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Several results are presented concerning the equation F(z) + Az = B
(with F(-) a “diagonal’”’ nonlinear mapping of real Euclidean n-space E"
into itself, and A a real n X n matriz) which plays a central role in the
dec analysis of transistor networks. In particular, we give mecessary and
sufficient conditions on A such that the equation possesses a unigue solution
z for each real n-vector B and each strictly monotone increasing F(-) that
maps E" onto itself.

There are several direct circuit-theoretic implications of the results. For
example, we show that if the short-circuit admiltance matriz G of the linear
portion of the de model of a transistor network satisfies a certain dominance
condition, then the network cannot be bistable. Therefore, a fundamental
restriction on the G matriz of an interesting class of switching circuils is
that it must violate the dominance condition.

I. INTRODUCTION

For each positive integer n let " denote that collection of mappings
of the real n-dimensional Euclidean space E" onto itself, defined by:
F ¢ " if and only if there exist, for ¢ = 1, --- | n, strictly monotone
increasing functions f; mapping E' onto E' such that, for each z =
(27; [ rn)' EE“: F(I) = UI(II)J Tty fn(xn))"

The main purpose of this paper is to report on some results concerning
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properties of the equation
F(z) + Az = B, ¢))

where A is an 7 X n matrix of real numbers, F maps E" into E", and
B ¢ E". In particular, a condition to be satisfied by A is given which is
both necessary and sufficient to guarantee that for each F ¢ " and each
B ¢ E" there exists a unique solution of equation (1).

We also study the problem of obtaining bounds on the solution of
equation (1). These bounds show that (if F £ ¥* and our condition on 4
is satisfied) the solution depends continuously on B. The bounds are
often of use in computing the solution by standard iteration methods
such as the Newton-Raphson method. By appealing to a theorem of
R. 8. Palais it is shown that the bounds can also be used to obtain a
theorem essentially the same as, but somewhat weaker than, our
principal result.

Several results can be found in the literature which specify sufficient
conditions for the existence of a unique solution of equation (1). For
example, if A is positive semidefinite then a special case of a theorem
of Ref. 1 guarantees the existence of a unique solution of equation (1)
for all those F ¢ 3" which have the property that the slope of each §;
is bounded from above and below by positive constants, and for all
B ¢ E", This theorem also specifies that a certain iteration scheme will
always converge to the solution.

A theorem of G. J. Minty®, when applied to equation (1), also implies
essentially the same result. The boundedness condition on the slopes
of the functions f; is not required by Minty’s theorem. On the other
hand, Minty’s theorem does not provide a procedure for computing the
solution of equation (1).

In Ref. 3 it is proved that a sufficient eondition for the existence and
uniqueness of a solution of equation (1) for all F ¢ 5" and B ¢ E" is
that A satisfy a weak row-sum dominance condition:

ez X lay|, d=1,--- ,n*
iFi
Other information concerning the location and the computation of
the solution is also given in Ref. 3.

The class of matrices satisfying the condition of our theorem (which
is defined in Section III and denoted by P,) includes all positive semi-
definite matrices as well as all matrices which satisfy any one of several

* Appendix A contains a simpler proof of a similar result and a proof of a new

related result. These results specify convergent algorithms for obtaining the
solution.
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- dominance conditions. Many other matrices are included in P, ; and
since the condition of our theorem is both a necessary and a sufficient
one, we are assured that P, is the largest class of matrices A for which
equation (1) has a unique solution for all F ¢ " and all B & E".

II. NONLINEAR NETWORKS

Equation (1) is often encountered in the study of nonlinear electrical
networks. In the case of networks containing only resistors (that is,
linear resistors with nonnegative resistance), dependent and inde-
pendent sources, and two-terminal nonlinear resistors that are described
by functions in &' (diodes, for example), this is rather obvious.” Even
for networks which conlain more general nonlinear devices, however,
equation (1) can often provide a convenient characterization. For
example, D. A. Calahan shows in his recent book that the transistor
network of Fig. 1 may be deseribed by the equation

[I,.(e““’“" — 1)} +{ 0.0225 0.309} V. 0.001771/1,‘
I — 1) —0.168 0.494](V, —0.188V,,

if the Ebers-Moll model is used to represent the transistor. (See pp.
13ff of Ref. 4.) In this equation I,,, I.., q, k, T, and V,, all represent
fixed real parameters. It is quite trivial to apply the theory of this paper
(in particular, Corollary 3 of Section IV) to Calahan’s example and
prove that this equation has a solution, the solution is unique, and
the solution depends continuously on V... We also show how bounds
on the solution can be obtained.

T Vee

90K 5K
vr +
~ ag =0.99
_V; 5 ar = 0.5
6K 3000

Fig. 1 — Biased transistor-stage.
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More generally, it is frequently the case that networks which contain
transistors, as well as the previously mentioned linear and nonlinear
elements, may be described by the equation

TF(z) + Az = B. (2)

In this case, z is a vector whose components are the voltages across
the nonlinear resistors and the transistor base-emitter and base-collector
voltages. The n X n matrix A is the y-parameter matrix of the linear
n-port network which is obtained by removing all nonlinear resistors
and transistors and setting the value of each independent source to
zero. The function T'F(z) describes the behavior of the nonlinear re-
sistors and the transistors. It happens that the matrix 7’ is nonsingular;
therefore equation (2) can be put into the form of equation (1).

Networks which contains inductors and capacitors as well as the
memoryless elements already mentioned are of course deseribed by dif-
ferential equations. Even the study of such networks, however, can
often lead to the consideration of equations of the same type as equa-
tion (1). One usually finds the solution of such an equation is necessary,
for example, when computing the solution of the differential equations
by using some implicit numerieal integration formula.

The problem of determining the equilibrium states of the above-
mentioned dynamic networks is one in which the consideration of
equations of type (1) often arises in perhaps a more direct manner.
In this regard, if it happens that equation (1) has a unique solution,
then the network cannot possibly be bistable,

When the determination of equilibrium states of a transistor net-
work leads first to the consideration of equation (2), then as a rather
direct application of our existence and uniqueness theorem it follows
that if the matrix A satisfies a weak column-sum dominance condition,

G = Z'ai"lj t=1,---,n,
PRk

then 77'A ¢ P, and hence the network has exactly one equilibrium
state. This result and related results which are proved in Section IV
have the following interesting corollary: One cannot synthesize a
bistable network which consists of resistors, inductors, capacitors,
diodes, independent voltage and current sources, and one (Ebers—Moll
modeled) transistor—or even an arbitrary number of (Ebers-Moll
modeled) transistors with a common base connection.

The authors feel that in many respects the main eontributions of this
paper are in the techniques used to prove the results. For this reason, we
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have not chosen to summarize all of the results at the outset and relegate
proofs to later sections. But rather, the results and the proofs will appear
in the order in which they will best illustrate the techniques developed.

I1I. MATRICES OF CLASSES P aAxD P,

The following notation will be used throughout the remainder of the
paper: The origin in E" will be denoted by 6. If D is a diagonal matrix
then D > 0 (D = 0) means that each element of D on the main diagonal
is positive (nonnegative).

In Ref. 5 and Ref. 6 M. Fiedler and V. Ptdk define the classes of
matrices denoted by P and P, . They in fact prove that the following
properties of a square matrix 4 are equivalent:

(7) All principal minors of A are positive.
(7)) For each vector x 8 there exists an index k such that z,y, > 0
where y = Ax.
(#71) For each vector z > 8 there exists a diagonal matrix D, > 0 such
that the sealar product {(Az, D,z) > 0.
(@) For each vector z # 6 there exists a diagonal matrix H, 2 0 such
that (Ax, H.x) > 0.
(v) Every real eigenvalue of A, as well as of each principal submatrix
of A, is positive.
The class of all matrices satisfying one of the above conditions is de-
noted by P. Fiedler and Pték prove that the following properties of a
square matrix 4 are also equivalent:
(7) All prineipal minors of 4 are nonnegative.
(i) Tor each vector x 8 there exists an index k such that z, # 0 and
e = 0 where y = A,
(74%) For each vector x # 6 there exists a diagonal matrix D, = 0 such
that (x, D,2) > 0 and (Az, D,a) = 0.
(&) Every real eigenvalue of 4, as well as of each principal submatrix
of 4, is nonnegative.

The class of all matrices satisfying one of the above conditions is de-
noted by P, .

The following theorems follow directly from the above definitions.
Theorem 1. If A & P, then for every diagonal matriz A = 0 (A > 0),
A+ AePy(A+ AeP).

Proof: Let x # 0. Then, since 4 ¢ P, , there exists an index k such
that z, = 0 and z,(4z), = 0. Thus, z.(Az + Az), = 0 (>0). O
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In particular, Theorem 1 implies that if A ¢ P,and A = 0 (A > 0)
then det (A + 4) = 0 (>0).

Theorem 2. If A ¢ P then A™' ¢ P.

Proof: Suppose A ¢ P. Let + > 6 be given and let y = A7'z. y = 6
since A7 is nonsingular. Thus, there exists a diagonal matrix D > 0
such that (Ay, Dy) > 0, which implies (x, DA™'z) > 0, or (Dz, A™'2)>0,
or (A"'x, Dx) > 0. That is, for every & # 0 there exists D > 0 such that
(A7'2, Da) > 0. Hence A e P. O

Because of the similarity of the definitions of the classes of matrices
P and P, , one might conjecture that this proposition is also true: If
Ae Py, and det A 0, then A™" ¢ P, . This conjecture is in fact true.
Interestingly enough, however, its proof is not obtained as one might at
first suspect, by simply modifying the proof of Theorem 2. Moreover, the
proof of this conjecture does not even seem to follow directly from any
of the above definitions of P, . Rather, upon making the trivial observa-
tion that for every diagonal matrix D > 0, det (A™' + D) = det (477)
-det (D™" 4 A)-det (D), the conjecture is easily seen to follow from the
fact that det (D + A) = 0 for every diagonal D > 0 if and only if
A ¢ P, . This fact is a direct corollary to the proof of Theorem 3.

IV. EXISTENCE AND UNIQUENESS THEOREM

The following theorem is the principal result of this paper.

Theorem 3. If A is an n X n matriz then there exists a unique solution
of equation (1) jor each F ¢ " and for each B & E" if and only if A ¢ P, .

Proof: (if) Let A e Py, F ¢ 5", and B ¢ E". The solution of equation
(1) is then unique (if it exists) since if  and y are both solutions then,
using the strict monotonicity property of F, there exists a diagonal
matrix D > 0such that F(z) — F(y) = D(z — y). But [D + A](z — y) =
8 and, by Theorem 1, D 4+ A is nonsingular. This means that x = y.

We prove the existence of a solution of equation (1) by induction. For
k=1, ,mnlet

filwy) Ayy * 0 A b,
Fk(x) = :. 3 44), = v . . ' B* =
filzs) Ay == Qe by

Clearly, A, e P, , Fi ¢ ¥, and B, £ E*. Also, it is clear that there exists a
unique solution of F,(x) + A,z = B, for each F, ¢ ¥ and for each B, ¢ E",
and that this solution is a continuous function of b, .
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Assume that there exists a unique solution of F.(x)+4,z= B, for each
F, ¢ §, B, ¢ E¥, and that this solution depends continuously on any
scalar parameter n upon which B, depends continuously. Let the
matrices A, ;., and A, ; be defined by

@y, k+1
flk.kﬂ = : ’
Qi k+1
Ay = [Grsrg o [

Then, for every real number z;., , the equation
Fk(x) + A + Ay i = By (3)

has a (unique) solution whieh is a eontinuous function of ., and of ».
Let the components of this solution be denoted by z; = m.(zx1 , 1),
fori =1, - -+, k, and define the vector M (2zs1,n) by My = (my, -~ -,
my).

‘We now prove that the function

ﬂﬂ(ﬂ?kﬂ ) 7?) = At%—l.kﬂ{k(xki—l y "7) + G k1 Trar — bkn(’?)

is monotone increasing in ., : Let z},, , 2., ¢ E' with z},, < z},, .
Then, if M' (M?*) denotes the solution of equation (3) when z,,, =
Zhes (#34,), We have

FuM?) — Fu(M") + A(M* — M) 4+ Ay ioni(@her — Thar) = 0.

Because of the strict monotonicity of the function F, , however, there
exists a k X k diagonal matrix A > 0 such that

F (M?* — F. (MY = A(M® — MY).
Hence,
M — M'= —[A + “11:]_1Ak,kq-l($f+l == 33:-+|)-
Thus,
S"(x:n) - i‘w‘(x}rﬂ) = |Gesr 01 — Aenrad + Ak]—l-‘ik.kul(-’ffu = -Tin)-

But then, from the easily verified relation

0
det A + A

0---0
det (A + A,)

By it — Aprr [ + -’lk]ﬂfik.kn =
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and since

0
det (A 4+ A4,) > 0, det A + A,.,| = 0 (Theorem 1),
0.0
and z},, — zi,, > 0, it follows that ¢(z7,,) = e(xi.,).

Now since ¢ is monotone increasing and, obviously, continuous in
Zis1 , it follows that the left side of the equation

fre1@esr) + (i) = 0 (4)

is a strictly monotone increasing function mapping E' onto E', and hence
equation (4) has a unique solution. If z},, denotes this solution then

ml(m2+l)

mk(fgn)
3‘5:+t
is the (unique) solution of

FJ:H(-E) + Ak+1:r- = Bk+l .

We must now prove that this solution is a econtinuous function of any
scalar parameter 7 upon which B, ., depends continuously. It suffices to
prove that x,., depends continuously on 7 (see equation (3)). This may
be done as follows:

Let 22,, be the solution of equation (4) corresponding to n = 2"
That is, let

jk+l(:’v2+l) + 'p(-rg-l-l ) ’TD) =0,

and let ¢ > 0 be given. Since .., is a strictly monotone increasing map-
ping of E' onto E', so is fz!, , and hence {7}, is continuous. Hence, there
exists 8’ > 0 such that if | f.1(2l,,) — fasr(@es) | < & then |z)., —
Tisy | < e Since ¢ is a continuous function of 4, there exists § > 0 such
that[ "D - I < éimplies | ¢(a}., , 770) — (T}, M) | <é. If] 7 = ]<
5, and

fes(@esr) + @@y , 1) = 0,
then,
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fen(@he) = feni(@en) + o(@ier , M) — @(@isr , )
= —[e@h1 , 1) — e@ks1 , W]
But since both f,,, and ¢ are monotone increasing in ., ,
(fgﬂ = Ik+l)[fk+l('r?r+l) — fen(@es)] 2 0,
and
(2241 — Zen)e(@her , M) — @(@sa , 1] 2 0.
Therefore,
| @i = Te)asa(@inn) = frar(@ead)] |
< | @y — za)le@ion , 1) — (@i, W] |
Now, if 2%,, = 3., then of course |z, — % | < e Otherwise,
| fenr@in) — fen(@ess) | S | 0@ , 7)) — e@ier, ) |
But then,
|fk+t($2+|) = fk+!($k+1) [ < 5’:
and hence | 2%, — Ti.; | < e Thus, x;,, is a continuous function of 7.

(only 1f) Suppose A ¢ Py . If det A < 0 then for sufficiently small
£ >0, det ({1 + A) < 0. For sufficiently large {, however,

det (¢ 4+ A) = ¢"-det (1 + % A) > 0.
Thus, since det ({1 + A) is a continuous function of {, there is some
value of ¢ > 0 such that det ({I + A) = 0. For this value of { let
F(z) = {Iz. Clearly, for this choice of F £ §", equation (1) cannot have a
unique solution.

If det 4 = 0, but A has a negative principal minor, we can still find a
diagonal matrix A > 0 such that det (A + A) = 0; however, in this case
A will not, in general, be simply the identity matrix multiplied by a
positive constant {.

For some positive integer k < n let A have a k X k principal minor
which is negative and let

A(” = dm‘g [51 » T 6,.,]

Since the determinant of A + A is not altered if any two rows and then
the corresponding pair of columns are interchanged we may, without
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loss of generality, assume that the matrix A is partitioned as

A; A,
where A, isa k& X k matrix with det 4, < 0. Let £ > 0 be chosen so small

that det (¢ + A4,) < 0,and let 8§, = -+ = §, = £ Now, if &,y =
cee = §, = ¢ > 0, then

det (A" + A4) = det ':‘EI + 4 4, J

A, o+ A,
, i+ A, A,
= "% . det
%An I—I—%A; '

Thus, for ¢ > 0 chosen to be sufficiently large, det (A + A4) < 0.
(det (A + A) — " *.det (I + A,) < 0 as { — «.) Now, if for
7 > 0, A® = yI, then it is clear that for 4 chosen sufficiently large,
det [A®” + A] = 5*-det (I + (1/9)4) > 0. Thus, if

Ale) = eA™ 4+ (1 — A,

it is clear, since det [A(0) 4+ A] > 0 and det [A(1) 4+ A] < 0 and since
det [A(e) + A] is a continuous function on 0 = ¢ = 1, that there is a
value of e > 0 (0 < e < 1) such that det [A(e) ++ A] = 0. For this value
of €, A(e) > 0 is the required diagonal matrix. O

Notice that our proof shows that if F ¢ " and A & P, , then the solu-
tion of equation (1) depends continuously on any scalar parameter
upon which B depends continuously. The arguments of Section V show,
under these assumptions on F and A, that the operator (F + A)™' is
in faet a continuous map of E" into itself.

In the proof of Theorem 3 we see that the uniqueness of the solution
follows simply from the hypotheses that each jf; is strictly monotone
inereasing and that A ¢ P, . The additional hypotheses that each f;
is continuous and maps E' onfo E' are not necessary (continuity of
each f; is not explicitly hypothesized, but follows from the ‘“monoto-
nicity” and “onto” hypotheses). Hence, we have:

Corollary 1. If, fori = 1, -+ ,n, S; is a subset of E', and if 8§ = 8, X
o X 8p, and if F(z) = (fu(wi), -+, fa(@a)", where each f; maps E'
into E* and is strictly monotone increasing on S; , then if A ¢ Pyand Be E",
there exists at most one solution of equation (1) in S.
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We now prove another interesting corollary of Theorem 3. We first
define some additional notation.

For each positive integer n let 8" denote the collection of all subsets of
E" defined by: S ¢ 8" if and only if § = 8" X .-+ X 8" where, for i =
1, --+,n 8 C E'and S has the same cardinality as E'. For each
S C §" we define the collection *(S) of functions mapping S onto E" by:
F & 5°(S) if and only if there exist, for7 = 1, - -+, n, strictly monotone
increasing functions f; mapping S’ onto E' such that for each z ¢ S,
Flz) = (fi(@), -+ falaw)".

Corollary 2. If A is an n X n matriz and the collection F"(S) is non-
emply then there exists a unique solution of the equation

Fi(x) + AF,(z) = B (5)

for each F, & $(8), F, £ 3'(S), and each B ¢ E" if and only 1f A e P, .

Proof: Since F, ¢ °(8), F7' : E" — S exists and F, o F;' ¢ §°. Thus,
there exists a unique solution of equation (5) if and only if there exists
a unique solution of

Fy(F'y) + A4y = B. DO

As special cases of Corollary 2 we have: there exists a unique solution
of each of the equations

F\(x) + AFy(x) = B,
and
x+ AF(z) = B,
foreachFl,Fz,FsEF"andeacthE"ifandonlyifAsPu.

In Theorem 3 (and Corollary 2) the hypothesis that each of the func-
tions f; is an onto mapping is quite necessary in order to guarantee the
evistence of a solution for each A & P, . In the following example all of
the hypotheses of Theorem 3 except this one are satisfied:

e+, —a=1
£ —z +z = —2.

It is of course impossible for these equations to have a solution since, by
adding both sides, we find that the solution would have to satisfy

& 4t = —1,

which is absurd.
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Even though the functions f; are not “onto,” it is still possible to
specify sufficient conditions for the existence of a unique solution of
equation (5) [and equation (1)] by strengthening the hypothesis on
the matrix A—namely, by requiring that 4  P. This is the essence
of Corollary 3. We first require additional notation.

With 8" defined as above, we define, for each S e §", the collection of
funections §3(S) mapping S into E” by: F = 53(S) if and only if there
exist, for 7+ = 1, --- , m, monotone increasing functions f; mapping
S’ onto a connected set in E' such that, foreachx e S, F(2) = (fi(z)," -,
fo(z.))'. When S = E" we denote 52(S) by 52 .

Corollary 8. If A 1s an n X n matriz then there exists a unique solution
of equation (5) for each Fy & F3(8), Fa e F'(8), or F, e F°(8), Fa & F5(8),
and for each Be E", if A & P.

Proof: If F, e F°(8S), F;' : E" — S exists and F, o F;' ¢ ¥ . Thus, in
this case, there exists a unique solution of equation (5) if there exists a
unique solution of

F.(F;'(y)) + Ay = B. (6)

Now, since A ¢ P, it follows from the fact that the determinant of a
matrix is a continuous function of each of its elements, that there is a
matrix A* ¢ P C P, and an ¢ > 0, such that A = eI + A*. Hence,
equation (6) is equivalent to

F(y) + A*y = B, ™
where we have defined
F(y) = Fu(F;' () + ely.
But, since F, o F;' ¢ & and el = ", it follows that F & §". Therefore,

since A* ¢ P, , equation (7) and hence equation (6) and hence equation
(5) have unique solutions.

The case when I, € 5°(S) and F, £ F3(S) can be reduced to the case
just considered by making the simple observations that, in this case,
equation (5) has a unique solution if

A7'Fi(z) + Fi(z) = A™'B

has a unique solution, and 4 ¢« P implies A" ¢ P (Theorem 2). O
In Corollary 3 a sufficient condition is given for the existence of a
unique solution to say equation (1) when the functions f; which specify
F are not necessarily mappings onto E*. That the condition (4 & P) is not
necessary is easily demonstrated by the counterexample: Let F & & and
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B ¢ E*; then the equations
fi(x) — 2 = by, and fo(z.) + 2, = by

have a unique solution in spite of the fact that the matrix

i = [“ ‘I}P.
10

This is true because the function 7,(f, (x,) — b,) is obviously a continuous
monotone increasing funetion of x, , and hence the left side of the equa-
tion

folfi(zy) — b)) + 20 = by (8)

is a strietly monotone inereasing mapping of E* onto E*. Thus equa-
tion (8) has a unique solution.

V. BOUNDED SOLUTIONS AND RELATED PROBLEMS

For many systems whose behavior is deseribed by an equation having
the form of equation (1), the vector B may be regarded as the sys-
tem’s input and the vector z may be regarded as the system’s response,
or output. Thus, if a sequence B', B*, B, -+ - of input vectors for the
system is given, the corresponding sequence z', 2*, 2%, - -+ of output
vectors is specified by equation (1). An important property that such
systems might have is that of producing a bounded sequence of outpuf
vectors for each bounded sequence of input vectors; that is, the property
that whenever an input sequence B', B?, B®, --- is contained in some
bounded region of E", then the corresponding output sequence z', a°,
z°, -+ (exists and) also is contained in some bounded region of E".
By considering matrices A which are not members of P, , it is easy to
demonstrate that all equations having the form of equation (1) do not
have this property. For example, if f(z) = = + € (f ¢ §'), then the se-
quence of solutions of the equation f(x) + (—1)x = b is unbounded,
even though the sequence b = 1, 1, %, - - - of inputs is bounded. The fact
that one must resort to matrices 4 which are not in P, , and the fact that
by choosing any A ¢ P, , an example of the above kind can be construeted
by an appropriate choice of F & §", follows from our next theorem

Theorem 4. If A is an n X n mairiz then A ¢ P, if and only 1if for
each F ¢ 5" and each unbounded sequence of points z', 2°, 2°, --- in E",
the corresponding sequence B', B, B*, --- (B* = F(z*) + 42" k = 1,
2, 3, +++) is unbounded.
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Proof: (if) If A ¢ P, then, as shown in the “only if”’ part of the proof
of Theorem 3, there exists a diagonal matrix D > 0 such that D + A is
singular. Hence, there exists some point p ¢ E*, p # 6, such that Dp +
Ap = 6. Let p; , the j-th component of p, be nonzero. Let the diagonal

elements of the matrix D be denoted by d, , - - - , d, and let the mapping
F ¢ 5" be defined by
ji(ii) - {d(ﬂf.‘ ) fO]‘ 1 ?5 N
dx; + e, for 7= j.
If p; < O0let e = 1,if p; > 0 let ¢ = —1. Consider the unbounded
sequence z', z°, 2°, - -+ defined by 2* = k-e-p,fork = 1,2, 3, --- .
The members of the corresponding sequence B', B, B, - .- are B* =
©, ---,0,¢",0,---,0 %k =1,2, 3, ---, where the j-th element
of each B* is nonzero. Since fork = 1,2,3, - -+, k e p; < 0, the sequence

B', B’, B%, --- is bounded.

(only 7f) Our proof of the “only if” part of Theorem 4 consists of
proving Theorem 5 which is referred to later for another purpose. O

Theorem 6. Let F = (f,(+), -+, fu(:))' ¢ 5", A & Py, and, for i =
1, -+, n, a; = B; be given. There exist, fori = 1, - -+ , n, real numbers
v < 8 such that forany B = (by, --- , b)) e E" with a; £ b; < 8, for

=1, -+, n, if = satisfies equation (1) then v; < z; < 8; for 1 =

'--- 'n.

- w3,

Proof of Theorem 6: We first prove a useful lemma.

Lemma 1. Let f be a strictly monotone increasing mapping of E' onto
itself. Let x, b, a, 8 be real numbers such that zf(z) < zbwitha = b = .
Theny < z < &, wherey = min {f (), 0} and § = maz {f'(8), 0}.

Proof: Let « < b < B and define ¥y = min {f'(a), 0} and § =
max {f'(8), 0}. Let x satisfy zf(z) < zb. Then z(f(z) — b) < 0. Clearly,

v=0=dand henceif x = Otheny £ 2 £ & If # > 0 then f(z) <
b < B which implies z < f'(8) < 6and hencey = 0 < z < 8. If
z < 0, then f(z) = b = « which implies z = f'(a) = v and hence
y=rx<0=46 0O

(Proof of Theorem 5) Since A & P, there exists k, ¢ {1, --- , n} such
that z,,(Az),, = 0 and hence,

ZTebi, = T fi (@) + 20 (A7), Z 20fi, (@0)-

Thus, by Lemma 1, there exist v{" =v{"(fs, , a,) and 8" =" (fs, , Br.)
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such that ¢ < =z, < 6{". Now if F,_, denotes the mapping of B

onto B! defined by

F,.,= (11(), Tty fk,—x('): f.\:,+1(')r oy fn('))‘!

if A,_, denotes the (n — 1) X (n — 1) matrix obtained from 4 by
deleting the k,-st row and column (note that 4,-, e Py), if

it = [Baae 1 9% % 5 Bagon i 5 Bburrds v > 5 Busda) 3
and if
By = (by,y - y by bsay ooy b,
then
Foi(@) + Apmiz = Bay — @y, *

Since A,., ¢ Py, there is a k, e {1, --- , ky—1, k,+1, --- , n} such
that z,,(4,-,x):, = 0 and hence, as before,

Ti, (i — @ryraTh,) = ZTa,fr, (T,).

But, if iy ks = 0, then

(1) (1
ap, = Gy Ve, = br, — Ou, 1Tey = Br, — Gkyribi,s

and if a., ., > 0, then

1) [¢8)
ag, — ak..k,afg, = by, — Gty = Bry — QryrYi, -

Therefore, by Lemma 1, there is a v = ¥ (fu,, a, — Gnvii)

and 8" = 8 (f,, Br, — @,.u0;)) such that vi) £ @, = 80 if
ay,.x, = 0, and similarly for @, ,, > 0.

The above process may be repeated successively until the n pairs
of real numbers v{?, 8", (i = 1, - - - , n) have been obtained. Thus, for
any given B with a; < b; < B; fori = 1, -+, n, the components of
the solution 2 of equation (1) will be bounded by these pairs of numbers,
provided it is known at each step which coordinate k; to choose. The
appropriate coordinate choice, however, will in general depend on the
particular solution = which is associated with the given B. For different
input vectors B the appropriate choice will in general be different. There-
fore, in order to obtain bounds on z which are valid for all B with e; =

b; < B. (i =1, --- ,n) we must consider each of the n! permutations of
the coordinates {1, - - - , n} and, for each one, generate the set of bounds
(v, 82:4 =1, .-+ ,n} forv = 1, --- , nl. We then define v; =

* In this equation z is understood to be (1, =+ , Tyo1,y Thaa, =+, Tn)h
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min {y{":» =1, -+, n!} and 8, = max {§":» =1, --- , n!} for
1 =1, -+, n. Then, for each B with «; < b, £ B, forz =1, ---, n,
we have that y; < z; £ 8, forz = 1, --- , n, since at least one of the
sets of bounds {v?, §%:7 = 1, --- , n} must always apply. O
If the matrix A of Theorem 5 satisfies a stronger condition than
A e P, (that is, if A satisfies a weak row-sum dominance condition),
a; = 2 | ay |, for 7=1,-.-- ,m,
it is possible to use a method that requires much less computational
effort than that of Theorem 5 to compute the vectors ¥ and § whose
components bound the corresponding components of the solution of
equation (1). This method of computing the bounds, a straightforward
generalization of an idea presented in Ref. 3, is explained in Appendix B.
From Theorems 3 and 4 we now have the result: Every bounded
inpul sequence B', B*, B, - - - is mapped by equation (1) into a bounded
output sequence x', z°, a°, -+ , for each F & ", if and only if A ¢ P, .
In the proof of Theorem 5, the number of real numbers v;;, &
which must be computed, in order to determine bounds for z, is 2n X
(nl). At the expense of obtaining poorer bounds it is easy to reduce
this number to 2n°. Suppose we compute, at the first step, the 2n

numbers ", 6", -+, ¥, 8" and set N, = min [(y{", -+, ¥},
py = max {8", -, §}. Then, for each B with «; < b; < 8, for
¢ =1, -+, m, one of the components of the corresponding = will be

bounded by A, (from below) and g, (from above). We next compute the
2n numbers v{* = v*(f;, a; — pi"), 82 = &6 (f:, B; — ¢i"), where
pi" = max {a;\, am 2§ # i), ¢f = min {a;;\, agp i § ## 1), and
denote the smallest v{* by A; and the largest §* by u; . Then we have
bounds which apply for two of the components of the z which
corresponds to any B witha; = b; < 8;for7z =1, - -+ , n. By computing
1® =10, @ — PP = pP), 8 = 670, B — 4l — o), ete,
the above process may be continued to obtain the numbers A, , -+ -, A,,

By, *** , . Bach component of the z corresponding to any B with
a; = b, =Bifort=1, - ,nwillbebounded by A = min {}\,, -+, A}
(from below) and p = max {u,, ---, u,} (from above).

A matter that is closely related to the proofs of the above theorems
on the boundedness of solutions of equation (1) is that of proving: For
each F ¢ 5" and each A & P, the solution x of equation (1) is a continuous
function of the vector B. It is obvious that it will suffice to prove that
for each F ¢ §" with F(6) = 6, and for each 4 ¢ P,, the solution z
of equation (1) is continuous in B at B = #. We then note that if f
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satisfies the hypotheses of Lemma 1 and, in addition, if f(0) = 0 then,
due to the continuity of {7*, for every e > 0 there exists { > 0 such that
if @, Bin Lemma 1 satisfy —¢ < @« = b = 8 < { thenv, §in Lemma 1
satisfy —e < v = x £ 6 < e This observation may be used to incor-
porate a simple “e-8 argument’” into the steps of the previous paragraph
to show that when F(8) = 6 then for arbitrary e > 0, one can determine
¢ > 0 such that || B|| < ¢ implies ||z || < e

At this point we return to the matter of the existence and uniqueness
of solutions of equation (1). We state first a theorem of R. 8. Palais
(Ref. 7—see also the Appendix of Ref. 8) which shows the connection
between the concepts of existence and uniqueness of solutions and the
boundedness of solutions.

Palais’ Theorem. Let f,, -+ , f. be n continuously differentiable real
valued functions of n real variables. Necessary and sufficient conditions
that the mapping | : B* — E" defined by {(x) = (fi(z), -+ , fa(z))" be
a diffeomorphism of E" onfo itself are:

(7) det [9f;/dx;] never vanishes.
(#0) limy,ye || 1(2) || = .

Palais’ Theorem may be used to prove a result which is almost
equivalent to our Theorem 3, that is:

Theorem 6. If A is an n X n matriz then there exists a unique solution
of equation (1) for each F = (f,(x,), -+ , f.(z.))' with continuously
differentiable, strictly monotone increasing functions f; which map E'
onto itself, and whose slopes are everywhere positive, and for each B & E",
if and only if A e P, .

A proof of Theorem 6 which is independent of our Theorem 3 is
easy to construct: For all 4 ¢ P, , the rather trivial Theorem 1 guarantees
that condition (7) of Palais’ Theorem is satisfied, and Theorem 5
guarantees that condition (77) is satisfied. If A ¢ P, then a choice of F
such as is specified in the “7f’" part of the proof of Theorem 4 provides
a case in which condition (#7) of Palais’ Theorem is violated.

VI. SUFFICIENT CONDITIONS FOR A e P, or P

Tor a given matrix A, it is not in general an easy task to determine
whether or not A satisfies any one of the four equivalent conditions
of Fiedler and Ptdk which are given in Section III and which serve to
define the class of matrices P, (or the conditions which define P). This
1s particularly true when the order of A is large. Ilor this reason, we
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now give several conditions which are sufficient to insure that a matrix
A is in P, or P (and which are not so difficult to verify).

Suppose it were known that every eigenvalue of A as well as every
eigenvalue of each principal submatrix of A had a nonnegative (positive)
real part. Then this would guarantee that A = P, (P). This is the main
idea involved in the following theorem.

Theorem 7. If any one of the following inequalities is satisfied by the
elements a;; of the matriz A, forallt =1, --- ,n, then A ¢ Py .

(1") Qi % (Z |au 1 (E l Ay Dldu 0 é a = 11

it

(2 la; P, pzl, pl4gt=1,

bty

IIV

@)  au

a; positive numbers satisfying Z 14+a)' =1;

(1%) @i = a max | a,; |, @ positive satisfying
it

; (2 | ey | (max ey D7) S all +a),  (0/0 =0).
If any one of the above inequalities with = replaced by > 1s satisfied for
i=1,+,n,then A e P.

Proof: If the right-hand side of any of the above inequalities is
denoted by the nonnegative number »; then it is well known that all
of the eigenvalues of the matrix 4 are contained in the union \J({C, :
i=1,---,n}of thedisks C; = {z:|z — a;; | = r;}.° But the condition
a;; = (>) r; guarantees that if z e C; then Re(z) = (>) 0. Thus,
each of the eigenvalues of the matrix 4 has a nonnegative (positive)
real part. The same is true of each eigenvalue of every principal sub-
matrix of A, for if one of the above inequalities is satisfied by the
elements of A it is also satisfied by the elements of any principal sub-
matrix. O

VII. COMPUTATION OF THE SOLUTION

At present, the authors know of no single computational algorithm
which is guaranteed to yield the solution of equation (1) for all F e §",
A e Py, B ¢ E". However, there are several ways that the solution may
be computed for large classes of such equations.

If, for example, the matrix A satisfies either a weak row-sum or weak
column-sum dominance condition (inequality (z) of Theorem 7 with
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either « = 1 or @ = 0) and if F ¢ " with, roughly speaking, the slopes
of each f, bounded from below hy some positive constant, then it can
be shown (see Appendix A) that an algorithm for computing the solu-
tion ean be obtained by the use of Banach’s contraction-mapping
fixed point theorem.

If the matrix A is positive semidefinite then, as mentioned in Sec-
tion I, the existence of a unique solution of equation (1) for all F' & &
follows from the earlier work of Sandberg and Minty. If, in addition,
there exists for ¢ = 1, --- , n, positive constants a; and 8; such that

i

< 1w — 1) < g

w —v

for all u # », then Sandberg’s iteration scheme (also resulting from
an application of the contraction-mapping fixed point theorem) can
be used to compute the solution.' In this regard, if the techniques
of Section V are first used to obtain bounds on the location of the
solution then one could modify equation (1) by changing the nature
of the functions f; outside the domain in which the solution is known
to lie (but still keeping the f; strictly monotone increasing from E
onto E') and obtain a new equation which has the same solution as
the original equation. By doing this, the functions f; in the new equa-
tion might be made to satisfy the above inequalities in cases where
this was impossible for the original f; . Also, even if these inequalities
could be satisfied for the original equation, larger values of «; and
smaller values of 8; might be used for the modified equation. This can
result in a more rapidly converging iteration process (see Section VII
of Ref. 3). Similarly, the bounds can be used to improve the perform-
ance of other iteration schemes.

In case A ¢ P, is not positive semidefinite, it might be that there exist
diagonal matrices 4, , A, > 0 such that A,A A, is positive semidefinite.
If such matrices can be found, then Sandberg’s iteration scheme could
be used to eompute the solution of the equation

AF(Ax) + A AAx = AB,

from which the solution of equation (1) may be obtained directly.
Unfortunately, it is not the case that such A,, A; > 0 exist for all
A ¢ P, . For example, it is quite easily verified that for

,4=[1 0],
10
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even though 4 = P, , the matrix A4 A, is not positive semidefinite for
any choice of A, , A, > 0.

It is easily verified, however, that appropriate A,, A; > 0 can be
found for all 2 X 2 matrices 4 ¢ P, except those for which

(Z) a;,a. = 0,
and
(77) @@y = 0,
and
(#7) either a,, % 0 or a,, = 0.

In particular, for all nonsingular 2 X 2 matrices 4 ¢ P, , appropriate
A;, A; (A; = I) can be found. Thus, Sandberg’s iteration scheme could
be used, for example, to compute the solution of the example problem
of Section IT which was taken from Calahan’s book.

VIIT. APPLICATION TO EQUATIONS FOR TRANSISTOR NETWORKS

In this section some of the above theory is applied to the equations
which deseribe the behavior of electrical networks containing tran-
sistors. By the word transistor we refer to the three-terminal deviece
whose equivalent circuit is shown in Fig. 2.* Considering the tran-
sistor as a nonlinear two-port network, the following equations which
express the port currents in terms of the port voltages follow imme-
diately from inspection of Fig. 2:

=[ 1 —am][ﬁ(vl)
—Qly 1 fz(‘U:')
We assume, as is the case for the usual large-signal model of a physical
transistor, that 0 < ay, < 1, 0 < a,, < 1, and that both of the fune-
tions f, and f, are continuous and strictly monotone increasing. The
character of the functions f, and f, which describe the transistor’s
nonlinear conductances will depend on whether the transistor is des-
ignated as NPN or PNP. We shall, however, have no oceasion to dis-

tinguish between these two cases in what is to follow.
Suppose an electrical network is synthesized by connecting together,

7

iy

*In some respects this equivalent circuit is an ideal model of a transistor.
Nevertheless, since this model is often used in the design and the computer
analysis of transistor networks, consideration of it is important. The presence of
series resistance at the base, emitter, and collector terminals of a transistor will
be considered by the authors in another paper.
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'Lzl i COLLECTOR

+
Vz% 1 Le=f(v2) q> ayl,

BASE o
Vi Le =1 (vy) * al
+§ T e=T ( 12te

[ T 1 EMITTER

Fig. 2 — The equivalent cireuit of a transistor.

in an arbitrary manner, any (finite) number of transistors, resistors
(that is, linear resistors with nonnegative resistance), voltage sources,
current, sources, and nonlinear resistors which are deseribed by strietly
monotone increasing conductance functions (and which we shall hence-
forth refer to as “diodes”). Suppose the network contains n transistors
and d diodes. For k = 1, -+, n, let Zox_y, Tox, Yor—1, and Yo, denote
the voltage and current variables vy, vs, 1, and 1, respectively, for
the k-th transistor. For k = 1, +++, d, let Tsn oy and Your denote the
voltage across, and the current through, the kth diode. Let these
variables be related by Yanir = fonsr(anyr). Then, if 2 = (2, - -+,
Tonia)tand y = (Y1, ***, Yaupa) ', we have

y = TF(z), 9

where T' = diag(T,, T=), with T; a block diagonal matrix with n 2 X 2
- diagonal blocks of the form

[ 1 —al¥]
b
—az; | J

and Ts a d X d identity matrix. The nonlinear funetion F has the
form F () = (fi(x1), -+, fansa(@Tansa) ) o

Consider now the (2n+d)-port network of resistors and independ-
ent sources which is formed from the original network by removing the
transistors and diodes. If the y-parameter matrix G of this (2n+d)-
port exists then we have the additional equation relating the vectors
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@ and y:

y= —Gz + u (10)

where % is some vector of constants which is, in general, nonzero since
sources are present, in the (2n+4d)-port.
Combining equations (9) and (10) we obtain

TF(z) + Gz = u. (11)

Now T is a nonsingular matrix and hence, if equation (11) is multiplied
by T~', we obtain an equation having the form of equation (1). If
the matrix T7'G ¢ P, then, by Corollary 1, there exists at most one
set, of transistor and diode voltages satisfying equation (11). Moreover,
if each of the nonlinear functions describing the transistors and diodes
in our network maps E' onfo E', or if T7'G ¢ P, then Theorem 3, or
Corollary 3, guarantees the existence of a unique solution of equation
(11).

We have been careful to distinguish between the case when our
theory guarantees only the uniqueness of a solution and the case
when it guarantees both the solution’s existence and its uniqueness
for the following reason: In the analysis of transistor networks the
nonlinear functions which are used to describe diodes or to deseribe
the nonlinear conductances in the equivalent circuit of a transistor
are often taken to be of the form

(@) = Lie* — 1),

where I, and \ are constants. The range of such a function is not the
entire real line. Presumably, therefore, one can construct transistor
networks having the property that if functions of the above type are used
in a transistor’s equivalent circuit then the network admits no solution.
We now give a simple example of such a network. We wish to emphasize,
though, that even for these networks whose equations may sometimes
have no solution, our theory still guarantees that if 77'G ¢ P, and if a
solution of equation (11) exists, then it is unique.

Consider the network of Fig. 3. For this network, equation (11)

becomes
{ 1 —au}[n(vo] j{g —gj“zzl] _ [1]
g, 1 fz(yz) =g g Vs Ib

Suppose ;2 = 0.5, as; = 0.9, and g = 5.5 mhos. Then, the above equa-
tion is equivalent to '
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fwy) 5 —5|[n 120 10}z,

+ =1 .
fz(vﬂ) - 1 1 Uy 18 20 I|,
Hence, v, and », must satisfy

fi(vy) + 5fa(va) = 101, + I1.).

If we now assume that the transistor’s nonlinear conductances are
deseribed by the functions

fl(ul) = _Il(e_.h" - 1):
folvs) = —I(e™" — 1),

where the parameters I,, I., A,, and . are each positive, then for
all v, , v, we have

fl(vl) T 5f2(vz) < I,+ 5I..

Hence, if the values of the independent current sources of Fig. 3 are
chosen such that

Iu+IbgT]h.I¢+%Icl

then the equation for this network has no solution.

Let us now consider the problem of determining whether or not, for
a given network, the matrices 7" and G in equation (11) satisfy the
condition T7'G e P, (or T7'G ¢ P). (The existence of many transistor
bistable circuits assures us that this condition is not always satisfied.)

Iy |
I vz ‘i-c =fa(V2) asle i
| | 34
| Vi Ti-g=f‘|(v1) @alc |
Ta( { ‘ + |
TRANSISTOR

Fig. 3 — A transistor network whose equations may have no solution.
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There is a large class of networks for which this condition is satisfied,
and for which a simple inspection of the G matrix suffices to identify
a member of the class.

Since the matrix T satisfies a strong column-sum dominance condi-
tion, that is, since

ti> 2 |t for i=1,---,2n +d,
i#i
the following theorem guarantees that if the matrix G also satisfies a
strong column-sum dominance condition, then 77'G' ¢ P, and that if
the matrix ( satisfies a weak column-sum dominance condition,
Giz = E | gis |
i

then T7'G ¢ P, and, hence, the above conclusions concerning the ex-
istence and the uniqueness of a solution follow.

Theorem 8. If the square matriz A satisfies a strong column-sum dom-
inance condition and if the square mairixz B satisfies a weak (strong) column-
sum dominance condilion, then A™'B ¢ P, (P).

Proof: Suppose A™'B ¢ P, . Then, by the main result of the “only if”’
part of the proof of Theorem 3, there exists some diagonal matrix
D > 0such that det (D + A7'B) = 0. But det (D + A7'B) =det (47")-
det (AD + B), and det (A™") # 0. Likewise, det (4D + B) = 0
since AD -+ B satisfies a strong column-sum dominance condition.
Hence, A™'B e P, .

With B strongly column-sum dominant, let 6 > 0 be such that
B — 84 also possesses the strong dominance property. Suppose that
A7'B — &I ¢ P, . Then, as above, there is a D > 0 such that A7'B —
8 + D = A7'[B — 8A + AD] is singular, which is a contradietion.
Therefore A™'B — &8I ¢ P,, and, by Theorem 1, A™'B ¢ P. [

IX. COMMON-BASE TRANSISTOR NETWORKS

‘We now consider a special class of the networks which are comprised
of transistors, resistors, diodes, and independent sources. We consider
the class of all such networks for which there is a single node (called
ground) to which the base terminal of each transistor is connected.
Let us first consider a subclass of this class of networks; that is, let us
temporarily assume that no diodes are present. For all networks in
this subclass it is easily verified that when the G matrix for equation
(11) exists, then it satisfies the above weak column-sum dominance
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condition and hence, by Theorem 8, T™'G & P,. This fact is made
evident if we consider the network of resistors which is described by
G (that is, the linear multiport to which the transistors are connected,
with all sources removed) and first simplify this network by using the
star-mesh transformation to remove all internal nodes. Of course for
many networks of this subleass G is strongly column-sum dominant,
in which case 77'G ¢ P.

It is clear that the networks for which the G matrix fails to exist
are exactly those networks in which either one or more of the collee-
tor or emitter terminals are connected, through the resistor network,
directly to ground (that is, through a branch having infinite con-
ductance), or else two (or more) of the transistors’ collector or emitter
terminals are connected directly together (through a branch of the
resistor network having infinite conductance). These direct connec-
tions can exist in the resistor network either because of corresponding
short-circuits in the original linear multiport, or because of corre-
sponding connections involving branches which contain only ideal
voltage sources.

1f one assumes that each transistor in the network has a nonzero
series resistance associated with both its emitter and its collector
terminals (this assumption certainly being consistent with physical
reality) then one need not be concerned about the possibility of the
nonexistence of the (¢ matrix sinee the situations mentioned in the
previous paragraph cannot occur. We now show, however, that one
need not rely upon this assumption in order to prove the uniqueness
of the solution of the equations which deseribe the networks that we
are considering,

We have observed that the matrix G will not exist if and only if
the linear multiport has fewer independent port voltages than it has
ports. In this ease we modify the nonlinear multiport in such a man-
ner that we can break some of the connections to the linear multiport
so that it then possesses a G matrix and hence can be described by
an equation having the form of equation (10). The modifications
to the nonlinear multiport which are called for are obviously the ad-
dition of voltage sources between certain nodes, the values of these
sources being the same as those of the voltage sources connecting the
corresponding nodes in the linear multiport. This simple concept is
illustrated in Fig. 4. Here, the network of Fig. 4a, containing a linear
6-port, has been replaced by the “equivalent” network of Fig. 4b con-
taining a linear 3-port. Although the G matrix of the 6-port does not



26 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

(b)

Fig. 4 — Example of a grounded-base transistor network.

exist, it does exist for the 3-port which can be deseribed by

i, 1 =1 olfx -1
i|=—|—1 3 olle|+| 4|
i 0 0 1lln 0

We have shown that the above artifice allows an equation having the
form of equation (10) to always be written to describe the linear
multiport contained in our network. We now show that an equation
like equation (9) can be written to describe the nonlinear part of our
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modified network. The equation which we obtain is of the form y =
PTF(Ptz + C) with P an m X 2n matrix (m < 2n) and C a 2n-vector.

Consider the equation which describes the nonlinear part of a com-
mon-base transistor network before any of the above-mentioned
modifications (that is, the addition of voltage sources) are made.
This equation has the form of equation (9) with T being a 2n X 2n
block diagonal matrix (recall that n is the number of transistors
present). Let us consider the effect on this equation of the modifica-
tion of the network by adding voltage sources, one at a time. There
are two different ways of adding voltage sources that must be con-
sidered.

Suppose a voltage source of voltage E is connected between nodes
j and k (with plus reference at node j), and suppose the connections
between node j and the linear multiport are then open-circuited. This
situation is illustrated in Fig. 5. Using the notation indicated in this
figure, we have

! = TF@),

,.;
I

1, = 1, for v # 3, k,

ii=0r
B =1 + %,
v; = v + E.

Let us now define the vectors #* and * to be the (2n—1)-vectors
obtained from » and %, respectively, by deleting the »; and 7; elements.
Then, if F*(v*) is the 2n-vector obtained from F(v) by replacing the

Ly Lj=0 L Lzn

I i o
Vi VJ? = oVk Van
(i l Ui ‘ li-'k Pfan

NONLINEAR MULTIPORT

1

Tig. 5 — Typical modification of the nonlinear multiport network.
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argument »; by v, + E, we then have that
# = T, (12)

where the (2n—1) X 2n matrix T* is obtained from 7' by adding the
j-th row to the k-th row and then deleting the j-th row. Observe that
T*F*(v*) can be written as QTF(Q‘v* + R) in which the j-th element
of the 2n-vector R is E, all other elements of R are zero, and @ is obtained
from the identity matrix of order 2n by adding the j-th row to the k-th
row and then deleting the j-th row.

In case a voltage source of voltage F is connected between node j
and ground (with the plus reference at node j) and all connections
between node j and the linear multiport are open-circuited, then we
can again form equation (12) from equation (9) by simply replacing
v; by E wherever it appears in the argument of F, to form F*(v*),
and deleting the j-th row of the matrix 7, to form 7*. In this case
T*F*(v*) can be written as QTF(Q'v* 4+ RE) in which R is as defined
earlier, but in this case @ is obtained from the identity matrix of order
2n by simply deleting the j-th row.

The above processes can be applied repeatedly to account for the
addition of an arbitrary number of voltage sources to the nonlinear
multiport. The resulting equation which desecribes the multiport will

have the form
y =@ QOQITF@Q: --- Qr + C)
= TF(z)
with € some constant 2n-vector and each of the @, obtained from the

identity matrix of the appropriate order in one of the two ways deseribed

above.

Consider equation (9) in which 7' is a square matrix. Due to the strict
monotonicity of each component function of F, the mapping TF(x)
has the following property: If p, ¢ are arbitrary 2n-vectors then there
is a diagonal matrix D > 0 such that

TF(p) — TF(g) = TD(p — q), (13)
and furthermore, the matrix 7D is strongly column-sum dominant
(since T is strongly column-sum dominant). We now wish to show that
a similar fact is true in the more general case.

With m the number of rows of @,, let p and ¢ denote arbitrary
m-vectors. Then since there is a diagonal D > 0 such that

FQ: --- Qp+C) — F(QQ: -+~ Qg+ C) = DQ\Q: --- Q(p — 9),
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we have
TR(p) — TF(g) = Q, -+ Q.Q.TDQQ; --- Qlp — @)-

The fact that Q, --- @Q.Q.TDQ;Q; --- @, is strongly column-sum
dominant follows from the very easily verified proposition that the
product Q.MQ: (k = 1, 2, --- , p) possesses that property whenever
M does.

Therefore if #' and z* denote two solutions of the “generalized equa-
tion (11),” then [TD + G](z' — 2%) = 6 in which

Tan"'QzQ:T and jj:DQiQ;Q:»

But 7D, and hence TD + @, is strongly column-sum dominant and
hence, nonsingular. This implies that 2! = z°.

We have now shown that in any network constructed from resistors,
independent sources, and transistors having a common-base connection,
the transistors’ base-emitter and base-collector voltages are unique. It
is a trivial matter to show that the same result applies when diodes
are also allowed to be present in the network.

Suppose the result was not true for some network containing at least
one diode. Then there would be two different sets of voltages and cur-
rents which satisfy Kirchoff’s laws. Thus for each diode in the network
there would be two (not necessarily distinet) pairs of points (v, 72,
(8, ©%) at which the diode is biased, corresponding to each solution.
Letting { denote the strictly monotone increasing function which
characterizes the diode we have 4" = {(»{") and #;” = f(v{”). But
then, suppose the diode is replaced by the series combination of a
resistor » and a voltage source E whose values are chosen so that the
line 4, = (1/r)v, — E/r passes through the points (i, 7;*’) and (v,
7$*). (Due to the strict monotonicity of f, this can certainly be done
with some positive choice of r.) Performing the above type of sub-
stitution for each diode in the network, we obtain a new network of the
type already considered. This new network would possess two different
sets of transistor base-emitter and base-collector voltages (the same
as before). This contradicts our previous result, and hence the previous
result must apply, even when diodes are present in the network.

To determine the equilibrium solutions of the differential equations
which describe a network containing inductors and capacitors as well
as the elements mentioned above, one must determine the solutions of
a de equation for a network of the above class. Thus, in summary,
what we have shown is: One cannot synthesize a bistable network
which consists of resistors, inductors, capacitors, diodes, independent
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voltage and current sources, and an arbitrary number of (Fig. 2)
transistors having a common base connection (or, in particular, only
one transistor).
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APPENDIX A

Algorithms for Computing Solutions of Equation (1)

In this appendix two algorithms for computing the solution of
equation (1) are presented. It is proved that one of the algorithms will
always converge to the solution of equation (1) if the matrix A satisfies
either a weak row-sum or column-sum dominance condition (inequality
(7) of Theorem 7 with either @ = 1 or & = 0) and if, roughly speaking,
the slopes of each f, are bounded from below by some positive constant.
In each case the proof of convergence relies upon Banach’s contraction-
mapping fixed point theorem, and therefore also represents an inde-
pendent proof of the existence and uniqueness of a solution of equation
(1) for the conditions stated above.

The following notation will be used: For fixed F ¢ ", B & E", let
f(x) = F(z) — B, also, if A is a given n X n matrix with elements a,; ,

we define the diagonal matrix D by D = diag [a,,, @s, - - , @..), and
letA=A4 — D.
Theorem A. If the n X n matriz A satisfies
a“gzlaifll f01‘ ’i=1|"',nl

it
and if F ¢ ", B ¢ E", and if there exists some ¢ > 0 such that for each
a,feE' e|la—B| = |fila) — f:(B) | fori=1,---,n, then equation
(1) possesses a unique solution, and if x° is an arbitrary point in E", the
sequence x°, x', x°, -+ - defined by
2 = (f + D)7~ 4)
converges to the solution.
Proof: Equation (1) may be rewritten as
f(z) + Dz + Az = 6.
Hence, if the operation T': E* — E" is defined by T = (f + D)~'(—A4),
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then the solution of the equation = Tz is identical to the solution
of equation (1). We now prove that the sequence «’, z*, z°, - - - converges
to this solution by proving that T is a contraction.

Let z and y be arbitrary points in E" and let ¢ = Tz, h = T'y. Then,
{(g9) + Dg = —Az and f(h) + Dh = —Ay. Thus, fors = 1, -+~ , n,

fi(g:) — bi + awgs = — (A7),
and
fi(hs) — by + auh: = —(Ay), .
Subtracting, we obtain
filg) — f(hd) + aulgs — hs) = (Ay): — (Az); .
Since §; is strictly monotone increasing, we have
| f:(g) — fih) | + ais | 9: — hi| = | (a2); — (Ap)« |,
and hence, since € + a,; > 0,

g0 = b | S g | (Ga) — (B |
Now,
1{‘335).' — (Ay); | = 1 ; a;(x; — y:‘) |
= E(l Qi |'|$i — Ui |)

e

= (Z | a;j I)-m?.x s — #s ke

T
Thus, defining the metric p on E” by p(z, y) = max |z; — y;|, we
have, fori =1, --- , n, d

1 §
lgi—hiléa.-.-i-e(zla” D-ples 9)-

iFi

But, since 0 < Y. | a;; | < @i + ¢ there exists K, 0 = K < 1, such
that | g; — h: | < K-p(z, y) fori = 1, --- , n, and in particular, o(Txz,
Ty) = max | g; — h;| = K-p(z, y). Hence T is a contraction. [

Theorem B. If then X n malriz A satisfies

a;; = Elaﬁl, for "L.=]_’...’.n'I

i#i

and if F ¢ §", B ¢ E", and if there exists some e > 0 such that for each
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a,BeE' ela— | = |fie) — f:(8)| fori =1, -, n, then equation
(1) possesses a unique solution, and if 2° is an arbitrary point in E", the
sequence 2°, 2', 2°, - - - defined by

zk+1 —_ _'A(f + D)—l k
converges to some point z* and the solution of equation (1) is given by
z* = (f + D)7z~

Proof: As in Theorem A, the solution of equation (1) is also the solu-
tion of z = (f + D)'(—A)z. For each x ¢ E", let z = (f + D)z and
hence z = (f + D) 'z. Thus, 2* is the solution of equation (1) if z* =
(f 4+ D) 'z*, where z* is the solution of z = — A(f + D) 'z. The theorem
is thus proved if it is proved that the operator T = —A(f + D) 'isa
contraction.

Let P denote the operator (f + D)7", and let z and y be arbitrary
points in E". Then, proceeding as in the proof of Theorem A, we obtain

1 §
|(P‘-17)f—(P‘¥/)f|§a“+e[1i_’!h1: for 7=1, - ,n.
Thus, if g = Tz and h = Ty, then fori =1, -+- , n,
gi = — Z a;;(Px); and i = = Z a:;(Py); .
i#i P
Hence
g = e | = | T aul(Pa); — @) |
< 2 (lai |- (P2); — (Py); |)
=i
s 3 (oo tta—w ).
= = i a“ + € 1 1
Therefore,
n a”
Slo—hlsy Tlolig -y
i=1 i=1 §#1d ii
- _l_a"_i.) =
_Zl(lzﬂa’n_'_e |xi yf]'
But, there exists K, 0 £ K < 1, such that, forj =1, --- , n,

lay |
;aif'{_EéK,
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and hence

E]U-‘-h-‘léK_Z|xi_yi|-

i=1 i=1

Defining the metric p on E" by

P(I,y)': "ZlI;—y.—l,

i=1

we therefore have

po(Tz, Ty) = Z: ] gi — h; I = K-p(z, v,
and hence T is a contraction. O
APPENDIX B

Determination of Bounds on the Solution of Equation (1)

In this appendix we present a method for determining bounds on
the solution of equation (1) when F ¢ 5", 4 is weakly row-sum dominant,
and (for given @ = (a,, -+ , &), 8= (B, -+ ,B.) e E") B= (b,
o+, b,)" satisfies a; < b; < B; for7 = 1, - -+, n. The solution bounds
are, in general, easier to compute than those of Theorem 5. The method
presented here is a generalization of an idea presented in Ref. 3.

The computation of the solution bounds proceeds in two steps. First,

one solves each of the equations

F(z) = a (14a)
and
F(z) = 8. (14b)
Denoting the solutions of equations (14a) and (14b) by p = (s,
copd)tand v = (v, -+, v,)', respectively, and defining
N = max([ ], - Ll Do ooy Dol

and

B (S ol S la

ien

one then solves each of the equations

F(z) + diag [ay; , *+* , Gua)z = @ — B, (15a)
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F(z) + diag [ay, , - -+ , auJe = 8 + AB’. (15b)

Denoting the solutions of equations (15a) and (15b) by v = (y,,
<, and § = (§,, ---, §,)", respectively, one has y; < 22 = §; for
it =1, -+, n, where &' is the solution of equation (1) that corresponds
to any B satisfying ¢; < b, £ g, fori =1, ---, n.

To prove that the components of the vectors ¥ and 8, determined by
the above procedure, are indeed bounds for the corresponding compo-
nents of the solution z” involves no more than a word-for-word repetition
of the proof of Theorem 2 of Ref. 3, with several quite obvious modifica-
tions. We omit the details.

.
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Some Theorems on the Dynamic Response
of Nonlinear Transistor Networks

By 1. W. SANDBERG
(Manuseript received July 16, 1968)

Relative to the huge body of theory of linear time-invariant systems, very
little of a general and precise nature is known about the metwork-theoretic
properties of transistor circuits operating under large-signal conditions.
One basic property P which a transitor network might have is that if the
input approaches a constant, then the output approaches a constant which is
independent of the initial eonditions. In this paper we prove a stability
theorem concerning a monlinear diflerential equation that governs the
behavior of a large class of networks. A corollary of this theorem asserts
that if a certain condition is salisfied, then property P holds.

We consider also the problem of estimating the vate of decay of transients
in transistor networks and we prove theorems which allow us to make some
often quite conservative, but definite, statements concerning limitations on
switching speeds. A practical evample considered shows that in some cases
the bounds, which are frequently very easy to evaluate, can be quite useful.

The proofs depend in an interesting way on the relationship between
the static diode characteristic and the nonlinear capacitance associated with
a semiconductor junction.

I. INTRODUCTION AND DERIVATION OF THE DIFFERENTIAL EQUATION

We initially consider the network of Fig. 1, which contains transis-
tors, linear resistors, voltage sources, and current sources. Bach
transistor is represented by a model of the type shown in Fig. 2 (see
Gummel* and Koehler?) which takes into account nonlinear de proper-
ties as well as the presence of nonlinear junetion capacitances. Asso-
ciated with this model are six parameters: ey, ay, 7o, 7¢, ¢, and ¢, (all
positive eonstants; ay < 1, o, < 1) and two nonlinear funetions fo(+)
and f.(-).

Conecerning f.(+) and f.(-), for our purposes it is necessary to as-
sume only that

35
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TRANSISTOR | TRANSISTOR 2 L
|® % "]I)

Fig. 1— General network containing transistors, sources, and resistors.

Assumption 1: For each transistor: f.(-) and f,(-) are strictly-mono-
tone increasing mappings of the real interval (—oo, o) into itself;
fe(0) = f.(0) = 0, and f,(-) and f,(-) are continuously differentiable
on (—oo, o).
The functions f.(:) and f.(:) of Gummel's model' are of simple
exponential type and satisfy Assumption 1.

From Fig. 2:

'ia = Edg [C,b', + TGL(U,)] + fa(va} - arfc(vc)!

7:,; = % [C:'ﬂ: + Tffc('ﬂ_._.)] = a!fa(y’) + Jl'c(vc).

Suppose that the network of Fig. 1 contains p transistors; for k =
1,2, «++, p, let vap_; and vay, respectively, denote the emitter to base
voltage and the collector to base voltage of the kth transistor. Simi-

arir afir
- —
= N — Y
L S
: . te=Tfa(Vv ip=Tfe(ve) :
Le Lf‘ E( E) 2 i C( c Lr ‘ig
o AN\ NN /9
N T ik /
[ A \__/ 4
€
v,  Te g g T v
o

TFig. 2 — Transistor model.
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larly, for k = 1, 2, -, p, let iy and 7z, respectively, denote the
emitter current and the collector current of the kth transistor (with
reference polarities as indicated in Fig. 2). Then, with v = (v,, v,
s V)= (T, T2, 000, Tap) ", o () and oy the fo(+) and ¢, of
the kth transistor, and fax(+) and co the fo(+) and ¢, of the kth tran-
sistor,

i =2 (co1+ TRE) ()

where, for j = 1,2, . .., 2p,
[CON; = c; + 71,09 @
FO), = 1,0, ®

and T=T,®T,@® --- @D T,, the direct sum of p 2 X 2 matrices

T in which
)
T, = [ 1 a,
—a” 1
fork = 1,2, -+, p.

We assume that the linear resistive portion of the structure of Fig. 1
introduces the constraint

$=—Gy+ B @)

in which @ is a conductance matrix and B is an element of the set &
of all real bounded continuous 2p-vector-valued functions of ¢ on [0, «).
From equations (1) and (4)

% (CO)] + TFG) + Gv = B. ®)

Let u = C(v). Since all of the ¢; and 7; are positive, and each of the
f;(+) is eontinuous and monotone increasing, there exists a C~'(-) such
that » = C'(w). Thus,

du
dl

The Jacobian matrix J, of TF[C™ (w)] 4+ GC™'(u) is

: fig:)] } , { 1 }
Todisg {c,- T el T ¢ Y8\ )]

+ TFIC™'(wW)] + GC™'(w) = B. (6)
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in which forallj = 1,2, ---, 2p
gi(u;) = [C™ (w)];
with each of the ¢;(-) continuously differentiable.

Sinee J, is continuously dependent on u, and || J,. || (|| - || any norm)
is bounded from above uniformly in w%, it follows that there exists a

constant L such that
| TRIC @] + GC™ (w) — TFIC™ ()] — GC™*w) ||
S L||lu— wl )

for all %, and u, belonging to real Euclidean 2p-space E*”. In particular,
we have
|| TFIC™ ()] + GC™'(w) — B|| = L|lu|l + ||B]] (8)

for all t = 0 and all u ¢ E**. Therefore (see, for example, Nemytskii and
Stepanov®), for any initial condition u, e £*”, there exists a unique con-
tinuous 2p-vector-valued function u(-) such that #(0) = u, and equation
(6) is satisfied for all ¢ > 0. In other words, under the assumptions we
have introduced, it makes sense to study the properties of the solution
of the equation

W4 TFC @+ GICT@] =B 120 [0 =wl  ©

II. STATEMENT OF RESULTS, AND EXAMPLES

We need the following definitions.
Definition 1: A real matrix M of arbitrary order n is strongly col-

wmn-sum dominant if and only if forall j =1,2,...,n
mi; — Z | mi; | > 0.
=5

An important property of T is that it is strongly column-sum dominant.
Definition 2: We shall say that a real matrix M of order 2p is an element
of D if and only if there exists a diagonal matrix diag (d, , dy, - -, ds,)
with each d; > 0 such that
or—y 1

(k)
Qy < < a“_-)
r

sy
fork =1,2, .-, p,and diag (d, , d>, - -+ , do,) M is strongly column-
sum dominant.
QOur main result* concerning equation (9} is:

* Proofs of all results in this section are given in Section III.
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Theorem 1: If G e D, and u,(-) and u,(-) satisfy

Qe | PRI W) + GO @) = Bu), 120 (10)
W PIeT W) + GO = B, 120 an

with B, ¢ ® and B, ¢ ®, and if [B,(t) — B,(t)] — 8 (the zero vector of E*)
ast— o, then [u,(l) — w(t)] = 0ast — .
An interesting corollary of Theorem 1 is

Corollary 1: Referring to equation (9), if G ¢ D, and if there exists
a constant vector B, such that [B(t) — B.] — 0 as { — =, then there
exists a constant vector u,, such that [u(t) — u,] — 0 as t — «, and u, s
independent of the initial condition u, . In particular, if B, = 6, then
Uy, = 0.

It is interesting to observe that ¢ ¢ D whenever the base leads of all
transistors are connected together and there is a resistor between the
emitter and base, and between the collector and base, of every transistor,
for then @ is strongly column-sum dominant. Also it is easy to give
examples of conductance matrices which are not strongly eolumn-sum
dominant, and which belong to ©. For instance, for the network of
Tig. 3.

Fig. 3 — Single-transistor network.

G =

G + 0o —gbl
.;gh gh

and diag (d, , d,)@ is strongly column-sum dominant for d; = 1 and
some d, such that
1 *
Gy < dl i =

¥

* More generally, G of order 2p with positive diagonal elements belongs to D
whenever it is possible to obtain a strongly column-sum dominant matrix from
@ by adding an arbitrarily small positive quantity to a single diagonal element,



40

THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

tO

n
+ + MV +
v, v A
TN V2 Loa 3 Va
§ | 22 1
s
22
100

Fig. 4 — A two-transistor ecircuit.

As another example, consider the circuit of Fig. 4, for which

473

G = 21_1 —10
10

—11

—10
473
—11
10

10 —11
—11 10|
11 —10
-10 11

Since diag (1, 1, 22, 22)G is strongly column-sum dominant, G & D.
Finally, for the network shown in Fig. 5,

11
N
10

-1

—10
11
—11
10

10 -11
—11 10|,
11 —10
-10 1

In this case, G is obviously singular and hence does not belong to .
Suppose that the source current of Fig. 5 7,(t) is a constant and that the
transistor funetions f,(-), f2(+), fz(+), and f,(-) are all bounded from
below by the constant b (this is certainly an assumption consistent with
our earlier assumptions and with the character of transistor models

n

Lot

Fig. 5 — Transistor circuit for which the de equations may have no solution.
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ordinarily used.) We wish to show that here for sufficiently small % ,
there does not exist a constant vector u, such that [u(t) — u,] — 6
ast— oo,

Suppose that u(f) — ., a constant vector, as ¢ — «. Then there
would exist a 2p-vector v, such that u, = C(v.) and

TF(ve) + Gv, = B

with B= (4, ,0,0,- - -,0)"". Let n denote the 2p-row-vector (1,1,1,---,1).
Then
7 TF(ve) + nlve = 2B

But 3Gv,, = 0, and hence
g = "Z [1 - am]fu 1(Veozi~ 1) + Z [1 = aﬁ”]fzk(vmzk)
=1
which does not possess a solution v,, if

z‘o<b5:[1~a"’]+[1 a®].

k=1
2.1 Estimation of the Rate of Decay of Transients

Theorem 2: If the hypotheses of Corollary 1 are satisfied with B(f) = B
for t = 0, then

2p 2p
Z d:’ \‘h',,-(t) — U l = exp (—Kt) E df Ilu‘:(o) — Uy l: t=z0
i=1 i=1

for every set of positive constants d, , dy , +-+ , day such that

0<K4 mfinmin{ (1 — dd;* ,), - (gis — _}:;d;d,-“ | 95 I)}

in which —a; 1s the nonzero off-diagonal term in the jth column of T,
and d; = d;., for j odd and d; = d;_, for j even.

It is easy to show that G ¢ D implies that there are positive constants
di,j=1,2, -+, 2p, such that K > 0.

As an example of the application of Theorem 2, consider the problem
of estimating the switching time of the single-transistor mvertel eireuit
of Fig. 6 in which a, = 0.968, ¢, = 2 X 107" fd, r, = 1.7 X 107" second,

= 0.583, ¢, = 1.7 X 107" jd, and 7. = 2.62 X 107° second. Here
(in mhos)
1.1886 X 107 —1.01215 X 107°

—1.01215 X 107° 1.01215 X 107°

G =
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Fig. 6 — Practical logical-inverter circuit.

which takes into account a bulk base resistance of 280 ohms and a bulk
collector resistance of 18 ohms. The eircuit is initially at steady state
with e(f) = 0.3 volt for ¢ < 0. For¢ = 0, e(f) = 10 volts, and as{ — o,
u(l) — u, , some constant vector. With d, = 1, the number K is the
smallest of the four quantities: 0.58(1 — 0.968d;") X 10", 0.5(1.1886 —
1.01215d;") X 10°, 0.3815(1 — 0.583d,) X 10°, and 0.58(1.01215)
(1 —d,) X 10"

It is clear that d, must satisfy 0.968 < d; < 1 in order that KX > 0.
Then optimal choice of d, (that is, the choice that yields the largest
value of K) is approximately 0.9709. For d, = 0.9709, K = 1.66 X 10".
Let the ‘“‘charge switching time” ¢, denote the smallest value of ¢ such
that D 2., | u;(f) — u.; | is less than or equal to two percent of » 2_,
| 4;(0) — ;| forallt = ¢, . Then our upper bound on ¢, is approxi-
mately 4 X (1.66)™" X 1077 &~ 241 nanoseconds. The actual value of ¢, ,
as determined by numerically integrating the system of two nonlinear
differential equations is approximately 57 nanoseconds. Thus, for this
cireuit, Theorem 2 provides a very easily evaluated and useful upper
bound on i, .

Finally, we state a result which provides an often rather conserva-
tive but easily evaluated lower bound on the rate of deeay of tran-

sients.

Theorem 3: With B a constant real 2p-vector, let
du 1 -1 -1
dl TFIC'(w)] + GC'(w) = B, t=0.

If there exists a constant 2p-vector u,, such that [u(t) — u,] — 0ast— «,
then for any choice of positive constants d; ,j = 1,2, --+, 2p:

2p 2p
Z d; Iui(t) = U | = exp ("Kt) E d; |ui(0) = U L t=z0
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in which
f 1 P 1 2p 5
{ = max max {1_— (1 + dd;'ay), » Z] did;' | gii |}
1 1 1 =
where —a; 1s the nonzero off-diagonal element in the jth column of T, and
d; = dji, for jodd, and d, = d,_, for j even.

The arguments used to prove the results stated in this section can
be modified in a straightforward manner to prove far more general
results concerning networks that contain diodes, capacitors, and in-
ductors, in addition to the elements of the structure of Fig. 1. Some
of these more general results are described in Section IV.

IT1I. PROOTS

3.1  Proof of Theorem 1
We first show that

FIC™"(w,)] — FIC " (us)] = Dy(ua — ws), £ 2 0 (12)
and
C ' (u,) — C'(wy) = Dy, — ), t =0 (13)
with D; and D, diagonal matrices dependent on ¢ and possessing some
special properties.
For j =1,2, -+, 2p, let g;(wy;) = [C* () ]; and g;(us) =
[C*(wup) ];. Then, using equation (2),
Uaj — Wyy = Ci[gi(a) — gi(e;)] + 7 {filgi(wa)] — filgs (w1}
Thus if u,; # w;,
filgi(u.)] — 1:lg:(us;)] — Ti(Uas s Uans)

Uaj — Wy; ¢; + mi(ta; 5 Uey)

in which (for u,; # wu,;)

_ [ilgsu.)] — fs[gi(uaf)]_

riltls s i) = 9i(a;) — gi(us;)

In a similar manner we find that for all u,; # w.; :

9i(Wai) — 9i(us;) = 1 .
Usj — Upj €y + Tir(uui ’ ubi)

Now, let us defineforj = 1,2, ---, 2p

7i(Uas 5 Wai) = f1g;(Uay)]
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when #%,; = ;. Then since u%.; and u;; are continuous on [0, =), it
follows (see Appendix A) that r;(u.;, %) is continuous on [0, ).
Since 7; (.5 , %p;) 1S nonnegative, it is clear that both

Ti(uai lubi)
¢; + 77 (Ua; , Ua;)

and

1
¢; + miri(Ua; , )

are continuous on [0, « ). Moreover equations (12) and (13) are satisfied
with

. (Ui, Uss)

D, = diag {C;‘ + i, Jub:‘)} o
. 1

D, = diag {G,- + 77y :ubi)}‘ )

At this point we have
Ly —w) + @D, + GDYw, —w) =B.— By, 120 (10

with TD, + GD, continuous on [0, ).
We need the following lemma.

Lemma 1*: Let M(-) be a continuous real n X n matriz-valued func-
tion of t defined on [0, «) such that there exist positive constants e and
Ci,Cay " yCo, With the property that for j = 1,2, -+, nandallt = 0

m,-,- —_ ZC(C,TI l m;ji | % €.
i#y

Let x be a differentiable real n-vector-valued function on [0, ) such that

dx
. e
i + Mz = 0, t=0
Then there exists a constant k such that forz = 1,2, -+ ,n,andallt = 0

| z:(t) | = k exp(—a).

Moreover, k depends only on the ¢, and the initial values x,(0).

*In Ref. 4, Rosenbrock states w similar result, but does not give a rigorous
proof. He considers the case in which ¢y =1for; = 1,2, --+ , n.
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Proof of Lemma 1: Let the functional s be defined in terms of an
arbitrary eontinuously differentiable sealar function ¢(-) by
s(p)(t) = 1 if o) >0 or if o) =0 and (1) >0
= —1 if o) <0 or if () =0 and &'(f) <0
=0 if of) =0 and ¢'(f) = 0.
Then for ¢t = 0,

2 cslx)(O2it) = — 2 eas(z)(t) 2 mim;
= - z’.: T z‘: ¢s(x)(H)m.;
= - Z xies(x)(Om; — Z Z; Z cis(z)(t)my;
<

—Ecimii |z | + Z | z; | ;C; | my; |
1 1 =
é_E;lcix,-l.

But D, e;s(z,) (t)2! is equal to % i | ejz; |, the right-hand derivative

of D.; | &7y | [see Appendix B; the derivative of | z; | need not exist
at points t at which z;(t) = 0]. Therefore

i
%Zlcsm,-lé—e_zlc,-xsl, tz0
from which it follows that
E | ejx;(f) | < exp (—et) ’Z | e;z;(0) |, t=0.0

If M(-) satisfies the conditions of Lemma 1, then it is easy to show
that the unique continuously differentiable n X n matrix-valued function
X defined on [0, =) which satisfies

X yx =0 120 X0 =1
possesses the property that (for any norm || - || on E") there exists a
constant K, such that
|| X®)X(n)™ || £ K, exp [—¢(t — 7)]

forallt = -.
Returning now to equation (16), assume that [7'D, + G'D,] satisfies
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the conditions on M (-) of Lemma 1. Then with ¥ the solution of
dY L L (TD, 4+ 6DIY =0, 120 [¥(O) =
we have
u(t) — w(t) = Y(§)[ua(0) — w,(0)]
n f YO Y Br) — B())dr, t2 0.
Therefore, fort = 0
|ty — w() [| £ || Y(Oal0) — w,(0)]]]
+ f || YOY ()™ ||-]| Bulr) — By() || dr
< || Y(9)[u.(0) — %,(0)] ||

+K, [ " exp [—e(t — 9] || Bulr) — Bul) || dr

for some positive constant K, . Since || B,(r) — By(r) || = 0as+ — oo,
it follows that || w.(t) — w,(t) || — 0ast — .

It remains only to prove that [T'D, + GD,] meets the conditions
imposed on M(-) of Lemma 1. Since G ¢ ©, there exists a diagonal

matrix diag (4, , dy, -+ , da,) withd; > 0forj = 1,2, ---, 2p and
fork = 1,2, ---, p such that both
diag (d, , dy, -+, d,))G
and
diag (dy,ds, -+, do) T
are strongly column-sum dominant. Thus for j =1, 2, --- , 2p

— 2 ddi'| t; | >0

iy

— 2 ddi" | gi | >0,

1%
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Let W = TD, 4+ GD, . Then, for j , 2, , 2p
T 1
Wi = iy e; + 77 + gii ¢; + 71
and
=4 - i 1
§dd |wui_§dd '_'_ jr‘_‘l'guc_'__rr

Therefore

— Y dd |w; | 2 —1—(t;; — 2 ddi" | s |)

iy i TEy

=+ - (9:: — E fi-'d;l ] Gii |) a7

¢ 1~ T i=i

Since r; = 0, the right side of equation (17) is bounded from below by
some positive constant e uniformly in £ and 5. O

3.2 Proof of Corollary 1
By Corollary 3 of Ref. 5 there exists a unique » ¢ E*” such that
TF{) + Gv = B, (18)

whenever G is such that all principal minors of 77'G are positive.
In Reference 5 it is proved that 7' will have this property if 7@ ean
be written as A™'B with both A and B stongly column-sum dominant.

Let H = diag (d, ,d,, -+ , ds,)G be strongly column-sum dominant
with all d; > 0 and

(k) dzk =1 < 1

@y 13
d"k o, !

fork =1,2 -+, p. Then U £ diag (d,, do, -+ , da,) T is strongly
column-sum dominant, and 7' = U™'H, which proves that equation
(18) possesses a unique solution ».

With » the solution of equation (18), let u, = C(v). Clearly if B,, =
then u, = 6. Let u, satisfy

W 4 PRICT )] + GIC )] = 120

with 1,(0) = u, . Of course, u,(t) = u, for all £ = 0. By Theorem 1,
[u(t) — u,] — 0 ast — o, independent of u, .
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3.3 Proof of Theorem 2
Following the proofs of Theorem 1 and Corollary 1,

%(u — Ux) + (T'D, + GDo)(u — ua) = 0, =0

in which
o r,.(u,- ,umi)

D, = diag {G; + ri(u; ,u,,,,-)}
and

- gt}

, = dlag c; _|_ T;Ti(ui ,uem')
Therefore
%de-luf(ﬂ—umJé—szﬂ“f(o)_u“fl' =0
in which
I{ = mlll mm{ E d d | tu ] (gr':l' - E did;l | G D}.
; = c; i

Butforj =1,2,---,2p

— > ddi' |ty | =1 —didi'a; . O

[E=51

3.4 Proof of Theorem 3
Since TF[C™'(z)] 4+ GC'(z) depends continuously on z e E*, u,

satisfies (see Ref. 6)
TF|C ™ (u,)] + GC ' (u,) =
Therefore, following the proofs of Theorem 1 and Corollary 1,
L (w — ) + (TD, + GDYu — u) =0, (20

in which

(%, Ueo;) }

Dl - dlag {C,~ + T:'ri(u:' ] uwi)

and

. 1
D, = diag {Ci + rri(u; ,u-ar')}.
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For any z e E™, let || z || denote 3 d; |z; | . Then, fort = 0

H%@"_“‘") ‘ = || (TD, + DY@ — ua) ||

-1 Tl'(u’i y Uy
= m?x {(1 + didia) e; + Ty ) Uesi)
& 1
+ 2 dd g | o ,um,-)} | u(®) — s 1.

But, sinee r;(%; , %) = 0,

K z max {(1 + dd;'a;) i 5 Uay)
i

¢; + vi(u; ) Uens)

2p 1
-3 .
t Z ddy” | g Ici + i, ,um-)}

i=1

Thus
d -
Ha(’u-—um) |§h|]u—u,||, t=0. (19)
Clearly,
d .1
‘a(u—u.,.) ’=11m—|[u(f+e}—u,u(t)+u,,||, =0
=0+ €
Also, for ¢ = 0, the limit
!
lim ([ w(®) — v | = [Ju+ & — ua |]]

+ +
exists and is equal to — ?Tt || ¥ — . || in which as before %t- denotes

the right-hand derivative (see Appendix B). But, since for any ¢ > 0
and t = 0,

| ul) — o || = || ult + & — us || = |Jult + § — us — ull) + U Il

we have
d'i-
- glle—uwll =

d
‘a(zt—um) ‘ ; t = 0. (20)

Therefore, using equations (19) and (20),

v
o

d+
E][u—umﬂg—KHu—umH, t
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and, fort = 0,
| w — us [| = exp (K0 |[u(0) — u, ||. O

IV. A SIGNIFICANT EXTENSION

We can easily extend our results to cover an interesting class of
networks containing diodes, eapacitors (not necessarily linear), and
(not necessarily linear) inductors, in addition to the elements of the
Fig. 1 network,

Let each diode be represented by a model of the type shown in
Fig. 7 in which

i = & fog + 70001 + 1400,

with ¢; and 74 positive constants. Assume that f,(-) satisfies the con-
ditions placed on f.(+) and f.(-) of the transistor model. Let there be
g diodes and let vy, and 75,., (K = 1, 2, - - -, g) be the voltage and cur-
rent associated with the kth diode.

Suppose that the kth capacitor (we assume that there are r capacitors)
is governed by

d

El_t [629+0+k(v2p+q+k)] = ":2p+q+k

forkt = 1,2, -++ , 7, where ¢s,,,::(-) is a strictly-monotone-increasing
continuously-differentiable mapping of E' onto itself such that ¢y, o,x(0)
= 0 and the slope of ¢s;,q.:(+) 18 uniformly bounded from above and
from below by positive constants.

Finally, let there be s induetors which introduce constraints

d .
'(E [Iﬂp-i q+r+k(22p+q+r+.(-)] = UVsprgtr+k
L
M= ="y (vg) ig
—
— —
+ _
| Y
1 \_/ /
¢ e

Fig. 7— Diode model.
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fork = 1,2, --- , s in which each l,,.,.,.:() is a function of the same
type as the ez qea(+)-

Assume that the linear resistive portion of the network introduces
the constraint

i= —Hi+ B, Be®

. . . : i 3 tr -

in which 7 = (1'1 y T2y "7y lauprgin Vzpigers1y 777 v!u+u+r+-) r, v =
. . t .

(vl yVay = 5 Vapiger s b2prgersry " 77 1‘2p+q+r+|) r! and H is a constant

hybrid-parameter matrix of order (2p + ¢ + r + s). Then

[ﬁ(v)l Fs) + Ho = B
where
([C@®]; = [CWI; , i=12---,2p
=cp; + i), i=2p+1,2p+2,---,2p+¢
= ¢;(vy), j=2p+q+1, -+ , 2p+qg+r
= 1,(z), j=2p4+q+r+1,--- ,2p+qg+r+s;

T'is the direct sum of matrices 7@ I, D 0, ., , in which I, is the identity
matrix of order ¢ and 0,,, is the zero matrix of order (r + s), and

[F(ﬁ)]x = [F(v)]:‘l j=1,2, .- :2p
= f;), i=2p+1,---,2p+ ¢

Under our assumptions C'(-) ™" exists and, with @ = C(),

lit _
”‘ L+ TFIC'(@)] + HC™'@) = (21)
Let D denote the set-ofall real matrices M of order (2p 4+ ¢ + r + s) such
that there exist positive constants dy, da, =+ , daprgsrsa with the
property that
(.u < dzt. -1 3-“
d2k 223

fork =1,2, ---,p (when p  0) and diag (d, , da, **+ , daprasrsa) M
is strongly column-sum dominant.

With straightforward modifications of the arguments already pre-
sented, we can prove (i) that for each @, & B """ equation (21)
possesses a unique solution defined on [0, «) such that @(0) = % , and
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(7) the analogs of Theorems 1, 2, and 3 and Corollary 1. To be more
specific, the analogs of Theorem 1, Corollary 1, and Theorem 2 are:

Theorem 1': If H & D, and @, and @, are solutions of equation (21)
with B = B, and B = B, , respectively, for t = 0, and if [B.(f) — B,(f)]
— @ [the zero vector of E***** """ as t — « with B, ¢ ® and B, ¢ ®, then
[#,(8) —Ts(t)] — Bast — .

Corollary 1':  Referring to equation (21), if H e D, and if there exists
a constant vector B,, such that [B(f) — B.] — 6 ast — o, then there exists
a constant vector i, such that [ii(t) — ii,) — 0 as t — o, and 4, 18 in-
dependent of the initial condition @iy . In particular, if B, = 8, then i, = 6.

Theorem 2':  If the hypotheses of Corollary 1’ are satisfied with B(t) =
B, fort = 0, then with j, = (2p -+ ¢ + r + ), we have

io
2 d; |8 — ey | < exp (= Kt)Zd|u(0) G|, 120

for every set of posilive constants dy , dy , * -+ , Gapsasrss SUch that 0 < K =
min {Kl 3 I{g 3 1{3} whei'e

I:(l = min min{ (1 - ad ﬂ!,), (g!a Z dida'_l ! i D}
1sistn i

= . . 1 _

K, = min min {_ y = (g0 — E d"dfl | Gii |)}
2p+15752p+0 T; € T

y=  min {l(g.. > ddi* | g 1)}

p+atlSis2parrea \S; iy
in which ; = supci(-)forj=2p+q+1, - ,2p+q+r71;8 =
sup U(:) forj=2p4+q+r+1, -+, 2+ g+ 71+ s —aisthe
nonzero off-diagonal term in the jth column of T; and d; = d;., for j odd
and d; = d;_, for j even. Moreover there exists one such set of constants {d,}.

=N

V. FINAL COMMENTS

The results presented here are quite encouraging in that they are
concerned with the equations of reasonably realistic nonlinear network
models, and provide some understanding of a precise nature in an
area where there is a great need for many results of similar type.
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APPENDIX A

Proof that r;(Ua.; , Us;) 18 continuous.

Tt is clear that r;(u.; , u,;) is continuous at each point ¢ such that
Uo;(t) 5 wy;(t). Suppose now that ¢ is such that wu.;(t) = u,; (1), and
let € > 0 be given. Since u,; , %; , ¢ and f} are eontinuous, there exists
§, > 0 such that

| 17 {giluas® + M1} — fi {gslua;@O1} | =

forall | 5| < & . Then for | n| = &, either u,;(t + n) = u,; (¢ + 1) in
which case

| 7ilua; (4 n), Uyt + 1)) — rilua; (8), ub:'(t)]\ = e

or Uy (t + n) # (¢ + ) and (using the mean-value theorem)

_ Tilgiluas(t + M1} — filgalwas(t + ]|
il ) ) = G =l + )

= fi®

in which
| & — giluas ()] ] £ max { | gi[uas(t + )]
—gilua; O] | | gilwsi ¢ + )] — gilua; @] ] }.

In the latter case, there exists 8, > 0 such that | ['(§) — f {g: [ D1} |
< eforall| g | £ 8. Thus for all | 7| £ min {6, , &}, we have

| 7i[uai (t 4 n), ;i (8 + m)] — 7l1ta; (t), s (1)) ‘ =
APPENDIX B

Proof that the Right-Hand Derivative of | z; | exists and is equal to
s(x;) (1)
If ¢ is a point such that z;(f) 0, then it is clear that

%’; |2y | = s(e) (D25(D).

Il

At t such that z;(t) = 0 and z/(t) # 0,

s(a)(0a] = lim s(e)() ST — Tz, ).
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Finally if z;(t) = 0 and z(f) = 0, then

0= lim |z{®|= lim lz=tt+o| _d° | z; |,
e—0+ =0+ € di
tsi=st+e

sinee z; is continuously differentiable.
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Adaptive Equalization of Highly Dispersive

Channels for Data Transmission

By ALLEN GERSHO

(Manuscript received May 29, 1968)

This paper analyzes an adaptive training algorithm for adjusting the
tap weights of a tapped delay line filler to minimize mean-square inier-
symbol interference for synchronous data transmission. The significant
feature of the adjustment procedure is that convergence is guaranteed for
all channel rvesponse pulses, even for very severe amplitude and phase dis-
tortion.

The author evamines convergence, rate of convergence, and the effect
of moisy observalions of the veceived pulses, and he shows that the noisy
observations result in a random sequence of tap weight settings whose mean
value converges to a suboptimal selting. The mean-square deviation of the
tap weights from the suboptimal values is asymptotically bounded with a
bound that can be made as small as desired by sufficiently reducing the
speed of convergence.

The suboptimality arising here vesults from the use of isolated test pulses
for the training signal. However, a training scheme using pseudorandom
sequences or the actual data signal does not suffer from the suboptimality
effect. Hence, although of possible utility in other pulse shaping applications,
the technique presented here appears to be primarily of value in providing a
conceptual framework for the closely related but more practical techniques
to be examined in the sequel to this paper to be published shortly.

1. INTRODUCTION

A common approach to data transmission is to code the amplitudes
of successive pulses in a periodic pulse train with a discrete set of
possible amplitude levels. The coded pulse train iz then linearly
modulated, transmitted through the channel, demodulated, equalized,
and synchronously sampled and quantized. As a result of dispersion
of the pulse shape by the channel, the number of detectable amplitude

55
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levels has very often been limited by intersymbol interference rather
than by additive noise.

In principle, if the channel is known precisely it is virtually always
possible to design an equalizer that will make the intersymbol inter-
ference (at the sampling instants) arbitrarily small. However, in
practice a channel is random in the sense of being one of an ensemble
of possible channels. Consequently, a fixed equalizer designed on av-
erage channel characteristics may not adequately reduce intersymbol
interference. An adaptive equalizer is then needed which can be
“trained,” with the guidance of a suitable training signal transmitted
through the channel, to adjust its parameters to optimal values. If the
channel is also time-varying, an adaptive equalizer operating in a
tracking mode is needed which can update its parameter values by
tracking the changing channel characteristics during the course of
normal data transmission. In both cases the adaptation may be
achieved by observing or estimating the error between actual and
desired equalizer responses and using this error to estimate the di-
rection in which the parameters should be changed to approach the
optimal values.

A simple and effective technique for adaptive equalization was de-
veloped by Lucky using the tapped delay line filter structure for
the equalizer. * The main limitation of this technique is that con-
vergence of the tap weight adjustment algorithm is assured only for
relatively low dispersion channels. The convergence condition re-
quires that the dispersed pulse shape have adequate quality so that,
in the absence of noise, error-free binary data transmission would be
possible without equalization. In other words the dispersed pulse must
have an open binary “eye.”

Using an approach to adaptation® * with virtually unrestricted con-
vergence properties, Lucky and Rudin subsequently proposed and
implemented an adaptive equalizer for minimizing the mean square
error in frequency response of an analog channel.®® This approach
was applied to synchronous data transmission by the author and in-
dependently by Lytle and by Niessen.® An implementation of the
technique was described by Niessen and Drouilhet.*® It has also been
implemented for data communication at Bell Laboratories.

In this paper the approach is used for synchronous data transmis-
sion in a training mode where a sequence of isolated pulses is used
as a test signal. The technique may be viewed equally as an adaptive
design procedure for a sampled-data pulse shaping filter where the
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error criterion is to minimize the mean square error between actual
and desired pulse shapes at the filter output. The important feature
of the technique is that convergence is achieved for any channel
pulse response whatever, thereby including highly dispersed pulses
for which even binary data transmission would be impossible with-
out equalization. Of particular interest are: (i) the analogous optimal-
ity condition to Lucky’s zero forcing condition resulting with the
change from a summed absolute error to a summed squared error
eriterion,* (it) the manner in which noisy ohservations introduce ran-
domness in the iterative corrections to the weights and the resulting
stochastic convergence properties, (iii) the possibility of applying the
technique where isolated pulses applied to a filter must be used to
adaptively adjust the filter for optimum pulse shaping (unrelated to
equalization), and (i) the conceptual framework for the more prac-
tical adaptation techniques to be deseribed in a sequel to this paper,
planned for publication soon.

Perhaps the earliest application of the tapped delay line or “trans-
versal” filter to pulse shaping for data transmission was made by
W. P. Boothroyd and E. M. Creamer.* Tufts and George have shown
that under a mean-square error criterion the optimal receiver struc-
ture includes a tapped-delay line filter with delay between taps equal
to the symbol period.*® ** Aaron and Tufts have also shown that the
same receiver structure is needed to minimize the average error prob-
ability for binary data transmission.*

The basic approach to adaptive adjustment of a set of weights
where a mean-square error ecriterion is used with a gradient search
procedure was considered by Widrow and Hoff who noticed that no
derivative computation is needed.? Narendra and McBride proposed
a self-optimizing Wiener filter using a continuous-time gradient
algorithm and a filter structure whose transfer function is a weighted
sum of fixed funections.* Koford and Groner used a mean-square error
criterion and a gradient learning algorithm to find an optimum set
of weights for pattern classifying.*® Widrow described a general adap-
tive filtering problem with the tapped delay line filter.®* Coll and
George discussed the performance of George’s optimum equalizer and
indicated a possible adaptive adjustment technique.*” Lucky and Rudin
were the first to apply the mean square error criterion with the
gradient search procedure to the field of adaptive equalization.’ ®
This paper expands on a short presentation given at an international
symposium on information theory s
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II. PERFORMANCE OBJECTIVES FOR EQUALIZATION

The objective of equalization, viewed as a pulse shaping problem,
is to adjust the parameters of the equalizer to a setting which mini-
mizes a suitable measure of the error between actual and desired
pulse shapes. For the usual synchronous data transmission applica-
tion, the desired pulse shape is one with the Nyquist property that
the sample values ;. at the sampling instant kT are given by 1. =
8:r where 8, is unity for & = » and zero for all other integers k. The
criterion used by Lucky? is peak distortion, D, given by

D=2 lwl/ly |
k#r

An alternate criterion of interest is the mean square distortion E,
defined by
E= 2 u/y:.
ker

The physieal interpretation of the peak distortion is that it is di-
rectly related to eye opening and determines the error probability for
a worst case message pattern. The mean square distortion has a dif-
ferent interpretation. If the message pattern is such that the trans-
mitted level for each time slot is statistically independent of the levels
for other time slots, then the variance of the intersymbol interference
in a given time slot is proportional to the mean square distortion. If
the pulse shape has a large number of small sidelobes so that the
intersymbol interference is normally distributed, then minimizing
mean square distortion is equivalent to minimizing crror rate.

Closely related to the mean square distortion is the mean square
error

&= 2 (— d M

where d is the desired pulse sample value at time instant k7. For the
usual equalization problem where d, = 8. , the measure & has virtually
the same interpretation as F; however, I/ is a normalized measure in-
dependent of pulse amplitude while & depends on both shape and ampli-
tude. Optimization of the tapped delay line equalizer with respect to
either eriterion leads to equivalent results.

II1. FORMULATION

Consider the transversal equalizer with N taps and tap spacing T
equal to the symbol period. Let ¢, be the weight at the kth tap for
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k=0,1,+--,N—1 so that the input output relation of the transversal
filter at the sample times is

N=1
Yo = D Cn = C'X, )

k=0
where z; and ¥, denote the input and output pulse samples, respectively,
at time instants k7T, ¢ = (¢o, ¢, -+, tx_1) 18 the tap weight vector,
and X, = (T, , Tuy, *** , Ta_y.y) is the sample memory state of the

delay line at the time instant n7T'; the vectors ¢ and x, are to be regarded
as column matrices, and the prime denotes the transpose. We assume
that the input sequence x, has finite energy. Let ¢, = %, — d. . Then
from equation (1), using (2), the gradient of the error with respect to ¢
may be written as

Vg = 2 Zekxk . (3)

Therefore the optimality condition for minimum error V& = 0 is
equivalent to the requirement that the (deterministic) corss-correlation
between the input sequence x;, and output error sequence ¢, must have
zeros for the N components with index values corresponding to the index
values of the available tap weights. That is,

erl) = 2 ey =0 for k=0,1,2,--- N — 1.

This condition has an interesting similarity to Lucky’s condition
which states that the peak distortion, D, is minimized when the error
sequence e, has zeros for the N components with index values corre-
sponding to the index values of the available tap weights.? An im-
portant distinetion is that Lucky's condition is generally not valid
when the input pulse distortion 1) exceeds unity, while the mean
square optimizing condition is valid for any input pulse with finite
mean square distortion.

Using equation (2), the gradient (3) can be expressed explicitly as
a funetion of the tap weight vector ¢, namely:

Ve = 2(Ac — g) (4)
where

A= Zx,,x,’, , and g = E d.X, .

Notice that A is symmetric and positive definite (see Appendix A).
Setting equation (4) equal to zero yields the solution for the optimum
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tap weight vector c*,
c*=A'g

Using equation (2), the error expression given by equation (1) may
be expressed in the convenient form:

&(c) = &(c*) + (¢ — c*)'A(c — c¥) (5)

which shows explicitly the simple quadratic nature of the error surface
and the unique optimality of the minimizing weight vector c¢*. It can
be shown that the residual error &(c*) can be made as small as desired
for all channels of practical interest by using a sufficiently large number,
N, of taps.””

It is intuitively reasonable that successive corrections to the tap
weight vector in the direction of steepest descent of the error surface
should lead to the minimum error where ¢ = ¢*. This is the idea of the
well-known®® gradient algorithm:

€.y = €; — 32V E(cy) (6)

where o is a suitably small positive proportionality constant, c, is
arbitrary, and ¢, is the tap weight vector after the ¢th iteration.

The significant, feature of the gradient algorithm for our quadratic
error surface (5) is that the gradient can be conveniently evaluated
without knowledge of the error surface itself. We have seen from equa-
tion (3) that the components of the gradient vector are values of the
crosscorrelation between the input sequence and the output error
sequence. This suggests the conceptually simple implementation
where an isolated test pulse is transmitted through the channel and the
requisite crosscorrelation values are formed by multiplying the de-
layed input pulse with the error pulse, sampling, and summing (or
averaging). The tap weights are then incremented according to (6),
the old crosscorrelation values “dumped” and a new iteration is begun
with the transmission of a new test pulse.

The error pulse is formed by subtracting from the equalizer output
pulse an ““ideal” pulse whose sample values are the desired values d, ;
the ideal pulse is locally generated at the appropriate time. The basic
scheme is shown in Fig. 1. Naturally, the summation given by equation
(3) cannot be performed over an infinite time interval. Suppose xT
is a practical upper bound on the possible time duration of the input
pulse, £T is the time interval between successive test pulses with ¢T >« T,
£ and « as positive integers. Then if we include the effect of perturbing
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Fig. 1 —Four tap training mode adaptive equalizer.

receiver noise samples n; and z, at the equalizer input and output,
respectively, the measured crosscorrelation vector &; after the #th
iteration is given by:

lotif+x

@ = ‘ 2 o + m)(e—i + 2). Q)]
=lg+if
In the noiseless case the estimate &, reduces to one-half the deterministic
gradient, that is, 3V &(c,) under the assumption that the pulse sequence
x, and desired sequence d, are virtually zero outside of the interval
Lslsh+x—N+1L

IV. CONVERGENCE PROPERTIES

In the presence of noise the tap weight corrections contain undesired
random components consisting of products of input and output noise
samples and products of pulse and noise sample. As a result, the
random tap weights no longer converge to the optimal values but
instead approach some neighborhood of a suboptimal setting and then
fluctuate randomly about this setting. The error between the optimal
and suboptimal settings is small for low noise levels and decreases
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with increasing signal-to-noise ratios. The size of the fluctuation neigh-
borhood about the suboptimal setting is proportional to the noise level
but can be made as small as desired by making the training time suf-
ficiently long.

Assume the noise samples n; have zero mean and finite varianee o
Define the veetor n, = (ny, np—1, =+, Ny 1) to be regarded as a col-
umn matrix, Then the output noise samples of the equalizer are:

Zy = c'nk . (8)

Define the matrix B = F(nmn}), where () denotes the expected
value. Notice that B is symmetric and positive semidefinite.

To formulate the iterative equations deseribing the tap weight be-
havior in the presence of noise, apply equations (2) and (8) to (7) to
show how the gradient estimate depends on the tap weight vector:

@ = :Z (Fi—ie +0)[(xp-ie 1) ci — diogg].

Hence
o =Hic, —g—v:, 9)
where H; is the random symmetric matrix
H, = ‘E (®i—qe + 0 + 1))’ (10)
and
v, = lzn; dioig (11)

Let @ = E(H;), the expected value of H; . Then equation (10) yields
@ = A 4 «B. (12)

which is positive definite since A is positive definite and B is positive
semidefinite.

It is convenient to examine the random variation of the tap weight
vector ¢, about the suboptimal setting defined by

t=a'g (13)

and let q; = ¢; — & From equation (12) it is evident that the suboptimal
setting € approaches the optimal setting c* as the ratio of noise variance
to input pulse sequence energy approaches zero. The iterative algorithm
may be expressed in the form

Qivr = @ — 0Q; , (14)
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%:, = Hq: +h; (15)
where
h,' = H.E - g — ¥; . (16)

Equations (14) and (15) constitute a system of first-order stochastic
difference equations with a forcing function h; which is statistieally de-
pendent on the stochastic state matrix H; . We assume that the per-
turbing noise samples in different iterations are uncorrelated, so that
H, and h; are independent of H; and h; for ¢ # j. Notice that the ex-
pected value of any function of H; and h; is independent of 7. Under
these conditions it is proved in Appendix €' that for suitably small values
of @ the mean value of the solution vector q; approaches zero as ¢ — o«
and the sum of the variances of the components of g; is bounded with a
bound that approaches zero as a approaches zero. Consequently the
mean value of the tap weight vector converges to the suboptimal set-
ting € while the actual tap weights fluctuate randomly about the con-
verging mean values with a variability that ean be made arbitrarily
small.

Notice from Appendix C that the norm of the mean solution vector
(q); is reduced at least by the factor ¢, the spectral norm® of I — a@.
Let p, and py denote the minimum and maximum eigenvalues, respect-
ively, of @ Then

§'=1Tlill!].—crp,|, [1 — apy |- (17)

(For proof see p. 24 of Ref. 20.)

Then for 0 < a < 2/(p, + py), weobtain { = 1 — ap, . Consequently,
while deereasing e offers a smaller bound on variability of the tap weight
veetor, inereasing e assures a stronger bound on convergence rate. For
the training mode it is likely that speed of adaptation will be relatively
unimportant so that a very small value of « could be used to approach a
tap weight setting that is very close to the suboptimal setting.

It is useful to obtain bounds on the eigenvalues of @ which can be
determined without specific knowledge of the channel characteristics.
If z(f) denotes the ehannel pulse response and n(f) the additive receiver
noise so that the sampled values used earlier are given by x, = z(kT)
and n, = n(kT), then the sampled spectrum X*(w) of z; is

X = X w7 = 1 3 X — 2n/T)
k k

and the sampled spectral density S*(w) of n, is

S*w) = Y Euni)e " = % 3 S(w — 2/T)
k k
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where X(w) is the Fourier transform of z(f) and S(w) is the spectral
density of n(f). Let m and M denote the infimum and supremum,
respectively, of | X*(w) |* 4+ xS*(w) so that

m =< | X*w) |* + x8%(w) = M. (18)
In all cases of practical interest M will be finite; furthermore generally m

will be greater than zero. It is shown in Appendix B that each eigenvalue,
p; , of @ will be bounded according to

m=p =M. (19)

To illustrate the use of this bound, notice from Appendix C that the
condition for convergence of the mean tap weight vector to the subopti-
mal solution is that & < 2/py . Thus a sufficient condition is that

a < 2/M. (20)

Furthermore, the mean tap setting converges exponentially with the
convergence factor ¢, given by equation (17). Hence it can be inferred
that the choice of @ which provides the strongest bound (least value of
$)isa = 2/(p. + p) yielding

p—1

D+

where p = py/p: . Using the bounds given in (19) we obtain p = M /m,
and so

§'=

_M—m_
T MA4+m

Therefore, for the best choice of a, convergence of the mean proceeds at
least at a rate given by the geometric factor (M — m)/(M + m). Thus
useful information regarding the convergence speed can be determined
without knowledge of the channel characteristics.

¢ @D

V. CONCLUSION

The degree of suboptimality of the tap weight setting reached by the
training algorithm may or may not be consequential, depending on the
application. In applications where multilevel pulse transmission with a
large number of levels could be achieved with adequate equalization,
the signal-to-noise ratio is necessarily very high and therefore the degree
of suboptimality is not large. Even when the noise level is fairly sub-
stantial the suboptimal setting may still be adequate if the error surface
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given by &(c) is “shallow” in a large neighborhood of the minimum.
Then a fairly large departure of & from ¢* may correspond to a rela-
tively small increase in mean-square error. Also, if training mode adapta-
tion is used as a prelude to tracking mode adaptation, a fairly large
degree of suboptimality may be a tolerable starting point for a tracking
mode operation such as the one we plan to describe in a future paper.

When the noise level is substantial the eriterion for optimality used
here becomes inadequate because it does not consider the effect of the
equalizer on the receiver noise. The price of reducing intersymbol in-
terference may be a sizable inerease in noise level at the equalizer
output. In our future paper the error criterion is modified to include
noise with the result that the problem of suboptimality does not arise.

The random fluctuation of the tap weights which prevents true con-
vergence to the suboptimal setting can be eliminated by reducing the
proportionality constant « in each iteration using a sequence of step
sizes a; with the properties

> a = and Doap < ®.

It may then be shown that the tap weight vector converges to the
suboptimal solution with probability 1. The proof uses stochastic
approximation theory and follows the lines taken by Tong and Liu
who considered a training mode algorithm for low dispersion chan-
nels.?* However, this modification complicates the implementation
somewhat and cannot be applied to the tracking mode adaptation
problem.

APPENDIX A

Proof that A is Positive Definite
The matrix A is defined by

A=Y xx. (22)

k=—

Consequently
c’Ac = X ¢/xxic = XU .

But the sequence ¥ is the convolution of the z; sequence with the finite
tap weight sequence ¢, . Hence, using Parseval’s equality,

cAC = 21? [ 'w | X*@) [* | C@) [* do, (23)
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where
N—-1 .
Clw) = D cig™ ™7,
k=0

Equation (23) shows immediately that c’Ac is nonnegative for all
vectors ¢. Also, C(w) can have only isolated zeros and | X*(w) | is square
integrable since the input pulse has finite mean square distortion. It may
then be inferred that ¢’Ac > 0 unless ¢ = 0, which proves that A is
positive definite.

APPENDIX B

Bounds on the Eigenvalues of @

Since B = E(n.n}) the quadratiec form ¢’Bc is the mean squared value
of yi of the response of the equalizer with weight vector ¢ to the input
noise n; . Consequently

1 /T .
¢'Be = ﬂf-m S*w) | C(w) [ do. (24)
Combining equations (23) and (24) yields

c'ac = % f i (| X*W) | + e8] | C) [ do.  (25)

Applying to equation (25) the bounds m and M given by equation (18)
yields
mc'c £ ¢’'@e = Mc'c. (26)
Let ¢ be the eigenvector of @ corresponding to eigenvalue p. Then
@c = p;c and equation (26) yields
m=p =M (27)

which provides a convenient bound for the largest and smallest eigen-
values of @.

APPENDIX C

Convergence Proof

To examine the convergence properties of the tap weight adjustment
algorithm, it is convenient to define the norm of a random vector u as

lull = [E@w)]", (28)
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so that the squared norm of u is the sum of the second moments of the
components of u. For a deterministic vector the norm reduces to the
usual Euclidian norm. The norm of a deterministic matrix will denote the
usual spectral norm.”

Theorem: Let H, be a sequence of random symmetric N X N matrices
and h, a sequence of random N-tuple column vectors. Suppose H, and
h, are stationary in k with H, and hy independent of H; and h; for k #j.
Assume h, has zero mean, and the elements of H, and h, have finite vari-
ance, EH, = &, independent of k with @ positive definite. Define the random
vector sequence q, according to:

Qo = Qe — Qi (29)
where
o = Hiqe +h (30)
fork = 0,1,2, --- and q, s an arbitrary deterministic vector. Then for a
positive and sufficiently small,
E&IIE%II =0 (31a)
and
lim sup la: |l = V@ (31b)
with V(a), given in (47), satisfying:
lim V(&) = 0. (32)

a—0
Proof: Combining equations (29) and (30) yields
Qre1 = (I - CIH})q:, - Cllh;- . (33)

Noting that g, is independent of H, , taking the expected value in
equation (33), we find

E(qes) = I — a@)E(q). (34)
It follows then that
|| E(qe) || = i | E qoll (35)

where
t=|lI—aell. (36)
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Hence equation (31a) follows when ¢ < 1, or equivalently, for
0<a<2/py (37)
where py is the largest eigenvalue of G.
To prove equation (31b), observe that '
E(Q{+1Qes1) = ElqlI — aH.)q)] — E[2qi(I — aH)hi] + o || by |F
(38)
from equation (33). Noting again that g, is independent of H, , we have
ElgiI — oH,)’q] = B{GE[J — oH)le} S e[l I, (39)
where
p=|E[I — aH)T||. (40)
Also, using the Schwarz inequality,
E[—qi(I — aHphy] = aqiEH},) = o |[ g || f
where f = || E(H,h,) ||. Using equation (35) we obtain
—Elq:(I — aH)hy] = of* || E(go) || /. (41)
The bounds (39) and (41) may be applied to equation (38), yielding

g P Swll@l®+f | Eqll &+ || (42)
If we now define the bounding sequence of positive numbers @, ac-
cording to

Q=I|Eql’
and
Qu: = pu@Q: + anf ” E((Io) “ I"’ + o’ ”hh ||2 ’ (43)
then it follows from (42) that
el = Q.
But the difference equation given by (43) has the asymptotic solution
2 2
fim g = A 1L ;
k-0 1-— 1

for ¢ < 1 and p < 1. Then

< e |
tim sup | . | 5 IR 1L @)
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Notice that || hy || is independent of k by the hypothesis of station-

arity.
Since
(I — aHy)? = (I — a@)® + °E(G3}).
where
Gk =] Hk - a, (45)
we find that

w1 —ag|?+ e || EGY |
p =+ oy

wherey = || G? || . Furthermore for « < 2/(p + pw), We havet =1 —
ap, . Then, using (46), we see that

(46)

2 2
144

< 2 -
1 —u = 2ap, + a’(pi +7)

We have therefore shown that for positive and sufficiently small o,
equations (31b) and (32) are valid where

Vi) = (47)

o
2o, + 0 + 1)
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On the Probability of Error Using a
Repeat-Request Strategy on the

Additive White Gaussian Noise Channel

By A. D. WYNER
(Manuseript received July 5, 1968)

An upper bound on the error probability is obtained for digital communi-
calion (with average power P, and no bandwidth constraint) in the presence
of additive white gaussian noise (with one-sided spectral density N,) with
the use of a noiseless feedback link. A repeat-request strategy is used: the
receiver decodes a signal only when it is relatively sure that one particular
message was actually transmitted, otherwise 1t requests (via the feedback
channel) a retransmission. We show that as the coding delay T becomes
large, we can transmit at an effective rate R < C = P,/N,, the channel
capacity, with error probability P, approximalely exp [—T[(‘\/_ —
VR + € — R}, which is a considerable improvement over the reliability
attainable with a one-way channel. These results parallel those obtained
earlier by Forney for the discrete memoryless channel.

I. INTRODUCTION

In a recent paper, Forney studied a repeat-request strategy for
communication of digital information over a diserete memoryless
channel when a fedback channel is available.® In this system the
receiver decodes a received message only when it is relatively “sure”
that one particular message was actually transmitted. If the receiver
is not confident that one particular message was actually transmitted,
then it requests (via the feedback channel) that the transmitter repeat
the message. Forney showed that considerable improvement in the
resulting error probability (over the best one-way scheme) was ob-
tainable with a negligible degradation in the effective rate of trans-
mission. In this paper we apply Forney’s ideas to the additive white
Gaussian noise channel (with no bandwidth constraint) and obtain
analogous results. Furthermore, our coding scheme is constructive—
the codes being orthogonal codes.

71
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We will consider the following channel. The channel input signal
is a real-valued function s(¢), defined on the interval [0, T'], which
satisfies the “energy” constraint

f ") dt = T 1)

The average signal ‘“power” is therefore P, . The channel output r(?)
is the sum of s(f) and a sample n(f) from a white Gaussian noise process
with one-sided spectral density N, (and with mean zero). By expanding
s(t), 7(t) and n(f) on any orthonormal basis of £:[0, T, it is easy to
show that an equivalent channel model is as follows.®® (This equivalent
channel model is the one we use in this paper.) The input signals are

are (semi-infinite) vectors x = (2, 22, - - -) which satisfy
L]
2, o = AT, 2
k=1

The channel output is a vector y = (y;, %2, **+ ), where

Ye = T + 2, k=12 ...,

and the z,(k=1, 2,- - -) are independent, Gaussian variates with zero mean
and unit variance. The parameter A is equal to 2P,/N,, and we as-
sume that A is held fixed throughout the paper. We also assume that it
takes T seconds for the channel to process x, and that successive T-
second transmissions are independent.

A code with parameters M and T is a set of M signals (called “code
vectors”’ or “code words”) x; = (zi1, Tin, *++), 2 =1,2, --- | M,
which satisfy equation (2), that is

Z;:?,=AT, i=1,2,.-, M. (3)

We assume that each of the M code words is equally likely to be trans-
mitted, so that the {ransmission rate is B = 1/T In M nats (natural
units) per second, and M = e®”. It is the task of the receiver to examine
the channel output y and to announce the code word, say D(y), which
it believes was actually transmitted. Let P,; be the probability that
D(y) # x; given that x,; is transmitted. The overall error probability
is therefore
1 M

P,=Hi-P,,‘-

-

It is easy to show that for a given code, the “optimal” decoding rule D
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(which minimizes P,) selects for D(y) that code word x, which maximizes
(with respect to 7) the inner produet

Xi Y) Z xskyk

Define P*(M, T) as the smallest attainable error probability P, for
a code with parameters M and 7. Set M = [¢"”], and let T — « with
the rate R held fixed. Then it is well known thatif B < A/2 =
P,/N, & C, the “channel capacity,”

P%([e""], T) = exp { —EoR)T[1 + «(T)1}, 4)

where E,(R) > 0, and (T) — 0 as T — «."*" Thus at rates B < C,
the error probability tends to zero exponentially in 7. Further, for rates
R > C, P¥([e®"], T) — 1, so that the capacity C is the supremum of
the rates for which “error-free” coding is possible.

Although this type of behavior of P%* is typical of a large class of
channels, the present channel is unique in two ways. First the exponent
E,(R) is known exactly, namely

IyR) = l0/2 — R, 0<R=C/4
[*—BY, CHZRS=E.

(5)

Second, an explicit construction of codes which achieve error probability
as in equation (4) is known. In fact, P, as in equations (4) and (5)
can be achieved when the code is any set of M orthogonal vectors.
The simplest such code is that for which z;, (the kth coordinate of x;)
is given by

(AT, &k =1,
0, k= 4,

i=1,2,-,M, k=12 --. (6

ik =

For this orthogonal code, the inner produet of y and the 7th code word is
&, y) =34}, =12 -, M;
so that the optimal decoding rule is
D(y) =x; if y:>y; for all § = 1, LEys M. )

With probability one, (7) is satisfied for exactly one 4. Notice that
the coordinates y;(j > M) are irrelevant to the receiver. Further,
from the symmetry of the orthogonal code (6), we can without loss
of generality, assume that code word x, is transmitted. Hence, the
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error probability is

M
P.=P,=PrUln =yl ®)
where the probability is computed with {y,}]" independent unit variance
Gaussianrandom variables with Ey, = (AT) and Ey; = 0(2 £ j £ M).
Now suppose we can use a noiseless feedback link. As before, we
transmit one of a set of M = ¢”7 orthogonal signals {x,}", where x, is
given by (6). Instead of the decoding rule (7), let us use the rule

Dy) =x;iffy, >y; + A forallj=1, 1=2j= M, 9

where A > 0 will be chosen later. If no y; satisfies (9) then we
request, a retransmission via the feedback channel, and use (9) on
the second received vector, and so on. The probability of error de-
creases as A inereases. The price which we pay for this increased reli-
ability is an increase in the length of time which it will take to complete
the transmission of the M-ary message, and the consequential reduction
in the effective rate of transmission. In fact, let Ky be the event that we
ask for a retransmission, and let P(E;) be its probability. Then from
the assumption that successive transmissions are independent, the
expected number of T-second transmissions required to accept a
message is

> j Pr {j transmissions are required}

i=1

Il

3 il — PENPEN = [1 - PED) ): P
1 1
L= PEN T —pErF ~ 1= PEn)

Il

Thus the average length of time required to transmit the M-ary message
is T = T/(1 — P(Ey). If P(E) is small, then T is not much greater
than T.

Suppose that we use this repeat-request strategy repeatedly—that is,
if the receiver does not call for a retransmission, then the transmitter
sends o new M-ary message. Fork = 1, 2, - - - , let the random variable
N, be the number of M-ary messages which the receiver accepts (that is,
it does not call for a retransmission) in kT seconds. Then we can write

N, = ZE:‘:

i=1
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where the random variables & = 1 if the receiver accepts a message
on the jth T-second interval, and & = 0 otherwise. Note that Pr{& =
0} = P(Eg), and that the {&},%, are independent (since we have as-
sumed that successive T-second transmissions are independent). Thus

@) B = kB(E) = k(1 — P(Eg))
(i) Ni/k— 1 — P(Eg), ashk— =, (10)
with probability 1.

Statement (77) follows from the strong law of large numbers (see Ref.
3, p. 190). Since each M-ary message contains In M = RT nats, the
effective rate of transmission R, in the light of (10),

_ [EWNJIRT
B kT

= R[1 — P(Eg)] = R(T/T).

R

nats/sec

(11)

Let us turn our attention to the probability of error. Since we are
using the orthogonal code of (6), we can, as above, without loss of
generality, assume that code word x, is transmitted. Using the decod-
ing rule of equation (1.9) we make an error only when for some j > 1,
y; >y + Aforalli = 1,2, .-+, M and 7 £ j. (In this case D(y) = x;.)
Thus the error probability is

P.=PrLM)f\=y,->y.-+A1. (12)

F=2 irj
As in (8), the probability in equation (12) is computed with Ey, =
(AT and Ey; =0 (2 < j £ M).
Let us further define E, as the event that either an error occurs or a
repeat-request occurs. If x, is transmitted, E, has probability

M
Pr(E,) = Pr \.{ y 2y + Al (13)
where as above, the probability in (13) is computed with Ey, = (4 T)}
and Ey; = 0, j > 1. Clearly the probability of a repeat-request is
P(Eg) = P(E,) — P, = P(E)). (14)
Consider the parameter A. In the interest of minimizing P,, we want
to make A large. However, in the interest of minimizing P(E;) and

therefore making R as close to R as possible, we want to make A small.
The approach which we will take is to choose A just small enough so
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that as the parameter T — o (R is held fixed), P(E;) — 0; so that
by (14), P(Eg) — 0. Thus the effective transmission rate B ~ R.
We will see that this results in a considerable improvement in P,
over that of equations (4) and (5). Roughly speaking, we will show
that the resulting exponent is increased from that in equation (5) to

approximately
Ex(R) = [C* — R + C — R = 2C%(C* — RY). (15)
The exponents Eq(R) and E(R) are plotted in Fig. 1. Notice that the

improvement is greatest in the neighborhood of capacity where (as
R — C)Ex(R) =~ (C — R) and E,(R) ~ (C — R)*/aC.

II. SUMMARY AND DISCUSSION OF RESULTS

The main result is given as a corollary to the following two theorems
which provide information on the trade-off between P, and P(E,) as
A is varied. The proofs are given in Section III.

Theorem 1: Let {y:}Y, be independent Gaussian random variables with
unit variance and expectation
_ ¥
By, = (AT}, a6
Eyi = 0: 2 = .7 = M.

2C

1.5C

Er(R)

™

05C
Eqo(R) \
\

0 025C 05C 075 C 1C
R =—>

Fig. 1 — Exponents for white Ganssian noise channel: Eo(R)-one way exponent,
Er(R)-repeat-request exponent.
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Let M = ¢®7, where0 < R < A/2 = C, and let A = 5(2T)}, where
¢t — @R} =8 <t — RL (17)
Then

P@) =Pr \J (1 S v+ 4] S2exp [—[CH— B — 8PT).  (18)

Notice that 5 = 0 will satisfy (17) if R = C/4. In this case P(E,) = P,
(see (8)), and (18) yields Eqo(R) = [ct — RM*(C/4 £ R £ (), a fact
which is contained in (5). In fact, the proof of Theorem 1 closely
parallels the derivation of P, for orthogonal codes (for a one-way
channel).

Theorem 2: Let {y:}Y, be independent gaussian random variables with
unit variance and expectation

Ey,=0, 2s=sj=M.
Let M = €7, where 0 < R < A/2 = C, and let A = 8(2T)}, where

8> C'— (AR (20)
With R and & held fized, and 0, , 0, arbitrary but satisfying
6, > 0, (21a)
L]
0<6< |k (21b)
5 — [C* — (4R)']
9 ¥

&

then for T sufficiently large,

Pc=PI'Uﬂ§'yi>Uf+Al
=2 ¢ (22)

21 + 6,) exp {—[(R} + 6 — 6,)* + (C* — R} + 6,)* — R]T}.

Again notice that § = 0 will satisfy (20) if B > (/4. In this case
also, (22) yields Eo(R) = [C' — R, when R > (/4 (since 6, can
be made arbitrarily small).

Let us now use these theorems to find the value of A = &(2 T)} which
gives the smallest upper bound on P, without substantially changing
the effective rate R = R[1 — P(E,)]. Since P, is a decreasing function
of 8, we choose § as large as possible with the proviso that P(E,) — 0.

ItA
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From Theorem 1, this value of § is
=0 — R —~,, (23)

where v, > 0. If v, is sufficiently small, this choice of § satisfies (17)
and (20). With é so chosen, for any v, > 0 we can find a 7 sufficiently
large so that B = R(1 — v,). Further, substitution of equation (23)
into equation (22) yields an exponent

—[C* — 9, — 8,)° + (C* — R* + 0,)* — RIT.

Finally, since v, , v», £, and 6, can be made arbitrarily small we have
our main result:

Corollary: Let 8, > 0, € > 0 be arbitrary. Let R < C. Then for T
sufficiently large, there is a repeat-request communication system using
orthogonal codes with an effective rate of K and error probability

P, £2(1+6)exp {—[(C* — R +C — R — {T}.

Let us turn our attention to (4) and (5) which give the error prob-
ability for the one-way Gaussian channel. The fact that E,(R) =
(C* — RY® can be demonstrated by a “sphere-packing” argument.”
This argument states that P*(1, T) = @, where @ is the probability
of error which would result if it were possible to subdivide Euclidean
M-space into M congruent cones (each with apex at the origin), one
for each code word, and each code word were placed on the axis of its
cone at a distance (A7)} from the origin. Setting the “sphere-packing
exponent”

Esp(R) = (C* — RY?,

we have from the above corollary that for effective transmission rates
R < C we can obtain an error exponent arbitrarily close to

E.F(I?) = E.SP(R) + C — R. (24)

For discrete memoryless channels it is possible to find a lower bound
to the optimal (one-way) error probability using an analogous sphere-
packing argument.” Forney showed that using a repeat-request strategy
similar to the one used here, one can obtain an error exponent arbitrarily
close to that of equation (24) [with the appropriate Esp(R)].* Forney
also studied the so called (discrete) “very noisy channel,” which is
closely related to our Gaussian channel* and obtained results similar

* Qur Gaussian channel may be thought of as a “very noisy channel” since

the signal-to-noise ratio per coordinate is zero.
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to our results. Thus, in the light of Forney’s results, the above corol-
lary is not surprising.

Let us also remark that Kramer has found a scheme for our white
noise channel with a feedback link that attains an error exponent of
C — R, which is less than that in equation (24).* In Kramer's scheme,
the receiver observes the signal until it is sufficiently confident that
one particular message was actually transmitted. It then informs the
transmitter, via the feedback channel, to start the next M-ary trans-
mission, thereby using the feedback channel only once per M-ary
message. In the repeat-request scheme studied here, the number of
uses of the feedback channel per M-ary transmission is an unbounded
random variable. Thus the two schemes, while similar (in that the
feedback channel is used only to convey a “decision”), are not di-
rectly comparable. On the other hand, there are schemes which use
the feedback channel considerably more heavily (so called “informa-
tion feedback”) which in some cases attain somewhat better per-
formance than the repeat-request strategy. (See for example Refs. 5,
6, and 10).

Finally, an important problem which has been completely ignored
here is the requirement that the transmitter have a buffer in which it
can store data which will accumulate at the transmitter at times when
the receiver asks for retransmissions. If the buffer has finite capacity,
it will occasionally overflow, introducing a further source of errors.
Some quantitative results on this problem have been obtained by the
author, and will be reported in a future paper.

III. PROOFS OF THEOREMS

We begin with some definitions. Let

1 s
gle) = (.,—Tr);exp(—a/z), —w <a< »,

&

be the standard Gaussian density, and let
@(u):ﬁ“wg(a}da, —w < < o,
be the eumulative error function, and let
& (u) = fm gla) da = 1 — d(u), —w <u< w,

be the complementary error function. Let b = (AT)! = (2CT)! so
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that y, has density gla — b) and y; (2 = j = M) has density g(a).
We will use the following

Lemma 1: Foru = 0,®,(u) < exp (—u’/2); and foru £ 0,®,(u) <
exp (—u*/2) (Wozencraft and Jacobs Ref. 8):

Proof: Foru = 0,

j“.” f"m gle)g(B) da dB = j;f g(a)g(B) da dB = %ﬂz—) ,

{(e, B): & + B° = 2u°, @ = 0, B = 0}. Taking square roots,

[®.(w)]

Il

where ®
we have

o) < ﬂ’(;—‘f@ < exp (—u/2).

The rest of Lemma 1 follows on noting that ®(u) = ®.(—u).

Proof of Theorem 1: Let R (0 < R < C) and & satisfying (17) be
given. Since y, has density g(a — b), and the {y,}}* are independent,

Pr \J {y; 2 v — 4

i=3

P(B,)

® t least one
d —b Pr{a’
fw o gl ) ¥, =y, — A

=jlwdag(a—b)Prg[y,-;a—A}.

Vi = a} (25)

Now since the y; (j > 1) have density g(a),

M 1
Pr\Jly z a4l é{(M—l)Pray,-ga—A}gmn(a—A).
(26)

Letting a be a parameter to be specified later, we break the integral of
equation (25) into two parts, @ < a and @ = a. We then apply the first
upper bound of (26) in the first part, and the second bound of (26)
in the second part. Thus

P(E) < f e — B) da + M fﬂ (o — B)d.(a — 4) da.

If we assume that

a = A 27
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we can use the bound of Lemma 1 on ®.(a — A) and obtain
P(E,) < f o — by da+ M [ gla—b) exp(—(a — 8/2) de

= P, + MP,. (28)

We now overbound P, and P, . First,
a a=h
Po=[ ga—bda=[ o) da= a0

If we further assume that

1A

a £ b, (29)

we can use Lemma 1 and obtain
P, < exp [—(b — a)*/2]. (30)

Second,

P. = [ (o @ (=4 — ) exp [~ o — 4] d
) ff-m(i’_flr)“"p ['("‘ = JE ﬁ) ] exp [—(b — A)*/4] der

= [_(xb/ﬁ_ Sl (211)* fm.._u,mm exp (/2 de

= Sl 8)?/4) q,r{\@[a By A)]}

If we now make a third assumption that

b+ A

a (31)

v

’

2
we can use Lemma 1 again (and 27} < 1) to bound P, :

wot- - om Lo~ (5]

= exp [—(b — a)*/2] exp [—(a — 4)*/2].
Inserting the bounds on P, and P, into (28), we obtain

P(E,) < exp [—(b — a)*/2]{1 + M exp [—(a — 4)7/2]},  (33n)

P,

IIA

(32)
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where from (27), (29), and (31),

A

s (33b)
b+ A
2

IIA
=Y
IA
<

It remains to choose the parameter a. A good choice will probably

result when the upper bound of (28) is differentiated with respect to a
and the result set equal to zero:

gla — b) — Mg(a — b) exp [—(a — 4)°/2]= 0,
or

M exp [—(a — 4)*/2] = 1,

(34a)
or since M = exp (RT) and A = 6(27)%,

a = (R + 82T (34b)
Let us now verify that when 0 < R < C, constraints (33b) are satisfied
for this choice of a. Since R > 0, a = A. Further, since b = (20T)},

]
o — (252) = (s - 10— amyy| Y]
since § satisfies (17). Finally, from (17),

v

0,

b—a=[C'— (BR'+ 5T =2 0.

Thus constraints (33b) are, in fact, satisfied. Thus from (34) and (33a)
P(E,) = 2exp [—(C! — R — 8)'T],

which is Theorem 1.

Proof of Theorem 2: Let R (0 < R < C), § > €' — (4R)} and
8, , 0, satisfying equation (21) be given

. Then
A M
P-=PI'Um[yf<?f—Al = ZPrnlya<y,——Ai,
i=2 1i#j =2 i#)
or
P, =MPr N iy <y — A}, ji= 2.
iE]

The last inequality follows from the symmetry of the distributions of

the y; (7 = 2). Reealling that the density for y; ( = 2) is g(), and that
the {y;}1" are independent,
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_ “ for all i;éj' _}
--Mf_mg(a)daPr{y‘_<yr__A g, =

=Mf ge) da Pr () ly: < a — A},

Again using the independence of the y, and the fact that the density of

¥, is g(e — b) we have
[ f_ ,, ola — b) da:H: f_ ,, i) da] i

Bla — A — b)[@la — A"

Pr () {y: <a— Al

Substituting, we obtain
P, <M f ® iyl = & — Bl — A" da. (35)

Also note that
[Bla — MY = [1 — &fe — A)]"°
exp [—(M — 2)&.(a — 4)].

(36)

A

As in the proof of Theorem 1, we break the integral in (35) into two
parts @ < a and « = a, where a will be specified later. In the range
a < a we overbound ®(@ — A — b) by unity, and [®(a — A)]"* by
(36). In the range a = a, we overbound [®(a — A)]™* by unity. Thus

P, <M f 4(@) exp [— (M — 2)d.(a — A)] da

+ 0 [ gl)dla — &= ) da = MP, + MP:. (37
We now overbound P, and P, . First,

P = [ gle) exp [~ — Dsa — )] da

lIA

exp [—(M — 2)d.(a — 4)] f_ ,,w ole) dx (38)

IIA

exp [—(M — 2)@.(a — 4)].
Second, if we assume that
a<b+ A (39)
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we can write

P, = j:ﬂ gla)®la — A — b) da

A+b )
- f leibla = A = T da—}—j; @)% — & = b) da.

In the first integral, « — A — b =< 0, so that we may use Lemma 1 to
bound®(a — A — b). In the second integral, we overbound ®(a — A — b)
by unity. Thus

Pos [ o ewl—@—a— b2 dat [ o) da

= f g(a) exp [—(@ — A — b)*/2] da + ®.(A + D).
Since from (20) and the faet that B < C,
A+b=(64+cHen! > 2t - RHEM > 0,

we can again use Lemma 1 to overbound ®,(A + b). Using the definition
of g(a), we have

P, < fm@}r)j exp (—a?/2) exp [—(@ — & — 8)*/2] da

+ exp [—(4 + b)*/2]

= exp [—(b + A)*/4] ﬁ; j:m exp [—(a =2 _Iz_ A)z] de

+ exp [—(4 + b)*/2]

—-1/2 o0
= exp [—(b + A)/4] -(2,—2;? exp (—v*/2) dv

VEa—(b+4)/2]
+ exp [—(A + b)*/2]

< exp[—(b+ A)2/4]¢,[\/§(a =B _|2_ A)] + exp [—(A + b)*/2].

If we further assume that

az b+ 4)/2, (40)

then we can again employ Lemma 1 to bound ®[vV2(a — (b + A)/2)).
Hence
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oo (-]

= exp [—3[0" + (@ — A — b)’]} + exp [—(A + B)*/2].
The difference between the second and first exponents in (41) is
A+ -+ @— A= =da—-(A+H] =0,

by (39) and (40). Thus, the first term of (41) is not less than the
second, and

P,

A

P, < 2exp {(—3la’ + (@ — A — b)) (42)
Inserting the bounds on Py (38) and P, (42) into (37), we obtain
P, < Mexp[—(M — 2)®.(a — 4)]
4+ 2M exp {—3[a* + (@ — A — b)’]}, (43a)
where from equations (39) and (40),

btlcasvta (43b)

It remains to choose the parameter a, and here we will simply state
a good choice of a without giving a motivating argument. Let

a= (R + 35— 6)2D)} (44)

(where 8. is the arbitrary parameter which was selected at the begin-
ning of the proof). We must verify that constraints (43b) are satisfied
for this choice of a. First, since R < C and 62 > 0,

b+ A—a=(C'— R+ 6)2D'>0.
Thusa < b + A. Second, from equation (21b),

a— (2F2) = 31 - 1 - B - 20101 2 0,

o that @ = (b + A)/2 and (43b) is satisfied.

Now consider the second term in (43a). Direct substitution of (44)
shows that this term is

2 M exp {—[(R' + 8 — 6.)° + (C* — R + 6)"IT},

a single exponential decay in T (as T — @). Finally consider the
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exponent of the first term of (43). Substituting (44), it is
—(M — 2)®.(a — A) = —(exp (RT) — 2)&.{[R* — 6,](2T)}}.

Making use of the asymptotic formula ®.(u) ~ (2ru)~# ™ as
u — o (see p. 106 of Ref. 2), and letting T'— « (and noting that from
equation (21b), B! — 6, > 0), this exponent is asymptotic to

~1
@ — ayery &P KD,

where K > 0. Thus the first term of equation (43a) decays to zero as a
double exponential in T, very much more rapidly than the second term
of equation (43a). We can find a T sufficiently large so that the ratio of
the first to second terms of equation (43a) = 6, . With T so chosen

P, < (14 6)2exp {—[(R* + 5 — 6,)" + (C* — B! + 6,)* — R]T}
which is Theorem 2.
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Second and Third Order Modulation Terms
in the Distortion Produced when Noise
Modulated FM Waves are Filtered

By S. 0. RICE
(Manuscript received August 8, 1968)

This paper is concerned with the distortion produced in a frequency
modulation wave when it passes through a filter. The phase or frequency
modulation representing the signal is assumed lo be a band of gaussian noise.
The main result is an expression for the power spectrum W q(f) of the output
phase angle 0(t). This expression holds for any filter, contains all of the
distortion terms due to second and third order modulation, and is suiled
to computer evaluation. It is useful in many cases, but it has the shortcoming
of mot containing any modulation terms higher than the third order.

A second result is an approxzimation to W,(f), based on log (1 + z) =~ x
(that is, a “first-order” approximation), which is encountered in the deriva-
tion of the main result. Although it does not contain all of the second and
third order modulation terms, it does contain higher order modulation terms
which may give most of the distortion in some cases. The resulls given here are
compared with those obtained earlier.

I. PREFACE

This work is a sequel to “Distortion and Crosstalk of Linearly
Filtered Angle-Modulated Signals” by E. Bedrosian of the Rand
Corporation and myself.' One of the principal results of that paper
is an expression for the distortion produced when a frequency modula-
tion wave, modulated by gaussian noise, passes through a filter as-
sumed to be symmetrical about the carrier frequency.

The assumption of symmetry simplified the analysis, but led to
zero second order modulation; and consequently the results do not
apply to many cases of practical interest.

The main result of this paper is an expression for the distortion
which contains all of the second and third order modulation terms pro-
duced by a general filter. It includes the earlier result as a special case.

87
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As before, the input phase angle is assumed to be a gaussian noise.

Some time ago Mr. Bedrosian and I worked out, independently,
the second order modulation terms. His analysis is somewhat different
from mine and throws a different light on the problem. Since each ap-
proach is of interest in its own right and since we were unable to
combine the two without losing useful results, we decided to publish
our work separately. An early version of Bedrosian’s analysis is given
in & RAND memorandum.?

II. INTRODUCTION

When an angle-modulated wave (FM or PM) passes through a
filter, the signal becomes distorted. For a multichannel system this
distortion may produce erosstalk. In many practical cases the second
and third order modulation terms give a good measure of the distor-
tion. These terms have been studied by a number of investigators. In
this paper we obtain some general expressions for them for the case in
which the modulation is gaussian.

Our main results includes all of the second and third order modu-
lation products. In this respect, it is more general than some of the
earlier expressions for the distortion (see Medhurst,® Magnusson,* and
Liou®). However, it does not give higher order modulation terms, some
of which appear in earlier “first order” approximations. A first order
approximation (similar to the earlier ones) occurs in our derivation of
the main result. It is stated, along with the main result, in Seetion III.

Ag in Ref. 1, the complex form of the filter input is

s() = exp [iwet + t(t)] 1
where the carrier frequency is w, = 2rf, and the signal is carried by the
real input phase angle ¢(f). Let the filter have the transfer function G(f)
and the impulse response g(t):

o) = [ GO exp (i) df,
- @

o) = [ ot e (—iwat, =241,

where the response g(f) may be complex and may be different from zero
when £ < 0.
The filter is regarded as a bandpass filter for which G(f) is large only
near =+f, . Let normalized functions be defined by
G(fo + g(?) exp (—dw,l)
() = —~F - H =L =22 T,
B="gGg » "W N "
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From the definitions and the Fourier relations (2) it follows that

s = [* T exp G df, 1) = [ 20 exp (i,

- 4)
[Cawar=1, =p= [ 0 e (~iwdat
where the asterisk denotes “conjugate complex.”
The filter output corresponding to the input s(¢) is
s(8) = f glu)s(t — w) du
= [ 0t exp Ll — ) + diplt — )] du
o (5)

[G(J‘u) f_ : v(u) exp [ip(t — u)] du:l exp (iwot)

= exp (—a, — 1Bo) {R(?) exp [Z6(1)]} exp (o)
= exp (—ay — 80) {exp [1O(1)]] exp (iwol).
The definition of v(x) is used in going from the second to the third line.
In going from the third to the fourth line, the attenuation and phase
shift, ao, Bo at the carrier frequency have been introduced by writing
G(f,) as exp (—ay — 18,). The complex phase angle ©(f) is related to
the envelope R(f) exp (—a,) and phase angle —8, + 8(t) of the output
[@ and B, are constants which do not depend on ()] by
exp [iO(1)] = R(1) exp [16(1)], 10() = In R(t) + 6(1), )
8(1) = Re ), In R(t) = —Im O(f).

Comparing the third and fifth lines of equation (5) leads to

O = —iln \: f i y(u) exp [igp(t — u)] du]- @

The analysis may be simplified by introducing the “linear portion”
®(¢) of O(t). Working with the case in which the input () is small gives

o) = —‘ilﬂ[l +'if::'y(u)<p(t—u)du+ ]

~ ()i [ vl — ) du,

-l
-9
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and this leads us to define the linear portion of @(f) as
a() = [ velt — ) du. ®)

The complex phase angle ®(f) may be separated into its linear and
nonlinear portions by adding and subtracting ®(f) in the exponent in
equation (7):

O) = &) —7In l:f y(u) exp [te(t — w) — 1®(1)] du]- (9)

-

Adding and subtracting 1 in the integrand and using the fact that the
integral of () is unity gives the fundamental relation

O) = o) —iln[1 + K(1)] (10)
where

mo=I:mwmupwa—m—wﬂm—1L (11)

In most cases of practical interest, K(f) tends to be small. When
| K(t) | < 1, expansion of the logarithm gives the series

@m:qg—mm+%ﬁm—§mm+u- (12)

upon which our analysis is based. When ¢(f) is gaussian, | K(f) | will
oceasionally exceed unity. It appears that results obtained from the
series of equation (12) represent the first few terms of an asymptotic
series. This is further discussed in Appendix F.

If ¢(t) is small for all values of {, expansion of the exponential in the
definition of K () [equation (11)] shows that K(t) is 0(¢%). Our main
expression for the distortion, given in Section III, neglects terms of
order ¢°. For this accuracy, equation (12) can be written as

Ot) = (1) — iK() + 2 K*() + 0. (13)

Sinee the variable portion 8(f) of the output phase angle is the real
part of @(t), the de portion, 8, , of 8(t) is the average value of Re O(t).
When the input ¢(f) is a stationary gaussian process with zero mean,

835 = Re <@(t))nv

Re <—z‘K(t> EY g'Kﬂ(t)> + 06 (14)

Im (K(t) — 27'K*(#))ur + O(¢")

I
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where ( )., denotes “‘ensemble average” and (B(t)).. is zero because
®(f) depends linearly on ¢(t). Notice that from equation (5), the total
output phase angle is 6(f) = —B, + 6(f) and that the de part of 6(t) is

édc = _.60 + B ;

The two-sided power spectra W;(f), Wo(f) of 8(t), 8(f) contain the de
spikes (—Bo + 8a.)" 8(f), 6. 8(f), respectively. Furthermore,

Wi(f) = (85 — 28464.) 6(H) + Wa(f).
Here 4(f) is the unit impulse function.

In the following work it is convenient to ignore 8y, and we shall
call 8(f) itself the output phase angle.

III. STATEMENT OF PRINCIPAL RESULTS

In all of the results stated here, the input phase angle ¢(t) is gaus-
sian with zero mean. The two-sided power spectrum of ¢ () is W,(f).
The two-sided power spectrum of the output phase angle #(t) is Wy(f).

3.1 Second and Third Order Modulation Terms in W,(f)
The principal result given in this paperf is an expression for We(f)
which contains all of the second and third order modulation terms:

W) = 62 8(f) + W0 | UG + U*(=N [*

+ é ‘/:m d-p Hf\ﬂ(p)ﬂfw(f - P) t T(Pr f - P) - T*(—p, -—f -|— P) IB

+ 21—4 f: dp f_i de W (oW (W, (f — p — o)

| S(pya,f — p— @) + 8*(—p, —0, =+ p+0) [’
+ 0" W,). (15)

 Note added at press time: FEquation (15) gives essentially the first few terms
of a general expansion due to A. Mircea, Rev. Roum. Sci. Tech —Electrotechn
et Energ., 1967, ¢. 12, No. 3, pp. 3569-371, and Proc. IEEE (Correspondence), Octo-
ber 1966, 54, pp. 1463-1466. 1 regret the oversight of Mircea's excellent. work. Use
of his results would have substantially improved this article.
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Here the de part, 8., of 8(t) is the imaginary part of

1 --]
p.=—z[ _dp W(9)S(p, —)

_ % _°° dp f do W ()W ,(0)8(—c, —p)[28(e, p) — T(c + p)]
+ 0(¢") (16)

and
TCp,f — o) = S(p, f — p)
+ [ do W @280, (e, f — 5 = So, f — o)
— T()I(—a)S(p, f — 0) + Sl + o,/ — p — 0] (17)

Ug) = T + [ do W(AT@S(—p, 1)

+ [C o [ a0 W W@ ~3T+ )S(—p— 0, N+ 1)

-[88(—e, )S(—p, N — Slo, f—p—0a) +8(p— o, f— p)]}.
(18)

The I'(f) is the normalized filter transfer function defined by equa-
tion (3) and the functions S are discussed in Appendix B. They depend
only on the filter. That is, they are independent of W,(f), and are
defined symbolically by

8@, @) = H 1™ — T'(@)] (19)

where the power y* of ¥ is to be replaced by I'(z) after multiplying
out the product. The S’s are symmetric functions of their arguments.
Forn =2 and 3,

8(p, 0) = ¥*** — ¥’T(e) — y'T(p) + T(p)T(0)
T(o + o) — T(A)T(), (205
Se,e,v) =T(p+ 0o+ — I'(p+ )T[)

— T(p + »)T(c) — T(e + »)T(p) + 2T () T()T ().

The S(p, o, v) of Ref. 1 is the negative of the one used here.

Il
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In the “order of” symbol appearing in equation (15) the W, enters
for dimensional reasons. This 1s in line with

[ atw.p = @) (21)

as can be seen by integrating hoth sides of equation (15) from f =
—o0 t0 f = oo.

In some instaneces the expression for Wy(f) is useful when rms ¢ (%)
is large but rms dg (¢) /dt is small.

Bedrosian has computed curves showing the second order distor-
tion for the case of quadratic phase shift, that is, for I’'(f) of the
form exp[iAf?].2

As equation (15) stands, it is oriented towards phase modulation.
For frequency modulation the time derivatives ¢'(f) = de(t)/dt, 0'(f) =
dd(t)/dt replace the phase angles ¢(), 6(t) as the items of interest. Since
the power spectrum W, (f) of #'() is equal to (2xf)*W,(f), multiplying
(15) by (2rf)® converts it into an expression for Wy (f). On the right side
of (15), the factor W,(f) in the first line is replaced by W ,.(f) and the
W .’s appearing in the integrands may be transformed into W,.’s with-
out introducing infinities. The last statement is seen to be true for the
second order modulation integral when we write

Wo@W,(f —p) = Wo ()W, (f — p) @m)7*p7*(f — o)™

and observe that the product p™'(f — p)”'T'(p, { — p) remains finite
even when p and (f — p) approach zero. The third order term may be
treated in a similar way.

In many applications W,.(f) is proportional to D* where

- (40).

and D is the rms frequency deviation in cycles per second. Then the
second and third order modulation integrals in (15) are proportional to
D* and D° respectively, as D tends to zero. This suggests that the
remainder term, 0(¢*W ,), is proportional to D®. For this reason we shall
sometimes refer to (15) as the “small deviation” approximation. When
the FM signal to crosstalk ratio in dB is plotted as a function of log D,
the behavior of the resulting curve as D — 0 can be computed from (15).
Indeed, if the second order modulation predominates, (15) furnishes an
asymptote to the curve with a slope of 6 dB per octave. If, because of
symmetry in the filter, the second order modulation term in (15) is
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zero, the third order term gives an asymptote with a slope of 12 dB
per octave.

Some idea of how equation (15) begins to fail as D increases from 0
may be obtained by considering the case ¢(f) = A sin w,f. Then the rms
frequency deviation is D = f,A4/2! and the filter output is

0) = 32 J(AVG( + nh) exp (i + )

where J,(4) is a Bessel function and w, = 2rfe . Consider only the
second harmonic. It is proportional to J,(4), and the approximation
underlying (15) is roughly equivalent to replacing J,(4) by A*/8, the
leading term in its power series. The value of A which makes A4%/8
exceed J,(4) by 3 dB is A =~ 2.0 and the corresponding D is 1.4 f, . If
the baseband of a gaussian FM wave were flat and extended from 0 to B,
the expected number of zeros per second would be 1.16 B. This is the
same as the number of zeros of A sin w,t with f, = 0.58 B. This represen-
tative value of f, leads to the estimate that (15) will be in error by 3 dB
when D =~ (1.4) (0.58) B ~ 0.8 B. Comparison of (15) with experimental
values indicates that the 3 dB error point typically occurs when D lies
between B/2 and B.

3.2 Power Spectrum of a8(t) + b In E(f).

Equation (15) for Wy(f) may be modified to give information re-
garding the fluctuation of the envelope R (t). This information may
be of interest, say, in determining the distortion produced by “AM to
PM conversion.”’s More generally, suppose that one is interested in the
power spectrum W, (f) of

z(@) = ab(t) + b In E() = Re [(a 4 b)B(t)] (22)

where @ and b are arbitrary real constants. Then W,(f) is given by
an expression obtained from equation (15) upon replacing U(f),
T(p, f—p) and 8(p, o, f—p—a) by (a+ib)U(f), (a+ib) T (p, f—p), and
(a+1b)8(p, o, f—p—a), respectively, so that U* (—f) is replaced by
(a—ib)U* (—f), and so on. (See Appendix E.)

3.3 Second and Third Order Modulation Terms jor “Small and Slow”
Frequency Devialions

The expression (15) for W,(f) simplifies when

- (1) T(f) can be expanded as a power series
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ry = HedD _y o ol 23)

n=1
and

(1) the effective spread of W,.(f) is so small that the I's used in
equations (15) to (20) can be replaced by the first few terms of their
power series expansion. Roughly, this means that the top baseband
frequency is small compared with the filter bandwidth. The instantaneous
frequency changes slowly in comparison with the envelope of the impulse
response of the filter, and the quasistatic case is approached. With these
assumptions the resulting simplified form of W,(f) is given by equation
(126). A more complete form of the small and slow deviation approxi-
mation is given in equation (133) which brings out the asymptotic
nature of the results.

The sum of the second and third order modulation terms given by
the integrals in equation (126) [which are the simplified versions of
the corresponding integrals in equation (15) ] 1s

D = 270w + 200 [ de WL — 96 — o

+ 67 (N’ f dp f de W ()W (W (f — p— a)p’a*(f — p — 0)".

o= - (24)

Here WI(f) is the portion of W,(f) which gives the interchannel inter-

ference, that is, the noise a listener would hear in an idle channel in a

multichannel frequeney division multiplex angle-modulation system.
D is the rms frequency deviation in cps,

- (2]),

where { )., denotes ensemble average. The quantities A,; are the im-
aginary parts of the semi-invariants )\, defined by the expansion

In T(f) = ”Z; % (26)

Equations (125) express the first five A,’s in terms of the first five a,’s,
the coefficients in the expansion of T'(f).

The corresponding approximation for the power spectrum W(f)

of x = af(f) + b In R(t) [see equation (22)] is obtained by replacing A,

in equation (24) by (a\.: + b\,.) where )\, denotes the real part of A, .
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In the important FM case in which the baseband signal ¢'(f) has
a flat power spectrum, the two-sided power spectrum of ¢'(f) may be
taken to be

0, |f|>B
(2xD)*/(2B), |f| =B

where the baseband extends from f = 0 to f = B (that is, from —B
to +B for two-sided spectra), and D is the rms frequency deviation.
Then

W) = { (27)

0, [f1>B

W) = Wo.(N/@rf)* = { (28)
D’/@2Bf), |f|=B.

When this expression is used, the integrals in equation (24) may be
evaluated and it is found that, for 0 = |f| = B,

DG
48B°
0=|[fl=B. (29

W) = 2z @B — | D + 27 DN + gz BB* — A0,

The average signal power in an elementary frequency band extending
from{ to f + Af in the input base band is W,.(f) Af (radians per second)”.
The ratio of the interference power to the output power in the same
elementary band is

WD Af _ WD
Wo ) Af ~ W) (30)

For the flat baseband FM case we may approximate W, (f) by W, (f) =
D?/(2Bf*) and use equation (29). This leads to the approximation

-2 (o Yo srn B oG]

@31

for the ratio of the interchannel interference power to the signal power
in the elementary band (f, f + Af). This ratio has meaning only if
11l < B.

Liou has given an approximation which is equivalent to equation
(24) for W(f) with several more terms included.” This approximation
is discussed in Section XII.

The small and slow deviation approximation described above gives
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results which agree well with Monte Carlo computations made by C. L.
Ruthroff.® For illustration we take the simplest of Ruthroff’s cases,
the one in which the transfer admittance of the filter is

G(f) = 1+ 22 —: w2 T W = Ffts (32)

Here f, is the carrier frequency and f, is the filter semibandwidth.
Putting { = f, gives G{f,) = 1. Putting f = ' + f, gives z = ¢f'/f,
and

o G 1
7)==

—In (1 + 22 + 22" + 2%

(33)

5

3
= —2 T2 — B+ -

) ]uu
= 1; A -~

The last line follows from the series of equation (26) defining the A,’s
as the coefficients in the expansion of In T'(f"). In going from line 2 to
line 3, the logarithm is expanded by setting a; = 2, 0p = 4, a3 = 6,
a, =0forn > 3in

In (1 + ;i a,,:c"/n!) = i Azt /n!

and by using the expressions (125) for the \.’s.
Substituting * = 7f’/{. in line 3 of equation (33) and comparing the
result with the last line gives

k1 = _2(?'-]":_!)) >\2 = 0! )\3 = 2(?‘.}‘:—1)31 ?\4 =0

Hence Ay; = 0, \y; = —2f7%, As; = 0, and the approximation of equation
(31) for the ratio of the interchannel interference power to the signal
power leads to

—10 log,q W:gg ﬁ; ~ —10 logy, [%2— (3 - %)] (34)

In his Fig. 15 Ruthroff has plotted values of

—10 logio [W3(f) Af/W(f) 4]
for several different values of D/B and f/B with B = 7 MHz and
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f. = 119 MHz.® The agreement with our equation (34) is good at
f/B = 1.0. Our D/B is the same as Ruthroff’s ¢/W and our f/B = 1.0
corresponds to Ruthroff’s slot 10. At f/B = 0.4, equation (34) gives
values which are about 3 or 4 decibels less than the Monte Carlo values,
but this may still be regarded as good agreement.

Similar agreement is found when the small and slow deviation approxi-
mation is applied to a number of the other cases examined by Ruthroff.

3.4 A “First Order” Approximation

Although equation (15) is useful in some FM distortion problems,
in some cases it is of no help. One example concerns the distortion
produced by an ideal filter centered on the carrier frequency and having
a semibandwidth exceeding 3B, where B is the baseband. That is,
W.(f)is0for | f| > B.In this case the distortion is produced by modula-
tion terms of order higher than the third, and these are neglected in
equation (15).

For such problems “first order” approximations can sometimes be
used. The term ‘‘first order” refers to the approximation In (1 + z) &~ =z
where z is of the nature of K(t) in equation (10); it does not refer to the
order of the modulation products in z. Different choices of x lead to
different first order approximations. The first order approximation
given by the first two terms in the series of equation (12) for @(f) is

8(t) =~ Re ®(f) + Im K(z). (35)
The output phase angle 6(f) may be written as the sum
0(t) = b + 6,() + 0a,()
where 6,(f) = Re ®(¢) is the “linear portion” of 6(¢), and 6,,(f) given by
8,.(1) 8ty — 8,08 — 8, (36)
= 8() — Re ®(l) — .

is the time varying part of the “nonlinear distortion” in 8(¢). The first
order approximation for &,.(f) corresponding to the first order approxi-
mation of equation (35) for 4(f) is

0.,(t) =~ Im K(t) — 62 &~ Im K(t) — Im (K())., = y(t) (37)
where
y(t) = Im [K(t) — (K(t))wl- (38)

The work of Section VI, which is part of the derivation of equation
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(15), shows that the power spectrum of y(t) is
W.,() = 27" Re [P(f) + Q) + P*(—1) + @*(—1)] (39)

where
P) = =5 [ drexp(—ian) [~ au [ dovtin®
-exp [at) + a)]lexp (2ew, v, )] — 1}
0 =1 [ arew (—iwn [ du [~ doyrno)
exp [a%(d) + al)] exp [26(u, 0, )] — 1)
aw = =5 [ ot WDHDHL~D o
ctw,0,7) = =3 | af W.DHA=DH) exp (iwr)

iy, 7) = 5 [ df WAOHEDH.() exp ar)

H,(f) = exp (—iwu) — T(f), o = 2xf.

The funection Q(f) is real when f is real, and P(f) is an even function of f.

The first order approximation W,(f) for the power spectrum of 6,.(t)
contains some higher order modulation terms which are not contained
in our main equation (15) for W,(f); conversely, equation (15) contains
terms which are not in W,(f). In using the first order approximation of
equation (35), which may be rewritten as

8(1) = Re®(t) + Im K(t) + O(K?),

one should guard against throwing away* [in the O(K®) terms] quantities
which are of the same order as those being computed from Re ®(f) +
Im K(t) (the leading term). Although each case requires its own in-
vestigation, it is helpful to remember that K (t) is O(¢"). Furthermore,
when v(t) is real, Im K(f) is O(¢"). Also when I'(f) = 1, K(t) becomes
0; and when

T — 1] < ekl

for all real values of f (as in the case of small wave-guide echoes), it

*This type of error has been discussed by Enloe, Ruthroff, Gladwin, and
Medhurst in Refs. 7 and 8.
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may be conjectured that K(f) itself is O(e) irrespective of how large
{¢" )y may be.

The approximation 6,.(f) = y(f), is not quite the same as earlier first
order approximations.”**™** It is a closer, but more complicated,
approximation because ¢(t — u) — ®(1) is used in the integral equation
(11) for K (t) instead of ¢(t — u) — ¢(f) as in the earlier approximations.
Appendix D gives some results obtained when the present analysis is
repeated with ¢(f — %) — ¢(f) in place of ¢(t — u) — 2(1).

Equation (39) for W,(f) gives a first order approximation for the
power spectrum of 8,.() = 6(t) — Re ®(f) — bu. . The corresponding
approximation for the power spectrum of

In R(t) + Im&(t) — [ln B(f)]l:. =~ Re [K() — (K@)l = z()
is
W) = 27 Re [-P()) + Q) — P*(— + Q*(—]

3.5 Simplification When Filter has Symmetry T(—f) = I'*(f)
‘When the filter has the symmetry

r(—f) = T*() (41)
about the carrier frequency, the even order modulation terms disappear,
S*(—z,, +++ , —,) becomes equal to S(z1, -+, Ta)s and equation (15)

becomes

Wi = W | UG
+ f: a | z do W (D)W (W, (f — p — o)

| 8,0, f—p—0)|"+00W,). (42

Here U(f) is still given by equation (18) and S(p, o, ) by equation (20).
This expression for W,(f) agrees with one of the main results of Ref. 1
when the double integral in equation (18) for U(f) is assumed to be so
small that it may be neglected.

When T'(—7f) is equal to T*(f), the coefficients a, in the power series
of equation (23) for T'(f) are real when n is even, and imaginary when
n is odd. The same is true for the A,’s of equation (26). Hence Az , Au
are zero and the second order modulation terms disappear from the
small and slow deviation approximations equations (24), (29), and
(31) for Wi(f).

The relation T'(—f) = I'*(f) implies that v(u) is real and that H.(—7)
is equal to H*(f). Then a(u), ¢(u, v, ), and é(u, v, 7) are real and é(y, v, 7)
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is equal to —c(u, v, 7). Both P(f) and Q(f) become even and real. Equa-
tion (39) for the power spectrum of y(£), that is, the first order approxi-
mation for the power spectrum of the nonlinear distortion 6,.(t), be-
comes

w.(f) = P() + Q). (43)

Here the triple integral for P(f) is the same as that given in equation
(40); and the triple integral for Q(f) may be obtained from the integral
for P(f) by changing the sign of 2c¢(u, v, 7). Hence equation (43) be-
comes

W) = — [ dr e (—ion) [_du [ doxtu)

-exp [a(w) + a@)] sinh [2c(u, v, 7)]  (44)

where w = 2, and a(w), ¢(u, v, r) are given by equation (40).
IV. INITIAL EXPRESSION FOR THE POWER SPECTRUM OF 6 (f)

When 6(t) is a stationary noise process its two-sided power spectrum
W,(f) is the Fourier transform of its autocovariance:

]

Wolf) = f exp (—iw0()0 + e dr, @ =2nf.  (45)

Denoting functions with arguments ¢, t + r by subseripts 1, 2 and using
8() = Re O(1) = 27[0() + 6*(1)) (46)
gives
IO+ e = (8 -
27" Re [(0,02)., + (0%0,)..].

li

The procedure of Appendix A and equation (13) for the complex phase
angle G©(f) lead to

©:8:2) = A(r) + A(—17) + 06"

(48)
(©%8.)ey = B(r) + B*(—7) + 0(¢")
where A(7) and B(r) are the ensemble averages
A(r) = (8,(27'®, — 1K, + 127'K3) — 27K (K» — K2))u (49)

B(r) = (3¥(27'®, — iK, + 127'K3) + 27 KA(K, — K3))y -
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The remainder terms in equation (48) are O(¢®) instead of O(¢") be-
cause the ensemble average of an odd order term is zero.

It also follows from Appendix A that equation (45) for the power
speetrum of 8(f) goes into

W) = 27" Re [P(f) + Q) + PX—1) + @Q<(—N] + O@'W,) (50)

PY) = f:ﬂ i~ Bl e

Q) = ./‘_” exp (—iwr)B(7) dr.

Although the functions P(f), @(f)} used here are not the same as those
in Section III, they are of the same nature.

V. CALCULATION OF AVERAGES NEEDED FOR COVARIANCES

The equations of Section IV show that the value of (8(1)6(f + 7))u.
depends upon various ensemble averages of produets of ®(f) and K (7).
When the input phase angle ¢(f) is gaussian, these averages may be
computed by using a result proved in Ref. 1.

Let L be a linear operator which operates on functions of £, and let

L exp (wt) = exp (iwt) {(f), w = 2xf, (52)

Let ¢(t) be a stationary gaussian process with two-sided power spectrum
W, (f). Then

(exp G0 = oo | 3 [T arw .- ] @

Setting xLe(f) for Le(t) and comparing coefficients of x* in the power
series expansions of the two sides of equation (53) shows that

[ arw.puna—n = (Lo

That (exp [Leo(f)])er is equal to exp {—27'{([Lo(D)])e] follows from
the fact that the real and imaginary parts of Le(t) are correlated gaussian

processes.
In dealing with K (¢) it is convenient to introduce the function J (v, 7)

defined by
J(, ) = exp [iet + 7 — v) — @@ + 7)]. (h4)
The dependence of J(v, v) on { is ignored because the right side of
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equation (54) is a stationary random process, and J (2, 7) will be used
only to caleulate ensemble averages. The examples, which follow from
the definition of equation (11) of K (2),

]

(K)o = (K)o = [ du 7@ (T, 0) — 1y

(K, K)o = (KK 4+ 7)) (55)

Il

[ [” @ ytr@iisw, o) — 106, 7 = 1

[~ oy aim@1+, o — 176, » — 1.

J—mn

(KK = [ du

show that averages of the type (J(u, 0))u.., (J(u, 0)J(», 7))a,, and
{(J*(u, 0)J (v, 7).y are needed.

To caleulate {J(u, 0))., from the general result, equation (53), let
L be the operator which carries ¢(f) into ¢(f — u) — ®(¢). Replacing
&(t) by the integral which defines it gives

Lo() = ot =) — [ dsv(oelt — 9).

The funetion £(f) associated with I is obtained by setting exp (iwt)
in place of ¢(t):

exp (twt)f(f) = Llexp (iwi)]

exp [tw(t — w)] — /m ds v(s) exp [t — 5],
Uf) = exp (—iwu) — T(f) = HJ]).
Then equation (53) gives
(exp [iLe()])u = (exp [tp(l — w) — 12(1)])w
= (J(u, 0)). = exp [a(u)] (56)
where

a) = =5 [ df W(DH.DH(~). (57)

The functions a(u) and

H.(f) = exp (—12mfu) — T'(f) (58)
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play important parts in the analysis. The present H.,(f) is the negative
of the one used in Reference 1, a change made to simplify the analysis.

The calculation of {J(u, 0)J (v, 7))y proceeds in much the same way.
Let

Lo(t) = o(t —u) — () + ot + 7 —0v) — ®(t + 7),
U = HJf) + exp (twr)H/(f),

I o
— 5| df W.(NEHE=1)
2 f_w (59)

= =5 [ @ W UEOH—) + HOH(-D
+ 2 exp (iwn)H(—~DH.()]
= a(u) + a@®) + 2c(u, v, 7)

where W (f) is an even function of f and ¢(u, v, 7) is the integral

v, 1) = —5 [ df WDHA—DH() exp 2efr). (60

Consequently,
{(J(u, 0)J@, 7))y = exp [aw) + a@) + 2c(u, v, 7)]. (61)
Similarly, to caleulate {J*(u, 0)J (v, 7)).. let
Le(t) = —o(t —uw) + ®*(t) + ot + 7 —v) — ({ + 7), (62)

6) = —exp (—iw) + [ dsy*(E) exp (—ius) + exp (iwr)H.(0)

= —H*(—f) + exp (iwr)H,(f)

where the Fourier transform of y*(s) is I'*(—7). The work of equations
(59) and (60) goes through much as before with —H*(—f) in place of
H.,(f). The result is

(J*(u, 0)J (v, 7)) = exp [a*w) + al) + 26(u, v, )] (63)
where

s, ) = 5 [ @ WDHIDELD exp 2efr). (68

All of the averages needed are given in Tables I and 1I. Items 1, 3,
and 6 in Table I have just been computed, and the others may be ob-
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tained in a similar manner. The entries in the last column of Table I
may be verified by expressing the a’s and ¢'s as ensemble averages
[see equation (67)] and using {exp [1Le()])w = exp { =27 ([Le@)]*)e]-

Table IT gives averages of products in which one factor is ¢(f — u).
The first average, (¢(f — w)e(t + 7 — ¥) )., , is the Fourier transform of
W, (f). The second average, {(¢(t — w)J (v, 7))av , is the coeflicient of 7z
in the expansion of exp ([7Le¢(t)]) where

Lo() = zp(t —w) + ot + v — v) — &(t + 7) @)
(f) = z exp (—iwu) + exp (twr)H,(f).

The third average may be computed in a similar way.
The following list brings together the integrals a(v), c(u, v, 7), + -
which appear in Tables I and II:

aw) = —3 [ @ WLOHMDHL-D
clu,0,7) = —5 [ df W (DH(~DH.(D exp G2xfr)
= (©6)
@) = —; [l W.HADHY—)

dtu,0, ) = 5 [ df WDHEDHL(D exp (2efr)
where H,(f) = exp (—i2nfu) — T'(f), and replacing H,(f) by —H*{—{)
in a(u), c(u, v, 7) gives a*(w), é(u, v, 7). Also
a(u) = clu, u, 0), clw,v, 0) = clv, w, 0),
clu,v, —7) = ¢, u, 1), éu, v, —1) = @, u, 1), 67)
clu, v, ) = —Hlelt —u) — (D]le(t + 7 —v) — B[ + 7))
é, v, 1) = et —w) — P*@]le(t + 7 —v) — 2{ + 1)])av -

When I'(—§) is equal to I'*(f), both y(¢) and ®() are real; and it
follows that a(u), c¢(u, v, 7), é(x, v, 7) are also real. Furthermore, H,(—{)
= H*(f) and é(u, v, 7) = —ec(u, v, 7).

VI. THR POWER SPECTRUM OF K (1)

The de¢ portion of the complex random process K () defined by the
integral in equation (11) is the complex constant
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KO = Koo = [ dun@(7, 0 = Dan
= (68)

= [ duyt){exp la@] — 1).

This follows from equation (55) for (K,).. and the expression for
{J (4, 0)). given in Table I.

The power spectrum of K(t) is the Fourier transform of (K%Ks)a .
The integral for (K*K,).. given by equation (55) and the ensemble
averages of J*(u, 0), J (v, 7), and J*(u, 0)J (v, 7) given in Table I lead to

(KK = KK D + [ du [ do v (@r0) exp [0*() + a@)]

' {exp [ZC(TL, v, 'r)] - 1] . {69)

Integrals of the type appearing in equations (68) and (69) may be
expressed as infinite series involving the S functions [which depend
only on T'(f)] described in Appendix B and the more complicated func-
tions S, described in Appendix C. Only the first few terms need be
considered when most of the distortion arises from second and third
order modulation.

The definition [equation (167)] of the complex constant S, and its
series expansion [equation (171)] give

<K(t)>nv = SCI -1

1 -]
= -5 f _dp Wo(p)S(p, =)

+ % fi 9 f.,, do W ()W ,(0)S(p, o, —p, —0a) + o("??é)

Expanding exp [2é(x, v, )] in equation (69) in powers of 2¢(y, v, 7),
replacing each é(u, v, 7) by its defining integral [equation (66)] with p in
place of f, and integrating with respect to u and v with the help of

Sors -2 o) = [ oy e (a0] [THG0 ()
leads to
5 0 1 -] «@ n
(K?Kﬁnv = | (Kl)av I + ;;{1 f_w dp, - - jj_n dpn[;‘[:ll Wu(Pk):l

cexp [2rr(py + <o+ + p)ISH(pr, < s P)Saler s s ). (72)
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When this expression for (K*K,),, is put in the integral
Wel) = [ exp (—ion)(KiKa)o dr, =2  (13)

for the power spectrum, Wx(f), of K({) and the Fourier transform of
unity denoted by &(f), the result is

W) = | (KO [ 50) + [ dr exp (—iwn)
J " du [ dvyran®) exp [t +a)] fexp (26,0, 911}

s+ 5 e [Can

n=1 T
5(f I * T p“)[kI':Il Wp(pk):l | Sﬂ(Pl gy = :Pn) |2
=[S =18+ W, | &M [

+ % f dp W (W, — 0) | Salp, f— ) [

+ % f.: dp f_: do W (D)W (o,W,(f — p — o)

'|83(p10-1f_9_0-)|2+"" (74)
The leading terms in the series for S,, S,, 8;, S; in terms of un-
subscripted S’s are given by equations at the end of Appendix C. The
inequality for S, given in Appendix C may be used to show that the last
series in equation (74) converges when W,(f) remains finite for all
values of f and {[¢(£)]*).. is finite. The convergence of similar series which
will be encountered later will be tacitly assumed.

vir. “PIRST ORDER” APPROXIMATION FOR POWER SPECTRUM OF ()

Before taking up the problem of computing W,(f) from 6(t) = Re O(t)
and

Oy = a() — iK(1) + £ K*(t) + 0",

which is the same as equation (13), we shall go through a similar, but
simpler, caleulation using the “first order” approximation

0@ = ®@) — K@) +06Y. - - - (75)
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Neglecting O(K®) terms in equation (14) for 8, , and in the covariance
expressions given in Section IV, shows that

B2 = Im (K(8))ur + O(¢")

(76)
Wif) = 27 Re [P(f) + Q) + P*(—f) + Q*(—=N] + O('W,)
where P(f), Q(f) are the respective Fourier transforms of
A(T) = (q’1(2_1‘1’z - ?:Kz) - 2_1K1K2)av (77)

B(r) = (@‘;(2_1@2 - ?-Kz) - 2—1K=§K2)nv

Expressions for (K*K,),, have been obtained in the preceding sec-
tion. Repeating the work with K, in place of K¥ brings in v(u), a(u),
G(’u, v, T)J '_Hu(_p)a and (_)nSn(_pi y T _pn) in pla'ce of 7*(1"')1
a*(u), é(u, v, 7), and H¥*(p), 8*(p1, - -+ , pa). The result is

Koo = (KT + [ du [ doytin) exp 0@ + a0)]

. {exp [26(11,, v, 7)] - 1}

gt + 5 [ [ an 1T Ww(pk)]'

n!
-exp [2nr(py + -+ + p)]
'Sn(_Pl » T _Pn)Sn(Pl P | Pu)- (78)

The remaining portion of A(7) in equation (77) is
<®1(2_1‘b2 - ?:K2)>av

= ["au [ dorvtin )@ et~ et T —1) — gt — 0T, D
= [ au [ dovtint)

[ af W) exp listr + w0127 exp [—in] + H.(f) exp [a0)))

- (79)
where w = 27f and Table II has been used in going from the first equa-
tion to the second. Integration with respect to u brings in I'(—f), and

integration with respeet to » brings in both T'(f) and the function S,(f)
of Appendix C.

(2,278 — 1K)y = fw df W.(f) exp (lon)T(—f)[27'T()) + Slgﬁ])-
- 80

Replacing &, , v(u) by ¥, v*(u) causes I'*(f) to appear in place of
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I'(—{) and shows that the remaining portion of B(r) in equation (77)
is

(B%427' P, — 1Ko))uy = f df Wo(f) exp (lor) T*(H)[27'T({) + S:(N].

- (81)

The function A (r) is the sum of —27(K,K,), obtained from equation
(78), and (80). Its Fourier transform is

P(j) = W, (NT(=N27'TH) + S:(N] — 27 (K )w]* 8()

- f  dr exp (—a2nn) f i du f_ : i 7)

-

-exp [a(w) + a@)]{exp [2c(u, v, 7] — 1} (82)

where the leading term follows immediately from equation (80) and
the Fourier integral theorem.

The function B(r) is the sum of 27'(K#K,).., obtained from equa-
tion (69), and (81). Its Fourier transform is

Q) = WHT*DRTTH + SN + 27 | Ko [* 5(0)
+ % f_’-‘ dr exp (—12rfr) ﬁw du jj" dv v* )y ()

-exp [a*(w) + a()]{exp [2¢(u, v, 7)] — 1}. (83)
A first order approximation for W;(f) may be obtained by combining
equations (76), (82), and (83). Deleting the terms multiplied by &(f)
and W, (f) gives the first order approximation to the power spectrum of
the nonlinear distortion 8,, (). This approximation is stated by equations
(38), (39), and (40) in the section describing the results. We now proceed
to express the first order approximation for W(f) as the series given by
equation (90).
When equation (82) for P(f) is added to equation (83) for Q(f) and
the triple integrals replaced by their series, namely, the Fourier trans-
forms of the series appearing in equations (78) and (72), the result is

P() + Q) = W.(NIr(=f + T*(f]
27T + Si(D] + 27 (Ko [P — [KTY) 8(1)

+é—2i,f:udpl j:dpn 8(f — pp— =0 — pn)[gwp(pk)]

'Sﬂ(p[ | Prl)[_(_}"Sn(_pl ) T T _Pn) +St{ﬂ1 1 T pn)]
(84)
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Changing the signs of f and the variables of integration p,, ++- , pa,
and then taking the conjugate complex shows that the series in the
expression for P*(—f) + Q*(—f) differs from equation (84) only in
that the S, factors are replaced by

S*(—pyy ooy —p)[—(=)"S¥p , o0y )+ Sal—p, -, — 0]
(85)

Taking (—)""" out of the square brackets in equation (85) and then
adding the series term in P(f) + Q(f) to the series term in P*(—f) +
Q*(—1) gives

117 % n
3 S [ de o [ s = o po[g w;:a]

T
'| Sn(Pl y T rpu) - (_)".St(_Pl 1 T _Pﬂ) LZ (86)

for the series term in P(f) 4+ Q) + P*(—f) + Q*(—).
The term for » = 1 in the series of equation (86) is

W0 | 8i(f) + S¥(=1 I (87)

TFrom the first line in equation (84), the sum of the other terms in

P + Q) + P*(—f) + Q*(—f) containing the factor W, (f) is
W, NIT (=1 + T*(H)]
27T + 27 T*—1) + 8:() + SNl (88)
The real part of the sum of equations (87) and (88) may be written as
W0 I TG + ™= + 8:() + SH=NP (89)
These results and equation (76) for W, (f) lead to

W) = 6. &(f) + 47 W) | T + Si(h + TH—f) + 8= [*

+ 47 ; ;1, j:m dp, -+ /:: By S = gy — o2 pn)LI:Il Wm(pk)]
| Sulpry ey o) — ()8 (=p,y e, —pa) [P+ O'W,). (90)

The remainder in equation (90) for W,(f) is O(¢'W,) while the one
in the main result, that is, equation (15), is O(¢"W,). The result of
neglecting all O{¢'W,) terms in equation (90) agrees with the result
obtained by neglecting the O(¢' W ,) terms in the main result. This may
be verified with the help of
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80 = —5 | do Wu(AS(e, =5, 1) + 06

Si(p, v) = S(p, ») + O(p")
which follow from the equations at the end of Appendix C.

oD

VIII. ““SECOND ORDER” APPROXIMATION FOR THE POWER SPECTRUM OF 4 (1)

In Section VII the “first order” approximation to Wy(f) is com-
puted using the approximation

() = @@t) — iK() + 0(") (92)

for the complex phase angle ©(f). In this section the ‘“second order”
approximation to W,(f) will be computed using the approximation
given by equation (13),

0() = a(t) — K@) + % K*() + 06). (93)

The equations needed are given in Section IV. Portions of the ensemble
averages A (1), B(r) defined by equation (49) have already been obtained
in Sections VI and VII. The remaining portions needed are

(278K, (27K KD (94)
for A(r) and
(274K Dy, (—27'KAKD). (95)

for B(r).
From Table 11,

(27'®, K3),, = 27" ‘/f: du _/:: dv j;: dw y(w)y@)y(w)
‘(‘F(t - 'H.)[J(l?, T)J(w: T) - J(U: 'r) - J(wr T) + 1]>n'

-2 f: du j: dv [: dw v (u)y@)y(w)

[ d W) exp liute + WIRHOLVWE — T,

w = 2rf. (96)

In going from the first to the second equation, symmetry in v and w
has been used to replace H,(f) 4+ H,(f) by 2H,(f) and we have introduced
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part of the notation
U = exp [a(w)], V = exp [a@)], W = exp [a(w)]
z = exp [2c(u,v, )], v = exp [2c(u,w, r)], 2= exp [2c(w,v, 0)]
£ = exp [28(u,v, 7)], ¥ = exp [2(u, w, 7)], U* = exp [a*(u)].
(97)

As in equation (80), integration with respect to u brings in I'(—f),
and integration with respect to » and w brings in the functions S,4(f;),
S.(f) of Appendix C:

(@2 8K, = — [ df exp G W OT(—DISwlf) — 8,01 (98)

The corresponding portion of B(r), (:27'®%K3).., is equal to the
expressions obtained when y(u) and T(—f) are replaced by +*(u)
and I'*(f) in the right sides of equations (96) and (98).

The last portion of A(r) is

(2K K2y = 27 f_ : du f_ : a [ : dio 7@

(@, o) — NIJ@, 7) — J(w, 1) — 1]
Ci + Du(7) (99)

where C, is independent of = and represents the value of equation (99)
at T = oo. With the help of Table I and the notation defined in equation
(97), the ensemble average in the integrand may be written as

UVWzyz — UVe — UWy — VWz+ U4+ V + W — 1. (100)

The only variables in this expression which contain r are z and y. When
T — o, ¢(u, v, 7) tends to 0 and x and y tend to 1. Therefore the portion
of equation (100) which contributes to C, is

UVWz — UV —UW —VWe4+ U+ V+W-—1
and the portion contributing to D,(r) is the remainder
UVWa(zy — 1) — UV(x — 1) — UW(y — 1). (101)

The portion contributing to C, will be ignored since the Fourier trans-
form of C, , namely C, &(f), is part of 63, 6(f), and 6., will be treated by
itself.

When zy — liswrittenas (z — D)@y — 1) + @ — 1) + (y — 1)
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equation (101) becomes
UVWz(z — 1)y — 1)+ UV(We — D)(x — 1) + UW(Vz — L)(y — 1).

The symmetry in » and w allows the last summand to be replaced by
the second and hence

= /:: du f:a v j: dw 7 (w)y@)y(w)

27UV We(x — 1)y — 1) + UV(Wz — 1I)(z — 1)]. (102)

Expanding (x — 1), (y — 1) in powers of e(u, v, 7), ¢(u, w, 1), respec-
tively, and integrating termwise in much the same way as in the passage
from equation (69) to equation (72) leads to

i = 5 " ap o [T an [ T 70

-exp [2r7(py + -+ + pa)]
'Su(__pl g Mo g T n)[Snﬂ(Pl 3 T e Jpll;) - Sn(pl g Ay Pn)]

)n+m -]
- 1 n' m! f B T

e [ o [H In(po][ﬁ chak)]

ba =

+

cexp [2rr(p, + -+ o+ o+ o o)l

Busul—p1y 00y —Pay —OL, ) —Om)
S Y N WL B (103)
When the last portion of B(r) is written as
(—=27'K%K3)w = Ca + Dif7) (104)

the work goes through much as for C; + D,(r). The functions y*(u),
J*(u, 0), U*, £, and ¢ replace v(w), J(u, 0), U, x, and y, respectively.
The funetions I,.(—p.), and H,(—o,) in e(u, v, 1), c(u, w, 7) are replaced
by —H*(p,), and — H*(s,). This carries z, y into £, § and eauses 8,(p, ,

, —pn) to be replaced by (—)"S*(p,, -+, pa)- A similar replacement
holds for S,... .

The resulting expression for D,(r) is obtained by changing the sign
(because — K% replaces K,) of the expression (103) for D, (), and then
l'Epl'(I.Gi]'Lg Sn(_Pl y N _Pn) and Sn+m('7pl 1 P —0'-,,,) by (_)nSﬁ(pl '

“, o) and (—=)""" 8% .(p1, -+ , o), respectively.
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Now that expressions for the portions (94) and (95) of A(r) and B (r)
have been obtained (in effect), there remain two problems:

(4) taking their Fourier transforms to get their contributions to P(f)
and Q(f), and

(#5) adding these to the first order approximation for W(f) given by
equation (90).

The Fourier transform of (127'®,K32).. follows from equation (98)
and the Fourier integral theorem. The Fourier transform of (1274 K)oy
may be obtained in much the same way and consequently the contribu-
tion of these terms to P(f) + Q(f) is

f dr exp (—iwn)[(127'®,K3). + (127 '®%K3)..)

= =W (NIT(—) + T*DISW(T) — SiH]. (105

Consequently their contribution to the right side of

Wo(f) = 27" Re [P()) + Q) + P*(—) + Q*(=N] + 0("W,)  (106)
[from equation (50)] is

27 ,(f) Re [T(—1, + T*DIS() — Swlf;) + S5(=) — SH(=13)].

(107)

The Fourier transform of the portion D, (r) of (27'K,K3).. is obtained
by replacing exp [2wr(p; + -+ + p.)] and exp [2n7(py + -+ + oa)]
in equa.tmn (103) for D,(r) by 8(f — pr — -+ — pa) and 8(f — p1 —

. — @,), respectively. The Fourier transform of D,(r), from
( 2- ‘K*KE)“ , can be obtained similarly. The sum of these two Fourier
transforms gives the eontribution of D,(r) 4 D.(r) to P(f) + Q).
Changing the signs of f and the variables of integration p,, *** , om,
and then taking the conjugate complex, gives the contribution of
D,(r) + Dy(r) to P*(—f) + Q*(—/). When the two contributions are
added, it is found that the contribution of D,(r) + Da(7) to P(f) +
Q) + P*(—f) + @* (- is

5L [l o]

B — pr— o = p)[SHpy, o) = (=)"Sal=puy )]
'[Sﬂ(pl y " ') - (_)"Sﬁ(_pl y O ')
— SnO(Pl T ) + (—)“S:B{_Pl ' )]
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o0 0 1 o @
T2 ;,,.Z.I:n!m!j:wdpl f_wd”"‘
l: nl Wp(pk)jl[:[[i W‘,(Ul)] 6(f = Py om e a’m)

[S%mles  ++2) = ()" Barul—p1 5 - +°)]
[Samlpr 5 ) = (=)""Sk(—p1, - )] (108)

where the complete arguments of the S functions are shown in equation
(103).

The desired expression corresponding to equation (106) for W,(f)
is obtained by adding the significant terms in the first order approxi-
mation of equation (90) for W,(f) to the second order terms given by
equations (107) and (108). The remainder term, O(¢*W,), in equation
(90) can be ignored because the significant terms are obtained from
®(¢f) — ¢K(t) without approximation [compare equations (92) and (93)
for @(2)]. The result is

W) = 0 5f) + 47 W) | T¢) + 8i() + TH—) + 841 [*
“|"4:_ “i f dp1-..jj:dpna(f—pl—..._p“)[;:[,i[lww(pk)]

I Sn(Pl y " pﬂ) - (_)“St(_nul e _Pn) |2
+ expression (107) -+ 27 Re[expression (108)] + 0("W,).  (109)

The next section is concerned with the elimination of all O("W,)
terms from the significant portion of equation (109). When these terms
are eliminated, the result is the “main result” stated in equation (15).

IX. ELIMINATION OF HIGHER ORDER MODULATION TERMS FrROM Wj(f)

In this section all terms of O(x°W,) in equation (109) for W,(f)
will be disearded, that is modulation terms of order higher than three
will be discarded. Since the integral of W, (f) is O(¢"), all terms in
equation (109) containing the product of four or more W,.'s may be
dropped immediately.

First consider the terms which explicitly eontain the product of three
We's. This corresponds to n = 3 in the single series in expressions (108)
and (109), and to the pairs of valuesn = 1, m = 2;n = 2, n = 1l in
the double series. The contribution of the double series can be dis-
carded because it is O(f [ Wis") = 0(¢*W,), the functions S, and
8.z being O(p") [from S(f) = 0, 8.(f) = O(¢*) and Appendix C]. The
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n = 3 term in expression (108) can also be discarded because, from
Appendix C, 8; — 83 is O(¢%). Using S; — S = O(¢”) in then = 3
term in equation (109) shows that the contribution to W,(f) of the
terms which explicitly contain the product of three W,’s is

ﬁlz f Z dp f Z doe W ()W (o)W ,()

| Sp, 0, %) + 8*(—p, —o, =) "+ 0("'W,)  (110)

wherev = f — p — o.
Next consider terms which explicitly contain the produect of two
W,’s, namely the terms n = 2 in the single series and n = m = 1 in
the double series. When we put p; = p, p» = f — p = 7 in the single

series terms, and p, = p, ¢1 = f — p = v in the double series term, all
of the integrands contain the factor

B* = [S%(p, v) — Sa(—p, —¥)]

and the contribution of their sum to W,(f) can be written as

1 -]
s [ W(aT.6) Re (88 + 20)]
where 8 is O(1), and v is not the earlier v(u). Here
v = 8alp, v) — Salp, ¥;) — Suile; v) — S%(—p, —v)
+ 8%(—p, —¥;) + S&(—p; —v)
is O(¢°) since both S, — Si and S, are O(¢®). Furthermore,
Re[B*B+ 20 = |B+v I —m* = |8+ 7 [" + 00",
B+ v ="T(,v» — T*(—p, —), (111)
T(P; v) = 28,(p, ») — Saolp, v;) — Sulp, »).
The equations at the end of Appendix C may be used to show that
T(p, v) is equal to T'(p, ») + O(p") where
T(p, ) = 8o, ) + [ do W([~3S(e, ~0, o, )

+ 38(c, —0)8(p,v) + 8(o, PS(—0,v)]  (112)

and eonsequently the contribution to W,(f) of the terms which explicitly
contain the product of two W, 'sis . - . -
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1 = 2 [
s | deWAWL0) | Tlo,0) — TH=p, =) [+ OG'W,)  (113)

where v = f — p.

Now consider the terms in W,(f) which are multiplied by W ,(f). From
equations (109), (107), and the term for n = 1 in the single series in
equation (108), the sum of these terms is W, (f) multiplied by

47T + 8u() + T + 84—
+ 27" Re [T(—f) + T¥NILS:(N — Swolf;) + SH—f — Sf(—1)]
+ 27" Re [S%() + Su(—=DNILS:(N — Suw(f) + S%(—1) — SH(—13)]
=47"|a+ 81"+ 27" Re (a* 4+ *(y)
47 (e + Ala* + 8% + (@* + 8y + (@ + Bv* +1v* — 1v*]
=4 a+ B+ [ =4
=47 00 + O =) [P — 4T (114)
Here, with 8 and v different, from those in equation (111),
T(h + T*—fH = 0(1)
8 = 8:(f) + 84— = 0@ (115)
v = 8 — Swlf;) + S5(—=NH — ShH(—13) = 06"
7 = T + 28 — Sulf)-

The equations at the end of Appendix C may be used to show that
U(f) is equal to U(f) + O(¢") where

(24

vy =10 3 [ de WSt —p, N+ [ do [ de W (W, @)

'[%S(p‘ g, —p, —0, f} - iS(Pr - h f)S(O’, _ﬂ-)
— 38(p, )8(e, —a, —p) — 38(p, o, NS(—p, —a)].  (116)

Since vy* is 0(¢®), the terms in W,(f) which are multiplied by W, (f)
can be written as

W.(0) [UW) + U(=DI* + 06°W,). (117)

Finally consider the de spike, 83, 8(f), in W,(f). From equation (14),
the de component of 6(2) is

6; = Im (K(t) — 27°K*()))or + 0(°). (118)
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The value of (K(f))., is given by equation (70) and from equation (78)
with 7 = 0,

K D) = KOR — [ do W(9S.(=PS(0)

1 =} o \ &
+3f dp [ o WD (0)Su(—p, =0)Sulp, o) + 0.

Since 8,(p) is O(¢%), the single integral is O(¢") and may be included in
the remainder term. Squaring the leading term in equation (70) to get
(K(®))*, combining terms, and using S:(p, o) = S(p, ¢) + O(")
leads to

(K(l) — 27 K*(D).. = D,

1 = = o ; i
D= —3 f_m dp W,(p)S(p, —p) + ./.,m dp fm do W . (p)W (o)

[18(p, 7, —p, —0) — }S(p, —p)S(z, —0) — }S(p, )S(—p, —0)]
+ 06", (119)

The imaginary part of D, gives 6, .
Addition of equations (110), (113), and (117) shows that

W) = 65 8) + W.(0 1 UM + U=D I’

e % f_i dp W (W, — o) | T(p, f — p) — T*(—p, = + 0

1 7= = .
+ 24 f_m dp f_m de W (o)W ()W ()

-| 8Cp, o, v) + S*(—p, —a, —¥) [ + O("W,)  (120)
where v = f — p — o. This is the same as equation (15) in the state-
ment of results. However, the expressions for D, T (p, f — p), and U (f)
given in Section IIT are simpler than the ones given in this section. The

method of obtaining the simpler expressions will be outlined in Sec-
tion X.

X. SIMPLIFIED EXPRESSIONS FOR fg., U(f), anp T'(p, v)

The expressions obtained for 64, U(f), and T (p, v) in Seetion IX
may be put in forms better suited to ealeulation by writing the higher
order S funetions in terms of S functions of two arguments,

S(p, o) = Tlp + o) — T(p)T(0). (121)
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These simplified forms are the ones stated in equations (16), (17), and
(18).

Since no really satisfactory procedure of reduction was found, the
expressions given here may not be the simplest. The procedure is il-
lustrated for the double integral

1= [ a0 [ dr W (W0

'[S(pl - P T, '—'O‘) - S(P: _P)S(G-J —a) - 28(9) U)S(_pr —a)]

which appears in equation (119) for 6,, = Im D,.
After some cancellation, the general equation (159) for S(p, o, », 1)
shown in Appendix B gives

8(p, —p, 0, —a) = 1 — (p)(—p) — (e)(—=0) + (o + 0)(—p)(—0)
+ (0 — a)(—p)(a) + (—p + o) (p)(—0)
+ (—p — 0)(p)(e) — 3(p)(—p)(e)(—0).

Here I'(x) has been written as (z) and (0) = I'(0) = 1 has been used.
When this expression is multiplied by W,(p)W,(s) and integrated
with respect to p and ¢, changes in the variables of integration show that
the value of I is unchanged by the substitution

S(e, —py o, —0) = 1 — 2(p)(—p) + 4(p + o) (—p)(—0a)
= 3(p)(—p) (@) (—0).

Here the arrow means “may be replaced in the double integral by”.
Similarly,

—8(p, —p)8(g, —0) = —[1 — (p)(—PI[1 — (e)(—0)]
— =1+ 2(A(—p) — (A)(—p)(o)(—0)
—28(p, )8(—p, —a) = —2[(p + o) — (A()][(—p — o) — (—p}(—0)]
— =2(p + o)(—p — 0) + 4p + o) (—p)(—0) — 2(p)(—p)(e)(—0).

Addition shows that the quantity within the square brackets in the
integrand of I may be replaced by

8(p + a)(—p)(—a) — 2(p + o)(—p — a) — 6(p)(—p)(0)(—0)
= 6(—p)(—a)l(p + o) — (0)(0)] — 2(p + o) [(—p — @) — (—p)(—0)]
= 6(—p)(—a)8(p, 0) — 2(p + 0)S(—p, —0)
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6[(—p— o) —(—p— o) + (—p)(—)]8(p, @) — 2(p+ a)S(—p, —0)
6(—p — 0)S(p, @) — 68(—p, —0)8(p, &) — 2(p + 0)S(—p, —0)
— 4(p + 0)8(—p, —0) — 68(—p, —0)S(p, 0).

Hence

1= ["dp [ do WA S(=p, —0)4T(p + o) — 6S(p, O]

which is the form of I used in equation (16) for D (except that p and
o are interchanged).

The simplification of equations (112) and (116) for T'(p, ) and
U(f), respectively, proceeds along the same lines. In dealing with
U(f), the symbaolic substitution

S(p, o0, —p, —a, ) = [1 + (p)(—p) — 2¢°(—p)]

N+ (@) (=) — 2 (=)l — D]
was found helpful.
In addition to the simplified forms for T(p, ) and U(f) given in
equations (17) and (18), we also have

S(p, o, v) = S(p + o, v) — T(p)S(o, v) — T(0)S(p, »). (122)

XI. THE “SMALL AND SLOW” DEVIATION APPROXIMATION TO Wj(f)

This section and the following one are concerned with approxima-
tions to Wy(f) which are obtained by replacing the I's used in equa-
tions (15) to (20) by the first few terms in their power series expan-
gions. These expansions are assumed to exist and to converge rapidly
over the range of frequencies for which W.(f) is effectively different
from zero. Roughly speaking, the top baseband frequency is assumed
to be small compared with the filter bandwidth.

When the top baseband frequency is small, the modulating fre-
quency, ¢ (t), changes slowly and we have the quasistatic case. The
name “small and slow deviation approximation” is used because (15)
holds only for “small” rms frequeney deviations (D small), and here
the requirement of “‘slowness” is added.

Two series which play important roles are

') = Laf/n,  a=1 (123)

8 EMB

Il
o

T = 2N/l N

=0

(124)
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The first one is the series assumed for T'(f). Substituting (123) in -
(124), expanding the logarithm, and equating coefficients of powers
of f leads to expressions for the A's in terms of the o's:

M=o,

he = 0y — af "

Ay = a3 — 3a.ey + 27 (125)
M= — dowa; — 3op + 120007 — 6a)

Ns = @y — bayoy — 1000 + 2000 + 302, — 6000’ + 2405 .

and so on. When the «,'s are the moments of a probability distribu-
tion, the A,'s are the associated “cumulants” or semi-invariants. In
our problem the «,’s are proportional to the moments of the normal-
ized response y(t), a relation which follows when the series (123) for
I'(f) is compared with the one obtained by expanding exp (—12xft) in
the Fourier integral (4) for T(f).

The small and slow deviation approximation obtained from (15)
and the first few terms of (123) is

W(f) — 62 o(f)
+ WD+ IO + 27Dy, + 87'D'N)° + (o, + 27'DA) )]
+ 270w+ 27D [ dp W@ W o — e — o

+ 67(\as)? f " dp f " de W (oW @W . — o — )] — p — o)
- s (126)

Here the a,'s, Ay's are the imaginary parts of the coefficients in the
series (123), (124), D* = {[¢'(£)/(2x)]%, D is the rms frequency
deviation in Hz, and a»,, 4, denote the real parts of «s, A where

A = a, — 204 — ai + 20507 .

The detailed derivation of equation (126) from equation (15) for
Wy(f) makes use of equation (162) which gives S(x,, z., --- z,) for
small values of the 2’s. The leading term in equation (162) gives

S(p, o) — pok.
S(p, 0, v) — pavhs
—8(a, —a, p,») + S(o, —a)S(p, ») + 28(s, p)S(—0, ») — oo},
(127)
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where the left side of the last equation is proportional to the integrand
in equation (112) for T'(p, »). There is a similar equation which shows
that the integrand in the double integral in equation (116) for U(f)
tends to a quantity proportional to p’c”f\;. To deal with the single
integral in U(f) we use both terms in equation (162) to obtain

S(p, —p ) = =o'\ — 270 AL (128)

Combining equations (127), (128), and the first three terms in the
series for T'(f) gives

S(p, a,v) = pavhs
T(p, ) = p(ha + 27'D*\)
Ulf) =1 4 (o + 27D\ + 87 DN+ 7' + 47 D*A)f.

Substitution in the small deviation approximation (15) for W,(f) then
gives the small and slow deviation approximation shown in equation
(126).

A form of the small and slow approximation which is more complete
than (126) may be obtained by starting with the quasistatic form of
equation (7) for ©(¢) instead of from the small deviation approximation
(15) for We(f). In the quasistatic case the instantaneous frequency
© = w, + ¢'({) changes slowly and hence rms ¢''(¢) is small. This leads
us to replace ¢(t — u) in (7) by the equivalent expression ¢(t) — ue'(f) +
27 " (£) where ¢ lies between { — w and ¢. Let F denote the filter
bandwidth and suppose that the impulse response y(u) is effectively 0
outside an interval of length 1/F. Then, heuristically, the integral in (7)
is given by

[ 7t exp liglt — 0] du = 11+ 0@ F* rms o)

f () exp i) — ug'()] du.

The integral on the right is the desired quasistatic approximation. It is
almost equal to the integral on the left when 27'F~* rms ¢” <« 1. How-
ever, for small rms frequency deviations, the contribution of ue¢'(f) may
be less than the term 27'F~* rms ¢' even though

(7) the latter may be « 1, and

(74) despite the fact that when ¢(f) is band-limited with top frequency
B we always have rms ¢'' < (2rB) rms ¢'. Therefore, in order to make
the quasistatic approximation meaningful for small (as well as large)
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deviations, we impose the additional restriction 27'F~* rms ¢”/(F ™' rms
¢') < 1. Then, if

rms o' /(2F%) < 1, rms ¢''/(2F rms ¢') K 1

the Fourier transform (4) gives the quasistatic approximations
f_ v(w) exp [fp(t — w)] du = T[e'(1)/(2m)] exp [i(1)]

0(t) & ¢(t) — 1 In T[¢/(8)/(2m)]

which are equivalent to the usual quasistatic approximation for the
filter output, namely

8(t) = G(Q) exp [iwot + ip(D)]. (130)

D. T. Hess' has given a rigorous bound, roughly equivalent to rms
¢ /(2F*) « 1, for the error in (130).

For the flat FM baseband case discussed in Section 3.3 the above
restrictions go into

(129)

10 DB/F?* « 1, 2B/F « 1

where D is the rms frequency deviation in Hz and B is the top baseband
frequency in Hz. Notice that although the term “quasistatic” implies
that rms ¢'’ tends to 0 in some sense or other, the requirements that the
quasistatic approximations (129) and (130) hold differ from the require-
ment that the deviation ratio be large, a condition used in calculating
the quasistatic approximation to the power spectrum of cos [wet + ¢(#)]"*
Thus, for the flat baseband case, the deviation ratio ean be taken to be
D/B, and this does not have to be large for (129) and (130) to hold.

To continue with the derivation of the more complete form of (126),
we substitute the series (124) for In I'(f) in (129) and take the real part.
This gives

6 = oll) + BQ)
B(l) = Z Ml (/@) /.

Since B(t) depends only on ¢'(f), the power spectrum of ¢(t) + B({) is
W.(f) + Ws(f) (Ref. 15). The covariance of B({) is

o0

(BB = 30 30 Mimsleled™(@n) ™" /] mY) (131)

n=1 m=1

where subseripts 1 and 2 denote arguments ¢ and ¢ + 7, respectively.
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From the characteristic function of the joint gaussian distribution

funection of ¢ , ¢} we have

{@1"ob™ e [ du [ do exp [—¢,(u" + 09277 — Y]
) cu av

mtmonom
u

n!m! v A T

_ N [1+ (=)0 + (=) 20, ()"
B ; k!'4T[(n — £)27" + 1T [(m — k)27 4+ 1] (‘p,, ) (2 )

(132)
where ¢, = (@l¢l), Yo = (2rD)’, and we have used, for integer [,

- {0+) e 5 ¢ —¢ ! 21,2
(2m) f w Tt exp [— ¢ /2] du = : 2?{21—%%/1)) '

Actually, instead of = the upper limit of summation for & in (132) is the
smaller of n, m. Also the sum is 0 unless n, m are both even or both odd.
When n is even, & runs over even integers; and when n is odd, k runs over
odd integers. When (132) is substituted in (131), the Fourier transform
of the resulting series for (B,B,) gives a series for W (f) which leads to
the more complete form of (126) we have been seeking, namely

o0 1 o0 )‘2"_”; iD2n 2
W) = W,.(f) + Zm [Zﬂ—n—l?‘-]

(2m) f_ Z Yt exp (—i2rfr) dr  (133)

The integral in (133) can be expressed as a (k — 1)-fold convolution
of the power Spectrumf_Wpr(f) = (2r)*W.(f) of &'(t). This gives the
first few terms of (126), except for the term (as, + 27'D°A,) W,(f)
which arises from terms neglected by (133).

Equation (133) is useful only when D is small because the summation
with respect to n usually diverges. To illustrate this, consider the single
pole filter for which T'(f) is (1 + #ff;)™" and A, is (n — 1) I(—2f0")"
Equation (133), with &k replaced by 2k + 1, gives

= 1 = (—=)"(2n + 2K)! D™ |?
W&(f) = IV-F(f) + Z (2]‘: + l)[ [Z ( )n(' gnﬁrwzl.-zl ]

k=0

n=0

S(2r) f Y2 exp (—i2nf7) dr. (134)

The quasistatic approximation for Ws(f) obtained by starting with
(130)-4s (see Ref. 13) P : _
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mmmwm+§%$%;—

L = j; z** exp [~ 1'5 — %f{l de.

This series, which converges for all D, is of the same form as (134) in
that it has I,,/D**" in place of the divergent sum with respect to n.
When D becomes small, the two expressions for W,(f) approach equality

in the sense that the sum with respect to n is the asymptotie expansion
of I./D**.

f P2 exp (—12nfr) dr,

XII. LIOU’S APPROXIMATION FOR SECOND AND THIRD
ORDER INTERCHANNEL MODULATION

It is instructive to relate our main result, equation (15) for W,(f),
to an approximation for the interchannel modulation given by Liou.®
Liou’s approximation is equivalent to taking additional terms in the
small frequency deviation approximation given in Section XI.

The interchannel modulation is represented by the portions of
W5(f) in equation (15) which contains T'(p, f — p) and S(p, o, f — p
— ¢). Liou’s approximation may be obtained by (i) approximating
T'(p, f — p) by the leading term, namely S(p, f — p), in equation (17)
and (i) expanding S(p, f — p), Slp, o, f — p — o) in powers of
p, o, and f out to and including degree 4. This leads to

T(p, f — 0) = S(p, f — p) = T(f) — T(AT({ — p)
= p(f — D + 1 + 6 + o(f — p)b] + OF)
S(py o, f — p— o) = polf — p — a)[hs + 6] + O(F) (135)
where
I() = 2 af/nl, a =1
n=0
N = — o, N = ay — Sowa, + 248
6 = (o — 20m0 — of + 20403)/2
b = (az — azﬂa)/z
4 = (014 = aaﬂfl)/ﬁ
b= 4 o — a)) — 3 ey — azary).
Equation (162) of Appendix B gives the approximation for S(p, o,

(136)
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f — p — &) shown in equation (135). Tt does not give the higher order
terms in S(p, f — p) shown in equation (135). These must be eal-
culated from the series for T'(f). Although the €s and A's used here
are not preeisely the same as those used by Liou, they are of the
same general character.

When the expressions [equation (135)] for T'(p, f — p) and S(p, o,
{ — p — o) are used in equation (15) for Wy(f), the second and third
order interchannel modulation terms are found to be

L do W)W — 96 — o
* |D\2i + )rz'['!:u + P(]{ - P)g-h']z + fzchz
rips+ren [ an | de

W ADW(DWo(f — p— o’ (| — p — 0)*  (137)

where the second subseripts » and 1 denote “real part” and “imaginary
part.” The basic approximation used by Liou [his Eqs. (29) and (30) ]
may be put in this form by expressing his Fourier transforms as
convolution integrals and combining terms.

APPENDIX A

Power Spectra of Real and Imaginary Parts
of a Complex Random Process

Let z () be a complex, stationary, ergodic, random process [for ex-
ample the complex phase angle O(f)] and let z(), y(¢) be its real and
imaginary parts. We seek convenient expressions for the power spectra
W.(t), W,(t) of z(f) and y(f) when 2(2) is the sum of several correlated
complex random processes, say a(t), b(f), c(t), - -- . For illustration we
take

2(t) = a(t) + b(@®) + c(?) (138)

which corresponds to equation (13) for ©() with a(t), b(t), and c(t)
in place of (1), —iK (), and 27 'K*(t), respectively.
Denoting functions with arguments ¢, { + = by subseripts 1, 2 and
using relations of the type
= Rez = (g + 2%)/2 (139)

leads to the following expression for the ensemble average (¥1%a)ay
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(-’ﬁ%)av = ((21 + %) (= -+ 2’;)}“/4
= (212, + 2%2%) + (282 + 2:2%))an/4 (140)

= 27" Re ((z:22)ar + (2%22)nr).
It is eonvenient to write (2;2,).. as
(@z)ay = A(r) + A(—7) (141)
where
A(r)y = E(aya, + biby + cic2) + aibs + aic: + bicg)ay . (142)

This is suggested when the product 2,2, is multiplied out and terms of
the type a,b; + b,a, are considered. Thus, if

(@iba)er = (@b + 7))uw = f(r), (143)
setting ¢ = ' — 7 and making use of stationarity leads to
(0ia2)er = (alt + 7)O@)) 0= (@D — 7)}ae = f(—7) (144)

and hence to equation (141).
Similarly, replacing a,, b,, ¢; by a¥, b¥, ¢* leads to writing the
second ensemble average in equation (140) for {(z,2,).. as

(¥22)u = B(r) + B*(—7) (145)
where
B(r) = (j(a%a, + b%b, + cfe)) + atb, + afe; + bico)r . (146)

For terms of the type a¥b, + b¥a, , the analogues of equation (143) and
(144) are

(@%bs)er = (@*(DD(t + 7))er = (1), (147)
(biay).. = (a@ + NO*@))y = (a(t)V*(E — 7))uy
= {a* (" — & = P(—).

Comparing equation (13) for ®(t) with equation (138) for z(t) sug-
gests setting a(t) = &), b(t) = —iK(f), and c(t) = 27 'K*(); this
leads to equation (49) for A(7), B(r) given in Section IV.

Equation (140) for the autocovariance (x,z,).. of z(f) now takes the
form

(#iZ2)w = 27 Re [A(r) + A(—7) + B(r) + B*(—1)], (148)
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and the power spectrum of x(f) is

W.() = f exp (—twr){t,Zp)u dr,  w = 2.

This may be written as
W.() = 27" Re [P(f) + Q) + P*(—f) + @*(—N] (149)

where

e

P{f) = f exp (—iwr) A7) dr,
= (150)
an = [ Z aip (—dar B .
Egquation (149) for W.(f) may be derived from
27! Re [A(r) + A(—7)] = 47'[A(7) + A*(7) + A(—7) + A*(=7)]
27 Re [B(r) + B*(—7)] = 47[B(r) + B¥(r) + B(—1) + B*(—1)]

(151)
and relations of the type
PX()) = f_““ exp (iwr) A*(7) dr = f_"’ exp (—iwn) A*(—7) dr
P(—f) = j‘-“' exp (—iwr) A(—1) dr, (152)

PH(—f) = f_: sxp (—tar) A*(5) dr,

The power spectrum W,(f) of the imaginary part y(f) of z({) may be
computed in much the same way, starting with
s = ( — 22 — 24/ (20)?
= 2_1 Re {*(lezhv + <z";22)“].

This differs from equation (140) for (z,s)., only in the sign of (z:22).y .
Therefore only the signs of A(r) and P(f) need be changed in the earlier
work, and we get

W.(f) = 27 Re [ P(f) + Q(f) — P*(—1) + @*(—N] (153)
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APPENDIX B

The Functions S(p, ¢), S(p, o, v), - -

The function

S(;rl y Ta gy "ty :L'n) = j;w du T(U)Hu(xl)Hu(xZ) e H"(Sﬂ") (154)
where

H.(x) = exp (—i2rzuw) — I'(z) (155)
is a symmetrical function of the z’s. It may be expressed as the sum
of products of I's by replacing the H,’s by their definitions, multiply-
ing out, and using the fact that I'(f) is the Fourier transform of y(%).
This evaluation of the integral shows that S(zy, s, - -+ , z,) is given
symbolically by

8@, 2, sz = 11 0" — T(@)] (156)

k=1
where, after multiplying out, the various powers of y are replaced
by I'’s according to the rule y* — I'(z).
For example,

S(p) = 0,
S(py @) = [y’ — T(p]ly" — T(o)]
¥ — y’Tle) — T(p)y" + T'(pT(o)
= T(p + o) — T(p)T(o)

(157)

[

S(p,0,v) =T(p+ o+ — T(p+ ayTF) — I'(p + »T(o)
— I(e +»T{p) + 2T()IT()TE).  (158)
For four variables, writing (z) for I'(z),
Sp,a,v,w) =(p+tot+v+u —(pt+ot+uw—(+totuw
—(e+tv+we) — @+ u+9)0 + (p+ @)W
+ (p + (@)W + (o + W) + (@ + (o) ()
+ (@ + W) + ¢ + w)e) — 3)@We). (159

S(xy, 9, ** , ,) vanishes when one or more of its arguments are
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zero because H,(0) is zero. Of interest is the form taken by S(z,,
, ,) when the 2’s are small and T'(f) may be expanded as a power
geries in f. Let the power series be

r(f) = i L, a = 1. (160)
finee B
v = [ o) exp e du, &= —i2eu
= 25[_17(%)5" du
it follows that
w= [ z V@) du. (161)

When 2 is small, equation (155) for H,(z) gives

H,(z) = exp (tz) — T(2)
ol — a) + 272 — )] + 0().

Then

iIl H(z,) = (2,205 - :C,,)l:(g —a) 27— az,)"‘l(.‘j2 — ay) J:ZI Ik]

+ O($n+2)
and substitution in the integral [equation (154)] defining S(z, , - - -, %.)
leads to

S(xl y V" ,.’17“)
= (23 -+ Ta) f_ 3 du V(U)l:;a (ﬁ)&’(—al)""
_— =fn-—-1 t+2 ¢ n—t—1 n+2
+ 2 Zx Z( ' ){s — Ean)(—a) ] + 0"
= (2,2 - x“)[ ;u (3)0:,(—0:,)"4

n=1

+ 27 Z T 2 (ﬂ' ; 1)(ac+z = am)(—al)""'l:‘ + 0(="""). (162)

&=1

This is the approximation needed to examine the form taken by W(f)
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when the bandwidth of ¢(¢) becomes small, as it does in Section XI.
When T'(f) is such that | T(f) — 1| < e « 1 for all values of f, it

may be shown that the symbolic form of equation (156) for S(z,, -+ + , z,)
becomes
Sy, - y2) = [T = 1) + 06 (163)
k=1
and the Is appear only linearly. Furthermore, S(z, , --- , z,) 1s O(¢).

For example
8p, o) =9y — ¢ — ¥ + 1+ 0()
T(p + ) — T(p) — T'(e) + 1 + O().

This result is of interest in eonnection with the first order approximation
discussed in Appendix D.
To establish equation (163) let

=y —1, g =1— T'(z)

I

so that equation (156) for S becomes

S(wl y VT !:Un) == I“I(zk_l'fi-)
w4 (164)

n

= ITa+ Il & I 2 + 0.

=1

Here the factor z is omitted from [[’. When the product
22 2w = JL @™ = 1)
k=1

is multiplied out and the y"’s are replaced by I'(u)’s, the result is the
sum of 2"I"s [(1 = T'(0)]. Half of the I's will have plus signs and the
other half will have minus signs. Adding +1 for each —I" and —1 for
each -+ T shows that the entire sum is O(e). Hence 2,2, -+ 2, is O(e),
and when this is used to show that the []” in equation (164) is O(e),
the result stated in equation (163) follows.

APPENDIX C

The Functions S, and Sun

The functions S.(z1, T2, *++ , Z.) and Spm(®y, = o+ Za Yuy =, Yn)
are defined by the integrals, forn = 1 and m = 1, :



DISTORTION IN FM WAVES 133

S, o ym) = [y exp laa] T Hate),
-0 k=1 (165)
Snm(xl y Ty Yy Jym)
= fm dv fm dw v@)y(w) exp [a@) + alw) + 2c¢(w, v, 0)]
° [kI;IL Hl(:rk)][ LII Hw(yt)]
where H,(z), a(u), c(w, v, 0) are given by
H.(z) = exp (—2mau) — I(z)
a) = —3 [ & WDHL=DH) (166)
1 (=
ctw,v,0) = —% [ df WDHA=DHG) = ct, w, 0)
[see equation (66)]. For n = 0, S, is defined as
So= [ duytu) exp ()] (167)
and for the double subseripts,
Sanl®i 5+ o 5 a 5)
— [ [ awrer) exp (@) + alw) + 2t v, o) 1T Haw
S"U(xl y C T )) = Sl‘ln(; Ly oy o0 :-un)
Sl = [ v [ dwb)v(w) exp at) + atw) + 2w, v, 0).
R T (168)

The functions S, and S,.. depend upon both W, (f) and T'(f) [through
H.(f)]. This is in contrast with the function S(z,, - - , z,), defined in
Appendix B, which depends only on I'(f) and is independent of W, (f).

The function S, may be expressed as the sum of multiple integrals
involving the funetions S. Expanding exp [a()] in powers of a(uw) and
replacing each a(u) by its integral [equation (166)] with p in place of
the variable of integration f leads to

o ¢ 1\i pw o
IS‘u =1 + Z (_]-::—)-f dpl e [ dpj
i=1 : —=

v —
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[I_I] W.p(pk)]S(pl,--- s By =Pt B
Sal@y y @z y -0, Ta)
= Sz , %2, - ,2) + ,_z.:}(_j)if:dpl f:dm
'[ﬁww(Pk)]S(Ply"' s Pry —Prg g TPy Try Ty
k=t (169)

where n = 1.
Similarly, expanding exp [2¢(w, v, 0)] in the integrand of the integrals
defining the S, functions leads to

su) = S+ XS [ oo [ an,

i=1

[H Ww(pk)]si(»ul TN p:.)Sr-(—pl s, _Pf)
Sno(-'L'l R ,)
= SuSiler w2 (_}l [ "o [ do, [H Ww(pk)]

i=1

'Si+n(Pla"' y Pig Ly " r:rn)Si(_Pl)"' ) _Pi)
Smn(xtj"' y Tn 3 Y1y =0 :ym) o Sn(xly"' :wn)SM(yll“' ;ym)

+ g%[:dpl ‘/l:dpf[;[iww(.ﬂk}]

'S|'+n(p1 y 2 JQ:[ y " JIn)Sj-l-m(_P] r "t —P; lyl y " ym)
(170)

whenn = 1land m = 1.
In order to obtain an inequality for S.(z,, -+ , x,) assume that (7)
the termwise integration in the derivation of the series in equation

(169) is legitimate, and (¢Z) an M > 1 exists such that for all real values
of {

M > | T =|6F + f0)/G({o) |.

Since S(z,, --- , ,) may be expressed as the sum of 2" terms, each of
which is a product of not more than n of the I's,

|8z, + -y | < 2°00m,
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Furthermore, since the integral of W, (f) from — = to 4« is equal to
(¢*(t))uv , the terms of the series in equation (169) for S,(zy, - -+, %)
are dominated by the terms in

> % (M) = @) exp 2M*g")w].

Therefore the series in equation (169) converges and
| Sy, o+ 5 2a) | < (2M)" exp [2M(¢")].

This inequality may be used to show that the series in equation (170)
for S,.. converges and that

| Sum(@is oo s Ta iUy oty Ym) | < (@M)™™ exp [S8M* (™).

The leading terms in the series required to handle the second and third
order modulation are

So=1-1 [ apW.9S6, -
+ % f: dp /: de W (p)W (a)8(p, ¢, —p, —a) + O(¢"), (171)
S =02 [ do W0)S(o, —, D
+ % f_m dp f: do W (o)W (0)S(p, o, —p, —a, ) + O("), (172)

Sip 1) = S0) — 3 [ do W@)S(o, =0, p,) + 0, (173)
Sy(p, ;%) = 8(p, @, ) + O, (174)

2 1 * h r ' T
Sul) = 8 +5 [ do [ do W)W S0, DS(=p, )

+ 0", (175)

Sulf) = S + f_w o f_i de W ()W ,()[478(p, —p, NSle, —2)

+ 2_1'8(.01 f)S(U, —a, _P) + 2_18(!3! a, f)S(_Pn "‘0’)] + O(‘PB)J
(176)

. - \ 1 4
820(93 V‘J = Sg{P, v) — é f do H‘Z,(D’)S(O’, _a)S(pl v) + O(Ep )-
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S.’M(pr o, ";) = S:i(pr g, V) + O(¢2))
Suloi) = — [ de W ()S(o, 9S(—a,1) + O,

Sailp, a5v) = O(‘Pz)-
In obtaining the leading terms in Sy,(;) and 8,,(f;) the leading terms in

So, SN and S,(p, /) were used. S,(f) is O(¢”) in contrast with S, ,
8, , Ss, --- which are O(1).

APPENDIX D

Derivation of Earlier First Order Approximation
by Present Procedure

The first order approximations which are given in Section VII
are somewhat more complicated, as well as more accurate, than the
ones which have appeared in the literature.* * *** Here the relation
between the earlier and present work will be brought out by applying
the procedure of Section VII to obtain a first order approximation,
which is the same as the given in Ref. 10 [the 8(¢) of Ref. 10 is 8(f)
— ¢(f) in the present notation].

The derivation starts from the initial equations (5) and (7) for
the filter output sq (),

s(f) = {exp [—ao — 4By + ’L@(t)]} exp ('iwut) (177)
O = —iln {f du y(u) exp [ip(t — u)]}-

The difference between the output phase angle 6(f) = Re @(f) and the
input phase angle ¢(¢) is assumed to be small, and the filter delay is
usually taken to be zero at the carrier frequency, that is, Im [dT(f)/df]
is zero at f = 0.

Adding and subtracting 1(f) [instead of the linear portion ®(¢) of
the output] in the exponent appearing in equation (177) for ©(f) gives

0) = ¢() — i W [1 + k()], -
RO = [ dutlexp iglt — 1) — ie(0] — 1.

The first order approximations to the complex phase angle @) and
the output phase angle 8(f) are now

Bt ~ o) — k()
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and
0(f) = o(t) + Re [—ik(1)], (179)

respectively.
The analysis of the earlier sections goes through much as before with
k(?) in place of K(f), and

h(f) = exp (—27fu) — 1 (180)
in place of
H.(f) = exp (—227fu) — T({).

An illustration of how h.(f) enters the analysis is furnished by the
computation of {exp [ip(t — u) — 7p(f)]).v . As suggested by equation
(56) for ¢t — u) — ®(1), let

Lo(l) — ot — u) — o(f)

(‘U) = exp (—2wxfu) — 1 = hu(f) (181)

-5 f af WD = —5 | af W (Dh(Dh(—f) = a’'(w)

(exp [tp(t — u) — ie(D)]).e = exp [a’(W)].

Of most interest in practice is the power spectrum W.(f) of £(%),
() = Re [—k(D)]
(1) = (1) + (1)

(182)

where £(f) is an approximation to the distortion. The power speetrum
W(f) is the Fourier transform of the covarianee (£,£) where, as before,
subscripts 1, 2 refer to times ¢, ¢t + 7, respectively. By putting £(t),
—k(t) for 8(f), @(f) in equation (47), or directly,

<‘El'§2>uv = 2—] Re [_(]‘11]‘:2>nv + (]l‘*:k'ﬂ)uv]- (183)
It may be shown that

o0

/. du y(u) exp [a’(u)]

(K Yus

(kikodue = (koY + f_ " du f_ ) dv y(w)y(@) exp [a'(w) + a’()]

-{exp [2¢'(u, v, 7)] — 1}
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(kb = | (hdee '+ f " f_ " oy )y) exp [@@) + a’'@)]

-{exp [—2¢'(u, v, )] — 1}
(184)

where

B[ =

e'tu,v, 1) = —

[ df W (= Dh(h exp Gi2afr)

a'() = ¢'(u, u, 0) (185)

cu, v, —71) = c'lv, u, 7).
Since A(—7) is equal to h*(f), a’(v) and ¢'(u, v, 7) are real. Furthermore,
', v, 1) = —3[R(r+u—2v) —R,(r — 1) — R,(r +u) + R,(7)]
a'(u) = —E.(0) + B () (186)

where R, (r) is the covariance {p()¢(t 4 7))u of @ (D).

The expression for (£ £).. obtained by combining equations (183)
and (184) is similar to equation (8) of Ref. 10.

The power spectrum of £(¢) may be written as

W) = & 50) + 27 Re [P) + Q) + P*(—f) + Q*(—P] (187)
in which &, is equal to Im (k, )., and
P() = [ dr exp [—i2efrl— (ke — (B,
- (188)
Q) = [ dr oxp (—i2ef (e = | (s 1.

Addition gives
P+ Q) = [ dr exp (—izafr) [ “au [ do e ) + 0]
(= Bru)y) {exp [26'Cu, v, )] — 1]

+ v*y@)fexp [—2¢'(w, v, 7)] — 1}) (189

which, when used in equation (187), leads to an expression for W(f)
which is similar to the main result given in Ref. 10 [equation (16) of
Ref. 10].
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The relation ¢’(u, v, —r) = ¢'(v, u, ) may be used to show that Q(f)
is real and P(f) is even. When ~(u) is real, T'(—f) = I'*(f), and the
expression for W (f) may be simplified.

Expanding exp [:l:2c’(u v, 7)] in powers of ¢'(u, v, 7) leads to

W) = & 8 f}+ f dpl...[_’“dp,sggpl_,___p")
[kI,:II IV:#(P&):l [ Sipy, vy o) — (=)SEH(—py, 00, '_“Pn) Iz
(190)

where, as in Appendix C for the unprimed S’s,
S,:(.Tl y Ty In)

= f_m du y(u) exp [a’(w)] kI’iI [exp (—22rux,) — 1]
, X = (=8 [ = ’
=S(_$;,"',.’L,.}+§ ]’ ‘/:mdpl"-fmdp,-[gﬁ’w(pk)]
'S’(Pl?"':Pi!_pli"'l_piile"'lxn)-

The series in equation (190) is analogous to the series in equation (90)
for the more aceurate first order approximation based on ¢{f — u) —

®(f). The function S’(z,, -+- , x,) is the analogue of S(z,, +- , %)
discussed in Appendix B and is defined by
B, , woe ) = f duv@) I hule)
—w k=1
= II & — v.
k=1

The second equation is symbolic in that y* is to be replaced by T(2)
after expansion of the product. It is shown in Appendix B that when
| T(f) — 1] < ek 1 for all real values of §,

S(Il v T .?.",.,) = S’(ml y 0T r:ﬂn) + 0(52)'
APPENDIX E
Power Spectrum of a#(t) + b In R ()
Section III states that an expression for the power spectrum W.(f)
of z(t) = a8() + b In R(f) may be obtained from equation (15) for
W, (f) by replacing U(f), T'(p, f—p), and S{p, o, f—p—0) by (a-+D)U(f),

(a + D) T{(p, f — p), and (a + b)S(p, o, f — p — ), respectively. Here
the steps leading to this result are outlined.
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From equation (6) for the complex phase angle @(f) we have
iO() = In R(@) + 18(),
and it follows that, for arbitrary real values of @ and b,
ab +bIn R(t) = Re [(a + b)O()].

Consequently W.(f) may be obtained by replacing O(t) by (a + b)O({)
in the analysis which led to equation (15) for W,(f).

The functions A(r) and B(r) appearing in equation (48) are replaced
by (a + )*A(r) and |a + b |* B(r), and their respective Fourier
transforms P(f) and Q(f) are replaced by (a--ib)*P(f) and | a+1b |* Q(f).
Tach factor in (¢ + ) = (a + ib)(a + ) can be associated with
factors in P(f), and each factor in (¢ + ib)(e + b)* with factors in
Q(f), in such a way that U(f) becomes multiplied by (a + 7b) and
U*(—f) by (a + b)*, and so on. This may be verified by repeating the
analysis of Sections VIIT and IX with the modified expressions.

APPENDIX T
Results Obtained from the Series for In[1 + K (t)] may be Asymptotic

For gaussian ¢(f) with average 0 and rms value o, the following con-
siderations suggest that results obtained from equations (10) and (12),
namely

Ot = () — 7 In[1 + K(1)]

[

(191)
= &) + ¢ 2 n ' [—K@

represent the first few terms of an asymptotic series when ¢ — 0.
Since K (¢) is difficult to handle, we replace it by a[a’*’ — 1] where a
is somewhat like the integral of v(u) between — e and . The value
of this integral is 1, and we regard a as being near 1. The series for
In [1 4+ K(#)] behaves somewhat like the series

In (1 + afesp le(®] — 1) = — 5 S fexp o] — 117 (192)
in which the mean square value of the modulus of the nth term is
f_ ﬁ%;r—)ﬂ@”—ﬂn*[za sin o/2]*" de. (193)

When o < 1 and 7 is not too large, most of the contribution to the
integral (193) arises from the region around ¢ = 0, and the integral is

approximately
1-3 --- (2n — 1)(ac)™/n".
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Consequently, the first few terms decrease rapidly when ¢ < 1.
However, when 7 is very large most of the contribution arises from the
regions around ¢ = ==, 3, - - - , where [sin (¢/2)]*" is a narrow pulse
of height 1 and area 2(r/n)!. When ¢ < 1 only the regions around
¢ = -£7 are important and the integral (193) is approximately

o120 52(20)™ exp [— 12/ (26%)]

which tends to « when @ is near 1 and n — .

The fact that the rms values of the terms of the series in equation
(192) decrease rapidly at first and then increase without limit suggests
that results attained from the somewhat similar series in equation (191)
may be asymptotic in nature as ¢ — 0.
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Frequency Modulation of a Millimeter-wave
IMPATT Diode Oscillator and Related

Harmonic Generation Effects

By T. P. LEE and R. D. STANDLEY
(Manuscript received May 31, 1968)*

In this paper we report the performance of a continuous wave millimeter-
wave IMPATT diode oscillator with a wide-band tunability. The diode
is mounted in an iris wafer circuil; its oscillation frequency can be modulated
either by a varactor diode or by direct modulation of the IMPATT diode
bias current. The oscillator has been successfully used as a millimeter-wave
frequency deviator in an experimental pulse code modulation millimeter-
wave system.

We also report detailed measurements on subharmonic frequencies in
IMPATT diode oscillators. Experimental results show that wide frequency
tunability can be obtained with a circuit which provides an ‘‘idler” resonance
at one-half the fundamental transit-time frequency. The results also show
that by providing ““idler” resonances at both the transit-time frequency and
at one-half of the transit-time, the oscillation at § the transit-time frequency
1s enhanced and yields a useful output power of 2 mW at 86 GHz.

I. INTRODUCTION

A continuous wave (CW) millimeter-wave silicon IMPATT diode
oscillator was used satisfactorily as a local oscillator in an experi-
mental pulse code modulation (PCM) millimeter-wave repeater sys-
tem.n 2 That oscillator circuit used a radial-line resonant cavity whose
resonant frequency was the primary factor determining the oscilla-
tion frequency. The oscillator was difficult to tune either mechanically
or electronically.

While such characteristics are desirable for fixed frequency local
oscillator applications, other applications which demand wideband

*The essential results of this paper were presented at the 26th annual con-
forence on Electron Deviee Research, Boulder, Colorado, June 19-21, 1968.
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performance and tunability are also of interest. For example, a mil-
limeter-wave frequency deviator using an IMPATT diode would be
advantageous over the L-band deviator and up-converter combina-
tion in the PCM repeater system. The IMPATT diode oscillator
could deliver power at least one order of magnitude greater than the
up-converter.

A previous paper showed that the circuit inductance of the radial-
line cavity in shunt with the diode was much smaller than the diode
inductance.* Therefore, the oscillation frequency could be tuned only
a few hundred megahertz by varying the diode bias current.* In ad-
dition, the radial-line eavity was loosely coupled to the external wave-
guide ecircuit so that a tuning range of only 300 MHz was obtained
when a varactor diode was used for frequency deviation. To improve
the tunability, it is necessary to have (i) the IMPATT diode equi-
valent inductance dominate that contributed by other circuit elements,
and (%) the diode closely coupled to controllable external circuit
parameters.

It is important to notice that the tunability can be further improved
by providing more than one resonant circuit for the oscillator. The
frequencies are harmonically related, and oscillation at each of these
frequencies is reactively terminated except the one for the output.
Take as an example the two-frequency case. The tunability of the
oscillator near the transit-time frequency (say 60 GHz) can be im-
proved if a lossless resonant cireuit at half the output frequency (30
(GHz) is incorporated in the oscillator circuit. The oscillation at 30
GHz is terminated by a cut-off waveguide and therefore is designated
as the “idler,” an analog to the idler in harmonic generators using
varactor diodes. It is not necessary that the low frequency be used as
the idler. Swan has shown that by providing an idler resonance at
twice the transit-time frequency, improvements in both the power
output and the tunability can be obtained.?

To achieve wide band tunability, IMPATT oscillators were designed
using resonant-iris structures. It can be shown that the diode equi-
valent inductance is dominating in this eircuit compared with that of
the radial-line cavity structure. The loaded @ of the iris is about 10
which provides a wide bandwidth for oscillation. The oscillation fre-
quency could be tuned over 9 GHz in the 50 to 60 GHz range by vary-
ing the bias current of the IMPATT diode, thus varying the diode

*The diode equivalent inductance is inversely proportional to the diode
bias current.
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equivalent inductance. It could also be tuned over 3 GHz by using a
varactor diode closely coupled to the IMPATT diode.

Notice that by using the fundamental transit-time frequency as the
idler, the power output at one-half the transit-time frequency is, in
general, higher than the power output when the half frequency is used
as the idler in our particular circuit. We refer to the frequency which
is one-half the transit-time frequency as the subharmonic frequency
throughout this paper.

In the sections which follow we describe the circuit strueture of the
oscillator, the performance as a tunable oscillator, and the results of
frequency modulation of the oscillator in an experimental millimeter-
wave PCM repeater system. Then measurements of various harmonie
frequencies existing in the oscillator cireuit, and the identification
and effect of the subharmonic oscillation are deseribed in detail.

II. DESCRIPTION OF THE OSCILLATOR

Figure 1a shows the resonant-iris structure. The iris is made in
wafer form similar to the Sharpless wafer.* The range of the oscilla-
tion frequency and the @ of the resonant iris are determined by the
size, thickness, and shape of the iris aperture. Refs. 5, 6, and 7 give
details of iris characteristics. The wafers used were 0.100 inch thick,

DC BIAS _VARACTOR SLIDING
\ 4+~ DC BIAS SHORT

VARACTOR
DIODE

CONTACT

SPRING

IM | \
PATT DICDE
AND S5TUD QUTPUT | TUNING

4
IMPATT DIODE
WAFER

(a) (b)

Fig. 1 — Artist’s view of the ostillator assembly. (a) IMPATT diode wafer.
(b) Oseillator mount.
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and had a rectangular aperture 0.010 or 0.030 inch high and 0.100 to
0.148 inch wide.

The IMPATT diodes had a 0.001 inch diameter mesa structure
and nearly abrupt junctions as reported by Misawa.? Typical diode
characteristics are given in Table I. The diodes were thermal-com-

TasLe I —Tyrrcan Diope CHARACTERISTICS®

Epitaxial layer thicknesst 2.1p

Epitaxial layer doping densityt 6 X 1016 ¢m™3
Junction deptht 1.0

Space charge layer widtht 0.75 1
Breakdown voltage (at 1 uA) 19V
Capacitance at breakdown 0.19 pF
Junction area A 1.5 X 1075 em?

* All diodes were from the T.O 1114 series.
T Measured by staining and interference fringe.
I Obtained from voltage dependence of capacitance.

pression bonded onto gold-plated copper studs 0.063 inch in diameter.
After bonding, the diodes were coated with a thin layer of silicone
varnish which enchances the mechanical strength of the mesa strue-
ture. Electrical contact to the diode was made by a 0.032-inch nickel
rod with a welded contact spring, as pictured in Fig. 1a. For the
varactor-tuned oseillator, a varactor diode in a Sharpless wafer was
mounted adjacent to the iris wafer as shown in Fig. 1b. The relative
coupling between the IMPATT diode and the varactor diode (thus
the tuning characteristic) was adjusted by varying the relative posi-
tion of the two diodes in the plane of the cross section of the wave-
guide.® The complete assembly in a RG-98/U waveguide is shown in
Fig. 1b.

III. OSCILLATOR PERFORMANCE

Figure 2 shows the typical performance of an oscillator without the
varactor. (The varactor wafer is replaced by a blank wafer.) The
iris used had an aperture of 0.130 by 0.030 inch. The CW ouput
power (above 1 mW) and the frequency are plotted as a funetion of
the IMPATT diode current. Oscillation began at a diode current of
about 50 mA compared with 100 mA for the cavity structure. The
output power was optimized at each current level by adjusting an
E-H tuner in front of the diede and a sliding short in back of each
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Fig. 2 — Maximum output power and frequency as a function of diode current.

diode. Note that the tunable band (about 10 GHz) is considerably
wider than that previously reported for a radial line cavity structure.
By varying the bias current with fixed mechanical tuning, the fre-
quency could be tuned over 4 GHz with a 3 dB variation in the out-
put power, and over 9 GHz with a minimum output power of 1 mW.

Table II summarizes the results of various ecircuits with different
iris apertures. Although there are not enough data to draw a meaning-
ful conclusion, it seems that the oscillation frequency was relatively
independent of the iris width compared with iris height, which im-
plies that the inductance of the center post ( with contacting spring)
partially controls the oscillation frequency. This statement is based
on the assumption that diodes used in the test are of uniform char-
acteristics since they were made from a single slice and bateh pro-
cessed. The de characteristics of the diodes showed less than 5 per-
cent variation in capacitance and in breakdown voltage.

IV. FREQUENCY MODULATION

As mentioned in Section I, one goal in this work was to design an
IMPATT diode oscillator eircuit which could be frequency modulated
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TasLe II—REsuLTs or CIRCUITS WITH
VARIOUS DIODES AND IRIS APERTURES

Tunable
Width Height Cpt bandwidt.
Diode No. (in) (in) ) (GHz) Prex (dBrm)
1 148 0.030 0.19 50 — 60 15
2 130 0.030 0.19 53 — 63 16.5
3 120 0.030 0.19 52 — 59 11.5
4 110 0.030 0.18 56 — 63.2 9.4
5 100 0.030 0.19 53 — 61 10.7
6 130 0.010 0.16 64 — 70 11.5
& 148 0.010 0.18 58 — 65 11.1
} Cp is the diode capacitance measured at breakdown (Vy = —19 volts).

Y The lower limit on frequency is arbitrarily chosen as the frequency for which
the power is 1 mW. The upper frequency limit oceurs at a bias current of 160 mA
which is well below the burn-out level for the LO 1114 series diodes.

and used as a frequency deviator in a PCM millimeter-wave repeater
system.® Two approaches were taken. The first used a varactor diode
to tune the circuit susceptance outside the diode; the second used
the fact that the diode inductance (from avalanching) varies in-
versely with the bias current.

Both methods have advantages and disadvantages. The power out-
put of the varactor-tuned oscillator remains almost constant over
the frequency band so that amplitude modulation is negligible. How-
ever, to achieve ultimate performance the circuit is much more com-
plex. The bias-current tuned oscillator has simpler circuitry, but
inevitably its power output varies with bias current, which results
in AM distortion. However, the AM distortion can be overcome by
proper tuning of the eircuit if the modulation index is small. (See
Section 4.2)

4.1 The Varactor-Tuned FM Deviator

The varactor tuned oscillator is shown in Fig. 1b. The varactor
diodes used were planar diffused GaAs diodes with a honeycomb
structure.’® The zero-bias capacitance was 0.04 — 0.05 pF and the
breakdown voltage was 20 volts. The capacitance varied with volt-
age approximately as C = Cy (1 + V/¢)"*, where C, is the junction
capacitance at zero bias, V is the bias voltage, and 4 is “built-in”
voltage which is approximately 1 volt for GaAs. The diode was then
mounted in a Sharpless wafer which in turn was inserted into the
oscillator mount. The varactor diode was about 0.080 inch behind the
IMPATT diode. The coupling hetween the varactor diode and the
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IMPATT diode was tuned by sliding the varactor wafer relative to
the IMPATT wafer. Additional tuning was provided by a sliding short
behind the varactor diode and an E-H tuner in front of the IMPATT
diode.

The self-resonant frequency of the varactor diode, as measured by
the transmission resonance technique, was used to correlate with the
tuning sensitivity of the oscillator. The self-resonant frequency can
be varied by changing the length of the contacting wire in the varac-
tor wafer.! Tt was found experimentally that the best tuning sensi-
tivity was obtained when the varactor diode was self-resonant near
the “idler” frequency.

A typieal frequency tuning characteristic of the oseillator is shown
in Fig. 3 where the frequency is plotted as a function of the de bias
voltage (reverse biased) on the varactor. A tunable band of 2.5 GHz
was obtained. Notice that the linear region was 1.5 GHz with a sen-
sitivity ot 1 GHz per volt. Also notice that the power output varied £1
dB over the tunable band.

Frequency modulation with sinusoidal drive on the varactor was
achieved at both the 160 MHz and the 500 MHz modulation fre-

—

OUTPUT POWER IN dBm
w

58

57

56 A ——

FREQUENCY IN GHz

55

o] 1 2 3 4 5
VARACTOR BIAS VOLTAGE IN VOLTS

Fig. 3— Performance of the varactor-tuned oscillator.
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quency. Figure 4 shows a series of the FM spectrum at 160 MHz
modulation as the modulating power is inereased. For the particular
diode tested, the minimum modulating power required at 160 MHz
for complete carrier suppression was about 4 mW (to a 50 ohm load).

4.2 The Bias-Current Tuned FM Deviator

The second method of frequency modulation was achieved by di-
rect modulation of the IMPATT diode bias current (the varactor
diode wafer was replaced by a blank wafer). The modulating signal
was directly applied to the bias through a coupling capacitor. The
de tuning sensitivity was between 100 to 200 MHz per milliampere at
optimum tuning conditions; this resulted in a decrease of 1 dB in
output power compared with the maximum power obtained without
frequency deviation. For a sinusoidal drive at 160 MHz, complete
carrier suppression was achieved at 0.25 mW drive power. Figure 5
shows the spectrum of the modulated signal at various drive levels.
When it is tuned properly, no appreciable AM distortion was seen at
low modulation index,

4.3 System Performance with the IMPATT Diode Oscillator-Deviator

The methods of IMPATT diode oscillator frequency deviation were
tested in a two-level PCM millimeter-wave repeater system.? The
error rate of the system with the IMPATT diode oscillator used as
the deviator was measured as a function of the signal-to-noise ratio.
Figure 6 is a simplified block-diagram of the test circuit. The IM-
PATT diode oscillator-deviator is driven by a random-word genera-
tor either through the bias of the varactor for varactor-tuned devia-
tion or through the bias of the IMPATT diode for current-tuned
deviation.

The random word generator produces 160 megabit pulses per sec-
ond with a random distribution in polarity. These pulses modulate
either the IMPATT diode current or the varactor diode bias to deviate
the millimeter-wave output frequeney according to the input pulse
polarity. The IMPATT diode oscillator-deviator output is down con-
verted to an IF signal in the 1.3 = 0.25 GHz band. The IF signal is
then amplified and injected through a 500 MHz bandwidth filter to a
phase-locked oscillator. The function of this oscillator is to act as a
limiter thus removing amplitude modulation from the frequeney
modulated signal. The output of the phase-locked osecillator is further
amplified before being injected into the differential phase detector and
timing recovery ecircuit. The latter gives two output voltages. The
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Fig. 4—FM spectrum at 160 MHz modulation of varactor-tuned oscillator.
Complete carrier suppression is shown in (d) with 6 dBm IF power. Others are
() —9 dBm, (b) —4 dBm, (¢) 1 dBm, and (e) 11 dBm (first sideband sup-
pression).
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Fig. 5—FM spectrum at 160 MHz modulation on the bias current. (a) IF
power of —11 dBm for equal sidebands and carrier, Af/f = 1435, (b) IF power
of —6 dBm for carrier suppression Af/f = 2405, and (c¢) IF power of —2 dBm
for first sideband suppression, Af/f = 3.832.
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Fig. 6 — Circuit block diagram for the error rate measurement.

first, output is ideally a replica of the baseband drive signal from the
random word generator. The second output provides a timing signal
for the regenerator, which samples the polarity of the first input at
the time of arrival of the second input. The regenerator output is
then compared with the random word generator output in an error
counting circuit. (Reference 12 gives further details of circuit com-
ponents.)

Tor the random-word modulation just deseribed, the drive required
at the 160 megabit rate was about 0.1 volt peak-to-peak (to a 750
load) for the varactor-tuned deviation scheme, and 0.03 volt peak-to-
peak for the current-tuned deviation scheme at the optimum error-rate.
Figure 7 compares typical eye-diagrams for the two deviation meth-
ods tested. For the latter case, the measured error-rate was 1077 for a
16 dB signal-to-noise ratio, which was 2 dB worse than that obtained
with a 1.3 GHz tunnel-diode deviator.? The major problem appeared
to be the FM noise on the IMPATT oscillator output when it was
optimally tuned for best deviation. The noise could have been re-
duced by increasing the circuit @ and consequently increasing the
IF drive power.

Error rate improvement could have been obtained by matching
the input impedance to the IMPATT bias circuit over the band-
width of the baseband signal. A narrow band matehing results in dis-
tortion of the baseband pulses.
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Fig. 7— “Eye-diagrams” of the differentially-coherent-detected random word
signal. (a) With the varactor-tuned FM deviator. (h) With the current-tuned
FM deviator.

V. MEASUREMENTS OF SUBHARMONIC FREQUENCIES

As mentioned in Section I, the oscillator circuit under study pro-
vides at least two resonant circuits for the IMPATT diode, namely,
an output circuit which is resonant at the transit-time frequency in
M-band (50 to 75 GHz) and an “‘idler” eircuit which is resonant at
one-half the transit-time frequency in V-band (26.5 to 40 GHz).
The two-frequency arrangement, with the frequencies harmonically
related, has improved the tuning sensitivity of the oscillators, as we
have shown in previous sections.

Although the existence of such a subharmonic oscillation can be
deduced from the experiments described below, it is not surprising in
view of the highly nonlinear nature of the impact ionization and
avalanche process. Indeed, small-signal theories have predicted that
the negative resistance exists over, at least, an octave in frequency 13-15
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Parametric oscillations and mixing have been observed by DeLoach,
Johnston, Evans, and Haddad.® ' High-efficiency, low frequency,
subtransit time oscillations have also been reported by Prager, John-
ston, Scharfetter, and others,®¢ and analyzed recently by Scharfet-
ter and others.?® In Scharfetter’s analysis, the low-frequency oscilla-
tion is not necessarily harmonically related to the fundamental tran-
sit-time frequency. In recent work, Swan® showed that improvements
in both output power and tuning bandwidth are obtained by pro-
viding an idler eircuit which resonates at the second harmonic of the
transit-time frequency. This result is similar to our findings except
that in our case the idler is at one-half the transit-time frequency.

5.1 Measurements

Since the idler frequency is below the cutoff frequency of the RG-
98/U waveguide, it is impossible to detect its existence directly at
the output port of the oscillator as shown in Fig. 1. However, the
existence of such a signal at the subharmonie frequency would result
in mixing with the fundamental to produce an output at 3/2 the fun-
damental frequency. It was found that the next higher-order harmonie
detected was always 3/2 of the oscillation frequency independent of
bias current for all the diodes tested.

For direet detection of the below-cutoff subharmonic oscillation
dielectric-filled waveguide tapers which had a cutoff frequency of 18
GHz were used as shown in Fig. 8a. However, a short section of air-
filled RG-98/U waveguide with about 30 dB attenuation at 30 GHz
remained between the IMPATT diode and the output waveguide
taper. This arrangement retained the same subharmonic oscillation
circuit conditions. Yet, if enough power exists for the signal at the
subharmonic frequency to pass through the short section of air-filled
RG-98/U waveguide, both the fundamental and the subharmonic fre-
quencies should be present at the output port. A mixer and a spectrum
analyzer were used to detect the subharmonic, while a wavemeter and
a diode detector were used for the fundamental frequeney. There was
indeed an appreciable amount of power (estimated at 9 dBm at the
diode) at the subharmonic of 27 GHz; the fundamental was exactly
twice the subharmonic frequency, or 54 GIIz, within measurement
€rTor.

When the short section of the RG-98/U waveguide preceding the
diode wafer was also filled with dielectric the power output at the
subharmonic was increased appreciably, but the frequency shifted
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Fig. 8 — Waveguide arrangements for measuring the subharmonic signal.

slightly because of the change in loading impedance. The measure-
ments of the subharmonie power on several diodes are summarized in
Table ITI.

When the sliding short on one side of the oscillator mount was
replaced by an E-H tuner followed by a wavemeter and a detector,
as shown in Fig. 8b, both the fundamental and the subharmonic
could be measured simultancously. The results again confirmed that
the subharmonic frequency was exactly one-half of the fundamental as
shown in Fig. 9 for diode No. 3. This harmonic relation held true for
any bias current.

The E-H tuner in the M-band circuit serves as an impedance
matching device. By mismatching the oscillator to the load in the M-
band cireuit (thus reducing the 58 GHz power delivered to the load),
the power delivered to the V-band load increases, and vice versa. Thus
for efficient operation of IMPATT diodes, the subharmonic (and the
harmonies)? should be reactively terminated. Likewise maximum sub-
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TaBLE III—MEASUREMENT OF POWER AT ONE-HALF
THE TrANsIT-TIME FREQUENCY

Bias current Frequency Power output

Diode No.* (mA) (GHz) (dBm)

1 115 28.13 12.05

2 129 28,36 11.2

3 140 29,05 12.0

5 140 29.51 10.2

6 150 34 .48 16.9

7 150 32.25 15.2

8 150 32.98 14.7

9 150 31.91 11.1

* The diode number is consistent with that in Table II.

harmonic power can be obtained when the fundamental and all
harmonics are reactively terminated. Using this approach, by reac-
tively terminating both the fundamental and the subharmonie, we
obtain an output power at 3/2 the transit-time frequency of about 3.3
dBm at 86 GHz.

5.2 Harmonic Phase-Locking
The Fig. 8b circuit arrangement also was used for harmonic phase-
locking. The locking-signal was injected in the V-band end through

30 60
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28 58

SUBHARMONIC FREQUENCY IN GHZ
FUNDAMENTAL FREQUENCY IN GHz

28 56
Q
O FUNDAMENTAL
X SUBHARMONIC
27 54
®
26 52
80 a0 100 1o 120 130 140 150 160

DIODE BIAS CURRENT IN mA

Fig. 9— Fundamental and subharmonic frequencies as a function of diode
bias current.
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a 10 dB directional coupler. Both the locked signals at the V-band
and at the M-band were measured. The gain-bandwidth product
(2Af/fo) (Po/P;)% was about 0.05 to 0.07 for the V-band output.*
The M-band output frequency was simultaneously phase-locked with
the locked-bandwidth exactly twice that of the V-band. Since the
power output in the M-band was about 1 mW compared with about
6 mW at V-band, the apparent gain bandwidth product was much less.

5.3 V-Band Circuit with Cap Structure

The experiments of Section 5.1 were conducted on IMPATT diodes
in the iris circuit shown in Fig. 1. The same behavior was observed in
a different cireuit structure. A V-band oscillator was constructed using
a resonant cap structure similar to the circuit deseribed in Ref. 1.
(see Fig. 10.) Caps were made in various diameters, and could be

BIAS ——.
CAP RESONATOR, _~ RG-96/U (V-BAND)

WAVEGUIDE
SLIDING~ &
SHORT .

— T0 E-H TUNER

7 Z

T =——IMPATT DIODE
AND STUD

Fig. 10— A V-band IMPATT oscillator using cap resonator structure.

slid up and down the center bias rod, thus permitting the frequency
of oscillation to be varied. A diode with very similar characteristics
(breakdown voltage and capacitance) as the ones used before was
selected from the same batch (LO 1114). The fundamental oscilla-
tion was in the range of 64 to 72 GHz with an output power of 10
dBm at 67 GHz for 150 mA bias. The subharmonic power was also
detected.

To optimize the fundamental power, a V-band to M-band taper
was used in addition to an E-H tuner so that the subharmonic oseil-
lation was reactively terminated. Table IV shows the results. Notice
that when the diode was biased at the same current level, the sub-
harmonie frequency was close to 15 the fundamental {requency. The

* Here we define: gu = free running oscillation frequency

s = free running oscillation output power

P; = injected power at frequency fo &= Af
2Af = bandwidth over which the oscillator is phase-locked.
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TasLE IV—OsciLLATiON IN V-BAND CIRCUIT
wiTH CAP-RESONATOR STRUCTURE

Subharmonic Fundamental
(Subharmonic reactively terminated)

Bias Frequency Power ouiput Bias Frequency Power output
(mA) (GHz) (dBm) (mA) (GHz) (dBm)

80 32.75 7.5 80 64.95 4.0
100 32.87 9.5 105 65.7 5.7
150 33.4 14.0 150 67.0 10.5
160 36.0 14.0 160 72.0 11.1

slight difference resulted from the reactive termination of the sub-
harmonic which required slight retuning for maximum output power
at the fundamental frequency.

5.4 Comparison of the Outputs

Table V compares the fundamental and subharmonic power out-
puts in the two different circuits. For the iris-wafer circuit the diode
was mounted in the RG-98/U waveguide; dielectric-filled waveguide
and tapers were used when the subharmonie frequency power was
measured. The dielectric-filled waveguide and tapers had an insertion
loss of 1 dB in the frequency range of interest, which was taken into
account for the power listed in the fourth column in Table V. For
the resonant cap circuit, the diode was mounted in the V-band wave-

TasLE V—COMPARISON OF FUNDAMENTAL AND
SusHARMONIC PowER OUTPUTS

Subharmonic Fundamental
Diode Bias Trequency Power Frequency Power
No. (mA) (GHz) (dBm) (GHz) (dBm)
Iris circuit
1 115 28.13 12.05 55.02 9.5
3 140 29.05 12.0 57.84 9.9
5 140 29.51 10.2 59.5 7.3
6 150 34.48 16.9 69.1 11.5
7 150 32.25 15.2 63.93 11.1
8 150 32.98 14.7 66.25 10.6
9 150 31.91 11.1 63.7 7.6
Resonant Cap
Circuit

10 150 33.4 14 67.0 10.5
10 160 36.0 14 72.2 11.1
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guide as previously desecribed, so that no dielectric-loading was neces-
sary.

In both circuits, the subharmonic power was maximized by re-
actively terminating the fundamental power, and vice versa. The
subharmonic power is generally greater than that at the fundamental
output by about 3 to 6 dB. This is in general agreement with Johnston,
Schafetter, and others.'*-** However, the current density used here is
the same as for the diodes operated in the fundamental frequency
mode, and the frequencies are harmonically related to each other.

VI. CONCLUSIONS

By using an idler resonance at the subharmonic frequency, one can
design oscillators with 20 percent tuning range. Such tunable oseil-
lators and frequency deviators were built and worked satisfactorily in
an experimental millimeter-wave PCM repeater system.

Multiple frequency circuits for IMPATT diode oscillators offer an
important means of generating millimeter waves with useful power.
For example, 2 mW of power at 3/2 the transit-time frequency, or
86 GHz, has been obtained.
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Minimal Synthesis of Two-Variable
Reactance Matrices*

By T. N. RAO
(Manusecript received July 3, 1968)

A simple algebraic method stemming from ideas in minimal state-variable
realization theory is developed for the synthesis of two-variable reactance
matrices. The method rests mainly on the factorization of a one variable
polynomial matriz which is para-Hermitian and positive semidefinite on
the tmaginary azxis, and always yields a realization minimal in both vari-
ables.

I. INTRODUCTION

Two-variable reactance functions and matrices, originally intro-
duced to represent the characteristics of lumped passive networks
with variable elements,*? have become more important because of
their application to the synthesis of lumped-distributed networks.
Ansell first showed the two-variable reactance property of networks
composed of lossless transmission lines and lumped reactances.® The
two-variable theory has also been applied to the synthesis of net-
works consisting of lumped resistors capacitors and uniformly dis-
tributed RC lines,* * which are of importance in microelectronic struc-
tures.® 7 Besides the various applications, the two-variable reactance
theory is of theoretical interest in itself since it can be shown that
passive RLC synthesis is a special case of two-variable reactance
synthesis.”

Koga® demonstrated that every nXn two-variable reactance matrix
W (p, s) can be realized as the impedance seen at the first n ports of
a lossless (n+gr)-port network in the p-plane terminated at its last
gr ports with unit inductors in the s-plane; g is the rank of W(p, s),
and r is the highest degree of s in the least common denominator of

* This work is based on Chapter IIT of the author's dissertation, “Synthesis of
Lumped-Distributed RC Networks” submitted in partial fulfilment of the re-
quirements for the Ph.D. degree at Stanford University, May 1967.
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the elements of w. The method is quite complicated and rests heavily
on the theory of algebraic functions and the structure of para unitary
matrices. Also it does not guarantee the use of a minimum number of
elements. Youla® solved the problem of synthesizing a lossless two-
variable scattering matrix by adapting an earlier method for syn-
thesizing one-variable scattering matrices.® The method could be
adapted to the direct synthesis of an impedance matrix but appears
to be unduly complicated because of the need to find the transforma-
tion required to transform a generally unrealizable coupling network
into a realizable one.

A simple algebraic method stemming from ideas in minimal state-
variable realization theory and having similar beginnings as that of
Youla® is developed here for the synthesis of two-variable reactance
matrices. The method rests mainly on the factorization of a one-
variable polynominal matrix which is para Hermitian* and positive
semidefinite on the imaginary axis. Such a factorization is well known
in n-port network theory and once it is accomplished, the coupling
network is obtained by simple matrix operations. Furthermore the
method always yields a network minimal in both types of elements.

We first introduce some basie definitions and necessary theorems,
and later we add more as the need arises. The synthesis procedure is
developed in Section IIT. Since the various proofs involved are rather
indirect and tend to cloud the simplicity of the actual procedure, the
synthesis procedure is outlined in Section IV. The reader interested
only in the procedure and not in the theory behind it may go directly
to Section IV where step-by-step instructions are given for the syn-
thesis of any two variable reactance matrix. In Section V an example
is worked out. The notation used in this paper is almost the same as
found in earlier work to assure easy reading for those familiar with it.?
Capital letters indicate matrices; bold face letters indicate matrix
transposition. A superseript dagger indicates the substitution of —s
or —p for s and p respectively, in the case of two-variable functions.

II. BASIC DEFINITIONS AND THEOREMS

The basic notion in the two variable theory is that of a two variable
positive real matrix, which is a straightforward extension of the same
notion in the one variable theory (See p. 96 of Ref. 11 and p. 32 of
Ref. 8).

* A matrix A(p) is said to be para-Hermitian if A(p) = Af(p) where the bold
face letter denotes matrix transposition and the superscript dagger denotes re-
placement of p by —p. o T TR
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Definition 1: An n X n matrix W(p, s) is said to be a two variable
positive real matrix if

(7) W is real for real p and s.
(45) W is analytic in the domain Re p > 0 and Re s > 0.
(45i) W + W* is positive semidefinite in the domain Re p > 0 and
Res > 0.

By statements such as: “W is analytic” in the definition and in
what follows, we mean, “each element of W is analytic.” A two vari-
able function is said to be analytic at a point if it has a total differ-
ential at the point. The bold face letter indicates matrix transposition,
and the superscript star indieates the complex conjugation of each
element.

If W (p, s) satisfies conditions (ii) and (iii) of the definition and not
necessarily condition (i), it will be called a two variable positive
matrix.

Definition 2: An n X n matrix W(p, s) is said to be a two variable
reactance matrix if

(#) W is a two variable positive real matrix.

(%) W+ Wr=0.

The superscript dagger indicates the operation of substituting —p
and —s for p and s in the original matrix. This definition of a two
variable reactance matrix is similar to the corresponding one in the
one variable theory. (See p. 102 of Ref. 11 and p. 32 of Ref. 8.) Anal-
ogously, as in the one variable case (p. 117 of Ref. 11), it is generally
hard to check if condition (i) of Definition 1, which involves the
whole domain Re p > 0 and Re s > 0, is satisfied for a given two
variable matrix; we would like to find an equivalent set of conditions
that are easier to check. In the case of two variable reactance matrices,
the following theorem proved by Ozaki and Kasami® in the scalar
case, and extended to nonsymmetric matrices by Koga, (p. 33 of Ref.
8) serves this purpose.

Theorem 1: The necessary and sufficient conditions for an n X n matriz
W (p, s) to be a two variable reactance matriz are:

(2) W s rational in p and s, and real for real p and s.
(@) W s analytic in the domain Re p > 0; Res > 0.
(#7) W = — Wt
() For any (po, so) with Re po = Re sy = 0, which is a regular
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point of W, poles of W(p, , s) and W(p, s,) are simple and restricted to
the tmaginary s and p azxes respectively.

(v) aW /3p and dW /ds are positive semidefinite Hermitian for Re p =
Re s = 0, except at poles.

The proof of this theorem can be found on p. 33 of Ref. 8. We will
interpret the above conditions on a physical basis. Assuming that a
network realization consisting of reactances in the p and s-planes
exists for W (p, s), condition ¢ is fairly obvious, since the general loop
impedance will be a real rational function in p and s. Condition %1 is
also an obvious consequence of this reason, since the substitution of
—p and —s in W(p, s) is equivalent to changing the sign of all ele-
ment values and hence of every branch and loop impedance. Under
the assumption of existence of a two element kind of reactance net-
work corresponding to the given W(p, s), condition iv is also clear,
because p is fixed as a pure imaginary number, the p-type elements
can be considered as “frequency insensitive reactances,” and their
presence in a network consisting of pure reactances in the s-plane can-
not ereate poles off the imaginary s axis. Similar reasoning justifies
condition v for s fixed at any imaginary number, the positive semi-
definiteness of aW/dp can be considered as an extension of the posi-
tive slope of a reactance function in the one variable theory.

The necessary and sufficient conditions for a two variable reactance
function are not discussed separately, since scalars can be considered
as a special case of a reactance matrix.

If W(p, s) has a pole at p = po, independent of the value of s, pg
is said to be an s-independent pole of W. The following theorem (see
p. 34 of Ref. 8) concerning such poles is important for the synthesis
method to be given.

Theorem 2: A two vartable reactance matriz Wy(p, s) can be de-
composed as

Wlp, 8) = Wi(p) + Wa(s) + W(P, L))

where W, and W, are reactance matrices in p and s, respectively, and W
78 @ two variable reactance matrix with no p-independent or s-independent
poles.

Any given two variable reactance matrix W,(p, s), by virtue of the
above theorem, can be realized as a series connection of networks hav-
ing Wy, W, and W as their impedance matrices, as shown in Fig. 1.
Since W, and W, can be realized by existing techniques (See chapter
7 of Ref. 11) the given W, can be realized if a method of synthesis is
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O Ot
N-PORTS W, (p)
Wo (P,S) =— N-PORTS W;(s)
W(px 5} —
N-PORTS
o Io—

Fig. 1 —Interpretation of theorem 2.

found for W. Henceforth we assume that the given reactance matrix
has no p-independent or s-independent poles.

1IT. SYNTHESIS OF TWO VARIABLE REACTANCE MATRICES

Let us assume that there is a passive n-port network representation,
consisting of p- and s-type reactances, gyrators, and ideal transform-
ers, for a given two variable n X n reactance matrix W(p, s). In such
a network it is always possible to replace each s-type capacitor by a
gyrator-s-type induetor combination and then isolate all the s-type
inductors, of which we assume there are &, as shown in Fig. 2, without
changing the impedance seen at the preseribed ports. If we further
assume that the (n + k)-port coupling network, consisting of p-type
reactances, ideal transformers, and gyrators has a Z matrix, then the
impedance matrix W (p, s) seen at the first n ports is given by

W(p, s) = z2ulp) — 22(p)lz22(p) + sli] 221 (p) (1)
where Z(p), the impedance matrix of the coupling network is given by
Zp) = [211(13} zu(m}_ @

2z (p) 225(p)

Since the coupling network is a lossless network in the p-plane
Z = -1t (3)
and we have
W(p, s) = 2u(p) + 21:(p)l222(p) + slk]_lzlz(p). (4)

Next we show, by algebraic means, that every two variable reactance
matrix ean be decomposed into the form in equation (4), such that
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C- n k
N-PORTS =3 Zip) = Zu(P) Ziz{p) [N U N—
W(p,S) —= Za(p) Zz2(p) | k

TR

Fig. 2 — Extraction of S-type inductors.

Z(p) of equation (2) describes a lossless network. Once such a decom-
position is found, we can realize the given W (p, s} by realizing Z (p)
by any of the existing techniques (see chapter 7 of Ref. 11) and
terminating it at its last & ports with unit inductors in the s-plane.

To establish that any given two variable reactance matrix W(p, s)
can be decomposed as shown in equation (4), we first expand W (p, )
and the expression on the right side of equation (4) about s = o and
find the expressions that relate zy;, zis, and 2., with the expansion
cocflicients of W(p, s}. We then show that a set 211, 212, and 2z, which
satisfies the above relations and at the same time guarantees that the
Z(p) of equation (2) is a reactance matrix in p, ecan always be found.

The given two variable reactance matrix W(p, s) can be assumed
to have no p-independent or s-independent poles by virtue of Theorem
2 and hence can be written in the form

Byp)s’ + Bi(p)s ™' + --- 4 B.(p)
a(p)s’ + ap)s™ + --- + a.(p)

where the B;(p} are real polynomial matrices in p and the scalar

g(p, 8) = au(p)s” + a(p)s™™" + -+ + a.(p) (6)

is the least common denominator of the entries in W(p, s). For any
ordinary value of p, W(p, s) can be expanded in the neighborhood of
§ = oo as’

W(p, s) = (5)

= 2 A
W, 9) = A-so) + 3 248 )
=1
Expanding the right side of equation (4) in the neighborhood of s = «»
oo I T
Zu(P) + Z:S(P)[zzz(p) + SIA—]_IZIZ(P) =z, + (_1)1 :E@:—I%g (8)
=0

For the equality in equation (4) to hold, we identify

2u(p) = A_i(p) = W(p, =) (9)
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and
Ap) = (—D'amthazi, 1=10,1,2, . (10)
Since the Z (p) formed out of 211, 212 and 2ss
Z(p) = [ 2“? Zﬂ} (11)
—Zyz Za
has to describe a lossless network in the p plane, we must have
Z = =71
as given by equation (3), and hence
2iy = — I (12)
and
292 = "2;2 . (13)

With the identification in equation (9), equation (12) is always satis-
fied, since by equation (9)

in = W(pP uo) = _W('_P: —co),

and thus 2z;; is uniquely determined. The problem is to chose a pair
212, 220 to satisfy equation (10) and at the same time guarantee that
equation (11) describes a lossless network in the p-plane. For Z(p) to
deseribe a lossless network, it must be positive real and satisfy equa-
tion (3).

Before proceeding further, we would like to know more about 4,(p),
the expansion coefficients in equation (7). By equating the right sides
of equations (5) and (7),

By(p)s” + Bi(p)s™" + -+ + B.(p)
- @@ +aE + o+ el 40 + 542 g

i1=0 S

Equating coefficients of like powers of s on both sides of equation (14),
(see p. 207 of Ref. 12, Vol. II).

ao(p)A-l(P) = BD(P)
GJ(P)A—l(P) + a,(p)Ao(p) = Bi(p)

ax(p) A-.(p) + a.(p) Ao(p) + au(p) Ai(p) = B:(p) (15)
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a,(P)A_(p) + a._.(p)Au(p) + -+ + a(P)A,_:(p) = B.(p)
and
a(p)Ap) + a:(p)Ad. . (p) + - + a.(pAd,_.(p) =0, fori = r.

From equation (15) an expression for 4,(p) can be written* in the con-
venient form (see p. 14 Ref. 9)

BU(P) au(p) 0 0 0
B\(p) alp) adp) 0 0
B I A
Bip) alp) aii(p) a=(p) -+ alp)
Bi.(p) ai.(p) alp) a(p) - alp)
1=-1,0,1,2, -

B, =0, for I >r
a =10 for 1> r

where the (I + 2) %X (I + 2) determinant is expanded formally in
terms of its first column. In equation (16) the B; are matrices, the a;
are scalars, and the determinant is not a determinant in the usual
sense. From equation (16), it can be seen that 4,(p) is of the form

real polynomial matrix in P
!+2(p)

Another important property of the 4;(p)’s is obtained from the rela-

tion

A,(p) = (17)

W(p,s) = —W(—p, —s)

which implies

ﬂ(p)+ZA,£%”— A~ X (AR g

Hence by equating like powers of s

*Alternate methods of obtaining these A ({p)’s are by diffe rentiation of W(p, s)
AW (p, 8)
Ap) = ———

asitl
o]

or by long division.
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A, = (—=1)'Al. (19)

If, for the purpose of choosing a pair zi2, zs» that satisfies equation
(10) and, at the same time, guarantees that the Z(p) of equation (11)
describes a lossless network in the p-plane, we define P;(p) as

!_ 212
lzlzzzz
g 32
12822
Pip) =|"" 7| (20)
1
Z19%92_|
Then
& f F . 2f ot PR
212212 Z12Z32Z12 Z19ZasZ1p  ** 1 Z12Z22Zy2
1 ¥ ool 2f T 5 A
Z12%a2Zys  R19%00Z02Z12  Z1oZ22Z33Z42 * * * 212%22Z29Zyy
g 1 2 t ¢t 2 a2t t 2 1t t
t | 219822212 Z12822Z90Z12 219222232233 ' * ¢ 219822Z22Z12
P1P1 = (21)
1t PN . { ot t 1 it t
| 212820Z12  R19%22Z22Z12  Z12222F00Z0p * * * 2122222122

In the above matrix, the entry in the ith row and jth column is z,,2},2/,2.,
and by equation (13)

zizz':zz;;zIa = (—1) izngizrz . (22)
Since we wish the equality in equation (10) to hold
2125;.22;‘;21*2 = (_l)izuz;;izjz = (— 1)."4 i+i o (23)

If we define T';(p) as

Ao(P) A:(P) AQ(P) L AI(P)
—An(P) —Az(??) _Aﬂ{p) =08 _A1+1(p)
T;(p) — Az(p) A.a(jf’) 44.4(])) . .- . A l.+2(’P)
L(=D'Ap) (—D'41a(@) (—1'Aislp) -+ (—=1)'An(p) |

(24)
from equation (23), we can see that

Tl = P:P: . (25)
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Equation (25) suggests that a way of obtaining a pair 212, 222 would
be to form the matrix T;(p), factor it in the form of equation (25),
and then try to identify z1» and z2s from these factors. We do not know
in advance if the matrix T;(p) formed from the expansion coefficients
of W about s = oo can always be factored as indicated in equation
(25) ; hence we first study the properties of T;(p), to see if it can be
factored in the desired form.

Consider the matrix T;(p) when I = r, r being the s-degree of g (p, s),
ag given in equation (6),

An Ax Az b Ar,1 [1,-
—A, — A, —4; s —A, —A.
A, Ay Ay i Arp Arpa
7= : ; S . : . (26)

(_1);1‘4'__1 (_1),‘—114” (71)'_.1Ar+1 " . (_1);1“121_4 (_1)-—-—1‘4”_1
(DA, (—Ddep (=Ddee -00 (=1)7Aza (—1)7Ae
The matrix obtained by deleting the last column and row in equation
(26) is T',_1, and by equation (15) it is easy to see that the last column
is a linear combination of the first  columns. Hence*

rank T, = rank T,_,
and

rank 7', = rank T, _, for I=2r—1.

The rank of T, is connected with the s-degree 8[W (p, s)] of W (p, s)
which is defined in Definition 3 (see p. 10 of Ref. 9).

Definition 3: The s-degree of a rational two variable matrix W (p, s)
is obtained from the rule

s = degree of W(p,s) = &[W(p, s)] = max §[W(p, , s)]

where §[W (p,, s) ] is the McMillan degree (see part IT of Ref. 13) of
W (po, s). For any fixed p,, W(p,, §) is a matrix of rational funetions
in s with its MeMillan degree uniquely specified; hence the above
definition uniquely specifies the s-degree of W (p, s). The relationship
between the s-degree of W (p, s) and the rank of 7', is stated formally
in the following lemma.

Lemma 1: The rank of T,_,(p) is equal to the s-degree of W (p, s).

* By the rank of rational or polynomial matrix we mean the “normal rank,”
which is defined to be the rank everywhere except at a finite number of values
of the variable.
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The proof of this lemma for the one variable case ean be found in
Ref. 14 and on p. 200 of Ref. 10, and for the two variable case on p. 17
of Ref. 9.

To show that the matrix T, ,(p) can always be factored in the form
of equation (25), we need the following lemma.
Lemma 2: The matriz T,_.(p) defined by equation (24) forl =r — 1
satisfies
(Z) Tr—l = TI~1
(#7) T._.(jw) is Hermitian and positive semidefinite.

Proof:

Since A, = (—1)'A] by equation (19), the proof of 7 is readily seen
from equation (26)

T.., = TI—I . (27)

To prove (#3), we first notice that by Theorem 1, for any real w, W(jw, s)
has only simple poles, which are restricted to the imaginary axis in
the s-plane. Hence W (jw, s) can be expressed in the partial fraction form

. —_ Bi(jw)
Wiia, §) = A-iio) + X 220 (28)
where, R, (jw) are the residue matrices at the poles jo;(w), and the a:(w)
are real.
Tt is shown in Appendix A that the R, (jw) are Hermitian and positive
semidefinite for each w. Now, if each term in the sum on the right side
of equation (28) is expanded about s = =, we have

Wi, s) = A-() + 2 3> G R ), (29)

For the purpose of comparison, equation (7), written with p = jw, is
L A,

Wiio, 9 = A + 3 2. (30

The right sides of equation (29) and (30) are expansions of W(jw, s)
about s = «, and because of the uniqueness of a power series expansion

i) = 3 (o) Rl (31)

By noting that the a; are real and the R;(jw) are Hermitian and positive
semidefinite for each w, we have
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Aoi) = X RuGia) >
M) = j X ki)

i=1

M) = — Y oRih) S

i=1

A.,,,‘,;,(jw} = 7.7. Z a‘:miaRl'(jw)

i=1

— 2 " Ri(j) =
i=1

Ay, —E(jw)

"li-mfl(jw) = _j EajmglRl‘(jw)
i=1

1%

A(jw) = Z ;"R ()

By direct substitution of equation (33) into equa
can be written as

R, Joeidt s '—'I?Ri
—jaiR.‘ G?Ri M?R.

Ls —a'R,; — iR, ‘R,
TG =X T o i

i=1

(_l)rvl(ﬁx}r*lﬁi (_l)r-l(jﬂ)rRl_ (_l)rﬁl(ju)rflR‘_ S

0 (32)*

(33)

0 (34)

(35a)
0 (35b)
(35¢)
0. (35d)

tion (24), T,-,(jw)

(e ™R,
— ()R,
G 'R | (36)

(=1 (je)"" "R,

The matrix sum on the right side of equation (36) can be written

I'R'_ 0 0---0

0 0 0---0

; C 0 0 0---0
Tooi(jw) = ZL-' L.
i=1

0O 0 0-.--0]

where

" |Lx (37)

* By the notation 4 = O or A = 0, we mean that the associated Hermitian form

of A is positive semidefinite or negative semidefinite.
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1, 0 0 -0 [
jeil, 1, 0 ---0

L;, = ofl, 0o 1,---0] . (38)

L(=D"(e)" "1, O 0 ---1,]
Since each R;(jw) is Hermitian and positive semidefinite for each o,
the sum on the right side of equation (37) is also Hermitian and positive
semidefinite. Hence, we have proved the lemma.

We have shown that T,_,, a matrix of rational functions, is para-
Hermitian and positive semidefinite on the imaginary axis. Such a
matrix can always be factored in the form shown in equation (25),
(see p. 133 of Ref. 15). It is tempting to factor 7',_, at this stage and
find z,s, 25, to satisfy the required eonditions, but we will factor aj” T',_,
instead of T,_, for the reason that the factors would be polynomial
matrices.

From equation (17) we ean see that ai” 7', is a polynomial matrix
in p. To be able to factor a” T,-, in the required fashion, we have to
show that T = & T,_, is para Hermitian and positive semidefinite on
the jw axis. To do this, we obtain the required additional information
about the polynomial a,(p) from the following theorem. Since the
theorem contains more information than we need at this point, we will
only state it here; a proof is given in Appendix B.

Theorem 3: 1If

= ,BO(P)Sr + B;(;O)S'_l + --- + B.(p)

Wi(p, s) = = —
®.3) a(p)s’ + ap)s™ + - + alp)
is a two variable reactance matrix, then for alli = 0,1, --- , r
v B; . . s
(z) e is a reactance matrix in p
(22) aa-,- is a reactance function in p
i+l
(471) a; has all its zeros on the jw axis and these are simple

(i) XB,X forall constant real n X 1 vectors, X, is a reactance
¢ XB,,,X function in p
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From this theorem, a,(p) can be represented as
a(p) = p" II (" + o)) = La(—p) (39)

where » = 0 or 1. Hence
P, =aT,., =T, . (40)

From the form of a, shown in equation (39) and Lemma 1, it can be
seen that

T,1(jw) 2 0 (41)
except when simultaneously, » = 1 and » is odd; in which case

T,-1(jw) = 0. (42)

We will assume that 7,_,(ju) = 0 in developing the synthesis procedure
and discuss the needed modification when T',_,(jw) = 0 later.

If the s-degree of W(p, s) is equal to k, by Lemma 1 the rank of T,_,(p)
and hence of T._,(p) is k. Since 7,_, = T!_, and T._,(jw) = 0 there
exists a factorization *'*"

T, ..(p) = M(p)M(p) (43)
where M (p) is an nr X k polynomial matrix and has a left inverse M ™" (p)

which is analytic in Re p >0
From the definition of 7',_,, we have

T._\(p) = Mp)M ( ()., (44)

0

M (p) can be partitioned into n X k bloeks M ;(p)

ﬂIn(p)
M, (p)
Mp)=| - (45)
M, )]
and hence
M'(p) = [My(p): Mi(p): ---: M} _,(p)]. (46)

Now by comparison of equation (45) with equation (20), we can im-
mediately identify a suitable z;, as

- % 4 (47)
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To find a suitable zs., if we define T, as

[y —ily iy e =, |
1’12 113 A4 e Ar+1
T,,-(p) _ _lAs _.“14 _-As * . -‘Tr+2 (48)
L(—1D"4, (=14, (1A e (—1) Ao
from equations (20), (21), and (25) we see that z,, must satisfy
1 t
o Mz, M =T, . (49)
Qg

Even though equation (49) does not uniquely specify 2.z, We can choose
for 25,

Zyg = agrﬂ[_lTaMﬂt- (50)

From equation (19) and the definition of T4, we see that T, = —T,
and hence

22y = _z;z- (51)

We now notice that by construction, the pair z, z. defined by
equations (47) and (50) satisfies

(_I)Lzuz;zziz = A, (10)

forall0 < I < 2r — 2. Our aim is to find z;, and 2., that satisfy equation
(10) for all L = 0. It is not immediately clear that the pair z1s, 220 defined
by equations (47) and (50) satisfy equation (10) for all I = 0.

To see that the chosen pair 2,4, 2., does indeed satisfy equation (10)
foralll = 0 and not just for0 £ 1 = 2r — 2, we introduce the generalized
companion matrix Q(p) defined by"’

" 0, 1,  SP— 0, |
0, 0, 1, e e 0,
o) = | : 2 : (52)
0, 0, 0, cee 0, 1,



178 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

From equation (15) it can be seen that

Td = —'T,._lﬂ. (53)
Hence, by equation (43)
2oy = —a@XM7T,_ QM
= —M'‘MM'eM™'
= -M'eM™'
and by equation (51)
2s = —M'@M ™' = M 'a'M. (54)
Hence
2, = —M ' uM'aM™'
= —aMe'r,_ oM™
= —aM*'T,_ MY
= —M'e'M
and
zy, = (="Mt 1> 0. (55)

IF'rom the definition of @, we see that g(p, £) is its minimal polynomial,
and hence the matrix polynomial

¢(p, ) =a + a2+ - +al, =0, (56)
and hence
g(—p, ") = O,.. (57)
By equation (55)
9D, 222) = M7 (—=1)" 0,0 + (—=1)"20,@ " + -+ + a,1.. M,
and by equation (57) and Theorem 3
g(p, 22) = = M7'[g(—p, QNIM = 0. (58)

From the last equation in equation (15), from equation (58), and from
equation (10), which holds fm{'O'g = 2r— 2

gy = —a Aoy — @Ay g — - —a, 4,

r— r—2 -1t
—212[{1-1332 : + a‘zzgz : + e _I" a’rz;2 ]1'12

_ 2r—1 1
= T@ylafp2 Iyp .
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Hence

y 2r—1, _ar—1_7T
Agpey = (1) 210222 Zi2

and by induction
Ay = (— 1)!3123;2212

for all I = 0, which is the same as equation (10).

We thus have a set of three matrices z,,, 212, 2.2 such that the in-
finite set of equations obtained by equating the right sides of equations
(7) and (8) are satisfied. Hence the right side of equation (4) and IV (p,s)
have the same Taylor’s series expansion in the neighborhood of s = .
By analytic continuation, for all p and s

Wip, ) = 20(0) + 2a(P)eaalp) + 51,] ' 21:(p),

where 2.y, 212, and 2, are defined by equations (9), (47), and (50),
respectively.

We have thus succeeded in decomposing W (p, s) as shown in equation
(4). It now remains to show that Z(p) formed from the chosen zi,,
Z13 , and 2y

Z(p) ZnEP) 212(10)}
| —2Z12(p)  2aa(p)

- (59)
L

Wip, =) %—? ]

M) aéffp)M"(p)Td(p)M-‘*(p>\

L ag (p _

is a reactance matrix.

To show that the Z(p) in equation (59) is a reactance matrix, we may
choose any standard test, but we will choose the one given below since
it is particularly suited for the problem at hand (see pp. 117 and 123
of Ref. 11):

Lemma 3: The necessary and sufficient conditions for a square matrix
Z(p) to be a reactance mairiz ave:

(@) Z is rational and real for real p.

(¢) Poles of Z(p) are simple and restricted to the imaginary axis.
(7) Z +Zt = 0.

(iv) Residue malrices are positive semidefinite Hermitian.

Sinece all the entries of Z(p) in equation (59) are real and rational, con-
dition 17 is satisfied.



180 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

From equations (13a) and (15), 2, = A_; = By/a, is a reactance
matrix by Theorem 3; hence its poles are simple and restricted to the
imaginary axis. Also, the pole at p = oo, if any exists, is simple for
this block. Sinee M, is a polynomial matrix, it is clear that the poles of
the off diagonal blocks 2,, and —z,, are in the zeros of a, and hence by
Theorem 3 the poles of z;, are restricted to the jo axis. However, it is
not clear that these poles are simple. To show that they are indeed
simple we will use the fact that A, defined by

A, = a?4, (60)
is a polynomial matrix. From equations (10) and (47)
t
2y, — el (61)
0

and from equation (39) a, = =a, . We first consider a, = a, in which

case
- M, MD]*
A"‘[aa“][a;" : (62)

Equation (54) then shows that 4, = A] and A,(jw) = 0. Hence there
exists an n X ¢ polynomial matrix, @, such that

A, = QQt (63)
where ¢ is the rank of A, . Equations (62) and (63) are two different
factorizations of 4, , hence:"”

M g
r—ol == Ql_la: ka(r*qJV (64)

g

where V{p) is a k X k para unitary matrix, that is, VVt = 1, . Since @
is a polynomial matrix, and V(p) being para unitary can have no poles
on the imaginary axis (see p. 186 of Ref. 11), the left side of equation
(64) can have no poles on the imaginary axis. Hence a;~', which has
all its zeros on the jw axis, must divide M, . Thus z,, has all its finite
poles in the zeros of @, . By Theorem 3, the zeros of a, are simple and
restricted to the jw axis. In the above, we have assumed that a, = a ;
if @ = —ay and 7 is odd, the same proof holds; if r is even we can con-
struct a similar proof by factoring — A, instead of A, .

To show that the pole of 2z, at p = «, if any, is simple. Consider
the following representation for 4, obtained from equations (15) and (17)

i o= .3, —2 a, B, _ && _ &ﬂ (65)
ay a; Qg Uy g
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Since B,/a, and B,/a, are reactance matrices and a,/a, is a reactance
funetion, according to Theorem 3, the right side of equation (65) be-
haves as Kp® near p = o, where K is a constant matrix and » is an
integer such that —2 < » = 2. But z,, satisfies

t
Ay = 2102,

and hence the pole of z,, at p = =, if any, must be simple.
We now have to show that the z., block also satisfies condition (%)
of the lemma. By equation (54)

2y = —MIQMT™ = MT'Q'M. (54)

Since M ™" is analytic in the open right-half plane and @ has all its poles
in the zeros of a, , by equation (54) the poles of z,, are restricted to the
jw axis. To show that these poles are simple we will prove by contradic-
tion that ag2., is polynomial.

From equation (52), the definition of 2, and equation (54) we see that
if @yzs, has a pole of multiplicity a at p = jw, . In the neighborhood
of this pole, we have the approximation

K
Ao R . (66)
(p — Jwo)
where K is a constant matrix and « is a positive integer, and
K?
2.2
(yZan R 5" (67a)
(» — .7“’0}2

Now by equation (55) z2, = —M '@**M, and hence in the neighborhood
of p = juw,

_ K
» — jwn)ﬂ
where K, is a constant matrix and § is a positive integer. Since the poles
of @yzs, are contained in the poles of M ™', 8 £ 2«. By comparison of
equations (67a) and (67b), which must be equal, it is clear that either
a=p8=00rK, =K = 0. Since 2, = —z1, , K = K*, and hence
K* = KK* = 0 implies that K = 0. Thus a,2;; can have no poles on
the jw axis and this, coupled with the fact that 2., can have poles only
on the jw axis, guarantees that aqz., is always polynomial. We therefore
conclude that all the finite poles of 2z, are in the zeros of a, , and their
multiplicity eannot exceed that of the corresponding zeros of a, . Hence,
again by Theorem 3, all the finite poles of z;, are simple and restricted
to the jw axis. :

(67h)

2 2
ApZon RO
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To show that the pole at p = o of 2,5, if any, is simple, consider
equation (15) written in this form:

A, =50
(L1
A4, = && _ %_9_1 (68)

@, g Qo Qg

=B _wma [&.& _ &_&] _ @ By,
! a, ag @y Qg Ay Qg Qg

Owing to the reactance nature of B./a; and a;/a;., by Theorem 3,
and from the form of 4; shown in equation (68), near p = «, 4; behaves
as

A; ~ K;p" (69)
where K; is a constant matrix and »; is an integer such that
i+22z0 2z —(+2). (70)
Also from equation (10)
Ziazinzl, = (—1)'A, =~ +K.p*. (71)

Sinee 2,; has at most a simple pole at p = o, in the neighborhood of
p=

212 =~ Kp' (72)

where K is a constant matrix and ! is an integer such that I < 1. If
222 behaves as K,,p™ near p = o, where K,, is a constant matrix and m
an integer, then by equation (70), (71), and (72), (i + 2) = 7m + 21 =
— (@ 4+ 2). For such to be true for any fixed ! and all integral « = 0,
m has to be less than or equal to unity. Hence the pole of z., at p = o0,
if any, is simple.

We have thus shown that condition 77 of Lemma 1 is satisfied for
each bloek in Z(p), and hence Z(p) also satisfies it.

Sinee z,, 18 a reactance matrix, z,, = —z:l and 2, = —z;z by equation
(51), we have Z = —Z' and thus condition (¢77) of the lemma is also
satisfied.

Now to complete the proof that Z(p) is a reactance matrix, we have
to show that the residue matrices at the poles are positive semidefinite
Hermitian. To do this we need Lemma 4, which follows from the defini-
tions of a two variable positive real and two variable reactance matrices
(see p. 34 of Ref. 8).
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Lemma 4. If W(p, s) is a two variable reactance matriz with no p-in-
dependent or s-independent poles, Wip, s(p)] 4s a reactance mairiz in p
for any reactance function s(p).

To prove that Z(p) satisfies condition i of Lemma 1, which requires
that the residue matrix of Z(p) at any of its simple poles on the jo axis
is positive semidefinite Hermitian, we note that at any pole, p = jo,
of Z(p), if we set

= 3 5 for o <
s(p) 2+ or | wp | @
=Ip for wy =

”’r(?’: §) = zu + 219(220 + sl,‘)“zfz
[which is equation (4)] then by Lemma 4, W[p, s(p)] is a reactance

matrix in p for all positive . Since Z(p) is real for real p and Z = —ZT,
the residue matrix H at the pole p = jw is Hermitian; if we write it as
B - [H“ H } (73)

2 Ha

then, K, the residue matrix of W[p, s(p)] at p = jw, is given by
K=H, — H.H,, +11,)"'H} . (74)

Since H, H,, , and H,, are Hermitian, there exist unitary matrices U,
and U, such that

Ay = UH U, = diag|d, , dy, --- , d,] (75)
and
Ap = UtH,,U, = diag [A, Ay -0y M (76)
Hence
U*KU, = Ay, — Jio(As + 11,)7' T % (77)
where
J = UH U, . (78)

If J,.; denotes the 7th column of J,, , the right side of equation (77) ean
be rewritten as

k
U:Q;I(U] = AII - E )\ 1_‘_ lJl’IJIEl " (79J
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Qince K is the residue matrix of a reactance matrix, for alll > 0, K is
positive semidefinite. A,, is also positive semidefinite, since H,, is
the residue matrix of the reactance matrix z,, . J,;:J%, is obviously
positive semidefinite and the left side of (79) can be positive semi-
definite for all positive I only if all the X\; are nonnegative. Hence A,

and H,, are positive semidefinite.
To show that H is positive semidefinite, we will show that H’ defined by

H' = (U + UHHU, + U,) = [A“ "“} (80)
JikZ A-ZE

is positive semidefinite. For this purpose, consider the Hermitian form

Xt X1] ["‘“ / J [X }
J;kz Dy | | Xo
= X"’1‘1&11X1 + Xz’fz.ﬁ‘le = X“lle';‘XE + XtszzXz (81)

where

Dy = Ay + 114 I>0.
Since

UAKU; = Ay — JuDail s

is positive semidefinite, we obtain from equation (81) the following
inequality:

[(X* X%] {An le} {Xl—\
1 2
Jt Du]| Xl

= X4/ DnJhX + X3 uX, + X3TEX, + X34X, . (82)

Since the right side of equation (82) can be expressed as G*G, where
G = [DMEJEX, + AX.], the Hermitian form in equation (81) is
positive semidefinite for all I > 0; by a continuity argument we can
cee that H' and consequently H are positive semidefinite.

We have thus shown that Z(p) does indeed describe a lossless network
in the p-plane and thus W(p, s) has the network representation shown
in Tig. 2.

In the development of the synthesis procedure we assumed that
at (jw) T (jw) = T _.(jw) = 0. If simultaneously, a,(p) is an odd
function of p [in other words » = 1 in equation (39)] and r, the s-degree
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of the least common denominator of W(p, s) is odd, then T _(jw) = 0.
In this case we factor —T',_,(p) which is para Hermitian and positive
semidefinite on the jw axis. We will then have

-7, = MM (83)
and hence, as before equation (44),

T
Tr#l = gr M,.'{"

Qg 1

It is then clear that the identification of z,, and 2, can be done in
exactly the same way as when T _(jw) = 0.

It is of importance to notice that the number of s-plane inductors
used in the realization of Fig. 2 is equal to the s-degree, 8[W (p, s)]
which in general is smaller than the number required in Koga's tech-
nique. Appendix C shows that 8, [ (p, s)] is the minimum number of
s-plane inductors required in any realization, and that if a realization
is minimal in the variable s it is automatically minimal in the variable
p, the minimum number of p-type reactances needed in any realiza-
tion being the p-degree, 8,[ W (p, s) ].2®

The main result of this section can be conveniently put in the form
of a theorem:

Theorem 4: Every two variable reactance matriz W (p, s) can be realized
as the impedance seen at the first n-ports of a lossless (n + k)-port con-
sisting of 8,[W(p, s)] reactances in the p-plane, terminated at its last k
ports with 8,[W(p, s)] unit inductors in the s-plane. Furthermore, such a
realization uses the mintmum possible number of reactances of each kind.
(The roles of p and s are completely interchangeable.)

Since several of the proofs involved in establishing Theorem 4 were
rather indirect and lengthy, while the procedure for synthesis, sum-
marized in Section IV, is itself rather simple.

IV. SUMMARY OF SYNTHESIS PROCEDURE

Given an (n X n) two variable reactance matrix W,(p, s), decom-
pose it as

Wo(p, s) = Wi(p) + Wa(s) + W(p, s)

where W, and W are reactance matrices in p and s, and W(p, s) is a
two variable reactance matrix with no p-independent or s-independent
poles. Such a decomposition is always possible by Theorem 2.
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Expand W (p, s) as

Wi, ) = Ada@ + 3 252

=0 8
[which is the same as equation (7)] where the A(p)’s may be ob-
tained by equations (16) or (16a) or by long division.
Find ¢(p, s), the least common denominator of the entries in
W(p,s) and express it in the form

g(p, ) = au(p)s” + ﬂ-l(P)Shl &= & 5 oty

[which is the same as equation (6) ].
Form the (nr X nr) matrix T, (p), defined by

Tr— l(p)
[ A A,(p) A(p) - A,_\(p)
—A,(p) — Ay(p) —Ayp) e —Alp)

Az(p) A‘la(P) A+(P) Ry Ar+1(p)

(=174 () (D7 Adp) (=D Alp) - (=17 Agy-a(p) ]

which is equation (24).
Factor T'._,(p) = a5’ T',_,(p), a polynomial matrix, as
T...(p) = MM? (43)
unless simultanfzously, @y = —ay and r in equation (6) is odd, in which
case factor —7',_,(p). The factorization must be such that M is a
(k X mr) polynomial matrix with & = rank of T,_,(p) and M, the
left inverse of M analytiec in the open right plane. The existence of such

a factorization is guaranteed by Lemmas 1 and 2.
Partition M (p) into (n X k) blocks of equation (45)

[ a(p) |

Mp) =| ~7°

LM, _.(p)]
Form the (nr X nr) matrix Q(p) defined by equation (52)
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With the identification of equations (9), (45), and (54)*

zu(p) = A(p),

M(p)

and Zip = o)

and  z, = M7'(p)2'(p)M(p),
the decomposition

W(p,s) = zulp) + 212(p)[220(p) + Slk]_lzzz 4)
is obtained. Notice that this is equation (4). It should also be noticed
that W(p, 8) can be decomposed as in equation (4) even if it has
s-independent poles, since the assumption that W(p, ) is finite is
enough to guarantee the validity of the procedure. For network reali-
zation it is usually more convenient to remove both p-independent
and s-independent poles; we therefore removed them at the start of
the procedure.

To realize W (p, s) as the impedance of a passive network, we per-
form the following operations.

Form the (n+k X n+k) impedance matrix Z(p) of the coupling
network

r 4”(:(?)
:’l—l(P) o (m)
2 = \ , ao(p) . (84)1
L_M M ()2 ()M (p)
ﬂ-u(p)

Realize Z(p) as a lossless (n+k) port network in the p-plane and
terminate its last k-ports with unit inductors in the s-plane. Also
realize the reactance matrices W, (p) and Wa(s) as lossless p-plane
and s-plane n-ports, and connect all three networks in series as shown
in Fig. 1. The given W,(p, s) is thus realized as a passive network.

V. AN EXAMPLE

It is desired to synthesize the two variable reactance matrixi

* BEquation (54) is used to determine z=(p), in preference to equation (50) since
equation (54) is easier to compute.

t Equation (84) is the same as equation (59) except that for the z= block
equation (54) is used instead of equation (50) for the reason mentioned in the
previous note.

+ This example was given by Koga, (see p. 50 of Ref. 8).
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@+ D6 +1) ps—1
p+aps+1) p+s

Wu(p,S)=
ps — 1 ps+ 1
p+s p+ s

Since W,(p, s) has no p-independent or s-independent poles the first
step 1 of Section IV need not be performed, and W,(p, s) = W(p, ).
The least common denominator of the elements of W (p, s) is

g(p,s) = ps" + (" + Vs +p

[which is equation (6) ], and hence

a(p) = p, ap) = (P*+1),a:,(p) =p, and r = 2.

The least common denominator of the minors of W(p, s) is also g(p, s)
and hence

k= 8,[W(p,s)] = 2.
In the expansion, equation (7),

Wip, o) = A ) + 3

by the formula of equation (16) or by long division

11p°+1 p°
AL =5[p " p]

A

Ap) = — 3 E,p AL 1)} ,
W+ P -1

1 [ @+ 1" P+ 1)]

Al(p} = P .
p'*+1) ' —1)

; _ 1" +3p"+4p 430" +1 '@+ 1)
A.(p) = p4 ;

p'@ +1) p'(p* — 1)
T._..(p) = T.(p) defined by equation (24) is
=P P | p(p*+1)? pe(p*+1)
1| —Pp*+1)  —pi(p*-1) | po(p*+1) (p*—1)
Trq(P) S | T T T T e e e e e e - -

P p(ptt1p —p(pthl) | psh3pthapt 3l pYpttD)
—ppD) - -1 | et p¥(p1—1)
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The polynomial matrix 7,(p) = p;T.(p) is factored by the method in
Ref. 16 as equation (43)

p(p*+1) —p(p*+1)
T = M) = | T e
p'—p*+2p—p+1 (p'+p*+2p*+p+1)
p'=p* —(p'+p")
” L[p(p%l) —pXp+1) '+ +2p'+p+1 p‘+p=:|'
@' a1 pe-1) -G —pt2p-ptD) (P

The (4 X 2) matrix M(p) is partitioned as equation (45)
Mp) = [%@}

M\ (p)
[ p"@ + 1) —p’@* + 1)
_1 Pe-n —p'p + 1)
2 S r o —p 1l G P %W+ D
' —p —(@' + 9"

To find M—*(p), a left inverse of M (p), it is enough to find a left in-
verse of M, if it exists, since

(M5 | 0] Eﬁf:’} — L.
M,
In our example & = 2 and M, is a nonsingular matrix and hence
M-(p) is given by
o —1 —n? 1 2 |
M~ (p) :W[ pz(er ) pp +1):0 0}_
—pp—1 p@*+1)i0 0

From the definition of @, equation (52)

0 0} 1 0
]
) 0 0| 0 1
Bfp) = | oo i ] -----------
Y i 0
{ P
| 2
0 —1| 0 _L—I.__IJ
- | p
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Using equation (54)

Ze = MT'Q'M
P+1  (p+ 1D
_ 2p 2p
=1 pP+1
2p 2p

Henece the coupling network formed by p-type elements has the
(4 X 4) matrix of equation (84)

4, A
o= 0
Mo o'y
L ﬂn
TP+ 1 » PP+l Pl
2p 2)p @'
p—1 p+1
i ® # @)? @7
pPP+1 p+1l P41 @+ 1)
2)'p (2)* 2p 2
P+l _p—1 -1 p+1
L @' (2)* 2p 2p

Z (p) can be verified to be lossless, and the given W,(p, s) can of course
be realized as the impedance seen at the first two ports of Z(p) when
it is terminated at its last two ports by unit s-plane inductors.

VI. CONCLUSIONS

The synthesis method for two-variable reactance matrices developed
here, in general yields a nonreciprocal coupling network even when
the given two-variable reactance matrix is symmetrie, and if a
reciprocal eoupling network is desired, Koga’s method for generating
a reciprocal network from the nonreciprocal one can be used.® This
procedure generally yields a reciprocal network at the cost of in-
creased numbers of elements of both kinds.

This method of synthesis of two-variable reactance matrices has
been successfully applied to the synthesis of lumped-distributed RC
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networks which are important in microelectronies cireuits.” In prac-
tice, the only laborious step in the synthesis procedure is the factoriza-
tion of polynomial matrix in the desired form. Of great importance is
the approximation of desired characteristics by rational functions in
two-variables; any work in this area would greatly enhance the use-
fulness of the two-variable theory. The synthesis problem of n-vari-
able positive real functions, for which many applications can be
found,” can be reduced to the synthesis of (n+1)-variable reactance
matrices.?* 2> when n = 1 the two-variable method developed here
gives rise to a new method of passive RLC synthesis, which is no more
complex than the existing methods.
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APPENDIX A

Partial Fraction Expansion of W (jw, s)

To guarantee the factorization of 7',_,(jw) as MM we needed Lemma
2, which asserts that T,_, is para Hermitian and that T,_,(jw) = 0.
In the proof of Lemma 2 we used the fact that R,(jw), the residue
matrices of W (jw, s), are positive semidefinite. The proof is given below.

Under the assumption that W(p, s) has no p-independent of s-in-
dependent poles, for each real w the s-plane poles of W(jo, s) are simple
and restricted to the imaginary s-axis by Theorem 1. Hence, for any
fixed w, we can write W(jw, s) as

W, & = AL 4 3Bl

=8 — jas(w)

(85)

where the a,(w) are real and the R;(w) are the residue matrices at the
poles ja;(«). As in equation (9), r is the s-degree of g(p, s), the least
common denominator of the elements of W.

By complex conjugation on both sides of equation (85)
o Riw)

WH(jw, 8) = A%,(w) + 2,

&+ joula) (86)

Since W and A_, are rational in jo,

W*(jw, 8) = W(—jw, s%)
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and
A* (jw) = A (—jw).
Hence equation (86) becomes

. B*(w)

W(—jo, s%) = A_(—jw) + Z;; FF jada) (87)
and
. : . R*
—W(—ju, —5%) = —A_(—jw) + ; ;;% (88)
Since equation (88) is an identity for s*, we have
W — . — _ _Ri(w) |
W( ij S) A l( _',‘DJ) + 2 g — Ja ( ) (89)

From the definition of a two variable reactance matrix,
W(jw, s) = —W(—ju, —s)
and by equation (19)
A (jw) = —A_(—jo).

Hence, by comparison of equations (85) and (89) we have the desired
result

Ri(w) = R¥%(w). (90)

To show that the RE.(w) are positive semidefinite for each w, we first
notice that if

¥p, )

@9 = 4, 9

where ¢(p, s) is a polynomial matrix and g(p, s) is the least common
denominator of the entries in W, RE;(w) in equation (85) is given by
(see p. 308 of Ref. 19)

_ ¥(p,9)
Rie) = 305 . (91)

ds p=jw

s=jai(w)

Denoting 8g/ds by g, and éy¥/ds by ¢, , for any n X 1 constant matrix
X, (p. 39 of Ref. 8)
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X*R.X = M
g. Pp=jw
t=jai(w)
[(X*\mg — gX*v, X)]
(X*yX)* —
s=jai{w)
_ [2( g )]‘
T Las \X*¢X/ 1
g=jai(w)
Hence, if X*WX # 0
X*R. ()X = [ (X*WX)” ] ‘ (92)

uhaai(u)

From definitions 1 and 2, and Theorem 1, X*WX is a two variable
positive function and for Rep = Res = 0

Re [X*WX] = 0
and
9 X*WX) 2 0
ds =
Hence
Q EIWE)" = — gD (RWX) 2
ds (X*WX) "3s
for

Rep = Res =0

and consequently the left side of equation (90) is nonnegative.
Thus we have proved that the residue matrices, E.(w), are positive
semidefinite Hermitian for each w.

APPENDIX B
Proof of Theorem 3
Theorem 8: If

_ Bup)s + B + - + B.p)
W@ 8 = oo + a@e + - + alp)

is a two vartable reactance matrix, then for all © = 0,1, -+~ r
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B./a; is a reactance mairiz in p.
a;/a;., 18 a reactance function tn p.
a; has all its zeros on the j axis, and these are simple.
XB.X/XB,; .. X for all constant n X 1 vectors, X, is a reactance function
n p.
Proof: For any constant n X 1 matrix X,
(X*B,X)s" + X*B.x)s'™ + --- + (X*B.X)
as +as 4+ - +oa,

is a rational function in p and s with possible complex coefficients.
For convenience, if we define

bs = X*B,-X
'w(P: S) = X*WX
f,8) = bos” + bs™ + -+ + b,

X*WX = (93)

and as before
9,8 = as” + a5 4 - Fa
equation (93) can be written as

wp, §) = ;—% 04)

From the definition of a two variable reactance matrix, w(p, s) is a
two variable positive function, and hence for any p, with Re p, > 0,
w(po , 8) 18 a positive function of 5.*° Consequently, for all s with Re s > 0

1B, 8
Re w0 = O 8

Since equation (95) has to be satisfied for all s with Re s > 0 and hence
for arbitrarily small s, it can be seen from equation (93) that

br(ptl)
Re m é 0

for all p, with Re p, > 0. Hence, B,(p)/a.(p) is a positive real matrix

a, a,

and thus B,/a, is a reactance matrix in p.
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If instead of starting from the positive function f(po, 8)/9(Po, 8),
we start from 8'f(po, 8)/8s"0"g(po , 5)/ds", which is also a positive
function® for all 0 £ » £ 7, the same arguments used in proving that
B,/a; is a reactance matrix can be repeated to show that B:/a; is a
reactance matrix in p forall0 = 7 = 1.

Now to show that a;.,/a; is a reactance function in p, we can use a
similar proof based on the fact that 8" 'g(p,, $)/8s"'[3"g(po , 5)/3s"
is a positive funetion.”

Again, it can be seen from the fact that

8" 'q(po , 8)/8s" " f3"g(po , 8) /08"

is a positive function.® that b..,/b; is a positive function satisflying

- L)

If X in equation (93) is chosen real b;.,/b; will be real for real p and
hence XB,,,X/XB;X for any real n X 1 matrix, X, is a reactance func-
tion.

To see that the zeros of a; are all simple and restricted to the imaginary
axis: if any one of the a; has a double zero on the jw axis or a zero off
the jw axis, from the reactance nature of a.,/a; for all 0 = 7 = r,
all the a; must have the same zero, and, consequently, W(p, s) will
have an s-independent pole contradicting our original assumption that
W has no such poles.

We have thus proved all the claims of Theorem 3.

APPENDIX C

Proof of the Minimality of the Realization of W(p, s)
in Both Variables

In this appendix we show that the realization of W (p, s) that Sec-
tion ITI gives is minimal in both the p and s variables. From the def-
initions of &[W(p, s)] and 8,[W(p, s)], it can be shown that if
W (p, s) is finite at p = o0 and s = oo,

8,[W(p, s)] = d.[n(p, s)]
61:[‘[47(?7) S)] = 51:[’7(?: S)]

where the two variable real polynomial

i(p, 8) = da(p)s" + di(p)s"™ + -+ + dilD) (96)
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is the least common denominator of all the minors of W(p, s). The
form in which 4 (p, s) is written in equation (96) immediately reveals
that

8.[W(p, 8)] = k.
And if 4(p, s) is written as
2(p, 8) = co(p)p"™ + (@)™ + -+ + ca(p), (97)
it can be seen that
8,[W(p, 8)] = m.

c.1 Minimum Elemenis

Next we would like to find the minimum number of elements of each
kind needed in the realization of W (p, s).

Lemma 1 states that k, the rank of 7',_,(p), is equal to the s-degree
of W(p, s), and the realization obtained there uses exactly k s-type
elements. By equation (4)

Wip,s) = z2u(p) + zu(’P)[zzz(P) + slk]"z:n(p).

Suppose that there exists a realization with k, s-type elements, where
ks < k& = rank T,_,(p). Then,

W(p,s) = z2.,(p) + 212(p)[222(p) + 81&.]_1512@)

where the matrices z1,(p) and 2,,(p) are n X ko and ko X k, , respectively.
Then by equation (25), T,_,(p) = N(p)Nt(p) where
312(?)
N(p) = Eln(P)Esa(T’)

zxz(p)é?(p)
is an nr X k, matrix and hence, rank N(p) < k, . Also, we have
rank T,_,(p) = rank N(p) = ko < k = rank T,_,(p)

which is a contradiction, and hence k¥ = rank T, (p) = 8 [W(p, s)]
is the minimum number of s-type elements required in any realiza-
tion. Now by repeating the same argument with a realization of
W(p, s) where p-type elements are extracted instead of s-type ele-
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ments, we can see that any realization must contain at least m p-type
elements where m = §,[ (p, s) ].

c.2 Minimality of the Realization tn Section 111

We next discuss the minimality of the realization in both p-type
and s-type elements, For the purpose of realization, the reactance
matrix W (p, s) was decomposed as

W(p, s) = zul(p) + 212(p)[222(p) + SIk]_lzIz('p) 4)
where
Z(p) = [ () z”“’)} (11)
—Zfz(’P) 220(D)

can be realized as the impedance matrix of a lossless (n + k) port
in the p-plane. W (p, s) is the impedance seen at the first n ports when
the above (n + k) port network is terminated with unit s-plane in-
ductors at its last k-ports. Since k is the s-degree of W(p, s), the
realization uses the minimum number of s-type elements. To show
that the realization uses the minimum number of p-type elements,
we have to show that 8§[Z(p)] = 8,[W (p, s) |. For this we need a rela-
tionship that exists between the least common denominator of the
minors of W (p, s) and the determinant |zz2(p) + s1|.

Every minor of [zs2(p) + s1i]™* can be expressed as p(p, s) /¢(p, 5)
(See p. 21, of Ref. 12, Vol. 1) where p(p, s) and ¢(p, s) are polynomials
in s with coefficients from the field of rational functions in p. Further-
more,

e(p, 8) = | 222(p) + sl |
is a monic polynomial in s of degree k.

Since W (p, s) has no p-independent or s-independent poles, every
zero of 5(p, s) is a zero of ¢(p, s), and since k = 8 [¢(p, 8)] =
8 [n(p, 8)1, ¢(p, s) and 5(p, s)/d,(p), which are monic polynomials in
s with rational functions of p as coefficients, must be identical. Hence

1'322(:0) + s1, | = %' (98)

To show that 6[Z(p)] = 8,[W (p, s)] (since we already know that 6[Z(p)] =
5,[W (p, 8)]) it is sufficient to show that §[Z(p)] = &,[W (p, s)]. To establish
this inequality, consider the matrix S(p, s) defined by

S(p, s) = [Z(p) — sluallZ(p) + slauil ™. (99)
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When s = 1, S(p, s) is the scattering matrix of a lossless network,
since Z(p) describes a lossless network and (see p. 184 of Ref. 11)

8lZ(p)] = 8S(p, L) (100)
Since S(p, 1) is para unitary (see p. 131 of Ref. 15)
8[8(p, 1)] = dl| Sp, 1) [I. (101)

Equating the determinants of matrices on both sides of equation (99)
| S(p, s) | = J_Z_Mk_l
' “ Z(P) + 'Sln+k |

Using a formula from the theory of determinants (see p. 46 of Ref.
12, Vol. I)
| S(p, s) [ — [ (211 — 8l,) 4 212(252 — Slk)_lzlz |‘|Zzz — sl |
' | (Zu + Sln) + 312(222 + Slk)_lzlz | | Zap + 81, I (102)
_ | W(p, —s) — sl, | |2 — sl |

| WD, 8) + sl | |2 + sk |
Now if |W(p, s) + sl,| is written as

: _ hp, s
| W(p, s) + sl, | = o) (103)

where h{p, s) is a real polynomial in p and s, since the left side of
equation (102) is finite at p =

&[h(p, 5)] = &[n(p, 8)] = &[W(p, 8)]. (104)
Substituting equations (98) and (103) in equation (102), we have

hp, —s) n(p, 5) n(p, —s) do(p)

8@ | = e o . 0 dw) up, 8 (105)
_ Mp, =)
h(p, s)

and by equations (100), (101), and (104)

8[Z(p)] = 8[S(p, 1] = &,[W(p, 9)].
We have thus shown that §[Z (p)] = §,[W (p, s)].

It should be noted that Z(p) is the impedance matrix of any loss-
less coupling network in a realization of W (p, s), minimal in s, and
hence we come to the important conclusion that if a realization of
W (p, s) is minimal in one of the variables it is automatically minimal
in the other variable.
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Computation of the Noncentral Chi-Square
Distribution*

By G. H. ROBERTSON
(Manuscript received July 17, 1968)

This article gives a formula that allows accurate values of the cumulative
noncentral chi-square distribution to be computed. Although this distribution
has been recognized for a long time, none of the standard references give
formulae that are suitable for computing accurate values over an extensive
range of the parameters; approzimations in terms of the chi-square dis-
tribution are usually recommended. A program wrilten by the author, based
on the formula given here, has been successful for compulations involving
more than 10,000 degrees of freedom. Since many steps are required when the
degrees of freedom are as large as this, the program is not “fast” but 1t 18
believed to be accurate.

1. INTRODUCTION

The Non-Central Chi-Square Distribution is encountered in many
statistical problems, one of the most important in communications
studies being the detection of signals in noise using a square-law
detector.! Marcum discussed this application but concluded that a
satisfactory algorithm for computing system performance could not
be based on the formula he used.? This article shows that a satisfac-
tory algorithm can be based on the formula that Marcum derived if
the expression is expanded in a power series and the terms are properly
grouped before being evaluated.

More recently Urkowitz® discussed detection system performance
in which the above distribution arose and recommended that approxi-
mations in terms of the chi-square distribution, given by Patnaik,!
be used for computation. While these approximations are adequate
for some purposes, it is desirable to have a reliable and accurate
method of computing values, if only to check the approximations.

* This work was supported by the U. S. Navy under contract N00039-68-C-3584,
201
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II. INTEGRATION OF NONCENTRAL CHI-SQUARE DISTRIBUTION

If the signal-to-noise power ratio is @ for the sum of 5 independent
samples of the output of a square-law detector, the following integral®
gives the probability that the sum will be ¥ or more. The variables
are normalized to the variance of the individual noise samples, so
the average signal-to-noise power ratio for one sample is z/5 and the
average output per sample is y/x. Considering one sample of noise
to be the sum of the squares of two independent gaussian variables
of unit variance, the integral is related to the noncentral chi-square
distribution by the conversions given in equation (8).

o=["(&"" e (= - DL, L2 as )

From (Ref. 4, Section 8.445) I,; [2 (zz)%] is the modified Bessel
function

_ L] (t/2)m+2k
L) = L i Tm+ 5D @

k=0

Thus

Q = exp;‘(—(n;x) ; exp (—2)2" ' dz + %W j:ﬂ exp (—2)7"!

xz (z2)* (22)°
'[11n+2!n(n+1)+3!n(n+1)<n+2)+ ]dz' @

Notice that

/ " exp (—2)™ dz = T(n, ) @

the incomplete gamma function (Ref. 5, Section 6.5.3). Since

fmt’exp (—0) dt = — exp (—1) °°+pfm Pl exp (—) dt (5)

equation (3) can be written

g = e—"# [T‘(m %)

+ % {I‘(n, v+ (%)y"“ exp (-—y)}

" *Bometimes called the generalized Marcum Q-function. See Ref. 2.
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;— {I‘(n, y) + ( mlgl—))y"" exp (—y)}

Y ys n—=1
{r("’ v+ ( ﬂ(ﬂ + 1) n(n + D(n + 2))y p (*y)}

+ --- andso on]- (6)

OJ|H

Summing the terms by columns gives

_T(n, ) , ¥ exp (=Y
="t * Tk [""p( "’),Z}

T “)g

r

y:l
¥ 7(n + 1)(n + 2) exp (=2)

r=3 T'

+ --- and so on] (N

A satisfactory computing algorithm can be based on equation (7)
where we notice that @ can be expressed as the sum of two parts, @
= T(y, ¥)/T(y) which is independent of z, and another part which
we call @s.

III. DISCUSSION '

The noncentral chi-square cumulative distribution can be written
Q (x*|v, A) (see Ref 5, Section 26.4.25), where the distribution is in-
tegrated from x? to infinity, the number of degrees of freedom is v,
and the noncentml parameter is A. This integral is the same as that
given in equation (7) if we put

v =2
I2=2y (8)
A= 2z

so that
Q(2y | 29, 2z) = Q, + Q.

= QQ2y | 27) + Q.
where Q(2y|27) = Q(x*|v), the cumulative chi-square distribution
(see Ref. 4, Section 26.4.2).

9)
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If M independent samples of the output of a square-law detector
are averaged, when the input is narrowband gaussian noise plus a CW
signal at the center of the band, @ can be used to find the probability
that a threshold value will be exceeded. Expressing all parameters in
units of the narrowband noise power, the desired threshold is ¥ /7, /4
is the signal-to-noise power ratio, and M = 4.

It is interesting that the Rayleigh distribution, and the Rice dis-
tribution, are equivalent to the chi-square and non-central chi-square
distributions respectively, when the latter are expressed in terms of a
parameter y equal to the square root of y2, and y = 1.

Marcum? gave an expression of the form shown in equation (3)
for the output of a square-law detector. He stated that it could only
be used satisfactorily for values of 4 up to about 10. More recently
Urkowitz® has discussed the integration of a square-law detector out-
put and recommends that the noncentral chi-square distribution be
computed using an approximation given by Patnaik? in terms of the
chi-square distribution. Patnaik compares with exact values some
results computed using the approximation and finds errors of the
order of 1% around @ = 0.5. The accuracy is much less for values
around unity and for values less than 0.01.

Brennan and Reed have shown that, when the order of the Bessel
function in equation (1) is zero, corresponding to one sample, a
straightforward recursive method applied to the resulting equation
(6) can be used to compute the integral.® They suggested that a
similar procedure could be used even on the form of equation (1)
given here. However, as pointed out by Marcum, such a technique
rapidly becomes useless as 5 increases above about 10.

A program written by the author, based on equation (7), has been
used satisfactorily for 5 as large as 8192, and simultaneously for
values of z/5 up to 0.1. The exact values given by Patnaik were
checked. Further checks were made possible by the development of a
uniform asymptotic expansion by S. O. Rice, with which it is possible
to get results outside the useful range of the algorithm given here.?

Table 1 compares values obtained with the author’s program
(CHISQ) and corresponding values supplied by S. O. Rice using his
uniform asymptotic expansion (UAE), with results obtained using
the Patnaik® and Gauss approximations (Ref. 5, Section 26.4.29).

The aceuracy of the algorithm given in equation (7) decreases as
x/q increases in the table, and the value in the last entry depended
quite sensitively on the last digit of a 18 digit double preecision con-
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stant used in the program. Notice that even for the last entry, the
value actually computed, (CHISQ), appears to be correct to 14 places
after the decimal point.

IV. EXTENSION TO A MORE GENERAL INTEGRAL

A more general integral is obtained by writing, for example, the
Ath moment of the partial noncentral chi-square distribution,

Qs = j:" za(i)‘n—n/? exp (—z — x)[u_][g(zz)%] dz: (1)

The corresponding form of equation (4) is

[ 2 exp (~a &2 = 16, 9) (12)
where
E=n+5, (13)
and the corresponding form of equation (7) becomes
T )
Q= P() exP( I)F(E:ﬂ;z)
¥ exp (— J)[ 2 ¢+ 1.,
+ 4 T(n) exp (= “Eﬂw+nn
z” (£ 4+ 2),.,
n(n +1)e"p( ) Er*(wz). 3

35_ (£ + 3),

¥ _
t T e+ 2 P E 71 (n + 3y

+- ---andsoon]- (14)

The confluent hypergeometric function 1F;(a; b; ) (Ref. 5, Section
13.1.10) is defined by

n ala + D(a + 2)z°
b(b + 1)(b + 2)3]

_ az , ala + 1)z’
Fi(a; b; x) 1+b1'+b(b+1)2!

_ %= (@)
-2 (b),r!

r=0

s s
(15)

Equation (15) conveniently gives an example of Pochhammer’s sym-
bol (a), (Ref. 5, Section 6.1.22), also used in equation (14).
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The structure of equation (14) is closely related to that of equa-

tion (7), so it can form the basis for a useful algorithm to compute
the integral given in equation (11).
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Uniform Approximation of Linear Systems®

By HARRY HEFFES and PHILIP E. SARACHIK
(Manuscript received August 6, 1968)

A method for reducing the complexity of the class of linear, time-varying,
dynamic control systems is developed where the approach taken is that of
uniform approzimation (that is, modeling for a region of initial conditions).
The objective of the modeling procedure is to choose a linear time-invariant
system of given dimension, that minimizes a “orst-case” type of error
criterion. Some results from the theory of widths of sets in Banach space
are used to obtain bounds on the optimal approzimation error as a function
of the dimension of the approximating system. The use of these bounds in
choosing the order of the approzimation is discussed. An example illustrates
the use of the derived results.

I. INTRODUCTION

In the analysis and design of control systems it is often useful to
have low order constant coefficient models for the system. The prob-
lem of modeling linear systems by lower order linear systems has
received considerable attention, but these analyses have usually been
restricted to the modeling of constant coefficient systems.

References 1 through 5 contain various approaches to the system
approximation problem; however, these analyses are generally re-
stricted to the modeling of constant coefficient systems or systems
which are forced with a given input or initial condition.

The control system analyst often finds himself dealing with non-
stationary systems, but little work has been done in the area of
optimally modeling this class of systems. The emphasis here is on
modeling the class of linear, homogeneous time-varying systems with
constant coefficient models. Reference 6 considers approximation of
forced systems. Rather than design the model requiring solutions of
the actual and approximate systems be “close” for a prescribed initial

* From a dissertation written as part of the requirements for a Ph.D. degree,
New York University, 1968.
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condition, the approach taken here is that of uniform approximation.
Initial conditions are assumed to lie in some set in Euclidean space
and a “worst-case” type of error criterion is defined. This eliminates
tuning the model to specific conditions which may not be met when
using the model. The material presented here thus generalizes previous
work in that it extends the class of systems considered to time-varying
systems and generalizes the error eriterion to handle the more realistic
problem of modeling for regions of initial conditions.

The problem is of importance, for example, in trajectory analysis
where the linear time-varying system is obtained by linearizing a set
of nonlinear equations about a nominal trajectory. In this case the
time-varying nature of the system is described by partial derivatives
evaluated along the nominal trajectory. Solutions to the resulting
equations require simulation for each set of initial conditions. Using
a constant coefficient model eliminates the need for repeated simula-
tion.

The above example illustrates the use of a simplified model in
analysis. The designer is interested in reducing the complexity of
high-order nonstationary control system plants since this provides
a means for designing simpler controllers based upon the model de-
seription. The results presented here not only allow one to obtain
stationary models but simultaneously offer the opportunity to obtain
lower order models of the original system.

II. PROBLEM DEFINITION AND FORMULATION

The system we are considering is deseribed by the linear, time-
varying, homogeneous vector differential equation

i(f) = A@D2@) (1)
with the outputs given by

y(t) = C)z(t) (2

where

z(t) is an n-vector

A(t) is an n X n matrix whose elements are bounded and piecewise
continuous on [¢, , ]

C(f) is an m X n matrix whose elements are bounded and piecewise
continuous on [¢, , {].
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It is desired to obtain a constant coefficient system of kth order*
(k = m)

#(l) = Ax(D) (3)

such that the first m components of the state vector £(t) closely approxi-
mate the components of y(f) over the finite time interval [¢, , ¢,]. Writing

g(t) = Cz2@) (4)
with
Cy = Umxm 0]

the approximation problem can be viewed as choosing the elements of
the k X k matrix A such that §(t) approximates y(t) over [t, , &].

Since, in general, it is not known at the time of modeling what initial
conditions will exist in the system, it is desirable to have the approxi-
mating system depend on a prescribed range of initial conditions rather
than being tuned to any specific initial condition. The initial conditions
are considered to He in a closed, bounded convex subset of Euelidean
n-space. That is,

x(t,) e B C E,,

and the performance eriterion is given by

(@) = maxmin [T - pWOG -9t ©F

zotR ForErv t

where

[t. , t] is bounded
y(t) is the solution of (1) and (2) with x(t.) = =,
7 () is the solution of (3) and (4) with £(t,) = &,
W (t) is positive definite and bounded for all £ € [¢, , ¢].

The above performance criterion corresponds to the worst case error
in the approximation, corresponding to a given model, when the initial
condition on the model, &(t,), is chosen optimally in terms of the initial
conditions on the actual system. The modeling objective is to choose
A to minimize J,(A)(that is, minimize the maximum approximation
€rror).

The approximation problem will be cast into a Hilbert space setting

* Notice that & is not restricted from above. It may be desirable to have k
> n if the original system is time-varying.
+ In all that follows the prime denotes transpose.
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which will permit the use of many of the general results to be presented
in the next section. Vector spaces of solutions of the original system
equations and any member of the class of approximate system equations
are established. These spaces are then imbedded into an encompassing
Hilbert space. It then is shown that the problem of finding an optimal
approximation can be viewed as a problem of finding the “‘best’’ subspace
(of a given form) of the Hilbert space to use in approximating solutions
of the original system. Writing the output vector of the original system
in terms of the transition matrix leads to

y(t) = CO(, L)z (t.) (6)

where the transition matrix ®(Z, ¢,) satisfies
9 a1, 1) = AWa(t, 1) @)

with initial conditions
&, ,t) = I. (8)

Now if the original system is completely observable®® on the finite
interval [£, , ;] the columns of the m X n matrix C()®(¢, {,) are linearly
independent as vector-valued time functions. That is,

CH®(, t.)x(t) = 0 forall telt, ]

implies z(t,) = 0. For an observable system, the initial state can be
determined uniquely from knowledge of the output. Since z((,) = 0 =
y(t) = 0 and, from observability, y(f) = 0 = z({,) = 0 the linear in-
dependence of the columns of C(¢)®(¢, {,) follows.

Let 9y be the linear space spanned by the n columns of C(f)®(t, t.).
The solutions of the original system lie in ‘g , which is of dimension n for
an observable system. Notice that the number of components (m) in
the vector y and the dimension of the space Y need not be the same. If
the system is not completely observable on [, , ¢,] the dimension of ¢ is
less than n.

The solutions to equations (3) and (4) can be written as

§(t) = Ce™“™*a(t,) ©)

where

o0

A(t—to) — E gi(t _ t-)"

€ 7
i=0 (

and
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i A(t=to) __ At=io)

T = Ae : (10)
It is thus seen that solutions #(t) lie in the vector space spanned by the
k columns of the m X k matrix Ce®'~**). Denote this vector space as
9, . If A is such that the approximate system is observable then %, is
of dimension k and the & columns of Ce®"~** form a basis

{g.;’i=1,---,k}

for the k-dimensional vector space Y, of approximating solutions. These
basis elements can be written as

g.(t) - C'ez“_'”)K.- (11)

g = {g.); te b, t]} (12)

where K is the sth column of the k X k identity matrix. If the approxi-
mation is not observable the dimension of <Y, is less than k. In any case
vector spaces Y, with basis elements of the form (11) characterize the
approximating systems where A is a k X k real matrix. Defining

Dy = {Ye; &, -, B SPAD ‘}h} (13)

where g,(f) is given by equation (11) and A is any real constant & X k
matrix casts the problem into finding an element of . minimizing J, .

The problem of finding an optimal approximation has been cast into
the problem of finding an extremal space Y% & D, of approximating
solutions. A Hilbert space 3¢ containing 9 and all members of D, will
now be constructed. B

Recall that the elements of Y and Y, are real, vector-valued, time
functions having m components. Thus each element of the Hilbert
space JC to be constructed will have m components. The inner product in
3¢ is defined by

v, = [ OWOuo a (14)

where W(t) is a real symmetric m X m matrix which is positive definite
for ¢ ¢ [¢, , t;] and whose elements are bounded for ¢ [ta , 1. Notice that
this is the same matrix appearing in the performance criterion given
by equation (5). The norm of an element in 3¢ is given by

iyl = @ N (15)
The Hilbert space 3¢ is defined as
5¢ = {y; y has m components, ||y || < =}
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where || ¥ || is given by (15) and the inner produet given by (14).
Since
tf = tp < @0

and the elements of A(¢) and C(f) are bounded it follows that solutions
of equations (1) and (2) are bounded thus yielding

Y C 5.
Since elements of 9, are bounded over the finite interval [¢, , ;]
Y, C 3.

That Y, and ‘ﬁ are subspaces of 3C follows from the fact that any finite-
dimensional linear set in a normed space is closed"’.

The set of funetions to be approximated are solutions to the original
system equations with the initial conditions z(¢,) satisfying

x(t,) e R C E,

where R is a closed, bounded convex subset of Euclidean n-space.
Writing

F = {y;y@) = CO2Q, t.)z(t.), =) e B} (16)
gives
Ju(d) = mex min ||y — § || 17)

where the modeling objective is to find
d; & inf maxmin ||y — ¥ [*. (18)
YeeDe yeF  FeVi
Before proceding to solve the formulated approximation problem,
some results from the theory of widths in Banach space are outlined.
Lower bounds on the optimal performance are found as a function of
the dimension of the approximating system.

IIT. WIDTHS OF SETS IN BANACH SPACE AND LOWER BOUNDS*

Classically, approximation theory was concerned with the follow-
ing problem. Given a function to approximate and a set of approxi-
mating funections (sinusoids, exponentials, and polynomials, for ex-
ample) find that linear combination of approximating funetions which

* Ref. 7 contains an excellent treatment of widths of sets in Banach space.
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minimizes some distance function. Notice that here the approximat-
ing functions are given as part of the problem statement.

Rather than approximate a single function, the problem under con-
sideration is to approximate the class of functions & given by (16).
For a given class of functions ¥ it is desired to obtain a “best” set of
approximating functions rather than to choose the set arbitrarily. A
measure of comparison is introduced which enables one to evaluate the
efficiency of different sets of approximating functions. The following
definitions serve to illustrate these ideas.

Let ® be a Banach space containing a set of functions ¥ to be approxi-
mated by elements of an n-dimensional subspace, X, , of @. It is desired
to find the “best” n-dimensional subspace, or equivalently the “best”
set of approximating functions to use in approximating elements of &.

Foragivenf e Fand X, C ®

inf || f—z ]|

zeXa
represents how well one can do in approximating a given f with elements
of X, . Taking the supremum of the above quantity over all elements
in & leads to the following definition.

Definition 1: The deviation of F from X, is given by
Ex,(§) = sup inf || f — = ||.

frF zeXp

The deviation represents the worst case approximation error over the

class ¥ when using elements of X, . Notice that the deviation serves as

a performance measure of X, . Taking the infimum of the deviation

over all n-dimensional subspaces of ® leads to the following definition.
Definition 2: The nth width of  is given by

d(F) = inf Ex(%F)

Xnc@®

= inf sup inf || f — =« ||.

XaC® feF zeXa
Some of the elementary results following from the above definitions are
(#) The monotonicity of the width:
0®) Z d:(5) 2 () = -+
and
(%) The nested property: If §, C §, C -+ then
do(F1) £ du(F2) = -+
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Notice that
Ju(d) = E3,(5). (19)
In defining d? the infimum of the square of the deviation was taken
over the j-dimensional (j < k) subspaces in D, whereas in defining d,
the infimum was taken over all k-dimensional subspaces of ®. Using the
monotonicity property of the width, with 3C serving as the required
Banach space, gives
Ji(4) z di(3) (20)
for any k X k matrix 4.
Definition 3: U, is a closed ball of radius r m X, if
U.={zeX,;|lz]| =7}
The following theorem, by Gohberg and Krein, is proved in Ref. 7
and will be found useful.

Theorem: If X,., 18 an (n + 1)-dimensional subspace of a Banach
space @ and if U,., is the closed ball of radius v in X,y then d(Unsy) = 1.
This theorem and the nested property of widths can be used to obtain
lower bounds on d,(F). This lower bound can be obtained by constructing
a ball in an (n 4+ 1)-dimensional subspace and choosing r such that
U.., C F. Using the nested property then leads to
r = do(Unsr) = du(S). (21)
Since
di 2 di (22)
the radius of ball also serves as a lower bound on (J AL

Lemma 1: Let ®&(, t,) and C(t) be the transition matriz and outpul
mairiz, respectively, of the original system (1) and (2). Assume this system
to be completely observable on 1, , L;]. Let W (t) satisfy the previously staled
conditions. Then the matriz

M = f‘; d'(t, L)C' (W (E)C(D)B(t, t,) di 23)

is positive definite.
Proof: Consider the quadratic form z;Mz, = || y ||* = 0 where
z(t,) = zo, thatis, y(t) = CEBE, t.)z, .
Now ||y ||* =0=y() =0onlt, ]
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Since the system is observable y = 0 = z, = 0. Thus M is positive
definite.
The following theorem provides the lower bound on the performance.

Theorem 1: Let R be the closed region of initial conditions on the
original system and let x(t,) = O be an inlterior point of R. Assume the
system to be completely observable on [t, , t,]. Denote the boundary of R by
AR and let

p’ £ min 2'(t)x(t,). (24)

z(lo)edR

Let the eigenvalues of the positive definite matriz M be ordered \,(M) =
M(M) = --- = A(M). Then the performance, for any k-dimensional
approximating system, satisfies J, (A) = p"Mear (M) for k < n.

Proof: Let
F = {y; y(® = CHB(Q, t.)z(t), x(t.) = R}.

A &k 4 1 dimensional ball will now be construeted which is a subset of
¥. Consider the & + 1 dimensional ball of radius r

Uk+1 = {Y, y(t) = C(t)(ﬁ(t: t,,):l)(to), :c(t,) 2 Ek+1 C Enj HY” = TI

E,., and r will be chosen such that U,,, C F. Since M is real and sym-
metric it can be diagonalized with an orthogonal matrix 7. Thus M =
T'AT and

Iy |* = [Te@)A[Tz(t,)] = Az

where
=10
M 0
A=| -
0 A
and
z = Tx(t,).
Defining
Ein = fz(t.); [Tx@)]: =0, i=k+2 -, n}.
and

= p"Nera(M)
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gives
Ui = {y; () = C(O2(L, L)a(t,),
1y I £ pNena(dD), [T(t)]: = 0
i=k+2, ---,n}.
Thus fory e U,

1y II* = 2/(t)Ma(t) = 22N £ phes -

i=1

Since
z,=0 i=k4+2 -, n
and
)\.‘ &
—= =1 for 1=k+1
Aks1
we have

It then follows, from the definition of p* and the fact that zero is an
interior point of R, that z, ¢ B and therefore y ¢ §. Thus U,,, C &
and the desired result

Jud) 2 &i(®) 2 PMn(M)  k<n

follows.

Remarks: Recalling that the eigenvalues of M are ordered, we
notice that the lower bound is a decreasing function of the dimension
of the approximating system. This result can be used to determine
what order aproximating system (at least) need be considered to
achieve a given performance. We emphasize that the bound depends
on the original system and is obtainable prior to the modelling proce-
dure. From an engineering viewpoint, if one has an approximating
system whose performance is “close” to the bound it may not be
necessary to seek the minor improvement. Notice that the only prop-
erty of R appearing in the lower bound is p and no attempt was made
to take the orientation of the set into account. The bound will there-
fore be least conservative when R is a hypersphere of radius p.
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1V. EVALUATING THE PERFORMANCE FUNCTION

In this section the problem of finding the performance (or equi-
valently the deviation) of a given approximating system is considered.
The optimal choice of initial conditions on the approximating system
is obtained using some elementary Hilbert space concepts and it is
shown that

inf ||y —§ |

FeUe
is a positive semidefinite quadratic form in z(Z,). Next, properties of
convex functions are used to evaluate the performance for different
classes of regions of initial conditions; namely, for ellipsoids and con-
vex polyhedra. The Powell algorithm for minimizing a function of
several variables, without calculating derivatives, is then outlined
and applied to the system approximation problem.

The problem of finding
= inf [y —FII (25)

Fely
is equivalent to finding the best choice of initial conditions on a given
approximating system characterized by Y. ¢ Dy . It can be shown"'
that there exists a unique §* ¢ Y, (v* is called the projection of y in the
space ;) such that

& =y —9IF =yl = llg*I" (26)
Furthermore, since g, , 82, ** - , & spans Y, , §* has the representation
k
y* = Z g.T!
where

(7, &)
6@, - B = (27)

_(Y: gk)

:E*
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and @ is the Grammian of {g, ;% = 1, --- , k}, that is,

(G, -, g8d]is = (8., 1) ,j=1+,k
Any solution to (27) results in an optimum choice of initial conditions
on the approximate system. If the g,’s are linearly independent (this
corresponds to the system being observable) the Grammian is invertible
and £* is unique. Thus

¥, &)
) = G'@, o 8| (28)
(v, 80
where G is the pseudoinverse'® of G.
The Grammian is given by
G@g , -, &) = fl” e B0t di (29)
and “
(v, 8) = KiFz(t.) (30)
where F is given by
F= f XTI C(DB(L, L) d. (31)

Using (30) in (28) gives
#*(t,) = G'Fx(t,). (32)

Thus the optimal initial condition on the approximating system
is obtained by linearly transforming the actual initial condition with
the (k X n) matrix G'F. Using the orthogonality property (26) yields

lly —§*II° = [y II° — 2 (t)G2*(t).
Letting
M= fu ®'(t, L)C(OW(HC()(L, t,) dt (33)

and using (32) and the symmetry of G (and thus G*) gives
ly — #*|I* = 2’ (t.)(M — F'G'F)=(t,). (34)
In summary,
# = inf ||y — I = &(t) Dx(t) (35)

eV
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with
D =M — F'G'F. (36)

Thus, finding the optimal initial condition on the approximating sys-
tems leads to the positive semidefinite quadratic form (35) for the
approximation error. The above represents the first step in evaluating
the performance of any given approximating system.

Since D is a positive semidefinite matrix, 8* defined by (35) is a
convex function of the initial state z(¢,). The following theorem from
Ref.13 is useful in maximizing 82

Theorem: If the absolute maximum of a convex function, defined
on a closed, bounded, convexr set, is finite then the absolute mawi-
mum is taken on at an extreme point of the set.

Remarks: An extreme point of a convex set is a point in the set
that cannot be written as a convex combination of two other points
in the set. Notice that an extreme point is a boundary point; how-
ever, generally not every boundary point is an extreme point. Thus,
if one is seeking the absolute maximum of a convex function defined
on a closed, bounded, convex set only boundary points need be con-
sidered. Also if the domain of definition is a convex polyhedron (a
closed, bounded, convex set with a finite number of extreme points)
the absolute maximum can be obtained by simply evaluating the
function at the extreme points and choosing the largest value.

Two general classes of closed, bounded, convex regions of initial
conditions are considered in this paper, the ellipsoid and the convex
polyhedron.

Let the region under consideration be an ellipsoid defined by

R = {z(t.); a'(t.)Bz(t,) < r°} (37)

where B is a positive definite, symmetric matrix and r is finite. Notice
that R is closed, bounded, and convex. Now the constrained maxi-
mization problem is one with an inequality constraint. Using the con-
vexity of R and 8, the absolute maximum of the quadratic form is
seen to take place on the boundary of the set R. Thus the performance
can be written

Ju(A) = max z'(t,) Dx(1,)
r(to)

subject to the constraint
2’ (t,)Bz(t,) = r*.
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It can easily be shown that the z(,) maximizing the quadratic form
is the eigenvector of the matrix B'D corresponding to the largest
eigenvalue and the maximum is given by

Jy(A) = Anux(B7'D)r". (38)

A convex polyhedron is usually representative of the type of in-
formation one has as to the range of initial conditions. As an example
of this situation consider the original system to represent linearized
equations of motion of a space vehicle. Suppose it is known that the
range of initial conditions are in terms of bounds on position, ve-
locity deviations, and so on. For example,

| z:(t,) | < 100 feet.

| z2(2,) | = 5 feet per second.

This particular region is deseribed by a rectangular region in state
space with the extreme points being the corners

{100} [100} {— 100} I:— 100} _
5 -5 5 —5
In general for this type of initial condition region, that is,

|zd(tn)1_—<_-b,' i=1:"','n,

the region has 2" extreme points. Since 8 is an even funection of z(t,)
it is only necessary to consider 2" extreme points eliminating from
consideration the negative of any point considered.

The convex polyhedron region also is important, for example, since
it may be used to simply approximate a more complex region. In gen-
eral, let

z%i=12 ---,N

be the extreme points of the convex polyhedron R. Using the con-
vexity of 8 in the initial state z(f,) the absolute maximum §* over
R takes place at one of the . Letting

82 = 2" Dz
where D is given by equation (36) leads to
J(A) = max (82,8, -+, &%) (39)
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V. MINIMIZING THE PERFORMANCE FUNCTION

Since it is a fairly simple matter to evaluate the performance, whereas
evaluating the gradient of the performance function requires significant
computational effort, it is desirable to use a numerical procedure not
requiring a gradient computation. Notice that J,(4) is not generally
differentiable. Here, for completeness, the Powell method of minimizing
a function of several variables without calculating derivatives is pre-
sented.'* Reference 15 contains a summary of the various minimization
techniques available not requiring the computation of a derivative.
See Refs. 14 and 15 for a more detailed description of the methods
and their convergence properties.

Consider a real, scalar, valued function of N real variablesa, , --- , ay
written f(a). Powell’s iterative scheme concerns itself with finding the
minimum of f(a) without computing its derivative.

Each iteration of the modified Powell procedure starts with a search
down N linearly independent directions

My M2y """ ) NN

starting with an initial guess a, and defines a new set of directions for
the next iteration.
An iteration of the recommended procedure, suggested by Powell, is:

(@) forj = 1, 2, --- , N caleulate \; such that f(a,, + M) is
minimum and define ¢; = a;-; + \jn; .
(#) Find the integer m, 1 < m = N, such that f(@,.-,) — f(a.) is

a maximum and define A = j(a,_,) — f(an).
(#7¢) Calculate f; = f(2ay — a,) and define

fi = fla.)
fz =f (ﬂw)-
(zv) If either f; = f, or

(f; = 2f2 + fa)(fl == fz = A)2 = %A(fl = .fa)z

use the old directions %,, -+- , ny for the next iteration and use ay
for the next a, , otherwise

(v) define n = a, — @, and calculate A such that f(ay + My) is
minimum. Use

Moy """ )y Mm—1 T Mm+1y """ 5 N

as the new directions and ay + A7 as the new a, .
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The performance functions, for the two classes of initial conditions
being considered are given by (38) and (39) in terms of the matrix D
defined in (36). The major effort in computing the performance func-
tion is seen to lie in the computation of D. Sylvester’s expansion (see
page 83 of Ref. 16) for computing e is useful in the computation of
the matrices F' and G.

The basic procedure can be outlined as follows:

() Compute and store C()®(t, t,) for ¢ e [t, , {;] using (7) and (8).

(#7) Evaluate M using (23).

(#43) If it is desired to compute the lower bounds to aid in choosing
the dimension of the approximating system, compute the eigenvalues
of M and obtain the bounds from the result of Theorem 1.

(i) Choose starting values for A and choose the directions for the
initial search in the modified Powell method to be

17 [o] [o]
0 1 ‘
] 0 ’ 2 H} 0

L0 LOJ | 1]

where the above are k* vectors.

(v) Use modified Powell method to determine the minimum of the
performance function. Each element of the vector a in the Powell
method corresponds to an element of 4.

VI. EXAMPLE

A linearized missile guidance loop may be expressed in the form

H

T
m — i 3y

Ty = as Ty = Ty = U (40)
where 2, is the lateral position deviation from a nominal trajectory,
zo is the lateral velocity deviation, z; is the attitude deviation in the
given direction and % is the control signal. The relationship between
the attitude and lateral acceleration is given through the time-varying
gain H/(m — t) which accounts for the loss of mass because of fuel
consumption.
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Suppose it is desired to approximate homogeneous solutions to
(40) for initial conditions (at beginning of a stage) lying in a set
R (R is defined later) with solutions of a constant coefficient system.
The actual system (40) can be written in the vector-matrix form

#(t) = A(Dz(t) (41)
with output
y() = [1 0 0lz(t) = Cz(t) (42)
where
Il(t)
z(f) = (1)
Ia(t)
and
0 1 0
Ay =|0 © m‘ri ’ (43)
00 0
Let,
lyiP = [ v (a4

Before proceeding to find the approximation it is instruetive to
determine the lower bounds on the optimal performance. This will
naturally aid in choosing the dimension of the approximating system.
The matrix, M, defined by (33), is given by

M= f "8, 0C"CH(L, o) dt (45)
with
4 a1, 0) = AW)(t, o). (46)

The transition matrix, which is the solution to (46) with the identity
initial condition, is given by
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1t H{(m = Bl (m; t) 4o z}

®(,0) = |0 1 —Hn (m; ‘)
00 1
Evaluating M leads to
r L H{T? =Dy, (’"; T) +3@ - QmT)}
™ 71
M=% % M
MIH M23 Maa J
with
_ T 5 5 @+ m)(m— 1)
Il/Izs—H[s—aﬁm— 6
o (m =T\ | (m— 74T + Sm)]
hl( m )+ 36
and
[m3 3
™ (m—=1 2(m—T) 2 _ ma
= 3 In p-” - 9(m T)
.In (m ; T) + % {m® — (m — T)%)
My, = H? :
_%ma_ (2T—3i_m)(m—-T)2
m—T (m — TVAT + 5m)
'h‘( m )+ 18 J

Let the constants defining the problem be given by

15 seconds (normalized mass)

Il

m
T
H = 15 (pound-seconds per slug ) X 107°

and let the region of initial conditions be given by

10 seconds

Il

R = {z(0); |z.(0) | = 30 feet, | 2(0) | = 2 feet per second,

| z3(0) | = 1 milliradian}.
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Evaluating M for the above values of the constants leads to

10 50 206
M =| 50 333 1570
206 1570 8082

with eigenvalues

Al = 8393, A-‘ = 31, )\3 = 1.1.

We have

J, = 8,393

J, = 31
and

Js = 1.1,
Here Jy represents

max || y |*.

ToeR

The second order approximation thus has the possibility of yielding
a negligible approximation error. Thus in the remainder of this paper
the optimal second order approximation will be sought. Thus

&= Az = {a“ a”}t
Qg1 Qap

7 = [1 0]z.

The initial choice for 4 in the iterative procedure is

i- [0 1}
00
which represents polynomial approximations to solutions of the orig-

inal system.
The extreme points of B are given by

and

30 —30 30 30

2™ = | O 2= 27 2 =|—2| and 2™ = 2
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and their negatives. Thus
Jo(A,) = max {z" Dz'"} = 340
(]

where D is evaluated from (36). It is thus seen that the performance
function is far greater than the lower bound and the possibility exists
for a significant improvement. The result of applying the Powell
algorithm to this problem yields

Is - [0.244 0.827 }
0.177 X 107 0.629 X 10

and
Jo(A*) = 334
with the eigenvalues of A* given by
M(A*) = 0.245
M(A*) = 0.30 X 107,

The above results are obtained after three iterations of the Powell
algorithm. The G, F and D matrices are given by

¢ = {271 771}
771 2230

.- [43.14 296.0 1459}
112.2 8326 4241

and
44 X107 —18X 10™ 12X 107"
D=|-18X10" 73 35X 107% .
1.2 X 107" 3.5 X 107* 4.2
Evaluating

max Iaf“’ Dx(-‘) }
]

gives the maximum approximation error occurring at the extreme point

30
z® = | =2/

1



MODELING CONTROL SYSTEMS 229

Figure 1 shows the solution of the actual and approximate system
for this worst-case initial condition. The solutions are obtained from

y(t) = 30 — 2t + ®.,(t, 0)
and
30
gty = [1 0™ G7*F| —2 |-
1
j(f) = 4.82¢€"" + 19.78 .
The matrix relating the initial conditions is given by GF, that is,

&(o) = G"'Fz(0).

1.00 1.86 —1.68
#(o) = z(0).
—0.295 —0.271 2.48

80

70

80
-
w
w
w
Z
w 50
r4
Q
E ~
3 J(t) APPROXIMATE — — _|
o]
9 40 -

/
7
s
’/
|
30 AR
-~
== = Sy(t)exacr
-
-‘"
20
o F 8 10

4 6
TIME IN SECONDS

Fig. 1 — Exact and approximate solutions in worst case,



230 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969

VII. CONCLUSIONS

A method for uniformly approximating solutions of linear, time-
varying, homogeneous differential equations has been presented. The
problem of approximating systems subject to control or reference
inputs is considered in Ref. 6 for the class of exponential polynomial
control inputs.

One of the objectives of modeling with constant coefficient systems
was to obtain closed form approximations. Use of Sylvester’s expan-
sion allows one to derive these closed form expressions. However,
more general classes of approximating systems can be sought while
still maintaining the property that approximations are in closed form.
For example, a general model of the form

= p(t) Az

where p(t) is a scalar valued function possesses the closed form
solution

£(t) = exp [z{ / " gl dr]ﬂ(t,,)

and p(f) as well as A may be sought as part of the modeling procedure.
A complexity constraint can be imposed on p(f) by considering it to
be a polynomial of given degree and the search for the model reduces
to finding the coefficients of the polynomial as well as the elements of A .
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A Second Order Statistical Analysis of the

Operation of a Limiter-Phase
Detector-Filter Cascade

By W. D. WYNN

(Manuseript received August 30, 1968)

This paper presents a second-order statistical analysis for the cascade of
a bandpass limiter, and ideal phase detector and a video filter. This cascade
forms an tmportant subsystem in the mathematical model of some coherent
communication systems where information is transmitted by phase or
frequency modulation of the carrier. We derive the autocorrelation function
R(t, , t,) of the video filter response when the bandpass limiter input is a
fized amplitude-phase modulated carrier plus stationary gaussian noise.
The video filter response is wide sense stationary for some nontrivial cases;
these include biphase, single tone, and stationary gaussian noise phase
modulation. For these cases, we obtain the video filler output average power
spectrum as the Fourier transform of R(r) for all values of the limiter input
signal-to-noise power ratio. An application of the results of this paper is
the performance of a FM-PM demodulator for a set of parameters charac-
teristic of one mode of operation of the Apollo Unified S-Band communica-
tions system. We present the performance as a family of curves of subcarrier
channel output signal-to-noise power ratio as functions of the limater input
signal-to-noise ratio where subcarrier phase modulation index 1s a param-
eter. The approach is similar to the analysis by Davenport of the signal-
to-notise ratio transfer characteristic of an isolated bandpass limiter.

I. INTRODUCTION

In some coherent communication systems, such as the Apollo Uni-
fied S-band system, where information is transmitted by phase
modulating a carrier, bandpass limiters® are used in the IF channels
preceding the coherent demodulators. Ideally the bandpass limiter
removes any amplitude modulation that might exist before the signal
is demodulated.

233
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Figure 1 shows a typical coherent phase demodulator used in such
a system, This demodulator consists of a multiplication operation (a
phase detector) with post-video filtering. The phase modulated signal
is multiplied by a coherent carrier reference to yield a video signal
containing the desired information. The signal into the limiter is
usually accompanied by noise that is frequently assumed to be addi-
tive and gaussian. The presence of the noise affects the performance
of the demodulator in a very complicated way because of the non-
linearity of the limiter. Thus it is difficult to evaluate the corruptive
effect of the noise on the demodulated information.

One criterion of performance at points in a communication system
is the signal-to-noise power ratio (S/N). For the cascade in Fig. 1, a
problem of interest to the systems engineer is the video filter output
S/N as a function of the input S/N to the limiter when the input noise
is additive, stationary, and gaussian. The relationship is known between
input and output S/N for an ideal bandpass limiter where the input is
the sum of a stationary gaussian noise and a signal P(t) cos (w.i + ¢)
(see Ref. 2). For the analysis there, P(f) is a random process and is
slowly varying compared with cos w.t. The carrier phase ¢ is a random
variable independent of P(f) with a uniform distribution over [0, 2x].

It is not possible to apply the known S/N transfer characteristic of
the ideal bandpass limiter found in Ref. 2 directly to obtain the S/N
transfer characteristic for the bandpass limiter-phase detector-video
filter cascade. A knowledge of the form of the signal and the noise
out of the bandpass limiter, and not just the S/N of this output, is
necessary to determine the effect of the phase detector on the bandpass
limiter response.

To obtain the caseade S/N transfer characteristic we apply the
mathematical tools used in Ref. 2. The form of the signal assumed in
the analysis of the cascade is s(f) = P cos [w, + 0(f) + ¢] where P is

REFERENCE

P(t) coslwct +6 (L) + @] + noise SIN (wct +¢)

s

/ - __

.'I 1 i__ —‘ [_ _]

F
BAND-|x(t) t)| BAND-

it S e8] ERETL L0y Jose] st

" @) @ | | | INFORMATION

| |
| BAND-PASS LIMITER Jl u%gc_ﬁr_onJ

Fig. 1—A coherent phase demodulator with IF bandpass limiting in the
presence of additive noise.
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a positive constant, 6(f) is phase modulation that is slowly varying
compared with cos «.tf, and ¢ is a random variable representing the
arbitrary initial phase of the signal carrier. The probability density
function of ¢ is assumed to be uniform in the interval [0, 2x]. The
noise input to the bandpass limiter is assumed to be additive, stationary,
and gaussian with zero mean and power spectral density N. The input
noise, the modulation 8(f), and the carrier phase ¢ are assumed to be
jointly statistically independent. For the following analysis, the limiter
is assumed to be ideal with limit level I. The transfer function of an
ideal limiter is defined by

+1, z>0
y=1Ilx) =3 0, z=0 (1)
1—1, z < 0.

A coherent carrier reference sin (w.t 4+ ¢) is assumed to be available
for the demodulator where ¢ is the phase of the carrier.

II. THE SECOND ORDER STATISTICAL ANALYSIS

2.1 A Cascade Model when s(f) is Narrow Band Limited

In order to obtain a S/N transfer characteristic for Fig. 1, the auto-
correlation function of z(t) is derived. When R, (t, , t;) = R.(r) the aver-
age power spectrum of z(¢) is defined by the Fourier transform of R,(7)
and the S/N transfer characteristic can be found. An analysis of the
autocorrelation function of z(t) does not seem possible for general s(t).
However, if the signal s(f) is a narrow band-limited process such that
the bandpass filters are narrow compared with the carrier frequency w. ,
the response z(t) should be the same with or without the post bandpass
filter that precedes the phase detector. The response of the nonlinearity
I(z) to an input z(f) = s(f) + n(f) that is narrow band-limited about
4w, is a family of terms narrow band-limited about the frequencies
+nw, wheren = 0,1,2,3, - - - (see equation 13-53, section 13-1 of Ref. 3).
Any narrow band-limited input to the phase detector that is not about
—+w, will generate a phase detector response above the cutoff frequency
assumed for the video filter. For a narrow band-limited x(f) the auto-
correlation function of z(f) is obtained from the analysis of Fig. 2.

2.2 The Derivation of the Autocorrelation Function of z(t)

Assume that the input z(f) is narrow band-limited such that Figs. 1
and 2 yield equivalent z(f). The autocorrelation function R.(t ,t) is
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1F
S(L), N |ganp-Pass 1.6 yt) 6—(\ w(t) VIDEO z (1)

FILTER FILTER
(w¢) ? \r feo<<fec

|
z(W)=s(V)+n{t)

REFERENCE
SIN (wet +9)

Fig. 2— The narrow band equivalent receiver for the derivation of R.(¢s, ts).

obtained by first deriving R, (t, , ;) from the model in Fig. 2. Since z
and w are related by the linear video filter, E.(f, , f,) follows directly
from R,(1, , ta).

The Laplace transform solution of a zero memory nonlinearity with
stochastic excitation is used to derive R, (Z, , ) (see Chapter 13 of Ref. 3).
The limiter characteristic is

Uz) = 2—11” [ fc . f+(w) exp (zw) do + fc 1@ exp (20) dw] 2
where
i 1
folw) = j; I(z) exp (—wz) dr = o for Relw] >0

and

- = [ : M) epl=ade ==, fe Rely] <0,

w

The variable w = % + jv is complex with Re[w] = u. The contours
(. and C_ are taken parallel to the » axis in the v plane with Re [w] > 0
for C', and Re [w] < 0 for C.. . For convenience I(z) is written symbolicly
as

1
1) = 5 [ 1) exp (ao) da ®

where equation (3) means the same as equation (2) when C, and C. are
not the same contours.

Since w(t) = sin (w.t + ¢)-lz(f)], the autocorrelation function of
w(t) is

1 )’ .
Rt 1) = (55) [ ) [ fodElsin @ty + 0)-exp sy + i)

-8in (w.t; + ¢)-exp (woss + wany)} duw, dew, (4)
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where 5; = s(t;) and n, = n(t,), 2 = 1, 2. The order of complex integra-
tion and the expectation operation have been interchanged to get equa-
tion (4). For the assumed statistical independence of n(f), 6(t), and ¢,
the expected value in equation (4) factors into

E{sin (w.l, + ¢)-exp (w,s,)-sin (w.tz + @) exp (wass) }
-exp 3[o’wi + 2R.(Nww, + dwz]  (5)

where + = &, — t,. The form for the cross correlation funection
E{exp (w,n,) exp (w;ny)} where n(t) is stationary gaussian noise has been
used in equation (5) (see pp. 476-477 of Ref. 4).

For the case where s(f) is narrow band-limited with respect to w.,
the filter in Fig. 2 is a narrow bandpass filter, and is assumed to be
symmetrical about @, . Then n(f) can be written as (see pp. 373-374 of
Ref. 4)

n(t) = z, cos wt — z, sin w,l

where z, and =, are statistically independent stationary gaussian random
processes, and

R.(t) = R,(7) cos w7 (6)

where R,(r) = R..(r) = R.,(r). For a narrow bandpass IF filter, the
transform of R,(r) is lowpass with a narrow bandwidth compared to w, .
With the substitution of

=1t b=t+r,

o* = ¢ + w.l,
. _ exp (j*) — exp (—jo*)
sin ¢* = 2j §
and
exp [B.(n)ww,] = E_ I o(wwol?,) exp (jmw,r) (7)

(see Article 1, Chapter 3 of Ref. 5), equation (5) becomes

(=1 X L.wowR,) exp (jmo.r) E{lexp (jo.r + 2¢%)

+ exp {_jch - qub*) — exp (jwcT) — €exp (_jwcf)]
-exp [P cos (8, + ¢*) + w.P cos (6, + ¢* + w.r)]}. (8)
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Since exp (jw.r) and exp [@.P cos (6, + ¢* + w,r)] are periodic in w,r
with the period 2w, the function

exp (jmw,m)E{ |} (9)
in equation (8) is periodic in w,r. Since R,(r) transforms to a narrow
band-limited lowpass spectrum, the autocorrelation function of z(f)
corresponds to the de component of the Fourier expansion of equation

(9). With the substitution of § = w,7, the de component of equation
(9) is

) ;
[ R exp may Bl )

3 3 LiP) L(wP) -E,,{ h‘;—:

r=— k=—c0

'[E¢—{9XP [ilm + 1+ k)8 + j2 + 7 + k)¢* + jiro, + k63)])

+ Eyelexp [im — 1 4 15 + (=2 + r + B)* + jr6, + k62)])
— Bylexp [im + 1 + B8 + jor + Ko* + i, + k6,)]}

— Eylexp [j(m — 1 + K)é + jir + k)¢* + jiro, + kﬂz)]]}}- (10)

Since ¢* = w.t + ¢, ¢* has a uniformly distributed probability density
function on [0, 27]. The averages in equation (10) with respect to &
and ¢* follow. For example, the first average with respect to & and ¢*
iszeroiff w %k +1=#00rk+7+20,and whenk = —1 —m
and r = —2 — k = m — 1 the double average is exp [(m — 1)8, —
(m + 1)6,]. Equation (8) reduces to

(—D i L(wwolt)) [I ot TEGE L E Lexp [ilm — 1)6, — jm + 1)6,]}

m=-=o00

+ LIS Elexp [f(m + 1)8, — j(m — 1)6,])
- IL“}'IP’IL‘?,',,TUE[eXp [i(m + 1)8, — j(m + 1)6,]}

— LAPISG2 Elexp [iim — 1)6, — j(m — I)Bz]}]- (11)

The terms in equation (11) for positive and negative m can be combined
by noting that I_,.(z) = I,.(z). With the substitutions

+o0 wm+2uwm+2qu+2q
— 2 2 =
I (ww:R,) = Z 2m+2aq! I'(m + ¢ + 1)

a=0

(12)
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and

2 2
aw

| —— %jj;f(m)w* eXp( 5 )Im(wP) dw, (13)

the autocorrelation function of z(f) is

o @ R2n+m
R — 1 o +m£m v
A, ) = % ’g ;) Tl (g + m)!

(Rt zaemBe(m + 1, m + 1, 1y, fo)
+ R sgemBe(m — 1, m — 1, 4, 1)
— Pt 2gsmbimet zasmBa(m + 1, m — 1, &, &)
— Roes 2esmbn-i.2esmBe(m — 1, m + 1, 4, , 1)] (14)

{1, m=0
€Em =
2, m >0

and Ro(4, B, t, ,t,) = Efcos[A8(t,) — B(t,)]} for any integers A and B.

where

III. THE CLOSED FORM SOLUTION FOR h,,,‘k

The autocorrelation funetion of z(f) given in equation (14) contains
the constants h., ; where m -+ k are odd integers. For the ideal limiter
characteristic of equation (1), there are closed form solutions for these
parameters. Since f,(w) = l/w for Re [w] > 0 and f_(w) = l/w for
Re [0] < 0, equation (13) becomes

1

m. k =-_2:j|07

2.2
h 11, (wP) exp (ﬂ) de

2
. f 1T, (wP) exp (fi) do  (15)
2mj Jon " . 2/

where C_ is the contour (—e — jo, —e 4+ j) and C, is the contour
(+€ — joo, +€ + jo). By the change of variable = jz and the sub-
stitution of I.(z) = (§)""J.(jz), analytic continuation can be applied
form = 0 and & = 0 to give

—a'a’

. %_(j)k“"-] f 2"V J ,.(xP) exp [T] dx. (16)

-0

When m + k is even, the integrand of equation (16) is odd and A, = 0.
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When m + k is odd, the integrand of equation (16) is even and

("))
: 2 /\2¢’ (m +k .

B = % (.7‘)’”“_ . . ¥ Fy 9 )
2T(m + 1)[‘(?);]

where a solution has been used for the integral

2
m+1;55) an
a

2.2

fu " &1 (2P) exp [_g 5 :l dz (18)

in terms of the confluent hypergeometric function ,F,(a; 8; —x) (see
equation A.1.49, p. 1079 of Ref.6). For the case when m and & are non-
negative integers ,F';(m + k/2; m 4+ 1; —z) can be expressed in closed
form in terms of first and second kind modified Bessel functions. A
list of these expressions is given by Middleton (see equation A.1.31,
section A 1.2 of Ref. 6). A collection of k., in closed form for low order
indices is given in Table I. For Table I, z = P?/2¢" is the input signal-
to-noise power ratio into the limiter in Fig. (2).

Any of the h, , in equation (14) ean be found in closed form from
Table I by using the recurrence relations

1 4 1
Fsge = hoy — 2Dy Am A Dm, L a9)
P P
P Ek—m—2
hm+1.k+| = —"3 hm.k - (—ﬂ:_)_hm—l.k—l
o o
—m — 2
3 2_(1‘7__’"'51)_)?” S (20)
o
and
—_— - — k
hm.k+2 = (m 2 k} hm.k + }i-lhm—?.k - (m 4 )Ph’m—l,k—l . (21)
o o o

Equation (19) is derived from equation (16) by using the Bessel
funetion identity
2(m + 1)

Jusa(@P) = =5 — Juni(@P) — Jn(zP). (22)

Equation (20) is derived through a by-parts integration of equation
(16) and the application of equation (19). Equation (21) is derived
through by-parts integration of equation (16). In the development of
equations (19), (20) and (21), the integral in equation (16) is re-
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TaBLp I — CrosEp ForM SOLUTIONS OF SOME A, &
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h’m.k

@' e **[Io(x/2) + I,(z/2)]

(°)*l -

e Ita/2)

[5-]

lP —:12
@nie* [Io(x/2) — I,(x/2)]

—IP e 4
(211_);0_ ! [Io(x/z) ( ;)11(3/2)]

—(2) l -112

T 0 — DL/ + 2@/2)]

[C+]

(2_5;1:—6“""[1“(?’/2) - (1 + %)Il(“"/ 2>]

(2_,,.;,132 _,,o[(l + -+ )I (x/2) — ( +g)10(1/2)]

P

We””[@ — 2n)Io(z/2) + (2z — DIi(z/2)]

é;%e'*’ﬂ[(1+21_r)10(x/2) (1+ -+ )I (x/2)]

i ;Pa "’*[(1+ + 221/~ (1421428448 Ilcz/z)]
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stricted to the half interval [0, co) which is possible since the inte-
grand of equation (16} is even when m+k is odd.

IV. THE AVERAGE POWER SPECTRUM OF z(t)

The autocorrelation function of z(#) given in equation (14) becomes
time independent such that z(f) has the average power spectrum S,(w) =
F[R,(r)] when R,(4, B, t,, t,) = Rs(A, B, 7) for integers A and B.
There are some important cases of 6(¢) for which R; is time independent.

If 6 is a biphase modulation with 6(f) = =+ | # | that has a zero mean
and autocorrelation function (see equation 9-42, section 9-2 of Ref. 4)

|0]21—-JL|, for |7|=ST
Re(r) = ( T) (23)

0, for |7z|>T
then
Ry (A, B, 1, , )
=cos A|0|-cosB|0|+sind|8|sinB |8 |rr) (24)

where ry(r) = Ry(r)/| 6|* is the normalized autocorrelation function
of 8(t). Then R; is a functionof 1 = ¢, — ¢, .

For a single tone modulation given by 6(f) = m, sin (w,¢ + £) where
£ is a random variable with a uniform probability density funection
on [0, 27], a simple Bessel series expansion gives

Ro(4,B, t, , 1) = 3 exan(Amy)Jon(Bmy) cos (2new,7)

n=0

+ 2 e ons(AM,) T 50 i(Bm,) cos [(2n — 1)w,7] (25)

n=1
{1, n=20
€ =
2, n > 0.

For the single tone modulation, &, depends—only on the time difference r.
If 6(t) is the sum of tones

where

i) = 3 mysin (st + &) 26)

=1

where £&,, p = 1, --- , N, are independent random variables with
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uniform probability density functions on [0, 27], R, is again independent
of time.

If 6(1) is a stationary gaussian process with zero mean, variance o
and autocorrelation function K,(7), then Ry(A, B, t,, 1) = Ry(4, B, 7).
The second-order characteristic function for the stationary gaussian
process is defined as (see equation 112, Chapter 7 of Ref. 4)

By, 5wy 3 7) = Elexp {jlw, 8t + 7) + w20()]}) o
= exp [—3K(0)(w; + w3) — Ko(r)ww,].
Then

RH(A: B: b, 12) Real PME{BXP (jAﬂ, - JBG’»‘)}

= exp [—%—3 (A® + B’)]-exp [ABK(7)] (28)

= Ry(4, B, 7).

The validity of equation (14) depends on the narrow band-limited
assumption for the modulated signal s(f) at the carrier frequency
w,. For s(t) to be narrowband limited, the parameter values that the
modulation functions can have are restricted.

V. AN APPLICATION OF THE If. RESULTS TO THE PERFORMANCE OF A SUB-
CARRIER CHANNEL

A modulation technique sometimes used for communication is FM-
PM where the carrier is phase modulated by a subcarrier that is in
turn frequency modulated by the information waveform. The FM-
PM signal is of the form

s(t) = P cos {wt + ¢ + m, sin [of + & + AD)]] (29)

where P, w, , w, and m, are constants, ¢ and ¢ are independent random
variables usually assumed to have uniform probability density fune-
tions over [0, 2x], and A(f) is the integral of the information waveform.
In a typical application, w, 3> w, and A(f) is slowly varying compared
with cos w,f. With these restrictions the information A(f) can be re-
covered from s(f) with the receiver shown in Iig. 3.

The purpose of the bandpass limiter is to remove the effect of varia-
tions that might occur in P. For the ideal case where s(f) is not per-
turbed by noise, the subearrier filter input z(t) is
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Fig. 3 — FM-PM receiver with ideal bandpass limiter.

2(t) = —gsin {m, sin [w,f + N2) + £])
" (30)

_ _%@ i Tonor(my) sin {20 — Dyt + M0 + 8.

If A(f) is slowly varying compared with cos w,t, the information can be
recovered with a subcarrier filter that passes only the first component
of the sum in equation (30). For the noiseless case the subearrier filter
response is then

—2L 7 ) sin [t + 2) + 81 )

After additional processing in a subearrier demodulator, A(t) is obtained
from equation (31). One criterion of performance of the receiver is the
S/N out of the subcarrier filter as a function of the limiter input S/N,
z = P?/2¢". Since \(f) varies slowly compared with cos w,t, the output
S/N for the subcarrier filter is determined with sufficient accuracy by
setting A(f) = 0. If A(t) = 0, the subearrier output S/N follows directly
from equations (14) and (25). Substitution of equation (25) into equa-
tion (14) gives the power spectrum

S.(w) = 2hiy D Jras(my)-Fleos (2n — 1w, 7]
f=mynin (w,t+§) n=1

+ (Dlohor — ohardo(2my)]* - Flr,(7)]

+ (Bl i J2@m,) - Flr()- cos (u)]
+ B i Tos(my) - FP(r) - cos @n — Doy]

+ (113') i E,,[O'ghng,‘(ml) = 02h32J5(3m1)]2'F[T5(T) + CO8 'nw,f]

n=0
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+ (ﬁ)[“ahna = Uahszo(zm:)]z'F[T::(T)]

+ (el 3 T2em)-FIF() 008 meur]
+ (') i e[ hoad n(2m) — 0 hasd L (4m,)]* - Fr3(7) - cos nw,7)

+ () o Tho(my) - FIr(e)-cos 2n — Dyr]

+ (Té'ﬂ‘) E e,,[a-‘hn.f"(m;) - 0'4h34Jn(3m1)]3’F[T:(T) * CoS TW;T]

n=0

+ (r89) Z efo'had (Bmy) — s (5m,)]? - Flri(r)-cos nw,r]  (32)

n=0

where r, = R,/R,(0) = R,/s’. The approximation, equation (32),
neglects all the terms of equation (14) containing the factor R}**"
where 2¢ + m > 4. The terms in equation (32) are the significant terms
of 8,(w) for the single tone modulation. The spectrum in equation (32)
is the weighted sum of terms of the form

F[ry(r) cos me,7] = 2%_ Flri(7)] * Flcos mw,7] (33)

where * is the convolution operation. Since F[cos mw,r] is a pair of
impulses of weight = at +=mw, ,

F[r*(7) eos mew,7] = 308, (0 + mw,) + S,..(0 — ma,)) (34)

where

S, .alw) = Fri(n)].

The first term in the spectrum of equation (32) is the signal content
of z(t). All other terms of equation (32) correspond to noise alone or
a combination of signal and noise. All terms of equation (32) except
the first term are usually combined to give the interference (noise)
spectrum at the output of the video filter.

A computation was made for the subcarrier filter output S/N as a
function of the input S/N z. The following conditions are assumed for
the computation.

(i) The power spectrum of the input gaussian noise to the cascade
in Fig. 1 is uniform over the bandwidth of the prelimiter bandpass
filter.
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(77) The prelimiter bandpass filter is assumed to have a gaussian
transfer function such that

_ .22
r(n) = exp [T‘“] (35)
(#1) The subecarrier amplitude transfer function is
1, m,-—%(]w](wl—k%
| H(jw) | = (36)

0, all other o,

where Aw <€ wo. Also, w, = 12.566 X 10° and w, = 6.434 X 10° are
assumed. Substitution of equation (35) into equation (34) gives

S0 = PN = e [ -2 ()] @

From condition 77, the noise spectrum in the passband of the subearrier
filter is approximately constant when w = w,. The signal and noise
powers out of the subcarrier filter follow from S.(w,). The signal power
is 2h%,J%(m,); the noise power is

1 [° .
ol [8.(w) — 2hioJi(my)-F(eos wnr)]- | H(jw) |* dw = [Si(w))]-2 Af
where Af is the width of the subearrier filter and where S; is equation
(32) with the first term omitted. The function

Zhlznl] f(ml)
z[S1 ()]
was computed for x between 0.01 and 100 with m, as a parameter. The

results of the computation are shown in Fig. (4). For a given m, and z,
the output S/N for the subcarrier filter is z/2Af-S(m,).

S(m,) = (38)

VI. SUMMARY

A general, second order statistical analysis is presented for the cascade
of a narrow bandpass limiter, an ideal phase detector, and a video filter.
In this analysis, the input to the limiter is assumed to be the sum of a
stationary gaussian noise and a fixed amplitude phase modulated sine
wave. The autocorrelation function of the cascade response is obtained
as a function of the signal-to-noise ratio z at the limiter input, the nor-
malized autocorrelation function of the lowpass equivalent for the
limiter input noise r,(r), and the phase modulation 8(3).

The cascade response z(f) has the autocorrelation function RE,(t, , t;)
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Fig. 4— The unit bandwidth subcarrier filter output, 8/N normalized by z
where 10~° =< z =< 10® and M, is a parameter.

that can be time dependent. However, for some important cases of 8(f),
R.(t,, t;) = R.(r), and the cascade response has the average power
spectrum S,(w) = F[R,(r)] where F' is the Fourier transform operation
with respect to 7. The cases of 6(f) considered that yield E,(7) are the
random biphase waveform §==| 8 |, the single tone 6(t) =m, sin (w,t+£),
and the stationary gaussian process with autocorrelation funetion K,(r).

The dependence of R,(t, , ;) on the limiter input 8/N appears in the
h parameters. These parameters can be obtained in closed form as fune-
tions of the modified Bessel funetions I,(z/2) and I,(x/2). The lower
order h parameters encountered in the first few terms of the series for
R, are found, and recurrence relations are derived through which
higher order h parameters can be derived easily.

For the modulation types that make R, a function of r alone, the
power spectrum S, () is known for all values of the limiter input 5/N z.
Then the S/N can be derived in any frequency band at the output of
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the video filter in TFig. 1 as a function of any S/N into the limiter.

The performance of a subcarrier channel was considered where 6(f) =
my sin [wf + A() + £]. The subcarrier was assumed to be phase mod-
ulated by a narrowband low pass process A(f). The S/N at the output
of the subcarrier filter was obtained by computation of the approxima-
tion of equation (32). For this example, a gaussian prelimiter bandpass
filter was assumed. For this filter shape, r*(r) and its transform S, ()
are gaussian for all integers n. Some representative parameters from
the Apollo unified S-band communication system' were assumed. These
were

(7) A prelimiter noise equivalent bandwidth of 4 MHaz.
(#) A subcarrier frequency of 1.024 MHz.
(747) A subearrier noise equivalent bandwidth of 0.2 MHz.
(7v) An input S/N range of 0.01 = z = 100.
() A set of modulation indices m, = (0.2)k, k = 2, 3,4,5,6,7, 8,
9, 10.

The results are given in Fig. 4. The differential between subecarrier filter
output S/N at low and high values of x is a monotonically increasing
function of m, for 0.4 = m, = 2.0. The shapes of the curves are similar
to that of the (S/N)o/(8/N), eurve obtained by Davenport.*
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Multiplex Touch-Tone® Detection Using
Time Speed-Up

By J. F. O’NEILL
(Manuseript received August 19, 1968)

A signal may be read from a storage medium faster than the rate that
would correspond to real time reconstruction of the signal; this process has
been named time compression or time speed-up. Cheap serial shift registers
make time speed-up an atlractive means to delect Touch-Tone® calling
(or other format) signals on a multiplicily of channels using a single
detector.

I. BACKGROUND

Time speed-up (TSU) of a signal consists of reading the signal
from a store faster than the rate at which it was recorded. (This is
generally faster than real time reconstruction of the signal, thus the
name). I propose this process for multiplexing several voiceband
channels in time, so that one multifrequency receiver can detect
Touch-Tone® signaling on a multiplicity of channels.

Processing of a single signal using TSU configurations based on
electric or acoustic delay lines (called pELTIC systems, for delay line
time compression) has been done since the 1950’s."** At Bell Lab-
oratories, TSU is being investigated for multiplexing Picturephone
visual telephone channels on slightly nonlinear microwave radio sys-
tems.®

The inherent simplicity and versatility of a digital TSU signal
processing system is enhanced by the availability of inexpensive serial
shift registers based on the insulated gate field effect transistor. These
registers typically store 64 bits, and are sufficiently fast to permit a
single detection circuit to serve eight to 16 Touch-Tone voiceband
signaling channels or hundreds of channels in a low frequency ap-
plication, such as 20 Hz ringing detection.

The attractiveness of TSU multiplex tone detection is demonstrated
by, and most of this article treats of, the Touch-Tone detection case.

249
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If the system is realized as a digital multiplexer (concentrator) in
tandem with an analog frequency detector, it will become apparent
that the frequency detector can (but need not) be exactly the type of
circuit now used, but with a sealing applied to all reactances. This
scaling is to raise all spectral features by a constant factor which is
the ratio of time compression. Thus, all the linear and nonlinear signal
processing now used can be included in a TSU system and its per-
formance would simulate that of present Touch-Tone receivers. By
adding additional data smoothing, which could involve using the
signal samples more than once, the present tolerance to digit simula-
tion by speech can be exceeded.

II. SIXTY-FOUR CHANNEL TSU RINGING DETECTOR

An exploratory key telephone system must detect the presence of
20 Hz ringing on 64 central office lines. This detection could be per-
formed on each channel, but the availability of 64 bit serial shift
registers has made centralized TSU detection economically more
attractive.

Figure 1 shows the TSU arrangement to be used in this exploratory
system. A transducer V;,7 =1, 2 ... 64 at each channel slices (limits)
the ringing signal and presents a rectangular wave at logic level to the
sampling gates S,;. Binary data is sufficient to speeify the input signal
because it is basically a single tone; there are interfering tones from
power line cross-coupling but are suppressed to a large extent by the
larger 20 Hz signal and the limiting operation. (It will be apparent
that a multitone format such as Touch-Tone signaling would not be
well represented by binary coded signal samples.) The sampling gates
load the long serial register SR1 with a sequence of samples V, from
all the channels. The order of the samples is the same as the order of
the channels: ...,1,2,...63,64,1,2,....

The register SR1 has taps every 64 bits, however, and at these m
taps (ineluding the input and output) the samples at any instant are
all for the same channel, as shown by V. These samples can be pro-
cessed in a high speed detector, and the result registered in either a
common or per-channel answer depository. A digital detector, for
instance, could examine the m samples in a time consisting of a few
logic gate delays. Alternatively, the m samples can be placed in an
independent register SR2 as shown in Fig. 1, from which they can be
clocked into an analog frequency discriminator of any type, such as a
two-pole resonator. With this system, the SR2 read-out clock is in-
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Fig. 1 —64 Channel TSU single frequency detector.

herently a part of the detection process, since it controls the ratio of
time speed-up; if the channels are sampled at rate f, per second and
the SR2 register is read at kf, per second, then k is the ratio of time
compression (and spectral expansion).

Modifications to the Fig. 1 TSU tone detector permit detection of
a single tone of unspecified frequency. To do this, more detectors
could be added at the output of SR2. The same result would be at-
tained by using only one detector with various clock rates to read out
SR2, and a return path from SR2 output to input, so that the samples
for a particular channel could be processed repeatedly.

In the exploratory key telephone ringing detector the 64 channels
are sampled at seven times per eycle of the input 20 Hz wave and a
digital detector is used to examine the samples from one eyele (m = 7).
The detector stores this tentative result in another serial shift register,
and when enough 50 msec intervals appear to have ringing present, a
RING output is delivered to the common controller. This detection
operation is low @, but this'is by design, and is not dependent on either
the TSU structure or the technology. An analog detector in this system
would need m 3> 7 but would not require the added integration. As
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always, an appropriate trade-off between selectivity (high Q) and fast
detection (low Q) must be made.

The effectiveness of the detector in suppressing frequencies other
than 20 Hz is a function of the sampling rate, as well as the param-
eters of the detector. Waveform preservation is not necessary for
detection, so the sampling theorem requirement (two samples per
cycle at the highest frequency of interest) need not be met. As few
samples as possible should be handled to conserve storage, but the
lower limit is set by the signal duty cycle variation and the size and
frequency of the interfering signals. The equivalence between pe-
riodie sampling and modulation permits intelligent selection of the
sampling rate.

1IT. BIGHT CHANNEL 18U Touch-Tone DETECTOR

The TSU configuration of Fig. 1 could be adapted to multifrequency
detection by means of a few additions. First, incorporate at the regis-
ter SR1 input an analog to digital converter to code the signal sam-
ples sufficiently accurately to preserve the information content, say
b bits per sample. Replace shift register SR1 by b parallel shift regis-
ters, one for each bit at the analog-digital output. Finally, add a
digital to analog converter at the output of the b parallel read-out
registers (SR2 in Fig. 1). No change in principle is involved; the
added cireuitry only preserves the signal amplitude through the TSU
system. A delta coder with a (longer) single shift register could be
used for the digitizing operation; the type of code is a detail.

However, the structure of Fig. 1 is not well suited to Touch-Tone
detection. The serial registers are conveniently available in 64 bit
and larger sizes. (Smaller sizes would be economically wasteful; adding
taps increases the lead count perilously.) Only seldom is there a
need to detect 64 Touch-Tone signals simultaneously, and reliability
requirements would be excessively difficult, even if the need existed.
By using the Fig. 2 TSU configuration, the 64 bit registers are used
very efficiently.

In Fig. 2, each channel has a private b-register store. The channel
1(1 = 1, 8) inputs are sampled in multiplex by switches S;; and coded
by a common analog-to-digital converter. The coded samples are
steered by logic gates S, to the registers for channel 7. Sometime be-
tween (or synchronized with) input samples, the registers are read at
high speed into the digital-to-analog converter, which is assumed to
be simple enough to build for each channel. Transmission gate Sy
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simultaneously connects the (per channel) converter output to the
detector input bus, so that the detector is time shared by all channel
circuits. This detector ean be a carbon copy of any of the standard
receivers, but with all reactances scaled up in frequency by the time
compression ratio. Or, it eould be all-digital. In either case, the read-
out of the channel register bank must be sufficiently fast to permit
the deteetor to answer and return to quiescence before the next chan-
nel is examined.

An important feature of the Fig. 2 parallel register TSU system is
that the channel registers need be supplied only for as many channels
as are actually required. The Fig. 1 serial system must be built en-
tirely in order to operate at all.

An 8-channel Touch-Tone receiver using 3 bit (b = 3) coding has
been built and operated by Mr. R. J. Violet of Bell Telephone Labora-
tories. In this demonstration system, the channel sampling is done at
4000 Hz with 64 samples being stored per channel. Each channel is
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examined every 4 ms, and the detection requires 0.5 ms. Half of this
0.5 ms is to allow the receiver to become quiescent. The time com-
pression ratio is the sampling interval divided by the sample read time,
or 64. The detector is thus constructed for input frequencies at 64
times the normal Touch-Tone frequencies. This simple demonstration
system immediately registers the detected results through gates Sy
in a per-channel flip-flop bank (shown in skeletal form). An attractive
feature of TSU detection is that further processing, such as delay or
data format conversions, can be made by common equipment. Thus,
Touch-Tone signal to dial pulse translators for conversion of step-by-
step switching machines could be very effectively built using TSU
multiplexing.

If the input signal can vary considerably in amplitude, either a per-
channel automatic gain control or more accurate sample coding would
be required to preserve the signal waveform through coding and decod-
ing. Also, a sampling rate higher than 4000 Hz and a larger number
of samples per detection might be used in a production ecircuit. In
compensation, a rate of more than 8 channels is within the speed
capability of the circuitry; additional signal integration to improve
the tolerance to digit simulation is easy to incorporate.

The economic advantages of large scale production can be gained
through the use of 64 bit serial shift registers in many of the digital
systems. Preliminary economic analysis indicates that the marginal
cost of one Touch-Tone detector in a TSU multiplex system would
be less than the equivalent single channel receiver; a cost crossover
can be expected at about three channels. In comparison with multiplex
receiving based on digital filtering, TSU offers easier maintenance,
per-channel modularity, and the ability to incorporate future im-
provements in the detector circuitry.
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Data Transmission Error Probabilities
in the Presence of Low-Frequency
Removal and Noise

By B. R. SALTZBERG and M. K. SIMON
(Manuscript received July 19, 1968)

Upper bounds on error probability are derived for data transmission
systems which are subjected to gaussian noise and to the removal of the
low-frequency components of the signal. This error probability can be quite
low for random data, even though the eye paitern s closed. Both standard
format and partial response signaling are considered, as are binary and
multilevel alphabets. Numerical resulls are given for a high-pass filler
containing a single pole and for a cascade of several such identical filters.

I. INTRODUCTION

It is frequently desirable, or unavoidable, that the low-frequency
components of a data signal be eliminated. This may occur through
the use of capacitor or transformer coupling in the terminal equip-
ment or in the baseband transmission facilities, Another instance
results from the necessity of removing low-frequency baseband com-
ponents before modulation in order to provide a spectral guard band
in the vicinity of the carrier frequency.

Since de is usually completely attenuated, no linear operation can
correct for low-frequency removal. One commonly used approach
uses nonlinear feedback to restore the low-frequency components.
Another solution to this problem involves de-free signal formats.* *

We evaluate the penalty resulting from the removal of low-ire-
quency components from a standard format data signal (Nyquist I
shaping) and a partial response signaling format (multilevel exten-
sion of duobinary with precoding.)* Clearly, in both of these cases,
the degradation is most severe when the transmitted data sequence
contains long strings of identical digits. In fact, when the system
bandwidth is less than the signaling rate, which is usual in data
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communication systems, the received signal will be zero. This follows
from the fact that for a periodic input impulse train the lowest fre-
quency components are at dc and the signaling frequency, both of
which are filtered out. However, the degradation of a random signal
can be quite small when the cutoff frequency of the offending high
pass filter is far below the signaling rate.

We consider binary and multilevel data-transmission systems with
signaling formats as above, degraded by a single-pole high-pass filter
or a cascade of such filters. The systems are evaluated for error proba-
bility in the presence of additive gaussian noise. A previously derived
error probability bound® is used, which takes the form of a gaussian
distribution of the signal to noise ratio, in which the larger intersymbol
interference components subtract from the signal amplitude and the
smaller ones add to the noise power.? In general, the optimum splitting
of intersymbol interference terms between signal amplitude and noise
power cannot be determined analytically. We show that for inter-
symbol interference components, related by a single exponential damp-
ing factor, an optimum subdivision ean be explicitly specified. Where
the eye is open, the error probability bound is given directly in terms
of the eye opening to rms noise ratio.

We also discuss the refinements of the generalized bound in the
case of interysmbol interference from a single exponential signal tail,
and then apply the results to Nyquist I shaped and partial response
signaling formats respectively. Single poles and a cascade of identical
poles are considered, and numerical results are given for practical
data system parameters.

II. DERIVATION OF A SIMPLIFIED ERROR PROBABILITY BOUND FOR SINGLE
EXPONENTIAL INTERSYMBOL INTERFEREN CE

Reference 5 gives an upper bound for the probability of error in
the reception of a random digital message perturbed by gaussian
noise and intersymbol interference. This gives

o — W =1 4]

2 =
[+ Tt m

E{K

P, = A exp<—

¢0]
which is subject to

10
Eft<N_1

kK
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where

N is the number of levels of the input random message.
o2 is the variance of the additive noise.

f() is the signaling waveform.

L is the signaling rate.

T
g, ime {] J(kT) | for standard format signaling
[ fltk — H)T] | for N level partial response signaling with
precoding*
and
Q(NN Lt for standard format signaling
# -
2
%N;Tl) for N level partial response signaling with

precoding

We notice that the applicability of the error probability bound to
partial response signaling formats was not discussed in the original
paper but is presented here as a further extension of the result.’

The sets k ¢ K and k ¢ K include all members except & = 0. It is
also shown in Ref. 5 that

ft > )‘m (2)
(K myK
Thus, if the signal sample set {f.} excluding & = 0 is rearranged in
order of decreasing magnitude to form a set {g.}, then the sums in
equation (1) may be replaced by

M
E v = E Tk
keK k=1 (3)

Yh= 2 a.

kyK k=M+1

For an arbitrary signaling waveform, f(t), the optimum M [in the sense
of minimizing the right side of equation (1)] must be determined by a
trial comparison method as decribed in Ref. 5.

*In the partial response case, fi must be replaced by fi—fo in both numerator
and denominator summations of equation (1) since only the unintentional inter-
symbol interference should be included there.
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For an exponential signal tail,
Te = i1,y 0<r<l; k=23 - (4)

Thus, since f(t) is already monotonically decreasing for all ¢ = T,
the ordered sets {f,} and {g.} are identical in this case.

ffk fl 1 ,_,,.M]

k=1 1 - (5)
i » j? M
E=M+1 fk - 1 -7

To minimize the right side of equation (1), it is sufficient to maximize
4 . 1 o My |2
=@ =) 21 -w-n L(—’”—)]
Q= 2 P2 :
P Py

ks K

(6)

Differentiating @ with respect to M gives

PR AP, T A

= 1)<ffff>( : o e,

where

and
%:71) il —2) < fo. (8)

Three separate cases must now be examined.

@) If fo — (N — 1)fi/(1 — r) < 0, then the eye is closed. From
equation (7) it follows that dQ/dM < 0 for 0 < z = 1. Therefore
the positive maximum of @ occurs at the boundary z=1, so the optimum
value of M is M,,, = 0.
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(#2) If
2 —_—
: o, (N — 1) > 1,
(N—Mf»{_m—mJ
3 147/ 1—r

it is implicit that f, — (N — 1)f,/(1 — r) > 0, and the eyeis open. In

this case it is again true that dQ/dM < 0 for 0 < z < 1,and M,,, = 0.
(ir) If

oa(N — 1)
1
(M—g(n)[_w—nﬂ<’
3 1+ (=)
it is again implicit that f, — (N — 1)f,/(1 — ) > 0, and the eye is open.

In this case a positive maximum for @ occurs in the interval 0 < z < 1.
Solving for the point where dQ/dAM = 0, we obtain

R — AN — 1) )
(N ; 1)(” B (Nl_—lgfl)(l EF|1 r)

Notice that condition (8) is automatically satisfied.

Since the solution for M,,. as given by equation (9) is not necessarily
integer, the error probability bound as given by equation (1) must be
modified in terms of the actual choice of an integer M. We will arbitrarily
use the next higher integer. Letting [M,,.] denote the next higher integer

to M,,. and
FEAWNF N =)

equation (6) may be expressed as:

[S,, P Im.,(l _ r[antl)]z
200% + Lnur™ /2]

0<

(9)

Q= (10)
where

2
(Mops) _ On?

b = plMomt]=Mons r<b<l.

r

(11)

Inwe = (N — 1)fi/(1 = r) denotes the maximum intersymbol inter-
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ference and S, = f, denotes the signal amplitude. Combining equations
(10) and (11),

{ & _ [Im,(S,, — L) — bﬁﬂ}“

2Q = ’ L S” == Im“" | o [(S!J mnx)’ -I_ banz]
., Vo = P08, — Luw)” + o]’
on (S:z - I:mu:):a

Sincer < b < 1,

0> Bl S (55 s (52

In terms of the error probability,
8, = Lnx) (N — 1)(1 -+ r)
( g, ) + fr N+ 1/\1 -7
< Aexp |— 5 .

Tor the situations where M,,, = 0 (that is, cases 7 and 7%) equation (1)
becomes

o S 1.
e ]

III. ERROR PROBABILITY PERFORMANCE WITH A STANDARD FORMAT INPUT
DATA SIGNAL

(13)

Figure 1 is a block diagram of the system considered. Although a
baseband system is shown, a system using linear modulation and de-
modulation ean readily be fit to this model. P(w) is the basic shaping
filter and it is assumed that the receiver is matched to this shaping
filter. For simplicity, P(w) is chosen to be real. The added noise is
white gaussian. H(w) is the narrow high-pass causal filter whose effects
are considered. Since H(w) is narrow, it makes little difference whether
the noise is added ahead of, behind, or somewhere in the middle of
this filter.

The source generates symbols randomly from an N-ary alphabet
at a rate of 1/T symbols per second. The transmitted signal may be
represented by

s() = X, ap(t — kT)

k=—c0

where the a,’s are independent, zero-mean random variables which take
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one of N equally spaced values with equal probability, and p(f) is
the impulse response of P(w).

It is assumed that there is no distortion other than H(w) and that
Q(w) = P?(w) is a Nyquist shaped filter of bandwidth less than 1/T,
so that

g(kT) = 0, all k= 0. (14)
If we let P(0) = 1, then
1
o) = 5 [ Q@) do = T/P. (15)
The power of the transmitted signal is
o - (a2>uv — 0-24:
S = ﬁ f P¥w) do = T? (16)

where o is the variance of a; .
The signal presented to the sampler may be written in the form

r(t) = kZ_: a,fq(t — kT) + e(t — kT)] + n(d)
where e(f) is the error signal caused by the low frequency removal,
H(w). From equations (14) and (15),

o) = a[% + e(m] + 3 aellm — BT] + n(mD). (A7)

k=m

The effect of the low frequency removal is both the reduction of the
signal amplitude [since e(0) is negative] and, more important, the in-
troduction of intersymbol interference.

The Fourier transform of the error signal is

E(w) = Q(w)[H(w) — 1] (18)
so that

e(t) = f i ot — D) de

where h_,(t) is the inverse Fourier transform of [H(w) — 1].

In all cases of interest, H(w) — 1 is much narrower than Q(w). The
time function h_,(t) therefore is virtually constant over a time interval
equal to the effective duration of g(t). We may therefore approximate
g(t) by a delta function, whose area is unity since @(0) = 1.

e(t) = /‘w 8(t — x)h_ () dx.

V-
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NOISE t=KT
SOURCE TRANSMIT HIGH — PASS RECEIVE

{ak} > FILTER [—= FILTER FILTER t— SAMPLE —+
P(w) H () Plw)

Fig. 1 — System block diagram.

If H(w) is causal (which is the case we are interested in), then

0 t<0
e(l) = 13h-,(0") t=20 (19)
1h_1(t) t>0

where e(f) is the negative of the impulse response of a narrow causal
low-pass filter. The generalized bound given in equation (1) can be
applied to this case as:

1 2

p o 20 = 1) J {:E,-FE(O)—(N—I)’%H*Jl
.<———N——exp = N1 i
1 z[ai+ 3 ZeiJ J

kvK

(20)

The quantity o> is the noise power at the sampler input and is also
equal to the noise power at the receiver input, measured in a bandwidth
equal to half the signaling rate. For the N-level system,

02 — N2 - 1.
? 3
In terms of the signal power, equation (16), equation (20) may be
rewritten as

M+g0)—N—-1) 3 |gl
AN =0 exp 4 — tek (21)
N 2 ﬂ'ﬁ 2
20«[@ + 2 m}

ke K

Pr

where g(t) is the normalized error signal
o) = Te() -
Glw) = T[Hw) — 1].

To apply the simplified bounds derived in equations (12) and (13), we
must first specify the high pass filter, H (w).
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3.1 Single Pole Filter

A very common type of low frequency removal results from the
use of a single eapacitor or transformer. The transfer funetion is

ST

=ST+1

H(s)

where 7 is the time constant of the low frequency removal circuit. Its
corner frequency is then 1/(2z7). From equation (22), the normalized
error signal is

T

G(s) = — | (23)

and
g(t) = —l; exp (—;t)u(t)

where u(Z) is the unit step function. Introducing the normalized quantity

a = 2—; , (24)
then
0 k<0
g(kT) = |—5 , k= 0. (25)
—a exp (—ka), E>0
Letting
Tfo = 1 + ¢(0)
Ti. = | g |, k=1,2,--- (26)
and
r=g¢°,
the normalized eye opening becomes
T4, — (J\;’I—_l)?.l"fl _1— (23 B (NI—_lgie—u <, o

Thus, M,,, = 0, and equation (13) becomes
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PEES) exp[ (1 - g)z 1

7, I 1— z = (28)
20’2|:& + —*——i|
‘LS exp (2a) — 1
When a < 1, we may approximate equation (28) by
P« oDl . (29)
2a2(ﬁ + 9)
a S 2

The error bounds for binary, 4-level and 8-level systems are plotted
in Figs. 2, 3, and 4, respectively, as a function of the signal to noise
ratio, S/¢? , and the normalized reciprocal time constant, a. The dashed
curves are the exact values for no low-frequency removal.

— 2 — 3
(th&t is, P.= Q—(NT—L) erfe {fl&:} = —"(NN D ate % )

where erfc (z) = (7:_3;[ et dt)-

It is seen that, in the region of 10-* error probability, these exact

‘\\\‘\s —_—
€ \\\ e O e
HERNNNN

\ \\\\ s
TN e TS
e \\ \ ™~

10 12 14 16 18 20 22
SIGNAL /NOISE IN DECIBELS

Tig. 2— Upper bound of the error probability of a binary standard format
system with a single-pole high-pass filter.
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Fig. 3—TUpper bound of the error probability of a 4-level standard format
system with a single-pole high-pass filter.
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Fig. 4 — Upper bound of the error probability of an 8-level standard format
system with a single-pole nigh-pass filter.
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curves differ from the corresponding bounds by approximately a
factor of 10 in error probability, or 1 decibel in signal to noise ratio.
In the binary case, it is seen that a simple high-pass filter with a
time constant of 50 bit intervals introduces a degradation of only
about 1 decibel in the region of 10-% error probability. On the other
hand, a time constant of 10 bit intervals leads to totally unacceptable
performance. For the same amount of degradation and the same
symbol rate, the 4- and 8-level systems must have high-pass time
constants respectively 5 and 21 times that of the binary system.

3.2 Cascaded Single Pole Filters

In many cases, several single-pole high-pass filters are contained
in the transmission path of the system. If n identical networks are
used, then the overall high-pass transfer function is

o - (25

In many cases, a transfer function containing a large number of real
poles of different values can be approximated by a transfer function
of the form of equation (30).°

The Laplace transform of the error signal is

S = T[( gl = 1]'

To find g, (t), we first evaluate

i om (Goco] - =T - - L ECNe
poo (oo = QD 650 >0
w0 - T (<) Bl 5 ) oo

At the sampling times,

0, m <0
ga(mT) = | ="5F, m=0 (31
—a exp (—ma) HZ_I ( " ) (—ma)’ m >0
’ =A\E+ 1 k!

where again a = T/~
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This funetion may also be expressed in terms of the generalized
Laguerre polynomial,”

i = L3 (7)) =2
L) = 2 (k) (k — 1) (32)

gu(mT) = % exp (—ma)LSY (ma), m > 0.

It has been found empirically in several numerical examples that
the best error probability bound was obtained when all intersymbol
interference terms were added to the noise (that is, My, = 0). The
resultant bound is therefore

20N — 1) exp J (1 B %a)e

N " 0'2 = 2 * (33)
2a§[§" + > (% exp (—ma)L,‘."”(ma)) ]

m=1

P, <

An example of practical interest is the evaluation of the perform-
ance of a baseband binary 50,000 bits per second data set without
de restoration, operating over a transmission facility using trans-
former coupled repeaters. The transformers each have a corner fre-
quency of 15 Hz, and therefore a time constant of

1
T = 5% X 15— 10.6 msec.
so that
_2X107° _
= 00108 — 0.00188.

The results of Fig. 2 indicates a degradation of only about 0.1
decibel when a single transformer is introduced. However, several
transformers are usually present in actual systems. The error signals,
ga(t), and error probability bounds have been computed for both 14
and 28 transformers. The error signals for these two cases are shown
in Fig. 5. Remember that one millisecond is equal to 50 bit intervals.

Tigure 6 shows the error probability bounds for these situations;
28 transformers lead to unacceptable performance while 14 transformers
introduce a degradation of 3 decibels at 107° error rate. It is significant
that n transformers produce more degradation than a single transformer
with a corner frequency n times greater. Also, under the assumptions
of this paper, all of the above results apply independently of the roll-off
characteristic of Q(w), as long-as it is a member of the Nyquist I class.
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Fig. 5 — Errors signal for a cascade of transformers with 15 Hz corner fre-
(uencies.

o]

-.,._\ \ \\

° 28
oy ~ e TRANSFORMERS
Qiwyg AN
8 N \ o
N
= N, N

—5 N
\\ \ \ 14
~\ TRANSFORMERS

5\ \
EXACT 'y
NO \ NO
IMPAIRMENT [\, IMPAIRMENT -
\
\ \
\
-8 A

10 12 14 16 8 20 22
SIGNAL /NOISE IN DECIBELS

v
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IV. ERROR PROBABILITY PERFORMANCE WITH AN N-LEVEL EXTENSION OF
A DUOBINARY INPUT DATA SIGNAL

The system model considered here is identical to Fig. 1 except
that () a precoder which converts the input N-level sequence {a;)}
to another N-level sequence {b;} according to the relation

bn = [an;l - bn—l](mOd N) (34)

is inserted between the source and the transmitting filter, P(w), and
(77) a decoder follows the sampler which decodes the received levels
modulo N to recover the original symbols a, . The important point for
our application is that by including precoding at the transmitter, no
knowledge of any symbol or sample other than the received sample,
7w, 18 involved in deciding a; .

Instead of the Nyquist shaping characteristic, the cosine filter is
used for the composite signal shaping characteristic, Q(w) = P*(w),
that is,

Qo) = cos v, ol < (35)

i)
T
The system impulse response is given by
2| coswi/T
W=7 [1 - 4.52/1"’*] *

so its values at the sampling instant are

% k=01
gltk — HT] = |7 (36)
0 E#0,1.
The power of the transmitted signal is
. _ B 7 _ 20,
S = T | . Qw) do = T (37)

where ¢} is the variance of b, . If the input symbols a, are equally likely
and independent, then so are the precoded symbols b, . Thus, ¢; = ¢°.
The sampler input waveform, r(f), may be expressed as

W) = 3 bla(t — kT) + et — KT)] + (0 (38)

k=—w

where once again e(f) is the degradation caused by the low frequency
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removal, H(w). Substituting equation (36) in equation (38),
M(m — HT] = ra = (ba + b )i+be(—z)
2 m m m—1 2T m 2
+ 2 biel(m — k — HT] +nl(m — HT].  (39)

k=m

If H(w) is causal as before, then e(— T'/2) will be zero. Making the same
assumptions as in the standard signal format case, we arrive at an ex-
pression for error probability analogous to equation (21)

W= 1) o E-W-1Zlell
v w28+ 2 ot| |

Here we consider only the single pole high-pass filter for H(w). The re-
sult for a cascade of n identical poles follows immediately.

P, < 2( (40)

4.1 Single Pole Filter
We start by examining the normalized eye. Letting

T = 1/2 (41)
Tsz‘gkh k‘=1:21"'
andr = ¢ *
OV —1f _1_(N—1Dac*
Tfe — 1=, — 3 ¢ < 0. (42)
Thus, M,,. = 0 and equation (13) becomes for a << 1
- /
P, < 2(%) exp J— 42‘]:/4—1 (43)
o, a
| 2"“( 5T 2M

Figures 7, 8, and 9 illustrate the behavior of the error probability
bounds versus S/¢2 for binary, 4-level and 8-level partial response
signals with the normalized reciprocal time constant, a, as a parameter.
The dotted curves give the exact values of P, for the casea = 0

[that s, P, = Q(NEN )erfc (@ﬂ

We once again observe that in the neighborhood of 107 error proba-
bility, the exact curves for a = 0 differ from the corresponding bounds
by approximately a factor of 10 in error probability, or 1 decibel in
signal to noise ratio.
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Fig. 7 — Upper bound of the error probability of a binary partial response sys-
tem with a single-pole high-pass filter.
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Fig. 9— Upper bound of the error probability of an 8-level partial response
system with a single-pole high-pass filter.

However, to achieve a S/N degradation of only 1 decibel in the
region of 10~° error probability with a simple high-pass filter, the
time constant must be about four times that needed for the standard
format signal. The above statement is true for the binary, 4-level,
and 8-level cases. This more stringent requirement on the location
of the low frequency cutoff may be viewed as a tradeoff for the saving
in bandwidth associated with partial response signaling.

V. CONCLUSIONS

Although a high-pass filter will always close the eye pattern of
i a standard format data signal (Nyquist I shaping) or 7 a multi-
level partial response signal (duobinary format), the error probability
may still be quite low for random data provided that the high-pass
filter is sufficiently narrow. This effect permits the use of capacitor or
transformer coupling in the data terminals or transmission facilities.
Multilevel systems require a longer time constant for these networks
than do binary systems for the same performance.

Upper bounds of error probability have heen given for binary,
4-level, and 8-level systems with gaussian noise and a single-pole
high-pass filter (exponential time response). A binary system with
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a standard format input signal is degraded by only about 1 decibel
by a simple high-pass filter whose time constant is 50 bit intervals.
Four-level and 8-level systems require time constants of 250 and
1000 baud intervals, respectively, for the same performance.

A data system whose input is a binary, 4-level, or 8-level partial
response signal must have a low frequency cutoff which is two octaves
lower in order to achieve the same performance as a standard format
system.

The error signal for a multiple-order pole is an exponential multi-
plied by a generalized Laguerre polynomial. The performance of a
system with an nth order pole high-pass filter is worse than one with
a single pole n times as large.
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Computer-Aided Circuit Design
by Singular Imbedding

By E. B. KOZEMCHAK and M. A. MURRAY-LASSO
(Manuscript received August 5, 1968)

We give a new and powerful method for the direct solution of circuit
design problems. The method begins with a prespecified topology and some
or all elements undetermined in value. The designer tmposes on the circuit
any desired set of node-pair voltages, branch currents, or driving point
and transfer immittances. Values of circuil elements that satisfy the con-
straints are divectly calculated. This direct method of solution avoids the
usual tlerative analysis-optimization schemes, reducing computer times by
up to three orders of magnitude.

A linear set of design equations is formulated by choosing undetermined
element currents and node vollages as the variables. Singular elements are
sniroduced to impose the desired constraints. Inequality as well as equality
constraints are permitled. Element values are determined from the solution
of these equations. In this paper we emphasize our method of solution in
relation to dc networks.

I. INTRODUCTION

The most significant advances made in computer-aided circuit de-
gign have been in analysis programs. The designer can now choose
from among several general purpose programs that program which
most nearly suits his particular needs. In designing a cireuit to meet
a given set of requirements, the usual approach has been to use
analysis programs in some optimization scheme. Through an iterative
process, carried out by the machine, the man, or a man-machine inter-
action, a final design is reached. The approach presented here pro-
vides a direet solution, and does not rely on such iterative schemes.

The method is most fertile in the area of active network design,
where one often wishes to choose element values in a specified topology
in order to meet some set of requirements. The method has been
applied to a number of design problems of current interest including

275
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biasing direct coupled transistor cireuits; designing transistor ampli-
fiers for specified midband gain, input, and output impedances; and
simultaneously realizing several specified impedance or admittance
parameters of a network.

In the design of electronic eircuitry, one usually wishes to imbed
passive elements into a network containing active devices, and to
determine the required passive element values. Therefore, this paper
deals with the determination of element values in a prespecified
topology for which a given performance is required. Two new ele-
ments, a voltage forcing element (VFE) and current foreing element
(CFE), are introduced in order to constrain network voltages and
currents. These elements may be realized with independent voltage
and current sources, and the nullator, a somewhat ‘pathological”
element used in theoretical network studies.

The method of singular imbedding places the VFE’s and CFE’s
in a network to constrain the desired variables. The terminal voltage-
current behavior of the variable elements is not specified. Instead,
the constraints imposed upon the network by the VFE’s and CFE’s
are used to determine allowed voltage-current relations for the variable
elements. The formulation remains linear in these variables. The last
step involves determining the element values through Ohm’s law
once the allowed voltage-current relations are known.

By appending the original set of equations with a set of inequality
constraints, it is possible to restrict the range of element values in
the solution. For example, realizations employing only element values
between specified lower and upper bounds are possible. For simplicity,
only the case of linear de¢ networks are illustrated. Extensions of
the method to ac and nonlinear design are considered elsewhere.

II. A NEW APPROACH

To understand the philosophy of this new approach to design, con-
sider the train of events in realizing a set of requirements with elec-
tronie eircuitry. Since the choice of topology is better handled by the
man than the computer, we will assume some specified topology in
which some or all of the element values are to be chosen to meet the
given criteria. For example, in designing transistor circuitry it is nec-
essary to choose some resistance values to properly bias the transis-
tors. Similarly, one must often choose element values to give a desired
voltage gain, driving point impedance, transfer impedance, or similar
network function.



CIRCUIT DESIGN 277

The invariant feature in all of these problems is that a set of net-
work currents and voltages, or their ratios, has been constrained. The
design problem is to find any set of element values consistent with
these constraints. If the problem is posed with sufficient freedom,
many sets of element values may exist consistent with the imposed
constraints, Converzely, if the problem is posed with insufficient free-
dom, inconsistent equations arise and there is no solution.

If one can find a general method of imposing these network con-
straints, and can simultaneously monitor the voltage-current relations
these constraints force at the terminals of the variable elements, then
indeed a direct solution to many computer-aided design problems will
have been found.

Before proceeding, however, consider a very simple example of
how one might presently handle the design problem and the diffi-
culties that would ensue. Suppose in the network of Fig. 1, one wishes
to choose @G, and G, such that V’ is constrained to be 0.1 volt. A set
of nodal equations may be written:

[1;4— B —6 }V} _ 1}_ W
@ G+ GV, 0

The first step involves a transformation of coordinates so that
the desired quantities appear explicitly in the equations. In general,

this will necessitate using hybrid parameters. For this case, the fol-
lowing transformation might be used:

.
Vli _ P —1] Vl}_ @
vil o 1lv,

Inverting the relation, we have

v.] [1 1]v;
Vs, 0 1|V,
Y Gy Va
WA=
Vl
19 1 Ga

Fig. 1 — Simple design problem.
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and the current-law equations become

_Gl G1 + G2 01 Vz 0
T
_Gl Gz Vz 0
Substituting the constant ¥/ = V', = 0.1, the set of equations becomes
T —
011 +G) + V.=1 ©)

—0.1G, + G,V: = 0.

Thus, even if one is successful in finding a transformation to a
basis that includes the variables that are constrained, the result is
usually a set of nonlinear equations in the network elements and
voltage variables. Solving this set of nonlinear equations for the
unknown voltages and element values is extremely difficult. A method
of handling this difficulty has been suggested, involving the use of
optimizing techniques to vary element values until the network vari-
ables take on their desired values—in this case ¥V’ = 0.1 volt.! While
this is a useful approach, it has several disadvantages. First, it is
time consuming since many iterations are required for convergence.
Second, local minima, or lack of sufficient numerical accuracy, may
prevent convergence to a correct solution. Finally, although an infinity
of sets (G4, G'») exist to satisfy the given constraints, the optimization
yields only one of these sets.

With these difficulties in mind, let us repeat the philosophy of
design presented here. We first determine how the requirements con-
strain network currents and voltages. We then force these currents
and voltages to take on the desired values. Finally, we determine the
effect of such constraints upon the voltage-current relations at the
terminals of variable elements. These v — 1 relations then determine
the values of the variable elements.

III. NETWORK CONSTRAINTS

The common feature of all network synthesis problems is that they
require some specified relation between some voltages and currents in
the network. For example, synthesis of a given driving point im-
pedance constrains the ratio of a port voltage to the current at that
port. Synthesis of a transfer impedance constrains the ratio of a port
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voltage to the current at a different port. A specified voltage or cur-
rent gain constrains the ratio of two port voltages or port currents,
respectively. Indeed the synthesis of entire network matrices is a
combination of such constraints, Similarly, the static design problem
in electronic circuits involves fixing certain branch currents and
branch voltages. For example, one usually wishes to bias a transistor
for a given collector current and collector-emitter voltage. Resistance
values are chosen consistent with these constraints.

It is essential to demonstrate a method for constraining voltages
and currents in a network. The required constraints are shown in
Fig. 2. We introduce two new clements, a current forcing element,
CFE(I,), and a voltage forcing element, VFE (V,), which will be real-
ized with more eonventional elements shortly. We want the CFE(I,)
to be such that it constrains the current through branch j to be I,
without otherwise affecting the behavior of the network. We want the
VFE(V,) to be such that it constrains the voltage across branch j
to be V, without otherwise affecting the behavior of the network.

In discussing the properties of the CFE and VFE, we use the concept
of admissible or allowed pairs of voltage and current variables (v, 7).”
The set of voltage-current pairs that a system N allows can be used to
completely describe that system.’ For example, let the system under
consideration, N, consist of a single resistor of value E. Then the
system is eompletely described by its allowed terminal voltage and cur-
rent pairs; namely, (R7, 7) ¢ N . Similarly, a capacitance of value C,
denoted N , is completely deseribed by its allowed pairs (v, d(Cv)/dt) ¢
N..

We now define the CFE(I,) and VFE (V,) in terms of their allowed
pairs.

Current forecing element (I,) :

(O; Iu) € NCFE(IQ) ' (7)

Here we postulate an element which allows no voltage drop across
its terminals, and passes only a specified current I,.

Next, we postulate an element which allows only a fixed voltage
V, to exist at its terminals, and passes no current.

Voltage foreing element (V7,) :

(Vn 3 0) £ N\'FEIV..] . (8)

TFigure 2 makes clear the use of these elements in constraining net-
work variables. In Fig, 2a, the current in branch j is forced to be
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[+* r‘
CFE (Io) BRANCH J | +

Voé- VFE (V)

BRANCH J

Q

(a) (b)

Fig. 2— Network constraints. (a) Branch J current constrained by current

forcing element (CFE); (b) Branch J voltage constrained by voltage forcing
element (VFE).
I, by inserting a CFE in series. Since the CFE(I,) allows no voltage
to exist across its terminals, its presence affects Kirchhoff’s current
and voltage laws only to the extent that branch j current is con-
strained to be I,. Notice that this would not be the case had we in-
serted a current source in series with branch j. The current source
would allow some voltage to exist between its terminals which would
have been included in Kirchhoft’s voltage law equations. Thus, a
current source of value I, would not only constrain branch j current
to be I,, but would also introduce a new degree of {reedom, namely,
the voltage across the current source.

Similar reasoning can be applied to Fig. 2b. Here a VFE(V,) is
applied across branch j to constrain that voltage to be V,. Since the
VFE(V,) passes no current, Kirchhoff’s laws are affected only to the
extent that branch j voltage is now constrained to be V,. The net-
work cannot respond with a new degree of freedom, as it could if a
voltage source were placed across branch j and thus allowed to in-
troduce a new current variable in Kirchhoff’s current law equations.
It should be noted that the VFE(V,), can be placed between any
two nodes to constrain the voltage between those nodes; it need not
be placed across a branch.

By using current sources and voltage sources in conjunction with
VFE’s and CFE’s, current-voltage ratios may be constrained. For
example, in Fig. 3a,

Vi Ve A _

Tl‘—I—I-—-Z. 9
In Fig. 3b,

£L=L=XZ=Y. (10)
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i(t) vt i V'T NETWORK

Vo=21 Ig=YV

(a) (b)

Fig. 3— Methods of constraining current-voltage ratios. (a) Impedance forcing
element [TFE(Z)]; (b) admittance forcing element [AFE(Y)].

Thus we are constraining the network N to have, in the first case,
a driving point impedance Z, and in the second case, a driving point
admittance Y. The configurations used to constrain impedances or
admittances will be denoted impedance foreing elements, IFE(Z),
and admittance forcing elements, AFE(Y). Notice that IFE’s and
AFE’s are composed of CFE’s, VFE’s, and independent sources. They
are useful in constraining a network to have a desired driving point
impedance or admittance.

We already mentioned that VFE’s and CFE’s could be realized in
terms of existing elements. The necessary elements are the ideal cur-
rent source, the ideal voltage source, and the nullator, a somewhat
“pathological” network clement introduced by Tellegen.* Returning to
the allowed pair concept, the nullator is defined to be a two-terminal
element for which the only allowed voltage-current pair is (0, 0). It
can be looked upon as a simultaneous open and short cireuit, since it
allows only zero voltage at its terminals and passes no current.

From its definition, one could not hope to physically realize and
isolate such a device. However it’s characteristies may be observed at
the input to an operational amplifier imbedded in a feedback net-
work, where the input is at a virtual ground (short circuit) and yet
passes no current (open circuit). The nullator is represented sche-
matically in Fig. 4.

By appropriate connections of voltage sources, current sources,
and nullators, the VFE’s and CFE’s may be realized as in Fig. 5.
Remembering that the nullator passes zero current and has zero volt-
age across its terminals, the equivalents of Fig. 5 becomes clear. In

— () b

Fig. 4 — Schematic representation of nullator,
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i fhies

V=V CFE(1p) | = O (] )v=o0
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[ vee (vo)
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—
]
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o,
1
O
e,

(a) (b)
Fig. 5 — Equivalent circuits for VFE and CFE using nullators.

Fig. 5a, the terminal voltage must be V,, and sinee no current exists
in the element the combination voltage source and nullator is by
definition a VFE(V,). In Fig. 5b, a current I, exists at the terminals
but no voltage drop exists across the terminals. Thus by definition,
the combination current source and nullator is a CFE(Z,).

IV. ADDING FREEDOM TO THE NETWORK

In the previous section, we placed constraints on the network that
would generally lead to a set of inconsistent equations if all the
elements were also specified. However, if some network elements are
variable, we can determine how the constraints affect the voltage-
current relations at the variable element terminals, and then choose
variable elements in such a way as to be consistent with these v —
7 relations.

We propose two methods of characterizing the variable elements.
First, since the element is variable, we can ascribe no funetional rela-
tion between the voltage and current of that branch. This is handled
in writing the nodal equations for the network by explicitly adding
the currents through variable elements into the equations, rather than
first transforming them into voltage variables through a functional
relation of the form

2, = Yyl (11)
where the b implies the variable refers to some branch. The nodal
equations are of the form

[Y(]V] = Is] + [CII], (12)
where

V] is an n-vector of node voltages.
I;] is an n-vector of forcing currents at each node.
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[Y,] is the n X n nodal admittance matrix of the fixed portion of the
network.
I] is an r-vector of unknown currents through variable elements (r
is the number of variable elements).
[C] isthen X rnode cutset matrix for the graph of variable elements.
I] and V] are both vectors of network variables, and may be combined
by matrix partitioning as

(—C| Y] [—,ﬁ] = I, (13)

Equation (13) describes a network in which some element values
can be chosen to meet the given constraints. In the remainder of this
paper, we combine the added degrees of freedom given by the variable
elements in equation (13) with the constraints imposed by the CFE'’s
and VFE’s. All networks, satisfying the VFE and CFE constraints
and the specified topology, with be generated.

A simple example will help clarify these concepts. Figure 6 is the
network of Fig. 1, with the 1-ohm resistor replaced by a known resis-
tance of R ohms. Currents I; and I, are those carried by the variable
conductances G, and Ga, respectively. The set of nodal equations is

[1 /R o} v,} _ 1] i [—:j!rj ﬂ (14)

0 04V, 0
Rearranging into the form of equation (13),
I,
[1051 0}12=1}_ (15)
-1 1.0 0JV,| 0
V.

From this example, the method of generating equation (13) should
become clear.

18 R l[z

Fig. 6 — Simple design problem.
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The second approach useful in dealing with variable elements in a
network is the introduction of another pathological element, the nora-
tor, shown in Fig. 7, also introduced by Tellegen.* The norator is a
two-terminal element with allowed pairs (v, 1), with v and < independ-
ent, and arbitrary. Thus, any voltage and current may appear across
its terminals simultaneously, which is the property that we desire of
variable elements. We do not wish to force any functional relation
between the voltage across and the current through variable ele-
ments. We wish only to observe constraints that may be imposed on
the v — 1 relations by the VFE’s and CFE’s. The norator allows the
network the extra degree of freedom taken away by the introduction
of nullators.

V. FORMULATION OF NETWORK EQUATIONS

Since the introduction of nullators and norators into a network will
generally introduce singularities into the corresponding equations, we
call the approach we are considering the method of singular im-
bedding. It has been demonstrated that the design problem can be
reduced to the appropriate imbedding of nullators, norators, and in-
dependent voltage and current sources, Let us now examine the effect
of such imbedding on the network equilibrium equations. Since a
nodal admittance formulation is used, it is important to determine
the effect of nullators and norators on the admittance matrix.

Independent voltage sources may be conveniently incorporated into
an admittance formulation, If a series impedanece exists with the
voltage source, application of Norton’s Theorem is sufficient. If no
series impedance exists, the introduction of positive and negative im-
pedances is necessary in transforming the voltage source to an inde-
pendent current source (see Fig, 8).

The effect of nullators and norators upon the admittance matrix
of a network has been considered by A. C. Davies.® Let us write the
nodal equations for the network with all nullators and norators re-
moved. The equations are of the form

[Y.lV] = L] (16)

Fig. 7— Schematic representation of norator.
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l . gn— WA A— . R
1,

I

Fig. 8 — Equivalent circuit for ideal voltage souree.

xl<

where

[Y,] is the admittance matrix of the network with nullators and
norators removed

V] is the vector of node voltages with respect to ground

I ] is the vector of currents injected into each node.

Suppose now that a nullator is connected between nodes 1 and j.
Since the nullator passes only zero current, the current law equations
at those nodes are not affected. However, since there is zero voltage
across the nullator, V; and V; are now constrained to be equal. Call
this new value V;;. Clearly, one degree of freedom has been removed
from the network response. In addition to the matrix equation (16),
one equation of the form

V.=V, 17)

is added for each nullator imbedded in the network. Thus, if k nulla-
tors are imbedded, & additional constraint equations are added.

Two viewpoints can be taken here. First, the original set of equa-
tions, equation (16), has been appended by a set of the form

[B]V] = 0] (18)
where

V] is the n-vector of node voltages.
[B] is a k X n matrix of —1, 0, 1 entries expressing the set of con-
straints of equation (17) for the k nullators.

The final set of equations becomes

[L]w- j | .(19)

A second approach to the problem was suggésted by Davies.® In
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the nodal equations below

Vi
|[7?/11 e Wittt U I;.‘
I .U.zl Yoi Ysj } . 15 (20)
1 N 'V,
Lynl ...yn[ ...ym,...y"ni .
VHJ

the addition of a nullator between nodes 7 and j makes V; = V; = V.
The ith and jth column of the Y matrix are both multiplied by Vi,
thus they may be added and the equations written as

v,
Yo oo e F i) o0 Ve
Yo (‘.Uz.' + yz;‘) Yon -Vt — Iq]. (21)

Lot ot ) = Yoo V'H |

The addition of k& independent nullators (no nullator loops) causes k
additions of columns of ¥ and reduces the dimension of V] by k. We
denote the reduced set of equations by

[Y:]m((n—k) V’]tn—kaxx = Ifs‘]nxx- (22)
In either interpretation, we observe that the resulting set of equa-
tions is no longer square. In the first interpretation, we are increasing
the dimensionality of the vector space that the column vectors must
span, without adding new basis vectors to span that space. In general,
the equations will be inconsistent. In the second interpretation, we are
keeping the dimension of the space fixed, but reducing the number of
vectors available to form a basis and the space may no longer be
spanned. Again inconsistencies will generally arise. In either interpre-
tation, the inconsistencies are to be expected since nullators (VFE’s
or CFE’s) have been introduced to constrain network variables.

Let us now examine the way in which variable elements (additional

degrees of freedom) remove these inconsistencies. Again two points of
view may be taken. One provides us with new basis vectors to span
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the space of possible injected current vectors Is], the second reduces
the dimensionality of the space of I] in order that the existing number
of basis vectors might again span the space.

Section III gives the essence of the first interpretation with the
important result, equation (13). Observe that imbedding variable
elements in a network provides an additional set of column veetors,
namely, those of [—C], that may be used as basis vectors in spanning
the space of possible I5]. Thus, if one has complete freedom in selecting
variable elements, a set of column vectors, the columns of [—C] can
always be found to assure that the space of all possible Is] will be
spanned, regardless of how the nullators reduce the space of the column
vector of the Y matrix. This concept, which involves growing new
elements to satisfy imposed constraints, will be the subject of future
study.

A second approach in handling the freedom introduced by variable
elements is to replace each variable element by a norator, as suggested
in Section ITI. The method of Davies may then be employed to analyze
the network containing norators.” Again assume that the admittance
matrix Y, of the network without nullators and norators is available.
Thus,

[Y,]V] = L. (23)
Now suppose that a norator is connected between nodes k and k, and
that the reference direction for the arbitrary norator current I, is

from % to k. The current-law equations for nodes i and k will be of
the form

Iap — I, = Z Y., (24)

fop + 1, = Z Yo, (25)

Since I, is arbitrary, and iz not needed to solve for the node volt-
ages, adding the two equations gives

T+ I = Z (Yi: + Yiow,. (26)

This corresponds to the addition of rows I and k of the nodal equa-
tions of the network without norators. Thus for a network containing
n nodes and = norators, only n — 1 — 7 independent equations can be
written. .

Observe in Fig. 9 that the effect of connecting the norator between
nodes h and k is to replace the nodal equations for nodes h and k
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Fig. 9— Effect of connecting norator between two nodes.

by a single current law equation for the ambit (broken line) sur-
rounding both nodes h and k. Thus any functional relation between
the current and voltage of branch j is removed, as is desired for a
variable element.

To summarize thus far, the following manipulations may be per-
formed on the network current law equations to deal with VFE's, CFE’s
and variable elements. To include network constraints, first imbed the
CFE’s and VFE’s. Write the ¥ matrix with nullators removed. Then
reduce the matrix by adding appropriate columns. This may be stated
compactly by a matrix transformation as®

Is] = [Yo][U.]V] (27)

where [U,] is a matrix obtained from the unit matrix by adding columns
corresponding to nodes between which nullators are connected. Since
the transformation [U,] is singular, not all components of V] are deter-
mined. The undetermined ones are found from the relation

[B]V] = o0]. (28)

To include variable elements, either
(?) Augment the Y matrix of the fixed portion of the network with
the node cutset matrix of the graph of the variable elements to get

¢! vl ] -1 (29)

or

(i7) Add the current law equation corresponding to nodes to which
a nullator is connected. This is compactly stated by a matrix transforma-
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tion as®

[U,]15] = [U][Y.]V] (30)

where [U,] is a matrix obtained from the unit matrix by adding rows
corresponding to nodes between which norators are connected. The
vector of currents through variable resistors is then formed by equation
(29).

VI. SOLVING THE NETWORK EQUATIONS

We now wish to solve the set of equations after imbedding CFE’s,
VFE’s, and variable elements. We assume equation (29) to be our
starting point. A similar formulation may be made using equation
(30) as the starting point. CFE’s and VFE’s are imbedded, variable
elements are specified, and nullators are removed to generate the set
of equations

I I
[-C. Y] v] = L. (31)
Addition of nullators to the network adds the set of equations
BV] = 0] (32)

and, from equation (27), the corresponding transformation [U,] on
the admittance matrix. Thus the final set of equations becomes

=0 Y.V, I,

; ¥
— =|=—| (33)
[o i B :IV] J

As seen in the previous section, the transformation [U,] (which adds
columns of Y;) is consistent with the set of equations [B]V] = 0. Thus
the second matrix equation in equation (33) will always have a solu-
tion, provided the first one does. It remains only to solve

[-C | Y,U.] TI,] = I]. (34)

in order to determine the proper element values. Let

1] _
V (r+n—k) X1 N x]'

By using the Gauss-Jordan method one can bring these equations

into the form
U Q] &] _ I_]
[0: 0l x.] " 1., (35)
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where

X,|X,] is a vector of node voltages and currents through variable
resistors,
[T] is the unit matrix,
[Q], Is,], Is.] are the resulting submatrices after transformation.
If Is;] = O (the equations are consistent), the first equation can be
solved for X,] in terms of X,].

X, = Is1] - [Q]X2] (36)

The case Is,] # 0 implies that there are no values of variable elements
consistent with the imposed constraints. For Is,] = 0], equation (36)
generates all solutions to the problem. Some network variables X,]
can be chosen arbitrarily and the remaining variables X,] determined.
At each setting of X,] the variable elements can be determined since
all node voltages and eurrents through variable elements are known.

Thus
for i=1,r (37)

where 71 and ¢2 are connection nodes of the 7th variable element. By
allowing the free variables X,] to take on a continuum of values, all
solutions to the problem are determined directly.

Returning to the example already discussed (Fig. b), let us apply
the method of singular imbedding. The ecircuit is redrawn in Fig. 10
with the introduction of a VFE to constrain the voltage between nodes
1 and 2 to be 0.1* volt. With the nullator removed, a set of nodal
equations is written in the form of equation (13)

I,
1 0{1/& 0 o0|r 1
~1 110 1 -1 B { w =1 |- (380)
0 010 =1 1fV, 0.1

Vs

The introduction of a nullator between nodes 1 and 3 results in the
addition of the corresponding columns and the equality Vi, = V3 =

*Since the nullator passes zero current, the series battery in the VFE model
may have a nonzero resistance and still maintain the proper terminal voltage.
Thus the introduction of positive and negative resistances are unnecessary here.
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Fig. 10 — Network after singular imbedding.

Vu}.ThUS,
FT10 1R 0O I 1
11 -1 L2 o1l (38b)
Pg
o0 1 —1/"m 0.1
Va

With R = 1 ohm for ease of visualization, elementary row operations
yield

10 oi ] b 0.9
o010 1| |=o09] (39)
i 14
00 1:—1 __“_J 0.1
V.
Thus,
T. 0.9 1
In =09 — V2 1| (40)
Vi 0.1 1

It is clear that V. can take on arbitrary values while maintaining the
constraints. We will demonstrate this for two particular values o
Vg. For Vz =0 o



202 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1960

L | 09

L |_09

Via| 0.1

v, 0

V=V, _1
Ro=Drtlag,
A
1

It is easily verified that these values, when substituting into the
cireuit of Fig. 1, result in V/ = V; — V, = 0.1 volt.
Similarly for V, = 0.6 volt

L] 03
L|_03
Via| 07
V.l 06

and R, = 13, R, = 2.
Again it is easily verified that V/ = V; — Vy = 0.1 volt. With this

simple example in mind, let us consider the solution of more com-
plicated networks by computer.

VII. COMPUTER SOLUTION

A program has been written to solve the design problem for resis-
tive networks. The program performs the following operations

(?) Accepts input of circuit description in conversational mode. The
cireuit may contain resistors (both fixed and variable), VFE’s CFE’s
batteries, independent current sources, and current controlled current
sources.

(#7) Generates C, Y¢, and Iy matrices for the network.

(#47) Reduces equations to triangular form by a Gaussian reduction
which pivots around largest elements in array.

(i) Those variables not in the basis after gaussian elimination are
passed to the right side and stepped through specified range. Resistance
values are printed for each setting of the free variables. Each set of
resistance values will satisfy the given constraints.

Four examples demonstrate the flexibility of the method. Suppose
in the ecircuit of Fig. 11 one wishes to choose Ry and R, to provide
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2V
12600 T Ra

AMAN——\WN,

SET Ig =5mMA

R,i 10000

Fig. 11 — Transistor design problem.

a collector current of 5 mA. A CFE of value 0.005 is placed in series
with the collector and the circuit of Fig. 12 is fed into the program as
in Table I. After the program sets up the equations and performs the
gaussian elimination, it prints, that the voltage at node 3 is free. It
can be arbitrarily chosen to generate sets of solutions.

This free voltage is then, at the user’s request, stepped from 7 volts
to 10 volts in 1 volt increments. Combinations of R, and R, which
provide a collector current of 5 mA are printed in Table I. To verify
these results the program pcanar? was used to determine the transistor
collector current for the fifth set of resistor values. As the table shows,
the collector current is 5 mA.

A second example involves simultaneously constraining I, = 5 mA
and VCE = 5 volts. As Tig, 13 shows, R,, R., and R, are variable.
The network with a VFE and CFE imbedded is shown in Fig. 14, and
the results given in Table II. Verification of the first set of resistance
values is given, Observe that I, = 5 mA and VCE = 5 volts.

T
1o H | =

®

1260 751 ‘ 1ok = @
200 i L_QE_J a

AAN—I

%R, T o ICI? =12V
Io 1 1

L
r

Fig. 12 — Network after transistor modelling and singular imbedding.
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TaABLE I—PRINTOUT OF THE SESSION TO SoLVE THE CircurT oF FiGure 11

TYPE NO. OF BRANCHES, NODES,CONTROLLED SOURCES,BATTERIES, CURRENT SODURCES
A=7 51 3 @
TYPE BRANCH RESISTANCES
B=1, 1. 1260, 200, 1,E3 1.E4 1.
TYPE FOR EACH BRANCH: INITIAL NODE,FINAL NODE,BATTERY NO.
c=1 51 4 3 1 1 52 523 121 321 1 a2
TYPE VALUES OF BATTERIES
D=@, 12, -.7
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO.
E=6 4
TYPE VALUES OF BETAS

OPTION COMMANDS=DESIGN R

TYPE NO. VAR. RESISTANCES, NO, VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS
1=2 @

TYPE BRANCH NO, OF VARIABLE RESISTANCES

=1 2

T;PE BRANCH CURRENTS BEING CONSTRAINED

M=6
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED
Nz .0085

THE FOLLOWING NODE VOLTAGES ARE FREE
3

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND MO, OF SETTINGS

=7. 1.

THE FREE VARIABLE:= 7,
RC 1)=1,1859722E+03
RC 2)=9,9908085E+82

THE FREE VARIABLE= 4,
RC 1)=1.1841104E+03
R¢ 2)=7,9900003E+@2

THE FREE VARIABLE= 9.
RC 1)=1.1831496E+03
RC 2)=5,99000000E+02

THE FREE VARIABLE= Ja.
RC 1)=1.1821898E+@3
R¢ 2)=3.9899998E+02

DESIGN COMMAND=KEEP
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET
=10.
OPTION COMMAND=TRAN ALL
VCE IC

TRANS #
| 4,9398502 4.9999999E-03

12v

R
1260 3

SET Ic=5MA

Ve E=5v
R, 5
2

Fig. 13 — Transistor design problem.
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Tig. 14 — Network after transistor modelling and singular imbedding.

A third example involves the rather complex three transistor circuit
illustrated in Fig. 15. The imbedding of VFE’s and CFE’s to con-
strain collector emitter voltages to 5 volts, and collector currents to
10 mA is shown.

Table ITI illustrates the results of a computer solution to the problem
by the method of singular imbedding. Observe that currents through
variable resistors 10 and 14 can be arbitrarily chosen and sets of resistors
R,, through R,. generated. Four such sets are presented in Table III.
Observe the results of an analysis indieating one such set properly
biases the network. Table IV presents the results of an optimization
program, based on pattern search,’ to bias the network, for which
forty-eight exploratory moves and 105 pattern moves were required.
Each exploratory move involves between eight and 16 circuit analyses.
Each pattern move involves an average of four analyses. Thus, approxi-
mately 1000 matrix inversions are required. Since each inversion involves
(n*)/3 operations, the number of operations to generate a single bias
network ~~243,000.

Singular imbedding increases the number of nodes from 9 to 15.
However, only one matrix inversion is required to generate a solution.
Thus the number of operations =n*/3 = 1125.

Singular imbedding increases the efficiency in finding a solution to
this problem by a factor of approximately 200. What is even more
important is the ease with which equivalent networks are generated.
Each equivalent network is generated by a matrix multiplieation of
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TarLE II—PRINTOUT OF THE SESSION T0 SoLvE THE Circurt oF Ficure 13

TY;E MO. OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES
Az7T 51 30

TYPE BRANCH RESISTAMNCES

Bzl. la 1. 1260, 200, 1.E4 |,

TYPE FOR EACH BRANCH: INITIAL NODE,FINAL HUDE BATTERY NO.

c=1 31 121 541 132 323 52

TYPE VnLUESqu BATTERIES

D=@. 12. =

TYPE FOR EACH CONTROLLED SOURCE: BRANCHK NO. AND CONTROLLING BRANCH NO,

5
TYPE VALUES OF BETAS
F=75,

OPTION COMMANDS=DESIGN R
TYPE NO. VAR, RESISTANCES,NO., VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS

1=3 1
TYPE BRGHCH NO. OF VARIABLE RESISTANCES

J=1
FOR EACH VOLTAGE CONSTRAINT, TYPE PLUS AND MINUS NODES
K=4 2
TYPE VALUE OF EACH VOLTAGE CONSTRAINT

L=5,
TYPE BRANCH CURRENTS BEING CONSTRAINED

M=6
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED
N=.905

THE FOLLOWING HODE VOLTAGES ARE FREE
3

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS
P=4, 2. 2

THE FREE VARIABLE= 4,

RC 1)=6,3601235E+82

R( 2)=6.49T7925@ E+02

RC 3)=T.4140005E+02

THE FREE VARIABLE=6.

RC 1)=1.2762789E+03

RC 2)=1.0453373E+83

RC 3)=3,4148901 E+02

DESIGN COMMAND=KEEP
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET
=4,
OPTION COMMANDS=TRAN ALL
VCE Ic

TRANS #
1 5.0000E+0@ 5.0081 E=-23

the vector of free variables, which is stepped through a specified
range, and the matrix of vectors not taken into the basis after tri-
angulation. In this case the matrix is 19 X 2 and the vector of free
variables is 2 X 1. Each multiplication involves 2 X 19 = 38 opera-
tions. This means that up to 14,000 equivalent networks can be gen-
erated with the same number of operations needed to give one solution
by optimization techniques.

The value of singular imbedding is apparent here. Only one equa-
tion need be solved, and from it, all solutions are generated.

As a fourth example, a network was designed for a specified z4
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CFE(0.01)

C—-45V

Fig. 15 — Three transistor network with VFE’s and CFE’s imbedded for desired
biasing.

and 2y, simultaneously. The circuit is given in Fig. 16. R1, B2, and Eg
are to be selected to give z;; = 24 and 2., = 14. After proper imbed-
ding of VFE's and CFE’s the network of Fig. 17 results. Table V
gives the results of a computer run to design the cireuit. The third
get, R, = K. = Ry = 2 is shown to give the desired z-parameters
through the ¥ — A transformation of Fig. 18.

VIII. RESISTOR CONSTRAINTS

In many design problems it is desirable to constrain the values that
the parameters take to lie within certain limits. For example, in
biasing a transistor network, although solutions in which some resis-
tors are negative are mathematically correet, in practice such net-
works are unacceptable.

If the designer has a good feeling for the circuit he is working
with, his choice of the free variables resulting from gaussian elimina-
tion with maximum pivoting will usually yield resistors with posi-
tive values. There are, however, instances involving multiple feed-
back paths where intuition cannou always be relied upon. In these
instances it is possible that the values given by the designer to the
free variables yield negative resistances. Furthermore, it may be
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TasLE III—PRINTOUT OF THE SESSION TO SoLvE THE CIRCUIT OF
Ficure 15
TKE FOLLDHI;G BRANCH CURRENTS ARE FREE
I
14

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO, OF SETTINGS
D=1.E-3 |.,E-3 1,E-2 ,2E-2 2

THE FREE VARIABLES ARE
1.00QE-@3 1.,008E=-22
R{18)=4,236666TE+A3

RC12)=3,TOPRABAE+U3
R(13)=4.0579244E+23
RC14)=4,16B54TTE+Q3
R(16)=3,3T724454E+03
R(17)=3.78110TCE+Q3
RCIB}=4,1917495E4@83

THE FREE VARIABLES ARE
2,000E-D3 l.0pRE-D2
RCIAY=2.11B3333E+03
RCI1)=1.1372T16E+@9
RC12)=3,9956586E+A3
R(13)=3.7284580E+03
R(1A)=4,16854TTE+Q3
RC16)=3,3T04454F+A3
RC17)=3,7811BTAE+D3
RCIB)=4,191T7495E+B3

THE FREE VARIABLES ARE
| .@RAE-D3 1.208E-B2
R(10)=4,236666 TE+03

R{12)=3.7PAB4AB4E+23
R(13)=4,9250360E+03
RC14)=3,47378STE+03
RC€16)=3,3TP4454E+@3
R(17)=3,78B110870E+83
RC18)=4,151T495E+23

THE FREE VARIABLES ARE
2.008E=-03 1.200E=-02
RC18>=2,1183333E+03
RCL1>=2,1183293E+03
R(12)=3.99565B6E+D3
R(13)=z4.4512615E+D03
R(14)=3,4T3TRSTE+03
RC16)=3,3704454E+03
RC(17)=3.78) 1070E+B3
R€18)=4.1917495E+23

DESIGN COMMAND=KEEP
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET

22.E=3 1.E-2
OPTION COMMANDS=TRAN ALL
VCE IC
TRANS #
| 5,8000 E+0@ 1.0000E=-02
2 5.0000E+20 1.08¢0E-D2
3 5.0000E+B0 9.9999E=-03

difficult to explore the space of the free variables looking for regions
where all the resistors are positive.

One possibility for finding positive resistor regions is to use an
optimization technique in which, considering the free variables as
adjustable parameters, the sum of the absolute magnitudes of the
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negative resistors is reduced to a minimum. If there exist solutions
with all resistors positive, the minimum (zero) hopefully would be
found automatically by the optimization routine.

This optimization is more efficient than solving the problem by
exploring a space in which all the variable resistors are parameters
to be adjusted.?

Although the method given has been tried with success, a superior
method having several advantages over the one proposed is explained
in Section IX. The method avoids some of the most important problems
associated with nonlinear programming.

Some of these problems are:

(7) The routine may get trapped in local minima.
(i) Depending on the shapes of the surfaces involved and on the
methods used the convergence towards the minimum may be very slow.

(##) If the optimization is with constraints the nonlinear constraints
are usually difficult to handle.
If it were possible to reduce the problem to a linear programming
problem, the following would have been gained:

(i) If the problem has a finite minimum it will be achieved in a

TasLE IV—PRINTOUT OF OPTIMIZATION PROGRAM

INITIAL BRANCH RESISTANCES

R(10)=8,5000E+84
RCI1)=0,5000E+84
R(12)=0,3080E+04
R(13):=8,3008E+84
R(14):=0.3020E+04
R(16)=8,3800E+04
R(17):=0,3002E+04
RCIB)=0.3008E+04

EXPLORATORY MOVES 48
PATTERN MOVES 1es
FINAL BRANCH RESISTANCES

R(10)=8,3730E+D4
RCI1)=0.4340E+24
R(12):=0.3732E+04
RC13)=8,43T77E+B4
R(14)=0,3795E+84
ROI6)=0,3372E+04
RCIT)=0.37B5E+D4
RC18)=0,415TE+B4

TRANSISTOR OPERATING POINTS

TRANS # VCE 1c
! 5.P0RE+00 1.0P0E-82
2 5.000E+20 1.P28E=-22
3 5.080E+28 1.988E-82
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R SET Z=2/23
M B =143

Fig. 16 — Z-parameter design problem.

finite number of steps. No local minima which are not also global
minima exist.
(%) Algorithms exist which converge to the minimum efficiently.
(#7) The linear constraints generally complicate the problem only
moderately.

In Section IX the problem of biasing transistor networks is reduced
to a linear programming problem.

IX. APPLIED LINEAR PROGRAMMING

Let us start by assuming a network in which the designer knows
the correct signs of the node voltages with respect to the datum and
the direction of the currents in the variable resistors. Generally the
former is an easy task since it only involves knowing the nodes with
the lowest potential. If this node is chosen as the datum, all the node
voltages will be positive. Knowing the correct direction of the cur-
rent through the variable resistors requires a better understanding of
the circuit operation. Furthermore, there may be solutions in which
the current through some resistors may flow in either direction. For
this reason this requirement will eventually be relaxed.

Linear programming requires the right side vector of equation (33)

Rj

—AM—

2/3 2/3

—\\N AN
D i e E

Fig. 17 — Network after singular imbedding
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TaBLE V—PRINTOUT OF THE SEsSsION TO SOLVE THE CircUIT OF FIGURE 16

TYPE NO. OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES

Az6 4@ 1 1

TYPE BRANCH RESISTANCES

Bzl, l. 1, 66666667 66666667 66666667

TYPE FOR EACH BRRNCH' INITIAL NODE,FINAL NODE,BATTERY NO.
]

c=12 1 14 241 231 3 a4l 31
TYPE UhLUES OF BATTERIES
D=@. 12,

TYPE FOR EACH CONTROLLED SOURCE:BRANCH NO, AND CONTROLLING BRANCH NO.
E=6 5

TY;E VALUES OF BETAS

F=75.

TYPE FOR EACH INDEPENDENT SOURCE: INITIAL NODE AND FINAL NODE

g=1 2
TYPE VALUE OF EACH INDEPENDENT CURRENT SOURCE
H=l.

OPTION COMMANDS=DESIGN R
TYPE NO. VAR. RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS

1=3 2
TYPE BRANGH N0, OF VARIABLE RESISTANCES
J=1 2 3
FOR EﬂCH VOLTAGE CONSTRAINT TYPE PLUS AND MINUS NODES
K=2 1 1
TYPE VRLUE OF EACH VOLTAGE CONSTRAINT
L=.66666667 433333333

THE FOLLOWING BRANCH CURRENTS ARE FREE

|
ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS
Oz~1, +33333333 3

THE FREE VARIABLE = -1.0000
RC 1)= D.666666TAE+DD
R( 2)==P.6666666TE+00
RC 3)=-0,666666BAE+00

THE FREE VARIABLE = =0.6667E+80
RC 1)= 0.10020000E+31
R( 2)=-0.2000000QE+01
R( 3)=2-0,19999995E+01

THE FRE VARIABLE = -0,3333E+00
RC 1)= 0.19999597E+AI
R( 2)= 0.20000002E+81
RC 3)= 0.20000013E+81

2 Z;|=:a/3
NV Z2,=1/3
2/3 2/3 i
o dA%Y VA 0 o Vs 0

(a) (b)

Fig. 18 — Verification of computer solution.
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to have positive entries. This may be achieved by multiplying by —1
all those rows in equation (33) which have a negative entry in the
right side vector and thus obtain the set of equations

H |H 1] f
——|-|=- (41)
0o lH, V] o

i
(—c

Y:U. f I
f i and -| from —
lo | B 0 0

by possibly multiplying some rows by —1.
To force all the branch voltages to be positive let us add the constraint

—[C]V] = 0] (42)

where [C] is the matrix appearing in equation (12).
Equation (41) and inequality (42) together with the condition

where

is obtained from

‘—f] > 0] (43)

can be looked upon as a linear programming problem in which it is
desired to find the value of a positive vector satisfying a set of linear
equalities and inequalities and which minimizes the linear funection
where

I
2= 'I—)'V:l (44)

,...,O]_

o

D =

—_

0,

Since the minimization of the constant zero is of no interest, all that
is required is to obtain the feasible solutions of the linear programming
problem.*

Once the feasible solutions are obtained, the fact that the solution
satisfies equation (41) guarantees that the eircuit is properly biased
while the positivity condition on the vectors .Iﬂf and —[C]V] guarantee
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that all the variable resistors are positive, since hoth the currents
and voltages across them are positive.

To obtain the feasible solutions phase I of the two phase simplex
method may be used.®

Phase I of the simplex method finds the basic positive solutions of the
system of equations

(H, H, 07,11 f
|

0 |H, | 0 iVJ=0 (45)
L 0| —-C|— UJ w OJ

where the vector w] (which is constrained to be positive) is a slack
vector and U is a unit matrix.

By denoting with A the matrix on the left of equation (45), with x
the column on the left, and with b the column on the right side, equa-
tion (45) may be written
Ax = b. (46)

Let the dimensions be: A, m X n;x,n X 1;b, m X 1. Let Aand [A | b]
have rank r. This implies equation (46) is compatible. (The case in
which this is not true is of no interest since in such ease no solution—
whether positive or not—exists.)

Phase I of the simplex method finds positive solutions of equation
(46) for r of the variables x;, 7 = 1, 2, =++ , r setting the rest of the
®p, j =7r+ 1, -+, nto zero.* Each one of this set is a basie feasible
solution. There may be several such sets for a given problem. The
totality of nonnegative solutions of equation (46) iz the convex hull
of the basic solutions. By extending the simplex algorithm so that
once a basic feasible solution is found the other basic feasible solu-
tions are also searched for, it is possible to obtain all basic feasible
solutions,

Suppose 2%, 2%, - -+ , 2" are basic feasible solutions, Then any vector
x satisfying
with = Na'+ M2 4 e+ x,,.r”l

Mo, s, A 20 J' (47)

MA+X+ -+ A=1
is also a feasible solution.

and

*In case no nonnegative solutions to equation (46) exist, the simplex algorithm
is able to detect it.
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If 2%, 22, --- , 2P is the set of all basic feasible solutions, then all the
solutions of equation (47) constitute the complete set of feasible solu-
tions.

X. RESISTORS WITH UPPER AND LOWER BOUNDS

In the previous discussion the appearance of nonnegative resistors
was precluded by adding inequality (42). Often it is desirable to im-
pose lower and upper hounds for the resistors because the technology
used to realize them requires it. For example, if tantalum thin film
resistors are used it is desirable to restrict them to lie between 10 and

10° ohms.
Let the kth variable resistor be connected from node ¢ to node j. The

value of Ry, is given by
V[' = V_,'-
I,
If it is desired to have this resistor lie within 10 and 10° ochms the
following conditions are imposed
V.‘ == V,'
I
V( - Vf
I,
which may be rewritten (recall I), is nonnegative)
V,— W — 10, = 0}_ (48)
Vi—V,—10°I, =0

If instead of equation (42) inequalities similar to equation (48)
are written for all variable resistors, the resulting circuits will have
all variable resistors within specified upper and lower hounds (except
for the possibility I; = 0, which implies an open eircuit, in which
case the resistor disappears altogether).

The problem of biasing of transistor networks with positive resis-
tors is equivalent to solving

B

0
(D, | —C] ﬂ > g] (49)

R, =

= 10, Te# 0

<10°, I,#0
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o -0 <]

1

where D, and D, are diagonal matrices whose diagonal elements contain
the minima and maxima for the variable resistors. By adding positive
slack vectors w, and w, , equation (49) is equivalent to

H, H, | o lo]1] £
o H,| 0 |0|V 0
— S (50)
D, —-C|—-U|0 |w, 0

D,|—C| 0 UJW2 0

where U is a unit matrix and the vector on the left is restricted to be
nonnegative.

XI. RELAXING SIGN CONDITIONS

So far it has been assumed that the direction of the current flow in
variable resistors is known beforehand. This condition may not hold
for some cases and hence it is desirable to relax it.

When a variable in a linear programming problem is not required
to be positive it is customary to write it as the difference of two posi-
tive quantities. Thus if I, and V; — V, = V are not required to be
positive one may write

Ik = Ik' == ]k"
Vi = Ty — Vin
'W'here Iy ,I;‘u y V:' s I’Yp: g 0

A current I, of variable sign may be restricted to have a magnitude no
less than I,; = 0 by imposing the pair of conditions*

Ik g I.,k or _Ik z Iot o (51)

Likewise a branch voltage V, of variable sign across a resistor may be

* The constraint set on the currents is not convex, therefore it is necessary to
solve the problem twice, once with each ineauality, and take the union of the
two solutions. If n variable resistors may have currents flowing in either direc-
tion, the solution will be the union of the solutions of 2" problems in which
all the combinations of the inequalities are used.
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restricted to have a magnitude no greater than V,, = 0 by imposing the
pair of conditions

Vi Vy and =V, = V,. (52)

If V, is the voltage across the kth resistor and I, its current, then in-
equalities (51) and (52) insure that the magnitude of the kth resistor
satisfies
L Va*

Rl = = (53)
The resistor K, may be negative or positive. However, if each variable
resistor is made of two resistors in series one of value V,./I,. and the
second to be determined by the computer subject to equation (53), the
series combination of the two resistors will never be negative. This
constitutes a technique for guaranteeing positive variable resistors
without previous knowledge of the directions of current flows.**

The method deseribed can also handle eireuits with variable resistors
whose values lie within upper and lower limits. If R, ,, and R,,,. are
the minimum and maximum values allowed for the kth variable resistor,
the fixed series resistor should be

Ry = Biwin + Va/Iak (54)
with V,./I . ehosen such that
Vil Loy = Brpor — B - (55)

The value of Ry, ,, may be zero. Thus, a resistor may disappear as a short
circuit. If instead of bounding the value of a resistance from above, the
value of an admittance is bounded, a dual method may be used to
guarantee positive resistors.
Instead of equations (51) and (52) the following restrictions are
imposed
I.= I, and —1I, Tor s (56)

VizVa or =V,=Va.t (57)

IA

* Both V. and 7., are variables in the linear program which will be determined
by the simplex algorithm. The ratio is constrained by a linear inequality o | R |
—Vae <0, where | Ry | is given.

*+ Another approach is to reverse the reference direction of the current and
voltage drop across each variable resistor and apply the methods of the previous
section. If n variable resistors may have currents flowing in either direction
it is neees=ary to consider 2" possibilities.

T See footnote to equation 51.
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These guarantee that

Ink
Vok

G| = (58)
where G, = 1/R, . G, may be positive or negative if each variable
resistor is made of two resistors in parallel, one of admittance I../V ..
and the second to be determined by the computer subject to equation
(58). However, the parallel combination of the resistors will never be
negative.

The dual method ean also handle circuits with variable resistors whose
admittance lies within upper and lower limits Gy,,,, and G,.,,, . The value
of G¢,.,, may be zero. Thus a resistor may disappear as an open cireuit.

XII. CHOOSING TOPOLOGY BY COMPUTER

As already pointed out, Phase I of the simplex method obtains the
basic feasible solutions of a set of linear equations. The set of equa-
tions may come from a set of equalities and inequalities to which
slack variables have been added. Usually the number of variables
(including slack variables) is greater than the number of equations
and the system is redundant. If » is the rank of the system and n is
the number of variables (including slack wvariables), at least n-r
variables are set to zero in obtaining a basic feasible solution. Some of
the variables set to zero may be node voltages or variable resistor
currents. If a node voltage is set to zero, the corresponding node is
grounded. If a variable resistor current is set to zero, the corre-
sponding resistor disappears as an open ecircuit. If a slack variable
is set to zero, the inequality constraints are met with equalities.

TFor example, for equation (50) if the kth entry of w, is zero, the
kth resistor acquires its minimum allowed value.

One way of viewing equation (50) is to consider the columns of
the matrix on the left as elements of a vector space and the entries
of the column multiplying the matrix as those positive coefficients
which synthesize the column on the right in the form of a linear com-
bination of the columns of the matrix. A final tableau of Phase I of
the simplex method will contain a number of independent unit col-
umns (with all entries zero except one) equal to the rank of the mat-
rix on the left side of equation (50). The unit columns are obtained
by the special gaussian reduction provided by the simplex algorithm.
Each column corresponds to a variable in the column multiplying the
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matrix of equation (50). Those variables whose corresponding col-
umns are not unit columns are get to zero.

If a set of columns corresponding to the currents through a set of
variable resistors are linearly dependent, one or more of the currents
will be set to zero. This implies the disappearance of a resistor as an
open circuit. The choice of which resistors disappear is automatically
determined with the aid of the simplex algorithm, so that the non-
zero currents acquire positive values (if such a choice exists). If two
columns of the matrix of equation (50), corresponding to currents
through variable resistors, are linearly dependent it means that Kirch-
hoff’s voltage and current law may be satisfied with one of the cur-
rents zero, making one of the resistors unnecessary.

The above argument provides a method for letting a computer pro-
gram choose the topology and resistor values of a de metwork in
which certain voltages and currents are imposed by CFE’s and VFE’s,
One connects an excess of resistors between different nodes (inelud-
ing additional internal nodes if desired). By using a linear program-
ming formulation some node voltages and variable resistor eurrents
are set to zero by the computer program, thus determining a set of
“linearly independent positive resistors” that satisfy all the circuit
equations.

XIII. EXAMPLES

Consider the circuit of Fig. 19(a). The equivalent circuit is shown
in Fig. 19(b) with a VFE and CFE in place. As indicated on Fig.
19(b) it is desired to impose on the transistor a collector current of
5 mA and a collector-emitter voltage of 5 volts. The resistors marked
Ry, R and Rj are variable.

The nodal equations for the circuit after the effect of the nullators
introduced by the VFE’s and CFE’s are taken into consideration
are, in matrix form

f—1. 1. 0. 0.005 —0.005 0. -1 X 107
0. 0. 1. —0.38 0.3811 —0.0011 0.
i 0. 0. 0. 0. 0. 0.00333 0
: 1. 0. 0. —1.X 107 0. 0. 1
0. 0. 0. 0. —0.001  0.001 0.
L 0. 0. 0. 037 —0.3751  0.0001 0. |
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= = =G =®
(a) circuIT (b) moDEL

F;ligl. 19 — Circuit biased with constrained singular imbedding; (a) circuit, (b)
model.

Lol 00035
L —0.27
L 0.035
AVl =1 19 A (59a)
Vs 0.005 |
Vil | 02675
A

By multiplying the second row by —1, the entry —0.27 in the right
side vector is made positive. (As indicated above, linear program-
ming assumes the right side vector is nonnegative). Notice that since
the matrix in equation (59a) is 6 X 7, we therefore generally expect
a one parameter infinity of solutions. If the system of equations were
solved using the simplex method (with arbitrary cost coefficients),
solutions in which all the variables acquire non-negative values may
be obtained. Resistors R. and Rj, which are grounded, will auto-
matically be positive. However the voltage differences across un-
grounded resistors may turn out to be negative, yielding negative re-
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sistances. To assure a non-negative voltage difference across R, the
following additional constraint will be imposed

Va—Vaz0
which may also be written*
V.— Vs=0. (59b)
There are two basic feasible solutions to this problem:
1,1 5788 1 5.9966425 X 107° |
I, 5.78794 0.
I; 5.060073 X 107° 5.060073 X 107°
V,|= 6.212 , 6.212 . (60)
Vs 5.5 5.5
v, 10.5 10.5
Vsl 6.212 | 11.99994 i

The first basic solution yields the following set of resistors

V:—V, 6212 — 6.212

Bo=""7"= 57RS O chme
V. 6212 _
Re= 38 = s rgo1 = 1.073266 ohms (61)
.
g, T pud ~ 1086.941 ohms.

1,  5.060054 X 10°°
R, is a short circuit.
The second basie solution yields the set

R, = 97008.514, R, = o, R, = 1086.941.

R, is an open circuit. Notice also that Rj is the same for both solu-
tions. This is expected since the voltage of node 3 is virtually fixed
by the requirements.

The totality of the solutions with non-negative voltage differences
across the variable resistors may be written, according to equation (47)
z=a'4+ (1 =N
where x' and 2® are the basic feasible solutions of equation (60), and

0=x=1
* When the right side of an inequality is zero, it is preferable to write it as

o = inequality because the corresponding slack variable may be used as an
artificinl variable with savings on the size of the matrix to be manipulated.
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Choosing N = 3 yields
| 2.89402
2.80397
5.060073 X 107
r = 6.212
5.5
10.5
| 9.10597

which yields the set of resistors

R, = 0.997906, R, = 2.146532, R, = 1086941.

311

A continuous set of equivalent circuits, which achieve the require-
ments exactly and which have positive resistances, is obtained by

varying A between 0 to 1.

Suppose now that further considerations require that R, lie be-

tween 1000 and 2000 ohms. By replacing (59b) by

Vo=V, = 1000 and
1,

which may be written

Va = Vz
I,

1A

2000

100071, — V;+V.=0
—20001, +V,—V.=0

the resistor R, is forced to remain between 1000 and 2000 ohms,

(62)

When the new problem is solved the basic feasible solutions are

5.782218 X 1077 2.892554 X 1077

5.722218 x 107° 2.832554 X 107°

5.060073 X 107 5.060073 X 107
' = 6.212 , = 6.212

5.5 5.5

10.5 10.5

11.99422 ] 11.99711 ]
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The basic feasible solutions yield the following sets of resistors

2' : R, = 1000., R, = 1085.593, R, = 1086.941
2’ 1 R, = 2000., R, = 2193.074, R, = 1086.941.

Notice that R, acquired its allowable extreme values in each basie
feasible solution.

Other sets of resistances may be obtained by convex combinations
of the two basic feasible solutions.

As an example in which the topology of a circuit is determined by
the computer, consider the circuit of Fig. 16 in which R, Rs, and R,
are to be selected to give z;1 = 24 and z,; = V5. The example was
previously solved without linear programming techniques. Several
solutions appear in Table V. By maximizing the negatives of the cur-
rents in the resistors, those currents which may be set to zero by tak-
ing them out of the basis for a basic feasible solution will be con-
verted into open circuits. After the effect of the nullators introduced
by the VFE's is accounted for, the matrix corresponding to the
cireuit of Fig. 16 is 5 X 6. We therefore expect a one parameter in-
finity of solutions and two basic feasible solutions which are

] 00 ) 0.28174743

Ts 5.9652404 X 107 4.5937138 X 107°
oo D) _ 5965238 X 10 = P 0.0

V.|  44.096881 43.602828

Vs 0.3333333 0.33639577

V.l  0.3333333 3 0.3333333

Notice that V, remains constant for both basic feasible solutions. This
is expected since a VFE is connected from node 4 to node 1 (datum).
The resistances corresponding to the basic feasible solutions are

' 1R, = R, = 55.879273, R; = 7336.429
a* 1R, = 1544759, R, = 72.5629, By = o,

In both basic feasible solutions one of the resistances disappeared as
an open circuit. This indicates that given K4, Rs and Rg with the
values indicated in Fig. 16 the circuit is achievable with two topologies,
each containing 5 resistors.

Let us now make Rg a variable resistor. The nodal matrix after the
elimination of the nullators is now 5 x 7. Thus we expect a two
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parameter infinity of solutions and at least 3 basic feasible solutions.
The following sets of resistors correspond to basic feasible solutions

() R, =, Ry,=, R,=133333, R,=0.16666667
(i) R, = o, R,=0.333333, R, = 04444456, R, = «
(iii) R, = 0.88888808, R, = 1.333333, R, =, Ry= o

(iv) R, = 1.3333336, R, = =, Ry = o, R, = 0.66666651.

These sets provide four different topologies with which given two
of the resistors (R4 and R;) a resistive network having 21, = 24, 2
= 14 may be realized.

The example illustrates how using the methods of this paper can
solve the problem of realizing portions of a resistive matrix with cer-
tain elements prespecified. The prespecified elements need not be
resistors but may also include controlled sources, gyrators, ideal trans-
formers, and so on.

The methods discussed have been implemented on a time-shared

TasLeE VI—PRINTOUT OF THE SESSION To SoLvE THE CIRCUIT OF
Ficure 19

TY;EsN?°5°5 BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES
A=

TYPE BRANCH RESISTANCES

Bzls 1o 1. 200, 1.EA 3@0, |,

TYPE FOR EACH BR&NCHI INITlnL HODE, FINAL HODE,BATTERY NO.

€=5 2 1 211 [ 232 431 143 153

TYPE VALUES OF BﬂTTERIES

D=0, =.7 12

TYPE FOR EﬂCH CONTROLLED SOURCE: BRANCH NO, AND CONTROLLING BRANCH NO.

E=6
TYPE VALUES OF BETAS

=75.

OPTION COMMANDS=DESIGN CKT
TYPE NO VARIABLE RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS

TYPE BHANCH ND, OF VARIABLE RESISTANCES

TY E PLUS AND MINUS NODES FOR EACH VFE
K=4 3
TYPE VALUE OF EACH VFE

L=5

TYPE BRANCH CURRENT FOR EACH CFE
M=35

TYPE VALUE OF EACH CFE

N=.085

TYPE COST COEFFICIENTS

0=l lo 1o 1o la 1. 1.

TYPE MINIMA OF UAR[ABLE RESISTANCES
P=z1020. 0, 0.

TYPE MAXIMA FOR EACH VARIABLE RESISTANCE
Q=2200. 1.E8 1.E8

RC 1)= 9.9999995E+02
RC 2)= 1,0855930E+03
RC 3)= 1.0B6949BE+DS
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computer system. The program is conversational. A portion of a ses-
sion in which a basie solution corresponding to the circuit of Fig. 19
with R, constrained betwen 1000 and 2000 ohms appears in Table VI.

XIV. CONCLUSIONS

The method of singular imbedding has been shown to be efficient for
solving the following problem: Given a cireuit with a prespecified
topology, some of whose elements are prespecified, find the values of
the unspecified elements which will yield desired node-pair voltages
or branch currents. The unspecified element values may be restricted
to lie within given upper and lower bounds.

By letting the upper and lower bounds become infinite and zero,
the problem of finding the topology for the circuit may be also solved.

The method has been implemented on a time-shared computer,
and several examples, including some practical transistor circuits, are
given.

The usual approaches to the problems of this paper have been itera-
tive analysis-optimization schemes. Singular imbedding requires, for
a three transistor amplifier, three orders of magnitude less computa-
tion time. This makes the method appealing for time-shared applica-
tions.

Two new singular network elements, the voltage forcing element
and the current foreing element, constrain node-pair voltages and
branch eurrents without otherwise affecting the circuit. Elements of
unspecified value are modeled by branches carrying unknown ecur-
rents.

With the aid of these elements, the problem of design is reduced to
one of analyzing a cireuit containing unknown current sources and
nullators. If there are more free elements than requirements, the solu-
tion space may be a linear manifold. By allowing the free circuit
variables to take on a set of discrete values, sets of exact solutions
to the design problem may be generated economically.

When the unspecified elements are required to lie within upper and
lower bounds, the problem is one of analysis with linear inequality
constraints. This may be solved efficiently using linear programming
techniques.

Among the practical problems solved by singular imbedding are
biasing a direct coupled transistor amplifier, designing midband gain
and driving point impedance, synthesizing networks for several given
admittance parameters, and determining circuit topology.

Areas being investigated include using singular imbedding in the
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synthesis of resistance networks (the synthesis of a single eolumn of
a specified resistance matrix has been illustrated). Synthesis of an
entire resistance matrix results from the intersection in resistance
space of the solution spaces for each column of the matrix. Similarly,
by considering the intersection of solutions spaces for hoth a small
signal design and a biasing design, the method may be extended to
designing transistor eircuits for desired small signal design and bias
points simultaneously.

Although only fixed value CFE’s and VFE’s were used in this
paper, CFE’s and VFE’s which may take any value within a given
range may also be used. For example, a branch current may be forced
to be greater than 1 mA and less than 10 mA. These elements are also
useful in insuring that models for devices stay within their valid
limits. For example, a transistor ean be constrained to remain in the
active region, for which the linear model used is valid.

For simplicity, only the case of linear d¢ networks has been il-
lustrated in this paper. However, the method has usefulness in ac
design, combined ac and dc design, and non-linear design. These topies
will be covered elsewhere.
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