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This paper concerns approximation in the Chebyshev, or minimax
sense such that (i) a minimax approximation implies a maximum number
of zero error points separaled by equal error extrema, and (i) the approz-
imating function can be so formulated that the disposable parameters
are all the coefficients in a polynomial, which may however be part of a
more complicaled function the rest of which is prescribed. Weighted minimaz
polynomial approximations can be included, by multiplying the approz-
tmaled and approzimating functions by the weight factor. Analytic methods
are described which yield approvimately equal error extrema. They are
sufficiently simple so that they may sometimes compete with currently
used ilerative numerical methods, especially when the degree of the dis-
posable polynomial is large. Their most probable wtility concerns explora-
tions of available accuracies over wide ranges of design parameters such
as degree of disposable polynomial, interval of approximation, and coef-
ficients in prescribed parts of the ap proximating function.

I. INTRODUCTION

This paper concerns approximation in the Chebyshev sense, over a
prescribed interval z, < = = x, of a continuous real variable z. As
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defined, an approximation in the Chebyshev sense is a minimax approx-
imation—one in which the maximum error is as small as is possible
within given constraints on the approximating function. Minimax
approximations in which errors are weighted by a prescribed function
of the independent variable can also be treated as Chebyshev approx-
imations, by multiplying the approximated and approximating functions
by the weight function.

Frequently, but not always, approximation in the Chebyshev sense
implies an error of the “equal ripple” sort illustrated in Fig. 1—that is,
a sequence of equal positive and negative extrema with monotonic
variations in between. General necessary and sufficient conditions for
this are not known. However, the following conditions are sufficient:
the p disposable parameters of the approximating function are to be
such that the approximation error can be made zero at p arbitrary
points within the approximating interval. Referring to Fig. 1, the
arbitrary error points divide the approximation interval into p + 1
segments. There is to be a particular division such that the error function
achieves its maximum magnitude p + 1 times—at the two edges of
the approximation interval and once within each of the p — 1 interior
segments. There are to be no other local extrema within the approx-
imation interval. Generally, shrinking any one of the p + 1 segments
(by bringing two zero error points closer together or one closer to an
edge of the approximation interval) tends to reduce the corresponding
error extremum. Conditions are to be such that all the p + 1 equal
extrema can be reduced simultaneously only by shrinking all the
p + 1 segments, which is impossible without shrinking the given approx-
imation interval. These conditions are encountered in many practical
problems and are assumed here. Thus we are concerned only with equal
ripple approximations like Fig. 1.

Exactly equal ripple approximations have long been known for a
very few special cases (which have been useful for example in filter
design). ITterative numerical methods have been developed for the
solution of various more general problems and are deseribed in text-
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Fig. 1 — An equal ripple error function (p zeros; p + 1 segments; p + 1 extrema).
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books such as Ref. 1. In contrast, this paper describes analytical pro-
cedures which yield error extrema of approximately equal amplitude.
Their full range of validity has not been determined. However, they
are clearly appropriate for a substantial, although poorly defined class
of problems. It is characterized further later.

Useful applications are likely to concern equal ripple problems which
have not been solved exactly by analysis and which involve so many
disposable parameters that iterative numerical solutions are likely to
be more costly. The most useful applications probably concern prelim-
inary explorations over primary design parameters (such as intervals
of approximation, magnitudes of errors, and degrees of approximating
functions) before numerical refinement of specific designs. Accordingly,
this paper emphasizes relatively simple means for approximating equal
ripples and says little about more complicated higher order approx-
imations.

The procedures apply only to approximating functions characterized
as follows. The disposable parameters must be all the coefficients in a
polynomial (which may have been obtained, however, by some sort of
transformation on the original independent variable and/or the approx-
imating function). This is referred to as the disposable polynomial.
On the other hand, the disposable polynomial may be only a part of a
more general approximating function the rest of which is prescribed
in advance (for example, the numerator of a rational fraction with a
prescribed denominator). Weighted as well as unweighted minimax
approximations are included. For some problems, closed form formulas
are obtained for approximate error size as functions of the degree of
the disposable polynomial, usable for degrees of any size. For other
problems, the error size is related to an eigenvalue of a certain matrix
equation, but the order of the matrix may be small even though the
degree of the disposable polynomial is arbitrarily large.

A primary concern here is the distinction between simple truncation
of infinite series of Chebyshev polynomials and approximation in the
Chebyshev or minimax sense. The functions which we are to approx-
imate can be expanded into infinite series of Chebyshev polynomials.
Approximations with polynomials of degree n can be obtained by
simply truncating the infinite series after the terms of degree n. How-
ever, simple truncation does not usually give an approximation of the
minimax sort. A polynomial of degree n which approximates the given
funection in the minimax manner can be represented as a linear combi-
nation of Chebyshev polynomials, but the coefficients are usually
different from those in the truncated infinite series.

One way to approach approximation in the Chebyshev sense is to
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start with the truncated series of Chebyshev polynomials. Then cor-
rections to the coefficients are determined, to obtain equal ripple error
functions. Such a procedure has been used before, for example in Refs.
2 through 4, and is used here. Departures from the previous work
known to the author include simple approximations to ideal solutions
formulated for more general approximating functions and for weighted
as well as unweighted minimax approximations, as opposed to more
rigorous analyses of more restricted problems.

Sometimes truncation of an infinite series of Chebyshev polynomials
yields an approximately equal ripple error function without further
adjustment of the coefficients. The procedures for adjusting the coef-
ficients, described herein, sometimes also give an initial insight into
whether or not adjustments are needed.

It is interesting to note that some 35 years ago a conference was
held in the office of T. C. Fry, at Bell Telephone Laboratories, to
consider some filter patents offered for sale by W. Cauer. One of the
patents disclosed Cauer’s equal ripple image impedance and transfer
functions, which soon became famous among circuit theorists, but did
not include proofs or derivations. At the conference, S. A. Schelkunoff
asserted a very simple principle which enabled him to confirm and
interpret Cauer’s formulas. However, it did not explain how Cauer
might have derived or discovered the formulas. The principle applies
also to more general equal ripple approximations. It does not, by
itself, solve the approximation problem, but it does furnish a starting
point from which to develop procedures which do. We call it Schelkunoff’s
principle.

Section IT describes Schelkunoff’s principle. Section IIT solves two
problems for which exactly equal ripple solutions are easily found.
Section IV develops general procedures, whereby approximate so-
lutions can be obtained for a large class of problems. Section V further
clarifies the general procedures by means of examples.

Various aspects of the procedures described here bear some relation
to other work. Section VI notes some of these relationships. Finally,
Section VII reviews and summarizes the general conclusions, including
a comment on the possibility of generalizations to disposable rational
fractions.

II. SCHELKUNOFF'S PRINCIPLE

Consider first a function T,(z) proportional to a Chebyshev poly-
nomial, defined by
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Ti) = —)A'_"T cos (n cos™' x). @)

It is illustrated in Fig. 2a, for n = 4. It may be regarded as an “‘equal
ripple’’ approximation to zero, over the interval —1 = = =< +1, by
a polynomial of degree n in which the coefficient of 2" is required to
be K,, . Let

T = cos . (2)

Substitution in equation (1) gives

T,@) = Tu(e) = a2 cosmp. 3

The new funection is illustrated in Fig. 2b, again for n = 4. Note that z
is periodic in ¢ with period 27 and T,(¢) is periodic in ¢ with period
27 /n. Thus there are n periods of T,(¢) in each period of z.

Stated with a little more detail, we have this situation: The original
function T,(z) has “equal ripples” in the sense of equal extrema. How-
ever, the extrema are not uniformly spaced and hence the ripples
differ as to width. The periodic transformation from z to ¢ has two
important properties. As ¢ increases, * sweeps back and forth across
the approximation interval, —1 < # < 1. In each interval in which
z varies monotonically from +1 to F1 the ¢ scale is a distortion of the
z scale such that the ripples of T,(¢) are uniformly spaced and are

Xx=-1

(b)

Fig. 2 — Illustrating Schelkunoff’s principle.
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also otherwise identical. The ripples could not be made identical by
any distortion of the x scale alone if T.(r) had unequal maxima or
unequal minima. This is a special case of Schelkunoff’s principle.

More generally, let E(z) be a function of z with the following prop-
erties over an interval 2, < @ £ x, : The function E(z) is real and single
valued; there are a number of local maxima, all equal; there are a
number of local minima, all equal; the equal extrema for the interval
include the end points E(z,), E(z,) (at which dE/dz need not =0).*
Then Schelkunoff’s principle asserts the existence of a transformation

= T(p) (4)

with the following properties: The original variable z is periodic in the
new variable ¢; as ¢ increases @ sweeps back and forth over the given
interval @, £ « < a,, monotonically each way once each period; the
periodie function

E(¢) = E[I'(9)] (5)

has a number of periods in each period of z, equal to one less than the
number of extrema of E(2) in the given interval of & (including the end
points). In applications to approximation in the Chebyshev sense,
E(z) and E(e) represent the equal ripple error, as functions of = and .

The transformation @ = T'(¢) clearly is not unique, for there are
obvious transformations on ¢ itself which retain the desired character
of E(yp). For example, ¢ can be replaced by ¢ + ¢(¢), where g(p) is
periodic with the same period as E(yp) and is such that ¢ + q(e) is
monotonic in ¢. When E(z) is continous (in the given interval of z),
a particular ¢ + ¢(¢) will make E(p) sinusoidal.

We do not attempt a very general, rigorous proof of Schelkunoff’s
principle; we merely use it as a guide to a strategy for solving minimax
problems. However, a demonstration of the principle for a specific
class of problems will be implicit in what follows, for we shall find
transformations which do in fact change our equal ripple errors into
sinusoidal errors.

In later sections we will again use the transformatlon (2), or a gen-
eralization for end points other than @ = =1. Usually, however, it
will not be a Schelkunoff transformation. We will use it to transform
the disposable polynomial in x into a finite Fourier series in ¢. The coef-

* Problems can be found such that minimax approximations have equal ex-
trema which do not include both end points. Then the number of local extrema
for the approximation interval is abnormally large when the end points are
counted, Such problems are not considered here.
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ficients of the Fourier series are to be chosen in such a way that the
overall approximation is approximately sinusoidal on a distortion of
the ¢ scale. Similar strategies have been used before, for example in
Refs. 2 through 4.

Means for determining the distortion of the ¢ scale and the adjustment
of the Fourier coefficients are introduced by means of two examples in
the next section.

[II. TWO GENERALIZATIONS OF CHEBYSHEV POLYNOMIALS

The two problems described below are solved exactly. The form of
the solutions suggests approximate solutions to more general problems.

3.1 A Rational Function Generalization of Chebyshev Polynomials

Consider the following generalization of Chebyshev polynomials: Let

P()

- D(x) ©)

Tpa(2)
in which P(z) is a polynomial of degree n and D(z) is a polynomial of
degree < n. Suppose D(z) is prescribed in advance and P(z) is to be
chosen in such a way that Tp.(x) has equal ripples like those of a
Chebyshev polynomial in the interval —1 < « < +1. More specif-
ically, require that Tp,(r) = =1 at n — 1 local extrema within the
interval —1 < 2 < +1 and at the end points * = 1. Real zeros of
D(x) are to be excluded from the interval —1 = » = +1. The con-
ditions on the extrema insure that all n of the zeros of P(z) will be in
the interval.

Let ¢ be defined again by equation (2) and note that the real axis
in the ¢ plane corresponds to the real interval —1 = v = +1 in the
x plane. If cos ¢ is written in terms of exponentials, the polynomial
P(z) can be related to ¢ by

P(z) = P'*) + P ') (M

in which P(-) is a polynomial of the same degree, n, as P(-). Given the
coefficients of P(-) it is a simple matter to compute the coefficients of
P(-). We shall consider our problem solved when we have found the
coefficients of P(-) required for our equal ripple conditions.

It is convenient to relate the preseribed denominator D(x) to ¢ in
the following slightly different way:

D(x) = D('¥) D(e'*)
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in which D(-) is a polynomial of the same degree, < n, as D(-). If
D(:) and D(-) are written in factored form there is a one to one corre-
spondence between factors. Thus if (z, — z) is a factor of D(z) and
(1 — v.e'%) a corresponding factor of D(e'*),

T — & = M,(1 — 7)1 — 7.6*) ©)

in which M, is a constant scale factor.
By equation (2), e’ = =41 at x = =1, and hence

T £ 1 = M, (1 £ v,)°% (10)

Given z,, two solutions for v, are easily obtained, for which |+, | is
respectively < 1 and > 1. (Exclusion of zeros z, of D(z) from the real
interval —1 < & < 41 removes the possibility of |y, | = 1.) We need
the solution for which | v, | < 1, for reasons which will soon be apparent.
From equation (11), with the sign of the square root chosen for | v, | < 1,

1 — v, [a:, — 1]* [m,, — 1]*
1+ lo¥1l° Re v T > 0. 11
The secale factor M, need not concern us at this time.

The function Tp,(z) can now be mapped into a function T'p,.(e) in
terms of equations (7) and (R).

w , (12)
D(e'*) D)

By Schelkunoff’s principle, our requirements on the extrema of Tp.(x)

imply that T'5.(¢) has the following special form

P{™) 4--PE*")
D('?) D) '

— %e‘[mp+!(¢)] _|_ %e—t[n¢+f(\a)l_ (13)

TDn(m) = TDn(ga) =

TDn (¢) =

The variable ¢ 4+ (1/7)f(e) is a distortion of the ¢ scale for Schelkunoff’s
principle, for which f(¢) is to be periodic in ¢ with period 27 and ¢ +
(1/n)f(e) is to vary monotonically with ¢.

Given f(¢) one can easily find P(e’?) by equation (13). The problem
is to find an f(¢) for which P(-) is a polynomial of degree n. From
equation (13)

P('*) + P =Jl 3¢/ D) Du(e™) } (14)

_|_ %e—i[n«ﬁf(v)l D"(eu'(a) Dﬁ(e—-ip)

If P(e*?) is to have no terms in ¢ with ¢ > n, e'’**’ needs to cancel



MINIMAX APPROXIMATION 9

out D,(e**?). This suggests

"~ D)
(and note that this does make f(¢) real when ¢ is real). Substitution
in equation (14) gives

P() + P() = 3™ D*e™™) + 3 D). (16)

Expanding the right side gives a polynomial in ¢'?. When polynomial
D(-) is of degree < n (as assumed) there will be no powers of ¢'* out-
side the range —n to +n. Collecting positive powers (and half the
constant term) gives P(e'¥).

The function f(¢) determined by equation (15) is periodic in ¢ with
period 27 provided the zeros of D(\) lie outside the unit circle in the
X\ plane, which is assumed by equation (11). It is easily shown that the
same condition makes ¢ 4+ (1/n)f(¢) monotone in ¢. Once P(-) is known
it is a simple matter to find P(z) by means of equations (2) and (7).
It is probably simplest to omit the scale factor M, of equation (10) in
the initial formulation. This does not affect the ratio in equation (15),
but only the scale factor of the polynomial P(x), which can be corrected
later on [for example to meet the condition Tp,(1) = 1].

Obvious generalizations of the problem include the following: For
extrema A =+ J (instead 0 &£ 1) use

F(z) = A & JTp,(z). 17)

In a more general interval of z, say z, < & < x, , replace equation (2) by

grm - DET) (15)

Ty + T Ty — Xy
gt T cose (18)

r =

and change equation (10) to
T — T = M,(1 — 7)), 2 — 2 =M»1+7). (19)

The function F(z) defined by equation (17) has long been used by
filter theorists, but previous derivations have been quite different.’
The form of equation (16) suggests a similar solution to the problem
described below.

3.2 An Irrational Generalization of Chebyshev Polynomials

Now let
P(z)

T = {51

(20)
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in which P(z) is again a polynomial of degree n but S(z) is a poly-
nomial of degree £ 2n. Suppose S(z) is prescribed and that Ts.() is
to meet the same conditions as to extrema as Tp,(z) in the previous
subsection. In place of equation (8), we can now use

S(z) = S(*)SE™*)
to determine a polynomial S(-). We can then replace equation (15) by

ol = [k?g(?c—-;;)]l @1)

and then equation (16) by
P('*) + P(e™'%) = 3e™°S(e %) + 3¢ "*S(E"). (22)

This makes P(-) again a polynomial of degree n. Note that Ts.(z)
cannot be used in place of Tp, in equation (17), with A # 0, without
changing the polynomial character of the numerator.

1V. GENERAL FORMULATIONS

This section shows how a large class of minimax approximations can
be approximated by generalizing the manipulations described above.
In Section V, we clarify the general procedures further by providing
examples.

4.1 Unweighted Minimax Approximations
Let
P(z) = F(z) + «(2), BSOS D (23)

in which P(z) is a disposable polynomial of degree n, F(z) is a given
function to be approximated by P(z) in the interval z, < » < ,, and
e(2) is the error in the approximation. For what P(z) is e(x) smallest in
the minimax sense? We assume that the minimax e(z) has the equal
ripple form (Fig. 1) and we seek only approximations to equal ripples.
We also restrict the class of applicable functions by certain further
assumptions which can best be introduced a little later.

As before, let 2 and ¢ be related by equation (18), so that 2, = 2 = =,
maps into real ¢, and replace P(z) by

P(z) = P('") + P("). (24)

If P(-) is again a polynomial of degree n, it is uniquely determined by
P(-) [and z, , 7, in equation (18)]. Now, however, we find it expedient
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to permit P(z) to include negative powers of z, up to z™". Thus, in
equation (24),

P@E'®) = > Pe™*. (25)
This P(-) is not uniquely determined by P(-). However, P(-) 7s uniquely
determined by P(-), and it is still a polynomial of degree n. We solve
the approximation problem by finding a suitable P(-), from which
P(-) can be easily determined.

We require that the mapping from 2 to ¢ maps F(z) into a function
of ¢ with a convergent Fourier series. This amounts to requiring that
F(z) can be expanded into a convergent series of Chebyshev poly-
nomials (defined to fit the given interval of approximation). Because
equation (18) is even in ¢, the Fourier series has only cosine terms.
Then, replacing cosines by sums of exponentials,

F(x) = F('*) + Fe ')
—a (26)
FE'?) = ) Ce'*
ao=0
in which the series expansion of F(e'¥) converges when ¢ is real.
The desired equal ripple error can be written

e(x) = ecos [(n + )¢ + f(o)] (27)

in which {(¢) is again periodic in ¢ and represents the distortion of the
¢ scale per Schelkunoff’s principle. In an equivalent exponential form

e(x) = B(') + E(*)

E@E*) = %c-‘unnwuwn' (28)

The exponent i(n + 1)¢, instead of 7ne¢ as in the previous section,
reflects the following ecircumstances: If the Chebyshev polynomial
series corresponding to equation (26) is truncated after the polynomial
of degree n, the first omitted polynomial is of degree n 4 1. If all the
other omitted polynomials have sufficiently small coefficients, the
truneation error will approximate E(z) of equation (23) with f(¢) = 0.
Note also that a disposable polynomial of degree n has n + 1 disposable
coefficients. These are an example of the p disposable parameters in
the more general deseription of equal ripple errors in Section I.

Using equations (24), (26) and (28) in equation (23) gives

PE'¥) + P(') = FE'*) + Fe'*) + E@E*) + E€**).  (29)
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We arbitrarily equate the terms in exp (47¢) separately, so that
P@E'*) = F(e'*) + E('®). (30)

If equation (30) is satisfied at all real ¢ so is the corresponding equation
in exp (—1¢). Thus a solution of equation (30) is a solution of equation
(29). But the converse is not necessarily true. Frequently, an exactly
equal ripple approximation corresponds to a solution of equation (29)
which is not a solution of equation (30). However, we will find that
approximations with approximately equal ripples can frequently be
derived from equation (30), and in a much simpler way.

In equation (30), expand P(-), F(-), E(-) per equations (24), (26)
and (28). The result can be rearranged as follows:

2n+1

el
—iA € {
EGW = 50'“‘” + Z Ors15:8™%;
A=1 A=0

GA=Pn+1—x—Cn+1—X; k§n+1)‘§n+1;
= Pas1-a n+1<\N=2n+1. (31)

In this equation, Chs14» is fixed by equation (26) but P,.i-y is a dis-
posable parameter in equation (25). Thus we seek an e and exp [if(¢)]
with the following properties: Iirst, (¢/2) exp [if(¢)] is to be expandable
in terms of positive and negative powers of exp (ip). Second, the coef-
ficients of positive powers are to cancel the corresponding coefficients
C,i14x in equation (31). Third, the coefficients of negative powers are
to be such that, with an appropriate ¢, |exp [if (¢)]| = 1 when ¢ is real,
so that f(¢) is real and the error extrema are equal per equation (27).
Sometimes it turns out that there are no negative powers beyond
—(2n + 1). Then the left side of equation (31) can be adjusted to match
the right side. In many other problems, approximately equal error
extrema can be obtained by simply ignoring terms in negative powers
beyond —(2n + 1).

Now consider the class of functions F(-) such that, in equation (31)

B(e'*)

- (32)

Ll X
Z Cri1ane™?
A=0

in which A(-) is a polynomial of degree m and B(:) is a polynomial
of degree u. If the series converges, as assumed, the zeros of A (z) will
lie outside the unit circle.

Under conditions which we shall examine further, the appropriate
exp [if(¢)] is now as follows:
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if(e) A X (') ip
= —"——L1 33
aexem T @)
in which § is small (at real ¢) and X(-) is a polynomial determined by
two further conditions. First, the zeros of X (z) must lie outside the unit
circle. Second e and X (+) must be such that

e A ) X('") , BE") _ e **N(e ‘%)
2 AE)X (') + Ae'™) X (%) o0

in which N(-) is a polynomial. Let us examine the implications first
and the existence of such an ¢ and X(-) thereafter.

When ¢ is real exp (i¢) and exp (—i¢) are conjugates, and so are
identical polynomials in these two variables. This makes f(¢) real in
equation (33), except for small corrections due to 6. When the zeros
of A(z) and X (z) lie outside the unit circle, as required, the unit circle in
the z plane maps into contours in the polynomial planes which do not
enclose 0. This makes f(¢) periodic in ¢.

The condition on the zeros of X(z) also permits the right side of
equation (34) to be expanded:

e--‘vN(e-iw) 0 G ey
— = . 35
X ; o€ (35)
Using equations (32), (33), (34) and (35) in equation (31) now gives
0 2n+1
8 + DG = D Gt (36)
o=1 a=]

P,=G, +Cur-e, o=n+1;
=G, n+l<o<220+1;
3e'?) = — X Gt

This & is small provided the zeros z; of X(z) are such that z; “*** is

small. When § is small, the actual error extrema will differ from ¢, but
by no more than =+ |4| e.
Equation (34) requires

%A(e""’)X(e"') + BE'*)X( ') = A@E')e "N *?) . (37)

The appropriate degree n of polynomial X(+) turns out to be one less
than the number of poles of zB(z)/A(z) (including any poles at z = ).
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When the degree of A(-) is greater than the degree of B(-) and the
zeros of A(-) are distinet, a set of » + 1 homogeneous equations in the
coefficients ¢; of X(-) can be derived by evaluating equation (37) at
the zeros of A(+). Then

(M,, + %M,,)Q =0 (38)

in which @ is the column matrix of the coefficients ¢; of X and M,
and M, are square matrices of order » + 1. Under other conditions
an equation of the same form can be obtained in other ways.

Equation (38) requires ¢/2 to be one of n + 1 eigenvalues for which
the matrix coefficient of @ is singular. Each eigenvalue determines a
polynomial X(-) [including an arbitrary scale factor which cancels
out in equation (33)]. For our purposes, we must choose an e which
is real and such that the zeros of X (2) lie outside the unit cirele. This
raises a question of the existence of a suitable e and X (-).

When degree n = 0, X(+) is a constant, equation (38) is a real linear
equation in ¢, and there is no zero of X(-). When n = 1, X(+) is linear,
€ is a root of a quadratic equation. It is not hard to show that the two
roots are real [under our assumptions regarding zeros of A(-)] and
that one (the larger) yields a zero z, of X (z) such that |z,| > 1. Equality
occurs only in singular cases such that n + 2 zero error points are
possible [even though there are only » + 1 disposable coefficients of
P(z)] and can be so placed that there are n 4+ 3 equal error extrema,
instead of only n 4 2. This may be seen by assuming that the zero of
a linear X (z) is =1, and then noting that, in equation (33),

X@*) _ 1"
XE*) 1xe'

Conditions for the existence of a suitable ¢ have not been established
for 7 > 2. They are probably at least closely related to the (unknown)
general conditions under which the minimax approximation has the
equal ripple form of Fig. 1.

The procedures described here are appropriate only when a suitable
e does in fact exist. However, degrees » = 0 and 1, for which existence
has been established, are sufficient for many practical problems. For
approximately equal error extrema, equation (32) itself need be only
an approximation, and polynomials A(-) and B(-) for which = 0
or 1 are likely to give a good enough approximation. This is particularly
true when degree n of P(z) is sufficiently large so that coeflicients

= +e'’. (39)
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C, , ¢ > n, in equation (26) approach a simple asymptotic behavior.
Percentage variations between error extrema need not have to be
very small even though the absolute errors must be very small. For
example, a 10 percent variation between very small extrema may be
acceptable, compared with large variations obtained by truncation
of the infinite Chebyshev polynomial series.

Table I indicates the degree m of A(-) and u of B(-) for which n = 0
or 1. The column headed m + g + 1 indicates the number of dispos-
able parameters in the rational fraction A/B which can be adjusted
to approximate the sum in equation (32).

The procedures for 7 = 0 and 1 are particularly well suited for rapid
explorations of available error magnitudes as functions of initial design
parameters, such as degree of the disposable polynomial, extent of the
approximation interval, and parameters in the approximated function.
When only the error magnitude is needed, it is not necessary to calculate
the coefficients of polynomial P(-), which requires the series expansion
(35). When n = 0, the error magnitude is (approximately) the single e
determined by equation (38). Then simple closed form formulas can
frequently be obtained (and will be included in 4 of the 5 examples
in Section V). When n = 1, € is one of the two roots of the quadratic
equation required by equation (38). (To meet the condition on the
zero of X (-), the larger e must be chosen.)

When e has been determined, it can be compared with the error er
obtained by simply truncating the Chebyshev polynomial expansion
of F(z). In terms of equations (26) and (32)

o, B((’w_) i(nel)e B '*) _itsnre 40
=" Taemt =

€

Comparing the maximum e, (at real ¢) with e indicates the improve-

TasLe I—Value of m and g for which is 0 or 1.
Degree m Degree p Degree™
of A(+) of B(-) of X(-) m+u+1

WHOoOWNHO
—eE_-OOO
-
W= 00 D 0 b
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ment to be obtained by the minimax refinement of the truncated
series. Frequently, max e, occurs at ¢ = 0 or , and then

B(+1)
A @D

max e; = 2

4.2 Weighted Minimax Approximations
Let

PQ) = F@2) + W—I@ e(2) (42)

in which P(z) is again a disposable polynomial of degree n, F(z) is
again a given function to be approximated in the intervalz, < = < 2z, ,
and the new function W(z) is a given weight factor. For what P(z)
is e(z) smallest in the minimax sense? We will again assume that the
minimax e(z) has the equal ripple form and will seek only approxi-
mations to equal ripples. We will also assume that W(z) is bounded
and positive definite in the approximation interval. (A point where
W(z) = 0 or » would probably spoil the equal ripple character of the
minimax approximation.)

Map from z to ¢ as before and define P(-), F(-) and E(-) again by
equations (24), (26), and (28). Express W(z) also in terms of expo-
nentials, but as a product instead of a sum. More specifically, let

H(z) = —log W(z) = H('*) + H( ™) (43)

and assume that W(z) is sufficiently smooth, as well as bounded and
positive definite, so that H(z) is regular at |z] = 1. Then

1 9 —ip
D('?) = "'

with log D(z) regular when |z| < 1. This D(-) is a generalization of the
D(-) of Subsection 3.1 and of [S(-)]! of Subsection 3.2. Frequently
it can be found by direct factorization of a function of e'* as in Section
IIT.

Equations like (29) and (30) can now be obtained as before. The
only difference is that E(-) must now be multiplied by the product
of functions of ¢ in equation (44). Then equation (30) becomes

P('*) = F(c*) + D(*)D(e " *)E('*) (45)

and equation (31) becomes
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2n+1 0
> @™ = 2 D)D) + 3 Cranne™ s (46)
A=1 A=0
Gk=Pn+1—X—Cn+1—X! >\§n—l~l;
=Pn+1—)\1 n+1 <)\§2n+1

Retain the rational fraction B(-)/A(-) of equation (32), but change
equation (33) to
R D(e—w)A(e_W)X(ew)

= e aexe s T “

so that
D ") Al ") X (')
A )X
in which § and § are small. Then change equation (34) to
¢ DA )X(ET) | BE") _ " UNE™)
2 A )X (') Ae*) X( %)

Using equations (32), (47) and (35) in equation (46) now gives equation
(36) again. From equation (49), equation (37) must be changed to

D(ew)D(e—W)effw) —

+ 8™ (48)

(49)

%Dz(e"”)A(e""’)X(e“’) + B )X(e ') = A@E ) *NE ™). (50)

Equation (50) can be used to find ¢, and the X(:) and N(-) needed
for equations (35) and (36).

4.3 More General Approximating Functions
Let v

Y[P(z), ] = G(2) + =(z) (51)

in which ¥[P(z), z] is a given function of  and a disposable polynomial
P(z), G(z) is a given function to be approximated by ¥[P(z), ] in
the interval 2, < # < 2, , and (z) is the error in the approximation.
Tor what P(z) is e(x) smallest in the minimax sense? Under certain
further assumptions regarding ¥(- , -) this approximation can be
transformed into a weighted minimax polynomial approximation.

Assume an inverse ¥' of ¥[P(z), z], with respect to P(z), exists
over the approximation interval. Then equation (51) can be replaced
by

P(z) = ¥ {[G(2) + £@)], =} (52)
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Assume ¥7'(- , +) is sufficiently smooth and e(z) sufficiently small to
justify the following approximation (in the interval x, < 2 = x):
N = TG, o]+ SE (6@, 2]

P(ﬂ') =¥ [G(.I), :l] + aG(il') £(1>' (53)
This is in the general form (42) with
F(z) = ¥7'[G(z), 2]
(54)

1 v '[G), z]
W) aG(@)

Thus Subsection 4.2 can now be applied provided the F(-) and W(-)
determined by equation (54) meet the appropriate conditions. Recall
that we required W(z) to be bounded and positive definite over the
interval of approximation. However, reversing the sign of W(z) merely
reverses the sign of £(z). Hence, in equation (54), we need only require
that the partial derivative must be bounded and either positive definite
or negative definite and sufficiently smooth for log D(z) to be regular
when |z| < L.
As a first example of the inversion of equation (51), let

W(@)P(z) = G(z) + &(2) (55)
where W (z) and G(x) are given functions of . Then
Py = S z;)c(m) _ ;g; + Wl(m) e(2). (56)

As a second example, let
[A(@) + B@P@)]* = G(z) + &) (57)

where A(z), B(z), and G(z) are given functions of x, with B(z) and

G(z) positive definite over the approximation interval. Solving for

P(z) gives

G*(z) — A(2)
B(a)

If the term in £*(z) is omitted

G(z) 1

B(x) e(x) + B() (). (58)

P(z) =

+ 2

£(x)
2G(x)
in which terms in £°(z) have been neglected for ¢ > 2. An equal ripple

e(x) in equation (57) yields an approximately equal ripple error if the
last term is somewhat smaller than the extrema of ().

[A) + B@)P(@)]! = G(2) + «(x) — (59)
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4.4 Relation to Phase M odulation

The function of ¢ defined by equation (28) is similar to functions
of time ¢ used in communication theory to deseribe phase modulated
signals. If ¢ is replaced by ¢ in equation (28),

E(eu'l) — ei[(n+l)l+i/(t)]' (60)

wo|m

This is the exponential representation of a phase modulated signal
in which the carrier (radian) frequency is n + 1 and the baseband
signal f(¢) is periodic with one period every n + 1 periods of the carrier.
The signal may be regarded as the carrier plus sequences of upper and
lower sidebands. The upper sidebands are determined by the coeffi-
cients C,.1., in equation (31). The lower sidebands are determined
by the requirement of a purely phase modulated signal. Finally, if
the sequence of lower sidebands extends as far as the negative carrier
frequency — (n + 1) we truncate it at —n.

Weighted minimax approximations can be interpreted similarly,
in terms of simultaneous phase and amplitude modulation.

4.5 Alternative Procedures

It is obvious that the procedures described above can be varied in
many different ways. A very few of the possible variations are noted
below.

Preliminary manipulations may be needed to obtain a formulation
in which the disposable part is a polynomial. Also, the pertinent Fourier
series may be sums of sines instead of cosines. Both these situations
will be illustrated by Example 5, in Section V.

If 9% '[G(x), x]/0G(x) is expressed as a product of functions of z,
D(e'*) can be formulated as a product of corresponding factors. A
factor of the form (1 — x/x,)" contributes a factor of the form
[M,(1 — v.,e'*)], as in Section III. More generally, there may be
advantages to replacing the D(-) of equation (44) by D(-) defined

W*(x) = D('*)D(e'*). (61)

Then the D*(-) in equations (48), (49) and (50) is replaced by D*'(-).
It may sometimes be convenient to express P(z) and F(x) as products
of factors in exp (Zip) instead of sums, say

P(x) = P'")PE '), F(x) = F(*)F(c'") (62)

in which P(-) is a polynomial of degree n with no negative powered
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terms. If a term in ¢* is neglected, one can now replace equation (29)
by

pepe = [Fe) + BE | e + reO]

Equating factors separately replaces equation (30) by
EE'*) ")

FE)
Subsequent modifications of our previous procedures are now easily
worked out.

It would be possible to replace equation (33) by other functional
forms for exp [if(¢)]. The moduli must approximate unity at real ¢
and expansions in positive and negative powers of exp (¢¢) must exist.
Disposable parameters are to be adjusted so as to approximate the
required coefficients of positive powers. However, except for very
special functional forms [such as equation (33)], the adjustment is
likely to be a quite complicated task.

P@E"*) = F*) + (64)

V. EXAMPLES

This section further clarifies the general procedures by means of
five examples.

5.1 Example 1

Let

T =1+, -—15s5+1 9

in which z, is a given constant, |z,| > 1, and the degree n of the dis-
posable polynomial P(z) is large. What is the approximate amplitude
|e| of the equal error extrema of the minimax approximation?

This is a special case of equations (55) and (56), which can be solved
as a special case of equation (42) for which

F(z) = = (1 — z/z0)t. (66)

1
W(z)
To apply Section IV, define F(-) and D(-) by

(1 = a/a)} = Fe") + F") = DE")DE™),

- (67)
F(es'v) = z C’eidp’

=0
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Log D(z) regular, |z| < 1.
We have already factored a linear function of z in terms of exp (i),
in Section III. A similar factorization now gives

i (1 = 'Ye‘.v)%
DE'*) = 73— 1
€)= gt 1vl< (©8)
and then the coefficients of C, correspond to an expansion of
[(1 — ¥ — ye-‘*)]*
1++

= >, Ce™ + Y, ¢ (69)
o=0 =0
To determine e we only need the coefficients C, for ¢ > n, which we have
assumed to be large.
The following expansion of [1 — v exp (Zg)], valid for |y| < 1, is well
known

@ = ye'" ) = 3 K.e™";
o=0
K, = —1, K, = —v/2; (70)
—(2¢ — 3)!
K, = M & g =2
4" ¢ — 2)! o!
When 7 is large and A < 7,
Ku+7\+1 _ 2(7’1 + )\) —1 ~
Kw 2 fNF27 M @)
in which
_2n+1 _ 3 i
= = * B L W
As a result, when 7 is large
5 n ]\r ei(n+l)p
1 — ve'®)" = Ke'? + —+ — . 73
(L —e’™) = 2, | — e (73)
Now note that
1 — ye-"*]![ Ko ] N (1 — k)IK
- s L 13 n+1 .
[ 149 1 — kye'® ; & (1 + ¥HIA — kye')
(74)

If equation (74) is used to evaluate C, in equation (67), only the last
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term contributes to C, when ¢ > n. Then

% 2y§

Z C"“_“)‘eﬂw = (1 —2 :C’Y ) K"+li
A=0 I+ 7v)A — kye'™®)
which is a special case of equation (32) with A(-) a linear polynomial
and B(-) a constant. The corresponding X (-) in equation (47) is a con-
stant and cancels out. Then equations (68) and (75) applied to equation
(50) give

(75)

. _2Kn+l
T 1= EY)A = k) (76)

N %) = G, 4 G '*.

The constants G, and G, contribute to the two highest degree terms in
the polynomial P(-). They need not be computed unless the specific
polynomial is needed as well as the amplitude |e| of the approximation
CITOTS.

The linear A(-) and constant B(:) determined by equation (75) can
be used in equation (40) to approximate the truncation error for the
polynomial approximation defined by equation (66). The corresponding
error in equation (65) can be found by dividing by (1 — x/x,)"”*. This
gives

€

r=maxlerl=(1—k72)(1+k|‘y|.
[ €] a—=1+D

Ifk =1, = (1 + |y)* < 4. Actually k& < 1, but further analysis
indicates that r will not be significantly >4 when +" is small.

When |z,| = ©, W(z) = 1, Coi1:2/Chsi — 0, and e is dominated by a
single Chebyshev polynomial (which has equal extrema). Consistent
with this our ¥ — 0, then @, , G5 — 0 in equation (76) and r — 1 in
equation (77).

In equation (74), K,., can be determined by the formula for K,
in equation (70). However, the following simpler approximate formula
may be more useful:

77)

- -‘yn+1 .
=2 + D + 1/4)

The error amounts to about 0.3 percent at n = 2 and about 0.04 percent
at n = 6. The derivation is related to, but requires more than substitu-
tion of Stirling’s approximation for the factorials in equation (70).

Fig. 3 illustrates computed errors e(z) and er(z) corresponding re-

K

(78)
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1.02—

ERRORS € AND €71
|
|
1
t
1

099+ TRANSFORMED X SCALE ¢

Fig. 3 — Illustrating Example 1: (a) e(z) and (b) er(z).

spectively to our approximately equal ripple solution and truncation
of the Chebyshev polynomial series. The constants 4-¢ and re deter-
mined by equations (74) and (75) are included for comparison. The
computations started with

2o = 1.025, n =10
for which, as computed by equations (76), (77) and (78),
v =038, k =17/8,
K,., =2 0.0006881, e = 0.0040678, r=3.74.
5.2 BExample 2
Let
P@) = (1 — a/20)"" +e(x), —-1=2a=+1 (79)

in which the degree n of P(x) is again large and 2, is again a given
constant, |z, > 1.

Sinece the function F(x) is the same as in Example 1, equation (75) is
again valid. Now, however, W(z) = 1 and hence Section 4.1 (on un-
weighted polynomial approximations) is appropriate. Applying equation
(75) to equation (37) gives

€= (1 - ]‘772)”-("4-1
(1 + )N — k%) (80)
N(e“'“’) = @,

in which N(-) contributes only to the highest degree term in P(-). The
error ratio r turns out to be
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max | e
r = |€|T =14+k|v| <2 (81)

5.3 Example 3*
Let
(1 — z/2)'*P(z) = 1 + e(), —-1=2z=1 (82)

in which degree n of P(x) is again large and z, is given, |z, > 1.
In the equivalent weighted polynomial approximation

b i L — -4
F(z) = Wa (1 — x/x)7". (83)
Proceeding as in Example 1, one now gets
‘ (1 + 1~}
DE'’) = ——,
€0 =y

A + ) Kuis

> Cu+ + eﬂw = e -
Z 14 (1 — kv — kye'®)’

(84)
K _ Qn + 1)!7n+l s 'Yn+l
mT oWl + DT [ + 5/4))
pomt3_ 1
T 2n+ 4 2n + 4
Then equation (49) gives
2K, (1 — kyY)?
€T 1 — k%*
—-ip
e = (85)
1 — e '*
N o= £ =B + )
L2 1 —ky*
Equation (35) is now
et 3 X (86)
1 — ~ve a=1

The first 2n + 1 terms in this series contribute to P(-) per equation

* The author has encountered this problem in connection with two different
circuit theory studies, which will be described in other papers.
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(36). The remainder can be summed, to get

2n+1_—1(2n+2) ¢
Nqy™e

3e’?) = (87)

ig

1 — ye~

Evaluating the error corresponding to simple truncation now gives
max |ep | o, (1 — |y DA — k%)
lel — @A —Fk[vDA - k)
When 7 is large, £ =2 1 and r is so close to unity that the minimax
refinement of simple truncation is not likely to be justified. However,

our analysis has been useful in disclosing this fact, without the detailed
computation of any minimax approximations.

(88)

5.4 Example 4

Previous work, which we shall discuss in Section VI, concerns the
following problem: Let

P.(z) = P, (z) + e(z), 1=z +1 (89)

in which P,,,(z) is a given polynomial of degree n + » and P,(z) is a
disposable polynomial of degree n. For what P,(z) does £(z) have the
equal ripple form?

Equations (32), (33) and (37) now simplify to

E Cn+1+7\(en¢) = C,H.H.)\(e“‘a) = B(e")“")’
A=0 =~ -
) X(e™) ie
= — 6 .
€ X(e—l p) + (6 )

5 X(*) + BE)X(E*) = ¢ *NE*)

in which B(-) is a polynomial of degree » — 1, with coefficients C, ..
and X (-) is a polynomial of degree » — 1, to be found therefrom. The
coefficients of B(-) can be found by expanding the left side of the last
equation and equating to zero the coefficients of pgsitive powers of
exp (Z¢). The result can be expressed as the following specialization of
equation (38):

@+§QQ=0 (91)

in which @ is again a column matrix whose elements are the v coefficients
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of X(+) and I is the identity matrix of order ». The matrix C has the
special form (assuming the elements ¢, of @ to be ordered per

X@ =) ¢.2)

C’n+l C’n-r'.! e Cn+v—| Cn+v
C — Cn+2 Cn+3 24 X Cn+v 0 ) (92)
Cuvy O e 0 0

When » = 1, X is a constant and the solution is elementary. When
v = 2, X(z) is linear. Let z, be its zero. Then equations (91) and (92)
require

2 2
e + 20:.“5 — 4C = 0;

€
Z = . 93
1 20n+2 ( )
The roots of the quadratic equation in e are real. When C,., # 0, the
larger | e| > 2| C,.»| and | 2, | > 1, as required. Then § in equation
(36) turns out to be a power series in exp (—ig) which can be summed
to get

_72n+2(:1 e—i(2n+2)¢

2n+2

5(c'*) = — (94)

1 — vye

vy =1/z .

When C,., = 0, e = £2C,,. and z, = ==1. But then the error due to
simple truncation of the Chebyshev polynomial expansion of P,,(z)
is proportional to a single Chebyshev polynomial of degree n + 2, which
has equal ripples with n 4+ 3 extrema instead of n + 2.

5.5 Example 5*

As a last example consider the following nonalgebraic approximation:
) = Y, A,singf = 0+ &(6) (95)
a=1

—r < —0., 2060 <m.

For what coefficients 4, does the error £(6) have the equal ripple form
and what is the amplitude e of the ripples?
* This problem is of interest in, for example, the approximation of differentia-

tion with a tapped delay line. A more detailed treatment is planned for a future
paper.
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A sequence of transformations changes equation (95) into a weighted
polynomial approximation. First, equation (95) is equivalent to

n=1
sin 6 D B, cos (p6), (96)

=0

INQ))

9A, = B,., — B,., .

Second, relate 6 to a new variable ¢ by

dind = guing, 8] € ©7)

f)

q= sin% < s
Real ¢ maps into —0, < 6 = 6. . Also
cos 0 =1 — ¢* + ¢° cos 2, (08)
sin 8 = 2¢(1 — ¢’ sin® ¢)} sin ¢.

In these terms, equation (96) becomes
n—1
T(8) = 2¢(1 — ¢*sin*@)ising Y, B, cos (2p¢) (99)
p=0

in which the set of coefficients B, is linearly related to the set B, of
equation (96). In equivalent exponential terms

f(o) = 401 - ¢*sin* YIPE™) — PE)] (100)

in which P(z) is a polynomial of degree 2n — 1 in odd powers of z only.
Use equation (100) in equation (95) and solve for the factor in [ ].
The result can be expressed in terms of exponentials:

P("w) = P((t—"") = F(L,‘*‘) _ F((’_W)
+ D) DE EE") — E@)]  (101)

in which F(-), D(-), and E(-) are related to previous functions by

0

(51’(1 — @sinfe)t = 320, sin (20 — 1g; (102)

o=1

I’v((‘lc) — Z Ceu-]ei(mf—l);;

o=1

}I(l — ¢*sin® )7 = D(*)D(e%);
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) i2zp\ |4
pe) = [ <

E() = ; [BE) — BE);
E(eip) o % ei[(2u+l)¢+!(¢)l .
It can be shown that the coefficients C,,_, obey a difference equation

of order 2. The asymptotic behavior of the difference equation shows
that

20 — 1\!
as o _)w, 02u+] - — m ‘YC2U—I ® (103)
As a result, for a sufficiently large n
Zw: Cone e Ve~ C2n+1ei(2n+l)w
o T T 1+ kye®’
(104)
% (Qn-f— 1)5£4n+ 1
T \2n+3/ Tan+3

Proceeding almost exactly as in Example 3, using equation (104) and
the D(-) of equation (102), one can now obtain an approximation to the
minimax error ¢, to the error ex(¢) due to simply truncating the expan-
sion of F(e'¢), and to the ratio r of max | ex | and | € |. As in Example 3,
it turns out that the minimax approximation is only a little better than
the approximation by trunecation, at least when n is large.

Figure 4 compares a computed e,(¢) with the approximate e and

ratio r of max | ey | to | € |, using
6. = 170° n = 15,

for which
v = 0.8397 k = 0.96825,
e = 5.690° r = 1.0840.

VI. COMPARISON WITH OTHER WORK

This section compares the present paper with previous publications
in various related fields. It is not intended, however, to be an exhaustive
survey of all related publications.

The transformation from z to ¢ followed by distortion of the ¢ scale
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Fig. 4 — Illustrating Example 5.

to obtain an error function of the form e cos [(n + 1)¢ + f(¢)] has been
used before. Pertinent references are papers by Clenshaw® and Stiefel,’"*
who call our f(¢) the “phase function”. Of these, Clenshaw’s paper is
quite close to ours, and in fact our work might be regarded as a generali-
zation of his.

Clenshaw devotes much of his paper to the approximation of a
polynomial of degree n + » with a polynomial of degree n, which is our
Example 4. Clenshaw, (Ref. 2, pp. 30, 31) solves the problem for » = 2
in a quite similar way, except that he expresses his Fourier series in
terms of cosine functions instead of power series in ¢**?. He exhibits an
approximate solution which can be shown to be almost, but not quite
equivalent to ours. We would have obtained an exact equivalent if we
had restricted our polynomial P(-) to positive powers only, correspond-
ing to ¢ = 0 to n in equation (25) instead of —n to n. In equation (36),
this restricts the disposable G)’s to A = 1 to » 4+ 1 and increases the
number of terms in 6(-) to N\ = n 4 2 to . The result is a somewhat
poorer, but frequently adequate, approximation to an equal ripple
error. Clenshaw also notes how his approximation can be improved, but
does not fill in the details. It can be shown that the improved approxima-
tion would be an exact equivalent of ours. However, we have found that
our formulations in terms of e**¢, instead of cos ¢, are simpler, and also
more revealing concerning, for example, the nature of the approxima-
tions.

Clenshaw (Ref. 2, pp. 31-36) also considers » > 2, and obtains ap-
proximate solutions for » = 3, 4 in terms of roots of cubic and quartic
equations. However, he retains the use of cos ¢, instead of e*'?. As a
result, he does not include a formulation for a general » in terms of an
eigenvalue and eigen vector of a matrix, like our equation (91).
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Clenshaw (Ref. 2, p. 29) notes that the equal ripple approximation to
(zo — )" has been solved exactly and cites Hornecker’ and Rivlin'.
Any solution to this problem is easily applied to more general problems
in which the given function yields the same sort of remainder when the
Chebyshev polynomial series is truncated. Examples are our Example 2
and our general formulation for unweighted polynomial approximations
with weight factor W = 1, m = 1, g = 0 in the remainder function (32).

Our procedures are more general in the following ways: First, remain-
der functions can have the more general form (32). For practical pur-
poses, degrees m and u should not be large. However, they need not be
restricted to the special casesm = 0, p < 4 and m = 1, g = 0. Second,
minimax weighted errors can be obtained [by using suitable weight
factors W (z) in equations (42), (44), and so on]. Third, unweighted mini-
max approximations can be obtained with approximating functions of
which the disposable polynomial is only a part (by solving an equivalent
polynomial approximation with a weighted minimax error, as in our
Examples 1, 3 and 5). Finally, relatively simple formulations have been
obtained by using exponentials instead of cosine functions.

Stiefel’s papers®™* have much less relevance to our work. They use
the error formulation € cos [(n + 1)¢ + f(¢)] but obtain solutions by
numerical iteration. Reference 3 also includes a general integral equa-
tion, which determines the required coefficients implicitly but is not
easily solved.

Our use of rational fractions to approximate remainder functions,
as in equation (32), and so on, is at least reminscent of the so-called
¢ algorithm. The e algorithm also uses rational function approximations
to remainders but for a different purpose—to increase the rate of con-
vergence when functions are evaluated from their power series. It is
quite different from the use of rational functions in the formulation of
minimax polynomial approximations. References for the e algorithm are
Shanks® and Wynn.”

Our procedures require evaluating certain of the coefficients in the
Chebyshev polynomial expansion of a given F(z) (or in the equivalent
Fourier series expansion in terms of ¢). Various established numerical
methods are available for this." The best choice depends on the form in
which F(z) is specified (for example in closed analytic form, as a power
series in z, or numerically at a set of discrete points). When F(z) satisfies
a differential equation with polynomial coefficients, the coefficients in
the Chebyshev polynomial series are related by a difference equation of
finite order and can be computed recursively. Our Example 5 is a special
case. The general relation is described by Clenshaw' who also includes
numerical tabulations of coefficients for some common functions.
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The author’s 1952 paper on network synthesis in terms of Chebyshev
polynomials is only remotely related to the present work."

VII. CONCLUSIONS

Techniques like those described in Section IV and illustrated in Sec-
tion V can be applied to many approximation problems in which the
disposable part of the approximating function is a polynomial and
approximately equal weighted or unweighted error extrema are desired.
However, to be useful they must compete with other possible techniques,
especially established numerical methods whereby equal-ripple ap-
proximations are obtained by iterative improvement of a sequence of
unequal-error approximations. This section notes some circumstances
under which procedures like those deseribed here may perhaps be pref-
erable.

First, the techniques described here are more likely to be competitive
when the degree n of the disposable polynomial is large. When n is large
iterative numerical methods are more likely to entail excessive amounts
of computing. On the other hand, certain aspects of the more analytic
techniques described here are likely to become easier as n becomes
larger. These concern particularly the use of a simple rational fraction
to approximate a remainder function, as in equation (32).

Second, the techniques described here are particularly suitable for
exploring relationships between error amplitude | € |, the limits z, , x,
of the approximation interval, the degree n of the disposable polynomial,
and other parameters in the approximating function (such as z, in
examples 1, 2, and 3). In explorations of this sort the computation of
the actual coefficients of the disposable polynomial P(x) can usually
be omitted. When n is large this can mean omitting most of the computa-
tions required for a complete determination of the approximating fune-
tion. Frequently, computations which end with | € | remain very simple
even though n becomes arbitrarily large.

Third, sometimes, as in our Examples 1, 2, 3 and 5, our techniques
give quite simple estimates of the advantage of an equal-ripple approxi-
mation over simple truncation of an infinite series of Chebyshev poly-
nomials. Such a comparison may be useful, for example, in deciding
what sort of approximation should be computed in detail.

More generally, an attractive combination may be an initial explora-
tion in terms of the techniques described here, followed by the detailed
computation of one or more preferred cases by established iterative
numerical methods.

We have assumed here that the parameters disposable for purposes
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of approximation are all the coefficients in a polynomial. Preliminary
investigation indicates that similar methods may be feasible for dis-
posable rational functions, or ratios of polynomials, provided the poly-
nomials in the denominators are of quite modest degree. This will be
the subject of a later paper.
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Multilevel Modulation Techniques
for Millimeter Guided Waves

By W. M. HUBBARD, G. D. MANDEVILLE, and J. E. GOELL
(Manuscript received July 12, 1969)

This paper describes an tnvestigation of the feasibility of increasing the
information transmission capacity of a guided millimeter wave communi-
cation system by using quaternary and higher order modulation techniques
in place of binary. It first presents a generalization of the binary system to
higher orders and then extends the results of previously derived error-rate
predictions. An experimental repeater for quaternary modulation which
uses components that are stmilar to those used for binary modulation zs
then described along with associated equipment used for signal generation
and performance evaluation. Finally, performance data on the repeater
are gien and compared with theory.

I. INTRODUCTION

The quaternary and higher-order modulation techniques which are
deseribed are extensions of the binary modulation technique previously
discussed by the authors.' The earlier system uses binary differentially-
coherent phase-shift-keyed (B-FMDCPSK) modulation, a form of
modulation in which the frequency of the carrier is increased or de-
creased once during each time slot in such a manner that the phase
(the time integral of the frequency shift) is changed by =-90° relative
to the phase of the previous time slot. Experimental repeaters were
built which could regenerate, with a 10~° error rate, a signal which
had been attenuated by an amount equivalent to 15 miles of wave-
guide. In this repeater the incoming millimeter-wave signals from
circular waveguide were passed through band- and channel-demulti-
plexing filters, down-converted, amplified, differentially phase-detected,
and regenerated (utilizing timing information self-contained in the
signal) to obtain a polar baseband representation of the information.
This baseband signal was used to drive an IF voltage-tuned oscillator,
the output of which was amplified, up-converted, passed through

33
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channel- and band-multiplexing filters and launched into circular
waveguide.

The modulation scheme of the system can be generalized in such a
way that systems with M = 2" levels (quaternary, octonary, and so on)
can be built with components most of which are the same as those used
in the binary system. With such a system, the information capacity of
the wave-guide can be increased by a factor m by using a 2" level signal
in each of the individual channels. The increase in system capacity is
accompanied by a decrease in immunity to noise and system degradation
(which is common to all multilevel systems) and a slight increase in
system complexity.

A theoretical consideration of multilevel systems of all orders is given
in Section II. This consideration amounts to an extension of previous
error-rate calculations for binary systems.” Section III describes a
quaternary (Q-FMDCPSK) system which has been built and operated
at 320 megabits/s.

Because the theoretical portion of this paper is a direct extension
of a previous paper on a binary system it is assumed that the reader
is familiar with the contents of that paper.” However, references to the
binary paper are made where appropriate as an aid to the reader.

II. THEORETICAL CONSIDERATION OF MULTILEVEL SYSTEMS

2.1 Description of the Quaternary System

The signal consists of a constant-amplitude angle-modulated carrier.
The modulation is achieved by causing a frequency deviation once in
each time slot. For the binary case the frequency deviation w(f) satis-
fies the condition

(n+p) 7

f () dt’ = a, 1)
=7

in the nth time slot, where a, = =/2 and contains the binary infor-

mation. This signal can be written in the form

s(t) = cos [wol + j;‘ w(t’) dt’] 2)

where w, is the center frequency about which the signal is deviated.
Equations (1) and (2) hold for the quaternary signal as well. The only
difference is that now a, can take on any of the four values 4=r/4,43/4.

The signal space diagrams of these signals are shown in Fig. 1. The
states marked “X’’ represent the phase states which are available to



MULTILEVEL SYSTEM 35

Fig. 1—Signal space diagrams for DC phase-shift-keyed signals: (a) binary,
(b) quaternary. X represents phase states available in even number time slots
and “Q” represents the phase states available in odd numbered time slots.

the signal in the even numbered time slots and those marked “O”
represent the states which are available in odd numbered time slots.
Thus the transition always takes place from a state marked X to a
state marked O or vice versa.

Bennett and Davey describe the detection scheme for DCPSK
modulation.” A particular embodiment of the differential phase detector
for the binary signal of Fig. la is shown in Fig. 2. Here the relative
delay between the two paths is 7' where 7' satisfies simultaneously
the two constraints

1 = Baud rate

|

wl' = (n + $)m n an integer.

Figure 3 illustrates how this differential phase detection concept is

3dB
. QUADRATURE - HIGH= Low-
’ HYBRID N — PASS PASS
. N FILTER FILTER
/ R
\
INPUT ¥ \
OUTPUT
X —
g_ i Y
—{ DELAY T
HIGH — LOW -
T L| Pass PASS |
wol = (N+3)7 FILTER FILTER

Fig. 2 — Binary differential phase detector.
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BINARY DIFFERENTIAL v
PHASE DETECTOR | OUTPUT !
INPUT HYBRID I gl = (Ni+3) 7

BINARY DIFFERENTIAL V.
PHASE DETECTOR OUTPUT 2
_—

weT2= N7

Fig. 3 — Quaternary differential phase detector.

extended to the quaternary case. In this case the preceding constraints
become

1 1
T~ T, Baud rate

woly = (m + 3

onz = Nom

n, , N, integers.

If one applies the signal described by equations (1) and (2) to the
device illustrated in Fig. 3, he finds that the outputs V, and V, are
given by Table I for the four possible phase changes, a. Thus the binary
variable V, defines the sign of « while V, defines its magnitude. Stated
another way, given that the phase state in the (n — 1)th time slot
was at 0 radians in Fig. 1b, V, determines in which half plane (upper
or lower) the phase state of the nth time slot lies while V, determines
in which half plane (left or right) it lies.

Since each branch of the quaternary differential phase detector is
identical to the binary device described in Ref. 2 the limiter and the
regenerators can also be identical to those described in Sections IIT
and 1.4 of Ref. 2.

For the multilevel system, only one device which is not a direct
adaptation of an existing component of the binary system is required.
Its function is to translate the regenerated binary signals into a signal

TasLE I —OuTPuTs FOR FOUR PossiBLE PHASE CHANGES

a Vi Vs
/4 1 1
—x/4 -1 1
3r/4 1 -1
—3r/4 -1 -1
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suitable for driving the FM deviator. Its performance should be virtually
error free and need not be considered in the error-rate calculations.
A description of this translator is deferred to Section III.

2.2 Faxtension of the Error-Rale Calculation

The bit-error probability of the quaternary system described in
Section 2.1 is equal to the probability that an error is made in one of
the baseband binary sub-channels. This, however, is just the probability
that an error is made in a binary differentially-coherent phase-shift-
keyed system in which the expectation value of the second pulse is
shifted an amount w/4 from where it should be for binary operation.
(This phase shift from the desired binary-system value is represented by
the quantity 8, in Section III of Ref. 2.) The probability of bit error, II
can be restated for the quaternary case as*

n=%P,,(¢+§+ a)+%P.,(¢—§—a) 3)
where
1 =2 cos” ®
Po(® =5 ] &P [—262(1 i a)] 0. @)

An approximate solution (in closed form) to this integral is derived in
the Appendix. Here the quantities ¢ and § have the same meaning as in
Reference 2, namely, 8 is the phase shift due to intersymbol interference
and any other phase distortion in the system, and ¢ = sin™ e where
eis given by S/T = —10 log € and S/ T is the signal-to-threshold ratio
of the regenerator in decibels. S/T is defined in Section 1.4 of Ref. 1
as the ratio of the expected value of signal power to the minimum value
of signal power which will cause the regenerator to function realiably
(in the absence of noise).

Values of P, for ® from 0 to 30° are given in Ref. 2 for signal-to-
noise ratios S/N = 9 through 15 dB. These results are extended in
Tig. 4 to include values suitable for quaternary and higher level systems.
Note that P,(®) is even. Figure 5 shows error rate as a function of S/N
for an ideal quaternary system.

The effects of finite S/7" and & are more pronounced for quaternary
systems than for binary. The threshold effect noise figure N r defined in
Ref. 4 is shown in Fig. 6 for a quaternary system and for a binary

* Equations (3) and (4) follow directly from Equations (20) and (21) of Ref-
erence 2 by replacing & with § 4 =/4.

t The equation relating S/7T" and e in Ref. 2 is incorrect. The conclusions of Ref.

2 are not affected by this as the correct form of the relation was used in the cal-
culations.
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system. N is the amount by which S/N must be improved in order to
offset the effect of a nonideal regenerator.

The effects of 8 and S/T are determined directly from Fig. 7 which
shows the value of S/N required for 107°, 10°%, 10~°, and 107" error-
rate as a funetion of ®. For comparison we consider the values of S/T
and & which were inferred from the measurements made on the binary
repeater described in Ref. 1, namely S/T = 10 dB, § = 10°. For the
binary case the combined effect of these degradations is about 0.8 dB
whereas for the quaternary case the combined effect is about 3.4 dB.
The theoretically predicted values* of S/N for operation with an error
probability of 107 are therefore 13.8 dB and 21.3 dB for binary and
quaternary, respectively (with half the bandwidth requirement in a
quaternary system with the same bit rate). (The experimentally de-
termined value for the binary system is 13.7 dB.)’

2.3 Extension to Higher Level Systems

In a system with 2" levels, the signal described in Section 2.1 could
be generalized to have 2" equally spaced positions around the unit
* This value does not include degradation introduced into the quaternary sys-

tem due to nonlinearity of the FM deviator. Unlike the binary case, this non-
linearity is important in the quaternary and higher order cases.
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Fig. 5 — Probability of error in ideal binary and quaternary systems.
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circle in the even numbered time slots. The differential phase detector
would then require m of the binary differential phase detectors of Fig. 2,
with delay lines T, , T, - - - T, such that the values of w, T, are chosen
to give 2™ equally spaced values around the unit circle beginning at
/2", that is,

onk=(3’°—'—2F;1)—", ko= 0,8, 0, % =1,

In systems with more than four levels this method of detection
gives more than one level of pulse height at the regenerator. The follow-
ing consideration makes the approximation that the worst-case error-
rate applies in all cases. This results in a calculated error-rate which is
too large by a factor which is less than the ratio M /(M — 4) for an M
level system (M > 4).

Equation (3) then becomes:

n=%Pa(¢+a+g—},'—l)+%Po(¢— a—’§’+ﬁ) 6)

and equation (4) is unchanged. Figure 4 gives values of P,(®) suitable
for evaluating IT for values of M up to 16. Figure 7 indicates the values
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of S/N required for 107°, 107%, 10~° and 10~* error-rate for ideal 2™
level systems for m = 1 through 5.

2.4 Resulls of the Calculations

In an ideal repeater the signal-to-noise ratio for an error rate of
107° is 13.0 and 17.9 dB for binary and quaternary signal, respectively.
This amounts to a price of 4.9 dB for the doubling of the bit rate (or
alternatively the halving of the bandwidth) achieved by quaternary
systems. In an actual repeater with intersymbol interference and non-
ideal regeneration comparable to that in the 306 megabits/s binary
repeater of Ref. 1 there is an additional degradation of about 3.4 dB
(compared with 0.8 dB for binary signals). Thus a signal-to-noise ratio
of 21.3 dB is expected to be necessary for a 10~° error rate in the quater-
nary repeater—a penalty of 7.5 dB compared with the binary repeater.
For a guided-wave system of the sort deseribed in Ref. 1 this requires
only a 2.5 mile decrease in repeater spacing (about 10 to 15 percent)
which might not be an unattractive price for doubling the channel
capacity of the system.

For systems with more than four levels, the degradation in error-rate
performance due to S/T and 6 is even more severe. For eight levels
(m = 3) for example, ® becomes 83.2° (for the worst case) for S/T = 10
dB and § = 10° and the degradation is (from Fig. 4) intolerable. Clearly
an improvement in S/ T and a substantial improvement in 8 is necessary
in order to make systems with more than four levels feasible. Even for
ideal systems (S/T = =, § = 0), signal-to-noise ratios of about 23.7 dB
and 29.7 dB are required for 10™° error-rate for eight and sixteen level
systems respectively compared with 13.0 dB and 17.9 dB for two and
four level systems.

III. EXPERIMENTAL RESULTS FOR QUATERNARY REPEATERS

3.1 Description of the Experimental Repeater

The quaternary experimental system, shown in Fig. 8 is similar to
the binary system described in Ref. 1 with the following exceptions.
() Where one differential phase detector and one regenerator were
used in the binary, two are required. In addition, a binary device called
a translator is needed.
(72) Conversion into and out of the millimeter medium was omitted.
(747) Modulation of a deviator by the regenerated baseband signal
was not attempted.*
* The technique for doing this, however, is identical to the technique used to

synthesize the signal from the random word generator and should present no addi-
tional problems.
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(v) A symbol (baud) rate of 160 MHz (320 megabits/s) was used.

In a quaternary FM phase-shift-keyed (Q-FMDCPSK) signal the
information is contained in the phase shift between adjacent time
slots. The phase shifts used are 43 /4 and #+=/4. The signal is generated
by a voltage-controlled oscillator whose frequency is pulsed between
sampling instants so that the time integral of the frequency shift is
equal to the desired phase shift. An illustration of such a signal is
shown in Iig. 9.

A four-level baseband pulse train is derived from a two-level polar
source identical to the one used for the binary experiment' except for
the rate which in the quaternary experiment was chosen to be 160
MHz. The random binary output signal is divided into two signals.
One of the signals is delayed a few integral time slots and the other is
attenuated 6 dB. They are then recombined. The combination of
+2, —2 with +1, —1 pulses produces a pulse of one of four levels in
each time slot (see Fig. 10a). These are +3, +1, —1, and —3, which
produce phase shifts in the deviator 3=/4, m/4, —m/4, and —3n/4,
respectively. By delaying one signal a few time intervals, we closely
approximate the effect of two independently random binary signals and
thus obtain a virtually random four-level signal. Observation of the
spectrum displayed by a spectrum analyzer verifies the randomness
(see Tig. 10d).

Identifying the larger binary component as signal #1 and the smaller
as signal #2 will help clarify the explanation of the regeneration process
which follows. For the binary system, the signal was detected by a
differential phase detector, the output of which is given by

cos [p(t) — ¢(t — 1) + wor]

where ¢ is the phase angle of the signal, 7 is the time delay introduced
by a delay line built into the device, and w, is the angular carrier fre-
quency. For the binary case, r was made equal to the bit interval and w,r
equal to m/2 4+ nm. The operation of the differential phase detector is
illustrated in Fig. 11. The reference phase is taken as the phase of the
signal in the previous time slot. The information given by the device is
the projection E, of the signal S along the vertical axis. The two phase
transitions of the binary case, -=7/2, are fully determined by the sign
of B, .

For a quaternary signal, it is not possible to distinguish between
transition into regions I and II or those into III and IV using only E, .
This problem was solved by splitting the IF signal into two portions,
one of which was connected to a differential phase detector with » = T,
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S (t)-a(t-T)

-3l (9)

Fig. 9 — Representative quaternary frequency-modulation diﬂerentially-coherent‘
phase-shift-keyed signal.
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Fig. 10— (a) Random four-level base-band pulses (H = 2 ns/ecm); (b) sym-
metric eye (H = 2 ns/em); (¢) asymmetric eye (H = 2 ns/em); and (d) IF
spectrum (// = 30 MHz/cm).
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» (REFERENCE)

Fig. 11 — Operation of the differential phase detector.

and the other was connected to a differential phase detector with
r = T, . The quantities w, , T, , and T, were chosen so that

woT; = 16.57 and w7, = 167

in order to satisfy the conditions set forth in Section II. Thus the output
of the first differential phase detector gives E, , and the output of the
second E, . From the signs of E, and E, the quadrant of the signal can
be determined as shown in Table II. Figures 10(b) and (c¢) are photo-
graphs of sampling oscilloscope displays of the two phase-detector out-
puts of a typical random signal. Because signal state #2 does not corre-
spond to either E, or E, a translator is required. If ¥, and E, are regen-
erated so that they have unit magnitude, then signal #1 is given by E,
and signal #2 is given by the negative of the produet, E,E, . The sign of
the product E,E, was determined by the translator circuit shown in Fig.
12. This circuit is similar to the balanced-line logic element used in the
binary regenerators except for the input circuit; it functions as follows.
Without input, once each time slot either diode A or diode B must
switch into its high-voltage state while the other diode remains in its
low-voltage state. Applying positive bias causes diode B to switch
giving positive output pulses while applying negative bias produces the
opposite effect. For the translator circuit the bias is set so that diode B
always switches into the high-voltage state in the absence of input. The
input to the circuit is the sum of the regenerated outputs of the two
differential phase detectors E, and E, . If the sum of the two signals is
zero, diode B switches so the output pulse is positive. If the sum of
the two signals is either positive or negative diode A switches and a
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TaBLE II — DETERMINATION OF THE QUADRANT OF THE SIGNAL

Phase Shift ' Original Original

Quadrant at Transmitter ) E, E, Signal #1 Signal #2
I /4 7 =+ =+ =
1I 3r/4 —+ = + +
111 —3n/4 — — - -
v —/4 - + — +

negative output results, since for either polarity, current flowing through
the steering diodes, D, and D, , increases the current through diode B.
Thus the translator output is equivalent to the product of the re-
generated ¥, and E, signals.

3.2 Results

The error rate was measured as in the binary experiment, except
that the two binary components of the regenerated quaternary base-
band signal were compared separately with their properly delayed
counterparts comprising the input baseband signal.

The results of the error-rate measurements are shown in Fig. 13.
Curve 1 shows the error-rate performance which was obtained when
the equipment was originally built. At high error-rates (above about
5 X 107%) the performance was in good agreement with the theoretical

160 MHZ o—AA/\/

—»— AAA————4  DELAY LINE —o+
Dy
AY
(S——d——NA o < BiAs
NN———AWy S CoNTROL
INPUT D2 OUTPUT

BY

| DELAY LINE o-
160 MHZ —
(180°)

Fig. 12 — Schematic of translator cireuit,
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predictions. There was, however, a ‘“floor” at an error-rate of about
4 X 107" and no increase in the S/N would reduce the error-rate below
this value. It should be noted that the degradations considered in
Section II shift the error-rate line to larger S/N and decrease the slope
slightly (in magnitude) but do not tend to establish a “floor’” such as
the one shown by curve 1. It might also be mentioned that a ‘“floor”
similar to this is characteristic of experimental error-rate curves for
the binary repeater of Ref. 1, but there it occurred typically at error-
rates below 107'° and was therefore considered insignificant.

Thus the indication was that the “floor” was the result of some
degradation which was neglected in the theory and to which the four-
level system was far more sensitive than was the two-level system.
One possibility was that the impairment was due to slight mismatches
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among the commercial components. Improved performance was achieved
by careful selection of components with particular emphasis on the
linearity of the deviator. Curves 2 and 3 of Fig. 13 show the typical and
best performance, respectively. The “floor” was at 8 X 107" when
curve 3 was observed. Thus the agreement between theory and experi-
ment is fairly good at error-rates substantially above the experimentally
observed floor.

3.3 Conclusions

The quaternary experiment was restricted to the investigation of
the modulation and regeneration aspects of a repeater system. How-
ever, the data obtained, coupled with the results from the previous
binary experiment, suggest that a quaternary (Q-FMDCPSK) re-
peater system is feasible and might have applications where the con-
servation of bandwidth is desirable and the cost in terms of noise
immunity can be afforded. Systems with eight or more levels do not
seem feasible at the present time.

APPENDIX

Evaluation of the Error-Rate Integral
The integral Po(®) [equation (4)] or its equivalent
S L e - — =
PO = 27[' T exp [ (x pr) (y pv) ]
g, + yqu]

-erfe [ﬂ—— dz d 6
is frequently encountered in error-rate calculations for digital phase
and frequency modulated signals.'***®* The equivalence of these two
forms can be shown by arguments similar to those of Ref. 5. Namely,

the integral in the form of equation (6) is written in polar coordinates
and the integration over r is performed to give

1 2x 15
D = Ej; exp (—p° sin® ¢) erfe [g cos (@ + ¥)]

4
~[% exp (—p’ cos’ ¢) + p cos ¢ % erfe (—p cos ¢)] dé
where

p=@+p), ~v= atn% - atn%, g = (¢ + O
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This integral can be greatly simplified by writing the error function
compliments in terms of their respective error functions and making
use of the odd parity of the error function. When this is done the only
nonvanishing terms are (after some simplification)

1 1 » (p/a) [(p?—x?)} cos y—z sin 7] )
P, =5 — —f [ exp (—2* — y)dedy. (7)
2 xl_, 4

The limits of integration in equation (7) form half of an ellipse. Because
of the spherical symmetry of the integrand we can pick any half of this
ellipse. Thus the integral can be written

1 x/2 R(g)
Py = — f f exp (—r*)r dr dé
21 J_xs2 Jo

where (after some simplification) one finds
S COS2 <] 4
k@) = [1 + sin @ sin 2¢o:‘

and

2 ? cos
S=p_gq— cos<I>=2H-

Performing the radial integration gives

__1_/‘"2 ( S cos® ® )
RPl®) =g | P\~ Tl ensain g

which is equation (4) with the substitution
1
pis 25%
As a first step in finding an approximate solution to P,(®) we can

write

1 /2

P(®) = ‘)—f exp [—S cos® (1 — sin ® sin 6)] d6.
LT J—x/2

But P(®) can be integrated to give
P(®) = 1 exp (—S cos® ®)I,(S cos® ® sin ®)

where I, is the modified Bessel Function of the first kind. Now P(®)
must be a good approximation to P,(®) for sufficiently small &. In fact,
for ® = 0 and ® = 47/2 we have

P(0) = P,(0) = § exp (—18)
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ag) - rlag) -

respectively. Thus P(¢) and P,(¢) agree at both extremes.
Let 9(P) be the integrand of the integral for P and 9(P,) the integrand
of that for P, . Their ratio is

apP) {S sin® (2®) sin’ 0}
H(P) ®XP 41 + sin @ sin 6
We observe that R = 1 everywhere. In the following argument we
assume for clarity that & > 0; but it can easily be verified that similar
arguments can be constructed for the case ® < 0 and the same results
obtained.

R(®, 6) has an absolute maximum R,, at § = —=/2 and a relative
maximum Ry, at 6 = 7/2

Reo = {S sin’® 2@ }
A = P AT " |sin® |

R — {S sin” 2@
R = OXPALST X |<1n<1>|

Thus we have rigorous bounds
P(®) = Py(®) = P(®)/Rau -

Unfortunately these bounds are often too loose to be of much value.

Inspection of the integral for P, reveals, however, that almost none
of the contribution to the integral comes from the region near 6 = —m/2
and in fact almost all of the contribution comes from the region near
8 = /2 where R(®, §) =~ Ry, . This suggests that we consider the
expression

P,(fb) = P(q’)/Rn.u
1 exp {—S (1 — sin’ @)} I,(S cos® ® sin &)

and

R(®, 6) =

as an approximation to P,(®). Note that P,(®) also possesses the
property that

P,(0) = Po(0),  Pi(£m/2) = Po(xm/2).
Finally, one finds empirically that a somewhat better approximation
is given by
Py(®) = P,(®)[L + 3 | sin (29) [].
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It has been verified by numerical calculations of P, that for values
of 8 and ¢ which give 107" < P, < 107° the accuracy of the approxi-
mation is better than 10 percent for & < 50° and remains better than
36 percent up to & = 80°. In this range of error rates a variation of
40 percent in P corresponds to a variation of a few tenths of a decible
in S/N. This form is most useful for binary systems (& small) even
though it is valid for a wide range of values of ®; a simpler form is
derived below which is valid for large ® and is therefore more con-
venient for quaternary and higher order systems.

It has been pointed out by H. O. Pollak that the integral

fs " -

which arises from consideration of a sine wave plus random noise® is
closely related to the error-rate integral P,(®). Pollak’s proof is sketched
below.

Set
p = S cos® ®, a = sin @,
—1 1 a
VST T aT™Ttame’ 2T

Then equation (4) becomes (after some simplification)

( - ) 2
P P\ ta exp (—py) dy
0 21r(1 — a )5
0 <J + )(ZbJ — )}

But’

from which it can readily be shown that

P, = cos &

_/m exp (—z)I,(z sin ®) dzx.

From this form of the error-rate integral an approximate solution
can be derived when S sin & is sufficiently large to expand the Bessel
Function as*

exp (2)
IO() = (9 z)}

*For | z| > 0.15 this approximation is valid to within 17 percent.
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TaBLE III—S/N INCREASE FOR VARIOUS NUMBERS OF LEVELS

Approximate increase in S/N in dB
from the binary coherent phase-
Number of levels shift-keyed case for same error-rate
2 0.5
4 5.3
8 11.2
16 17.2
32 23.2
and so on and so on

Making this substitution and performing the integration gives

p. -1 [m__ﬂ]‘ erfe ([ — |sin & DSP).

=3 5

When both |sin & | > 0.15 and |sin &| > 0.15/8 hold, this can be
written, to an accuracy of a factor of two, as simply

P, = % erfe {[(1 — | sin @ [)S*}.

For cases of interest for quaternary and higher order systems these
constraints are well satisfied and this approximation is very good.
Tor the M-level case with § = ¢ = 0, (no phase distortion)

}
1 W g, o
3 erfe [{[1 sin (2 M)]S} J
i
1 erfe {[4(31112 2—;—)8] }
For large M this becomes

I = 1 erfe (ﬁllsi)-

Thus, the S/N must be increased by 6 dB each time the number of
levels is doubled if the error-rate is to remain constant. This is illus-
trated in Table III.

II

[
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Crosstalk in Multiple-Beam Waveguides

By DETLEF GLOGE

(Manuscript received August 6, 1969)

Crosstalk limits the number of communication channels which are
spatially resolvable at the end of a beam waveguide. The main sources of
crosstalk are scattering and distortion by the focusers. A careful study of
high quality front surface mirrors led to the results of this paper. The best
choice seems to be a periscopic guide made of dielectric mirrors when used
with gaussian beams in a particular mode of multiple transmission. We
give a closed description for the expected power profile of a gaussian beam
that has passed such a guide and an approximate formula for the mutual
crosstalk between several such beams.

I. INTRODUCTION

Arranging many optical channels spatially resolved in the same
waveguide is a simple means for high capacity transmission.'* All
channels can be modulated in the same frequency band as long as the
crosstalk is kept below a certain threshold. One source of crosstalk
is the inevitable scattering from the focusing and directing elements.”
Diffraction from the ideal beams is negligible.® Yet we shall see that
diffraction must be considered once the beams are distorted by the
focusers.

In all likelihood, these focusers would consist of mirrors because
lenses of the size needed are apt to have imperfections within the ma-
terial. The scattering characteristics of high quality front surface mirrors
and lenses of the best quality have been measured recently.”® A com-
parison shows that the lens scattering was about one order of magnitude
larger. Directional changes can easily be accomplished by using peri-
scopic mirror arrangements of the kind shown in Fig. 1.7 Neglecting
aberrations, we consider only the first order focusing effect of these
periscopes, which is that of thin convex lenses.

Two methods of multiple channel transmission have been suggested.”
We discuss these two basic methods with respect to their susceptibility

55
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Fig. 1—Sketch of a periscopic waveguide.

to crosstalk when mirrors of the kind measured in Ref. 5 are used in
the waveguide.

II. MULTIPLE CHANNEL TRANSMISSION

The useful cross section of the beam guide is limited by the size of
the periscopic mirrors. Without unreasonable effort, mirrors of good
optical quality can be made 20 to 30 cm in diameter at the most. The
bundle of beams must clear the mirror edges by a wide margin at all
times to guarantee safe operation. This implies that diffraction cross-
talk caused by the mirror edges is negligible. Tolerances which would
allow for controlled diffraction, as suggested by Ref. 4, seem unreason-
ably tight. Thus we arrive at a radius R of about 10 cm for the useful
cross section. The spacing D of the focusers is limited by the terrain
and the cost of the straight sections in between. It will most likely be of
the order of 100 m. For optimum conditions, the effective focal length
of the focusers should be half their spacing, although some deviation
can be tolerated in this respect.

Consider the waveguide as a periodic lens system which images an
array of transmitters into a similar array of detectors. This is basically
what the imaging method (in Fig. 2a) does. Diffraction effects can be
minimized if every transmitter radiates a coherent gaussian beam. As
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these beams propagate in the guide, their sizes change periodically from
the fairly small transmitter spot size to a size close to the cross section
of the guide.

This periodic change is avoided by the grouping method sketched in
Fig. 2b. The beams arrange in groups and open up to the fundamental

mode radius
i
w=(2) ®

™

before they enter the guide. They keep very close to this radius through-
out the transmission. Figure 2b shows the grouping method for two
groups containing two beams each. Special collector lenses single out
the groups at the end and focus the beams well separated on the de-
tector array. For a better understanding of this detection system,
consider the focal length f of the collector lenses to be short compared
to the distance D between a collector lens and the preceding focuser.
In the plane of this focuser, all groups of beams form overlapping
patterns. Every collector lens selects the pattern of its group and images
it into the detector plane scaled down by a factor f/D. Consequently,
the detector array of every group is confined to a circular area with a
radius Rf/D.

The density of resolvable beams in the system is determined by beam
distortion and scattering rather than the spread of the ideal beams.
The distortion of the beam profile determines the receiver size required

Fig. 2— Schemes for spatially resolved transmission (a) the imaging method
(b) the grouping method.
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to secure safe reception. One would like to make the detectors as small
as possible in order to minimize the scattering collected from adjacent
channels. For further reduction of the crosstalk, one has to increase
the spacing between the detectors.

Let us assume that the center-to-center spacing is s for the collector
lenses and o for the detectors in a group. In this case we would have
wR*/s* groups and wR*f*/D*s* beams per group if the guide were per-
fectly confocal. If we allow a slight tolerance for the spacing of the
focusers, Ref. 2 shows that the groups belonging to off-center collector
lenses cannot be completely filled. For this reason the total number of
channels is only half the theoretical maximum, namely
1 TZR-‘,’.’

N =3¢ D"

()

Rather than considering the detector plane, let us look at the distri-
bution every group has at the focuser preceding a collector lens. This
way our results become independent of the focal length f of the collector
lenses and a function of the beam waveguide only. In the plane of the
last focuser the beam spacing is Do/f. As the beams have the same
width there as at the collector lenses, it seems reasonable to set

s = Da/[. @)
Inserting this into equation (2) yields
_ (1_3)‘
N = s s/ 4)

In the following let us assume that the detectors are simple quantum
counters, have a circular area, and have a radius df/D. Transforming
this back to the last focuser, we find a circular area of radius d suscepti-
ble to crosstalk around every beam. In Section II we evaluate scattering
and distortion of a single beam in the plane of the last focuser for the
case of a waveguide of n mirror periscopes. Since we use direct de-
tection, we may neglect phase front distortion. The case of heterodyne
reception is briefly discussed in the appendix. The results are very
similar to those of the direct detectors.

II. DISTORTION AND SCATTERING

Both distortion and scattering are a consequence of irregularities
on the mirror surfaces. The distortion originates from smooth imper-
fections extending over areas comparable to the beam cross section
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while scattering is caused by a surface roughness correlated over dis-
tances much smaller than the beam diameter. Both irregularities are
part of a statistical function 8(x, y) which describes the deviation from
the ideal surface. Taking a meaningful average over an ensemble of
test surfaces leads to the structure function

Alp) = ([8(z, y) — 8z — p cosa, y — psina)])u (5)

where p and « belong to a polar coordinate system which has the point
(z, ) as its origin. Writing A as a function of p only implies the assump-
tion that & is stationary and isotropic, which seems justified for the
statistical properties involved.’

A light wave of wavelength \ reflected off the imperfect surface
suffers a phase front distortion

olz, 1) = = 5z, 1). ®

We neglect reflection loss which we assume to be uniform over the
surface. For gaussian statistics®

; : 8r’
(exp i[e(r, y) — ¢(x — p cosa,y — psina)]). = exp [—{r A(p)]-

)

This equality will be used to calculate the power distribution p(r) at a
distance D from the reflecting surface. Assume that the reflected beam is
circular, symmetric, and would have a power profile p,(r) at a distance
D if the reflection were ideal. Then, from Ref. 8, one obtains

g:(p) = gn(P) exp [_8)% A(P)] (8)

where ¢,(p) and go(p) are the Hankel transforms of pi(r) and po(r),
respectively. This Hankel transformation is defined by

gile) = Br f po(r) T o2 pr/ DX dr ©)
or
: 27 = 5
pi) = s [ 0u(eMo2nor/ DVp dp (10)

where J, is the Bessel function of zero order. The quantity p, (r) has to be
understood as an average over an ensemble of equivalent surfaces.
For an accurate confocal spacing of the periscopes, a beam and its
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distortion in the guide reproduces itself at every second periscope.
These periscopes only contribute to the phase front distortion in the
detector plane, while all odd ones deteriorate the power profile as well.
We have n periscopes with 2n surfaces, half of them contributing to
the profile distortion. Since the imperfections of all surfaces are un-
correlated, we may write

gx(p) = go(p) exp [ 82 n A(p)] (11)

for the detector plane.

In a guide with thousands of focusers, accurate confocal spacing
requires tight tolerances for the focal lengths and spacings. In a practical
guide, the focusers will be kept only nearly confocal and, in general,
will not be at positions at which previous distortions are reproduced.
If all positions are equally probable along the guide, equation (11) can
be adapted in the following way®

0® = 0o exp | ST 2 [ Apsing - (12)

Notice that for £ = 0 or =, we have A(0) = 0 and no change of the
power distribution, while for ¢ = 7 /2 the profile distortion is a maximum.
A fairly reliable functional approximation for A in the range p = 0.01
to 1 mm was derived from scattering measurements around a test
beam.’ The scattering is an effect of the mirror surface roughness
averaged over the area covered by the test beam. This average is
equivalent to an average over an ensemble of test surfaces. As a conse-
quence, the variance of the scattered power is small, that is, the scat-
tered power actually measured is very close to the average power. The
measurements were practically the same for all test surfaces.

This is not true for the processes involved in beam distortion. In
this case, the d-components participating are correlated over areas
comparable to the test beam, no averaging is accomplished by the
measurement, and the result can be grossly different from one surface
to the next. It is this difference between scattering and distortion
which makes scattering measurements feasible but distortion measure-
ments tedious and expensive. Distortion is not sufficiently described
by an average power profile; instead one needs to know the complete
probability distribution of the power at every point in the beam ecross
section. In this situation some grossly simplifying assumptions are
necessary to tackle the distortion problem with the scant experimental
evidence available.
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We derived the functional approximation
Al(p) = Ep for p=0.01---1mm (13)
with
E =24X10" (14)

from measurements.” This approximation is plotted in Fig. 3. For
larger p we have only one reference point: the quality factor of the
mirror, given in fractions of the green wavelength, which specifies
s-components correlated over areas comparable to the polishing tool.
This will be typically several centimeters. We know A decreases for
smaller p and merges into the linear function (13) at p = 1 mm. As a
convenient approximation, let us assume that A is linear everywhere.
This function would correspond to about Ay.../50 at several em.

Whether equation (13) is a good approximation for p < 0.01 mm
we do not know, but this is of little interest, since components at
these small & generate scattering which does not reach the next focuser,
but is absorbed by the guide wall.

A gaussian beam of unit power has the profile

2 2 2
polr) = —z exp (—2¢ /W). (15)
W
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Fig. 3— The linear structure function A(p) calculated from scattering profile
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Its Hankel transform is
go(p) = exp (—m'w’p’/2D*\%). (16)

Using equations (10), (12), (13), and (16), we find the following average
power distribution at the detector

2 r u’ + au) (Qur)
p(r) = rwzj:, exp (— 5 Jo u du 17
where
wED
u = D)\p and a = 64 —— > (18)

The average power falling outside a circular area of radius z is

P() = 21rf p)r dr. (19)
Using the identity

Ji(@)z = [ Jo@)v dv, (20)

<o

we arrive at
.2 f"’ (_u2 + au) <2uz)
P =1 el | exp (———% J, . du. (21)

The result of the machine evaluation of equation (21) is plotted in
Fig. 4. For @ = 0 the beam is undistorted and P(z) is gaussian. Yet
P(z) has a tail decreasing with 1/z for finite a.

In the course of our calculation we want to know the radius z out-
side of which a given power P can be found for a certain parameter a.
For this purpose the function z(P, a) is plotted in Fig. 5. It can be
approximated by the expression

e [ompr (B2E )] e

where equation (18) was inserted for a.

The first part of equation (22) is an inverse gaussian and depicts
the coherent beam, while the second part accounts for the incoherent
portion. Equation (22) can be used, for example, to calculate the
detector radius required at the end of a periscopic guide. In this case
one will probably allow the second term in equation (22) to be about
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Fig. 4 — The power fraction P expected outside the circular area with the nor-
malized radius z/w for various distortion coeflicients a.

equal to the first. This would mean that the beam deterioration be-
comes just noticeable, but not yet dominating, at the end.

We shall find another application for equation (22) in the course of
caleulating the scattering crosstalk. In this case we require P to be so
small that the second term in equation (22) exceeds the first even for
moderate distortions, and equation (22) can be approximated by

16EnD_
\P

~
2

(23)

Notice that the only guide dimension that enters into this formula is
the total transmission distance

L =nD (24)

from one repeater to the next. Equation (22) leads to an estimate for
the detector sizes required and with this information and the help of
equation (23) we can evaluate the scattering crosstalk.
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Fig. 5 — The functional relation z(a) with P as a parameter.

1V. BEAM SPREAD AND CROSSTALK

The interchannel crosstalk at the end of the multiple beam guide is a
function of the detector size. In order to minimize the amount of light
collected from other channels, the detectors should not be larger than
is absolutely necessary for signal detection. A few percent of the signal
power could even be sacrificed. The signal fraction to be detected will
depend on the signal levels available and on the noise sources involved,
but it is probably safe to assume that, on the average, 75 percent of the
total signal power will be sufficient. Thus we obtain from equations (22)
and (24) for the detector radius

2714
d= [w"‘ In2+ 15(16 %) ] : (5)
In a more general sense, we may interpret d as the average radius of a
distorted beam at the end of a guide of length L. In equation (25), w
is the radius of the ideal gaussian beam which may vary considerably
along the guide as, for example, in the case of the imaging method.
For the grouping method, w is constant and given by equation (1).

To compare both methods, let us consider a practical example of a
waveguide with 100 m section length operating at a wavelength of
1 um over a distance of 50 km. If we use the grouping method, we find
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w = 5.65 mm from equations (1) and (25) yields a beam radius of
8.8 mm. In the case of the imaging method, w varies about 5.65 mm
from lens to lens, being much smaller than 5.65 mm at the detectors.
Yet at the end of a 50 km path, the average radius of the distorted
beams will not be smaller than 7.5 mm because of the second part of
equation (25). This is only slightly less than the radius of the grouped
beams. It is obvious from Fig. 2 that under these circumstances the
imaging method loses its advantage. Actually, in this case, the imaging
method can only accommodate the beams contained in one group of
the grouping method. Therefore, in the following we consider only the
grouping method.

Tor the calculation of the scattering crosstalk we restrict ourselves
to paraxial beams. Any two beams of this kind are equivalent in the
sense that the amount of light scattered from a beam 1 into another
beam 2 is equal to the amount scattered from 2 into 1. In the same
way, the scattering from one beam into all others is what the beam re-
ceives from all others. This is exactly the crosstalk we want to calcu-
late. Thus, in order to consider the worst situation, let us select the
center beam and calculate what it scatters into all extraneous receivers.
To do this we have to integrate the scattered power falling into the
detector plane, excepting the center detector and the blind area between
all detectors. We remember that the detectors have a radius d and are
spaced by a distance s center to center. We obtain a reasonable and
conservative approximation if we collect all the scattering outside a
circle with radius s/2, which is P(s/2) from equation (21), and multiply
this by a density factor =d’/s*. Consequently, the crosstalk which the
center beam inflicts upon, and receives from, all other beams is

¢ = ’{‘f P(s/2). (26)

For all practical cases the tolerable C' is so small that we may use the
approximation (23) for P. Inserting equations (1), (24), and (25) into
equation (26) we obtain

LDE
33

i = 45 16LE>3.

In2 + 307r( s

@7)

Figure 6 shows the signal to crosstalk ratio 1/C plotted in decibel
versus the spacing s for the previous example, that is, D = 100 m and
A = 1 um. Also shown is the guide capacity N to be achieved by the
grouping method in a guide of 10 ecm radius. The transmission distance
L between repeaters is the parameter. For reasons explained previously,
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peater spacings (A = 1 um, D = 100 m, and ® = 100 mm).

the capacity achieved by the imaging method is less, for practical sys-
tems only about N!. Figure 7 shows the useful guide radius required
for a certain capacity at various repeater spacings if a crosstalk level
of 23 dB is tolerable. Both Figs. 6 and 7 exhibit a system with N = 100,
L =50km, R =10cm, D = 100 m, A\ = 1 um, and C = 23 dB as
feasible but also (more or less) as a practical limit.

The grouping method uses collector lenses in front of the detectors.
Diffraction at these lenses must not cause excessive crosstalk even if
the beams are badly distorted. For this reason the apertures have to be
fairly large. If the available space is fully used, the lenses touch one
another and are arranged as in a fly’s eye lens. The lenses should be
so large that the power at the lens edges is mainly incoherent and not
part of the coherent, though distorted, beam. In this case, diffraction
does not substantially increase the total power outside the signal
beams. This requirement sets a lower limit to the beam spacing s
which is simultaneously the diameter of the collector lenses. How far
this limit is approached by the system depicted in Figs. 6 and 7 is a
difficult question to answer.

A qualitative approach is tried in Fig. 8 where the previous results
are also summarized. Figure 8 shows the power expected outside a
given aperture after a beam has passed a length L of periscopic wave-
guide. The beam is supposed to start with a fundamental mode radius
w = 5.65 mm in a guide with 100-m section length. Also shown is the
power P(s/2) falling outside a collector lens of radius s/2 where s is
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chosen with the help of equation (27) to guarantee a crosstalk level
of ¢ dB. Thus, once we have decided on the crosstalk level and the
transmission distance, we find the radius of the collector lens and the
power falling outside this lens from Fig. 8. For L = 50 km and C = 23
dB, this power seems to be composed mainly of scattered light so that
diffraction should contribute little to the overall crosstalk.

Several discrepancies become apparent when the results of this
paper are compared to previous publications. The power P falling out-
side a circle with a radius z after only one reflection is obtained if we
replace equation (12) by equation (11) and set n = 1 in the derivation
of equation (23). In the case of a linear structure function, equations
(11) and (12) differ by a factor =/4, and therefore

ED
P = 4r e (28)
The same physical problem was approached on a different course in
Ref. 5 and is expressed in equation (16) there. That result differs from
our equation (28) by a factor of four. The reason is a factor of four
erroneously introduced in equation (13) of that publication.

In Ref. 3 the crosstalk of one beam into one other beam was meas-

ured. This quantity can be calculated on the basis of this paper. The

REPEATER SPACING IN MILES

7 8 9 10 15 20 25 30 35 40 50 60
8 T T T 71200
:_ BEAM CAPACITY, N=1000
— 100
& 80 £
U 3
z z
z 60 ¢,
g 2 50 2
= <
) 40 &
& w
303
= 2
: 'F :
D o8l 20
0.6
05l
04 ! 1 1 1 1 1 1 1 1 | ! 10
10 15 20 25 30 35 40 50 60 70 80 90 100

REPEATER SPACING IN km

Fig. 7—The beam bundle radius versus the repeater spacing for a given ca-
pacity N (signal/crosstalk = 23 dB, X\ = 1 gum, and D = 100 m).



68 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1970

o
S| DETECTOR
le-RADIUS FOR
75% RECEPTION

(72}
b | -
@ e— W=565Mm CROSSTALK,
k_) 10 —_—C =20 dB
a
£ 30
£ s

15k
2
E \
o
Ii.l 40
< COLLECTOR LENS ~
wol  RADIUS FOR <
920" crosSTALK C
-
2
o
i
- 25
(9]
a
> TRANSMISSION
w DISTANCE, L=0
o
w -
§ 30

35}

40 | 1 [ I 1 L1

1 2 4 6 810 20 40 60 80 100

APERTURE RADIUS IN mm

Fig. 8— The power fraction expected outside the collector lens aperture for
various repeater spacings and crosstalk levels (section length = 100 m; wave-
length = 1 um).

power density at a distance z from a scattering beam is

1 dP
7= " 2z dz (29)

with P(z) from equation (23). A small aperture of radius d displaced by
a distance s from the beam center collects approximately

¢ = wd’q(s) (30)
with ¢ from equation (29). This is the crosstalk in the second beam.
With equations (23), (29), and (30) we obtain

8d°EL
)\ sa * (3 1)
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The specific dimensions in the experimental arrangement of Ref. 3
were s = 5 mm, d = 2.5 mm, and A\ = 0.63 yum. The transmission
distance was equivalent to 8.5 km of a periscopic guide. By inserting
these data into equation (31) we obtain a crosstalk level of 19 dB.
The measured level was 30 dB. Moreover, equation (31) suggests that
the crosstalk decreases with the third power of the beam spacing. In
Ref. 3, on the other hand, a decrease with the fourth power of the
beam spacing was measured. The reason for the discrepancy is still
under investigation. The comparison seems to indicate that the data
used here are on the conservative side.

Finally let us compare our results to the diffractional crosstalk which
ideal gaussian beams experience along a wave guide. Reference 4
considers this situation giving the following results. A guide of 10,000
focusers, 100 m apart and 5 em in diameter, could accommodate 16
beams with only 60 dB crosstalk. According to our findings, scattering
in this arrangement causes 50 dB crosstalk in one 100 m section. This
underlines the severe limit which scattering and distortion set to multi-
beam transmission. Improving the optical surfaces would be a worth-
while undertaking.

V. CONCLUSIONS

Scattering and distortion of the beams in a beam waveguide are
caused by surface irregularities of the focusers. There is experimental
evidence that these irregularities can be described, as a first approxi-
mation, by a linear structure function. Based on these findings we
predict a beam distortion and an incoherent background radiation
which both increase with the transmission distance L. The distortion
makes it impossible to use a simple transmission method which images
an array of transmitters into the detector plane. The method which
seems more practical arranges the beams in groups and transmits them
with unvariable width.

The incoherent background of scattered light around every beam
fades off with the third power of the distance from the beam. This
causes a crosstalk inversely proportional to the third power of the
beam spacing. The beam density is limited by the crosstalk tolerable
after 50 km. If we set this level at 23 dB, allow a beam bundle 20 ¢cm in
diameter, and operate at a wavelength of 1 um, we could accommodate
about 100 beams. This is based on the assumption that periscopic
focusers are used which are made of high quality front surface mirrors.
A critical comparison with previous publications suggests that our
results are conservative, if not pessimistic.
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APPENDIX

Heterodyne Detection

One might consider heterodyne detection as a way to reduce the
scattering received in every channel. Local oscillator beams could be
brought in line with the signal beams, utilizing beam splitters. The local
oscillator beams would discriminate to a certain extent against the
incoherent background of scattered light from other channels. To
compare this with the quantum counters discussed in the text, let us
assume that the scattered background light is uniform in the vicinity
of the local oscillator beam. For this case Siegman has calculated the
IF-photocurrent noise of heterodyne reception.” He found that the
“integrated effective detector area” of the heterodyne detector is
equal to \°.

We now calculate the “‘effective detector area” for our quantum
detectors. Every detector has an area

Wd2f2

Al = D2 (32)
and is preceded by an aperture with the area
A, = s’ (33)

The distance between aperture and detector is f. From Ref. 10 we find
the “effective detector area’” for this arrangement to be

= D (34)
Inserting equation (1) we obtain
2 32
A1A2 — Sd )\2' (35)

fZ w~l
If we had sd = w?®, the quantum counter would discriminate as well
against scattering as the heterodyne detectors.

In the case of distorted signal beams, however, both schemes cannot
recover the full signal power. What is important in this case is the
ratio of signal to background light collected in the respective cases.
For this reason, the quantum counter can be equivalent to the hetero-
dyne detector even if s and d are slightly larger than w. However, for
reasons explained in Section IV, s will be considerably larger than w to
avoid diffractional crosstalk. The heterodyne receiver therefore surpasses
the quantum counter. On the other hand, the complexity of the former
probably makes up for this advantage.
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Asymptotic Analysis of a Nonlinear
Autonomous Vibratory System

By J. A. MORRISON

(Manuscript received June 13, 1969)

A system consisting of a spring, dashpot, and mass upon which 1is
mounted an eccentric driven by a motor with a linear torque-speed char-
acleristic, is analyzed by perturbation procedures based on small reciprocal
of rotational inertia. Periodic solutions of the third order system, which
arises when the angular position of eccentric mass is taken as the new
independent variable, are constructed, and their stability is analyzed. An
asymplotic solution is also oblained which is more general than a periodic
solution, in that the averaged rotational speed is a slowly varying function,
rather than a constant. The results are applicable to the determination of
the interaction between the rotational motion of a flexibly mounted motor
and the translational vibratory motion of its frame.

I. INTRODUCTION

In a recent paper Senator analyzed a system consisting of a spring,
dashpot, and mass upon which is mounted a rotating eccentric weight
driven by a motor with a linear torque-speed characteristic.'" This
system has been analyzed by several authors, under different as-
sumptions on the values of the parameters of the system (see Refs. 5
through 9), and Senator discusses their results. The system is a model
for the interaction between the rotational motion of a motor driving
an eccentric and the translational vibratory motion of the frame, which
is caused by this rotation.

In Ref. 1, Senator constructed periodic (rotational) solutions by
means of a perturbation technique, based on small reciprocal of ro-
tational inertia. However, he did not analyze the stability of the periodic
solutions directly, but proceeded in a somewhat different manner. Thus,
he introduced a van der Pol type transformation, but imposed a sub-
sidiary condition on the slowly varying functions of time which differs
from the one usually imposed in the method of averaging. He then

73
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made assumptions regarding the order of smallness of various deriv-
atives, and dropped all second order terms from the equations for the
slowly varying quantities, obtaining what he called averaged equations.
The stationary solutions of these averaged equations correspond to
periodic solutions of the original system, and he analyzed the stability
of the stationary solutions on the basis of the corresponding linearized
variational equations.

It is the purpose of this paper to show how the stability condition
obtained by Senator may be derived rigorously for sufficiently large
values of rotational inertia. This is done by taking the angular position
of eccentric mass as the new independent variable, constructing periodic
solutions of the resulting third order system, and then analyzing the
linearized variational equations corresponding to them. Perturbation
procedures, based on the small reciprocal of rotational inertia, are used.

An asymptotic solution is also obtained which is more general than
a periodic solution, in that the averaged rotational speed is a slowly
varying function, rather than constant. However, this asymptotic
solution is not completely general, in that the transients in the trans-
lational motion, which decay on a much faster scale, are not included.
The asymptotic solution nevertheless provides insight into the manner
in which a stable periodic solution is approached, and the analytical
results are borne out by some numerical calculations.

1I. PERIODIC SOLUTIONS

The equations of motion, in dimensionless form, for the system under
consideration are (from Ref. 1),

2 . 10\* . d*o

d—:ﬁ + 2¢ % 4+ u = a[(iﬁ) sin 6 — a7 cos 0] (1)
d*e de d
Lo o v o) ®

Here r is dimensionless time, @, b, p and ¢ > 0 are constants, and
e > 0, the reciprocal of dimensionless inertia, is a small parameter.
Also, u is the dimensionless translational displacement, and 6 is the
angular position of eccentric mass. Instead of dealing with the fourth
order system (1) and (2), as did Senator, it turns out to be more con-
venient to take 0 as the new independent variable. Accordingly, defining

do
Q= e 3)
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the third order system

922;+ ;Qdﬂ+ +Q‘1—Q("“+acosa)=a9’sino @)
2
Qg—g (l + ea cos 6° > + eaQ’ cos 0d = ¢e(p — bQ) 5)

is obtained.
A periodic solution to (4) and (5) is sought in the form

u = 2‘2(0; E) = uu(B) + eu,(6) + e2u2(0) + .- (6)
Q Q(O; &) = w, + €,(0) + 5292(9) + .- )

where u;(0) and Q,(6) are periodic in 6, with period 2w, and w, is a
constant. Substitution of (6) and (7) into (4) and (5), and comparison
of the lowest powers of ¢, leads to

?,d T 28w ",’;" + %, = aw}sin 0 @8)
o ‘?;I + aw; cos 0 d'u = (p — buw). 9)

The periodic solution of (8) is
Uy = awpA[(1 — w}) sin 8 — 2¢w, cos 6] (10)

where
= [(1 — })* + 4¢%7] 7" (11)
In order that Q,(6) should be periodic, it is necessary from (9) that

p = bw, + awu<cos 0 d—;;ﬂ = bwy, + &’ twy Ay = p*(wo) (12)

using (10). ( ).. denotes average over a period 2= of 6. Equation (12)
gives a relationship between w, and p, the dimensionless stall torque,
and this relationship is depicted graphically in the figure for @ = 0.707,
¢ =026 = 0. It is noted that w, is a triple valued function of p in
part of the range. Senator concluded from his analysis that the middle
branch corresponds to unstable periodic solutions, while the outer
branches correspond to stable ones, a result verified in this paper.
Now, from (9), (10), and (12) it follows that

2 = |, — 1WA (1 — w?) cos 20 + 2tw, sin 26]} (13)

where w, is a constant, which is to be determined from the condition
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that () should be periodic. It is clear as to how the higher order
terms in the expansions in (6) and (7) may be obtained, but they will
not be needed in the subsequent analysis. The periodic solutions in (6)
and (7) are equivalent to those derived by Senator as periodic solutions
of (1) and (2). It is necessary, of course, to perform a quadrature of
equation (3) in order to obtain a relationship between 6 and r.

III. STABILITY ANALYSIS

The variational equations corresponding to the periodic solution
1, &, given by (6) and (7), are formed by substituting

u=(@+§, e=@EC+n (14)
in (4) and (5), and linearizing in £ and 5. Thus,
P2y 2088, (a0 )
- dQ d dii ~d df i
+Qﬁd—i+(g%+acosﬁ)(ﬂa%+ag1})=2a98m9n, (15)

(g dn 40 ) | o0 dD o gt
(1 F e odo)(ﬂd6+ o ") et gg s 054
= d’a d’

+ 2eafl cos 037 7 + el cos Gd—;z + ebn = 0. (16)
Equations (15) and (16) are linear equations with periodic coefficients,
and the form of solution is known from Floquet theory.” Moreover,
if all the characteristic exponents of the variational equations have
negative real parts, then the periodic solution 7, Q is asymptotically
stable. The behavior of the characteristic exponents will be analyzed

for0 < e 1.
The limiting case ¢ — 0+ will first be considered. In this case, from

(6) and (7), & = w, and @ = u,(6) so that, from (15) and (16), dn/d8 =0
and

E . * du,
wﬁ%—i— 2§‘w°§%+£= 2<aw°sm 0 —wo% — ;—:ﬁ)n. an

Hence one of the characteristic exponents is A, = 0, and the remaining
two characteristic exponents satisfy
(woho)® + 2F(woho) +1 =10 (18)

and hence have negative real parts, since { > 0 and w, > 0. For suffi-
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ciently small ¢, these real parts will remain negative, so that it suffices
to investigate the characteristic exponent which vanishes as ¢ — 0.

In the light of Floquet theory, a solution of (15) and (16) is sought
in the form

E=¢'P(6), n=2¢'Q0) (19)
where P and @ are periodic in 8, with period 2, and
AN=e\ + N+ e (20)
P(6) = Py(8) + €P\(6) + €Po(0) + - - (21)
Q(8) = Qu(8) + €Q.(6) + €Qu(6) + --- . (22)

It is a straightforward matter to substitute from (6), (7), and (19)-(22)
into (15) and (16), and to compare like powers of e. In particular, it
is found from (16) that dQ,/d6 = 0. Omitting a multiplicative constant
and taking @, = 1, it is then found that

, d°P d> dP d :
wo d020+2wo d";g'l‘zf od—;‘*“)f'a%)'l'PO_&m’osmo (23)

and

)+

+ 2aw, cos 6 w,—l—aocosed92+b—0 (24)

Now, in order for ,(6) to be periodic, it is necessary from (24) that

woh + b + awu< By o (25)
where
Ry = (woPo + 2uy) (26)
is periodic in 6, with period 27. But, from (23),
o} IR+ 2 o 1 R, = ofautsin 0+ 10 ™ 4 u) 1)

and wu, is given by (10) and (11). Straightforward calculations lead to
Ry = 200; AG{[(1 — @0)*2 — wp) + 4¢%i(1 — 2w;)] sin 6
— fwo[(1 — wo)(5 — wi) + 12¢%w;] cos 6}.  (28)
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Thus, from (25),
Wl + b + ofws A1 — wp)(5 — wp) + 12¢%;] = 0. (29)
However, as may be verified from (12), using (11), equation (29)
may be written in the form
*
2" _ 0. (30)

Wy T a =
Since the sign of A\ in (20) is determined by the sign of A, for suffi-
ciently small ¢ > 0, it follows that the periodic solution 4, Q is asymp-
totically stable if dp*/dw, > 0, and is unstable if dp*/dw, < 0. That is,
the middle branch of the figure corresponds to unstable periodic solu-
tions, while the outer branches correspond to asymptotically stable
ones, provided that e > 0 is sufficiently small.

1V. MORE GENERAL SOLUTIONS

In this section a more general solution of (4) and (5) is constructed,
for 0 < € < 1. Thus an asymptotic solution is sought in the form

u = Uo("’y 0) + evl(““: 0) ER 621)2((.0, 0) + - (31)
Q=0+ e (w, 0 + Ewslw, 6) + --- (32)

where v;(w, 6) and w;(w, 6) are periodic in 8, with period 2w, and
Do @) + ale) + - (3)

This procedure may be regarded as a variant of the method of aver-
aging.” The above solution is more general than the periodic solutions
constructed previously, since the latter correspond to the case in which
w is constant, rather than a slowly varying function of 6. However,
this solution is not completely general, since the initial transients in
(4) are not taken into account.

Substituting (31) and (32) into (4) and (5), using (33), and comparing
the lowest powers of ¢, it follows that

X a :
w’ azg + 2¢w algj + v, = aw’sin 0 (34)
and
dw il
w(—aj + gl> + aw’ cos 6 %yé = (p — bw). (35)

The periodic solution of (34) is
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vy = aw Aw)[(1 — &) sin 8 — 2¢w cos 0] (36)
where
Alw) = [(1 — )* + 4% (37)

In order that w, should be periodie, it is necessary from (35), using
(36), that

wgi(@) = [p — bo — a’tw’Aw)]. (38)

Then w,(», 6) may be found from (35), to within an arbitrary function
of w. This arbitrariness is usual in averaging procedures, and may be
removed by requiring (w;(w, 8) )., = 0, so that, from (32), w is the aver-
aged value of Q. Higher order terms in the asymptotic expansion (31)
and (32) may be obtained in a systematic manner.

Now, from (33) and (38),

[p — p*(w)] + O() (39)

6
df o

where
p¥w) = bw + atw’ Aw). (40)

As previously remarked, the case in which w is constant corresponds
to the periodic solutions constructed earlier. From (11), (12), (37),
and (40), it follows that w, is the lowest order approximation to a
stationary solution of (39). If w # w,, equation (39) determines, to
lowest order, the slow variation of » with 6. The direction in which w
changes is determined, to lowest order in ¢, by the sign of [p — pF(w)],
and is illustrated in Fig. 1 for p = 0.45, to which there correspond
three values of w, , denoted by wy , @om , and wg, .

Under more general initial conditions similar results should hold,
for sufficiently small ¢, provided that the initial value of Q is not too
close t0 wy, . This is because € does not change significantly, for suffi-
ciently small ¢, during the time in which the initial transients in the
translational motion die out.

A partial check of these analytical results was made by Senator,* who
carried out some numerical solutions of (1) and (2). With a« = 0.707,
¢ =02, b =0and e = 0.1, he chose initial conditions consistent with
the unstable periodic solution corresponding to p = 0.425, that is, the
periodie solution corresponding to p*(wom) = 0.425. He then carried
out numerical solutions of (1) and (2) for p = 0.45 and p = 0.4. He
found that for p = 0.45 the solution approaches the periodic solution
corresponding to w,, in the figure, that is, to p*(w,,) = 0.45, while for
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Fig. 1 — Stall torque vs. averaged rotational speed.

= 0.4 the solution approaches the periodic solution corresponding

to p*(wa) = 0.4. These results are consistent with our analytical re-
sults. Moreover, the number of cycles required before the solution
settles down to the appropriate periodic solution was somewhat larger
in the case p = 0.45 than in the case p = 0.4. This is consistent with
(39), and the presence of the factor (1/w) multiplying [p — p*(w)]
therein.

V. ACKNOWLEDGMENT

The author is grateful to M. Senator for discussing the results of this

paper, and for carrying out the numerical calculations mentioned above.

REFERENCES

1.

Senator, M., “Limit Cycles and Stability of a Nonlinear Two-Degree of
Freedom Autonomous Vibratory System,” Journal of Engineering for Indus-
try, Trans. ASME, 91, Series B, No. 4 (November 1969), pp. 959-966.

. Minorsky, N., Nonlinear Oscillaiions, Princeton: Van Nostrand, 1962, pp.

127-129.

. Bogoliubov, N. N, and Mitropolsky, Y. A, Asymptotic Methods in the

Th;bory of Nonlinear Oscillations, New York: Gordon and Breach, 1962,

p. 40.
. Senator, M., unpublished work.
. Rocard, Y., General Dynamics of Vibrations, New York: Ungar, 1960, trans.

3rd French ed., pp. 362-369.

. Hoekstra, T. B.,, “The Response of a Nonlinear Two Degree of Freedom

System,” Ph.D. dissertation, University of Michigan, Dept. of Eng. Mech-
anics. 1966, Chapter 5.

. Kononenko, V. O., “Some Autonomous Problems of the Theory of Nonlinear

Oscillations,” (in Russian) Trudy Mezhdunarodnovo Simpoziums po
Nelineinym Kolebaniyam Izdatel’stvo AN SSSR, 3, 1963, pp. 151-178.

. Kononenko, V. 0., Kolebatel'nye Sistemy s Ogranichennym Vozbuzhdeniem,

Moscow, 1964, (L.C. No. QA 871 K7), pp. 51-79.

. Mazet, R., Mecantque Vibratoire, Paris: Dunod, 2nd ed., 1966, pp. 308-318.



The Capacity of Linear Channels with
Additive Gaussian Noise

By R. K. MUELLER and G. J. FOSCHINI

(Manuscript received August 8, 1969)

The standard method of computing the mutual information between
two stochastic processes with finite energy replaces the processes with their
Fourier coefficients. This procedure 1is mathematically justified here
for random signals w,(w) square-integrable in the product space t X w
where t ¢ [0, T] and » s an element of a probability space. A natural
notion of the sigma field generated by w,(w) is presented and it is shown to
cotncide with the sigma field generated by the random Fourier coefficients
of w,(w) in any complete orthonormal system in Lo[0, T). This justifies
the use of Fourier coefficients in mutual information computations.

Capacity 1s calculated for finite and infinite-dimensional channels, where
the output signal consists of a filter (general Hilbert—Schmaidt operator) oper-
ating on the input signal with additive Gaussian noise. The finite-dimen-
stonal optimal signal is obtained. In the infinite-dimensional case capacity
can be approached arbitrarily closely with finite-dimensional inputs. The
question of the existence of an infinite-dimensional signal which achieves
capacity is considered. There are channels for which no signal achieves
capactty. Some resulls are obtained when the noise coordinates are inde-
pendent in the eigensystem of the filter.

I. INTRODUCTION

In this paper, we attack a general form of the classical problem of
determining the capacity of a linear channel with additive noise.
Structurally we have

i) = f G(t, 7)s.w) dr + () )

where the random signals, noise [n,(w)], input [s,(w)], and output
[r.(w)] are all defined on 0 < ¢ < T'. All signals as well as the kernel of
the channel operator are assumed square integrable in the appropriate
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product spaces. The noise process, the channel operator, and an average
power restriction on s,(w) are assumed to be given. In Section IIT we
begin by defining the capacity of a channel. Our definition is motivated
by, but is not a special case of, the generalization of Shannon’s notion
of capacity that has been indicated by Kolmogorov. The argument for
the naturalness of our definition is that any of the above processes can
be replaced by their random Fourier coefficients from any expansion
using complete orthonormal functions in L,[0, T]. We solve the above
problem when 7, (w) is Gaussian and independent of s, (w). In Section IV
we show that for finite-dimensional inputs there always exists an s, ()
for which capacity is achieved and we find it. The infinite-dimensional
case is solved in Section V as a limit of finite-dimensional cases.

II. FUNDAMENTALS

Fundamental to the notion of capacity is the notion of mutual infor-
mation. We begin with Kolmogorov’s definition of the mutual infor-
mation of two event o-fields contained in a universal o-field. Let @ and ®
denote two sub o-fields of a o-field S, in a probability space (2, Sq, P).
Let « and B denote arbitrary partitions of Q into a finite number of @
and ® measurable sets A and B. The mutual information 7(@, ®) of @
and @ is

P(A N B)
I, ® = sup 2 3, P(4 N B) loe. pg3pia) =
We define 0 log 0 = 0. This sum does not decrease as « and 8 are re-
fined. It can be shown that I(®, ®) = 0 with equality if and only if
@ and ® are independent. The nonnegativity and other important
properties of I are presented in Ref. 1.

Let & be a measurable space with o-field denoted by ©. A function
¢(w) from (2, Sq, P) to & for which each D & D has a preimage in S,
is called a measurable function.

Let T be an arbitrary index set and let E" denote the real line. Endow

1I,., E' with the product topology and consider its measurable sets
to be the smallest o-field containing the topology. We are interested
in measurable functions from Q@ to II,., E'. For our purposes 7' is either
countable or a real compact interval.

Suppose £ and 7 are measurable functions from Q to II,.r E'. Then
by the mutual information of £ and 5, I(¢, 7), we mean the mutual
information between the smallest o-fields with respect to which £ and 7
are measurable. We denote these respective o-fields by @; and @, .
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Let {(w) denote any measurable function from @ to II,., E'. We
define the probability distribution P; of {(w). The domain of P is the
measurable sets in 1T, E'. Let Q be such a measurable set. Then

Pi(Q) = Plo: {(w) = Q}. 3)

If £ and 5 are each measurable functions from Qto II,.,, E'and II,.,, E'
respectively then (£, 5) is a measurable function from @ to II,.r, E' X

I1,.r, E' and its distribution function is denoted P; , . It is called the
joint distribution of ¢ and ». We can now give an alternate definition
of mutual information between ¢ and 7. Let v(8) denote arbitrary
partitions of II,,., E'(Il,.,,E') into a finite number of measurable
sets C'(D). The mutual information 7(%, ) is

P (C X D)
I(E, n) = P.,(C X D) log =22——2——2. 4
& S:l.[: t; L;; ur( X D) og I)g(C)P,,(I)) ( )
Reecall that the inverse image under a measurable function of a o-field
is a o-field. So it becomes apparent that the two definitions for 7 (¢, 5)
are equivalent.
We review without proof some fundamental propositions that will be

of use to us later. The following is a result of work by I. M. Gelfand,
A. M. Yaglom, and A. Perez.

Theorem: If Py, is not absolutely continuous with respect to the product
measure Py X P, then I(¢, n) = ». If Py, is absolutely continuous with
respect to Py X P, , then letting dPg,/d(P; X P,) denote the Radon—
Nikodym derivative of Py, with respect to Py X P, we have

Proof: See Ref. 2.
Theorem: Let A be a linear transformation in a k-dimensional vector
space and let £ be a k-dimensional random vector. Then

I(& n) 2 I(A¢ ») (©)

holds for any random vector n, with equality if the transformation A 1s
nonsingular.

Proof: See Ref. 3.
Theorem: If I(§, £) < =, then P is purely atomic.
Proof: See Ref. 4.



84 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1970

Theorem: Ift = (& ,&, ), then
I, n) = Uim I[( , -+ , &), n]. @)

n—w

Proof: See Ref. 4.

III. MUTUAL INFORMATION BETWEEN TWO PROCESSES IN L, {(Q, Sg, P) X
([0, 71, L, m)}

Let £, (0) be square integrable on ¢ X w. We term £,(w) a stochastic
process. Notice that it differs from the standard definition of a stochastic
process in two ways. First, it is an equivalence class of equal almost
everywhere functions in ({ X w). Second, not all functions in the equiva-
lence class are stochastic processes in the sense of Ref. 5.; that is, for
each ¢ we do not have a random variable but only for almost all .
We assume E{£,(w)} = 0. By Schwarz’s inequality and Fubini’s theorem
it follows that E{£,, (w) &, (w)} € Lo(t X £). If 9,(w) and {,(w) are processes
of the same type as & (w), I[7,(w), . (w)] is not well defined since @,
and @; are not well defined. Because of the central role of these processes
in modeling random signals with a finite average power we make @,
and @; and hence I[7,(w), {.(w)] meaningful here. We need to appeal to
the following:

Theorem (I. Riesz): Let f, converge in measure to f. Then there exists a
subsequence f,, converging to f almost everywhere.

Proof: See Ref. 6.

Suppose f, converges in mean square to f. Since convergence in mean
square implies convergence in measure, the limit of the subsequence
guaranteed by Riesz’s theorem is f in the sense that the limit and f agree
almost everywhere. This last comment is important since Kolmogorov
has given examples of functions g which possess an orthogonal expansion
g. converging in mean square to g, yet pointwise almost everywhere
convergence does not occur.

Unless stated otherwise all o-fields mentioned in the remainder of
this section are assumed to be completed. The following new definition
is the key to making £,(w) meaningful in the information theory sense.

Definition: By the o-field @ generated by &,(w) we mean the smallest
o-field @ satisfying £, (w) is (2, @) X ([0, T'], L) measurable, where L
is the sigma field of Lebesgue measurable subsets of [0, 7']. (This state-
ment is definitive since £ (w) is (@, Sg) X ([0, T], L) measurable and
the intersection of o-fields is a o-field.)
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Proposition I:  Suppose
Z ai(w)¢i(t) = Et("-‘) (8)

in the mean square sense in the product space (where a;(w)= [ £ (w)p:(t) di
and ¢;(t) are orthonormal on [0, T]). If a(w) = [a,(w), @x(w), -] then
65 = a, .

Proof: Since the expansion converges to £ (w) in mean square in the
product space, it converges in measure. By F. Riesz’s theorem we can
find n, < n, < --- so that

lim [al(w)¢l([) i wwn a'llk¢nk(t)] = E((w)' (9)
The sum and product of measurable functions is measurable so that
each partial sum is (2, @) X ([0, T], L) measurable. The limit of
measurable functions is measurable so £ (w) is (2, @) X ([0, T],L)
measurable. Thus @; C @, .

Next we project £, (w) on ¢;(t) to get

0 = [ £@a dt. (10)

By Fubini’s theorem a;(w) is measurable with respect to every o-field
® for which &, (w) is (2, ®) X ([0, T, L) measurable. But this is true for
each 7, so @, C Q@ .

Proposition I is of paramount importance. In the sequel it enables
us to replace £, (w) by a(w) when computing mutual information.

It would seem appropriate to express @; without reference to an
expansion. The following proposition accomplishes this. However, our
proof does resort to an expansion of £ (w). Because the proof is similar
to the proof of proposition I, we omit it.

Proposition II: Let {£7(w)} denote the class of functions in §,(w). Then
@, 1s the smallest o-field containing M, Q;= [Here we have the only ap-
pearance of possibly noncomplete o- fields (the @;.)].

We can now define capacity of our noisy linear channel. Let S denote
a finite average power restriction on s,(w). Then the capacity of the
channel is defined as the supremum of I[s,(w), 7, (w)] where the supremum
is over all s,(w) satisfying

E[IT f: £() dt] < &. (11)

We say &, (w) is Gaussian if the linear functionals
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T
[ s@st at {6(1) € Lu[0, T1}
are all Gaussian random variables.

IV. THE FINITE-DIMENSIONAL CASE

For a random variable % possessing density p, the quantity

W) = — [ 2 logp, (12

arises often in mutual information studies. It is ecalled the differential

entropy of 7.
The following theorem is proved in (Ref. 7).

Theorem: Let p, be the density of a k-dimensional random variable u.
To maximize

h(u) = _f y2n log pu

subject to the conditions that the mean and dispersion matriz have given
values w and T, choose the normal density

Q) = 2r** | T [Hexp [Hu — )T ' — )],

which satisfies the conditions.
We prove a corollary necessary for the sequel.

Corollary: Let p, be the density of a k-dimensional variable u. We want
to choose p, to maximize

h) = — f P. log p.

subject to the conditions that the mean is w and the dispersion matrix
satisfies the constraint that its trace is less than or equal to ST. The solution
1s to choose p, to be Gaussian with mean u and covariance ST/kI, where
I 7s the identity matrix.

Proof: From the preceding theorem we only need to consider Gaussian
densities. For a Gaussian density we can write the formula

h(u) = —2’9 log 27e + % log | T |. (13)

Maximizing A (u) is equivalent to maximizing | T |. Now by the geometric
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mean—arithmetic mean inequality
trace T) |*
v g [tmeD] (14)

with equality if and only if vy, = Y22 = = Vi -

Now we are ready to consider the finite-dimensional version of the
problem of finding the optimal power-restricted signal s,(w) which
maximizes the mutual information between it and the output 7, (w).
By what we have shown in the previous section we can replace these
processes by their Fourier coefficients when computing mutual infor-
mation. More specifically let 7,(w) be a finite-dimensional Gaussian
process of dimension k. Let G denote a nonsingular operator on E* and
let s, (w) be a k-dimensional process that is independent of 7, (w). Suppose
that the distribution of n,(w) is absolutely continuous with respect to
Lebesgue measure in E*. We want to find s, () such that its distribution
is absolutely continuous with respect to Lebesgue measure in E* and
I[s,(w), Gs,(w) + n,(w)] is maximized subject to

L[[T () dt] < ST.

Now by the theorem concerning linear transformations of random
vectors stated earlier, I[s,(w), Gs,(w) + n(w)] = I[si(w), si(w) +
G 'n,(w)]. Define 5, (w) as 7,(w) = G"'n,(w) and let

7 = { ml and & = ﬂ
L) L)

be coordinates of 7,(w) and s, ().
Then

I[s, » St t = s ot i 1 Beteatel
[s:(w), s(w) + n.(w)] = f p T —— Daks gk Dk

= [ s log P n .
Introducing the transformation
k £ 3
'[s + 7 } L
l & s

into the above integral and using the fact that s* and 7" are independent
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we have

I s + 1)
- f Pursys log % + B+ ) = —h(r") + A6+ 1N, (15)

Since A[7,(w)] is not a function of s,(w), we have reduced the problem
to that of maximizing A[s,(w) + G~ 'n,(w)] subject to

T
E f &) = ST.

Now 7,(w) is Gaussian and we know from the corollary stated earlier
that As,(w) 4+ G~ 'n.(w)] subject to the above constraint is maximized
by a Gaussian process. Thus, without loss of generality, s,(w) can be
assumed to be Gaussian. We seek T, the covariance of s,(w) so that
| T, + G7'T'(G™")" | is maximized, since this maximizes A[s, (w) +
G™'n,(w)]. Let us assume, without loss of generality, that G™'T,G™' =T,
is diagonal. Thus the problem is to maximize

T O‘l
T; 4 e
0 "hj

subject to T, a covariance matrix with trace (I',) < ST. Since we are
maximizing a continuous function over a compact set, we know that
the maximum exists.

We use induction to show that the optimal T, is diagonal. Form = 1
the statement is a trivial one. For m > 1 it shall be convenient to

partition T, so that
_ {’Yu ‘Y'}_
r T

N2 0 l

0 ﬂkJ

Now using some standard results on determinants (see Ref. 8, p. 46),
it follows that

Let

r="r,+
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It +T,| = |”“ T+ m)det T — et T)y'T™y.
Y T
(16)

Note that both T' and I'"" are positive definite. It is optimal to echoose
v = 0 to maximize the second term. The first term is also optimal if T'is
diagonal. This follows since any nondiagonal T with trace D ., v =
ST — v, has determinant less than or equal to some diagonal matrix
with trace equal to ST — v,, by induction. We now optimally select
the diagonal elements of T', . If an € > 0 of ST is to be put on a diagonal
element of T, , it is optimal to add it to min {(y;; + #7.),2 =1, -+ , k}
so that it will have the largest possible multiplier in the determinant of T'.

V. CAPACITY FOR THE INFINITE-DIMENSIONAL CASE

We turn to caleulating the capacity in the situation where there can
be an infinite number of Fourier coefficients of s,(w) and 5,(w) and where
the channel G is an infinite-dimensional Hilbert—Schmidt operator.

Define

G=fOTG(z,T)

where G(¢, 7) &€ Ly(t X 7). Let {¢:} be a complete set of orthonormal
eigenfunctions for ¢ * G and let {\;} be the associated eigenvalues.
Define G¢; = ¢ ; then (Y. , ¥;) = (Go. , Go;) = (¢:, G * Gp;) = \; 8y
and so {¢;/A!} is an orthonormal set. We use r and 7 to denote the
infinite vector of Ifourier coefficients of r,(w) and 75,(w) in the system
{¥:/A\} while § denotes the infinite vector of Fourier coefficients of
s,(w) in the system {¢.]. Let »* denote the first k coefficients of » and
define §* and 4" similarly. Let D be the doubly infinite diagonal matrix
with A as the 7th diagonal element and define D, to be the k X k sub-
matrix of D with indices less than or equal to k. Then » = D§ + 7 and
r* = D& + o~

We first show that if an optimal input signal exists, then there is an
optimal Gaussian input signal. We shall need the following lemma.

Lemma: For any signal §, lim I(r*, §') = I(r, §).
Proof: We know that lim; lim, I(+*, §*) = I(r, §). As stated earlier
this is proved in Ref. 4. Now

I(r', ,§') = h(ri) -+ fpr.-';f log%
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where r* = D8 + o' If j = 4,

f Prisi 1ogp;fff.1 = f Pyipsi 108 Py = f P log pye .

Thus 1(*, §') = I(*, §) for § > 4; then lim,_,, I(*, §') = I(", §) =
107, §). Finally lim,_,, 10", §) = lim,.,, I(", §') = I(r, ).

Alternately this lemma can be proved by extending some results of
Ref. 3 to the infinite-dimensional case.

We now show that if an optimal signal exists for the infinite-dimen-
sional case, then the optimal signal can be assumed, without loss of
generality, to be Gaussian.

Proposition III: If & is a non-Gaussian optimal signal then 8, , the
Gaussian signal with the same covariance matrix as §, , is optimal.

Proof: Clearly I(r}, 8 < I(r}, &) for all k since the Gaussian process
is optimal for a fixed covariance matrix in the finite-dimensional case.
Thus I(r, , §,) = lim, I(*, 85 < I(ry, &) = lim, I(r;, 83).

Proposition IV: The capacity of the infinite-dimensional channel is the
limit of the capacities of the k dimensional truncated approximation of the
infinate-dimensional channel.

Proof: Let C, denote the capacity of the & dimensional channel and let
¢ = lim C, . We claim the capacity of the infinite-dimensional channel
is C. It is evidently at least C. Suppose a signal s,(w) exists satisfying
the constraints with mutual information, I(r, §) greater than C. Then
I(*, §) < C, since §* satisfies the power constraint. Thus I(r, §) = C,
a contradiction.

Corollary 1: There exist finite-dimensional signals whose resulting mutual
information is arbitrarily close to the capacity.

Corollary 2: If C, is constant for all k larger than some integer 1, then
the | + 1-dimensional optimal signal is optimal for the infinite-dimen-
sional case.

5.1 Limiting Covariance Matrices and Optimal Signals When {n:} Is
Independent

It is not always true that some input signal achieves capacity in the
infinite-dimensional case. We first prove this. Then we study the special
case when {#,} is independent in the {y./ M} system. This case may be
of marginal interest insofar as a model of a realistic system. However
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it is mathematically tractable and hence serves as a good testing ground
for intuition into more general behavior.

We now show that no optimal input signal exists for the case \; =
1/2%, Eq®/N\; = 1. It is clear that C;, = % log (1 + ST/k)*. Then the
capacity is: ¢ = } lim,_,, log (1 + ST/k)* = ST/2. If there exists an
optimal signal s, I(r*, §) — ST/2. But I(?', §') = % log | Ty + I, |,
where I, is an 7 X 7 identity matrix. Then I(+*, §") < 1 D5, log (1+Fsz)
and lim 70, §) < 3 >°%, log (1 + Es?). Recall that ) 2., Es? = ST
by assumption. We show tlmt >, log (1 + Es?) < ST. Slnce Es; =
log (1 + Es®) with equality if and only if Es? = 0, lim I(', §') <
}2or, log (I + Es}) < 3 207, Esj = ST/2.

Although an optimal signal does not always exist, we can say when
it does exist in the special case when the {7} are independent in the
system {y,/\]. It will turn out that {1}, the sequence of finite-
dimensional optimal covariance matrices for s, converges in some cases
to an optimal solution and in other cases the limit is not optimal. The
diagonal matrix with a; = (1/\;)En} on the 7th diagonal element com-
pletely determines whether or not an optimal limit is reached.

We define the order of minima of a sequence |{£,;}7., as follows. The
order is 0.5 if no smallest element in | £, }7., exists. If M, is defined to be
the set of smallest elements in {£;}%., and Card (M,) = + «, the order
of the sequence is 1. If Card (M,) < + % but the set {\J & — M,}
has no least element, the order is 1.5. If the set {\J & — M,} has M,
smallest elements and Card (M,) = 4+ =, the order is 2. If Card (M,) <
-+ o but the set

{ug,. =1 M,}
i=1

has no least element then the order is 2.5, and so on. If the sequence
is not assigned a finite order of minima, the order is infinite.

If the order of minima of {a;} is 0.5 5, { 54} — [0]. To see this we need
only consider diagonal elements of P Suppo%e for some j and for
some € > 0, E§* = ¢ in an infinite number of '+ . Since no smallest
element in {a;} exists, there are an infinite number of a; , say {a;}
smaller than a; . Then in the optimal covariance matrices where F§; = e
and the ¢ appear, Es?. = e. But this is not possible with the constraint
> E$ < ST. Thus for each j and € > 0, E§} < ein all but a finite
number of T .

If the order of the minima of {a;} is 1, I';+ — [0]. This follows since
it is optimal to put the power on the minima. After some k, only the
minima will have positive E§; . Since there are an infinite number of
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them and the ST is optimally distributed equally on them, o= [0).

If the order of the minima of {a;} is 1.5, there are two cases. Let
h = inf {U & — M,} and g = inf {\J &}. If (b — g) Card (M,) = ST,
there is an optimal solution as a limit consisting of E§; = ST/Card (M,)
for those 7 corresponding to a; e M, . Otherwise the covergence is to a
matrix where Es? = h — g if a; ¢ M, and zero elsewhere, which is clearly
not optimal. The analysis for other finite order systems are analogous
to the above. Either (7) ST is distributed over a finite number of com-
ponents, in which case the convergence is to an optimal solution, or
(¢7) ST has to be distributed over an infinite number of components, in
which case the convergence is not to an optimal solution.

If the order is infinite and we run out of the quantity ST on a finite
number of components, the resulting finite-dimensional solution is
optimal. Suppose the order is infinite and we do not run out of ST on a
finite number of dimensions. Let 6 be the smallest accumulation point of
{a;}. If not all of ST is used in making

Er’
A

the limiting covariance is not optimal and no optimal covariance which
achieves capacity may be constructed. This follows since a finite amount
of ST must be distributed equally to an infinite number of components.
If all of the ST is exactly used to make

Er

=9,

N O
the limiting covariance is optimal. Before proving this we give an
example of such a case.
Let

__@+1 g L
N=aryr o1 e gry
and assume the 7; are independent. Then a; = 1 — 1/( 4+ 1)*. To
bring all components

Er’
A
to 1 we need
= 1

and we are then in the case considered above.
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We now show that the limiting covariance matrix for the case when
there is just enough ST to bring

is optimal. Let T,, be the limiting matrix with the corresponding Gaus-
sian process §, . Let r, = D&, + 5. We show that I(+}, &) - C, k— .
Now suppose §* is optimal for k-dimensions. Then

164, 8 — 164, &) = h(*) — hed) = 3 log [e + "("")]k ey

T 1=]1

k
log 6 J] »: . (17)

i=1

|
(1

Here (k) equals that part of ST not used in the matrix T,, in the first
k-dimensions. Clearly we are assuming that the smallest elements of a;
appear first. Notice that §(k) — 0 as k — . Then

ey 16k g =k [ EQ_)] a(k)
I6h, 8 — 164, 8) = g log | 1+ 32 | = 5 (18)
for k sufficiently large. Then
lim I(*, %) = lim I(%,8Y) = I(r,, %) = C. (19)

VI. SUMMARY

Let us review what we have done. Since we chose to deal with signals
£, (w) square-integrable on L,{(?, So, P) X ([0, T1, L, m)}, we define
the mutual information between two such signals using Proposition
II and equation (2) in such a way that it agrees with the mutual infor-
mation of their Fourier coefficients defined in equation (10). For the
channel defined in equation (1) with input signals constrained by
equation (11), we calculate the capacity of the channel. First in Section
IV the capacity problem is considered when only a finite number of
Fourier coefficients are nonzero. We use the corollary to the theorem in
Section IV and equation (15) to show that only Gaussian signals have
to be considered. Then equation (16) is used to calculate the finite-
dimensional optimal signal by “filling the well.”” In Section V the case
of an infinite number of nonzero Fourier coefficients is considered.
We show in Proposition IIT that optimal signals, if they exist, can be
chosen Gaussian. In Proposition IV the capacity of the infinite-dimen-
sional channel is calculated as the limit of finite-dimensional capacities.
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Finally in Section 5.1 we deal with the existence of an optimal signal.
In general no optimal signal exists. A special case is examined when the
noise components are independent in a fixed coordinate system.

APPENDIX

Symbols Used

The following is a list of symbols used throughout the text.
L,—the set of square-integrable functions
n,(w)—a noise process
7. (w)—a noise process
8, (w)—the input signal process
r.(w)—the output process
(i—the linear channel operator
(*—the adjoint of G
P,—a probability measure generated by £
p,—the probability density of the random vector n
@—a sigma field
I(¢, n)—the mutual information between £ and 7
h(n)—the differential entropy of 7
I',—the covariance of s
E*—Tuclidean k-space
| T'|—the determinant of T
L—the Lebesgue measurable sets
m—Lebesgue measure
Card—Cardinality
E—expected value
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Theorems on the Analysis of
Nonlinear Transistor Networks*

By I. W. SANDBERG
(Manuseript received August 19, 1969)

This paper reports on [urther resulls concerning nonlinear equations
of the form F(x) + Ax = B, in which F(-) s a “diagonal nonlinear
mapping” of real Kuclidean n-space E" into itself, A is a real n X n
matrix, and B is an element of E". Such equations play a central role in
the dc analysis of transistor networks, the computation of the transient
response of transistor networks, and the numerical solution of certain
nonlinear partial-diflerential equations.

Here a nonuniqueness result, which focuses attention on a simple special
property of transistor-lype nonlinearities, vs proved; this result shows that
under certain conditions the equation F(x) + Ax = B has at least two
solutions for some B & I". The result proves that some earlier conditions
for the existence of a unique solution cannot be improved by taking into
account more information concerning the mnonlinearities, and therefore
makes more clear that the set of matrices denoted in earlier work by P,
plays a very basic role in the theory of nonlinear transistor networks. In
addition, some material concerned with the convergence of algorithms for
computing the solution of the equation F(x) 4+ Ax = B is presented, and
some theorems are proved which provide more of a theoretical basis for the
efficient computation of the transient response of transistor networks. In
particular, the following proposition is proved.

If the dc equations of a certain general type of transistor network possess
at most one solwtion for all B &€ E" for “the original set of o’s as well as
for an arbitrary set of not-larger &’s”, then the nonlinear equations en-
countered at each time step in the use of certain implicit numerical inte-
gration algorithms possess a unique solution for all values of the step size,
and hence then for all step-size values it is possible to carry out the algo-
rithms.

*The material of this paper was presented at the Advanced Study Institute on

Network Theory (sponsored by the N.A.T.O.; Knokke, Belgium ; September 1-12,
1969).
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I. INTRODUCTION AND DISCUSSION OF RESULTS
References 1 and 2 present some results concerning the equation
F(z) + Az = B, (1

in which, with n an arbitrary positive integer, 4 is a real n X n matrix,
B is an element of real Euclidean n-space E", and F(-) is a mapping of
E"into E" defined by the condition that* for all z=(z, , 25, - ** , z.)"" €

E",
F(z) = [fi(z1), f2(z2), -, fu(xn)]" 2

with each f,(-) a strictly monotone increasing mapping of E" into itself.
Equation (1) plays a central role in the dc analysis of transistor net-
works,** the transient analysis of transistor networks (see Section 1.4),
and the numerical solution of certain nonlinear partial differential
equations.

In Ref. 1 it is proved that there exists a unique solution z of equation
(1) for each strictly monotone increasing mapping F(-) of E" onto K"
(that is, for each set of strictly monotone increasing mappings f;(-) of
E" onto itself) and each B &€ E" if and only if A is a member of the set
P, of real n X n matrices with all principal minors nonnegative. It is also
proved in Ref. 1 that equation (1) possesses a unique solution x for
each continuous monotone nondecreasing mapping F(-) of E" into E"
(that is, for each set of continuous monotone nondecreasing mappings
of E' into E') and each B € E" if A belongs to the set P of all real
n X m matrices with all principal minors positive . A direct modification
of the existence proof given in Ref. 1, as indicated in Ref. 2, shows that
equation (1) possesses a unique solution for each strictly monotone
increasing mapping F(+) of E" onto (a; , 81) X (a2, B2) X *++ X (@, Ba)
with each a; and 8; elements of the extended real line' (real line) such
that a; < B, and each B € E"if (and only if) A € P, and det A # 0.
Some network theoretic implications of these and related results are
discussed in Refs. 1 and 2, where the matter of determining whether or
not A € P, or A € P is considered in some detail.

* Throughout the paper the superscript ¢r denotes transpose.

** See Ref. 1 for a derivation of the equation within the context of the transistor
dc-analysis problem.

t There are some interesting applications of this result in the study of numerical
methods for solving certain nonlinear partial-differential equations, in which 4
has nonpositive ofi-diagonal terms and is irreducibly diagonally dominant.3

t The numbers a¢ and 8: are members of the extended real line if —0 = au
=owand —0 = B = oo.
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This paper presents a proof of a nonuniqueness result. The proof
focuses attention on a simple special property of transistor-type non-
linearities. The result shows that under certain conditions equation (1)
has at least two solutions for some B & E". In addition, the paper
presents some material concerned with the convergence of algorithms
for computing the solution of equation (1) and proves some theorems
which provide more of a theoretical basis for the efficient computation
of the transient response of transistor networks. The remaining portion
of Section I is concerned with a detailed discussion of the results and
their significance.

1.1 An Application of the Nonuniqueness Theorem

The standard Ebers—Moll transistor model, which is widely used,
gives rise to functions f;(+) which, while continuous and strictly mono-
tone increasing, are mappings of E' onto open semi-infinite intervals.
For such f;(-), the results stated above assert that the equation (1)
possesses at most one solution z for each B € E"if A € Py ; and if
A € P, and det A # 0, then equation (1) possesses a solution for each
B € E". Since, as indicated in Ref. 1, A = T7'G with T a nonsingular
matrix which takes into account the forward and reverse transistor o’s,
and G is the short circuit conductance matrix of the linear portion of
the network, the condition that det A4 not vanish is equivalent to the
rather weak assumption that the linear portion of the network possess
an open-circuit resistance matrix.

It is natural to ask whether the use of more-detailed information
concerning the nonlinearities of the transistor model would enable us
to make assertions concerning the existence of a unique solution of
equation (1) for all B € E" under weaker assumptions on A. In particu-
lar, can the condition that 4 belong to P, be relaxed? The first result
proved in this paper, Theorem 1 of Section II, shows that if the f;(-) are
exponential nonlinearities of the type associated with the Ebers—Moll
model, then the condition that A belong to P, cannot be replaced by
a weaker condition. More explicitly, in Section II a set F; of mappings
of E" into E" is defined, and &} contains all of the mappings F(-) that
correspond to Ebers—Moll type f;(-)’s. It is proved there that if A & P, ,
then for any F(-) &€ F; , there is a B & E" such that equation (1)
possesses at least two solutions. In faet, it is proved that if A € P,
and if § is an arbitrary positive number, then for any F(-) &€ 5 , there
is a B € E" such that equation (1) possesses two solutions such that
the distance in E" between the two solutions is é.

Thus Theorem 1 together with the earlier results mentioned above
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concerning existence of solutions show that the set of matrices P, plays
a quite fundamental role in the theory of nonlinear transistor networks.

1.2 An Algorithm for Computing the Solution of Equation (1)

Several results which assert that A & P, under certain conditions on
the transistor o’s and the short-circuit conductance matrix of the linear
portion of the network are proved in Refs. 1 and 2. In particular,
Ref. 1 proves that A € P, and hence that A € P, ,if A = P'Q with P

and Q real n X m matrices such that forallj = 1,2, ---, n
Dii > Z,‘: | p:; | and gy > ; | i |*

Theorem 2 of Section II shows that a relatively simple and entirely
constructive algorithm can be used to generate a sequence z'”, 2, - - -
of elements of E" that converges to the unique solution of (1) if 4 =
P7'Q with P and Q as defined above and each f;(-) is a continuous (but
not necessarily differentiable) monotone nondecreasing mapping of

E' into E'.**

1.3 Palais’ Theorem, Existence of Solutions of Equation (1), and Algo-
rithms for Computing the Solution of Equation (1)

Reference 1 gives two existence proofs concerning equation (1). One
proof, the more basic of the two, is based on first principles and em-
ploys an inductive argument in which, with % an arbitrary positive
integer less than n, the existence proposition is assumed to be true with
n replaced by k and it is proved that then the proposition is true with n
replaced by (¢ + 1). The second proof uses a theorem of R. 8. Palais
and requires that the f;(-) be continuously differentiable throughout E'.
More explicitly, Palais’ theorem! asserts that if R(-) is a continuously
differentiable mapping of E" into itself with values R(q) for ¢ € E",
then R(-) is a diffeomorphism’ of E™ onto itself if and only if

(?) det J, # O for all ¢ € E", in which J, is the Jacobian matrix of
R(-) with respect to ¢, and
@) || R@ || > = asg|| — =M

* It is proved also that A € P, if A = P1Q with p;; > Y | pii|landgs; 2
Yiwilgij| forallg, )

** A related result given in Ref. 4 is not directly applicable here because of assump-
tions made in Ref. 4 concerning the existence and boundedness of a certain Jacobian
matrix.

t See Ref. 5 and the appendix of Ref. 6.

t A diffeomorphism of E" onto itself is a continuously differentiable mapping of
E™ into E™ which possesses a continuously differentiable inverse.

t1 Here || - || denotes any norm on E".
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And the second proof of Ref. 1 shows that, with
R(g) = F(g) + Aq

for all ¢ € E", the two conditions (7) and (zz) are met when 4 € P, and
each f;(+) is a continuously differentiable strictly-monotone-increasing
function which maps E' onto E' and whose slope is positive through-
out E'.*

There are some problems which arise in connection with, for example,
the numerical solution of certain nonlinear partial-differential equations**
in which one encounters an equation of the form (1) with A € P, and
det A # 0, but with functions f;(-) which, while continuously differ-
entiable, are monotone nondecreasing (rather than strictly monotone
increasing) mappings of E' into E'. We can prove that even in such
cases equation (1) possesses a unique solution for each B & E" as follows.
Here the Jacobian matrix of F(g)+Aq exists and is of the form D(g)+4
in which D(q) is a diagonal matrix with nonnegative diagonal elements.
Since A € P, and det A # 0, we have® det [D(g) + A] # 0 for all
g € E". An immediate application of Theorem 3 of Section II shows
that || F(q) + Aq || — = as|| g || = .t Therefore, by Palais’ theorem,
F(z) + Az = B possesses a unique solution for each B.

Theorem 3 is of use not only in connection with the proof given in
the preceding paragraph; it also plays a key role in showing that there
is an algorithm which generates a sequence of elements of £" ', 2", - - -
that converges to the unique solution of F(z) + Az = B whenever each
f:(+) is twice continuously differentiable on E' and the conditions on 4
and F(-) of the preceding paragraph are satisfied.?

More generally, if R(-) is any twice-differentiable mapping of E"
into itself such that conditions (i) and (z) of Palais’ theorem are
satisfied, then, with R™'(-) the continuously-differentiable inverse of
R(-), z = R7'(6) satisfies R(z) = 6 in which 8 is the zero element of E",
and there are steepest decent as well as Newton-type algorithms each of

* The reasons that two proofs were presented in Ref. 1, with the second proof
a proof of a somewhat weaker result, are that the arguments needed for the appli-
cation of Palais’ theorem had already been developed in Ref. 1 and used for
other purposes there, and it was felt desirable to indicate an alternative approach
to essentially the same problem.

** The writer is indebted to J. McKenna and E. Wasserstrom for bringing this
fact to his attention.

t More explicitly, Theorem 3 shows that there is a vector C' € E” such that
| F(q) + Aq + C|[ > = as |lg|| = =, which is equivalent to the statement
concerning I(f F(q) + Ag || made above.

!t The differentiability assumption here is introduced as a matter of convenience,
z]gnd is certainly satisfied when the fi(-) are Ebers—Moll exponential-type non-
inearities.
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which generates a sequence in E" that converges to . To show this, let’
f(y) = R(y) ||* for all y € E" in which || - || denotes the usual Euclidean
norm (that is, the square-root of the sum of squares). Since condition (z)
of Palais’ theorem is satisfied, the gradient Vf of f(-) satisfies (Vf)(y)
# 6 unless f(y) = 0,* and since condition (7Z) of Palais’ theorem is satis-
fied the set S = {y € E" : {(y) < f(z'”} is bounded for any z'” € E".
Therefore we may appeal to, for example, the theorem of page 43 of Ref.
7 according to which for any = € E", for any member of a certain class
of mappings ¢(-) of S into E", and for suitably chosen constants v, ,

Y1, -+, the sequence 2", 2, - - - defined by

e = 2 4 yio@®) forall k=0

belongs to S and is such that || R(z™ || — 0 as k — =. However, since
R7'(-) exists and is continuous, it follows from

2 = RT'RE™)] forall k=0

)

and the fact that R(x™) — 6 as k — o, that lim,_, 2™ exists and

lim 2 = R7(0),

k=0
. . (k) ¥
which means that 2 = lim,_, 2.
1.4 Transient Response of Transistor-Diode Networks and Implicit Nu-
merical-Integration Formulas

At this point we briefly consider some aspects of the manner in which
the previous material bears on the important problem of providing
more of a theoretical basis for numerically integrating the ordinary
differential equations which govern the transient response of nonlinear
transistor networks. Although we consider explicitly only networks con-
taining transistors, diodes, and resistors, the material to be presented
can be extended to take into account other types of elements as well.
In addition, we shall focus attention on the use of linear multipoint
integration formulas of closed (that is, of implicit) type, since such

* Here we have used the fact that (Vf)(y) = 2J,R(y) for all y € E»7

t By Palais’ theorem R(-) is a diffeomorphism of E" onto itself.

# The material of the second part of Section 1.3 was motivated by previous
recent work of the writer’s colleague A. Gersho who made the observation that the
convergence of an algorithm for the solution of equation (1) could be shown by
combining results of Ref, 1 with the approaches described by Goldstein.? (See the
November 1969 B.S.T.J. Brief by A. Gersho.)
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formulas are of considerable use in connection with the typically “‘stiff
systems’’ of differential equations encountered.

A very large class of networks containing resistors, transistors, and
diodes modeled in a standard manner is governed by the equation®

du

ar + TF[C™'()] + (I + GR)'GC™'(w) = B(0), t=0 (3)

where, assuming that there are ¢ diodes and p transistors,

@ T=I,T,.PT.P - D T,, the direct sum of the identity
matrix of order ¢ and p 2 X 2 matrices T, in which

noo |1 =
e

_.a’k
[ ) 1[

with0 < o < 1and 0 < o < 1fork =1,2, .-+ p.

(@) R=R PR PR, D --- D R, , the direct sum of a diagonal
matrix R, = diag (», , o, -+ , 1) with 7, 2 Ofork = 1,2, -+- , ¢
and p 2 X 2 matrices R, in which forallk = 1,2, -+, p

3] (k) *)
[P o #f rs 1
B = 4
(¥ 3] (k) (k)
l Ty r. + Ty J

with »* = 0, i = 0, and ¥ = 0. (The matrix R takes into account
the presence of bulk resistance in series with the diodes and the emitter,
base, and collector leads of the transistors.)

(#i7) @ is the short-circuit conductance matrix associated with the
resistors of the network. (It does not take into account the bulk re-
sistances of the semiconductor devices.)

(@) F(-) is a mapping of E“**" into E
that

@7 defined by the condition

F('l') = UI(II)' .’.2("'2)' . .f'.’p+u('r2n+q)]“

for all € K®"*? with each f,(-) a continuously differentiable strictly-
monotone increasing mapping of ' into £'.

(v) C7'(+) is the inverse of the mapping C(-), of E“"** into itself,
defined by

C(x) = diag (¢, Cay ** , Copeg)t + diag (ry , 72, , T2 ) F (2)

for all z € E®*® with each ¢; and each 7; a positive constant.
(i) B(t) is a (2p + ¢)-vector which takes into account the voltage
and current generators present in the network, and
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(vi5) w is related to » the vector of junction voltages of the semi-
conductor devices through C(v) = u for all v € E***,
Equation (3) is equivalent to*

U + f(u) t) = 0(2p+a)) t

v
o

4)
in which of course
fu,t) = TF[C”'w)] + (I + GR)™'GC™'(w) — B() (5)

and 8,. is the zero vector of order (2p + ¢).
It is well known that certain specializations of the general multi-

point formula®**°

?/n+| = Z a'kyn—k + h L_z—: bkyn k (6)
in which
Gnk = —flYn-s , (n — k)A] (7

can be used as a basis for computing the solution of equation (4).
Here h, a positive number, is the step size, the a, and the b, are real
numbers, and of course y, is the approximation to u(nhk) for n = 1.

In the literature dealing with formulas of the type (6) in connection
with systems of equations of the type (4), information concerning the
location of the eigenvalues of the Jacobian matrix J, of f(u, ¢) with
respect to % plays an important role in determining whether or not a
given formula will be (in some suitable sense) stable. In particular, an
assumption often made is that all of the eigenvalues of J, lie in the
strict right-half plane for all ¢ = 0 and all w. For f(u, ¢) given by equa-
tion (5), we have

J, = T diag {Ci + ‘r,-;f;[g,‘(ui)]}

i . 1
o d { , }
+{ + GR)"@ diag c; + 7ifilgiw;)] ®
inwhichforj = 1,2, -+, (2p + ¢) g:(u;) is the 7** component of €~ (u).
Thus here J, is a matrix of the form
TD, + (I + GR)™'GD, 9)

where D, and D, are diagonal matrices with positive diagonal elements.

* Ref. 8 shows that if B(-) is a continuous mapping of [0, «) into E¢*d, then for
any initial condition u©@ & E@r+a there exists a umque continuous (2p +q)- vector-
valued function u(-) such that #(0) = »©® and (3) is satisfied for all ¢ > 0



NONLINEAR EQUATIONS 103

A simple result concerning equation (9), Theorem 4 of Section II,
asserts that if there exists a diagonal matrix D with positive diagonal
elements such that*

(7) DT is strongly column-sum dominant, and
(#) DI + GR)™'G is weakly column-sum dominant,

then for all diagonal matrices D, and D, with positive diagonal ele-
ments, all eigenvalues of (9) lie in the strict right-half plane. This con-
dition on T, G, and R is often satisfied.

The subelass of numerical integration formulas (6) defined by the
condition that b_, > 0 are of considerable use''***"** in applications
involving the typically “stiff systems” of differential equations en-
countered in the analysis of nonlinear transistor networks. With b_, > 0,
Y1 18 defined smplicitly through

Ynsr + RO f(Ynsr » (n + h) = Z Y-y + D E bkﬂ..-x
k=0 k=0

in which the right side depends on y,, only for &k &€ {0, 1,2, --- , 7},
and for f(u, t) given by equation (5), we have

Ynsr + W (TFIC' (@ui)] + (I + GR)T'GC (Y} = ¢u (10)

in which
G = 2 Gt + b 25 biffaes + hb- (Bl + DA
w0 k=0

Obviously, the numerical integration formula (10) makes sense only
if there exists for each n a y,., € E***” such that equation (10) is
satisfied.

Let @py1 = C '(Yus1) for each n. Then equation (10) possesses a
unique solution y,,, if and only if there exists a unique z,,, € E®*?
such that

C(@nir) + h0A[TF(x0ir) + (I + GR)'Grpns] = qu . (11)
Since C(2,.1) = €¥piy