been considered
briefly. The discussions of overlapping stochastic signals and over-
lapping radar signals show that the method is applicable to these cases,
and the experimental results enhance our confidence in the detection
procedure.
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APPENDIX

The weighting functions of the "matched" filters are calculated
according to the equation

.1'0(7) = .fh (T) - E rico(i) (T),

where ri's are chosen in such a way that for white noise f 9 (r) is orthog-
onal to every sou) (r). This orthogonality (or biorthogonality for
Gaussian noise) is the central idea of epoch detection, and has been
discussed in the paper.
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As an example, for the last signal in Fig. 2, the signal (or wavelet)
is of the form

feu
r -(T) = - e 2

and therefore from (11)

{e -(T -T) - e-2(r-T)
o

Thus we have

.f (T) = (eT (e2T -27,

T T 2T,
elsewhere.

T < T,
T < T < 2T,

with r1 and r2 to be determined by the orthogonality relationships

.f(T)e-T(IT = 0,

= 0,

In our example, T = 0.7, and then the solution of the above two equa-
tions is

= 0.62 and r2 = - 0.76.

A substitution of these values into the equation of fg (T) results in

0.76e -2r, 0 T < 0.7,{-0.62e-r
f° (T) = 1.39e -T - 3.30e 2T, 0.7 T <- 1.4,

which, except for a scale factor, is the weighting function shown in Fig. 2.
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Computation of Lattice Sums: Generaliz-
ation of the Ewald Method

By W. J. C. GRANT

(Manuscript received October 26, 1964)

The Ewald method was originally invented to compute the Madelung
constant. In this paper we consider a lattice whose sites are associated with
an arbitrary potential function. The "charge," or the scale factor for these
potential functions, need not be the same at each site. We consider the evalua-
tion of the resulting lattice sum at an arbitrary point, not necessarily at a
lattice site. The method involves two generalizations over previous work:
(1) the displacement of the origin off a lattice site and (2) the handling of
arbitrary periodic charge distributions by decomposing such distributions
into simpler ones involving only +q and - q. The method should prove
particularly useful for evaluating the expansion coefficients of the crystalline
potential when this potential is expanded in the usual spherical harmonic
series.

The problem of summing slowly converging series is an old one. One
physical context in which the problem has been widely studied is the
calculation of the potential due to an ionic crystal lattice. The methods
of Madelung' and Evjen2 depend on collecting ions into neutral groups.
The convergence obtained in this way, however, is conditional: that is,
the result depends on the way in which the neutral groups are chosen.
Ewald's3 method, which hinges on doing part of the summation in
reciprocal space, gives rapid convergence and the limit is unique.
Subsequent discussions4-1° of this topic have been extensions and general-
izations of these methods. This work too is an extension of the Ewald
technique. In particular it is a generalization of the approach taken by
Nijboer and DeWette.9

For purposes of orientation, we summarize the basic philosophy of
the Ewald method. Suppose we have a function cc (r) such that the series

00

S = (r.)

427

(1)
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is slowly converging. The symbol E is to be understood as a shorthand
for En, En, En,. It represents independent summation on all three
components of the vector r. We now construct some function g (r),
which falls off rapidly with r, and its partner

f(r) = 1 - g(r), (2)

which rapidly approaches unity as r increases. We now write

S = E )g E 0'. Xf ). (3)

The first sum converges rapidly, because of g. The second sum con-
verges like so, i.e., slowly. Its Fourier transform, however, will converge
rapidly. In fact the more slowly this sum converges the more rapidly
will its transform converge. To complete the argument we need Parse-
val's theorem:

If

and

then

c13(h) = f exp (i2rhr)v(r) dr

F(h) = f exp (i277-hr)f(r) dr

f(1)(h)F*(h) dh = f co(r)f*(r) dr

(4a)

(4b)

(4c)

where the symbol * denotes "complex conjugate." The formal passage
from sums to integrals can be accomplished by means of Dirac delta
functions 5 (r - rn ), as we shall see below. Thus Parseval's theorem
guarantees that the summation in transform space yields the same
result as the summation in the original coordinate space.

We now apply this scheme to the calculation of the potential due
to an ionic lattice. To begin with, we consider what we shall call a
"primitive" lattice. Such a lattice is generated from primitive transla-
tions ci , c2, c3 in such fashion that

3

rn = E nisi ,
i=1

(5)

with ni , nz , n3 taking on independently all integer values from - 00 to
00 ; and in addition there is associated with each lattice point rn a charge

qn = q0(--1
)n1+.2+n3 (6)
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where qo is some constant. A typical primitive lattice is NaC1, in con-
trast, for instance, to CaF2 , which does not obey (6).

We define reciprocal vectors hi by the usual relation

hic; = Si;

and the reciprocal lattice as the aggregate of pointsh. = Enihi(8)
(7)

where the n's again run from -00 to 00. It is trivial to show that if
these two lattices are represented respectively as E.O(r - r.) and
Ens (h - h.), then the reciprocal lattice is simply the Fourier trans-
form of the coordinate lattice, the Fourier transform being understood
as in (4a) and (4b). If we define the special reciprocal lattice vector

k = 2 (hi h2 h3), (9)

then (6) can be rewritten

qn = qo exp (i2rk rn). (10)

In addition to q. , we associate with each lattice point a function
(r). For the present we place no restriction on co (r), except that it

possess a Fourier transform. Of course there would be no practical
motivation for the calculation unless co (r) fell off slowly with r. We
wish to sum the contribution of all the co's at some arbitrary point R:

S = E (do (rn - R) exp (iarkrn) (11)
n

To change the sum into an integral, as required for the eventual
application of (4c), we define

w (r) = exp (i271 -k  r) E (5(r - r.), (12)
11

so that

S = f w(r)(p(r - R)dr.

In exact analogy to (2) and (3) we can break S into two parts:

S = f w(r)(p(r - R)g(r - R)dr

fw(r)(p(r - R)f(r - R)dr.

The first integral in (14) corresponds to the first sum in (3):

(13)

(14)
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E (r - R)g(r - R)(-1)ni+.2+.3. (15)

The second integral we wish to evaluate in the conjugate domain. For
brevity we define

0(r) = v(r)f(r)

4/(h) = fp' exp (i2irhr) 0(r) dr.

Then the Fourier transform of cp (r - R)f (r - R) is given by

(16)

( 1 7 )

exp (iaffhr) 1//(r - R) dr = exp ianhR gf(h). (18)

The transform of w (r) is easily evaluated (see Ref. 9) and is given by

lc° exp (i271 -11.r) w(r) dr = 1 E 5(h k - ha), (19)
2), n

where ve equals cl-c2 X c3 , or the volume of the coordinate unit cell.
By Parseval's theorem [(4a), (4b), (4c )b the second integral of (14)
now becomes

E exp [i2r(h,, - k) R] 4/(h - k).
7),

(20)

This completes the essential derivation, since S is now expressed in
terms of the two sums (15) and (20), both of which converge rapidly.

We consider some special cases. If R = 0 - that is, if we are sitting
at a lattice point - we presumably will want to exclude the contribu-
tion of that point itself. If co (0) is finite, the contribution can be sub-
tracted outright. If so (0) diverges, as is usually the case, one must be
clever about picking the functions g and f so that 0(0) = f (0 )cc (0) does
not diverge. One then simply omits from the sum (15) the term for
n = 0, and subtracts from the sum (20) the quantity 0(0). Note that
one subtracts 11, (0), not 1If (0). The Ewald calculation is obtained in
this way, if one takes

v(r) = I r (21a)

g (r) = Erfc (I r I) (21b)

f (r) = Erf (I r I). (21c)

We note that if co is real (for example, any central potential) and if
we pick g real, then I& will be real also. The function w is both real and
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symmetric because of our particular definition of the reciprocal vector
k. It follows that the sum S as defined in (14) is real. But if we look
at the partial sum (20), this reality is not at first sight apparent, since
the R can be chosen arbitrarily. But real implies that is Hermitian:
If (-h. k) = **(lin - k), and clearly exp [i27r (hn - k)  R] is Her-
mitian. Again, because of the peculiar choice of k, the arguments

(h - k) are bound to occur in pairs. Since the sum of a function
and its complex conjugate is real, the sum (20) is always real, which
we may emphasize by rewriting it:

2- Re ± exp [i27r(h - k)  It] 1,(h - k). (22)
vc n

Here E means that we sum only over half the space. This can be
accomplished by summing n3 , for instance, from 1 to co instead of
from - co to co .

If (r) is symmetric, qf (h) will be real, and in the sum (22) we will
obtain only cosine terms. Conversely, if 1k (r) is antisymmetric, the re-
ciprocal sum will contain only sine terms. Again this is independent
of the choice of R.

We now also see clearly why the Ewald method "works." The con-
vergence difficulties with the series S of (1) concern its asymptotic
behavior. But this behavior is related to the behavior at the origin of
the series in reciprocal space!' By means of the vector k, we guarantee
avoidance of the origin in reciprocal space, regardless of any other
conditions in the problem.

The sums that most frequently occur in practice are related to the
expansion of the crystalline potential in spherical harmonics:

V(x) = E E c,,n I x I1 vi,, (Ox , cp.) (23)
1=0 171=-1

Cl,
2/ -I-

4r
q

1-1-1 y
(Or

(pr.) (24)

[2/ 1 (/ - m )11
Yt,, (0,(P) e m PI,(0) (25)

47r (/+ ImI)!
The notation is well known and conventional. Our definition of the
spherical harmonics 171, implies 17/,* = . Also Vim - 0, 7r + (p) =
(-1)1Y 1,(0,co). The evaluation of the crystal sums C1, has been
discussed by Nijboer and DeWette.9 In our notation, co (r) here cor-
responds to r -1-117/,(0,i0). Nijboer and DeWette's choice of g is the
incomplete gamma function"
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g (r) = r (n i,7r7.2)/r(n + 1) (26a)

f (r) = 1 - g(r) = (71, /,ri.2)/I1(n + 1). (26b)

They solve the problem subject to the restrictions that (a) the po-
tential is expanded about a lattice point, i.e., R = 0, and (b) the lattice
is primitive, in the sense of (5), (6) and (10). Our discussion has made
it obvious how to remove the first restriction. Generalizing their re-
sult, via (20),

C im(r - R) = 47r. 1

2l+ 1 NI u
 [E -R +2,TrIrn - R12)17t.(Orn-R Vrn-R

n

 exp (i2irk  rn)

exp (i2ir - k)R)I 11. k 11-2
n

(27)

 r (1,7r I hn - kl2) X Y.im (9- hn-k )l
The next generalization of the procedure lies in its application to

nonprimitive lattices. Such application will clearly be possible if an
arbitrary lattice can be decomposed into a sum of component primitive
lattices. We illustrate what we mean by a one-dimensional example.
Consider a one-dimensional lattice with charges distributed as follows:

L = 2 1 0 -3 2 1 0 -3 2 1 0 -3 .

Thus we have qi = 2, q2 = 1, q3 = 0, q4 = -3. If the distance between
successive q's is 1 distance unit, then the basic periodicity is 4. We note
that Eq = 0, since we must have a neutral lattice, and that zero is
itself an allowable q value. Now consider the following sequences of
numbers of periodicity 4:

= -1 -1 
1 1

L2 = 0 - 0 

1 1
L3 = 0 0 - .

We can represent L as the sum L = 2L1 A/j L2 + 2 A/2- L3 . We
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note that L1 , L2 , L3 are all primitive since they fulfill both (5) and the
two equivalent equations (6) and (10). In terms of (5 ), for LI, c I = 1;
for L2 and L3 c I = 2, but their origin of coordinates is shifted by
one unit.

We can define a dot product for the L's in the following sense. Sup-
pose we have LA = Eiqi(A)8(r - ri) and LB = Eiqi(B)8 (r - ri).
Then LA = Eigi(A)qi(B), where the sum runs over a unit cell.
We note that, in our example, the components Li are orthonormal,
and that the projection of L on each Li can be found by taking the dot
product.

We also observe that we have three components, which is just enough
to account for 4 numbers which are subject to the one constraint
E qi = 0. Our three components Li "span the space" of L, and it is
clear in general that if L consists of a periodic sequence of P numbers
whose sum is zero, we shall need (P - 1) primitive components.

The question is: Is it possible to decompose an arbitrary periodic
sequence L into orthonormal primitive components? Can one devise
an algorithm for finding these components? Can one do this in three
dimensions? In considering these questions, we have collaborated with
Dr. R. L. Graham, and we are particularly indebted to him for pointing
out the great simplification that results if one confines oneself to
sequences of periodicity 2" in each dimension.

Consider a linear sequence 1 of periodicity 2". If c is the primitive
translation of L, we define a = c/2". The basic vectors for generating
primitive component lattices are b(1) = a, b(2) = 2b(1),  b(n) = 2b("-').
Each b") for i > 1, will generate a set of primitive lattices differing
only in their choice of origin. There will evidently be n such sets of
components. Primitive component lattices containing 2' nonzero entries
per unit cell will have a basis vector of length I c I/2" -m and will have
2' possible shifts of origin. We note that E..--1" = - 1, which
is the correct total number of components. The number of primitive
components of the same periodicity but with shifted origins doubles
every time the length of the generating basic vector bi doubles, and of
course the number of nonzero entries per unit cell halves at the same
time. The set of origin positions {Ri} associated with bi is clearly the
set of all translations R such that R1 - R5 bi This includes the set
{Ri_i} plus a new set formed by adding bi_.1 to all R in {Ri-1).

All the primitive component lattices are orthogonal to each other,
in the sense that LiL; = . Within each "phase -shifted" set, each
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component has numbers in locations where all the other components
have zero, so that the members of such a set are obviously orthogonal.
Now consider two sequences Li and belonging to sets generated
by bi and bi_1 . Either Li_1 will have numbers only where Li has zero.
Otherwise, each alternate number in Li_1 will have zero as a partner
in Li ; the remaining numbers in Li_.1 all have the same sign, but their
nonzero partners in Li have alternating signs. Hence once again the
dot product is zero. The same argument applies clearly not only to
members of contiguous sets Li and Li_.1 , but to members of any two
sets, Li and L5 ,i j. To produce not merely orthogonality, but ortho-
normality over the unit cell, the normalization factor, or qo in (6) and
(10), must clearly be 2-"1/2 for a component with 2' nonzero entries.

In the example we have given, n = 2, and all the above arguments
can be seen to be rather trivially verified.

Extension of the preceding to two dimensions is straightforward.
We consider a two-dimensional array, doubly periodic with periodicity
2" X 2". The primitive translations c1 and c2 carry any q into the cor-
responding q in another cell. Within each cell, the different q's are sepa-
rated by multiples of c1/2" and c2/2", and we shall call these vectors
al and a2 . As before, we define a set of components of equal periodicity
by defining the basic vectors which will generate the primitive lattice.
The translations by which components within a set differ we denote
by R. The algorithm for producing a complete orthonormal set of
components is simple:

1:01(1) =a1(28a)
b2(n = a2 (28b)

1)1(2' al a2 (28c)

b2(2) = a1 - a2 (28d)
bioi+2) = 2b1(") (28e)

11,`"+2) 9b1") (28f)

q(I) = (29a)

goo q(n-1) (29b)

{12(1)1 = 0 (30a)

R(n) +{R(n+0) lien)} + { (30b)
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The set labels appear as superscripts in (28-30). The vectors b
are the basis of a primitive lattice, and {R} indicates the set of all
translations R which relate primitive lattices having the same basis.
Equation (30b) says that the translations for set n include all the
translations for set n - 1, plus all translations formed by adding any
one of the vectors b'' to all the R's of set n - 1. Again all components
are orthonormal over the unit cell, so that the decomposition of any
2" X 2" dimensional cell can simply be found by taking dot products.
Normalization is insured by our definition of qn , and orthogonality
becomes clear from the same type of reasoning as in the linear case,
which we shall not repeat here.

In three dimensions, we consider an array triply periodic with perio-
dicity 2' X 2" X 2". We define c1, c2 , c3 , and al , a2 , a3 in analogy with
the two-dimensional case. We present the basic vectors for the primitive
lattices, plus the associated translations :

b (1) = a3 (31a)

b2(1) (31b)

b3") = a2 a1 (31c)

b1(2) = a3 + a2 (31d)

11)121 -a3 a2 (31c)

b1(2 al (31f)

b1") = al a2 a3 (31g)

13.,13) = al - a2 a3 (31h)

b3(") = al a2 - a3 (31i)

b1(,, +;,>2b1(n>
(31j )

b.,c",+') = 9b.)(") (31k)

b,('143) = 9133('') (311)

co2 (32a)
qc"t+1) = q" (32b)

fie)) = 0 (33a)

{R("+11 = 112"1 Ilen) b1(")). (33b)
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The choice of b's is not unique, and we have given a set that seems to
bear a maximum analogy to the two-dimensional case.

Many lattices can be represented as 2" X 2" X 2" dimensional ar-
rays. We note that the primitive translations c1 , c2 , c3 need not be
orthogonal. Even if a lattice does not lend itself to such a representation,
by choosing a fine enough grid (with a correspondingly large number of
zero charges), one can approximate any lattice to any desired degree of
accuracy.

We now return to the problem of the lattice sum. We will obtain a
sum of the type (20), or more specifically of the type (27a), for each
primitive component. For a particular set of components which are
translated from each other by I it clearly makes no difference whether
we sum the contribution of each component at the origin or the contri-
bution of any one component at the points given by {R}. (The difference
between shifting the function and shifting the coordinate system is
merely a conceptual one.) Hence the shift vectors R,, correspond to
the position vectors R in expressions (20) and (27a).

In the present approach, we have completely split the geometrical
character of the lattice from the charges assigned to each lattice point.
This suggests the possibility of computing the lattice sums arising from
all the primitive components of commonly occurring grids, once and
for all. The problem of computing a particular lattice sum would then
involve only the decomposition of the given lattice into primitive com-
ponent lattices, whose contribution to the sum would already be known.
Work along this line is in progress.
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On the Boundedness of Solutions of
Nonlinear Integral Equations

By I. W. SANDBERG

(Manuscript received November 5, 1964)

Sufficient conditions are presented for the boundedness of the solutions
of a vector nonlinear Volterra integral equation of the second kind that fre-
quently arises in the study of automatic control systems containing an arbi-
trary finite number of time -varying nonlinear elements. Similar conditions
are given for the boundedness of the solutions of the discrete analog of the
integral equation.

A direct application of the results yields a Nyquist-like frequency -domain
condition for the "bounded -input implies bounded -output stability" of a
large class of feedback systems containing a single time -varying nonlinear
element.

I. NOTATION AND DEFINITIONS

Let M denote an arbitrary matrix. We shall denote by M*,

and respectively, the transpose, the complex -conjugate transpose,
and the inverse of M . The positive square root of the largest eigenvalue
of M*M is denoted by A{M} , and 1N denotes the identity matrix of
order N.

The set of real measurable N -vector -valued functions of the real
variable t defined on [0, ) is denoted by 3CN (0, ) and the jth com-
ponent of f e 3CN (0, ) is denoted by .

The sets 2.N (0, x) and 22N (0, x ) are defined by

2.0N(0, Ge ) = If I f e 3e.v (0, co ), sup [f1(t)fit)] < 00 1

22N(0, = {f i f e 3eN(0,00 f (t)f(t)dt < 03}

The norm off e £2N (0, ) is denoted by II f 11 and is defined by

439
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1

11 f H =
J

f(of(t)dt)2 .

With this norm £2N (0, co) is a Banach space.
Let y E (0, 00 ) and define fy by

f y(t) = f (t) for t E [0,y]

= 0 for t > y

for any f E 3CN (0, 00 ), and let

FN = ff I f E 3CN (0, co ) f y e C2N (0, 00 ) for 0 < y <

With A an arbitrary real measurable N X N matrix -valued function
of t with elements {an.} defined on 0, ao ), let 3C,N = 1,2) denote

AIJ an.(t)IPrit < co (n,m = 1, 2, , N)}.

Let o[f ),t] denote

(1Pdfi (t),i],02U2 (t),d, , ONUN f E acN (0,0o)

where 1,1,1(w,t), 1G2(w,t), , 14(w,t) are real -valued functions of the
real variables w and I for - co < w < co and 0 < co such that

(i) ty (0,t) = 0 for t e [0, co) and n = 1, 2, , N
(ii) there exist real numbers a and 13 with the property that

a :5_ V'n(w't) < Q (n = 1, 2, , N)

for t E [0, co) and all real w 0.

[w(t),IJ(n = 1, 2, - , N) is a measurable function of t
whenever w (t) is measurable.

The symbol s denotes a scalar complex variable with o = Re [s]
and w = Im [s].

II. INTRODUCTION AND SUMMARY

In the study of physical systems such as nonlinear automatic control
systems containing an arbitrary finite number of time -varying nonlinear
elements, attention is frequently focused on the properties of the
equation

reg(t) = f(t) + k(t - T)O[f(T),T]dr,
0

t>0
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in which g c 8N f c 8N k() c 3C1N , and C , ] is as defined in the previous
section.

In Ref. 1, the following theorem is proved.

Theorem 1: Let k E 3C1N , and let

Pe

v(t) = u(t) k(t - T)11,[u(T),T]dr, t?_. 0

where v E £2N (0,00 ) and u r 6N . Let

K(s) = f k(t)e-" dt, a 0.

Suppose that
det [1N ± 1(a i3)K (s)] 0 for a>0

(ii) - a) sup ION + Ea + ()K(iw)1-1K(ico)) < 1.
--03<w<00

Then u e £2N (0, co ), and there exists a positive constant p which depends
only on k, a, and f such that

u ll 5- P II v li

The primary purpose of this paper is to prove the following related
result.

Theorem 2: Let el c 3C1N fl 3C2N for p = 0, 1, 2. Let

g(t) = f(t) f k(t - TW(r),T]dr, t 0

where g E ceooN (0, co) and f E 8N . Let

K(s) = f°'10(t)e-" dt, 0.

Suppose that
(i) det [iN + 2 (ce + 0)K (s)] 0 for a > 0

(ii) 1 - a) sup A{ [1N + i (a + (3)K (ico)]-1K (iw)} < 1.
-co<co<oo

Then f c oecoN (0, co ), there exists a positive constant c which depends only
on k, a, and Q such that

max sup I L(t)I LC. c max sup I gi(t)l,
t>o

and f (t) -+ 0 as t -f co for j = 1, 2, , N whenever Mt) 0 as
t co for j = 1, 2, , N.
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A direct application of Theorem 2 yields a frequency -domain condi-
tion for the £-stability2 of a well-known type of feedback system.
This is discussed in Section IV. In Section V, sufficient conditions are
stated for the boundedness of the solutions of the discrete analog of the
nonlinear integral equation considered in Theorem 2. In Section VI, we
describe some additional results that can be proved by combining the
methods of this paper with the 22N (0, co ) arguments of Ref. 1 and
another earlier paper.

III. PROOF OF THEOREM 2

Assume throughout this section that the hypotheses of Theorem 2 are
satisfied.

Let q (t) be defined on [0, co) by

ti
D(t) te{tlt => 0, Mt) 0}

= 1-(a 13), t e ft
I

t 0,L(t) = 0}

for j = 1, 2, , N; and let q(t) denote the diagonal matrix
diag [qi (t),q2(t), , gN(1)]. Then

g(t) = f(t) + f k(t - r)q(r)f(r)dr, t 0.
0

Let a be an arbitrary positive number, and for each nonnegative
integer n let g(n) (t) be defined on [0, 00) by

g(n)(t) = g(t), na < t < (n + 1)a

= 0, 0 < t < na and t > (n + 1)a.

Lemma 1: For each integer n > 0, £2N (0, co) contains a unique element
,f (n) such that

(i) f(n) (t) = 0, 0 < t < na

(ii) g(n)(t) = f(n)(t) + k(t - r)q(r)f(n)(r)dr,
0

t>0.

Proof of Lemma 1:

Clearly g(n) E £2N (0, co) for n > 0. Let I denote the identity operator
on £2N (0, co ), and let K and Q denote the mappings of £2N (0, cc) into
itself defined by3
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(Kh)(t) = f k(t - r)h(r)dr, t 0

(Qh)(t) = (qi(t)hi(t), q2(t)h2(t), , qN (OhN (t))/ , t > 0

where h is an arbitrary element of 22N (0, co ).
According to Lemma 5 of Ref. 1, the operator [I -I- i(a + OK]

possesses an inverse on £2N (0, co ). Thus the functional equation

g(") = h(n) KQh(n) h(n) E 22N (0, co )

can be written as h(n) = Th(") in which T is defined by

Th.("' = [I + z (a 13)1Q -1e')

- I + (a + 13)1(1-11C[Q - 1(a /3)I]h(n).

Using the bounds of Lemma 5 of Ref. 1, and the fact that a LC. qi(t) 5 13
for j = 1, 2, , N and t > 0, it can easily be shown that T is a con-
traction mapping of £2N (0, co) into itself. Thus, it follows from the
contraction -mapping fixed-point theorem that £2N (0, co) contains a
unique element f n) which satisfies condition (ii) of the lemma.

Since [I + z (a (3)1Cr is necessarily causal, and

f (n) = lim TmO,

in which 0 is the zero -element of 22N (0, co ), we see that f(") = 0 for
0 t < na and n > 0.

Lemma 2: Let f(n) be the associate of g(n) in accordance with Lemma 1.
Then

(t) = .f (n' t > 0.
11=0

Proof of Lemma 2:

Let

.t(t) = Ef(")(1), t 0.

Then

g(t) = J(t) + k(t - r)q(r)f(r)f
and hence

0
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0 = [f(t) - J(t)] f k(t - r)q(r)[f(r) - AT)] dr, t 0. (1)

Theorem 1 implies that (f - f) c oe2N (0,00 ) and that II f - f 11 = 0.
Since the integral in (1) must therefore vanish for t >= 0, we have

f (t) = (t) for t>0.
Lemma 3: Let f(n) be the associate of g(n) in accordance with Lemma 1.
Then there exists a positive constant 12 which depends only on k, a, and #
such that

I fin) WI 5 I g i(n) (t)I

+ (1 t - na )-212 (1 a )2(Na )1max sup I g (t)I,
j t>0

t na

for j = 1, 2, , N and every n 0.
Before proceeding to the proof of Lemma 3, it is convenient to state

the following result, which is easily provable with the aid of Parseval's
identity, the well-known extremal property of the largest eigenvalue of
a Hermitian matrix, and the Schwarz inequality.

Lemma 4: Let w E Kul 11 3C2N z E £2N (0,00 ), and

Then:

y(t) = f w(t - r)z(r) dr for t 0.

(i) y e 22N(0,00)

(ii) with 117(jco) = fo w(t) e-iwg dt (- 00 < w < 00),

IlylI5. sup MW 0.0111 Z II
-co<co<co

\i
(iii) I Yn(t) I

0
I wnm(t) 12 dt) IIzII

m=1

for t 0 and n = 1, 2, , N.

Proof of Lemma 3

Let n denote an arbitrary nonnegative integer.
Since

g(n)(t) = .f(n) f k(t - r)q(r)f(n)(r) dr, t>=0
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it is certainly true that for each positive integer p

(1 -1- t - na)Pe )(t) = (1 + t - na)Pf( )(t)

+ fe k(t - r)[(1 + T - no)
0

(t - T)rq(T)f(n)(T) dr, t 0

or, what is the same thing,

h(p,t) = (1 + t - na)Pf(n)(t)

+ k(1 - 7-)q(r)(1 r na)Pf(n)(r) dr,f (2)t>0
in which

h(p,t) = (1 + t - na)Pg(") (t)
p-1-E (p -

p!
)!m!

f (/ - k(t - r)
.-0 m

q(7)(1 T - na)"if(n)(r) dr, t 0.

From Lemma 4, our assumption that tk E Jelly and the fact that
f(") E £2N (0, Go it is clear that 11(1, ) E ce2N (0, 00 ). A direct application
of Theorem 1 to (2) with p = 1 shows [recall that a q; (I) < 13 for
t > 0 and j = 1, 2, , N] that (1 t - na)f(n) E 22N (0, 00) and
that there exists a positive constant c1 that depends only on k, a, and 13
such that

11(1 + t - na)f (n)11 VIII h(1,. )11.

Since by assumption t2k E aciN , this argument can be repeated for
p = 2. Thus, (1 t - na )'f (") c 22N (0,co) and

11(1 + t - na)2f(n)11 till h(2, )11.

Using Lemma 4, our assumption that Irk E 3C2N (r = 0,1,2), (2) with
p = 2, our bounds on 11(1 t - na)f(n)11 and 11(1 t - na)2f(n)11,
and the fact that 11 f(n)11 cil! g(n)II, it is a simple matter to show that
there exist positive constants c2 , c3 , and c4 , each depending only on
k, a, and $, such that

1.0") (t)1 -5 1

g,(') (01 + (1 + t - na)-2[c2I1(1 + t - na)2g(n)il

+ C311 (1 + t - na)g(")ii + c4I1

for = 1, 2, , N.
Since

t > na
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II g")11 5 11(1 t - na)g(")11 11(1 ± t - na)2g(n)11,

and

II (1 + t - na)2g(n) II 6 (1+a)2IIa(n)II

= (1 a)2 (f(n+l)a (t)g(t) dt)i
n a

(1 + a)2(Na)' max sup I gi(n)(t) I

1:1

we have, with 0 = Ca c4 ,

fj")(t)I I g (t)I

(1 t - na)-20 (1 + a)2(Na)' max sup I gin)(01,
cw)

t na

for j = 1, 2, , N. This proves Lemma 3.
Let t satisfy ma t < (m 1)a where m is an arbitrary nonnega-

tive integer. Then, by Lemmas 1, 2, and 3

f(t) = Ef(n)(t) = Ef(n)(0,

and

n =0 n =0

1.15(01 Ifin)(01
n =0

gini)(01

c5(a) max sup I gi (t) I E (1 + ma - na )-2

i

for j = 1, 2, , N, in which

Let

Since

n =0

c6(a) = 0 (1 + a )2 (Na)'.

CO

c6(a) = E (1 + na)-2
n =0

E (1 + ma - na)-2 < E (1 + na)-2,
n =0 n
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we have

(t)I :5, sup c 5 (a)c6 (a) max sup g (t)1to
for every integer m 0 (and hence every t 0) and j = 1, 2, , N.
Therefore

max sup I fi(t)1 < [1 c5 (ct )cs (a)] max sup g (01 
i t0 i t.()

Now suppose that Mt) -* 0 as t -> for j = 1, 2, , N. We will
show that for each e > 0 there exists a t, > 0 such that .f, (1)1 < E
for t > t, and j = 1, 2, , N .

Let e > 0 be given, and again consider the relation

f (t) = Ef(n)(0.

Since
n2

E f 1 ") (t)I < max sup I g 1c5 (a) E (1 + n2a - na
=111 j tnia n=n

max sup I gi(t)IR c5 (a )c6 (a )J
j tnict

)]

for nia n2a t < (n2 + 1)a, with n1 and n2 positive integers, it is
clear that there exists a positive integer n3 such that

E I fin)(01 < le for I > n3a and j = 1, 2, , N.
n Nan 3

From the inequality
(n3-1)

E f i(n) c5 (a)
n =0

(n3-1)
max sup I gi(t)I E + -

j n,,0 =0
na) , t > n3a

it is evident that there exists a positive integer n4 > n3 such that

Thus

3_1)

(1)1 < le for t > ma
n=u

00

I./J(01 E 1./1'(t)1 <
n =0

for t > n4a

This completes the proof of Theorem 2.

and j = 1, 2, , N.

and = 1, 2, ,
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Remarks:

With regard to the hypotheses of Theorem 2, it can easily be verified
that if the elements of k are uniformly bounded on [0,00 ), then the
assumption that f e 8N can be replaced by f e KAI (0, cc) with locally
integrable elements.

In most cases of interest the elements of ek are uniformly bounded
on [0, 00 ) for p = 0,1,2. In such cases t"k e SC1N fl 3C2N for p = 0,1,2
provided that t2k 3C1N 

IV. AN APPLICATION: A FREQUENCY -DOMAIN CONDITION FOR THE 2. -
STABILITY OF FEEDBACK SYSTEMS CONTAINING A SINGLE TIME -VARY-

ING NONLINEAR ELEMENT

In a recent brief,2 a two-part sufficient condition is given for the
2,0 -stability of a well-known type of feedback system containing a
single time -varying nonlinear element. In another publication,4 condi-
tions are presented for the 22 -stability of the same type of feedback
system. Unlike the conditions for 22 -stability of Ref. 4, which are ex-
pressed entirely in the frequency domain, the key condition of Ref. 2
for 2,o -stability is that the integral of the modulus of a certain function
be less than unity.

A direct application of Theorem 2 shows that under somewhat
stronger assumptions than those of Ref. 2 or Ref. 4 concerning k (),
there the impulse -response function of the linear time -invariant portion
of the forward path, the conditions given for 22 -stability are also suffi-
cient conditions for 2. -stability. Specifically, the following result is a
direct consequence of Theorem 2.

Theorem 3: The feedback system described in Ref. 2 is eeco-stable if

(i) tPot) < 00 and tPot, 12 dt < co for p = 0, 1, 2

(ii) with K(s) = f k(t)e-" dt for a 0,
0

(a) 1 + s (a ± 13)K (s) 0 for CI z 0

(b) - a) max I K (ico){1 + i (a + (3)K(ico)]-11 < 1.

Part (b) of (ii) above is a weaker condition than the condition of the
theorem of Ref. 2 that it replaces [i.e., (ii) of Ref. 2]. From an engineer-
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ing viewpoint condition (ii) above possesses an interesting frequency-

domain interpretation.4f

V SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF SOLUTIONS OF
THE DISCRETE ANALOG OF THE INTEGRAL EQUATION CONSIDERED IN
THEOREM 2

Sufficient conditions for the boundedness of the solutions of the dis-
crete analog of the nonlinear integral equation considered in Theorem
2 can be obtained by modifying in a straightforward manner both the
arguments presented in Section III and the arguments of Ref. 1 that
lead to Theorem 1. In order to state the result (Theorem 2', below)
we need some notation.

Let E denote the set of nonnegative integers. Let iCN be the set of real
N -vector -valued functions defined on Z", and let the jth component
of f E itiv be denoted by f . Let

LOON = If I f E SUP Lif (n)f(n)] < °°},

co

.7e2N = if I f E SeN E f (n) < °°)
n =0

and

II I II. = (n)f (n))1 for .f
n =0

With B an arbitrary real N X N matrix -valued function of n with
elements {bbn (n)} defined on Z, let 31,N (p = 1,2) denote

{BI binzcor < (i,m = 1, 2, , N)).
n=0

Let co[f (n ),n] denote

Goi[h (n),n],so2U2 (n ),ni, , co v[ UN (n ),ill f E jCN

where cal (w,n),i02 (w,n), , ioN(w,n) are real -valued functions of w and
n for - 00 < w < 00 and n e Z such that

(i) ion, (0,n) = 0 for n E Z and m = 1, 2, -  ,N
(ii) there exist real numbers a and (3 with the property that

f We take this opportunity to correct the result of a typographical error: In
the first inequality on page 1606 of Ref. 4 the "<" sign should be replaced by"<,,
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cpm(w,n)a (m = 1, 2, ,

for all real w 0 and n e 2.

Theorem Let n2k E 3C1,v . Let
11

g (n) = f (n) E k (n
nz=0

where g e LeoN and f E SeN . Let
CO

- m)soLf(m),mi, n E

K(s)= E k(n)e-an , a 0.
n=0

171

Suppose that

(i) det [1N + 2 (a + (3)k(0)] 0, and

det [1N + 2 (a + 0)K (s)] 0 for a 0

(ii) - a) sup A{ [1N + ± (3)Cico)]-11C (ice)} < 1.
-r r

Then f E :Cow , there exists a positive constant c which depends only on
k, a, and such that

max sup I fi(n)1 5_ c max sup I g1(n)I,
n 0 n 0

and f (n) -> 0 as n -> 03 for j = 1, 2, , N whenever g J(n) -> 0 as
n -> co for j = 1, 2, , N.

In the statement of Theorem 2' we have used the fact that nPk e RIR n
312N for p = 0, 1, 2 provided that n2k E jCiN

The result analogous to Theorem 1 is the following theorem.

Theorem 1': Let k e , and let

g (n) = f (n) 7±. k(n - m)so[f(m),m], n
na=0

where g e £2N and f e 3CN . Let

K (s) E k(n)e-s",a > 0.
71=0

Suppose that

(i) det [1N + z (a + 01)k(0)] 0, and

det [1N + z (a + 1(3)K (s)] 0 for a > 0.

((3 - a) sup A{ [1N i + ()-100]-1/0(.0)} < 1.
r
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Then f e Z2N , and there exists a positive constant p which depends only on
a, and Q such that

11111- < p g

VI. SOME ADDITIONAL RESULTS

Arguments very similar to those of Section III and the proof of the
lemma of Ref. 5 can be used to establish the following result, which is
of direct interest in the study of the properties of solutions of systems
of differential equations.

Theorem 3: Let t'k E 3CIN n 3C2N for p = 0, 1, 2. Let Q () denote a real
measurable N X N matrix -valued function of t defined on [0,c0 ), and let
the elements of Q(t) be uniformly bounded on [0,00). Let

g(t) = f(t) 1;(t - T)Q(T)f(T) dr,f t>=0

where g c oeo,N (0, 00 ) and f e gx . With

K(iw) = f k(t)e-iwg dt for - co < < 0 ,

let

sup A{Q(0} sup Al/C(ico)1 < 1.
t

Then f e £ (0, 00 ), there exists a positive constant c which depends only
on k () and Q() such that

max sup I f,(01 c max sup I g j(t)1,
t(1 i 10

and f (t) 0 as t 00 for j = 1, 2, , N whenever g, (t) 0 as
t -> co for j = 1, 2, , N.

Theorem 3 remains valid if the sets rie-1N , 3C2N ceooN (0, ) , and 8N
are replaced with their natural complex extensions, and Q ( ) is per-
mitted to be complex valued.

A result that can easily be proved with the aid of Theorem 3 (see the
proofs of the theorem and corollary of Ref. 5) is as follows.

Theorem 4: Let ¢ ( , ) be as defined in Section 1 with N = 1 and « > 0,
and let f be any real -valued function of t defined and twice differentiable on
[0, 00) such that

(12.f df
+ a (-Ft + Of, t] = g,

ate
t>0
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where g (t) is uniformly bounded on [0,00). Suppose that a is a real con-
stant such that a > Vi3 - . Then f (t) is uniformly bounded on
[0, 00 ), and f (t) 0 as t -> 0 f g (t) - > 0 as t 00.

The following theorem, which can be proved with arguments very
similar to those of Section III and the proof of Theorem 5 of Ref. 1,
is of immediate interest in the theory of stability of electrical networks
containing time -varying capacitors.'

Theorem 5: Let ek c 3CIN fl 3C2N for p = 0, 1, 2. Let B denote a constant
real N X N matrix, and let al(t),a2(t), , aN(t) denote real -valued
measurable functions of the real variable t for t > 0 with the property that
there exist real constants a and 13 such that

a < an (t) 5 a (n = 1, 2, , N)

for t 0. Let A (t) = diag [a1(t),a2(t), , aN OA for t > 0, and let

g(t) = A(t)f(t) Bf(t) k(t - 7-)f(T) dr, t 0

where g e eecON (0, 00) and f e 6N . Suppose that

(i) det (a + 0)1N B] 0, det [A (t) B] # 0 for t > 0,

and sup ARA (t) < 00 ;
t zo

and that, with

K(s) = f k(t)e-8` dt for a 0,

det [4(a ± fl)1N B K (8)] # 0 for a > 0

(iii) - a) sup At [4 (a + 0)1N B K < 1.

Then f e ce.N (0, °O ) , there exists a positive constant c which depends only
on A (), B, and k such that

max sup I fi c max sup I g1(01,
i to

and Mt) -> 0 as t 00 for j = 1, 2, , N whenever g.i(t) -> 0 as
t-> co for j = 1, 2, , N.

Theorem 5 remains valid if the sets 5C-IN X2N 2coN(0,CO) and 8N

are replaced with their natural complex extensions and B is permitted
to be complex valued.
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Imaging of Optical Modes - Resonators
with Internal Lenses

By HERWIG KOGELNIK

(Manuscript received November 10, 1964)

This paper discusses the modes of optical resonators, and optical modes
of propagation or Gaussian beams of light. The passage of Gaussian beams
through lenses, telescopes, sequences of lenses, and lenslike media is studied.
Mode matching formulae are derived. A complex beam parameter is intro-
duced for which the law of transformation by any given optical structure
can be written in the simple form of a bilinear transformation (ABCD law).
Resonators with internal optical elements and their transmission line duals
are also investigated. Effective Fresnel numbers and curvature parameters
are determined which allow one to infer the diffraction losses, the resonant
conditions, and the mode patterns of the various systems. Results are ob-
tained for resonators with internal lenses, sequences of lenses with irises
inserted between the lenses, resonators with internal lenslike media, trans-
mission lines consisting of a lenslike medium with periodically spaced
irises, and resonators with one very large mirror.

I. INTRODUCTION

The theory of Fresnel diffraction is the basis for an understanding of
optical resonators" and of optical modes of propagation 2.3.4 Fresnel
diffraction explains the mode patterns and diffraction losses of optical
resonators, and the beam waist and spreading of the modes of propaga-
tion or "Gaussian beams." In this paper we will discuss how these
Gaussian beams of light are transformed on their passage through lenses,
telescopes, various lens combinations, and lenslike (guiding) media,
and how these optical systems affect the properties of optical resonators
when inserted between the resonator mirrors.

We will assume that no additional aperture diffraction effects are
introduced by these optical systems, i.e., that the apertures of the
internal lenses can be regarded as infinitely large. The imaging laws of
geometrical optics are therefore expected to apply, and we will use them

455
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wherever possible, as they generally simplify the algebraic derivations
and at the same time provide some physical insight.

Some of the problems to be investigated here in greater detail have
already been treated in the literature. Goubau6 has given some mathe-
matical relations between the parameters of Gaussian beams trans-
formed by a thin lens. The recently published mode matching formulae'
are the result of a computation which will now be presented. Resonators
with internal lenses have also been discussed in the literature,8-" and
we have used the concept of an effective distance." in a previous publica-
tion.9 In several cases an alternative to our algebraic approach is the
graphical method of Collins," who introduced the circle diagram"2
for Gaussian beams.

In the following we will first establish the rules of imaging for Fresnel
diffraction with attention to the imaging of the phase fronts which are
of particular importance for optical modes. Then we will list expressions
for the focal length and the principal planes of various optical systems of
interest, because these parameters are needed later for application of the
imaging rules. This listing includes the parameters of the telescope, of
sequences of lenses, and of sections of lenslike medium. Armed with
these tools we will study the passage of Gaussian beams through lenses
and various optical systems. The paper is concluded by an investigation
of optical resonators with internal optical elements and their transmis-
sion line duals. Effective Fresnel numbers and curvature parameters
are determined which allow one to infer the diffraction losses, the reso-
nant conditions, and the mode patterns of the various systems. Results
are obtained for resonators with internal lenses, sequences of lenses with
irises inserted between the lenses, resonators with internal lenslike
media, transmission lines consisting of a guiding medium with periodi-
cally spaced irises, and resonators with one very large mirror.

II. IMAGING RULES

While geometrical optics deals with rays, the theory of Fresnel dif-
fraction deals with (scalar) fields. To describe the field distribution, we
use complex amplitudes E (x,y,z) and a Cartesian (x,y,z) coordinate
system. We consider a wave that propagates in the direction of the
optic axis (z axis). Within the assumptions of Fresnel diffraction an
ideal thin lens of focal length f transforms the incoming wave with a
field Elpft(x,y,z = const) immediately to the left of the lens into a
wave with the field

( 2 2

Eright(x,y,z = const) = Etort(x,y,z = const) exp jk x + :y) (1)
2fi
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immediately to the right of the lens. Here k is the propagation constant.
The thin lens produces a phase shift which is proportional to the square
of the distance to the optic axis, while the intensity distribution is the
same on both sides of the lens.

Consideration of spherical waves provides a link between (1) and
the laws of geometrical optics according to which a spherical wave with
a radius of curvature /?1 at the left of the lens is transformed into a
wave with curvature radius R2 as shown in Fig. 1. The radii R1 and R2
are related by

(1/R1) + (1/R2) = 1/f. (2)

For Fresnel diffraction the transverse field distribution of a wave with
a spherical phase front of radius R is given" by

E (x,y,z = const) = exp (-jkr2/2R) (3)

where

r2 = x2 y2, (4)

and R is counted positive for a phase front that is concave if observed
from the left. For spherical phase fronts of radius R1 on the left and -R2
on the right of the lens (where the phase front curvature is negative,
as shown in Fig. 1) we can express Eleft and Eright with the help of (3),
compare the exponents in (1), and find the same relation (2) between
R1 , R2 , and f as for the spherical waves of geometrical optics.

To discuss imaging consider an object, i.e., the field E1(x1 , yi) in an
object plane, and its image E2 (x2 , y2) in the corresponding image plane
(see Fig. 2). The distances d1 and d2 between the lens and the two

planes are related by

(1/di) (1/d2) = 111.

....---PHASE FRONTS

(/

Fig. 1 - Lens transforming phase front of spherical wave.

(5)
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OBJECT PLANE

d, d2

IMAGE PLANE

Z2

z

f

1 1 I

d, d2 f

E 2 ( Z 2Y 2 )

Fig. 2 - Imaging of field distribution by a thin lens.

We know from geometrical optics that the intensity distributions of
the object and the image are similar. This is, of course, still true for
Fresnel diffraction by any field aperture in the object plane. Assuming
that no aperture diffraction effects are introduced by the thin lens, one
can use the Fresnel diffraction and E2 (see
A) and arrive at

E2(x2 , y2) = -d1EI di d1- x2 2 - Y2
U2 u2

()
U2

 exp - jk (di d2 r:

with r22-= x22 + y22. The factor d1/d2 in this equation follows from
conservation of energy; the arguments - (di/d2)x2 and - (di/d2)Y2
indicate that the image is inverted and magnified by d2/d1 . The first
two terms in the exponent are simply due to the phase shift k (d1 d2)
which the light wave suffers in propagating from the object to the image
plane, while the third and last term is of particular importance for our
considerations. It describes an additional phase shift proportional to
r: which appears in the field distribution of the image. Apart from
this additional phase shift the amplitude and phase distribution of the
image and the object are scales of each other.

The expression for the additional phase shift follows also from geo-
metrical optics (see e.g. Appendix B), and it is related to the thick -
mirror formulae,13 as we shall see later. It is also obtained by studying

(6)
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the passage of Gaussian beams through a lens.' The additional phase
shift does not appear in Abbe's theory of imaging; he finds that the
image is strictly similar to the object, both as regards the amplitude
and phase distribution." But Abbe used the Fraunhofer diffraction
theory, where phase terms proportional to r2 are neglected.

For Fresnel diffraction the r2 dependence of the additional phase
shift suggests that one should use spherical reference surfaces instead
of plane ones, as shown in Fig. 3. By proper choice of the curvature of
these surfaces tangential to the image and object planes, one can achieve
an image field on one surface that strictly reproduces the object on the
other surface in amplitude and phase. For an object reference surface of
radius R1 and an image reference surface of radius R2 one gets for the
fields additional phase factors of exp (-jkri2/2R1) and exp (-jkr22/2R2),
respectively. These phase factors cancel the additional phase shift in
(6) if

1 _ 1 d12 1 di
R2 171(122 f d2.

After some algebraic manipulations involving (5) this relation can be
rewritten as

1 1 1
4- _

di ± RI d2-R2 f

(7)

(8)

This simply means that the center of curvature C1 of the object surface

OBJECT PLANE

SPHERICAL
PHASE ---1
FRONT

f.

d2

IMAGE PLANE

=
d,+ RI d2 -R2

L SPHERICAL
N'' --PHASE
/ FRONT
/

Fig. 3 - Imaging of fields with spherical wave fronts; centers of curvature
are images of each other. The corresponding spherical reference surfaces are used
when fields with nonsnherical phase fronts are imaged.
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is imaged onto the center of curvature C2 of the image surface. Thus,
whenever the centers of curvature of the image and object surfaces are
images of each other we have an image which is a strict (scaled) reproduc-
tion of the object as regards both the amplitude and phase distribution,
with no additional phase shift.

The imaging rules discussed above can also be used to study imaging
by a combination of lenses (or by any optical system that can be re-
garded as such). It is not necessary to apply the rules step by step to
each individual thin lens of the combination. It is generally simpler to
determine the parameters of the equivalent thick lens as usual in geo-
metrical optics. The place of f is then taken by the combined focal
length of the system, and object and image distances (di and d2) are
measured from the principal planes of the thick lens.

III. FOCAL LENGTHS OF VARIOUS OPTICAL SYSTEMS

3.1 The Ray Matrix

When one traces a paraxial ray through combinations of lenses and
lenslike media, the quantities of interest are the position xi and the
slope xi of the ray in the input plane, and the corresponding quantities
x2 and x; in the output plane (see Fig. 4). There is in general a linear
relation15'16'17 between the output and input quantities which can be
written in matrix form as

x2

x2

A B

C D

x1

(9)

We will call this ABCD matrix the ray matrix of the system. Because
of reciprocity the determinant of the ray matrix is generally unity:

AD - BC = 1. (10)

It is easy to determine the focal length and the principal planes from
the elements of the ray matrix of an optical system. By tracing a beam
that leaves the output plane parallel to the optic axis (x2 = 0) we find
the location of the focal point on the input side. Its distance si from
the input plane is obtained as

si = xi, = - D- (11)
xi 1.2',-0

where we refer to Fig. 4. Similarly, we find for the distance s2 between
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INPUT RAY

OPTICS

OUTPUT RAY

FOCAL PLANE PRINCIPAL_
PLANES

_...1

INPUT PLANE OUTPUT PLANE

Fig. 4 - Reference planes for optical system.

the output plane and the corresponding focal point

FOCAL PLANE

S2 =
X2 = -A

C (12)
X2 x '

To find the principal plane on the input side we follow an input ray
from the focal point until its distance from the axis is equal to the
position x2 of the corresponding output ray and have

.r2 - X1hi -
Xi' z2 '=0

(13)

where the distance h1 between the principal plane and the input plane
is measured positive as shown in Fig. 4. On the output side we find
similarly

X2 -
(14)

X2

The focal length f of the system is obtained by calculating the distance
between a principal plane and the corresponding focal point

f = 81 + hi = 82 + h2 =2.2
xi

xl=
X2 '=o X2 21

(15)

Using the linear relations of (9) together with the last three expressions,
one finally gets

= - (1/C) (16)
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h1 = (D - 1)/C
h2 = (A - 1)/C

(17)

(18)

where the thick -lens parameters are expressed in terms of the elements
of the ray matrix. For later use we also write down the matrix elements
as functions of the lens parameters which follow from the last expres-
sions

A = 1 - (kip (19)

B = h1 h2 - (h1h2/f) (20)

C = -(1/f) (21)

D = 1 - (hi/f). (22)

3.2 The Two -Lens Combination-Telescope

The lens parameters of a combination of two lenses are well known
and are listed here for completeness and for later use. The combination is
shown in Fig. 5. For lenses of focal lengths f' and f2 spaced at a distance
d we have

1/f = (1/f1) + (1/f2) - (d/fife)

= -
df

h2

where the lens planes are used as input and output planes.

d

Fig. 5 - The two -lens combination.

(23)

(24)

(25)
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For a slightly misadjusted telescope the lens spacing is

d = f2 - Ad (26)

where M measures the misadjustment. The lens parameters of the
telescope can be written as

f fif2
Ad

fid
fi =

Ad

f,(1= .

(27)

(28)

( 29 )

3.3 Sequence of Lenses

A periodic sequence of lenses of equal focal length fo and lens spacing
d is shown in Fig. 6. The reference planes are chosen just to the right
of each lens. The elements of the ray matrix S of one section of the
sequence (i.e., one lens spaced at a distance d from the input plane) are
well known15.17 and are given by

INPUT

k- d/ 2

xo:

-h

JI =

1

Jo
1 -

Jo

0 2

OUTPUT

Fig. 6 - Sequence of lenses of equal focal length.

n + 1

(30)
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They relate the position and slope (x1 and xi) of the ray just after the
first lens to the ray position and slope just after the zeroth lens

x1

=
x1'

xo

xo

(31)

The ray to the right of the nth lens is related to the input ray by the
nth power of the ray matrix of one section

xn

X n

xo

xo

(32)

The matrix elements of A." can be computed with the help of Sylvester's
theorem18 and are well known.15'16 One has*

sin 1

sin 0

sin nO - sin (n - 1)0

with

d sin it0

1- sin ne l - () sin ne - sin (n - 1)0
Jo

(33)

cos 0 = 1 - (d/2f0). (34)

We can now employ (16) and obtain for the focal length f of n sec-
tions of a periodic sequence of lenses

f = lo (sin 0/sin ne). (35)

The distance of the two principal planes from the input and output
planes (zeroth and nth lens) follows also from (33) with the help of
(17) and (18). One finds

h1 = (d / 2) f (1 - cos n0), (36)

and

h2 = - (d/2) f (1 - cos ne). (37)

If we measure the distance h of the principal planes from the inidplanes
between the lenses as shown in Fig. 6 we have

h = f (1 - cos ne). (38)

* These matrix elements can be written in terms of Chehyshev polynomials
of the second kind of the variable [1 - (d/2f0)].
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A more complicated sequence of lenses is shown in Fig. 7. Here a
lens of focal length fi is followed by a lens of focal length f2 and vice
versa. The lens spacings are di and d2 in sequence as shown in the figure.
This sequence of lenses can be reduced to the simpler type discussed
above. We can regard it as a sequence of thick lenses formed by lens
pairs of focal lengths f1 and f2 . The focal length fo of the thick lens is,
according to (23), given by

1/f0 = (1A) + (11/2) - (di/M2), (39)

and expressions for the principal planes are given in (24) and (25).
The distance d between the output principal plane of a thick lens and
the input principal plane of the consecutive thick lens is obtained as

1 1d= d2 h1 h2 = (12 + iodi (-- h (40)

With the principal planes as reference planes, rays passing through this
sequence of thick lenses behave the same way as rays passing through
a sequence of lenses of equal focal length that are equally spaced. We
can therefore use the expressions (33) and (34) obtained above. With
(39) and (40) the latter becomes

d1 d2 (1 did2
2 hcos 0 = 1 -

.1, 2fif2
(41)

3.4 Lenslilce Medium

A lenslike medium or "guiding medium" is one whose refractive index
n varies near the optic axis as in

d,

2
h,

f2

( h2

fo

f, f2 1

fo fo

Fig. 7 - Sequence of lenses of alternating focal length with alternating lens
spacings.
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n = no (1 - 2 -
b2

(42)

where no is a constant, r is the distance from the optic axis, and b meas-
ures the degree of the variation of n. A medium of this kind can be pro-
duced by inhomogeneities in laser crystals19'2° or by a radial variation
of the gain in high -gain gaseous lasers.21 Another important example
is the medium of the recently reported gas lens.22'23'24

To trace rays in a lenslike medium one uses the differential equation
for light rays.25 For paraxial rays this ray equation has the form

d2x a
no

dz2 ax b
n = - 4no -2 (43)

for the distance x (z) of the ray from the z axis. A corresponding rela-
tion holds for y (z). The solution is, again, a linear relation between the
ray position and slope in the output plane (x and x') and the cor-
responding input quantities xo and xo

X
b z

cos 2 - sin 2 -
2 b

xo

(44)

X
2 z- sin 2 - cos 2 - so/

A typical ray path is shown in Fig. 8. To calculate the optical parameters
for a section of lenslike medium immersed in a medium with a refractive
index of unity (vacuum), we invoke Snell's law to relate the ray slopes

n =1

LIGHT
BEAM

h

INPUT PRINCIPAL PLANES OUTPUT

Fig. 8 - Ray path in lenslike medium.

n=



OPTICAL MODES 467

at the section boundaries. For paraxial rays we have approximately

xvw = nox ; xova, = noxo . (45)

Now we use (16) and find for the focal length of a section of length 1

bf - (46)
2no sin 2 -b

(for no = 1 this formula has been given in Refs. 23 and 26, for example).
The distance h of the principal planes from the input and output planes
respectively (see Fig. 8) is computed with the help of (17) and (18 ).
One obtains

h = -b tan . (47)
2no b

The above expressions have been derived for a focusing medium where
b2 >= 0. For a defocusing medium we have b2 < 0, and the expression
for the focal length becomes

= -
b

2no sinh 2
b

The location of the corresponding principal planes is described by

h= Ibl tanh
2no

IbI.

IV. OPTICAL TRANSFORMATION OF GAUSSIAN BEAMS

(48)

(49)

4.1 light Propagation in Free Space

Near the optic axis an optical mode of propagation or Gaussian beam
is regarded as a TEM wave with a spherical phase -front and a trans-
verse field distribution that is described by Laguerre-Gaussian2 or
Hermite-Gaussian2 functions. The two beam parameters of interest are
the "spot size" or beam radius w(z) and the radius of the phase front
R(z). In any beam cross section of a fundamental mode the field varies
as

r2 1.2

('XI) (- 3117
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and is specified by w and R. The light beam expands as it propagates
through space as shown in Fig. 9. The law of expansion is2,3,6,26,27

[ A, Z
2

w2
wog +

MO
(50)

Here the z is measured from the beam waist where the phase front is
plane and the beam reaches its minimum radius wo . For R (z) we
have2,3,6,26,27

1? = z [1
rw02\21

Az )

Dividing (50) by (51) we find

(51)

71-W2 Az= (52)
AR IrW02

which we can use to rewrite the terms in the round brackets, and ex-
press wo and z in terms of w and R

2wo =

z=

w2

wo

z

4 ---PHASE FRONT

Fig. 9 - Contour of Gaussian beam of light.

(53)

(54)
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4.2 Beam Transformation by a Lens

When a Gaussian beam passes through a lens a new beam waist is
formed, and the parameters in the expansion laws are changed. Assume
the light beam is propagating to the right. Before passing through the
lens it has a beam waist a distance d1 away from the lens with a beam
radius w1 as shown in Fig. 10. The lens produces another beam waist a
distance d2 away with a beam radius w2 . The distances d1 and d2 are
measured positive as shown in the figure (for a negative d1 one has a
virtual waist). In the following we will establish some relationships
between beam parameters of the incoming beam (identified by the
subscript 1) and the parameters of the transformed beam (subscript 2).

The far field angles27 01 and 02 of the two beams are computed from
(50) as

01 = ; 02 = X/71 -w2 (55)

From these two angles follow immediately the beam radii wif and w21
in the two focal planes of the lens where the image of the far field appears

Wlf = f02 = WirW2

W21 = f01 = 1
(56-}

(57)

The beam radius in one of the focal planes is, of course, independent of
the spacing between the lens and the beam waist of the other beam. It
follows from (51) that the center of curvature of the far field phase
front is in the beam waist. According to the imaging rules of Section II,
corresponding centers of curvature are images of each other (where we
take the phase fronts as reference surfaces). We therefore have to
determine the image of a beam waist to find the curvature center of
the phase front in the focal plane on the other side of the lens. The
distance d2' between the lens and the image of the waist w2 follows from

14 -

Rif f
Ref

Fig. 10 - Gaussian beam transformed by a lens.
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(1/d2') (1/d2) (58)

and the radius of curvature R11 in the left focal plane is equal to the
spacing between that image and the focal plane

Rif = d2 - f. (59)

Combining (58) and (59) we have

and correspondingly

f2
Rif - d2 -f (60)

f
2

R2f (61)-
for the radius of curvature in the right focal plane. R11 and Ref are
independent of the beam radii w2 and w1, respectively, a fact that can
be used for mode matching into confocal resonators.

To relate the beam waists we use (56) and (60) to write

and similarly

7TWif2 X (d2 f)
XRif 7W22

XirW22/12

f)
R rwi.2

(62)

(63)

To express w2 in terms of w1 and d1 we insert (57) and (63) into (53)
and find

1 1 (1 diy (irw,)2
22w w12

f f2 x

This relation, first given by Goubau,' relates the beam radius of the
waist of the transformed beam to the parameters of the incoming beam.
A corresponding relation for the spacing d2 between the lens and the
beam waist w2 is found by inserting (61) and (63) in (54). The result is

(64)

f2d2 -f = (d1 - 1) 2 2 (65)
(d1 - f)2 ("1)

X

The above expressions were derived with the help of the imaging
rules of Section II. As mentioned before, these rules apply not only to
thin lenses but also to thick lenses and lens combinations. Therefore,
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if d1 and d2 are measured from the principal planes the results given
above are valid for the transformation of Gaussian beams by thick
lenses.

4.3 Mode Matching

In experiments with optical modes one often wants to transform a
beam with a given beam radius w1 at the waist into another beam of
waist radius w2 . One wants to "match" the modes of one optical system
(like a laser resonator) to the modes of another one (an optical trans-
mission line for example). This can be done by selecting a suitable lens
and by properly adjusting the waist spacings d1 and d2 , where we refer
to Fig. 10. The proper spacings are given by the mode matching formulae'
derived below.

We combine (62) or (63) with (52) and obtain

d1 -f w12

d2 f w22 

This is used to rewrite (64) in the form

Tv? 22.P
=

w
(d1 -f )(d2 - 1) -I- -2 (71 2 (67)1 1 1

Multiplying (67) by w22f2 we arrive at

(d1 - f) (12 - f) = f2 fo2

where we have defined

(66)

fo = it (WIW2/X ) (69)

To arrive at the mode -matching formulae we multiply or divide (68)
by (66), extract the square root, and find

or

d1 -f = ±1.1-)1 -02 - fo2
W2

d2 -f =
wi

Vf2 - fo2 

(70)

(71)

As discussed in Ref. 7, one achieves mode matching by choosing a
lens (or lens combination) with a focal length f that is larger than fo
or equal to it. For a given lens there are generally two ways open to
match the modes. One can choose either the plus sign in both (70) and
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(71), or the minus sign. For f = fo there is only one set of proper spacings
dr = d2 = f = fo

4.4 Complex Beam Parameter - ABCD Law

In the foregoing we have used two parameters to characterize a
Gaussian beam in a given beam cross section: the spot size or beam
radius w, and the radius of phase front curvature 1?. We define now a
more abstract complex beam parameter q

1/q = (1/I?) - j(Virw2). (72)

The propagation and transformation laws for this beam parameter are
particularly simple and allow one to trace Gaussian beams through
more complicated optical structures. The old parameters R and w can,
of course, be recovered from the real and imaginary parts of 1/q. Note
that we can regard the circle diagram of Collins" as plotted in the com-
plex plane of the variable j/q, and the circle diagram of Lin as plotted
in the complex plane of jq*.

In terms of the complex beam parameter the laws of propagation
(50) and (51) have the simple and compact form t

q = qo z (73)

as one easily verifies by inserting (50) and (51) into (72). Here

qo = j(rwo2/X) (74)

is the complex beam parameter at the beam waist. Because of the
linearity of (73) the parameters ql and q2 of two arbitrary beam cross
sections are related by

q2 = qi d (75)

where d is the distance between the two planes of interest measured
positive in the direction of the optic axis.

The beam parameters qi and q2 to the left and to the right of a lens
are related by

1/q2 = (1/qi) - (1/f) (76)

which simultaneously states the transformation of the phase fronts as
in (1) or (2), and the fact that the beam radii (widths) are the same
on both sides of the lens [compare (1)1.

f Similar propagation laws for optical modes have been used independently by
D. A. Kleinman, A. Ashkin, and G. D. Boyd in an analysis of second -harmonic
generation in crystals and by 0. A. Deschamps and P. E. Mast in their recent
paper in Proc. Symp. Quasi -Optics, Polytechnic Inst. Brooklyn, 1964, p. 379.
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The imaging law (6) applied to Gaussian beams takes the form

1 di2 , 1 di= - 
d22 I 612

(77)

if written in terms of the complex parameters qi and q2 of the beam in
the object or image planes, respectively. Comparing with (7) and (8)
one can also write this relation between the parameters of the object
and the image as

1 1

dl
-

+ qi 02

1

q2 j
. (78)

Using (75) and (76) one can easily determine how an incoming beam
with the parameter qi at a distance di from a lens is transformed. The
parameter q2 of the transformed beam at a distance d2 from the lens is
obtained as

(1 d2) (di

.1q2 (79)

f
±(1 di\

To establish a lila: to the transformation laws for the real parameters
developed before, we multiply both sides of (79) with the denominator
of the right side. Then we postulate that we have beam waists at d1
and d2 by putting qi = j7rw12/X and q2 = jirw22/X. If we compare the real
parts of the resulting expression, we obtain relation (68), and comparing
the imaginary parts we find (66).

Let us now regard qi and q2 as the beam parameters in the input and
output planes of an optical system described by its ray (ABCD) matrix
as in Section III. This system is also described by its focal length and
its principal planes as calculated from (16), (17), and (18); To relate
qi and q2 we use (79) and put d1 = h1, and d2 = h2 . Comparing with
(19), (20), (21), and (22) we see that

Aqi + B
q2 - (80)

CD. D

which we shall call the ABCD law. The q parameters of the input and
the output are related by this bilinear transformation. The ABCD
law says that the constants of this transformation are equal to the
elements of the ray matrix. The ray matrices of several optical struc-
tures are given in Section III, and we shall use the ABCD law to study
the passage of Gaussian beams through some of these structures.

There appears to be a very close connection between Gaussian light
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beams and the spherical waves of geometrical optics. In fact, all the
important laws of this chapter are formally the same for a spherical wave
with a radius of curvature q. One is therefore tempted to regard a Gaus-
sian beam as a spherical wave with a complex radius of curvature. For
the limit of infinitely small wavelengths the curvature radius becomes
real and one has a spherical wave of geometrical optics.

The ABCD law allows also a kind of "black box" approach to the
study of optical modes. One can, for example, inquire about the mode
parameters of a sequence of equal black boxes, i.e., optical structures
characterized by their ray matrix elements A, B, C, and D. For a mode
the beam parameter at the output of a black box is equal to the param-
eter at the input (q1 = q2 = q). From (80) follows a quadratic equation
for the mode parameter q

Cq2 (D - A)q -B = 0. (81)

The solution of this equation can be written as

q

1 D
2B 2

-A jBV,4 - (A ± D)2 (82)

from which one can obtain the beam radius or spot size of the mode
and the radius of curvature of its phase front.

4.5 Beam Transformation by a Telescope

In this chapter we shall study the passage of a Gaussian beam through
a telescope consisting of two lenses of focal length fl and f2 , respectively,
spaced at a distance d = f2 - Ad. The "misadjustment" M is
assumed small. The focal length and the location of the principal planes
of the telescope are given in (27), (28), and (29). We consider an in-
coming beam with a beam radius w1 at its waist, and the waist spaced
at a distance si from the first lens as shown in Fig. 11. We want to de-
termine the location s2 of the waist of the outgoing beam and its beam
radius w2 .

The distances of the waists to the corresponding principal planes are

d1 = si h1 ; d2 = s2 h2 . (83)

From this we find with (24) and (27)

d1 fl Acl si - 1).
12 \fi

Inserting this expression together with (27) in (64) we get for the beam

(84)
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d

Fig. 11 - Gaussian beam passing through a telescope.

w2=wifl1 + 1- h
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(85)

which is correct to first order in M. We see that the ratio of the beam
waists is more or less equal to the ratio of the focal lengths of the lenses.
There is only a slight dependence on the position of the input beam waist
for M 0 0.

To determine the location of the output beam waist we use (84)
and the corresponding expression for (d2/f) - 1 to rearrange (68) as

Si - fl S2 12 Ad F(s,
f,2

J2"
- 1VS 1

f L ft
(86)

- 7r
fif2 X

1 (w1w2

Inserting (85) and expanding to first order in M this becomes

Si - 82 - /2 .d [(si
f1)2 - (71012 2 (87)

fl2 f2 /14 X

For a well -adjusted telescope we have M = 0, and the distances
between the beam waists and the focal planes of the corresponding
lenses (i.e., si - f1 and 82 - 12) scale like the squares of the focal lengths
of the two lenses. The signs in (87) indicate that for an input waist
which lies to the left of the focal plane of the input lens one has an out-
put beam waist to the left of the focal plane of the output lens, and
conversely for an input waist to the right of the input focal plane.
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4.6 Beam Transformation by a Sequence of Lenses

Consider now a sequence of lenses of equal focal length f spaced at a
distance d as shown in Fig. 6. Immediately to the right of each lens an
optical mode of this structure has a phase front with a radius of curva-
ture of -2f and a beam radius tvm given"'" by

1 / 4f 1 -
rw,2 2f d

sin 0
d

(88)

where 0 is defined in (34). To the right of each lens the complex beam
parameter (72) of a mode is therefore

1 1 . sin 0
qna 2f

(89)

Assume that a Gaussian beam is injected into the lens sequence, and
call its complex beam parameter in the input plane q1 . If qi = ,

then we have launched a mode of the system, and the parameter of the
beam to the right of every lens is qm . For q1 qm we use the ABCD law
(80) to compute the beam parameter q2 to the right of the nth lens. The
elements of the ray matrix of n sections of the lens sequence are given
in (33), and we use them to apply the ABCD law. We have

[sin nO - sin (n. - 1)0]q1 d sin nO
q2 -

1- t- sin nO  qi + 1 - Id) sin nO - sin (n - 1)0
. (90)

From (34) it follows that

sin nO - sin (n - 1)0 = (d/2f) sin nO + sin 0 cos nO (91)

which can be used together with (89) to rewrite (90) as

sin 0  gin° 1 1- -) . (92)
(1 - 1

sin n0 qi qmsin 0.e-in° + d -
qi qm

After some further rearranging this can be written in the form

1 1 1 1

1 1 + 2 1 1
1+

2 1
exp ( - 2jn0). (93)

42 q"---. Q`-: ± I q.i - -qm qm + 7
For the case where the q parameter of the injected beam does not

differ too much from the parameter qm of a mode we can put

0 = (1/qi) - (1/q.) (94)

1 1_ _
q2 qm
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and assume that A is small. Developing (92) in powers of A we obtain
2

1 - jA2 7rWm (e2jne e410) ()(6, 3). (95)
q2 gin 2X

If we neglect all but the first -order term in (95) and compare the real
and imaginary parts, we arrive at approximate formulae* for the output
parameters R2 and w2 :

1 - 1 + ) cos 2 nO -I- X- ( 1 - 10) sin 2 nO
2f

,

- R1 2f 7 vh2 tom,

W22 W.2
- - -= -- - - sin 2n0 -- - -) cos 2 nO.

(1 1) .

R1 2f wm,
1 11 1

Comparing these expressions with (33) we see that the beam radius
w2 varies in z direction with a period that is half the period with which
a ray displacement varies. This fact has already been seen experimen-
tally,' and has also been noted for other optical structures.28

The formulae (96) are valid for cases where the parameters w1 and
R1 of the input beam do not differ much from the parameters of the mode
of the lens sequence (i.e. for small A). For cases where this condition is
not fulfilled we have to go back to (90). Using (72) we re -express the
q parameters in terms of w1 , RI , w2 , and R2 and the imaginary
parts of 1/q2 as given by (90). After some algebra, where (91) is used
to make simplifications, we obtain

W22 [1 Wm4 (772)2 (k kt)2
11) 12 2 wi4

(96)

4
1 1

2\
171 J

cos 2n 0 (97)+
2

11 [ 1-V

117

frwm2\
) Rl + 2f

) sin 2n 0.

In this exact expression for w2 we find the same periodicity in z direction
as in (96). As n is varied w2 goes through maximum values win.x and
minimum values wrnin . It is easy to show from (97) that

2

Wniax Wmin = Wm 

Note that wmax and ?D.Jn are the extrema of the envelope curve obtained
for continuously variable n. The extremal values of w2 actually occur at
a lens only if the corresponding n is an integer.

* In a recent publication by J. Hirano and Y. Fukatsu in Proc. IEEE, 5.e, Nov.,
1964, p. 1284, similar expressions were derived by means of a perturbation tech-
nique in which the real beam parameters were used directly.
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An exact expression for R2 is obtained by comparing the real parts of
1/q2 in (90) in a similar way.

4.7 Beam Transformation by a Lenslike Medium

The passage of Gaussian beams through a lenslike medium as de-
scribed by (42) has been discussed by several investigators.19,28,29,30,31
We assume here for simplicity that no = 1, or a refractive index given by

n = 1 - 2 (r2/b2). (98)

It is easy to show19,28,29,30,31 that for a Gaussian beam that is injected
with a plane wave front and a beam radius wo given by

wo2 = Xb/27r (99)

the wave front remains plane, and the beam radius remains constant
as the wave propagates. These light beams are called the modes of the
lenslike medium. If the beam is injected with a beam radius w1 wo , the
wave front and the beam radius will change as a function of z. This
problem has been treated by Tien et al.28 with the help of a differential
equation, and by Marcatili29 who expanded the field distribution of the
input beam in terms of the modes of the lenslike medium. We will show
here that one can get the desired results in a rather simple fashion by
employing the ABCD law (80).

The elements of the ray matrix of a medium section of length z are
given in (44). Using these together with (80) one computes for a beam
with the complex parameter qi in the input plane a beam parameter

b
qi cos 2-z -I- - sin 2-z

b 2 bq2- (100)
2 z

- q1 I,- sin 26 cos 21)

in the output plane a distance z away from the input. Assuming an
input beam with a plane wave front and a beam radius w1 we have

1

qi irwi2

Inserting this and (99) in (100) we obtain
2

1 X

.sin2
b wi2- - cos 2-z

q2 rwo2 Z Wo2 Z
cos -3. - sin 2-

2b W12

(101)

(102)
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If we compare the imaginary parts in this expression we get

2 ( Z Wo4 2 Z)
W: = cos` 2 + sin 2 -

b

479

(103)

which agrees with the results of Refs. 28 and 29. A comparison of the
real parts yields an expression for the curvature of the wave front.

V. RESONATORS WITH INTERNAL OPTICAL ELEMENTS

5.1 The Basic Resonator Parameters

A resonator consisting of two spherical mirrors spaced at a distance
d is shown in Fig. 12. R1 and R2 are the radii of curvature of the two
mirrors, measured positive as shown in the figure. The mirror diameters
or widths are 2a1 and 2a2 , respectively. The three basic parameters of
such a resonator arel°,32."

N= aia2

Xd '

al =
a2

1
veil)al (

G2 = a2 (1
al R2

d)

Within the Fresnel diffraction theory of optical resonators these three

Fig. 12 - Empty spherical mirror resonator.
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parameters determine completely the diffraction losses, the resonant
frequencies, and the mode patterns of the resonator."

In the following we will show that resonators in which lenses or similar
optical structures are inserted between the resonator mirrors are equiva-
lent to an empty resonator of the type shown in Fig. 12. By equivalent
resonators we mean here resonators with the same diffraction losses,
the same mode patterns except for a scaling factor, and the same resonant
conditions. To specify an empty resonator equivalent to a resonator
with internal optical elements we will compute its parameters N, Gl ,

and G2

5.2 Resonators with, an Internal Lens

A resonator with an internal lens is shown in Fig. 13. A lens of focal
length f is spaced a distance d1 away from the left mirror and d2 away
from the right mirror. As before we call the radii of curvature of the
two mirrors R1 and R2 and their diameters 2a1 and 2a2 as shown. The
internal lens is assumed to be so large that no additional aperture
diffraction effects are introduced.

Suppose now that we know the modes of the resonator. We can apply
the imaging rules of Section II and choose the mirror surface of the right
mirror, say, as reference surface. The image of the mode pattern on this
mirror appears a distance

d,

-f-
a az

RI \jfR 2

a,

RI

Fig. 13 - Resonator with internal lens and equivalent empty resonator.
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d2 - fd (107)
d2

2

f
away from the lens as shown in the figure. The field of the wave reflected
from the mirror is zero outside the mirror aperture a2 . The field of the
corresponding image is therefore zero outside an aperture a2 given by
the magnification

a2 d2 d2= - = ---7
a2 d2'

(108)

The image is a scaled reproduction of the mode pattern on the mirror
which is exact in amplitude and phase if a spherical reference surface
is chosen. The correct curvature of this surface is found in accordance
with (6) and (8) by imaging the center of curvature of the mirror on the
right.

Consider now a mirror of diameter 2a2 placed at the location of the
image a distance

d = d1 - d2 (109)

away from the original left mirror as shown in the lower part of Fig. 13.
The mirror curvature is chosen to be the same as the curvature of the
reference surface for the image. This mirror may be called the -image
mirror of the original mirror on the right. Apart from a phase difference
of 2k (d2 d2) it reflects a wave coming in from the left in exactly the
same way as the original mirror combined with the Tens. The incoming
wave produces the same (magnified) complex amplitude distribution
or field pattern on the image mirror as on the original mirror on the
right. The outgoing wave reflected by the image mirror has a field pattern
at d2 that is identical to the field pattern at d2 of the outgoing wave
reflected by the combination of the original mirror and the lens. The
field patterns of the two outgoing waves are thus also identical in any
other beam cross section, and in particular across the left mirror. There-
fore the modes of the empty resonator formed by the image of the right
mirror and the original left mirror as shown in the figure are equivalent
to the original resonator with the internal lens. The mode patterns on
the left mirror are identical in both cases, and the mode patterns of the
corresponding mirrors on the right are scales of each other. The diffrac-
tion losses of the two systems are also the same, and there is only a small
difference in the corresponding resonant conditions due to the difference
in phase shift of k (d2 d2') per transit.

The basic parameters of the equivalent empty resonator are easily
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obtained. According to (104) we have a Fresnel number of

N = a1a2/Xd (110)

and with (105)

= 1- .

a2 RI

With (107 ), (108), and (109) these expressions can be written in terms
of the dimensions of the resonator with the internal lens. One obtains

and

ctia2N =
did2\'

X(di d2
f

G1=
c_12 {1 d

f
2 1 (di MA}

a2 Ri\ f

By interchanging subscripts one gets

(112)

(113)

di 1
G2 = {1 - -

R-2
(di d2 - difd2)} (114)

These three parameters determine the properties of the modes of the
internal lens resonator. In the above expression one notes the appearance
of the term

do = d1 d2 - (did2/f) (115)

which one might call the effective distance between the mirrors. It is
modified by the presence of the lens.

In Refs. 4 and 32 approximate expressions are given for the resonant
condition and the beam radii (spot size) of the fundamental mode at
the mirrors of an empty resonator that is stable. Recall that for a stable
resonator there holds

0 GiG2 1. (116)

We can apply these formulae to our equivalent resonator and obtain
by imaging the corresponding expressions for the resonant wavelength
X and the beam radii w1 and w2 on the mirrors of our resonator with an
internal lens. Using the parameters discussed above we get
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2(d1 d2) 1- q - (m n 1) cos-' -Va702 (117)
x

where q is the longitudinal mode number, and m and n are the transverse
mode numbers. The sign of the square root should be chosen equal to
the sign of GI (or G2). For the beam radii we get

Xd
wiw2 = -

o - G1G2)-1, (118)

and

wi al (G2)4-= - (119)
w2 a2 G1/

The image mirror discussed above can also be obtained from the
concept of a "thick mirror." A thick mirror" is a combination of a
spherical mirror and a lens. The optical characteristics of this combina-
tion are represented by a combined focal length and a principal plane."
A mirror of this focal length located at the principal plane is equivalent
to the thick mirror combination. This equivalent mirror is the same as
our image mirror.

The equivalence of the empty resonator and the internal lens resonator
can also be shown by using the Fresnel diffraction formula in the manner
of Appendix A. One obtains integral equations for the modes of an
internal lens resonator. After performing the integration over the lens
plane which involves infinite Fresnel integrals, the equivalence to the
empty resonator is easily seen.

For cases where the effective distance do as given by (115) is very
small, ray angles of interest become rather large and the theory of
Fresnel diffraction is no longer expected to apply. We have to exclude
these cases from our considerations.

Our discussion includes internal lens resonators with flat mirrors as
shown in Fig. 14. The basic parameters of this resonator type can be
obtained from (112), (113), and (114) by putting R1 = R2 = . Burch
and Toraldo di Francia8 have discussed the confocal system of this
resonator family where G1 = a2 = 0. The transmission line dual of an
internal lens resonator with flat mirrors is also shown in Fig. 14. It is a
sequence of lenses and irises spaced as shown. In this sequence the lenses
are large and the irises inserted between them control the modes of the
system. For a symmetric system of this kind where d1 = d2 = d and
ai = a2 = a the above expressions simplify, and we have

Gi = a2 = 1 ((l/f), (120)



484 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

8,1

If

--dt--+ d2 d2 di d

Fig. 14 - Internal lens resonator with flat mirrors and its transmission line
dual, a sequence of lenses with irises placed between the lenses.

and a Fresnel number of

N=
ad (

f
2 - 4 *)

a2

(121)

5.3 Resonators with an Internal Optical System

As discussed before, the imaging rules of Section II apply not only
to thin lenses but to any optical system that can be characterized by a
focal length and by principal planes. The expressions derived above for
internal lens resonators can therefore be applied also to spherical mirror
resonators with an internal optical system. All one has to do is to inter-
pret f as the focal length of the system and put

d1 = h1 ; d2 = h2 (122)

where h1 and h2 measure the distances between the two principal planes
and the corresponding mirrors.

We can also characterize the internal optical system by its ABCD
or ray matrix as in (9). Inserting (122) in (112), (113), and (114) we
compare the resulting expressions with (19) through (22). We note
immediately that the three basic resonator parameters can be written
in terms of the elements of the ray matrix in the form

N = ala2
AB

(123)
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(124)

(125)

5.4 Internal Lenslike Medium - Guiding Medium with Apertures

In this section we consider a spherical mirror resonator with a lenslike
medium inserted between the resonator mirrors. The optical properties
of a lenslike medium have been discussed in Sections 3.4 and 4.7. The
refractive index of this medium changes with the square of the distance
from the optic axis and is described by (98) if we assume no = 1. The
degree of this index variation is measured by the parameter b. As shown
in Fig. 15, we assume that the medium fills the space between the
resonator mirrors which are spaced at a distance 1. The mirror diameters

are 2a1 and 2a2 , respectively, and the corresponding radii of curvature
are R1 and R2 .

The three basic resonator parameters which describe the modal prop-
erties of this resonator with an internal lenslike medium are easily
computed by using the results obtained before. The elements of the ray_
matrix for a medium section of length I are given in (44). Inserting
these in (123), (124), and (125) we obtain for the Fresnel number of

the system

and for the G parameters

N=
1 '

Xb sin 2
b-

2a1a2

Fig. 15 - Resonator wit h an internal lenslike medium.

(126)
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c-11 cos 2 - b sin 2 1= - (127)
a2 2Ri b) '

G2 = (cos 2 - - -sn 2 -b)
2R2i

. (128)
a2

b

b 1

A special case of the above system is shown in Fig. 16, where the
mirrors are flat, i.e., Ri = R2 = 00 The transmission line dual of this
resonator is also shown in the figure. It is the interesting case of a lenslike
medium or a gas lens with periodically spaced irises as shown. For irises
of equal diameter (a1 = a2 = a) the above expressions simplify, and
we obtain for the Fresnel number of the system

2a2
N =

Xb sin 2
' (129)

and

= G2 = cos 2 -/ . (130)

This system is confocal for / = (r/4)b. When the value of 21/b ap-
proaches a multiple of 7, N gets very large and we have a case where the
effective distance between the mirrors is very small [compare (115 )].
As discussed before, the theory of Fresnel diffraction is no longer expected
to apply under these circumstances.

al 1:::. a
).1Px-.%141.

b

1 H

Fig. 16 - Resonator with flat mirrors and an internal lenslike medium, and
its transmission line dual, a gas lens with periodically spaced irises.
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In high -gain lasers the parameter l/b can become rather large for
certain frequencies.21 For frequencies where the laser medium is focusing
we have b2 > 0, while for frequencies where the medium is defocusing
b2 < 0 and b is imaginary. It is interesting to study the stability"' of a
resonator with an internal lenslike medium allowing for positive and
negative values of b2. For simplicity we assume that the radii of curvature
of the two resonator mirrors are equal and put R1 = R2 = 2f. With
(127) and (128) we obtain

2G1G2 = G2 = (cos 2 -1
b 41

--b sin 2b (131)

and write the stability condition (116) in the form

-1 <G<1. (132)

One can plot a stability diagram in which each resonator with given
parameters 1, f, and b is represented by a point. Such a diagram is shown
in Fig. 17, where 1/f is plotted as ordinate and l/b and jl/b are plotted
as abscissae. Resonators with b' > 0 are represented by points to the

f

V/2

b

Fig. 17 - Stability diagram for a resonator with an internal lenslike medium.
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right of the 1/f axis, and resonators with b2 < 0 are represented by points
to the left. Points in the shaded regions correspond to unstable reso-
nators, and resonators represented by points in the unshaded regions
are stable. The boundaries between the stable and unstable regions
follow from (131) and (132). They are described by the equations

b

1

2

7
'

v integer,

1

4L
1 1cot6,

1 1 1= -4 tan .

For b2 < 0, where b is imaginary, the trigonometric functions of (134)
and (135) become hyperbolic functions as in (48) and (49). For b2 > 0
one gets periodically stable and unstable regions as l/b is increased.

We have not discussed in detail cases where the lenslike medium
occupies only a part of the space between the resonator mirrors. How-
ever, one can compute easily the basic parameters for resonators of this
kind with the help of the matrix elements of (44), and the formulae
(123), (124), and (125).

5.5 Resonators with One Very Large Mirror

Let us return to the case of an empty resonator. In some practical
arrangements the diameter of one of the two mirrors, say 2a2 , is so
large that diffraction by its aperture can be neglected. The resonator
modes are then more or less controlled by the aperture al of the other
mirror. This statement is not true for resonators of the degenerate
confocal type where the diffraction losses at each mirror are equal' for
any aperture ratio a2/al . We exclude resonators of this type from our
present discussion.

The properties of the resonator modes are generally determined by
the three basic parameters given in (104), (105), and (106). But for
an infinitely large a2 the Fresnel number N and the parameter G2 be-
come infinitely large, and G1 = 0. The resonator parameters are now
quite meaningless. It is, however, possible to construct an equivalent
resonator with parameters of finite value, as we will show below.

Consider Fig. 18. An empty resonator with one mirror of large diameter
is shown schematically at the top. Below it we have drawn its transmis-
sion line dual. It consists of a sequence of lenses where an apertured lens
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R2

fi = R1/2

V 2=R2/2

fy = R2/2

f2

Fig. 18 - Empty resonator with one very large mirror, its transmission line
dual, and its equivalent internal lens resonator.

follows an unapertured lens of large diameter. But this transmission
line is also the dual of the resonator shown at the bottom of the figure.
This is a resonator formed by apertured mirrors of finite diameter 2a1
with an internal lens of focal length f = R2/2. The lens is unapertured.
Internal lens resonators of this type have been considered before. We
can compute the Fresnel number of this system from (112) and obtain

N - a12

2d (1 - vd) 

Equations (113) and (114) are used to calculate the G parameters with
the result

(136)

Gl
1

2

d= 02 = 1 - 2d ( 1- -
R -

RiRI
(137)
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These parameters determine the properties of the modes of the internal
lens resonator shown in Fig. 18. The mode patterns at the apertured
mirrors of this resonator are, of course, equal to the mode pattern at the
apertured mirror of the empty resonator. The one -trip diffraction loss
of a mode of the internal lens resonator is equal to the return -trip diffrac-
tion loss of an empty resonator mode, as there are no diffraction losses
at the infinitely large mirror.

For the special case where the large mirror is flat (R2 = co ) the above
discussed equivalences are well known. They follow from symmetry
considerations.
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APPENDIX A

Imaging for Fresnel Diffraction

The purpose of this appendix is to show how the imaging relation (6 )
of the main text is derived within the formalism of scalar Fresnel diffrac-
tion theory. Assume a light wave traveling in z direction and refer to
Fig. 19. Call the object field El (xi , y') and the image field E2 (x2 , y2) 
The distances d1 and d2 between the lens and the object and image
planes, respectively, are related by

(1/d1) (1/d2) = 1/f. (138)

OBJECT PLANE

SO

d2

-------- ------- P2

IMAGE PLANE

12

1

Ei (xi YI)

f
E0(x0; Yo) Eo(x0iY0) E2 (i23 Y2)

Fig. 19 - Dimensions of interest for Fresnel diffraction theory of imaging.
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The field immediately to the left of the lens is denoted E0 (x0 , yo) and
the field to the right of the lens is Ro (xo yo). According to (1) of the
main text we have for a large, ideal lens

)20 = E0 exp (-3.k* To2
2f

y02 (139)

where k = 27r/X is the propagation constant in the medium. With the
help of the Fresnel diffraction formula the fields En and E2 can be ex-
pressed as

En = ik 141 exp (
2ird1

and

(140)

E2 = f +xi dxody0R0 exp ( -jkp2) (141)
2rd2

where

pl = dl+ 12d1 (xi - xo)- ±
2d1

(Y1 - Yo)2 0-421-

and

+
2d

1

2 2d
I 1

P2 d2 k X2 .r0) 2 ('Y2 Jo)
2 (143)

2

The integration in (140) is performed over the aperture area Al of the
object field, and the integration limits in (141) are extended to infinity
with the assumption that the lens is so large that no additional aperture
diffraction effects are introduced.

Combining (139), (140), and (141) we obtain by interchanging the
order of integration

k2 +00

E2
47r2

dX1c/Y1E1 f da:040
d1d2 14 1

,2)1 exp [-h7(p1 + P2 -1- 2-

where

(144)

2
ro2 = a:02 1- YO (145)

Now the expressions (142) and (143) for pi and p2 are inserted. One
finds that in the exponential the terms proportional to roe cancel because
of (138). The integration with respect to x0 and yo can be performed by
noting that
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+co

dxo exp [jk:ro -
d

= 271-5 (k
i

21)3:2 xi X2

where (5 is the Dirac delta function.34 With this (144) becomes

k2
2

E2 = -
did2

exp [- jk (di + d2 + -7'2 )1
2d2

f
2

dxidyiE1 exp (-, 'kr'
.4 , 7 2d1)

Y 1 y2])
 3 (k [Ldl ± :i221). o (k dl ± -c1-2

(146)

(147)

This simplifies immediately with the help of the formalism of the delta
function34 to

E2 (X2 112) =
( di

d2cl2x2 d2 Y2)

 exp [-jk (di d2 7Y- (1 +
2d2

Multiplying (138) by di/d2 one finds that

1 di\ 1 d1

d2 V + d2i f d2

which is used to write (148) in the form of (6) of the main text.

APPENDIX B

(148)
d1

d2

(149)

Principle of Equal Optical Path Leading to Additional Phase Shift in
Image Plane

The process of imaging the field distribution in the object plane into
the image plane can be understood in terms of the rays leaving each
point (say P1) in the object plane at various angles as shown in Fig. 20.
All rays originating from P1 are collected at a corresponding point P2
in the image plane. A form of the principle of equal optical path" says
that the optical path lengths from Pi to P2 are the same for all rays
regardless of initial slope.

To obtain an image which is an exact reproduction of the original
amplitude and phase distribution it would be necessary for the various
optical paths which connect corresponding points, say Pi and P2 or
(21 and Q2 to be equally long for all points regardless of their distance
from the optic axis. That these path lengths are not the same for all
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Fig. 20 - Rays emerging from a point of the object collected at the image.

points but increase with increasing distance between the imaged point
and the optic axis can be seen from the simple example of an ideal plane
wave coming in from the left. This case furnishes an expression for the -
path length difference as a function of the distance between the imaged
point and the axis. As the path length is independent of the field distribu-
tion imaged, this expression is valid for the general case. To derive it
we recall that an ideal plane wave is transformed by an ideal lens into
an ideal spherical wave with the focal point of the lens as its center.
The rays connecting points which lie on corresponding wave fronts are
equally long for all points on the wave front." Therefore all path lengths
measured from the object plane to the spherical wave front which touches
the image plane are equal. Paraxial rays (which are practically parallel
to the optic axis) need an additional length equal to r22/2f to reach a
point (P2) in the image plane which is a distance r2 away from the axis.
This additional ray length accounts for the additional phase shift given
in (6) in the main text.
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Geometrical Optics of Magnetoelastic
Wave Propagation in a Nonuniform

Magnetic Field
By B. A. AULD

(Manuscript received July 21, 1964)

The propagation of magnetoelastic waves in a magnetic insulator having a
nonuniform internal magnetic field is examined in the geometrical optics
approximation. Hamilton's ray path equations are obtained from the
slowness relation for the medium, and it is shown that for YIG there is a
substantial focusing action in the rod configuration commonly used for
magnetic delay line experiments. When external field shaping is used to
produce a minimum internal field at the midpoint of the rod it is found
that divergence of the magnetoelastic waves is to be expected.

I. INTRODUCTION

In a number of experiments,1,2.3 propagation of magnetoelastic waves
has been observed in discs and rods of yttrium iron garnet. Coupling is
provided through an internal field variation along the direction of
propagation, radially in a disc and axially in a rod. This permits excita-
tion of the wave in a region of small wave vector,' '5 where the magnetic
field can couple to the magnetization, with subsequent tapering into the
magnetoelastic crossover region. The demagnetizing field also varies in
magnitude and in orientation across the direction of propagation. In
regions where the wave vector is large it is appropriate to consider the
effects of this field inhomogeneity in terms of geometrical optics, and it
is to be expected that refraction of the magnetoelastic waves will occur.

II. THE SLOWNESS RELATION AND GROUP VELOCITY

In a cubic crystal with a de magnetic field applied along a [1001 axis
x3 and, for simplicity, assumed elastically isotropic propagation of mag-
netoelastic waves is governed by the set of equations'

495
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xi ± (.04111 r2 - i-ybk cos 0 Rg, = 0

(coif, com sine 0)./Ifx, - - itybk (cos 20 Rg + sin 20 R1) = 0
(c02 zic2) i (bk/ pM) cos 20 Mx, = 0 (1)
(c02 - ct2k2)Rt, - i(bk/pM) cos 0 Mx2 = 0

(w2 -ci2k2)111- i(bk/pM) sin 20 Mx, = 0,

where

Wyk = -y (H Hexa2k2)

com = 747M.

The wave vector fi is assumed to lie in a (100) plane at an angle 0
with the dc field. Mx, Mx2 are transverse components of the magnetic
moment referred to axes along [100] directions, and RI, , Rg , R1 are
transverse and longitudinal components of elastic displacement. The
saturation magnetization is denoted by M and the mass density by p.
Transverse and longitudinal elastic wave velocities are represented by
c/ and c/ respectively, and b is the second magnetoelastic constant,
generally designated by b2 . H is the internal de magnetic field, H. is the
exchange field, and a the lattice constant. In what follows it will be
assumed that the crystal has sufficient magnetoelastic isotropy Oh b2)

that (1) is valid for a magnetic field applied at a small angle to the [100]
axis and for propagation in any azimuthal direction.

Upon elimination of variables in (1), the secular equation is found to
be

S2(co,k,O) = (042 - w2) - (bk)2
pMHk

W2 COS2 0 COHk cost 20 coHk2 sin2 20 = 0
w id2 cot2 - CO2 CO/2 - C.02

where

(4,2 = wil.(colik com sing 0)

2 2 ( bk)MH2
Wid = COt pkcos2 0

2
Ct

27_2=

? = cl2k2.

(2)
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This equation relates the wave vector k or the wave slowness vector
k/w = k/kv,h to w and 0, a relation which may be displayed graphically
by a dispersion diagram (see Fig. 1). In coordinates k1 , k2 , k3 the slow-
ness relation (2) defines a "wave vector" 7 or "slowness" 8 surface for
each value of w. Since the magnetoelastic dispersion curves (see Fig. 1)
have four branches and the dispersion relation is independent of azi-
muthal angle, the wave vector surface is a surface of revolution about x3
and comprises four sheets. For example, a vertical section through the
sheet of the wave vector surface corresponding to branch III appears,
at co ti wil , as shown in Fig. 2. The group velocity vector'

VkS2V, = vow= - (3)
aWaw

is proportional to the gradient of St and is therefore normal to the wave
vector surface, as shown in Fig. 2, the sense of the normal being de-
termined by the requirement that. the angle between V, and k be less
than r/2. This means that except in the special cases B = 0 or r/2, the
group velocity vector is not exactly parallel to the wave vector; and a
wave packet does not move in a direction normal to its phase fronts, a
phenomenon which is characteristic of anisotropic media.

k

Fig. 1 - Magnetoelastic dispersion diagram.
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Fig. 2 - Wave vector surface for branch III of the dispersion diagram, at
W = cos

III. THE EIKONAL EQUATION AND THE RAY EQUATIONS

It is assumed that the magnetic field varies in both magnitude and
direction from point to point in the medium, but is sufficiently strong at
all points to saturate the magnetization. The geometrical optics ap-
proximation is appropriate when the magnetic field is almost constant
over regions comparable with a wavelength in dimension, so that a solu-
tion to the magnetoelastic equations having the form

M (r)e (r)

R (r)e4(r)

appears over a small region as a plane wave with relatively slowly vary-
ing amplitude. If the assumed solutions are introduced into the equations
of motion and spatial derivatives of R and M are neglected, equations
(1) are obtained with I Vtp I substituted for I k I, and the angle between
the "local" wave vector VIP and the local magnetic field is substituted
for O. With the same substitutions, the slowness relation (2) reduces to a
first -order partial differential equation for the phase function ',
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(co,pi , xi) = 0

,n;
ax;

i = 1, 2, 3.
(4)

This is the eikonal equation or equation of geometrical optics. In the
neighborhood of a singularity of the medium the approximations made
in deriving the eikonal equation sometimes break down.' For the case
of electromagnetic propagation in a ferrite, Seidel'° has shown that
singularities of this kind occur Lecause of the appearance of logarithmic
derivate coefficients in the field equation. It is not clear whether similar
singularities exist for the magnetoelastic equations, and no attempt will
be made to justify rigorously the use here of the geometrical optics ap-
proximation.

The standard method of solving (4) is by means of the characteristic
or ray equations"

dxi/dw = aC1/api (5a)

dpi/dw = -89/oxi , (5b)

where w is a parameter. For any set of initial values of pi , xi satisfying
(4) these equations, which form the basis of Hamiltonian optics,8,12

de-

fine a unique curve in the space xl , x2 , x3 . The significance of this
curve becomes clear when the equivalence of pi to the component ki
of the "local" wave vector is recalled. This shows [from (3)] that the
tangent,

(dx,:dx2:dx:,) = (fft aQ as2

api am. ap3j

to any curve defined by (4) and a set of initial conditions is always col-
linear with the group velocity vector. Therefore the curve, or ray path,
obtained by integrating (5) describes the trajectory of a wave packet
launched at a specified point xi with a specified "local" wave vector
ki = pi . The value of the phase function 4/ at any point on the ray path
is obtained implicitly from

(111/ aS2

ape

asl ail
ap3 '

jw= pi
op'

-r P2 -- P3 (6)

where [from (5a)] dw is related to the increment in ray path length ds
through the relation

ds = {(- - dw.
api 07)2 am
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When the wave vector surface has more than one sheet there are
several initial group velocities corresponding to the same initial wave
vector direction. These are distinguished by the magnitude of the initial
wave vector, and a wave packet will therefore trace out different ray
paths according to the magnitude of the initial wave vector, each path
corresponding in a local sense to propagation in a mode associated with a
particular branch of the dispersion diagram. When there is only a slow
spatial variation of the magnetic field there will be little coupling between
modes and the different ray paths will maintain their distinct identities.

The present discussion will be concerned with ray paths corresponding
to branches I and III of the dispersion diagram. In this case Schlomann6
has shown that, in the region where the uncoupled magnetic and trans-
verse elastic waves cross, the slowness relation can be written ap-
proximately as

(co - 04) (co - c,k) - (o- /2)ohrf (0) = 0,

where a = /Al, wer is the crossover frequency for the uncoupled
waves, a is the elastic stiffness c44 , and

(0) = 1[ (2 - 5 sin2 0 + 4 sin4 0) (1 com2c082 sin4 0)4

At the lower microwave frequencies it can be shown that the k depend-
ence of co due to exchange has a very much smaller effect on the slope
of the dispersion curves than does the magnetoelastic coupling. If
exchange is neglected

1co, = coR = coH (1 + wMsin2 0)
wif

in which WH = 'yH and the eikonal equation takes the form

0(w, pi , xi) = (p12 p22 2332)1 ± wsf (6) - w = 0, (7)
2e1 w - co. ct -

where 0 is the angle between the vector (pa:p2:233) and the local magnetic
field.

In the following section attention will be directed toward rotationally
symmetric systems, with rays travelling in meridian planes. It is ap-
propriate, then, to use a cylindrical coordinate system, and (5) and (7 ),
which are written in Cartesian coordinates, must be transformed. Since
the co component of Dad is zero, (7) becomes
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C2(w,P, , pz , r,z) = (pr2 pz2)+ if

2c co

Ws./ (

0)- co cc - (8)t s

0 = n -
where n = tan -1 pr/p, and is the polar angle of the local dc magnetic
field (see Fig. 3). In a rotationally symmetric system the ray equations
(5) transform into

dr / dw = aS2/ apr, dz/dw = al2/ op, (9a)

dprldw = - XI/ ar, apz/dw = - aS2/ az (9b)

IV. PARAXIAL RAY EQUATIONS AND REFRACTION IN CONVERGING AND

DIVERGING MAGNETIC FIELDS

The discussion will now be restricted to the paraxial case; that is, only
rays lying close to the symmetry axis and traveling almost parallel to it
will be considered. Then

0 Pr/P. 

Furthermore, the rotationally symmetric magnetic field will be assumed
to be almost parallel to the axis (E << 1). Since 0 << 1,

.1' (0) 1 - 2.5 02;

and, when com/wli < 10,

wp trz--,' wit ± wM (02/2).

If w co,, the denominator of the second term in (8) is small and

a a co8f(0) a co8f(0) aco, 80

Op; 2ct w - 2ct (co - .4)2 ae api

a a w.f(0) w8 f(0) (awa aH aw, ao\
ax; 2ct w - co, f'd 2ct (co - cs.)8)2 \OH axi ' ao ax;j

where pi = pr , p, and xi = r,z. Then

ad
Pr 0

pr cru,' Af pz
(10a)

apr pz 2cip2 (w - (.011)2

ap., '

where only terms linear in pr/pz and E have been retained, in accordance

(10b)



502 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1965

Fig. 3 - Orientation of the "local" wave vector VII, relative to the local mag-
netic field.

with the paraxial approximation, and w8 con has been replaced by w
in the numerator of the second term in (10a). Similarly

8H
ao -ar

ar 2ct (w - con.)2.

From (9), (10) and (11) the paraxial ray equations are

dr 1 ( crcocom (pr/p, -
dz p,= - pr -r

2c, (w - con)2 J (12)

and
aH

dpr _crw ar
dz 2ci (0) - 041)2'

In the paraxial approximation p, is obtained directly from (8),

(13)

p, - (1 -
ce

2(w
we)

(14)

Consider now the case of a composite magnetic rod, the middle and
outer sections having saturation magnetizations 3/ and 31' respectively,
which is magnetized along its axis (see Fig. 4). The potential function
for the dipolar field on the center line of the middle section, assuming

110

2a M M'

z=-L z=1.

Fig. 4 - Composite rod configuration.
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uniform magnetization, is13

VD(z) = 27(M - (/ - z)2 a20 )2 a2} ± 2z]

if the end effects of the outer sections are assumed to be negligible. Close
to the axis the potential function is"

7,2 2

MD(r,z) = D(z) - VD(z).

Assuming (a/1)2 << 1, this leads to an internal field in the central region
of the middle section

2 2
2

H Ho - Cor(M - M')
2/2

( 7.

Hr r,67r(M - M') a2 zr
HZ r'Ho 12 l2 '

where only terms up to second order in z/l,r/1 have been retained. Equa-
tion (15) shows that the internal field diverges with increasing I z

when M' < M and converges when M' > M. This result has been de-
rived under the assumption of uniform magnetization. Actually the
magnetization in the rod will itself be nonuniform, and nonuniformity of
the field will be greater than is shown in (15).

A plane magnetoelastic wave is assumed to be propagating in the +z
direction at the midpoint of the rod, z = 0. Since pr is then zero at this
point and E = 0 from (15), it follows from (12) that dr/dz = 0. This
means that the ray paths are parallel to the axis at z = 0. Elimination
of pr and pz from (12), (13) and (14) leads to a second -order differential
equation with variable coefficients for r (z), and the ray path trajectories
are obtained by solving this equation, subject to the 'assumed initial
conditions. In this case a numerical integration is required for a com-
plete description of the ray paths. If only the direction of refraction is
required, the following simpler procedure may be used.

Substitution of (15) into (13) leads to

(15)

dp, _30 -co

dz 4c1 12 3
COM

\ a22)2WHm -1/
2 /2 12

where
Wm - (.4m, = 747r(/1/ - M')

3(4- 111,) a2??\
wEi = (H0 ±

4 /4
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Over a small range of z close to z = 0 the value of r will not change ap-
preciably along a ray path and dp,/dz may be integrated directly, giving

30-w (wm - wm, ) a2 zr
(16)Pr =

4Ct (CO - 0)11702 12 0-

to second order in z/l. This shows that the "local" wave vector deflects
toward the axis with increasing z when M' < M and away from the axis
when M' > M. The corresponding slope of the ray path is found by
substituting pr and pr from (14) and (16) into (12). That is

dr =
dz

1

1 awm " a2 ZT

12 l2 (17)
2

±a co H,2(w- coif.) (1 - -wH.))
up to terms of second order in z// and r/l, where

30- ( wm - Wm')A -
4 (1 - 0

2(w - coH,)
) (co - WH, )2

Equation (17) shows that when the field diverges (M' < M) mag-
netoelastic ray paths which are axial at z = 0 will converge, and vice
versa. This is easily understood in terms of simple physical concepts.
When the internal field decreases with increasing I z I it increases with
increasing r, as shown by (15). For a fixed frequency and propagation
angle it is clear from Fig. 1 that the "refractive index" kc t/co decreases
as H increases. If the anisotropy of the dispersion relation is ignored for
the moment, this means that off -axis rays curve toward the region of
higher "refractive index" closer to the axis. This isotropic effect is
enhanced by anisotropy in the dispersion relation. When the wave vector
is deflected from the magnetic field direction the ray path (defined by
the group velocity) is deflected even further, as shown in Fig. 2, leading
to an increased bending of the ray path.

This enhancement of the refractive effect by anisotropy is represented
in (17) by the second and third terms under the bracket. In order to
estimate the magnitude of these effects consider a YIG rod with all =
0.1 and w,,, = 2ir X 102. For YIG a = 4 X 10' sec-' and wm = 3.08 X
1010. According to Schlomann6 one-half the minimum frequency separa-
tion of the transverse magnetoelastic branches is

= (o-wer/2) i (awil0/2)1 = 1.12 X 108.

If this value is assumed for w - wil, the approximations used in obtain-
ing (16) and (17) are valid when z < 0.11, r < 0.011. At z = 0.11, r =



WAVE PROPAGATION 505

0.011 the anisotropic terms in (17) are found to be an order of magnitude
larger than the isotropic term, and the slope of the ray path is

drTz= -7.7 X 10-4.

On the basis of an extrapolation at this slope, the ray path should inter-
sect the axis at z 101. The actual intersection would be closer than
this because the ray path slope changes continuously with z. When the
signal frequency is shifted closer to coH. , an increased refraction results.
For example, if

- COHni = COrnin/3

the phase velocity of the magnetoelastic wave is, from (8), still within
a few per cent of the acoustic velocity; but the slope of the ray path at
z= 0.11, r= 0.011 is now

dr = - 3.2 X 10-2
dz

and the extrapolated intersection point occurs at z 0.31. This large
change in refractive power with decreasing 0., - CUR is due to the reso-
nance denominators in (17) and is an indication of the steep slopes of the
wave vector surface, Fig. 2, in the vicinity of 0 = 0. The approximations
used in obtaining (17) are, of course, not valid at resonance but are still
at least marginally valid in the case considered here.

V. CONCLUSIONS

It has been shown that in a uniformly magnetized medium the phase
and group velocities of a magnetoelastic wave are not collinear except

CHs

Ho

Fig. 5 - Beam steering by means of an auxiliary field.
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Ho

-

CONVERGING LENS

Ho

DIVERGING LENSLENS

Fig. 6 - Examples of lens configurations.

when the wave vector is either parallel or normal to the magnetic field.
This effect might be used for steering or switching an ultrasonic beam by
means of an auxiliary field (see Fig. 5). Since the direction of the wave
vector remains constant, the phase fronts remain parallel to the trans-
ducer faces.

Substantial refraction effects have been shown theoretically to occur
in a nonuniformly magnetized medium. For the case of a magnetized
rod it is found that paraxial magnetoelastic rays at frequency co ti co,/

Ha

k,

TRANSVERSE
1 //

k

1
i kk ,

1

/

/
/

/

- -- PURE ELASTIC WAVES
MAGNETOELASTIC WAVES

Fig. 7 - Wave vector surface for branch III of the dispersion diagram, at
I con (cull + cum))



WAVE PROPAGATION 507

converge when the dipolar field and the applied field are opposing and
diverge when the fields are aiding. In arriving at these results, the ef-
fects of losses and scattering due to imperfections have been ignored. By
a similar analysis it can be shown that an annular permanent magnet or
a circular coil encircling the rod will act as a converging lens if its field
aids the applied field and as a diverging lens if the fields are opposing
(Fig. 6). Paraplanar ray equations can be derived for radial propagation
in an axially magnetized thin disk at a frequency w 1(4E1(04 + coif)
In this case the anisotropic refraction effect is found to oppose the iso-
tropic effect and can even cause the net refraction to change sign. The
physical reason for this can be seen by examining the wave vector sur-
face for this case; see Fig. 7. This shows that a deflection of the wave
vector away from 0 = 71-/2 produces a deflection of the group velocity in
the opposite direction.
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Properties of Random Traffic in
Nonblocking Telephone

Connecting Networks
By V. E. BENES

(Manuscript received November 16, 1964)

Some of the properties of random traffic in nonblocking connecting net-
works are described and proved. Even though nonblocking networks are
rare, they represent an important limiting case, approached as blocking is
reduced by adding switches. For many purposes they provide a useful first
approximation in the calculation of system parameters. The number of
calls in progress is extensively studied in both equilibrium and transient
regimes, and its properties are used to distinguish between the wide and
strict senses of "nonblocking."

I. INTRODUCTION

In the continuing effort to understand the nature of congestion in
telephone connecting networks, it is important to have a thorough
knowledge of the special case of no congestion, exemplified by traffic in a
nonblocking network. Such knowledge is useful not merely as a guide to
theoretical investigations, but also in answering questions that are of
immediate practical import in the design of networks with small con-
gestion.

It is the purpose of this paper to describe some results concerning
random traffic in nonblocking connecting networks; these results have
important applications to traffic in networks that are not nonblocking.
For although nonblocking networks are rare in present telephone prac-
tice, and are therefore of limited immediate interest to engineers, they
form an important limiting case that is approached as the probability
of blocking is reduced by the addition of links and switches to the net-
work. Moreover, many parameters descriptive of the traffic can be
calculated with ease for a nonblocking network, and only arduously or
not at all for a network that has a nonzero probability of blocking.
Hence for low blocking, certain results pertaining to the nonblocking
case can be used to approximate those in the blocking case.

509
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In other words, for many purposes the nonblocking case serves as a
useful first approximation, as a guide for intuition and computation,
in the general case. It is important not to misconstrue our claim. We
are not making the banal and useless point that zero is a good first
approximation to the probability of blocking when the blocking is
small. We are making the point that if the blocking is small then various
interesting parameters of the system, other than blocking, are very
nearly related as they would be in the nonblocking case. This point has
direct practical value.

The present work is, nevertheless, restricted to depicting the proper-
ties of nonblocking systems, and no attempt is made here to apply the
results to systems with low blocking. Such applications are to appear
in later papers, e.g., Ref. 1.

II. THEORETICAL MODEL

Let S be the set of permitted (i.e., physically meaningful) states of
the one-sided connecting network v (of T terminals) under study. t The
set S is partially ordered by inclusion , where

x y

means that state x can be obtained from state y by removing zero or
more calls. If x is a state, the notation I x I will denote the number of
calls in progress in state x, while if X is a set, I X I will denote the num-
ber of elements of X. We also use, for a state x, the notations

Az = set of states accessible from x by adding one call
Bx = set of states accessible from x by removing one call.

The following two probabilistic assumptions are made:
(i) Holding times of calls are mutually independent random vari-

ables, each with the negative exponential distribution of unit mean.
(ii) If u is an inlet idle in state x and v u is any outlet, there is a

probability
Xh o(h), X > 0

that u attempt a call to v in the next interval of time of length h, as
h --> 0.

The choice of unit mean for the holding times merely means that the
mean holding time is being used as the unit of time, so that only the
one parameter X need be specified.

We can complete the description of the traffic model to be used by
t A given (network) graph can give rise to several networks v depending on what

states are permitted, i.e., belong to S.
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indicating how routes for calls are chosen. For this purpose we introduce
a routing matrix R = (r,), with these properties: For each x e S let
11x be the partition of As induced by the equivalence relation of "having
the same calls in progress"; then, for each Y e IIx , r, is a probability dis-
tribution over y e Y; in all other cases r = 0. As in Ref. 2, the interpre-
tation of R is this: any Y E I1 represents all the ways in which some call
c not blocked in x could be completed when v is in state x; for y e Y,
r, is the chance that if c is attempted in x, it will be routed through
the network so as to take the system to state y. Evidently,

E r = number of calls each of which could actually be put up in
yeAx state x

= s(x), ("successes" in x)
the second equality defining s() on S.

A Markov process x g based on the preceding assumptions has been
studied in previous work,2 and is used here again as a mathematical
description of an operating connecting network subject to random
traffic.

We restrict attention entirely to the important case of "one-sided"
networks in which all inlets are outlets.2 Analogous results are valid for
two-sided, and other, cases.

III. SUMMARY

The wide and strict senses of "nonblocking" are reviewed in Section
IV, where it is also pointed out that for most of our purposes it will not
be necessary to distinguish them. The equilibrium distribution of the
number of calls in progress is calculated in Section V. The terms of the
distribution are proportional to the (corresponding) terms of the
Poisson distribution with parameter A, the factors of proportionality
indicating the "finite source effect" that is present.

In Section VI various relations among the moments of the distribu-
tion of calls in progress are explored. It is noted that the mean deter-
mines the variance, and that, as functions of A, successive moments are
related by a difference -differential equation, and can be obtained by
logarithmic differentiation of the generating function of the number of
assignments of k inlets to k outlets. An extremal property of the dis-
tribution of the number of calls in progress, closely related to the author's
"thermodynamic" model2 for telephone traffic, is studied in Section VII.
In Section VIII it is shown that the number of calls in progress assumes
a Poisson distribution in the limit as A 0 and the number T of ter-
minals becomes large, with X T2 constant.

The remainder of the paper is concerned with the transient behavior
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of the process x1 representing network operation. The principal result
of Section IX is that the past of the process (prior to 0) and the actual
state at 0 are both irrelevant t o the number of calls in progress at t > 0,
if it is known how many calls are in progress at t = 0. It follows from
this that the number I xi I

of calls in progress at t is actually a Markov
process, indeed, even a birth -and -death process. These results make it
possible to calculate the covariance of I xi I in terms of 1 + [11] char-
acteristic values rather than the astronomical I S I associated with x t ,

and to give natural approximations (Sections X and XI). This co-
variance, it is to be recalled, is the essential ingredient in estimates of
sampling error in traffic time -averages. In Section XII, finally, we
conclude with characterizations of both the wide and the strict sense of
"nonblocking" in terms of the stochastic properties of I xil.

IV. WIDE AND STRICT SENSES OF "NONBLOCKING"

In a previous paper' we have distinguished between a wide sense and
a strict sense of the word "nonblocking," as follows: a network v is
nonblocking in the wide sense if there exists a routing matrix R which
confines the trajectory of the operating system to nonblocking states,
i.e., such that use of the rule R makes the system nonblocking; and v is
nonblocking in the strict sense if no call is ever blocked in any of its
states. Topological equivalents of these properties were derived in the
cited paper.

It is apparent that if v is nonblocking in the wide sense, then for each
rule R that makes v nonblocking there exists another network v' whose
states are exactly those of v that are accessible from the zero state under
R, and v' is nonblocking. For this reason most of our results can be
(and are) stated for nonblocking networks without specifying whether
the sense is wide or strict. The only excepted results are in Section XII,
where the stochastic properties of I xil are used to distinguish the wide
sense of "nonblocking" from the strict.

V. THE NUMBER OF CALLS IN PROGRESS

The equation of statistical equilibrium for the stochastic process xi is2

[ x + Xs (s)]P. = E Py X E Pyry. x E S. (1)

We let

E p.,

yA yeBs

k = 0, 1, , max I x I ,
xe8
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be the probability that k calls are in progress. Our first result is the
observation that the ipk} depend only on X and T, if v is nonblocking.
Let a. = number of idle inlet -outlet pairs of state x.

Theorem 1: Let v be nonblocking. For k = 1, , max
xe8

X
k k-1

Pk = PO -
TT

lti!

x)k

=pak!

T -
9

T!
(T - 2k)!

1 x 1 = [1111,

(2)

Proof: We sum (1) over Ix I = k. Since (with the third equality a
definition)

s(x) = ax = (T - 2 x
9 =alxl

if p is nonblocking, we obtain

(k Xak)pk = Py Pyryx
lx1--k yeAxix1=k yeBx

In the first sum on the right, each p, gets counted (k + 1) times, be-
cause if I y I = (k 1), then y e Ax for exactly (k + 1) values of x.
Thus this sum has the value

(k + 1) E p,, = (k 1)pk+1
ivt=ck+i)

The second sum is

EE Pyryx = E p,, E ryx 
Iri=k 11/1=k-1 lul=k-1 I/1=k

However, by the definition of the routing matrix I?,

E ryx = E ryx
jx1=k. xeAy

= s(y)

= alyl

because v is nonblocking. Hence the second sum is

and we have shown that

(k Xak)pk = + 1)N+, + Xak-iPk-1
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with the convention pk = 0 if k < 0 or k > RT1. Thus

kpk = k = 1., , [171.

By iteration, the theorem follows.
We remark that the probability po that no calls are in progress,

determined from the normalization
ti

E Pk = 1,

is just

k=0

1

PO - [411 T
1 ± E

k=1 k! (T - 2k)!

VI. MOMENTS OF THE NUMBER OF CALLS IN PROGRESS

(3)

From the formulas (2) and (3) giving the distribution of the number
of calls in progress, any moment of the distribution of calls in progress
can be calculated in principle. More important, though, are the several
systematic relationships that obtain among the moments and the
parameters A and T of the system. To these we now turn our attention.

ak =

Mt: =

71!

2k/c! (7' - 2k) !

0,

E IxI1py
xeS

= ith moment of {pk},

(1) (A) = E xkak ,
k>0

k = (),  ,[111],

Ic > [171

i = 1,2, ,

a2 = m2 - m12 = variance of calls in progress

and m1 = m.
First, it has been shown2 that whether v is nonblocking or not, a

stochastic process x, based on our assumptions has the property that
the probability Pr (131 of blocking, the mean m and variance a2 of the
number of calls in progress, and the parameters A and T, are all related
by the formula, for one-sided networks v,

1 2m1 - Pr {hi} - X (7' - 2m)2 - 2m --1-4a2.
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(A similar, but different, formula obtains for two-sided v.) It follows
that when P is nonblocking, the mean and variance of calls in progress
are related by

(T - 2m)2 - T 2m ± 4cr2 = 2m/X, (4)

and thus determine each other uniquely when X and T are specified.
This means that for a nonblocking v the important parameters m and
cr2 cannot assume just any values, hut must lie on the curve defined by
(4).

Second, it is intuitively obvious that, for many networks v, m = m (X)
should be an increasing function of X. The rationale for this claim is, of
course, that if the calling rate per idle pair X increases, the network will
carry a greater (equilibrium) load. For nonblocking networks v, the
claim is a consequence of

Theorem 2: For nonblocking v, and i = 1, 2,  ,

dX

1
t,mi =

X
- mi+i - mimi)

Proof : We have
E
k >0

(1)(X)

ki+1Xk-lak)(1D(X) - kiAkah) (Elo,
A >0 A >0 k >0

dit - 432(X)

= -X l,mi+1 -

In particular

dm 0-2(X)

dX

k -
a

(5)

and so m is a strictly increasing function of A.

Corollary 1: The mean number m of calls in progress as a function of
satisfies the differential equation

dm m (T - 2m)2 - 7' ± 2in
dX 2X2 4X

with the initial conditions m(0) = 0, m' (0) = (,) .
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Proof : We substitute (5) in (4) with Pr {boll = 0. The initial conditions
follow from

m(A) = A(2 ) o(A), as A --> 0.

It can be verified that Theorem 2 can be rephrased as saying that all
the moments of { pk} can be obtained from the logarithmic derivatives
of the generating function (1) () of the numbers {ad . Thus for example

m = m1 = A log

dX2

2

= X2 -d log cf. + A2 log c1).

Indeed, it now becomes apparent that {pk} has the same relationship
to the function 43 ( ) as the distribution of calls in progress in the
"thermodynamic" model of Ref. 3 had to the generating function of
the number of ways of having k calls in progress. It will turn out in the
next section that 43 ( ) is actually the generating function of the number
of assignments of k inlets to k outlets, without reference to how many
states of v, if any, actually realize a given assignment.

VII. AN EXTREMA!, PROPERTY OF THE DISTRIBUTION OF CALLS IN PROGRESS

With X the set of T terminals of the network v, let us consider the
set A of all fixed-point free maps of X into itself, together with all sub -
maps thereof. The physical significance of A is that it consists of all the
possible "assignments" of k inlets to k outlets with 0 :5_ k LC. [V]. The
fixed-point free restriction reflects the physically realistic circumstance
that no customer will request connection to himself. It is readily seen
that the set A of assignments is partially ordered by inclusion, and in
fact forms a semilattice. Also there is a natural map of S onto A, the
map y () of Ref. 4, which takes every state of v into the assignment it
realizes. It can be seen that -y() preserves order and intersections, so
that -y( ) is a semilattice homomorphism of S onto A.

Let us now pose the problem of finding a probability distribution
fpa , a E Al which maximizes the entropy functional

H (p) = - E pa log pa
atA

subject to the condition that

Elaipa=m.
aeA
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where m is a given positive number with 0 < in < [IT], and I a I, the
norm of a, is the number of inlets mapped into outlets by a, i.e., the num-
ber of "intended calls in progress" called for by the assignment a. It fol-
lows from Lemma 1 of Ref. 3 that this maximum is achieved by

xlal

Pa =
X1'1

aeA

i.e., the "canonical" distribution of thermodynamics, with I I playing
the role of energy (see Ref. 3), and X > 0 determined uniquely by

m = X log E Alas.
aeA

It follows that the probability assigned by {P. , a e A} to the set of assign-
ments with k "intended calls in progress" is just

Xk E 1

Exiai
_

PA
xeA

since there are exactly

1: 1 -- 0 k
k

T!
!2k(T - 2k)!

fixed-point free maps of k elements out of a set of T into k others from
the set, so that F (X) = E x1-1.

aeA

Thus the distribution {pk} of the number of calls in progress in a non -
blocking network arises naturally from maximizing the entropy func-
tional for a probability distribution over the set A of assignments sub-
ject to a given average value for I a I, and then calculating the probability
of the set of assignments of k calls.

In a similar way, it can be shown that { Pk} maximizes the entropy
functional -E pk log pk , subject to

k

m = E kpk

over all distributions having the form bleak

VIII. A POISSON LIMIT THEOREM

It is intuitively reasonable to expect that a nonblocking network
with a very large number T of inlets (= outlets, here) and a very small
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calling rate A per idle inlet pair will behave roughly like Palm's "infinite
trunk" model for telephone traffic.5 In particular, if A becomes small
and T becomes large in the right way, the distribution of the number of
calls in progress in equilibrium should become Poisson. That this occurs
is the content of

Theorem 3: Let a be a positive number, and let A -3 0 and T co in
such a way that

Then

Proof : We have

Since

a = XT2/2.

pk a(ak/k!), k = 0, 1, 2, .

(XT2)k

Pk/P0 /20

ak-4-.
k!

(1
1)

(1

I; TI

Po 1 = 1 + E Pk/Po ,
k=1

2k -
T

the result follows.
The reason why X T2, and not, e.g., AT, must be of the order of the

average carried load, is that A is the calling rate per pair of idle inlets
(= outlets, here), so that if all are idle, this calling rate is just

omitting attempts by a customer to himself. Indeed, the load carried by
one customer's line is

q = (2m/T) = AT((1 - q)2 - T-1(1 - + T-240.2

It is easily seen that q and T-20-2 are bounded independently of A and
T, so that

q AT 0

in the limit taken.
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IX. TIME -DEPENDENT BEHAVIOR OF THE NUMBER OF CALLS IN PROGRESS

So far all our results have concerned only the equilibrium behavior
of the process x t representing the operation of a nonblocking connecting
network. We now turn to the transient or time -dependent behavior.

The matrix Q = (q,) of transition rates of x, is given by

qzv =

1,

Aryy

0

x I - Xs (x ),

X E Ay

x E B

x = y

otherwise.

The matrices P (t) = (pr y(t)), t real, of transition probabilities, i.e.,
such that

NM) = Pr {xt = y I xo = x},

satisfy the Kolmogorov equations

(t) = QP (t) = P (t)Q, P(0) = I.
We let

pii(t)= Ix,I =iIIxoI =
px,(t) = Pr{ I x, =.7 I xo = x} .

Intuitively, if v is nonblocking and I x, I = j, then the (conditional)
probabilities of the possible changes in the number of calls in progress
in the next interval of time of length h are

jh o (h), for a hangup,

X
(T - 2j)

2
o(h), for a new call,

as h 0. Indeed, one expects that these evaluations remain true even
if information about x8 for s < t is added to what is known at time t,
for the reason that only the fact that I x, I = j is relevant to what
happens to I x I for s > t. In other words it is natural to expect that for
nonblocking v,

I x,

is itself a 1V[arkov process, indeed, a birth -and -death process. It will be
shown that these conjectures are true, and that they have important
practical consequences.
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Theorem 4: If v is nonblocking, then knowledge of the actual state xo
is irrelevant to I se I if I so I is known, i.e.,

p.k (t) = pink (t), for all x.

Proof : The backward Kolmogorov equation for the process is

-[i x XS(X)] Pxy E Puy + X E rxuPuy
u efix ueAx

Summing on I y I = k gives

dtpxk= -[ Ix xs(x)]pxk + E puk + E rxpk
ueBx u eAz

Since u e Bz for exactly ( I x - 1) values of u, and since

(T - 2 1 x I)
xeAu 2

it is enough to show that the result is true in a neighborhood of t = 0.
Evidently, though,

and

(

Pxkn)

!xI = k
Pxfr(0) =

0 jx,110

d

AC -
2

1 x

I)] II = k
dt Pxk(°) =

0 I x 1 k

1- [Ix' +
AC' - 2

pxk
1x1)] (n-0

+ x E rxuPuk(n-1) (0) I I= k
xe Au

0 x I k.

Since p,k( ) is analytic in a neighborhood of t = 0, the theorem follows.

Theorem 5: If v is nonblocking, then

IxtI

is a Markov stochastic process.

Proof : Set yt = j xt I. Since xe is a Markov process, for t1 < t2 <  <
to < t we have a.e.
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Pr lye =I xt 7i = 1, , = Pr lyt = k I xt)
= {y, = k Y en}

by Theorem 4.

X. TRANSITION PROBABILITIES OF I Xt

It follows from Theorem 5 and the forward, Kohnogorov equation for
for xt that the transition probabilities pi; () of yt = I xt I satisfy the
equations

d AO' - 2 A i
dt p=i 2 P"

(j 1)Piu+1) X(T - 22j ± 2)

with obvious conventions at the (reflecting) boundaries j = 0 and
j = [2 T]. These are the equations of a birth -and -death process on a
finite number of states, and so the known results of Karlin and Mc-
Gregor' can be carried over at once, as summarized below.

The matrix A (T,X) governing the system (6) is given by

0 Ii-jI>1
j + 1 =

(T 2i\ai; - X\
2

i =j (7)

(T 72
22 + 1 = j.

With

and

Q0 (x) = 1)

= Xkak k= 0, 1, ,

(6)

xQo (r) = -X(2)Qo (.0 + X( (21(x),

-x(2k(x) = k(ik-i(x) - + X(77
2k)]Qk

(x)

1 < k < [1711,

there is a unique" positive regular measure on 0 :5.x < 00 such
that
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Qi(x)(2;(x)4(x) = Si' i,j = 0, 1, , [P].

The transition probabilities of I xt I are represented by the formula

pii(t) = 7rj f CriQi(x)Q;(x)4(x)
0

(8)

XI. THE COVARIANCE OF I xt

As has been pointed out,3'8 the covariance function of the number of
calls in progress is of great practical interest in connection with esti-
mates of sampling error in telephone traffic averages. This covariance is
defined as

R (t) = Et I xi+, I xs I) - E2{ I x, 11,

and does not depend on s, since it is understood that x, has its equilib-
rium distribution. The variance of the continuous time -average

TTfI xi Idt
T 0

is then
T

2T-2 fo R(T -t)(t)dt,

while that of the periodic scanned average

1 x --,n
xiri, T > C

with scanning interval T is

E (n - j )R UT).
j=-n

It is easily seen from the integral representation (8) that the covariance
of I xt I is

R(t) = E ijrari CrtQi(x)Q;(x)diP(x) - m2
i,i=i 0

w = [17] = max I x I.
x eS

The orthogonality of the Qi ( ) with respect to 1,1/( ) allows the simpli-
fication of this formula to

R(t) = e -z` [Ew iriQi(x)19 cliP(x) - m2 .
o i=i
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It is easily verified that for k > 0

Qk (0) = 1

and that

# (0+ ) -# (0- ) = E
Hence the contribution of 4 () at the origin (to the first term on the
right of R (t)) gives precisely m2, and we have proved the important
result that

R (t) 0.

We note next that the matrix A (T,X) of the differential equations
for pi; () is symmetrizable, and so has real nonpositive characteristic
values. In a standard way" it is deduced that one of these is zero,
and that the dominant characteristic value r1 satisfies

- (m/c2) < r1 < 0,

R (t) < cr2erit.

As in the theorys of the finite trunk group, it is expected that this
upper bound for I?  ) will be a good approximation for low to mod-
erate traffic levels. Together, the two inequalities suggest the alterna-
tive estimate

R(t) r.. c exp (1-11 ,
(72

also used in Ref. 8.
Since the equilibrium distribution {pk) of the number of calls in

progress approaches Poisson's as X 0 and T co with XT2 constant,
it is to be expected that the characteristic values of the matrix A (T,X)
of the system (6) will concentrate at the nonpositive integers in this
same limit. In this connection it is instructive to see how the lower
bound -m/Q2 to r1 behaves in the above limit. With XT2 = 2a > 0,
we find

= 2X +X(T- 2m)2 X T - 2m
0.2 2 a' 2 a2

in) .

(9)

(10)

=
2

1 + 2XT + X
[2X + ;cr (1 + T-1) ± 24? -1-1)1.

1

Since the variance of a Poisson distribution equals its mean, 0-2 a,
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and it is easily verified that 0-2/a depends only on 7' and not on X so
that

0-2/a = 1 o (1)

with o (1) depending only on T. It follows that for any a > 0,

lira iiif r1 > - 1,
x -o
T-ooo

X T2=2a

i.e., the lower limit of the dominant characteristic value is at least -1.
If we retain only terms of order XT in (10) we obtain

-1 -4a- 1
T

as an approximate lower bound for r, , indicating that r1 actually ap-
proaches -1 from above or below according as a < 4 or a > 1, the
latter case being overwhelmingly prevalent in practice.

Actually it is not necessary that T -> 00 in order that the lower
bound in (9) approach -1. It suffices that X be small, for with T
fixed, as X -> 0,

?it

(12 Ariz 7' T
)1( - X2( -

2
± o(X)\

= -1 + X(T
2)

o(X).

We note that the correction term is quite different from that in (11).

XII. STOCHASTIC CHARACTERIZATION OF WIDE AND STRICT SENSES OF

"NONBLOCKING"

In the following, we regard the process xt defined in Section II as a
function of v, X and the routing matrix R, T = T (v), etc.

Theorem 6: v is nonblocking in the wide sense if and only if for some
routing matrix I?, I xt I is a birth -and -death process whose semigroup of
transition probabilities is generated by A (T,X).

Proof : The necessity follows from Theorem 5. For the sufficiency we
argue that if v is not nonblocking in the wide sense then any choice of
R gives rise to a nonzero probability of blocking. Thus by the basic
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formula (4)

1 2m
X (11 - 2m)2 -T 2m + 40-2 < 1

for any R, which contradicts the condition that for some R, p = {pk}
satisfies

Ap = 0,

with the convention (A p), = aijp, . In a similar way we can prove

Theorem 7: v is nonblocking in the strict sense if and only if for every
R, Ix,' is a birth -and -death process whose semigroup of transition
probabilities is generated by A (T,X).

The proof is a minor modification of that of Theorem 6, and is
omitted.
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Gain of Electromagnetic Horns

By T. S. CHU and R. A. SEMPLAK
(Manuscript received December 11, 1964)

The absolute gain of a standard horn is often measured by determining
the transmission loss versus separation between two identical standard horns.
Correction ratios are needed because the usual criterion for separation
(2a2/X) may not justify the use of the far -zone power transmission formula.
Using the near field power transmission formula, the ratio between the
Fraunhofer and Fresnel gain of a pyramidal electromagnetic horn has been
computed as a function of horn dimensions and separation distance.

The calculated corrections have been applied in the absolute gain measure-
ment of a standard horn which was used as a calibration reference in a
recent 4080-mc gain measurement of a large horn -reflector antenna. The
measured gain of the standard horn at 4080 me is 20.11 db with an accuracy
of ±0.035 db. The calculated gain is 20.15 db.

1. INTRODUCTION

Recently, a standard horn was used as a calibration reference in meas-
uring the gain of a 400 -square foot aperture horn -reflector antenna at
4080 mcs.' Since the horn -reflector antenna is currently being used for
precision measurement of the absolute flux of stellar radio sources, it is
desirable that the gain of the standard horn be known as accurately as
possible. From previous work,' the calculated gain7 of a standard horn
was believed to be within ±0.1 db of its true gain. Our purpose was to
measure the absolute gain of the standard horn to an accuracy better
than that previously achieved.

The gain of a standard horn can be determined by measuring the
transmission loss versus separation between two identical standard
horns. In the technique of measurement commonly used, the separation
distance is not large, and it is well known that the far -zone power trans-
mission formula

PR/PT = (GX/471-r)2 (1)

is not valid if the separation r between the apertures of the two horns
527
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is not great enough. Therefore the gain formula

4irr (2)

may introduce considerable error when the far -zone gain of pyramidal
electromagnetic horns is measured at relatively short distances. Even an
aperture -to -aperture separation r of about 2a2/A between two optimum
horns, where a is the large dimension of the aperture, introduces an error
of the order of 1 db. Jakes2 suggested the junction of the horn with
the feeding waveguide as the reference point for optimum horns. He
demonstrated empirically that the error in gain may be reduced to
about 0.1 db if r is measured between the reference points of two optimum
horns. Braun' calculated the error in the gain of electromagnetic horns
measured at short distances. However, his assumptions about the re-
ceived power are questionable, since the power in the transmitted wave
was averaged over the receiving aperture. Although the near-field power
transmission formula appeared in the literature,' to our knowledge it has
not been applied to the gain measurement of electromagnetic horns. With
the aid of the digital computer, the near -field power transmission
formula easily yields the required correction ratios for the far -zone gain
of pyramidal electromagnetic horns measured at relatively short dis-
tances.

II. CALCULATION OF THE CORRECTIONS

Using the Lorentz reciprocity theorem, it has been shown' that the
ratio of the received to transmitted power between two antennas at
any separation is

PR
1/4 (H2 X Ei E2 X H1)  it ds

2

PT
{Re f (E1 X H1*)itids} {Re f (E2 X H2*) It2ds}

el 8,

where E1 , H1 are the fields when antenna 1 is transmitting, E2 , H2 are
the fields when antenna 2 is transmitting; and n, nl , and 112 are the unit
normals of the surfaces. The surface S can be either one of the two an-
tenna apertures. Equation (3) is an exact formula if all the field quanti-
ties are evaluated with both antennas in place and under matched condi-
tions. In the following calculation the reflections between the antennas
will be neglected; that is, in evaluating E1 , H1 antenna 2 will be re-
moved, and in evaluating E2 , H2 antenna 1 will be removed. We also
neglect any mismatch between antennas and their transmission lines.

(3)



GAIN OF ELECTROMAGNETIC HORNS 529

Furthermore, we assume that the tangential components of E and H
are related by the free -space impedance at each point:

it X Et = A / I' Ht.
V E

With these approximations, we can write down the power transmission
formula between two electromagnetic horns at any separation.

PR

P T

f f Ell (P)-jkr E2'(1)')ds ds'
8 a2

2

x2 Elt(P) J2ds f I E2i(P') 12 ds'
.1

(5)

where P and P' are points on the aperture surfaces Si and S2 respectively.
Assuming the field at the aperture of the transmitting horn is the same
as though the horn were continued (i.e., the usual Kirchhoff approxima-
tion), the tangential electric fields in the aperture are given by

2 2

= El° cos J -Hr exp - + (6)a

2E2` = E2° cos .17r

a exp - [jk 1:1,)] (7

where 1E and iN are the E- and H -plane slant heights respectively. The
distance r may be approximated by

r = [R2 + (x - 2+ (!J - )T

2R

(8)

All pertinent dimensions are illustrated in Fig. 1. Since the gain measure-
ments usually involve two identical horns, S1 = 82 and substituting
(6 ), (7 ), and (8) into (5), (2) reduces to the near -field gain in the
Fresnel approximation:

GN

-17r

2 ,2

f is, cos cos -a exp - [37c {x
2/E

y.2 n2 2

ds ds'
27, 2R 2R

cos'
a

while the Fraunhofer gain is

(9)
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LE = 18.25"

-LH = 19.85"

8 = 13.343"

b = 10.468"
C = 1.802"

d = 0.884"

R

Fig. 1 - Physical dimensions for transmission between two electromagnetic
horns.

G -

47r
7ry 7rncos - cos -

fa I a a

 exp -[jk
/2 4_ t2 n2

2/H
)1ds ds'

x2 f cos2 7±1.1 ds
a

. (10)

Dividing (10) by (0) yields the required correction ratio. It is convenient
to split this ratio into the E -plane correction and the H-plane correction

where

CH -

and

Cif -

C = (G/GN) = CECIf

1,1,12 f8/2
exp - [jk (X° '2 dx

b/2 Lb/2

exp - [jk (x2 '2)1
rbo ito
Lb/2 Lb12 2lE

 exp - [jk (x
2R

t)21 dxj

a/2 2 2

cos 7-1:-Y cos 21-7 exp - jk Y n dy do
a a 2/HLa/2 -a/2

a/2 2 2

cos 72
a

cos n exp - [jk 77 )1
La 12 -a/2 a z,bH

- exp - (Y[jk 2Rn dy do

(12)

(13)
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The numerators in the above expressions may be identified as Fresnel
integrals. After normalizing the parameters, we have

[c2 ) + s2r,2 )]
e -

and

1 f: cos 27r. (w2 (- r)2) dw di]
M

[fl .1 sin 27 ;Ff. + (- - r)2) dw arTy

2

f[C( f) - C(g)r [S( f) - S(g)]2)
4CH - 4

where

ififICOS 27 U cos V cos 2r
(u2 + v2 (u - 02 2)

du dv
1

1 1

[f COS U cosCOS-7 v sin 27 (u2 + v2+ (u v)2
du dv

2-1 -1
2

1}

M = 8X1R/b2

N = 8X/H/a2

g=

The Fresnel integrals are defined as

H = 8XR/b2

P = 8XR/a2

1

078)

1

C(u) = f cos"COS t2 dt and 8(u) = sin !--2 dt
0 0 2

(14)

(15)

Equations (14) and (15) have been programmed for a digital computer;
the results are summarized in Tables I and II.

It is interesting to notice that there exists substantial discrepancy
between our correction ratios and those in Braun's article,3 especially at
short separations. In addition to the approximations made here, Braun
employed an averaging process in which the power of the transmitted
wave is integrated over the effective receiving aperture area (X2/47r)G.
Therefore the correction ratios presented here are expected to be much
more accurate than Braun's data and they should be useful for precision
gain measurement of pyramidal electromagnetic horns.
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TABLE I -E -PLANE CORRECTIONS (db)

\\\ H
8 16 32 64 128 256

M \
2.0 1.740 0.997 0.520 0.263 0.132 0.066

2.5 1.585 0.856 0.426 0.210 0.104 0.051

3.0 1.490 0.757 0.362 0.175 0.085 0.042

3.5 1.418 0.684 0.317 0.150 0.073 0.036

4.0 1.359 0.627 0.284 0.133 0.064 0.031

5.0 1.268 0.547 0.237 0.108 0.051 0.025

6.0 1.201 0.492 0.207 0.092 0.043 0.021

8.0 1.109 0.423 0.168 0.072 0.033 0.016

10.0 1.050 0.381 0.145 0.060 0.027 0.013

32.0 0.870 0.261 0.081 0.028 0.011 0.005

co 0.779 0.205 0.052 0.010 0.003 0.001

111 = 8x1E1b2

III. MEASUREMENT TECHNIQUE

H = 8xR/b2

The standard horn was mounted in a wooden structure suitably cov-
ered with hairflex absorber; a sketch of the horn and its physical di-
mensions are shown in Fig. 1. A level monorail track was installed along
the center line of the floor of an anechoic chamber. A stable, wooden
equipment cart was designed to move smoothly along the monorail.
One of two identical standard horns with hairflex baffle was mounted
on the equipment cart (Fig. 2), the other being mounted in the end wall
of the chamber. The equipment set-up is quite conventional and is
shown schematically in Fig. 3.

The following procedure was used in the measurements: a reference
level was set by removing the standard horns and connecting the wave -
guides directly (Fig. 3). With the standard horns in place and separated
by r 2a2/X, a series of measurements of received power versus increas-

TABLE II -H -PLANE CORRECTIONS (db)\ P 8 16 32 64 128 256
N

2.0 0.833 0.422 0.209 0.104 0.052 0.026

2.5 0.772 0.376 0.181 0.089 0.044 0.022

3.0 0.717 0.336 0.159 0.077 0.038 0.019

3.5 0.671 0.304 0.141 0.067 0.033 0.016

4.0 0.633 0.279 0.127 0.060 0.029 0.014

5.0 0.575 0.242 0.107 0.049 0.024 0.012

6.0 0.533 0.216 0.093 0.042 '0.020 0.010

8.0 0.478 0.183 0.075 0.033 0.015 0.007

10.0 0.443 0.162 0.064 0.027 0.013 0.006

32.0 0.340 0.103 0.033 0.012 0.005 0.002

cc 0.291 0.071 0.019 0.005 0.001 0.0002

N = 8X/H/a2 P = 8XR/a2
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Fig. 2 - Standard horn mounted on equipment cart.
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ing (r) were made. After completion of such a series, the reference level
was rechecked by removing the standard horns and connecting the
waveguides together. The above procedure was repeated several times
for vertical and horizontal polarizations.

IV. RESULTS OF MEASUREMENT

The distribution of all of the measured gains at 4080 me has been
plotted as a histogram in Fig. 4. The near -field correction discussed above
has been applied to these data. It should be pointed out that occurrences
falling on the boundary lines of the columns have been evenly divided
between the two neighboring columns; this accounts for the half occur-
rences which appear in the heights of some of the columns. The mean
value of this sample distribution is 20.11 db, and its standard deviation
is 0.05 db. The central limit theorem of probability theory indicates a
99.7 per cent confidence interval of .2-C ± (3cr/ r) for the true mean,
where X is the sample mean, n is the sample size, and a is the population
standard deviation.' Since the present sample size is 90, the population
standard deviation should be close to the above sample standard devia-
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tion, 0.05 db; therefore the random error in the mean value 20.11 db is
of the order of ±0.016 db (3 X 0.05/00).

The spread in the measured gain may be attributed to the following
factors:

1. measuring system stability
2. precision attenuator readings
3. repeatability of electrical connections
4. imperfection of the anechoic chamber
5. interaction between the transmitting horn and the

receiving horn

±0.01 db
±0.015 db
±0.015 db
±0.02 db

±0.04 db.

The figures for the above factors are the estimates for one horn; they
are half the probable random errors in the transmission between two
horn antennas. Half of the measured gains were obtained when the
horn apertures were vertically polarized, and half when horizontally
polarized; when compared, the difference between the means of the two
samples is only 0.01 db. This comparison implies only small errors due
to the anechoic chamber.

The interaction effect is clearly demonstrated by the measured (X/2) -
period oscillation versus separation shown in Figs. 5(a) and 5(b). The
amplitude of the oscillation is of the order of 0.05 db, and agrees fairly
well with the qualitative calculation of Silver.6
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In addition to the random errors discussed above, the calibrated pre-
cision attenuators hide an absolute error which is constant for all
measured gains. The probable value of this error is ±0.04 db in the
power transmission measurement, which contributes ±0.02 db to the
gain error. It follows that the total possible error of the measured gain
(which includes the random error and the absolute attenuator error)
is about ±0.035 db. The calculated gain7 of the standard horn is 20.15
db at 4080 me. The discrepancy between the calculated value and the
measured gain (20.11 db) is 0.04 db.

It should be pointed out that both transmitting and receiving horns
in this gain measurement are isolated by 10-db fixed attenuators. How-
ever the mismatch at the horn-waveguide junction is not tuned out,
because this same mismatch was not tuned out when the standard horn
was used as a calibration reference for the gain measurement of the
large horn -reflector antenna. A VSWR measurement revealed a reflec-
tion coefficient of -25 db, which represents a transmission loss of 0.015
db.

V. SUMMARY AND CONCLUSIONS

Using the near -field power transmission formula, the ratio between
the Fraunhofer and Fresnel gain of a pyramidal electromagnetic horn
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has been computed as a function of horn dimensions and separation
distance. Our computations are expected to be much more accurate than
previous data and should be very useful for precision gain measurement
of pyramidal electromagnetic horns.

An application of the calculated corrections was made in the absolute
gain measurement of a standard horn. The measured gain of the stand-
ard horn at 4080 me is 20.11 db with an accuracy of ±0.035 db; the
calculated gain is 20.15 db. The interaction between two standard horns
may introduce an error of the order of 0.05 db in the gain measurement
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at a separation distance of 2a2/X ; however, it is reduced considerably
by taking the average of several measurements. The averaging procedure
can also reduce other random errors due to environment, measuring
system stability, attenuator readings, etc. Using the corrections pre-
sented above, together with other careful considerations, it is possible
to achieve an accuracy well below 0.1 db in the gain measurement of
pyramidal electromagnetic horns.
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Modulation of Laser Beams by Atmospheric Turbulence
By M. SUBRAMANIAN and J. A. COLLINSON

(Manuscript received January 11, 1965)

When laser beams are propagated through the air, they are modulated
with a noise -like spectrum" having a baseband width the order of
hundreds of cycles and a nearly exponential frequency distribution.'
Hogg' used a 2.6 -km path; Hinchman and Buck2 used paths of 9 and 90
miles. In each case the optics and range were such that the receiver col-
lected a small fraction of the total beam. Since atmospheric refraction
causes twinkling and tearing of the beam, one would expect amplitude
modulation of the signal received under these conditions even for con-
stant intensity of the total beam.

We report here that the shape of the noise spectrum is unchanged when
all of the detectable beam is received. Moreover, the spectrum is unaf-
fected by changes in the diameter or geometrical divergence of the
transmitted beam, by whether the receiver is in the near or far field of

or by a threefold change in transmission distance. The
general spectrum characteristics appear to be determined by atmospheric
conditions.

We have transmitted a horizontally polarized 6328-A laser beam over
a 120 -meter path 8 meters above black -top pavement. The beam was
detected through a 3A -wide interference filter by an RCA 7265 photo -
multiplier tube. The frequency spectrum of the signal was analyzed and
displayed on a CRT by a Singer Metrics TA -2 spectrum analyzer. The
resolution of the analyzer was 70 cycles, and its low frequency limit was
20 cycles. Each spectral analysis took one second. Generally, 120 suc-
cessive spectral patterns were recorded, and thus averaged, in a single
photograph of the CRT screen. The laser3 oscillated in a single transverse
and axial mode and provided about one milliwatt of power in a diffrac-
tion -limited Gaussian beam one millimeter in diameter. Measurements
were taken with the direct beam, so that the receiver was very much in
the far field of the transmitter. Telescopes of 9, 20, and 38 powers were
used to enlarge the diameter of the transmitted beam, reduce diffraction
spreading, and put the receiver in the near field. The telescopes were
focused to vary the geometrical beam divergence, or convergence, thus
greatly varying the size of the received beam. With the 38 -power tele-
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scope focused on the receiver, the beam diameter was 4 cm as trans-
mitted, about 1 cm as received. The fraction of the total beam collected
varied from one to much less than one with these variations in the trans-
mitter. In no case did any of these changes produce a detectable change
in the spectrum.

To investigate more carefully the effect of collecting part of the beam,
the beam was transmitted plane parallel and 2 cm in diameter, diverging
to 3 cm as received. (No signal above shot noise could be found beyond
a 3 -cm diameter.) An iris was placed before the receiver, and its diameter
was adjusted from 4 to 1 cm, again with no effect on the spectrum.

To assess the possibility that the noise spectrum is produced by the
product of the sensitivity profile of the photocathode by the time -vary-
ing intensity profile of the beam, a 4 -inch, diffraction -limited lens was
used at the receiver to focus the beam to a spot about one millimeter in
diameter. (One millimeter is smaller than the scale of the structure of
the photocathode sensitivity.) The spectrum was unchanged from that
with no lens.

The effect of transmission distance was observed by splitting the beam
at the receiving station, returning (with a corner reflector) part to the
transmitting station and (with a flat mirror) reflecting that part again
to the receiving station. Thus there were available to the receiver two
beams, otherwise similar, which had traversed 120 m and 360 m of air.
When the beams were switched on the receiver alternately with successive
one -second scans by the analyzer, no change in the spectrum was seen.
This was true at different times and under different conditions. Table I
summarizes only the single most extensive run, lasting 5 hours and in-
cluding thousands of individual spectra. The data entered are the widths,
in cycles per second, from the maximum (at the 20 -cycle cutoff of the
analyzer) to the reduction from maximum shown. It is readily seen that
there is no significant effect of distance on spectral width. Indeed, the
agreement seems surprisingly good in view of the errors listed. The reason
is that the errors are mean deviations of spectra which changed steadily
over 5 hours, the spectra for the two distances changing together.

TABLE I - SHAPE OF SPECTRUM AT Two DISTANCES

Distance

120 meters
360 meters

Width of Spectrum

Power level below 20 -cycle peak by

-214 db

39± 8 cps
38 ± 10

-5 db db -10 db

84 ± 14 cps
82 ± 22

126 ± 19 cps
124 ± 29

176 ± 25 cps
168 ± 40
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This change in spectra correlated with changes in atmospheric condi-
tions. As conditions changed in a pronounced way from one day to the
next, so too did the spectra change in a pronounced way. Noise spectra
obtained under five widely different weather conditions are plotted in
Fig. 1. The curves are of the form P(f) = const exp (-4), and the value
of a accompanies each curve. P(f) is relative modulated power in the
beam, and f is frequency. The data for curve A were obtained at 6:30 a.m.
under an overcast sky. Thus the ground had cooled overnight and had
not yet been warmed by the morning sun. Although a steady 10 -mph
wind was blowing, this was by far the narrowest spectrum observed. For
B, the wind was steady, and there was sun on the pavement. For C, the
wind was gusty, but there was no sun. For D, the wind was gusty, and
there was sun. For E, the wind was violently gusty and there was heavy
rain. The departure from exponential dependence probably was caused
by the rain.

It appears that the spectrum is broadened to the extent that at-
mospheric conditions produce refractive gradients along the path. While
the other variables may have affected the amplitude of the spectrum,
they did not alter the shape. We are further investigating the effect of
range, since at zero distance the amplitude is known to reduce to zero.
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Fig. 1 - Dependence of the modulation spectrum on weather conditions. Re-
fractive gradients increase from curve A to curve E as described in text.
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The dependence of both spectral width and per cent modulation on range
are of particular interest from a theoretical point of view. Spectral width
should be independent of distance in the single -scatter regime, and per
cent modulation should be small. The extent of the single -scatter regime
depends upon the scale size of the refractive structure and upon the
amplitude of variations in the refractive index. More extensive measure-
ments are being made to allow a definitive comparison of theoretical
expectations with the observations.
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