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Distortion in transmission channels causes inlersymbol interference in
digital communication systems. This distortion may be partially corrected
at the receiver through the use of a tapped delay line having adjustable lap
gain settings (transversal filler). The problem of minimizing distortion with
a finite-length transversal filler is examined. In the region of small initial
channel distortion where most existing systems operate, the best tap gain
settings satisfy a sel of simullaneous linear equations. For larger initial
distortion, iteralive techniques are required to find best gain seltings. The
distortion is shown to be a convex function of the tap gains, so mathematical
programming lechniques may be employed for optimization.

The practical problem is that of evolving a logical sitrategy whereby the
tap gains of the transversal filter may be set to optimum values. An easily
implemenied system for aulomalic equalization is described which makes
use of a steepesi-descent technigue of minimization. The equalizer is aulo-
matically set prior lo data transmission in a lraining period during which
a series of lesl pulses is (ransmilted. Only polarily information is re-
quired, so digital logic may be used in the equalizer. For application lo
high-speed data transmission, greal accuracies arve required for the tap
gain settings. Thus the problem of noise in the channel during equalization
is quite important. The final error due to noise and channel distortion and
the equalizer setlling time are discussed and evaluated. Finally, the effect
of a transversal filter equalizer in terms of the system frequency-domain
characteristics is considered.
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I. INTRODUCTION

Present data rates on voice telephone channels are limited to about
2400 bits per second. Although the noise margin on these facilities is
sufficient tp permlt much higher rates, the nonuniform transmission
characteristics of the channel cause what might be termed a distortion
barrier, prohibiting faster transmission. The distortion of data pulses by
the channel results in these pulses being smeared out in time so as to
overlap other transmitted pulses. This intersymbol interference is one
of the chief degrading factors in present systems and becomes the de-
termining factor in the design of higher-rate systems. To alleviate the
effects of intersymbol interference it is necessary to equalize the channel.

In the past equalization has generally been accomplished by flattening
the amplitude characteristic and linearizing the phase characteristic
using fixed amplitude-frequency and phase-frequency networks. Al-
though this type of equalization is adequate for speech transmission
requirements, it does not provide the precise control over the channel
time response which is necessary for high-speed data transmission. Thus
to realize the full transmission capability of the channel there is a need
for automatic, time-domain equalization.

Among the basic philosophies for automatic equalization of data
systems are pre-equalization at the transmitter and post-channel
equalization at the receiver. Since the former technique requires a feed-
back channel, we will concentrate our efforts here on equalization at the
receiver. This equalization can be performed either during a training
period prior to data transmission or it can be performed continuously
during data transmission. The typical voice channel changes little
during an average data call, so pre-call equalization should be sufficient
in most cases. Many of the principles and techniques which will be
discussed here can be applied to the continuous or adaptive equalizer,
although our main concern will be in the pre-call automatic equalizer.

Most engineers are agreed that multilevel vestigial sideband trans-
mission offers the best hope for higher-speed transmission on voice
channels. There are good theoretical reasons for this choice of modem
on a channel of limited bandwidth and high signal-to-noise ratio. The
equalization problem we will discuss is based on the use of VSB trans-
mission or what is equivalent, baseband transmission. The equalizer is
to be placed at the receiver directly after the demodulation process.
Thus as far as the equalizer is concerned the transmission is baseband.

Suppose now that the equivalent baseband system transmits ampli-
tude a, at time nT, where a, is chosen from a set of M possible discrete
amplitudes. The single-pulse response of the over-all system, including
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channel and equalizer, we call h(f). The received signal y(f) is then

@

y(t) = 2 a.h(t —nT). (1)

fl=—x%

At some suitably chosen sampling time f, the output voltage y (fy) may
be abbreviated

=20

?]u = ; a’uhfn (2)
where
hy = h(ts + nT). (3)

This voltage is the sum of the wanted term @ plus an intersymbol
interference term

i 4
= ho l:ao -+ 1~U Y. anh_n]. (4)
(The prime will be used very frequently on summations to indicate
deletion of the n = 0 term.)

Now in the second term of (4) the a, coefficients are chosen by the
data system user according to some probabilistic rule. Since in a VSB
system the maximum positive and negative of values of a, are equal
in magnitude, say @m., the maximum value the intersymbol inter-
ference term can assume is

w [
max interference = a;.ux 2 | hal. (5)
0 n=—w=
We thus define an interference criterion proportional to (5) called dis-
tortion and labelled D

1 o0

al Z (6)
The so-called eye opening for an M-level VSB system is simply and
monotonically related to D.

I=1— (M —1)D. (@)

The eye opening is a widely accepted criterion of a data system’s per-
formance. In what follows we shall always use the equalizer to mini-
mize the distortion D defined by (6). A particular advantage of this
criterion is that it is not dependent on noise statistics or on the statisti-
cal distribution of the eustomer’s data sequence [a,}. It is a minimax
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eriterion in that we seck to maximize the customer’s minimum margin
against noise over all data sequences. A heuristic argument can be
made for a ecriterion using the sum of the squares of the h,’s. Obviously
neither criterion minimizes average probability of error —a mathe-
matically intractable problem even when assuming Gaussian noise and
independent, equally likely input symbols. Practically speaking the
minimization of either criterion leads to negligibly different results.
Now what we need is a variable filter for an equalizer which can
exercise wide control over the time response samples {A,}. The trans-
versal filter shown in Fig. 1 is ideal for this purpose.':* This filter con-
sists of a continuous delay line tapped at T-second intervals. Each tap
has an associated attenuator which in combination with an inverter is
capable of giving variable gain. The filter output is the sum of all the
attenuated tap voltages. Such a filter is capable of flexible control of the
output time sequence {h,} when used in tandem with the channel to be
equalized. In fact, under suitable conditions, derived in the final section
of this paper, a transversal filter of infinite length may be used to com-
pletely eliminate distortion in a channel. Generally speaking, a trans-
versal filter of finite length ecannot eliminate distortion, so we will
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Fig. 1 —Elements of a transversal filter.
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study the minimization of distortion D with a transversal filter of
finite length. We then show an implementation of an automatic equalizer
which achieves minimum distortion under certain conditions generally
satisfied on voice telephone channels.

In succeeding sections the theoretical and practical limitations of the
equalizer as implemented are studied. In order to effectively eliminate
distortion in voice channels great accuracies are required in the setting
of the tap gain eoefficients. Background noise and settling time for the
equalizer become extremely important. Finally we discuss the behavior
of the transversal equalizer, essentially a time-domain device using a
time-domain eriterion, in ‘the frequency domain.

II. THE MINIMIZATION OF DISTORTION

We will assume that the transversal filter has N + 1 taps with as-
sociated tap gains. One of these taps is taken as the reference with its
gain denoted ¢, while the other N taps are placed somewhere at
integer multiples of T seconds before or after tap ¢ . The positions of
these taps are usually the locations — (N/2)T, (— (N/2) + )T, -+,
(N/2)T, but since these particular locations are not necessary to any
of the theorems we use a more general formulation. Let Ky be the set
of integers denoting the positions of the N 4 1 tap locations

Ky = |n | tap location exists at time =7 from reference}.

The tap gains will be denoted ¢;, j C Ky .

The impulse response at the input to the transversal filter is denoted
r(t) and its samples at times nT form the time sequence {x,]. We will
assume for convenience that this response is normalized so that 2y = 1.
Thus the distortion in the pulse .r(t) prior to equalization, called initial
distortion Dy, is

oo f
Du = Z |.l',-. ! (8)
The transversal filter serves as a device to multiply time sequences.
In this case the input sequence |u,} is multiplied by the tap gain se-
quence }e,} according to the rules of polynomial multiplication. It can
be seen by inspection that the output sequence [A,} is formed by the
rule

h, = Z Ciln—j « (9)

ICKy

The final distortion we seek to minimize is



552 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1965

w /
=52 % | R | (10)

G n=—m=
The reference response sample hy causes somewhat of a practical
problem. In a multilevel system the slicing levels are generally fixed so
that the gain must be closely controlled. In other words it is necessary
to provide a normalizing control to adjust h to unity, the assumed
value of xy . This can be done two ways which lead to slightly different

mathematical problems.

Problem 1:

Fix the tap ¢ at unity. Minimize the eriterion D over the N variables
{c;};7 € Ky, j # 0. The output pulse may be normalized if desired by
an over-all gain control outside the transversal filter.

Problem 2:

Let the tap ¢ be variable. Minimize the criterion D over the N + 1
variables {¢;}, 7 © K, subject to the constraint hy = 1.

A study of these two problems reveals that the minimum distortion
in either case is the same. Fxcept in isolated cases (¢, = 0 in Problem 2)
the optimum tap gains in Problems 1 and 2 are related by a constant
factor. There is a practical difference in the range of tap gains required
and a mathematical difference in the type of function involved. (Prob-
lem 1 is nonlinear, while 2 is piecewise linear.) Since the minima are the
same and the optimum gains related, we concentrate on Problem 2
beeause of its simpler properties.
The constraint on s, may be written

ho=1= 2, civ_;. (11)

iC Ky

Solving for the gain ¢y we have

o =1— 2'¢ca_;. (12)
iC KN
We substitute (12) into (9) to obtain
hu = Z’ cj(:l'u—j - -rn-r—jJ + Ty o (13)
iCKy

Now since hg is unity the distortion (10) becomes

D = -Z’ | Z’ CJ'('!'n—J' - -Tn-r—j) + Ty | R (14)

=  JCKy
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Now that ¢, has been eliminated to satisfy the constraint on A, we de-
sire to minimize D in (14) over the N variables¢; ;7 € Ky, j # 0.

First observe that [ is a continuous, piecewise-linear function of the
variables {¢,}. We can rewrite (14) in the form

w0 bl |
D=3 ¢ > (voy — vur_;) sgn by + 2 x,5g0 ke (15)
ICKy n=—mx n=—ow
>
sgn h, = {i—}’ :" : g

In this equation the coefficients of the ¢,’s are constant over certain
regions of the N-dimensional space of definition of {¢;}. Breakpoints
where the coefficients assume new values oceur whenever an output
sample k, is zero. A minimum cannot occur between breakpoints where
the function is linear; thus at least one value h;, is zero at the minimum.
The equation h;, = 0 may be used to eliminate one of the N variables
¢; . The reduced equation is of the same piecewise linear form, requiring
at least one more output sample h;, = 0, etc. We arrive at the con-
clusion that at least N samples of the output time sequence {h,} must
be zero at the minimum. But N equations of the form b, = 0;¢ = 1,
.-« , N are sufficient to determine the values of the tap gains {c,].
We need only solve N simultaneous linear equations using (13) with
n==Fk;i=1,.--,N.

The question remains as to the values of the ks, i.e., which N zeros
in the output response sequence does one force to achieve minimum
distortion? In most cases of interest this question is answered by the
following theorem, which is proved in Appendix A.

Theorem I

If Dy < 1, then the minimum distortion D must occur for those N tap
gains which simultaneously cause h, = 0 for alln € Ky, n # 0.

Another important property of the distortion funetion which is both
useful and descriptive is the following: -
Theorem 11

If the tap ¢y is used to satisfy the constraint ho = 1, then the distortion
D is a convex function of the N variables ¢; ;7 C Ky ;5 # 0.

Proof

Tor econvenience denote settings of the equalizer by the N-component

veetors & and . To prove convexity of D it is necessary to show that
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for any two settings & and ¢ and forall \,0 = X = 1,
Dpha+ (1 —A)g) = aD(a) + (1 — N)D(s). (16)

This equation would show that the distortion always lies on or be-
neath a chord joining values of distortion in N-space.
From (14)

oo

Dha+ (1—=Nil = X' | 2 e+ (1 =N -
c(Xaej — Xa—j;) + X4 {

Dha+ (1 = Nal = 2 [A | 2 aslan—; — 2ar—y) + )
ICKy

re (18)
+ (1 —A) lczxy L5 (.l'n_,‘ - ‘rﬂ'r—j) + -'ruH
Dha+ (1 — N)gl = AD(a) + (1 — N)D(a). (19)

One of the most important properties of convex functions is that they
possess no relative minima other than their absolute minimum. Thus
any minimum of D found by systematic search or other mathematical
programming methods must be the absolute (or global) minimum of
distortion.

In summary, we have shown that D is a continuous, piecewise-linear,
convex function of the N tap gains. This funetion has a single minimum
whiech must oceur when N zeros appear in the output time sequence
{ha). If the initial distortion is less than 100 per cent (D, < 1), then the
minimum oceurs when the N samples of the output tine sequence which
correspond in location to the N taps on the transversal filter are simul-
taneously zero. This description is illustrated in two simple cases in
Figs. 2 and 3. In Fig. 2 only one tap is variable (N = 1), while in Fig. 3
equal distortion contours are plotted for an example of a 2-tap equalizer.
In both cases the initial distortion is less than 100 per cent, so the minima
are eagily located.

11I. EQUALIZATION STRATEGIES AND IMPLEMENTATION

3.1 Strategy When D, < 1

The condition Dy < 1, which is sufficient. for easy location of the mini-
mum distortion, is equivalent to the condition that the unequalized
channel is eapable of supporting binary transmission without error in
the absence of noise. It may be seen from (7) that Dy, = 1 implies a
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Fig. 3 — Equal distortion contours for a two-tap example.
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completely closed binary eye. In almost all cases of interest on voice
telephone channels the modem will support binary transmission without
equalization, and so the condition is met. In these cases equalization
enables multilevel operation to take advantage of a relatively high
signal-to-noise ratio. For the present we will deal with the design of an
equalizer where D, < 1.

To make matters more concrete we will henceforth assume that the
N adjustable taps of the transversal filter are divided equally before
and after the reference tap. In the several equalizer models which have
been built the normalization has been carried out sometimes by an
outside gain control and sometimes by an adjustable center tap. In
either case the task of the automatic tap gain setting apparatus is to
zero the N output samples b, ; |n| = N/2, n # 0. By Theorem I this
achieves minimum distortion. One can, of course, derive the tap gains
by the simultaneous solution of N linear equations, but from an instru-
mentation point of view there are many simpler schemes. The condition
Dy < 1 ensures a “loosely coupled” system where the interaction be-
tween tap gains is weak. Thus there are a number of iterative strategies
which converge to the desired settings. In all these schemes a sequence
of test pulses is transmitted prior to actual data transmission. After
each test pulse the tap gains of the equalizer are readjusted in such a
way as to eventually result in the proper N zeros in the output time
sequence. The choice between such schemes is dictated by ease of in-
strumentation, settling time required for equalization and accuracy of
the final settings.

It is true that with a special-purpose computer the optimum tap
settings could be computed using only a single test pulse; however, this
overlooks the presence of background and impulse noise on the facility.
Each test pulse is in itself unreliable, so many pulses must be averaged
in some way to give accurate settings. The equalization system must
also be relatively unaffected by any large bursts or impulses which
occur during the setup period.

An equalization strategy has been devised which meets all require-
ments and is easily instrumented. The motivation for this strategy is
based on a steepest-descent technique. Consider the use of an outside
gain control for normalization with the center tap gain fixed at unity.
Solving the N simultaneous equations h, = O for |[n| < N/2,n # 0
is equivalent to minimizing the “truncated distortion”

N/2

Dv= 2. |hal. (20)

n=—N/2
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The function Dy is a convex function amenable to solution by steepest-
descent techniques. After each test pulse has been received the tap
gains are incremented so that the N-dimensional incrementing vector
is in a direction opposed to the gradient of Dy . This gradient may be
written
N/2
W= Dy Ling (21)

i—N/2 OC;

where @; is a unit veetor in the direction of the ¢; coordinate. The com-
ponents of the gradient are

dDy B, oh,

e o e sgn h, (22)

] n=—N/2 i

oD &

ac}-v = Zg’/g Xn_j sgn h, . (23)
2 e

Now we approximate (23) by assuming the samples z,, for n # 0,
are small in comparison to x,, which is unity.

aDy
_ hj 24
3¢, sgn h; (24)
B w2
VDy ~ 2. sgn hjd;. (25)
i=—N/2

The approximation has resulted in an extremely simple expression, since
all steps are of equal magnitude and the direction of each step is de-
termined by simply taking the polarity of the corresponding output
sample. No analog voltages are involved, so digital logic can be used
in the tap gain setting circuitry. Before deseribing this cireuitry, it is
necessary to demonstrate that this iterative scheme does indeed con-
verge to the desired minimum. After each test pulse, each tap gain
¢; is incremented by an amount —A sgn h;, so that the new output
samples are

N/2

bt = " (e, — Asgn hp)r.; + . (26)
j——N /2
N/2
h* =he— A 2 sgnha.; 27)
i=—N/[2
N/2
ho' = h, — Asgnh, — A D sgnhr.; (28)
j=—N/2

i#=n
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| k™| = || hu| —A| 4+ ADy. (29)
Since Dy < 1, we have
|2a*| < |l ha| — A + A (30)
If | hy | > A, then
[ A" | < [ | (31)

and each output sample that we desire to zero is always decreased.
On the other hand, if | k., | < A, then

| k™| < 24A. (32)

Thus the process must converge to within an error of 2A on each out-
put sample. As the step size A goes to zero the truncated distortion
Dy approaches zero, which implies that the over-all distortion D has
been minimized.

3.2 Fqualizer Implementalion

An equalizer implementing this strategy is shown in Fig. 4. This
equalizer employs a 13-tap delay line with 6 variable taps on either
side of the reference tap. The action of the equalizer is as follows: A
suceession of test pulses is sent through the transmission line and trans-
versal filter. As each test pulse comes out of the transversal filter it is
sliced to retain only polarity information and then sampled at 7T-second
intervals. These polarity samples are stored in a 12-stage shift register.
When the shift register is full, a gate is opened, and all taps are simul-
taneously adjusted one step up or down in attenuation according to
the polarities in the shift register. At this time a pulse height or normali-
zation adjustment is also made on the over-all gain by means of the
upper slicer-sampler circuit shown in Fig. 4. The method of obtaining
electronically controlled steps of attenuation for the equalizer taps is
shown in Fig. 5. It can be seen that reversible counters, directed by the
12-stage shift register, control the attenuation of a ladder network by
means of relays.

In the particular equalizer which has been constructed, the quantum
steps on the tap gain controls are about 0.25 per cent (A = 0.0025).
For high-quality voice channels utilized by the VSB data system, about
100 test pulses are required for settling of the tap attenuators to opti-
mum values. This settling time depends on the size of the quantum
step, the initial distortion, and the channel noise. The settling time
and residual distortion are the subject of the following section on
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Fig. 4 — Automatie equalizer.

equalizer performance. Note that the equalizer is relatively unaffected
by large impulse noise, since the output voltage is sliced and a large
impulse can cause only one wrong step, which is subsequently corrected.

Iigs. 6 and 7 show the results of equalization in a typical example
using the 12-tap automatic equalizer. The single-pulse response together
with the binary and 8-level eye patterns are shown before and after
equalization. Before equalization only binary transmission was possible
in this example. Since the equalizer has enabled 8-level operation in
place of binary, a threefold inerease in speed capability of the channel
has been ohtained.

3.3 The Initial Distortion Limitation

Thus far we have only considered equalization strategy when the
initial distortion is less than 100 per cent. When Iy > 1, there are two
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Fig. 6 — Unequalized pulse and corresponding “eye patterns.”
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Fig. 7— Equalized pulse and corresponding “eye patterns.”

sources of failure for this equalizer. Tirst, the equalizer convergence
algorithm may fail to converge to the tap gains which force zeros in
the output response for t = — (N/2)7T, ---, (N/2)T. Second, these
settings may not be the optimum (minimum distortion) gains. In
either case the condition Iy < 1 is sufficient but not necessary to prevent
failure, and it is quite possible that the equalizer will converge and be
optimum over a wider range of inputs.

In computer simulations of the equalizer strategy it has thus far been
impossible to induce failure of the convergence algorithm without
causing failure in optimality. Examples of the converse are, however,
easily constructed. One such example is illustrated in Figs. 8 and 9.
The channel to be equalized in this example has a 50 per cent cosine
roll-off amplitude characteristic and a linear delay characteristic. The
final distortion after equalization with an N-tap equalizer is shown in
Tlig. 8 for two different values of peak delay. With a peak delay of 5
pulse intervals the initial distortion Dy = 1.4. In this case it happens
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that the equalizer converges and is optimum. The more taps N which
are used on the equalizer, the lower the final distortion.

When the peak delay in this example is increased to 6 pulse intervals,
we encounter a radically different behavior. The equalizer still con-
verges to the tap settings which satisfy h, = Ofor [n| = N/2,n # 0,
but this solution no longer minimizes distortion. The initial distortion
here is about 2.1 and after equalization with a G-tap equalizer the final
distortion is over 3. Clearly this is not optimum, since the zero tap set-
tings gave better performance. As is shown, increasing the number of
taps results in larger residual distortion.

The equalizer’s failure in this latter case is more clearly illustrated in
Fig. 9. The impulse response before equalization looks harmless enough,
but after the equalizer has forced 3 zeros on either side of the response
peak (6-tap equalizer) a large side lobe is created outside the equalizer
time range on the right-hand side of the response. This side lobe con-
tains more distortion than was present in the original response. In this

ab— 4
M =6 PULSE INTERVALS
PEAK DELAY

z

o

& 3 A -
o

-
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~
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-~—
-
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Fig. 8 — Bxample of equalizer [ailure—linear delay.
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Fig. 9 — (a) Impulse response for channel with linear delay, m = 6; (b) after
equalization with 6-tap equalizer,

example minimum distortion settings of the equalizer do not set zeros
at the samples &, for | n | = (N/2), n # 0. The actual optimum settings
may be obtained by methods we will discuss presently, and for com-
parison purposes the minimum obtainable distortion for this example
is plotted in Fig. 8.

3.4 Strategy When Dy > 1

We described the situation when the initial distortion was less than
100 per cent as “‘loosely coupled.” In this range many iterative schemes
can be devised which converge to the optimum. Conversely, when
Dy > 1 the tap gains become more strongly interdependent. Also, the
optimum may shift so that it is impossible to simply instruet the auto-
matic equalizer to force N zeros in the impulse response at the loca-
tions of the N variable taps of the equalizer. Thus the equalization
strategy for the general case becomes more subtle and complicated
than the simple strategy previously explained.

Tortunately, Theorem II describes D (using center-tap normaliza-
tion) as a convex funetion of the tap gains. Therefore the distortion has
a single minimum, and mathematical programming methods may be
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used to locate the optimum tap gains. A steepest-descent method may
be applied to D [see (14)]. The gradient of D is

3 N/2

vD = 2 2 a; (33)
j=—n/2 0C;j

oD _ > (anj — 2aa_;) 8gN Ay . (34)

acj l=—00

If each tap gain ¢; is incremented proportional to its gradient component
(34), the system will eventually approach the optimum tap gains. The
dotted lines showing minimum distortion in Fig. 8 were calculated using
this strategy on a digital computer.” Such a strategy can be implemented
with a modification of the ecircuitry previously described. In this im-
plementation the term involving x,a_; in (34) is neglected as small in
comparison to x,_; . The remainder of (34) may be derived physically
by a two-pulse cyele. The first test pulse is sliced to obtain the sequence
{sgn h,} which is stored in the shift register. This sequence is then
used to control the polarity of the gains at each tap. A second test
pulse is transmitted and the transversal filter serves to multiply the
input sequence {z,} by the tap gain sequence {sgn k,}. The output volt-
age is approximately the sequence [8D/dc;} from (34) and may be
used to digitally increment the tap attenuators.

In any such scheme it is now necessary to have a transversal filter
about twice as long as the number of variable taps to be used. This is
heeause the sum in (34) is infinite, but practically speaking an N-tap
transversal filter will affect the impulse response for not more than
ONT seconds. Thus the test pulses must go through a 2N-tap delay
line, all of whose taps are equipped to handle the &1 gains which store
the sequence {sgn h,}. However, only the inner N taps need have
associated variable attenuators. This complication comes about because
the distortion depends on what happens outside the N7 range (witness
Fig. 91) as well as what happens inside.This information must be meas-
ured by “listening posts” established by taps on the delay line outside
the normal range and then taken into consideration in incrementing the
variable tap gains.

1V. THEORETICAL PERFORMANCE OF THE EQUALIZER
4.1 Design and Performance Paramelers

Our attention will now be confined to the equalizer described in
Section 3.2 and illustrated in Fig. 4. In this fairly simple system there
* The distortion minimization ean also be formulated as a linear programming

problem, so that using a digital computer the exact optimum can be reached in a
finite number of steps.
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are only two parameters which the designer has under his control to
affect the performance and cost of the system. These are:

N — the number of variable taps on the transversal filter.

A — the step spacing on each electronically controlled attenuator,
(More generally this is A;, since different tap positions may take
different-sized steps.)

The economics of the choice of these two parameters may be readily
appreciated. The cost of the equalizer is nearly directly proportional to
N, since not only does a larger N entail a proportionally longer delay
line, but also proportionally more logie eircuitry. A major portion of
this logic circuitry is taken by the reversible counters for setting the
attenuator tap coefficients. To decrease the step spacing A, each of the
counters must be augmented by additional stages.

In judging the performance of the equalizer we shall be interested in
the following two parameters;

D, — the final distortion or residual distortion after equalization.
T, — the settling time or the time required to set the equalizer during
the training period.

Obviously, the smaller the residual distortion D, the better the data
system will performi, but on the other hand it is too expensive to at-
tempt to reduce this residual distortion much below the required toler-
ance for a given system. The settling time 7', on an experimental im-
plementation of the automatic equalizer has been on the order of a
second. When compared with the time required for establishing the
call and acquiring timing synchronization this seems negligible. How-
ever, we shall find that when greater accuracy is required the time 7,
can become quite appreciable.

The performance parameters D), and 7', depend on the design parame-
ters N and A and upon the channel to be equalized. Since it has been
common to deseribe the channel by frequency-domain characteristics
we shall do so here. The channel characteristics of interest are:

A (w) — the amplitude characteristic of the system, including trans-
mitter shaping filter and the attenuation characteristic of the channel.

8’ (w) — the delay characteristic of the channel.

S/N — the signal-to-noise ratio of the channel. The noise is assumed
to be Gaussian and white since the effects of impulse noise are not
particularly important in the automatic equalization system.

Fig. 10 shows how the parameters N and A affect the performance of a
noiseless system example. In these curves the distortion is plotted as a
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function of time. It can be seen that increasing the number of taps N
results in a lower residual distortion without affecting the settling time
of the system. After the required settling time has elapsed, the system
reaches a limit eycle where all taps oscillate one step up and down
about the optimum values. Decreasing the step spacing A decreases
the oseillation of distortion and increases the settling time required.
When noise is introduced into the model, the curve of distortion versus
time becomes a random walk with final values of distortion becoming
random variables,

The residual distortion is composed basically of two components.
One component is the theoretical minimum distortion for the given chan-
nel and length N of transversal filter available. This corresponds to the
case where S/N — = and A — 0. No settings of the filter ean reduce
the residual distortion any further. This distortion component will be
designated D.. It is a function only of the channel characteristics
A (0) and 8 (0) and of the number of taps N.

The second component of residual distortion arises from our inability
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to reach optimum tap settings because of the oscillation of the final
tap settings due to noise and finite step spacing A. This component is
approximately independent from tap to tap. On a per-tap basis it is a
funetion only of step spacing A; and signal-to-noise ratio. This com-
ponent will be designated D, , where D, is the contribution from a single
tap. Thus for an N-tap equalizer the distortion may be resolved as
follows.

D, = D.NAG) + X' D4, 8/N). (35)

j=—N[2

i ”

The subseripts “¢” and “‘s
distortion respectively.

In the next section we will discuss generally D., the channel distor-
tion, and show curves relating D. and N for various shapes of amplitude
and delay distortion. The subsequent section then deals with the system
distortion D, . Curves are shown relating D, and A for various signal-
to-noise ratios. The question of settling time is also discussed in this
latter section.

stand for channel distortion and system

4.2 Restdual Channel Distortion

When [y < 1, the minimum distortion is obtained by setting h, = 0
for |n| = N/2, n # 0. The remaining distortion we deseribe as D, ,
the residual channel distortion.

Dc=% ¥ |kl (36)

ho 101 5w)2

This expression for the residual channel distortion is easily calculated
on a digital computer from N, A («), and 8 (w) by first computing the
response samples {a,] from the Fourier transform of the channel’s
frequency characteristie and then solving the N simultaneous equations
h, = 0for |n| £ N/2, n = 0. A number of curves obtained by this
procedure are presented in I'igs. 11 through 13. In all of these figures
the transmitter shaping characteristic was raised cosine with a 50 per
cent roll-off. (Iull raised cosine shaping gives very similar results.)
The reference time was taken at the peak of the response x(¢). This is
not necessarily optimum, but usually is fairly close to optimum.

Fig. 11 shows the residual channel distortion for parabolic delay over
a wide range of equalizer size N. Fig. 12 is a similar presentation of the
residual distortion resulting from linear delay. In Fig. 13 the channel
has no delay distortion, but has an attenuation characteristic which



568 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1965
0.75
m
W
0.70
0.65
A'(w)
0.60
0 © 27 W P
0.55
PARABOLIC DELAY L7
50% RAISED COSINE ROLLOFF /
0.50
& 4
5 /
2 0.5
(. 4
o //
]
o 040
- |
w
Z
z 035
I —
8 / 4-LEVEL EYE
Z 030 CLOSES HERE
: /
w
w
T 025 /|
/o EQUALIZATION
0.20 /
B-LEVEL EYE
0.15 / / CLOSES HERE __|
L ——s
N=2 /
0.10 / = | _APEROXIMATE 127
4
005 / - ,_.--/ s 16-LEVEL EYE
/ — ______._-’ _E/CLOSES HERE
/___________--—-'"' | et 10 |
0
0 05 1o 15 20 25 30 3.5 40 4.5 50 55 6.0

m, MAXIMUM DELAY IN PULSE INTERVALS
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delay.

falls off with various slopes. These curves are intended to answer the
question of how well a given transversal filter can equalize a given
type of distortion. These curves represent theoretical minima. To see
how well an actual equalizer can approach these values, the system
distortion D, for the given A and S/N must be added. From (36) the
residual distortion consists of all the response samples h, removed from
the center of the response by more than n7/2 seconds. This is approxi-
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mately composed of two components: what distortion was already out
there in the original channel response & (t), and what distortion has been
squeezed out into this range by the equalization process. We know from
echo theory that the former component results from delay and amplitude
ripples of greater than N/2 eycles in the bandwidth and increases ap-
proximately linearly with the amplitude of the ripple content. The latter
component of the residual channel distortion which is squeezed outside
the transversal filter range is more difficult to conceptually visualize,
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Fig. 12 — Residual channel distortion for an N-tap equalizer with linear delay.
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We can show that this component of D. increases approximately with
the square of the delay or amplitude variation in the channel.
Removing the large terms involving ¢ and xo, which are unity, from
under the summation in (9) we arrive at
N/

hn = &y + Cn + Z Ciln—j + (37)
j=—N/2
J#=0n
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In order to make h, = 0 for —=N/2 = n = N/2, n # 0, it can be seen
that a first approximation for the tap setting c; is

C; R —X. (38)

After equalization we will have h, = 0 inside the range of the filter.
Outside the range we will have approximately, using (37) and (38)

N/2
.h,, AT — Z Xilp—j o (39)
Inl>N/2 J=—N/2
i=l.n

The first term in (39) is the initial distortion term and the second is
distortion outside the range of the filter generated by the equalization
process. Since the samples v, vary approximately linearly with ampli-
tude and delay ripple amplitude, it can be seen that the two components
of h, vary linearly and quadratically with ripple amplitude respectively.

The curves in Figs. 11 through 13 show that the linear term domi-
nates in the case of parabolic or linear delay in the channel. This indi-
cates that very little additional distortion in the range |{| > NT/2 is
being pushed out by the equalization process. In Fig. 11 directly be-
neath the N = 2 curve is plotted the initial distortion outside the range
of this particular equalizer. This dotted curve marked ‘‘approximate”
indicates the quantity

D, (approx.) = |Z>1 | 2| (40)
In the upper range of the N' = 2 curve the second component involving
“squeezed-out” distortion becomes important.

As long as the linear term dominates we can think of the transversal
filter as completely equalizing any delay or amplitude variation of less
than N/2 eycles in frequeney content. For example, a Fourier expansion
of the parabolic delay reveals the major content at low [requencies;
thus few taps are required to equalize parabolic delay. The higher-
frequeney content of the parabola is unequalizable by a short trans-
versal filter.

Frequently the delay and amplitude charaeteristic of a channel con-
sist of approximately sinusoidal ripples. This is generally the case
when an equalization network has been incorporated in the channel.
A good rule of thumb is that it takes twice as many taps on the equalizer
as there are ripples in the bandwidth. Thus the better a channel has
been previously equalized the longer a transversal filter will be required
to further improve equalization. I'requeney- and time-domain equaliza-
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tion are very similar in the respect that they both leave ripples of delay
and amplitude of higher frequency after equalization.

4.3 Residual System Distortion

The term D), , residual system distortion, results from the inability
of the equalizer to reach the actual optimum tap settings. In the case
of very high signal-to-noise ratio the value of D, is obvious. The tap
¢; will end in a limit cyele of one step A; about the optimum tap setting.
In one position

¢; = c;(optimum) + e (41)
while in the other position
¢; = c;(optimum) + ¢ — Aj. (42)

Assuming that A; > | €| and neglecting the last term in (37), we ob-
tain the average system distortion for this case.

DE(A_-,', (SfiV) = Zﬂ) = %A;. (-}"})

Thus the system distortion is one-half step for high S/N. However, a
system will very seldom operate in a true high-S/N environment be-
cause the tap steps themselves are usually well within the noise. For
example, with a A of 0.01 the step-to-noise ratio is 40 db below the
signal-to-noise ratio. With noise the taps end in a random walk instead
of the limit cycle of the noiseless case, and the average system distor-
tion will be considerably higher than that given by (43).

Let’s examine the behavior of an individual sample ; when noise is
present in the channel. The receiver then bases its decision on whether
to advance or retard tap ¢, by the amount A on the sign of the qunntlty
(h; + n;), where n; is Gaussian with mean zero and variance o, and isin-
dependent over index j and from test pulse to test pulse. Assummg that
the sample h; is affected only by tap setting ¢; [equivalent to drop-
ping the last term in (37)] we write

h.j%.l‘j"-{'j. (44)

Sinee ¢; takes on only values which are integral multiples of A, we can
without any particular loss of generality quantize h; in steps of A. The
hehavior of each of the samples h; is similar, so in order to keep con-
fusion to a minimum we shall drop the *j”" index and define

Prob [h = kA, after m test pulses] = p(k,m). (45)

Now we can write a difference equation for this probability as follows
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plhm+1)=pk—1m)Pk—=1)+plk+ 1m)Qk + 1) (46)

where P (k) and @ (k) are the probabilities of noise being less than or
greater than — kA respectively.
—h A 1

P(k) = m exp — (2*/26%) dx = 31 — Exf (kA/A/2¢)] (47)

Q) =1 — P(k). (48)
Initially the value h; starts at position r; = IA so that we can use the
initial condition

1 k=1
”(""0)={0 i kL (49)

The difference equation (46) then defines a probability distribution
which spreads out as time (m) progresses and eventually ends in a
stable symmetrical distribution centered at zero. [Actually there are
two final distributions reached: one for m even and one for m odd. Since
the system could be turned off in either state with equal likelihood,
these distributions must be averaged. This effect is equivalent to the
averaging of (41) and (42) in the noiseless case.]

A number of these final distributions were computed using (46),
(47) and (48) on a digital computer. The contribution to the residual
distortion owing to oscillation of tap ¢; is the random variable | A;|.
The system distortion D,(A;, S/N) is defined as the expected value of
|k |

D= E[|hi[1=8; 2| k| ph=). (50)

A number of curves relating D, , A and signal-to-noise ratio are shown
in Fig. 14. Observe that these curves are nearly piecewise linear with a
break point approximately where A = . Above this point the high
signal-to-noise condition prevails and D, = }A. Below this point the
steps A are within the noise and the slope of the curve changes. By
making a low signal-to-noise approximation we can derive equations
for these curves.

TFor A/e small we use the first term of the series

, _2X X* x* _Xx
[r X)=—7=|1-— - puial i
Bt k) \/W[ mtes 3wt :| (8%}
and obtain
. kA
Plk) =% — ——. 2
: \Vor e (52)
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Using this transition probability in the difference equation (46) we

obtain an equation similar to the classical problem of the random walk
of an elastically bound particle:

—

: (k — 1A
plm + 1) = plk = Lm) | 5= — o=~
(53)

k 1)A
+ plk 4+ 1,m) [l) + (—\/—%—j] ;

An exact solution to this difference equation assuming the initial condi-
tion (49) is given by M. Kac in Ref. 3. Since this solution is more
complicated than the asymptotic distribution obtained as A — 0 and
is no more useful for our purposes, we will not repeat Kac’s formula here.

It is simple to derive expressions for the mean and variance of h;
after m test pulses have been transmitted. Using (53) we obtain for

the mean value

Blk(m)] = & 3 kp(km) (54)

Elh(m)] = A [% + \/3',, J >

k

klplk — 1m — 1) + p(k + 1m — 1)]  (55)

> Eplk + 1m — 1) — plk — 1m — 1)].

T Vo o4
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The various summations in (55) can be rearranged with changes in
variable to give

Elh(m)] = Elhim — 1)] (1 — ﬁ) (56)

Since the initial value of h; is x; =~ [A;, the average value of h; after
m test pulses is

Elhj(m)] = ( \/2; d)m. (57)

One ean derive a similar expression for the variance of h; after m
test pulses

2 e a2 44; \"
E[h, (m)] = “A,‘) (1 - \/2—“_ 0’)

(58)
29N PO SR
4 ! Varo ’
As m — = the final distribution is obtained and
lim Elh;(m)] = 0 (59)
lim Bl (m)] = \/zw a. (60)

Equation (60) is particularly interesting, since the variance of h; is
proportional to the square root of the noise variance ¢,

Now suppose the tap-to-noise ratio A/e tends to zero and test pulses
are sent at a rate 1/r which tends to infinity. Using the difference
equation (53) we can derive a differential equation for the probability
density of the sample h; after { seconds have elapsed:

apl( hz) _2a [ , ap(h, r)] A% a*p(hyt)

A solution to this equation, attributed to Lord Rayleigh, is given in
Ref. 3. Assuming h; starts at x; , the probability density after { seconds is

1 , =
plhi, t) = V2ra(l —e ™) exp [— (b — zje")*/2a%(1 — ™)), (62)

(61)

where o’ is the same as E[h,’ (= )] in (60)

2 \V2rx
1

Ajo (63)
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and
24,
= Vor o’
As t — o« the density (62) tends to Gaussian of mean zero and

variance . We can thus easily derive the low signal-to-noise ratio value
of D, .

(64)

D, = El|hj|]] = 2 f wﬁ exp — (hi'/2a") dh; (65)
D, = \/2?”1 = (GA,-/\/Z'N)% (66)
D, ~ 0.633 \/oA;. (67)

The straight-line portions of the curves D, versus A in Fig. 14 match
nearly exactly with (67).
In summary, we have found

A;/2 if A;> 0

e - (68)
0.633v/04a; if A; < 0.

The important fact about (68) is that the residual system error goes
down as the square root of both tap spacing A and the standard devia-
tion of the noise ¢. Thus once the step spacing and noise are comparable,
cutting the steps A by a factor of ten cuts the residual system error due
to tap uncertainty by about 3.16. An interesting sidelight is that cutting
A by ten might seem equivalent to averaging ten samples of A; before
taking one step of A. In the latter case the noise ¢ would be cut by
4/10 = 3.16 and the residual system distortion D, cut by only 4/3.16 =
1.77. However, as might be guessed this latter technique will require
less settling time than the former technique using 0.1A and moving
ten times as fast.

This leads us into an abbreviated discussion of settling time. The
time required to settle is usually determined by the largest distorting
sample z; for j # 0. If the step-to-noise ratio A/s is large, then the
settling time is obviously

Ts = fﬂjm,,x/ﬂj 3 (69)

When the noise becomes important, then we need to make some sort of
arbitrary definition of settling time. This definition could be based on
the time required for the mean of &; or the variance of ; to reach some
predetermined position or percentage, or it could be based on the time
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constant 1/v in the density given by (62). All these types of definition
lead to similar expressions differing chiefly by constants, so we’ll use
the simplest and define

T, = 1/y = ‘\/_),_'n- ar/24;. (70)

Recall that 7 is the interval between test pulses. This expression is
independent of xjua for low tap-to-noise ratios. Using a binomial ex-
pansion of the term to the mth power in (57), (70) can be derived as
the point where the first two terms of the expansion for E[k;(m)] eancel.

Going back to our previous example, where we compared decreasing
the step spacing A with averaging several samples of h;, we can now
show that cutting the tap spacing A by a factor of N is exactly equiva-
lent in settling time and system error to averaging N* consecutive sam-
ples of k;. This is evident from the proportionalities involved in (69)
and (70). In either case the same amount of time is required to achieve
a given level of accuracy in equalization,

V. FREQUENCY-DOMAIN CONSIDERATIONS

5.1 Frequency-Domain Relationship

The equalizer that has been deseribed is intended for the correction
of distortion in digital data transmission. This equalizer is strictly a
time-domain device which corrects the pulse response of the channel
to the best ability of a finite-length tapped delay line. The question
which most frequently arises concerning its operation asks what happens
to the frequency characteristics of the channel as a result of the time-
domain equalization. This question is asked not only out of curiosity
and because engineers tend to think in terms of the frequency domain,
but also because the time-domain equalizer is sometimes considered
for the equalization of analog channels,

In this section we will develop a general formula for the frequency-
domain characteristics of an equalized channel in terms of the un-
equalized characteristics. This formula allows us to compute final
characteristics and to make a few general observations about the re-
lationship between initial and final characteristics. In addition to
these results we are able to derive conditions as to when a channel
may be equalized successfully, and we find one additional technique
of computing optimum tap settings for long equalizers.

Henceforth we will assume an infinite-length transversal filter. If
the equalizer is long enough to do its job properly, the final characteristics
will closely approximate the infinite length characteristics we will
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derive here. An outline of this derivation is as follows. If the equalized
pulse response is to have zero distortion, it must have Nyquist frequency
characteristies implying symmetry in real and imaginary components.
Knowing the channel characteristies and the type of characteristic
capable of being assumed by the equalizer, we show there is only one
such Nyquist characteristic the product can assume. This characteristic
must be the final frequency response of the equalized channel.

The impulse response of the channel in terms of the amplitude,
4 (w), and phase, 8(w), is

h(t) = 1 f" Alw) cos [wt — Blw)]dw. (71)
)

We assume that the time base has been adjusted by the removal of a
flat delay (linear phase) component from §(w) so that the peak of the
output response occurs at time zero. For zero distortion we require

h, =0 = L f Alw) cos [neT — Blw)]de alln, n # 0. (72)
]

Changing (72) to use real and imaginary components we arrive at the
equivalent condition

f A.(w) cos nwldw = 0 all n,n = 0 (73)
1]
f Ay (@) sin nwTdw = 0 all n (74)
where
A:(0) = A(w) cos f(w) (75)
Ay(w) = A () sin B(w). (76)

Let us assume that A (w) = 0 for w > 2x/7T, i.e., the channel has no
frequency component higher than twice the Nyquist band for its signal-
ing rate. It would be an unusual case if this were not true. We now make
a change in variables to shift the origin to the Nyquist frequency =/T
and redefine the characteristics about this frequeney.

A(w) = A, (w 4+ ;) (77)

A, (w) = A, (m ¥ ’%) (78)
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(In general, a circumflex on any variable indicates that it is defined
about the frequency /7 as origin.) With this change the conditions
(73) and (74) become

/T
f A (w) cos neTde = 0 all n,n = 0 (79)
—-x/T
/T =
f Ay(w) sin nwTde = 0 all n. (80)
—-x/ T
We also have the normalizing condition for the center sample.
1 /T .
ho=1== A w)dw. (81)
T v—x/T

Equation (79) says that A,(w) must be orthogonal to all cos nwT'
between —#/T and «/7T. This implies that its IFourier expansion con-
sists of a constant to satisfy (81) plus any arbitrary sine components.
In other words it must be a constant plus any arbitrary odd function.
Similarly, A, (w) must be any arbitrary even function to satisfy condi-
tion (80). Simply stated, the conditions are then

A (w) = (T/2) + odd funetion (82)
A,(w) = even funetion. (83)

These conditions were first derived by Nyquist,' although engineers
are generally more familiar with the case of flat delay where (82) and
(83) reduce to the statement that A (w) has Nyquist symmetry.

Now that we see the conditions that the product of the equalizer
and channel responses must meet for perfeet equalization, let’s look
at the type of response the equalizer alone can have. The Fourier trans-
form of the equalizer’s time response is

@0

(-(w) = Z (_"(‘7jnw'1' (84)
where the ¢,’s are the tap gain settings. As before we shift the origin
of definition for ("(w) to «/7T. The change in variables and definition
gives

C(w) = C.(w) + jC,(w) (85)

I

with

C:o(w)

Il

e+ 2 (—1)"(cn + c_a) cos noT (86)

n=1
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C(w) = il (—1)"(ca — e—a) sin nT. (87)

Observe that €, () is an even function and C, (w) is an odd funetion.
Now let us suppose that the unequalized channel frequency response
in terms of real and imaginary components defined about w = =/7T is

Aw) = A.(0) + jdy (). (88)

The product of the unequalized frequency response A(w) from (88)
and the equalizer response C(w) from (85) must satisfy the odd and
even requirements on its real and imaginary components as given in
(82) and (83). After separating the product A (w)C(w) into real,
imaginary, odd, and even components, it is possible to arrive at simul-
taneous equations for C;(w) and C,(w). The details of this process are
quite straightforward and have been relegated to Appendix B.

The final equalizer response is found in terms of the even (labelled
with an “e” subseript) and odd (labelled with an “o0” subseript) com-
ponents of the unequalized channel response. The equations derived
are

]

-

._flzn(w)
Bl = 2 . (89)
Az (w) + Ay (@)
T 4 5
L = g fapied (90)
Cylw) = = T z
A:e (m) + Auo (w) ’
where
A(w) = 3A. (@) + 4d:(—w)] (91)
Aso(@) = 3A:(0) — Ac(—w)). (92)

These equations determine the real and imaginary components of the
equalizer frequency response.

Using this response for the equalizer, the equalized channel response
becomes

Axe(w)ﬁ:o(w) + fiyn(w)ﬁye(w)]
fi:ez(w) + j{w?(w)

= AAIE(W)AA]{E(M) = AAyo(w)fim(W)]
+ J [ ‘4:22(&,) + ﬁ”uﬂ(m)

which is the result we have been seeking.

;C(w)ﬁ(w) = [1 +
(93)
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5.2 Interpretation of the Frequency-Domain Relationship

The frequency response of the equalizer [from (89) and (90)] is
T/2
Al (w) + Ay’ (w)

Recall that A,.(w) is the even component of the real part of the channel
response taken about the Nyquist frequency, x/T. Similarly A, (w)
is the odd component of the imaginary part of the response. Notice
that C(w) does not depend on A,,(w) or A,.(w), so that these com-
ponents may be specified arbitrarily without changing the equalizer
gettings. This points up the difference between frequency-domain
equalization and time-domain equalization. Our data distortion eriterion
is such that we don’t care about the components A.,(w) and A, (w)
of the frequency response. However, these components affect the shape
of the final equalized characteristic, as can be seen from (93).

It is clear from (94) that the channel cannot be equalized if A.(w)
and A, (w) are both zero for some w, 0 £ w < #/T, in which case C ()
is unbounded. If this does not happen, practical considerations indicate
that the channel is capable of being equalized. (These practical con-
siderations require that both [A (w)C («)] and its Fourier transform are
continuous and absolutely integrable.)

C'(w) = [jze(m) - j“‘iyu(w)]- (94)

Equalization Condition:

A channel with complex gain A (w) is capable of being perfectly
equalized with an infinite transversal filter if and only if the even com-
ponent of the real part of A (w) and the odd component of the imaginary
part of A (w) do not simultaneously vanish for some w, 0 £ w < «/T.

Note that a channel ean be equalized even if it transmits no energy
in some interval [w;, ws], ws < 7/T, 80 long as the missing energy com-
ponents are replaced in a symmetrically located region ahove /7T,
ie, [2r/T) — we, 2r/T) — wl.

Now let’s go back to (93) to try to get some feel for the shape of the
final response. The equation itself is not complicated, but it unfortunately
requires us to break A (w) into even and odd components about the
Nyquist frequency =/7 and then further to hreak these components
into real and imaginary parts. By this time we have almost no idea what
the final response will be when we put everything back together as in
(93). To take a special ease which simplifies this process, suppose that
the channel has perfectly flat delay, so all the “y”’ components are zero.
Then
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- A T Aso(w)
A0 = T[1+429]. (95
¢ 2 Ao(w) )

The first term represents a rectangular characteristic and the second
term is an odd funection about the frequency w/7. Thus we have a
familiar Nyquist characteristic which is easily determined from the
initial characteristic A (»). Fig. 15 shows a sample case of this type
having flat delay (linear phase). The components A, (w) and A, (w)
and the equalized spectrum are shown for this example characteristic.
With a little study it is possible to get a good feel for the sort of final
characteristic which is obtained by equalization in this purely real case.
However, the introduction of nonlinear phase results back in the compli-
cated expression (93).

Typically, the channel to be equalized cuts off somewhere before
w = 2x/T, so there are no energy components in the interval
[(x/T) 4+ w., (2a/T)]. In this case we have

-{l:ze(“’) == _41’0(‘-’-’)
Aw("’) = _Ayo(m)

4:2(“’) = A:::ﬂ(‘-‘-’)
Ay&(“’) = Ayn("v‘)

Substitution of (96) and (97) into (93) shows that
Aw)C(w) = T/2 for —7x/T 2w = —w,. (98)

/T 2 0= w (96)

—7/T = w = —w,. 97)

~—UNEQUALIZED

AMPLITUDE —>

o

o] \/ 2T /T
FREQUENCY

Fig. 15 — Equalization of amplitude distortion,
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Which means

m

~

Alw)C(w) = SEw=

for 0 €£wsT —we . (99)

~|

L

We can boil this equation down into the most significant observation
we can make about the frequency-domain relationship:

If the channel response cuts off at the frequency (v/T) + w., then
the channel must be equalized to constant amplitude and linear phase
in the region 0 £ w = (#/7T) — w..

This observation is important in the equalization of analog channels
to flat amplitude and linear phase. In order to get the largest possible
interval of perfect analog equalization we should arrange the tap spacing
T so as to approach the Nyquist interval corresponding to the channel
cutoff. However, if the channel cuts off before «/T then by the previous
results the channel is unequalizable. The closer 7' is to a Nyquist interval
the more taps will generally be required to effect a good equalization.
One final note to add to the confusion — if w, is large very little of the
spectrum will be equalized flat. If the tap spacing 7' eannot be changed
we can increase this region of flat equalization by inserting a low-pass
filter during the equalization period which has a eutoff frequency close
above 7/ 7. The filter may then be removed after the equalizer tap gains
have been set.,

Some of the principles involved are exemplified in Fig., 16, which
shows the equalization of a channel which has a linear delay charac-
teristic (quadratic phase). Initially the amplitude response of this
channel is a 50 per cent raised cosine response cutting off at w = 3x/27.
This amplitude characteristic is a Nyquist shape in the absence of delay
distortion. After equalization both amplitude and phase are flat from
w = 0tow = =/27, as required by our previous observation. From
w = 7/2T to w = 37/27 the phase still appears parabolic. In this region
there has been an interaction between phase and amplitude which has
resulted in a change in the amplitude characteristic away from its
Nyquist shape. The combination of equalized phase and amplitude in
this region is such as to satisfy conditions (82) and (83), although this
is not evident from casual inspection.

One additional important usage of (93) for C (w) is in the caleulation
of optimum tap settings for the equalizer. Starting from the unequalized
channel pulse time response samples {x,] we construet A,.(w) and
A, (w) exactly as in (86) and (87) for C. (w) and C, (), i.e., let
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Tlig. 16 — Equalization of linear delay distortion,

Aolw) = w0 + 2 (=1)" (w4 x_0) cos nwT (100)

n=1

Ayo(w) = Zl (—1)"(x, — x_,) sin nw?". (101)
The other components, A, and 4,., are of no concern to us, since they
affect, neither {x,] nor the equalizer settings. Now caleulate € (w) from
(93) and evaluate its Fourier transform at time n7. Each of these
values may be identified with tap settings through (96) and (97). This
procedure may seem complex, but it is by far the fastest way to caleu-
late tap settings for long transversal filters on a digital computer. Time-
domain techniques involve the solution of simultaneous equations or
iterative methods depending on the input pulse. The time required for
this type of minimization usually increases with the square of the num-
ber of taps involved. As each new tap is added, all the previous tap
settings change to readjust for the new minimum for the increased filter
length.
On the other hand, using the frequency-domain technique the time
required for computing tap settings increases linearly with the number
of taps involved and each new tap setting does not change any of the
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previous settings. The catch is that the settings calculated by the
frequency-domain method apply only to an infinite-length line. For
lines of finite length the settings caleulated by frequency- and time-
domain methods will differ. The time-domain settings are calculated
on the basis of minimum distortion — a quantity defined on the basis
of time samples. The frequency-domain settings for a finite line are a
root-mean-square approximation to the final equalizer frequency char-
acteristie for an infinite line. As the number of taps goes to infinity the
tap settings computed by each method approach the same value. For
any finite line the time-domain settings are better (lead to less distor-
tion), since they are by definition optimum. However, for equalizers of
about 12 taps or more the results are practically the same. (Indeed, one
should remember that the distortion eriterion itself is somewhat arbi-
trary.) Thus the frequency-domain technique deseribed here is a fast
and accurate way of computing tap settings for long equalizers. Un-
fortunately the method does not lend itself to implementation, since it
involves a number of difficult operations, i.e., division, Fourier inversion,
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APPENDIX A
Statement and Proof of Theorem I

Theorem 1

If Dy < 1, then the minimum distortion D must occur for those N tap
gains which simultaneously cause h, = 0 foralln C Ky, n £ 0,

Proaf

We prove this theorem by assuming a minimum has oceurred at some
point other than that specified in the theorem and showing this assump-
tion leads to a contradiction. Thus we assume that D is at a minimum
for some sequence of tap gains {e;} and that k. = 0 for some k C Ky,
k # 0. Now we will show that there exists another sequence {¢;"} for
which D* < D and henee the contradiction.
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Let
c;,'=¢; JCKy,j#0,j#k (102)
e = e — Asgn by
where
| >A>0 (103)

which is possible, sinece by hypothesis 7. # 0. The value of distortion
corresponding to the tap gains {¢;"] is, from (14)

D* = Z’ | .Z., €y ('r"_j - .l',,.!'ﬁj) + Tn
= j;:ki\‘\' (104)

+ (er — Asgn b)) (vy—r — x00—) + a |
Using (13) this reduces to

o0

D* = 2" |h,— Asgnhi(vay — xar—s) | (105)
D = 2" | hy — Asgn (e, — rpr_y) |
oy (106)

+ | he — Asgn b (1 — apr—g) |
We concentrate for the moment on the second term of (106) and use
hy = | b | sgn hy to obtain
| hy — Asgn b (1 — apr) | = | || — A1 — ary) |0 (107)

But | apr—y | < 1 since

Do= 2 x| <1 (108)

Therefore 2 > (1 — apr—;) > 0 and, by (103),
lhkl - A(l == ;I‘k.l'_k) > 0. (109)

Thus we are able to drop the absolute value brackets around the second
term in (106) and write
D* = E' | hy — Asgn (v — 2aa—y) |
R (110)

+ |]r,,.{ = A(l == .l',(-.l'._k)
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D' 2 |hal+ 48 2 |2usk — tar
e T (111)
- A(l — .‘l'k.l',k)
D*s D+ a{ 2 |aaa|+ o] 2 |an]
o g (112)
= (1 = R‘J;-;l'_;-)[
D" <D+ A{Dy — |ay| + |2 | (Do — |2x])
(113)
S PRI
D"£D—- A1 = D)1+ |zs]|) (114)
and since_Dy < 1
D*<D (115)

which is a contradiction, since we assumed that D was originally at a
minimum. This completes the proof of Theorem I.

APPENDIX B

Derivation of Equalizer Frequency Response in Terms of Unequalized
Channel Frequency Response

The equalizer frequency response taken about the Nyquist fre-
quency =/ 7T is

C'(w) = Czc("’) +jéuo(w) (116)

where we use the subseripts “a” and “y” to denote real and imaginary
components and the subsecripts “‘e’” and ‘“o” to denote even and odd
components. Breaking the unequalized channel frequency response

similarly into its components gives
A(w) = As(w) + Aso(w) + jAu(w) + jdye(w) (117)
with
An(w) = A () + Ae(—w)] (118)
Aso(w) = 3d:(0) — d:(—w)] (119)
étc.
We are now ready to put together the equalizer response and the
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channel response to get the equalized channel response. Using (117) and
(116) for this purpose we obtain

A(0)C () = [Aa(@) + Azo(@)]Coe(w) — [Aye(w)
+ Ao (@)]Cyo (@) + jlldze (@) (120)
+ Ao (@)Cho (@) + [Aye(@) + Ayo(@)1Cae(w)}.

This equation must meet the conditions (82) and (83). If 4, is an arbi-
trary odd funetion, condition (82) dictates that

Re [ (w)C(w)] = (T/2) + &  (121)
[AAIE(“’) + ﬁru(“’)]ézu(w) - [A‘yc(w) + &un(w)]cun(w)

(122)

= (T/2) + 8
Ao (0)Cre (@) — Ayo()Ciolw) = T/2 (123)
A‘zo(w)c‘ze(w) - A‘yu(w)c—.un(w) = al:' . (124)

Since 8, is an arbitrary funetion, (124) is automatically satisfied.
Let 6. be an arbitrary even funetion. Condition (83) now requires

Im [A(0)C (w)] = 8. (125)

(Ao (@) + Aso(@)]Chow) + [Aye(w) + Ayo (@)]Cao(w) = 8. (126)
The even and odd equalities from (126) are respectively

Ao (@)Cho (@) + Aye(@)Cas(w) = 8 (127)

Ase(0)Cyo(w) + Ayoleolw) = 0. (128)

Again (127) is satisfied trivially and we are left \\:ith two equations,
(128) and (123), in the two unknowns Cy.(w) and Cy,(w). These equa-
tions may be solved simultaneously and we arrive at

T .
N _ E Aze(w) (129)
Cw) = = T 2
Aze (w) + Aya (W)
T -~
s Ayo(w)

Azez(w) + -‘iyoz(w) ’
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Index Reduction of FM Waves by Feed-

back and Power-Law Nonlinearities

By V. E. BENES
(Manuscript received April 17, 1964)

Feedback systems which achieve subharmonic response by use of power-
law nonlinearities and {rigonometric identilies are described, and the
problem of “modes,” i.e., multiple responses to the same excitation, in some
of these systems is discussed. It is shown, by a thorough discussion of an
example, that suilable choices of a irigonometric identity and a loop filler
can be made which lead to locally asymptotically stable subharmonic orbils.
An application to FM demodulation is suggested: the subharmonic modes
can be used to reduce the index of an input wide-index wave so that a nar-
rower IF filter than for conventional FM suffices, as in the FM demodulator
with feedback, but without a controlled oscillator or even a mixer.

I. INTRODUCTION

As is known, it is possible to design feedback systems that reduce the
index of an FM wave by an explicit use of power-law nonlinearities based
on certain simple trigonometric identities. Cireuits which use feedback to
achieve subharmonie operation, and which are stable under changes in
the input frequency over at least a limited range, have been built,
tested, and deseribed in the literature.! They have the behavior pre-
dicted by the trigonometric identities. Some of them depend on non-
linear econversion of a signal containing harmonies of 8 into one contain-
ing only the first harmonie, and others depend on the inverse process of
generating harmonies.

Our purpose is to discuss the problem of “modes” (i.e., different re-
sponses to the same excitation) in these systems, and the problem of the
stability of the interesting subharmonic modes. We also indicate an
application to frequeney modulation: by incorporating the principle on
which the systems are based into a frequency modulation receiver, one
obtains circuits with some of the properties and advantages of the FM
demodulator with feedback?®® proposed by J. G. Chaffee. However,

589
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none of the circuits suggested here contains a voltage-controlled oscil-
lator, and some do not even contain a mixer.
To illustrate the principles involved, let us consider the trigonometric

identity!
sin 36 = 3 sin 8 — 4 sin’ 4.
If we set
Y(e) = sgna- ||
the above identity ean equally well be put in the form
¢ (3 sin 0 — sin 36) = 4" sin 0.

Thus if we view, as in Fig. 1, 4'* sin 0 as the output of the nonlinearity

¥ (), and feed this back through a gain of 3-47" to an adder whose
input is
— sin 34,
we will have a feedback system which is driven by —sin 36, and which
produces sin 6, a 3-to-1 reduction of index of modulation if the angle
36 is taken to be of the form
30(t) = wt + 3e(t), ¢ = signal.

It is apparent' that other trigonometric identities can be used in
analogous fashion to get an n-to-1 index reduction, with » any positive
integer =2. For example, with

y(z) = sgna- x|
we have
¥ (cos 58 + 20 cos’ 8 — 5 cos 8) = 16" cos 8,

corresponding to the system of Fig. 2.

I
- 1 3
SIN 36+ SoN X 2)7 43 sING

&

1
GAIN OF 3+4 3

|
~

Fig. 1 — System using 1/3-power nonlinearity.




INDEX REDUCTION OF FM WAVES 591

i
COS 50 +, 16° Cosf

L
SGN X =|x|5

+

20y3-5y |

Fig. 2 — Loop based on 1/5-power nonlinearity.

Another system, based on the identity
4 cos® § = cos 30 + 3 cos 6,

is shown in Fig. 3. It generates the “‘compressed” signal —3 cos 8 by
subtracting 4 cos® 8 from the wide-index signal cos 36.

1I. FILTERING

If the principles illustrated above are to be used in a communications
receiver, it is probably desirable to perform some filtering to remove
undesired components of noise or feedback signal. Thus in practice the
feedback loop would (e.g.) include a filter which removed all components
not in the (essential) band of sin #(-). For many filters, and choices of
input phase #(-), presence of the filter will of course mean that the
signal in the loop is no longer so simply related to 6(-) as it was in the
examples above: use of the trigonometric identity to relate the loop
signal to the input may be inexact. However, there exist filters and
choices of 8(-) for which this does not oceur. (See Ref. 5, and Section V
herein.) In any case, if the filter passes sin (- ) without essential distor-
tion the identity will remain true for practical purposes. For example,
with

Y(r) = sgna |z |
again, and the identity
Y(cos 30 + 3 cos 8) = 4" cos 6

we would follow () with a filter that passed cos @ but removed out-
of-band noise, and get a system like that of Fig. 4.

I1I. THE POSSIBILITY OF SEVERAL ‘“MODES”

It has been pointed out in the literature* that certain frequency di-
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C0s 38 Y\ -3 cosé
+

4 43
o3 &

Fig. 3 — System based on cubie nonlinearity in the feedback.

viders based on regeneration and modulation are not necessarily ‘‘self-
starting,” and that sizeable starting voltages may be needed to set them
off. Put in the language of differential equations, this means for example
that there may be two entirely different kinds of steady-state response
(to the same steady-state signal), one (say) oscillating with large ampli-
tudes, and the other taking place in a region of asymptotic stability
around a critical point, with small oscillations. The “starting voltage”
is needed to get the system out of the region of stability.

A. J. Giger has suggested that a similar situation will obtain in realiza-
tions of the circuits deseribed above, even though they contain an adder
rather than a multiplier (modulator). Clearly, whether a realization is
self-starting is going to depend on the circuit details as well as on the
principles at issue here, and each case will have to be studied on its own
merits. However, these general remarks are pertinent:

(7) The non-self-starting frequency divider is just a special case of the
well-known but incompletely understood phenomenon that a system
may not have a unique asymptotic response. It is a property specific to
the systems deseribed so far that they depend on a fractional-power
nonlinearity, and as a result it is possible, though not necessary, that
they fail to have unique periodic responses to some periodic signals.®

(77) The desired operation of the systems proposed above depends on
evoking a suitable subharmonic response. It is known? that not all solu-
tions need contain such components of lower frequency than the input.

(#52) It is also known® that even when a subharmonic periodic solu-
tion exists, it is itsell only unique up to certain phase shifts. Specifically,
if we obtain a solution with a component ¢™™* when the input contains
only harmonics of ¢"™' n > 2, then any translation of a solution by
2k/nfork = 1, - -+ , nis also a solution.

For example, the steady-state response of the circuit of Fig. 4 might
or might not contain the desired subharmonies, and thus it might not
work as planned unless care is taken to ensure that it slips into the right
“mode” of operation initially, and that this mode is stable under the
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perturbations due to the presence of signal and noise. The mathematical
analysis of such phenomena is often arduous and, in many cases, quite
incomplete. From a practical point of view the mode problem (when it
occurs) might best be resolved by encouraging the desired mode by
pulsing the (tuned circuit) filter, by adding automatic gain control
features that cut in when the amplitudes of the desired mode are low,
or by designing the filter to have zeros of transmission at certain values
of frequency associated with the undesired modes, such as their funda-
mentals.

However, while it is necessary to emphasize that the problems men-
tioned above exist, it is also important to state that the picture is not
all black: known methods of analysis and design suffice to ensure local
asymptotic stability of some of the subharmonic modes described above
An example is worked out in some detail in Section V.

IV. BIAS

For theoretical reasons it may be undesirable, and for practical reasons
impossible, to use a nonlinear characteristic which has an infinite slope
at the origin. For example the singular nature of the fractional-power
nonlinearities at the origin may preclude a conventional elosed-loop,
open-loop stability analysis by linearization around that point. Or, if
the nonlinearities are being obtained by the use of diodes, such a slope
is physically unattainable. These difficulties, along with most passages
of the system through or near such a singular point, can be avoided by
the addition of what amounts in electrical terms to “de bias” at various
points of the system, in such a way as to (roughly) move the operating
point of the system to a desired region of the nonlinear characteristic
¥(+). In this region y(-) might be of Lipschitz character, or it might be
particularly well represented by a particular diode. Such biasing can
also be used to eliminate some equilibrium points of the system, and
thus to reduce the number of solutions; it can also be used to increase

L
cos 38 +, =43 COS §

W]~

FILTER

SGN 2+ 2|

3-43]
l

Fig. 4 — Filtering in a loop using 1/3-power nonlinearity.
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the size of certain regions of asymptotic stability, and thereby enhance
the dynamic stability of desired solutions. It therefore furnishes sub-
stantial latitude for design.

Thus, e.g., to use the identity

cin? g = 1 —00328,

2
we can multiply by b* = 0 and add
a’ + 2ab sin 0
to both sides, so that
(@ + bsin 8)" = @* + (b°/2) + 2absin 0 — (b*/2) cos 26.

Choosing |a | > | b | ensures that the right-hand side is bounded away
from zero. Taking the square root of both sides, we base design on the
“biased” identity

a+ bsin 6 = (a® + 3 4 2absin 8 — 3b° cos 26)"", (1)

Discussion of an example of design based on (1) follows.

V. EXAMPLE, WITH ANALYSIS OF ORBITAL ASYMPTOTIC STABILITY
We now consider the circuit depicted in I'ig. 5, with
2
ple) = sgna- |2 [,
with input
‘ = a4+ W — B eos 2
y({t) = a + %b ib” cos 21,
and a filter whose impulse response k(- ) is integrable and has a Fourier

transform

Klw) = (21r)7”2f E(t)e ™dt

such that K(0) = 0 and K(1) = (2r) '*(2a). For our example we
use the second-order filter

(27) 2010
c(tw)? + tw + ¢’
with ¢ > 0, so that poles of K (-) are in the left half-plane.

It is now easy to show, using the theory of Fourier series, that the
system of Fig. 5 has a subharmonic response

K(w) = (2)
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a‘+ La b2~ L b? cos 2t

1
2 + SEn i [ a+b siNt
+
2
absint K (@)

Tig. 5 — Example for orbital asymptotic stability.

a(t) = @ + 30° 4+ 2ab sin t — 1b° cos 2, 3)

where x(-) is the input to the nonlinearity. The loop equation for this
solution (with no transients!) is simply

x(t) = y(t) + j;: E(t — w) sgn 2(u) | 2(u) ]”2du.

Substituting the expression that (3) gives for x(-), using the iden-
tity (1), shows that the filter removes the dc¢ term a from the output
of the nonlinearity and multiplies the amplitudes of frequencies =1
by 2a. We remark that the constant ¢ > 0 in (2) does not occur in the
subharmonice solution (3), and that the constant b does not oceur in the
transfer function K (w). Also, for the particular input we chose, the
presence of the filter does not render the trigonometrie identity being
used inexact.

As is well known, for fixed values of @ and ¢ there are many ways of
degeribing the cireuit of Fig. 5 by differential equations so as to give rise
to (2) as the transfer funetion of the filter. For some of these ways the
solution x(-) found above may he orbitally asymptotically stable, for
others it may not. In short, the stability of this subharmonic solution
probably depends on the way in which the action of the transfer func-
tion is represented by differential equations. We shall consider repre-
sentations of the form

:= Az + op (B2 + y(1), (4)

where z(-) is a 2-vector valued funetion, 8 is a 2-vector, é is a 2-vector
proportional to the unit 2-vector, and A is a stable 2 X 2 matrix. In
this representation the periodic solution x(-) of (3) will have the form

x(t) = Bz() + y().

These representations and their simple properties are used merely as an
illustration, because they readily admit an analysis of the asymptotie
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stability of the orbit corresponding to the solution x(-). They do not
come near exhausting the possibilities for finding stable subharmonic
forced oscillations in feedback systems.

Since for f; = 4, (4) gives

8'2(t:) = B'lexp A(ta — t1)]2(t1)
+ f 2 B'lexp Aty — w)1dp(f'2(u) + y(u))du

it ig clear that (4) will represent the circuit if and only if

2aiw

Iy . —1a _ ¢ 1/2 _
G liwl — A)" 8 = (2n) "K(w) = ct(im)z T e o

i.e., if and only if both
det (iw] — A) = (iw)’ + ¢ e + 1,

o1 — {2 iw — an & (5)
B + B = 2aiw/c.

8 tw — Gx —an 8a
The first condition is met if

Ay — G0y (= det 4) = 1,

an + G = —c!
The second condition is equivalent to g8 = 2ac™" and g'A™'s = 0,
taken together. Since, to facilitate stability analysis for this example,
we wish to impose 8, = & = 0, the latter condition is FA™ =0,1=
unit 2-vector. All these conditions together can be met in many ways.
A convenient choice is 8 = (2a/¢,0),8 = 1, an = —az , (@1 — n)an =
1, and

ﬂrn(—ﬂu = Cil) - 1112(—0'»11 - G_l) =1,

the last imposing a rational relation between a;; and ay, thus leaving
one parameter still free.

1t can be verified that when the conditions (5) above are met, then
A'z(t) = 2ab sin t does define a periodie subharmonic orbit of the differ-
ential system (4). We are now in a position to make a linear local
asymptotic stability analysis for the subharmonie orbit B'z(t) = 2absin ¢,
by Lyapunov’s classical theorem.” The (periodic) linearization matrix is

A + diag 8 (1)

where
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() = ¢ (a® + 2ab sin t + 3b* — 3b° cos 2t)
= ¢ (x(t))
I S
2y (x(t))
= 1(a+ bsint)™"

If diag 8 = dI, d a scalar, it is casily verified that the fundamental
matrix associated with this periodic matrix is

d(1) = eult)
where u(-) > 01is defined by
1

U

d ftf(v)u,,(v)tiu

'H-n+1(”

u(t) = Z ua(t).

n=0
We are therefore interested in the characteristic values of & (27), ie,,
¢ u(2r).

These are of the form

27U

w (2w )e
where g is a characteristic value of 4, and so we may conclude at once’
that if

~Reu = 2 > — log u(2r)
en =5 > 5 logul2r),

then the orbit determined by 8'z(t) = 2ab sin ¢ is locally asymptotically
stable, i.e., there exists a neighborhood of it from which all solutions
approach the orbit.

Clearly

u(t) = exp {t sup ld |- | fw) |}
whence
1 log u(27) = =
2w -

so that the inequality
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a>cld[+|b]

suffices for local asymptotic stability of the orbit.

Note that changing the sign of b corresponds to changing the sign in
all the odd components in the periodic solution a(t) found above; the
resulting function is also a periodic solution differing from z(f) only in
phase, by exactly .

VI. APPLICATION TO AN FM DEMODULATOR WITH FEEDBACK

The examples of index reduction described in the preceding sections
suggest that it is possible to design FM demodulators with frequency
feedback that contain no voltage-controlled oseillators and even no
mixers. Several methods of realizing such a possibility will be discussed,
based on the principles exemplified.

The simplest demodulation scheme of this sort is obtained by a
specialization of the system of Fig. 4. We merely specify that the filter
have a narrow passband centered around an intermediate frequency
w that is 3 the carrier frequency, and that it introduce negligible ampli-
tude variations for signals in the passband, so as not to interfere unduly
with the trigonometric identity. This gives rise to the demodulator of
Fig. 6, in which #(- ) has the form

0(t) = wl + ¢ (1),

with ¢ a baseband signal. The feedback, made at ITF, reduces the modula-
tion index 3-to-1. Here the carrier frequency is three times the inter-
mediate frequency, but this relationship can easily be changed by re-
modulating or, for that matter, by using a different trigonometric identity
as the basis of design. We note that no mixer, and no voltage-controlled
oscillator, is used. Also, the phase of the signal fed back is crucial:
excessive phase shift in the filter is as intolerable here as in conventional
"M with feedback.

As a demodulator, the circuit of Fig. 6 shares with Chaffee’s circuit
the advantage that the wide band of noise which must be passed by the
initial amplifier along with the wide-index signal is not admitted to the
detector. This circumstance is important, because a prinecipal object of
feedback (in FM with feedback) is to reduce the noise level at the de-
tector by filtering all but a small part of the noise. However, it remains
to be seen how well the nonlinearity sgn z- | z | Y3 performs its function
in the presence of the wideband noise that enters it, since the resulting
amplitude modulation a(-) at the input renders the trigonometric
identity being used here inexact. This AM due to noise might be removed
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acosaf | - 47\ N— IF FM

1/ \‘{ FILTER DETECTOR

3.4 3
|
|

Fig. 6 — Possible utilization of 1/3-power nonlinearity in FM demodulator.

by inserting a limiter and filter to follow the IF filter, as in conventional
systems, at the expense of incurring additional phase shift.

A final point, due to A. J. Giger, is that, unlike Chaffee’s circuit, the
present one refains the carrier phase instead of discarding it and operat-
ing independently of it.

VII. CIRCUITS WITHOUT FRACTIONAL-POWER NONLINEARITIES

It is straightforward to generate other, quite different designs based
on the same identity,

cos 30 = 4 cos® 6 — 3 cos 4,

designs which do not depend on a fractional-power nonlinearity, and
80 do not incur the problems above. Ior example, Fig. 7 shows a design
very much like that of the conventional FM with feedback demodula-
tor, except that the detector-controlled oscillator is replaced by the
nonlinearity

498 — .

Applied to cos 6, this gives cos 36, to be used as the feedback input to
the mixer. If the other mixer input, i.e., the incoming signal, is the

cos 44 1F LIMITER cosé =
b FILTER F?S%R DETECTOR

COs 36

ay?-3y

Iig. 7 — Cubic nonlinearity used in FM feedback system with modulator.
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wide-index signal cos 48, the filter can be made to select the difference
frequency component cos 8 to complete the loop and provide the feed-
back signal. In this system the carrier frequency is four times the inter-
mediate frequency.

A particularly simple cireuit, based on Fig. 3 and using only an adder,
is depicted by Fig. 8. In this design the feedback is through the simple
cubie nonlinearity

If —3 cos 6 is applied to this, and the output is combined in the adder
with an incoming wide-index signal cos 30, the adder output is —3 cos
. This passes substantially unchanged through the narrow IT filter
suitable for the low-index wave cos 8, while of the wide band of noise ac-
companying cos 36 at the input only a narrow band can pass the IF filter.
For practical purposes, the cubic characteristic would only be required
over the range |2 | = 3, and standard stability analyses can be used.
Again, carrier phase is retained.

cOS 38 + -3 COS4 LIMITER
(= FILTER . DETE:‘;TOH =
i
A4 .3
7%

Fig. 8 — Cubic nonlinearity used in FM feedback system with adder.
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Generation of Orbital Elements for the
TELSTAR® Communications Satellites

By L. C. THOMAS
(Manuseript received December 8, 1964)

The technique now regularly in use for the generation of orbilal elements
Jor the TELSTAR communications satellites is desertbed using angle-only
and/or angle-range data versus time as inpul information. It 1s found that
secular perturbation considerations are sufficient to permit trajectory pre-
diction with pointing errors of about 0.05° over 100 orbits from a single set
af elements. Modified orbital elements are chosen as the orbit description,
since they explicitly express the secular rates and thereby stmplify and re-
duce the cost of drive lape generalions for the Andover ground station. The
rales are derived both from perturbation theory and from direct measurement,
The size and shape accuracy of the predicted orbit ellipse is improved by
statistical means using trajectory data from a number of passes over a par-
teular ground station. This permits better round-the-world predictions.
Finally the compuler-operator ensemble presently used for gemerating the
orbits of the TELSTAR satelliles is described.
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I. INTRODUCTION

The calculation of elements for orbits similar to those of recent near-
earth satellites such as the first and second TELSTAR communication
satellites, Echo I and II, the Tiros series and the Syncom satellites is ac-
complished in this analysis by considering the secular effects of the
earth’s gravitational potential upon the satellite’s orbit. Here, the earth
is taken as an oblate spheroid whose field is independent of longitude
and is symmetrical about the equatorial plane. In the analysis, the gravi-
tational effects of all bodies other than the earth are ignored, as are
atmospheric drag effects and solar light pressure.! For orbits at distances
in the thousand-mile range, luni-solar attraction can change the satellite
height by no more than a few hundred feet. This can alter ground station
pointing angles by less than 0.01°, which is below the resolution and
tracking accuracy of the horn antenna* at Andover, Maine which sup-
plies the bulk of the basic pointing data for Bell Telephone Laboratories
use. The principal planetary perturbation is from Venus, which peaks at
3 to 4 orders of magnitude less than the luni-solar effects. Air drag ef-
fects at 1,000 miles are at least an order of magnitude below the solar
gravity perturbations.

In the technique to be deseribed, modified orbital elements (osculating
elements plus explicit secular perturbations) are derived essentially from
three sets of observations of the satellite. If only angle information is
available, a modified form of Gauss’ method is used to ascertain the
range. T If some range information is available, this is added to the analy-

* This antenna has a tracking jitter of about 0.005°. Its beam can resolve the
position of a satellite to within about 0.02°.

1 It is recognized that the range to an orbiting celestial body eannot be ascer-
tained if the three measured sight lines from observer to the body are coplanar.
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sis. If range data for all three observations are on hand, the modified
Gauss method is bypassed and elements are calculated from geometry
and perturbation theory.

The degree of goodness of elements so obtained is ascertained by com-
paring resulting predictions of the satellite trajectory with actual data
from the same pass as well as with data from passes prior to or after
the one being used to generate the elements. It has been this author’s
experience that the fit of the predicted trajectory to the orbit from which
it came is generally within 0 to 0.02°, but that the anomalistic period
determination from single-pass data is not sufficiently accurate to hold
the errors under 0.1° over more than a few orbits. However, this difficulty
is solved by calculating two or more sets of elements from passes separ-
ated by several days and combining results to ascertain the period and
other secular perturbations more exactly. Table I shows the resulting
improvements under such a mode of operation for the second TELSTAR
satellite.

It is to be noted that such neglected perturbations as those from the
higher-order terms in the earth’s potential function or solar radiation
pressure may be operationally introduced by not only calculating the
period from two passes separated in time, but also computing changes
in the other orbital element values. This has been done in the case of
Ficho IT to enable predictions to within 0.1°* over a time of about ten
days.

The first portion of this paper presents techniques for developing
orbital elements suitable for predieting future satellite pointing angles
for the ground station collecting the original data. Later portions of
this paper will deal with techniques aimed at producing a good round-
the-world orbit fit and element rate improvement. Finally, a computer-
operator ensemble used to generate modified orbital elements for the
TELSTAR satellites will be deseribed.

11. EFFECT OF DATA ON ANALYSIS

While the use of modern computers makes it entirely possible to
record and process hundreds of pointing angles for each pass of a satellite,

In this case such a situation eannot long prevail because of the rapid motions of
near-earth satellites and their orbits, as well as the rotation of the ground station
on the spinning earth. Even when the orbital inelination equals the geocentric
latitude of the station, only for portions of certain passes is the station in the
orbit plane. The three-point orbit analysis presented here is therefore not greatly
restrictive.

* This is the resolution level of the equipment which recorded the Echo II
pointing angles.
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TaBLE I — IMPROVEMENT OBTAINED BY USING SEVERAL
Sers oF ELEMENTS

Pointing Errors (Angular Offset)
Period Determined by Initial Pass
10 Orbits 100 Orbits | 1000 Orbits
Later Later Later
Data from 1 pass 0.02 0.5° 5° over 10°
Data from 2 passes separated by 0.02 0.03° 0.3° 1°
1 day
Data separated by 1 week 0.02 0.02 0.05° 0.3°

it is the purpose of this paper to describe techniques which can operate
with a sparsity of data. The reduction of the quantity of data to be
handled, even by automatic means, is of inereasing importance both
from a time and cost basis as more and more communications satellites
and satellite systems become available. Minimizing the quantity of data
is of paramount importance in implementation of small computers at
tracking sites which often have very limited storage capacities, long ac-
cess times, and slow machine cycles. Thus we shall be concerned with
generating modified orbital elements from passes having as few as 6 or
12 data points available. Under these conditions, no statistical processing
of data prior to their use in orbit generation is advisable or in many
cases even sensibly possible. Rather, the procedure is to first generate
elements from sets of three pointing angles (and ranges if available) on
a pass, and then compare trajectories produced from these elements to
the entire original set of data. By appropriate selection of triads, data
points unsuitable for orbit prediction may be easily discovered and
discarded, even though it may be difficult to preselect data on a purely
statistical basis. For use in long-range predictions, orbital element rates
(orbital period and other secular perturbations) are determined by com-
parisons between elements of different epochs, and these rates are used
in place of the theoretical perturbations calculated in generations from
a single satellite pass.

The tracking data used to determine the orbits of the TELSTAR
satellites come from a single ground station. Any increase in station noise
or malfunction of trajectory equipment can therefore directly affect the
generated elements. Because of this, it was decided not to depend upon
an uninterrupted or near uninterrupted flow of “valid” data from the
ground station in any analysis but to maintain flexibility by developing
elements which would predict trajectories with reasonable accuracy over
a number of weeks. Concentration upon the establishment of a con-
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sistent set of secular rates derived from eclements generated at various
epochs seemed a logical approach to this end. These rates are virtually
constant for orbiting particles like TELSTAR which lose energy at an
extremely low rate and whose oscillatory departures from the secular
rates are not serious.

I1I. THE MODIFIED ORBITAL ELEMENTS

Trajectory generation is simplified by choosing a set of orbital elements
in which the only perturbations are secular ones and these are explicitly
expressed. This in essence reduces the trajectory prediction process to
one of simple geometry. Specifically, the perturbations considered are
those which produce nodal regression, perigee advance, and period modi-
fications. They have no secular effect on the orbit inclination, eccentrie-
ity, or radius of perigee. Cyclic perturbations are ignored. A further
simplication results by quoting the elements for an epoch that is the
time when the satellite arrives at perigee.

No satellite moves precisely in an ellipse about the earth, and yet the
elements to follow will imply plane elliptical motion. It may be helpful
to consider the satellite to be moving along an ellipse in a plane which
itself regresses westward due to the earth’s oblateness. Superimposed
upon this motion is a rotation of the major axis of the orbit ellipse about
the earth’s center located at one focus of the ellipse. Under these condi-
tions, the orbital elements merely state the instantaneous position of
the ellipse in space at the epoch quoted. The modified orbital elements?
(commonly referred to as MOES) to be used in this analysis are:

Epoch — the year, month, day, hour and decimal minute at which the
elements are quoted. This epoch corresponds to the time that the satel-
lite arrives at perigee with only secular perturbations considered.

Inclination — tilt of the orbit plane in degrees referenced to the earth’s
equator and measured counterclockwise from the equator to the orbit
plane as seen from a point above the ascending node.

West longitude of the ascending node — the west earth longitude of the
ascending node of the orbit at epoch in degrees.

Prime sweep interval (PSI) — the apparent orbit regression expressed
as a time. Specifically, it is the time required for a point on the earth’s
equator to pass under the ascending node on two successive occasions.
It includes, therefore, the true regression referenced to an inertial frame,
plus the apparent regression of almost one degree per day due to the
earth’s revolution about the sun. Often the prime sweep interval is
expressed as one mean solar day (of 1440 minutes) minus M, where M
is simply the number of minutes added to one day to yield the PSI.
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Argument of perigee — the angle in degrees measured at the earth’s
center in the direction of the satellite’s travel and lying between a radius
vector to the ascending node position and one to perigee.

Perigee motion — the secular motion of perigee in degrees along the
orbit per anomalistic period. It is positive if perigee moves in the direc-
tion of the satellite’s motion.

Anomalistic period — the time in minutes required for the secularly
perturbed satellite to move from perigee to the next occurring perigee.
Generally, during this time the perigee is also moving.

Change in period — the change in the anomalistic period in minutes
per anomalistic period.

Eccentricity— the eccentricity of the orbit ellipse. A constant under
the assumed conditions of only secular perturbation and no orbit decay.

Radius of perigee — geocentric distance of the satellite at perigee in
statute miles.

IV. TRAJECTORY PREDICTION

Since each TELSTAR satellite was launched, it has been a system
requirement to predict the position as seen from Andover, Maine on a
rather continuous basis. While the demand for predictions of the first
TELSTAR satellite trajectories has decreased because that satellite is
no longer active, the second TELSTAR satellite requirements have con-
tinued. Predictions currently are made for every pass of the second TEL-
STAR communications satellite according to the methods described
herein. As a result of this type of operation it became imperative to de-
velop a computational technique which could rapidly and economically
generate trajectories on magnetic tapes capable of pointing an antenna
with an accuracy of about 0.05°. The use of modified orbital elements
for this purpose permitted such predictions by purely geometric means
and without recourse to any integration procedures, numerical or other-
wise. The method to be outlined here has been embodied into a program
in regular use on an IBM 7094 computer to produce drive tapes for the
TELSTAR satellites. The program execution times for a typical hour-
long pass in which pointing angles are given every minute is under 0.002
hour and costs about $1 to compute. The total over-all machine cost of
an hour-long drive tape is about $2, which includes the use of some
auxiliary equipment.

The method of predicting pointing angles from a ground station will
now be described, using the modified elements as the orbit description.
The general procedure will be outlined without explicitly stating all of
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the geometry, which involves mathematics no more sophisticated than
spherical trigonometry.?

The elements specify the west longitude position of the ascending node
and the argument of perigee () along with the secular rates so that,
for each instant of time, the position of perigee is established as shown
in Thg. 1.

Since the anomalistic period is given, the true anomaly V' of the satel-
lite must always be known. This, along with the orbit inclination 7, de-
seribes the subsatellite latitude and longitude as functions of time. Since
the radius of perigee, the eccentricity, and the satellite’s true anomaly
are available, the distance of the satellite above the earth’s center is
easily determined.

If the latitude, longitude, and height above mean sea level of the
ground station are known, it becomes a matter of geometry to compute
the azimuth, elevation, and slant range of the satellite from that station.
Tig. 2 illustrates this. The great circle arc between SSP and the ground
station can be computed to yield the central angle g; therefore the slant
range may be found by simple triangulation, since r and R are known
(see Appendix B for R calculations).

A plane tangent to a spherical earth is now inserted at the ground
station. Azimuth in this plane is determined by solving the spherical
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Fig. 1 — Geometry for determining the subsatellite point.
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EQUATOR

S

Tig. 2— Satellite azimuth-elevation details.

triangle N, SSP, ST A (station). Elevation is computed from the tangent
plane perpendicular to R. Predicted azimuth and elevation referred to
the oblate earth are derived from the azimuth and elevation related to
a spherical earth by tipping the tangent plane north by an appropriate
amount depending upon the latitude of the ground station.*

V. DETERMINING SATELLITE RANGE FROM ANGLE DATA

5.1 A Brief History*

The mathematical determination of orbits for celestial bodies began
with Newton in 1680, when he calculated a parabolic orbit for a comet
that appeared in that year. This was perhaps made feasible by Doerfel,
who suggested that the sun lies at the focus of a cometary orbit. Euler
in 1744 added to Newton’s work the technique of mathematically relat-
ing time to position along a parabolic, heliocentric trajectory without
prior knowledge of the orbital elements. Around 1770, Lambert added
many geometrical approaches to the determination of parabolic orbits
in an attempt to reduce the problem to one unknown. Shortly there-

* The amount of northward tilt of this tangent plane is equal to the difference
between the geodetic and geocentrie latitude of the station and is approximately

11/35.6635” sin 2¢ — 1.1731" sin 4¢ + 0.0026” sin 6y, where ¢ = the geodetic latitude
of the station. See Ref. 5, p. 480.
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after, in 1783, LaGrange added the important assumption that all ob-
served positions of an orbiting celestial body (comet, planet, or natural
satellite) lie approximately in a single plane. He also introduced a per-
turbation analysis to determine departures from the assumed plane.
LaPlace in 1780 showed a rigorous solution® for an orbit formed from
any conic section about the sun, using three positions of the celestial
body involved as well as their first and second derivatives.* This method,
though elegant, has not come into general use because of the difficulty
in determining the position derivatives to sufficient accuracies.

Olbers in 1797, analytically building upon Lambert’s geometry, de-
veloped a straightforward method for the caleculation of parabolic orbits.
The method, though not as rigorous as that of LaPlace, is sufficiently
accurate and convenient to be used with little change to the present day.

To Gauss belongs the credit of developing the first coordinated ap-
proach and practical solution for the case of elliptical orbits.” On Janu-
ary 1, 1801, in searching for possible planets existing in the gap between
Mars and Jupiter, the astronomer Piazzi discovered a minor planet later
named Ceres. It was observed for a month before it was lost in the sun’s
glare. A crude projection of its motion, as well as that of the sun, in-
dicated it would not be visible again until about October of that year.
Since Ceres shines at only eighth magnitude and appears starlike through
any telescope, the search for this minor planet would have been extremely
difficult in those days without a good prediction of its position. Within
months, Gauss developed a method for determining an elliptical orbit
from a sparse bit of “angle-only” data. In his method he reduced the
problem to that of two unknowns instead of one for convenience. A re-
sulting eighth-order equation involving range and similar to that pro-
duced earlier by LaGrange was solved by Gauss by trigonometrie means.
The Gaussian method is essentially one of successive approximations
which rapidly converge to the true range of a celestial body by ap-
propriate iterations. With the exception of the trigonometric form of
the solution that has become unnecessary in the days of high-speed digital
computers, the method of Gauss has survived with little modification to
the present day. The only significant computational change in the tech-
nique occurred in 1851 when Encke recast the method in Cartesian form
and concerned himself with rectilinear coordinates rather than the six
orbital elements of Gauss. Even now, when LaGrange’s planetary equa-
tions may be numerically integrated®® ! and data selected to obtain
orbital elements in many chosen forms, the simple form of Gauss’
solution is amenable to the addition of closed-form perturbations in an

* For a modern summary of LaPlace's method see Ref. 8, p. 168, or Ref. 9, p. 40.
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iterative and rapidly converging mode of machine computation which
is most conservative of time.

5.2 General Procedure

The adaptation of Gauss’ method in the present paper will make use
of the following data and assumptions:

(?) At least three azimuth-elevation predictions of the satellite cor-
related to time are available.

(#5) The ground station position is known (in terms of latitude, longi-
tude, and height above mean sea level).

(#f) The ground station is not in the orbit plane for any of the
data used.

(7) The instantaneous orbit plane contains the center of mass of the
earth.

The computational procedures to follow are now summarized. The
first approximation of the range to the satellite is caleulated using the
above information, a refinement made to this first range estimate, and an
initial set of orbital elements developed. Next, perturbations are calcu-
lated from the elements, the range is again refined, and so forth until
no subsequent change in computed range values is observed to a chosen
number of places or until this loop has been traversed a specific number
of times. A final ealeulation of elements is then made and the resulting
computed satellite trajectory compared to the measured one as a final
test of the validity of the elements. Fig. 3 illustrates this procedure by
a flow chart.

5.3 Synthesizing the Eange

We begin the detailed synthesis of the range* by referring to I'ig. 4,
which illustrates an orbit plane about the earth along with three positions
of the satellite assumed in that plane. A geocentric right-handed Carte-
sian coordinate system is also shown, with the z axis coinciding with the
earth’s spin axis, the « axis pointing toward the vernal equinox and the
y axis orthogonal to these. In this system, which does not rotate with
the earth, the orbit plane may be expressed as -

az + by + cz = 0. L)
Since the three observed positions of the satellite are initially assumed to
lie in this plane, each of these points must satisfy (1) and we may write

* See also Ch. 5 of Ref. 9, Rel. 12, p. 97, and Ref. 8, p. 175. For purelf‘r circular
orbits see Ref. 13, p. 141.
1 See p. 37 of Ref. 14.
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T'ig. 3 — Flow chart for MOE generation,
2z

Fig. 4 — The orbit and Gaussian triangles.
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ary + by + ez =0
axs + bys +cz =0
ar; + bys +cz =0

from which the determinant of the coefficients becomes

I W A
A=z 12 2|=0
T3 Yz =3

permitting (2), (3), and (4) to be rewritten as
0
0

(yozz — zays)®r — (yhzs — z2a) T2 + (2 — 2192) 73

(23 — Xoz3)th — (2% — Taza)ys + (2122 — T120)Ys

(Tayys — Yata)zn — (Xaa — Yixs)z + (T — )z = 0.

)
®3)
(4)

(6)
)
(8)

In Fig. 4 twice the area (As) of the triangle 023 may be related to the
coefficient of x; through the angle (r) between a normal to the orbit
plane and the x axis. The following equation expresses this and is derived

in Appendix A:

Ys2y — mYs = Asy cOS n.

(9)

Similar equations may be obtained in like manner for triangles 012 and

013. When these are substituted into (6), (7) and (8) one obtains

Apry — Apxs + Apas =
Apin — Awsyp + Avys = 0
Agzn — Apze + Apzz = 0.
Normalizing to Ay, (10), (11) and (12) become
mr; — T2+ muxs = 0
My — Yo+ mays = 0
Mz — 22 + mgzz = 0
where
my = Ags/Ass
and
My = Ap/Ass.

(10)
(11)

(12)
(13)
(14)
(15)
(16)

(17)

Provided m,; and m; are known, we may solve (13), (14) and (15) for
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z:, y:and z; (i = 1, 2, 3). Alternatively we may express x;, y; and z;
in terms of the slant ranges, p;, of the satellite from the ground station
and solve for these ranges in terms of m; and ms . This latter route will
be pursued.

Each satellite position measured from the ground station in terms of
azimuth and elevation may be expressed in terms of right aseension and
declination, knowing time, by standard techniques® (see also Appendix
B). The direction cosines” of the line of sight from station to satellite
then become

@i = cos §; COS a; (18)
b; = cos §; sin a; (19)
¢; = sin 8; (20)

where

a;, 8, = the topocentric right ascension and
declination of the satellite.

Since the satellite is essentially orbiting the mass center of the earth,
it will become advantageous to relate any topocentric coordinates of the
satellite as measured from the station to the xyz geocentric ones previ-
ously specified. To do this we write

rio= appi + Xi (21)
yi = bipi + Y (22)
zi = cipi + Z; (23)
where
pi = the slant ranges from the station to the satellite
X:,Y:,Z; = the XYZ coordinates of the station in the geo-

centric coordinate system of Fig. 4.

For any instant of time the X, Y, , Z; coordinates of the station may
be easily derived by referring to Fig. 5. By inspection we write the di-
rection cosines, which are quite similar to (18), (19) and (20), as

X; = R cos L cos a;(t) (24)
Y: = R cos L sin «;(t) (25)
Z; = R sin L (26)

where
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_GROUND
»~ STATION

GREENWICH
L~ MERIDIAN

N =Rcos LSINaL

TO VERNAL
EQUINOX

TFig. 5 — Ground station coordinates.

L = station geocentric latitude (see footnote at end of Sec-
tion IV)
R = distance of station from center of the earth (see Ap-
pendix B)
ai(t) = the right ascension of the station at the instant (¢) of
satellite observation (local sidereal time at the sta-
tion).

The local sidereal time”* for the above equations may be computed from
ai(t) = ai(t) — W, (27)
where

ai; (1) = sidereal time at Greenwich in degreesT
W, = west longitude of the station.

A substitution of (21), (22), and (23) into (13), (14), and (15) will
accomplish the desired result of expressing z;, y:, and 2; in terms of the
slant range and topocentric position of the satellite, the station coordi-
nates, and m; , m; . We obtain

aymypy — Qgp2 + AgMzpy = —m1X1 + Xg = m;;X;; (28)

* See Ref. 14, p. 41.
1 The term aj;(f) may be computed from the standard meridian time for the

station by standard techniques.®
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bﬁn]p] —_ bgpg + b;;'iﬁapa = —lel + Yz = m;;Y;; (29)
cinmypy — Capa "l- CaMypy = —-mIZ, -+ Zz == m;,Za (30)

where the unknowns are m, , ms and p; . A solution for p, may be obtained
if mypy and maps are eliminated from these last three equations. This
yields

p» = D/E (31)
where
D= ?ﬂlFl _ F'_r + ?n;;F:; (32)
ay (2 ay
E= l)] bg !)3 (33)
€1 Cao C3
ay X; asz
Fo= b Yy by (34)
Cy 21 C3
a Xa (25
F2 = 1)1 Yg ba (35)
(1 Zg Cy
a Xy ay
Fy= b Y3 bg]. (‘36)
ey Za oo

Examining (31) through (36) makes it obvious that p. is determined as
soon as m,; and my are expressed by some separate consideration.

The one piece of data which has not been worked into the analysis so
far is the time of flight of the satellite from point 1 to 2 to 3 (see Fig. 4).
This information added to the above equations, developed solely from
the geometry of the situation, will permit the solution for the range.

In Appendix C, it is shown that m, and m; are not only ratios of tri-
angular areas formed by the radius vectors to the three satellite positions
and their respective chords, but also functions of time" expressible as

hy = A
Ay
13 3 2 -
= D [1 + T:!(T'l + Tl) + Ta(‘l‘a —|— TITa — T1 ) _(_i_t B .]
T2 Gro? 4pgt T

* Similar expressions are found in Ref. 9, p. 52, Eq. (5.3).
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ms = @
A
" ) . (38)
A Epe n(re+ 1)  nle + mrs — 75) dr + ]
T2 67'23 41"24 dr
where
o= k(ly — &) (39)
o= k(ts — &) (40)
3 = k(ts — t) (41)*
rs = geocentric satellite distance at time #,
t; = time of 7th observation

k = constant for earth satellitest
0.07436574 min~".

In (37) and (38) the geocentric range derivatives at this point are un-
known, and so we approximate m; and m; by considering only the first
two terms in the above equations. We shall call these estimates n, and
ny respectively. Returning to (31), the range p» now may be explicitly
expressed in terms of known quantities and the unknown r; as

pr = (1/E)Fy — Fay + ngly (42)
~ (I/E)[(ris + pua/rs)F1 — Fo + (1o + pu/ra’)Fs]  (42a)

where
12 = T1/72, Toy = T3/T2 (43)

_ 7173(1 + 712) , P = 711-3(1 + Tzﬁ) , (44)

e = 6 3 = 6
The following geometric relationship between p, and r» may be written
by inspecting Fig. 6

re = RB* — 2Rp; cos Y2 + po’ (45)
where

y» = the angle at the station between a line to the earth’s
center and one to the satellite
= 90° + elevation of satellite above a spherical earth of radius

R.

* Using here notation similar to Gibbs solution of Ref. 12, p. 100.

t The constant k is developed in a manner similar to the Gaussian constant for
the sun, starting with the expression for the satellite period as P = 2rk(a/r.)},
wlflhere a h= the semimajor axis of the orbit ellipse and r, = the equatorial radius of
the earth.
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I'ig. 6 — The station sphere and subsatellite points.

Equations (42) and (45) in combination permit a solution for p; and r, .
If one actually proceeds to substitute (42) into (45), an eighth-order
equation similar to that derived by LaGrange results. This was later
expressed by Gauss as a trigonometrie, transcendental equation solved
by trial-and-error methods. Rather than pursue this route, it is simpler
for machine computations to assume an r, value (certainly greater than
R.), caleulate a corresponding p. using (42), enter (45) with the re-ps
pair, determine the departure from equality in this equation, increment
the ry estimate, and repeat until the departure from equality is sufficiently
small. By proper choice of increments, the entire procedure converges
rapidly to p., r values satisfying the angle-only observations, gravita-
tional theory, and the approximate m, , my quantities used. The remaining
p values easily follow from (28), (29) and (30).

In truneating (37) and (38) after the second term, the range deriva-
tives were omitted in the above analysis. It is possible to return to these
equations with these derivatives, which are now crudely known as
first-estimate averages over the {; — {; interval. One could then calculate
second m, , mz estimates from (37) and (38), determine new »; values,
compute new geocentric range derivatives, and iterate to an r;, p; set of
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solutions. This is roughly the path followed by LaGrange. By using
Gauss’ relationship involving certain areas of the orbit ellipse, it is pos-
sible to proceed direetly to the true values of m; and my. This latter
course of action, which also allows the approximations to be as close as
needed, will now be followed.

In Tiig. 4, we define as §; the ratio of the areas (S;) formed by the
radius vectors 7y , 72, 13 and the orbit ellipse with the areas (A4:) formed
by these same vectors and the chords connecting the three satellite
positions. Thus the sector-triangle ratio

1 = Su/Amn (46)

o = Sm/A 13 (47)

fs = S1/Ars. (48)

Certainly, in terms of §; , m; and m; may be defined as [see (37) and (38)]
Soxifa

= 49

s Susih (49)
_ Sufe

= Sufs (a0}

If we assume pure Keplerian motion, the radius vector from the earth’s
center to the satellite must always sweep through equal areas in equal
times." This permits the direct substitution of time differences for the

S factors in (49) and (50) to yield

(ta = iz)'yz Tlgq
M = ———"— = — 51
! (ts — t)ih Tl (b1)

(ts — WG _ 74l
3 — m = nga- (52)
It is possible to determine §; knowing the geocentric distance of the
satellite and the geocentric angle through whieh it traveled in the meas-
ured time. This technique will be developed specifically for 7, . The re-
maining variables §, and #; are derived in identical fashion. Considering
then the second and third observed positions of the satellite, we write

k(ts - tz) ‘\/ﬂ,(l — 82) ' (53)

Tal's Siﬂ 2d

?71 = SEJ/A23 =

‘The numerator of this equation expresses Keplerian motion as the radius
vector sweeps area S while the denominator gives twice the area of the
triangle 023. The variable d is simply the difference in the true anomalies
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of the satellite at positions 2 and 3. We may shorten the notation by
writing

Tl sin 2d ’

7 VP (54)

The only unknown in this equation is p, which is a function of the size
and shape of the final orbit ellipse. Since estimates of 7, and r; are avail-
able at this point, p may be eliminated.’ This permits 7, to be expressed
by a cubic equation” given below:

o' — 5 — ajh —a/9 =0 (55)
where
]
T2
D, = 24/ry;cos d (58)
_ T + = Dy
c= 5D, (59)
— 2 42 52 A8
€= g -+ iF5 ® + (60)
T = b/glg — (. (61)

It is indeed unfortunate that the factor a is ultimately a function of 4, ,
for if this were not the case an explicit solution for g, would exist. It
turns out that e is sufficiently small that it may be equated to 0 until a
first estimate of §, is found, whereupon it may then be caleulated from
(61) and (60) and used to derive a better estimate of 7, . The estimate
of §; may be improved as much as desired by traversing this loop a
multiplicity of times. Knowing the 7, values, m; and m; are next com-
puted from (51) and (52) and entered in place of the approximate n,
and ny values in (42). The three ranges to the satellite are then cal-
culated as described earlier.

VI. GENERATING THE ORBITAL ELEMENTS

6.1 General Procedure

Three angular positions of a near-earth satellite as observed from a
given ground station are sufficient to generate a set of orbital elements.

* See also Ref. 9, p. 56.
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The addition of range data permits elements to be computed which are
generally more accurate than those developed from angle only informa-
tion. It will now be shown how these elements may be generated first
without regard to any perturbations — as if the satellite orbited a spher-
ical, homogeneous earth. The perturbations arising out of the earth’s
oblateness will then be computed, and finally their effects will be appro-
priately combined with the input data to produce the modified orbital
elements described in Section III.

6.2 Generating the Unperturbed Elements

6.2.1 Localing the Subsalellite Poini.

Given the azimuth, elevation, and range of a satellite from a specified
ground station, we begin by caleulating the latitude-longitude coordinates
of the so-called subsatellite point. This is the point of intersection of a
line, drawn from the satellite to the earth’s center, with the surface of
what we shall call the station sphere. This sphere is centered on the
earth’s center and has a radius that equals the geocentric distance of the
ground station. I'ig. 6 shows this. Here the central angle g, , which lies
between the station A and the subsatellite point S’, is computed by
solving triangle A0S. To do this, we recognize the angle 0AS is known
from the measured elevation of the satellite reduced to a spherical earth
(see Appendix B). Thus

ZOAS = 90° + E (62)
where

E = elevation in degrees of the satellite above a plane tangent
to the station sphere at the station.

Since the slant range to the satellite, p, and the geocentrie distance of the
station (see Appendix B) are also known, we write

cos (E 4+ g.) = (R/p) sin gu (63)
from the law of sines applied to triangle AOS. Solving for g, we obtain
_ = cos I
g: = tan [‘R/p + Sil] E] 5 (64)

Since g» must always be less than 90°, there is no angular ambiguity in
this quantity as expressed above.
From the same triangle, the geocentrie distance of the satellite becomes

__pcos B
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The latitude and longitude coordinates of the subsatellite point are
obtained by solving the spherical triangle AN S’ knowing g. and the azi-
muth of the satellite, (4). By the law of cosines, the latitude of S" be-
comes

L = sin™' [cos g» sin L, 4+ sin g cos L, cos A]. (66)

Again, there can be no angular ambiguity since L ranges from —90° to
+90°.

The longitude of S’ is determined from the longitude offset (b) of
S’ from A. By the law of sines

b = sin”' [s—in 2 018 L] ‘ (67)

sin A
Angle b ranges from —180° to 0° to 4180°, but the direction (sign) of
this longitude offset is directly determinable from the azimuth of the
satellite as seen from station A. Thus the subsatellite point has been
located in latitude and longitude on the station sphere.” These corre-
spond to the geocentric latitude and longitude of S measured on the
earth,

6.2.2 Compuling Orbit Inclination and Ascending Node

T'wo subsatellite points must be known for the geometrical caleulation
of the orbit inclination and the aseending node. Consider Iig. 7, where
S, and S, represent two known positions of the subsatellite point. The
orbit inclination angle 7 is caleulated in the following manner. The great
eircle are gy. is first computed by standard techniques, knowing the lati-
tude and longitude of S, and S.’. It is quite important, however, to re-
member that the earth has spun through a specific angle during the time
that the subsatellite point progressed from S, to S.’, and both nodal
regression and apsidal advance have occurred. Therefore, S," must be
assigned a new longitude suitable to the nonrotating geometry of Fig.
7. This new longitude in degrees is

(t — 1)
1436

=1L —

360 + N (68)

where

I, = west longitude of S," from the Greenwich Meridian
computed from the satellite azimuth, elevation,
and range

* Certain special eases exist, such as when S’ lies on the same meridian as A.

These require no additional data and are actually simpler, since then b = 0, gs =
L. — L, and spherical triangle ANS’ is not needed.
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Fig. 7— Geomelry for orbit inclination and ascending node caleulation.

ly — &, = time in minutes between the occurrence of the two
measured subsatellite points
1436 = time for one earth rotation in minutes of mean solar
time
nodal regression in time £ — & ."

N

We shall not compute the effects of apsidal advance upon the lati-
tude and longitude of the subsatellite points, as this perturbation will be
taken into account in the following section by adjusting the true anoma-
lies.

From Fig. 7, one writes

sin Ly sin Ly (69)

sine sin (¢4 gi)

sin 7 =

Using the last two terms of (69), one may solve for ¢ to obtain

1 sin 12

€= Tan L _ | (70)
sin In Big

Here sin g1» is always positive, since S, and S.’ correspond to satellite

* N is initially set equal to zero until an unperturbed set of elements is gener-
ated from which N may be determined: see Section VII.
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positions in sight of station 4. The arc ¢, however, may range from 0°
to 180°. If the denominator of (70) is positive, ¢ is between 0° and 90°;
if negative, ¢ is between 90° and 180°,

Knowing ¢, 7 is simply
. .1 sin L1
¢ = sin -
sin ¢

with no ambiguity, since it ranges from 0° to 90° for proper satellites.
In similar fashion, b of Fig. 7 is

4| cose
b = cos :
cos L

If cos b is positive, b is between 0° and 90°; if negative, between 90° and
180°. The ascending node is then simply

(71)

(71a)

91 = Il == b =+ 360 n (71b)
where
I, = the W longitude of S,".
n = an integer chosen to cause €, to lie between 0° and 360°.

So far only the geometry for S," and S, both on the same side of the
equator has been considered. If they are on opposite sides, then the only
change is in (70), where the — sign becomes a + sign.

6.2.3 Compuling the True Anomaly along with Orbit Size and Shape.

If the latitude and longitude positions of the three subsatellite points
are known along with the corresponding geocentric satellite distances,
the orbit size and shape may be computed and the satellite’s true anomaly
determined. To do this, consider Fig. 8, where ry, 72, 73, v and vy are
all known. The values for 7, , r», r3 were obtained by (65), and v , vs
are merely the great circle ares between S, and S, and between Sy and
Sy, respectively, corrected for earth spin and later for regression per
(68). It is assumed that perigee moves in a secular manner along the
orbit ellipse during the time of travel of the satellite from 1 to 2 to 3.
Consequently the true anomaly differences determined geometrically
must be corrected as follows

/
Uy =

!
Va1

voy +

Vs +

AP(M, — M)
27
AP(M; — M)
2
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Fig. 8 — True anomaly geometry.

where

Va1, Va3 =

the geometric true anomaly differences
AP

the apsidal advance in degrees per anomalistic
period
M, M,, My = the mean anomalies” of the satellite at 1,
2, and 3 respectively.

Quite clearly the mean anomalies are not known until the position of
perigee is determined. Thus, the corrections of (72) and (72a) are not
applied to v, and vy until first estimates of the perigee position and of
the apsidal advance rate are obtained. At that time a first estimate of
the true anomalies of the satellite is known, and this is used to deter-
mine a first estimate of the mean anomalies. With these values, (72)
and (72a) are used to correct the purely geometrical true anomalies and
the loop is traversed until no further significant changes in v or vy are

observed.
Let us now set

* See Ref. 9, p. 113.
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p=a(l —¢) (73)
where

a = the semimajor axis of the orbit ellipse
¢ = eccentricity of the orbit ellipse.

Then for the three satellite positions the polar form of the ellipse” be-
cones

[

. P
=9 + e cos (74)

o= P =
=1 + e cos (v1 + va) (75)

- P
" 1 + € COoS (U]_ + Da;) (76)

where
v; = the true anomaly of the satellite at position 1.

It is helpful to rewrite these three equations as

ecos v = (p/m) — 1 (77)

1 4+ Ae cos vy + Be sin vy, = p/ro (78)

1 + Ce cos vy + De sin v, = p/r; (79)

where A, B, (' and D are all known quantities defined as

A = cos (80)

B = —sin vy (81)

C = cos vy (82)

D = —sin vy . (83)

Solving for pin (77), (78) and (79) yields
_C-1+D1-4)/B
P=eo_1 D(l_A)' (84)

1 T3 B

All quantities in the right-hand member of this equation are known, so
that p is determined. Returning to (77) and (78), the solution for the
true anomaly is

* See Ref. 9, p. 116.

T2 T
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o VY

" l{g_l_A(ﬁ_-.l)
v, = tan [M] = tan~! B \r, 2 2N (85)
cCos P
= =1
LY

~

unless (p/r;) — 1 is zero, which occurs for a circular orbit. In this case,
the solution for v, is of little importance and may be arbitrarily set to
90°.

In general, the true anomaly ranges from 0 to 360°, but all quadrant
ambiguities in (85) may be resolved by observing the algebraic sign of
sin »; and cos v, , expressed by the numerator and denominator of the
final fraction in (85).

With v, known, the eccentricity from (77) is simply

p_
_n ! (86)
cos vy

The radius of perigee from (73) is

n=2(}22%)- (87)

One of the features of the modified orbital elements is that they are
quoted for the epoch at which the satellite passes through perigee. The
node and perigee positions as well as the true anomaly of the satellite
determined in the preceding sections were computed for the time of the
first data point. They must now be reduced to the time of perigee passage.

During the time the satellite moved from perigee to the first data
point, the earth rotated, the orbit node regressed, and the perigee moved.
The angular velocity of the earth is known and the node and perigee
motions are secular functions of ¢, e, and r,, as will be shown later in
Section VII. Consequently it is possible by calculation to “move the
satellite” back to perigee, taking into account these other motions as
well. To do this we shall assume Keplerian motion along an ellipse whose
perigee moves in time. If we knew the true anomaly of the satellite at
position 1, referenced to the moving perigee, we could determine the
time required for the satellite to orbit from perigee to data point number
1. This true anomaly may be obtained in an iterative manner using

6.2.4 Reduction to Epoch

L'l.’ = v + AP (M1/27r) (88)
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where

AP = apsidal advance in degrees per anomalistic period
M, = the mean anomaly of the satellite at data point 1
v, = the geometrical true anomaly of satellite when at point
1 (from Section 6.2.3).

A first estimate of M, is obtained from v; using Kepler’s equation. This
permits a first estimate of v by using (88), which in turn allows a sec-
ond estimate of M, based on the first »," estimate. The procedure cycles
until further changes in »," are insignificant. The final value of M, corre-
sponding to the final v is used to determine the time of flight of the
satellite from perigee to the first data point, which is

Iy = (My/27)T, (89)
where
T, = the anomalistic period in minutes.

The elements are back dated by the amount #, to produce modified orbital
elements. In these the ascending node is simply

Q=0 + AQL (90)
where
@ = the west longitude of the node at data point no. 1
AQ = the regressional rate in degrees per minute.
Similarly, the argument of perigee is
P = P, 4+ AP (M,/2x) (91)
where

P, = the perigee position at data point no. 1
AP = the apsidal advance rate in degrees per anomalistic
period.

6.2.5 The Anomalistic Period

The anomalistic period may be computed from the mean anomalies
at the data points (after these are known from the first estimate of the
orbital elements) and the times of flight through these points. For ex-
ample, one may write

_ 2‘1’!’(!2 == fl)

Te=3—m, (%2)
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or
_ 2a(ts — )
Tﬂ» == M; — M]_ (93)
or
_ 2wty — &)
Ta - M3 _ Mﬂ oy (94)

Equally well, T, may be computed from the finally determined values
of 7, e, and r, by methods outlined in Section VII.

6.3 Adding the Perturbations to the Orbital Elements

In the derivation of the modified orbital elements, perturbations seem
required before sufficient orbital data are available for their computa-
tion. The general technique is to assume all perturbations zero until a
first set of elements has been calculated for epoch ¢, then to supply
these perturbations to produce a second set of elements, and to continue
this iteration until further element changes are insignificant. Thus the
N of (68), the AP of (72), (72a), and (88), and the 7', of (89) follow
this route.

Tor orbits of the TELSTAR satellites which have had eccentricities
of up to 0.4 and r, values as low as 4556 statute miles, convergence by
the above method oceurs within three iterations. Four iterations are
normally required for eceentricities up to about 0.8.

Vil. THE SECULAR PERTURBATIONS

7.1 Perturbation Theory and Formulae

The perturbations to be outlined here are secular and produced only
by the earth’s oblateness. The gravitational field therefore will be inde-
pendent of the longitude and symmetrical about the earth’s equator. Its
potential* may be expressed as

- g [1 - ,.2:.1 I (RTE)ﬂ P.(cos Lc)] (95)

where

J. = constants determined in the first instance by ob-
servation of many satellites

* See Ref. 16, p. 4.
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Rg = the equatorial radius of the earth = 3963.347 statute mi.
r = the geocentric satellite distance
P.(cos L,) = the Legendre polynomial of order n
L. = the geocentric colatitude of the satellite.

II

Writing (95) using only the J, terms, we have

2
U= (—;—f—I[] =+ é-[g (}fs) (1 — 3 cos? Lc)] (96)*
where
M = Newton’s universal gravitational constant times the
mass of the earth'*"”
= (3.44280 =+ 0.000026) X 10° statute miles’/minutes’
Jy = % X Jeffreys’ J (see Refs. 18 and 19)

I

1.0827 % 107%

Equations of motion for a satellite orbiting this oblate earth are found
by setting the spherical polar components of acceleration equal to

U LeU 1 aU

ar’ r L.’ rsin L, d¢ ’
where 7, L., and ¢ are the spherical coordinates of the satellite. After a
bit of work, the following secular rates of the orbital elements are pro-

duced. For the secular nodal regressiont in radians per nodal period we
have

Re\? :
AQ = —3md, = cos 1 + OJ*?

. (97)
CcOSs 1 6

= —0.16028 =7 10

where

"‘i.lfl = 0 since the orbit plane is assumed to include the center of mass of the
earth.

1 Many authors have derived perturbation equations for orbital elements and
expressedy them in numerous ways, quite often with great elegance and detail. It
may seem, therefore, that (97) 1s unduly simple. This analysis, however, is con-
fined to secular rates only. It can be shown that eontributions to these rates from
the third through the sixth zonal harmonies of the earth’s potential function (as
well as from the J.? terms) are about three orders of magnitude less than the J.
contribution given by (97). They are, therefore, omitted in this analysis where
long-term predictions of pointing angles need only be accurate to within 0.05°.
Secular contributions to the orbit eccentricity and inclination are also of order Ja*
and omitted. (See Ref. 21 for expressions of higher-order terms.)
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a(l — &)
terms of the order of J* which are omitted.

P
0J*

The secular apsidal advance rate becomes

2
Aw = —gmfz (J) [1 — 5cos?i + Oe?
! (98)

(5eos®i — 1)
2

= 0.08014 10°

in radians per nodal period. Finally, the nodal period which expresses
the energy in the ellipse is

3\} 4
21r(a—) [1 — §J2 (Iﬁ) (5ceos2i — 1)(1 — 92)’]

3 R’
L+l am—ay

where

3/2

2r/ (GM)* = 3.38629354 X 10™* minute/statute miles™".

The prime sweep interval of the modified orbital elements is related
to the true nodal regression by the following expressions

) _ AR X 82505.92

AQ % deg/day (99a)
4(AQ" + 0.9856) .
PSI = 1440 — tes.
AQ 1 09856 WS (g9p)

1% 360

The rates for the modified orbital elements are not complete until the
anomalistic period has been derived. This may be accomplished know-
ing T, and Aw. The procedure is outlined below.

7.2 Determining the Anomalistic Pertod from the Nodal Period

We have defined the anomalistic period as the time required for the
satellite to move from perigee to the next perigee. The two perigee posi-
tions are shown as points p, and p. in Fig. 9, where it is seen that the
angular motion of the satellite in the time T, may exceed 360°. During
this time the perigee itself is in motion and its rate is expressed by (98).
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ANGULAR MOTION INDICATED
TAKES PLACE IN TIMES
Tn OR T3 AS SHOWN

Fig. 9— Relationship between 7', and T, .

Thus the anomalistic period exceeds® the nodal period by an amount ¢
so that

Te=T.,+1 (100)
a5
Ta= (1 +f)Tx (101)
- (1 + é'_i) T, (102)
where

t = the time for the satellite to move from p; to p»
f = the fraction of T, represented by ¢
M = the mean anomaly corresponding to f.

We may also express the motion of perigee in time T, as the angle
v, = Aw T,/T. . (103)

If T, is initially set equal to 7', , then (103) represents a first estimate of
v, from which a first estimate of f may be computed from

* If Aw is negative, T', exceeds ', , but the conversion equations are still valid.
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E =2 tan| (128 !tan 9’-’] (104)
1+4+e 2

M =FE — esin E. (105)

and

By (102) a first anomalistic period estimate is obtained which can yield
a second estimate of v, by (103 ), and the process is iterated until succes-
sive changes in T, are sufficiently small. Since (102) through (105) con-
tain essentially two unknowns, v, and T, closed-form approximate
solutions are possible by using truncated series of expansions of the
tangent and sine functions. The iterative method, however, has the
advantage that the accuracy is limited only by the number of times that
the user is willing to traverse the loop.

Knowing the anomalistic period, it is straightforward to express the
nodal regression and apsidal advance in degrees per anomalistic period
suitable for use in the modified orbital elements.

V1I1I. ROUND-THE-WORLD ORBIT PREDICTIONS

So far, techniques have been presented for developing orbifal elements
suitable for predicting future satellite pointing angles. These predictions
suffer little error when referred to the ground station which took the
original data. However, if predictions are made for other stations, the
errors can be greater due simply to the fact that the elements were de-
rived from only a small portion of the orbit ellipse — a fact which makes
it difficult to assess the size and shape of the ellipse. The effect will be
most pronounced if the latitude of the second station differs greatly
from that of the first* as, for example, the case of elements generated
from Andover, Maine, trajectories and used for Woomera, Australia,
predictions. In previous works this problem is simply solved by obtain-
ing data from stations spaced around the world and using it in orbit
generation. In this paper it is desired to confine the data taken to one
station and yet prediet for remote stations located anywhere. This is ac-
complished by recognizing that, during the course of a day, a single base
station sees a good portion of the orbital ellipse on successive passes.
For each such pass a set of elements may be generated. Each set will
about equally well describe the orbit over the base station, but can di-
verge in predictions for stations at different latitudes as illustrated by
muuld be recognized that stations at different longitudes (but at equal

latitudes) are not to be considered unique, since they essentially observe the same
portions of the orbit at different times of day.
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exaggeration in Fig. 10. This is due principally to estimating the size
and shape of the orbit ellipse from data which necessarily contain some
measurement error. One could improve the situation at remote stations
by placing an ellipse of best fit through all the essentially different base
station trajectories and thereby gain a better estimate of the eccentricity
and radius of perigee in the orbit. If base station predictions made from
elements that fit each individual pass are excellent, one could equally
well fit an ellipse by a least-squares method to the predicted rather than
the measured base station data, and still improve the situation at remote
stations. As a matter of fact, proceeding from good base station predic-
tions tends to smooth the input data by bringing them into aceord with
the motions permitted by gravitational theory and this, in a sense, filters
some of the observation noise.

The technique for this round-the-world fit proceeds in detail as follows.
Modified orbital elements are used to predict the true anomaly and the

SECTION OF
_ORBIT VISIBLE TO
GROUND STATION
COLLECTING DATA

EQUATOR —~

€ AND PERIGEE
_-——" ERROR

!
ARGUMENT OF
PERIGEE ERROR

Fig. 10 — Projections of orbits on equatorial plane.
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corresponding geocentric distance of the satellite for a set of passes seen
from the base station. The polar equation of the ellipse is then written
as follows:

_ 1 € cos v
Ta(l —e) ' a(l — )

= By + By cos v. (107)

N

(106)

The predicted true anomaly-geocentric distance pairs are then used to
determine By and B, of (107) by standard least-squares methods. It is
important to note that the true anomaly » of (107) must always be re-
ferred to the moving orbit perigee as was done in Section 6.3.

Providing that e and r, do not seriously change their magnitude during
the set of passes being considered (that is, no great orbit energy loss),
we may determine these quantities from the least-squares B, and B,
values to be

e = B]_/B(] (108)
1—e
Ty = m. (109)

While the determination of orbit size and shape for round-the-world
orbit predictions may be carried out by least-squares methods, the
node position and argument of perigee are often treated differently, since
they are not determined to the same degree of accuracy by each pass of
the satellite over the base station. Pass selection is often a good procedure
to follow for these parameters. For example, data from a pass that con-
tains perigee are generally considered much more likely to produce a
more nearly accurate measure of the perigee argument than those from
a pass which does not. The same is true of the ascending node.

IX. IMPROVING THE ELEMENT RATES BY DIRECT MEASURE

Quite obviously, if the modified orbital elements are known at two
separate epochs, the secular rates may be computed directly. Let us
assume that the elements are correct except for the rates of nodal regres-
sion, anomalistic period, and apsidal advance.

9.1 Nodal Regression

The west longitude of the ascending node at the earlier epoch (%) is
related to its position at the later epoch () by

360k

@ + 3604 — @ = PST degrees (110)




ORBITAL ELEMENT GENERATION 637

where
{1 = time interval in minutes between the two epochs
PSI = the nodal regression expressed as the prime sweep in-
terval (1440 — M minutes)
A = an integer which may have any positive, negative or

zero value.,

Examination of (110) reveals ambiguities in multiples of 360° in the
determination of the prime sweep interval, since without some knowledge
of its magnitude, one cannot be sure if the node has regressed more than
one revolution to its Qs position. The theoretical value of the prime sweep
interval is available, however, by the techniques of Section VII. Thus the
ambiguity is avoided unless f, is extremely large, which allows even small
variations in PSI to promote as much as one revolution difference in
nodal regression. Solving (110) for the prime sweep interval, we have

360t12

PaT —
Lo 2 — 2 + 3604

minutes. (111)

9.2 Anomalistic Period

From the epochs of the two sets of modified orbital elements on hand,
a single anomalistic period, having zero rate of change, may be com-
puted. First, the whole number of satellite passages through perigee in
the time ;2 between epochs is expressed as

A, = INTE (lio/Tar). (112)
Then a refined estimate of the anomalistic period beecomes
Te = bio/An (113)
where

T.. = theoretical anomalistic period computed from the first
set of MOES using (99) through (105)
INTI" = indicates that only the integer portion of the division
is to be retained.

Sometimes the anomalistie period of a particular set of elements has
been well refined by the above procedure, so that it is quite preeise over
a short period of time. If, some time later, a second set of elements is
determined and shown to fit the orbit well at this later time, then it is
often a good procedure to retain the initial anomalistie period and com-
pute a period change to be consistent with the satellite’s arrival at perigee
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on epoch 2. This incidentally, is the only manner in which a change in
period is deduced for the TELSTAR satellites. The procedure is as fol-
lows. Calculate A, using (112) as before. A first estimate of the change in
period per period becomes

— 2112 - AnTal

5’ (114)

AT,
It is possible that the A, value calculated by (112) is not correct owing
to the change in the period during the interval f,2 . Therefore we compute
a time interval ¢, as a trial to compare to i

ty = AuTor + (A/2)AT, (115)

and if t; exceeds 2, we decrease A, by 1 and repeat the operations of
(114) and (115) in an iterative sense until {; is less than £, . (Of course,
if 1, ever equals iz in the process, then the corresponding A, value is cor-
rect and no further iteration is needed.) When {; is less than ¢, compute

tn = (Au + 1)To + 3(A0 + 1)°AT, (116)

and if {; exceeds 412, the current A, value is valid. If n is equal to fi2
then A, should be decreased by one. If ¢ is less than t», increase A,
by one and repeat the process from (114) on. Eventually the procedure
converges on an A, value that either makes ¢; equal to or less than f
and £y greater than 4, . The corresponding AT, is the proper one to use.

0.3 Apsidal Advance Rate
The apsidal advance rate may be expressed as
we — W + 3603

Bam St e
where
_ b — iy
f= T (118)
and

B = an integer chosen by comparing Aw with the theoretical value
computed from the first set of elements, as was done with 4 of

(110).

In cases where no AT, is computed, the A, value of (112) and f = 0

should be used in (117).
The advance rate of (117) is expressed in degrees per anomalistic
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period, which has direct meaning provided no change in period is cal-
culated. Whenever AT, is not 0, (117) produces the advance rate which
when applied to each new period* between epoch 1 and epoch 2 results
in the motion of perigee from w; to w, as stated in the elements.

X. A COMPUTER-OPERATOR ENSEMBLE FOR ORBIT GENERATION

Computational techniques have been developed to permit modified
orbital elements to be determined initially from the powered flight
parameters of the launch vehicle and subsequently from measured satel-
lite trajectories over a ground station using techniques previously de-
seribed in this paper. These have been augmented to enable the elements
to be refined so as to make them valid for several months and to monitor
their validity on a routine basis. The techniques have been incorporated
into five computer programs which have been routinely used, in the
case of the second TELSTAR satellite, to produce elements for antenna
drive tapes, pass scheduling, and satellite attitude predictions. It is the
purpose of this section to show the means by which the programs are
integrated into a computer-operator system.

10.1 The Computer Programs

The five computer programs employed for orbit generation, refine-
ment, and monitoring techniques are:
(#) The MOEGEN G3 program
(77) The MOERATE program
(#47) The REFINE PERIOD program
(7v) The CORD DOPPLER G2 program
(v) The MONITOR TAPE ANALYSIS program.
The first four of these were written by the author, while the last?® was
basically developed by D. A. Aaronson with certain subroutines by D. A.
Ramos. In this section we shall discuss the general function of each pro-
gram.

10.1.1 The MOEGEN G3 Program

The MOEGEN G3 Program generates modified orbital elements for a
near-earth satellite given a list of azimuth, elevation, and, if available,
range of the satellite as seen from a ground station at specified times. If
just these data are used, the resulting MOES are said to be free-fit. If the
P8I, apsidal advance, and anomalistic period are known from past data,
the MOEGEN program may be set to accept these rates along with
trajectory information as before and produce a suitable set of MOES.

* A new period is calculated each time the satellite passes through perigee.
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These MOES are said to be forced. Since the anomalistic period cannot
be accurately determined from a single pass, this latter mode of opera-
tion is most valuable in producing elements of long lasting validity.

In addition to generating elements, the MOEGEN program compares
trajectories generated from each set of MOES it produces with the points
used in the generation, as well as with any additional submitted points
from any of the passes from that ground station. Here the program re-
ports azimuth differences, elevation differences, and great circle arc
pointing errors as well as range errors. Since the program produces a set
of MOES for every group of three azimuth-elevation-range points, these
comparisons aid in the selection of the best set of MOES from the group
generated. The actual selection, which will be discussed later, is done by
an operator, since typically only a few sets of MOES are produced on
each generation.

10.1.2 The MOERATE Program

The MOERATE program, as its name suggests, refines the PSI,
apsidal advance, and period rates along the lines described in Section
IX by examining two sets of elements, usually the ones previously in use
and the one just generated. In addition, it compares the rates so estab-
lished to theoretical rates determined from the previous set of MOES us-
ing the gravitational theory given in Section VIL. In generating rates,
higher-order changes beyond the PSI, apsidal advance, and change in
period are neglected. For the TELSTAR satellites this omission has
resulted in no serious errors in the orbit.

10.1.3 The REFINE PERIOD Program

Because computed satellite trajectories are most sensitive to the value
calculated for the anomalistic period, the REFINE PERIOD program
offers an alternate means for its determination and is particularly valu-
able before monitor tapes* are available. The program requires a set of
MOES and times of meridian crossings from any specified ground sta-
tion. From each of these it computes an anomalistic period assuming all
other element values to be accurate. If there are no errors in the recorded
time for each meridian crossing, in the adopted station coordinates, or
in the elements, quite naturally all the computed period values should be
identical. Any scatter in the computed periods points up errors in the
above quantitites. If the meridian crossing times and station locations

* These are magnetic tapes generated at the ground station. They contain,
among other data, the measured trajectory of the satellite.



ORBITAL ELEMENT GENERATION 641

are known to be correct, the scatter acts as a figure of merit for the
generated modified orbital elements.

10.1.4 The CORD DOPPLER G2 Program

This program aceepts either MOES or, in conjunction with a sub-
routine called MO, expected burnout parameters for the final powered
stage of the satellite launching vehicle. I'rom these it produces an ephem-
eris for passes over any specified ground station. If burnout quantities
are used, the program converts these to MOES, which it prints prior to
the ephemerislisting. In addition, this program also produces world maps
of the satellite ground trace, drive tapes for both the Andover and
Holmdel ground stations, and reports the solar illumination status of the
satellite along with a number of communication quantities.

10.1.5 The MONITOR TAPE ANALYSIS Program

The monitor tape analysis program written by D. A. Aaronson and
described in detail elsewhere? compares a satellite trajectory as recorded
on a compressed or uncompressed monitor tape® to that produced by a
set of MOES. Tts output is a printed sheet giving great circle arc pointing
errors and slant range errors (provided ranging data are present on the
monitor tape). It also indicates received microwave carrier power so that
one can aseertain whether or not the Andover horn antenna was indeed
pointed toward the satellite. This is, of course, essential to proper assess-
ment of the printed errors.

10.2 Orbital Element Generation Operational Procedures

The generation of modified orbital elements for the TELSTAR satel-
lites falls into two categories: the initial generation just after launch and
the subsequent generation after monitor tapes have become available.
Tigs. 11 and 12 show the logic operations for these two cases.

10.2.1 Initial Elemenl Generation

The initial elements are determined from the expected burnout pa-
rameters® of the final powered stage of the launch vehicle. These
parameters are based upon the telemetry from the first two stages. Basic

* For the TELSTAR satellites, these have been supplied by J. W. Timko of
Bell Laboratories,
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to these parameters is the assumption that the third stage performs in a
design center manner.

Subroutine MOE of the CORD DOPPLER G2 program accepts the
burnout parameters as shown in Fig. 11 and calculates corresponding
MOES, which are passed to the main program for ephermeris generation
listings.

Modified orbital elements caleulated from the burnout parameters are
submitted along with subsequent meridian crossings to the REFINE
PERIOD program to produce an anomalistic period list as deseribed in
Section 10.1.3 (see also Fig. 11). The operator examines this list for
consistency. Because the REFINE PERIOD program bases its period
calculation on what it assumes as an otherwise correct set of MOES and
because the final stage of the launch vehicle, often without telemetry
provision, may have performed in a manner different than assumed for
orbit generation, it is usually satisfactory to call the period list con-
sistent if the spread of values does not exceed a few tenths of a minute
or about, 0.1 per cent of the mean anomalistic period for the distribution.
If the list is satisfactory according to this criterion, the operator substi-
tutes the mean value of the period into the set of “burnout” MOES and
checks minute by minute the predicted trajectory with measured ones by
means of the MONITOR TAPE ANALYSIS program as soon as the
monitor tape becomes available (see Fig. 11).

Great cirele are errors and range errors reported by the monitor pro-
gram are scanned by an operator, and if these are within established
limits, the element generation process stops and the set of MOES on
hand is used for future predictions. If limits are exceeded, the operation
proceeds as outlined by Fig. 12, to be discussed later.

Care should be exercised in establishing error criteria for this operator
scanning. The first set of MOES, being based on expected burnout
parameters, cannot generally produce pointing errors below 0.1° in are
or =10 miles in range.

If the anomalistic period list originally generated by the REFINE
PERIOD program has too great a spread, an inconsistent set of MOES is
generally indicated (see Section 10.1.3). This can occur when the final
stage of the launch vehicle departs sufficiently from its design trajectory.
It is useful at this time to have on hand a number of MOES generated
from burnout parameters with tolerances within the final-stage per-
formanece limits. These can be used with the REFINE PERIOD
program with the expectation that at least one set will produce an ac-
ceptable anomalistic period list. If this procedure is unsuccessful, there
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is no recourse but to wait for the monitor tape or sufficient data from
tracking stations to establish a correct orbit prediction.

10.2.2 Subsequent Element Generalion

As soon as monitor tapes become available from Andover, the opera-
tion passes into what is termed the subsequent orbital element generation
stage. This is outlined in Fig. 12.

As before, monitor tape trajectories are compared to those generated
by the current orbital elements. If these comparisons are unsatisfactory
(see Section 10.2.1), the horn azimuth, elevation and the measured range
of the satellite along with the corresponding times of measurement are
fed to the MOEGEN G3 program. Only a free fit (see Section 10.1.1) is
made if no previous rate data are available. Both free and forced fits are
made if reasonably reliable values for the prime sweep interval, apsidal
advance, and anomalistic period are on hand. In the early phases of
orbit determination, the REFINE PERIOD program is used to establish
an anomalistic period by meridian crossings. After the first workable set
of MOES is established by the subsequent generation procedure, the
MOERATE program then supplies most of the period values.

In normal operation, the MOEGEN G3 program will compare the
input data points to trajectories generated from all output MOES.
Optionally, past trajectory data may also be submitted to the program
for similar comparisons. An operator scans these comparisons, particu-
larly those concerning the trajectory from whieh the MOES were de-
rived, The free-fit comparison should have great circle arc differences
below 0.05° and range errors below a few miles provided the input tra-
jectory data are consistent with the pointing angles resolved to within
0.02° as is generally true on the Andover monitor tapes. The forced
fit may produce greater errors, which naturally depend on the correet-
ness of the forced data. By these comparisons the operator selects a
single set of MOES. Failure to select can occur if input data are ex-
cessively noisy or for some reason inconsistent. There is no alternative
in this case but to wait for the next monitor tape.

The MOES selected are used directly for future predictions if no
previous set other than those from burnout exists. The burnout MOES,
being only expected values and having only an approximate epoch, are
generally not suitable for submission to the MOERATE program. If a
previous set of elements from MOEGEN G3 are available, they are com-
pared to the current set by MOERATE to determine more accurately
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the PSI, apsidal advance, and anomalistic period. The operator sub-
stitutes these for the earlier rates and again enters MOEGEN G3 using
the forced fit mode only. The resulting elements which best fit the pres-
ent and past trajectories are selected for subsequent use.

X1, TYPICAL EXPERIMENTAL RESULTS

In this section, a typical orbit generation procedure will be illustrated
along the lines described in Section 10.2.2 and then a theoretical round-
the-world orbit fit will be shown using the techniques of Section VIII.
Data for the typical element generation will come from 20 minutes of
measurement on each of two passes occurring over Andover on June 30
and July 30. Data from passes on other occasions will be used to determine
the accuracy of the predicted trajectories but, for purposes of this il-
lustration, in no way will these latter data be used to refine the orbital
elements except as specifically stated.

Fig. 13 shows an output from the MOEGEN G3 program operated in
the free-fit mode, Three sets of modified orbital elements were calculated
from three data points (azimuth, elevation, range) taken on June 30,
1964. These three sets, shown on lines 7, 8, and 9, differ from each other
only in the method of determining the anomalistic period. In the first set,
the period is determined from the elements using the perturbation for-
mulations of Section VII. In the second and third sets, the period is de-
termined from the time of flight of the satellite between the data points
per Section 6.2.5.

Directly beneath the elements, the program states that the orbit offset
is 31.48778°. This is merely an indicator which means that the station
is that number of degrees of latitude removed from a point of equal
longitude on the orbit plane at the time of the first data point. If this
quantity were zero, then the station would be in the orbit plane and
this three-point analysis would be invalid.*

The portion of the output enclosed in parentheses displays the com-
parison of predicted-to-measured trajectories. There are three sets of
comparisons, corresponding to the three separate sets of modified orbital
elements gencrated. Here we see that arc and range errors are reasonably
small for the June 30 pass (which data were used to determine the
elements) but that the fit on June 10, for example, exhibits 5° pointing
errors. A survey of the fits clearly indicates that the orbital rates (ie.,
prime sweep interval, period, and perigee change) need adjustment.
" * Of course the analysis may be rendered invalid if the station is in the orbit
plane at the time of any of the 3 data points. The first point was reported only as a

matter of convenience. In any event the comparison of predicted and measured
trajectories described later serves as a final check on the validity of the elements.
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Fig. 14 shows the fit of an orbit generated from July 30 data only
(azimuth, elevation, range). Here the pointing fit is within 0.02° for that
day, but degrades to 0.4° a day later and is grossly inadequate when
matched with data from the June 2 trajectories. Again better rate in-
formation is needed.

In Fig. 15, we employ the MOERATE program output to determine
the orbital rates needed to conneect the June 30 and July 30 elements
(see Seetions IX and 10.1.2). With but a few comments this output should
be self-explanatory. First of all, the theoretical values at the bottom of
the page are computed from the set of MOES listed at the top left of the
figure. The chief purpose for their computation is to gain an estimate of
the rates for the actual rate calculations. One cannot compute an
average anomalistic period from two given epochs if an estimate of the
period is not available. Without such an estimate, the satellite may have
made any number of passes through perigee between the two epochs and
an infinite array of average periods would be valid solutions. Even with
such an estimate, it is sometimes possible to miscalculate the number of
times a satellite has passes through perigee if the time between epochs
becomes sufficiently large. That is why the number of perigee passes
computed by the program is printed out. Fig. 15 (see checked line) has
been chosen to show a misestimate of one in the ealeulation of the peri-
gee passages (= 196) and the attendant error in the average period. By
increasing the perigee passes to 197 and performing the indicated divi-
sion, a new average period of 225.30083 is caleculated which is closer to
that reported by the first set of MOES and is, of course, a valid solution.
Strictly speaking, if this new period value is used, the apsidal advance
per T, should be corrected by multiplying it by 225.30083/226.45032 to
obtain 0.19129°/T,. The PSI is unaffected by these operations.

Printed at the very bottom of Tig. 15 is the number of iterations re-
quired for the computed PSI and apsidal advance rate to come within
2.1 minutes and 0.2 degrees of the theoretical rates. The program stops
after 21 iterations whether or not the convergence is successful.

Since there is no reason to suspect that the anomalistic period associ-
ated with the June 30 orbit generation possesses high validity (see Fig.
13), the portion of the MOERATE output dealing with changes in period
is ignored and the indicated average anomalistic period is used. From Fig.
15, the computed rates become

l

anomalistic period 225.30083 minutes
apsidal advance rate = 0.19129° per anomalistic period
prime sweep interval = one day — 8.12511 minutes.

These rates are then submitted along with the June 30 data to MOE-
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GEN G3. The output is shown in Iig. 16. A considerable improvement
in the fit over the June 2 to August 1 period is seen, with the bulk of the
errors within the low hundredths of degree range. A maximum range
error of only 7 miles over this interval is also noted.

Even these small errors may indicate the need for additional orbital
rate improvement. The mean rates determined by combining June 2, 10,
30 and July 30 data are

anomalistic period 225.30049 minutes
apsidal advance rate = 0.19105° per anomalistic period
prime sweep interval = one day — 8.12480 minutes.

Using these rates produces an even better trajectory fit, as shown in Fig.
17. The mere fact that the maximum measured error is about 0.05° and
within five miles in range over a 3-month period indicates the near con-
stancy of the secular rates and attests to the fact that little energy is
being lost by the satellite as it orbits.

Fig. 18 illustrates the end result of the same type of procedure as de-
scribed above, except that only one range point per determination is
used in the generation. Here the pointing errors peak at 0.6° over the
survey with maximum range errors about 25 miles.*

Tig. 19 repeats the above with absolutely no range data fed to the
orbital generation process. Over the survey, maximum pointing and
range errors are 0.8° and 76 miles respectively.

The advantage of 3 range points per determination over the several
months’ survey period is clearly evident by the results.

It must be stated that this illustrative example is somewhat simplified
in that a certain amount of initial, free-fit orbit generation is omitted.
In actual operation, the free-fit mode of MOEGEN G3 is often run for
6 to 12 data points in various combinations, and only the elements pro-
ducing the best trajectory fit are preserved for later rate processing.

At this point, we intend to show how the techniques of Section VIII
will provide a better round-the-world orbit fit by modifying the eccen-
tricity and perigee radius of the orbital elements. Since no data pertain-
ing to the TELSTAR satellites were readily obtainable from stations in
southern latitudes, it was decided to proceed as described below.

A set of orbital elementst (which we shall call MO) was generated

* The —7449.740 and —7211.212 range “‘errors’ indicated by Fig. 18 are not
true errors but merely reflect the fact that no range data were supplied at these
tirims for generation purposes. The true errors are 43 miles, as shown several lines
below.

t These orbital elements had previously predicted Andover passes to a pointing
accuracy of 0.07°.
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TaBLE IT — AvtERAaTIONS TOo MO ELEMENTS

Data Point of Azimuth Elevation Range

4th Trajectory Alteration Alteration Alteration
1 0.21° —0.07° 4.85 miles
2 0.06° —0.02° 1.03 miles
3 —=0.10° +0.02° —0.87 mile

from Andover data and used to simulate trajectories over Andover for a
sequence of four passes. The computed pointing angles for these passes
then were rounded off to the nearest hundredth of a degree so as to re-
semble typically reported data from Andover. Three points from each
of the first 3 passes were then selected for submission to the MOEGEN
G3 program. Three points from the fourth pass were purposely altered
before submission to simulate the effects of tracking errors, mechanical
jitter of the ground antenna, errors in assessment of refraction which
affect measured position, and digital noise in the equipment at the
ground station. These alterations were slight and are given in Table II.
Using the data from the 4 passes, MOEGEN G3 produced 4 sets of or-
bital elements.

Fig. 20 displays the generated elements M1, M2, M3 and M4. For
each of these elements, the first 3 lines of data under “pointing angle
comparisons” (see Fig. 20) show the differences between the input data
points of the submitted trajectories and those predicted by the derived
elements. For each set of elements, the pointing error is within 0.07° and
the range difference under 0.9 miles. Looking at each of the firsi 3 com-
parison lines, all 4 sets of elements produce excellent fits to reported
Andover trajectories, and from this examination there would be no rea-
son to expect that any particular set of elements would be decidedly
better than any other. However, comparisons of the M4 orbit with
6/30 trajectory data indicate that something is wrong with these ele-
ments because of the increase in pointing angle differences on this date.
This, however, could be produced by variety of causes: e.g., errors in
epoch, rates, ellipse shape, size and orientation of the orbit. The point to
make is that the M4 orbit fits well the trajectory over Andover from
which it was derived; the purposely introduced errors in that trajectory
have not done violence to the orbit theory, so that the motion of the
satellite is in essential accord with those motions permitted by the earth’s
gravitational potential.

Using the same MO elements as previously, trajectories over Johannes-
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burg, South Africa were produced. These were compared with the pre-
dictions from the generated M4 elements in a computer comparison pro-
gram. The results are given in Fig. 21, where all listed data are for
satellite positions not visible to Andover (subsatellite latitudes 4° to
—42°), The average pointing error is 2.7° and the root-mean-square
range error is 65.5 miles.

The four generated elements were then submitted to the MOEFIT
program, which applies the principles of Section VIII to generate an
ellipse of best fit using only those portions of the orbits, described by the
input elements, which are visible from Andover. Fig. 22 shows the ec-
centricity of 0.400593 and the perigee radius of 4565.168 statute miles
determined from this ellipse. It also indicates that the root-mean-square
departure of the fitted ellipse from those points generated by the four
elements is in the order of 10-7. Fig. 23 graphs the fitted ellipse as a curved
line, while the points visible from Andover and predicted by the in-
dividual elements are noted by zeros on the plot.

The M4 set of elements was then altered by substituting the eccen-
tricity and radius of perigee values from the MOEFIT program and
was again compared with Johannesburg trajectories given by the original
set of elements, MO. Typical results are given in Fig. 24, where it is
geen that the average pointing angle error is now 0.07°, about 2 orders

REUND-THE-WORLD-@RBIT-TEST = MBES GENERATED FM ANDBVER L C THEMAS

@RBITAL ELEMENTS M—4 FRBM MREGEN G3 USED.

STATIBN AT JBBURG, S.AF LAT=

=26.03246 DEG

YEAR MB DY HR MN SEC SAT PES FREM MEE 1

WEST LENG =

331.75878 DEG HT AB@VE MSL= 5370.00000 FT

SAT PES FREM DATA

DIFFERENCES

AI-CEG EL-DEG RANGE-MI AI-DEG EL-DEG RANGE-MI AZ-DIFF EL-DIFF ARC-DIF RANGE-DIFF
1964 630 150 O 288.75 11.10 7605.79 288.53 11.98 7559.01 ~-0.221 0.878 0.9043 —-46.777
1964 & 30 2 0 O 284,15 18.01 6463.13 283.78 19.20 64ll.44 -0.367 1.191 1.2407 =51.693
1964 & 30 2 10 0 277.26 26.86 5135.54 276.55 28.50 5085.55 —0.713 1.635 1.7529 -49.993
1964 &30 2 20 O 263.52 39.54 3847.60 261.69 41.83 3816.87 -1.829 2.287 2.6741 -30.732
1964 6 30 2 30 O 213.29 54,33 2253.39 206.47 55.47 2295.77 -6.816 1.137 4.0786  42.382
1964 630 2 40 0 136.40 14.84 2296.01 134.91 14.7B 2430.20 -1.487 -0.057 1.4384 134.186
1964 7 1 4 40 O 251.49 2.50 5127.70 250.75 .33 5068.46 -0.737 1.834 1.9758 -59.242
1964 7 1 4 50 O 236.65 14.72 3173.39 235.10 17.25 3136.97 -1.549 2.525 2.9315 -36.423
1964 7 1 5 0 0 174.13 27.48 1518.65 169.84 29.93 1586.01 -4.293 2,448  4.4906 67.362
1964 7 1 8 56 0 277.23 31.34 832.02 277.78 37.04 906.03 0.549 5.697 5.7154 T4.006
MEDIFIED ERBITAL ELEMENTS FER ABBVE TABLE ARE- AVG=2.7202 65.541=RM:

ELEMENTS N@ 1
REFERENCE TIME 1964 7 1
INCLINATIEN 42.72288 DEG
ASCENDING NPDE WEST LBNG 255.82£89 DEG
PRIME SWEEP INTERVAL = 1 DAY -8.124800 MIN
PFRIGEE AND SATELLITE ARGUMENT 324.1296& DEG

ANRFALISTIC PERISD
RATE @F CHANGEO.

ECCENTRICITY 0.4115810
RADIUS #F PERIGEE 4450.926 STATUTE MILES

RATE BF CHANGE 0.191050 DEG PER PERIBD
225.30049 MIN

MIN PER PERIBD

5 HR 11.13300 MIN UT

Fig. 21 — Comparison of M4 elements to Johannesburg trajectories derived

from MO
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RBUND-THE=WARLD-@RBIT-TEST - MBES GENERATED FM ANDBVER L C THAMAS
SUCCESSI@N PF PASSES @N 6/30 AND 7/1/1964 USED FPR RP,E DETERMINATISN

ABS VALUE @F MAX ERR@R= 5,8822479E-07
LEAST SQUARES @RBITAL ELEMENT VALUES- MEAN SQUARE ERRER= 2.1384T52E-14

RMS ERRBR= 1.4623526E-07
ECCENTRICITY =  0.400593 RADIUS OF PERIGEE = 4565.1683 STATUTE MILES
SEMI-MAJPR AXIS =  T&16.147T2 STATUTE MILES

AVERAGE PERIGEE PRSITIBN = 324.14983 DEG AT EPPCH @F FIRST MBES
INPUT M@DIFIED BRBITAL LIST FELLAWS-

REFERENCE TIME 1964 6 30 17 HBUR 55.21400 MIN U.T.
INCLINATION  42.74526 DEG
ASCENDING NEDE L8NG  B5.920B2DEG WEST
PRIME SWEEP INTERVAL GNE DAY -8.12480 MIN
PERIGEE AND SATELLITE P@SITI@N 323.58760 DEG
RATE @F CHANGE 0.19105 DEG PER PERIGD 3
ANBMALISTIC PERI®D 225.30049 MIN
RATE BF CHANGE 0. MIN PER PERIED
ECCENTRICITY 0.40099
RADIUS BF PERIGEE 4564.55493 STATUTE MILES

START CARD IMAGE IS-
1964 6 30 18 7 O T0 &0 &0

REFERENCE TIME 1964 6 30 21 HOUR 40.50300 MIN U.T.
INCLINAT]AN 42.74677 DEG
ASCENDING N@DE LONG 142.55B4TDEG WEST
PRIME SWEEP INTERVAL @NE DAY -8.12480 MIN
PERIGEE AND SATELLITE PBSITIAN 323.75162 DEG =
RATE BF CHANGE 0.19105 DEG PER PERI@D
ANPHALISTIC PERIBD 225.30049 MIN
RATE BF CHANGE Q. MIN PER PERIED
ECCENTRICITY 0.40110
RADIUS @F PERIGEE 4563.15997 STATUTE MILES

START CARD [MAGE I5-
1964 6 30 22 1 © 124 120 120

REFERENCE TIME 1964 7 1 1 HPUR 25.83200 MIN U.T. )
INCLINATIBN  42.74387 DEG

ASCENDING NBDE LENG 199.199T2DEG WEST

PRIME SWEEP [NTERVAL GNE DAY -B.12480 MIN

PERIGEE. AND SATELLITE P@SITI@N 323.98413 DEG -

RATE PF CHANGE 0.19105 DEG PER PERIBD
ANBMALLSTIC PERIBD 225.30049 MIN

RATE BF CHANGE 0. MIN PER PERIED
ECCENTRICITY 0.40093
RADIUS BF PERIGEE 4566.15997 STATUTE MILES

START CARD IMAGE IS-
1964 7 1 2 2 0 138 120 120

REFERENCE TIME 1964 7 1 5 HEBUR 11.13300 MIN U.T,

INCLINATIEN 42.72288 DEG

ASCENDING NBDE LENG 255.826B9DEG WEST I M4

PRIME SWEEP INTERVAL @NE DAY -B.12480 MIN

PERIGEE AND SATELLITE PASITIBN 324.12966 DEG
RATE ©BF CHANGE 0.19105 DEG PER PERI@D

ANBMALISTIC PERIGD 225.30049 MIN

RATE BF CHANGE D. MIN PER PERIGD
ECCENTRICITY 0.41158
RADIUS BF PERIGEE 4450.92596 STATUTE MILES /

START CARD IMAGE 15—
1964 7 1 & 14 O 99 60 &0

Fig. 22 — Eccentricity and perigee radius from ellipse of least-squares fit.

of magnitude better than the value before ellipse fitting. The root-
mean-square range error has decreased an order of magnitude and is now
5.2 statute miles.

It is to be noted that only four passes at Andover were used in this il-
lustrative procedure, since these four encompassed the entire portion of
the orbit visible from Andover. However, as apsidal advance takes place,
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new portions of the orbit hecome visible and, provided little orbit decay
oceurs, these may also be used to obtain even better ellipse fits and fur-
ther refine values for the eccentricity and perigee radius.

It is also noted that in actual practice each of the trajectories used
would have suffered slight measurement errors akin to those artificially
introduced into the fourth trajectory that produced elements M4. None-
theless, the derived elements would predict well that portion of the orbit
ellipse from which they came (as was demonstrated by M4) and would
therefore be improved by MOETFIT for round-the-world use by about
the same amounts as shown in the illustrated example.
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Fig. 23 — Ellipse of least-squares fit to elements.
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XII. CONCLUSIONS

665

The methods deseribed have been used extensively for those orbit
determinations of the TELSTAR satellites dealing with the satellite
communications experiment. The following merits of this orbital tech-

nique are noted:

(7) The elements chosen explicitly express the secular rates, thereby
simplifying and making more economical the generation of predicted

trajectories and drive tapes for the Andover antenna.

(#1) The generation procedure is geared to sparse and discontinuous

tracking data.

(747) Using a modified Gaussian technique for orbit generation pro-
vides a straightforward method for range determination to which orbital

perturbations are easily added on an iterative basis.

(#v) The computation of secular rates only saves time and money and
proves adequate for the tracking requirements of the TELSTAR satellite

experiments (0.05° pointing accuracy).

(v) For cases where the secular rates are not constant over a given
span of time, the methods described will still function provided tracking
data are available frequently enough to assure essentially constant

rates from each data acquisition time to the next.

(vi) The method provides for the operational inclusion of perturbations

REUND-THE-WORLD-@RBIT-TEST -~ MBES GENERATED FM ANDBVER L C THEHAS

M-4 ELEMENTS WITH ECCENTRICITY AND RACIUS BF PERIGEE FREM M@EFIT.

STATI@N AT JBBURG, S.AF LAT= =-246.03246 DEG WEST LENG = 331.75878 DEG HT ABBVE MSL= 5370.00000 FT

YEAR M@ DY HR MN SEC SAT P85 FREM MBE 1 SAT PgS FREM DATA DIFFERENCES

1964 630 150 0 288.5& 11.57 7550.87 288.53 11.98 7559.01 -0.027 0.009 0.0280
1964 6 30 2 0 O 283.81 19.20 6403.74 283.78 19.20 A&ll.4é -0.027 0.003 0.0242
1964 & 30 2 10 O 276.59 28.51 S507B.57 276.55 28.50 5085.55 -0.040 =-0.007 0.0370
1964 6 30 2 20 0 261.72 41.85 3611.05 261.69 41.83 3616.87 -0.034 =-0.017 0.0321
1964 & 30 2 30 0 206.38 55.52 2292.20 206.47 55.47 2295.77 0.091 =-0.047 0.0699
1964 & 30 2 40 O 134,85 14.72 2429.98 134.91 [14.78 2430.20 0.055 0.064 0.0833
1964 7 1 4 40 O 250.78 4.16 5062.97 250.75 4.33 5068.46 -0.029 0.168 0.1700
1964 7 1 4 50 0 235.13 17.22 3133.32 235.10 17.25 3136.97 -0.026 0.026 0.0350
1964 7 1L 5 0 0 189.84 29.94 1584.84 169.84 29,93 1586.01 0.000 -0.012 0.0171
1964 7 1 B S8 0 277.52 36.95 90B8.2& 277.78 37.04 906.03 0.264 0.093 0.2305
MEDIFIED BRBITAL ELEMENTS FOR ABBVE TABLE ARE- AV6=0.0727

ELEMENTS NP 1
REFERENCE TIME 1964 7 1 5 HR 11.13300 MIN UT
INCLINATIEN 42.72288 DEG
ASCENDING NBDE WEST LE@NG 255.82689 DEG
PRIME SWEEP INTERVAL = 1 DAY -8.124800 MIN
PERIGEE AND SAVELLITE ARGUMENT 324.12966 DEG
RATE @F CHANGE 0.191050 DEG PER PERIQD
ANEMALISTIC PERISD 225.30049 MIN
RATE @F CHANGED. MIN PER PERIED
ECCENTRICITY 0.4005930
RADIUS @F PERIGEE 4565.168 STATUTE MILES

FFig. 24 — Comparison of M4 elements (with fitted ellipse corrections)
Johannesburg trajectories.

AI-CEG EL-DEG RANGE-M] AZ-DEG EL-DEG RANGE-M] AZ-DIFF EL-DIFF ARC-DIF RANGE-DIFF
42

1.166

=2.23%

5.209=RMS

to
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not computed here. For example, cyclic perturbations may be expressed,
if indicated in the data, by generation of a multiplicity of elements over
a time span and noting the derivatives of the “‘secular” rates.
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APPENDIX A

Relationship of the Triangular Area between Two Radius Vectors and the
Orbit Normal

Consider triangle 023 of Fig. 4 and project it upon the yz plane. The
vertices of the projected triangle are, therefore, (0,0,0), (0,y5,2:),
(0,2,2:) and hence its area becomes

Ap = 5 (yozs — 22s). (119)*

Now the normal to the 5z plane is, of course, the x axis. The normal to
the orbit plane, shown in Fig. 4, makes an angle n with the x axis. Since
the area of triangle 023 is the projected area referred to above divided
by the cosine of the angle between the orbit plane and the yz plane, and
since this angle is the same as the angle n between the normals to the
two planes, it follows directly that the area of 023 is

Ay = 3 (228 — 20y3)/cO8 1 (120)
or
Yo2y — Zolfs = Asy CcOS N (9)
where
Agy = 244 . (121)
APPENDIX B

Relations Imvolving the Earth’s Oblateness

Because the earth is not a perfect sphere, two corrections are normally
applied to satellite positional data as measured from any specified ground

* See page 266, Ref. 23.
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station. The same corrections in the inverse sense are applied when tra-
jectory predictions are made from orbital elements. The first of these
recognizes that the geoeentric distance of the station is a funection of
geodetic latitude; the second correction relates to the change in azimuth
and elevation of the satellite when referred to a spherical as opposed to
an oblate earth.

The geocentric distance® of the station is simply

R = H + R;(0.998320047 4 0.001(83494 cos 2¢

(125)
— 0.000003549 cos 4¢ + 0.000000008 cos 6e)

where

H = the height of the station above mean sea level in statute
miles
Rr = the earth’s equatorial radius = 3963.347 statute miles
¢ = the geodetic latitude of the station.

This indicated value of R is used in solving for the satellite’s slant range
as in Section IV of the text. It is also used to determine the X;, ¥, Z;
station coordinates in Section 5.3.

Normally, azimuth-elevation measurements of a satellite made from
a ground station are based upon measurements referenced to a loeal
horizontal plane. This plane is often taken as a tangent to the oblate
earth at the station’s location. It becomes useful to reference such azi-
muth-elevation measurements to a plane tangent at the station to a
sphere having a radius K. This is done both in trajectory prediction (Sec-
tion IV) and in preprocessing the azimuth-elevation data prior to orbit
determinations.

To relate the azimuth-elevation points to the two tangent planes, we
begin by establishing two right-hand coordinate systems, centered on
the station. In the first of these, the -y axes lie in the plane tangent to
the oblate earth with the y axis pointing northward and the x axis east-
ward. In the second system, the z-y  axes lie in the plane tangent to a
sphere of radius R. The transformation from one system to the other is
a simple one, since rotation of the first set of coordinates about the com-
mon z axis moves y into 3’ as shown in Fig. 25(a).

By inspection of I'ig. 25(b), we write the measured azimuth (4) and
elevation (F) in terms of the ayz coordinates (referenced to the oblate
earth) as

Il

x = pceos I sin A (126)
pcos E cos A (127)
2z =psin K (128)

=
Il
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NOTE: Y
y IS TANGENT TO
OBLATE EARTH
Y’ 1S TANGENT TO

SPHERE OF
RADIUS R

EQUATOR

(@)
2
zr
\ yr
Y ) /r//
\ P
\ )\// |p SIN E
(b) - E' r y
~{ A | 14/
\ pcosE“{"\J/ “~pCOSE sINA

i

Fig. 25 — Geometry for correcting earth oblateness effects.

where
p = the slant range to the satellite.
Next we rotate the zyz coordinates about = through an angle (a)” equal

to the difference between the geodetic and geocentric latitude of the
station. This brings y into %" and z into 2* where 2’7 is the coordinate

* o = geocentric latitude — geodetie latitude = 0.1962 sin (geodetic latitude).
A closer approximation is found in Ref. 5.
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system for a sphere of radius R. The relationships between 5" and 2,2’
are
¥y =ycosa—+ zsna (129)
z = —ysina + zcos a. (130)

Combining (126) through (130) one obtains

x = pcos F sin A (131)
y = pcos E cos A cos @ + psin B sin « (132)
7 = —pcos E cos A sin a + psin E cos e (133)

from which the azimuth (A”") and elevation (E') referred to the sphere
become

B =sin' 2 /p (134)
A" = tan ' 2/y. (135)

The procedure is perfectly symmetrical, and if one wants to convert
from spherically oriented azimuth-elevation to the oblate earth azimuth-
elevation, (131) through (135) are used with a negative « and inter-
changed primes.

APPENDIX C
The Triangle Ratios my and my as Time Functions

Consider the orbit ellipse lying in the xy plane as shown in Fig. 26.
The observed positions of the satellite are expressed in x,y coordinates and
time ¢, If we now define a new time variable r = kt, the familiar differ-
ential equations of motion then become

d'z

xr
5 = —k"r—a (138)
and
2
%{{ - —kﬂ%. (139)

Considering points 1 and 2, we may expand x, and %, in a Taylor series
which generally converges for all reasonable values of r:
1 d’z

ﬁaﬁ’”z+"' (140)

dx
I1=-’b'2+ﬁ—j_1'3+
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y

(%2, Yz, L)

(En Y ty)

Tig. 26 — Orbit triangles in z,y,t space.

1 d*y

S S (141)

d
m=1mp+omn
dr

where the 7 derivatives are to be evaluated at the time £ of the second
data point. We define r; in the text. Similar expressions may of course be
written for points 2 and 3. It is possible to substitute for all the deriva-
tives in (140) and (141) higher than the first by successive differentia-
tion of (138) and (139). This permits (140) and (141) to be expressed
as

Ir = Alxz + B]_ @ (142)
dr
dy
h = Al'yz + B a— (143)
T
where
| . T dr
a-1-3 (2D e

Bim gy Ty Tdr

6?‘23 4yt dr

Point z; , ys may be expressed in a manner identical to (142)-(145) with
subseript 1 being replaced by 3 throughout and r; becoming T, .

(145)
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The areas of the triangles formed by ry , r2, and r; and their respective
chords are™

Ap = (e — 1) (146)
and
Ay = %(-’Uzﬂa — Yaly). (147)
If now (142) and (143) are substituted into (146) then,
dy dx
Aw = 3B (i?'ed—': — Y (Tr) (148)

But the right-hand member of (148) is B, times the areal velocity * of
the satellite, which by Kepler’s Third Law is simply

Ap = 3Bk /p (149)
where
p=a(l—¢)

I = the Gaussian constant for
earth satellites

0.07436574 min”".

Similar expressions exist for A.; which parallel (148) and (149) with sub-
seript 3 substituting for 1. The area enclosed by ry, r; and the connecting
chord differs a bit from either A;» or A and is
Ay = (s — 1)
= %([‘1 IB;( - B]J‘ia)k v’};.

Now by explicitly expressing the A;, B; factors of (144) and (145) in
the sector area equations (149) (150), we have

(150)

_ 3 "
_1 _m _mdr
AIE = 2k ‘\/?_)TE _1 67'23 4:?_24 dr + } (151)
B 1'2 1'13 dT
= i . i T
= v 1 - o ] (122
- 2 2
T2 rolmi — 73) dr
A = 3kV/pre B Ry~ a = ] (153)

* See Ref. 14; Ref. 24, p. 5; and Ref. 9, p. 26.
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The m; and my equations follow directly from the above as
= Ax
A
_m |:l grlmtn) rs(rs’ + mry — ') dr n ]

T ﬁ'fza 41"24 dr

my
(154)

(155)

_nl 4 nln4mn) nln'+nm—n')d
- 6?‘23 47‘2‘ d‘r '
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Analysis of Varactor Frequency Multi-
pliers for Arbitrary Capacitance
Variation and Drive Level

By C. B. BURCKHARDT

(Manuseript received December 23, 1964)

A general analysis of varaclor frequency multipliers is given. It applies
to multipliers with any ralional ratio of outpul to tnput frequency, any idler
configuration, and any voltage-charge velationship for the diode. A com-
puler program was written for evaluating the results up to a X10 multi-
plier. Results are given for the doubler, 1-2-3 tripler, 1-2-4 quadrupler,
1-2-3-4 quadrupler, 1-2-4-6 quintupler, 1-2-4-6 sextupler, and 1-2-4-8
octupler, for various junctions, under conditions of nominal drive as well
as of overdriving. Some higher-order multipliers without idlers, which use a
high-nonlinearity diode, were computed. Some results are given for a model
with varying series resistance.

I. INTRODUCTION

Varactor frequency multipliers have found considerable application
for generating microwave signals for receiver local oscillators, parametric
amplifier pumps, and other applications.

Penfield and Rafuse' have analyzed many multipliers under the as-
sumption that a nominally driven abrupt-junction diode is used. For
practical multipliers this assumption often does not hold because the
junction is not abrupt and is driven into forward conduction. Green-
span® has analyzed the nominally driven graded-junction doubler, and
Davis? has given an analysis of the overdriven doubler for various
capacitance functions.

This paper gives a general analysis of lossy varactor frequency multi-
pliers. The theory applies to multipliers with any rational ratio of out-
put to input frequency, any idler configuration, and any capacitance
variation of the diode. A computer program was written for evaluating
the results up to a X 10 multiplier, and results are given for the doubler,
tripler, quadrupler, quintupler, sextupler and octupler for different drive

675
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levels and different junction capacitance functions. Thus the work re-
ported in this paper can be considered an extension and generalization
of the work of the authors mentioned in the previous paragraph.

Circuit losses are neglected in this analysis,* and it is assumed that
the only loss occurs in the diode. This restriction was introduced to
reduce the number of parameters. Our analysis therefore gives the
maximum efficiency that can be obtained with a given diode at a given
frequency. Circuit losses usually can be accounted for either by assum-
ing a lower cutoff frequency than that of the diode alone or by com-
puting them separately.

The present analysis differs from that given by Morrison! mainly in
two ways:

(a) it assumes a lossy diode, and

(b) it assumes that all the input power is converted to one single out-
put frequency, whereas Ref. 4 is concerned mainly with the maximiza-
tion of input power under the condition of output power at arbitrary
frequencies.

Thus Morrison’s results give an upper limit to the power which can be
handled by a nonlinear capacitance for prescribed magnitudes of break-
down voltage and forward drive. In addition, he considers the specific
examples of graded- and abrupt-junction doublers and triplers, which
cases are included in the present results for the limiting lossless condi-
tion.

In the analysis in Sections II and III of this paper the diode loss is
represented by a constant resistance in series with the variable capaci-
tance. The modification of the analysis due to a variable series re-
sistance is discussed in Section IV. The reader who is interested in the
results only is referred to Section V, where all the results are given.

II. ANALYBIS

2.1 Model and Assumptions

The varactor model chosen is a variable capacitance in series with a
constant resistance Rs (for Rg variable see Section IV) as shown in Fig.
1. If the applied voltage varies between the contact potential ® and the
breakdown voltage — V5, the diode is said to be fully driven. The over-
driven case will also be analyzed. It is assumed that during the period
of forward conduction the junetion voltage stays clamped to &, whereas

* The effect of lossy idlers has been included in the analysis and in the com-
puter program; however, no results have been computed for this case.
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A
Fig. 1 — Varactor model.

the charge varies. Thus the capacitance in our model becomes infinite,
and no correction for the rectified forward eurrent is introduced. This
model is suitable if the period of forward conduction is several times
shorter than the time in which an appreciable number of minority
carriers recombine.

It is assumed that currents in the diode flow only at the input, out-
put, and idler frequencies, and that a suitable external circuit prevents
other eurrents from flowing.

2.2 Analysis

The voltage across the variable capacitance can be written as a func-
tion of the charge on the capacitance

v —®\ ¢ — qe
(m = ¢) - f(Qa = qa:) )

v, : voltage across the capacitance,
& : contact potential,
Vs : breakdown voltage,
¢ : charge on the capacitance,
Qs : charge at breakdown voltage,
qa : charge at contact potential.
If we introduce the normalized quantities

where

. 4 — (s
q - QB _ qé ] (2)
and
_ vj— P
¥ = I_}'B — ] (3)
we can write (1) as
e = f(Q). (4)

For the voltage across the diode v, we have (see Fig. 1)

Vo, = V5 + R.'ﬂ., (5)
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where ¢ is the current through the diode. Because of (2), (3) and 7 =
dq/at we can write (5) as
Vot = (Va — ®)(§) + @ 4+ Rs(Qn — ga)(8G/0t) (6)
or
vt —® = (Vs — @)f(§) + Rs(Qs — g4)(33/0t). ]

(V101 — B), @, ¢, and 34/dt can be written as Fourier series

+o%
(!)u.t - qJ) = Z I"’;-Ckwu',

o0
137
p = D e,
—

qg= Z lem’"',
aq/at = E[kg.ﬂ-mnt = ijqukcjkwnf.

The series for ¢ and a¢/at have to be summed over all frequencies at
which ewrrent is flowing in the multiplier.

Tor the voltage at the load port V; at frequency lw, we have the
relation

V= (VB - @):p; + Rs(Qu — q-i>)Iz = —Zz(Qa = ch)Ih (8)

where Z; is the load impedance.

(VH - ‘I’) "2}
o =2 /Ry = 7=+ 1
/R = g —a L TV
—Zy/Rs = k2 + 1
l/ 8 KJIWOQI + ] (g)
where we have introduced the quantity
Vg — @
= . 10
K= @ — g0)Fs (10)

« has a simple relation to the familiar cutoff frequency w. of Penfield
and Rafuse (Ref. 1, p. 86), which may be obtained as follows. The
elastance S is defined as

S = ov;/aq.
Because of (2) and (3)
_ 9% (Vs — @)
37 (Qs — qo)
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Therefore
S _dp (Va— @) Rs
Smnx - Smin a(} (Qﬂ - q@)RS Smnx - Smin
_do «x
= a(} we ] (11)

where Spax 18 the maximum value of the elastance, Sy, is the minimum
value of the elastance and

b'umx == Sm in
Ry

w, =

is the cutoff frequency defined by Penfield and Rafuse.
If we set S = Spax in (11) we obtain

Smnx s (22 1
Slllux = Sulirl aé =1 W
and
wc Slunx
T dep Swax — Smin (12)
94 [3=1

This relation between x and w. is dependent on the nonlinearity of
the diode. E.g., if we assume an abrupt junction with ¢ = ¢* and Spin =
0 we obtain x = 0.5 w, .

We now want to solve (9) for the real and imaginary parts of Z;.
Iig. 2 shows the quantities of interest plotted in the complex plane. The
input current /;, is assumed to be real and positive. With the phase
angles as defined we obtain from (9)

—Ri/Rs = k:‘gr“ i%lsin (—a 4+ 81) + 1.

If we solve this for | ;| we obtain

x| | sin (—a + 8)

Q| = ;
l Jl' (—R;/Rs— ].) an (ld)
For the imaginary part X, we obtain
Xi/Rs = x'—m—chos(—a—l-ﬂg). (14)
| Q1 | leo

If we define an effective output elastance S.irou according to Serroue/cl
= X, we obtain
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ANGLES DEFINED POSITIVE
COUNTER-CLOCKWISE
“91. 1S NEGATIVE AS DRAWN)

Fig. 2 — Output quantities in complex plane.

Seftout _ wal X _ Rk ra _
Smnx - ‘gmin Smax - Smin Smax = Smin l Qi | cos ( * + Bl)
Sel'faut. = i I @i I Co8 (__a + ﬂt) (15)

Smux - Smin W, | QL |

Idler ports: The idler impedance Z; at the frequency dw is

~Zi/Rg = x—2_ + 1.

/Ry Kg-zqu;-I- (16)
We now assume that all the idler ports are tuned,” i.e., we assume the
idler currents to be in phase with I;, . We then obtain

—Ri/Rs = KF(%IIiLmSinB;-F 1 (17)
and
. leilsing
&l = “R/R = D’ .

where R, is the idler resistance and 8; is defined analogous to ;. For
the effective idler elastance S.ia1 we obtain

* Penfield and Rafuse! find that tuning the output circuit gives near optimum
efficiency for the nominally driven abrupt-junction doubler. Davis® abtains the
same result for a variety of nominally driven as well as overdriven abrupt- and
graded-junction doublers. Judging from these results, it was felt that tuning the
idlers lea(cil to near optimum efficiency, and the above-mentioned restriction was
introduced.
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in

Pin
’ dMwg*Qyp

Fig. 3 — Input quantities in complex plane.
Seffid & | @i
‘S'rmlx - 'Srmir: W, |

cos B . (19)

Input port: The input impedance Z;, at mew, is

» _ input voltage
Gin = ————————
mput current

(. IJ’M’ - ¢’)\0in

Zi!l = = = )
Tl =)
Dol By = Wik ], (20)
JmaQin

The input quantities are plotted in IYig. 3. For the input resistance R;,
we obtain

- o K | @in | - . 0
[\,Ill,‘ Il’.s i}nwn | Qi,. | sl 16111 + 1 (-‘1)

and for the imaginary part X,

X/ Ry = — M cos Bin .
man | Qin |

lqi-ffin K [ Lin |
- — = — cos Bin . (22)
‘stuux - lS:uin W, | Qin | "

Power relations and efficiency: The input power P;, is

Pin = 2 | [ill |?Rin(QB —* qw)z
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(i is a half-amplitude). Introducing the normalization power Puorm

_ (VB - ¢’)g
Pnorm = Rs
we can write
e p. Qs — qa)?
2 — 2w | OQin |2 Rin ),
I m/Pnorm 2miwy |Qm | R, ———(Vu — (IJ)E Rg’
2...2 ! 2
Pin/IJnorm = @%M (Rin/RH)- (23)

Similarly, we obtain for the normalized output power Pout/Prorm
2,02 2
Poul./Pnorm = &UO_KJ!Q_I[ (RI/RS) (24)

For the normalized power dissipated in the idler resistances Puisst/ Prorm
we obtain

2
Pdiul/Pnnrm = 2‘1—2 Z i ' Ql’ |2 (-Rl/RH)) (25)

where the sum has to be extended over all frequencies at which there
are idlers. The normalized power dissipated in the series resistance Ry
of the diode, I,digﬁz/Pnnrm iB

-Pdiss!/Pnnrlu = 2""-’_‘1:' Z """2 | Qk |2’ (26)
ok

K

with the sum extended over all frequencies at which there are currents
flowing. The total power dissipated P 18

Puies = Paisst + Plissz (27)

For the efficiency e we obtain
¢ = 1 — (Piisa/Pin) (28)
= Pou/Pin . (29)

Bias vollage: The normalized bias voltage

-(7=3)
LR T

is equal to the constant coefficient in the Fourier series for ¢.
Evidently the foregoing analysis holds for any integrally related in-
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put, output, and idler frequencies and therefore can be applied to any
corresponding multiplier econfiguration.

II. TECHNIQUE OF SOLUTION AND OUTLINE OF THE COMPUTER PROGRAM

For a multiplier the following quantities are usually given physically:

(a) input, output, and idler frequencies,

(b) the voltage-charge relation of the diode and its series resistance
Iy, and

(c¢) the idler resistances R, .
The following quantities will be treated as parameters, i.e., they will be
set constant for one evaluation and will be varied later in order to
optimize a certain quantity, usually the efficiency. These parameters
are:

(d) the minimum charge Q.i, and the maximum charge Q.. be-
tween which the diode is driven,

(e) the load resistance R; of the multiplier, and

(f) the angle of output detuning a.”
The formulas of Section 2.2 now have to be evaluated subject to these
constraints. The solution proceeds in a way suggested physically. A
current is applied at the input port. This current gives rise to certain
voltages at the idler and output ports which in turn cause certain cur-
rents at these ports. The calculation of the voltages at the idler and
output ports is repeated assuming the diode to be driven by the sum of
the currents computed previously. The computation is repeated until
the values of all the currents have reached their asymptotic values.

Fig. 4 shows a simplified block diagram of the computer program.
First, a value for the input charge coefficient | Q;, | and a value for the
load resistance R, are assumed. The normalized charge § is computed
at n equidistant points lying in one period of the first harmonie. The
maximum and minimum values of § are determinedt and compared with
the values of §uux and Guin preseribed. The values of | @ | are corrected }
in order to give a variation of § between §uax and ¢min and § is computed
again. I'rom this and the voltage charge law of the diode (4) the nor-
malized voltage ¢ is computed. The Fourier coefficients ¢, of ¢ are then
evaluated by a subprogram as desecribed in Ref. 5. From the values of

* For all the computations in this paper @« = 0° for the same reason given in
the footnote to Seetion 2.2,

t The maximum and minimum values of the n values of § are obtained by a
sorting routine. The maximum and minimum of § are found by quadratic inter-
polation.

1 Shift of | Q4 |; ecompression or expansion of | Q: |, k = 1.
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READ IN DATA COMPUTE EFFICIENCY

SET CHARGE CHANGE Ry IN

COEFFICIENTS SEARCH FOR
AND Ry, MAXIMUM EFFICIENCY

!

COMPUTE CHARGE

|

CORRECT CHARGE
COEFFICIENTS TO

HAS
MAXIMUM BEEN
FOUND

NO

GIVE DRIVE PRESCRIBED
COMPUTE
l ALL OTHER
PARAMETERS
COMPUTE CHARGE l
1 REPEAT FOR
VARIOUS FREQUENCIES
COMPUTE VOLTAGE AND DRIVE LEVELS
COMPUTE FOURIER PRINT AND PLOT
COEFFICIENTS
OF VOLTAGE

|

COMPUTE CHARGE
COEFFICIENTS

ARE
NEW CHARGE
COEFF. CLOSE TO
PREVIOUS
ONES

YES

Fig. 4 — Simplified flow diagram of computer program.

@ and (13) and (18) new values can be computed for the charge co-
efficients. The computation is repeated until all the charge coefficients
computed in step (n 4+ 1) are very close to those computed in step n.
The computation as deseribed does not converge if the multiplier has
idlers but rather gives an oscillatory solution for the char ge coefficients.
It can be stabilized in the following way. Suppose | Q; .4 is the idler
charge cocfﬁclcnt computed in step (n + 1) according to (18) One
then computes | Qi .1 as a weighted average of |Q: lus1 and the
charge coefficient | ; |, computed in the previous step,

w I Ql’ |n + l (Jr ‘ﬂ+1’

(.‘,, =
Qi 3

(30)
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The problem now is to find a suitable value for w. If w is too small the
solution does not converge; if it is too big the convergence is very slow.
Numerous experiments yielded the following (heuristic) formula for w,

e 0.15(m + Dw./'n (31)

wo

where m is the number of idlers at higher frequency than the idler fre-
quency at which | Q; | is being computed; » is the total number of idlers
in the multiplier. Equation (31) gave a good initial choice for the values
of w. In some cases these values had to be modified slightly, either to
speed up convergence or to prevent oscillation. The charge coefficient
| Q1| at the output frequency can be computed according to (13).

When the final values of the | @, |'s have been reached, the efficiency
is computed using (28). For small values of ¢, (29) is used because it
gives more accurate results. K, is then changed, and the computation
is repeated. R, is changed until a point of maximum efficiency is reached.
The optimum value of R, is then found by quadratic interpolation, and
the computation is carried out a last time with this optimum value.
After this the values of S are computed. The computation is carried
out for a number of ratios wo/w, and a number of drive levels.

The accuracy of the computation was checked by computing the
nominally driven abrupt-junction doubler, 1-2-3 tripler, 1-2-4-8 oc-
tupler, and the graded-junction doubler. All the results agreed with
known results':? within plotting accuracy.

IV. EFFECT OF A VARYING SERIES RESISTANCE Ry

For point contact varactors the model of Fig. 1 is a good representa-
tion. For epitaxial varactors, however, Rs depends significantly on bias
voltage,” and Ry should be considered a funetion of ¢ in our computa-
tion. Equation (7) then hecomes

Vot — @ = (Va — ®)f(§) + (@r — Q'rh)(aé/az)ﬁ'ﬂ(f})- (32)

Because (32) seemed to be too difficult to be solved exactly a semi-
rigid approach was made. From the results for the constant series re-
sistance model we know that, for low and moderately high frequencies,
input and load resistances of a multiplier are several times bigger than
Rs . We conclude that the second term in (32) is small compared with
the first one. We normalize R«(¢) with respect to some value R chosen
arbitrarily. The computation proceeds as in Section 11 and only the
computation of the power dissipated Puiwe in Rs(G) is modified as fol-
lows
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2w
B = Rl @) (end), (33)

27!' wq t=0
where 7 is the instantaneous current in Rs . With ‘
‘=22[Qk|sij'lkwut
one obtains
- 002 = Rs(é ) 5 2
Pdisu!/Pnorm T | e [E 2 [ Qk I k cos kwnt] d(mnt). (34)
21”(' wp b= RSU

Equation (34) was substituted for (26) in the program. The integral in
(34) was evaluated numerically.

V. RESULTS

5.1 Computations with Ry C'onstant

The results reported in this section were computed for a constant
series resistance model and a voltage-charge relation of the form

p— & _ q— qo )1!(1—1) ~
Vs e (Qa — (e ’ (3‘))

Values of ¥ = 0.5 (abrupt), ¥ = 0.4, v = 0.333 (graded), and v =
were used.” Results were computed for different drive levels.

Plots of all the quantities versus wy/w. were obtained using the IBM
7094 computer and the SC-4020 microfilm printer. Lack of space pro-
hibits the reproduction of these plots. Instead, the constants occurring
in the low-frequency approximations used by Rafuse’ will be given,
These low-frequency approximations are

e = exp (— awour/we),T
Pout/Prorm = Blwo/we),
Rin/Rs = A (we/wn),
Ri/Rs = B(we/un).
The normalized elastances as well as the normalized bias voltage do
not depend on wy/w. at low frequencies. For the tripler and higher-order

multipliers the output power versus frequency shows a maximum. This
value, designated P,ux/Puorm , and the corresponding frequency, desig-
*y = 0 corresponds to a step in elastance at § = 0. S = 0for § £ 0and S =

a e(mstaut for ¢ 2 0.
f a was computed from the value of e at wy = 107w, .
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TasLE I — DouBLER

v = 0.0 y = 0.333 vy =04 ¥ =05
Drive — L5 2.0 1.0 1.3 1.6 1.0 1.3 1.6 1.3 1.6
a 6.7 4.7 12.6 8.0 6.9 |11.1 8.0 (7.2 |8.3 (8.3
B 0.0222/0.0626| 0.0118/0.0329/0.0587| 0.0168(0.0406/0.0678|0.0556|0.0835
A 0.117 [0.213 | 0.0636/0.101 |0.126 | 0.0730,0.102 [0.118 |0.0980(0.0977
B 0.204 [0.211 | 0.0976/0.158 |0.172 | 0.112 |0.157 |0.161 (0.151 |0.151
Su1/Smax [0.73 [0.50 | 0.68 [0.52 |0.40 | 0.61 |0.45 |0.35 |0.37 [0.28
Soa/Smax [0.60 |0.50 | 0.66 [0.48 |0.41 0.59 |0.44 |0.38 [0.40 [0.34
Vonorm 0.35 [0.25 | 0.41 |0.33 10.27 | 0.39 |0.31 |0.26 (0.28 [0.24

nated womex/we , also will be given. These values will help to give a better
reconstruction of the actual curves.

The results are contained in Tables I-VIII. The notation 1-2-3-4
quadrupler means that there are idlers at 2wy and 3wy . A 1-8 octupler
has no idlers.

The drive is defined as

drive = H. (36)

Thus drive = 1 corresponds to nominal drive and drive > 1 corresponds
to overdriving the junction. For all drive levels it was assumed that the
junction was driven up to the charge corresponding to breakdown in
the reverse direction.

Tables I-VII show that the power handling capability as well as
the efficiency can be increased by overdriving the diode. This increase
in efficiency is most pronounced for diodes having low values of y. For
the same cutofi frequency the highest efficiency is obtained for a june-
tion with ¥ = 0 and drive = 2.0, as is seen in Tables I and III for the
doubler and the 1-2-4 quadrupler.

Sometimes the question is asked: What efficiency can one obtain for
a multiplier without idlers and a high-nonlinearity diode, and do idlers
improve the performance of such a multiplier? To answer this question,
a quadrupler, sextupler, and octupler without any idlers were computed
for a diode with 4 = 0. The highest efficiency was obtained for drive =
2.0 for all these multipliers. The results of Table VIIT show that the
efficiencies of these multipliers are about as high as those of the nomi-
nally driven abrupt-junction 1-2-3-4 quadrupler,” 1-2-4-G sextupler,
and 1-2-4-8 octupler.' The power handling capability of the 1-4 quad-
rupler is lower than that of the abrupt-junction 1-2-3-4 quadrupler, and
it compares even less favorably for the sextupler and octupler. Compari-
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Tasue IV — 1-2-3-4 QQUADRUPLER
¥ = 0333 v =05
Drive — 1.0 1.3 1.6 1.3 1.6
@ 14.1 8.9 8.1 9.4 9.7
B 0.0094 0.0260 0.0438 0.0439 0.0647
Pois /P voem 1.1-107* 4.8-107* 8.2-10* 7.4-107 1.1-10-3
Wonmux/@e 3.0-1072 f.4-1072 G.3-1072 5.2-107 6.0-10-2
/ 0.0719 0.118 0.155 0.120 0.122
B 0.0489 0.0797 0.0927 0.0748 0.0729
S/ Smnx 0.69 0.55 0.40 0.36 0.25
Soa/Sninx 0.66 0.48 0.41 0.39 0.34
S 03/ Smax 0.67 0.51 0.42 0.38 0.31
Soa/Smax 0.67 0.50 0.40 0.38 0.30
. 0.40 0.30 0.23 0.25 0.20
TasLe V— 1-2-4-5 QUINTUPLER
v = 0,333 vy =035
Drive — 1.0 1 1.6 1.3 1.6
@ 21.4 11.5 14.8 15.8 16.6
B 0.0072 0.0198 0.0310 0.0326 0.0470
P:uux/Pnnrm 4.2-107% 1.6-10* 2.4.10 2.5:107* 3.4-1074
wiing 6 1.4-107 2.2-1072 2.0-107¢ 2.2-1072 2.2-10
/ 0.104 0.170 0.203 0.167 0.163
B 0.0315 0.0524 0.0592 0.0485 0.0470
S/ S 0.69 0.54 0.39 0.36 0.25
Suz/Snux 0.69 0.54 0.40 0.36 0.26
Soa/Swmax 0.68 0.53 0.41 0.37 0.28
Sos/Smax 0.67 0.49 0.40 0.38 0.32
M 0.40 0.29 0.23 0.24 0.19
TasLe VI — 1246 SEXTUPLER
5 = 0.333 y =03
Drive — 1.0 13 1.6 1.3 1.6
@ 19.6 13.0 11.3 13.4 13.7
-] 0.0086 0.0239 0.0419 0.0405 0.0598
Punx/Parm 4.1-107% 1.7-107% 3.3-107 2,7-107 4.0-107
& tunmee ] 1.4.102 2,310 2.0-10"2 2.5-107? 2.3-10"?
p 0.0877 0.145 0.177 0.140 0.140
B 0.0179 0.0290 0.0314 0.0271 0.0259
So1/Smas 0.69 0.54 0.40 0.36 0.26
So2/Sumas 0.68 0.52 0.40 0.37 0.28
Sot/Smax 0.69 0.56 0.41 0.36 0.24
Siel Bk 0.68 0.53 0.41 0.37 0.28
7 biiorin 0.40 0.32 0.26 0.27 0.22
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TasrLeE VII — 1-2-4-8 OCTUPLER

v = 0333 vy =05
Drive — 1.0 1.3 1.6 1.3 1.6
«a 28.4 17.8 13.9 17.7 17.5
B 0.0071 0.0205 0.0380 0.0355 0.05637
P/ Punim 1.7-107% 7.2:107% 1.6-10~* 1.2-1074 1.9-1071
wWomax/ we 5.0-1072 1.1-107* 1.1-1072 8.0-10* 9.0-1073
4 0.0795 0.129 0.153 0.125 0.124
B 0.0156 0.0220 0.0255 0.0217 0.0212
So1/Suax 0.68 0.53 0.40 0.37 0.27
Doz/BSunx 0.68 0.53 0.41 0.37 0.28
Sis/Smas 0.G8 0.52 0.41 0.37 0.28
Sos/ S 0.68 0.50 0.39 0.37 0.30
"anoim 0.41 0.33 0.28 0.28 0.24

son of Table VIII and Table III shows that an idler at 2w, improves
both the efficiency and power handling capability of the quadrupler
using a diode with v = 0.

5.2 Computaticns with R Variable

Computations were carried out for the doubler and 1-2-3 tripler with
abrupt and graded junctions. The series resistance was assumed to be
that of the semiconductor wafer only: i.e., any contribution due to
contact resistance ete. was neglected. The normalization resistance
R was arbitrarily chosen at ¢ = 0.5.

With this normalization we obtain (Ref. 1, pp. 515-6)

R,q,"/Rm = 2(1 - (;}) (37)
for the abrupt junction and
Re/Rsp = 2911 ¢ (38)

TasrLe VIII — MurntiPLiERs wWiTHOUT IDLERS
(y = 0, Drive = 2.0)

Multiplier 1-4 1-6 1-8
@ 11.8 17.6 21.7
B 0.0144 0.0063 0.0034
Piiix/ Prisvia 2.2-10™ 4.1-107® 1.3-10~¢
Womas/@r 1.0-1071# 1.0-107* 3.0-1072*
y; 0.0415 0.0175 0.0098
B 0.0430 0.0189 0.0106
Sur/Smax 0.50 0.50 0.50
B ooutf Pmnx 0-5{) 050 0-50
Onorm 0.27 0.28 0.29

* Broad maxima.
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Fig. 5 — Efficiency of variable Rs multipliers vs drive level.

for the graded junetion. Equation (38) has a pole at ¢ = 0 which in
reality does not oceur because of the nonzero intrinsic conductivity of
the material. Arbitrarily, it was assumed that R./Rs varied according
to (38) for ¢ = 0.005 and had the value corresponding to ¢ = 0.005
for ¢ = 0.005.

Fig. 5 shows the efficiency of the abrupt- and graded-junction dou-
blers and triplers as a funetion of the drive level at wo/w. = 10% The
efficiencies of the abrupt-junction multipliers decrease slightly; those
of the graded-junction multipliers decrease more rapidly with increasing
drive level. These results are in contrast to the results for the model with
constant series resistance. For the graded junction the values of effi-
ciency for drive > 1, of course, depend on the value of § below which
R«/Rs is assumed to be constant. The values for drive < 1, however,
do not.

The complete tables for these multipliers are not included here, be-
cause all the values can be deduced from the results of the constant
series computation as follows:

All the values exeept efficiency are identical to the results for the con-

TasLE IX — VALvues oF & For Various DRIVE VALUES

Drive 10 | 1.3 1.6

Abrupt-junetion doubler 1.0 1.2 1.5
Abrupt-junction tripler 1.0 — 1.5
Graded-junction doubler W 1.5 3.0 4.0
Graded-junction tripler 1.5 2.8 4.0
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stant series resistance computation within 10 per cent. The values for
the efficiency can be read from the tables for the constant s model. To
do so one multiplies the input frequency wq of the variable Ry multiplier
by k and eomputes the efficiency at the frequency
U-’EJ’ = kuwy

using the value of « given in the constant Ry tables. These values agree
with the computed values within 3 per cent for efficiencies larger than
50 per cent.

The value of k is given in Table IX.

Needless to say, the correspondence given above applies to our particu-
lar definition of R only.
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Acoustic Beam Probing Using
Optical Techniques

By M. G. COHEN and E. I. GORDON

(Manuseript received January 8, 1965)

In Section I it is demonsirated that the amplitude of the light deflected
or scattered by an advancing sinusoidal acoustic wave, as a function of the
angle between the direction of light propagation and the acoustic wavefrond,
is proportional to the Fourier transform of the amplitude distribution of the
acoustic wave in the plane of the wavefront. Studying the angular depend-
ence of the oplical-acoustic interaction accuralely and direcily defermines
the angular distribution or far-field diffraction pattern of the acoustic beam
and incidentally delermines the angular response of the acoustic transducer
producing the beam. The angular resolution equals the angular spread in
the probing light beam. Experiments illustrating and verifying the lech-
nique are deseribed.

In Section I1 the effect of volume acoustic loss is determined. It is shoun
that loss does not change the considerations of Section I aparl from a
slight reduction in angular resolution unless the decay distance is com-
parable to the acoustic wavelength. The loss parameler does iniroduce a
mazimum usable acoustic beam width for the interaction (coherence width).
In addition, techniques for determining the acoustic loss are described.
Particular attention is given to lhe near- and far-field energy distribution
of the scatlered light beam. It is shown that the far-field distribution is
Lorentzian only under special circumstances. Consideration is given lo
probing beams with rectangular and Gaussian intensity distributions. Edge
effects are laken into account, and it is shown that these can make important
contributions to the line shape as well as lead to errors in the interpretation
of phonon lifetimes from scaltering experiments. Experiments confirming
the results are described.

693
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INTRODUCTION

It is well known that acoustic waves in transparent materials can be
used to deflect or scatter light beams.!? As a result, a great deal can be
learned about the energy distribution in the acoustic beam by studying
the angular and positional dependence of the optical-acoustic interac-
tion.

The paper is divided into two parts. Section I is devoted to the theo-
retical and experimental demonstration of the fact that the amplitude
of the light deflected by an advancing sinusoidal acoustic wave, as a
function of the angle between the direction of light propagation and
the acoustic wavefront, is proportional to the Fourier transform of the
amplitude distribution of the acoustic wave in the plane of the wave-
front. Thus the angular dependence of the optical-acoustic interaction
accurately and directly measures the angular distribution of the acoustic
energy. Stated another way, a study of the total power in the scattered
light beam as a function of the angle of the light beam relative to the
acoustic beam yields directly the far-field or Fraunhofer diffraction
pattern of the acoustic beam.

The power in the deflected light beam measures the acoustic intensity
at the position of the light beam. Absolute determination of the acoustic
intensity can be made if the photoelastic constants for the medium
are known. This technique is thereby capable of providing more infor-
mation about the acoustic beam than can be obtained with conven-
tional pulse-echo techniques or acoustic probes, such as deseribed by
Fitch and Dean,” which must ke used at a boundary of the acoustic
transmission medium. In particular, volume acoustic loss can be de-
termined directly. The precise direction and phase velocity of the acous-
tic wave can also be determined unequivocally.

In Seetion 1.1, the theory of the optical-acoustic interaction in the
absence of volume loss is sketched. Experiments verifying the basic
concepts are deseribed in Section 1.2.

In Section II the case of finite volume loss is considered. Particular
attention is given to techniques for determining the volume loss both
by probing the acoustic beam along its propagation path and by ob-
serving the far-field diffraction of the scattered light beam.

I. OPTICAL-ACOUSTIC INTERACTION IN THE ABSENCE OF VOLUME LOSS

1.1 Theory

The geometry of the interaction is defined in Fig. 1. The acoustic
wave is propagating approximately along the z axis, and the light
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Tig. 1 — Geometry of the interaction region. The z axis is out of the plane of the
paper.

beam in the x-y plane. It is assumed there is no z variation. For light
with a given polarization, the photoelastic effect produces a variation
in the dielectric constant which is proportional to the amplitude of the
acoustic wave. The amplitude of the acoustic wave is such that the
dielectric constant of the medium ¢ has a variation Ae given by

Ae(ry,t) = [Ae(y)]. cos (U — Kx) + [Ae(y)], sin (26 — Kx) (1)

in which @ is the acoustic angular frequency and K the acoustic propa-
gation constant (K = /v with » the acoustic velocity ). It ean be shown
that the optical field £ of angular frequeney w is deseribed by the
wave equation’

OE/ox" + 8'E/oy" — ¢

(1 4+ Ae/e)E/ = 0 (2)
in which ¢’ is the light velocity in the medium. In the absence of a
perturbation in the dielectric constant, £ is assumed to be a plane wave
with propagation constant & = w/¢’. As in Ref. 1, the perturbed E is
expanded in a set of plane waves appropriate to the grating orders
associated with a periodie index variation,

4o
E(eyt) = ;2:'@ Vi(y) exp 2[(w + I12)t — (ksin 8, + [K)x @)

— ky cos 6] + complex conjugate.
The quantity V;(y) can be identified as the amplitude of the Ith deflected
beam of frequency « + 2. The zero-order or main beam makes an

angle 6, with the y axis in the ax-y plane. The angle of deflection of the
Ith wave will be discussed shortly. Substituting (3) into (2) yields,
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after performing the required algebra, a set of equations for the ampli-
tudes V; given by
d’Vi/dy* — 2ik(cos 6,)dV i/dy + 2k (cos 6,)8.V:
= —3K° (1 4 19/w)[([Ae/d. + t[Ae/e) Vi (4)
+ ([B¢/ele — i[Ae/e) V]

in which

81 = [2UkK (v/¢’ — sin 6,) — PK*(1 — v*/c"*))/2k cos 8. (5)

In the limit Ae/e << 1, V, is a relatively slowly varying function of
y and d°V/dy’ is negligible compared to the other terms in (4). Ne-
glecting ©@/w << 1 and defining

E(y) = §(k/cos 6) ([Ae(y)/ el + ilAe(y)/el) (6)
(4) can be rewritten (using * to denote complex conjugate)
dVi/dy + iB Vi = —LEV i + £Vl (7)

The initial conditions are V,(0) = 0 for { > 0, V4(0) = Vy. The
equation for the deflected wave amplitudes, (7), has been found by
many authors for the case # = constant and real. Solutions have been
found and are described in Ref. 1. More recent unpublished investiga-
tions" have yielded the same results. In what follows the major emphasis
will be given to the case £ = £(y) and to displaying the solution in a
form which has a simple physical interpretation. Consistent with the
experiments to be described, it is assumed that

-+o0
‘ tHydy | K1

and it follows that V,.; <« V. Thus to a very good approximation,
for{ > 0, (7) can be integrated to yield

Vily) ~ (exp —i8) [ dy'(=4ie(y)*Via(y)exp +iB/. (8)

A similar equation holds for I < 0 with £*V;_, replaced by £V 4.
Inspection of (8) indicates that all the V; will be essentially zero unless
B.L < = (in which L is a measure of the interaction length or width of
the acoustic beam). An exception may hold when £ is a rapidly varying
periodic function of y. This exception is of no interest here, since it
corresponds to a situation where the acoustic beam has eomponents
moving at large angles relative to the x axis. When L is small, the rest
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of the B.L cannot be small unless K°L/k < x. When this inequality
holds, many grating orders can be excited and the interaction is said
to be in the Raman-Nath regime. When K°L/k > = the interaction is
said to be in the Bragg scattering regime and only V; (or V_,) and Vo
can be nonzero.

In the region in which the deflected beam is observed, that is, beyond
the optical-acoustic interaction region, £(y) = 0 and one can without
error extend the upper limit of the integration in (8) to 4 . Thus the
amplitude of the deflected beam can be written

0
Vi~ (—3iVoexp —iBiy) dy'e(y’ ) * exp +ifyy’. (9)

A similar equation holds for V_; . It is assumed that because

oo
f E(y)dy

&« 1,

V, is constant. In fact V, differs from its initial value by terms of order

+
‘ [ ey

2

and higher. As an example of the error produced by this approximation,
consider the case where £(y) is constant over a length L and zero else-
where. Equation (9) predicts
Vi~ sin 38.L/B
while (7) predicts, in the Bragg scattering limit,'
Vi~ sind (8 + €))L/ (87 + €)'

which differs insignificantly when £7. << 1. Note that V; becomes small
when 8,L > , as noted earlier.

The quantity 8 can be evaluated as a function of 6 from (5), which
yields

Bir = [£2kK (v/c' — sin 8,) — K*(1 — v*/c"*)]/2k cos 6,
= +K(sin ® — sin ) /cos 6 19)
in which © is an angle defined by
sin @ = v/c’ F L(K/k)(Q — /7). (11)
The upper sign corresponds to [ = -1, while the lower sign is for
l = —1. If v/c’ were zero, ® would exactly equal the Bragg angle for

scattering off the acoustic wavefront. In actuality the scattering plane
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is rotated from the acoustic wavefront by an angle very closely equal
to v/¢’, which for acoustic waves can be neglected. In recognition of
this fact @ will be referred to as the Bragg angle.

Substituting (10) into (9) yields

V() =~ (—21iVy exp +iKy(sin 6 — sin ©)/cos 6)

-0
X dy't(y')* exp —iKy' (sin 6, (12)

— sin ©)/cos 6, .

As stated earlier, the amplitude of the deflected wave, resulting from
an interaction at angle 6, is proportional to the Fourier transform of
the acoustic wave amplitude. The relative intensity of the deflected
light beam is given by | Vi/V,|". Since £(y) varies as (cos 6)" [see
(6)], the substitution y” = 3'/ecos 8 puts (12) into a form which
can be recognized as the expression for far-field or Fraunhofer diffraction
for waves with propagation constant K. Thus | V1(6,)|* determines the
far-field diffraction pattern of the acoustic beam.

The integral in (12) may also be interpreted by noting that an
acoustic plane wave moving at a small angle ¢ with respect to the x
axis in the a-y plane can be described by a variation

cos [ — Kz cos ¢ + Ky sin §| = cos [Ky sin ¢]
- cos [ — Kz cosy]— sin [Ky sin ¢] sin [ — Kz cos ¢).
From (1) and (6) it follows that
£(y) = constant X exp —iKy sin y. (13)

Inserting this value of £ into the integral in (12) indicates that the
deflected intensity is nonvanishing only for

tan ¢ = (sin 6 — 8in ©®)/cos 6,

or, since ¥ is small, for ¢ &~ 6, — ®. Hence the deflected light intensity,
when the main beam moves at angle 6, , measures only the component
of the acoustic beam moving at angle ¢ =~ 6 — O relative to the x
axis. By studying the variation of the deflected light intensity as a
function of the angle 6, one determines the angular distribution of the
acoustic energy. Since the diffraction angle of the light can, in practice,
be kept small (<107 radians) the angular resolution can be quite
adequate except for the case of very high-frequency (> 10" eps) acous-
tic waves.



ACOUSTIC BEAM PROBING 699

Trom the above discussion it follows that for acoustic beams of finite
width 8, will never differ muech from ©® and (12) ean be written

Vilt) =~ [—3iVoexp +iK (6 — 0O)y]

R ; , (14)
Xf dy E(y )* exp —iK(8 — O)y.

The equation for V_, is the negative complex conjugate of (14) with
the appropriate value of © for !/ = —1.

The angle of the deflected beam can be determined directly from (3).
The [th deflected beam appears at an angle 8, relative to the y-axis in
the r-y plane defined by

(1 + SZ_;'w) sin 6, = sin B + l'K/lL (15)

In what follows ©/w << 1 will be neglected and only the case [ = <1
will be considered. Thus (15) can be rewritten [using (11)] as

sin #; = sin 6, — 2 sin ©. (16)
Defining the deflected angle as 8, — 6,, (16) can be solved to yield
0 — o~ —260 — (O — 8,)" tan 6, . (17)

Terms of order (@ — 6,)" and higher have been neglected. The deflec-
tion angle has a magnitude very closely equal to 2 | | and the varia-
tion in 8; — 6 is quite small when 8, is varied through a small angle
about ©. This fact will prove to afford considerable experimental con-
venience.

When discussing the experimental results two distributions of acoustic
intensity will be of interest. The angular dependence of the deflected
intensity will be reviewed here to provide continuity in the discussion
of the experiments.

Case I: A single acoustic beam of rectangular cross-section (see I'ig.
2a).

For this case the acoustic beam of width L is assumed to have a
constant amplitude

E(y) = ¢ —3L=y=3iL

=0 elsewhere
and

V_[(Bn) = (—'-%Z.E*Vn exp +2I\’(8u - @)y)
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Fig. 2— Schematic representation of acoustic beam ecross-sections; (a) single
beam, (b) parallel coherent beams.

+iL
! y ity  E r
-_LL dy exp —iK (6, — O)y (18)

sin 3K (6, — (-))L:l

= (1% V. ex K — @
= (—3*LV, exp +iK(6, — O)y) [ 1K (6 — )L

The angular dependence is precisely the same as that for single-slit
Fraunhofer diffraction. Note that the first zeros on either side of the
central maximum are separated by an angle

AB{] = ‘1:1?/]{[1 (19)
which is a direct measure of the acoustic beamwidth L.

Case [1: Two parallel coherent acoustic beams with phase difference o
(see Fig. 2b).
From (6) it follows that

£(y) cos (U — Ko — @) — E(y) (exp 1g) cos (4 — Kx)t

hence
E) = & -yW+L)sy=s —3(W - L)
= fexp iy iW-L)ysy=s W+ L)
=0 elsewhere,

Each beam has width L and the center-to-center spacing is W. For this
case

Vi(6) = (—3it*V, exp iK (6 — O)y)
Hw—L)
[[ dy’ exp —iK(8, — © )y
WD)

1 This is not an equality but is written to indicate that a change in the phase of
the acoustic wave implies an equivalent change in the argument of £(y).
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HwWH+L)

+ (exp —1¢) f dy exp —iK (6 — © )y']

LHW—L)

(20)

1 1r(g — (=
= (—it*LVoexp ilK (80 — © )y — 3ol) [%EM

1K(6— © )L
X cos HK(6,— 0 )W + .,a]] :

As would be expeected, the angular dependence is precisely the same
as for double-glit Fraunhofer diffraction (Young’s experiment).

One other point is perhaps worth noting in passing. The relative
intensity of the deflected light beam at the optimum angle is given by

| 3£L P = &l(Ae/e).” + (Ae/e)’IKL*/cos® 6

which is directly proportional to the acoustic power. Quantitative de-
termination of the acoustic power in the transmission medium can be
made if the photoelastic and elastic constants of the material are known.
Thus direct measurements of transducer efficiency can be made.

1.2 Kyperiment

The experiments to be described were performed using ultrasonic
waves in the frequency range 50-250 me/s. The transmission medium
was fused quartz (v = 5.96 X 10° em/s) with rectangular eross-section
of 1 X % inch and length one inch. A thin-film cadmium sulphide longi-
tudinal wave transducer was evaporated onto one end of the delay
line.t The faces through which the light entered and left the medium
were optically flat and parallel and were antireflection coated for 6328-A
radiation. In some cases the face opposite the transducer was terminated
with a mereury pool, which reduced the reflected amplitude by about
10 db.

Light from a (328-A He-Ne laser operating in the lowest-order trans-
verse mode with a power of a few milliwatts was polarized at 45° to
the direction of acoustic propagation. The acoustically produced strain
makes the quartz uniaxial; for longitudinal acoustic waves the optic
axis is along the direction of propagation. Hence, for the geometry
employed, the privileged axes corresponded closely to the x and z axes
and Ae for F. differed from Ae for E.. As a result the deflected beam
polarization was rotated from the 45° position. This was convenient
experimentally, since the zero-order or main beam could be effectively
eliminated with a crossed analyser without drastically attenuating the

+ The transducers were prepared by N. F. Foster.
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Fig. 3 — Experimental arrangement for observing angular dependence of deflected
light intensity.

deflected beam. A lens focused the deflected beam through a narrow
slit mounted in front of a photomultiplier. Deflection angles were of
the order of one degree.

The experimental arrangement is shown in Fig. 3. When necessary
the acoustic energy was pulse modulated. A mechanical table rotator
was also used since, as noted earlier, the angular position of the deflected
beam was essentially independent of the orientation of the acoustic
wave relative to the incident light beam, and it was unnecessary to
change the photomultiplier or laser position as #, was varied. Thus by
supplying a voltage proportional to the angular rotation of the table
to the X axis of the oscilloscope and the photomultiplier output to the
Y axis, the deflected energy as a function of 6, could be displayed. A
baseline was produced by pulse modulation of the acoustic energy.

A typical display is shown in Fig. 4 and very closely follows the pre-
dicted [sin 3K (8, — ©)L/3K (8, — ©)L]® behavior for a single acoustic
beam of rectangular cross-section. It should be noted that the angle
6, is that of the light within the medium and is smaller by the factor
n = 1.46 than the angle measured on the table because of refraction
in the quartz. (Severe errors are introduced when the surfaces are not
optically antireflection coated, because of multiple reflection. The
multiple reflection can be used to greatly enhance the optical-acoustic
interaction and will be discussed in more detail in a forthcoming paper.)
Using (19), the measured acoustic beamwidth corresponded very closely
to the width of the transducer. For very wide transducers (>2 em)
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Fig. 4 — The angular dependence for a rectangular beam cross-section which
closely followed the theoretical (sin z/x)* behavior. The angular separation between
zeros adjacent to the central peak was 06° at the frequency of 248 mc; using this
value in (19) one calculates the width of the acoustic beam to be 4.2 mm, which cor-
responds very closely to the width of the transducer. The peak deflected light in-
tensity was in the range 0.1 to 1 per cent of the intensity of the zero-order beam.
The acoustic intensity was of the order of 0.1 watt/cm?®.

deviations from the ideal (sin x/x)* behavior were observed and aseribed
to nonuniform transducers and finite resolution associated with diffrac-
tion of the light. The width of the beam was still deseribed by (19),
however.

The angle for optimum interaction, 8, = ©, is predicted by (11).
The difference between © for deflection into the [ = +1 beam (0,)
and O for deflection into the | = —1 beam (®_) is given by

B, —O_~~sin®, — sinO_

, (21)
= —K/k = — (Q/w)(c /v)

using (11) with »*/¢”® <« 1. Direct verification of (21) in the range
Q/27 = 50-250 me/s was obtained by using a narrow slit in front of the
photomultiplier and determining the angular difference between the

peaks of the (sin x v)? curves for [ = =+1.
The angle of deflection is given as 8, — 6, &=~ (IK/k). This was veri-
fied also for I = 1. No higher orders were observed, consistent with the
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fact that K’L/k > , placing the interaction in the Bragg scattering
regime.

It is interesting to note that when the delay line is unterminated an
acoustic standing wave is established. The I = +1 deflected wave at
frequency « -+ @ associated with one of the traveling acoustic waves,
and the I = —1 wave at frequency « — @ associated with the oppositely
moving acoustic wave are deflected into the same angle [see (16)] and
can mix in the photodetector. A beat at the difference frequency 2 (Q/2r)
was detected, and it was found as expected that the light was essentially
100 per cent modulated. The amplitude of the beat as a function of
#, also followed the (sin x/x)” variation.

Fig. 5 illustrates the results of an experiment in which the frequency
of the acoustic wave was swept periodically. When the deflected beam
was allowed to travel several feet and fall on the wall of the room the
reciprocating motion of the beam could easily be observed. The oscillo-
scope display shows the output of the photomultiplier as a function
of the acoustic frequenecy. The horizontal axis is approximately linear
with acoustic frequency. The narrow slit in front of the photomultiplier
sampled the Gaussian light distribution in the deflected beam as it was
swept across the slit. The “frequency width” of the beam using (16)
agreed well with the “angular width” of the beam associated with
diffraction. Successive photographs (top to bottom) show decreasing
sweep rates and sweep widths. When the sweep rate was sufficiently
slow, the acoustic resonances, separated by approximately 120 ke/s,
built up the acoustic energy to its steady-state value as seen in the
bottom photograph. The unequal spacing of the acoustic resonances
can be attributed to some vesidual FM in the swept oscillator which
produced a slightly nonuniform frequency base. The vertical gain was
kept constant, and it can be seen that no great advantage was ob-
tained in the resonant condition because the acoustic Q was not very
high. The attenuation of the fused quartz was measured to be 0.6
db/em or about 4.5 db for the round trip.

An interesting property of the transducer was uncovered during the
course of the experiments. The far end of the delay line was untermi-
nated and the driving signal was pulse modulated with pulses short
compared to the length of the delay line but long compared to the width
of the optical beam. The spacing between applied pulses was suffi-
ciently long that there was no overlap between each successive decaying
pulse train. Synchronized, variable-delay pulses were applied to the
Z axis of the oscilloscope with the correct timing so that the optical-
acoustic interaction was observed for only one of the pulses in the



~1
o

<

VWV e, Wiy

Tig. 5— Light intensity at a fixed angular position as a function of acoustic
frequency. The photomultiplier samples the intensity of the approximately Gaussian
beam as it is swept across the defining slit.

decaying train. Successive pulses in the train could be studied by in-
creasing the delay.

Fig. 6 illustrates the appearance of the (sin a/x)? display associated
with each of the pulses in the train. Multiple exposures were taken to
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I'ig. 6 — Multibounce appearance of optical-acoustic interaction indicating angu-
lar divergence of successively reflected beams, The angular divergence is less than
0.1°

record the data on one photograph. In addition, each exposure covered
about 20-50 angular sweeps and each angular sweep covered many
thousands of pulses. Thus there is no doubt that the data were entirely
reproducible and that the observed displacement of the optimum angle
for successive pulses in the train was real.

The photograph ean be interpreted in the following way. The face
of the delay line opposite the transducer was optically flat and parallel
to the transducer face. Thus, if the acoustic wave were launched in a
direction normal to the face, it would be expected to follow the same
path after reflection from the opposite face at normal incidence (see
Fig. 7). For the first passage of the forward pulse, the peak of the
(sin x/z)? curve indicates the optimum angle for the [ = 1 interaction
and, incidentally, marks the precise direction of the first forward wave.
If the first backward pulse were exactly parallel to the first forward
pulse, the peak of the | = —1 interaction should have appeared at
precisely the same angle, although reduced in amplitude because of the
acoustic loss. This is seen to be the case. However, the second forward
pulse was slightly displaced in angle from the first forward pulse, indi-
cating that it was not parallel to the first forward pulse. Since the
opposite face should reflect specularly, the second backward pulse
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Fig, 7— Postulated paths of successively reflected beams. The angular spread is
greatly exaggerated.

should have been displaced by the same angle from the first backward
pulse except in the opposite direction. This is also seen to be the case.
The third forward pulse was displaced again from the second forward
pulse by the same amount and in the same direction as the second was
displaced from the first.

The behavior of these and succeeding pulses (see Fig. 7) can be ex-
plained by assuming that reflection of the transducer face was specular
with respect to a surface which was not parallel to the opposite face.
This could happen if the transducer were wedge-shaped but somehow
launched an acoustic wave normal to the delay line interface. Such be-
havior could introduce spurious results in conventional pulse-echo ex-
periments, since the angular dependence of the transducer response
is given essentially by the same (sin x/2)%

Further corroboration of the angular variation appeared when the
delay line was allowed to resonate. The acoustic intensity in the beam
cross-section showed variations which did not appear in the pulsed
beam.

A more critical test of the Fourier transform relation between the
acoustic intensity and the angular dependence of the deflected beam
was performed using the arrangement shown in Fig. 8. In this case two
identical terminated delay lines were separated by a fused quartz
parallel flat. The 250 me/s signal was divided, isolated, and applied
to each transducer with a variable phase difference. The characteristic
(sin x/z)* behavior for each delay line individually peaked at the same
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Fig. 8— Experimental arrangement for double acoustic beam interaction.

angle and with the same amplitude, indicating that the acoustic beams
were aligned and had the same intensity.

The photograph in Fig. 9 exhibits the behavior predicted by (20).
The envelope has the behavior [sin 1K (6, — ©)L/3K (8. — 0)L]
superimposed on the cos® 3[K (6 — ©)W + ¢| behavior required by the
spacing W. The lack of a perfect zero can be ascribed to the finite angu-
lar spread of the light beam, which was not negligibly small compared
to the spacing between minima, 2r/KW, and thereby tended to slightly
wash out the perfect cos® & behavior. The observed number and spacing
of the minima are consistent with the spacing . In Fig. 10 the upper
photograph was taken for ¢ = 0 and the lower photograph for ¢ = #/2.
The peak deflected intensity is four times that for each beam, in agree-
ment with (20).

II. FINITE VOLUME LOSS

2.1 Theory

When the acoustic beam is attenuated, (1), which describes the acous-
tic wave propagation, must be modified by including a faetor exp —ax,
in which 2« is the reciprocal decay distance for the acoustic energy.
If the intensity of the acoustic wave is sufficiently low that the condi-
tions of Section I

(1 gayl< D
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Fig. 9 — The angular distribution for two coherent acoustic beams.

are satisfied, then a suitable solution for the deflected light amplitude
can be written

+o
E(eyt) = 2 Vily) exp —| I |ax exp i[(w + Q)¢
I

— (k sin 8 + IK)z (22)
— ky cos 6] + complex conjugate.

Note that (22) differs from (3), the solution for the nondecaying acous-
tic beam, by the factor exp — |/ |ax associated with the /th deflected beam.
Substituting into (2) yields an equation identical to (4) except that
the term in V. (for l > 0) has the factor exp —2ax. Therefore, strictly
speaking, (22) is not a proper solution. However, when Vi, < Vi,
to a very good approximation, (22) represents the scattered wave
amplitudes and V; is defined by (4). One additional difference arises:
the term B, is no longer given by (5) but rather must be written

B/ = B+ dla(sin 8, + IK/k)/cos 6, (23)

in which 8, is given by (5). A term in (a/K)* < 1 has been left out.
The significant point here is that B ean never be zero even when
6y = 0, corresponding to the optimum deflection condition. In this
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region, which is the only region of interest, K/k =~ —2 sin 6, and B
can be written

’

By ~ B — ia tan & . (24)

With the substitution of 8" for 8 all the results of Section I are valid
for the angular dependence of the optical-acoustie interaction. Thus

—]\F(&u — ("')) = —I\'(e[; = (")) = 'l‘a tan 80. (25)

As an example of the consequences of this substitution, consider the
angular dependence of the scattered intensity | £y (6o, x)|° corresponding
tol = 1. For finite o, (18), derived for a rectangular distribution and an
infinitely wide light beam, becomes

| E1(8y, x) [F = lexp —2ax — oL tan 6]

[ sin 3[K (8, — ©) + ia tan 6,)L [* (26)
K28 — ©)° + o tan® QL2

Nonessential constants have been suppressed and | E; |° normalized
so that it has the value unity for 6, = ©, @ = 0. This result has a straight-
forward interpretation. Since the scattered beam has an exponential
deeay in the cross section, the effective beamwidth is of order (2a)”"
cos 6y and the angular spread is 2a/k cos 6 .7 The product K (2a/k
cos 6y) gives rise to the term « tan 8 in (26) and limits the angular
resolution in observing the variation of | Vy(6,)[".
For scattering at the Bragg angle, 6, = 0,
_ lexp —2ax — aL tan O] sinh’ oL tan ©

| Bi(O) [ = L tan’ © . (2n)

It is instruetive to note that this result can be obtained from a very
simple ray picture of the seattering interaction. Consider Fig. 11, which
shows a typical scattered ray for interaction at the Bragg angle. Along
this path, defined by * = &y + y tan O, the contributions from each
scattering point are additive and proportional to the product of the
acoustic and light amplitude. Thus one can write for the normalized
scattered intensity

2

L
| Ei(®) | = | L™ f dy exp —alx, + y tan O) |. (28)
]

Evaluating the integral yields a result identical to that given by (27).
T See (36).
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Fig. 11 — A typical scattered ray for interaction at the Bragg angle.

Note that the intensity of the scattered light is reduced from its value
at el = 0 and can be related directly to the decreasing amplitude of
the acoustic wave along the ray path. This effect will be referred to as
“finite coherence width,” which arises because of the acoustic decay
and defines a maximum useful acoustic beam width I = (a tan ©)7",
Note that the coherence width is important relative to the considera-
tions of Section I only for o« =~ K.

In what follows the relatively simple geometrical picture described
above will be exploited to determine the near-field distribution of the
scattered light from incident light beams with a Gaussian intensity
distribution as well as for uniform beams of finite width. From this it
will be possible to caleulate the shape of the far-field diffraction pattern
of the scattered light. Experimental confirmation of these far-field
distribution patterns, which will be described later, constitutes a much
more rigorous test of the theory than direct observation of the near-
field pattern. In addition, it often offers considerable experimental
convenience.

2.2 Diffraction of the Scattered Light

The results of the previous seetion indicate that when the acoustic
wave amplitude decays as exp —ax then the scattered beam will have
superposed on its normal spatial dependence the factor exp —az. Thus,
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TFig. 12— Beam with Gaussian amplitude distribution incident at the Bragg
angle.

if the light beam is translated in the x direction by an amount Az,
the scattered light energy will be changed by an amount exp —2aAx
independent of the width of the light beam. Thus it is not necessary
to use narrow light beams to probe the exponential decay of the acoustie
energy.

In cases where it is inconvenient or undesirable to translate the light
beam relative to the acoustic beam, the decay constant can be deter-
mined by studying the near-field decay of the scattered light beam in a
direction parallel to the acoustic beam. In performing this experiment,
it is convenient to use a Gaussian beam as obtained directly from a
gas laser (TEMg mode). However, the beam must be modified, as
can be seen from the following discussion.

If the incident beam has a Gaussian distribution, so that

x cos ® 4 ysin (E-)jr

w

1

Ey(xy) = exp —g[ (29)

as shown in Fig. 12, in which w is related to the spot size of the beam,
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then it is shown in Appendix A that the scattered beam amplitude can
be written

Ei(®a) = exp — (axg + $(x0/w)* cos’ )

o oprex
X {X"l exp Y* [f exp —y'dy (30)
0

Y
- f exp —yzn’y]}
0

X = v/2 (L/w) sin ©
Y = 1 4/2 (aw/cos ® + 2(xy/w) cos O)

where the variable x, denotes that the scattering originates from a
point * = 25, ¥ = 0 on the incident beam. When X « 1, the term in
braces can be expressed as

1 — i[al tan ® + (xo/w) (L/w) sin 20)]. (31)

The term ol tan © arises from the coherence width of the acoustic
beam. In faet, for w — e, (30) and (27) are identical. The linear
term 2, indicates that the distribution is no longer perfectly Gaussian
nor is it symmetrical. Except for this slight deviation, however, the
distribution is a displaced Gaussian with the same spot size as the
incident beam. Thus the scattered beam shape contains essentially no
information concerning the decay constant of the acoustic wave. This
situation can be changed merely by partly blocking the incident Gaus-
sian beam so that, for example, the part of the beam described by z
less than some value xg is removed. Under this circumstance the shift
in the peak of the Gaussian can be discerned and a can be determined.
Alternately, the far-field diffraction of the scattered light beam can be
observed. This is given by

with

1

o
Vie) = f daE(Ox) exp —ik(sin § — sin O)x. (32)

Zo

Using E,(©,r) as given in (30), neglecting the small change resulting
from the term in braces, yields

Vi(n) = v/x/2 w™" cos O [exp 2a’w’ (1 + in)*/cos’ O]
erfe [(xo/4/2 w) cos © + aw(l + in)/4/2 cos O]

in which erfe denotes the complementary error function and

(33)
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n = (k/a)(sin 8 — sin ©). (34)

For the unblocked beam (2, = — =), the scattered intensity has the
form, exelusive of constants,

| Viln)* = exp a’w'n’/cos® @ = exp k'w’ (sin § — sin ©)*/cos’ ©

which, as would be expected, is Gaussian in angular distribution. In
particular, the angular spread is independent of «. Contrast this be-
havior with the situation in which approximately half the Gaussian
beam is blocked, so that | x9/w | << 1 and the beam is wide compared
to the acoustic decay distance cw >> 1. In this limit

(using erfe z = (\/7 2) " exp —2°)

lim z=»x

[ Vit = 1/(1 + 7°) (35)

which is Lorentzian with an angular width at half power determined
by (using 34)

Af ~ 2a/k cos O, (36)

It is perhaps instructive to rewrite the parameter » in a slightly differ-
ent form. Suppose an experiment is performed, similar to that asso-
ciated with I'ig. 5, in which the scattered light beam is observed at a
fixed angle ® but the acoustic frequeney is varied. Clearly the angle 8
can be considered to represent the peak of the energy distribution as a
function of the acoustic frequency. Using (15), which defines the scat-
tering angle for a given acoustic frequency and a given k, 9 can be written

n = 2(9 — Qu)T = 2(&.‘ - (JJ(I)T (37)

in which @, is the acoustic frequency corresponding to interaction at
angle ® and @ corresponds to angle 6. The parameter r = (2a0) "
corresponds to the phonon lifetime if (2a)' is interpreted as the pho-
non mean-free path. As would be expected, the full width of the Lorent-
zian at half power is + '. The difference @ — @ also appears at the
optical frequencies.

The basic conclusion here is that one can study phonon lifetimes
(or mean-free paths or acoustic decay distances) by observation of the
Lorentzian linewidth in a seattering experiment such as described, but one
cannot use a full Gaussian beam such as might be obtained from a gas
laser. Rather, a half-Gaussian beam whose width is large compared to
the decay distance is required. A discussion of this result relative to the
case of Brillioun scattering with thermally generated phonons is beyond
the scope of this paper and is reserved for future consideration.
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Fig. 13— Uniform beam of finite width w incident at the Bragg angle.

Another distribution of interest because of experimental simplicity
is the uniform beam of width w. With reference to Iig. 13, the near-
field distribution of the scattered heam amplitude for interaction aft
the Bragg angle may be written as

1A

E @) = (x/d) exp —ax 0=ax<d

= exp —at d<ax= w' (38)

= [(w' +d — x)/d] exp —ar w<es=w +d

in which d = 2L tan ® and ©" = w/cos ©. The far-field distribution
can be written as

wi—-d
Vi) = fo el O) exp — o (39)

which yields after some manipulation
1 —exp —all + in)w':l[l — exp —a(l + in)d]
- - . (40
no = [T a1 + ind i

When the coherence width is sufficiently large that ad = 2al tan ©
& 1, the scattered energy distribution has the form
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1 4+ exp —2aw’ — 2[exp —aw'] cos aw'n
a*(1 + 7*) '

Note that the angular distribution is Lorentzian only in the limit
aw’ > 1. When aw’ is not large, diffraction associated with the beam
of width w modifies the line shape. (Even when a = 0, if d/w’ is not
very small, the “edge effect” will change the far-field diffraction pat-
tern.)

When ad is large so that the coherence width dominates, the line
shape becomes a Lorentzian squared. In the intermediate region where
ad is small but not negligible, one can write (40) in the form

‘ ""'1(1?) F = (41)

1 —ad 4+ (1/12)a2d7 — 7
1+ '

Thus the line shape is essentially Lorentzian except that the wings have
a value somewhat less than that of a true Lorentzian.

| Viln) [P = (42)

2.3 Krperiment

The experiments with finite & were performed using water at about
250 me/s. The water cell consisted of two parallel quartz flats which
were antireflection coated on the air side. Reflection at the quartz-
water interface was negligible. One end of the water cell consisted of the
fused quartz delay line described in Section I, which acted as a reso-
nant buffer rod with evaporated-layer CdS as the longitudinal wave
transducer. The opposite end of the cell was sufficiently far away that
no reflections oceurred. The traveling acoustic wave was square-wave
modulated at 1 ke/s to allow synchronous detection of the scattered
light.

A narrow slit was mounted in front of a photomultiplier and the entire
assembly mounted on a micrometer-driven stage. The intensity dis-
tribution of the scattered light as well as that of the main Feam could
be mechanieally scanned in the near or far field.

Near-field traces were taken with the slit as close to the water cell
as possible; far-field traces were taken with the slit in the focal plane
of a im focal length lens. The output of the phase-sensitive detector
was applied to the 1 axis of an X-Y recorder. The X axis was driven
by the reference voltage from a Hewlett-Packard sweep drive unit
attached to the mierometer stage. Visual confirmation of the recorder
traces was made by observing the scattered light with a telescope focused
on the cell for near field, and to infinity for the far field. The acoustically



718 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1965

Lol

DEFLECTED INTENSITY

1 1 1 1 1 1 1 1 1 1 1 1
DISTANCE ALONG ACOUSTIC BEAM (1 DIV=0,003")

Fig. 14 — Deflected light intensity in arbitrary units vs distance along the acoustic
beam.

scattered light could easily be distinguished from other “dirt” scattered
light, since there was no granularity as is common for stationary scat-
terers.” Acoustic streaming” could also be observed.

As expected, the far-field diffraction of the acoustic beam, observed
as described in Section I, exhibited little “coherence-width” degrada-
tion, i.e., the angular smear introduced by the term a tan & in (26)
was only 107* of the zero spacing. In what follows all observations were
made at 6, = ©.

The decay constant & was measured using a Gaussian beam from the
laser and translating it along the acoustic beam. Fig. 14 is a semilog
plot of the deflected intensity in arbitrary units vs distance. The curve
yields the value « = 12.6 em™'. For comparison, it is necessary to ex-
trapolate values of a measured at lower frequency.” The measured
value o/f* = 2.1 X 107 (em™ sec’) (f is the acoustic frequency =
245 me/s) gives results in good agreement with the low-frequency results.
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L

Fig. 15— Far-field diffraction pattern of the beam scattered from a 245 me/sec
acoustic wave in water. The open circles correspond to a true Lorentzian matched
to the peak and half-power points of the experimental curve.

The spot size of the Gaussian light beam was several times wider than
the acoustic decay distance.

Near-field traces of scattered Gaussian, half-Gaussian, and uniform
beams were obtained and gave results in qualitative agreement with
the results of the previous section. No quantitative measurements were
made.

Quantitative measurements were performed on the far-field pattern.
A typical result is illustrated in Tig. 15 and was obtained with a half-
Gaussian beam with a spot size in excess of one centimeter. The open
circles are for a true Lorentzian mateched to the experimental curve at
the peak and half-power points. Note that the wings of the experi-
mental curve are slightly less than the true Lorentzian value, as might
be expected from the edge effect. The measured angular width [using
(36)] agrees with the measured value of « within 5 per cent.

2.4 Conclusion

A technique for probing acoustic beams in optically transparent
materials has been deseribed. The technique is based on a Fourier
transform relationship between the intensity distribution in the eross
section of the acoustic beam and the angular dependence of the optical-
acoustic interaction. It allows unequivocal determination of the volume
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acoustic loss or phonon lifetime independent of the transducer and
other boundary effects, precise determination of the average direction
of the acoustic beam, and observation of the far-field diffraction pattern
of the acoustic beam. It also determines the angular response of the
transducer. When there is reason to believe that there is no phase shift
in the cross-section, or if there is knowledge concerning the phase shift,
the spatial distribution can be determined from the inverse Fourier
transform of the measured angular distribution. Experiments illustrating
and verifying these relationships have been described. Some of the far-
field results for the scattered light intensity have relevance to optical
beam deflection devices.’
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APPENDIX
The amplitude of the incident Gaussian beam is given by
By(z,y) = exp —5°/w’.
Fig. 12 shows that for a beam incident at angle ® with respect to the
i axis
r=ysin® 4+ vcos®
so that

By (55} = e —] (y sin © :;2;:: cos E-))-_

The scattered wave originating from (xy,0) travels along the line
¥ = 2 + y tan ©. The acoustic wave amplitude is given by exp —au.
The total scattered amplitude associated with the point (29, 0) on the
incident light beam ean be written

L
EOux) = f dy exp —alaxy + ytan ©)
’ (42)

_ 4 [ysin ® + (x0 + y tan O) cos ]k
2 2
w

following the discussion in Section II. Multiplying out and completing
the square in the exponential yields
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2
By (Om) « exp —ary — % co-a © -l— S5’ 6 (a tan @
+xsinz®)ﬂxf"d o _25in2® (43)
—wr . Y €Xp T

2 2
[+ {omas2i2) u T

With the substitution

_ , | ew 2 /2 sin ©
- (y T [t-os st E)] sin U) w

(43) becomes

2 2
&y 2 aw 2 2y cos ©
E(0O,x) « exp —axy —3 o €0 e+ 3 (co + =

NG w
w (I+1[cdw92 2%&059] Bme)ﬁnme (44)
aw Zo cas
‘\/9 sin © TG-'- e |

exp —y" dy’ .
This reduces to (30) upon substitution of

~ L\ .
V2 ({0) sin ©
- 9 -‘t) )
1 ,‘\/_(mso (w cos O ).
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On the Simultaneous Measurement of a Pair of
Conjugate Observables

By E. ARTHURS and J. L. KELLY, JR.

( Manuseript received December 16, 1964)

A precise theory of the simultaneous measurement of a pair of con-
jugate observables is necessary for obtaining the classical limit from the
quantum theory, for determining the limitations of coherent quantum
mechanical amplifiers, ete. The uncertainty principle, of course, does
not directly address this problem, sinee it is a statement about the vari-
ances of two hypothetical ideal measurements. We will adopt the ap-
proach that there exist instantaneous inexplicable ideal measurements
of a single observable. Just as von Neumann' uses an ideal measurement
together with an interaction to explain an indirect ohservation, we use
ideal measurements together with interactions to explain the simultane-
ous measurement of an observable and its conjugate.

The joint measurement described below is complete in the sense that
all pertinent past history is subsumed under the meter readings. A pre-
cise formula for the joint probability distribution of the results of the
measurements is given. The variances given by these distributions
satisfy an inequality like the uncertainty prineiple but with an extra
factor or two. It is also shown that this inequality governs any con-
ceivable joint measurement. The single measurement of an observable
is a limiting case of the joint measurement when the variance of one of
the measured variables is allowed to approach infinity.

Sinee we are trying to measure two observables, we will introduce two
meters, that is, two one-dimensional systems which will be coupled to
the object system. Since the two meter positions commute, we can make
ideal simultaneous measurements of them. Our interpretation will be
that these two measurements will constitute a simultaneous measure-
ment of the two noncommuting observables of the object system. We
will see that we cannot let the strength of our interaction become in-
finite, unlike the indirect measurement of Ref. 1, but must adjust it to
a certain critical value. We will find that after the interaction and the
measurement of the meter values that the system is left in a state which
is completely determined by the meter readings and a certain parameter
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which we will call the “balance,” having to do with how near our joint
measurement is to either of two ideal measurements.

To effect the desired measurement, the coupling must be deseribed
by the following Hamiltonian:

Hint. = K(QP:+PPu) (1)

where p,q are the positions and momentum we wish to be measured and
P, , P, are the momenta of the two single-degree-of-freedom systems
we are using for meters. The positions of the two meters will be x and
. In addition, we require that the meters initially be in the states M (x)

and N (y), where
’ 7 - 2 A —z2 /h
M) = (E) e

N(y) — (_:i_b). e—by!

and b is the “balance.” The strength of the interaction K is assumed to
be sufficiently large that other terms in the Hamiltonian can be ignored.
Hence the Schridinger equation will be (i = 1)

de , dp . dp )
at (q ar " agay 3)

with the initial condition
elg,w,y,0) = Flg)M ()N (y) (4)

where F(g) is the state of the system to be measured and the system and
the two meters are assumed to be independent prior to the interaction.
Equation (3) is solved by Fourier transforming on y. The solution is

algaad) = f Flg — wik) M (x — gtk + 3wf'k)
[ )
exp — (w’/4b)
(4mwb)t
To obtain the results we desire it is necessary to make ideal measure-
ments of ¥ and y at { = 1/K. In the following, ¢ will be assumed to be
equal to 1/K and the time will be suppressed in the notation.
The joint probability distribution for the commuting observables
and y, P(x,y) is given, of course, by

exp (fwy) dw.

-1

Pay) = [ lof de (6)
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Then, using (5), we have

P(ay) = (ﬁ); _[: F(g) exp — [% @&— q)”]

. @
-exp — (igy) dq
or, if G(p) is the momentum wave function of the system
) TR ) b i
P(ry) = (471) ‘L G (p) exp — [Q (y — p) ]
. (8)

-exp — (ixp) dp

That is, the joint probability distribution is the Fourier spectrum of the
wave function multiplied by a Gaussian window whose width is related
to the balance of the measurement.

The new wave function for the system after the measurement is given
by substituting the results of the meter readings in the wave function
and renormalizing. If we denote the measured value of 2 by z,. and the
measured value of ¥, ym , the new state of the system is given by

) 1 H
F’ == @ (q!'l ) ym) - ()
(q) f [ ® (q,.l',,, 1.’)':::} i2 dq 11’1)

’ (9)
‘exp — [E (g — za)* + iqym:|~

Notice that the measurement is complete, in that the state of the system
after the measurement is dependent only on the meter readings and not
otherwise on the state of the system before measurement. We also notice
that the system is left in & minimum Gaussian packet after the measure-
ment, with mean position r, and mean momentum y, , which is an
intuitively satisfying result.

From (7) or (8) it is easy to verify that the expected value of x is equal
to the expected value of ¢ before the interaction and that the expected
value of y is equal to the expected value of p before the interaction. The
variances of & and y are related to the variances of ¢ and p before the
interaction by

o = 0o, + b/2
a a9 (10)
o, = op + 1/2b.
Henee the variances are individually larger than those of the wave fune-
tion F(q) due to the disturbances caused by the joint measurement. IFrom
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(7) and (10) it can be seen that in the limit b — 0 distribution of x is the

same as that of an ideal measurement of position and the system is left

in an cigenstate of position. Similarly, if b — =« we have an ideal momen-

tum measurement and the system is left in an eigenstate of momentum.
From (10) and the uncertainty principle

0,0y = 1/2 (11)
we can deduce
ooy = 1 (12)

which is the proper uncertainty principle for the joint measurement.
The minimum can actually be met when F(g) is a minimum Gaussian
packet and the balance b is suitably adjusted. It is interesting that, when
F(q) is a minimum Gaussian packet, (8) shows that the meter readings
are distributed as independent Gaussian random variables.

We will now show that the bound expressed by (12) is valid for any
joint measurement that meets certain reasonable requirements.

Let us consider a joint measurement from a more general point of
view. As before, we will have a meter (a system with at least two degrees
of freedom) interact with our system. The initial wave function for the
meter plus system will be the product of the system wave function F(q)
and the meter funetion M (waws , ...). After allowing the interaction to
proceed for ¢ seconds we will measure two observables, say x(t) and y(1),
which will hopefully measure the system position and momentum. In
the Heisenberg representation we may write without loss of generality

x(t) = q(0) + A
y(t) = p(0) + B.

If we normalize with a scale factor of unity on both measurements, it is
natural to require that the expectations of wx(t) and y(f) satisfy

(x(t)) = (g(0))
() = (plo))

uniformly for all initial states of the system, i.e., for all F(qg). This im-
plies that

(13)

(14)

(4) = 0
(BY = 0

(15)

identically for all F(g). From this and the fact that the initial wave
funetion for the system plus meter factors, it can be shown
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0
0.

{gA) = (Aq) = (Bg) = (¢B)
(pA) = (Ap) = (Bp) = (pB)

Secondly, we require that x(¢) and y(1) commute so that they may be
simultancously measured. I'rom this and (13) we have

(B,4] = [g,p] + [g,B] + [4,p]. (17)

Squaring both sides of (17) and taking expectations, it follows from (16)
that

(16)

(—14,BF) 2 1 (18)
which implies
(A%(BY =z 1/4. (19)
Using (13) and (16), we obtain
oo, = o0, + (A*UBY) + 0B + 0,54% (20)

where ¢, = ((x — (1))2), ete.
I'rom (11) and (19) it follows that

T:0y g 1 (2])
which is the desired result.
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