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Several techniques for translating the results of diagnostic tests into
specific fault identities are described. This translation can be difficult in
large and complex machines. The amount of test data required to isolate
faults, and the obscure symptoms some faults generate, preclude efficient
manual test -by -test interpretations.

The additional observed fact that a significant number of faults yield
inconsistent test results from diagnosis to diagnosis demands a flexible
interpretation of data. Techniques are described for producing fault dic-
tionaries which can be used by the maintenance craftsman to identify ma-
chine faults in a relatively short time. These techniques utilize multidimen-
sional geometric representations of diagnostic results, methods for identifying
and ignoring inconsistent tests, pseudo -random mappings, and other pro-
cedures for condensing and organizing the information contained in
diagnostic test data.

The results of applying these techniques to data obtained from the Bell
System's No. 1 Electronic Switching System are also discussed.

I. INTRODUCTION

The problem of locating faults in digital systems is becoming more
acute with the increased complexity of these machines and their ex-
panding use in real-time applications. The need for automatic testing
techniques for locating faults by automatic programmed diagnostic
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tests has been realized for some time and is being actively pursued in

many areas.1, 2 This need has particular urgency for a system designed
to provide uninterrupted service. Such systems require extensive sub-

system duplication as well as facilities for rapid fault isolation, loca-

tion, and repair. The Bell System's No. 1 Electronic Switching System
(No. 1 ESS), designed to control telephone switching functions, is an
example.3

When machines were smaller and simpler, even the use of diagnostic
tests to provide relevant trouble location symptoms was rare. An

expert could usually locate the trouble by a quick survey of the be-
havior of the machine. This may be described as the "eureka" ap-
proach.

With large complex machines, however, analysis of symptoms by
mere observation is lengthy and costly. Strange behavior sometimes
occurs which even the expert is hard put to explain. Even the addition
of test points and special diagnostic tools such as programmed testing
may not immediately clarify the situation. Further, the sheer quantity
of test data necessary to isolate a trouble to one of the myriad of
components comprising the machine often demands preprocessing
before presentation to the maintenance craftsman.

The techniques described in this paper evolved during the develop-
ment of No. 1 ESS. They were devised in response to the need for
translating the output of diagnostic programs into specific fault identi-
ties. Such translation techniques had to use a minimum of real time
and memory while being accurate and rapidly applicable by rela-
tively unskilled personnel. Our results were obtained by applying these
techniques to the data generated on the No. 1 ESS. This system and
particularly its central processor is sufficiently like other digital ma-
chines that we believe our conclusions have some general validity. For
readers who are not familiar with No. 1 ESS, a brief description of its
functions and maintenance plan is provided in Appendix A.

Section I reviews several conventional diagnostic data interpreta-
tion techniques-the so-called exact -match presentations, and points
out some of their shortcomings. Section II reports some general facts
concerning the inconsistency of test results and suggests a number of
solutions to the problem. These solutions fall into two general cate-
gories: the phase dictionary approach and the cell dictionary approach.
Section III describes the phase dictionary approach, its implementa-
tion in No. 1 ESS, its advantages and disadvantages, and also discusses

some alternate techniques. Section IV introduces the cell dictionary
approach and describes how it was implemented on No. 1 ESS. Evalua-
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tion results, obtained by applying these techniques to data obtained
from No. 1 ESS, are discussed in Section V.

1.1 Terms and General Background
A diagnostic test consists of the application of special inputs to a

machine for the purpose of locating a possible fault. The correspond-
ing responses are termed the test results or diagnostic data. A fault can
be defined as a physical defect in a logical element which will cause
incorrect machine operations. Test results are generally processed and
interpreted, either automatically by programs or by other manual
means, to give field maintenance personnel the necessary information
to locate and identify the faulty circuit component or packages. A
circuit package is the smallest replaceable module of a machine. In
No. 1 ESS, it consists of a relatively small number of components
mounted on a printed wiring board.3

There are at least two types of programmed procedures for fault
diagnosis: the "combinational" approach and the "sequential" approach.
In the combinational approach a fixed set of tests is applied to the
machine, and the results analyzed to identify the fault. The identifica-
tion process generally utilizes a fault dictionary which is a listing of
the test results of known faults organized in a fashion convenient for
look-up.2 In the sequential approach, the set of tests applied to the ma-
chine is not fixed.4 The result of each test is used as a basis for deter-
mining the next test. to be applied. Each fault, or a group of faults
giving identical diagnostic results, is then identified by a certain test
sequence-no additional data analysis or dictionary look -up is neces-
sary. It is noted that this distinction is to some extent academic. A
sequential analysis can be performed on data generated by the com-
binational approach. In cases where faults cause large numbers of
tests to give inconsistent results, this may be advantageous since the
sequential approach will be costly in terms of memory storage. Only
if the average running time of the sequential approach is significantly
less than the combinational approach and time is at a premium will
the sequential approach be a better choice. For these reasons, the com-
binational approach is used in No. 1 ESS.

The fault diagnostic information necessary for generating diction-
aries can be obtained by two fundamentally different procedures. The
two approaches are known as "program simulation" and "hardware
simulation." In program simulation the logic description of a machine
is compiled into a computer program which is designed to simulate
the behavior of the object machine. A particular fault can then be
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"introduced" into the object machine simply by appropriately chang-
ing the program description of the machine's logic. Subsequent logical
simulation of the machine under control of its diagnostic program re-
veals the object machine's actions under test in the presence of the
fault. In hardware simulation, faults are physically introduced into a
real machine by replacing good circuit components with catastrophic
failures such as shorts or opens. The diagnostic tests are performed
and results recorded each time a fault is inserted. A fault dictionary
can then be generated by processing test results obtained by either
method.

1.2 Straightforward Dictionary Presentations

One method of presenting diagnostic data for dictionary use is
simply to list for each fault only the failing tests. This method is quite
efficient when, on the average, few diagnostic tests fail. 5 A sample page
(with added comments) of such a listing appears as Fig. 1 (a).

In this example, the tests were grouped into so-called test phases
such as phase A, B, . . . G, H, . . . etc. The tests in each phase are
numbered sequentially. Ordering of entries in the dictionary is first by
phases in alphabetical order, then by test numbers within the phase.
This type of dictionary was employed in the first Electronic Central
Office which was in commercial use at Morris, Illinois between 1960
and 1962. A detailed description of its format and implementation is
contained in Ref. 5.

As can be seen, such a technique enables a relatively unskilled
maintenance man to trouble -shoot by merely searching for matches of
any particular pattern with entries in the dictionary. Furthermore, in
this representation, the exact configuration of test results is preserved.
This feature may be useful when dictionary look -up fails to locate the
trouble. The maintenance man may be able to locate faults by a direct
examination of the test pattern with the aid of other documents such
as diagnostic program listings, logic flow charts, etc.

However, this type of presentation suffers from the disadvantage of
bulk when the diagnosis is of any considerable size. (i.e., more than
about 1000 tests). Further, large numbers of diagnostic tests result
in large and complicated patterns, which in turn increase the diffi-
culty of finding matches with dictionary entries [see Fig. 1 (b) ]. This
technique is one of a class of methods called exact -match techniques
since an exact match between a test pattern generated by a real fault
and a pattern in the dictionary is required to identify the trouble.
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PHASE A

000 001 004 006 007
010 on 013 014 015
017 020 021 024 025
026 027 030 031 032
033 034 035 036 037
040 041 042 043 044
045 046 047 050 051
052 053 055 055 056
057 060 061 062 063
064 065 066 067 070
071 072 073 074 075
076 077 101 102 103
104 105 106 107 110
111 112 113 114 115
116 117 120 121 122
123 124 125 126 127
130 131 132 133 134
135 136 137 140 141
142 143 144 145 146
147 150 151 152 153
154 155 156 157 161
162 163 164 165 166
167

PHASE B

021 022 025 026 033
034 037 040 042 043
044 045 046 047 050
051 052 053 054 055
056 057 060 062 063

CIRCUIT PACKAGE 064 065 066 067 070LOCATION AND
TYPE PLUS 071 072 073 074 075

FAULT /DENT/TY 076 077 100 102 103
104 105 106 107 110
111 112 113 114 115
116 117 120 123 124

\126
CO -306 P -F52617-16

(a) (b)

Fig. 1-Sample page of fault diet ionary.

1.3 An Improved Exact -Match Technique

In order to reduce the problem of dictionary bulkiness and the
difficulty of manual look -up of large and complicated fault patterns, a
"number generation" technique is used in No. 1 ESS. This technique
is essentially a "hash" storage technique which effectively "reduces"
each diagnostic to a smaller fixed -length decimal number by means of
a psuedo-random mapping.6 Conceptually, the probability of mapping
two or more large binary numbers into the same decimal number of
relatively small size can be made arbitrarily small by a proper selec-
tion of the decimal sample space. A detailed discussion on the particu-
lar technique used in No. 1 ESS is incorporated as Appendix B.
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One interesting result is that if the mapping is truly random, the
expected number of diagnostics that will map into the same random

number is

Er = k - N(1 - (1 - ,

where N is the number of diagnostic test results to be mapped and k
denotes the smallest integer greater than or equal to login N, i.e., the
number of digits required in the decimal number. Thus, for No. 1 ESS,
in which the largest sample of fault patterns for any unit is no greater
than 105, a 12 -digit representation will suffice to insure that the number
of replications, as a result of the data reduction mapping, will be less
than one (if, of course, the mapping is truly random).

Fig. 2 shows a sample of a No. 1 ESS exact -match dictionary entries.
Each of the 12 -digit numbers was derived from a fault pattern by a
pseudo -random manipulation of the pattern. As described in Appendix
B, the results of this pseudo -random mapping method agreed very well

with the theory.
It is estimated that a five -to -one reduction in bulk was thus achieved.

In addition, it was found that the time required for look -ups was
greatly reduced.

056010Ripsver7

5755 5302 0696 0-30-36,A006
5757 2149 0556 0-24-28,A074
5757 6284 5657 0-10-46,A094
5758 3201 1135 0-10-33,A091

0-10-36, A091 EQUIPMENT LOCATION
5758 4144 6651 0-24-14,m:106} AND CIRCUIT

0-24-30,Aoo6 PACKAGE TYPE
DICT/ONARK---"5761 7903 4116 0-08-16,A095
NUMBER 0-10-06,A093

0-12-06,A093
0-24-22,A006

5764 2170 7969 0-26-28,A004
5768 1286 6872 0-14-38,A011
5772 623o 7601 0-21-41,A008
5776 0873 1508 0-26-10,A003
5776 3084 5734 0-26-14,A0103

Fig. 2 - Sample format of No. 1 ESS dictionary entries.
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1.4 Shortcomings of "Exact Match" Techniques
A major problem in using such approaches is that occasionally a

diagnostic generated in the field does not exactly match a dictionary
entry. This will arise if the results of the field diagnosis of a given
fault differ from those yielded by a diagnosis on the same fault which
was used to prepare the dictionary, i.e., the test results are inconsistent.
There are many possible causes of inconsistent test results. Some of the
more obvious ones are (i) improper machine initialization, i.e., if the
effect of the fault is such that it prevents the machine under diagnosis
from being properly initialized, the test results may then vary from
time to time, depending on the state of memory elements at the time
the fault occurs, (ii) presence of intermittent or marginal faults, i.e.,
faults that cause machine malfunction at some times but not at others,
and (iii) other factors such as the presence of noise and/or variations
in circuit component values, etc. Consequently, supplementary tech-
niques are desirable.

II. GENERAL FACTS CONCERNING INCONSISTENT TEST RESULTS

Suppose one had the fault, patterns for a number of sample faults
that were simulated on a test model of a digital machine for purposes
of producing a fault dictionary. Further, suppose that these same
faults were introduced into a different but supposedly identical ma-
chine and the fault patterns collected. A comparison of the two sets of
data is revealing.

Two such sets of data were collected using No. 1 ESS. A sample of
faults was inserted in the central processing unit of a No. 1 ESS office
in Chase, Maryland and compared with dictionary results obtained
from another No. 1 ESS at the laboratory. The sample consisted of 302
faults selected so as to be both well distributed and representative of
expected troubles. Of the 302 faults inserted, 58 produced printouts
that could not be found in the exact -match dictionary. For various
reasons, only 40 of these 58 inconsistent printouts could be analyzed.*
This experiment and a comparison of the test results of these 40 faults
with their corresponding dictionary patterns show that:

(i) About 15 to 20 percent of the data for corresponding faults
disagree.

(ii) Among the diagnostics that are inconsistent, the majority differ
in only a few bits.

* This experiment is reported fully in Section 5.1.
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(iii) Furthermore, these differences generally cluster, i.e., a rela-
tively small group of adjacent test bits are affected. Several groups
may be affected but in general, the groups do not consist of more than
about 25 tests (about j percent of the overall diagnostic).

(iv) Within these clusters the diagnostics produced by the test
model tend to have somewhat fewer failing tests.

(v) Only about 25 percent of the inconsistent diagnostics have ex-
tensive differences.

These observations are qualitative in nature and can only claim to
be representative of No. 1 ESS. However, they serve to suggest a
number of ways to attack the problem.

Observation (iii) above suggests that two differing patterns for the
same fault could be made to match if the cluster of differing test bits
were masked out. This idea resulted in the Phase Dictionary, the
Phase Prime Dictionary, and the Test Group Dictionary (see Sec-

tion III).
Observations (ii) and (iv) suggest that the two differing patterns

are related and that their relationship could be expressed perhaps by
some function of their Hamming distance. This idea resulted in various
forms of "Cell" Dictionaries (see Section IV). We shall consider first
the Phase Dictionary and some of its relatives.

III. PHASE DICTIONARY APPROACH

3.1 Characteristics of Diagnostic Data

The usual technique used to design diagnostic tests for a large and
complicated machine is to divide the machine functionally into many
small and disjoint (if possible) logic blocks. A logic block can be taken
as a group of functionally related circuits, such as an order decoder
or an index register, etc., whose input-output terminals are readily
accessible. The tests are then designed to pinpoint faults which may
exist in each logic block, assuming other logic blocks in the machine
are faultless. The overall diagnostic is therefore composed of a con-
catenation of test results of many so-called test phases, each of which
consists of tests that are aimed at testing a particular logic block.

Normally, when a fault occurs, it is expected that the fault will be
detected by many of the. tests that are specially designed to test that
part of the circuitry where the fault lies. Thus, one would expect that
in each overall diagnostic, the test failures would be roughly dis-
tributed over a certain number of test phases, rather than over all test
phases. This is, indeed, the case as one examines, for example, the
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diagnostic data of one unit of the No. 1 ESS central processor complex,
the Central Control3 (see Fig. 3). The Central Control has a total of
28 test phases; the overall diagnostic is about 5000 bits long. Out of
102,518 faults simulated, over 97 percent of them yield diagnostics
which indicate some -tests -failed in only four or fewer test phases.

3.2 General Description of Method
The essential idea of the Phase Dictionary approach lies in the

notion of identifying "phase diagnostics," i.e., the failure patterns of
individual test phases. That is, in addition to the normal "exact -
match" dictionary (as it is described in Section 1.3) one further pre-
pares a supplementary Phase Dictionary which is divided into many
chapters, each of which is produced by processing each diagnostic
phase as if it were the whole diagnostic. Then a fault would be re-
dundantly identified by a number of dictionary entries: one in the
exact -match dictionary and many in the phase dictionary, as many as
the number of test phases that failed in its overall diagnostic. For
example, a fault, ft, which has failed some tests in test phases 2, 3, 4,
and 6 would be identified by an entry in the exact -match dictionary
and four additional entries in the phase dictionary, one each in
chapters designating test phases 2, 3, 4, and 6.

32

30

28

26

24

22

20

18

R 16

14

12

10

x 103

DISTRIBUTION OF NUMBER OF FAULT DIAGNOSTICS,
R, WITH p TEST PHASES FAILED

NOTE:
8

TOTAL NUMBER OF TEST PHASES = 28
6 TOTAL NUMBER OF FAULTS SIMULATED

= 102,518
4

2

0
0 2 4 6 8 10 2 14 16 18 20 22 24 26 28

p

Fig. 3 - No. 1 ESS central control diagnostics.
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Now suppose fi is diagnosed in the field and its failure pattern
obtained. Five numbers will then be generated: a normal exact match
dictionary number, which is generated by the overall pattern of the
diagnostic and four phase numbers, each of which results from manipu-
lating diagnostics of test phases 2, 3, 4, and 6. The. maintenance person-
nel normally will first try to find the overall number in the exact -match
dictionary. If there is a match, he can simply replace the circuit
package (s) indicated by the dictionary entry. If, on the other hand,
he cannot find a match, he will then consult the phase dictionary
by matching phase numbers with dictionary entries in chapters
2, 3, 4, and 6. Assume the inconsistency in the diagnostic is small and
is confined to, for example, test phase 3 only. The maintenance man
will probably discover that he can successfully match phase numbers
for test phases 2, 4, and 6 with some entries in chapters 2, 4, and 6.
He will not, however, find a match in chapter 3 because the field diag-
nostic of h which generated the phase number for test phase 3 differs
from the diagnostic which was used to generate the dictionary entry.
Nonetheless, the maintenance man can still examine the circuit pack-
age (s) indicated by the phase dictionary entries of test phases 2, 4,
and 6 where he finds a match to determine which package (s) is to be
replaced. Since he knows that the circuit package (s) associated with
fault, ft, ideally would be. listed under all of these entries, he should,
therefore, select the package (s) that has appeared the greatest number
of times. This majority rule approach not only leads one toward re-
placing the proper circuit package (s) but also reduces the number of
unnecessary package replacements.

A slightly more sophisticated form of the phase dictionary can
eliminate the need for the somewhat laborious majority rule approach.
The phite dictionary consists of entries formed by masking out all
failing test bits except those in a single phase. The Phase Prime Dic-
tionary consists of entries formed by masking out only a single phase
at a time. Thus, if tests in phases 3, 4, and 5 failed during diagnosis,
a number for phases 3 and 4, one for 3 and 5, and one for 4 and 5
would be produced. Then if the inconsistencies fall only in say phase 3,
only the number produced for phases 4 and 5 could be matched. Note
that the majority rule is not needed here as the dictionary for phases
4 and 5 has already performed that function automatically.

The phase prime dictionary, of course, is a little less general than
the phase dictionary in that it is useful only if inconsistencies are
confined to a single phase.
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3.3 Implementation in No. 1 ESS
The general program flow for implementing the phase dictionary is

shown in Fig. 4. The diagnostic data obtained through simulation are
originally stored on magnetic tapes. Each diagnostic is read into core
and is divided into many segments, one segment of each test phase. A
phase dictionary number is then generated for each test phase by
manipulating diagnostic data in that phase. The phase dictionary
number computation is performed for each phase of all fault diag-
nostics. All phase dictionary numbers of the same. test phase are
grouped together and sorted. The sorted listings are then printed to
form the various chapters of the phase dictionary.

3.4 Advantages and Disadvantages
The major advantage of the phase dictionary over the exact -match

dictionary is its ability to locate faults whose diagnostics are incon-
sistent. That is, if the inconsistency of test results is confined to a
small number of test phases, the phase dictionary can still locate
faults by matching phase dictionary numbers. Further, the use of
phase dictionary numbers also offers a possibility for identifying mar-
ginal faults. This can be done by repeatedly exercising (on-line) cer-
tain phase (s) of the diagnostic tests and then matching the phase
numbers, since repeatedly exercising all diagnostic tests could be ex-
tremely costly in terms of system real time.

The phase dictionary in general tends to be bulkier than the exact -
match dictionary. This is because each fault is multiply listed in the

TEST DATA
FROM

SIMULATION

PRINT

DATA
SEGMENTATION

SORT

PHASE
NUMBER

COMPUTATION

PHASE NUMBERS
GROUPING

(PHASE I)

y:
,--

LIHASE

Fig. 4 - Program flow for phase dictionary implementation.
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dictionary. For the particular example shown in Fig. 3, a phase
dictionary is approximately 21,- times the size of the exact -match
dictionary, as can be determined by calculating the average number
of failing test phases per diagnostic. Another shortcoming of the
phase dictionary is that if the inconsistency of test results affects
all test phases or if the phase which the inconsistency affects
is the only failing phase in the overall diagnostic, the fault cannot
be successfully identified with this approach. Although wide variations
in test results for the same fault are less likely to arise in a good
diagnostic design, they nevertheless represent a problem.

3.5 The Test Group Dictionary
A third form of dictionary that uses the idea of masking out incon-

sistent tests has been investigated. This dictionary was constructed by
considering each test of the diagnosis independently and determining
what faults caused this test to fail. Those faults would then be
grouped and associated with that test. When this was done for all tests,
the Test Group Dictionary was formed.

It was originally hoped that the list of faults associated with a
given test would be small enough on the average so that a majority
rule technique could be used to advantage when analyzing a field
diagnostic result. Unfortunately, in all of the cases implemented so
far, the average listing is well over 30 faults per test. This precludes
its use as a manual tool. If stored on tape, however, and searched by
machine, it gives promise as being a valuable laboratory tool. It might
also be useful if the maintenance facilities for a number of machines
were centralized.

IV. CELL DICTIONARY APPROACH

4.1 Introduction
The phase dictionary approach is a technique for finding exact

matches between patterns by eliminating those portions of the patterns
where differences are found. The "cell" dictionary approach, on the
other hand, is not concerned with exact matches between patterns but
with near matches. In the cell approach, the entire fault pattern is
examined and a measure of its "similarity" to other patterns in the
dictionary is made. On the basis of this measure, those faults in the
dictionary associated with the most "similar" patterns are identified as
being more likely to have caused the observed fault pattern.* This

* This assumption can only be justified ultimately by satisfactory results in its
application.
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then provides the maintenance man with a list in order of probability
of faults to repair.

Clearly, the efficacy of this approach depends on (i) the way in
which "similarity" is defined and measured, and (ii) the manner in
which this measure is used.

4.2 "Similarity" and "Dissimilarity" of Diagnostics
If every test in a diagnosis was of equal significance in the task of

isolating faults, one could say that two diagnostic test patterns were
dissimilar in proportion to the number of corresponding tests in which
the two patterns differ. If the diagnostic results were expressed as
binary numbers, their dissimilarity could be expressed as having a
direct relationship to their Hamming distance. The greater the Ham-
ming distance, i.e., the more places in which two patterns differ,
the less alike the patterns are. Conversely, the smaller the Ham-
ming distance, the more similar two patterns are. Consequently,
Hamming distance can be used a measure of both similarity and dis-
similarity.

Hamming distance is a readily computable measure. And further, it
can be easily modified to take into account the fact that diagnostic
tests differ in significance. For the purposes of explaining the idea of
significance, consider a small sample of faults and just those tests of
the diagnosis which fail for at least one fault in that sample. Suppose a
number of these tests always pass or fail together as a group for any
given fault. Then the results of the entire group could be predicted by
examining the result of any one of the tests. Here the information
provided by each test in the task of locating a fault is the same but
diluted by a factor equal to the number of tests in the group. One
would say that the significance of these tests was low. On the other
hand, a test whose result cannot be predicted by the results of other
tests would have a higher significance. Intuitively speaking, the signifi-
cance of a test should also be affected by its consistency. Less signifi-
cance should be attributed to inconsistent tests.

A natural and satisfying way of expressing these considerations
quantitatively would be to assign weights to tests in accordance with
their significance. Section 4.9 gives a brief discussion of some mathe-
matical techniques available to do this.8

Suppose now only that each test has been assigned a weight. Then
similarity would be computed by summing the weights of the differing
tests in the patterns. Similarity is, thus, now measured by a weighted
Hamming distance. Whether or not test weights have been assigned,
however, similarity is measured by an easily calculated number.
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4.3 A Problem
It would be possible to store the dictionary (i.e., all the fault pat-

terns) in a computer memory and to use the similarity measure just
described to search the dictionary for patterns similar to some arbi-
trary pattern when desired. As a practical matter, however, the time
required for the search and the storage required for the dictionary are
prohibitive. In the case of No. 1 ESS, for example, it is estimated that
about 2.5 x 107 36 -bit words would be required to store the dictionary
for the central control alone. The time required for a single search
would be on the order of 10 minutes provided the dictionary were
stored in core (rather than on tape or disk) and provided the central
control did no other work. Since No. 1 ESS is a time-shared machine,
no one job is run for longer than 10 percent of any extended interval.
Consequently, a single search would run well over one hour. Clearly,
a more sophisticated method is needed.

4.4 A Geometric Model for the Dictionary

Consider, for the time being, that diagnostic results are representable
by binary numbers and that similarity is measured by simple Hamming
distance. It is possible to construct a geometric analog of the binary
number system in binary space. In this analog, each binary number
represents a unique point in the space and the "distance" between points
corresponds to the Hamming distance between the patterns representing
those points. Thus, there are exactly 2N distinct points or patterns in
an N -dimensional space.

Suppose that all of the data in the dictionary were placed in some
N -dimensional space. For example, the dictionary data for the No. 1
ESS central control consists of about 105 different patterns of order 5000
(i.e., N equalg 5000). Thus, 105 points out of a possible 25000ti 101500

points would be taken up by dictionary data. (The space is very sparsely
populated.) Now suppose some arbitrary pattern (produced by some
real fault) is placed at point A in the N -space. If point A is already
occupied by a dictionary pattern, then the two patterns match and the
real fault is almost certainly the same as the dictionary fault associated
with that pattern. If, however, point A is unoccupied, we have (pre-
sumably) the case of an inconsistency. Then it would follow, since
Hamming distances are preserved in the analog, that those dictionary
points that are closest spatially will be the most similar ones according
to our definition. The faults associated with these nearby points would
then represent those dictionary faults which could most probably have
produced the inconsistent pattern.
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4.5 The Cell Dictionary Concept

Imagine first that a number of points, c; (i = 1, 2, , in), in the
N -space are selected arbitrarily. Now imagine that every point, xk , in
the space is associated with a c, such that the Hamming distance
d(c, , xk) is least. This procedure would then produce a number of
"cells" Ci with "centers" c, , each containing all points xk , such that
d(c, , xk) < d(ci , xk), for i j. Applying this procedure to dictionary
data will result in a Cell Dictionary. The dictionary would consist of an
ordered list of those cells which contained diagnostic results together
with the fault identities corresponding to those results. Each cell can
be conveniently identified by its c, . Such a dictionary could be used as
follows:

(i) Place in memory a list of occupied cells (i.e., cells which have
diagnostic results associated with them).

(ii) Given an arbitrary pattern, a search would consist of computing
the cell containing it and finding the two or three closest occupied cells.

(iii) Likely faults could now be found by consulting the printed
dictionary.

This method would be practical if such cell lists were relatively small.
Unfortunately, No. 1 ESS data does not lend itself to small lists. There-
fore, a different form of cell dictionary was adopted.

4.6 Selection of Practical Cell Center Lists

In this section, we shall discuss an algorithm which permits the gen-
eration of a list of cell centers (ci's) that, given an arbitrary pattern,
can be rapidly searched.

Consider all binary numbers of order N (i.e., having N bits) and a
partitioning of the N bits into k equal parts (assuming N is divisible
by k). Suppose that all bits in each part, P, , of the partitioning are
assigned like values-either all 0's or all l's. Then the subset of all
numbers of order N meeting the above requirements can be placed into
one-to-one correspondence with the set of all binary numbers of order
k. This subset can then be taken to form a set of 2k cell centers which
divides the N space into 2k equal -sized (i.e., containing the same number
of points) cells.

To show that every point is contained in some cell and every cell
contains the same number of points, imagine an arbitrary pattern of
order N is divided into k equal parts. Then all binary numbers having
more 0's than l's within part P, of this pattern are closer Hamming
distance -wise to a cell center whose Pi is all 0's. Similarly, all binary



304 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

numbers having more 0's (Vs) than l's (0's) within other parts, Pi's, of
this pattern are closer to a cell center whose Pi's are all 0's (Vs). It fol-
lows, therefore, from the definition of a cell that each point is contained
in some cell. Moreover, if N /k is odd, each point will be contained in one
and only one cell.

Since, in general, there are C, possible binary patterns of order n with
in 0's (or l's),* the number of binary numbers having more 0's than l's
in Pi equals the number of binary numbers having more l's than 0's.
Since this holds for any Pi , and further it holds independently of any
other Pi , it holds for the entire partition. Thus, each cell center will
have exactly the same number of points closer to it than to any other
cell center.

From the nature of the construction of cell centers, a binary number
can be assigned to a cell merely by partitioning it and counting either
the 0's or l's in each part. This greatly simplifies and speeds up the
assigning of patterns to cells. Furthermore, cell sizes can be varied at
will merely by changing the partitioning. Very large cells will be gen-
erated if the ./3,'s are large and vice versa.

4.7 The Multiple Cell Dictionaries Approach
When these techniques were applied to No. 1 ESS, it was decided to

produce a number of cell dictionaries, each corresponding to a different
cell size. This approach evolved because of the problems encountered
in apparently simpler implementations. For example, as was discussed
in Section 4.5, one way of implementing cell dictionaries in the field
would be first to produce only one cell dictionary from the laboratory
data. Then, a list of those occupied cells (i.e., cells containing dictionary
fault patterns) would be stored in the field ESS machine. This would
enable the machine to take a pattern for a field trouble, compute the
cell containing it, search the cell list, and print out a number of nearby
occupied cells. In the case of No. 1 ESS, however, the list of occupied cells
was very large (requiring on the order of 15,000 36 -bit words of memory)
and search times prohibitively long. The next possibility, which was
tested and then discarded, was to print the cell dictionary (i.e., an
ordered list of occupied cells) and search it manually. A search consisted
of checking whether or not a cell containing a real fault was occupied.
If it was not, then a check of the nearby cells was necessary. Thus, the
search required that No. 1 ESS machine compute and print the cell
containing the real fault and its neighboring cells in N -space. Unfor-
tunately, the number of nearby cells in N -space can be enormous. For

* C,- = the number of combinations of n out of a total of m things.
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example, there are, in general, C,,k adjacent cells a distance dN /k from
any given cell (N and k are as previously defined and d = 1, 2, 3,  ).
Thus, if N = 5001 and k = 1667, the closest cells to the given d = 1
will be a distance of only 3 away and there will be 1667 of them. For
d = 2, the number of cells will be about 1.4 X 106. As a result, unless
the cell containing the fault pattern was occupied, the time for finding
any nearby occupied cell could be extremely long. Consequently, a
modification of this idea, the so-called Multiple Cell Dictionaries ap-
proach, was finally adopted.

Suppose the ESS machine computes the name of the cell that contains
a real fault, and a check in the cell dictionary shows that the cell is
unoccupied. Now suppose the machine repeats a similar calculation to
obtain the name of a larger sized cell. Then, in general, a different
cell name will result. In order to check whether or not this cell is oc-
cupied, a cell dictionary corresponding to this sized cell would have
to be available and searched. Suppose the search was again unsuc-
cessful; then the machine could compute another even larger cell and
so on, for as many times as there are available dictionaries. Ultimately,
as the cells grow larger, they must become occupied cells for some cell
dictionary.

The computation of cells of different sizes for a real fault is relatively
simple. In order to use the computed cell names, however, a number of
corresponding cell dictionaries must be made available. Thus, the mul-
tiple cell dictionaries approach is a trade-off of bulk for search time.
The increase in bulk, however, is not so great as might at first be sus-
pected. This is because as the cell sizes increase the number of cells
decreases and the number of faults in the "zero" cell* (which is not
printed in general) increases. A qualitative evaluation of the results
achieved will be presented in Section 5.1.

It should be noted that a partitioning such that each Pi consists of a
a single bit will result in an exact -match cell dictionary. Thus, the cell
approach can be extended to cover both the case of exact matches as
well as the case of inconsistencies.

The form of cell dictionaries is exactly the same as the exact -match
dictionary. This is achieved by scrambling cell center coordinates in
a fashion similar to the procedure for scrambling diagnostic results
for the exact -match dictionary (see Section 1.3 and Appendix B). The
scrambled cell center coordinate serves as the cell name when printing
the cell dictionary.

* The "zero" cell is one whose center has an all 0's pattern.
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4.8 Some Disadvantages
Although the major advantages of the cell dictionary are fairly

obvious, some of its disadvantages may not be.
First, the smallest practical cell sizes are formed with a partitioning

such that each consists of 3 bits. This means that any pattern that
never groups at least two l's within a single Pi will fall in the zero
cell. Since the "all zeroes" diagnostic result represents the healthy
machine, it could be expected that many faults that cause the machine
to be "slightly sick" will fall into the zero cell or its neighbors. This is
indeed the case as revealed in the No. 1 ESS diagnostic data. Thus, a
fault falling in the smallest zero cell in many cases renders the cell
dictionary useless because of its poor resolution. Fortunately, the
situation is ameliorated by the fact that most inconsistencies occur
with faults which cause many test failures.

A second disadvantage concerns the process of computing larger cells
around the real inconsistent fault pattern. It is true that as the parti-
tioning increases, larger cells containing the real fault are examined
but two facts should be noted:

(i) The real pattern will not necessarily be close to the center of
the cell, and

(ii) The not

These facts mean that some faults not necessarily close to the real
fault may occasionally be implicated and also that a cell may not be
completely included in the next larger sized cell. Eventually, of course,
as cell sizes increase, the smaller cells will be completely included but
at the cost of a greater number of implicated faults.

Both of these considerations are affected by the algorithm used to
select cell centers. A better algorithm might eliminate these problems.
Also, an approach such as Kruskal's (see Ref. 8) can reduce if not
eliminate them.

4.9 Test Weighting
The modification of similarity measurements by the inclusion of

test weights should take the following considerations into account:

(i) The significance of a test relative to other tests in the task of
isolating faults, and

(ii) The consistency of the test, i.e., what is the prObability that on
multiple diagnoses of the same fault, the test will give the same result
as it gave on previous diagnoses.
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Item (1) can be derived from the test results obtained from diction-
ary production. Consider a matrix formed such that each row repre-
sents the binary diagnostic result for a fault (see Fig. 5). Then each
column represents the results a given test yields for each of the faults.
To calculate the significance of a test relative to other tests, first
obtain the correlation coefficients pi; of column i with every other jth

FAULTS

DICTIONARY
MATRIX

fk

fm

OE TESTS

1 1

1 0

0110 1 0 1001---- 1 10----11
1 1

0 0
1

0 0
0 0

I 0

P Li.= 1 j

NO. OF CONSISTENT FAULTS
CONSISTENCY FACTOR = =- C

TOTAL NO. OF FAULTS

TEST WEIGHT WL =

SIMILARITY

CL

P
j

2

= 0

WEIGHTED HAMMING DISTANCE

Fig. 5 -Test Nveights.

column using standard statistical definitions. The relative significance
of the ith test which we will call ai is

01, = 1 V, 2

P,,
=0

p is squared to obviate sign difficulties and down -weight small correla-
tions.

Item (ii) consists of the ratio of the number of faults for which the
test was consistent to the total number of sample faults.* The con-

* This ratio may be obtained practically by repeatedly performing the diag-
nosis on a given fault and observing the results of the tests. This could be done
during physical simulation (at a considerable time cost). Otherwise, field data
would have to be collected over a period of time. Kruskal has an idea (yet to be
verified) of how to predict the inconsistency of a test theoretically. See Ref. 8.
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sistency factor c, of test i can he defined as:

C, =
total number of faults for which the test i was consistent

total number of faults

A test weight w, then is

'WS = 1(611 ct)

A suggested function is

w. = (1 + c, log c, ± (1 - c.) log (1 - ci))ff,

The quantity [1 + c, log ci + (1 - c,) log (1 - ci)] is the usual en-
tropy function. It essentially makes c, = 2 the zero point (which is the
value we would expect if the test was completely inconsistent) and
spreads the intermediate factors appropriately.

This formulation of test weights is due to J. B. Kruskal. Ref. 8,
Section VII contains an elegant discussion of test weights excluding
inconsistency considerations.

Test weighting has not, as yet, been used with No. 1 ESS data. The
process of calculating 5000 X 4999 2 correlation coefficients (assuming
a diagnosis of 5000 related tests in a diagnosis) is very time consuming.
However, results obtained without test weights (i.e., every test given
the same weight) appear quite satisfactory.

V. RESULTS AND CONCLUSIONS

5.1 Dictionary Evaluation Results
An experiment was conducted to evaluate the effectiveness of the

No. 1 ESS exact -match dictionary, which is being used in the field,
and the phase and cell dictionaries, which are being implemented. A
sample of faults was inserted in the central control at a field No. 1
ESS office located in Chase, Maryland. The sample, which consists of
302 central control faults, was selected by persons who were not in-
volved in the dictionary production project so as to reduce the possi-
bility of bias in the selection. The faults selected were well distributed
with respect to their types and locations, and were representative of
expected troubles. Each fault was inserted when the office was running
under a simulated traffic load and a diagnosis was performed. The
corresponding diagnostic printout had three possible outcomes: (i) a
printout that matched the correct dictionary number in the exact -
match dictionary, (ii) a printout which did not match the dictionary
number in the exact -match dictionary, or (iii) a printout indicating
all -tests -passed.
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TABLE I-EXACT-MATCH DICTIONARY EVALUATION OF FAULTS
INSERTED IN No. 1 ESS OFFICE AT CHASE, MARYLAND

Faults inserted 302

(i) Found in exact -match dictionary 216 (72.2%)
(ii) Produced diagnostic printout, but not found in exact-

match dictionary
58 (19.4%)

(iii) Produced all -tests -passed printout 25 ( 8.4%)
(iv) Produced invalid data for analysis 3

Of the 302 faults inserted, there were 216 faults that were success-
fully located by the exact -match dictionary, 58 faults producing a
printout not found in the dictionary, 25 faults producing all -tests -
passed printouts, and 3 faults whose test results were either invalid
or incomplete for this analysis due to errors made in the fault insertion
procedure. The evaluation results for the exact -match dictionary are
shown in Table I. Since the diagnostic programs were designed under a
pressing time schedule with little opportunity for the feedback of
evaluation results, we consider these figures quite gratifying.

Further analysis revealed that out of 25 faults producing all -tests -
passed printouts, 5 were faults that could not be detected by programs
because of inherent circuit redundancy and 20 were faults that were
not detected due to test inadequacy. Out of 58 faults producing print-
outs which did not match any dictionary numbers in the dictionary,
9 were those diagnostic data had not been simulated during the dic-
tionary production process and 9 were faults whose data were incom-
plete for the purpose of analysis with phase or cell dictionaries. Thus,
only the data of the remaining 40 faults were analyzed to illustrate the
feasibility and the effectiveness of phase and cell dictionaries. As
shown in Table II, only 2 faults could not be located; all other 38
faults were found in either phase or cell dictionaries. In addition, 80
percent of the faults located by the cell dictionary were isolated to
10 or fewer circuit packages. (For this evaluation, only 5 sections of

TABLE II-PHASE AND CELL DICTIONARY EVALUATION OF FAULTS
INSERTED IN NO. 1 ESS OFFICE AT CHASE, MARYLAND

Faults producing inconsistent test results 40

(i) Found in phase ictiodnary 27
(ii) Found in cell dictionary 35

(iii) Found in either phase or cell dictionaries 38
(iv) Found nowhere 2
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the multiple cell dictionary were constructed. The partitioning of the
diagnostic for each section was 3, 5, 11, 21, and 41 bits, respectively.)
This is indeed a significant improvement. However, it must also be
cautioned that this sample of faults producing inconsistent test results
is too small to draw any meaningful quantitative conclusions. What
can be said is that significant improvements over present exact -match
techniques can be expected and that the cell dictionary approach may
be somewhat superior to the phase dictionary approach.

The exact -match dictionary has been in use in No. 1 ESS office in
Succasunna, New Jersey, since May 30, 1965. Its effectiveness has been
more or less compatible with our evaluation results. The machine can
usually be diagnosed and repaired within twenty minutes when the
dictionary look -up procedure is successful. The phase and cell diction-
aries will be implemented for the No. 1 ESS office in Beverly Hills,
California, which will begin service sometime in the fall of 1966. The
detailed field performance of all these dictionaries is not covered in the
scope of this paper.

5.2 Concluding Remarks
The major advantages of these techniques, as a whole, are that they

provide the maintenance craftsman with rapid methods for extracting
the information from diagnostic test patterns for the purpose of faults
location. The techniques require a very modest amount of machine
time and memory. They can be quite effective especially if some care
is taken during the fault simulation phase of dictionary production.

Each technique has its limitations, however. The "exact -match"
dictionary will not handle inconsistencies. The phase dictionary will be
of assistance if at least one phase is consistent, but at the cost of reso-
lution and time consumed while manually searching for fault identities
using the majority rule approach. The phase prime dictionary will
eliminate the manual search but will work only if the inconsistency is
confined to a single phase. The cell dictionary is ineffective when the
fault falls into the zero cell.

We think that the results obtained will be fairly typical of what can
be expected when implementing a maintenance dictionary approach on
a digital machine. The combination of techniques is not perfect but is
one of the most powerful for locating faults in real-time systems.

A logical continuation of this work would probably involve:

(i) A study of why tests are inconsistent. This would permit a
better technique for eliminating inconsistencies from test patterns
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when generating phase dictionaries. It would also permit modifica-
tions of the measure of "similarity" between fault patterns.

(ii) Development of better cell center algorithms for the particular
form of cell dictionary described. An "ultimate" cell dictionary is
probably an implementation of Kruskal's ideas.8

(iii) Develop criteria for establishing figures of merit for dictionary
techniques which take into account: (a) the percentage of real troubles
located (as compared to simulated faults), (b) the resolution, (c) the
speed or facility with which dictionary look -ups can be made, and
(d) the machine time and memory processing requirements.

Some progress has already been made on items (ii) and (iii) but
considerably more is needed.
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APPENDIX A

No. 1 ESS System Organization and Maintenance Plan.

No. 1 ESS is a general purpose electronic telephone switching ma-
chine which employs for its control a time-shared multiple -program
computer operating in real time.3 Functionally, the system can be
divided into a central processor and a peripheral system (see Fig. 6).
The central processor, which operates with 5i microsecond cycle time,
provides the data processing facility for telephone, maintenance and
administrative functions. It consists of program stores, call stores, and
a central control. The program store, which is a read-only type of
semi -permanent memory, contains the stored program and translation
information that are needed to switch calls and provide services as
well as maintenance programs. The call store, which is a temporary
ferrite sheet memory, stores all transient information for processing
calls, such as the digits dialed by the subscriber or the busy -idle states
of lines and trunks. The central control consists mainly of wired logic.
Its duty is to coordinate and command all system operations.
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Fig. 6 - No. 1 ESS block diagram.

The peripheral system consists of a ferreed switching network,
scanners and distributors, and a master control center. The switching
network provides the connections between lines, trunks, and service
circuits (i.e., auxiliary devices such as tone sources, signal receivers,
and signal transmitters). The scanners are used to collect information
from lines, trunks, and points internal to the system. The distributor
is made up of two units: the central pulse distributor, which operates
at machine cycle speed, is used for signaling logic circuits, whereas,
the signal distributor is used for controlling slower devices such as
relays in trunk circuits. The various subsystems are interconnected
with balanced ac coupled bus systems. The master control center
includes a teletypewriter for input-output, a panel for manual testing
of lines and trunks, and some controls and displays.

The No. 1 ESS was designed for a high degree of maintainability
and dependability. These objectives require that telephone service is
not interrupted even in the presence of internal component failures.2
To achieve these objectives, the major units of the central processor
are duplicated, and circuit and program facilities are provided for



INTERPRETING DIAGNOSTIC DATA 313

detecting troubles, locating the faulty subsystems and re-establishing
an operational configuration without interrupting telephone service.
Once a faulty subsystem is identified, the diagnostic programs are called
in to analyze the trouble. These programs are executed (on-line) by
the operational configuration; they are segmented and interleaved
with the main call processing program to avoid interference with the
normal system operation. The diagnostic programs carry out a fixed
sequence of tests by observing the normal outputs of the faulty
subsystem or by monitoring some special test points strategically
embedded within the unit. The combinational testing approach is used
to conserve program storage space and to simplify the processing of
test results. The pass or fail test data are recorded and processed
using the exact -match techniques discussed previously (in Section 1.3
and Appendix B) to produce a compact diagnostic printout on the
teletypewriter. The translation of a diagnostic printout into the loca-
tion of the replaceable faulty circuit package (s) is then accomplished
with the aid of a dictionary. The data for the dictionary are generated
through hardware simulation, i.e., by actually inserting almost every
possible simple hard fault sequentially into the unit and then recording
its diagnostic. The general approach of dictionary production is similar
to the one on Morris machine, and therefore, will not be described
here. A sample format of exact -match dictionary entries is illustrated
in Fig. 2.

APPENDIX B

Pseudo -Random Number Generation

In No. 1 ESS, the diagnostic test results of each fault is represented
by an n -bit binary number where each bit or a sequence of bits desig-
nates the pass or fail result of a particular test(s). The number of bits
n is usually very large, e.g., n 5000. The "hash" technique used to
reduce No. 1 ESS diagnostic data to a smaller fixed length number
employs a "pseudo -random" function which manipulates an arbitrary
and large pattern of test results to produce a number with relatively
few digits. The reduction procedure is pseudo -random in the sense
that the mapping is deterministic but approximates the process of
assigning one truly random number to each fault pattern.

This process is analogous to the problem of selecting numbers at
random from an urn. Assume the urn has N distinct numbers. A total
of k numbers are selected, one at a time with replacement, from the
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urn. The probability P that all these k numbers are distinct is
k-1

P= 11(1
k-1

iN)

E a
- 1 - k(k - 1)

P 1
i -1

2N
for k N .

Thus, suppose k denotes the total number of distinct fault patterns
and d = [login NJ denotes the number of decimal digits in the diag-
nostic printout (the symbol [x] denotes the smallest integer greater
than or equal to x). The probability of generating, at least con-
ceptually, all distinct d -digit numbers from a pseudo -random number
generator can be made arbitrarily large by increasing d. However, in
practice the number of digits d in the printout should be kept reason-
ably small so as to simplify the look -up process and to reduce the
dictionary's bulkiness. Hence, for a sample of 105 distinct fault pat-
terns, a 12 -digit representation would probably suffice, since it yields a
probability of 0.995 that all resultant numbers will be distinct.

When the ratio of k to N is not exceptionally small, a few duplicated
(and replicated) numbers could result. Thus, it is also necessary to
compute the expected number, E,., of replicated pseudo -random num-
bers when k fault patterns are assigned random values from a sample
space N. Suppose E, represent the expected number of distinct numbers
generated, then the probability that a particular number is selected,
at least once, from the urn in k selections is 1 - (1 - 1/N) k. This
probability is also equal to Ee/N. Thus,

= N(1 - (1 - 1)k)
The expected number of replicated numbers becomes,

k-1 i

Er = k - E, = (-1)1'0,4.4 .

Hence, for a sample of 105 distinct fault patterns, the expected number
of replicated numbers in a 6 -digit representation is about 4837 whereas
the expected number of replicated numbers in a 12 -digit representation
is less than one.

An experiment was performed to verify the hypothesis that this
method of diagnostic data reduction is analogous to the problem of
selecting numbers at random from an urn. A sample of 964 fault pat-
terns each consisting of approximately 1000 bits of test results was
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used. Initially, the reduction process just used the addition and rota-
tion instructions to produce a 6 -digit number, nine duplicated re-
sulted. On the subsequent attempts, shift and other peculiar instructions
were added to better scramble the data; the number of duplicates finally
decreased to zero. From the urn analog, the expected number of dupli-
cates in assigning a 6 -digit pseudo -random number to 964 distinct
patterns is 0.5, and the probability of no duplication is 0.61.

The experiment demonstrates the feasibility of number generation
schemes. An effective method can readily reduce each pattern of a col-
lection of diagnostics to a smaller fixed -length number with very little
loss in resolution. Since the greatest possible total number of fault
patterns for any No. 1 ESS subsystem is about 105, the diagnostic
printout uses a 12 -digit representation. As mentioned earlier, this rep-
resentation is amall enough so that the dictionary look -up process is
easy, yet large enough so that the probability of all generated numbers
being distinct is quite high and the expected number of duplicates is
very small.

Basically, each fault pattern undergoes two stages of reduction pro-
cess. In the first stage, each binary fault pattern of n bits is ANDed
(bit -wise) with each member of a set of in preselected reference vectors
RI , R2 , R,n , and the resultant "bit -sums" Si , S2 , S. are
collected (in << n). That is, suppose the binary fault pattern of fault
F is Ti T2 71(7% = 1 or 0), and the pattern of reference vector Ri is
714 r* (r; = 1 or 0). Then the bit -wise ANDing operation will gen-
erate a "bit -sum" 8, where,

AS; = E T; r;
i -1

and j = 1, 2, , m. To further reduce the size of the fault pattern,
each set of bit -sums SI , S2 , S. undergoes three independent
stages of "data scrambling" manipulation, each resulting in a 4 -digit
number. Each stage is a pseudo -random number generation procedure
based on the shift, rotation, and addition orders.

The final diagnostic printout is, therefore, a 12 -digit number, formed
by a concatenation of three 4 -digit numbers. Fig. 7 shows the general
program flow of the final reduction process.

The final three stage reduction process used was evolved through
experimentation. The resolution of the dictionary so generated was quite
high, high enough so that most entries in the dictionary associate with
only four or fewer circuit packages. For example, in the case of the cen-
tral pulse distributor,' which has 3312 simulated faults and whose
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Fig. 7 - Data reduction.
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TABLE III-DICTIONARY RESOLUTION STUDY
(CENTRAL PULSE DISTRIBUTOR)

N(i)

1st stage 1st & 2nd stage All three stages

1 436 910 924
300 653 663

3 101 68 67
4 65 26 26
5 18 4 3
6 49 12 10
7 5 4 2
ti 54 1 1

8 1 1

10 7 1 1

11 3 1

12 3 0 0

13 0 0 0
14 1 0 0

15 0 0 0

16 1

17 0 0 0
AND
UP

N(i) = Number of dictionary numbers having i associated packages.
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fault pattern has 1150 bits, 15 reference vectors were used. Initially,
only the first stage of the final reduction process (rotation and addition)
was used to produce a 4 -digit number. In the resultant dictionary only
59 percent of the entries were associated with four or fewer circuit pack-
ages and the mean was 2.56 packages per entry (see Table III). As the
second stage was added to better scramble the data, 90 percent of the
entries in the dictionary associated with four or fewer circuit packages
and the mean was improved to 1.62 packages per entry. The third stage
was added and the resultant dictionary had 95 percent of its entries
associating with four or fewer circuit packages and a mean of 1.58
packages per entry. Further experimentation with the addition of a
fourth stage reduction process did not provide significant improvement
in resolvability. Thus, a three -stage reduction process was adopted.
The dictionary is rather compact; it has only 52 (8-1 by 11) pages (for
the central pulse distributor). A sample of the format printout is shown
in Fig. 2. Sample evaluation results of this type of dictionary are dis-
cussed in Section V.
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Recent studies have been concerned with conditions for the stability of
synchronized systems and expressions for equilibrium frequency. This
paper describes the transient response of special configurations of syn-
chronized systems of arbitrary size, as well as frequency response and
jitter response for a few cases. Tentative extrapolations to more general
configurations are suggested.

I. INTRODUCTION

Recent studies have established the sufficiency of certain rather
broad conditions for the stability of linear synchronized networks,'
and have shown that valid expressions for the equilibrium frequency
of such systems can be obtained if initial conditions are taken into
account.' Description of the transient response of such systems is of
interest, but results for general configurations have not been obtained.
This paper describes the results of studies of special configurations
of systems of arbitrary size, and some tentative conclusions about
more general configurations are suggested.

II. SYSTEM EQUATIONS

The equations for the synchronized system will be taken in the
form used by Gersho and Karafini in their (9):

= it,(1) T h,,(1) * E (-11)X - Tnm) - MAL
m -1

n = 1,  ,N (1)

(where the star denotes convolution). In Laplace transformed form,
assuming zero initial conditions,

319



320 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

sPa(s) = (8) H (s) E a,c-""-P ,(s) -H (8)P(s),
no = 1

ti = 1, , N . (2)

In these equations, Mt) is the phase of the oscillator at the nth station,
vn(t) is the free -running frequency of that oscillator with the effects
of local disturbances added, Mt) is the impulse response of a control
filter at the nth station, is the delay on the transmission link from
the rnth station to the nth, and an,,, is an averaging coefficient asso-
ciated with that link. The coefficients are normalized so that

E a, = 1. (3)
n+=1

Normally, a is zero. The filter gain H (s) has the dimensions of inverse
time; its zero -frequency value, assumed to be nonnegative, is

H(0) = Xn . (4)

These equations, as pointed out by Gersho and Karafin, are conformable
with the linear equations used by Karnaugh2 if vn(t) is understood to
include not only the free -running frequency of the oscillator at the
nth station but also the sum of the transient disturbances at that
station as well as some initial condition terms.

The assumption of zero initial conditions in (2) depends on the
following simplifying procedure. Since only dynamic responses are to
be studied, and since the equations are linear, the steady-state solution
can be subtracted from the total response. Thus, vn(t) and Mt) will
be taken to represent only the disturbance component. Where the
disturbance is transient, the vn(t) will be assumed to have zero values
before the disturbance begins, and the initial phases will be taken as
zero. The result of this procedure shows only the response to the dis-
turbance, to which the steady-state solution would have to be added
to determine the total frequencies and phases.

Although formal results for arbitrary filters and arbitrary delays
will be obtained in a few cases, emphasis will be placed on the simple
case of flat filters Ha(s) = An (in effect, no filters) and zero transmission
delays. In this case, the filter gains X determine the time scale of the
response. There seems to be no compelling practical reason to make
the X much greater than the reciprocal of a second. The response time
can then be assumed to be large compared with the transmission
delays expected in most cases as well as large enough so that the re-
sponse would not be severely affected by the inherent low-pass filter
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effects of ordinary electromechanical control elements. The results are
sufficiently encouraging, from a practical standpoint, to suggest that
it may not be necessary to incorporate filtering by design, so that the
simple case appears to have some practical value.

III. AN ELECTRICAL ANALOG; RECIPROCITY

Although explicit transient responses have been derived only for
specific system configurations, it is possible to state, for systems of
arbitrary configuration, a condition sufficient to guarantee that the
transient response is not oscillatory. This condition is a reciprocity
condition derived from the properties of a passive electrical network
analog.

3.1 Case 1: r, = 0, H(s) X

Consider an electrical network as shown in Fig. 1, having N nodes
in addition to a ground node. A capacitor C is connected from the
nth node, n = 1, , N, to ground, and a resistor R, = R, is con-
nected between some, not necessarily all, pairs of nodes n, 2n. A current
source delivers current from ground into each node. The Laplace -
transformed node equations are

t..2(t)

1 1
0, E - E (s)]. (5)sE(s) = /(s) E

m=1 IC n -'n

3( t)

Fig. 1-Part of the electrical analog of a reciprocal system with flat filters and
zero delays.
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These equations are similar in form to (2) representing a synchronized
system, and can be identified with them if the nth node of the electrical
network is identified with the nth station of the synchronized system,
and

En(s) = (s) , (6a)

(s) = Cn V (s) , (6b)

Rnm - (6c)
anmXnCn '

r, =-- 0 , (6d)

H,(8) = Xn . (6e)

Note that Vn(s) is not a voltage, but a reference frequency.
The reciprocity condition

Rnm R , (7)

imposes a condition on the averaging coefficients and filter gains in

addition to the simplifying conditions of flat filters and zero delays.
This condition immediately gives, from (6c),

anmXnCn = amnXmCm (8)

The capacitances C are to a certain extent arbitrary, in that if
a system has an analog with given C, equivalent analogs can be formed
by multiplying all the Cn by any common factor and resealing the other
elements. The capacitance at the node corresponding to any one selected
station can therefore be chosen arbitrarily; (8) shows how the capaci-
tances for stations to which it is connected can then be derived using
only parameters of the synchronized system:

C - a"r"X C" . (9)
' amnX,

For a station that is connected to the selected one by a path of M
links, via M - 1 intermediate stations, iteration gives a formula of
the form

an _ , n XnoCI
C

no (10)
n an, an,, an,n, Xnm

where n is the index of the selected station and nk is the index of the
kth station in sequence along the path.

Unambiguous determination of the Cn requires that if two or more
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paths exist between two stations, the formula (10) should give the
same result on all paths. This is equivalent to the condition that the
product of the averaging coefficients taken counterclockwise around
any closed loop must equal the product of the averaging coefficients
taken clockwise around the loop:

a,,a,, an, = a, a,.a,, . (11)

This condition will be called the reciprocity condition for synchronized
systems; a system that satisfies this condition will sometimes be called
a reciprocal system. It is easily seen that the reciprocity condition
is both necessary and sufficient for the existence of a passive electrical
analog of the form of Fig. 1, assuming that the conditions of flat filters
and zero delays are also satisfied.

Since the poles of an RC network response function are all simple
and lie on the negative real s-axis,3 its transient response consists
entirely of real exponential components. It follows immediately that
a reciprocal system with flat filters and zero delays cannot have an
oscillatory transient response. Moreover, errors in parameter values
that cause small departures from reciprocity cannot immediately
result in the appearance of oscillatory components. Such components
are represented by conjugate pairs of complex poles; since the pole
locations are continuous functions of the parameter values, no pole
can move off the real axis until it has first moved along the axis and
joined another real -axis pole to form a double pole, assuming that the
departure from the reciprocal ideal is not of such form as to add new
poles.

3.2 Case 2: r, small, H(s) nearly flat

This conclusion is strictly true only for zero delays and flat filters.
However, it may be expected that delays much smaller than the system
response time, or filters that are nearly flat up to frequencies much
larger than the reciprocal of the response time, will have little effect
on the transient response. In fact, it can be shown in specific cases
that the addition of any delay, however small, introduces an infinite
number of oscillatory components, which nevertheless are small in
amplitude and rapidly damped so that their total effect is small. It
may be assumed that the omission of delays and high frequency cutoffs
is comparable to the neglect of the same parameters in ordinary circuit
analysis.

It is not necessary that the filters be flat in order that the system
have an electrical analog. The resistors can be replaced by any 2 -terminal
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networks so as to simulate any filter that has a "positive real" fre-
quency response function. If the transfer function of the filter can be
synthesized as the admittance of a network of resistors and capacitors
only, the analog will still be an RC network and the transient response
obviously remains nonoscillatory.

While this study is nominally confined to dynamic behavior, the
Appendix shows how the reciprocity condition simplifies the steady-
state analysis.

V. E. Bene§ has pointed out that if the a, are considered as the
transition probabilities of a Markov process, as in his original study
(unpublished work, 1959) of stability and equilibrium frequency, the
reciprocity condition introduced here is equivalent to the condition
of reversibility of the Markov process, which in turn is related to
detailed balance in statistical mechanics.

IV. TWO -STATION SYSTEMS

The analysis of a system of two stations offers not only an introduction
to the techniques of analysis but also an example of the behavior of
small systems for comparison with the behavior of the large systems
to be described in later sections.

An impulse disturbance of frequency is assumed to occur at one of
the stations, which we then designate (without loss of generality)
as station 1. This form of disturbance can be interpreted as a brief
rise in frequency which is almost immediately corrected, leaving a
residual phase error of one unit of phase. Alternatively, it could rep-
resent any disturbance that gives rise to the sudden appearance of a
phase error.

The system equations, from (2), are

sP ,(s) = 1 H ,(s) e " 1 2P2(s) -H i(s)P ,(s) ,

sP 2(3) = H2(s)e- "2' P ,(s) -H 2(8)P 2(8)

These equations are easily solved to give

s H2(s)
P ,(s) =

s2 s[H ,(s) H 2(s)] + ,(s)H2(s)R - I 'I.' "`)]

H 2(8)e-8"1
P 2(s) -

e + s[H ,(s) H 2(s)] H ,(s)H 2(s)[1 - e -"T 1'7'1

The final value theorem gives

Pi(°°) = P2(00) - X, + XiXAT12 T21)

A.,

(12)

(13)

(14)
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as the ultimate displacement in phase caused by the disturbance. The
equality of the two final values, signifying no net change in the phase
difference between the two stations, is a necessary consequence of the
uniqueness of the steady-state solution.

4.1 Case 1: H(s) = X , r, = 0.
More explicit results for the transient response are obtained in the

special case of flat filters and zero delays. The transforms become
simple enough for inversion by inspection; the result in the time domain
is

v.(1) - X1 - (Xi + X211+x, + x x, + x2
(15)

p2(0 [1 (XI +X01.

XI + X2

These equations indicate a simple exponential approach to the final
value, starting with initial phases [immediately after the impulse in
vi(t)] of 1 at the first station and 0 at the second. Such behavior appears
satisfactory for a practical system.

4.2 Case 2: H(s) = X, T,,,,, E T.

To determine the effect of delays, the system will be made as simple
as possible in other respects. The filters will be assumed flat with equal
gains, and the delays will be assumed equal. In this case, the solution
(13) becomes

s-P,(8)
2Xs -I- X2 - X2e-2" (16)

Xe-"Ns) = s2 + 2Xs + x2 2e-2ar

The denominator can be factored, and a partial expansion in partial
fractions gives

= 1[Qi(s) + Q2(01, (17)

where
PAO = 1[Q.(8) -

Q.(s) -
s - Xe- sr

Q 2(S)
1

+ X +

(18)
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One approach to the inversion of these transforms is to divide num-
erator and denominator by s and treat the result as the summation
of a geometric series. Expansion of the series gives

from which, by (17),

00 xffte-M8T

Ws) = E (s)0-1

Q2(s) = -0 +
.0 (.....x)171e-Ms T

x2ke-21car

EPi(s) =

oo x2k+le-(2k+1)or

PAS) = E A)2k+2

Inversion term by term gives
A2k(t - 2kwke-x(t-2k7)

Pi(t) = E
0.0 21c!

p2 (1) =Er)/2T)
2k+1it - (2k 1)ri2k+le-A( I- (2k+i),)

(2k +

(19)

(20)

(21)

where the square bracket in the limit of summation (but only there)
denotes the integer part of the enclosed expression. This result can
be numerically evaluated term by term if the product Ar is known.
It gives an exact result (for the assumed model) up to a time depending

on the number of terms evaluated. Fig. 2 shows a graph of the cal-
culated results for Ar = 0.1, that is, delay equal to one -tenth of the
reciprocal of the filter gain.

The interpretation of this result is that the response of each station
to changes in phase at the other is delayed for a time equal to the link
delay r. Thus, from t = 0 to t = r, station 2 is completely undisturbed.
Meanwhile, from t = 0 to t = 2r, station 1 observes no change in the
frequency received from station 2 and therefore, its response is ex-
ponential with time constant 1/A. Therefore, from t = r to t = 3r

station 2 responds to the exponential response received from station 1,
and so on. The result (21) could in fact have been derived by tracing
out the response of the system in this manner.

A second approach, inherently inexact but more useful for times
that are long compared to the transmission delay, is to complete the
partial -fraction expansion of (18). This requires in principle determina-
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tion of the locations of all the poles, which are determined by the
transcendental equation

s ± X = (22)

where the "plus" sign refers to (2,(s) and the "minus" sign to (Ms).
This equation has, in general, an infinity of solutions. However, if
XT is a small number, the most important components will be those
due to poles of the order of magnitude of X. The exponent in (22)
is then small, so that the exponential can be approximated as

C." v 1 - sr. (23)

Using this approximation in (18) gives a form which is easily inverted
to give, finally, from (17),

P,
1 1 -2X

) 2 1 + XT ± 1 -Are
[ t/(1-Xr)

1 1 1

L1 ± X7 - 1 - X7 e

(24)
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This obviously has an error at t = 0, which is small if Xr is small, but
has the correct final value determined by (14). This result is compared
with the exact response, as well as with the response of a zero -delay
system, in Fig. 2, which illustrates the case of Xr = 0.1. The approxi-
mation is better for smaller Xr.

V. LARGE FULLY INTERCONNECTED SYSTEMS

Next to be considered is a network of N identical stations in which
all stations transmit via identical direct links to all others. All co-
efficients a, are assumed equal:

1

an' = N - 1 '

If an impulse disturbance occurs at the first station, all the other
stations display identical responses, so that

P2(0 = P3(0 =  = PN(0 (26)

The system response can, therefore, be described in terms of two
equations in P1(s) and P2(s) :

sP ,(s) = 1 H (s)c- P2(s) - H(s)P,(s)
(27)

n = 1, , N , m fin. (25)

_
sP 2(s) - N

" [P ,(s) (N - 2)P9(s)] - H(s)P2(s).
-H

(s)1
c

These equations can be formally solved to give

s H(s) - - )H(s)e-
N - 1

P 1(0 -

"
P2(s) - (N

H(s)e-
- 1)6,

where

(28)

e= +81-142

+

-

H2 (s)[1

N - )2
(N

"T 2ar (29)

e_.,

- 1/e-

The final value theorem gives

pi(0O) = P2(.0)
1

(30)
N(1 X T)
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5.1 Case 1: H(s) = X, r, = 0.
In the special case of flat filters and no delays, inversion of the

Laplace transforms gives

p2(0)

1

N-1

) 041/(N-1)

1

N
e-nXinN-11.

(31)

In this case, the response is an exponential approach to equilibrium
as in the 2 -station system. When one station is disturbed, the other
stations respond in unison, as one.

5.2 Case 2: H(s) E----- X, T T

In the case of equal positive delays and flat filters, the solution (28)
in transformed form can be partially expanded in partial fractions
to give

where

Q2(s) -

PI(s) = N- [Q,(s) - 1)Q2(8)l,

P2(s) = -kr - Q2(s)],

(21(8) -
S + X - Xe-8r

1

s ± X ± a- r

N - 1

(32)

(33)

This is similar in form to (17) and (18), and the same methods can
be used to evaluate the transient response. The principal difference
between this and the 2 -station case is that the conditions for cancella-
tion of odd or even terms in the series of delayed responses (21) do not
hold in the many -station case, and the antisymmetric component, q2(t),
is more rapidly damped than the symmetric component qi(t). The results
for the zero -delay case and for the case of X7 = 0.1 are shown for a
6 -station system in Fig. 3.

The simplicity of both the analysis and the result can be attributed
to the condition that all stations and all paths are identical. Although
the effects of slight departures from this condition may be of practical
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interest, the slightest departure will destroy the symmetry and vastly
complicate the analysis. As a guess, it may be supposed that the effect
of a slight dissimilarity among paths will be smaller than the effect
of removing some of the paths. When all but N paths have been re-
moved, in such a way that the system forms a ring in which each station
receives only from its two nearest neighbors, a new form of symmetry
appears, which will be used in the next section.

VI. THE BILATERAL RING

A bilateral ring is defined as a ring of N identical stations, with
2N identical one-way links forming N two-way links by which each
station sends to, and receives from, its two nearest neighbors, one on
each side. This may be viewed as the opposite extreme to the fully
interconnected system, providing the longest possible indirect paths
in a system of N identical stations. (Longer paths are possible in a
chain, but the stations cannot be identical because each end station
has only one neighbor.)

The equations of the bilateral ring, in transform form, are

sP (s) = V ,,(s) H(s) { [P ,(s) P ,(s)]e " -P (8)} ,

n = 1, 2, ,N, (34)
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where addition in the index n is performed modulo N, so that PN,(s)
is P,(s), Po(s) is PN(s), and the (N - m)th station can be alternatively
designated as the (-nt)th. This system of equations will be simplified
by a form of Fourier analysis. We define

Qk(s) = E Pn(s)e-'2rn"
n-1

k = 1, , N , (35)

where j is the imaginary unit. It can then be shown by direct sub-
stitution that

P (s) = N k.i

Similarly, variables Uk(s) will be defined by transformation of the
Vn(s) as in (35), with inversion as in (36). The linearity of the Laplace
transformation implies similar relations among the variables in the
time domain. All these relations remain unaffected if any n or k is
changed by adding or subtracting N.

Let the nth equation in (34) be multiplied by e-i2rnk/N, and the equa-
tion summed over all n. The result is

QkwernA/N, = 1, , N . (36)

sQk(s) = Uk(s) 11W[2(ei2rrA/.' + e-"Tk/N)e-" - 114(C

k = 1, , N . (37)

This can be solved immediately to give

Uk(s)
(38)(Ms) -

s H(s)[1 - C." cos (271-k/ N)]

Given a set of transient frequency disturbances v(t), one may find
their Laplace transforms Vn(s), find the Uk(s) using (35), find the
Qk(s) using (38), use (36) to obtain Pn(s), and find the phase disturbances
p(t) by inverse transformation.

In the case of an isolated impulse in frequency at the Nth station,
we have

'Vs) = 0, n = 1, 2,  ,N - 1; V N(s) = 1. (39)

By using (35) we get

Uk(s) = 1, k = 1, , N . (40)

Explicit solutions will be obtained here only for cases in which the
filters are fiat. Under these conditions,

1

Qk(s) =
s X[1 - c- cos (27rk / N)]

(41)
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The complexity of the result depends on whether the delay r is assumed
zero or positive.

6.1 Case 1: H(s) = X, T,,n, =-=- 0, N < co .

If the delay is zero, (41) can be inverted immediately to give

qk(t) = exp { -1 [1 - cos (2rk/N)]t} (42)

and the phase disturbances, using (36), are

1 " w"kiN '

Pn(t) = e
exp -X[1 -cos (27117/N)]i (43)

=1

The Nth term in this sum is real, as is the (N/2)th term if N is even.
For all other k, the kth term is the complex conjugate of the (N - k)th
term, so that the sum is real, and may be expressed as the sum of the
the real parts of the individual terms:

1 Np(t) = Tv- Xi cos (arrnk//V) exp - cos (2rk/N)]t}. (44)

The Nth term in this sum is a constant term, which applies equally
to all stations and does not affect the phase differences between sta-
tions. All other terms are real exponentials approaching zero with
increasing time. The dashed curves in Figs. 4, 5, and 6 show the response
of a 6 -station ring calculated from (44).

6.2 Case 2: H(s) = It, 0, N = co .

This result can be extended to rings of indefinitely large size in two
different ways, so as to specify the response either a given number
of stations away from the source of the disturbance, or a given fraction
of the circumference away from the source. For the first approach,
which gives an exact result for an infinite ring, let

Bk = 2irk/N (45)

and let N increase without limit (approach infinity). Then the limit
of (43) defines the integral.

e-Xt
f2rp(t) = e' °

hr
exp (X/ cos 0) dO, (46)

which is related to a known integral form' for the modified Bessel
function of the first kind, order n, and gives

p(I) = e-)".1(Xt),

= p_(t).
n = -1,0,1,

(47)
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Fig. 4-Impulse response of bilateral rings with zero delays.

Curves calculated from this equation are shown as the solid curves
in Fig. 4.

Full exploitation of this result requires that the station at which
the disturbance originates be called the zeroth, and that neighboring
stations be indexed with positive integers to one side and negative
integers to the other side. At any time t, the largest phase disturbance
is at the station at which the original disturbance occurred. The asymp-
totic approximation for large x,
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z
1(x)

e
(48)

shows that the phase disturbance decreases with increasing time
roughly as

1
Mt) rc-;

v 2T-Xt
(49)

Although this result gives the wrong limit for a finite system, it gives
a clear picture of the early behavior while the response is still sub-
stantially localized.

I
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0 2/N
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Fig. 5- Large -t approximation for a large bilateral ring.
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6.3 Case 3: H(s) = X, r, = 0, N large, t large.
The alternative approach provides a better approximation for large /

after the disturbance has spread around the ring. When t is large,
the dominant terms in (44) are those in which cos (2irk/N) is closest
to unity, including not only those in which k is small but also those
in which k is close to N, or, equivalently, k is small and negative.
Since the kth term and the (N - k)th or (-k)th term are equal, the
latter terms can be effectively included by doubling each term for
small k. For large N, the approximation

X2
cos X -2- (50)

can be used for these terms. The Nth or zeroth term is a constant 1/N.
The other terms, which are small, can be omitted or included as con-
venient; since it is difficult to specify in advance which terms are
negligible, it seems safest to include them all, at least formally. Thus,
approximately, for large N,

N
1 + -2N

-27r- cos (2irnk/N) exp (
N22k2

X1) (51)k.,
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The time constants are proportional to the square of the number of
stations in the ring. The components have sinusoidal spatial distribu-
tions around the ring, and the time constant is inversely proportional
to the square of the spatial frequency. Some curves calculated from
(51) are shown in Fig. 5, compared with the response of a 6 -station ring.

6.4 Case 4: H(s) = A, r,,,, T, N < x .
If the delays are positive but all equal, the methods used in the

2 -station system can be applied to the inversion of (41). The exact
result is

itiri Am cos. nvome-mt-mr)

qk() = E (52)
m ni!

The approximation based on (23) gives

1 1 - cos (27k/N)
qk(t) "11 1 + AT cos (ark / N) exl) Al [I ± AT cos (2Irk/N)

(53)

which may be compared with (42). Curves calculated from these
equations for a 6 -station ring with AT = 0.1 are shown in Fig. 6 and
compared with the zero -delay case.

VII. BILATERAL CHAINS

It has been mentioned previously that a chain lacks the simplicity
of a ring because of the exceptional nature of the end stations. However,
given any chain of N stations, an analogous ring can be formed by
duplicating all stations except the end stations so as to form a second
chain between the, end stations as shown in Fig. 7, and taking the value

2 for each of the two averaging coefficients at each end station, leaving
all other parameters unchanged. The response of the chain to a dis-
turbance at any station can be found by applying the same disturbance
at the corresponding station or stations in the analogous ring; the
response of each half of the ring will be the same as the response of

the original chain.
A bilateral ring, as studied in the preceding section, will result if

the stations in the chain all have equal filter gains and if all averaging
coefficients (except at the end stations) equal I. Such a chain will be
called a bilateral chain. Thus, in particular, the response shown for
6 -station rings in Figs. 4, 5, and 6 will also be observed in 4 -station
bilateral chains disturbed by an impulse at an end station. The response
to a disturbance at any other station may be obtained by superposition
of two station responses calculated from the ring; the responses to be
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a21 823 a32

vt(t) v2(t)

823 832
a21 834

834

v3(1.)

v2(t) v3(t)

Fig. 7- A chain and its analogous ring.

4(t)

superposed may be identified by supposing that the disturbance is
propagated in both directions from the source and is reflected at either
end of the chain.

Alternatively, in principle, the response of either the ring or the
chain might be determined by superposition of an infinite number of
terms of the infinite -ring response determined in the preceding section.
The response of an infinite ring is the same as that of an infinite chain
extending in both directions from the source of the disturbance, since
the two networks are indistinguishable. The response of a finite ring
could be calculated by supposing the disturbance to propagate around
the ring an unlimited number of times in both directions. For a finite
chain, the disturbance could be considered to spread in both directions
(except when the disturbance originates at an end station) and to be
reflected whenever it reaches an end station. This method may be
useful in large chains or rings as a refinement of the simple approxima-
tion of a large chain or ring as an infinite one.

VIII. UNILATERAL RINGS AND CHAINS

All the networks studied in previous sections have satisfied the
reciprocity condition, and in consequence all components of the response
have been nonoscillatory: strictly so in the zero -delay case, and ap-
proximately in the case of small XT. In this section, the opposite ex-
treme is studied. In the unilateral ring, the product of the averaging
coefficients in one direction is positive, while every coefficient in the
other direction is zero.
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8.1 Rings

To define a unilateral ring, we assume a ring of N identical stations
and assign a positive direction around the ring. Each station transmits
only to its nearest neighbor in the positive direction. Each station
then receives from only one other station and thus has only one averaging
coefficient equal to unity. All links are identical. The system equations
are

sP(s) = V (s) H(8) [P_,(s)e- - l'(s)], n = 1, , N. (54)

The transformation defined by (35) and (36) may be applied to this
network also. In place of (41), assuming the same impulsive disturbance
as given in (39), we get

1
Qk(s) = (55)

e-.7-22,k/N)

8.1.1 Case 1: H(s) = X, Tn. = 0, N < 00
Only the case of zero delays has been studied in detail. In this case,

gk(t) = exp -X[1 - cos (27k/1V)]1} exp [-jXt sin (Mc/N) ]. (56)

Hence,

p(1) = N1
"exp j[27rnk/N - At sin (2irk/N)

 exp { - X[1 - cos (271c/ N)J11 . (57)

The sum is real and may be alternatively expressed as

p,(t) = 1 cos [27rnk/N - At sin (2irk/N)]

 exp X [1 - cos (271-k/ . (58)

The components are not real exponentials, but exponentially damped

sinusoids.

8.1.2 Case 2: H (s) = ,\, T, N =
In the infinite unilateral ring, using (45) in (57) and passing to the

limit,
-Xt 2r

27r
p(t) = exp (Xte-i°) dB. (59)

Expanding exp (Ate- ie) as a power series in Ate -16 and integrating term
by term gives
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n = 0, 1,
(60)

= 0, n= -1, -2,
This result is plotted in Fig. 8. The phase disturbances at adjacent
stations are in the ratio
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Fig. 8-Impulse response of an infinite unilateral ring.
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so that for fixed t, and increasing n, pn(t) increases until n z t. There-
fore, at any time t the largest disturbance is at the mth station, where

Xi- 1 Sm_Xt. (62)

For large t, the magnitude of the largest phase disturbance, obtained
with the aid of Stirling's approximation for the factorial, is asymp-
totically

1
Pm(t) ylrxt (63)

This is the same as the asymptotic value (49) obtained for the infinite
bilateral ring, except that in the unilateral case the peak precesses at
the rate of \ stations per unit time.

8.1.3 Case 3: H(s) = X, Tnm = 0, N large, t large

Application of the approximation (50) together with

sin x x (64)

gives, for large I in a large ring,

1 2 7r2

pn(0 Kr- + Ncos [2ark(n - x0
-2/N] expAalN2 k2 Ai) (65)

Compared with (51) this shows a response that resembles that of a
bilateral ring except that it precesses around the ring in the positive
direction at the rate of X stations per unit time. The oscillatory nature
of the response is associated with the progression of the disturbance
around the ring.

8.2 Chains

A finite unilateral chain is a system with one master station and
N - 1 slaves. If such a system is disturbed at one of the slave stations,
the response of each station following it in the positive direction is
the same as that of the corresponding station in an infinite unilateral
ring. An impulse disturbance at the master station, however, does not
correspond directly to any situation in a unilateral ring. A permanent
phase shift of one unit occurs in the master station output. The effect
at the second station is the same as that of a step of magnitude X in
the free -running frequency of the second station, and, a step being
the integral of an impulse, the response of the entire chain can be
inferred by integrating the response to an impulse at the second station.
Each station can thus be shown to approach its new equilibrium phase
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monotonically. If the nominal time of response of each station is defined
as the time of maximum rate of change of phase (maximum frequency
shift), each station responds with a delay of 1/X after the preceding
station. The effect of positive link delays in the unilateral chain is to
further delay the response without changing its form.

The unilateral ring is not the analog of any chain in the sense of
the preceding section.

IX. RECTANGULAR ARRAYS

A rectangular array, in which each station is connected to four
nearest neighbors, can be considered as intermediate between a fully
interconnected system and a chain or ring, and may be more appropriate
than either as a model of a network of stations on the surface of the
earth. A rectangular network with no edges or corners can be laid
out on the surface of a toroid as in Fig. 9. This network can be analyzed
by methods similar to those used for rings.

The stations are most conveniently indexed with double subscripts,
1, , 111, , and n = 1, , M2 ; the number of stations is

N = M ,M2 . Assuming equal filters and equal delays, the system equa-
tions are

sP ,(s) = V , (s) -H (s)P ,(s)
H(4s)

e sr
,

rrs , ra -,(S) + Pm , I(s) P m- .(s) Pm +1 (66)

Fig. 9-A toroidally-connected rectangular array.
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assuming addition modulo M, in the first index, and modulo M2 in

the second. Defining
11, AI 2

Qk,(s) = E E P,(s) exp [ jair(_M _mk

+ M
1

i 211'
.

k = 1, , M 1 = 1, , M2 (67)

and proceeding as with the bilateral ring, we obtain, in the case of flat
filters and zero delays, with an impulse disturbance at the Ali , M2th
(or zero -zeroth) station,

p,(1) = - E E exp [ (ink n1\1et, M2

N k-, 1-t r MI+ 1172)

exp [ -X(1 - cos
k 2r/- cos 372)/1 (68)2r

Comparison with the bilateral ring is most convenient in the limiting
cases of large systems. For the infinite array,

Pm(t) = e-xrim(:)__XI)In(xi)

which has the asymptotic form
1

13..(t)

(69)

(70)

indicating a more rapid approach to the final value in the rectangular
array than in the ring. The approximation (50) for large t in large
arrays gives

X X

pm
111,

(I) 1 E E cos + 711,112)1
--oc

exp111 (71)

The longest time constant is shorter for a rectangular array than
for a ring with the same number of stations. Fig. 10 shows some curves
calculated from (69).

A bounded rectangular array in a plane is more complicated than
a toroidally connected array because of the exceptional edge and corner
stations. However, a bounded M, by M2 array can be analyzed in
terms of an analogous 2M, - 2 by 2M2 - 2 toroidal array as shown
in Fig. 11. All columns except the first and last are duplicated and
connected as shown by the solid lines to form a cylindrical array, and
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then all rows except the first and last are duplicated and connected
as shown by the dashed lines; averaging coefficients are divided by
two whenever a station receives from duplicate stations. The toroidal
array has one station corresponding to each original corner station,
two for each edge station, and four for each interior station. The re-
sponse of the original bounded array to a disturbance at any station
is identical with the response of the corresponding part of the toroid
when the original disturbance is applied to corresponding stations.
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Fig. 11-The toroidally-connected array analogous to a bounded rectangular
array.

Alternatively, in principle, the response of a finite toroidal array
can be determined from that of the infinite array by considering the
response to propagate around a toroidal array in the four cardinal
directions, or to be reflected from the sides of a bounded array.

X. RESPONSE TO SINUSOIDAL DISTURBANCES

The steady-state response of a linear system to a sinusoidal dis-
turbance is sinusoidal, and the phase difference between the response
and the input disturbance, together with the ratio of the amplitudes,
is given by the frequency response function as a function of frequency.
The impulse response is equivalent in principle to the frequency response
function as a specification of dynamic properties, since either can be
expressed in terms of the other through Fourier or Laplace transforma-
tion. The frequency response functions of a bilateral ring, in particular,
are the functions 13,4(jw), which are the Pn(s) evaluated along the
"real frequency axis" s = jw, for real w.

The frequency response will be determined in this section for infinite
rings, both bilateral and unilateral, in the case of arbitrary equal
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filters and arbitrary equal delays. Although the expressions are more
complicated than the impulse response expression in the case of flat
filters and zero delays, they do not become very much more complicated
in the more general case, for which closed form expressions for the
impulse response have not been obtained.

ma Case 1: Bilateral Ring, N = co

For the bilateral ring, an expression for Qk(s) is obtained from (38)
using (40), and P(8) is obtained using (36). Using the substitution
(45) and passing to the limit of infinite N gives

= 1 f 2
271" 0 s +

" dO
(72)

H(s)(1 - e" cos 0)

To evaluate this by contour integration, let

z = eye. (73)

Then

P(8) = .1
12.7r

dz
(74)

e- "s + H(s)[1
(-z +--2

integrated counterclockwise around the unit circle centered at the
origin in the z -plane.

When n > 0 the integrand has two poles in the z -plane, located
at the roots of the quadratic equation

- 2(1'11 -H(s)1z + 1 = 0. (75)

Since the denominator of the integrand is symmetric in z and 1/z,
one root is the reciprocal of the other. We defer consideration of the
case where both roots have unit magnitude; then one pole will lie
inside the path of integration and the other outside. Denote the root
inside the contour by

z, = H(s)] - Nie2"11 + 12 - 1, (76)
1/(s)

where it is understood that the square root is to be taken to have
whichever sign gives z, the smaller magnitude.

For convenience, let

$(8) -
H(s)

s+ H(s) '
(77)
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this incidentally being the quantity whose magnitude is required to
be less than unity in the sufficient condition for stability given by
Gersho and Karafin.1 Then

1 - - (32(s)e-2"z -
QQ

(s) e_"

(s) "
+ #2we-28r

where the second form can be obtained by rationalizing the numerator.
The integral around the contour is 2rj times the residue at this pole,
so that P (s) is equal to the residue, which can be put in the alternative
forms

P T, (s)
[1 - V1 - (32 (s) e-2" ["

H (03-1(s)e- "sr V1 - 132 (s)e-2 r

On " (8)e- "a'
V1 /32 2 8 T Vi 02 e- tarr

For negative n, (74) can be transformed into an integral in
to show that

(78)

(79)

1/z

P(s) = P _(s). (80)

The deferred case in which z1 has unit magnitude will now be briefly
considered. In this case, the quadratic equation (75) has two conjugate
roots of unit magnitude, or double roots at 1 or -1, and it is easily
shown that this occurs when 13(s) e- " is real and has magnitude 1 or
greater. If the sufficient condition for stability mentioned earlier is
satisfied, this cannot occur in the left half s -plane or on the real fre-
quency axis except at zero frequency, where a singularity is expected
to occur in any system configuration.

Where 13 (s)e- " is ±1, P (s) is infinite and will ordinarily have a
branch point. This always occurs at s = 0, and occurs for other values
depending on the filters and delays. Where 13(s)C" is real and has
magnitude greater than unity, P (s) will be finite but will have a step
discontinuity, because as s passes through a value at which /3 (s)e- "
is real, z, crosses the unit circle and must immediately be redefined

as z2 , and the square roots in (79) abruptly change sign. The function
P(s) is thus defined as a single -valued function in the s -plane with
line discontinuities where it might be expected to have branch cuts.
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If the system is stable, these discontinuities are confined to the interior
of the left half s -plane except for s = 0.

Thus, (79) defines /37,(jw) as a continuous single -valued function
except at w = 0. In the case of flat filters and zero delays, P(s) is
the Laplace transform of (47). Fig. 12 shows the magnitude of P,,(jco)
for this case and for the case of XT = 0.1.

10.2 Case 2: Unilateral Ring, N =

For an infinite unilateral ring, a similar procedure gives

1 (E e dz
P (s)

j2ir [s H(s)]z - H(s)e-"

Fig. 12-Frequency response of an infinite bilateral ring.

(81)
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to be integrated over the same path as (74). When n 0, the integrand
has a single pole at z = 13(s)e-8T. If the magnitude of i3(s)e" is less
than 1, the pole is inside the unit circle, and for nonnegative n

13"+INC""P(s) = H(s)
, n = 0, 1, 2, (82)

while for negative n under the same conditions, the substitution y = ljz
puts all poles outside the unit circle and

P(s) = 0, n = -1, -2, . (83)

Fig. 13 shows the magnitude of P.(jw) graphically. As the magnitude
of 13(s)C" becomes greater than 1, the pole crosses the unit circle
and there is a step discontinuity in Pn(s) for all n. However, the suffi-
cient condition for stability mentioned previously is both necessary
and sufficient, in the unilateral ring, for these discontinuities to be
confined to the left half -plane.

The finite value of P.(0), where a singularity should occur, is at-
tributable to the fact that every station in the infinite unilateral ring
is a slave station, and no finite change at any given station can alter
the equilibrium frequency. The infinite unilateral ring is in this sense
a pathological limiting case of the unilateral chain in which the master
station recedes to infinity and becomes inaccessible.

o/X

0.8/X

L11611111Im.-__ _

ZERO DELAY

n=o

0 4X
w

Fig. 13-Frequency response of an infinite unilateral ring.

7X
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XI. JITTER RESPONSE

Jitter denotes random variations in the phase of a signal. In a digital
signal, jitter can occur as a result of pattern -induced retiming errors
in regenerative repeaters.' Jitter reducers' can reduce the high -frequency
components of jitter, but, because the jitter reducer output frequency
is slaved to the input frequency, the low -frequency components cannot
be reduced.

In a mutually synchronized system, the low -frequency components
of jitter will affect the observed phase differences used to control the
clocks. Even if the variations in the received phase, after jitter reduc-
tion, are not themselves objectionable, they might cause objectionable
variations in clock phases through the cumulative effects of each clock
acting on the next. To simplify the analysis, only the effects on the
clock phases are considered; the immediate effects of jitter are omitted.

It is assumed that the effect of jitter on the link from the /nth station
to the nth is to add a random component µ,(t) to the phase p,(t - T,)
that would be received without jitter. This random component is
assumed to have the properties of white Gaussian noise and to be
independent on different links. Assuming that a jitter reducer can be
designed that will compensate the immediate effects of jitter, we
determine only the cumulative effect of jitter propagating
system as a result of its effect on the station clocks.

The autocorrelation function assumed for ii,(t) is

Eb.c,(t)/2,(1 .r)] = K 6(s). (84)

Here "E" stands for the "expectation" or mean value, the star denotes
complex conjugation (immaterial here since Ann, is real), and o(t) is the
Dirac delta function. K represents the noise power density, assumed
to be the same for every link in the systems to be considered.

11.1 Case 1: Phase -Locked Oscillator

As a standard of comparison, consider the effect of this jitter on a
simple phase -locked loop of gain X, in which an oscillator is controlled
by the signal received from an unperturbed source over a jittered link.
The equation for the output phase p(t) in this system is

P'(/) = X(F I + P(t) - p(1)), (85)

where F1 is the free -running frequency of the controlled oscillator,
le the frequency of the master source, and the link delay is assumed
zero. Since the system is linear, and we are interested only in the random
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component of the output, we may set F, = Fa = 0 without loss of
generality. Thus, the Laplace -transformed system equation becomes

sP(s) = X111(s) - XP(s) (86)

with solution

P(s) - X
Ill (s) (87)

We obtain the mean -square value of p(t) from its autocorrelation
function 40(x) evaluated at x = 0. This is determined from the power -
density spectrum

(w)= 2-1-7 rwcp(x)el" dx (88)

by means of the inverse transformation

(p(x) = e(w)e"" dw. (89)

The power -density spectrum of the input j.i(t), obtained from (84) and
an integral of the form of (88), is flat, equal to K/2ir, for all w. The
output power density is obtained by multiplying this by the square
of the magnitude of the frequency response, obtained from (87):

=
x2K

(90)
2r I jco + X r

The inversion integral (89) is evaluated by means of a partial -fraction
expansion. The analytic continuation of (90) in the s -plane, s = jw,
has poles in both the right and left half -planes. Since (89) is a Fourier
(not Laplace) inversion, terms due to poles in the right half -plane will
be zero for positive x; thus, for positive x we need only consider the
left half -plane. We obtain

and, as a limit,

XKe-as
co(1) - 2

40(0) =
XK--2-

(91)

(92)

is the mean -square value of p(t). The rms phase error is of course the
square root of this.

11.2 Case 2: Bilateral Ring

We now consider a bilateral ring with flat filters and small delays.
Each station receives two inputs, each with jitter with the autocor-
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relation function (84), and therefore power density K/27r. Each input
is multiplied by X/2, to produce an error -signal component with power
density (X/2)2K/21-, and when two independent components are added,
their power densities add to produce a total power density of 2(X/2)2K/2r,
or X2K/47r. The effect of the two jitter components is thus equal to
the effect of a white noise component of power density WIC/47r added
to the free -running frequency. We ignore the steady-state components
and consider this to be the only input at each station. Thus, we assume

2K
E[vt(t)v(t x)] = 8(x). (93)

The variables uk(t) are derived from the vn(t) as in (84); direct evalua-
tion gives

2K

1;[ul:(1)u/(1 + x)] = 2N 'xi' k = 1;
(94)

0, k 1.

This shows that the uk(t) are uncorrelated, and therefore (since we
have assumed Gaussian distributions) independent, each with power
density X2K/471-N. It follows, since each qk(t) depends only on the cor-
responding uk(t) as in (38), that the qk(t) are independent. Denoting
their autocorrelation functions by 714(x), we obtain their power -density
spectra, using the frequency response given by (38), as

X2K/41-N
k (CO = (95Ili

[X + Jo)- Xe-1" cos Ok][X - jco - Xei"
)

cos Ok] '

where the substitution (45) is used as an abbreviation.
When k = N, (95) indicates infinite power density at zero frequency.

The autocorrelation function ON(x) is consequently infinite for all x,
and in particular the mean -square value of qN(t) is infinite, so that
the mean -square value of each pn(t) is infinite. This occurs because
the random variations that the jitter induces in the system frequency
cause the system phase to execute a random walk. However, since qN(t)
contributes equally to every pa(t), it does not affect the phase differences
between clocks, and all other qk(t) have finite mean -square values.
It follows that while the phase of each clock tends to deviate indefinitely
far from that of an unperturbed clock of the same frequency, the
deviation between clocks in the same system tends to remain bounded.

We are primarily interested in the phase difference between the
clock at each station and the delayed signal received from an adjacent
station. The mean -square value of this phase difference will be denoted by
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cp,±, = El[p(t) - p*,(t - 7)}2). (96)

We express the phases in terms of qk(t) using (36), writing the square
of the real sum of these complex quantities as the product of the sum
by its conjugate so that expansion of the product gives terms of the
form of the left side of (84); thus,

N-1

= 2 E hpko - Re [el" tp,(7)] } (97)

Therefore, (95) should be used in an integral of the form of (89)
to determine MO) and I/ 4(7). The analytic continuation of (95) in the
s -plane has, in the left half -plane, all the poles of (41), and in addition
the reflections of these poles in the right half -plane. We continue to
use (23) as an approximation when XT is small. The result is

1-
AK exp

[_xx(i 4.xrcocsOk
cos 9k

4N(1 - cos 0k)(1 XT cos Ok)

In particular, to the first order in X7,

XK(1 - XT cos Ok)
IPA) - cos Ok)

and, again using the linear approximation to the exponential,

XK(1 - X7)
'her) 4N(1 - cos Ok)

We now find, from (97), that
N -1 XK

n,n±1ti N 2

x 0. (98)

(99)

(100)

(101)

The mean -square phase discrepancy observed in received signals is
thus substantially independent of the size of the system and sub-
stantially unaffected by small link delays. It is roughly equal to the
mean -square phase error, given by (92), that would be induced, by
the jitter in a single link, in a simple phase -locked oscillator with control
gain X.

11.3 Case 3: Unilateral Ring

In a unilateral ring, each station receives only one input, so that
the equivalent vn(t) has power density X2K/2ir and its autocorrelation
function has twice the value given in (93). The appropriate frequency
response is given by (55), so that instead of (95) we get
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X2K/27N
1,k(co) = (102)- -Jo) - Xe

We continue to use (23) to determine a simple approximation. The
result is

XK exp [ - Xxi 1 - Ciek
Xre-i"

CO) 17-.% 2N(1 - Xr)(1 - cos Ok)

In particular,

XK(1 X1-)
'Pi") 2N(1 - cos Ok)

and

(103)

(104)

XK[1 Xre-'Bt]
1,//,(r) (105)2N(1 - cos 8k)

Equation (97) is equally valid for the unilateral ring as for the bilateral
ring, giving

43n , n-1 R.-1 X/C(N - 1 )

CDn n + I
ti xK[(N - 1)

+ 2X T
2)]

(106)

The mean -square phase discrepancy is essentially twice that which
occurs in the bilateral ring. The link delay has a first -order effect
on the signal received at each station from the station to which it
transmits timing control because of the round-trip delay.

XII. SUMMARY AND CONCLUSIONS

In this section, I propose to extrapolate the specific results of the
preceding sections to general conclusions that, although not strictly
proven, seem quite likely to be true from a practical standpoint.

It was shown in Section III that a system that satisfies the reciprocity
condition and has flat filters and no delays will have a nonoscillatory
transient response. The response was described more specifically in
later sections for specific configurations: 2 -station systems, fully inter-
connected systems, and bilateral rings and chains, all of which met these
conditions. These configurations appear to span the extremes of practical
systems.
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The effect of delays was determined specifically only for these special
configurations and for the special case of equal delays and flat filters.
The effect was shown graphically for XT = 0.1; it appeared to be small
and unobjectionable. Fig. 6 shows that at all stations, over the time
range shown, the response to a transient disturbance is actually smaller
when delays exist. At the zeroth (or Nth) station, where the disturbance
originates, this can be attributed to the short period after the disturb-
ance during which the neighboring stations remain undisturbed and
are, therefore, reliable indicators of the original state. At other stations,
the appearance of smaller disturbances is due in part to the delayed
peak of the response.

I propose to conjecture that the dynamic effect of delay in any
reciprocal system with flat filters will be equally unobjectionable as
long as the product of the largest filter gain and the largest single link
delay is less than 0.1. This would be a unjustified extrapolation from
a purely mathematical standpoint, but it seems reasonable in the light
of the physical interpretation suggested in the preceding paragraph.

The effect of filters with other than flat frequency response has not
been shown at all in terms of transient response. Two aspects of this
question appear important. In the first place, it may be possible to
obtain some improvement in transient response by appropriate filter
design, but further analysis appears necessary to answer this question.
In the second place, assuming that the flat filter gives a satisfactory
response, the effect of high -frequency cutoff, which is inevitable in
a practical system, must be estimated. A tentative answer to this
question can be obtained by examination of the expressions for fre-
quency response P (s) developed for specific configurations. In all
these expressions, the system response is substantially the same as
in the flat -filter case as long as the filters I- (s) remain substantially
flat until the frequency s becomes large compared with the zero -fre-
quency filter gains X. . This condition establishes an approximate
bandwidth requirement for the filters. The extrapolation to arbitrary
configurations is proposed in this case also.

The effect of departure from the reciprocity conditions is illustrated
in only one case: the unilateral ring. Here, although the departure
from reciprocity is the greatest possible, the effect on the transient
response is mild. The magnitude of the response, and its rate of sub-
sidence, are substantially unchanged; the principal effect is the preces-
sion of the disturbance around the ring. The oscillatory components
in the response can be associated with this precession.

Extrapolation of this result appears uncertain. The reciprocity condi-
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tion can be stated in terms of the equality of the products of averaging
coefficients in opposite directions around any loop. It can easily be
conjectured that if the product of the averaging coefficients around
any loop is much larger in one direction than the other, there will
be a tendency for disturbances to precess around the loop in this direc-
tion, thereby generating oscillatory components in the response. On
the other hand, it is hard to imagine pure precession in a multiloop
network. A possible answer is suggested by the argument in Section III,
in terms of pole loci, suggesting that a considerable departure from
reciprocity could be tolerated before oscillatory components began
to appear.

This extrapolation is suggested only for the case of flat or nearly
flat filters and zero or small delays. For other cases, departures from
reciprocity may give rise to a stability problem. This is suggested
by the analysis in Section VIII of the discontinuities in the frequency
response of an infinite unilateral ring, which showed that the stability
condition that has been shown in the general case only to be a sufficient
condition is in this case not merely sufficient but necessary. The latitude
for filter shaping may be smaller in the nonreciprocal case, limited
not simply by instability but by the deterioration of transient response
that generally accompanies an approach to instability.

The analysis of jitter response shows that in certain representative
cases the effect of jitter does not accumulate in a large system. This
gives a definite negative answer to the question of whether cumulative
jitter necessarily occurs in a large system. It seems reasonable to
conjecture that this conclusion is independent of configuration, and
remains true for substantially flat filters and small delays, but less
reasonable to suppose that it will remain true for arbitrary filters.

Nothing in this study should be construed to indicate a preferred
configuration for a practical system. Full or nearly full interconnections,
nearest -neighbor connections, branching networks, or other forms may
be appropriate. In particular, the apparent superiority of the fully
interconnected network from the standpoint of transient response must
be tempered by the practical considerations against setting up a large
number of very long connections.
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APPENDIX

Reciprocal Systems in the Steady State

The assumption of zero initial conditions, used in the study of tran-
sient behavior, must now be dropped. Thus, the transformed (2) are
no longer valid, but the original equations (1) may be used. In the
steady state, the rate of change of phase at every station is equal to
the common system frequency f,

p,;(t) = f , n = 1, , N (107)

so that
Pn(1) = ft + , - < t < (108)

Thus, in the steady state, the vn(t) being constant, the system equations
(1) become

N

f = v E an.(11/. - - n = 1, , N. (109)
1

The general solution to these equations is the expression given by
Gersho and Karafinl in terms of cofactors of a matrix derived from
the an. . In the reciprocal case, let the nth equation in (109) be multiplied
by C and the equations be assumed over all n; when the reciprocity
condition in the form of (8) is applied, all the terms in the phases V/n
drop out and one gets

N N N N

f E c = E cnv - f E XnCn E (110)
n1

This can be solved immediately for f, the expression being similar
in form to the solution reported by Gersho and Karafin, except that
the C. , which are easily determined by (9), replace the matrix cofactors.

REFERENCES
1. Gersho, A. and Karafin, B. J., Mutual Synchronization of Geographically Sepa-

rated Oscillators, B.S.T.J., 45, December, 1966, pp. 1689-1704.
2. Karnaugh, M. A Model for the Organic Synchronization of Communications

Systems, B.S.T.J., 45, December, 1966, pp. 1705-1735.
3. Guillemin, E. A., Synthesis of Passive Networks, John Wiley and Sons, New York,

1957, p. 64.
4. Churchill, R. V., Fourier Series and Boundary Value Problems, McGraw-Hill

Book Co., Inc., New York, 1963, pp. 171-174.
5. Byrne, C. J., Karafin, B. J., and Robinson, D. B., Jr., Systematic Jitter in a

Chain of Digital Regenerators, B.S.T.J., 42, November, 1963, pp. 2679-2714.
6. Witt, F. J. An Experimental 224 Mb/s Digital Multiplexer-Demultiplexer

Using Pulse Stuffing Synchronization, B.S.T.J., 44, November, 1965, pp.
1843-1885 (see pp. 1852-1856).

7. Runyon, J. P., Reciprocal Timing of Time -Division Switching Centers, U. S.
Patent No. 3,050,586, August 21, 1962.



Deformation of Gas Lenses by Gravity

By D. GLOGE

(Manuscript received September 14, 1966)

Gravity forces cause distortions in tubular gas lenses. A theory is derived
here which yields excellent quantitative agreement with measured distortions
for various tube lengths, diameters, and gases. It is shown that in a gas
lens of optimum design the displacement of the optical center has a maximum
at the end of the lens. The amount of displacement increases with the fourth
power of the tube diameter and with the square of the gas pressure.

I. INTRODUCTION

If a cool gas is blown into a hot tube (Fig. 1), the gas heats up first
at the wall of the tube and remains cool longer at its center. The density
therefore, is higher in the center of the tube and decreases toward the
wall. The increase in density is accompanied by an increase in dielectric
constant. In this way the gas acts as a positive lens.' 2

At the same time, however, the cooler gas tends to sink down because
of gravity, thus causing an asymmetric density profile in a horizontal
tube.3 Though a simple approach already gives an estimate of this
effect,' a more rigorous theory is derived here using a perturbation cal-
culation which determines the transverse convection currents from the
unperturbed temperature profile and then uses the currents to correct
the temperature profile.

II. TRANSVERSE CONVECTION CURRENTS

The tube walls are at a temperature T w and AT degrees warmer than
the entering gas. Heat diffuses toward the axis and determines the tem-
perature field. Using the coordinate system shown in Fig. 1, the tem-
perature field may be approximated bye

a,

2 + 4,2
T = T w - AT[l - 2

357

(x2

a
(1)
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COOL GAS IN

AT

---- 2 a

WARM GAS OUT

TUBE WALL
AT TEMPERATURE Tw

Fig. 1- Convection currents and temperature distribution in a gas lens.

where a is the tube radius and s a decay length given by the formula

a2V, (2)s =
7 .3«

v10 is the gas velocity along the axis and a the thermal diffusivity defined
as the ratio of heat conductivity K to heat capacity:

Ka = - 
PCp

(3)

The heat capacity is written here as the product of density p and specific
heat at constant pressure.

The temperature is related to the density p and the pressure p by
the gas equation
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p = RpT. (4)

The density determines the gravitational forces gp which drive the gas
particles in the transverse direction. The transverse components of the
velocity field v(x, y, z) can be found from Newton's Law

gp = grad p - vpV'v p dd-tV- (5)

where v is the kinematic viscosity determining the frictional forces. The
acceleration is described by the total differential dv/dt and for the steady
state takes the form

dv - (v grad)v.
dt

(6)

In the problem under consideration the gas may be treated as a
quasi -incompressible (Boussinesq) fluid. That means that variations
of density may be neglected, except insofar as they modify the action
of gravity. Forming the curl of (5) therefore, yields

curl (gp) = -vp curl '72v dvp curl -
dt

Using (4) and rearranging (7) one finds

(7)

7'ad
(gr

dv
g X -grad p) = v curl curl curl v + curl

dt
- (8)

7' P

Here grad p/p can be neglected compared with grad T/T, and T in
the denominator will be replaced by the mean (absolute) temperature
T.. Finally, by inserting (6) one finds

-1 (g X grad 7') = v curl curl curl v + curl (v grad)v. (9)

To solve this equation, a tentative velocity distribution is introduced
which represents the flow lines shown in Fig. 1. The unknown coefficients
are chosen in such a way that the equation

div v = 0 (10)

is fulfilled, which assumes that the gas is incompressible. Then the
velocity components
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/1, =
V. (a2 - x2 y2)(a2 - x2 - 5y2)

v. = -4 xy(a2 - x2 - y2)
a

V. =
Vz. (a2 - X2 - y2)
a

result which leaves only the coefficient v, unknown, since the velocity
v,0 is determined by the forced laminar flow in the tube. v, is the vertical
gas velocity at the tube center caused by the gravitational forces. It
may be assumed to be much smaller than the longitudinal velocity v...
Though v, is a function of z the variation of v in the z -direction is neg-
ligible compared to its variation in the cross-sectional plane and has
to be considered only in the acceleration term where ave/az occurs
multiplied with the velocity v.,.

With these approximations, v, can be determined by inserting (1)
and (11) into (9) which yields

_,/ v. avo
(12)AT

e y = 192 y 18v00 -aaz
Third- and higher -order products of x and y are neglected in this equa-
tion since they are only important at the wall of the tube and contribute
little at the tube center.

Equation (12) is a linear inhomogeneous differential equation in z
with the solution

where

g AT a2 svo = - (e-zis - e-z/Q),P To 48 s - q

3 a2
= 32 v

vz. .

(13)

(14)

A discussion of (13) is postponed in order to proceed with the cal-
culation of the lens disturbance by using the derived convection cur-
rents to correct the temperature profile which, in turn, gives the density
distribution and the lens profile.

III. DISPLACEMENT OF THE OPTICAL CENTER

The gravitational forces cause a continuous flow of cool gas toward
the bottom of the pipe, which distorts the temperature profile more and
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more in the way shown in Fig. 2. The growing temperature gradient at
the bottom, however, will increase the heat diffusion toward the center
and counteract the convection effect. The equality of both effects is ex-
pressed by the equation

aV2T = v grad T (15)

which determines the actual temperature profile under the boundary
condition that T = T w at the tube wall.

Considering that the temperature function for axial direction is
much less curved than the radial one, a2T/az2 may be neglected and
(15) separated with respect to z.° This yields

a2T a2T aT aT T - T w= v. - vz vz (16)ax ay ax ay s '

where T - T, is an exponential function of z as already introduced by
(1) for the undisturbed temperature profile.

No straightforward solution of (16) is known. Assuming, however,
that the gravity effect, to first order, tilts the temperature profile in the
x -direction as shown in Fig. 2, the amount of this disturbance can be
calculated. The assumption implies that by transforming T(x, y, z)
into new coordinates

= x - a(T w - T), n = y; =z (17)

the undisturbed profile can be regained, which in the following is denoted
by OQ, n, 0. Since this is symmetric with respect to the corresponding
transformation in (16) must generate a differential equation for 6
which contains only even terms in E. The requirement that the odd terms

+a

Fig. 2 - The temperature function T(x) and its transformation into a sym-
metric function O(x - aT).
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cancel yields the following equation for 8:
1

a0 0
2a15(- - = vz + 26v,

- T, ae (18)
a aE s

The locus of the minimum of the temperature T(x) is of particular
interest, for this is the optical center of the distorted lens profile. Fig.

2 shows that this center occurs at a distance

d = O(Tiv - 0)E-0 (19)

below the tube axis. Using for 0 the undisturbed temperature profile
given in (1) and solving (18) for a(T w - 0) at = 0 yields

d - vo

2
vz,+

8
a

s a2.

By inserting (2) and (3) into (20) one finally finds

d = 1 ga42 AT q
(e._ - e_zi°).

150« Tos-q

(20)

(21)

The diffusivity a and the viscosity v for perfect gases are related by
Eukens formula'

v 4
(9 __ 5 ez)

c (22)

c, being the specific heat at constant volume. As Table I shows, the
decay lengths s and q given by (2) and (14) differ very little. Since (21)

is not defined for s = q it is more convenient to use the following ap-
proximation for (21):

1 ga4 AT z _d= e °
750 « To s '

(23)

which is valid for z < 2sq Iq - si.
In Fig. 3 the displacement of the center of the lens profile is plotted

TABLE I

Crier air 418

He 1.66 1.55 1.03

N2 1.41 1.35 0.93

CO2 1.31 1.30 0.89

CH4 1.31 1.30 0.89



0.8

E
LL E 0.6OZ
I- I,
Z w
M Z 0.4

w<U
_J

a. a
0 j 0.2

0_
0

GAS LENSES

20 40 60 80 100 120

DISTANCE FROM INPUT IN mm

363

3 LITERS PER MIN.

LITERS PER MIN.
03

140

0.5

160 180

Fig. 3-Displacement of the profile center in a tubular gas lens of %-inch i. d.
for flow rates of 0.5, 1, and 3 liters per minute using air. (a = 0.22 cm2/s). Meas-
ured data by DeGane

versus the distance from the tube input for flow rates of 0.5, 1, and 3
liters per minute. A tube of finch diameter and 100°C wall temperature
is assumed. The gas enters at room temperature. The mean temperature
during the process is assumed to be T. = 50°C. The gas is air with a
diffusivity a = 0.27 cm2/s.

All curves show a linear increase of the displacement at the tube input,
determined by the transverse acceleration of the gas. Further from the
input the displacement follows the exponential decay of the temperature
profile. The maximum displacement occurs at z = s. Measurements at
the end of a 16 -cm gas lens using the mentioned parameters are in fair
agreement with the theory.8

In Fig. 4 the displacement is shown for a tube of 1 -inch diameter
and two different gases: CO2 with a = 0.125 cm2/s and N2 with a =
0.25 cm2/s. The temperatures are the same as in Fig. 3. The flow rate
is 1 liter per minute. In this case, data are available for various tube
lengths.' They show an excellent agreement with the predicted behavior
of d versus z.

The focal length of the tubular gas lens has a minimum if the flow
rate is chosen in such a way that s equals the tube length. The maximum
displacement occurs at the end of such a lens and has the value

1 ga4 AT
d = 2040 a' (24)

A more useful measure for the gravity effect is the distance D by
which a light beam has to be displaced off the tube axis to pass the lens
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without deflection. Integrating at x = D over the tube length L one
finds D from the requirement that the total deflection cancels:

aT
Jo ax

dz = 0.
.-D

(25)

The development of the (disturbed) temperature field T about the axis
yields for small distortion

fo

L

[D - d(z)]e-zi' dz = 0; (26)

and finally, by using (23) one has

1 ga,
1

D -
3000 a2

(2L .+ 1)e -Z".

1 - CL"
(27)

In Fig. 5 the displacement D is plotted versus the flow rate for CO,
in a 7 -inch tube assuming the same temperatures as in Figs. 3 and 4.
Data measured by Steier3 show good agreement with the theory. For
L> 8

1 ga4Dti
3000 a2

(28)

is a good approximation. According to this formula, the optical center
of a CO, lens of optimum design would occur outside the tube if the
tube diameter is larger than 1 cm.

0.8
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1- frzwr
w Z 0.4
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Fig. 4 - Displacement of the profile center in a tubular gas lens of 14 -inch i. d.
for a flow rate of 1 liter per minute using CO2 (a = 0.1 cm2/s) or N2 (a = 0.2
cm2/s). Measured data by Steier.3
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Fig. 5 -Displacement of the optical center of a tubular gas lens using CO2
and a tube of 7 inches long and 1/1 -inch diameter. Measured data by Steier'

IV. CONCLUSIONS

The calculations show that the temperature distribution in a gas-
filled tube undergoes a distortion which increases power
of the tube radius. A square law dependence on pressure is predicted for
the range of 0.05 to 50 atmospheres where the thermal conductivity is
independent of the pressure and therefore, the diffusivity a cc 1/p.

As a measure of the distortion, the displacement of the effective
optical center in a tubular gas lens is calculated. Using CO2 at room tem-
perature and a tube of 10 -mm diameter at 100°C wall temperature the
optical center occurs at the bottom of the tube.
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Acoustic Light Modulators Using
Optical Heterodyne Mixing

By R. W. DIXON and E. I. GORDON

(Manuscript received September 21, 1966)

Acoustic light modulators are discussed in which the optical carrier
is reinserted in the diffracted, frequency -shifted light beam. Reinsertion is
accomplished in a novel fashion using a Kosters prism. In contrast to the usual
acoustic modulator, the diffracted light is power modulated at the acoustic
frequency. Modulation bandwidth and depth are each calculated as a func-
tion of the optical and acoustic beam parameters, assuming a Gaussian
optical beam and rectangular acoustic beam. It is shown that the modulation
bandwidth increases proportional to the optical beam diffraction angle and
equals the inverse of the transit time of the sound across the waist of the
optical beam. The optimum modulation depth, for a given acoustic power,
corresponds to approximate equality of the optical and acoustic diffraction
angles. Confirming experiments in the frequency range 250/350 MHz are
described.

I. INTRODUCTION

Detection of optical radiation using heterodyne mixing was pio-
neered in the classic experiments of Forrester, Gudmundsen, and
Johnson.1 They successfully detected the microwave beat between two
Zeeman components of a mercury arc. With coherent light sources the
technique was utilized initially in the investigation of the mode struc-
ture and frequency stability of the helium -neon laser.2 Subsequently,
optical heterodyne mixing has been used as a sensitive, high -resolution
detector of frequency shifts in the study of Brillouin scattering3 and
of the frequency broadening of Rayleigh scattered light.4

It is well known that under the correct circumstances an optical
beam, passing through a transparent material containing a traveling
acoustic wave, has part of its energy diffracted by the refractive index
variations associated with the acoustic wave. In the proper range. of
parameters, known as the Bragg region, the diffracted light is con -

367
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fined around a single direction. The system acts as a single-sideband
suppressed -carrier modulator in which the diffracted light is intensity
modulated with the envelope of the modulation subcarrier. Depending
on the relative directions of the light and sound the diffracted light
frequency is increased or decreased by the frequency of the modulation
subcarrier.

One may arrange to have the diffracted light fall into the same solid
angle as a portion of the original light, and thereby allow detection
of the diffracted beam by heterodyne mixing with the undiffracted
beam. Heterodyne mixing of light in which the signal frequency is
shifted by diffraction from sound in a liquid cell ultrasonic modulator
has been demonstrated by Cummins and Knable,5 and the increased
sensitivity of this technique has been briefly pointed out by Goodwin
and Pedinoff.6

Optical heterodyne procedures in combination with Bragg scattering
can also be used as a sensitive detector of sound. For example,
Lastovska and Benedelca have shown that thermal sound (thermal
Brillouin scattering) may be detected in this way. In fact, in some
applications-e.g., at very high frequencies-this technique can be a
more sensitive detector of sound than the best available transducer.
The advantages of optical techniques for investigating sound beam
intensity profiles, angular distributions, etc. at any point in the me-
dium in which the acoustic wave propagates have been pointed out
earlier7 and may now be supplemented by the increased sensitivity and
spectral range which the utilization of optical heterodyne detection
affords. An additional advantage of this method of optical detection is
that solid-state photodetectors may be used instead of photomulti-
pliers, without compromising sensitivity, whenever sufficient light is
available that the shot noise associated with the optical local oscilla-
tor limits detector sensitivity!'

This paper is concerned with the detailed properties of an acoustic
modulator when optical heterodyne detection of the modulated light
is employed. A coherent optical source is assumed. The range of useful
modulation frequencies for this technique extends at present well
into the microwave region. Present limitations of efficient thin-film
transducers limit operation to below 10 GHz. Acoustic loss for some
applications becomes important at lower frequencies than this. The
frequency response of commercial photodiodes extends to about 30
GHz.

The analysis includes a discussion of modulation bandwidth and
optimum modulation conditions and concludes with the prediction that
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very large dynamic bandwidths may be obtained using optical hetero-
dyne mixing in conjunction with an acoustic modulator. A series of
experiments involving a novel beam splitter and various modulat-
ing materials confirm this prediction. It is shown that bandwidth is
related to the diffraction angle of the optical beam and may be varied
over a large range by changing this angle. Experiments have been
restricted to solid modulating materials, but the results are applicable
without modification to liquids if their higher acoustic loss can be
accepted. It is concluded that large modulation depths should be prac-
tical at modulation frequencies well into the microwave region and at
optical frequencies throughout the visible and infrared. It is also
pointed out that for small diffracted light intensities, proportionately
much larger modulation depths are possible using this technique than
if the transmitted light beam alone were monitored.

The relation of modulation depth and bandwidth for a given acoustic
power is discussed, and experimental confirmation of the conclusions
is presented. In addition, it is shown that with these acoustic light
modulators frequency and phase information, as well as power modu-
lation, may be transferred to the light with large dynamic bandwidth.

II. DISCUSSION

2.1 Optical Beam Geometry
In order to obtain two beams for use in optical heterodyne mixing

experiments, it has been common practice to use a beam splitter and
mirror assembly similar to that shown schematically in Fig. 1. The con-
figuration shown would be appropriate for coherent detection of light
modulated by Bragg diffraction from an acoustic wave.° In the experi-
ments described here it has been found very useful to replace the mirror
and beam splitter of such an experiment with a Misters prism.° These
prisms have been commonly used in Michelson interferometers and
similar apparatus where ease of alignment is desired.1° Probably this
prism has not received the attention it deserves for applications in
modern physical experiments.

Fig. 2 shows the general construction of a Misters prism. Two
accurately constructed 30-60-90° prisms are carefully cemented to-
gether with a dielectric beam splitter between them. Because the two
exit beams travel symmetrical paths to their intersection with any
plane perpendicular to the beam splitter, they are optically identical.

The experimental apparatus used in the present series of experiments
is shown schematically in Fig. 3. The two beams from the KOsters
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Fig. 1- Mirrors and beam splitters arranged for optical heterodyne detection
of Bragg diffracted light (after Cummins and Knable, Ref. 5).

prism are set to intersect within the acoustic beam at an angle equal
to twice the Bragg angle so that Bragg diffracted light from each of
the incident beams falls into the diffraction angle of the other beam.

assures symmetrical paths for the diffracted and
undiffracted light and thereby makes alignment very easy. A lens of

appropriate focal length is positioned so that the optical beam waists
intersect with the desired convergence angle in the center of the modu-
lator's acoustic beam.

Consider, in Fig. 3, an acoustic traveling wave originating from the
transducer. The frequency of the light diffracted from beam 1 into
beam 2 is increased by the acoustic frequency while the light diffracted
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Fig. 2 -A Misters prism or double image beam splitter.
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Fig. 3 - Schematic diagram of experimental apparatus.

from beam 2 into beam 1 is decreased by the same. amount. The
diffracted and transmitted beams interfere at the photodiodes after
which the difference frequencies are amplified and detected. Since the
difference frequency signal from diode 1 is 180 degrees out of phase
with that from diode 2, the two signals may be fed, if desired, into a
hybrid and will add at the port for which the output is the difference
between the two inputs (the push-pull output). This has the advantage,
which was not important in the present experiments but which might
be for some applications, that amplitude noise on the incident optical
beam (such as the beating of various laser modes) does not appear at
the same output as the detected signal if the two sides of the detection
system are balanced. In some of the experiments discussed only one
diode was used, in others the balanced system worked very well and
was no more difficult to align than the system employing a single diode.
Modulation frequencies were normally near 300 MHz.

2.2 Modulator Bandwidth

In order to appreciate the limits on modulation bandwidth, it is
instructive to consider qualitatively several special cases. For simplicity,
assume that only photodiode 2 is used and that only an outgoing acoustic
wave is present. The Misters prism is positioned so that the two light
beams of frequency v which are incident on the acoustic modulator have
their point of intersection at the center of the acoustic beam. They
intersect at twice the Bragg angle, 200, [sin 00 = 1f0X/v], which is a
function of the desired modulator center frequency 1. , the acoustic
velocity v, and the optical wavelength in the medium X. The optical
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Fig. 4 -A k -vector diagram of the Bragg diffraction process in which optical
and acoustic diffraction angles are assumed negligibly small.

velocity is c'. The wave vector relation (momentum conservation)
among the three waves may be written ko K = k', where k. I = 27rv/c'
and I k' I = 27(p + fo)/c' are the incident and scattered optical k -vectors,
and K is the k -vector of the ultrasonic wave. Since to order I fo/v I <1,
I ko = Ile I it is possible to make the elementary but useful construction
shown in Fig. 4. The dotted circle has radius I ko I and defines the locus
of allowed I k' I. Only a phonon of precisely the correct I K I will scatter
ko if one assumes that neither the optical nor acoustic beam has any
angular width.

In order to appreciate the effect of nonzero diffraction angle, consider
the limiting case in which the diffraction angle of the acoustic beam is
large compared with the diffraction angle of the optical beam (Fig. 5);
K has a well-defined magnitude but an angular width 08. Only those
acoustic k -vectors near the direction of K. scatter light into spatial
coherence with the heterodyning beam k'. Thus, the detected signal
amplitude is lower than if the same acoustic power were confined to a
smaller diffraction angle.

If the acoustic frequency is increased to a new value, I K I is increased
and the construction shown dashed is appropriate. No signal will he
observed on the photodiode' because no K can scatter into ko. This
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modulator therefore, not only produces low modulation intensity but
also possesses small bandwidth.

Now consider the other limiting case in which the diffraction angle
of the optical beam is much larger than that of the acoustic beam (Fig.
6). In this case, only that portion of the optical energy near the center
of the diffraction angle can be scattered by the acoustic wave of vector
K. and heterodyned with the other optical wave. Therefore, the scat-
tered intensity is much less than it would be for the same optical and
acoustic powers, if the diffraction angle of the light were decreased.

If the frequency fo is changed slightly, a new K is defined which is
slightly different in magnitude but which has the same direction as
K. . In this case, however, the detected optical signal at the photodiode
is essentially unchanged as long as the deviation AK is such that Ko
AK still connects two points on the dashed circle which are within the
diffraction angles of the incident and hetrodyning optical beams. By
varying f one traces out the angular profile of the optical beam. A
bandwidth may be approximately defined by the condition

{ j Kmux I - I Kr; I
} A00k, cos 6 (1)

from which it follows that the bandwidth AfB is given by

Af B (v/X) A00 cos 0,, (2)

I

Fig. 5 -A k -vector diagram of the Bragg diffraction process in which the
acoustic diffraction angle is large compared with the optical diffraction angle.
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in which X is the optical wavelength. The center frequency 10 is defined
by sin 00 = liov/X. The optical beam diffraction angle AO, may be ex-
pressed in terms of the beam waist diameter w. ," corresponding to a
Gaussian beam for which w, is the full width at half intensity,

wo AB° X(2 In 2).
(3)

7r I

Substituting for AO. yields for the bandwidth

(2 A/2 In 2) v cos 0
Af it w,

(4)

which approximates the reciprocal of the transit time of the sound across
the waist of the gaussian light beam. This important result shows how
acoustic modulators with large bandwidths are made possible by in-
creasing the diffraction angle of the optical beam. The fact that the
diffraction angle AO, of the optical beam must be less than the Bragg
angle requires that the fractional bandwidth of the modulator obeys
the inequality, using (2) and (3),

Af.
1. ?,

d Bo

(5)

Fig. 6- A k -vector diagram of the Bragg diffraction process showing the origin
of acoustic modulator bandwidth; the optical diffraction angle is large compared
with the acoustic diffraction angle.
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Thus, fractional bandwidths as large as 70 percent are possible if trans-
ducer bandwidths can be made computable with this requirement.

It should be clear now for the situation depicted in Fig. 6 that increas-
ing the acoustic diffraction angle would increase the detected signal
without affecting the bandwidth. Likewise, from Fig. 5, in the other
extreme the beat signal increases but the bandwidth is unchanged when
the acoustic diffraction angle is decreased. It is therefore, plausible on
the basis of the foregoing comments that the choice of acoustic diffraction
angle approximately equal to optical diffraction angle is the optimum
choice for a given bandwidth. The bandwidth is determined entirely
by the diffraction angle of the optical beam. This conclusion is given
quantitative expression in Appendix A.

III. THEORY AND COMPARISON WITH EXPERIMENT

In order to check the preceding ideas quantitatively, the photodiode
current which would be expected with the geometry shown in Fig. 3
was calculated for the case of light beams with identical Gaussian pro-
files and an acoustic beam with rectangular cross section. It was known
that these beam profiles could be accurately approximated experi-
mentally. The lens was positioned in the incident optical beam so that
the optical beam waist occurred at the center of the modulator. The
diode photocurrent was computed as the far -field interference integral
of the product of the acoustically diffracted optical amplitude and the
heterodyning optical amplitude. Details of the calculation are presented
in Appendix A. The expression for the component of photocurrent at
the modulating frequency f, apart from material and numerical con-
stants, is

`(fl = - (s 00)1 Popt(Pacon.tic)1 exp [2:271-f -R /c')1

Erf (a) Erf (b) 7[ 2 (f 102w:

al bl exP 4 In 2 v2 cos2 001 '

where
(In 211 h

- \ 2 / wo

L sin 0b  (In V

1
sin 0

foX- -- 
" 2 v

(6)
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Again w0 is the full width at half intensity of the Gaussian beam, 200
is the intersection angle inside the modulating medium and f. is the
acoustic frequency for which 00 is the Bragg angle. The acoustic beam
height is h and its width (dimension in the plane formed by the acoustic
and optic propagation directions) is L. The distance to the detector is
R. Equation (6) is the basic relation which is subject to experimental
verification.

The first experimental checks of (6) confirmed that the acoustic and
optical power dependences are correct. Experimentally, a 3 -dB decrease
in optical intensity or a 6 -dB decrease in acoustic power as expected
decreased the detected current by one-half. The other most interesting
predictions made by (6) are contained in the terms Erf (b)/0 and

exp [
4 In 2 v2 cos2 00

The former is concerned with the maximum detected signal amplitude
and the latter with the dynamic modulation bandwidth, both as func-
tions of the diffraction angle of the incident light.

3.1 Bandwidth vs Beam Waist Diameter

Consider first the term

exp [ - r2
4 In 2 v2 cos2 0

When the modulating frequency f changes from the value f 0 , this
term describes the decrease in detected signal. An acoustic half -power
bandwidth, Ain , for which the detected current is greater than 1/0
below its maximum value, may be defined and is given by

(21/2 In 2)v
cos 00 . (7)7

The beam waist diameter times the bandwidth is thus a constant for
a given material at a given center frequency f.(00). By making the beam
waist smaller, e.g., by focusing the incident optical beam, the dynamic
bandwidth may be increased. As indicated earlier the bandwidth is
intimately related to the transit time of the acoustic wave across the
optical beam. In fused quartz for longitudinal waves at frequencies low
enough that cos O. 1, (7) becomes

w0 Of = 3.70 X 105 cm/sec. (8)

In Fig. 7 the measured bandwidth AfB , for modulation in fused quartz,
is plotted against w -o.' and (8) is shown plotted as the solid line. The
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Fig. 7 - Experimental dynamic bandwidth plotted against the reciprocal of the
optical beam waist diameter. The solid line is the theoretical expression, (8).

value of wo was varied by placing lenses of different focal lengths F
in the incident optical beam. The relation between w. and F was assumed
to be of the form given by Kogelnik" except that w, is defined as the
full width at half intensity of the Gaussian beam. In the limit appropriate
for the present experiments

wo
(2 In 21 FX.

(9)

in which W. is the beam waist of the incident laser beam and w, is the
beam waist of the beam in the scattering medium following its trans-
formation by a lens of focal length F. Here, X. is the free space wave-
length. Equation (9) was used to convert from values of F to values of
wo . Using a scanning slit and photomultiplier the value W. = (1.00 ±
0.01)mm was found. These measurements incidentally verified that the
intensity profile of the laser beam was approximately Gaussian.

The experimental points in Fig. 7 were obtained using apparatus
which is shown schematically in Fig. 3. The Microdot oscillator produced
repetitive pulses of RF energy with each pulse having about 1-itsec
duration. Cadmium sulfide thin-film transducers converted these elec-
tromagnetic pulses into acoustic energy." The deflected light pulses
were detected in the indicated photodiode geometry followed by a stand-
ard microwave superheterodyne receiver. In order to avoid IF detector
diode nonlinearity the IF output of the system was usually viewed di-
rectly on a broadband oscilloscope. Data were taken from the amplitude
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of the first deflected light pulse (due to the initial outgoing acoustic
wave) and were therefore, independent of acoustic resonance effects
which would be associated with long acoustic pulses. The RF power
incident on the transducer was kept the same at each frequency. A
small amount of each RF pulse was fed, using a beyond cutoff attenuator,
from in front of the transducer to the input of the receiver. This pulse
served as a calibrating signal for the receiver and helped to correct for
changes in receiver sensitivity as the frequency was changed. The
transducer response in the 100 -MHz region around 300 MHz was flat
to within 1 dB. The scatter of the experimental points canbe attributed
to several causes, the most important of which is the unavoidable small
changes in optical alignment between the time that each bandwidth
curve was taken. It is believed that the largest observed value for any
given value of w, is the most appropriate and the agreement is considered
to be good.

3.2 Signal Amplitude vs Beam Waist Diameter

Now consider the amplitude terms in (6) which involve the error
functions. When f = 1.

where

, Erf (a) Erf (b)
a V

(ln 2)1h
\ 2 / wo

L sin 0
b (In 2)1

w,,

(10)

In the experiments, the acoustic beam height h was made sufficiently
large (3 mm) compared with the largest beam waist mm) that
Erf (a) 1 for all values of we of interest. Thus, the signal current as
a function of w, is given by

A (tv = A ow 0 Erf [(In 2)1
L sin 0,

we
(11)

This equation is plotted as the solid curve in Fig. 8; A. has been con-
sidered an adjustable normalizing parameter but the argument of the
error function is determined using the experimental acoustic beam width
of L = 7.00 mm. The experimental points were taken using the con-
figuration shown in Fig. 3 and the beam waist diameter was obtained
using (9). Again the agreement is quite good.
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Fig. 8- Experimental relative modulation frequency photocurrent vs beam
waist diameter. The solid curve is the normalized theoretical expression, (11).

3.3 Signal Amplitude vs Transducer Width

The main interest thus far has been in determining the result on the
signal amplitude of varying the optical diffraction angle
ing that it is solely responsible for the bandwidth. It is instructive to
re-emphasize the effect of the acoustic diffraction angle by calculating
the detected signal variation as a function of acoustic beam width L.
For a given w. , h, 0 and acoustic power the detected signal amplitude
at I = 10 is given by

A (L) = A Erf (b)

= 2\1 L sin 00
wo

(12)

It should be noted that b can also be written as 0.85 X (diffraction angle
of light/diffraction angle of the sound).

In the region of small L, (b << 1)

A(L) = 21(2/7r1)bl cc Ll. (13)

Therefore, for a given acoustic power, the signal may be increased by
increasing the transducer width. The diffraction angle of the sound is
too large for optimum scattering from the given optical beam. In the
opposite limit of large L, (b >> 1)
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A(L) = A0/b1 cc . (14)

Increasing L decreases the signal. Here, the acoustic diffraction angle
is too small to use all of the incident light.

The signal amplitude has a broad maximum at b = 0.99 corresponding
to approximate equality of the acoustic and optical diffraction angles for
optimum modulator efficiency. This conclusion is expected to depend
only weakly on the actual beam geometries.

IV. MODULATION DEPTH

Consider now the modulation depth which one would expect from an
acoustic modulator. A simple computation of modulation depth is
possible only when the waves are considered in a plane wave approxi-
mation in the Bragg region. This situation should approximate qualita-
tively the behavior expected with the present experimental configura-
tion. In the Bragg region, there exists a well-defined angular relationship
among the beam directions. Furthermore, all of the light diffracted
from the main beam is diffracted into a single Bragg order. Under these
circumstances, the solution of the problem of the generation of an optical
beam by parametric coupling with an acoustic beam shows that the
amplitude of the diffracted beam can be written'

= TiPLt sin 774 exp i27r(v ± f)t, (15)

while the transmitted beam has the form

Pt = itt cos 77/ exp i2irvt (16)

in which n is a scattering parameter defined for a rectangular acoustic
beam by"

1 2.2 (n6p2X LPa
pva cost 0/ ' (17)

where L is the beam width, P. the acoustic power, h the acoustic beam
height, p the appropriate photoelastic component, v the acoustic velocity,
and p the mass density, and n the refractive index.

For conventional acoustic modulation, a square law photodetector
placed in the transmitted beam will produce a photocurrent proportional
to IN which has a maximum value of Pont for no acoustic signal and
a minimum value Pont cos2n1 when the acoustic signal is present. Hence,
a modulation depth

m, = sin2 (18)
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may be defined which is some measure of the ability to detect the in-
fluence of the acoustic energy on the light.

Similarly for the superheterodyne case, the photo -current has the form

I Pt + P! 12 = P.(1 ± sin 277/ sin 2rft)
and

2 sin 2771
m2 - (19)

1 + sin 2711

Clearly, this modulation depth is superior to that obtained when the
carrier is simply intensity modulated. This superiority is most dramatic
when small deflected intensities are involved. Fig. 9 shows a comparison
of the two modulation depths each plotted as a function of the scattering
parameter n (which for n z 0.1 is quite accurately equal to the de-
flected intensity). It is seen that when 10 percent deflected intensity is
obtained, the modulation depth with the optical heterodyne system is
75 percent. For the very small deflected intensity of 0.01 percent, one
still has a usable modulation depth of 4 percent in the optical heterodyne
detector.
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Fig. 9-Theoretical curves, valid for plane waves, of the ordinary optical
modulation depth m1 and the optical heterodyne modulation depth m2 both
plotted vs acoustic scattering parameter n.
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Modulation depth was experimentally investigated using a modula-
tion frequency of 20 MHz which was chosen instead of a frequency near
300 MHz as in the other experiments described in this paper in order
to display the modulation depth directly. At 20 MHz one photodiode
could be directly connected to an oscilloscope with amplifiers having
sufficient baseband bandwidth and gain to display both the dc diode
photocurrent and the 20 -MHz modulating photocurrent. Fig. 10 shows
a typical oscilloscope trace of the diode output for longitudinal acoustic
waves propagating in KRS-5 when the relative diffracted light intensity
was about 20 percent. The baseline corresponds to no light. Fig. 11
shows a comparison of the modulation depth measured from such photo-
graphs compared with the total intensity diffracted from the incident
beam under the same experimental conditions. KRS-5 was again the
modulating medium. The very large modulation depths obtained for
small diffracted intensities are, of course, the most interesting feature
of these curves and qualitatively verify the ideas just discussed.

There is some disadvantage in working at a frequency as low as 20
MHz, viz., that the optical -acoustic interaction is not strictly in the
Bragg region and a significant amount of light from the main optical
beam is diffracted into orders other than that satisfying the Bragg
condition. For this reason, the curve of m2 against acoustic power does
not reach 100 percent as it would if the modulating frequency were
high enough (greater than about 60 MHz) that Bragg diffraction was
dominant. At these increased frequencies a direct display of the modula-

Fig. 10 - Oscilloscope trace showing 80 percent modulation depth at 20 MHz
obtained using optical heterodyne detection. The relative diffracted intensity was
about 20 percent.
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Fig. 11 - Experimental comparison of ordinary modulation depth ml and het-
erodyne modulation depth m2 for logitudinal acoustic waves in KRS-5.

tion depth, such as that shown in Fig. 10, becomes difficult for the small
photocurrents used experimentally.

V. MEASUREMENT OF ACOUSTIC DIFFRACTION PATTERN

It is known that Bragg diffraction can be used to determine the angular
distribution or diffraction pattern of the acoustic beam.' Using a light
beam sufficiently collimated that the diffraction angle of the light is
much less than that of the sound, measurement of the scattered light
power as a function of the angle of incidence of the light relative to
the Bragg angle yields directly the angular distribution of acoustic
energy. The angle of incidence is changed by slowly rocking the acoustic
medium.

A similar experiment can be performed using the arrangement of
Fig. 3. In this case, the component of photo -current at the acoustic
frequency measures the amplitude of the acoustic angular distribution.

Typical results are shown in Fig. 12. Photograph (a) illustrates the
case of a well -collimated light beam with diffraction angle much smaller
than that of the acoustic beam, (b) and (c) are for progressively larger
optical diffraction angles. In (c) the optical diffraction angle is large
enough that the curve illustrates the Gaussian character of the light
beam. The deviations from the expected sin X/X behavior relate to
the lack of antireflection coatings on the acoustic medium.'

Homodyne detection of the photocurrent using the acoustic input



384 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

(a)

(b)

(C)

Fig. 12- Oscilloscope display of the modulation frequency photocurrent vs
angle of rotation of the modulating medium (cf., Fig. 3). Traces (a), (b), and
(c) show results for increasing values of the optical beam diffraction angle.
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signal as a reference would allow determination of the phase of the
acoustic angular distribution as well as the amplitude. Thus, this
technique has some significant advantages over the original experi-
ments described in Ref. 7. The increased sensitivity of this technique
should also be noted.

VI. CONCLUSION

A novel type of acoustic modulator arrangement has been described
which allows superheterodyne detection of the diffracted light.

Distinct from electro-optic modulators, the optical modulation side -
bands of acoustic devices are well separated in angle from the optical
carrier and intensity modulation at the subcarrier modulation frequency
is not possible. It has been shown that the optical carrier may be rein-
serted in the appropriate direction in a simple and convenient fashion
allowing intensity modulation at the modulation frequency.

Optimum modulator configurations, corresponding to approximate
equality of the optical and acoustic diffraction angles have been derived
and the modulation bandwidth has been shown to be proportional to
this angle or alternately to be equal to the inverse of the acoustic transit
time across the optical beam waist. Confirming experiments in the
frequency range 250-350 MHz have been described.
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APPENDIX A

Calculation of Photodetector Output

The photodetector is usually placed in the focal plane of a collecting
lens. For the purpose of calculation, one may assume that the surface
of the photodetector is hemispherical, centered on the interaction
volume, and sufficiently large that detection occurs in the optical far -
field. The photocurrent is proportional to the instantaneous integrated
intensity or power falling on the surface. The component of the power
or photo -current at the acoustic frequency is proportional to the inter-
ference integral of the transmitted and diffracted optical beams.

The calculation is performed by determining the angular dependence
of the transmitted and diffracted beams and integrating the product
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Fig. 13 - Coordinate system used in the calculation of the heterodyne photo -
current.

of the two functions on the surface of a sphere of radius R. The observa-
tion point (X, Y, Z) in Fig. 13 has coordinates

X = R sin 0

Y = /? cos 0 cos co

Z = R cos 0 sin cc.

The near -field amplitude distribution of the transmitted Gaussian beam
which is incident in the x. - y, plane at angle 0o is given by

, Y. , z. , 00)

2 In 2
= exP [ 2 [(x0 cos 0o - yo sin 0o)2+4]-1-ik(yo cos 00-Exo sin 00) ,

wo

(20)

in which wo is the half -power beam diameter and k is the propagation
constant. The amplitude on the sphere is given by
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0,(X , = - J
dz47r° [exp - ikr ao)

r ay/

tk(xo , yo , zo)
a exp - ikr]

ay0 r

00

tr _00
(Ix°

Ho

(21)

r = [(X - x 0)2 (Y - y0)2 (Z - z0)211

corresponding to the usual Green's function solution for an outgoing
wave from a source in the xo , zo plane. Making the far -field approxima-
tions xo/R, z0/R << 1 and 7cR >>> 1, where applicable, and performing
the integration yields for the far -field amplitude

ik exp - ikR w20

= [cos 00 + cos 0 cos co]
8/? ln 2 cos 00

2

2 20

X exp - [(cos 0 sin (p)2 + (sin 0,- sin 0)2/cost 001 (22)
8

which can be recognized as the angular dependence of a Gaussian beam
including the obliquity factor. The time -dependence is exp i2irvt.

The diffracted beam of frequency v f arises from a perturbation in
the optical polarizability of the medium interacting with an optical beam
moving at angle -00 . The perturbation is proportional to the strain
amplitude of the acoustic beam through the appropriate components of
the photoelastic tensor. The volume polarization, at frequency v f,
in the limit of scattering sufficiently weak that the local field amplitude
of the incident beam is essentially unchanged by the presence of the
acoustic wave, may be written

p(x0 , yo , z0) exp i27r(v f)t

ikk(xo , yo , z0 , - 0o) exp (i27rvt)So exp i(27ft - Kx0)

- 11, yo - 11/ (23)

and zero otherwise. A rectangular acoustic beam of width L and height
h, moving along the xo-axis, has been assumed. The constant Se rep-
resents the perturbed susceptibility which is proportional to the strain
amplitude. The function Ok(xo , yo , z0 , - 0o) is given by (20) with the
appropriate change in the sign of 00 . The diffracted beam amplitude at
frequency v f and propagation constant k' = 27r(v f)/c' may be
written

-t,t/e(X , Y, Z) = f dx0 dy0 f
Pt

exp
7

dzop(x0 , y0 , zo) (24)f
'

ik'r

corresponding to the volume Green's function solution for an outgoing
wave.
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The integral in (24) may be evaluated in a straightforward but
lengthy fashion to yield

exp ik'R (70.9 ik' cos 0 sin co)]
ReErf [-10 (h

[
X

sin (E - n k'2tan 0°)L/2 exp - cost 0 sing co -I- (25)
(E - n tan 00)L/2 k'2

2

ncos 001'

in which

2 ln 2
N -

Wo

= k' sin 0 k sin 00 -K ,

k' cos 0 cos co - k cos 0 ,

and ReErf(z) is the real part of the error function of complex argument.
It may be shown that for the parameters of interest one can make
the approximation

s 0 sin cp)1
ReErf [1,31(h - ik' co

Erf [1311i]

with negligible error.
Except for constant factors the photocurrent may be written

27 7/2

c(f) = R2
J

dp
J

dO cos 0114,11/t
- r/2

(26)

The integral in (26) may be evaluated using (25) and (22). After ap-
propriate manipulations the expression for the photocurrent takes the
form

i
8 In 2 sin 00 tical at;0)4 exp i2irf(1 - R/c')t(f) = - P°p (P,,

in which

[Ed [(2 In 2)1h/wall-Ed [(In 2)4(L/wn) sin 001
X

1
(27)

[aln 2)111/w,14 L [(In 2)4(L/w0) sin 0,11

1.2" - fo)2u)
2X exp -

4 In 2v2 cost Bo '

fc, = (2v/X) sin 00



ACOUSTIC LIGHT MODULATORS 389

is the optimum frequency for Bragg diffraction and

Poptioal = r'w2. I IP. 12

Paeoustic = Lii
J S. 12.
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Water Vapor Permeability of
Polyethylene and Other

Plastic Materials
By R. L. HAMILTON

(Manuscript received October 6, 1966)

Low -density polyethylene sheathing materials have water vapor per-
meabilities on the order of 10-8 at 22°C. High -density polyethylenes have
permeabilities about one-third to one -sixth that of the low -density poly-
ethylene. Copolymers of polyethylene have higher permeabilities than the
homopolymer. As an, example, 15 percent ethyl acrylate comonomer in-
creased the permeability by a factor of 10 over that of straight low -density
polyethylene. The nonolefinic polymers tested have higher permeabilities.
For example, polyurethane plug compound has a permeability more than
80 times higher than low -density polyethylene. Finally, it was found that
the addition of carbon black decreases the water vapor permeability roughly
in proportion to the amount of carbon black, and that the permeability
of these materials increases with increasing porosity.

To make these measurements, two types of laboratory apparatus have
been constructed. The first of these makes the permeability measurement
on a tubular sample of the material, and the other on films. Both methods
used an electrolytic moisture monitor, which is commercially available, to
make necessary determinations of water transfer rate through the plastic.

I. INTRODUCTION

The post war years have seen a phenomenal proliferation of plastic
materials throughout industry, and the Bell System has been no ex-
ception. At least part of the reason for this widespread and ever in-
creasing use is the attractive ease of fabrication of plastic materials
and their relatively low cost. Their inertness to certain environmental
factors and their chemical and physical stability also add to their
value in a great number of applications, including environmental pro-
tection. Not only are these plastics used to enclose and isolate an en-
tire apparatus or structure from its environment, they are also used
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as protective coatings and as seals such as 0 -rings in metal containers.
One of the undesirable and detrimental factors in the environment is

water, and consequently, a need developed for information on the
water resistant characteristics of the many plastics in use. This water
resistant characteristic is the water vapor permeability (WVP) of the
material, and has been measured for several materials of interest. This
paper discusses the need for the measurements, the method of making
and correlating measurements, and the significance of the results.

Several problems have been documented involving moisture transfer
rates in complicated, composite plastic materials. Water in small
amounts, particularly in pulp insulated cable, has detrimental effects
on the electrical characteristics of the core. Splicing an Alpeth cable
into a paper insulated cable results in moisture accumulation in the
latter cable, presumably as a result of moisture diffusion through the
Alpeth sheath and subsequent migration into the paper core. Air fed
into pulp cable through polyethylene air tubing also results in mois-
ture accumulation in the pulp because of water transmission through
the tubing walls.

Most of the design and investigational calculations made in regard
to these problems were based on sparse data for more or less idealized
systems. Unfortunately, for the materials of interest, there are no
moisture transfer rate data available to the engineer. The studies de-
scribed in this report were motivated by this paucity of data and it
was planned to acquire such data for practically pertinent systems
for the design engineer. Although the work is directed toward prob-
lems arising in the cable plant, the data and results of this study may
be of use in other areas employing plastic materials.

In order to correlate and understand the effects of different parame-
ters on permeation, it was necessary to include in the investigation
measurements on systems far removed from practically applicable
systems. For example, an investigation of the effect of carbon black
loading on permeability must include measurements on natural (un-
loaded) polymers as well as actual sheathing materials which con-
tain carbon black.

The reader will not be subjected to a long and detailed review and
analysis of the previous literature in this field. There are two reasons
for this; first, recent reviews1.2 have been given of the literature on
permeation processes in plastics. Secondly, the previous literature is
principally concerned with purified materials and is not highly perti-
nent to the problems and information dealt with in this paper. Previous
papers1,8 have indicated that the permeabilities of polyethylenes to
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water vapor are quite low, on the order of 2 x 10-8 scc*,/sec-cm-cm
Hg. Also, the previous work has shown that permeability decreases
with increasing polymer density.s In addition, it has been found that
the permeability is an exponential function of reciprocal absolute
temperatures,4 and that the activation energy for permeation ranges
from some 6 kilocalories to almost 10 kilocalories.3,4

Water vapor permeabilities of other materials have also been given
in the literature. It is generally found that the permeabilities of ma-
terials such as nylon, cellophane, and other nonolefinic polymers are
much higher than permeabilities of polyethylene.1,2,4

There is some disagre.ement3.4 among previously published values of
permeability of polyethylene, and this has been explaineds in terms
of differences in the samples of materials used, but all the previous
work agrees on one point: The transport of water vapor through
polyethylene obeys Fick's and Henry's laws. Fick's law relates mass
transfer rate M to a concentration gradient and in finite difference
form is

n ACM = -X
A '

(1)

where D is the diffusion coefficient, A is an area, and AC is a concen-
tration difference across an increment in length, AX. Henry's law is

C = Sp, (2)

where S is solubility and p is the vapor pressure of penetrant. If
Henry's law and Fick's law are combined

Usually,

ApM = DSA AX (3)

DS = P, (4)

the permeability.
These laws are used to correlate moisture diffusion rates by cal-

culating P from the definition and data on transfer rates. These data
must include, of course, M, Op, AX. The principal experimental prob-
lem is measuring these factors on practically pertinent systems so
that P can be calculated.

Essentially, the plastic sample separates two chambers, one of which

* The term sec refers to cubic centimeter of vapor at standard temperature
and pressure.
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contains water at a known temperature. As this water permeates the
sample, it is swept from the other chamber (with a carrier gas) and
into a water measuring instrument. From the geometry of the sample,
A and AX in (3) can be determined and from the water temperature,
Ap can be obtained. The problem is in measuring /If, the mass flow
through the sample. The water measuring instrument must be capable
of measuring very small amounts of water: for example, if a plastic
tube is 10 cm long, 2.5 cm in diameter with a wall thickness of 2 mm,
there will be only 5µg of water per hour permeating through the wall.
Previous workers have indicated the rather large amounts of water
that can accumulate in some of the older cable designs but this is in
terms of miles of cable and years of time. Obviously, for experimental
facility we must use shorter lengths of cable and must be able to work
on a much shorter time scale and this, in turn, forces one to work
with very minute quantities of water. So there is no inconsistency in
the larger amounts of water in the cable plant problems and minute
amounts encountered in the laboratory experiments.

II. DESCRIPTION OF EXPERIMENTAL APPARATUS

Mo112 has described some of the more widely used techniques of
measurement of permeability. Most of these methods
applicable to water permeation in the materials of practical engineer-
ing interest. One such earlier method uses a thermistor (to detect
water) which can become fouled from plasticizers and other volatile
additives in sheathing material. The "cup method" is usually used on
materials with higher permeabilities. Moreover, both methods are more
suited to very thin samples-less than 5 mils and sometimes as low as
1 mi1.4 At these thicknesses, surface imperfections (holes, pits, etc.)
can account for a large part of the water transferred across the film.
For these reasons, it was felt desirable to construct a new apparatus
based on an electrolytic water measuring technique which has proved
reliable.5

An instrument capable of making the necessary water measure-
ments is available commercially (Consolidated Electrodynamics Cor-
poration). This "moisture monitor" operates as follows: A glass cell
is coated with phosphorus pentoxide which is a tenacious absorbent
for water. The coat of phosphorus pentoxide is interspersed with
platinum electrodes and a carrier gas sweeps the moisture from the
test sample and into the cell. As the water is absorbed by the phos-
phorus pentoxide it is electrolyzed to hydrogen and oxygen and the
current necessary for electrolysis is directly related to the amount of
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water so that the detector is calibrated essentially by the definition of
electrical current. The precision of measurement depends on the preci-
sion of a microammeter. The detector also has the advantage of being
specific for water: other materials (such as antioxidants and light
oils) which diffuse through the plastic or out of it do not interfere
with the water measurement.

Several factors are involved in deciding on size and form the sam-
ple should have. Considerations of accuracy determine the size of the
sample; the larger the sample area the greater the rate of water
penetration which, in turn, permits more accurate measurement.

The apparatus should be capable of making measurements on tubu-
lar samples such as cable sheath and air tubing, for example, but
certain test materials are not available in quantities sufficient to ex-
trude tubes and certain others (e.g., polyurethane) cannot be extruded
easily so that it was necessary to make measurements on films of
these materials. Obviously, two different methods must be used-one
for tubes and one for films.

III. TUBULAR APPARATUS

Briefly, the tube apparatus (Fig. 1) consists of one or more tubes
of plastic material submerged in a tank of water and connected at
one end to the "moisture monitor." Dry carrier gas is forced through the
tube to sweep out water which has permeated the tube wall. The rate
at which moisture is registered on the moisture monitor gives M in
p.g/sec and from this and the geometry of the tube P is calculated.

3.1 Carrier Gas Supply
The water is swept out of the plastic tube and into the moisture

monitor with an inert carrier gas and it is imperative, for accuracy,
to have the carrier gas enter the tube dry as possible. The carrier gas
used has a water content of approximately three parts per million
which is in the order of the water content of the gas in the tube. Thus,
it is necessary to remove even this small amount. This operation is
accomplished with an electrolytic drier cell as shown in the upper left
of Fig. 1. The "wet" carrier gas from the. supply cylinder is passed
through the cell and the water is absorbed on the phosphorous pent -
oxide and electrolyzed. This gives a carrier gas free of moisture.

3.2 End Seals
The ends of the plastic tubes are sealed into the apparatus with

"Swagelok" fittings. These fittings were originally designed for metal
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tubing but they were adapted to plastic tubing by inserting a support-
ing element inside the tubing. These end seals were thoroughly tested
and proved very effective as discussed below.

The seal consists of an anvil and chuck and two swaged ferrules
supported by an insert inside the plastic tube. When the anvil and
chuck are tightened together, the ferrules deform inward against the
tubing which is supported by the insert. The ferrules also make a
tight metal -to -metal seal against the chuck and anvil, respectively,
so there is no path for vapor leakage through the fittings.

3.3 Fittings and Other Equipment

Stainless steel tubing is used in parts of the apparatus which could
contain water to minimize sorption of water on the tubing walls. In
other parts of the apparatus which contain only dry gas, copper tub-
ing is used because it is much easier to fabricate.

The outlet from the moisture monitor is connected to a flow meter to
insure that the carrier gas is not flowing so rapidly as to "flood" the
electrolytic cell and permit water to escape electrolysis.

3.4 Temperature Control

Temperature affects permeability and the temperature of the water
must be controlled accurately. This is accomplished with a large, con-
stant temperature heat sink consisting of a glycol bath cooled con-
tinuously with a refrigerator. The water is circulated continuously
(two gallons per minute) from the sample tank through coils in the
cold glycol bath and then back into the tank. This gives a large heat
sink and effectively isolates the sample tank temperature from room
temperature variations. The temperature of the water is regulated by
heating with a temperature controller. Temperature variations can be
kept below 0.1°C at 30°C or above. The water in the tank is stirred
to keep a uniform temperature throughout. A ten gallon per minute
pump, located outside the tank, pumps water from the tank and
directly back to the tank through a tube with holes. This effectively
stirs and distributes the water and keeps it at a uniform temperature.

3.5 Measurements
To calculate P from the measurements on tubes, (4) must be put in

cylindrical coordinates. This form of the equation has been given
previously6

P - M In (Do/D;)
- pOL '
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where L is the sample tube. length and Di and 1),, are inside and out-
side tube diameters. pi and Po are water vapor pressures inside and
outside the tube. Because the dry carrier gas sweeps water from inside
the tube, pi is small and can he neglected in comparison to Po.

The inside and outside diameter required care in measurement be-
cause the calculated values of P are sensitive to errors in D, and A
of the tube samples. These diameters were measured accurately in
the case of clear plastic by means of water displacement. A measured
length of the sample tube L (usually one meter) was filled with an
accurately measured volume V of distilled water. Obviously,

4 '

Or

D, = V4 17/7L.
D4 can be calculated from the volume of water V, contained in the
length of tube, L. The thickness of the tube wall was measured by
encapsulating a short segment of tube in epoxy resin and polishing the
mount down until the tube cross section was exposed. The wall thick-
ness was then measured with a stage micrometer. D, can be obtained
from I), and the wall thickness. The outside diameters of opaque tubes
are measured by inserting a sample tube (sealed at one end) into a
graduated glass column and measuring the volume AV, of water dis-
placed by a given tube length, L. The outside diameter, Do can then
be calculated from

D = V40V/71-L.
The inside diameter, Di = Do - 2 x wall thickness.

3.6 Preliminary Measurements and Tests of Apparatus

Initial measurements were made to prove the feasibility of the ap-
paratus. It was necessary to check the seals at each end of the tubes
to assure that they were watertight. This was done as follows: The
permeability was measured for samples of different lengths (67.95
cm, 113.64 cm, and 154.31 cm) of the same material. If the end seals
are secure, there should be no difference in permeability for these
three samples because P is a property of the plastic and should not
depend on the experiment. Fig. 2 gives the results of this test and the
good agreement in P for three samples indicates the integrity of the
end seals. These tests were made on low density (p = 0.917) poly-
ethylene tubing supplied by Hydrawlik, Inc., Roselle, New Jersey.
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IV. FILM APPARATUS

3.40 3.45 3.50 3.55 3.60

The film apparatus (Fig. 3) consists essentially of two aluminum
discs; one on each side of the circular test film. The two discs are
identical so that it is necessary to describe only one of them. Two
cavities are machined in each disc: one of these is covered with an
aluminum plate to form a reservoir for temperature controlled water;
the other cavity is adjacent to the test film when the apparatus is as-
sembled. The test film is clamped between the two discs with 6 bolts
(see Fig. 3). Water, which is to permeate the test film, is put in the
cavity immediately below the film; electrolytically dried N2 is passed
over the film to expel the permeated water. The "wet" gas is then
run through the moisture monitor and the rate of water permeation
is measured. From this permeation rate, and the thickness and the
diameter of the film, the permeability can be calculated.

The diameter of the film exposed to moisture transfer is 5.75 inches.
Several considerations influence this dimension of the cell. The first is
precision of measurement of water vapor permeation rate. If the diame-
ter of the film is too small, the rate at which water permeates the
film will be low and the moisture monitor will be unable to measure
accurately the permeation rate. On the other hand, if the diameter of
the cell is large (greater than 8 or 10 inches), it becomes difficult to
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Fig. 3 - Cut -away view of film cell.

TO MOISTURE
MONITOR

--TEST FILM

make films of uniform thickness. Moreover, large diameter discs are
difficult to machine accurately and hard to handle in assembling the
cell. The choice of diameter is a compromise. between these factors.
Consideration of the sensitivity of the moisture monitor and the
other factors noted above indicated a 5 to 6 -inch diameter film would
be optimum. A film of this diameter can be pressed to the necessary
uniformity and a cell of this diameter would not be difficult to machine
or handle in the laboratory.

The films were made. by compression molding and their thickness
was measured in two ways. First, the thickness was measured at
several points with a micrometer and averaged. In the second method,
a circle, 64,- inches in diameter, was cut from the test film and weighed
on an analytical balance. The density of this material was then meas-
ured with use of density gradient columns. The volume of this cir-
cular sample would then be given by the weight, w, of the 611 -inch
circle divided by the density, p, of the material



PERMEABILITY OF PLASTICS 401

Vol = - ,
p

and this volume would also be given by the relation

Vol = 71 D' I
4

(where D is diameter of the circle and t its thickness) so that by com-
bining these two equations and eliminating volume the thickness of the
sample can be calculated. In one case, the first method (micrometer)
gave an average thickness of 11.9 mils, and the. second method a thick-
ness of 11.85 mils. This agreement indicates that the micrometer
measurements, which are uncomplicated and much more convenient,
would be as reliable and accurate as necessary.

4.1 Tests of Film Apparatus

Tests were made to determine the effect of film thickness on meas-
ured permeability. If the films are extremely thin, say 1 mil or so,
surface imperfections such as pits could contribute substantially to
the. total moisture transfer rate through the film. These tests were
carried out with two materials-a sample of low -density polyethylene
(10- and 12 -mil films) and a sample of high density polyethylene (7 -
and 13 -mil films). The comparison of the two film thicknesses for each
material respectively is shown in Fig. 4 and indicates that the per-
meability is not dependent on film thickness in the range of film thick-
nesses (9 to 12 mils) used in these experiments.

4.2 Additional Tests of Apparatus-Comparison of Films and Tubes

In Fig. 5 the measured permeability for tubes of the polyethylene
materials are compared with the data obtained on films. The perme-
ability of the polyethylene films is about 4 percent lower than for
tubes of the same material, while the permeability of the PE -Butyl
copolymer film is about 10 to 12 percent lower than that for the
tube of this material. These differences are probably due to the dif-
ferences in processing since the tubes were extruded and essentially
quenched, while the films were compression molded and cooled more
slowly (about 5°C per minute). The slower cooling anneals the films
and they become more highly ordered. Because the permeability of
the highly ordered regions is less than the amorphous portion, the
permeability of the entire film would be less.
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V. RESULTS AND DISCUSSION

5.1 A Few Words About Organization

The discussion will be. divided into two categories: the effects of
chemical composition and of physical parameters. This is an his-
torical classification rather than a logical one. In this study it was
first desirable to measure WVP's of cable sheathing materials, both
those in use and proposed. These were all basically polyethylenes but
some contained varying contents of comonomers, viz. vinyl acetate, ethyl
acrylate, and acrylic acid. Polymers of other chemical types (polyester,
polyvinyl chloride, et al.) are also of interest because they, as sealing
and plugging materials, help bear the brunt of nature's attack on the
outside plant segment of the Bell System.

As a consequence of this work, it was found that physical parame-
ters such as porosity and other heterogeneities influence WVP and
will be discussed last.

5.2 Effect of Chemical Nature

Fig. 6 contains the WVP's of representative samples of polyolefins
to give an overall picture of these materials and to orient the. reader.
The point to be noticed in Fig. 6 is the greater WVP's of low -density



PERMEABILITY OF PLASTICS 403

polyethylene materials compared to those of high density. The ratio
of WVP's of high- and low -density polyethylene ranges from -A- to 1.

The water vapor permeability of low -density polyethylene has been
reported earlier4.8 as 2 x 10-8, whereas the values found here for 0.92
density polyethylene were on the order of 10-8. This difference is most
probably due to the differences in the types of polyethylene used and
the differences in the. thickness of the film samples used. In the previ-
ous measurements, the sample films were on the order of 1 to 2 mils so
that surface irregularities such as pits could contribute substantially
to the overall moisture transfer rate across the film. In the present
measurements, the sample films were on the order of 10 to 12 mils
thick, and at these thicknesses surface irregularities, if they are pres-
ent, would not contribute substantially to the moisture. transfer rate.

The WVP's of cable sheathing materials (shown in Fig. 7) were
of the order of 10-8 scc/sec-cm-cm Hg. The homopolymers, in general,
have lower WVP's than either copolymers or materials containing
low molecular weight additives. This greater WVP is probably due to
several factors. Copolymers and additives, even in small amounts, can
affect molecular and morphological factors such as branching in the
polymer chain, molecular weight, and crystallinity among others.
Because all these factors influence permeability, it is not surprising
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that copolymers and other additives should cause an increase.
The WVP of polypropylene is intermediate to that of high- and low -

density polyethylenes (Fig. 8). This is of interest for two reasons, one
of them of practical interest, the other academic. In the first place,
polypropylene and low -density polyethylene compete for use in some
protective applications. If other factors are equal, advantage. should
be taken of this lower permeability of polypropylene.

A second point of interest in the findings of polypropylene perme-
ability concerns the effect of density. In the case of polyethylenes,
increasing the density decreases the permeability. However, this ob-
viously does not hold true for polyolefins as a class because poly-
propylene has a density of 0.91 and yet has a lower permeability than
low -density (0.92) polyethylene. The lower permeability of poly-
propylene can be attributed in part to its high crystallinity (about 80
percent). Crystalline regions are much less permeable3,4 than the
noncrystalline regions, hence, the material as a whole has a lower
permeability. Moreover, it would be expected that the intermolecular
friction would be higher in the case of polypropylene which would, in
turn, decrease the diffusion rates through the amorphous regions of
the polymer.
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Finally, the measurements of permeability of polypropylene bring
home another point. In searching for materials for use in environ-
mental protection, we would like to find an inexpensive material with
an extremely low water vapor permeability, and if possible, we would
like to say that this material is impermeable to water vapor. We
must be brought up short in this search, however, in view of the find-
ings in the case of polypropylene. Here is a material that is about 80
percent crystalline so that only 20 percent of the polypropylene con-
tributes to moisture transfer, and even this 20 percent gives the
polymer an overall permeability greater than some of the higher
density polyethylenes. It is not likely that we could obtain a flexible
usable olefinic material with any higher degree of crystallinity, and
in this direction polypropylene represents a limit in lowering the water
vapor permeability of materials by increasing crystallinity.

5.3 Copolymers

Interest in copolymers of olefins stems from two areas. In the first,
place, with even small percentages of copolymers such as vinyl acetate
or ethyl acrylate the polymer is much more flexible and less suscepti-
ble to mechanical failure from stress. In the second application, these
copolymers are used to compound semiconducting materials by load-
ing them with up to 40 percent carbon black.

These copolymer materials have higher permeabilities than the
straight polyethylene homopolymers. The permeabilities of the acrylic
acid copolymers are shown in Fig. 9 as a function of acrylic acid copol3,--
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Fig. 9 - Increasing acrylic acid comonomer content increases the permeability
of polyethylene.
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mer content. These data indicate that the permeability increases with
added acrylic acid in the polymer chain. The increase in permeability
with the addition of these comonomers is due to morphological fac-
tors: the comonomer interrupts the regularity of the polymer chain
and thereby reduces the crystalline content of the polymer and in-
creases the amorphous content. The amorphous, disordered regions are
more permeable; hence, the permeability of the material is increased.
In the case of ethyl acetate copolymers, the permeability increased by
almost a factor of ten with incorporation of 15 percent copolymer.

5.4 Oxidized Polymers

The oxidized materials were made by atmospheric oxidation of
unstabilized homopolymer. After oxidation and before the film sam-
ples were made the materials were stabilized with Santonox.

The permeability of these materials (Fig. 10) indicates that the in-
troduction of polar groups, such as carbonyl groups in this case, does
not necessarily cause an increase in permeability. Other factors can
play a part. Table I compares permeability, density, and carbonyl
content of these three materials.

As the carbonyl content goes up the density also increases, and the
permeability decreases. Winslow' has shown that this increase in den-
sity is due to an increase in molecular order in the polymer and be-
cause the more highly ordered regions are less permeable, the denser
material would have the lower permeability. This reduction in perme-
ability with increased carbonyl content is of interest in cable sheath-
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Fig. 10 - Increasing oxidation decreases permeability of polyethylene.
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TABLE I-EFFECT OF OXIDATION ON DENSITY
AND PERMEABILITY AT 25°C

Percent carbonyl Density Permeability

0
0.3
0.6

0.944
0.956
0.964

1.57 10)-9
0.82 10)-9

ing applications for obvious reasons and more materials of this type
will be obtained to investigate this effect in more detail.

5.5 Nonolefinic Polymers
The results on polyester are compared with low density polyethylene

in Fig. 11. The permeability of polyester films was reported4 several
years ago as 1.3(10)-s at 25°C. The value measured with the present
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apparatus on polyester commercially available today was 2.3 (10)-8 at
25°C. The older sample of polyester was unplasticized whereas that
used in the present study was plasticized slightly and because of
these differences a direct comparison is not entirely valid.

The permeabilities of plasticized poly (vinyl chloride) and poly-
urethane are also shown in Fig. 11; both are over an order of magni-
tude greater than typical low density polyethylene.

VI. EFFECT OF PHYSICAL PARAMETERS

One is not likely to find pure, homogeneous plastic materials used
in the telephone plant. In addition to the deliberately added and nec-
essary heterogeneities such as carbon black, these materials have in-
advertent imperfections such as pores or solid particles. To give an
example a cross-section of polyurethane cable plugging compound is
shown in Fig. 12. The black areas represent pores formed in poly-
merization and indicate a porosity of up to 20 percent by volume al-
though, superficially, the material usually appears to be homogeneous.
Another example of porous material is the foamed polyethylene dielec-
tric used in some coaxial cables.

6.1 Porosity
The effect of pores on permeability might not be straightforward:

permeability involves both diffusion and solubility and although dif-
fusion would be expected to increase with porosity, solubility decreases,

Fig. 12 - Phototnierograph (50X) showing pores in polyuret hunc.
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because water is more soluble in the polymers of interest than in air
or gas in the pore. First, the effect of pores on P will be calculated from
a model for transport properties of heterogeneous, two-phase materials.
These will then be compared with measurements of the effect with
foamed silicone rubber.

If we can calculate the effect of pores on diffusion coefficient D and
on solubility S, we can calculate the effect on P because

P(V) = D(V)S(V) (5)

where V is 'porosity' or volume fraction pores.
In calculating D (V), use is made of models developed originally by

Maxwells in connection with the electrical transport properties of
heterogeneous materials. With the analogies between Ohm's law and
Fick's law, Maxwell's model can be used to calculate the diffusion
coefficient of plastics containing small amounts of gas -filled cavities
or pores. From Maxwell's work, the diffusion coefficient of a porous
polymer is given by

1)[1),. 2D - 2 V(D - Da)]D -(6)
D. 2D+ V (Da, - D.) '

where D, and Da are, respectively, the diffusion coefficients of the
penetrant in polymer and in air (or the gas in the pore). It should be
understood that the model from which (6) is derived ignores the inter-
actions between adjacent pores so that for the case of porous plastics
the value of D would he somewhat low. For polyethylene

D 10-8 enr12/sec (7)

and for air

10' cm2/sec. (8)

Neglecting D, in comparison to Da, Maxwell's relation reduces to

D(V) - D,(1 2V)
(9)1 - V

The solubility S (V) decreases linearly with V:

S(V) = (Sa - 82,)T7 + SD , (10)

where Sa, is solubility of penetrant in the pore or in the gas within the
pore; Si, is solubility of penetrant in the polymer.

Putting these last two equations into the definition for P

1 2V1'(T7) = [(S - Sp) V S] D 1
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For the case of silicone rubber foam Sp > Sa and (11) becomes

(1 -I- 2 V)]P(V) = [(1 - V)Sp][Di, (12)

The factors (1-V) cancel so that P is proportional to V and a plot of
P (V) /D,AS vs V will have a slope of 2 and intercept (V = 0) of unity.
Such a plot is shown in Fig. 13 for foamed silicone rubber and as
anticipated the measured WVP's are somewhat greater than those
calculated from the model.

As Maxwell noted:8

"When the distance between the [pores] is not great compared with
their radii . . . other terms enter into the result, which we shall not
now consider."

For the time being, we will follow his 70 year old cue and use the
result in a qualitative manner only. Pore interaction in moderately and
in highly foamed materials and its effect on diffusion is the subject
of continuing research and will be reported on in a subsequent paper.

6.2 Effect of Carbon Black

Two magnitudes of carbon black content were investigated. Those
used in cable sheath materials (about 2.5 percent by weight) and those
higher contents (up to 40 percent) proposed for semiconducting sheath-
ing materials. Fig. 14 shows some representative data for materials

3.5

3.0

>-

- 2.5
Fri

2.0
cr

1.5

1Z:

- I 1.0

cr

0.5

----CALCULATED FROM MODEL
-A -MEASUREMENTS ON FOAMED

SILICONE RUBBER

P
Dp Sp

00
0.05 0.10 0.15 0.20 0.25 0.30

VOLUME FRACTION PORES
0.35 0.40

Fig. 13 - Measured foam WVP is higher than calculated.



412 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

containing about 2.5 percent carbon black compared with the natural
materials. The carbon black at these contents lowered the permeability
only slightly. Note also, that at these low percentages, the temperature
dependence of the filled and unfilled material are essentially identical.

Materials highly loaded with carbon black also showed a linear
decrease in permeability with increasing carbon black content.. Fig. 15
gives some representative data. Qualitatively, this decrease in per-
meability with increasing carbon black content is not difficult to ex-
plain. The carbon black particles are most probably impermeable to
moisture; hence, their presence in the polymer decreases the volume
available to moisture diffusion. Again, we can use Maxwell's model
discussed earlier to describe this decrease in permeability with increas-
ing carbon black content. For the case of a polymer interspersed with
impermeable particles, Maxwell's equation for the diffusion coefficient
is given by

2D,(1 - VCb)
2

where D, is the diffusion coefficient of water vapor in the polymer and
Vcb is the volume fraction of carbon black.
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The solubility of the loaded polymers decreases linearly with carbon
black content

S(V,b) = (1 - (14)

Combining the equation for D and S with the definition of P gives

2DS(1 - Vcb)2

P(17`1') - 2 + 17,6

This equation is shown as a dotted line in Fig. 15 and is slightly
lower than the experimental values for WVP. In the equation for

S(Vcb) above, it was assumed that the solubility of water on the car-
bon black was negligible, but as shown below there is some interaction
and to be precise, we would be justified in assigning some contribution
to S(Vob) due to the carbon black. This would increase the calculated
values of P to agree more closely with the data.

At higher carbon black contents (10 percent and above) the tem-
perature dependence of filled and unfilled materials is markedly
different. Fig. 16 gives an example of this behavior and shows that the
activation energy for permeation, E, is decreased by carbon black.
The decrease in En for the case of water sorption in polyethylene

(15)
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highly loaded with carbon black is not unexpected. For the water -
polyethylene system,

D = Do exp (-ED/RT), (16)

S = So exp (-AH/RT), (17)

and

P = Po exp (-E2/RT), (18)

where Do, So, and Po are constants; ED and E, are activation energies
for diffusion and permeation, respectively, and OH is the heat of sorp-
tion. Substituting these equations into the definition of P (4) gives

Po exp (-E,/RT) = DoSo exp -(ED AH)/RTI. (19)

From this

Ep = ED ± AH. (20)

For the case of water sorption on carbon black, All is negative and
increasing the carbon black to 41 percent gives a greater negative con-
tribution and E, is therefore decreased.
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VII. SUMMARY

In general, the low -density polyethylene sheathing materials have
permeabilities on the order of 10-8 scc/sec-cm-cm Hg at 22°C. High -
density polyethylenes have permeabilities from 1/3 to 1/6 that of low -
density polyethylene. The permeability of polypropylene is intermedi-
ate to high- and low -density polyethylenes. Copolymers of polyethy-
lene (for example, vinyl acetate, ethyl acrylate, and acrylic acid) have
higher permeabilities than the homopolymer; in one case 15 percent
ethyl acrylate increased the permeability by a factor 10.

Nonolefinic polymers, in general, have higher permeabilities; for
example, polyurethanes have permeabilities more than 80 times higher
than low -density polyethylene.

Heterogeneities in the plastic such as carbon black and pores in-
fluence permeability. Addition of carbon black decreases the WVP
roughly in proportion to the amount of carbon black. The permeability
of these materials increases with increasing porosity.

VIII. ACKNOWLEDGMENT

Finally, there should come a long list of people to whom the author
is indebted for many helpful suggestions, comments, and criticism. In
particular, J. P. McCann and J. J. Lamont helped make the measure-
ments. Discussions with Messrs. Windeler, Biskeborn, and Howard
were helpful and Mr. Connolly and Mr. Snoke listened patiently to the
author's appeals for more time and equipment with which to do the
work. From outside the Bell Laboratories, I must acknowledge my
debt to Mr. George Brown of Hydrawlic, Incorporated of Roselle,
New Jersey, and Mr. Bluestein of Cooke Color and Chemical Com-
pany of Hackettstown, New Jersey, both of whom helped obtain some
of the sample materials.

REFERENCES

1. Li, N. N., et al., Ind. Engr. Chem., 57, 1965, pp. 18-29.
2. Moll, W. L. H., Kolloid Z., 195, 1964, pp. 43-52.
3. Klinte, C. H. and Franklin, P. J., J. Polymer Science, 52, 1958, pp. 161-176.
4. Stannett, V., et al., Permeability of Plastic Films and Coated Paper to Gases

and Vapors, Tappi Monograph #23; Technical Association of the Pulp and
Paper Industry, New York, 1962.

5. Toren, P. E., Anal. Chem., 37, 1965, pp. 922-923.
6. Ferrari, A. G., Modern Plastics, 41, 1964, p. 153.
7. Winslow, F. H., et al., Trans. New York Academy of Sciences, Ser. II, 28, De-

cember, 1965, pp. 304-315.
8. Maxwell, James C., Treatise on Electricity and Magnetism, Vol. 1, Third Edi-

tion, Oxford, 1892, pp. 440-441.





Statistical Analysis of the Level Crossings
and Duration of Fades of the Signal

from an Energy Density Mobile
Radio Antenna

By W. C. -Y. LEE

(Manuscript received September 30, 1966)

A theoretical analysis of signal fading using an energy density antenna
is developed and compared with that from an isotropic antenna. The
energy density antenna provides a signal proportional to the energy density
of the mobile radio field. The number of crossings that the signal makes of
a given signal level and the average duration of fades below a given signal
level have been derived theoretically for these two cases using a simple sta-
tistical model. Comparing the number of level crossings of the electric field
with that of the energy density, it is shown that the energy density fades less
frequently than the electric field by at least a factor of two. The average
duration of fades of the electric field is greater than that of the energy density
only for lower signal levels. These results are in reasonable agreement with
experimental measurements.

I. INTRODUCTION

The study of signal fading appears to be very important to mobile
radio systems. When a steady sine wave is sent out from a fixed station,
the signal received by a mobile receiver in motion fluctuates, or, in
radio jargon, fades. The received signal fluctuates more rapidly as both
the frequency of the transmitted wave and the speed of the mobile
radio increase. For a field received by a moving isotropic antenna, the
maximum fading frequency f d , as Ossannal has pointed out, is fd =
2V/X, where V is the speed of the mobile radio and X is the wavelength
of the steady sine wave. For instance, at 836 MHz and a speed of 15
miles/hr, the signal fades at a rate of about 40 times every second and
is a serious disturbance to the mobile radio communication.

There have been many investigations of the fading problem. Aikens
and Lacy2 made a test using 450 -MHz transmission to a mobile receiver

417
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in an urban area. Buffington' investigated radio propagation variation
at VHF and UHF. Young4 pointed out that for the test samples of signal
strength taken over a small area, the amplitude follows a Rayleigh
distribution to a fair approximation. Also S. 0. Rice pointed out that
the fluctuations of a received radio signal have the same behavior as
the envelope of a narrow -band Gaussian noise. Recently, Ossannal
measured the power spectra of a mobile radio fading signal. They all
treated the signal as obtained from an isotropic antenna.

In this paper, a theoretical analysis of fading using an energy density
antenna' is developed and compared with that from an isotropic antenna.
The concept of using the energy density antenna to reduce the effect
of signal fading was suggested by J. R. Pierce.' It will be discussed in
detail later. The number of crossings n(') that the signal makes of a
given signal level and the average duration of fades t(*) below a
given signal level NI', have been derived theoretically from a statistical
model using Gaussian random amplitudes and equal angles of arrival
of an infinite number of incoming waves. The two statistical factors, n
and t, first expressed by Rice,' can describe the property of individual
signal fading very well. In this paper, n and t for the isotropic antenna
will be compared with the values for the energy density antenna. These
theoretical results also will be compared with the experimental data.

II. THE METHOD OF OBTAINING THE EXPECTED NUMBER OF LEVEL CROSS-
INGS AND AVERAGE DURATION OF FADES

From Kac'e and Rice's' paper, a brief derivation of the expected
number of level crossings n(*) of a given signal level NI, and average
duration of fades below a given signal level NI, is as follows. We assume a
random function 1/. which is statistically stationary in time, and for
which the joint probability density function of # and its slope itt is

p(0, 1,b). Any given slope can be obtained by

t,t,

=
d

(1)

where T is the time required for a change of ordinate chi', as shown in
Fig. 1. The expected number of crossings of a random function V/ in
the interval (4/, If - dik) for a given slope lk in time dt is

the expected amount of time spent in the interval
dik for a given ,k in time dt

the time required to cross once for a given 4 in
the interval di/ at 4-4,
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df

4

dt

Fig. 1-The notation used in obtaining the expected number of level cross-
ings n(*) and the average duration of fades t(*).

E(t) p(,p, ihdOdi,bdt

at

= Ihdikdt. (2)

The expected number of crossings for a given 1// in time T is

L

r
11/p(xli , = V/p(11,, thch,tT.

The total expected number of upward crossings in time T is

N(() = T f 40, ,hcb,t.

(0)

(4)

The total expected number of crossings per second is

n (4') = 17-1,11) -f
JO

(5)

Since the expected number of crossings at a particular level NI, per second
can also be stated as

the expected amount of time where the

7 I NI) -
function' is below level 4, in one second

the average duration of fades below level If

P(0 <N1)
t('P) '

hence, the average duration of fades below level is

t( <'))-

(6)

(7)
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Hence, the results will be derived from the joint probability density
function p(tk, 0, and the problem is to derive this probability density
function for the various signals.

III. THE EXPECTED NUMBER OF LEVEL CROSSINGS AND THE AVERAGE
DURATION OF FADES FOR A VERTICALLY POLARIZED WAVE

In order to obtain the expected number of level crossings of a given
signal level R and the average duration of fades below a given signal
level R for the three field components of a vertically polarized wave,
first we need to specify the forms of the three field components. Then a
statistical model of the field components is assumed. From such a
model, we find the joint probability density functions of amplitude R
and its slope R for the three field components. Finally, we use (5) and
(7) to obtain the result for each field component.

Following Gilbert' a vertically polarized plane wave E. traveling
in a direction u in the (x, y) plane is assumed. The three field compo-
nents referenced to a receiver moving with velocity vector V can be
written

E. = e. = Au exp (- j(iuVt) exp (jad)volt/m

Hs = n(hx amp/m) = Au sin Ou exp (-0uVt) exp (jcot) volt/m

Hu = n(hy amp/m) = - Au cos Ou exp (- j#u  Vt) exp (jcot) volt/m,

where # is a wave number and Au is a complex amplitude of an electric
wave propagating at a direction u. u is a unit vector related to an angle
Ou between the positive x-axis and the unit vector itself. n is free -space
wave impedance. The time variation exp jcot can be dropped out of
three field components for simplifying the derivation. Moreover, from
now on, we will treat the units of all three components E Hs , and
Hu in volt/?n which will also simplify the calculation.

When N vertical polarized waves coming from N directions are re-
ceived by an isotropic antenna of the mobile radio, the three components
become

E. = E Au exp (-jOuVt) = Au exp [- j#Vt cos (Ou - ot)] (8)
u=i u=i

Hs = E Au sin 6 exp (- j1iu Vt)
u-1

= E Au sin Ou exp [-j#Vt cos (0 - a) ]
-1

(9)
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Hy = E - Au cos O exp ( - ji3u  Vt)
u-.1

= - E Au cos Ou exp [- j13Vt cos (Oa - a)], (10)

where Ou is the angle between the positive x-axis and the direction of
uth wave u, and 0 2r. a is the angle between the x-axis and the
velocity V, and 0 a < 27r. Both Ou and a are shown in Fig. 2.

In this paper, a statistical model is used as follows: The complex
amplitude Au can be separated into a real and an imaginary part Au =
Ru jSu , hence N incoming waves have N real values of Ru and Su .
We suppose all those 2N real values are Gaussian independent variables
with mean zero and variance one. Also, we assume the N waves have
uniform angular distribution, i.e., the kth wave uk has an angle of arrival
eu = 2irk/N. Moreover, in this paper an infinite number of multiply
reflected waves (N -> co) are assumed for finding the expected number
of level crossings n(R) of a given signal level R, and the average duration
t(R) of fades below a given signal amplitude R.

3.1 Finding the Values of n(R) and t(R) from the E, Field

First of all, we need to obtain the joint probability density function
of signal amplitude R and its slope R for the electric field component
E, using the statistical model we mentioned previously. We start from
(8). The alternate form of (8) can be written as

E, = E (Ru jSu)[cos 1,3V1 cos (Bu - a)) - j sin {On cos (Bu - a) ) ].
u=1

y

Ieu X

V = VEHICLE VELOCITY
U= DIRECTION OF PROPAGATION OF

A RANDOM FIELD COMPONENT

Fig. 2 - The coordinate system.
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Equation (11) can be separated into real and imaginary parts

Ez = X, -I- jY, . (12)

The real part of E, is
N

X1 = E (Ru cos gou + Su sin co.)

and the imaginary part of Ez is

= E (Su cos (pu - Ru sin (As),

u-,

where

(13)

(14)

(pu = 13V1 cos (Ou - a). (15)

We assume that all N values of R and S in (13) and (14) are time in-
dependent. Then the derivatives with respect to time of (13) and (14)
are

= 1517 E (-Ru sin co. + S. cos (p.) cos (0. - a) k16)
u-,

1 = 13V E (-Su sin co. - Ru cos co.) cos (O. - a). (17)
u-,

The mean values, variances, and covariances of X, , Y, , , and Y1 are

mi = (XI) = (171) = (±1) = = 0
= (X f) = (Y,2) = N for any N (18)

= (gi2) = ;2) = WO' for N > 3 (19)

and

(xi = (x151) = (Y1g1) = (171f 1) = (±1f i) = if = 0.
The above results are shown in the Appendix.

From the central limit theorem, it follows that X1 , Y1 , ±i, and
are four independent random variables which are distributed normally
as the value N approaches infinity. The probability density function
of four independent real random variables X, , Y, , X, , and Y, is"

p(x , VI)

1 1 II'
+

±; frf)
, (20)

(2702
exp 2 k 4 /)
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where the determinant of the covariance matrix is

4= (11441)2 = -4 (( V)4.

We may introduce the concept of the envelope

E, = X, = r. hi. 

The quantity re is the envelope and
slowly varying functions of the time.

= r, cos n. 171

= r. cos n. -ran, sin n. ;

The Jacobian of the transformation
(re , n. , , tie) -space I J I = r:.

Therefore, the change of variables
form

423

n. is the phase, both of which are
Then,

= re sin tie (21a)

sin n. re?). cos n. . (21b)

from (X, , 171 , jfi , 1."1) -space to

gives the probability density the

p(X, , )71 , A7, , 11) = r: (r. , n. 77.)

= p(r, , n,

2
re 1

- (27r)21 exp {-,
2 2 .2 1

re re tiere (22)
Ai

where q(r n Pe , tie) is the density obtained on substituting for
X, , Y1 , etc., their values in re , tie , etc., obtained from (21a) and its
time derivative (21b). To obtain p(re , te), the probability density of
the envelope and its rate of change, we must integrate over n, and tie ,

the range of which are, respectively, (0 to 27r) and (- 00 to +00). From
(22) we obtain

re

v exP 2 i111 Ai%
(23)

, = ,

It is observed that the expression on the right of (23) is independent
of t. Hence, the expected number of level crossings n(Re) at a given signal
amplitude (re = Re) can be obtained from (5) by using p(R re) in (23).

1 r2, re
.2

n(Re) = f Pep(Re ,te)dt, = u, Re
Re exp ,)/?'2') (24)

0 All V27441,

Now the variance of re is

(1'2.) = (X) = 2/211 = 2N.



424 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

Let
ft. = R./ A/ = Re/re(r,.) = Re/ A/2N. (25)

Substituting the values of variances All and AL from (18) and (19) into
(24), also applying the relations in (25), we obtain

n(Re) - Re exp (-R26). (26)
11-2;

Equation (26) is plotted in Fig. 3 where the abscissa is f?' in dB (20 log
Re) and the ordinate is ( \/-27r/i3V)n,(Re).

The average duration of fades t(Re) of E. can be obtained as follows:
The probability that the envelope re is less than a given amplitude level

Re is
R.

P(re(t) < Re) = f p(re(t))dre(t), (27)

100

10-1

0
(7)

0.1 10-2
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W
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0
cr cla-
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7 10-4

O

X
10-5

w

1-

11 10-6

CI o
c

10-7
-20 -15 -10 -5 0 5 10

SIGNAL LEVEL IN dB WITH RESPECT TO RMS VALUE

THE ELECTRIC FIELD

ENERGY
DENSITY

THE

11(4;t) THE EXPECTED NUMBER
OF LEVEL CROSSINGS OF FADES
OF TOTAL ENERGY DENSITY/SEC.

n(Re) THE EXPECTED NUMBER
OF LEVEL CROSSINGS OF FADES
OF THE ELECTRIC FIELD/SEC.

A

Fig. 3- Comparison of the level crossing rate of the electric field with that of
the energy density.
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where p(r.(0) is the probability density obtained from p(Xi , Y,). By
changing the variables, we obtain p(r.(t), 0.(0) from p(Xi , Y,). Then
we integrate p (r .(t) , n1(0) over from 0 to 2r to obtain"

re [ )
p(re(t)) = mil()

zAn
- exp (28)

where All is obtained from (18). Substituting (28) into (27) we get

P(r.(t) < R,) = 1 - exp (-1?:/214,) = 1 - exp (-R2c). (29)

The expected number of times per second that r.(t) passes upward (or
downward) across the level R. is obtained from (24). The average dura-
tion of fades during which r.(t) < R. may then be obtained by sub-
stituting (24) and (29) into (7)

P(r.(t) < R.) P(f.(t) < n.) Vgr 1t(R.) - [exp (fie) - 1] (30)
n(R.) n(n.) tiV Re

which is shown in Fig. 4.

3.2 Finding the Values of n(Rhz) and t(Rhz) from the Hz Field

Following the same steps as above, we are going to find the joint
probability density function p(rhz , thz) of the envelope rhz and its slope
thz of the Hz field component first. From (9) we find the real and imagi-
nary parts of Hz which are expressed in the Appendix. The means,
variances, and covariances of four real Gaussian random variables
shown in the Appendix are

m2 = (X2) = ( Y2) = (5(0 = (12) = 0

1422 = X: = Y2 = for any N

A;2 = = Y2= 1%1 (0 / -)28

 [cos2 a + 3 sine a] for N = 3 and N 5

(X2 Y2) = (X21.2) = (X2 V.2) = ( Y2±2) = (Y2 Y2)= a2f2) = 0.

The probability density of the envelope of Hz field and its rate of change
p(rhz , thr) is then obtained by following the same procedure used in
deriving p(r, , r,).

1 r,z 1

p(rhz ,thz) = exp (31)
v 271222 /222 1122 1122
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Fig. 4 - Comparison of the duration of fades of the electric field with that of
the energy density.

Hence, the expected number of level crossings n(Rhx) at a given signal
amplitude (rh, = Rhz) can be obtained from (5) by using p(Rhx thx)

in (31)

\FT, R
n(Rhx) = f th.P(Rh. thr)dth. = -2 (_ " exp ) (32)

0 1122 V 271122 2/122

The variance of rhz is

Let

(712.) = (2CD + = 21125 = N.

Rh. = R,hz
Rh. Rhx

v2hz) hx (rma)VTV
(33)
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Substituting the values of the variances 1122 and /42 into (32) and replac-
ing N by (71.) we get

n(Rh.)
flV \lops' a + 3 sin' a -

Rh, exp -R2h.
2

= flV
2r

Vi - cos 2a Rh. exp . (34)

Equation (34) is the same form as (26) except for a multiplying factor
which is a function of a shown in Fig. 5. Hence, n(rthx) is also a function
of angle a. Thus, when the mobile is moving along the x-axis a = 0 or
r, and

13V

hx

exp (34a)

which is the minimum value of n(i?hx). When the mobile is moving on
±y-axis a = ±7/2, and

/3V
n(Rhr) - p

R h- -Mix (34b)
2 xxpe

which is the maximum value of n(Rhx). The ratio of level crossings for
these two cases is
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Fig. 5 - The effect of the angle a on the ratio of level crossing rates of the
electric field to the x -component of the magnetic field.
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For a = ±45° and ±135°,

OVn(nhr) = Rhz exp -
077r

(34d)

which is the same expression as (26) for R, . However, although (34d)
and (26) are the same form, the magnitudes Re and RI, are different,
since (7.20) in (25) is equal to two times (71x) in (33).

The average duration of fades t(Rhi) of Hz can be obtained without
difficulty. It is easy to prove that the expression for the average length
of the intervals during which rhz < Rhz will have the same form as
t(R.) in (30), except for a multiplying factor that depends on a, as
follows:

t(Rh¢) -
.07:r 1

#,1 [exp Yr..) - 1].- cos za z.h.

When a = 0° and 1800:

O V; hz
h%) - - [exp (4) - 1]

which is the maximum value of t(Rhz), and when a = ±90°:

(35)

(35a)

Vgr2 1
t(nh.) v 3 Rh:

[ex, (RI) - 1] (35b)

which is the minimum value of t(Rhx). The ratio of level crossings for
these two cases is

t(Rhz)(« = 0°, 180°)
t(Rhx)(a = ±90°)

which is the inverse of (34c). This tells us that when n(Rhz) reaches a
maximum value, the average duration of fades reaches a minimum value
and vice versa.

For a = ±45°, ±135°

(35c)

2ir 1 -
t(nhz)

13V Rh.
= - - [exp (4) - 1] (35d)

which is the same form as the expression for t(R.) in (30). We may say
at these angles a = ±45° and ±135°, the E field and the Hz field have
the same average duration of fades below the level R, = Rhz .
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3.3 Finding the Values of n(Rhy) and t(Rhy) from the Hy Field

Similarly, we obtain n(Rhy), the expected number of level crossings of
a given signal level Rhy from the Hy field. It is very easy to see that
n(Rh.) and n(Rhy) are the same forms of distribution as expressed in
(34), except for the multiplying factor that depends on «. The average
duration of fades t(Rhy) during which rhy(t) < Rhy is also of the same
form as t(Rhz) in (35) except for the multiplying factor depending on «.
The variances A33 and AL are given in the Appendix. We may thus write
directly

n(Rhy) - j 1/1 + cos 2a Rh exp
V/27r

7r 1 1
t(Rhy) A [eXP (nh0

T' + cos 2« Rhy

where

It is obvious that

when /4, = Rhx

Rhy Rhy
RhY /757 --

krhy/ 'higrm.)

n(Rhy)a_0°.180° = 72.(Rh.) -*90°

naLy) a ± 90° = n(Rhx) a ° .180°

(36)

(37)

IV. THE EXPECTED NUMBER OF LEVEL CROSSINGS AND THE AVERAGE
DURATION OF FADES OF THE SIGNAL FROM AN ENERGY DENSITY
ANTENNA

J. R. Pierce' has suggested utilization of the energy density concept
as a possible means for reducing the signal fading in mobile radio. If
we pick up the electric field e and the magnetic field h in free space and
amplify the two fields by their appropriate relative gains, square and
add these two fields, we obtain a signal proportional to electromagnetic
energy density

W 1(ce2 ph2);
(38)

where e is dielectric constant, and A is permeability. This idea can be
realized by using a special antenna' which receives three field compo-
nents e h= , and by simultaneously. The three signals enter separate
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square -law detectors, and the three detector outputs are added to obtain
the energy density,

W = 1( le.12 + A 102 + A illyn 

We may express W in a different form

W = [(lezr L:lhx12 1:-` Ih12) vott2/m21

(volt2/m2) IH.12 (volt2/m2)I2(volt2/m2)]

=
2 2

kti(vOlt2/M2)] = ---1Pt Joules/ms. (39)

We define 1Gt as a normalized energy density
12 iHz12 + + II/ yr volt2 / m2

= + Ohy (40)

= (.2a + + + 11) + 11). (41)

Gilbert" has done some work on finding power spectra in energy re-
ception for mobile radio. His work provides very useful background
for this paper.

In this section, we are attempting to derive the number of crossings
n(Nlit) at a given level of signal magnitude NY, using (5) in Section II.
First of all, we need to find the joint probability density function
p(11, IA) of signal IA and its slope . Since 0, is a function of
(X1 Y1 , X2, Y2 X3 , Y3), and It is assumed to be a function of

, Y4hz , 4), we will find out that the variables (X1 , Y1 , X2 , Y2 ,
X3 , Y3) and (a Itr h= lkhy) are two independent Gaussian variable
groups. Then,

pE#,(Xi , Y, , X2 , 172 p X3 r 173) bt(lk. , 40]

= p[c(x, , YI , X2 , 172 , X3 , Y3)] X P[W. _ Az I libh01

= P(1,ti)P(,,b,). (42)

A brief sketch of the method of finding p(#) and p('4,) is discussed below.

4.1 To get p(C)

Since we know from (41) that

= + (X: + + (X: +
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and since X, , Y, , are independent Gaussian variables, it is easy
to get p(1,/,,) from the Fourier transform of the characteristic function
Alvoe(v), where M#,(v) = 3,0M i2.M. etc., and we can get
these M's very easily.

4.2 To gel p(11;,)

All the terms in the summations of equations (79), (80), and (81)
which represent ikk. and ,kh , respectively, in the Appendix are
statistically independent. Then by the central limit theorem these
three variables ty, , and ,k are Gaussian distributed. Hence, the
joint probability density function 'alb. tbhs Ihy) can be established.
Since tkg = 1k. ikhz 1,b,, we can get p(tkg) from the Fourier transform
of the characteristic function M,& but M,&, must now be obtained from
the general definition

21//,(v) = Eie"11 =ff c"; , hZ , 14hy)(1bedikhxd1h. (43)

since we have no simple way of getting , M and M,& separately.
Let us introduce a new variable e which can be any one of the above

Gaussian random variables. It has a zero mean and variance µ. Then
the probability density function of the square e is -

1p( -y = e2) =
21

exp (-- -y
)

1/7i.ey 214
(44)

for 7 > 0. The characteristic function corresponding to this probability
density is

M,,(jv) = f e'"p(y)(-17 = (1 - j20)-1. (45)

From the Appendix we know all six variables Xi , Y, , X2 , 172 , X3 and
Y3 are independent Gaussian variables. It is not hard to see that the
X: , , X: , n are independent variables by obtaining
P(Xi Y: , X: , n) from the Jacobian of the transformation'
of p(X, , Y, , X2 Y2 X3 , Y3). Then X2, and 17: have the same char-
acteristic function (1 - 2jAiiv)-1. Also X: , and n have the
same characteristic function (1 - 2:14220-4. Thus, by the addition theo-
rem" the sum 0, which is defined in (41) has the characteristic function

1
m4, s (m) - (1 - 2 ( 1 -2 jiL 220 2 (46)
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Then the probability density function p(ti/g) can be obtained from the
Fourier transformation of the characteristic function

p(c) = 1 g(jOdy2r ,
exp (-32-Ln

[exp (-,4/1 - exp )] + A ,
GA22

2(1122 - 1)2 Zoal I 41222 "4422k/122 - /111)
(47)

The joint probability density p(b ikhz , Ikh) has been derived in
the Appendix

P(''. , , 47,)

- (2011 A fi exP -1(1 A11 I
2,b2, + I A22 I Ift2hx + I A33 I 1,bh

+ 2 I Al2 I Ike Ihz + 2 I A13 I Ike Ikhti + 2 I A23 I Ikhz libhy) 1 , (48)

where [A] is the covariance matrix of Ike , tkhz , 1tby and the 1A,1 are the
cofactors of Al,I given in the Appendix. From (40), 1,b, is the sum of
the three random variables 1,t >jiht , and ,k . Then the characteristic
function for tk, is

m,&,(iv) = E[exP [iv(tke

= exp jv(ike )P(;b., , itt hy)c ed tk tk .

(49)

The details of this computation are given in the Appendix with the
result (92)

M. j(k) = exp -1(4v2 , (50)

where

Pi = pf + P,122 P33 2Pi2 + 21:43 (51)

The probability density of total IA is then

, r
P(k = 2r

,1 t(joei tdv = 1 exp (52)
V2rp, 2Pi

The joint probability density p(1,t IA) of and ', can now be ob-
tained by substituting (47) and (52) into (42).
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The expected number of crossings n(11,,) at a given signal level -
if, made by the total energy density signal in one second can be ob-
tained from (5)

1/(4'2) = fc° = p(Pt)

e -1) (- - exp (m) )1- \27r 20.L22 - /111)2 x 91211 -u22
Pe

4's exp -4112/122}
422(022 - µl1)

(53)

where p; is given by (51) and tin = N, 1122 = N/2 as shown in the Ap-
pendix.

Also we know from Gilbert"

(3G2) = 22N2.

In addition, = pc, + 133 + 2142 + 2143 = 2N2(1317)2 and
letting

-
014)

we can simplify (53) as follows:

13VnRo 2V2 exp (- X22 ift) - exp (-1/2R/t)
V 27r

- 2 Vii P, exp (- V224f,)} (54)

Equation (54) is a distribution which is independent of the angle
a. When f, = 1, it means that 1If, is equal to its rms value. Equation
(54) then becomes

13V
n( ),1;=1 - X 0.1839.

V 27r

Also let n. = 1 in (26):

= f3,i- X 0.3678.
V 2r

It is shown that the expected number of crossings of the total energy
density is one half the expected number of crossings of the envelope of



434 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1967

E field at their rms levels (iie = R;) . In other words, the energy density
fades less frequently than the E field by at least a factor of 2.

n(C) wre.)

for ;Ps = R: with respect to their rms values. The theoretical values
of n(NP) and n(R.) are in Fig. 3.

The average duration of fades below a given level x1f, is given by (7)

P(MO < Ts) (55)t(x1, e) -
'

where P(11/,(t) < Ts) is the probability function obtained from p(Iiit(t)).

PN't(1) < = P(C(tDcht(t)
0/= 1-4 exp (-
2

2 Wit)± (3 ± A/221/,) exp (- -\/-2\11,) , (56)

where

NY,-
ivc(rm.)

Substituting (54) and (56) into (55), we obtain the average duration
of a fade below a given level T, :

Vgr 1t(t) -

1 - 2 exp (- 222 exp (- -VOL)A/22-

2[exp (- V22 -exp (- VT2CP,)]- -122it exp(-
2

When NP, = 1, (57) becomes

Algrt ) - X 3.74.
OV

When Re = 1, (30) becomes

(57)

/
t(R8) - VIr X 1.7183.

It is shown that the average duration of fades of the energy density
below a level AP, is larger than the average duration of fades of the E
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field below a level e where ra = = 1. The curves of t( t)and
t(Re) have been plotted in Fig. 4 for comparison.

V. DISCUSSION OF THE THEORETICAL RESULTS

From the above derivation we know that and IA are two independent
variables as shown by (42):

7)(1Pg ikt) = P(C)P( g)

and therefore (5) can be written as follows:

n(`Pt) = POO f ,,b,P(11,,)(11,t

= p(`y,) 1%ttl (58)

where {IA represents an integral. Equation (58) simply shows that
the expected number of crossings n(4') at given level' can be obtained
from the probability density of level Ifs times the integral IA} . The
average duration of fades, then, turns out to be

t (xli) - < 'Ft)

1 P(1G, <
I ikg) 73(11t)

We emphasize that (58) and (59) are valid only when 1,G, and Ike are two
independent variables.

The two curves, n(R) and n(C), are plotted in Fig. 3, normalized
by the common factor -07;/0V. Both curves are plotted as functions of
the signal level normalized to their own rms values. The value of n(Re)
is, as shown, always higher than the value of n( g) for any signal level.
From these two curves, it may be said that the fading of the energy
density is less frequent than the fading of the envelope of the electric
field. The maximum expected numbers of crossings of both n(R8) and
n(J') are at the -3 dB level, which means for signal level at 1/0 and

of their rms values, respectively, we will count the most fades. The
curve of n(4') has dropped faster on both sides of 0 dB than the curve
of n(ri.), which means that the range of the signal amplitude is

less than the range of the signal amplitude ra .

The average duration of the signal below a given amplitude level
is another way of looking at the fading problem. Fig. 4 shows that the
average duration of fades of the energy density t(AP,) is always larger

(59)
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than the average duration of fades of the electric field t(R.) when the
given signal levels are above -3 dB with respect to their rms values

= > -3 dB). The value of t('',) is less than t(R.) when the
given signal levels are more than 3 dB below the rms values AP, = r?2 <
-3 dB. When the given signal level is at -3 dB (P, = R: = -3 dB),
the average duration of fades t( -3 dB) of both the energy density and
the electric field are the same.

VI. COMPARISON OF THE THEORETICAL PREDICTION WITH THE EXPERI-

MENTS

The three field components E, Hz , and Hy have been received by a
special antennae' mounted on a mobile van moving at a speed of 15
mile/hr. All the figures shown in this section were taken on Common-
wealth Avenue, New Providence, New Jersey, from a transmitting
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Fig. 6- Comparison of the predicted level crossing rates to the observed rates
for the electric field on Commonwealth Avenue, New Providence, New Jersey.
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average duration of fades for the electric field on Commonwealth avenue, New
Providence, New Jersey.

antenna at 836 MHz at Bell Laboratories, Murray Hill. After adjusting
the appropriate relative gains of the three fields, the energy density
can be obtained by squaring and summing these three fields by computer

4/1 = E 12 + I H.12 + 1 H, 12 volt2 / m2 .

Since the distance between the transmitting antenna and the mobile
unit is relatively short, the angle swept out by the radius vector from
the base station to the mobile unit varies considerably over a typical
length of run. To reduce the variation of this angle the data for the
entire run were cut into sections 8 seconds long, corresponding to 175
feet of travel, for computer processing. Each section, either the en-
velope r, of the E field or the energy density IP, , was used to obtain the
number of level crossings n and the average duration of fades t by com-
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puter program. However, since the experimental curves of n and t were
almost all alike for all sections, we used only one for comparison with
the theoretical curve.

Fig. 6 shows a comparison of the curves of the expected number of
crossings n(]) at any level R. for both experiment and theory. The
shape of the experimental curve is in fairly good agreement with the
theoretical curve. Since the receiving antenna on Commonwealth
Avenue is in line of sight with the transmitting antenna at Bell Lab-
oratories, a small direct wave component may be introduced. This
small direct wave component is not considered in our theoretical analy-
sis, hence the values n(Re) from the experiments should be less than the
theoretical results as we would predict.

Fig. 7 shows a comparison of the curves of the average duration of
fades t(R6) for both experiment and theory. They are quite alike. Since
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a small direct wave component does exist, the average duration of fades
for the experimental data should be higher than the theoretical results.

Fig. 8 shows a comparison of the curves of the expected number of
crossings n(*,) at any lever for both experiment and theory. The
shape of the experimental curve is very much like the theoretical curve.
It shows that the theoretical model used in this paper is quite acceptable.

Fig. 9 shows a comparison of the curves of the average duration of
fades t(it) for both experiment and theory. The difference between the
experimental curve and the theoretical curve may be caused by the
small direct wave component. A small direct wave component intro-
duced into our theoretical model may cause a little higher average dura-
tion of fades than it might expect, but does not affect the number of
level crossings.
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VII. CONCLUSIONS

Comparing the expected number of level crossings and the average
durations of fades of the energy density with that of the E field, we see
that the fading of the energy density is much less severe than the fading
of the envelope of E field.

Referring to Fig. 5, which shows the fading rate related to the orienta-
tion of the energy density antenna and the direction of vehicle motion,
we see that when the two orthogonal loops are at 45° to the direction of
motion, the fades of all three field components are the same. When one
loop is lined up with the direction of motion and the other normal to
it, the H field component received from the loop normal to the motion
has less fading than either of the other two field components.

The expected number of crossings/second of fades at a given signal
level, n, for both R. and Alf, is proportional to the carrier frequency fc
and the mobile speed V, as shown in (26) and (54). They have the com-
mon factor, (I3V/ -0; = -0;-(Vfc/c), where c is the velocity of light.
Hence, if either V or fc goes higher, n becomes greater.

The average duration of fades, t, is inversely proportional to the
carrier frequency fc and mobile speed V, as shown in (30) and (57).
Hence, if either V or f. goes higher, t becomes smaller.

The foregoing theoretical analysis is based on a Gaussian model and
does not include a direct wave component. Even so, this analysis is
compared with the experimental results in Section VI with fairly good
agreement.
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APPENDIX

A.1 Finding the mean values, variances and covariances of nine variables
(X, , Yl , X2 , Y2 , X3 , Y3 y Ikhz Ikhy)

From (8), (9), and (10) we may express in the following forms

Ez = X, +

Hz = X2 + ..7Y 2

H,, = X3 -- 5173
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where

also

X1 = E Ru cos cDu ± Su sin Isu
u = 1

Y, = E Su cos (13u - Ru sin (Du
u = 1

X2 = E (Ru cos cl) ± Su sin (Du) sin Ou
u=-1

Y2 = E (Su cos (Du - R. sin c1)u) sin Ou
u-i

X3 = E (Ru cos cl3u + Su sin cl)u) cos Ou

173 = - E (Su cos cl3u - Ru sin (Du) cos Ou
u-1

43 = (3V1 cos (Ou -a)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

and the angles O and a are shown in Fig. 2. The time derivatives of
X, , Y1 , X2 , Y2 , X3 , and Y3 are

= Q V E (-Ru sin (Du + Su cos cl)u) cos (Ou - a) (67)

Y, = ov E (- Su sin 01)u - Ru cos cl>u) cos (0 - a) (68)

X2 = /3 V E ( -Ru sin cDu + Su cos Tu) sin Ou cos (Ou - a) (69)

172 = f3V E ( - su sin cDu - Ru cos ck) sin Ou cos (Ou -a) (70)

±3 -/3V E (-Ru sin (Du + Su cos (Du) cos Ou cos (Ou - a) (71)

Y3 = --)3V E ( - Su sin (Du - Ru cos c13u) cos 0. cos (Ou - a). (72)

The mean values of all above random variables are zero (X1) = (Y1) =
(X2) = (Y2) = (X3) = (Y3) = (5(0 = (1.71) = (X2) = (f2) = (X3) =
(1.73) = 0. The variances of all above random variables are
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= (XD = = N

A22 = (X 2) = =

A33 = (IQ = (1) =

= (Xi) = (P.i) = (QV)2

1142 = (ID = (fD = 11\-r (13V)2[cos2 a + 3 sin2 a
8

A43 = (±D = (1) =
8

(13V)2[3 cos2 a + sin2 a

(73)

for any N (74)

(75)

forN13 (76)

N = 3 (77)
for

N > 5. (78)

Remark: The values of Ali for N 3 is derived as follows: The sum-
mations of sine and cosine functions can he expressed

N cos -x - cos (2N ± 1)
22E sin kx -

k 1 X
2 sin -2

N sin (2N + 1) 2 - sin 2
E cos kx -
k.-1 x

2 sin -2

Then in (67)

20 -7ru
u N

and

E cos2 (0
.-1

- a) = 1 + cos ( :111-r - 2a)]

Ar cos 2a 4r sin 2a 47-
2 2

2 cos u
u...1

2sin u -N 
I
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2r 2r
N

47r
sin (47 ± N) - sin -N

E cos u - 2r-0u_, N .

2 sin Tv

and for N > 3.

N 4r COS -2r - cos (4r + -271-)

Ld. u - 2r
- 0

2 s
.

in -N

Thus, the average value of X', or I/ is

KUE cost
2T - a)) = for N z 3.

u-1 aV

Following the same derivation, we obtain the valid range of N for /42
and g3 . Later on we will obtain the range of N for g P22 , P33 , pf2 , pc3
and P23 in the same way.

QED.

Now we are going to find the relations between all the six variables
X X2 , X3 , Y, , Y2 Y3 and their time derivatives. Since we know
if two variables a and b are Gaussian, and also uncorrelated, (ab) = 0,
then a and b are independent.' Therefore, the covariance of X, , Y, , Xi,
and Y, are

(X, Y,) = (X,±1) = (XI = (171±1) = (171f1) = 1.1'0 = 0

hence, the four variables Xi , Y .2.C,, and Y, are statistically independ-
ent. The covariances of X2 , Y2 , X2 , and Y., are

(X2 Y2) - (X2±2) = (X2 Y2) = (Y2X 2) = ( Y2 Y2) = (112Y2) = 0

hence, the four variables X2 , Y2 , 1.2 , and 17-2 are statistically independ-
ent. The covariances of 13 , Y3 , X3, and Y3 are

(X3 Y3) = (X31.3) - (X3 Y3) 173±3> - Y2 Y3) = (X3 2.0 = 0

hence, the four variables x, , 173 , 1.3 , and f3 are statistically independ-
ent.

Also we may show that

(X, Y) = 0 for all in and n

(X,X) = (17,Y) = 0 for in n,
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where

= 1, 2, 3,
mn}

hence the six variables Xi , X2, X3 , , Y2 , Y3 are independent. The
rate of change of energy densities of three fields E, , Hz, and H are

= cirtT D = cciugf

= I3V E [-(RuR, SuS,) sin (4 - cloy)

(SuR, - RuS,) cos et, - 430] X [cos (0, - a) - cos (0, - ce)], (79)

d , d
W

2 /72
hr dl

f-y
Vihr = at 2 Y2)

= V E [-(RuR, SuS,) sin (013. - 4,)

(SuR, - RuS,) cos ((Du - (1))]

sin 60, sin 0,[cos (0, - a) - cos (0, - a)], (80)

d 2 2

hv -crt - (X 3 ± Y3)

= 13T7 E [-(R,,R, SuS,) sin (c13u - 3,)

(SURD - RuS,) cos (c13,4 - 4)0]

 cos 0, cos 0,[cos (0, - a) - cos (0, - a)]. (81)

The only terms that exist in (79), (80), (81) are those for which u v.

There are N(N - 1)/2 different terms which are all statistically in-
dependent in (79), (80), and (81). Hence, by the central limit theorem,
tk. ikhu , and 11'h, are Gaussian random variables.

The variance of , 4. and h are

. Pt, = (4) = (/3V)2 4N(N - 1) for N > 3 (82)

Pi2 = (g) = (,3V)2 1V(N 1) [cost a + 3 sine a] (83)
for

IN = 3

N(N - 1) 2 , . 2 ,
) [3 COS a -t- aj
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Tile covariances of Ike , , and are

Pie = Pii = (kbetkhx) = -(,317)22N(N - 1) sine al for N 3
(85)

Pf3 = 19! = (ikokhy) = -(1317)22Ar(N - 1) cost (86)

P23 - P42 - (4x Ikhy) - 0. (87)

It is very easy to show from (60) to (66) and (79) to (81) that the covari-
ances of the variables between two groups (tke , tyz , ,k,,) and (X, , Y, ,

X2 , Y2 , X3 , Y3) are zero. We may write

('4.,X.) = (1k,n Y,,) = 0 for all n and m (88)

= 1, 2, 3

hence (1,b, ,Ikhv) and (X, , Y1 , X2 , Y2 , X3 , Y3) are two independent
variable groups.16

A.2 Derivation of 111,&,(jv) in (50)

The mean values of all three Gaussian random variables tk. , hr

and tk,, we observed from (79) to (81) are zero. Also (87) gives the
covariance (thirik,) = 0. The joint probability density function of three
variables b. , , 1,th,, can be obtained"

1 1

(I An I IP. +Pb e , ,1/hr , ikh) - exp { Ikhz
(2r)i

-2 IAI A22 I

+ I A33 I 2 I A,2 I we 1//hx + 2 I A13 I1,bek,,,

+ 2 I A23 I 4,1, h) ,

where

[A] is a covariance matrix, and
A,I is a cofactor of p, in the covariance matrix [A]

Pi
1

P12 P13

[A] = /42 p!22 0

Pf 3 0 P33_

(89)
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IAI = determinant of A ; 2= o, (of1. ) 42Pf3

A11 I = PLPL

A22 I P11P33 P132

I A33 I = pfipL P122

I Al2 I = 1 A21 I = PC2P33

I A13 I - I A31 I = /32/313

I A23 I = I A32 I = pf3pf2

From (38), 0, is the sum of three Gaussian random variables , Ohz ,Oh :

= + ikhr + Oh',

The characteristic function for IA is then

/114,(.v) = E[exp [jv(, ;bhz Iiihy)]

Le: exp liv(0. -I- Oh. + ikhy)}13(0, , Oh. , 1,bhOcb,bedikhzdikhy

1 f' r
- (2704 IAI1 d -co

 exp
2 11A 1 (I An + A22 I + 2 I Al2

I 061khz)}

I'
I A33 [ (./.% 2(1 A13 I + A23 I Itbh.) Ohl)}

-oo 2 I A I I A33 1

thkhc/I,bhrcilke . (90)

The last integrand of ;by is

exp jI A13 I ;be ± I A23 rbh. I A3, IV ± (I An I I A23 I 4x)2}
I A33 1 2 I AI I A33 I

A33 Iexp 1(
07,

f°' (ohy +X-00 A13 + I A23 I lk h )

I A33 1

A13 I 'Ye + I A23 1 b d hi,2}

I A33
I

(_iv(I A13 + I A23 1 Oh.)
A33

I A33 I (1 A13 I 'Ye + I A23 I Oh. )2
2A Il}A33

ao

111 2Xf exp (2vE - )4.
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From Cramer,15 p. 99 we obtain

f exp (jt, - 2)clt = -er
exP

V2

'00

where

h1 - 1 A33 1

I A

Then following the same techniques we find

A/4M - A f_. exP (iv36 - tOdE3

fcc exp (026 - h72 e)42 1:exp (iv1E, - e),ki

where

1 \/(271-)3 I- 1
2

V2 v

(20 I A 11 hih2h3{exP //7i h7-2

I A.3, Ih, - "
I A I

/12 -
B

IA A33

1- IAIIA3 IB[BC -

=v

V2 = (1 - I A3 I) V

I 1133 I

V3 = [ 1 AA 13 -
.L1.33

II

AA3233
I

Biv

A = Al2 I I A33 I - I Al3 I I A23 = /32 I A I

B= I A22 I IA331 - I A23 12 P11 I A I

C= I A1 I IA33IIA131 = P:2 I AI

BC - A2 = I A33 I I A r.

The constant value outside the bracket of (91) is

1 (27r) 3 1 A 13 I A.33 I

(21Y 1 A N hih2h3 I A \I BC - 1

(91)
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and the expression inside the bracket of (91) is

1 [v; ,

exp -
2 hi h2 h3

1 1 A 1 (1 A33 1 1 A23 1)2= exp l-1 1 B

2[1 A33 1 - I A13 I- (1 A33 I - 1 A23 I) j/141./1 21.

BC - V

= exp + P42 + P33 2pf2 2/43)v2} = exp -1/42.

Thus,

11/k,(iv) = exp -1/9:v2. (92)
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Some Simple Self -Synchronizing
Digital Data Scramblers

By J. E. SAVAGE

(Manuscript received July 28, 1966)

Two types of self -synchronizing digital data scramblers and descramblers
are introduced and examined. The descramblers recover synchronization
quickly after the insertion or deletion of channel bits, and they are relatively
insensitive to channel errors. The scramblers act to increase the period of
periodic data sequences, and the periodic channel sequences produced have
approximately half as many transitions in one period as there are bits in a
period. These circuits find application in common carrier systems where
short -period data sequences produce high-level tones in the transmission
band and, as a consequence, interchannel interference. And they have appli-
cation when receiver clocks derive synchronization from transitions in the
channel signal. A number of variations and modifications of the scramblers
which affect their cost and size are considered.

The scramblers and descramblers are similar in construction and consist
of linear sequential filters with either feed -forward or feedback paths,
counters, storage elements and peripheral logic. The counters, storage
elements and peripheral logic monitor the channel sequence but react in-
frequently so that the scramblers and descramblers behave principally as
linear sequential filters.

I. INTRODUCTION AND SUMMARY

In this paper, we present two basic types of self -synchronizing digital
data scramblers and descramblers. A scrambler is a digital machine
which maps a data sequence into a channel sequence and, when the
data sequence is periodic, into a periodic channel sequence with period
which is many times the data period. When the source is periodic, the
channel sequence produced by the scrambler also has many transitions.

A simple scrambler and one which is often used is a machine which
adds a maximal -length shift -register sequence" to the data signal.

449
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The scrambled data signal is then descrambled by the subtraction of
the same maximal -length sequence. While this procedure is simple and
easily implemented, it suffers from the serious disadvantage that the
insertion or deletion of bits in the channel signal results in a descrambled
sequence which is a garbled version of the data signal. The scramblers
presented in this paper have the self -synchronizing property* and
recover quickly from the insertion or deletion of channel bits.

There are two important applications for our scramblers. In common
carrier systems small nonlinearities are present in modulators and
demodulators which are used to frequency multiplex a bank of channels.
Consequently, high-level tones in one channel may produce interference
in other channels as a result of the nonlinearities in the mixing process.
For this reason, systems engineers place limits on the levels of isolated
tones in a customer's transmission band. Tones, in turn, are produced
in digital data transmission systems by periodic data sequences and
the limit on tone levels is then translated into a lower bound on the
period of periodic channel sequences. Thus, our first application is to
insure that any periodic source sequence is mapped by a scrambler
onto a periodic channel sequence with sufficiently large period.

The second application for our scramblers concerns the need for
transitions in the amplitude of the channel signal so that receiver clocks
can derive bit or frame synchronization from the channel sequence.
Receiver clocks often derive synchronization by passing the received
signal through a filter tuned to the spectral component corresponding
to the basic baud length and then observing the zero crossings of the
filter output. Since the amplitude of the filter output will decrease to
the background noise level if no transitions occur in the amplitude of
the received signal or if the density of transitions is small, it is clear that
in this application it is desirable to guarantee many closely spaced
transitions in the amplitude of channel sequence when the source is
periodic.

We introduce two basic types of self -synchronizing, digital data
scramblers called multi -counter scramblers and single -counter scramblers
and they are discussed in Sections IV and VI, respectively. Each
scrambler consists of a "basic scrambler" and a "monitoring logic"
which consists of additional storage elements, counters and incidental
logic. We show in Section II that the "basic scrambler," which is a
linear sequential filter with feedback paths and tap polynomial h(x),
responds to a periodic data sequence of period s by producing a periodic

* R,. D. Fracassi and T. Tammaru introduced the self -synchronizing descrambler
in a special scrambler for which they have a patent pending.'
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channel sequence whose period is either s or the least common multiple
of s and p" - 1, where m is the number of stages in the basic scrambler
and p is a prime greater than or equal to the number of elements in
the source alphabet. The basic scrambler responds in this way to periodic
inputs when its tap polynomial h(x) is primitive over the modular
field of p elements, GF(p). The counters, logic, and storage elements
of the monitoring logic monitor the channel sequence and respond
whenever this sequence has as periods, one of the known data periods.
The monitoring logic then reacts and changes the state of the basic
scrambler, forcing it to have the long -period output.

We show in Sections IV and V that a multi -counter scrambler exists
for binary as well as non -binary sources and we find the smallest thresh-
olds required on counters in the monitoring logic of this scrambler.
The single -counter scrambler is considered in Sections VI and VII and
because of analytical difficulties we are only able to show the existence
of this scrambler when the source is binary (p = 2) and the source
periods are all prime to 2' - 1, where in is the size of the basic scrambler.
Mixtures of the scramblers for binary sources are examined in Sec-
tion VIII.

In Section IX we show that the scrambler output, when the input
is periodic, contains many closely spaced transitions and that there
are half as many transitions in one period as there are digits in that
period. In Section XI we perform representative calculations to de-
termine the spectrum of the scrambler output and find when the source
is periodic that the output spectrum has P times as many tones as the
unscrambled spectrum and each tone has 1/Pth the energy, where P
is the factor by which the source period is increased.

The descramblers for each of the scramblers are discussed in the
sections in which the scramblers are introduced and they are also
discussed separately in Section X. In that section, we show that the
descramblers recover synchronization rapidly after the insertion or
deletion of channel digits and we observe that the principal effect of
infrequent channel errors on the descramblers is to multiply the number
of channel errors by w(h), where w(h) is the number of nonzero terms
in the tap polynomial h(x). In Section X we also note that the monitoring
logics at the scrambler and descrambler reach threshold infrequently
when the source is random and at most once when the source is periodic
so that the descrambler monitoring logic may be removed and the
descrambler considerably simplified as long as thresholding in the
monitoring logic occurs at a tolerably low rate.

An example is given in Section XII of the application of the scramblers
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and descramblers and representative calculations are performed to
determine which scrambler configuration is least expensive. Section
XIII closes with conclusions.

II. BASIC SCRAMBLER AND DESCRAMBLER

The shift register circuit shown in Fig. 1(a) is a linear sequential
filter with feedback paths4 and is an example of the scrambling circuit
which is basic to the multi -counter scrambler and to the single -counter
scrambler discussed in later sections. The linear sequential filter with
feed -forward paths4 shown in Fig. 1(b) is the complementary circuit
to that shown in Fig. 1(a) and regenerates the data sequence from the
channel sequence. We assume in these two examples that data is
presented as a binary sequence, that addition is taken modulo 2 and
that the storage elements provide one bit of delay.

Examination of the circuits of Fig. 1 show that they have the re-
quired synchronization property since the effect of a bit lost or added
in the line sequence is felt only as long as the values stored in the
descrambler disagree with those stored at the scrambler, which is five
bit intervals in our example.

A more general form for the basic scrambler when the data is assumed
to be a sequence of digits from the modular field of p elements, GF(p) =
{0, 1, , p - 11, where p is prime, is shown in Fig. 2. Here, addition

DATA

LINE

( a )

Fig. 1-(a) A basic scrambler; (h) a basic descrambler.
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DATA

LINE

Fig. 2-General basic scrambler.
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is taken modulo p and the outputs of the storage elements are mul-
tiplied by the tap constants {c1 , c2 , , cm} drawn from GF(p).
Here, multiplication is also taken modulo p. The tap constants must
be constrained in a particular way if our scramblers are to extend the
period of periodic sequences in the desired manner. Namely, the tap
polynomial h(x) in the indeterminate x given below

h(r) = 2m - -  - (1)

must be a primitive polynomial* over the field GF(p). This condition
will guarantee that the sequence generated by the basic scrambler in
the absence of input will be either all zero or a maximal length sequence,
that is a sequence which repeats but once every pm - 1 digits. In
the example given in Fig. 1, the tap polynomial is primitive over the
binary field and it will generate a maximal length sequence of period
25 - 1 = 31. (h(x) is a primitive polynomial of degree m over the field
GF(p) if it is irreducible, that is, has no factors except 1 and itself,
and if it divides xn - 1 for n = pm - 1 but does not divide it for any
smaller n.)

Theorem 1: The basic scrambler described above when excited by a periodic
sequence of periodt s will respond with a periodic line sequence which
has either period s or a period which is the least common multiple (LCM)
of s and pm - 1 (LCM (s, pm - 1)). The period with which the scrambler
responds is a function of the initial values stored in the scrambler storage
elements, that is, its initial state, and there is but one such state (for each
phase of the input sequence) for which the line sequence has period s.
For all other such initial states the line sequence has the larger period.

This theorem is basic to all later results. It states that for only one
starting state will the basic scrambler respond with period s to a data

* A nouprimitive polynomial may produce more than two output periods for an
input period (see Theorem 1).

A sequence will be said to be of period s if it has no smaller period.
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sequence of that period. Thus, our objective, which is to extend the
period of periodic sequences, is equivalent to detecting whether data
preceding a periodic sequence has left the scrambler in the critical
state for that sequence. Two basic methods of detecting the presence
of the critical starting state when sequences of different periods are
expected in the data are given in later sections.

III. PROOF OF THE BASIC SCRAMBLER THEOREM

Model a periodic input to the basic scrambler with a circulating
register, as shown in Fig. 3 for an input of period 3. The initial state
of the circulating register will be the first period of the periodic sequence.
We let the vector y represent the state of the new circuit. Thus, if
the input has period s and the basic scrambler has In stages, then y
has s in components where the first s represent (in reverse order)
the first period of the periodic input and the last in components rep-
resent the values stored in the corresponding storage elements when
the periodic sequence begins. For example, y = (101101001) if the
basic scrambler has the stored values 01001 when the sequence
1101, 1101, 1101, arrives.

The circuit of Fig. 3 is linear since the next set of stored values
is a linear combination of the preceding set. Thus, the state y' following
y can be found by a matrix operation on y by the matrix T given below, *
that is, y' = Ty where y and y' are taken to be column vectors.

T=

0 0 1

1 0 0

0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1

0 0 0

0 0 0
0 0 0

0 0 0

1 1 1 0 1

1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

0 0 0 1 0_

(2)

For the general basic scrambler and an input of arbitrary period,

* For an excellent discussion of the matrix approach to linear sequential switching
circuits see B. Elspas, The Theory of Autonomous Linear Sequential Networks,
IRE Trans. Circuit Theory, 6, pp. 45-60, 1959, which is reprinted in Ref. 13.
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LINE

Fig. 3-Model of basic scrambler with periodic input.

say s, the matrix T has the following form

RI
9--1T =

01 ITh

where R is s X s and is shown below

R=

RI 0 0 1

1 0 0

0 1 0

0 0

Th is m X m and is given as

Th =

0

C1 C2 Cm

1 0 0

0 1 0

(3)

(4)

(5)

0 0 0

Since the state y' is found from y' = Ty, all succeeding states are
found by taking powers of T, that is, the ith state succeeding y is

yi = T'y (6)

The line sequence generated by a periodic input to the basic scrambler
is periodic of the same period as the state yi of the circuit which models
the basic scrambler and periodic input. Thus, we prove Theorem 1
by studying the cycles of (6).

There is an indirect approach' that one can take to study the cycles
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of (6). It amounts to a proof that these cycles are isomorphic to cycles
of a matrix T* obtained from T by eliminating the solitary 1 shown
in (3). This amounts to disconnecting the circulating register from
the basic scrambler and observing that the basic scrambler, which is
a maximal length sequence generator,' has period 1 or p" - 1, m =
deg h(x), so that cycles of T* have period s or LCM(s, p"' - 1). The
proof that the register can be disconnected amounts to showing that
the minimal and characteristic polynomials of T are the same and equal
those of T*. Then, the elementary divisors of T and T* are the same
and their cycles are isomorphic.

Since there is a direct proof of Theorem 1 which contains many
results important to the remainder of the paper, we present it here.
If the basic scrambler with periodic input starts with state y, then
it has a cycle of length g if ry = y. The basic scrambler output will
then be periodic with period g. We now ask for those values of g for

which T°y = y has a solution. We begin by writing

Y = Y. + Y. , (7)

where y, is such that its first s components equal those of y and its
last m components are zero. The vector y, is zero in its first s com-
ponents and is equal to y in its last m components. We can interpret
y, as the "starting state" of the basic scrambler and y, as the state
of the model for the periodically driven basic scrambler when the
starting state is zero.

If

= y (8)

then

-ry, y, = ry, - y, (9)

since T is a linear operator. We assume that the periodic input is fixed

and has period which is strictly s. Then, the left-hand side of (9) is
fixed and we ask whether a solution y, for it exists for a given value

of g. We note that

770 Q

* Phi '

where the asterisk indicates some submatrix. Therefore, ry, - y,,, is
a vector whose first s components are zero. The left-hand side of (9)
has its first s components zero only when g is a multiple of s because
in that case R° , the s X s identity matrix, and otherwise R° -

(10)
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I, 0 which means that a cyclic shift of the first s components of y,
when added to y, is nonzero unless g = ks for some integer k >= 1.

If we use the notation (y)' to indicate the last nz components of y
we have for (9) the following when g = ks

(-Tkay, y,)' = - I](y,,,)' (11)

where I is now in X in. We use the following theorem on (11).

Theorem 2: The matrix Th has characteristic polynomial h(x) which is
assumed primitive over GF(p). Therefore, Th - I is nonsingular for
i = 1, 2, , pm - 2 and T" = I for n pm - 1.

Proof: See appendix.

Since Th = I for n = pm - 1, we can reduce ks modulo n so that Th"
can be written as a power of Th less than n. In particular for k < ko
where kos is the least common multiple of s and n, which we call e,
that is,

e = kos = LC111(s, pm - 1) ,

the matrices Th' can be written as Thik where 0 < ik < n. We have

71" = 717, = (I)e/" = I.

(12)

(13)

Returning to ( 11 ) we see that Tka -I is nonsingular for 1 5 k < ko .

Therefore, when k = 1, ( 11 ) possesses a unique solution y, . That is,
there exists a unique starting state ym for each periodic sequence
(modeled by y8) having period strictly s such that Ts (y,± y,) = y,±y, .

Similarly, there exists a unique solution to ( 11 ) for each 2 5 k < ko .

However, if Tay = y, y = y, y, , then Tkay = y so that the cycles
having period ks are really repetitions of the single cycle having period s.
Also, when k = ko , Tk°' = I and Tkeay = y for all y. We conclude
that for a prescribed input having period strictly s, the basic scrambler
will respond with period s for only one starting state y, and for all other
starting states will respond with period e given by (12). This proves
Theorem 1.

We have finished our discussion of the. basic scrambler. We now
consider the techniques used to detect the presence of a periodic sequence
of low period on the line and present the first of two methods for altering
the starting state of the basic scrambler. This first method is more
general than the second and allows for the simultaneous detection
of sequences of several periods. The second method applies only when
the sequences expected on the line have periods which divide one of
two numbers.
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IV. THE MULTI -COUNTER SCRAMBLER

The general form of the multi -counter scrambler (MCS) is shown
in Fig. 4. (The descrambler is shown in Fig. 5.) There are N counters,
one for each period si , 1 < i < N, and the ith counter will generate
+1 if it reaches its threshold 4, . A counter is reset whenever the
reset lead is nonzero so that ts, consecutive zeros on the reset lead
of the ith counter will cause it to reach its threshold. All counter out-
puts are fed to the OR circuit shown so that a 1 is generated at the
exclusive OR and added to the "tap sum"* whenever a counter reaches
threshold. At the same time, all counters are automatically reset.

DATA

Si

a>o
a=o

COUNTER
THRESHOLD

=tsi
0 OR

RESET OR

LINE b>o COUNTER
b=o 0 OR THRESHOLD

=ts

Fig. 4-Multi-counter scrambler.

The input to the ith counter is the difference between the present
line digit and the digit transmitted si clock intervals earlier. If the
line sequence has period si , then these two digits agree and the dif-
ference is zero. Then, the ith counter will reach threshold, the tap
sum will be altered and the state of the basic scrambler changed.t
The line sequence will then be changed from period si to period
LCM(s, , pm - 1) where p is the size of the modular field GF(p) and
m is the number of stages in the basic scrambler.

* We define the "tap sum" as the quantity added to the next data bit at the input
to the basic scrambler.

If the starting state of the basic scrambler is critical for a sequence of period si ,
then the state after j clock intervals is critical for the jth cyclic shift of the input
sequence. Hence, a change in the tap sum will force the next state to be noncritical.
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We observe, then, that the multi -counter scrambler for any choice
of thresholds { ts, , 1 :5_ i < N } will force the basic scrambler to switch
from a critical state to a noncritical state whenever the input has
period si , , , or sN or some period which divides an si . It should
be clear, however, that it is not necessary and perhaps not desirable
to change the tap sum and the next state of the basic scrambler when
the output does not have period Si, 1 N, or some period which
divides an s; . The next theorem specifies the minimum values of the
thresholds t,, , 1 < i 5 N, so that the tap sum is changed only when
"necessary." (Note that random data may generate line sequences
which resemble periodic sequences and in such cases it will be "necessary"
to change the tap sum.)

Theorem 3 (M CS Theorem): The multi -counter scrambler shown in
Fig. 4 will scramble a periodic sequence of period s if s divides si for
some i, 1 < i 5 N, and will produce a periodic line sequence of period
LC111 (s, - 1) if the following two conditions are met:

(i) The tap polynomial h(x) of degree m is primitive over GF(p) where
data sequences have components from GF(p).

LINE

DATA

a>o
a=° o OR

_

0 OR

RESET

COUNTER
THRESHOLD

=ts'

COUNTER
THRESHOLD

=tsN

OR

Fig. 5- Multi -counter descrambler.
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(ii) The thresholds ts, , 1 < i < N, are chosen as

t > (in - 1) + max si .

j;i

If all input periods divide so , then the theorem holds when condition (i) is
met and a threshold of ta. > m is used.

The descrambler for the MCS, shown in Fig. 5, has the self -syn-
chronization property as long as line errors do not occur. When line
errors occur, the counters in the descrambler may not read the same
levels as the corresponding counters in the MCS. However, as seen from
the MCS theorem, the counters must reset at least once every (m - 1) +
max si clock intervals when the input is periodic so that counter syn-

i
chronization is easily established in this case. With random data the
situation is not quite so clear. The question of descrambler synchroniza-
tion, including the effect of channel errors, is considered in detail in
Section X.

V. PROOF OF THE MCS THEOREM

We use the notation developed in Section III for the proof of The-
orem 3. Fig. 6 shows the basic scrambler with periodic input of period
s and one counter. The only input to the basic scrambler other than
the data input is the lead from the counters which is used to change
the tap sum. The counter shown is assigned to the detection of line
sequences whose periods divide si .

To prove Theorem 3 we must show that tai can be chosen such that

S

a
A

a>o
a=o

I
Cm)

m M+1

0 OR
COUNTER

THRESHOLD

-tsL
RESET

Fig. 6-One counter of the MCS with periodic input.



DIGITAL DATA SCRAMBLERS 461

the ith counter does not reach threshold when the data sequence is
periodic unless the line sequence has period si or some period which
divides si. Before we begin our proof we introduce some notation.
In Fig. 6, we use i to indicate the jth line digit calculated with data
from a periodic input of period s. The basic scrambler is shown and we
indicate with the vector y the state of the linear sequential filter com-
posed of the circulating register of s stages and the m stages of the
basic scrambler. Call this filter of s+ m stages the driven basic scrambler.
Then, from (6) the next state of the driven basic scrambler, y', is

= Ty (8)

provided that the monitoring logic is not active. If it is active, that is,
if one or more counters reach threshold, then

= TY + Yt (14)

where y, contains a single one in its (s + 1)th position.
The first line digit calculated with the periodic input, /, , is

1, = [Ty + (15)

where

[z], = , (16)

the (s 1)th component of the vector z, and

fi
monitoring logic active at first calculation,

U1=
10 otherwise.

In general, the jth line digit is

= [7"y E T'Y+
k=1

where

(17)

(18)

11

monitoring logic active at Lath calculation,
Eck = (19)

1:21 otherwise.

Now consider the sequence { calculated at point A of Fig. 6.
If a run of consecutive zeros in this sequence is large enough, the ith
counter will reach threshold unless some other counter reaches threshold
before it. When the periodic input begins, the counters in the .MCS
will be at unknown levels and the (max si) stored values will be, in
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general, unrelated to the input; thus one or more counters may reach
threshold before l, reaches the sith storage element of the MCS.* We
now wish to show that the sequence fai , j ± 11 will contain a
run of no more than max (in - 1 ± si) zeros if the line sequence is periodic

toi
with a period which does not divide si .

We have for j Z s, + 1

a; = /; /;_ (20)

and
i

a; = -[ Ti (T"y - y) E ukr-ky, - E ukTi-"-kyel . (21)
k=1

If = 0 then let jo be such that u; = 0, s, ± 1 < j < jo and uf. = 1,
that is, the most recent thresholding occurs at j = jo. (The case u; = 0
for all j > 5, + 1 is trivial, so we assume that u1. = 1 for some jo .)
Then, if we write zi as

z, = E UkTi.-kY E ukTi°-"-ky, (22)

and if we ignore all counters except the ith, we have

a; = T"y - y} zi)]. (23)

for Jo < j < Jo t., - 1. For this range of j the a; can be viewed as
the values appearing in the (s 1)th storage element of the driven basic
scrambler with starting state yot

y? = Ti°-" {T"y - y} z, . (24)

Now, assume that input period s does not divide s, . Then, the first s
components of T"-" { 7" iy - y} are not all zero. Since z, is zero in
its first s components, the starting state yt is nonzero in some of its
first s components. Consequently, the state of the driven basic scrambler
(of s m stages) can never be completely zerot so that the sequence
{ a; , j jo} cannot contain more than s 171 - 1 consecutive zeros
if s does not divide si .t We shall now show that, in fact, the sequence
{a; , j >= jo} cannot contain more s m - 2 consecutive zeros if s .

We shall also show that there exists an input of period s if s, = ks ± 1

* Note that the lead from the counters will be active at most once during the first
si calculations if Si 5 min tai .

t Note that the matrix operator T just circulates the first s components of y*.
We will use the notation s ,f' Si to mean s does not divide si .
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for some integer k > 1 such that the sequence fai , j >= jo I will have
this many consecutive zeros.

In (24) the first s components of sr*, are a cyclic shift of the first s
components of 7"'y - y. Recalling the definition of T from (3) we see
that these s components are the components of the vector (R' - I) (y.)"
where R is s X s and is given by (4) and (y,)" is the vector containing
the first s components of y, . The vector (R' - I) (y,)" cannot contain
a single nonzero element if s s as seen below by example: Let s = 4,
si = 5 and (y,) have components y, , Y2 , y3 y4  Then, we have

-1 0 1 0 Y1 b

(R" - /)(y,)" = 0 -1 0 1 Y2 0
, (25)

1 0 -1 0 y3 0

0 1 0 -1_ _0_

where b is the single nonzero element. Thus,

-y, ± y3 = b 0

-Y2 + y4 = 0
(26)

-Fyi -Y3=0
-Fy2 - y = 0.

It is clear that two equations, the first and third, cannot both be satis-
fied. This will be true regardless of the location of the single nonzero
element. Hence, there must be at least two nonzero elements in the first s
components of 50: . Consequently, I a; , j jo I cannot contain a run
of more than s - 2 consecutive zeros. If ya contains a single non-
zero element and if s, = ks t 1 then (R" - I)(y.)" will contain two
consecutive nonzero elements. Also, since y, is in general arbitrary,
it can be chosen so that the first s - 2 digits generated with yt
as the starting state will be zero.

At this point, we have shown that a periodic input of period s, where
s I s, , some j i but s s, , will not cause the ith counter to reach
threshold more than once after the sith line digit is transmitted if
we choose t., to be

t = (nt - 1) + max s; . (27)

This is true since the sequence generated at point A of Fig. 6 will not
show more than ts, consecutive zeros after the first time the monitoring
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logic is active following the transmission of the sith line digit. We
also note that a threshold of the size given above may be necessary
if there exists an s such that si = ks ± 1, some k z 1, where s I si ,

some j.
Consider next the case where s J si . If the line sequence is periodic

of period s (see Theorem 1) at any time after the periodic sequence
begins, the sequence at point A will contain an indefinite number of
zeros so that the ith counter will definitely reach threshold (unless
s si , some j i, and t < t , in which case the jth counter may
reach threshold first). Since there is only one critical state for each
periodic sequence, the change in the tap sum resulting from the detection
of the period s line sequence will cause the output to have period
LCM(s, - 1). In this case the vector yt in. (24) cannot be entirely
zero (its first s components are zero, however) because it would then
result in an all zero sequence at point A. Thus, the last m components
of y't must contain at least a single nonzero component. But [17' 'rid,
(which generates {a, , j > jo)) then is just the output of a maximal
length sequence generator (see appendix) so that no more than 9n -1 con-
secutive zeros will be seen at point A if s I si and the output has period
LCM(s, pm - 1).

In conclusion, if s si but the output does not have period s or if s si

but s I si some j i, then the ith counter will reach threshold at most once
after the transmission of the sith line digit if the ith threshold t is chosen
as

t = (in - 1) + max si . (28)

Of course, the same is true for any threshold larger than t .

VI. THE SINGLE -COUNTER SCRAMBLER

The single -counter scrambler (SCS) is shown in Fig. 7 (and the de -
scrambler is shown in Fig. 8). This scrambler is designed to scramble
periodic binary sequences whose periods divide either s, or s2 or both.
It has a single counter and for some applications may be less costly
to build than the multi -counter scrambler. And while we consider
the SCS when the input periods divide either si or s2 or both, one may
be able to design. for the case of many more input periods.

The SCS has two circuits for detecting periodic sequences. If either
or both of the two detecting circuits produces 0 at any one time, one
cannot with a single measurement determine whether the line sequence
has period si or s2 . On the contrary, if both circuits produce a nonzero
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Fig. 7-Single counter scrambler.

COUNTER
THRESHOLD

=t

465

output, it is clear that the line sequence does not have period s, or s2

and that the counter should be reset. A 2 -input AND gate has a non-
zero output only when both inputs are nonzero, consequently, we use
it as input to a counter, as shown in Fig. 7. This counter will reach
threshold after t line transmissions if each of t consecutive pairs of
outputs of the detecting circuits contains one or more 0's.

The major design problem of the SCS is the choice of the counter
threshold. This is not an easy problem, unfortunately, and all that we

LINE

AND
RESET COUNTER

THRESHOLD
=t

DATA

Fig. 8-Single counter descrambler.
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have been able to say about it is that counter thresholds do exist when
p = 2 (the source is binary) and the input periods are relatively prime
to 2rn - 1 and then to only give a gross upper bound on the smallest
permissible threshold. The following theorem states what is known about
the threshold for the SCS.

Theorem 4 (SCS Theorem): A single -counter scrambler which will
scramble all periodic binary sequences with periods which divide si or 82
(s, < s2 , s s2) exists if

(i) the tap polynomial h(x) of degree m is primitive over GF(2),
s, and s2 are relatively prime to 2"1 - 1, and

(iii) a counter threshold, t, t < s, (2'" - 1) - 2m-1 2 is chosen.

This theorem does not rule out the possibility that an SCS exists
when s, and s, are not both relatively prime to 2' - 1 nor does it
rule out an SCS for nonbinary data. It simply states that when condi-
tions (i) and (ii) are met, one can show that a counter with threshold
t, t < s2 (2"' - 1) - 2"1-1 + 2, will not reach threshold when the output
of the basic scrambler has period s X (2"4 - 1) where s divides s,
or s2 or both. In fact, the bound on the threshold required to prevent
the counter from reaching threshold prematurely is many times larger
than necessary. In the example given in Section XII the bound is
more than 35 times too large.

VII. PROOF OF THE SCS THEOREM

For the proof of Theorem 4, we recall the proof of Theorem 3. In
particular, it is instructive to review the discussion surrounding equa-
tions (20) through (24). We recall that ai of (20) is the jth digit cal-
culated (after the arrival of the periodic data sequence) at the input
to the ith counter of Fig. 6. We argued that if the ith counter reaches
threshold on the joth calculation, jo s, 1, then a; could be cal-
culated from

ai = (29)

for j jo and until the next time the ith counter reaches threshold.
Here [37.] indicates the (s + 1)st component of y and y' is given by (24).

Thus, the sequence generated at point A of Fig. 6, namely ai. , a1. ,
can be viewed as generated by the basic scrambler with periodic input
and yt as starting state.

In Theorem 4 we assume that the data sequence is binary so that
the above equations apply if we interpret subtraction as addition since
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they are equivalent on the binary field. In Fig. 7 the sequences fb,1
and { c1} are generated at points B and C, respectively. We wish to
show that the largest run of consecutive zeros in the logical AND of
I bil and I cil after a certain transient period cannot exceed s2(2m - 1) -

1 when si < S2 and si and s2 are both relatively prime to 2"' - 1.
Consider the sequences { bi , j > s2 1} and lc; , j Z 82 + 11. Then,

if the counter reaches threshold at* j, , j, 82 + 1, these two sequences
will cause the counter to reach threshold only once more if the line
sequence has period s, s I si or s J s2 or both. If the line sequence has
periodt s X (2' - 1), then neither Ibi j => j,1 nor ci , j z j,1 can
be all zero since this would imply that the line sequence has period
s, or s2 .

We now consider two cases, case I when s divides both si and 82
and case II when s divides si but not 82 or vice versa. From (24) it
is clear that in case I both bi j >= j,1 and fc; , j j11 are the outputs
of basic scramblers with no input and with nonzero starting states
so that they repeat with period r - 1. In case II when s I si , say,
but not s2 , (1) 1 j z j1} is the output of a basic scrambler with nonzero
starting state and has period 2- - 1 while lc; , j 5,1 is the output
of a driven basic scrambler with input period s. (The input may not
be strictly of period s, however, as we shall see later.)

The logical AND of the sequences generated at points B and C
of Fig. 7 can be interpreted as the sequence generated by the normal
arithmetic multiplication of 14 and ci . Thus, the sequence at point D
of Fig. 7 has period 2' - 1 in case I and periods X (2' - 1) in case II.
Let B and C be n component vectors with B, = and Ci = ch.,/ .

Then, at point D, the vectors B and Cn generate the n -vector D = B,.  C,,
where multiplication of B and C is term -by -term, i.e.,

D = (BIC, , B2C2 , , BnCn) (30)

Let w(y) be the Hamming weight' of the n -vector y , that is,
the number of l's in y . Then we have8

w(B) w(C) - w(B C)w(D,,) = w(B  C) - (31)

where addition is modulo 2. We now wish to use this, last equation to
find a lower bound on the number of l's Dn . From this we can obtain
an upper bound on the number of consecutive 0's in D and an upper

* It may indeed reach threshold for 1 5 ji 5 82 but this does not affect our analysis.
f s, and 32 are relatively prime to 2m - 1 so that the line sequence has period

s X (2m - 1) if s Si or s I s2 as seen from Theorem 1.
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bound to the threshold required to prevent the counter of Fig. 7 from
making unnecessary changes in the tap sum.

In case I we let n = 2m - 1, which is the period of the sequence
generated at point D. Thus, D,, is one period of this sequence. Bfi and Cfi

are each one period of the output of the basic scrambler (which is a
maximal length sequence generator). Thus, Bfi can be obtained from
Cfi by a cyclic shift and they both have the same Hamming weight.
Then, we have the following result.

Lemma 1: I f n = 2"' - 1 and B and C are periods of a maximal length
sequence with B = C , then w(D) = w(C) = t. If B C , then
w(D) = w(C)/2 = 2m-2.

Proof: We need only show that w(C) = 2"'-1. From the comments
at the end of the appendix we have that the state of the autonomous
basic scrambler, as a binary m-tuple, ranges through all 2m - 1 nonzero
binary m-tuples. Since the first digit of each m-tuple is a line digit,
there will be exactly 2m-1 l's in one period of the line sequence generated
by the autonomous basic scrambler. (Note that the scrambler does not
start with the zero state.) Q.E.D.

In case I, then, the number of consecutive zeros in the sequence
at D cannot exceed 2"1 - 1 - 2m-2 and a threshold of 2m - 2m-2 will
guarantee unnecessary tap sum changes in this case.

Consider now case II where { b1 , j > jd has period r - 1 and
lc; , j > j, I is the output of a driven basic scrambler characterized by

c;= ,

where yt is an (s m) -vector which from (24) has the form

ya = fT"y y) z

(32)

(33)

where y is an arbitrary (s m) -vector, except that its first s components
model a periodic sequence of strictly period s, and z is zero in its first

s components and arbitrary in its last m components. The first s com-
ponents of T"y y cannot be all zero if s . It may model a periodic
sequence of period s,, , however, where so < s and so I s. In particular,
we may have so = 1 in which case the first s components of yt may
be l's and {c, , j >= 511 may have an output of period 1 consisting of
the all 1 sequence. If this is true Dfi = Bfi  C = B and Dfi will have
no more than in - 1 consecutive zeros. If fci , j > 511 has period
so > 1 it will contain no less than a single nonzero component in each
period nor no more than so - 1 nonzero components in each period.
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Thus, if n = so , so > 1, and C represents one period in the output
of period so , we have

1 'tv(C) (so - 1). (34)

When ici , j has period so X (2' - 1) let n = so X (2 - 1)
in (31). We now show that for this ease

so(2m-1 - 1) w(C) so X 2"-1. (35)

The state of the driven basic scrambler with input of period so can
be represented with an (so + m) -vector. There are so X 2' admissible
state vectors since the last in components are arbitrary and the first so
components must be a cyclic shift of the first so components of some
other state vector. The last m components of these so X 2' vectors
range through each of the 2- m-tuples so times. Since the (s 1)st
component of each state vector is a line digit w(C) < so X 2111-1 which
is the number of l's shown in these positions. We also have w(C)
so X 2m-' - so since the components of C are generated by only
so X (2' - 1) of the so X 2"` admissible state vectors and the missing
state vectors may all contain 1 in the (s + 1)st components.

Returning to (31) we see that the vector B C appears. It represents
the first n components of { /), , j > j,}. This is the output sequence
of a driven basic scrambler driven with period so and which has as
a starting state the state which produces lc; , j > ji and which is
modified by the addition in its last in components of the starting state
of the autonomous basic scrambler which produces tb , j . Since
this last state is arbitrary, B C can be expected to have period
so or so X (2' - 1) and the bounds on the weight of C for these two
periods apply to B C .

We now combine our bounds with (31) to obtain a lower bound
to w(D) for case II. Remember that n = so(2" - 1).

(i) Let C have period so , then B C has period so X (2' - 1) and

so X 2m-1 + (2'
2
- 1) - so X 2m-1 2' - 1w(D)

2
(36)

where w(B) = so X 2- from Lemma 1.

(ii) Let C have period so X (2' - 1) and B C have period so
Then

so X 2m-1 so(r-1 - 1) - (so - 1)(2' - 1) 2' - 1w(D,,) (37)2 2
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(iii) Let C and B C. have period so (2'" - 1). Then

so X 2'1' + 4(2' - 1) - so X 2"1-1 so (2.-1 - (38)
2 2

Therefore, the number of l's in the sequence D. of n = so X (2"` - 1)
components for case II must exceed (2'" - 1)/2 - a and the number
of consecutive zeros cannot exceed s,, X (2"i - 1) - (2"' - 1)/2 +

Combining the results for cases I and II we find that the number
of consecutive zeros at point D of Fig. 7 when s, < s2 , s, s2 and the
input has period s, s I s, or s I s2 or both, will not exceed s2 (2'" - 1) -
(2"' - 1)/2 -I- z unless the line sequence has period s. The threshold
then need not be any larger than 52(2"' - 1) - -I- 2 to prevent
unnecessary changes in the tap`sum. Q.E.D.

VIII. MIXTURES OF THE SCRAMBLERS

The two types of scramblers given above are distinguished by the
structure of their monitoring logics. The MCS has one counter for each

of the input periods s, , s2 , sN and the SCS has a single counter
to detect the presence of one of two periods, s, or s2 . We have found
the smallest threshold required on each counter of the MCS so that
they change the tap sum only when necessary. Also, we have shown
the existence of a finite threshold on the single counter of the SCS
when the source is binary and input periods are relatively prime to

- 1, where ni is the number of stages in the basic scrambler.
Since the monitoring logic for both counters acts to detect the pres-

ence of periodic sequences of known periods in the line sequence,
it should be clear that a monitoring logic containing a mixture of the
MCS logic and the SCS logic may be used. We know of an SCS monitor-
ing logic only when the source is binary, however, so that the mixture
must be restricted to the binary source case. Thus, we may now con-
sider a scrambler with a monitoring logic, a portion of which has counters
detecting the presence of one of a pair of periods and another portion
consisting of individual counters for single periods. The outputs of
all counters are fed to an OR gate which in turn is added modulo 2
to the tap sum. The output of the OR gate is also used to reset all

counters.

IX. TRANSITIONS IN A SCRAMBLED SEQUENCE

The basic scramblers described above may have applications in
situations where bit framing at the receiver is derived from transitions
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in the line signal. In this section we show that transitions occur fre-
quently in a scrambled periodic sequence and that in one period of a
scrambled sequence there are approximately half as many transitions
as there are digits. These results are shown when the source is binary
and the scrambler input periods are relatively prime to 2' - 1, where
m is the size of the basic scrambler.

Let 1 represent one period of the line sequence generated by the basic
scrambler when the input has period s. If the source is binary, if the
basic scrambler has in stages and if s is relatively prime to 2' - 1, then
1 is an s(2" - 1) component vector. If we assume that the binary line
sequence is converted into a line signal by the mapping 1 1 0 -3 -1,
and if it is linearly modulated, then transitions in the channel signal
occur whenever transitions in the line sequence appear. Thus, we should
like to know the number of transitions in 1 and the maximum separation
between transitions.

Theorem 5: The binary vector 1 of length s(2- - 1) representing the
response of a binary scrambler to an input of period s, when s and 2' - 1
are relatively prime, has at least one transition every s m digits and has a
total of Tr(1) transitions where

Tr (1) 1 ( 2' )
2 \2" - 1/ s(2' - 1) = 2 \2" - 1

We begin by showing that every set of s in consecutive line digits
must contain at least one transition. The scrambled sequence is the
response of the basic scrambler of Fig. 2 to an input of period s. We
note that if the basic scrambler is in the all zero state then the tap
sum (which is added to the data bit) is zero. Similarly, if it is in the
all 1 state the tap sum is zero because if not, h(1) = 0 and h(x) is
divisible by x - 1 which is impossible since h(x) is irreducible. Then,
if s m consecutive outputs of the scrambler are identical, the last s
of the (s + in) corresponding tap sums are zero so that s consecutive
data bits must be identical. This cannot happen if the source is periodic
with period greater than 1. When s = 1, the line sequence must have
period 1 if s m consecutive line digits are identical, which also cannot
happen since the line sequence has period 2' - 1 in this case.

We now bound Tr (1), the number of transitions in one period, 1,

of the line sequence. We use the notation of Section V so that the jth
digit of 1, namely 1, is written

[Tlyb (40)

where T is given by (3) through (5) and y is the state of the driven

(39)
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basic scrambler at the beginning of a period of the data sequence.
Let us now observe that a transition occurs in between two digits in 1 if
they sum to 1 modulo 2. Thus, the number of l's in 1 + 1' (where 1' is
one cyclic shift of 1 and addition is term -by -term) is the number of
transitions in 1. For example, if 1 = 10110, 1' = 01011 and 1+ = 11101
then the number of transitions in 1, including the implicit transition
at the first digit is the Hamming weight of 1 + 1'.

In the process of proving Theorem 4 we have shown (see (35)) that
the Hamming weight of one period of the output of the basic scrambler
when the input is binary of period so and so and 2"` - 1 are relatively
prime lies between so(2-1. - 1) and 0-1. Hence, if we can show

that 1 + 1' is one period of the output of the scrambler with input
period so , we will have established Theorem 5.

We note that

I; = [Tly 711.-1y],

so that we now examine Ti+ly Tly. We have

= Ti -1(T .1)y

(41)

(42)

As in (7), let y = y, y, where y, is zero in its last m components,
y, is zero in its first s components and they represent the periodic
input and starting state of the basic scrambler, respectively. Then,

(T + I)y = Y. + (Q, Y. , Q) Y,,, + Ty. , (43)am -1
where 37: is a single cyclic shift of y, in its first s places and (0, y 0)

is a vector with a single component y. in the (s 1)st position. If we
use (z)' to represent the last m components of z, then

(y, + Ty.)' = (Th + I.)(y.)' (44)

In the appendix it has been established that Th Im is a nonsingular
matrix. From this we deduce that the last m components of (T I)y
range over all 2"' m-tuples as y, ranges over all m-tuples.

Now consider y, , which represents the first s components
of (T I)y. While ya models one period of a data sequence with period
exactly s, y. + y: may model a sequence with period so , so I s. For
example, let y, = (1001000), then y, y: = (0101000) and its first
4 components represent two periods of a period 2 sequence. Thus,
we must view (T I)y as the starting state of a driven basic scrambler
with input period s, where so J s. We then ask if the sequence generated
by this state has period so or so(2"' - 1). Since y is noncritical, the



DIGITAL DATA SCRAMBLERS 473

sequence generated by (T I)y must have the larger period because
if y were critical (T' = 0 for some i, 1 < i S so(r - 1) - 1
and (T' I)(T I)y = 0 as well for some i in this range so that
(T I)y is a critical state. But we have shown in Theorem 1 that
there is only one critical state for each periodic input. In the last para-
graph we have seen that there is a one-to-one mapping between the
last in components of y and the last in components of (T I)y, hence
if y is noncritical, (T I)y is noncritical and the line sequence gen-
erated by (T I)y has period so(2'n - 1) where so I s.

The vector 1 + 1' contains s/so periods of a sequence of period so
Let C represent one such period. Then from (35), the number of l's
in C , w(C), is bounded by

so(2,"-' - 1) 5 w(C) (35)

Tr (1) = w(/ 1')

s(2"1-1 - 1) 5 Tr (1) < s2'"-1 (45)

which gives the desired result after division by s(2"' - 1).

X. THE SELF -SYNCHRONIZING DESCRAMBLERS

Then,

and

In this section, we show that the descrambler for each of the scramblers
given above has the self -synchronizing property, that it is relatively
insensitive to channel errors and that in some applications it can be
considerably simplified by removal of the monitoring logic.

Each scrambler is of the form shown in Fig. 9. Each descrambler can
be represented as shown in Fig. 10. The output marked "data" in
Fig. 10 is indeed data if the scrambler and descrambler are both started
in the same state and no channel errors occur since (i) the line sequence
will then pass through both basic scramblers and (ii) the modulo p
sum of a data bit, tap sum, line bit, and monitoring logic output is
zero at both the scrambler and descrambler.

If there are no channel errors we would like to show that the de -

scrambler will synchronize itself should it ever lose synchronism. The
descrambler will be said to be out of synchronism with the scrambler
if either the values stored in the basic scrambler and the delay elements
differ from those stored in corresponding sections of the scrambler
or if the counters in the monitoring logic are not at the same levels as
those at the scrambler or both. It is clear that the s, stages (if the largest
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Fig. 9-Block diagram of the scrambler.

expected period is sN) of the basic scrambler in the descrambler and
delay section will be purged after s, clock intervals and replaced with
accurate information if there are no channel errors. Then, after sN
clock intervals the monitoring logic at the scrambler and descrambler
both are fed the same information. The monitoring logics will then
reach synchronism when either (i) counters at the scrambler and de -
scrambler reach threshold together in which case all counters are reset
simultaneously or (ii) the last 5N 1 digits of the line sequence is
found to be inconsistent with a periodic sequence of period st , 52 ,

or sN and the counters at the descrambler are reset individually but
in synchronism with those at the scrambler. When the data sequence
is periodic of period Si , 52 , or sN the ith counter of the MCS is
reset (following the transient interval associated with the arrival of

LINE

BASIC
SCRAMBLER

TAP
SUM

DELAY

MONITORING
LOGIC

Fig. 10-Block diagram of the descrambler.
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the periodic sequence) at least once every t, = m - 1 + max s; clock
iii

intervals. With the SCS the single counter is reset at least once every
82(2"' - 1) - 2-1 2 clock intervals when the input has period
s, or s, , Si < s2 . Should the input sequence be random, the monitoring
logics may be brought into synchronism because one of the counters
reaches threshold and all counters are reset, which is unlikely, or because
the counters are reset individually in synchronism with the scrambler
counters, which is very probable and increases in probability very
rapidly to one. (If the source is binary with independent, equiprobable
outputs, the ith counter of the MCS descrambler is resynchronized
in the second manner after n clock intervals with probability 1 - 2-";
similarly, the counter of the SCS descrambler is resynchronized with
probability 1 - (1)71.)

Channel errors can affect the process of resynchronization. However,
if we assume that they are relatively few in number, say, occurring
once in every 105 transmissions, there will be long intervals during
which resynchronization can take place. Since the descrambler re-
quires at most sN + max t,, (which equals 2sN + in - 1 in the MCS
case when si 5N and is at most 822"3 - + 2 in the SCS case)
clock intervals to resynchronize when the source is periodic, resyn-
chronization will not be a problem with periodic inputs if m and sp,
(or 52) are reasonable in size. When the source output is random and
is a sequence of independent, equiprobable binary digits, the average
number of clock cycles required by the ith counter of the 1VICS de -
scrambler to resynchronize (in the second way described in the preced-
ing paragraph) is two so that the MCS descrambler will resynchronize
on the average in sN + 2 clock intervals. The counter of the SCS de -
scrambler will require four clock intervals on the average to resyn-
chronize so that the SCS descrambler will be resynchronized on the
average in 8N + 4 clock intervals. Hence, we may conclude that re -
synchronization in the presence of channel errors which are relatively
few in number will not, be a problem when the source is random. In
fact, it may be easier to resynchronize when the data is random than
it is when the data is periodic.

Now assume that the scrambler and descrambler are operating in
synchronism and consider the effect of channel errors on the descrambler
output. If we neglect the monitoring logic for a moment, it will be
be seen that an isolated channel error, as it passes through the basic
scrambler, will cause w(h) output errors, where w(h) is the number of
nonzero terms in the tap polynomial h(x). The monitoring logic, however,
may fail to act when it should or act when it should not and thereby
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introduce additional errors. If we consider the effect of a single channel
error on the monitoring logic, we see that this error has a direct effect
on the ith counter of the MCS at two occasions, when it enters the basic
scrambler and when it reaches the sith storage element. A single channel
error has a direct effect on the counter of the SCS three times, once
when it enters the basic scrambler and again when it enters the s,th
and s2th storage elements. When the channel error effects a counter
of the descrambler, it may cause it to reset when it should not, which
will not cause any harm if the counter is about to be reset before
reaching threshold, as is the case for the known periodic inputs or as
frequently happens with a random source. A channel error which
causes a counter to continue to count when it should reset may indeed
be harmful since it may result in its reaching threshold and introduce
an. unnecessary change in the descrambler output. This event is un-
likely to happen for the known periodic source sequences since the
counters reset frequently, and the number of clock intervals between
a set of three normal counter resets is often less than a given counter
threshold. It is also unlikely that a channel error will eliminate a reset
and cause a counter to reach threshold when the source is random.
For example, when the source is a binary, equiprobable, independent
letter source the average separation between three resets on the MCS
counters is four clock intervals and is eight clock intervals on the SCS.
We may conclude then that channel errors have a small effect on the
monitoring logic and thus affect the descrambler primarily by producing
approximately w(h) as many output errors as channel errors.

The descrambler can be considerably simplified, the problem of
synchronization loss in the descrambler monitoring logic eliminated,
and the problem of output errors due to the monitoring logic solved,
all by the removal of the monitoring logic at the descrambler. This
is not the drastic solution that it might seem for the monitoring logic
reacts infrequently on random data and at most twice on known
periodic inputs (if counter thresholds all are larger than the largest
expected input period). With a binary, independent, equiprobable
letter source, one or more of the N counters of the MCS reaches thres-
hold in n transmissions with a probability, P,,, (n), which is less than
or equal to

(n) < E (n - t; 1)2-1i , (46)

where t; is the threshold on the ith counter and ti . The single
counter of the SCS reaches threshold t in n transmissions with prob-
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ability P s(n) where

P s(n) - t + 1)(1)'. (47)

Hence, if the thresholds are large enough so that P m(n) or P 8(n) is
less than 0.1, say, when n equals the average number of transmissions
between channel errors, then we may safely say that the monitoring
logic at the descrambler is not necessary on random data inputs.

When the source is periodic of period s however, one of the pm starting
states* of the basic scrambler will result in a line sequence of period
s which subsequently will require at least one and at most two outputs
from the monitoring logic. Thus, if the data preceding a periodic input
is random, the monitoring logic at the descrambler will with probability
1/pm change at least 1 digit in the descrambler output. Hence, if a
customer can tolerate such an error rate and if the thresholds are
large enough, the monitoring logic at the descrambler can be removed
and the descrambler will then simply consist of a basic scrambler.

XI. THE SPECTRUM OF THE SCRAMBLER OUTPUT

In this section, we perform representative calculations to show the
effect of scrambling on the spectrum of a linearly modulated carrier.
Assume that the source is binary and that a binary sequence is con-
verted into a waveform by the mapping 0 -1, 1 +1. Let To be
the time interval alloted to each binary digit and let 7(t) be the wave-
form generated by the binary sequence 1. Then, we have

I,(t)  12(t) = -(1, + (48)

where addition is taken modulo 2 and multiplication is on the reals.
The autocorrelation function of a waveform 40 is defined as

1T
R1(T) = I irn 1(1)1(1 dt. (49)

oo 4 -T

If 1 is the output of the scrambler when the input is an equiprobable,
independent letter source, then 1 is a sequence of independent, equi-
probable, binary digits. Then, we have

=

0 T 1 > T 0

(50)

* p is the input alphabet size and in is the number of stages in the basic scrambler.
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The power density spectrum of 1(t), which is the Fourier Transform
of Iii(r) is for the random binary source

81(1) = To(sin
1rfT0)2

(51)
rill()

Now let the source be periodic and assume, as an example, that
it has period 8 and that the following sequence is one period of the
source output: 10110010. Then, if 1 represents this sequence and if
it is transmitted without scrambling, we find using (48) that it has the
autocorrelation function, RI(r), of Fig. 11. The power density spectrum
of 7(t), Si(f), is given below and shown in Fig. 12.

8,(f) = 2710[(sin 71110)2 (sin 2711T0)21 1 a(i - ). (52)
irfT. 27fT0 8To 8110

Here o() is the Dirac delta function. Thus, 81(f) contains isolated
tones spaced by 1/T1 , T1 = 8T. , the period of the data sequence.

If the periodic data source of period s is now scrambled, the line
sequence has period To(LC.111 (s, 2"' - 1)). Assume now, as an example,
that s and 2" - 1 are relatively prime so that the line sequence has
period PT1 , P = - 1, the scale -up factor, and Ti = sTo , the
source period. Now let 1 represent one period of the binary line sequence.
Then, if 4 represents k cyclic shifts of 1 we have

PT,/2

R1(kT0) P7,1= Z(t)ik(t) dt
-PTi/2

(53)

When k = ±1, ±2, , ±(P - 1), we have

R1(kTo) = --To (No. 1's in (1 1k) - No. 0's in 1 1k). (54)
PT,

Since R1(T) is linear in T for (k - 1)To < T < kTo we need only have
R1(T) at T = kTo , k = 0, ±1, ±2, . We note that R1(kPT1) = 1,

Fig. 11- Autocorrelation function of period 8 sequence.
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Fig. 12-Spectrum of period 8 sequence.
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k = 0, ±1, ±2, . To further evaluate (54), however, we must
return to Section IX.

We have seen in Section IX that 1 11 represents several periods
in the output of a basic scrambler driven by an input of period so , so I 8,

and started with a noncritical state y. The proof of this result amounted
to showing that the operation (T I) on y mapped the last m com-
ponents of y one-to-one onto the last m components of (T I)y.
Thus, if y is critical so is (T I)y and since there is only one critical
state for each periodic input (T I)y is noncritical if y is noncritical.
We can show in a similar manner that (Tk I)y is noncritical when
y is noncritical as long as k is not a multiple of 2"' - 1. Thus, 1 + 1k ,

which is produced by the starting state (Tk I)y when y generates
1, is the output of a basic scrambler with input period so and output
period s,,(2" - 1) when k is not a multiple of 2' - 1 and so s. Then,
invoking (35). we have

-1/P S Ri(kTo) < 1/P, k not a multiple of P = 2"' - 1. (55)

We note, however, that Ri(kTo) for such k may not all be equal.
Next consider 1 + lk when k is a multiple of 2' - 1. If 1 + lk represents

an output which has period which divides s, then (T' I)(Tk /)y = 0.
We now show that (T' I)(Tk + I) = 0 for all y when k is a multiple
of 2" - 1. We observe that

and

Ta ± I = [Q1
Q. I 718,+

(56)

Tk+ I _rRk+LI Qi
(57)

L Qk loi
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since T: = I. Because T' I and Tk + I commute, we have

(T8 + I)(Tk + I) = (Tk I)(? + I) = O. (58)

Thus, 1 ik represents a scrambler output of period so , where so J s.

It is clear then that the number of l's in one period of 1 /k is greater
than or equal to 1 and less than or equal to so - 1. Also, 1 /k is the
same sequence for all multiples of P = 2"4 - 1 which are not multiples
of sP. Thus, for k a multiple of P which is not a multiple of sP, we have
from (52) that

(s - 2) - 2) (so - 2) < s - 2
(59)< - Ri(kTo)

so so

when so > 2.
To calculate a representative spectrum of the scrambled data sequence,

we assume that R, (T) has the following form, where u, 2 < u 2s,

is a function of the scrambler input (the number of l's in 1 /k , k a
multiple of P, depends on the input) :

R i(kT 0) -

1 k = nsP, n = 0, ±1, ±2 , ,

k = nP , n 0, ±s, ±2s, , (60)

all other k.

The power density spectrum S, (f) then is

Si(f) = /3 s(f) + 710(si,rni;1092{spuTi O(f PT,

+ (1 - .9 - 11') PIT° 6(1 PT0)}.
(60)

When u is of the order of s we see that the second term in curly brackets
has amplitudes which are proportional to 1/P2 and are thus much
smaller than terms in the first sum. We show R (T) with u = s, R ,(T = E

in Fig. 13 and St (f) in Fig. 14. The assumption that u = s is equivalent
to the assumption that 1 + ik contains an equal number of l's and 0's
when k is a multiple of P.

We deduce from this discussion of spectra that the principal effect
of scrambling when the scrambled sequence is converted to a signal
waveform in the manner given above is to increase the number of tones
in a given bandwidth by a factor which is approximately P and to decrease
the level of each tone by approximately the same factor.
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Fig. 13- Autocorrelation function of a scrambled periodic sequence.

XII. AN EXAMPLE

We shall now consider an application for the scramblers and we shall
compare the relative cost and effectiveness of the MCS and the SCS.
We will report on a computer simulation directed at the determination
of the smallest SCS counter threshold for our example.

Assume that the source is binary and that it may occasionally contain
sequences of period 1 (there are two-the all 0 sequence and the all
1 sequence), period 2 (there is only one-the 1010  sequence, known
as dotting), period 7 or period 8. Assume also that a line sequence of
period less than 100 is undesirable from spectra considerations. Since
the least common multiple of 1 and 2" - 1 is 2"i - 1, we will require
that 2"1 - 1 > 100. The smallest value of m for which this is true
is m = 7 for which 2"' - 1 = 127, a prime. We next require a prim-
itive, degree 7 binary polynomial for the tap polynomial. The poly-
nomial h(x) = 1 + x4 + x7 is one such. Given h(x) our basic scrambler
is fixed. We next observe that 1 divides 7 and 8 and that 2 divides 8
so that we may build a scrambler which detects two periods .3, = 7
and 22 = 8.

We next consider whether the MCS or the SCS should be used
for our problem. We see immediately from Theorem 3 that the threshold

Si, Mt

To
1/PT,

To

Fig. 14-Spectrum of a scrambled periodic sequence.
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on the first counter of the MCS, , must be at least 14. Similarly,
t1, of the MCS must be at least 13. Since a 4 -stage binary counter will

count to 16, we see directly that 8 counter stages, 8 shift register stages,
3 OR gates and some peripheral logic will suffice to build an MCS
for our problem.

From Theorem 4 we see that the threshold on the SCS need not be
any larger than 954 or require more than 10 stages of a binary counter
since 210 1024 > 954. A computer simulation of the SCS, however,
shows that the bound of 954 is more than 34 times larger than the
smallest required threshold, which was found to be 28. The results
of this simulation are tabulated in Table I. The largest. run of con-
secutive zeros at counter input was found for all period 7 and period
8 sequences when the line sequences had periods 7.127 and 8.127,
respectively. In Table I we list the fraction of the 384 periodic sequences
which have the gap lengths (maximum run of zeros) shown. (We note
that it is only necessary to simulate the SCS with one starting state
of the basic scrambler when 2' - 1 is prime since all 2' - 1 noncritical
starting states appear as states of the basic scrambler. Note also that
we can neglect the first eight inputs to the counter following the argu-
ment of the third paragraph of Section VII.)

The SCS will scramble our periodic inputs if we choose a counter
threshold of 32 which can be realized with a 5 -stage binary counter.
It will also require eight shift register stages, an AND gate and periph-
eral logic.

As far as random data is concerned, we see from (46) that the MCS

TABLE I-GAP LENGTHS FOR PERIODIC INPUTS

Gap length

Period 7 Period 8

No. No.

13 14 10.92 0 0

14 28 21.84 16 6.25

15 14 10.92 16 6.25

16 0 0 16 6.25

17 0 0 16 6.25

18 28 21.84 60 23.41

19 14 10.92 18 7.04

21 0 0 56 21.85

22 2 1.56 2 0.78

24 0 0 24 9.38

25 0 0 16 6.25

26 14 10.92 0 0

27 14 10.92 16 6.25- _
128 256



DIGITAL DATA SCRAMBLERS 483

for our application reaches threshold at least once in n transmissions
with probability

P,,, (n)(n - 15) (3 .06) 10 -5 (61)

and we see from (47) that the SCS reaches threshold with probability

/3,00 < (n - 31)10-4. (62)

Thus, the MCS has a slight edge on the SCS when it comes to scrambling
random data since it is desirable to keep the frequency of threshold
crossings low.

In sum, it is safe to say that the SCS has the edge for our problem
primarily because it is simpler and less expensive. Also, we note that
the addition of a single -counter stage will reduce P3(n) to (n - 31)10-8.
The autocorrelation function of the scrambled data sequence will be
like that of Fig. 13 with I e j : 5- 0.008.

XIII. CONCLUSIONS

We have introduced two major classes of self -synchronizing, digital
data scramblers called multi -counter scramblers and single -counter
scramblers. We have shown that these scramblers and combinations
of the two will map a periodic sequence of period s into a periodic
sequence of period LCM(s, pm - 1), where p is the size of the source
alphabet (the SCS results require that p = 2 and that s and 2' - 1
be relatively prime), if the basic scrambler tap polynomial h(x) of
degree m is a primitive polynomial over GF(p). We have found the
smallest values for the counter thresholds in the MCS and have shown
the existence of finite thresholds for the successful operation of the SCS.

We have shown that there are many transitions in the scrambled
sequence and that they are well distributed. We have shown that the
descramblers possess the self -synchronizing property and we have con-
sidered the effect of channel errors on the descrambling process. We
have seen that the principal effect of infrequent channel errors (occurring
at a rate of one in 108 transmissions, say) is to cause approximately
w(h) as many output errors, where w(h) is the number of nonzero
terms in h(x). Channel errors were shown to have a relatively small
effect on the output of the descrambler monitoring logic.

We have found the power density spectrum of the waveform gen-
erated by the scrambler output for a representative case, namely, when
the source is binary and the scrambled sequence is mapped onto a

1 sequence. We have seen that scrambling does not affect the spectrum
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of the line signal when the source is random and that its principal
effect when the source is periodic is to introduce P times as many
tones each having 1/Pth as much energy where P is the factor by which
the source period is increased.

It has been shown that the counters in the scrambler and descrambler
reach threshold infrequently when the source is random and at most
once each time the source becomes periodic. Thus, it has been argued
that the counters at the descrambler might be removed if the rate
at which the counters at the scrambler reach threshold is less than
the rate of occurrence of channel errors, and if the customer can tolerate
occasional output errors when his data is periodic.
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APPENDIX

Proof of Theorem 2

Let Th be the matrix shown below where the coefficients c1 , c2 ,

, cm are elements of the modular field GF(p) of p elements, p a prime

Ci C2 CIII-1 Cm

1 0 0 0
I'h =

0 1 0 0
m. (63)

0 0 1 0

Let h(x) be the polynomial shown below in the indeterminate x where
coefficients are those appearing in (63).

h(x) = xm - cis"' - - cm . (64)

Then, one can show by direct calculation that the characteristic poly-
nomial of Th g0(x), defined by

(p(x) = det (Th - x/), (65)

is related to h(x)9'19 by

ca(x) = (- l)mh(x) . (66)
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The matrix T,, is called the "companion matrix" for the polynomial h(x).
We assume that h(x) is a primitive polynomial over the field GF(p).

A polynomial h(x) is primitive if

(i) h(x) is irreducible over GF(p), that is, if there is no polynomial
with coefficients in GF(p) which divides h(x) except 1 and h(x), itself,
and

h(x) of degree m divides xn - 1 for n = pm - 1 but for no smaller
integer n.

If we replace the term cm in h(x) given in (64) by the matrix c,j,
where I is the m X m identity matrix and replace x by Th , where
powers of Th are defined as successive matrix products, then we have
the well-known Cayley-Hamilton theorem"

co(Th) = 0, (67)

where co(x) is the characteristic polynomial of Th . Thus, a matrix Th
satisfies its own characteristic polynomial. There is a smallest degree
monic polynomial (coefficient of the highest degree term is 1), called
the minimal polynomial, m(x), such that

m(Th) = 0. (68)

Since h(x) is irreducible, we have

= 11(.1). (69)

We now wish to prove the following theorem.

Theorem 2: The matrices Lk - I are nonsingular for 1 < k LC. pm -2.

We first prove the following two lemmas.

Lemma 2: If 0 S i, j p"' - 2, i j, then T: .

Proof: If = Ti for the i, j given above and i < j then

V(Ti - I) = 0
implies

- I =0
since det Th = co(0) 0. (If co(0) = 0 then (,o(x) is divisible by x and
h(x) is not primitive.) Consider now the polynomial - 1. Using
the Euclidean division algorithm we have

- 1 = h(s)q(s) s(x)
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for unique q(x) and s(x) and degree s(x) < degree h(x). Therefore,

- I = 0 = h(Th)q(Th) s(Th)

which implies that

s(Th) = 0.

But in (x) = h(x) is the minimal polynomial of Th so that s(x) = 0.
Therefore, h(x) divides xn-1,n---j-i<pm- 1. Contradiction.
Hence, T' Ti,i j, 0 j < p'n - 2. QED

Lemma 3: All nonzero polynomials in Th with coefficients in GF(p)
and of degree m - 1 or less are nonsingular.

Proof: Let p(x) be a polynomial of degree m - 1 or less with coe-
fficients in GF(p). Then, using the Euclidean division algorithm, we
have that the greatest common divisor, d(x), of p(x) and h(x) is given by

d(x) = a(x)p(x) b(x)h(x),

where a(x) and b(x) are unique polynomials. Since h(x) has degree
in and is irreducible d(x) = 1 and

1 = a(x)p(x) b(x)h(x).

Taking these polynomials in Th , we have

I = a(T h)p(T h) b(Th)h(Th)

or since h(Th) = 0 we have

I = a(Th)p(Th) = pal h)a(T h),

where the latter equality follows since the polynomials a(x) and p(x)
commute. Thus, the polynomial p(Th) of degree in - 1 or less with
coefficients over GF(p) in the matrix TA has both a left inverse and
a right inverse and is nonsingular. QED

Proof of Theorem 2:

Since h(Th) = 0 we have

Th = ciTri c217-2 +  + cmI

Thus, every power of TA , such as r: can be written as a polynomial
in TA of degree m - 1 or less. Hence, r: - T',: can be written as a
polynomial of degree m - 1 or less in Th . From Lemma Al, - 0,

i j, 0 s i, j < pm - 2 so that T - T',: as a polynomial in Th of
degree m - 1 or less is nonzero. From Lemma A2, Th - TL is nonsingular
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and it follows by choosing j = 0, i = k with 1 < k 5 pm - 2 that
Th - I is nonsingular. QED

Theorem 2 in effect says that if y is some arbitrary, nonzero column
vector of m components chosen from GF(p) then Tky runs through all
pm - 1 nonzero vectors y as k ranges between 0 and p"' - 2. Thus,
the linear sequential filter with feedback paths described by 'Ph is a max-
imal -length sequence generator. Elspasb comments that these results
were noted by Zierler2 and Golomb.'2
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B.S.T.J. BRIEFS

A Camera Tube with a
Silicon Diode Array Target

By M. H. CROWELL, T. M. BUCK, E. F. LABUDA,
J. V. DALTON, and E. J. WALSH

A variety of electronic cameras have been developed for television
systems.' Among these the vidicon3 and the Plumbicon3 have the in-
herent advantages of high sensitivity, small size, and simple mechanical
construction. The operating principles -of the vidicon and the Plumbicon
are quite similar since they both utilize a thin photoconductive layer
to convert the optical image to a stored charge pattern which is periodi-
cally scanned and erased by an electron beam. Erasing the charge pattern
creates the video signal. However, there is a distinct difference in overall
device performance since the photoconducting target in the Plumbicon
(PbO) is deposited in a manner to form a single, large area, graded
p -n junction, each layer having high resistivity. In the vidicon, the
evaporated layers of Sb2S3 forming the target behave like a semi -
insulating photoconductor.

A new type of target consisting of an array of electrically isolated
reverse -biased diodes, as first suggested by Reynolds,' later discussed
by Heijne1 and more recently by Wendland6, has several valuable
attributes.

(i) The dark current and the light -induced current can be essentially
independent of target (reverse bias) voltage and the response char-
acteristic can have a gamma of unity as in the Plumbicon.

(ii) The time constant associated with the charge leakage of an
array of reverse -biased diodes can be very much larger than the in-
trinsic (dielectric relaxation) time constant of the bulk material. This
implies that an infrared responsive camera operating at room tempera-
ture can be realized.

(iii) The spectral response can cover a wide range including the
visible and consequently much greater and more uniform sensitivity
can be achieved than in the vidicon or Plumbicon.

(iv) The target performance is insensitive to electron beam bombard-
ment and is unaffected by intense light sources so that deleterious burn -
in does not occur.
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Fig. 1- Schematic drawing of the diode array. In practice the perimeter thickness
was made ---- 4 mils to obtain a self-supporting structure.

(v) There is no image persistence due to photoconductive lag.
(vi) The assembled tube may be processed using standard vacuum

techniques including a high temperature bake.
(vii) The operating lifetime can be expected to exceed that of the

vidicon and Plumbicon by a considerable margin.

In this brief, experimental results obtained from targets consisting
of a 540 X 540 array of reverse -biased Si diodes are reported. The sub-
strate is 10 a -cm, n -type Si, is self-supporting and can be anti -reflection
coated. The p -type islands are formed by diffusing boron through 8ti
diameter holes in the SiO2 film, the center -to -center spacing between
holes being 20p. This arrangement provides sufficient diode capacitance
';:,1000 AAfd/cm2) to integrate the diode photoresponse over the time
interval of 1/30 sec (one frame period in commercial television). Ohmic
contact to the array is obtained via the gold ring evaporated onto the
n+ region near the perimeter of the Si wafer chip.

In normal operation, the electron beam, the diameter of which is
larger than that of a single diode, periodically charges the p -type islands
down to cathode (ground) potential while the potential of the n -type
material is held at to 10 volts. This potential difference can be
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sustained for a normal television frame time so long as the dark current
is <5 X 10' amps/diode. The SiO2 film, also charged down to cathode
potential by the beam, remains there and isolates the substrate from
the beam. The incident light associated with the image is absorbed in
the Si, creating hole -electron pairs. Since the thickness of a self-support-
ing wafer is > 10'cm and the absorption coefficient of Si for visible
light is greater than 3000 cm -1, most of the hole -electron pairs will be
generated near the incident surface; the minority carriers (holes) then
diffuse to the depletion region of the diodes, discharging the diodes by
an amount proportional to the light intensity. The recharging of the
diodes by the scanning beam creates the video signal.

An exact analytical evaluation of the performance of the diode array
shown in Fig. 1 is quite complicated. However, with a simpler model
in which the p -regions of the array are replaced by one large homoge-
nious p -region with no lateral conductivity, it is possible to estimate
the loss in light sensitivity and resolution due to minority carrier re-
combination and diffusion. An analysis of this simpler model indicates
that for a minority carrier lifetime of Asec, a surface recombination

Fig. 2 -Photograph obtained with the 540 X 540 diode array target. The subject
was a black and white transparency illuminated with a tungsten lamp.
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velocity of ',-;:',104 cm/sec, and a wafer thickness of cm, the
collection efficiency (ratio of collected holes to generated holes) for
uniform illumination with visible light is f -r -J80 percent. Lateral diffusion
will degrade the spatial resolution. For example, if the spatial variation
in the visible light were sinusoidal with a period corresponding to
4 X 10-3 cm or twice the center -to -center spacing of the diodes, the ac
signal would be reduced tog of the do signal.

The performance of a Si diode array is illustrated by Fig. 2. This
photograph was obtained from a Kintel7 closed circuit system with
commercial television standards. The usual vidicon camera tube was
replaced by a tube using a 540 X 540 diode array target. The defects
in the picture reflect a localized high dark current and can be partly
attributed to defects in the bulk crystal from which the array was
fabricated and to defects in the SiO2 film.

The measured spectral response of a camera tube with a diode array
target is given in Fig. 3 for two wafer thicknesses. In these measure -
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diode array targets for two wafer thicknesses. The photograph shown in Fig. 2 was
obtained with the 1.2 -mil target.
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ments, the whole diode array was illuminated with a uniform light
intensity and the light induced de current (average video signal) in
the target lead was measured. Continuous laser transitions were used
to obtain the absolute response at several wavelengths. The actual
target collection efficiency was better than that indicated in the figure
since no anti -reflection coating was used and no reflection loss corrections
were made. For Si, the reflection coefficient varies from 30 percent in
the near infrared to c -z.',65 percent in the blue portion of the spectrum.'
With a single layer anti -reflection coating, the reflection can be reduced
to a few percent. This implies that if such a coating had been used on
the experimental targets a maximum collection efficiency of 20 per-
cent would have been obtained. At this maximum, the sensitivity would
have been 0.16 Aamps/Awatt. Because of its wider spectral response,
the camera tube with a diode array target was r: -/i25 times more sensitive
than an 8134 RCA vidicon for illumination with an incandescent lamp
at normal operating temperature. The measured gamma was unity.

The observed dark current for the entire array was X 10-8 amps
for a reverse bias of 5 to 10 volts. This implies that the leakage current
per diode was X 10-'3 amps. The resolution was not limited by
leakage between diodes.
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