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This paper outlines a proposal for a miniature form of laser beam
circuitry. Index of refraction changes of the order of 107* or 10™° in a
substrate such as glass allow guided laser beams of width near 10 microns.
Photolithographic techniques may permit simullaneous construction of
complex: circutt patterns. This paper also indicates possible miniature forms
for a laser, modulalor, and hybrids. If realized, this new art would facilitate
isolating the laser circuit assembly from thermal, mechanical, and acoustic
ambient changes through small overall size; economy should ultimately
resull.

I. INTRODUCTION

Laboratory work and experimental repeater work at laser wave-
lengths (0.4 to 10 + um) has been carried out by interconnecting
the oscillators, modulators, detectors, and so on, using a form of
extremely short-range radio. A freely propagating beam has been
reflected around corners, occasionally refocused with lenses to avoid
energy loss resulting from beam spreading, and often sheltered by
tubular enclosures from refractive distortions resulting from ther-
mal gradients in the ambient air. Typical separations between com-
ponents range from a few centimeters to a foot; aggregations of ap-
paratus in a single-channel experimental laser repeater are measured
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in square feet. The resulting apparatus is sensitive to ambient temper-
ature gradients, to absolute temperature changes, to airborne acousti-
cal effects, and to mechanical vibrations of the separately mounted
parts. All of these effects are understood and are susceptible to ap-
propriate engineering design; but one naturally looks for alternatives.

Looking ahead, one sees the possibility of guiding laser beams on
miniature transmission lines, analogous to the hollow rectangular
waveguide or coaxial cable used extensively in lower frequency re-
peaters. Accompanying papers report contributions leading toward
the new form of laser circuitry.’-® This paper gives a general view
of the proposal and indicates specific component possibilities.

II. LASER BEAM GUIDANCE

We visualize a dielectric waveguide wherein a region having an index
of refraction 7, is surrounded by a region of index n,, as in Fig. 1a.
Then a two-dimensional analysis shows that the energy in the lowest-
order guided wave is confined almost entirely to the n. region if

n, = na(l — A), (1)
where
~3 (&)
a=7(0 )
» = free space wavelength
a = half-width of n, region, (A\/an,) < 1.

Table I, caleculated from equations (1) and (2) for A = 0.6328 um,
shows that only a very small change in index An, is needed to provide
the desired guidance. Some higher order modes are above cutoff using
these parameters; more exact theory can be used to calculate the
smaller guide width which restricts the guidance to a single mode at

(@) (b)

Fig. 1 — Waveguide cross sections: (a) rectangular shape, index na > i, (b)
round shape.
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TaBrLE I—VALUES oF A FOR VARIOUS
Opricar, BEam WipTHS

Optical Beam Width
2a A

1 mm 108
0.1 mm 10—
0.01 mm 102

the expense of having a larger field component at the n, to n, interface
where dimensional irregularities may occur.*™* Values of A larger than
tabulated for a particular guide width 2a do not appreciably change
the field distribution for the lowest order mode in the n, region but
would allow more propagating modes.

It is not important that there be a sharp step in index as in the na to
n, transition of Fig. la. Alternatively, the index can taper smoothly
from a maximum at the waveguide’s center to a lower value at radius
r according to*

n = nyfl — ¢(r/a)’] (3)
with
2
g - 0.16(’—‘)
a.
2a = laser beam width, provided a >> A. (4)

The exponent p can have any even positive value; the lowest order mode
field always has an approximately cosinusoidal shape in the region
0 < r < a with about 1/10 peak value at » =2 a and with approximately
exponentially decaying magnitude for » > a.

The square law index variation, given by p = 2 in equation (3),
has the well-known property that phase constant differences for the
various propagating modes are independent of frequency.®? The square
law medium is free of delay distortion resulting from mode conversion
and is unique in that property.*#

We can anticipate guiding beams around relatively sharp bends
as summarized in Table II. The A’s associated with these beam widths
may be obtained from equation (2) or Table I. By using a guide which
confines the beam to a 5 to 10,m width (implies a A of 0.04 to 0.01)
the bend radius can be in the 1.8 to 14.5 mm (70 to 570 mils) region,
which could facilitate very small circuitry.

* A somewhat more accurate expression is given as equation (59) in Ref. 5.
This permits a series of terms in (r/a)" to represent the index variation.
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TasLE II—EsTiMmaTED BENDING RADIUS

Laser Beam Estimated Acceptable
Width Bending Radius in m*
2a in mm (A = 0.633 pm)
1 14,500
0.1 14.5
0.01 0.0145
0.005 0.0018

* This estimate is obtained using equation (33) of Ref. 9, and includes an allowance
of 0.25 dB maximum loss resulting from a bend of any angle.

IIT. FABRICATION OF SMALL WAVEGUIDES

Tiny laser guides can be fabricated in the form of glass fibers.
Previous work on fiber-optics for image transmission or incoherent
light sensing has provided a considerable body of experience on which
to build, not all of which is applicable. So-called “clad” fibers have
two discrete regions of index as in Fig. 1a. The n, region (which car-
ries little light) must be as thin as possible in image-transmitting fibers
to minimize the “dead” region in the output image. For modulated laser
beam transmission the eladding must be much thicker and the “core”
(ng of Fig. 1a) much smaller to yield well-isolated single mode trans-
mission.

Whereas glass fibers may be used to connect repeater components
and certainly are convenient as flexible connections, we can use an-
other form of dielectric waveguide for miniature laser circuitry. Fig. 2

Fig. 2 — Planar waveguide formed using photolithographic techniques.
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shows a channel of index n. surrounded by a region of index n,, which
would serve as a dielectric waveguide of the type discussed in con-
nection with Fig. 1. This might be created in glass using a series of
steps as follows. A mask could be used to expose selectively a light-
sensitive photo-resist previously placed on a sheet of glass, followed
by washing and selective deposition (if needed) of a more durable
material for masking purposes. Then a diffusion, bombardment, or
ionie replacement process could be used to change the index of refrac-
tion of the glass, thereby creating the n, channel imbedded in the n,
substrate. Finally the top layer of n; material could be sputtered on
the entire top surface.

Using photolithographic techniques which are currently evolving
for low frequeney integrated circuit applications, channel widths in
the 2 to 5 um range may be achievable and dimensions on the order of
10 pm are readily held. Complicated masking patterns may in time be
made, leading to the possibility of simultaneously making complicated
laser circuits using combinations of elements such as those deseribed in
the following paragraphs.*

This deseription is intended to be a broad indication of possible
feasibility rather than a blueprint. However, relevant contributions
are appearing. G. M. C. Fisher and A. D. Pearson have reported
processes which reduce or increase the index of refraction of glass
by as much as 0.7 per cent.® F. K. Reinhart, D. F. Nelson, and
J. McKenna have reported the existence of an index increase in
gallium phosphide junctions which is effective as a light guide at
zero bias.!t"1® QOptical waveguides formed by proton irradiation have
been reported.** Further contributions may be anticipated.*®

Some relevant work on two-dimensional light guides has been re-
ported.t*-20 In this work one transverse dimension of the guided wave
was in the 10 to 100 pwm region; but the other transverse dimension
was orders of magnitude larger. We seek waveguides tightly guided
in both transverse dimensions in order to make possible the compo-
nents proposed in Section IV.

1V. INTEGRATED-CIRCUIT LASER
The transmission line of Fig. 2 becomes a resonator when mirrors

are placed at the ends, or when a series of partially reflecting trans-

* Complicated masking patterns are feasible now where the area involved is
small; depth-of-focus problems may require advances in masking to produce the
large area patterns we need.
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verse lines are spaced at an odd quarter-wave multiple apart to rein-
force reflections at the resonator’s peak frequency (Fig. 3). The partial
reflectors are analogous to layered dielectric mirrors and are large
enough in the transverse plane to intercept most of the guided-wave
energy; they may be increased index regions placed in the sheet as
noted in Section III, empty grooves, or minute grooves coated with
metal.

By adding a small concentration of neodymium ions and by pro-
viding a pump, the resonant cavity becomes a laser. Fig 4 shows, in
cross section, two possible ways the pump might be applied. In Fig 4a
the active material (such as neodymium) can be applied only in the
vicinity of the ny waveguide channel (by sputtering on the surface,
beneath the SnO, film, for example) or might be distributed through-
out the substrate. The spherical reflector confines the pump energy
near the waveguide where the laser field is a maximum. The electro-
luminescent material (for example, doped zinc sulphide) is selected to
provide radiation at a pumping line for the active lasing materials.

In Fig. 4b, ac (kilohertz rate) excitation of the electroluminescent
pumping material is implied; the electroluminescent material is dis-
tributed throughout the glass substrate. Relatively low power laser
sources might be produced in similar structures, the order of 0.1 watt
being adequate for many communication applications.

nj-——

Ng ———— .

o R [

Fig. 3 — Resonator using planar waveguide.
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Tig. 4 — Cross sections of possible lasers in planar waveguide: (a) external
pump (b) pump ions imbedded in laser circuit.

V. MODULATOR

Figure 5 shows a possible phase modulator for a guided laser beam.
The electrooptic material might be the substrate or might be applied
as a thin surface layer adjacent to the guiding index region n». Using
photolithographic techniques, it should be possible to use spacing be-
tween the metallic electrodes of about 25 ym which would yield large
modulating fields with only a few volts of modulator drive.
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Fig. 5— Phase modulator,
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VI. HYBRID

Figure 6 shows the directional coupler form of hybrid. The ex-
ponentially decaying fields, propagating in the n, region of Fig. 2,
overlap for the two parallel guides of Fig. 6, providing continuous
distributed coupling. Reference 1 gives approximate expressions for
calculating the guide spacing and needed coupling length.

Figure 7 shows the partially reflecting mirror form of hybrid; the
reflecting line may be a narrow groove coated with a metal film, an
empty groove, or a high index dielectric region created by a masking
and diffusion or ionic replacement process. A single empty groove, an
odd quarter of a wavelength thick, in the direction of propagation
would give a coupling loss of about 9 dB.

VII. FREQUENCY-SELECTIVE FILTERS

Using techniques familiar at lower frequencies, hybrids and resonant
circuits can be combined to form filters, a needed ecomponent in fre-
quency-division multiplex systems. Figure 8 shows such an arrange-
ment, where band pass cavities C; and C» are used to separate f, from
f» and f,; hybrids divide and recombine the energy to form a constant

Tig. 6 — Directional coupler type hybrid.
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Fig. 7— Junction type hybrid.
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resistance filter. Alternatively, a multiple-line grating could be used
in place of the resonant cavities as the reflecting element to reflect f,
only, and the output positions of f, and f,, f. would interchange.

In filters of this kind the intrinsic loss of the substrate is of course
important. Good quality glasses have bulk losses as low as 1 dB per m,
which corresponds to an intrinsic @ of about 30 million; this would
allow filters with band widths of a few hundred megacycles in the
visible region; therefore, intrinsic substrate loss should not be too
limiting.

VIII. CONCLUSIONS

This paper outlines a prospect for laser circuitry and devices which,
if realized, would have many attractive features. Photolithographic
processes would simplify reproducing complicated circuits, once the
original was developed. Small size would facilitate isolating the com-
pleted circuit assembly from thermal, mechanical, and acoustic am-
bient changes. For communication purposes, low laser power levels
are adequate so that the heat to be dissipated hopefully will not be
large. In the very small laser beam cross sections, nonlinear effects
needed for modulation and frequency changing should be achievable
with only a few volts of drive.

Finally, a word of caution is needed. Work is just beginning in the
directions indicated, and we have identified goals rather than accom-
plishments. We recognize these are difficult goals; but we believe they
are worth the serious effort required to achieve them.
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Dielectric Rectangular Waveguide and
Directional Coupler for Integrated Optics

By E. A. J. MARCATILI
(Manuscript received March 3, 1969)

We study the transmission properties of a guide consisting of a dielectric
rod with reclangular cross section, surrounded by several dielectrics of
smaller refractive indices. This guide is suilable for integrated optical
cireuilry because of ils size, single-mode operation, mechanical stability,
simplicity, and precise construction.

After making some simplifying assumptions, we solve Mazwell's
equations in closed form and find, that, because of total internal reflection,
the guide supports two types of hybrid modes which are essentially of the
TEM kind polarized at right angles. Their atlenuations are comparable to
that of a plane wave traveling in the material of which the rod is made.

If the refractive indexes are chosen properly, the guide can support only
the fundamental modes of each family with any aspect ratio of the guide
cross section. By adding thin lossy layers, the guide presents higher loss to
one of those modes. As an alternative, the guide can be made to support only
one of the modes if part of the surrounding dielectrics 7s made a low 1m-
pedance medium.

Finally, we determine the coupling between parallel guiding rods of
slightly different sizes and dielectrics; at wavelengths around one micron,
8-dB directional couplers, a few hundred microns long, can be achieved with
separations of the guides about the same as their widths (a few microns).

I. INTRODUCTION

Proposals have been made for dielectric waveguides capable of
guiding beams in integrated optical circuits very much as waveguides
and coaxials are used for microwave circuitry.*~® Figure 1 shows the
basiec geometries for these waveguides. The guide is a dielectric rod of
refractive index n immersed in another dielectric of slightly smaller
refractive index n(1 — A); both are in contact with a third dielectric
which may be air (Fig. 1a) or a dielectric of refractive index n(1 — A),

2071
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AIR

Fig. 1— Dielectric waveguides for integrated optical circuitry.

(Fig. 1b). These geometries are attractive not only because of sim-
plicity, precision of construction, and mechanical stability, but also
because by choosing A small enough, single-mode operation can be
achieved with transverse dimensions of the guide large compared with
the free space wavelengths, thus relaxing the tolerance requirements.

Even though in a real guide the cross section of the guiding rod is
not exactly rectangular and the boundaries between dielectries are not
sharply defined, as in Fig. 1, it is worth finding the characteristics of
the modes in the idealized structure and the requirements to make it a
single-mode waveguide.

Furthermore, directional couplers made by bringing two of those
guides close together, Fig. 2, may become important circuit compo-
nents.’? In this paper we study the transmission through such a
coupler; the modes in a single guide result as a particular case, when
the separation between the two guides is so large that the coupling is
negligible. Through use of a perturbation technique, we also find the
coupler properties when the two guides are slightly different.

0
|

Fig. 2 — Directional couplers.



DIELECTRIC WAVEGUIDE 2073

The guiding properties of the rectangular cross section guide im-
mersed in a single dielectric are compared with those derived through
computer calculations by Goell.* Similarly, the coupling properties of
two guides of square cross section immersed in a single dielectric are
compared with those of two guides of eircular eross section derived by
Jones and by Bracey and others.»® In both comparisons agreement is
quite good.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

For analysis, we redraw in Fig. 3 the cross section of the coupler
subdivided in many areas. Nine of the areas have refractive indexes
ny to ny; we do not specify the refractive indexes in the six shaded
areas. The reasons for these choices will become obvious.

A rigorous solution to this boundary value problem requires a com-
puter;*? nevertheless, it is possible to introduce a drastic simplification
which enables one to get a closed form solution. This simplification
arises from observing that, for well-guided modes, the field decays
exponentially in regions 2, 3, 4, and 5; therefore, most of the power
travels in regions 1, a small part travels in regions 2, 3, 4, and 5, and
even less travels in the six shaded areas. Consequently, only a small
error should be introduced into the caleulation of fields in regions 1
if one does not properly match the fields along the edges of the shaded
areas.

The matehing made only along the four sides of regions 1 can be
achieved assuming simple field distribution. Thus the field components
in regions 1 vary sinusoidally in the x and y direction; those in 2 and 4
vary sinusoidally along z and exponentially along y; and those in
regions 3 and 5 vary sinusoidally along y and exponentially along z.
The propagation constants k;,, k.2, and k.4 along z in media 1, 2, and

| Y
] b 4 v
1 % v
7 N2 ¢ fij Nz g
ieitsil 4PAPI000 V0PI ULLLILLLLLL,
Na n, Zo—o = r Ny |b
I PITHITIIIIIII ! {777/77,07/05:
. N4 {g ’j Na i},‘/ﬁ
/ v Y ;
Ae—a—>ff—— c—— FHe—a—»f

Fig. 3 — Coupler cross section subdivided for analysis.
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4 are identical and independent of y. Similarly, the propagation con-
stants ky1, k,s, and ks along y in the regions 1, 3, and 5 are also
identical and independent of z.

In the appendix we calculate these propagation constants and find,
as expected, that all the modes are hybrid and that guidance occurs
because of total internal reflection. Nevertheless, because of another
approximation which consists of choosing the refractive indexes n, ,
N3 , N4 , and n; slightly smaller than =, , total internal reflection occurs
only when the plane wavelets that make a mode impinge on the inter-
faces at grazing angles.* Consequently, the largest field components are
perpendicular to the axis of propagation; the modes are essentially of the
TEM kind and can be grouped in two families, £}, and Ej,. The main field
components of the members of the first family are E, and H, , while those
of the second are E, and H. . The subindex » and ¢ indicate the number
of extrema of the electric or magnetic field in the z and y directions,
respectively. Naturally, E, and EY, are the fundamental modes; we
concentrate on them as we discuss the transmission properties of
different structures.

III. GUIDE IMMERSED IN SEVERAL DIELECTRICS

The guide immersed in several dielectrics (Fig. 4a) is derived from
Fig. 3 by choosing -

c= o, (1)

It supports a discrete number of guided modes which we group in two
families EZ, and E¥, plus a continuum of unguided modes.*"*

3.1 The E:, Modes

The main transverse field components of the E“, modes are E, and H., .
They are depicted in solid and broken lines, respectively, in Fig. 4a for
the fundamental mode E}, . Within the guiding rod each component
varies sinusoidally both along = and along y. Outside the guide each
component decays exponentially. Such functional dependence is given
in equation (38) and depicted in Fig. 4b. We assume 1, 7= na 3= 1y 7= 05 ;
consequently the field distributions are not symmetric with respect to
the planes z = 0 and y = 0. In Fig. 5a we assume n, = n, and ny = n; |
the E:, modes depicted are either symmetric or antisymmetric with
respect to the same planes. These modes look similar to those in laser

* This approximation is not very demanding. Even when n, is 50 percent larger
than na, na, 74, and ns, the results are valid.
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Tig. 4 — Guide immersed in different dielectrics: (a) cross section and (b) field
distribution of the fundamental mode En*.

cavities with rectangular flat mirrors, but our nomenclature is different.’
The subindexes p and g indicate the number of extrema each component
has within the guide.

Now we describe these modes quantitatively by reproducing the
propagation constants found for each medium in Section A.1 of the
appendix. Let us eall k, the axial propagation constant and k., and k,,
the transverse propagation constants along the z and the y directions,
respectively, in the vth medium (» = 1, 2, - - - 5). Furthermore, let us call

k, = kn, = —n, (2)

" the propagation constant of a plane wave in a medium of refractive
index n, and free-space wavelength A.
According to equations (39) through (52)

k, = (ki — k2 — k) (©)
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in which

ke = ko = kip = ky 4)
and

k= ki = ks = ks (5)
This means that the fields in media 1, 2, and 4 have the same z
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dependence and similarly those in media 1, 3, and 5 have identical y
dependence. These transverse propagation constants are solutions of
the transcendental equations:

k.a = pr — tan™ kg, — tan”' k& (6)
e 1M
kb = qr — tan 1;% kym, — tan™' ﬁ%k,m (7)
in which
1
R ®)
5 k.s o g
5 A3 T
1 1
_ : ©)
2 ke [ ]® ke—li
i 4, v |
LU o _l
and
A
Apgas = T f = 5 : 10
e (k? - »3.3.;.5)’ 2(71»] - ng.a.d.ﬁ)i ( )

In the transcendental equations (6) and (7), @ and b are the trans-
verse dimensions of the guiding rod, and the tan™ functions are to be
taken in the first quadrant.

What are the physical meanings of £ , 7, , and 4, 5.4,5 ? The amplitude
5 4

of each field component in medium 3 (Fig. 4) decreases exponentially
along z. It decays by 1/e in a distance & = 1/ | ks | . Similarly &, 7.,
and 7, measure the “penetration depths” of the field components in
media 5, 2, and 4, respectively.

The meaning of 4, is the following. Consider a symmetric slab derived
from Fig. 4 by choosing @ = « and 7, = n, . The maximum thickness
for which the slab supports only the fundamental mode is 4, .

Expressions (3), (8), and (9) contain k. and k, , which are solutions of
the transcendental equations (6) and (7). These cannot be solved exactly
in closed form. Nevertheless, for well-guided modes, most of the power
travels within medium 1, implying
I, Ay

5

2

<1 and

k,A4,|*

4

& 1. (11)

It is possible then to solve those transcendental equations in closed,
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though approximate, form. Their solutions are

-1
A a2
2 2 =1
k=T (1 e ?b”"i‘) : (13)

For large a and b, the electrical width, k,a, and the electrical height,
k,b, of the guide are close to p= and g, respectively.

Substituting equations (12) and (13) in equations (3), (8), and (9),
we obtain explicit expressions for k;, &, &, 92, and »4:

2 -2 2 2 2 23
- 2 1_"2 A3 + 445) _ (ﬂ) ( n2A2 +n,|A4) ]
b= [k‘ (a)(1+ ra p/ LT —
(14)
Aa r pAa 1 2 |-}
— 8|7 |5 _
I A R e (15)
L L Ta
A, [ [qd. . 274
mo=_t1—|=" ; 3 (16)
4 T b 1+ nad, + niA,
L L b

3.2 The E;, Modes

Except for the fact that the main transverse components are E. and
H, , the E;, modes are qualitatively similar to the E, modes (Fig. 5b);
they differ quantitatively. Distinguishing with bold-face type the symbols
corresponding to K}, modes, the axial propagation constant and the
“penetration depth” in media 2, 3, 4, and 5 are, according to equations
(60), (63), and (64),

k, = (k — ki — Kk)} (17)
1 1
£, = PP , (18)
3 kz:i L — kz
] As x
L 5
n; = 1 = r \21 i (19)
4 kya L kz
4 Az v
Lo4)
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in which k, and k, are solutions of the transcendental equations

ng na
k.a = pr —tan™' S k& — tan”' S k& (20)
Ny ny
kb = gr — tan™' kn, — tan"" kym, . (21)
The approximate closed form solutions of these equations are
_ pr ( ngAa + ﬂgAs)-l
k. a 1+ e 22)
and
K, = (14 2t A7, (23)

Substituting these expressions in equations (17), (18), and (19), we
derive the explicit results:

3 2 2 -2
_ | — (m M)_()( A+A)]
k'“’[k' (a)(1+ - o/ \L T
(24)
A, [ (pA 74
: " 1 25
L="1-17 | 4 TA i, (25)
L L mia
AZ_ qui 1 #
- _4 S (S . E— 26
e = | b | At Ay (26)
L L b
If
— |y — Ny <<1)
1 3

4
5.

these results coincide with those in equations (14), (15), and (16),
indicating that the 7, and EZ, modes become degenerate.

3.3 Examples

The axial propagation constants k, and k,, given in equations (3)
and (17) and properly normalized, have been plotted in Figs. 6a through
k as a function of the normalized height of the guide

b 2b

1= 5l — )}
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Fig. 6 — Propagation constant for different modes and guides. ———— tran-
scendental equation solutions; — —-—— closed form solutions; —:—-— Goell’s

computer solutions of the boundary value problem.

for several geometries and surrounding media.* The ordinate in each of
these figures is

ke — ki .
B —E
it varies between 0 and 1. It is 0 when k. = k,, that is, when the guide

*dIn these figures we use the same symbol k. for both the E,;Y and the E,
modades.
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is so small that the mode under consideration becomes unguided or, in
other words, the “penetration depth” in medium 4 is . It is 1 when the
guide is so large that k, = &,, which means that all the field travels
within the guiding rod and the ‘‘penetration depths” in media 2, 3, 4,
and 5 are zero.

The solid curves have been obtained using the exact numerical
solutions of the transcendental equations (6), (7), (20), and (21);
for the transverse propagation constants k. and k, ; the dashed lines have
been derived using the closed form approximations (12), (13), (22),
and (23). In Figs. 6a, 6b, 6e, and 6f, for comparison, we have also
included the dotted-dashed lines which are the results obtained by
Goell as computer solutions of the boundary value problem.*

The three solutions coincide even for moderately large values of b.

AH‘E
-kZ

&
Z
2
1

k
Kk
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Thus, for a guide and mode for which

2 2
2—%_—24: = 0.5,
the closed form approximation is within a few percent of the exact value.
This gives us confidence to use our results in guides with an aspect
ratio a/b > 2, in guides surrounded by several dielectrics and in direct-
ional couplers for which there are no computer ealeulations available.
The largest discrepancy between our results and Goell’s occurs for

2 2
k: _ kl ~ 0
) 1
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1.2
T o
10— Ng =1L
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and especially for the fundamental modes E;, and E}, . Our approximate
theory is ineapable of predicting the fact that these modes remain
guided no matter how small the guide’s cross section.

Figures 6a through d cover the eases of rectangular guides totally
embedded in a single dielectric of slightly lower refractive index. For all
practical purposes, given p and g, the EZ, and E%, modes are degenerate,
and the square cross section provides the widest separation between
modes.

Figures 6e through g also consider rectangular guides embedded in a
single dielectric, but the external refractive index is 1.5 times smaller
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than the internal one. A glass rod immersed in air is an example. The
substantial difference of refractive indexes breaks the degeneracy for any
rectangular cross section. Rectangular waveguides as in Fig. la, with
three sides in contact with slightly lower refractive indexes and the
fourth side in contact with air, are covered in Fig. 6h through k.

The approximate dispersion relation (14) for E;, modes, in a rectang-
ular guide surrounded by four different dielectrics, has been put in
graphical form in Fig. 7 by plotting the equivalent equation

PX 4+ ¢¥ =1 @7
in which
2 —2
T As + A\, e
X = (*) (1 + L—"') & — k)™ (28)
a Ta
and
2 2 2 —2
5 ™ nad, + nid, 2 2y —1
Y = (*) (I —_— kEy — k . 29
) (1 TR ) G — k) (29)
1.0
) |
- . As+Ks R
7 —c=|2 T2
— 2
NS 08 Yl b +n2a,+niA,
| -\ 3 wnZ b
~ - | ]
X
— ]
N
Ay \
< | /
< 0.6 -1 3
el //
N i | m
+ | c ¥ Y —
o / v 2 2\1/;
E / k{nZ-ng)"2
a I \E 17 y 1 v
3. EY ; 31 y Ex ( )
C+ oal- >
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\,\T_/} ! 2o 0.5.
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Fig. 7 — Nomograph to dimension a guide immersed in several dielectrics in
such a way that it supports any preseribed number of modes.
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The curves plotted for different values of p and g are straight lines
(solid lines) ; since the values of X and Y are physically meaningful
when they are positive, the plots are kept within the first quadrant.

In Fig. 7 the dotted lines depict the equation

1+ A+ 45 |°
2 (2 B = (30)
X b nad, + niA, :
L=
b

Given any guide, we can calculate C which is a function of the dimen-
sions, refractive indexes, and wavelength. The corresponding dotted
line intersects all the solid lines representing the different modes. The
abscissa or ordinate of each intersection yields, after some algebra, the
propagation constant k. of each particular mode. If the resulting k&, is
smaller than the smallest k,, that mode is not guided.

Another way of using the graph is this: Suppose one wants a guide
with such dimensions that at a given wavelength only the £Y, mode is
supported. Picking k, = k,min , any combination of n, , ns, ns, 14, 05,
a, and b represented by a point within the triangle limited by the solid
lines EY, , EY,, and Ej;, will satisfy the proposed single-mode require-
ment.

In the graph it is enough to substitute a by b and everything we said
about £, modes is applicable to E;, modes.

Figures 6a through k have been used to determine dimensions for
several guides. All of them have the maximum dimensions compatible
with exclusive guidance of the Fj, and EY, modes. The results are
collected in Table I.

In general, the geometry with n, < n, requires a larger waveguide
cross section than with n, = n, . This means reducing the refractive index
on one side of the guide reduces its ability to guide. The explanation of
this paradox is found in the known fact that a symmetric slab indeed
guides “better’” than an asymmetric one. Comparing, for example,
Figs. 6d and 6k, in which the solid curves have been drawn solving
Maxwell’s equations exactly, the E;, and E2, modes can be guided by the
symmetric slab (Fig. 6d) no matter how small the thickness b; there is a
minimum thickness required for the asymmetric slab (Fig. 6k) to guide
the same modes.”

Consider the guide immersed in a single dielectric. In general, the
guide’s height b is inversely proportional to

1

i — nd)¥
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TasLE [—TypricalL DiMENSIONS FOR SEVERAL Guipes*

a a
sk 0l weiae
£
ne 074 1%b Na b
Ny ny ny
—= —_— —_—=
n, n, n, n, M 23 | g = bas| Tk
— =100 | — =101 | =—=1.05| —=1.5
N N Na N4 Mooor | Zoior | Moyos
o= =1, e =t
a=b 15,31 4.9 2.25 0.92 17.7 5.6 2.6
a=2b 19 5.1 2.8 121 23.2 7.4 3.4
a=ab 26.8 85 3.8 1,37 349 i 4.9

i 4 Dilgegsions are for guides capable of supporting only the fundamental modes
1* an v,
t All numbers in the table must be multiplied by A/n..

TForn, = 1.5, ny = 1, and A = 1p, the largest guide height corresponds
to the square cross section, and b = a = 0.61gx. This dimension may be
too small and diffieult to control. The tolerance requirements may be
relaxed by choosing n, — n, << 1. Nevertheless, this difference cannot be
made arbitrarily small because the guide loses its ability to negotiate
sharp bends."

In all these examples the fundamental modes Ej, and F}, are almost
degenerate, so symmetry imperfections of the guide tend to couple
these modes. A lossy layer, added to one of the interfaces between
guiding rod and surrounding dielectrics, should attenuate the mode with
polarization parallel to that interface. As an alternative, the guide can
be made to support only the fundamental mode EY, by substituting
medium 2 with a low impedance medium such as a dielectric with large
refractive index or a metal.

An example of such a guide and the propagation constant of its modes
are shown in Fig. 8. By choosing

0.7\
m: —nd)!

only the E?, mode is guided. If the metal is not perfect, there is power
leakage into the low impedance medium. The smaller that impedance,
the smaller the leakage.

Guides for integrated optics may be easier to build with a/b > 1. We
can use Fig. 7 to design a guide of arbitrary dimensions a and b which is

a <
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Tig. 8 — Propagation constant for modes in a guide surrounded by metal and

dielectrics, ——— transcendental equation solutions; ———— closed
form solutions; —+—-+— Goell's computer solutions of the boundary value
problem.

still capable of supporting only the Ej, and E}, modes. An as example,
let us caleulate what the values

ny = ns = n (1 + A) and n, = ny = n,(1 + A")
should be, assuming

A, A’ <« 1, and %= 5.

Choosing
\#
() -2

one derives from Fig. 7

The curve corresponding to C = 25 has been plotted as a dotted line
in Fig. 7. It intercepts the K}, line at

-2
Y = E—: + 1%’57&, (Az)i] (k7 — k3)™' = 0.88.
In this expression, by making
k, = kn,(1 — A),
the guide supports only the EY, and Ef, modes; its height is then
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A
b = 1.66- 32
(&) e
We can choose b arbitrarily by the proper selection of A’.
For

A= lpn = 1.5 and b = 3y,

from equations (31) and (32) we obtain
a = 25u, A = 0.002, and A" = 0.05.

IV. DIRECTIONAL COUPLER g

In general, the directional eoupler can transmit EZ, and E!, modes;
but if the sides a and b of the guides are seleeted small enough, only the
fundamental modes E, and EY, are guided. Let us concentrate on the
EY, mode. The coupler guides two kinds of E}, modes: one is symmetric
(Fig. 9¢) while the other is antisymmetric (Fig. 9d). Both are essen-
tially TEM modes with main field components K, and H, . The electric
and magnetic field intensity profiles for both modes are depicted
qualitatively in Figs. 9b, ¢, and d.

Ignoring the small effects introduced by the loose coupling, the
electrical width k. and height k,b of each guide, as well as the field
penetrations Ea and 172, coincide with those of the guide described in

Section IIT. S1mﬂar rea.sonmg applies to the E7, mode.

The coupling coefficient K between the two gu.ldes and the length L
necessary for complete transfer of power from one to the other are,
aceording to equations (56) and (59),'

_ _fE_M .
K =357 L =453 1+ k% (33)

For E} modes, k. and £ are given in equations (3) and (8), and %, is the
solution of equation (6). Similarly, for EZ, modes, k,, &, and k. are
obtained from equations (17), (18), and (20). As expected, the coupling
decreases exponentially with the ratio ¢/ between the guide’s separation
and the field penetration in medium 5.

The normalized coupling coefficient

|Kla &k _ma 1 k.
k

oo ()T emfor £ [1- ()T} oo




2090 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960

“, K G 7
4 Na v ﬁ n, %
i i A
X
b N3 Ny Ny N N3
77 ALl v
7 ng 2 na ¥
4 2 7

(a)

Ey oR Hy FOR SYMMETRIC Eyy
Ex OR Hy FOR SYMMETRIC Egqy

N 7N

/s \ / Y
s’ v /’ Sg

Tl
£ &5
(©

= ¢

Ey OR Hg FOR ANTISYMMETRIC Eyy
Ez OR Hy FOR ANTISYMMETRIC Ex

(d)

Fig. 9— Directional coupler immersed in several dielectrics: (a) cross section,
(b), {c), and (d) field distributions.

derived from equation (33) by substituting & for its value given in
equation (8) has been plotted in Fig. 10 for the Ej, mode, assuming
ng = ng and n,/ns is arbitrary. The solid and dotted lines were obtained
using the exact solution of (6) and the approximate expression (12),
respectively, for k, . Both sets of curves are close to each other, espec-
ially for 2a/A(n? — n2)t = 1.

The dashed-dotted lines are the couplings obtained by A. L. Jones"
for two parallel cylinders of refractive index n, = 1.8 embedded in a
medium ns = 1.5.° As expected, if the diameters of the round guides are
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equal to the widths of the rectangular guides, and if the separations are
the same, the coupling between the round guides should be slightly
smaller than that between the rectangular ones.

The normalized coupling equation (34) for the £7, mode has been
plotted in Fig. 11, using for k. the exact solution of equation (20) .
For n,/n, close to unity, the lines get close to the solid curves in Fig. 10
as the EY, and E;, modes approach degeneracy. The influence of the
height b of the guides, the refractive indices n, and n, , and the value of ¢
in the coupling of either mode is not important since they only affect k. .

To work some examples, assume

n, = 1.5, n2=n3=n4:n5=£, and a = 2b.

1.01

% 2 M
nﬁnsﬂb

ke
2\

|«
n=1.5
| -
m‘ Y] w___ za s
—_—— —_ne
8 ~4__52(rt-ng)
N ot — 0.5 |
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k|l & |C \ 0.5 N
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I
[ 50
Il 0.75
;{-‘? h \
2 DN
o o~ =
= \\L
0| |- 1IN
< [ |C \\
= ~—
[} \\\
== ~
N
\\
1073 <
" 5-.\ S<
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c/a
Tig. 10 — Coupling coeflicient for F:? modes. ——— coupling caleulated
from trancendental equations; — — —— closed form approximations; —*—-—

coupling between two cylindrical rods (A. L. Jones?).
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10

Tig. 11 — Coupling coefficient for E.* modes. ——— E.* coupling for
ni/ns = 1.5; ——+— E:® coupling for ni/ns = 1.1.

To insure that each guide only supports the Ej, and Ej, modes, the
normalized dimension b according to Fig. 6b must be chosen to be

2 2 — nt = 0.75.
Consequently
b= 177}, a = 3.54\, and i’:—"‘:" 1.
1

From Fig. 10 we obtain the coupler length L for complete power trans-
fer:

Lag k=]

L = 6540n for e=a and L = 262\ for ¢ =
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How far apart should two guides of length ! be spaced to have small
coupling? If the transfer coefficient | 7| =1 | K| < 1, from equation
(33) we derive

_ I ki 1 ]

““55103[2|T[k,a1+k352' 30

For the same guide dimensions of the previous example and for
l=1em, A =1y, and T = 0.01,

we derive, from either equation (35) or Fig. 10, that ¢/a = 2.5. Con-
sequently, both guides 3.54u wide and 1 em long would couple —40dB
if their separtion is 8.9p.

Now we evaluate how a small change of the refractive index between
the guides modifies their coupling. Such would be the case if the
medium bhetween the guides is, for example, an electrooptic material
and we change the applied field to modulate or switch the output.

For E;, and EY, modes, assuming well-guided modes (k. 45/ << 1)
and n, — mn;/n, < 1, the ratio between couplings for two values of
refractive index in medium 5 (for example, ns and n;(1 + 8)), result from
equations (34) and (12):

K _ L _ {_ (1) 2 [ -2 i)'z]*}.
kel exp ™\ 1 A, 1 7.-+ A, (36)

That ratio is 1/2 if

ol ) 4[-Ce )T e

A directional coupler with coupling coefficient K; and length L =
x/| 2K; | would transfer all the power from one guide to the other.
If the refractive index of the medium between the guides was changed
from ns to n5(1+8) such that equation (37) is satisfied, the power
would emerge at the end of the input guide. The larger the separation
¢ of the guides, and the smaller the difference of refractive indexes
n; — ng, the smaller the change of refractive index required.

Following the example above, for

= 1.5
n, = 1.5, Ny = Ny = Ny =ny = T2,

a=154; =354\, and ¢ = qa,
the percentage change of index required is only § = 0.0033.
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V. DIRECTIONAL COUPLER MADE WITH SLIGHTLY DIFFERENT GUIDES

Consider the directional coupler of Fig. 12 in which the two guides
have slightly different heights: one measures b + h and the other
b — h.

Let us qualitatively plot the coupling coefficient as a function of A,
Fig. 13. Because of simple arguments of symmetry, the absolute value
of coupling coefficient is stationary (first derivative zero) around
h = 0. Therefore, the coupling coefficient between two guides of height
b, and b, is the same as that of the coupling between two identical
guides of height 1/2(b; + b.), provided that | b, — ba| is small
enough.

This reasoning applies to guides with different widths, heights, and
refractive indices, provided that the differences are small enough. Un-
fortunately, as in most perturbation analysis, we don’t know what
“small enough” is unless we calculate the next higher order term.

VI. SUMMARY AND CONCLUSIONS

A dielectric rod (Fig. 4a) of rectangular cross section e by b surrounded
by different dielectries supports, through total internal reflection, two
families of hybrid modes. They are essentially TEM modes polarized
either in the z or the y direction; we call them £7, and E}, . The sub-
indices state the number of extrema (p in the z direction and ¢ in the
y direction) of the magnetic or electric transverse field components.

Dispersion curves for guides of different proportions and different
surrounding dielectric are plotted in TFigs. 6a through k. Typiecal di-
mensions for several guides capable of supporting only the fundamental
modes EZ, and EY, are contained in Table I.

By picking dielectries with similar indexes, the guide dimensions can
be made large compared with A, thus reducing the tolerance require-
ments. The dimensions @ and b can be picked arbitrarily and still achieve

Fig. 12 — Directional coupler with guides of different heights.
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[kl

Fig. 13 — Qualitative behavior of the coupling coefficient as a funetion of A.

a guide which supports only the fundamental modes if one can choose
the refractive indexes. The design is achieved with the help of either
equation (14) or Fig. 7.

The penalty one pays with most of these guides is that the funda-
mental modes are almost degenerate; consequently, symmetry imper-
fections tend to couple them. A lossy layer added to the interface y = b/2
(Fig. 4a) should attenuate the E, mode more than the Ej, . As an
alternative, the guide can be made to support only the Ef, mode by
metalizing the same interface. Dispersion curves are shown in Fig. 8.

Since the field is not confined, there is coupling between two of these
guides (T'ig. 3). Design curves for directional couplers are given in Figs.
10 and 11,

Typiecally, for n, = 1.5, n, = ny; = n, = n; = 1.5/1.01, a = 3.54),
b =a/2 =177\ and ¢ = a/4 = 0.88\, according to equation (33) the
length necessary for 3dB coupling is L/2 = 131\. This length increases
exponentially with the separation between the guides.

Increasing the refractive index between the guides by a 3 per
thousand doubles the coupling.

What is a reasonable separation to prevent coupling? Using the
numbers of the previous example, two parallel guides 1 em long sepa-
rated by 2.5 times the width of each guide have a coupling of —40 dB.

The dielectric waveguides and the directional couplers described
show great promise as basic elements for integrated optical ecir-
cuitry because they:

(1) Can be made single mode even though their transverse dimen-
sions can be large compared with the free space wavelength of opera-
tion. Consequently, the tolerance requirements can be relaxed.

(it) Permit the building of compact optical components.

(#i2) Are mechanically stable and alignment problems are mini-
mized.

() Are relatively simple structures and lend themselves to being
fabricated with high precision integrated circuit techniques.

(v) Can include active devices of comparable small dimensions.
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APPENDIX A

Field Analysis of the Directional Coupler

We solve Maxwell's equations for the directional coupler whose
cross section is depicted in Fig. 3. The structure is symmetric with
respect to the = 0 plane; therefore, the modes have electric fields
which are either symmetric or antisymmetric with respect to that
plane. Consequently, the guide we have to study is simpler (Fig 14):
if the plane = 0 is an electric short circuit, the modes of the coupler
propagating along z are antisymmetric; if the plane * = 0 is a mag-
netic short ecircuit, the modes are symmetric. As is known, it is the
interaction of these symmetric and antisymmetric modes traveling with
different phase velocities along z that represents the effect of coupling.

As discussed in Section II, by neglecting the power propagating
through the shaded areas, the fields must be matched only along the
sides of region 1. We find that two families of modes can satisfy the
boundary conditions; we call them £, and E?, . Each mode in the first
family has most of its electric field polarized in the x direction, while each
mode of the second family has the electric field almost completely
polarized in the y direction. The subindexes p and ¢ characterize the
member of the family by the number of extrema that these transverse
field components have along the z and y directions, respectively. For
example, the &5, mode has its eleetric field virtually along =, its magnetic
field along y; the amplitudes of the field have one maximum in each
direction.

Each family of modes will be studied separately.

A.1 B, Modes: Polarization Along y
The field components in the »th of the five areas in Fig. 14 are:"

M, cos (k.x + «) cos (k,y -+ B) for v =1
M, cos (k.x + «) exp (—ik,y) for v =2
H., = exp (—ik.z + wwl)3M; cos (k,y + B) exp (—tk.gx) for » = 3
M, cos (k.x + a) exp (ik,.y) for v = 4
(M cos (k,y + B)sin (k;x +9) for v =5

w=0
H.. _lci, g:t,%_t; (8)
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Fig. 14 — Coupler cross section with plane @ = 0 either an electric or magnetic
short eircuit.

B o= 1 #H,,
= wensk, dx Ay
Pnl — &
E ¥ = T T H:u
Y wensk,
T dH.,
v ——3 e 2
L., wen® dy

in which M, determines the amplitude of the field in the »th medium;
e and # locate the field maxima and minima in region 1; ¥ equal to 0°
or 90° implies that the plane x = 0 is an electric (antisymmetric mode)
or magnetic (symmetric mode) short circuit, respectively; » is the
angular frequency; e and u (appearing in k* = w’ep) are the permittivity
and permeability of free space.

In the »th medium the refractive index is n,, and the propagation
constants k., , k,, , and k. are related by

B,k 4k = o'and =k . (39)

To match the fields at the boundaries between the region 1 and the re-
gions 2 and 4, we have assumed in equation (38)

kxi == k:2 = ]i":-l = k‘: (*0)
and similarly to match the fields between media 1, 3, and 5,
kul = 't"uﬂ = ku5 = "f‘u ' (41)

Before finding the characteristic equations, let us assume the re-
fractive index n, of the guide to be slightly larger than the others.
That is

B g1, (42)
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As a consequence only modes made of plane wavelets impinging at
grazing angles on the surface of medium 1 are guided. Since this im-
plies that

k.

k,

the field components E, in equation (38) can be neglected.
Now we mateh the remaining tangential components along the
edges of region 1 and from equation (38) we obtain

< k., (43)

k
b _m
tan (ic,, 5 + ,B) = Zni k, (44)
4
% ks fict'n(k,s & + 'y)
tan | k, +al=1 k3 . (45)
a+ g 1

Where there are two choices, the upper ones go together and the lower
ones go together.

T. Li pointed out that each of these equations considered separately
is the characteristic equation of a boundary value problem simpler
than that of Fig. 14.% ° Thus for a dielectric slab infinite in the x and 2
directions and refractive indexes as depicted in Fig. 15a, the char-
acteristic equation for modes with no H, component coincides with

ELECTRIC
OR ——_
MAGNETIC EZ
waLL

(a) (b)

Fig. 15— Dielectric slabs.
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equation (44). Similarly, for two slabs infinite in the y and #z directions
and limited at £ = 0 by an electric or magnetic short as in Fig. 15b,
the characteristic equation for modes with E, = 0 is equation (45).

A similar technique has been used by Schlosser and Unger to find
the transmission properties of a rectangular dielectric guide immersed
in another dielectric.” If the two guiding rods are so far apart that the
coupling between them is a perturbation, then

| kaat | 3> 1 (46)

and we can rewrite the characteristic equations (44) and (45) with
the help of equations (39) and (46), making a and b explicit, as

Maly Y ng =]
kb = gr — tan™! n—?.k,mz — tan™ 'n_% kyng) (47)
ot exp (—EE — z'2'y)
]GIG = ]quﬂo 1 + d_ﬂ& 1 +5k2052 (48)
where k. is the solution of
koo = pr — tan'k.ofs — tan™ k.ofs, (49)
g = e = et (50)
4 ’ kuz L} . k?}i
4 A2 v
Lo 4
£ =1 : = 21 3 (51)
5 | k,;; | kz
5 Aa z0
LL 5
and
A
A_ = L = * 52
2o (kf — "g.:;.nt.ﬁ)I (ﬂi = ﬂ§,3,4,5)1 (52)

In the transcendental equations (47) to (49), p and ¢ are the arbi-
trary integers characterizing the order of the propagating mode, and
the tan™ functions are to be taken in the first quadrant, The angles
ksa and k,b measure the phase shift of any field component across
the guiding rod in the x and y directions respectively, or in other words,
the electrical width and height of each guide of the coupler. On the
other hand, k.oa is the electrical width of each guide assuming no inter-
action between the guides, that is assuming ¢ — 0.
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Let us find the physical significance of 524 and & 5. The amplitude
of each field component in medium 2 (Fig 14) decreases exponentially
along y. It decays by 1/e in a distance 5. given by equation (50).
Similarly 7, &, and & measure the “penetration depth” of the field
components in media 4, 3, and 5, respectively.

The propagation constant along z for each mode of the coupler is,
according to equations (39}, (40), and (41},

k, = (k; — k2 — k)L (53)

With the help of equation (48), the slightly different propagation con-
stants of the symmetric (y = 90°) and antisymmetric modes (y = 0)
are

k| k2o £s exp (—C/Ei)],
] *’“’[1 =200 1+ R (54)

In this expression
ko = (k1 — kG — &3)* (55)
is the propagation constant of the &%, mode of a single guide (¢ — «).
The coupling coefficient K between the two guides and the length L

necessary for complete transfer of power from one to the other are
related to the propagation constants k., and k., by'*

e _ T ke — ke _ Koo Es €xD (—0/E5)
2L 2 koa 1+ kfnfi

_2 Askzo _ (11\7201‘15)2]i {_ﬁ [ _ (lﬂznAs)g}%}
- ™ akgu [1 m exp A_r, 1 m | (56)

As expected, the coupling increases exponentially both by decreasing ¢
and by increasing the penetration depth & in medium 5.

All these formulas contain either k., or k,, which are solutions of
the transcendental equations (47) and (49). For well-guided modes,
most of the power travels within medium 1 and consequently

k:ﬂAﬂ A
[ = '5} «1 (57)
and
k,A,|*
F“‘ &L 1. (58)
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It is possible then to solve those transcendental equations in a closed
though approximate form by expanding the tan™ functions in power of
those small quantities and keeping the first two terms of the expan-
sions. The explicit solutions of equations (47), (49), (50), (51), (55),
and (56) are given in Section ITI.

A.2 EX, Modes: Polarization in the x Direction

The field components and propagation constants can be derived from
those in Section A.1 by changing F to H and p to —e, and vicel versa.
Except for their polarizations, the Ej, and E}, modes are very similar
and have comparable propagation constants. Using boldface type to
distinguish the symbols corresponding to Ej, modes, from equations
(56), (55), (47), (49), (50), and (51), we obtain

o _ T ki E exp (—c/&)
K = oL T %k, a1+ (F) (G8)
where
k, = (k — kK — k) (60)
and k,, and k, are solutions of the transcendental equations
k”b = gqr — tan™! kn, — tan™ k,n, (61)
and
2 2
kxnﬂ = p?r = tankl ?L:}_:krnza - taan_l n_gkznzﬁ (62)
s n,
in which
1
iy = = (63)
¥ L P
[ [A 2] u:|
4
and
1
? ‘ L - k2n
LA
= 5 !

As in Section A.l1, the transcendental equations (61) and (62) can
be solved in closed, though approximate, form provided that

kzufla !
2«1 (65)

™
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and

kA, |
|« 1. (66)
o

The explicit results are given in Section ITI.
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Bends in Optical Dielectric Guides

By E. A. J. MARCATILI
(Manuscript received March 3, 1969)

Light transmission through a curved dieleciric rod of rectangular cross
section embedded in different dielecirics is analyzed in closed, though
approximate form. We distinguish three ranges:

(7) Small cross section guides such as a thin glass ribbon swrrounded
by air—Making its width 1 percent of the wavelength, most of the power
travels outside of the glass; the attenuation coefficient of the guide is two
orders of magnitude smaller than that of glass, and the radius of curvature
that doubles the straight guide loss 7s around 10,000M.

(71) Medium cross section guide for integration optics—It is only a few
microns on the side and capable of guiding a single mode either in low loss
bends with short radii of curvature or in a high Q closed loop useful for filters.
Q’s of the order of 10° are theoretically achievable in loops with radii ranging
from 0.04 to 1 mm, if the percentage refractive index difference between guide
and surrounding dielectric lies between 0.1 and 0.01.

(797) Large cross section guides—They are multimode and are used in
Jiber optics. Conversion to higher order modes are found more significant than
radiation loss resulling from curvature.

I. INTRODUCTION

A dielectric rod, embedded in one or more dielectrics of lower re-
fractive index, is the basic ingredient of three types of optical wave-
guide which differ only in their relative dimensions and consequently
in their guiding properties.

The first is a small eross section guide which supports only the fund-
amental mode; most of the power travels in a lower loss external
medium. Thus, the attenuation of the mode is smaller than if all the
power flowed through the higher loss internal medium. Tiny rods, thin
ribbons, or films made of glass or other substances embedded in either
air or low loss liquids are typical examples.-

The second is a medium size guide capable of supporting only a few

2103



2104 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

modes; most of the power travels in the internal medium. Such a guide,
(Fig. 1 of Ref. 10) has been proposed as the building block of passive
and active components for integrated optical circuitry.** Lasers,
modulators, directional couplers, and filters are some of the many
devices which could be built in a single substrate utilizing the high
precision techniques available from integrated circuitry; consequently
they would be compact, mechanically stable, and reproducible.

The third, a large size guide (clad fiber) which can support many
modes, is used typically in fiber optics.”

These basic guides, having round or rectangular cross section and
straight axis, have been studied both analytically and through com-
puter calculations.®2* Also the directional coupler (Fig. 2 of Ref. 10)
obtained by running two guides of rectangular or circular cross sections
parallel to each other, has been analyzed.**%*

To my knowledge, though, little is known quantitatively about the
ability of any of the three types of guides to negotiate bends, or about
the radiation losses in loops, such as the one depicted in Fig. 1 as part
of a channel dropping filter. This paper should supply such informa-
tion.

In Section IT the boundary value problem is discussed, and the
fundamental modes of each polarization are deseribed. Section III con-
tains a discussion of the results and numerical examples. Coneclusions
are drawn in Section IV and all the mathematical derivations are
exiled to the appendix.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Figure 2 depicts, in perspective, the basic geometry of the curved
guide with radius of curvature R. The cross section is a rectangle whose
sides are a and b. The refractive index of the guide is ny, and the re-
fractive indices around the guide are ns, ns, ny, and n5, all of which are
smaller than n, . Furthermore, for reasons which become apparent later,
we do not specify the refractive indices in the four shaded areas.

This boundary value problem is solved in closed, though approxi-
mate form in the appendix, by introducing the same simplification
used in solving the problem of transmission in the straight guide.*
That simplification arises from solving Maxwell’s equations only for
guide dimensions such that a small percentage of the total power flows
through the shaded areas and consequently a negligible error is ex-
pected if one does not match properly the fields along their edges.

Two types of hybrid modes propagate through this curved guide;
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Fig. 1 — Channel dropping filter (ring type).

each one has six field components. But since some of the refractive
indices 7., my, ny, and n; are chosen close to n,, guidance occurs
through total internal reflection only when the plane wavelets that make
a mode impinge on the interfaces at grazing angles. Consequently, the
only large field components are perpendicular to the curved z axis
(Fig. 2). The modes are then of the TEm kind and we group them in two
families, EZ, and E, . The main field components of the members of the
first family are E, and H, , while those of the second are E, and H, .

Y
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b

. L
| L 3 hy Hy

7
7 z
" e~~~
EyOR Hy
/ N

- 5
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Fig. 2 — Curved dielectric guide.
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Virtually every one of these components varies sinusoidally along
z and y within the guiding medium 1 and decays exponentially in the
surrounding media 2, 3, 4, and 5 (Fig. 2). The subindices p and ¢
represent, the number of extrema of each field component in the z and
y directions, respectively. The field configurations of some members
of the two families in straight guides are depicted in Fig. 5 of Ref. 10;
section 2.1 describes the influence of a finite radius of curvature on
those field configurations.

General expressions for the different phase and propagation constants
in each medium of the curved guide are calculated in the appendix, for
arbitrary modes and for n, £ n; ¥ n, ¥ 7, . In the text, we consider only
the fundamental modes of each family E;, and EY, ; furthermore, we
choose

Mg = MNs (1)

and leave n, and n4 arbitrary. This choice of refractive indexes en-
compasses the most interesting cases.

2.1 E}, Mode
We first study the EZ, mode. As we said before, the main compo-
nents are E. along the = direction and H, along y. Both components
have a single maximum located within medium 1 and drop sinusoidally
toward the edge of it. Qutside of the medium, the decay is exponential.
The axial propagation constant is according to equation (47)

k.= (& — k2 — K}, @)
where k; = kny = (2r/A)n, and A is the free space wavelength, k, is
the propagation constant along x in media 1, 2, and 4, and k, is the
propagation constant along ¥ in media 1, 3, and 5. This means that
the electrical width of media 1, 2, and 4 is the same and equal to k.a,
and the electrical height of 1, 3, and 5 is also the same and equal k,b.
The transverse propagation constant k, is independent of the radius
of curvature B and ean be found from the transcendental equation
(37)

2 -1 2 -4
kb= — tan™" [(k;{z) — 1i| — tan™? [(k;i) — l:l 3

in which

Ay = @
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If the height of the guide b is selected so large that

A, + A,
b

only a small percentage of the power carried by the mode travels in
media 2 and 4; and equation (3) can be solved approximately,
yielding

<1, (5)

k,,= (l—l-—m)_

r
b b

According to equation (49), the other transverse propagation con-
stant

_ 2 .k,ua,]
kz‘ - k:ﬂ[l + ak:o z k:ﬂ (6)
is valid if
c
— K1
ak.q )
a R K 1.

The first term in equation (6), k.. , is the propagation constant in the
z direction of the guide without curvature; the second and third terms,
which according to equation (7) must be small, are perturbations related
to the change of field profile and to radiation loss, both of which are
introduced by the curvature. More precisely, «. is the attenuation
coefficient of the curved guide, « R is the attenuation per radian,
that is the attenuation in a length of guide equal to R, and ¢ is a con-
version loss coefficient such that, at a junction between a straight and a
curved section of the same guide, ¢* measures the power that the funda-
mental mode in the straight section would eouple to modes higher than
the fundamental in the eurved section. The fact that equation (6) is
valid if ¢ << 1 requires the radius of curvature R to be so large that the
field profiles of the fundamental modes in the straight and curved guides
are quite similar. Later in this section we consider formulas applicable
when ¢ =2 1.

The axial propagation constant, k., , of the straight guide is related
to k.o and k, by the expression

ko = (k7 — k2o — K2); @)

and k., is the solution of the transcendental equation (55)



2108 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1969

2 2 -3
koa =7 — 2 tan_lz—é [(k:A) — IJ . 9
The length
A
= 3 — n) (10)

is used as a normalizing dimension. What does it measure? If one
assumes b = o, the guide becomes a slab of width a. If a < 4, only
the fundamental mode is guided; if @ > A, the slab is multimode.

Figure 3 is a graph of the electrical width, k..a, of the straight guide
as a function of a/A. The solid curve is the solution of equation (9)
assuming n,/n; = 1.5, while the dotted one is the solution for ny/n; =1.
For thin guides, a/A < 1, the electrical width is proportional to a; for
thick guides, a/A > 1, the electrical width goes asymptotically to =.

The attenuation per radian e, R and the conversion coefficient ¢,
obtained from equations (50) and (51) with n; = n; are

2\ —§ 2 3 271}
on= 13 AT - (]
2 n, ny wa ™
® koA’ 2 ]'}
) Gt exp {_3 [1 B ( T ) (1 + a]c,(,) (11
(- seA) em [- (T
'ﬂj T 'ﬂ.f& T

and
_ 1 Lﬂ)“ 1
©= 2kzﬂa (A @'’ (12)
where
27°R K o
- (- 3
z0 2 1

The solid eurves in Figs. 4 and 5 are graphs of the function

o R(l — TLE)i
A .

(which is proportional to the attenuation per radian) as a function of a/4
using ® as a parameter. In Fig. 4, we further assume that

M_14+4

N3
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Fig. 3—QGuide’s electrical width. Solid line is for Ef, mode with n/na = 1.5;
dashed line is for E?, mode with n/n; arbitrary, and for Ef, mode with ny = na.

and
ALK ]
in Fig. 5,
M= 1.5.
Ty

In the same figures each dashed line is a curve of constant conversion
loss ¢. Since the caleulations are valid for ¢ <€ 1, we believe the solid
curves are reliable to the left of the dotted curve ¢ = 0.3 and grow
progressively in error to the right of it.

To extend the use of this graph to arbitrarily large values of a/4, we
calculate the loss per radian, equation (63), whena/A4 >> 1 ande=1.Ttis

2 27— $ 213
_nl, _ (n _af, _ (&) é@] } :
¥ [1 (111) ] exp { 3 [1 2R + n:® ! (%)

the dotted lines in Figs. 4 and 5 represent this loss. The reader can
smoothly extend the solid curves to the right of the dashed line, ¢ =
0.3, so that they become asymptotic to the dotted lines. Thus, the
whole range of guide width a from 0 to R has been covered.
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Fig. 4 — Attenuation per radian for E® and E;¥ modes if ni/ns = 1 4+ A
and A < 1.

To understand why these curves of constant R become asymptotic
for afd > 1, we have drawn in Fig. 6a a curved guide with a certain
R; its width @ is very large compared with A. Also the amplitudes of
the field components E, and H, are plotted as functions of z and y.
Along x the field inside the guide behaves virtually as the Bessel
function J,[ky (R + x)] where v is a very large number and outside
of the guide decays exponentially. This guide has some radiation loss
per radian.

Now, suppose that we start shrinking ¢ without changing E. Since

the field at x = —a is very small, the radiation loss remains constant
until o is made so short that the field at * = 0 and £ = —a are com-
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parable (Fig. 6b). The field inside the guide varies almost sinusoidally,

while outside decays exponentially and the attenuation per radian

increases. If a is reduced even further (Fig. 6¢) most of the power
travels outside of the guide, and the loss increases even more. The
field configuration along y is practically the same in the three cases
(Fig. 6).

For resonant loops, such as the filter in Fig. 1, the intrinsic Q re-

sulting from curvature radiation is more interesting than the attenua-
tion «,. They are related by the expression

=

Qc —_ 0

e

¥

102

\:\ ' k‘rlw’,R
-‘ ~ R=0.82 ka

(15)
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This funetion is plotted in Fig. 7, assuming

Mo144
N3
and
AK1
and in Fig 8, assuming
™= 15,
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using as before the normalized guide width a/4 as variable and ® as
parameter. As in Figs. 4 and 5, the reader can easily match the solid and
dotted curves. Further discussion of these curves is reserved for Section
III.

The field components in media 2, 3, 4, and 5 decay almost exponen-
tially away from the guiding rod, and the distances z,, 74, &, and &
over which the fields decrease by 1/e are

]

5
5

R=36n, §A3/2
2 eseessecsf] =80 —

3 / A
R/=200 // /

AR
[T 1/

[/ e

LI [ =

I
- l/ /// AR
LTIHA S
el LI/

o 0.2 04 0.6 0.8 1.0

w

Fig. 7 — Intrinsic @ for E,* and E, ¥ modes if ny/n; = 1 + A and A « 1.
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1 1
N2 = = 2 g2 g2\i° (lﬁ)
¢ |ka| (H-E-H)
1 1 an

G e 9 Bl ey ey R

2.2 BY, Mode

We now consider the E¥; mode. The main components are £, and H. ;
they are qualitatively quite similar to components of the Ej, mode,
rotated 90°.

The propagation constant k, is still given by equation (2); but now k,

108 ‘
5 3 n? ssssssss(A=80-——-
R=o0.82 2 R
2 zZ0
7 —

[/ Lol

Nz Asivstapionh

7

4 1.6 1.8 2.0 22 24 2.6

_ 3 an
Y

Fig. 8 — Intrinsic @ for E,* mode if n,/ns = 1.5.
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18 the solution of

ko =m—t -lﬂz[( £ )2-1}_%—-t -lﬁ:[( L )2_-1]_{
O =m o an | k4, e L\ A,
(18)

The equivalent formula, of any of those between equation (7) and (17)
can be derived from that formula by substituting the ratio of refractive
indexes by unity, but leaving them unchanged wherever they are
subtracted from unity. For example, equation (11) becomes

aR = 3[1 - (%)]*(ka}(i)[l _ (¥”;
eenf S0 (24 2])
AT 2L (AT

while ¢ and & given by equations (12) and (13) remain unchanged.

Figure 9 is a graph of the function e, R[1 — (ns/n,)’]}, valid for any
ratio n,/n, . In particular, for n,/n; = 1 + A and A < 1, equations (19)
and (11) become the same, and consequently these curves coincide with
those in Tig. 4. This means that for n, 22 n, , the Ef, and E}, modes have
the same loss.

Figure 10 is a graph of the intrinsic @ of a loop operating in the E},
mode which can be derived from equations (15) and (19). As before, in a
resonant loop withn,/n; = 1 + A and A < 1, the Ej, or I}, modes have
the same @’s.

(19)

III. DISCUSSION AND EXAMPLES

The attenuation per radian of any dielectric guide of rectangular
cross section and the @, resulting from curvature are strongly de-
pendent on the radius of curvature. With the help of equation (17),
the attenuation per radian equation (11) can be written

1 MR
a,R = MR exp (—g ETIS') (20)

where M is independent, of R, X. is the guided wavelength along z, and
& is the length over which the field in medium 3 decays by 1/e. Ae-
cording to Fig. 11, the function

1 NR
ke (g ﬁ)
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becomes negligibly small, and consequently the attenuation per radian
becomes negligibly small when

2 3
E> 24_1"%2_@_ (21)
This simple criterion is developed further in Ref. 15.

We are interested, though, in a more detailed description of trans-
mission through a bent dielectric guide. Given a guide with a certain
radius of curvature (that is, given R and a/A), in general the loss per
radianofthe £, mode is much larger than that of the E}, mode (compare,
for example, Figs. 5 and 9 for n,/n, = 1.5). That difference becomes
negligible if n,/n, — 1 < 1.

10-2
TRV ]
5 1 N R_ERBH?R[_ Ns z:|/2
“ \ \‘ - K2, 1(n,)
2
N
e L4 AV INL N
1 Ao~
. \ \ | ™ L -
\(pll G‘O ‘1 "“ ------- R=50
2—{S Hg 1% — 31 : -.
o] o o \
g B !‘ N—t
= HHIAERVA R
Sle }\ 'f‘ \
g I\ ! | ereeersesR=60
: AN "
du 10== I \
\ \ i 1
5 | | \
1 1\ “
LN
2 R L T =4 \
- \ \ le=o. \\ 103 \‘0.5
|
L \ B \1 \ B
VIS
INERIR
2
1077 | \ \ sow e R=80
6 o0z 04 06 08 10 12 14 16 I8 20 2.2 2.4
22
o]

Fig. 9— Attenuation per radian for E¥ mode and n,/n; > 1.
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109 \ T T l ?/1‘ T

3.3 372
5L l\ ﬂ:akkgo‘RE— :\_1?)] 1 s s}
2 ‘ BN i

1] T
Anyid

: /1 1/ |

sessssses(R =80

/BO

/ sesenssne(R=60

108 /
5 { / // 60

/ sessesssas®R=50
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Fig. 10— Intrinsie Q for E;» mode and ni/ns > 1.

Let us consider separately the three types of guide: thin, medium and
large.

3.1 Thin or Low Loss Guides*
In thin guides the width a is so small that

* Low loss for straight guide.
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a _ 2a(m; — na)t
1= 1 < 1. (22)
The height b of the guide must be large so that only a little part of
the power travels in the shaded areas of Fig. 2. Assuming that the

guiding rod dielectric is lossy, its refractive index is

n, = n(l + ﬁ) , (23)

where n is real and « is the attenuation constant of a plane wave in
that medium.
Substituting equations (22) and (23) in equations (2), (11), and
(12), we obtain
k. = k.o + de, + ta, . (24)
The first term

8

2 2
1+ é [A‘aa(%g — 1)] for Ei, mode

3

2 2
141 [kaa(l _ z)] for B, mode

koo = (k5 — k) (25)

is the phase constant. Since most of the power travels in the external
medium, its value for either mode is close to kng. The conversion loss
term ¢ is negligible.

The imaginary part of equation (24) is the attenuation constant,
and is made of two terms. The first term

8
. %) for EI, mode
n {3
rmakzaz(—- — 1)

o
a, = § 2z (26)
4 1 for EY, mode
R R
= EXP (——
Ro ( Ro)
o 18] PR >
€ ! %
|
! I
I | x
I ~
| ~
i ~
| | N
| | R
Rs  2Re 4R,

Fig. 11 — Plot of R/R; exp (—R/R,) and tangent at inflection point.
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is the attenuation that each mode would have if the guide were
straight.!® The second term

3.2 [/ 2 2
a,=M(7Lg—l)

8 Mg
( 4 4.3 6/ 2 3 2
AT LRI
('n,) exp{ 12 \n/ \n} 11 2 \ks

(for Ei; mode)

I )
exp {_ 12 \n2 1L 2 \k,
(for E}, mode)

is the attenuation resulting from the radiation introduced by the curva-
ture. The E¥, mode is more tightly bound to the guiding rod and conse-
quently has more straight loss and less curvature loss than the £}, mode.

From equations (26) and (27), the radius of curvature R, that doubles
the straight guide loss is

2
2“,,”3(’%%
' (n) log [40, n 1 (for Ej, mode). -

it (1] u
1 log [ Fomeed 1 (for EY, mode).

Example 1: Consider a thin ribbon guide made of glass surrounded by
air and assume thatn = 1.5, n; = 1, @ = 0.1 nepers per m, and b = .
From equations (26) and (28) we calculate the values in Table I.

It is doubly advantageous to use the Ej, mode rather than the EY,
because (7) the thickness required for equal radiation loss and straight
guide loss is roughly (n/n)* times larger, and (i) R, is about (n/ns)"
times smaller.

If the height b of the ribbon is finite, k,/kn, is no longer zero and the
radii are, according to equation (28), [1 — %(k,/ks)"]”" times longer than
those in Table I.

(27)

v

3.2 Medium Size Guide for Integrated Optical Circuitry

It is likely that guides for integrated optical circuitry will be possible to
fabricate only with 7, =2 n, . The radiation loss per radian and the Q. of
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TasLE I—VaLueEs CALCULATED FrROM EqQuaTrions (26) aAnp (28)

Eunv Mode En® Mode
a 8 B a B
(neper.ajrn) A A A A
0.01 0.05 1.9 X 108 0.17 6.3 X 10°
0.001 0.016 6.2 X 10¢ 0.055 2 X1
0.0001 0.005 2 X108 0.017 6.5 X 10°

loops made with these guides can be obtained from Figs. 4 and 7, con-
sidering abseissas around a/A = 1. For both modes, E}, and E7, , most
of the power travels within the guiding rod.*

In general, the losses are very sensitive to the radius of curvature.
They are also sensitive to the guide’s width to the left of the dashed
curve ¢ = 0.5, but fairly insensitive to the right of it.

Example 2: Let us design a guide:

(i) The attenuation per radian resulting from radiation loss is

@R = 0.01 nepers = 0.087 dB.

(i) Its width a is the maximum compatible with single mode guid-
ance in the infinitely high slab, that is

(#73) We assume b = o and n; = n,(1 — A), where A < 1 andn, =
1.5.
Trom Fig. 4 we derive the guide dimensions for different values

of A:

a R

B X by
0.1 0.745 30
0.01 2.36 1,060
0.001 7.45 37,000

Unless A is 0.01 or larger, the radius of curvature B becomes un-
comfortably large for integrated optical ecircuitry. Furthermore, if b
is finite, k, is no longer zero, and the radii become [1 — (k,/k;)*]"
times larger than those in the table above.

* This is not true if b/B‘g <« 1. Then k., must be calculated from equation (8).
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Example 3: We design a resonant loop (Fig. 1) such that its Q. re-
sulting from radiation is equal to the @ resulting from transmission
loss in typical glass (n, = 1.5, « = 0.1 neper/m at A = 1p); that is,

Q=@ =5Xx10".

Turthermore, let us assume as in Example 2 that a/4 = 1, n; =
n, (1 — A), and b = . With the help of Fig. 7 we derive

a R
A x X
0.1 0.745 57
0.01 2.36 1,550
0.001 7.45 42,000

Again, unless A is larger than 0.01, the radius of curvature becomes
unwieldily large for integrated optical eircuitry.

Instead of using a loop as the resonant circuit of Fig. 1, it is pos-
sible to make ¢ = R, and the loop becomes a pillbox (Fig. 12). This
structure may be simpler to fabricate. For this case, also from Fig. 4,
using the refractive indices of the previous example, we obtain

R
4 el
0.1 42
0.01 1,170
0.001 32,000

The pillbox resonator requires a 30 percent shorter radius than the ring
resonator., As before, if b is finite, the radii are [1 — (k;/k3) 2] times
longer than those in the last two tables.

PILLBOX RESONANT
AT \FE

Fig. 12— Channel dropping filter (pillbox type).
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3.3 Large Guides for Fiber Optics
The large guide is multimode, a/A > 1, and the radius for small
mode conversion is derived from equations (11) and (12), making
kma = 7 and kg = 27n,/A. Then
e 2
¢ = ™ 3Ep
For a power conversion ¢ = 0.01, and n; = 1.5, we have

a 4

A A

5 8,900
10 71,000

The conversion loss is many orders of magnitude larger than the loss
radiated by the fundamental mode because of the curvature. Radia-
tion loss of higher order modes can he found in equations (51) and
(63).

In general, clad fibers are of circular cross section; consequently
our calculations do not strictly apply. Nevertheless, a guide of cireular
cross section and another of equal area but square cross section must
have quite comparable attenuation per radian unless mode degen-
eracy occurs, but this is quite unlikely.

Though we have been talking throughout of light guides, it is
obvious that all the calculations are equally applicable to microwave
guides.

IV. CONCLUSIONS

Relations between radiation losses resulting from curvature, geom-
etry, and electric characteristics of the bent dielectric guide are sum-
marized in Figs. 4, 5, and 7 through 10 and they are discussed and
exemplified in Section III.

The main qualitative results are that for a given radius of curva-
ture R, the radiation loss can be reduced

(1) by increasing the difference between the refractive index n;, of
the guide and those of the media toward the outside, n3, and inside,
ns, of the curved guide axis (Fig. 2) ;

(%) by increasing the guide width a. Nevertheless, once a is bigger

than
(ﬁf_)*
‘f y
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(where A is the free space wavelength), there is little reduetion of the
loss;

(#7) by choosing the height of the guide large enough to confine
the fields as much as possible within the guide in the direction normal
to the plane of curvature.

In general, the radiation losses are small if

27 | & |1
R > \2 i

where & is the length over which the field decays by 1/e in medium 3
(Fig. 2).

Thin ribbons of glass, surrounded by air and oriented as in Fig. 6c,
operate better with the electric field perpendicular to the ribbon’s
plane. Choosing the thickness a = 0.055\, the attenuation of the
straight guide is 1 percent of the attenuation in glass, and the radius
of curvature which doubles that low attenuation is 20,000A.

The dielectric guide for integrated optical eircuitry seems suitable to
negotiate bends and to make resonant loops of small radii of curvature
and small radiation losses. For example, for

n, = 1.5

a = —A——Ei (single mode guide)
‘ My
“)n‘(l - Ei)
1

a 1 percent attenuation (0.087 dB) resulting from radiation in a length
of guide equal to R is achieved with the following values

|- a i
ny A A
0.1 0.745 30
0.01 2.36 1060
0.001 7.45 37000

The smaller n; — ng, the larger the radius of curvature. For A = 0.63,
if one wants to keep R below 1 mm, the difference between the internal
and external refractive indices must be larger than 0.01.

Large cross section dielectric guides capable of supporting many
modes are far more sensitive to mode conversions than to radiation
losses. For the fundamental mode, the power conversion loss at the
junction between a straight and a curved section of a multimode
guide is
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3 \2
o= (i) >
For n; = 1.5, @ = 6.3, and A = 0.63y, the radius of curvature K that

produces a power conversion ¢? of 0.01 is 45 mm. The radiation loss in
a length of guide equal to R is many orders of magnitude below 0.01.

APPENDIX

Field Analysis of the Curved Guide

Figure 2 shows the geometry and dielectric distribution of the curved
guide. In this appendix two families of modes are found, E;, and Ej;
each is studied separately.

A1 E;. Modes: Polarization Along

The field components in each region should be written as integral
expressions, but, as discussed in Section II, the power propagating
through the shaded areas is neglected, and the field matching is per-
formed only along the sides of region 1. Consequently, those field
components do not need to be so general. As a matter of fact, the
simplest field components in the mth of the five areas are'

g w1l OH. {
™k — Ky 0z 9y '
va = G—i»-’H—iwl
M J (k) — K)'ER + 2) + ] cos by + @) for m = |
, 2 72 4 g [ ; _2
- Mf.l,[[kf k,,ﬂ (R4 ) + -,b“ exp [?zk,,:y] for m = 4
M H® (k2 — KR + )] cos (k,ay + D) for m = 3
fuan[(k: - kﬁa)‘}(R + )] cos (b, y + 25) for m =5
?: v aHum
Ho =~ vz oy
_ . wn v
i
E:vm = Or
B = gt B (29)

ky — ki, oz ’
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in which M, is the amplitude of the field in the mth medium,; ¢, and .,
are constants that locdte the field maxima in region m; w is the angular
frequency; en? and g, the permittivity and permeability of each medium,
are related by k2 = k*n2 = w’eun?; k,. is the propagation constant
along y in medium m; and J, and H{® are Bessel and Hankel functions,
respectively.

Strictly speaking, the H, component in media 1, 2, and 4 should
be written as a sum of Bessel functions of the first and second kind,
but later on they are approximated by ecircular functions; therefore,
we do not make any mistake using only the Bessel function of the
first kind with an arbitrary phase constant in the argument.

We consider only guide geometries for which the guide wavelengths
measured in the z and y directions in medium 1 are large compared
with the wavelength measured in the z direction. This means that (7)

oH,.. v
F_(‘( =3 (30)
and, as a consequence, the field cyomponent H, is very small com-
pared with H, and is neglected; (#) the propagating modes are bas-
ically of the TEM type.
In order to match the remaining components along the boundaries
of medium 1, the field components in media 1, 2, and 4 must have the
same dependence along ¥, while the field components in media 1, 3,

and 5 must have the same dependence along y. Therefore

knl = kua = kyﬁ = ky ? (31)
ki — Ky = ks — ki = ki — ki, (32)
=Y =y, =y, and @ = Q = Q; = Q. (33)

Furthermore, the field matching yields the following four equations
from which two characteristic equations will be derived
".

_ ke SN Y
+ Q) =q-2 tan (I““Q Q) =1 k, (34)

tan (ls d k,

'."é

J(p13) _ P3 H:N(Pa) J.(p15) _ E_Jv(Ps)
To) ~ oo H (o0 ' 2™ o) = o Jien 8D

where

s = RO — KD + ¥, o= (R — o — E)' + w]r (36)
ps = R(G — K)', and oy = (B — @)k} — K-
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Similar to what happens with the straight guide, equations (34)
and (35) are the boundary conditions of two independent problems
far simpler than the one depicted in Fig. 2. Thus, for a dielectric slab
infinite in the = and z directions and with dimensions and refractive
indices as depicted in Fig. 13a, the boundary conditions for modes
with no E, component coincide with equation (34). Similarly, for a
bent slab infinite in the v direction as shown in Fig. 13b, the boundary
conditions for modes with a negligible H, component coincide with
equation (35).

The elimination of Q@ between the two expressions of equation (34)
yields the characteristic equation for the plane slab®®

B = gr — tan™ e A =, (37)
(- (G -1
Aﬂku A4ku
in which
iy, 3 D (38)

2 _ L2\4?

4 2(%l nf)
the tan™ functions are to be taken in the first quadrant, and the
arbitrary integer g is the order of the mode, that is, the number of
extrema of each field component within the guiding rod in the ¥
direction.

The transcendental equation (37) has an approximate closed form
solution already found in Ref. 10

, -1
]ﬂyg%(l+m+...) , (39)

i

— 1

(b)

Fig. 13 — Guiding dielectrie slabs.
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which is valid only when b is so large that

Aath e o 1 (40)
mh
and consequently the parenthesis is close to unity.
The field components in media 2 and 4 decay exponentially by 1/e

in lengths 7, and 54, which are deduced from equation (32) to be

(k] = = L”“)‘

Let us consider the solution of the characterlstm equation of the bent
slab (Fig. 13b). For guided modes, both the arguments and the order
of the Bessel and Hankel functions involved in equation (35) are large
compared with unity, and consequently they can be replaced by their
Watson's first term approximations,*

1 2 N3
g 1

J.(p) = #lg — ] S — )
(sin [L.,L-FE] for p>w

3
' 2 |
Yikel = “[ﬁ] -'

2 i
exp [g’ ; zp)] for »> p
v
These expressions are valid if

w- ‘ AUE @

=

or v>op

L (42)

2

14
( 3 pz); << 1. (43)
Introducing these approximations for the Bessel functions in both

equations (35) and eliminating ¢ between them, we obtain the char-
acteristic equation for the hent slab

1 2 2 23
? [(P?s - 1’2)1 - (,Pm -V )i]
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in which p is an arbitrary integer bigger than zero which determines
the order of the mode in the z direction, and the tan~ functions are
to be taken in the first quadrant.

Let us rewrite this equation substituting ps, ps, p1s, and pys by the
values given in equation (36) ; furthermore, let

A
A= 5 (45)
ofn? — n2}
< Aal —m)
v = kR (46)
and
k. = (k& — & — k)L (47)

Because of these two last definitions, k., k., and k, are the axial and
the transverse propagation constants at x = 0. The characteristic equa-
tion (44) then becomes

RE ( ggﬁ)*}
3% [1 U

i t
_a 2 _ g2y 72

— tan™! ”—E [1 R] s - e, : (48)
i . (1 - E) 0 — k)

2 R V. |

To solve this equation for k, we expand the left side and the second
tan~ in powers of 1/R and the first tan* in powers of the exponential.
Assuming R is large and keeping the first term of each perturbation
ealculation, the solution of equation (48) is

_ 2 k_a)
]c, - k:[)(l + ak,n =% :0 ] (4:9)
where
_ 1 (ma\"1l _1+2F
= ka (A) ®1+ Fy + F, (50)
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and
o8- () 2]
K [1 B (A_!_)] 7 _"___"_{ 3 [1 ( « I\ a1
o, k.u = 3 14+ F, + F, y
(51)
in which
.ns]n A, 1
F = |-® 8 ] 52
A k.ods| k,oA &2)
Ta 1 — 2 1—|1—-3|—2
= ™ n, [
2r°R 1 B°R
Podt — 200~ o
ko = (K — k2 — k)Y, (54)
and k.o is the solution of the equation
2 2
k.a = pr — tan™ 11% ——12—5 = tan"n—i _-—1—-2—!'
" -0 e -
k:OAﬂ kaAﬁ
(55)

This is the physical interpretation of equation (49): the trans-
verse propagation constant k, measured at * = 0 is made of three
terms. The first term, k.o, is the transverse propagation constant of
the guide without curvature; the second and third terms are perturba-
tions related to the change of field profile and radiation introduced by
the curvature. It is easy to find that ¢? is the mode conversion loss that
would exist at a junction between a straight guide and a curved one,
and e, 1s the attenuation coefficient of the curved guide.

The field components in media 3 and 5 decay almost exponentially
away from the guide. The length &, over which the intensity in medium
3 decays by 1/e, is derived as in equation (41) to be

S S 1
Pl ksl — ks — [ RZD

and only approximately

(56)

¢, 1 1
T ks | T G -E-TEDY

(57)
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All these equations have been derived under the assumption that
inequality (43) is satisfied; this means that the field configuration of
the curved guide is very close to that of the straight guide. In other
words, ¢ < 1. For a given R, if one chooses the width a of the guide
large enough, these inequalities are not satisfied, the previous results
are no longer applicable, and a new solution is needed. We proceed
to find it.

Let us assume as a limiting case that in Fig, 2

a=R. (h8)

The characteristic equation derived from the first equation of (35),
making ¢ = 0, is

2 g = 7’2' iy — )
(P_l_s&’#=(p——i)7r~tan’;ﬁ(ﬁ)
2 (¢ — o)}
.{1 + i exp [“‘5 @Tpi]} =

Following similar steps to those taken to solve equation (44), we
substitute pys, ps, and v by the values given in equations (36) and
(46) ; we obtain

R(kD)* _ (

k)"

~ Pr

- R krA\ |

4 Jnj_”””’{‘ i~ ()}

R
KA

The primes distinguish the symbols from those used previously.
To solve this equation we notice that for small losses it must be that

W
RS
& el

(60)

koA, « 1. (61)
™

Therefore, the tan~! can be replaced by its argument and the approxi-
mate solution of equation (60) is

o
ki = Ju[1 — % %7’%&] i (62)
where

i = N3 20
T o kR — )
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(- [ - ) )

(63)
Ko = (K — k2 — (e, (64)

, T MQZQT{ 1m[ 6 ]} -
ko = A, l: @’ L= 3n; Le'lp — D@’ ] | (85)

and
TR 92 23 k'R -
o’ (Ic o)zAn = 2(n; — ngy) AR (66)
The field components outside the guide decay to 1/e in a length
1 1
8= 7 == 7 g 67
S DA R Ty AL o0

A.2 B Modes: Polarization Along y

The field components and propagation constants ean be derived from
those in Section A.1 by changing ¥ into H, u into —¢, and vice versa.
Except for their polarizations, the E, and E*, modes are very similar.

The formulas equivalent to equations (37) and (41) are

2 o
ki'b = — tan™' % 12 . — tan™' 4 ‘—l_g— n
L ™ ? L T 4
I"Z‘? -1 ‘441(::’ - I
(68)
1 1

n' = : (69)
| kLs K — k2 — )
R LS B Gl O
The double prime distinguish these symbols from those used before.
The equivalent formula to any of those between equation (45) and
(67) can be derived from that formula by substituting the ratio of
refractive indexes by unity, but leaving the differences between squares

of indexes unchanged. For example, the formula equivalent to equation
(52) for E*, modes is

A, 1
o= b ‘ — . 70
h‘j' ‘ I\';G; 3 2 nx k:oAa A ( )
ra 1 — A l— 1 == <
L T 1’11 ks
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A Circular-Harmonic Computer Analysis of
Rectangular Dielectric Waveguides

By J. E. GOELL
(Manuseript received April 8, 1969)

This paper describes a compuler analysis of the propagating modes
of a rectangular dielectric waveguide. The analysis is based on an expansion
of the electromagnetic field in terms of a series of circular harmonics, that is,
Bessel and modified Bessel functions multiplied by trigonometric functions.
The electric and magnetic fields inside the waveguide core are matched to
those outside the core at appropriate points on the boundary to yield equa-
tions which are then solved on a computer for the propagation constants and
field configurations of the various modes.

The paper presents the results of the computations in the form of curves of
the propagation constants and’as computer generated mode patterns. The
propagation curves are presented in a form which makes them refractive-
tndex independent as long as the difference of the index of the core and the
surrounding medium is small, the case which applies to integrated optics.
In addition to those for small index difference, it also gives results for
larger index differences such as might be encountered for microwave appli-
cations.

I. INTRODUCTION

It is anticipated that dielectric waveguides will be used as the
fundamental building blocks of integrated optical circuits. These wave-
guides can serve not only as a transmission medium to confine and
direct optical signals, but also as the basis for circuits such as filters
and directional couplers.* Thus, it is important to have a thorough
knowledge of the properties of their modes.

Circular dielectric waveguides have received considerable attention
because circular geometry is commonly used in fiber optics.2* In many
integrated optics applications it is expected that waveguides will con-
sist of a rectangular, or near rectangular, dielectric core embedded in
a dielectric medium of slightly lower refractive index. The modes

2133
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for this geometry are more difficult to analyze than those of the me-
tallic rectangular waveguide because of the nature of the boundary.

Marcatili, using approximations based on the assumption that most
of the power flow is confined to the waveguide core, has derived in
closed form the properties of a rectangular dielectric waveguide.® In
his solution, fields with sinusoidal variation in the core are matched
to exponentially decaying fields in the external medium. In each
region only a single mode is used. The results of this method are
obtained in a relatively simple form for numerical evaluation.

The properties of the principal mode of the rectangular dielectric
waveguide have been studied by Schlosser and Unger using a high-
.speed digital computer.” In their approach the transverse plane was
divided into regions, as shown in Fig. 1, and rectangular coordinate
solutions assumed in each of the regions. The longitudinal propagation
constant was then adjusted so that a field match could be achieved
at discrete points along the boundary. This method gives results
which, theoretically, are valid over a wider range than Mareatili’s,
but with a significant increase in computational difficulty. One short-
coming of the method is that for a given mode, as the wavelength
increases the field extent increases, so, in the limit it becomes increas-
ingly difficult to match the fields along the boundaries between regions
[1] and [2] and between regions [2] and [3].

A variational approach has been undertaken by Shaw and others.*
They assume a test solution with two or three variable parameters
in the core. From this test solution, the fields outside the core are
then derived and the parameters are varied to achieve a consistent

REGION [[1]

REGION [2A] |REGION[28]| REGION [2C]

REGION [3]

Fig. 1 — Matching boundaries for rectangular mode analysis.
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solution. This approach, like that of Schlosser, requires involved com-
putations. Also, it has the disadvantage that the test function must
be assumed in advance. In addition, some of his preliminary results
do not show the proper behavior for the limiting cases (waveguide
dimensions which are very large or very small compared with the
wavelength).

In the present analysis the radial variation of the longitudinal
electric and magnetie fields of the modes are represented by a sum
of Bessel functions inside the waveguide core and by a sum of modi-
fied Bessel functions outside the waveguide core. Solutions are found
by matching the fields along the perimeter of the core. Thus, the
matching boundary is not a function of the waveguide parameters,
so the computational complexity does not increase with wavelength.

Section IT discusses the underlying theory of the circular-harmonic
analysis of rectangular dielectric waveguides. This is followed by a
deseription of computational techniques and special graphical methods
of presentation used. Section III is divided into three parts, the first
describing the aceuracy of the computations, the second deseribing
field patterns, and the third presenting propagation curves.

II. DERIVATION OF EQUATIONS

The waveguide considered here consists of a rectangular core of
dielectric constant, ¢, surrounded by an infinite medium of dielectric
constant, ¢ . Both media are assumed to be isotropic, and have the
permeability of free space, uy. Figure 2 shows the coordinate systems
(rectangular and eylindrical) and rod dimension used in this paper.
The direction of propagation is in the 4z direction (towards the
observer). ’

In cylindrical coordinates the field solutions of Maxwell’s equations
take the form of Bessel functions and modified Bessel functions mul-
tiplied by trigometric functions, and their derivatives. In order for
propagation to take place in the z direction, the field solutions must
be Bessel functions in the core and modified Bessel functions outside.
Since Bessel functions of the second kind have a pole at the origin
and modified Bessel functions of the first kind a pole at infinity, the
radial variation of the fields is assumed to be a sum of Bessel func-
tions of the first kind and their derivatives inside the core and a sum
of modified Bessel functions and their derivatives outside the core.

In cylindrical coordinates, the z components of the electric and
magnetic fields are given by
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E. = i @ () sin (16 + .) exp [i(k.z — wi)] (1)
and
Hy = 3 buJo(hr)sin (0 + ) exp [ithie — wh)] (1b)

ingide the core, and by

I

3 6K (o) sin (08 + ) exp [i(kz — wh)] (1¢)

n=0

E.o

and

Ho= 3 d.E.Gn)sin 00 + ¥) exp ik —wf)]  (1d)

n=0
outside the core, where w is the radian frequency and k, the longitudinal
propagation constant. The transverse propagation constants are given
by
ho= (k= k! (22)
and
p = (k: — ko) (2b)

where &, = w(uoe,)? and ky = w(uoeo)!. The terms J, and K, are the nth
order Bessel funetions and modified Bessel functions, respectively, and
¥, and ¢, are arbitrary phase angles.

The transverse components of the fields are given by®

_ ik [2E (m) ﬂf_]
E=p_ kf[ar T kx/ 06y (3a)
€o
Y
% H
“ ot %
= | B b
x I
|
v
e ——— —— — 8~ —————

Fig. 2 — Dimensions and coordinate system,
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_ ik, [10E, _ (u-w) ﬁ}
B = _ k2 l:r a0 k./ or k)
_ ik, k? ) JE, gg]
B = B -k [_(p_“mlﬂ,r ae + or 3¢)
ik. K \oE. , 14H.
M = R [(,uuwk) T ] : @d)

where k can be either k; or k.
Finally, the component of the electric field tangent to the rectang-
ular core is given by

E, = +(E,sin 6 + E, cos 6) — 8k % @55 (4a)
r—f. <0<z 0.
or
E,= +(—E, cos§+ Eysinf), 6. <8 <7 — 8, (4b)

r+ 0. <0< —80,

where 8, is the angle which a radial line to the corner in the first
quadrant makes with the z axis. Similar expressions exist for the
tangential magnetic field.

2.1 Effects of Symmetry

Since the waveguide is symmetrical about the z axis the fields
must be either symmetric or antisymmetrie about this axis. This is
true because the structure is invarient under 180° rotations and there-
fore the field patterns must be invarient under a 180° rotation, except
for sign. From this and the fact that d/d8 appears in each of equations
(3), it is evident that two types of modes must exist, the first type
with ¢» = 0 and y,, = =/2 and the second type with ¢, = =/2 and
Yn = .

Similarly, the field functions must also be symmetric or anti-
symmetric about the y axis. Suppose, for example, E., exhibits a sinu-
soidal angular dependence about § = (E., is odd about the = axis).
Then, letting « = # — =/2, equation (1c) can be put in the form

-]

E,, = ) c.K,(pr)(sin na cosnr/2 + cos na sin nr/2). (5)

n=0

For K. to be purely symmetric about « = 0 (the y axis), all n must
be odd; for E.; to be antisymmetric about « = 0 all » must be even.
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Since similar results apply for cosinusoidal variation of E. about
6 = 0, and all other field functions as well, any given mode must
consist of either even harmonics or odd harmonies.

From the preceeding analysis it is evident that if the matching
points are selected symmetrically about both the z and y axes, then,
except possibly for sign, every point will have an equivalent point
in each quadrant. Therefore, the field matching need only be per-
formed in one quadrant. Thus, the use of the symmetry of the struc-
ture not only reduces the number of constants required to caleulate
the properties of a given mode by a factor of four, it also decreases
the number of points to achieve a given degree of accuracy by the
same factor.

2.2 Selection of Matching Points

As mentioned in Section 2.1, the matching point locations should be
symmetrical about the z and y axes. For the odd harmonic cases, the
points used to compute the results to be presented in Seetion III were
b, = (m — 1/2)w/2N; m = 1, --- , N, where N was the number of
space harmonics.

The choice of points for the even harmonic cases was more complicated
since simultaneous existence of an n = 0 harmonic for both the TE and
TM circular modes is inconsistent with the waveguide symmetries.
Thus, if the maximum # for both the TE and TM solutions are equal,
the total number of coefficients to be found will be 4N — 2 rather than
4N as in the previous case.

The method of choosing points for the even harmonic modes used for
the computation of the results of Section ITT was to pick the points
for the field components with even symmetry about 8 = 0 to be 6,, =
(m — 1/2)x/2N;m = 1,2, .-+ , N, and for the field components with
odd symmetry about 8 = 0 to be 6, = (m — N — 1/2)x/2(N — 1);
m=N+1,N+ 2 -+, (2N — 1) for cases with unity aspect ratio,
(a/b = 1). For aspect ratios other than unity, all points were chosen
according to the first formula, except that the first and last points for
the odd z component were omitted.

2.3 Formulation of Matrixz Elements

The coefficients of equation (1) were found by matching the tan-
gential electric and magnetic fields along the boundary of the wave-
guide core. Since each type of field consists of both longitudinal and
transverse components, four types of matching equations exist.

To facilitate computer analysis the matching equations were put in
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matrix form. The matching equations in matrix form for the longi-
tudinal field components are

K4 = BEF°C (6a)
for the electrie field and
o*3 = %D (6b)
for the magnetic field. For the transverse fields the matrix matching
equations are given by
E™A + E™B = E"°C + E™D (6e)
for the electric field and
H™A 4+ H™B = H™°C + H™D (6d)

for the magnetic field. The 4, B, C, and D matrices are N element
column matrices of the a,, b,, ¢,, and d, mode coefficients, respectively.
The elements of the m X n matrices E**, E*¢, H"*", H"", E™, E™",
E™ E™ H™ H"™, H" and H"” are given by

ekt = J8, (7a)
et = K8, (7b)
hEP = ¢, (7¢)
Wi = KC, (7d)
erd = —k(J'SR + JCT), (Te)
emn = koZo(JSR + J'CT), ()
er¢ = k(K'SR + KCT), (7g)
el? = —k,Z(KSR + K'CT), (7h)
hI2 = eko(JCR — J'8T)/Z, , (7)
hmi = —k(J'CR — JST), @5
hIE = —ko(KCR — K'ST)/Z, , (7k)
hI? = k,(K'CR — KST), (71)
where
Zy = (#u/én)é.
& = &/,
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8 = sin (nem+¢);_ o P=0
' = cos (nb,, + ) e = /2
J = J.(hr.), K = K, (pr.),
J = Jihr,), K' = Iif.’.(pr,..).
o2 g K
and
R = sin 6, R = —cos #,,
T = cos 8, 8 <8é,, T = sin 6, 6> 6. .
rm = (a/2) cos BJ rm = (b/2) sin eJ

For 6 = 0, , the boundary at the corner was assumed to be perpendicular
to the radial line connecting it to the origin, so for this case B = cos (6.,
+ x/4), T = cos (8,, — =/4), and r, = (a® + b*)}/4.

2.4 Mode Designation

Unlike metallic waveguides, the field patterns of dielectric wave-
guides are sensitive to refractive index difference, wavelength, and
aspect ratio. This complicates the problem of finding a reasonably
descriptive mode designation scheme.

For rectangular metallic waveguides, the accepted approach is to
designate the modes as TE (or H) and TM (or E), and to specify
the number of field maxima in the 2z and % directions with a double
subseript. When there is no variation the subscript 0 is used.

Since the rectangular dielectric waveguide modes are neither pure
TE nor pure TM, a different scheme must be used. The scheme adopted
is based on the faet that in the limit, for large aspect ratio, short wave-
length, and small refractive index difference, the transverse electric
field is primarily parallel to one of the transverse axes. Modes are
designated as EY, if in the limit their electric field is parallel to the y
axis and as E7, if in the limit their electric field is parallel to the z axis.
The m and n subseript are used to designate the number of maxima
in the « and y directions, respectively.t

t This scheme agrees with that used by Marcatili in Ref. 6.
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2.5 Electric and Magnetic Field Function Differences

For a hollow metallic waveguide where pure TE and TM modes
can exist, it is evident from equation (3) that E, and Hy have similar
transverse variations as do £y and H,, so that the impedance is in-
dependent of position. Furthermore, the transverse electric and mag-
netic fields are perpendicular and the power flow, Re {E X H*}, does
not change sign anywhere across the waveguide.

By examination of equation (3), it is clear that for the mixed modes
of the dielectric waveguide, the field functions are not similar and the
impedance is a function of position. In order for the transverse fields
E, and H, to be perpendicular,

E,'H, = E,H, + Equ = 0. (8)

Now, from equation (3)

X k: — k' (oH,o8E, , 1 0H, dE,
Byl =5 (&r ar 1 a6 ae)' ©
Thus, E; and H, are not necessarily perpendicular. Finally, since the
transverse variations of E, and H, are not the same, the electric field
and magnetic field ean change sign at different points, which results in
negative power flow.!

Three speecial cases exist where the electric and magnetic fields, and
the impedance, have the same positional dependence, and where the
power flow does not change sign across the waveguide:

(7) in one of the regions if the propagation constant is approximately
equal to the bulk propagation constant of that region, that is, if k ~ k,
ork~k,

(#%) everywhere in the limit for small refractive index difference,
since ease ¢ will then hold in both regions, and

(#7) everywhere for circular symmetry of both the structure and the
modes.

+

2.6 Normalization

The arguments of the Bessel and modified Bessel funetions are given
by hr = (k2 — k) and pr = (k* — k2)*r, respectively. The first argu-
ment can be put in the form

hr = [k2 — K2 — p*hr. (10)

t This unusual property has also been observed for helices® Presumably, if
loss were included there would be a radial component of power to feed the re-
verse flow, and the lossless case can be thought of as the limit of the lossy case.
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Letting
2
o= L (1)
and
R = rko(n® — 1)}, (12)
where
n, = (ki/ko)* (13)
is the index of refraction of the core relative to the outer medium, gives
pr = PR (14)
and
hr = ®(1 — @9 (15)

The curves of the propagation constant given in Section III are
drawn in terms of ®* and ®, where
& =20 ny — 1)} (16)
Ao
and N, = 2r/k, . Since @ is proportional to 1/(n? — 1)} and @ and ®
are proportional to (n? — 1)} the use of ®* and ® as plotting variables
eliminates the explicit dependence of the Bessel and modified Bessel
funetion arguments on the refractive indices of the media.
Examination of the matehing equations, equations (6), reveals that
¢, appears in the H™* term. However, since ¢, appears as a multiplicative
factor in H™, for sufficiently small values the normalized propagation
constant, @°, is independent of ¢, .
The normalized propagation constant, ®*, has two additional prop-
erties which make its use convenient. First, its range of variation is on
the interval (0, 1). Second, for n, =~ 1,

2 k:/ku = 1
¢ = B (17)

where An, = n, — 1; so for small n, , ®° is proportional to k, — k, . The
latter property is the reason that ®* rather than @ was used as a plotting
variable.

2.7 Method of Computation

2.7.1 Propagation Constant

Equation (6) yields 4N simultaneous homogeneous linear equations
for the a,, b,, ¢, and d, for the odd modes and 4N-2 equations for
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the even modes, using the matching points previously deseribed. The
equations can be combined to form a single matrix equation

[QIT] = 0, (18)
where

E* 0 —E* 0
0 H*" 0 —H"?
ETA pTE  _gTc _ ptD
g4 gre _pgre _Hmj
and the column matrix

A

B .

C

D |

All of the quantities in the matrices [@] and [T] are themselves ma-

trices as defined by equations (1), (6), and (7).
In order for a nontrivial solution to equation (18) to exist

Det [Q] = 0. (19)

The normalized propagation constant, ®°, was found by substituting
test values into equation (19). First, values of @ evenly distributed in
the interval (0, 1) were substituted to erudely locate the roots. Then,
Newton’s method was used to find the roots to the desired accuracy."
Generally, one Newton approximation was used to find ®° for the prop-
agation eurves and about ten Newton’s approximations when ¢° was
to be used to calculate field plots.

Both the simple method of triangulation'® and the more complicated
Gauss pivotal condensation method' were used to evaluate the deter-
minant, the former for almost all cases and the latter for a few cases
when roundoff error was apparent because the value of the determinant
was not a smooth function of ®”. In all cases double precision arithmetic
was used. For five space harmonies, about 0.1 second of IBM 360/65
computing time was required for each value of ®* to evaluate the deter-
minant using the triangulation method.

Due to the wide dynamic range of the coefficients, steps had to be
taken to prevent underflow and overflow of the computer and to re-

[T] =
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duce the effects of roundoff. Multiplying a row or column of the ma-
trix by a finite constant is equivalent to multiplying the determinant
by that constant. Thus, any row or column of the determinant can be
multiplied by a positive function without shifting its zeroes.

A detailed theory giving the “best functions” can be derived. How-
ever, since a “brute force” method was used, the more sophisticated
method, which was not used because it would have required a substan-
tial increase in the complexity of the program logie, is not discussed.
It was found that multiplying the Bessel function terms by h*d/|J, (hb) |
and the modified Bessel function terms by p?d/k.(pb), where d is
the average of the waveguide dimensions, kept the variation of the
terms “under control.” A further simplification was made by setting
Zo to unity, which does not shift the zeroes of the determinant be-
cause if the H; rows are multiplied by Z,, then if Z, appears in a
column, it will appear in a similar manner in every element of the
column.

2.7.2 Mode Configurations

The electric and magnetic fields were calculated for representative
cases from equation (3). To find the a,, by, ¢, and d, coefficients,
k. was first found from equation (19). Its value was then substituted
into equation (18). By setting one of the elements of the T column
matrix to unity, all of the other elements were then found by standard
matrix techniques.*®

Several approaches were used to obtain information that could
be used to derive the field patterns. These included computation of
the field components along radial cuts of the waveguide cross section,
computer generated isoclines giving the direction of the electric field,
and computer generated mode pictures.

The isoclines and pictures were drawn using a simulated Stromberg
Carlson SC-4020 cathode ray tube plotter, which is capable of gen-
erating points and lines on a 1024 X 1024 grid.! A single quadrant
was used for the isoclines and intensity picture since the results for
all quadrants are identical except for orientation. In general, the di-
mensions were scaled so that the long dimension of the rectangular
waveguide core extended over 80 percent of the displayed width. All
figures were plotted at the points (20m, 20n), where m and n take on
all integer values from 0 to 49.

Isocline drawings were made by drawing a line at each of the co-
ordinate points parallel to the electric field at that point (all lines

t An SC-4060 plotter was used to simulate the SC-4020 plotter to take advan-
tage of previously existing programs.
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had the same length). The isocline drawings were used as working
tools to derive the field line drawings in Section III.

In order to draw pictures of mode patterns, the power density was
calculated at each of the points to be plotted. The square root of the
power density was then normalized to the square root of the peak
power density and quantized into 21 levels. About each point in the
picture, a portion of the figure shown in Fig. 3 was then plotted,
starting at 1 and going to the point corresponding to the appropriate
quantized level (except at the points where the quantized power
was zero where no plotting was done). Since the size of the cathode
ray tube spot is approximately equal to the line spacing in the figure,
the plotted figures are filled in. Therefore, the light passed by these
figures is approximately equal to the power density to be represented.
For small index difference, since the power density is proportional to
the square of the transverse electrie field, the dynamic range of the
pictures (in terms of the electric field) is 400.

Starting with the single quadrant pictures, complete pictures were
generated by making quadruple exposures of the microfilm. In general,
about 30 to 60 seconds of IBM 360/65 computing time were required
for each picture.

III. RESULTS OF COMPUTATION

This section gives the computed results. Section 3.1 discusses ac-
curacy. This is followed by a discussion of field plots and mode

1o L
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Fig. 3 — Intensity picture figure.
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TasLe I—SampLE Accuracy RESuULTS

2
Number of @

Harmonics Used SEEN S S S

a/b=1 a/b=2 a/b=3 a/b=4

3 0.714 0.811 0.820 0.828

4 0.713 0.811 0.820 0.819

5 0.715 0.808 0.819 0.813

6 0.714 0.808 0.822 0.820

7 0.715 0.808 0.820 0.813

5 0.715 0.807 0.820 0.814

9 0.715 0.807 0.823 0.815

Variation 0.2% 0.4% 0.4% 1.59%

pictures in Section 3.2. Finally, curves of the propagation constant for
a variety of conditions are presented in Section 3.3.

3.1 Accuracy

Numerous test runs were made in order to obtain an estimate of
the accuracy of the computed results. The results of several of these
runs are given in Table I for the first mode with & = 2. The numbers
at the bottom of the table represent the total variation for a given aspect
ratio taken as a percentage of the full range possible (one).

For small aspeet ratios, it is clear that the convergence is very rapid.
However, for larger aspect ratios the convergence is not as good. For
example, the variation for an aspect ratio of four is 1.5 percent (taken
as a percentage of the full range of variation). For this case, from the
table and from the limit for infinite aspect ratio' which is an upper
bound for ®°, it appears the error is about 3 percent. This error is
achieved with a relatively small number of harmonics and can only
be improved by using a prohibitively large number of harmonics on a
computer which carries more significant digits than the one which was
available for this study. However, since solutions exist for an infinite
aspect ratio, the decrease in accuracy for the large aspect ratio of the
circular-harmonic method is not a serious problem.

Computations similar to those for Table I were performed to ob-
tain an estimate of the upper bound of the accuracy of the cases pre-
sented in Section 3.3. From these calculations, it is believed that all
of the data to be presented in the following sections is accurate to
1 percent, except for the results of caleulations using even harmonics
for aspect ratios other than unity which are believed to be accurate
to better than 2 percent. In general, accuracy decreases as the mode
order increases, although not monotonically.
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The results of the ecireular-harmonic analysis and of Mareatili’s
analysis agree.® In the regions where his method and the circular-
harmonic method are both theoretically valid, the agreement is well
within the tolerances given above. To avoid duplication, the reader is
directed to his curves for a comparison.

The effect of the number of harmonics used in the field patterns is of
some interest. This question has not been explored in great detail;
however, a few comparisons of intensity pictures for different numbers
of circular harmonics were made. In general, it was found that five
harmonics were sufficient to give a good representation of the modes
that this paper presents. An example of this is given in Fig. 4, comparing
the E¥, mode intensity patterns for five and nine harmonies. For the
results which follow, five circular harmonics were used.

3.2 Mode Configurations

Figure 5 shows intensity pictures for the first six modes for unity
aspect ratio, ® = 3, and an index difference of 0.01. Figure 6 gives
similar data for an aspect ratio of two and ® = 2. For both, the plots
are arranged in ascending order of cutoff frequency. All of the pietures
are for E¥,, modes. These pictures are virtually indistinguishable from
the corresponding EZ,, modes so both sets are not presented. In general,
for small index differences the E¥, and EZ, can be considered to be
near duals, that is, to have identical field patterns except that the
electric and magnetie fields are interchanged.

The field distribution patterns for the modes of Figs. 5 and 6 are
more complicated than those for the rectangular metallic waveguide

Fig. 4 — Intensity for the EY, mode for a/b = 2, ® = 2, and An, = .01: (a) for
five harmonies and (b) for nine harmonies.
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Fig. 7— Tield configuration of the EY, mode.

since they extend beyond the waveguide boundary and, in general, their
shape is dependent on waveguide parameters other than shape. The ET,
and £}, modes have the simplest field patterns. Figure 7 shows the elec-
tric and magnetic field orientations for the £}, mode. In this figure and
the following ones, there are heavy lines in the regions of high field inten-
sity and light lines in regions of low field intensity. Only EY, modes are
shown since the E7,, modes can be obtained by interchanging the electric
and magnetic field vectors.

Figure 8 shows the field lines for the £}, and EY, modes for a large
aspect ratio. (For a/b — o the fields have the appearance of rectangular
metallic waveguide modes.) However, as the aspect ratio approaches
unity, the EY, and E3, modes and the £, and E7, modes couple and
shift to the patterns shown in Fig. 9. Most of the change takes place
with the aspeet ratio close to unity.

Tigures 10, 11, and 12 show the field configurations for the £}, mode,
the Ej%, mode, and the FY, mode, respectively. The field patterns of
these modes do not change drastieally with the aspect ratios.

Figure 13a shows an intensity picture of the E%, mode and Figure

F e e I e o

(a) (b)

Fig. 8—TField configurations for the (a) E%, and (b) EY, modes far from cutoff.
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Fig. 9 — Field couﬁgufﬂtions for the square (a) E¥, and (b) EY, modes.

13b its field pattern for unity aspect ratio. The field pattern inside the
core is similar to a sum of the T'E,; and TE,, of metallic waveguide,
shown in Fig. 13c and d, respectively. Figure 13a demonstrates that the
circular-harmonic analysis can generate complex field patterns with
a relatively small number of harmonies.

Figures 14 and 15 show the variation of the intensity distribution with
®* for the EY, and E% modes, respectively. As one would expect, for
small values of ®* the radial extent of both modes increases very rapidly
as @ decreases. It is of significance, however, that most of the energy is
contained within the waveguide core, even for relatively small values
of ® and An. Thus, Marecatili’s assumption that very little energy
propagates in the region of the corners is valid over a wide range.

3.3 Propagation Curves

In all cases of computed propagation curves, the normalized wave-
guide height ®, as given in equation (11), is plotted on the horizontal

Fig. 10 — Field configuration of the E%, mode.
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ahth

Fig. 11 — Field configuration of the Ej, mode.

axis and the normalized propagation constant, ®*, given in equation (16),
along the vertical axis.

Figure 16 shows the case of vanishing index difference for an aspect
ratio of one. The first 16 modes are shown. For this case the following
six degenerate groups exist

v T
11 11

B, , By, B2 B

E; i

31 13

E; H
a1 1 13
£ v
22 22

Ei: Bz, Bz By .
In addition, the E% and the Ej, modes are almost degenerate except

Fig. 12 — Field configuration of the EY; mode.
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Fig. 13 — The E%, mode for unity aspect ratio: (a) intensity, (b) field configura-
tion, (¢) T'Es, and (d) TE.;.

near cutoff. The splitting of these modes can be accounted for by the
differences of the field patterns shown in Fig. 11 and 12. Since the Ej,
mode reversals occur along the direction of the electric field lines, the
electric field for this mode must have a larger longitudinal field com-
ponent than for the E}, mode.

All degeneracies, except the E%, — E},, are broken by a change
in the aspect ratio as demonstrated in Fig. 17, which is drawn for
the first 12 modes of a waveguide of aspect ratio 2. One interesting
feature of this curve is the mode crossing of the E%, and EY, modes.
Crossings of this type, which cannot occur in metallic waveguides, are
possible because the field functions are frequency dependent. Qualita-
tively, it can be explained by noting that field reversals must take place
in the core, therefore constraining the central lobe of the E%, more than
any of the EY, mode lobes as cutoff is approached. Far from cutoff,
however, all fields are well constrained and the Ej, mode has a larger
propagation constant than the EY, mode, as it does for the similar
metallic waveguide mode with an aspeet ratio of 2.

The effect of finite index difference on the modes can be observed by
comparing Fig. 16, which is computed for unity aspect ratio and a
vanishing index difference, with Fig. 18, which is computed for unity
aspect ratio and a 0.5 index difference. The curves for modes whose
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0.50,

0.81, (b) & =

Fig. 14 — Intensity pictures of the EY; mode for (a) ®2

and (c) ®* = 0.02.
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Fig. 16 — Propagation curves for the first 16 modes for unity aspect ratio and
An, — 0.

field lines reverse direction across the origin are no longer degenerate,
but those whose field lines do not reverse still are degenerate. For all
degeneracies to be split, there must exist a finite index difference as well
as an aspect ratio other than unity. Figure 19 illustrates one such case.

The effect of index difference on the degenerate principal modes for
unity aspect ratio is examined in Fig. 20. The curve shows both a low
and high index difference limit. In the range of interest for optical

1.0
- eSh, E5-1
E3i, Ezy~ S "1 _._.-:«--"'""_-_
0.8 - Y A —
e —
0.6 7 A 1 y x|
: / = | = ~Ejz2, Ei2
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N
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o] 0.4 (eX:} 1.2 1.6 2.0 2.4 28 3.2 3.6 4.0

®

Fig. 17 — Propagation curves for the first 12 modes for a/b = 2 and An, — 0.
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Fig. 18 — Propagation curves for the first 16 modes for unity aspect ratio and
Ane, = 0.5.

cirecuits (0 — 0.1) the vanishing difference curve is an excellent ap-
proximation. The greatest changes occur in the 0.1 — 10 range, which
is the range of interest for some microwave problems.

Figure 21 presents the computed results for the effect of index changes
on the principal modes for an aspect ratio of 2. The effect is much
stronger on the EY, mode than the E7, mode. In fact, the effect on the
E?, mode is comparatively small, except near cutoff.

The effect of aspect ratio on the principal modes is demonstrated for

1.0 I

= ?\ N

7 Eﬁ"é E3i~
SRRV 'S V.
/,

L (
02 / 4 !

N

0.8

N\

Fig. 19 — Propagation curves for the first 12 modes for a/b = 2 and An, = 0.5.
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Fig. 20 — EY, and E7, mode propagation curves for several values of An, with
unity aspect ratio.

vanishing index difference in Fig. 22. The curve for infinite aspect ratio
was obtained from the exact analysis of the slab case.'

IV. CONCLUSIONS

The results of the computations show that the eircular harmonic
method for analyzing rectangular dielectric waveguides gives excel-

%Eﬁ.
[—
] e —
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Fig. 21 — BY, and E}, mode propagation curves for several values of An, with
a/b = 2. !
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Fig. 22 — E?, and E7, mode propagation curves for several values of a/b with
Any — 0.

lent results for waveguides of moderate aspect ratio. The convergence
of the computed results was rapid and the results are in agreement
with those of Marcatili’s in the regions where his approximations ap-
ply. Furthermore, the results ecompare very well with Schlosser’s
curves for the principal mode.

Comparison of the results presented here with Marcatili’s show that
the two methods give values of the normalized propagation constant,
@, which are within a few percent for @ > 0.5. Thus for @ in this
range his method is to be preferred since the caleulations required are
much simpler. However, for ® < 0.5, and when it is desired to dif-
ferentiate between modes for some of the near degenerate cases, an-
other method must be used.

The cireular harmonic analysis is attractive for small @ because of
the nature of the matching boundary. For large refractive index dif-
ference and moderate ®* both the method presented here and the one
presented by Scholosser can be used.
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Improved Relations Describing Directional
Control in Electromagnetic Wave Guidance

By E. A. J. MARCATILI and S. E. MILLER
(Manuseript received January 22, 1969)

The direction-changing capability of electromagnetic waveguides may be
limited not only by mode conversion but also by radiation if the transverse
field extends indefinitely into a freely propagating region. This paper gives
new, more accurate expressions for the permitted bending radius with respect
to mode conversion, using coupled-wave theory lo calegorize the wide variety
of transmission media possible. This paper also makes a suggestion for
estimating the permitled bending radius when radiation 7s a limitation. In
single-mode “open” waveguides that have transverse fields extending in-
definitely into a freely propagating region (such as a dielectric waveguide),
the permiited bending radius is limited by radiation effects, whereas in
either the open or completely shielded multimode waveguides, the permitted
bending radius 7s usually limited by mode conversion.

I. INTRODUCTION

It is useful to be able to characterize the direction-changing capa-
bility of electromagnetic waveguides without detailed knowledge of
the waveguiding structure. The first work in this area was reported
by Miller in 19641 A direction-determining parameter Ry, was
defined

a
a

. 1

Rllllﬂ 4h- ( )
in which R, is a bend radius, a is the full transverse width of the
field distribution, and A is the wavelength in the medium in which the
waveguide is embedded.* For bend radii longer than R, Ref. 1 in-
dieates that wave propagation is virtually as in a straight guide; at
radii less than R,;, something drastic happens. Just what changes
m that we have redefined a here; in Ref. 1 the full transverse width of
the field distribution was 2a.

2161
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occur in a straight guide depends on the nature of the medium in
detail; for hollow conducting guides the change is large mode conver-
sion and for beam transmission in a sequence of infinitely wide lenses
the change is also mode conversion appearing as a wide oscillation
of the beam about the nominal axis of propagation.

Following similar lines of thought, a parameter

2 1>

2

6max -
is given to describe the transition region between essentially normal
wave propagation and the region of drastic changes for abrupt angular’
changes in direction.! The only restriction on these order of magnitude
direction-determining parameters given in Ref. 1 is the exclusion of
degeneracy between the used mode and some other mode coupled by
the direction change. It is well known that such a degeneracy results
in complete loss of signal for certain lengths of bent guide regardless
of the bending radius, and that removal of the degeneracy by dis-
sipative or reactive means can in principle make the bend loss as
small as desired.**

In recent studies of bend losses in dielectric waveguides, Marcatili
found a serious disagreement hetween the implications of equation
(1) and the bend losses predicted by analysis of the particular wave-
guiding structure.® For an “open” waveguide—that is, one in which
the transverse field decays exponentially in a transverse plane but ex-
tends to great distances—he found that the bend radius required for
tolerable losses was much larger than given by equation (1) and it
followed a different law with relation to @ and A when only one mode
could propagate.

It is now clear that two components of bend loss must be considered:
the dissipative loss (resulting from either radiation or coupling to a
high-loss undesired mode) for the normal mode of the bend region
characterized by an attenuation coefficient «,, and the mode conver-
sion loss P, for the straight-guide mode on entering and leaving the
curved region. If mode transformers were used at the ends of the
curved region (impractical for oceasional bends in most transmission
situations), the mode conversion loss would be zero and any bend R
would be acceptable from that eriterion.

Equation (1) relates to the mode conversion loss; it fails to give a
correct estimate when dissipative loss is important. The permitted
bend radius B must be assessed with respect to dissipative loss as
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well as mode conversion loss; Section IT gives relations which make
this possible. Improved forms of equations (1) and (2) have also been
derived which explicitly relate the maximum conversion loss to the
bending radius for the generalized electromagnetic waveguide. The
added quantitative factor should provide greater usefulness since the
improved relations not only identify the transition region between
virtually straight-guide behavior and violent changes, but also give
detail about the transition. Section III gives these results and the
appendices give the derivations.

II. RADIATION FROM CURVED OPEN WAVEGUIDES

Figure 1 shows a representation of an open waveguide. The shaded
wave-guiding region has an effective index of refraction larger than
that of the surrounding region, resulting in a transverse field distribu-
tion for the guided mode F(x) which decays exponentially but re-
mains finite. To derive a generalized expression for radiation loss as
a function of bending radius R, we visualize this as a two-dimensional
guide with an isotropic surrounding region capable of supporting a
free-space radiating wave. We note that at some transverse distance
x, the maintenance of a pure guided mode with equiphase fronts on

F (x) WAVEGUIDE
/£ /

Tig. 1 — A two-dimensional open waveguide.
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radial planes requires energy propagating at the speed of light, and
for z > x, a pure guided mode implies energy propagating at greater
than the velocity of light. This is true at some value of z, for any finite
bend radius R, since F(z) extends indefinitely in the z direction. We
postulate that the transverse field distribution F(z) is virtually the
same in the curved region as in a straight guide for large R. The frac-
tion of the energy in the guided mode at z > z, is assumed to be lost
to radiation; this loss is taken to occur in a longitudinal distance
equal to the collimated-beam length associated with the field F(z).
All these assumptions imply that any mode propagating along the
curved open guide radiates. This is indeed the case for the modes in
the curved dielectric guide analyzed in Ref. 5.

As developed in Appendix A, the attenuation coefficient for the
normal mode of the bend region is

1 &

& =57 e (3)
where
&= [ P s, (4)
& = f_m F*(z) dx, (5)
Z, = 2‘; , (6)
z, = & Flp @

k, = longitudinal phase constant for the guided mode,
k, = 2=/, phase constant for a plane wave in the surrounding region,
and
a = effective width of the transverse field F(z).
Applying this formulation to a curved two-dimensional dielectric-
slab waveguide of width ¢ gives the following. From solutions of
Maxwell’s equations in a straight guide

14 !
F(z) = cosk.x for —5 =z = 5 6)
l
~(l=1-4)
k.t 2
F(z) = cos (—Qf)e r(r-g—ﬁ for |z | = % ()
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The resulting expressions for 2. , & , and &, are

’
i (lc,t) _Q(x' - §)
COS —_—

g = % - : ' (10)
[! + 2¢ cos (k;:)]
. “ . (12)

These expressions, when put into equation (3), yield a radiation at-
tenuation coefficient of the form*

a, = ¢ exp (—cR), (13)
where ¢; and ¢, are independent of R. As Table T illustrates, in several
cases of interest ¢; and ¢ are very large numbers (calculated for A
= 0.6328 ym). Case 1 corresponds to a thin glass sheet surrounded by
air; cases 2 and 3 correspond to 1 percent and 0.1 percent index dif-
ferences between the guide and the surrounding region, a possible
guide of interest for miniature laser-beam circuitry.® Because ¢; and
. are so large, reasonable values of «, occur only within a narrow
range of bend radius R. Figure 2 illustrates e, versus R for case 2. We
can define a transition radius B, as that value of B which gives o =
1 neper per meter:

R, = :— log ¢, (14)

2

in which ¢, and ¢, are the constants of equation (13) found by evaluat-
ing equation (3). Because of the exponential nature of « versus R,
radii smaller than R, give excessive losses and radii slightly larger
than R; give negligibly small losses. We may therefore use E; as an
index of this transition for radiation losses analogous to the Ry of
equation (1) for mode conversion losses.

Notice the size of z,, the transverse distance to where wave propaga-
tion at the velocity of light is required. For cases 1, 2, and 3, z, has
the values 1.0, 3.9, and 16.5 pm, respectively, for o, = 1 neper per
meter. Wave propagation at the velocity of light occurs quite close
to the center of the guide, well within the bending radius.

* This paper uses mks units in all formulas.
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TABLE I— VALUES FOR ¢, AND ¢,

Sur-
Waveguide Slab rou:;ing
Case index of width ¢ index of c1 (nepers forar =1
refraction (nm) refraction per meter) cz (meters™1) neper;/m
1 1.5 0.198 1.0 2.57 X 10° 3.47 X 10° 4,25 pm
2 1.5 1.04 1.485 1.04 X 105 1.46 X 104 0.79 mm
3 1.5 1.18 1.4985 5.4 X 108 81.4 0.106 m

In Appendix A the results using equation (3) are compared with
the more exact values of «, obtained from Maxwell’s equations di-
rectly.® For a given e, equation (3) yields a value of B about 0.6
times that obtained from Ref. 5. Moreover, Ref. 5 shows that, as the
slab width ¢ increases, the radiation loss does not decline indefinitely;
the normal mode transverse field reshapes itself in the bend to in-
crease I (2) in the z, region. However, the mode conversion loss usually
becomes important at those values of £ and for incidental bends (that
is, without mode matching transformers) the mode conversion loss is
limiting rather than radiation loss.

Another approach, which yields an expression for the radiation loss
of the curved guide in terms of constants of the straight guide, consists

N

e TN
\

0.4 T \
0.2

(o8] \
0 0.2 0.4 0.6 0.8 1.0
BEND RADIUS IN MILLIMETERS

RADIATION LOSS, @p IN NEPERS/METER

Fig. 2— Radiation loss versus bend radius fcn a two-dimensional dJelectrlc
waveguide ; case 2 of Table I.
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of noticing that the boundary value problem, which ean be solved
exactly by matching the radial impedances at each interface, can also
be solved approximately if the radius of curvature R is so large that
the field components of the curved guide differ only slightly from
those in the straight guide.® Then, all the impedances can be replaced
by those of the straight guide except that on the external inter-
face of the bend which, according to Ref. 5, must be multipled by

k_a
14+ 1exp (—%R —]:%)

In this expression k., and k. are the propagation constants in the z
and z directions in the external medium of the straight guide. The
attenuation constant of the curved guide results

B2\ ok,
a, = k,, exp (—%R Ag) k.. (15)
This expression should give greater aceuracy in general and does so in
the case of the slab waveguide used in this section. It also shows that
waveguides which present imaginary radial impedances have no radia-
tion loss.

111. MODE CONVERSION LOSSES IN CURVED OPEN OR BOUNDED WAVEGUIDES

3.1 General Formulation of Tilt Relation

When a pure mode of a straight multimode waveguide enters and
leaves a curved region, it generally suffers mode conversion loss. Coup-
led-mode theory has been applied to ealeulate these losses as a func-
tion of bend radius and to devise lower loss bend structures.®*"® In
these previous contributions, direct solution of Maxwell’s equations is
used to find which of the straight-guide modes are coupled in the
bend, and for these important modes to find the transfer coupling
coefficients and the associated differences in propagation constants
which are needed in the coupled wave solution.

We present here a generalized use of coupled wave theory which
gives an improvement on equations (1) and (2) in predieting ap-
proximate values of tolerable bend radius without direct solution for
the transfer coupling coefficients or the phase constants. We do not
imply that this provides accuracy comparable to a direct solution.
It does yield an approximate answer to show where further work to
get more acceuracy is of interest.
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The first approximation is used to derive the transfer coupling coef-
ficient from the self-coupling coefficient. Consider a tilt (illustrated in
Fig. 3) for a hollow metallic rectangular waveguide. The self-coupling
in the tilt from the incident mode to the same mode beyond the tilt,
of angle §, is®

T R T P
T TR e e |

in which A, 1s the guided wavelength along 2.
The funetion F is the axial field component which, for hollow metal-

lic rectangular waveguides, is either sin =p z/w sin =g y/b for TM,,
modes or cos =pr/w cos wq y/b for TE,, modes.
For small tilt angles | ¢, | is of the form

lee | =1 — 4, (17)

where A € 1; A corresponds to the energy lost from the input mode at
the tilt, whether by reflection or transmission into a single or into
many modes. We now assume the incident mode to be well above cut-
off so that reflection effects are small; that is, w/A > 1 and preferably
w/A > 1. We further assume that all the lost energy at the tilt goes
into a single undesired mode. For such a transfer

|c,,{=(1—-ICfI)*ml——%lc,lz, (18)

where ¢; is the transfer coupling coefficient. We then combine equa-
tions (17) and (18) to obtain the transfer coupling coefficient

lec | = (24)}% (19)

Tig. 3 — Tilt in hollow metallic rectangular waveguide.
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and the fraction of the input power that is converted is

P, = 2A. (20)

Carrying out the integration of equation (16) for the rectangular
metallic waveguide, assuming dw/x. < 1, gives

poe 2

Appendix C shows that for the lowest order TE mode TEjq, B is
5.28. For other modes, B ranges between 5.28 and 1.28; we somewhat
arbitrarily select the geometric mean of these values to approximate
P, for any mode. Then,

P = 2.6(3\%‘)2, (22)
By = 1.61(;3“’) , (23)
5= 0.62%(P.)", (24)

which we have derived under the restrictions

w dw
N >1, x < 1.

Equation (24) is an improved form of equation (2). It shows the approxi-
mate tilt angle permitted versus fractional power converted. Derived
for hollow metallic waveguide of width w, the “field” width is also w
which is equivalent to a in equation (2); since we required the modes to
be far from cutoff, A, = X; however, we note $hat the converted power
P, is smaller in fact than indicated by using A, = X since the guided
wavelength A, is greater than \.

3.2 Formulation of Bend Coupling Coefficient

Using a limiting process, deseribed in Section 2.3.2 of Ref. 10, the
tilt conversion coefficient can be converted to a continuous bend econ-
version coefficient. Consider a sequence of straight guide sections, each
of length I and connected making a tilt angle § (Fig. 4). Let us as-
sume that a mode entering in this guide couples at each tilt mostly to
itself and lightly to one single spurious mode travelling in the for-
ward direction. The tilt amplitude coupling coefficient is given by
equation (23). The coupling per unit length is | ¢/l |; letting ! and &
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Fig. 4 — Waveguide bend made of a series of straight segments.

go to zero simultaneously in such a way that {/8 = R, the bend ampli-
tude coupling coefficient, ¢y is:

w

len | = 161 375

(25)
3.3 Coupled Wave Interaction

We are now prepared to discuss the effect of bends in produeing
mode conversion using coupled-wave theory. In this approach the
signal amplitude E; is related to the undesired mode amplitude E»
by the equations

ak,

= = —TIE, + kE, ' (26)
dE ,
= —Tubls 4 kE, 27)

in which

T, = ey + %8, = propagation constant of signal wave,

T. = ay + 78, = propagation constant of undesired wave, and

k = transfer coupling coefficient.

These equations have been solved and the resulting wave interactions
discussed in many papers.®>*#101t Appendix B gives a few of the ex-
pressions relevant to this disscussion; we will draw from these. We
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assume a boundary condition, B, = 1.0 and E, = 0 at z = 0, through-
out. The effects of mode coupling depend importantly on (T'; — Ta)
and k. In finding expressions which improve on equation (1) we bhreak
the discussion of a generalized waveguide down into a series of cases
which are classified by the relation between the coupling coefficient k
and (T'y — Ts).

3.4 Gradual Bends in Low-Loss Waveguides
We categorize the case of gradual bends in low-loss waveguides hy

| & | & (B — BY)°, (28)
(011 == az)e < (fsl = 32)2‘ (29)
al L1, (30)

where L is the length of the bend.

This is the most likely case to be encountered in waveguides in-
tended for low-loss transmission. The special case of degeneracy, g, =
Bz, is treated in Section 3.6; degeneracy is not likely to occur ac-
cidentally since it is a very critical condition. Because g is very large
compared with « in typical cases, equation (29) can be satisfied with
relatively small echanges from the degenerate condition, and the present
case can be considered achievahle except under very special eircum-
stances.

With small «'s, k is pure imaginary, k = ic; a value such as given
by equation (25) applies. With equation (30) valid, the signal loss
oscillates along the bend between zero and a maximum value

P, = (ﬁ)z (31)

To eomplete our derivation we need (8, — Ba2), which should be the
difference between the phase constants of the modes coupled in the bend.
We have not determined in our generalized waveguide case just which
modes are coupled. We use as an approximation the rectangular metallie
waveguide case of Fig. 3, and calculate the AS for the pth and (p &= 1)
mode; again requiring the modes to be far from cutoff, we find
2p £ Dr A

A = (B — f) >~ (—ET—)—T - (32)
Combining equations (31), (32), and (25) with ¢ = | ¢, | and solving
for R yields
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4.1 w’
S ES i o
For the p = 1 mode only, the (+) sign in (2p £ 1) applies; but for
higher order modes either sign is applicable and the (—) sign will be
controlling. As a further rough approximation we may drop the ==1 term,
yielding

2.05 v’

B =@y

(34)

Equation (34) has the same general form as equation (1) but gives
added aceuracy by showing the quantitative influence of mode index and
fractional conversion loss permitted.

3.5 Grradual Bends in Lossy Waveguides

Here we keep equations (28) and (29) but address the case where the
undesired mode coupled to has high loss over the length L of the bend:

aL > 1. (35)

Now, the true situation is very complex. The coupling coefficient & is
complex and may have real and imaginary components that are equal.
Energy conservation between ¢,. and ¢, , which was implied by equation
(18), is not justified. Experience with helix waveguide for TEj], waves
shows, however, that the modulus of the helix coupling coefficient is
comparable to that for a copper tube; therefore, we use equation (25)
for the | & | and proceed as before.

As the result of equation (35) the oscillations in the conversion loss
are damped out and the conversion loss has the form of a simple ex-
ponential; that is, the normal mode of the eurved region is set up with an
attenuation coefficient (@p + ), where the extra loss resulting from the
bend is

ay = real [m—fm—)] (36)

Using equation (25) with | ez | = | k|, this becomes
421 (ap — ae)u’
T @p £ 1P R
This resembles a radiation loss in that it grows with length L, whereas

in Section 3.4 the oscillatory loss peak was independent of L.
We can rearrange equation (37) to show the permitted bend radius R,

37)
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(again dropping the =1):

_1.05 (az—al)]*w_",
R==) [ - X (38)

Here ap may be regarded as a design criterion selected to meet the
requirements of a particular use, analogous to P, above; as such ap
may be independent of A or may have some A dependency.

Expression (38) has a character markedly different from equation
(1). Since a» and «; are dependent on guide size and wavelength the
a®/A* dependence given by equation (1) is not valid when coupling
takes place to a very lossy mode.

3.6 Bends in a Waveguide with Low-Loss Degenerate Coupled Modes

When the modes coupled in the bend are degenerate, whether by
design or misfortune, a far more stringent requirement on R develops.
In this case

By = Ba. (39)

Because attenuation coefficients are small in many typical cases, it is
relatively easy to obtain coupling coefficients that are larger, that is,

les P> | an — oy |* (40)
Then the signal wave output of a bend of length L is
| By | = | cos sl | (41)

or, using the value of equation (25) for cp,

cos (1.61 wL)
AR

The signal loss is infinite when the argument of the cosine is an odd
multiple of »/2, and the corresponding bend radius E., or bend length
L, are

| B | = . (42)

i
B, = l.Oﬂ:)\wL l 43)
! for m=1,3,5.
L. =098 m "-fJ (44)

For small fractional power losses P,, equation (42) may be approxi-
mated by the first term of the expansion; the resulting permitted
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bend radius is

1.61 wL e

ey )

When (8, — B2) is nonzero, the signal transmission oscillates between
unity and a minimum of

.Bl—.Bz

| B\ fmin = & 1 - (46)

(B2 +1]

which merges with equation (80) and the case considered in Section
34.

3.7 Bends in Waveguides with High-Loss Degenerate Coupled Modes

When the phase constants of the modes coupled in the bend are
degenerate—that is, equation (37) holds—but the undesired mode is
very lossy

{ Qy — IE > ! Cp |2- (47)
Then Appendix B shows that we again have normal-mode propaga-

tion in the bend region (as in Section 3.5) with an attenuation eon-
stant (a3 + «p) where

2
ay = —2—. (48)

Qg —
Using equation (25), this yields a bend radius:
1.61 w
R = = 49
at@ — a)l’ & (49)
This corresponds to very long bend radii in order to have equation
(47) valid. Just as in equation (38), ap of equation (49) is a dis-
cretionary design parameter.

1V. COMPARISON WITH ENOWN DIRECT SOLUTIONS

The principal usefulness of the preceding approximate relations for
permissible tilt and bend radius is in new unstudied situations, where
direet solutions are not available. However, we compare here the ap-
proximations with known direct solutions in order to gauge the ac-
curacy to be expected.



WAVEGUIDE DIRECTIONAL CONTROL 2175

4.1 T1lt in a Sequence of Cylindrical Lenses: (Two-dimensional Problem)

The input mode is gaussian, its spot size is w,, and the transverse
field distribution is exp[— (z/w,)*?]. The normalized power coupled to
other modes at the tilt (8§ K 1) is**

P, =1 — “Z P [—Q(wﬁﬂ)z— i;—"r 6:1:] da{ N (T 5w,)’_
R I

To compare this exact result with our approximate one, equation (22),
we must define the width a of the beam. Somewhat arbitrarily we
choose

(50)

a = 2w, ; (1)
thus 95 percent of the power is traveling within the width a.
Substituting this value in equation (50) we obtain

P, = 2.5(%)2- (52)

This compares to equation (21) withp =landw = a,

P, = 26(%) (53)

Considering that equation (53) came from rectangular metallic wave-
guide and equation (52) from an open lens waveguide, the corre-
spondence seems excellent.

1.2 Tilt in a Cylindrical Melallic Waveguide Propagating TEj,

For TE], at a tilt, important coupling is known to occur to three
modes:*"”

Mode pair Tilt coupling coefficient
TES, — TE!, 0.585 5 (54)
TES, — TES, 098 % (55)
TES, — TM,, 0.58 “Y" (56)

where @ is the diameter of the round guide and is the full width of
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the transverse field. This corresponds to equation (23) with w = a
and p = 2 (two extrema in the transverse field),

¢, = 1.61 9‘;5 7)

In the real case, the converted power is the sum of three conversions
using the above three coupling coefficients; since the three components
vary with a different period versus A, or distance along the guide after
the tilt, the actual mode conversion is a complicated function.
We might take the root-sum-square combination of equations (54)
through (56) to compare with equation (57), leading to

TES, oornny 22 1.65 ”’T‘s (58)

The converted power loss is | ¢; |%, so we see that equation (57) gives
a correct order of magnitude indication, but it lacks significant de-
tail.

4.3 Bends in Cylindrical Metallic Waveguide Propagating TEj,

The above discussion for tilt coupling coefficient applies directly to
bend coupling coefficient in empty round guides, noting the interrela-
tion

foa | = L35 (59
However, the maximum conversion loss in the bend is also controlled
by the quantity (8; — B2) as given in equation (31). For the three
important modes, the values are

Mode B — B

8, = THS, 3.6 % (60)
n 0 A
TEn[ ize_ 12 4.4 Ez' (61)
TEgl - TM?I 0 (62)

where a is again the guide diameter. These are to be compared with
equation (32) withw = aandp = 2,
A

|8 — 8. | =39 2 (63)
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The approximation (63) agrees well with the values for the TEg, — TE],
and TE), — TES, from expressions (60) and (61). However expression
(62) shows that empty round guide has a degeneracy, which controls
its behavior.” The permitted bend radius is controlled by the TEj, —
TM], interaction. Exact theory shows the bend length to the first
extinction of signal is®

)

L, = 2. % (64)

which is to be compared with equation (44) with w = ¢ and m = 1,

L. = 098 %- (65)

Here the agreement is again quite good. The permitted bend radius
for P, fractional power loss, from exact theory is

_ 0.58 aL
R_W?\ , (66)

and the approximation from equation (43) is

1.61 aL
R = (?3} X (67)

In practical use of round guides for TE,, , however, the bare pipe is
modified to eliminate the degeneracy. Intentionally making the empty
guide elliptical is one way;’ it takes only 1.7 percent diameter difference
to make (8, — Ba)® = 10(a; — &,)®, making the relations of Section 2.4
valid. A more symmetrical modification is to add a thin dielectric lining;
with a polyethelyne lining only 0.010 inches thick in a 2 inch inner
diameter guide, the (8, — B.) for TE], — TM}, is about 60 percent of
that given above for TE], — TE},."”” This also yields (8, — £)* >
(a2 — ;)® for all modes. Interestingly, exact theory shows that the
lining drops the TEj, — TE{, bend coupling coefficient by an order of
magnitude.'*"** Thus only two small mode conversions occur in the bend
of lined waveguide. Taking the simple sum of these conversion losses
yields, from this “exact’ treatment,

]
a

P, = 0.098 P (68)
The exact radius relation is then
0.31 &°
B=@ax (60)
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This is to be compared with equation (33) withw = aand p = 2,

1.02 a*-
R = (P_,);)? (70)

Considering the complexity of the true situation the estimate provided
by equation (70) is good.

1.4 Heliz Waveguide for TE;,

The helix waveguide for TES, is a very special structure designed to
maximize the attenuation to the undesired modes.'*''* This waveguide
is unusual in presenting very large (ea — a;). The bend coupling coeffi-
cients k of equations (26) and (27) are no longer pure imaginary as they
were in the simple metallic tube. For example, the complex nature of the
helix coupling coefficients are shown for comparison with those of a
metallic tube; we set k = ¢’ + j¢’’, as shown in Table I1. The helix values
correspond to a longitudinal wall impedance of 196 ohms with a capaci-
tive angle of 5° both guides at A = 5.4 mm and a guide diameter of
5.08 cm.

The attenuation coefficient of the normal mode of the bend region is

ok Y Tedl [(r—,fr—j] (71)

where the summation represents the contributions of the three modes
above. Using the helix waveguide coupling values of Table 11, the con-
version loss contributions are given in Table III. Note that the con-
tributions of the TE;; and TM;; modes are of opposite sign; experi-
ment agrees well with this theory.’® An approximate degeneracy exists
between TM;; and TE;s in the helix waveguide.

When such direct computations were made over a range of nu-
merical conditions in the 30 to 100 GHz region on helix waveguides
varying in diameter from 0.25 inch to 3 inches, it was found that the
mode conversion contribution to the bend-region normal-mode at-

TaBLe II—HrLix Wavecuipe CourLiNG VALUES

Solid Metallic Tube Helix Waveguide
Mode 'R ! 'R 'R "R -
TE, 0 5.5 —0.16 6.86
TM, 0 5.46 —8.03 —-5.71
TE s 0 9.21 —3.76 11.88
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TapLe 1IT—CoxversioN Loss 1N HELix WAVEGUIDE

R2n?
i Iteal T —T.

TEn 0.713

TMi, 8.79

TE,;. —8.05

T = 1.55

tenuation coefficient is approximately
aa

ap = 0.009 5577, 72
B REAZ.T ( )

which yields a permitted bend relation from direct solution of the
helix problem:

0.095 a'® .
k= (a;)_i hi.:«:s' (73)
The corresponding approximate relation from Section 3.5 is equation
(38) withw = aand p = 2,

pon
R = 0|52(‘_".L—_al) i. (74)

g
To compare functional dependence on a and A, we need to know how
(as — ey)¥% [which is (e2)*] varies with a and A in the helix wave-
guide. Unfortunately this is not readily available although it was
implicitly used in the work which yielded equati