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The interaction between the roundoff-noise output from a digital filter 
and the associated dynamic-range limitations is investigated for the case 
of uncorrelated rounding errors from sample to sample and from one error 
source to another. The required dynamic-range constraints are derived in 
terms of L„ norms of the input-signal spectrum and the transfer responses 
to selected nodes within the filter. The concept of "transpose configurations" 
is introduced and is found to be quite useful in digital-filter synthesis; for 
although such configurations have identical transfer functions, their round-
off-noise outputs and dynamic-range limitations can be quite different, 
in general. Two transpose configurations for the direct form of a digital 
filter are used to illustrate these results. 

I. INTRODUCTION 

With the rapid development of digital integrated circuits in the 1960's 
and the potential for large-scale integration (LSI) of these circuits in 
the 1970's, digital signal processing has become much more than a tool 
for the simulation of analog systems or a technique for the implementa-

* This paper is taken in part from a thesis submitted by Leland B. Jackson 
in partial fulfillment of the requirements for the degree of Doctor of Science in 
the Department of Electrical Engineering at Stevens Institute of Technology. 
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tion of very complex and costly one-of-a-kind systems alone. The 
traditional advantages of digital systems, such as high accuracy, stable 
parameter values, and straight-forward realization, have been supple-
mented through the use of integrated circuits by the additional advant-
ages of high reliability, small circuit size, and ever-decreasing cost. 
As a result, it now appears that many signal processing systems which 
have been in the exclusive domain of analog circuits may in the future 
be implemented using digital circuits; while other proposed systems 
which could not be implemented at all because of the practical limita-
tions of analog circuits may now be realized with digital circuits.2 
The key element in most of these new signal-processing systems is 

the digital filter. The term "digital filter" here denotes a time-invariant, 
discrete or sampled-data filter with finite accuracy in the representation 
of all data and parameter values. ' That is, all data and parameters 
within the filter are "quantized" to a finite set of allowable values with, 
in general, some form of error being incurred as a result of the quantiza-
tion process. Implicit in this quantization is a maximum value or set 
of maximum values for the magnitudes of these data and parameters 
which, in the case of the data, is usually referred to as the "dynamic 
range" of the filter. 
Without the above quantization effects, linear discrete filters could 

be implemented exactly. Of course, one very significant feature of 
digital signal processing is that arbitrarily high accuracy can, in fact, 
be maintained once the initial analog-to-digital (A-D) conversion (if 
any) has taken place. However, there are still practical limitations to 
the accuracy of any physical system, and often it is desirable to mini-
mize the accuracy of the implementation (while still satisfying the 
system specifications) in order to minimize the cost of the system. Hence, 
a thorough understanding of quantization errors in digital filters is 
quite important if the full potential of digital signal processing is ever 
to be realized. 

II. QUANTIZATION ERRORS IN DIGITAL FILTERS 

The specific sources of quantization error in the implementation and 
operation of a digital filter are as follows: 

(i) The filter coefficients (multiplying constants) must be quantized 
to some finite number of digits (usually binary digits, or bits). 
(ii) The input samples to the filter must also be quantized to a 

finite number of digits. 
(iii) The products of the multiplications (of data by coefficients) 
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within the filter must usually be rounded or truncated to a smaller 
number of digits. 
(iv) When floating-point arithmetic is used, rounding or truncation 

must usually be performed before or after additions as well. 

The first source of error above is deterministic and straightforward 
to analyze in that the filter characteristics must simply be recomputed 
to reflect the (small) changes in the filter coefficients due to quantizing.8'7 
However, the inclusion of coefficient quantization in the initial filter 
synthesis procedure in order to minimize (in some sense) the resulting 
filter complexity produces a complex problem in nonlinear integer 
programming which has only begun to be investigated. 
The second source of error is often referred to as "quantization noise". 

It is inherent in any A-D conversion process and has been studied in 
great depth.8 Hence, input quantization has not been included in our 
investigation, except as it relates to other error sources of interest. 
The third and fourth error sources are similar to the second since they 

also involve quantization of the data, but they differ in two respects: 
(i) The data to be quantized is already digital in form, and (ii) the round-
ing or truncation of the data takes place at various points within the 
filter, not just at its input. To distinguish these sources of error from the 
input quantization noise, the resulting error processes will be referred 
to as "roundoff noise" (to be used generically, whether rounding or 
truncation is actually employed). Because of (ii), the roundoff noise is 
potentially much larger than the input quantization noise, and it is one 
of the principal factors which determine the complexity of the digital 
filter implementation, especially when special-purpose hardware is used. 
There are three variables in the filter implementation which deter-

mine the level and character of the roundoff noise for a given input signal: 

(i) the number of digits (bits) used to represent the data within 
the filter, 
(ii) the "mode" of arithmetic employed (that is, fixed-point or 

floating-point), and 
(iii) the circuit configuration of the digital filter. The number of 

digits in the data may be thought of as determining either the quantiza-
tion step size or the dynamic range of the filter. We choose here the 
latter interpretation in order to have the same step size for all filters. 
Therefore, with this interpretation, the number of data digits does not 
affect the level of the roundoff noise directly, but rather it limits the 
maximum allowable signal level and hence the realizable signal-to-noise 
ratio. Data within the filter must, of course, be properly "scaled" if the 
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maximum signal-to-noise ratio is to be maintained without exceeding the 
dynamic-range limitations. Among the principal results reported here 
are the determination of appropriate scaling for certain important classes 
of input signals and the calculation of the effect of this scaling on the 
output roundoff noise. 
The output roundoff noise from a floating-point digital filter is usually 

(but not always) less than that from a fixed-point filter with the same 
total number of data digits because of the automatic scaling provided 
by floating-point arithmetic.' '1° However, since floating-point arithmetic 
is significantly more complëx and costly to implement, most special-
purpose digital filters have been, and will probably continue to be, con-
structed with fixed-point hardware. Hence, we have considered only 
fixed-point digital filters in this work although much of the analysis 
could be adapted to floating-point filters. Oppenheim has recently 
proposed another interesting mode of arithmetic for digital filter im-
plementation, called "block-floating-point", which provides a simplified 
form of automatic scaling of the filter data." As would be expected, the 
performance of block-floating-point appears to lie somewhere between 
those of fixed-point and of floating-point. 
The third variable in the implementation of a digital filter, that of 

circuit configuration, is the principal factor determining the character 
(spectrum) of the output roundoff noise and, along with mode of the 
arithmetic, ultimately determines the number of data digits required to 
satisfy the performance specifications. In fact, the key step in the syn-
thesis of a digital filter is the selection of an appropriate configuration 
for the digital circuit. There are a multitude of equivalent circuit con-
figurations for any given linear discrete filter (whose transfer function 
is expressible as a rational fraction in z); but in the implementation of the 
corresponding digital filter, these configurations are no longer equivalent, 
in general, because of the effects of coefficient quantization and roundoff 
noise. As noted previously, the effects of coefficient quantization are 
deterministic and can thus be accounted for exactly as a (typically 
small) change in the transfer function of the discrete filter. Therefore, 
assuming that the coefficients for the configurations under consideration 
have been (or can be) quantized satisfactorily, the choice between these 
configurations is then determined by the level and character of their 
output roundoff noise. As we will show, there can be very significant 
differences between the roundoff-noise outputs of otherwise equivalent 
digital filter configurations. 
The content and complexity of any analysis of roundoff noise are 

determined to a large extent by the assumed correlation between round-
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off errors. If these errors may be assumed to be uncorrelated from sample 
to sample and from multiplier (or other rounding point) to multiplier, 
then the roundoff-noise analysis is relatively straightforward, and the 
results are independent of the exact nature of the input signal to the 
filter. If, on the other hand, uncorrelated errors may not be assumed, 
then the analysis is much more complex, and the results are generally 
dependent on the particular input signal or class of input signals. This 
paper is concerned exclusively with the uncorrelated-error case because 
this assumption seems to be valid for most filters with input signals of 
reasonable amplitude and spectral content. Even in this case, the in-
clusion of the associated dynamic-range constraints makes the analysis 
reasonably involved and the corresponding synthesis problem quite 
complex. 
Although the generic term "roundoff noise" has been used to include 

the case of truncation as well as rounding, we actually concentrate on 
the rounding case. As long as the assumption of uncorrelated errors can 
be made, our results are applicable to either case, with the error variance 
for truncation being four times that for rounding. However, as the 
input signals become less "random", the uncorrelated-error assumption 
tends to break down for truncation more readily than for rounding. 
Hence, additional care must be exercised in applying these results to the 
truncation case. 

III. FILTER MODEL FOR IINCORRELATED-ROUNDOFF-NOISE ANALYSIS 

The analyses appearing in the literature concerning roundoff noise 
in digital filters usually employ the simplifying and often reasonable 
assumption of uncorrelated roundoff errors from sample to sample and 
from one error source (multiplier or other rounding point) to 
another.9"2"3 This assumption is based on the intuitively plausible 
and experimentally supported notion that for sufficiently large and 
dynamic signals within the filter, the small roundoff error made at one 
point in the network and/or in time should have little relationship to 
(that is, correlation with) the roundoff error made at any other point 
in the network and/or time. The advantage of assuming uncorrelated 
errors from one sample to another is that the noise injected into the 
filter by each rounding operation is then "white"; while the advantage 
of assuming uncorrelated error sources is that the output noise power 
spectrum may then be computed as simply the superposition of the 
(filtered) noise spectra due to the separate error sources.' Experimental 
results which support the validity of this assumption, even in the case 



164  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1970 

of a single sinusoidal input, are presented in Ref. 1. In this section, we 
introduce the notation and develop the analysis pertaining to uneor-
related roundoff noise for later use in investigating the synthesis of 
digital filters. 
Digital filter networks are composed of three basic elements: adders, 

constant multipliers, and delays. The interconnection of these elements 
into a particular network configuration is the key step in digital filter 
synthesis. For our purposes here, we need only consider the network 
as a directed graph, with the multipliers and delays being represented 
by graph branches. The branch interconnection points, or nodes, will 
be divided into two types: "summation nodes", which correspond to 
the adders and have multiple inputs and a single output, and "branch 
nodes", which correspond to simple "wired" interconnections that have 
a single input and one or more outputs. 
A digital filter network may thus be represented as shown in Fig. 

1. The input to and output from the filter at time t = nT are denoted 
by u(n) and y(n), respectively. The corresponding output from the 
ith branch node is denoted by v, (n); while the roundoff error introduced 
into the filter at the PI summation node is denoted by ei(n). Since 
with fixed-point arithmetic, rounding is performed only after multiplica-
tions, non-zero roundoff errors are "input" to the filter only at those 
summation nodes which follow constant (non-integer) multiplier 
branches, as depicted in Fig. 2. 
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Fig. 1— General digital filter model. 
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Fig. 2—Constant multiplier with preceding branch node and succeeding sum-
mation node. 

For a unit sample input to the filter at t = O and no rounding [that is, 
u(0) = 1, u(n) = 0 for n  0, and e-(n) = 0 for all j and n], the resulting 
output values y(n) and vi(n) for all n k 0 and all i are designated as 
h(n) and fi(n), respectively. Alternatively, for a unit sample input to 
the jth summation node and zero inputs otherwise [that is, e(0) = 1, 
ei(n) -= 0 for n  0, and ek(n) = u(n) = 0 for all n and for k  j], the 
resulting output values y(n) for all n  0 are denoted by g i(n). We 
thus have the following transfer functions of interest, expressed in 
z-transform form: 
From filter input to output: 

H*(z) = E h(n)z.  (1) 
.-0 

From filter input to it" branch-node output: 
CD 

F(z) = E f i(n)z-n  (2) 

From jth summation-node input to filter output: 

M(z) = E g,(n)e" .  (3) 
n=0 

These transfer functions are indicated in Fig. 1. 
The frequency responses (Fourier transforms) corresponding to the 

above transfer functions are given by 3-5  

H (w) =  H*(e' r),  (4) 

F(w) =  (ei (5) 

Gh(w) =  (e1'7).  (6) 

This notation will be used throughout this paper. That is, for any 
z-transform A*(z) which converges for IzI = 1, the corresponding 
Fourier transform is given by 

A(w) = A* 
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If scaling has been included in the filter design in order to satisfy certain 
dynamic-range constraints, then prime marks (') are added to denote 
this fact [for example, F(co), Ft' (z)]. 
Each error source (rounding operation) within the filter is assumed 

to inject white noise of uniform power-spectral density N0. Assuming 
uniformly distributed rounding errors with zero mean, the variance of 
the roundoff noise from each error source is given by12,13 

CrP = 2/12  (7) 

where à is the spacing of the quantization steps (after rounding). To 
eliminate the sampling period T from certain expressions of interest, 
we now define No = 4 . Hence, the variance, or total average power, 
corresponding to an arbitrary power-density spectrum N(w) with no 
DC component (which implies a zero-mean process) is given byt 

cr2 = 1 — o N(w) dw 
co.  

where co, is the radian sampling frequency given by 

w. = 27r/T. 

(8) 

(9) 

Assume now that le; error sources input to the ith  summation node. 
The spectral density of the roundoff error sequence { ei(n) ) is then just 
k iN" „ by our assumption of uncorrelated error sources. The total roundoff 
noise in the output of the filter thus has a power-density spectrum given 
by 12 

N2(w) = cr Elci IG i(w) 12 (10a) 

where we have substituted 4 for N0. If scaling has been included in the 
filter design, then the corresponding expression is just 

N0(w) =  E k; j G;(co) 12 (10b) 

where k > k to account for the additional scaling multipliers. 

IV. DYNAMIC-RANGE CONSTRAINTS 

The ultimate objective of the synthesis procedures to be investigated 
will be the minimization of some norm of Ny(w) for a given quantization 
step size à, subject to certain "constraints". One constraint is that the 

t This normalization of N(w) is further motivated by the derivation in Section 
V leading to equation (30b). 
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specified transfer function H*(z) must be maintained. Another funda-
mental, but often overlooked, constraint is the finite dynamic range of 
the filter. Specifically, the signals t ((n) at certain branch nodes within 
the filter cannot be allowed to "overflow" (that is, exceed the dynamic-
range limitations), at least not more than some small percentage of the 
time, in order to prevent severe distortion in the filter output. 
Overflow constraints are required only at certain branch nodes in the 

digital circuit because it is only the inputs to the constant multipliers 
which cannot be allowed to overflow when several standard numbering 
systems are used (for example, one's- or two's-complement binary)." 
Specifically, in the summation of more than two numbers, if the magni-
tude of the correct total sum is small enough to allow its representation 
by the K available digits, then in these numbering systems the correct 
total sum will be obtained regardless of the order in which the numbers 
are added, even if an overflow occurs in one of the partial sums. Hence, 
those node outputs which correspond to partial sums comprising a 
larger total sum may be allowed to overflow, as long as the total sum is 
constrained not to overflow. This property also applies when one of the 
inputs to a summation node has overflowed as a result of a multiplica-
tion by a coefficient of magnitude greater than one. 
Turning to the formulation of the required overflow constraints, we 

may easily derive an upper bound on the magnitude of the signals 
v4(n) for all possible input sequences { u(n)1, neglecting the (small) 
error signals ei(n). Assuming zero initial conditions in the filter and 
e, (n) = 0 for all j and n, the ith branch-node output y, (n) is given by 

van) = E f i(k)un — k), all n. 
k-0 

(11) 

Therefore, given that u(n) is bounded in magnitude by some number 
M for all n, an upper bound on the magnitude of vi(n) is given by' 

I vi(n) I M E I fi(k) I, all n.  (12) 
k-o 

Thus, if the node signal v(n) is also to be bounded in magnitude by 
M for all possible input sequences, the associated scaling must ensure 
that 

E r(k) I 5 1  (13) 

That (13) is not only a sufficient condition to rule out overflow for all 
possible input sequences lu(n)1, but also a necessary condition, is easily 
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shown by letting u(n) = ±M for all n, with sg-n [u(no — k)] = sgn [f,(k)] 
for some n = no and all le  O. Then from equation (11) we see that 
(12) is satisfied with equality in this case, and thus (13) is a necessary 
condition, as well. 
The norm of f', (k) employed in (13) is not very useful in practice 

because of the difficulty of evaluating the indicated summation in all 
but the simplest cases. Also, for large classes of input signals, (12) and 
thus (13) are overly pessimistic. Therefore, we now derive alternate 
conditions on (the transform of) the scaled unit-sample response {r,(n)} 
which ensure that for certain classes of input signals, the corresponding 
branch-node output vi(n) cannot overflow. The derivation of these 
conditions for discrete systems closely parallels the corresponding 
derivation for continuous systems, as given by Papoulis." 
An alternate expression for equation (11) in terms of z-transforms is 

derived as follows: Consider an (absolutely summable) deterministic 
input sequence { u(n) } possessing the z-transform 

U*(z) = E u(n)z-' ,  a<IzI G b,  (14) 

for some a < 1 and b > 1. Stability requires that P;(z), defined in equa-
tion (2), exist for all IzI >c for some c < 1. Hence, the z-transform of 
vi(n) } is given by3 

Vt(z) = Fr(z)U*(z),  d < lz  < b,  (15) 

where d = max (a, c). The inverse transform of equation (15) is given 
by3 

v(n) = —1 j Vt(z)z"-1 dz  (16) 
2ir  r 

where the contour of integration r is contained in the region of con-
vergence d< Izi < b. Since d < 1 and b > 1, let r be the unit circle 
in the z plane (!z I = 1), and perform the change of variables z = e T 

in equation (16). Using equation (15), the resulting equation becomes 

(n) =  f F MU(w)ei"T dw.  (17) 
(,)» 0 

The conditions to be derived from equation (17) are most easily 
expressed in terms of L„ norms, defined for an arbitrary periodic function 
A(•) with period co, by17 

- 11 A Ilp = [- r ,7j  I A(co) ie do) 
—a  0 

(18a) 
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for each real p  1 such that 

f' oI A(co) 19 dto < C° • 

It can be shown!" that for A(•) continuous, the limit of equation (18a) 
as p —› co exists and is given by 

11 A  -= max 1 A(c)  I.  (18b) 

Assume now that I U(co) I is bounded from above by some number 
/II(that is, II U II.  M). Then, from equation (17), 

1 vi(n) 1 5- Al  F 40) 1 dco w. 

or 

1 vi(n) 1  11F. U II. •  (19) 

In exactly the same manner, we may also show that 

v,(n) I IF. II.e• II U lit .  (20) 

Applying the Schwarz inequality to equation (17), on the other hand, 
yields that 

r.. 
1 vi(n) 12 f  1 Fi(co) 12 dw j  (v) 12 dv 

Co • c.  o 

or 

v,(n)  11F. lia• II U 112 .  (21) 

Note that (19), (20), and (21) are all of the form 

(p±  1) 

for p, q = 1, 2, and 0 o . It can be shown" that (22) is true in general for 
all p, q > 1 satisfying 1/p ± 1/q = 1; and we have shown in (19) and 
(20) that if the Loo norms exist, then (22) holds for p, q = 1, as well. 
The general relation in (22) for all p, q > 1, is derived from Holder's 
inequality. 
A simple, but important special ease of (22) results from letting F't(z) 
F , (co) -= 1. Since II 1 II„ = 1 for all p  1, we then have simply 

u(n) I  II U IL,  all q  1.  (23) 

Ivi(n)  11Fi 119.11 U11., (22) 
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But since (23) holds for all sequences iu(n)1, it must also be true that 

v(n) I  ii Vi II„ all r  1. 

This is, in fact, the basis of (22), for Holder's inequality actually states 
that 

Hy: 111 5 11 F% lip II U110,  + -1*q = 1)• 

Therefore, the real implication of (22) is that the mean absolute value 
of V;(co) is bounded by II F , 11911 U I lo and this, in turn, provides a 
bound on I v,(n) I. 
Assume, therefore, that the input transform U(co) satisfies I I U 11,,  M 

for some q  1. From (23) we immediately have that I u(n) I :5_ M for 
all n. Then, if I v,(n)  is also to be bounded by M, (22) provides a 
sufficient condition on the scaling to ensure this, namely 

II F117, 5_ 1,  (11 U 11« < M) (24) 

for p = q/(q — 1). Inequality (24) is the desired condition to replace 
the more general, but often less useful condition given by (13). 
From an engineering viewpoint, the most significant values for p 

and q would seem to be 1, 2, and co The case p = 1, q = 00 requires 
that the input transform U(co) be everywhere bounded in magnitude by 
M (that is, II U I  ill), in which case only the Li norm of the scaled 
transfer function F',(w) need satisfy (24). For an input of finite energy 
E = E„ u2(n), Parseval's identity implies that II U 11 = E, and thus 
with M  (E), (24) can be satisfied for p = q = 2. 
The case of p = co, q = 1 in (24) implies the most stringent condition 

on F(w) because from equation (18) it is evident that 

II F: 11p HF' (25) 

for all p  1. It is clear, for example, that for a sinusoidal input of 
amplitude A  M and arbitrary frequency w,, we must have I F(w) 
1 for all co (that is, II F',11,,,  1) to ensure that I vi(n) I  M for 

all n. However, a sinusoidal input sequence {u(n)1 is not absolutely 
summable, and thus U*(z) as defined in equation (14) does not exist 
in this case. This difficulty may be circumvented, as is common in 
Fourier analysis, by assuming a finite sequence of length N and then 
passing to the limit as N —› co . The resulting (Fourier) transform of 
{u(n)1 is of the form 

Uo(co) = —A e'°[6(w — wo)  &(co —  wo)],  (0 :5_ co  co,)  (26) 
2 
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where 3(co) is the familiar Dirac delta function defined by 

5(co) = 0,  co  0, 

f8(w) due = 1. 

Uo(co) is, of course, periodic in co with period co. . From equations (18a), 
(26), and (27), we immediately have that II U0 I = A 5 M, and thus 
with p = œ, (24) is applicable for sinusoidal input sequences, as ex-
pected. 

V. RANDOM INPUT CASE 

(27) 

In the case of random input sequences, (24) is not directly applicable 
because the z-transform U*(z) is not defined. Similar conditions may be 
obtained, however, by considering the discrete autocorrelation function 
ço(•), defined for a (wide-sense) stationary sequence ( w(n)1 by 

= E[w (n)w(n -F m)]  (28) 

where E[•] is the expected-value operator. A z-transform (1),1(z) may be 
defined for the sequence jge„(m)] as in equation (14) with an inverse 
transform as in (16). Assuming ergodicity and a zero mean (E[w (n)] = 
for 1w(n.)1, we immediately have from equation (28) that the variance, 
or total average power, of [w(n)] is given by 

cp.,(0) = E[w2 (n)] = c,  (29) 

and from equation (16) we also have 

ÇP.(0) =  fr 4:(z)z-1 dz •  (30a) 

Letting I' be the unit circle (z = 5' r), equations (29) and (30a) imply 
that 

= 1 j'• cr2,„ —  dw. 
o 

(30b) 

Hence, from equation (8) we see that  (co) is just the power-density 
spectrum of the sequence [ w(n) I. 
For an input sequence [u(n) ) whose autocorrelation function has 

the z-transform et(z), it is well-known that the corresponding transform 
for the output I v,(n)] is given by 

=  (z)Ft (Ocle (z)  (31a) 
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Or 

'*0  = I F ((-0) 12 I' M •  (31b) 

Equations (29) through (31) imply then that 

= r. F ,(w) 2 (1). ((°)  (32) 
o 

Since equation (32) is of the same basic form as (17), a derivation similar 
to that leading to (22) must yield the following relations for p, q  1: 

lIFlI9Il II0,  (1  ▪ 1 
p-

or, from equation (17), 

11F1  g,  (p1  lg▪  = 1) (33b) 

Two cases of (33) are of particular interest, namely 

II F  4'. II-  (34) 

and 

II F i 112 ‘.• II 4'. III •  (35) 

In view of equation (25), we see that (34) implies the most stringent 
condition on the input spectrum 4',. (w), whereas (35) yields the most 
stringent condition on the transfer function F i(co). From (34) and (30b), 
for example, we have that if the input power-density spectrum is "white" 
[that is, 4'.(w) = ci,‘2 for all w], then cr!,  F 11,20.„2 . Hence, if the input 
sequence {u(n)} is a Gaussian process,' the node output sequence 
{ v ,(n)) will overflow no more (in percentage of time) than does the 
input, provided only that 

(33a) 

II F', 112 5 1.  (36) 

The inequality in (35) requires, on the other hand, that for an input 
sinusoid of arbitrary amplitude and frequency, F(w) must satisfy 

II F;  1  (37) 

to ensure against overflow, as we have seen earlier from (24). 
To summarize, dynamic-range constraints of the form 

II F J  1,  p  1  (38) 

have been derived for both deterministic and random inputs, where 
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P(w) is the (scaled) transfer response from the filter input to the ith 
branch node and II ' lip denotes the L, norm defined in equation (18). 
For a deterministic input with amplitude spectrum U(w), (38) assumes 
that 

il U II, .._. M, (39) 

where M is the maximum allowable signal amplitude. For a random 
input, on the other hand, the use of (38) requires appropriate conditions 
on II (P. I I „ r = p/(p — 2) and p  2, where (1),i(co) is the power-density 
spectrum of the input sequence. 
The effect of (38) and (39) is to bound the mean absolute value of the 

amplitude spectrum at the eh branch node (that is, II Vi III) which, in 
turn, bounds the peak signal amplitude at that node. The use of (38) 
in conjunction with (33), however, bounds only the average power at 
the i's' branch node, and thus the relationship between this average 
power and the peak signal amplitude at the node must also be deter-
mined in order to provide an effective dynamic-range constraint. 

VI. TRANSPOSE SYSTEMS 

In the evaluation of different circuit configurations for a given digital 
filter, a useful concept relating certain of these configurations is that 
of "transpose configurations". This relationship is a general property 
of linear graphs" and will be presented here in terms of a state-variable 
formulation. 
The general state equations for a linear, time-invariant discrete system 

are given by" 

x(n -F 1) = Ax(n) -I- Bu(n), 

y (n) = Cx(n) + Du(n) 

where x(n) is an N-dimensional vector describing the state of the system 
at time t = nT, u(n) is the corresponding J-dimensional input vector, 
y(n) is the corresponding /-dimensional output vector, and A, B, C, 
and D are fixed parameter matrices of the appropriate dimensions relat-
ing the input, state, and output vectors as given by equation (40). 
The (N + I) X (N + .I) matrix S defined by 

s = 
[Cri B D] 

(40) 

(41) 



174  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1970 

provides a convenient single parameter matrix which describes the 
complete discrete system. 
A transfer function matrix 3C1'(z) may be defined for the system (de-

scribed by) S relating the input and output vector sequences lu (n)1 
and ly(n) I by 

Y*(z) = 3C:e(z)11*(z)  (42) 

where 1:1*(z) and Y*(z) are the vector z-transforms of fu(n)) and fy(n)), 
respectively. 3C (z) is readily shown to be given by" 

3C:'(z) = C(z/ — A)'B + D  (43) 

where (.) -1 denotes the matrix inverse and I is the N-dimensional 
identity matrix. 
Consider now a new system which is described by the parameter 

matrix S', that is, 

s' = [À  C̀l 

1.B̀  D'i 

where (•)̀ denotes the matrix transpose. From equations (41) and (43) 
it is easily seen that the transfer function matrix for the new system 
S' is given by 

3C(z) = Bt (zI — A')-1 C̀ 

= [C'(z)]̀ 

Thus, the transfer function matrix for the system S' is simply the 
transpose of the transfer function matrix for the system S. That is, 
the element //(z) from Kt (z), which is the transfer function from the 
ith input to the ith  output of system S, equals the element H ( z) from 
3C;t1,(z), that is, the transfer function from the  input to the ith output 
of ES'. Note also that while the system S has a total of J inputs and I 
outputs, the system S' has I inputs and J outputs. 
The concept of transpose systems will be particularly useful to us in 

conjunction with the digital-filter model introduced in Section III and 
depicted in Fig. 1. Defining the input and output vectors for the filter by 

(44) 

u(n) = 

u(n) 

e,(n) 

e, (n) 

and y(n) = 

(45) 

(46) 
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respectively, the transfer function matrix for the filter is given by 

(z) G' (z)  • • • G''.;(z)' 

(z)   (z)  (47) 

_ (z) —    

where the specific expressions for the elements in other than the first row 
and first column are unimportant for our purposes. By equation (45), 
the transfer function matrix for the corresponding transpose system is 
then simply 

e (z) = 

H* (z)  (z)  • • 

(z)   •  (48) 

. G'; (z)   

Note, in particular, that the transfer function from input-1 to output-1 
[that is, H* (z) , the ideal transfer function from filter input to filter 
output] is the same for both systems. 
As discussed more fully in Ref. 1, the circuit configuration realizing a 

given system S is not necessarily unique, and hence neither is the con-
figuration for the transpose system S'. However, given a particular 
configuration for the system S, a unique "transpose configuration", 
which realizes S', may be derived from the given configuration for S 
by simply reversing the direction of all branches in the given network! 
In particular, then, all delays and constant multipliers remain the same 
except for the change in direction. All summation nodes in the given 
configuration become branch nodes in the transpose configuration, and 
all branch nodes become summation nodes. Likewise, all inputs in the 
given configuration become outputs in the transpose configuration, and 
all outputs become inputs.t 
That the transpose configuration defined above actually realizes the 

transpose system S' is easily seen by considering the state equations in 
(40). The constant multiplier(s) corresponding to the element d of the 
matrix D and relating the ith  input and the i'h output of the original 
configuration must relate the it" input and the ith  output of the transpose 

t Note that the transpose system S' is fundamentally different from the "ad-
joint" system22 because, although the signal flow is reversed in both, the trans-
pose system does not run "backwards in time." 
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configuration, and thus di, =  for all i and j. The multiplier(s) cor-
responding to the element bii of B and relating the ith  input and the 
ith state of the original configuration must, on the other hand, relate 
the ith state and the ith  output of the transpose configuration, and thus 
b1 = c for all i and j. Similarly, cii = b;̀, for all i and j. Finally, the 
multiplier(s) corresponding to a,i and relating x• (n) and x• (n + 1) in 
the original configuration must, in the transpose configuration, relate 
x(n) and xi(n + 1), and thus ai = di, for all i and j. Therefore, the 
transpose configuration indeed realizes the system S'. 

VII. AN EXAMPLE: THE DIRECT FORM 

To demonstrate the application of the results of the preceding sections, 
we now evaluate and compare the roundoff-noise outputs from two 
transpose configurations for a digital filter. The scaling required to 
satisfy the overflow constraints in (38) is derived, and the effect of this 
scaling on the output roundoff noise is determined. 
The transfer function H* (z), defined in equation (1) and relating 

the input and output of the digital filter, may be expressed as a rational 
function in z of the form" 

N 

Eaz  
-0   A* (z) 

H*(z)  N  B*(z) 
1 + E 

i 

(49) 

Assuming that aN and bN are not both zero, N is referred to as the "order" 
of the filter. There are many different, but equivalent, forms in which 
equation (49) may be written, with a number of equivalent circuit 
configurations corresponding to each of these forms (at least two trans-
pose configurations). Those forms such as equation (49) which require 
the minimum number of multiplications and additions in the general 
case (that is, 2N + 1 and 2N, respectively) are referred to as "canonical" 
forms. In general, however, it is necessary to add additional scaling 
multipliers to these canonical forms in order to satisfy the overflow 
constraints in (38). 
The form of H*(z) given in equation (49) is often called the "direct 

form" of a digital filter. It has been pointed out by Kaiser' that use of 
the direct form is usually to be avoided because of the sensitivity of the 
roots of higher-order polynomials to small variations (that is, quantiza-
tion errors) in the polynomial coefficients. The roundoff-noise outputs 
from the direct form can also be much larger than from other canonical 
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forms." Nevertheless, the direct form is of theoretical interest, and it 
provides a convenient illustration of our results. Similar investigations 
for the two canonical forms most commonly employed in practice—the 
cascade and parallel forms—are described in Ref. 1. 
Two transpose configurations which implement the direct form with 

scaling are shown in Figs. 3 and 4. These configurations actually realize 
H*(z) in the form 

H*(z) — 

N 

E gez-i 
(50) 

where ka =  , and the additional scaling multipliers K, k = 
1, 2, are required to satisfy (38) in the general case. The configuration 
in Fig. 3 will be designated as form 1 (that is, k = 1), and Fig. 4 as 
form 2 (that is, k = 2). 
The branch nodes at which overflow constraints are required (because 

these signals input to multipliers) are indicated by (*). The dynamic-
range limitations are obviously satisfied (by assumption) at the input to 
the filter, but for completeness, an overflow constraint is included there 
as indicated. The scaled transfer responses knco) to these nodes are 
noted in Figs. 3 and 4, and the corresponding unsealed responses kFi(w) 
apply, of course, when K = 1. 

Fig. 3—Direct form 1 with scaling. 
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u(n) 

Fig. 4 —Direct form 2 with scaling. 

It is intuitively clear that to preserve the greatest possible signal-
to-noise ratio, the scaling should reduce the magnitude of AP, (co) no more 
than is necessary (or should increase it as much as possible, as the cue 
may be). In other words, kF(co) should satisfy 

I I kF', ll = 1. (51) 

This condition will be satisfied if the scaling factors ks, , defined by 

kn(c,i) = ksi-kFi(w),  (52a) 

are given by 

= 1/11 kFi lip .  (52b) 

It is readily seen from Figs. 3 and 4 that 

IP"(co) = 2F(w) = 1,  (53) 

and hence equation (51) is automatically satisfied for these responses. 
Of more interest, however, are the responses 

K; 
in(w) = —  = K; 1F2(w) B(w) 

(54) 
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H(w) 2F1(w) 
2F;(w) —  = K.; (55) 

From equations (52), (54), and (55), it follows that (51) is satisfied 
for these configurations if (and only if) 

K; = 1/111/B 11„  (56) 

and 

= 11H 11„ .  (57) 

The rounding-error inputs ei(n) are also shown in Figs. 3 and 4 
along with the transfer responses hq (w) from these inputs to the output 
of the filter. Note that in form 2 (Fig. 4) the error input e2(n) incor-
porates the roundoff errors from all of the multipliers except lq even 
though these error sources are separated by delays (z-'). This is done 
for convenience and is possible because of the assumption of uncorrelated 
errors from sample to sample and source to source. The noise weights 
k; [see equation (10)1 for form 1 are thus 

ik; =  = N  1;  (58a) 

while for form 2, 

= 1 and 2/C = 2N -I- 1.  (58b) 

The indices i and j of the ,,F ;(w) and a (w) have been assigned in such 
a way that forms 1 and 2 are related as in equations (47) and (48). 
That is, these unsealed responses satisfy the following equations: 

i(w) =--  (w), i = 1, 2,  (59a) 

ei(w) = 2F (w),  j = 1, 2.  (59b) 

Note that the scaled responses kF(cu) and kG'i(w) are not related as in 
equation (59) because, in general,  . In particular, 

H(w)  
,G(w) =  — (e)2Fi(co); 

while 

iGZ(co) = B(.) = —7)1F  ((e) • 

However, we do have, as in equation (53), that 

1G(w) = 2G(6.,) = 1. 
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From equations (10) and (53) through (62), the power-spectral den-
sities of the roundoff-noise outputs from these two configurations are 
thus computed to be 

and 

= 0-C,(N  1){1 
1 

2N ,(co) = ff,23{1. + (2N + 1) 11 H 

2 

H(co) 12} 

1 
B (w) 

(63a) 

(63b) 

The variances, or total average powers of the output roundoff noise 
from these configurations are then, from equations (8) and (18), simply 

and 

II IN,  = 0-ó(N  1){1 
1 

2 11 H1121  (64a) 

II 2N  = cr,2){1 -I- (2N -I- 1) 1H lip 
1 

(64b) 

The peak noise densities IIN',I  are, on the other hand, bounded by 

iN  5_ 4 N  1){1  713- 2 H 112} 

and 

II 2N v  5 041 + (2N ± 1) II H 
1 

(65a) 

(65b) 

We now compare direct forms 1 and 2 on the basis of (64) and (65). 
Although comparisons based on bounds for II kAT„ II. as in (65) do not, 
of course, necessarily hold for II ',Nu I I„, itself, experimental results have 
indicated that such comparisons are quite effective qualitatively, and 
often quantitatively as well.' Consider first the expressions in equation 
(64) for p = 2 and in (65) for p = œ (that is, IINII„ r = 1, 00, for 
p = r -1- 1]. In these two cases, the only difference between the (a) 
and (b) expressions for forms 1 and 2, respectively, are the lc; , as given 
in equation (58). In particular, for II 1/B I II I H I I» 1 as is often the 
case, the 11 N, II, for form 1 are approximately half, or 3 db less than, 
those for form 2. This result simply reflects the fact that only half of the 
noise sources in form 1 input at other than the filter output; whereas 
in form 2, all but one input within the filter. Hence, if the gains from 
these inputs to the output are large, form 1 is preferable to form 2 by 
up to 3 db. 
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For p  r  1, however, the differences in the k are of secondary 
importance compared with the potential differences due to the mixture 
of L. and L. norms in (64) and (65) In particular, letting 

1 
Op« = fi p 1 1 H  ,  (66a) 

we immediately see that if 0e2 >> 02m then form 2 is better for p = 
while form 1 is better for p = 2. If, on the other hand, 0.2 « 02,0 then 
the opposite applies. 
To gain insight into the above conditions, we rewrite equation (66a) 

as 

09(1  = 

T31 2 

I e I 
2 

(66b) 

It is then clear that the difference between 0.2 and 92.0 is due entirely 
to the effect of A(w) on the L. norms of A (co)/ B(co) for q = 2, co versus 
the corresponding norms of 1/B(w). In particular, A(co) affects the L. 
norm in 02.. But the L. norm of a function "concentrates" exclusively 
on the maximum absolute value of that function; whereas the L2 norm 
of a function reflects the r.m.s. absolute value of that function over 
all argument values. Therefore, the effect of A (c.0) in. 020 results from the 
alteration of the maxima of I 1/B(co) I in I A(w)/B(w) I; while in. 002 
the effect concerns the difference between I 1/13(co) I and I A (w)/13(w) 
over all co. 
Intuitively, one expects that the former effect is potentially much 

greater; that is, in many cases A (w) should affect the L. norm in 02m 
much more than the L2 norm in  . In particular, if I A (w) I signifi-
cantly attenuates the maxima of I 1/B(w) [as in. a band-rejection filter, 
for example], then 02,0 should be much smaller than 0=2 . In this case, 
form 2 should be used for p = œ, and form 1 for p = 2. If, however, 
I A (w) I does not provide such attenuation, then A (w) must be rela-
tively constant within the band(s) where I 1/B(co) I is largest [by the 
nature of AM], and hence 

A(w0)  1 I (67) 

where coo is a frequency at or near a maximum of I 1/B(w) I. But then, 

0,«  I Mo.) I 
1 1 

H (68) 

and the difference between direct forms 1 and 2 should be less in this 
case. 
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VIII. SUMMARY 

The interaction between the roundoff-noise output from a digital 
filter and the associated dynamic-range limitations has been investigated 
for the case of uncorrelated rounding errors from sample to sample and 
from one error source to another. The spectrum of the output roundoff 
noise from fixed-point implementations was readily shown to be of the 
form 

N(co) = 0-20 E lei 1 G;(ce) 12 (69) 
2 

where the G(w) are scaled transfer responses from certain "summation 
nodes" in the digital circuit to the filter output. o-,; is the variance of the 
rounding errors from each multiplier (or other rounding point), and the 
k; are integers indicating the number of error inputs to the respective 
summation nodes. 
Defining F;(co) to be the scaled transfer response from the input to 

the ith  "branch node" at which a dynamic-range constraint is required, 
constraints of the form 

11 F; 11„  1  (70) 

for p  1 were then derived, where II F; 11,, is the L„ norm of the response 
F;(co). The appropriate value of p is determined by assumed conditions 
on the spectra of the input signals to the filter. The effect of (70) is to 
bound the maximum signal amplitude (for deterministic inputs) or the 
maximum average power (for random inputs) at the ith  branch node. 
A state-variable description was employed to formulate the general 

concept of "transpose configurations" for a digital network and to 
illustrate the usefulness of this concept in digital-filter synthesis. A 
particularly important result is that for a given unsealed configuration 
with transpose responses F(w) and Gi(co), as described above, the re-
sponses F (co) and G;(co) for the corresponding transpose configuration 
are given by 

(ce) = G (w)  and G; (co) = F (cd). (71) 

Hence, although the overall transfer functions for these two configura-
tions are the same, their roundoff-noise outputs can be quite different, 
in general. The transpose configuration is obtained by simply reversing 
the direction of all branches in the given network configuration, and 
the poles and zeros of the network are thus realized in reverse order in 
the transpose configuration. 
To illustrate these results, the roundoff-noise spectra N(w) for two 
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transpose configurations for the direct form of a digital filter were cal-
culated and compared. The direct form should usually be avoided in 
practice,' but it is still of theoretical interest and provides a convenient 
example of our general approach. Using a very natural assignment of 
the indices i and j for the unsealed no)) and G i(w), equation (69) was 
shown to be of the form 

„(w) =  E k; II F  l Gi(w) 

for these (sealed) configurations for the direct form, where M is the 
number of error inputs at other than the output of the filter. Hence, the 
variance, or total average power, of the output roundoff noise is simply 

= 4{14,  E k IF,II:11G,  ;  (73) 
111 

while the peak spectral density !I N, II„ is bounded by 

l I N,  crg{k" +,  k; 11F,  11G, 

(72) 

(74) 

Identical expressions to (72) through (74) can also be derived for the 
parallel and cascade forms of a digital filter.' The relationship between 
the noise outputs of corresponding transpose configurations is immedi-
ately indicated by (71) through (74) [although, in general, k;  
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An Optimization Method for 
Cascaded Filters 

By SHLOMO HALFIN 

(Manuscript received August 1, 1969) 

This paper presents a procedure for decomposing an nth order filter 
into cascadable second order sections. The procedure is optimal in that it 
minimizes the maximal response range for the sections within the frequency 
band of interest. The procedure, based on a modified version of the Bottle-
neck Assignment Algorithm, describes methods of listing all the optimal 
decompositions as well as of finding a special "nested" optimal decom-
position. 

I. INTRODUCTION 

Let 4,(s) be a transfer function 

f(s) 
0(s) =  

where f and g are polynomials with real coefficients, and the degree of 

f  degree of g. 
We consider all the decompositions of the form e(s)=4).(s)oa(8) • • • 
(s) where 

i.(s) 0,(s) =  (1) 

f ,(s) and g ,(s) are real polynomials and the degree of f does not exceed 
the degree of gi . The g, are quadratic polynomials, except when the 
degree of g is odd; then one g, is linear. 
Let L be a passband region for 0, where L is a finite union of pa.ssband 

intervals. Then for every (15, ,a number d(0‘) is defined by 

d(ybi) = 20 log,0 
_ 

185 

Max  ybi(jto) 

Min I Oi(ico) I 
(2) 
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Also let 

d = Max d(491). 

Then d is a function of the decomposition. 
that determines the decomposition(s) with 
proposed this optimality criterion.1 

II. METHOD 

(3) 

We present a procedure 
a minimal d. E. Lueder 

First, we artificially equate the number of zeros [zeros of f(s)], and 
poles [zeros of g(s)], by adding a suitable number of "zeros at infinity" 
corresponding to constant unit polynomials. Next we make this mutual 
number even by adding a zero and a pole at infinity, if necessary. In 
this way we get, say, 2f zeros and 2t poles. 
Pairing two zeros creates an f-; a real zero can be paired with any 

other real zero, while a complex zero must be paired with its conjugate 
in order to get a real fi . The same is true for creation of g, by pairing 
of poles. 
In the following we assume that all poles, except perhaps one, are 

complex and therefore fixed paired. We call the real zeros which are 
not fixed paired free zeros. 
Next we make all possible pairings of the free zeros. Each such 

pairing, together with the fixed pairing, decomposes f(s) and g (s): 

f(s) = fi(s)Ms) • • • Ms); 
g(8) = g1(8)M8) • • • g, (s). 

Then we compute the matrix D = (d.k), where the elements 

d,k = d(h)  (4) 
gk 

are computed from definition (2). The element clik represents the "cost" 
of matching zero-pair i with pole-pair k. 
An assignment is a feasible set of matchings. Using the Bottleneck 

Assignment Algorithm, we determine an assignment lc, , • • • , k, for 
which 

Max du,, 
 t 

will be minimal. We call this minimum the optimal d value for this 
pairing of free zeros. Going through all the possible pairings of free 
zeros, we find an optimal pairing which yields the smallest optimal 
d value. 
Since an optimal assignment (for a given optimal pairing) is usually 
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not unique, procedures for obtaining all the optimal solutions (assign-
ments) or a nested solution are given. A nested solution is obtained by 
taking an optimal solution, fixing the matching with the largest d 
value, and then proceeding to look for an optimal assignment for the 
remaining t-1 Ms and t-1 es, and so on. 

HI. THE BOTTLENECK ASSIGNMENT ALGORITHM 

This section discusses the Bottleneck Assignment Algorithm and its 
adaptation to the present problem. 
Let U = (ui,) be a real t X t matrix. A matching is an ordered pair 

of integers (ik , jk) 1 6 t, 115_  t. We associate with the matching 
(ik , jk) the corresponding cell in U. The element in this cell uii is 
called the cost of the matching. 
A set A = f(ik , ji); k  1, • • • , tl of t matchings (cells) is called an 

assignment if in every row and in every column of U there is a cell that 
belongs to A. The bottleneck assignment problem looks for an assign-
ment which minimizes the maximum of its matchings' costs. 
The Gross algorithm', is based on the following iterative step: 

(*) An assignment A and a real number a, which does not exceed 
all the costs of A, are given; then either a new assignment A' is con-

A=ARBITRARY ASSIGNMENT 

a =MAXIMAL COST OF 
MATCHINGS OF A 

APPLY THE ITERATIVE STEP (*) 

NO 

A= A' 

Fig. 1—Flow chart for solving the bottleneck assignment problem. 
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structed, so that a exceeds more costs in A' than it does in A, or it is 
established that no such A' exists. 

The flow chart in Fig. 1 solves the bottleneck assignment problem. 
This algorithm is fast and requires small memory space, since only the 
present assignment must be stored. 

d=oo  , (t.,t.)} 

FORM AN UNCHECKED PAIRING 
OF THE FREE ZEROES 

U = D MATRIX OF THE PRESENT PAIRING 

A=A' 

a = MIN (d, MAXIMAL COST OF MATCHINGS OF A) 

APPLY THE ITERATIVE STEP (*) 

d= 

STORE THE PRESENT PAIRING 

Fig. 2 — Flow chart for finding the optimal pairing and its optimal d-value. 



FILTER OPTIMIZATION  189 

The basic algorithm was modified to find the optimal pairing of the 
free zeros and its optimal d-value (Fig. 2). Note that the value of a in 
every iterative step (*) does not exceed the minimum of the optimal d 
values of the checked pairings. Thus any pairing that does not reduce 
the d value already obtained is immediately disregarded. 
Also, for each pairing we use the optimal assignment of the preceding 

pairing, as an initial assignment. Thus the costs of the initial assignment 
matchings that correspond to the fixed paired zeros do not exceed the 
current d value. These procedures considerably reduce the amount of 
computation required for finding the optimal pairing and its optimal d 
value. 

IV. CREATION OF THE NESTED SOLUTION 

Let U denote the cost matrix which corresponds to the optimal 
pairing. The nested solution is created by successively applying the 
bottleneck assignment algorithm t times and modifying U each time 
in such a way that the matching with the largest cost becomes fixed 
and irrelevant in the further computations. 
Let (it , j) be the matching with the largest cost at a certain stage. 

Then (it , jt) becomes a part of the nested solution. U is then modified 
as follows: 

U,,•,, = co for all s  

u,,„. = co for all s  ; 

It is easy to verify that this modification has the properties described. 

V. A COMPUTATIONAL METHOD TO GENERATE ALL THE OPTIMAL 

ASSIGNMENTS 

Let U denote again the cost matrix which corresponds to the optimal 
pairing, and let d* be the optimal d value. We call a cell (i, j) admissible 
if 'L1,,  d*. The problem of listing all the optimal assignments then 
becomes the problem of listing all possible assignments that use only 
admissible cells. Using the flow chart of Fig. 3 can accomplish this. 
The number of operations can be seen to be dependent on the order of 
the columns of U. The dependence is quite complicated. However, a 
good rule of thumb for reducing the number of operations is to re-
arrange the columns in ascending order according to the number of 
their admissible cells. 
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j=2 

I(j)= 

I (j)=I (j) +1 

j=J +I 

PRINT OUT THE ASSIGNMENT 

(1),1),  (t), t)] 

Fig. 3 — Flow chart for generating all optimal solutions. 
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Measured Quantizing Noise Spectrum for 
Single-Integration Delta-Modulation 

Coders 

By R. R. LAANE 

(Manuscript received October 14, 1969) 

We give experimental verification, for idle-channel and sinusoidal inputs, 
of a recently developed quantizing noise theory for asymmetrical, single-
integration delta-modulators. 

A recent paper by Iwersen described a procedure for calculating 
quantizing noise for single-integration delta-modualtion coders employ-
ing unequal positive and negative integrator step sizes.' The purpose of 
this note is to provide experimental verification of the theory. 
Measured quantizing noise for both idle-channel and sinusoidal inputs 

is given and the idle-channel noise spectrum is calculated. 
Defining the positive, u+, and negative o. , integrator step sizes as 

cr. m u + e 

(1) 

where cr is the average step size, an error wave is generated by the 

a 4-
+  — 

i/fs 
TIME — f," 

Fig. 1— Asymmetrical integrator output for an idle-channel input, shown for 
I a. > Ie I. 
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integrator for idle-channel inputs as shown in Fig. 1. The quantizing 
noise spectrum resulting from the error wave is a line spectrum, and the 
line frequencies, f, , for a one-sided spectrum from zero to one-half the 
sampling frequency are given as a function of the integer index 1 by' 

= I Q[1(1 —  I  (2) 

where 

Q(a) = a — N (a), 

N (a) = integer nearest a 

and e is the integrator step imbalance e/cr and f. the sampling frequency. 
The power at the frequency of index / is calculated from 

13 = 20-2/7T212. (3) 

The resulting noise-spectral lines will subsequently be referred to as 
/-lines (1-line, 2-line, 14-line, and so on). 
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Measurements of the quantizing noise spectrum were made using 
a delta-modulation coder designed for telephone switching applications.' 
A 1.56 MHz sampling frequency and an average integrator step size 
of 13 millivolts were used for the measurements. Figure 2 shows the 
observed idle-channel spectrum of the coder for a frequency range from 
0 to 1 MHz. The region near the 2-line is expanded in Figs. 3a and 3b 
where the noise spectrum is shown for frequencies from 0 to 100 kHz and 
100 to 200 kHz respectively. 
The calculated spectrum from 0 to f./2 (0 to 0.78 MHz) is shown in 

Fig. 4 for e = 0.0937. Excellent correlation can be observed with the 
measured spectrum in Fig. 2. For a more detailed comparison, Table I 
gives the calculated and measured frequencies and powers of the /-lines 
for the band from 0 — 200 kHz. With respect to frequency, the agree-
ment is within experimental error. However, measured peak powers of 
higher order /-lines fall below the calculated values. This discrepancy is 
believed to be due to modulation broadening of the lines by a low-level 
noise input of unknown origin. 
Figures 5a and 5b show the effect of sinusoidal inputs on the coder 

noise spectrum. As suggested by Iwersen, inputs to the coder phase-
modulate the idle-channel lines and force the frequency band occupied 
by each i-line group, Llf, to become proportional to the slope of the 
input signal, 2rAf0 , and to the index of the Mine,' 

àf  2r1Af0 (4) 

where A is the amplitude and fo the frequency of the input signal. This 
is illustrated in the figures where broadening of the 1-line, 2-line, 3-line 
and 4-line as a function of signal amplitude is clearly visible. 

TABLE I—COMPARISON OF MEASURED AND CALCULATED NOISE 
SPECTRUM FOR 0 — 200 kHz 

Measured  Calculated 

fi  PI fi  P 

2  146 kHz  —48 dBm  146 kHz  —48 dBm 
9  121  —61  121  —61 
11  24  —66  24  —63 
13  171  —67  170  —64 
20  98  —69  98  —66 
22  48  —72  48  —69 
24  194  —74  194  —70 
31  73  —75  74  —72 
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dBm 

Additional discussion of the noise characteristics as well as a de-
scription of the design of the delta-modulation coder will be presented 
in a future paper? 
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Use of the Discrete Fourier Transform 
in the Measurement of Frequencies 

and Levels of Tones 

By D. C. RIFE and G. A. VINCENT 

(Manuscript received May 7, 1969) 

This paper considers the application of a digital computer and discrete 
Fourier transform (DFT) techniques to the measurement of signals known 
to comprise only single-frequency tones. We discuss the use of weighting 
functions to improve the effective selectivity of a measurement system that 
estimates the frequencies and levels of tones from the coefficients of their 
DFT. We present three classes of weighting functions which may be used 
to improve the inherent accuracy of such a system. The form of the weighting 
functions was chosen to minimize the amount of computer memory required, 
without using too much computer time. Several formulas are derived for 
estimating the frequency and level of a tone from its DFT coefficients. We 
chose the formulas to minimize computation time. 
Simulation results indicate that, through the use of a proper weighting 

function, a DFT measurement system that uses 512 samples taken at a 
sampling frequency of 7040 Hz can be designed so that the maximum error 
in the frequency estimates of two tones near 1000 Hz and separated by 
approximately 50 Hz is about 0.03 Hz. The corresponding maximum error 
in the level estimate is on the order of 0.03 dB. 

I. INTRODUCTION 

There have been numerous árticles, in recent years, dealing with the 
use of the discrete Fourier transform (DFT) in the area of spectrum 
analysis. Much of this interest was motivated by the availability of a 
computational algorithm that facilitates the rapid computation of 
DFT coefficients by a digital computer. The algorithm is, of course, the 
fast Fourier transform (FFT). 
We are concerned with the problem of applying DFT techniques to 

the measurement of the levels and frequencies of single-frequency tones, 

197 
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3 (t) 0--. LOW-PASS 
FILTER 

, A/D 
CONVERTER 

•••••••• 
DIGITAL 

COMPUTER 

Fig. 1— A DFT measurement system. 

OUTPUT 
DISPLAY 

particularly tones from a data set during a test. Figure 1 shows the 
system we have in mind. A band-limited received signal, known to 
comprise one or more single-frequency tones, is periodically sampled by 
an A-D converter. A total of N samples are taken and the DFT co-
efficients are computed from the samples. The computer determines 
which of the DFT coefficients are "large", indicating the approximate 
frequencies of the received tones, and then proceeds to compute accurate 
estimates of the frequencies and levels. Methods for achieving the first 
part of the procedure are well known. This paper is devoted to a con-
sideration of how best to go about the last step in the process, the ac-
curate estimation of the frequencies and levels of the received tones. 
In data set testing, the tone measurement system would be used 

occasionally during a test and would have to consume a minimum 
amount of real time. Thus we have directed our attention toward estima-
tion methods that use simple formulas and require a minimum amount 
of computer memory. 
Our attention is confined to the problem of leakage, its reduction by 

smoothing (windowing) functions, and the development of formulas 
which extract tone levels and frequencies from the list of DFT coeffi-
cients. We don't discuss the important, but secondary, problems of 
round-off errors and other noise sources. 

II. REVIE W OF DISCRETE FOURIER TRANSFORM 

The definition and properties of the discrete Fourier transform are 
discussed in Refs. 1 and 2. The following review is to refresh the reader's 
memory and establish the notation that we will use later. 

2.1 Definition of Discrete Fourier Transform 

Consider an ordered set of numbers { X„1 where n = 0, 1, 2, • • • , 
N — 1. Following Cochran, and others,' we define the discrete Fourier 
transform (DFT) of the set { X„1 to be another set of numbers, { AEI, 
with 

N-1 
AK = E x„e-i.--K"', all integer K. (1) 
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The inverse transformation is 

1 '1 X =  E AKe12"1"  n  =  0, 1, 2, • • • , N — 1. 

11' 
(2) 

2.2 Useful Properties 

Several properties of the DFT are utilized in later parts of this paper. 
The important properties are recorded in this section for future ref-
erence. Reference 2 provides a more complete list. Derivations are 
included only for results that may not be well known. 
From equation (1) it is obvious that if the X. are real, then 

A_K =  A  (* denotes conjugate), 

= AIC 

and 

AN-K — -K  Ai,r • 

2.2.1 Convolution 

Let 
N-1 

BK =  E 
n-0 

and 
N-1 

Jr E y e —j2en/C/N , 

n-0 

then 

(3) 

(4) 

(5) 

(6) 

(7) 

N-1  1 N- I 
=  E x„y„e-i2---/N =  BKc„,_R- .  (8) 

ret)  IV K..0 

In other words, if (BK) and (UK) are the DFT of {X„1 and I Yn 
respectively, then the DFT of (X.Y.1 is given by equation (8). 

2.2.2 Power 

It can easily be shown, for X. and A K defined by equations (1) and 
(2), that 

1 N-1  1,1-1 
E Air e, =  E  . 

lY  K=0  n 0 
(9) 

If the X „ are samples of some function, f(t); that is, if X = f2(n T / N), 
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then 
T N-1  

urn — EX = f f2(t) dt 
N—no "  n=0 

if the integral exists. Thus, for large N, 

fo 

Hence, from equation (9), 

j2(t) de  N —  „.„ 
(10) 

r T  N-1 

"7-1 f2(t) dt  I A K 12.  (11) 

2.3 Relationship to Fourier Transform 

The DFT of samples of a signal has a simple relationship to the 
regular Fourier transform of the signal. It is instructive to examine this 
relationship.t 
Let g(t) be an arbitrary function, zero for t < 0 and t > T and con-

tinuous over 0 < t < T. The function is allowed to be discontinuous 
at t = 0 and at t = T. Assume that g(0+) and g(T —) exist. 
A well-known application of the Poisson sum formula gives' 

( 711  N  27n A 
i•g(0+) +  —)  ex-1  g(  =  ( rT ) 

n =1  — 

where 

G(u) = f g(t)e-' de. 

(12) 

(13) 

Adopting a notation similar to that of Papoulis,4 we define the "#" 
operation by 

,  N 
G (w) =  ic co E G(co — Kw.), 

where 

= 2arN/T. 

Then equation (12) can be rearranged to give 

ge) = G#(0) + l[g(0+) - 
where g(0) is taken to equal g(0+). 

t The recent article by Bergland touches upon this subject and also contains 
an extensive list of references.3 
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Let h(t) be any function of the sort used above for g(t) with the ad-
ditional property: h(0) = h(0+). 
Let s(t) be the signal to be analyzed and define 

1(0 = s(t)h(t).  (17) 

Let g(t) = f(t)e-'" and define 

to) = /  
.-0 \N  (18) 

Then from equation (16) and the definition in equation (14) we have 

A(w) = P M + 1[1(0+) —  (19) 

where 
2, 

F(w) = f f(t)e-"̀ dt. 
o 

(20 ) 

If X„ = f(nT/N) then the AK defined by equation (1) are given by 

A.  _ A (21;) (21) 

Thus the DFT of the set { f(nT/N)1 are points along the curve described 
by equation (19). These points are 1/T Hz apart. 
Observe that at co = 27K/T the term in brackets in equation (19) 

becomes Ef(0+) — f(T—)] which is independent of K and vanishes 
if 1(0+) =-- ¡(T—). 

2.4 Weighting Functions 

If the DFT is to be taken of the set {s(nT/N){ for n = 0 through 
N — 1, then h(t) must be a function whose value is unity at t = nT/N; 
n = 0, 1, • • • , N — 1. The function with this property that is usually 
taken to be h(t) is the function hr(t); 

0  t < T; Mt) = .{1, ..  (22) 
0,  otherwise. 

Other weighting functions, h(t), are often formed by multiplying hT(t) 
by a nontime-limited function. Weighting functions play a very im-
portant role in systems that use the DFT. The following paragraphs 
attempt to develop and present some of the pertinent theory. 
From equation (19) we see the role that F" (w) plays in A(w). Since 

f(t) = s(t)h(t), 

F(w) = S(w)*H(co),  (23) 
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where the * denotes convolution and SW and H(co) are the Fourier 
transforms of s(t) and h(1). It can be shown that, subject to the usual 
convergence constraints, 

F4 (ce) = [S(w)*H(w)]' =- S(w)*H* (w).  (24) 

Thus H(w), or equivalently _Tr (w), plays a central role in the DFT of 
(weighted) samples of s(t). From the development that led to equations 
(19) and (21), we see that, if h(0-F) = h(T —), the DFT of samples 
of h(t) is a set of points taken along the periodic curve described by 
(w). It follows, therefore, that the values of h(nT /N) can be obtained 

from 

Also, 

(nT)  1 N-1  (27rK) i2,Kn/N 
h  =  X .11  T e (25) 

N-I 

11#  (CI') =  E  h — )e-'n'T/N  — +h(0+)[1 — (26) 

Weighting in the time domain is actually done at the points t = 
nT IN; n = 0, 1, 2, • • • , N — 1. For every set of weights to be applied 
at these points there exists a continuous function with the same values 
at the indicated time points. Thus there is no loss of generality due to 
discussing weighting in terms of weighting functions, h(t), that are 
continuous over (0, T) and zero outside that interval. We have to re-
member, however, that if the set {h(nT/N)1 is specified, h(t) is not 
unique. Thus, if H" (w) is given, h(nT /N) is given by equation (25), but 
h(t) and H(w) are not uniquely defined. 
There is apparently some confusion in the literature about whether 

H(w) or 1-1* (w) is called a weighting function (or windowing function). 
Blackman and Tukey,5 for example, discuss h(t) and H(w), but when 
Helms' writes about weighting with a Dolph-Chebychev function, he 
is evidently referring to II* (w). More will be said about this later. 
Bingham, and others, in writing about data windows (See Reference 7, 
Part VII) mean h(t). 
Observe that 11* (w) is always periodic with period co„ while H(w) 

is not periodic. (If it were, H" (w) would not converge properly.) Gen-
erally the 1-1* (w) that one uses will have a prominent main lobe about 
w = Kw, (K is any integer, including zero) and many side lobes. For 
our purposes it is important to obtain a narrow main lobe and low-
amplitude side lobes. 
The class of H* (w) with the minimum main-lobe width for a given 
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side-lobe amplitude is known as the (discrete) Dolph-Chebyshev weight-
ing functions! A convenient form, similar to the one given by Helms,° 
but changed to describe the result of weighting by sample values that 
peak at T/2 and are adjusted to cover approximately unit area as later 
weighting functions will do, is the following: 

11#  (w)  = 17 e 
N  " " cos [N cos' (Zo 

ces  2N  (27) 

where the side-lobe amplitude, 1/R, is related to Z0 by 

R = cosh (N cosh-1Zo)  (28) 

and N is the same as used in equation (1). 
The class of H(w) with the minimum main-lobe width for a given 

side-lobe amplitude is known as the continuous Dolph-Chebyshev 
functions,9 which are unrealizable. The Taylor approximations to the 
continuous Dolph-Chebyshev functions9-11  are realizable, however, and 
provide almost the same main lobe width for a given maximum side-lobe 
amplitude. 
The problem of choosing "good" shapes for H' (w) can be approached 

by treating H' (w) or by treating H(w). Most of the well-known weighting 
functions are discussed in terms of H(w) or h(t). 

2.5 A Generalization 

If h(t) is a function that is zero for t < T, and t > T, then it can be 
shown (sampling theorem) that H(w) is given by 

and 

H(w) = Te " T12  sin (ca 72) E   coT — /or 

TC„ = H M• 

(29) 

(30) 

Thus the specification of a weighting function is equivalent to the 
specification of the constants, C . . 

III. SELECTED WEIGHTING FUNCTIONS 

3a Leakage and Aliasing 

Leakage will be used here to refer to the problem of the values of 
A (w) due to cos (coot + 0,) interferring with the values of A (w) at some 
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other frequency, say (A, , where the response due to cos (wit ± 8,) is 
to be examined. Leakage, in our system, is minimized by the use of 
weighting functions. 
Aliasing refers to the fact that in a sampled-data system tones with 

frequencies above w,/2 cannot be distinguished from tones with fre-
quencies less than w./2. In our system aliasing is avoided by the use 
of the low-pass filter (Fig. 1). 

3.2 Convolution of Weighting Functions 

The object of weighting is to produce the DFT of a weighted set of 
samples of the signal undergoing measurement, s(t). Thus we seek to 
compute 

N—I 

K  E soit.)«nta)ci.-"K'N, for all K;  (31) 
n=0 

where t. = TIN. A convenient way of doing the weighting is to first 
compute 

N-1 

BK = E s(nt.)e-j2ruK/N 

n=0 

for 0  K  N — 1. Then if the set 111.„,1, 

N-1 
„,  E h(nt.)e- '"'N  H (2 m) , 

n=0 

(32) 

(33) 

is stored in the computer, the AK can be computed from equation (8). 

3.3 A Special Class of Weighting Functions 

The amount of computer memory required to store the set Hm 
will be small if h(t) is a function such that 1-1„, = 0 for /1/ < m < N/2 
and M is a relatively small number. The H(co) corresponding to this class 
can be expressed by a particular form of equation (29): 

C  
il(e0) = Te-'' sin X E  7r, (34) 

where 

X = wT/2  (35) 

and M « N/2. We have restricted our attention to the results that can 
be obtained with this class of weighting functions. 
Most of the well-known weighting functions, such as Ham:ling,' 

Hamming,' and Taylorn'n are in the class defined by equation (34). 
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The discrete Dolph-Chebychev and the Kaiser-Bessell2 weighting 
functions, however, are not. 
The right side of equation (34) can be written over a common de-

nominator to obtain the form 

11(c„) = Te -ix- sin X  p(x) 
X  Ar 

II (X2 — n2r2) 
n-1 

(36) 

where P(X) is, in general, a complex polynomial in X. We will restrict 
our attention to H(co) with real C. and C. = 1. In which case C_.„ = 
C. and, if D„ = 2C,,, we have 

h(t) = 14( 4  (27rntl 1 + E D. cos  (37) 
ea = I  T 

Equation (34) becomes 

D.X   
H(co) = Te-ix  sin X[1  ±  (38) X  X2 — n 2r 2 

In the next few sections we will discuss three classes of weighting 
functions with the form of equations (37) and (38). They were chosen 
to provide two extreme cases of weighting and an intermediate example. 
Many other weighting functions in the class defined by equations (37) 
and (38) exist; the ones examined below provide sufficient data for our 
purposes. 

3.4 Class I Weighting Functions 

We first consider the class of weighting functions that provides the 
best possible reduction in I H(w) I for large w. Let this class be known 
as Class I. 
The only part of equation (36) that can be adjusted is the polynomial, 

P(X). Thus we must choose the coefficients, D,,, to minimize I P(X) I 
for large X. This is done by forcing P(X) to be a constant. The constant 
term in P(X), from equation (34), is 

P(0) = (-1)mir2m (M!)2.  (39) 

Hence, the desired class of weighting functions has the form, from 
equation (36), 

Hm(co) = Te-ix sin X (-1y17.2M(M 
X 

1 1 X 2 —  n2,2 
(40) 
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We denote the coefficients, D„ , of this class of weighting functions 
as D/(1/, n), making the dependence upon M explicit. From equations 
(36), (38), and (40) the Di (M, n) are given by 

( 1) Vm(211 02(X2 — nY) 
DO/ , n) = hm 

X—bn e  X 2 H x2 - K2ir2 
K-1 

Evaluation of the limit and some simplification gives 

(41) 

2(— 1) ( M !)2 n M + 1 — K • 
DOI, n) =  — 2(-1)" H (M — n)! (M + n)! ,,..i M + K  (42) 

We denote the weighting functions that use equation (41) as hm(t). 
Then from equation (37) 

h.,r(t) = h,(0[1 + E  n) cos 27 1 n-i (43) 

This can easily be shown to be the same as 

1.0 

0.8 

0.6 

0.4 

0.2 

o 

—02 
o 

___— M=o 

_-- M = I 

__— M =2 

-- M =3 

-- M =4 

2  3 
cdr 
2m• 

4 

Fig. 2— Spectra of the Class I weighting functions. 

5 
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hm(t) = hT(t) 4m(ill!)2  
sin 2M (7rt 

(2M)! \i1/ • 
(44) (44) 

Thus the Class I weighting functions are described by equations (40) 
and (44). The so-called hanning weighting5 is equivalent to hi(t). Larsen 
and Singleton' used hi(t), h2(t), and others. 
Fig. 2 shows the shape of (1/T)e" 7/2 Hm(ca) for M up to 4. In Fig. 3 

we have plotted the normalized transmission of Ilm(co) (that is, 
20 Log,. (Hm(a))/TI). Several of the hm(t) are shown in Fig. 4 and 
some values of Di(M, n) have been tabulated in Table I. 

3.5 Class II Weighting Functions (Taylor) 

Class I weighting functions provide the minimum high-order side-
lobe amplitude in H(co) that is possible with a given value of M. We 
now turn to the class that gives the minimum main-lobe width, at the 
expense of higher side-lobe amplitude. 
The so-called continuous Dolph—Tchebycheff weighting functions8 

o 

-20 

-80 

-120 
0  2  4  6 

LiT 
2m-

8 
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o 0.2  0.4  0.6  0.8  1.0 

Fig. 4 — Time response of the Class I weighting functions. 

provide the minimum main-lobe width in H(w), consistent with a 
specified maximum side-lobe amplitude, but they are unrealizable 
functions. The Taylorn approximation to the Dolph—Tchebycheff func-
tions provides almost the same main-lobe width and side lobes that have 
the specified maximum amplitude near the main lobe and then gradu-
ally decrease as w increases. 
The Taylor functions have the form given by equations (37) and 

(38) with the D. dependent upon M and the maximum side-lobe ampli-
tude, 1/R. We will denote the D„ coefficients of Taylor weighting by 
Dir(R, M, n), making the dependence upon R explicit. After adapting 
Taylor's equations to our situation, the Du's are given by 

where 

and 

[i _ x ,(n(/„G:)2 2 

In 
Du(R, ill,n) =  K-1  [  21  "  (45) \ 

H  - 1,7,=1 
tiOn 

R = cosh (rX)  (46) 

2  (111- +  1 )2  

ci  —  X2 ±  (M  1) 2 
• (47) 
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TABLE I —VALUES OF Dr(M, n) FOR M UP TO 4 

1  2  3  4 

1 
2 
3 
4 

—1  — 
—4/3  1/3  — 
—3/2  3/5  —1/10 
—8/5  4/5  —8/35  1/35 

Solving equation (46) for X gives 

X = 1 - ln [R  — 1].  (48) 

We will refer to the Taylor functions described by equations (45) 
through (48) as Class II weighting functions and denote them by 
le,,,(R, 0 and IC Ar(co). References 10 and 11 give a further discussion of 
Taylor functions. Taylor weighting functions have the property that, 
if M is too small, the D's given by equations (45) will define an H(w) 
whose first few side lobes have the amplitude given by equation (46), 
but some of the higher-order side lobes will have much higher ampli-
tudes. Thus, for each value of desired side-lobe level, 1/R, there is a 
minimum value of M that will give good side-lobe suppression. 
Some minimum values of M that give good side-lobe control are 

listed in Table II. 
Figures 5 and 6 show the shapes of a Class II weighting function with 

M = 7 and R = 103. This particular weighting function will be ex-
amined below when simulation results are compared. It will be shown 
there that this weighting function is useful when the received tone 
frequencies are very closely spaced. 

3.8 Class III Weighting Functions 

The third class of weighting functions has been chosen to have, to a 

TABLE II—MINIMUM VALUES OF M FOR GOOD SIDE-LOBE CONTROL 

20 logio R (db) 
36  3 
42  4 
48  5 
54  6 
60  7 
66  9 
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Fig. 5 — Normalized loss of the Class II weighting functions. 

large extent, the desirable properties of both Class I and Class II 
weighting functions. That is, Class III weighting provides better reso-
lution than Class I weighting for tones with a "small" frequency 
separation. Moreover, they also provide better resolution than Class II 
weighting of tones with a "large" frequency separation. 
We will identify the Class III weighting functions by gm (t) and 

G m(w), where g m(t)  G m(co). The D coefficients for this class will be 
denoted by D1 11(M, n). The first member of the class is chosen as dis-

Fig. 6— Time response of the Class II weighting functions; M = 7, R = 1000. 
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cussed below and the other members are obtained by operations on the 
first. 
In order to have the high-order side lobes of Gm (w) fall off at least 

as 1/2 we must have g1(0+) = gm(T—) = 0. In terms of the D„ 
values this means that 

1 ± E D„,(m,n) = 0.  (49) 
n=1 

With this restriction, of course, g1(t) is the same as the Class I weighting 
function, h1(1). Thus the distinguishing properties of Class III weighting 
are determined by g2(t). 
We chose the coefficients of g2(t) so that the loss of G2(ce) reached 60 

dB with as small a value of ce as possible with the side lobes of G2(w) 
never exceeding —60 dB, subject to equation (49). The D„ values for 
this condition are: 

D,11(2, 1) = —1.19685,  D11i (2, 2) = 0.19685. 

The g2(t) thus defined is almost the same as Blackman's5 proposed 
function, (24 (1). 
The rest of the members of the Class III functions are defined in a 

manner similar to that used by Flelms6 for the synthesis of digital 
filters. We define 

hm_2(1) 0) 
gm(t) - 1 + D111 (2, 1) DO/ — 2, 1) ± Due, 2) N M — 2, 2) ' 

M > 2.  (50) 

The normalization in equation (50) puts gm(t) in the form of equation 
(37). 
The Class III functions just defined have high-order side lobes, in 
(w), that decrease as ce-m . This contrasts with  for Class I 

weighting and with co-' for Class II weighting. Thus, Class III weighting 
functions provide slightly narrower main-lobe width than Class I at the 
expense of slightly higher side lobes. 
Some values of Diii (M, n) are tabulated in Table III. 
In Fig. 7 we have plotted the normalized spectra (that is, 

(1/ T)efw"G m(co)) of some Class III weighting functions. Fig. 8 illus-
trates the normalized loss provided by Gm(co) for values of M up to 4. 
It is interesting to note, from Fig. 7, that G2(co) reaches —50 dB before 
any of the others, just as 1-12(e.e) did in Fig. 3. In Fig. 9 we have plotted 
gm(t) for values of M up to 4. 
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TA.BLE III—VALuEs OF Din( M, n) Fort M UP TO 4 

1  2  3  4 

2 
3 
4 

—1.19685  .19685  — 
—1.43596  .497537  — .0615762  — 
—1.566272  .725448  — .180645  .0179211 

W. RESPONSE TO A COSINE W AVE 

We are interested in measuring the frequencies and levels of signals 
that comprise several sine waves. In view of this and the linearity of the 
DFT it is convenient to examine the properties of the DFT of samples 
of cos (coot + 0). 

4.1 Basic Formulas 

Let 

s(t) = cos (wot + 0)  (51) 

f(t) = hT(t) cos (coot ± 0).  (52) 

Fig. 7 — Spectra of the Class III weighting functions. 
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Fig. 8— Normalized loss of the Class III weighting functions. 
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Fig. 9—Time response of the Class III weighting functions. 
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and 

- 1,(co)  dl  (53) 

or, in the usual notation, 

H r(w)  hr(t)•  (54) 

Then 

(w)  ¡-ei e 144w — (e0)  -1-e-1e l-r(to  wo)  (55) 

and from equation (19) 

A(w)  — coo) -I- e-19 -11 ,(co COU) 

+ ¡loos O — cos (c4,,T  (56) 

With hT(t) as defined by equation (22) 

Hp(w) = Te-,. T/2 sin (ceT/2)  
coT/2  • 

It is possible to put equation (57) in equation (56) and evaluate the 
indicated summations. The same answer can, however, be found more 
easily from equation (18). With equation (52) in equation (18) we have 

or 

N-1 (eanT ,$) 
A(co) = E cos  -  , u e - 

Nn=0 

N-1 N-1 
=  E E e-1 ).T/N 

n=0  n=0 

(57) 

(58) 

(59) 

Both sums in equation (59) are finite geometric series. Thus after re-

arrangement we obtain 

where 

and 

sin Nz  A (0)) =  • 1 _00 _i(N -1)„ sin Ny 
re e z —h 2e e 

sin y 

(ed — coo)T 
z — 

2N 

(co I— cooe 
Y =  2N 

(60) 

(61) 

(62) 
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The formulation given by equation (56) is important from a con-
ceptual point of view while that of equation (60) is useful for numerical 
evaluations. 
The evaulation of equation (60) when either z or y is zero requires an 

examination of limits, which can be done by inspection. 

4.2 General A(co) 

The use of one of the weighting functions defined by equations (34), 
(37), and (38) gives rise to an A (w) different from the one calculated in 
equation (60). The more generalized form of A(w) is given by 

j(z-nr/N) 

A (CO) =  sin Nz  
n=- M 

Sin  n-7) 
N 

-12-e-ie e-iN v sin Ny E C„  •  n  (63) 
ni-'\ 

Sill y — —N 

All of the simulations, to be discussed below, used this A(w), in 
equation (21), to compute AK values. 

4.3 A p proximations 

We will make use of several approximations in the next section. The 
important ones are established here. In this section hp(t) is assumed to 
be the weighting function and w is in the range 0 < w < w./2. 
Consider equation (19). If I F(w — /to.) I is small for 1 0 0; then 

A(w)  F(w) ± .[f(0+) — f(T— )e-"71  (64) 

where 

t. = T/N.  (65) 

Thus, from equation (21), 

1  w  
AR: n=  F K(  1[1(0+) — f(T—)].  (66) 

t.  N 

Next consider equations (56) and (57). I 1-1,(w) j is "large" only 

near w = 0. Thus we obtain another approximation, used when 8(0 = 
cos (coot -I- 6), 

F(w)  — wo)• (67) 
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From equation (57) we then obtain 

1   F(co)  N e _' ",.,- ,, „,„21 sin [(co — co,,)T/2] 
—t,  —2 e  [(co — woe / 2] 

Thus, 

or, because, 

IAK e•-:1—'— N2 

A - 2 
. (Kco.T coon  
sm 

2N  2 

(Kco,T  coon 
\2N  2 

Kco,T 
— KT, 

2N 

sin (K7,- — 

(Kr — `̀-291-7) 2 

From equation (71) we see that, apart from the error in the approxi-
mations, one should be able to accurately estimate the frequency and 
magnitude of a cosine wave from the AK values for K near cooT/27. 
The main lobe of a sin XIX curve reaches zero at X = ±r. Thus the 

main lobe of the curve, of which the AK are points, reaches zero at 
co = w ± 27r/T or, since a›./N = 27/T, at 

co = coo ± co./N. 

The main lobe is just wide enough to contain two AK values (estimators), 
except if coo equals some multiple of co./N. It will be shown. later that 
two AK values will be enough to estimate the parameters of a cosine 
wave. 

(68) 

(69) 

(70) 

(71) 

V. FREQUENCY AND LEVEL ESTIMATION 

In the preceding sections we have developed methods of computing 
the DFT coefficients of a known input (for simulations) and have dis-
cussed three classes of weighting functions to improve the effective 
selectivity of the DFT process. Our final task, which is undertaken in 
this section, is to determine accurate ways of processing the DFT 
coefficients to extract the frequencies and magnitudes present in the 
sampled signal. 
The methods are to be useful when the real-time demands upon the 
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computer are important. Thus all of the methods were chosen to have 
simple formulas which the computer can be programmed to evaluate 
when it is making a measurement. 
The equations we have examined fall into two classes: those that use 

only two estimators to calculate the frequency and level of a cosine 
wave and those that use many. The following paragraphs derive the 
most promising of these equations. The next section will present the 
accuracies that the various equations can achieve. We start with a 
formula that makes use of many estimators. 

,5.1 Method 1 

The derivation of this method is somewhat involved, so we first 
explain the motivation behind it. 
Suppose one has an f(t) that is known to be given by 

f(t) = B cos coot,  (72) 

and one wants to determine oh, and B from operations on f(t). One way 
to determine B is from 

lim  f r 12(1) dt =  i'r B2/2 dt 
T  o 

=  B 2 /2  (73) 

thus, 

B2 = 2 hm o r(t) dt.  (74) 
T-..   

The derivative of ¡(t) is 

f'(t) = — Bcoo sin coot  (75) 

and 

1 T 
li M  [r(t)]2 dt = B2w:/2  (76) 

Thus oh, can be determined from 

urn - J [I' (Or dt 
c.: =  (77) 

lim  fr [f(te dt 
T y, »  I 

The above result is the motivation for the following derivation. 
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Assume 

s(t) = B cos (wet + 0) 

and 

f (t) = h(t)B cos (coot + 0) 

where h(t) is one of the weighting functions, given by 

h(t) = [1 + E  Dcos (21-1-77.,11]hr(t). 
n-1 

Let the estimators, AK be given by equation (31). 
Define 

P. = lim 

and 

1  T 
[f(t)] dt 

T 

(78) 

(79) 

(80) 

(81) 

i r 

P1  hm — f T [I' (t)]2 di.  (82) 
T... T o 

Expansion of equation (79) gives 

f (t) = Bhr(t){cos (coot ± 0) 

D„[cos (coot — not ± 0) ± cos (coot +  0)]}  (83) 

where 

(..)„ = 271-/T.  (84) 

From equations (81) and (83) 

Po =  {1 ±  E 4.  (85) 

Calculation of P1 from equation (83) yields, assuming nx.0“  coo , 

p  =  j u e 

2  (86) ° 2 nee  2 

Combining equations (85) and (86) gives 

ce2 E n2D,, 
P, 

WC = 
P. 

2+ E D„' 

(87) 
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The next step is to compute PI/P0 from the DFT of f(t). Using the 
approximation 

h,(1) 
f (t)  N 

which can be rearranged to give 

¡(t) RN.", {A0 ± 2 r [Re (AK) cos Kcoot — Im (AK) sin KO.11]} • 
K-1 

(89) 

From equation (89) 

N/2 

E -4KeiK "  (88) 

1  N/2 

PO {,4, ± 2 E I AK 12}  (90) 
K=1 

and 

1 en  
PI  E2 1 AK 12 .  (91) 

N K-1 

Thus, 
N/2 

P  4,2 E K2 AK 12 
I  ° K-1   

Po 
At)  N/2  (92) 

—2 ± E I A K 12 K-1 

We use equation (92) in equation (87) to obtain the final result. 
Denote the estimated too by ct).. Then 

where 

E  K 2 I AK 12 1 

N/2 

K=1  U m 
N/2 

± E I AK 12 
K=1 

En2D, 
Um —  .=1 

2+ ED 

(93) 

(94) 

By D„ we mean, of course, D1(111, n), DII(R,111, n) or Din  (M, n). Thus 
Method 1 is applicable to all three classes of weighting functions. Some 
values for Um are tabulated in Table IV. 
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TABLE IV—VALUES OF UM AND V m 

Class I Weighting 

Um Vm 
0  0  .5 
1  .333333  .75 
2  .571429  .972222 
3  .818182  1.155 
4  1.06667  1.31327 

Class II Weighting 

= 7, R = 1000) 

U7 = .357071,  V7 = .769710 

Class III Weighting 

Um VM 
2  .45732  .8678 
3  .715523  1.07833 
4  968949  1.25033 

The way to use equation (93), when more than one tone is present 
in s(t), is to use only the estimators, AK, for K  Ct1 0 be a to calculate 
each (Zo . The simulations below will show that this technique gives 
accurate results. 

5.1.1 Estimation. of Level 

From equations (85) and (90), we obtain the way to estimate B. 

where 

N/2 
+ 2 E I AK 12 

È2   K-1   
V m 

Vm =  +  E D . . 

(95) 

(96) 

Some values of Vs,. are tabulated in Table IV. Observe that if only 
the basic weighting, h(t), is used, then Um and V , become zero and 
1, respectively. 

5.2 Method 2 

The preceding formulas for estimating the frequency and level of a 
cosine wave from its DFT use more than two estimators. The next few 
paragraphs establish formulas that require only two estimators. The 
formulas apply only to the Class I weighting functions, hm(t). 
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We start by recalling the approximations given by equations (64) 
and (67). With  m(co) substituted for I - 7.(w) in equation (67) we have 

JA(co) 2-1t e.91 m(ce — wo) 

From equation (40) 

Lf (2X)  T e_,, sin x (-1)3f7r2mw 1)2  

X  le 
II(X2 — n271-2) 

(97) 

(98) 

where X = coT/2. If s(t) = B cos (coot -I- 13) then, from equations (97) and 

(98 ), 

I A (w) 

where 

BN  sin (m . !)2   et)   

2 ir fl (11 
— 

(99) 

= (wo — (0)/w. •  (100) 

Suppose the largestt estimator is A1 and its largest immediate neighbor 
. Of course m — / = ±1. Define 

Let 

and 

Define 

= m — 1 = ±1.  (101) 

a1= A11  (102) 

= I A.1 = I A1+0 I.  (103) 

u =  — /; —1/2  u  1/2. 

Then from equation (99) 

BN  sin 71-U 
a,  (-1)"(M !)2 

2  M 
7r 11 (u  n) 

— 

t By largest we mean IA:I > I AZ for K  I. 

(104) 

(105) 
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and 

.22 B2N  sin 7r(u — a)   

7r II  (u  n — a) 
- 

since a = ±1, equation (106) is the same as 

a,  B2N  
sin 7ru 
- 

ir ri (u n) 

Division of equation (105) by equation (107) gives 

Define 

ai u — a(M ± 1)  
a2 u + aM 

u1 — 
a2 

then from equation (108) an estimate of u is 

û = aui • 

Hence, the estimate of wo is given by 

e;.10 = (1) (1  û). 

From equation (105) the estimate of B is 

Ê — 

cl,(M ± 1) — ctiM  

ailr( — 1)M 11 (û — n) 

N (MO' sin ea 

where û is defined by equation (110). 
Another version of equation (112), better for machine computation, is 

E 2aorû  rr  _ (12. 
N sin (ma) „1-14  n 

Method 2 with M = 0 is essentially the same as was derived by 
Penhune and Martin" to solve a radar problem. 

(106) 

(107) 

(108) 

(109) 

(110) 

(112) 

(113) 

5.3 Method 3 

The simplicity of the estimation equations of Method 2 led us to 
extend this method to include any class of weighting functions described, 
in general form, by equations (37) and (38). We will refer to this more 
general method as Method 3. 
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From equations (109) and (110) we see that if a Class I weighting 
function is used, one way to obtain an estimate of u is to use the function 

Ca2 — Dal  
u1 — Ea2  ± a, (114) 

in equation (110). There are three degrees of freedom in the bilinear 
form and we chose to express them in the manner shown in equation 
(114). 
Method 3 is simply the application of equation (114) to other classes 

of weighting functions. We obtained values for the coefficients in equa-
tion (114), for several weighting functions by: 

(i) Computing a, and a2, using equations (21), (63), (102), and 
(103), with B = 0 and many values for wo near co,/4. 
(ü) Computing the corresponding values of u from equation (104). 
(iii) Choosing values for C, D, and E such that equation (114) gave 

a good fit to the data computed in the first two steps. It turns out that 
the curve described by equation (114) is satisfactory if it fits the com-
puted data exactly at u = 0, 1, and 1. 

In this manner we obtained the following coefficient values: 

Class II weighting, M = 7, R = 1000; 
C = 1.96339, D = 1.01643, E = 0.893534. 

Class III weighting, M = 2; C = 2.56919, 
D = 1.5374, E = 1.06345. For M = 3; 
C = 3.6020, D = 2.5862, E = 1.0317. 

Using an approximation similar to equation (71), but extended to 
include weighting functions described by equation (38), we obtain an 
estimate for B, 

27rai 
=  D„u, • (115) 
N sin (7rui)[ 1 —  E 2  2 

U1  n=1 U1  n 

Method 3 can be used with weighting functions specified only in 
terms of H'(ù) as well as those given in terms of H(/.4). 

VI. COMPARISON OF ACCURACIES 

In the preceding paragraphs we have derived several formulas that 
produce estimates of too and B from AK values (estimators). We now 
turn to a comparison of these formulas on the basis of accuracy. The 
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accuracies we will compare do not include any possible computation or 
nonlinearity errors or other accuracy limitations that may be present 
in a DFT analysis system. Our accuracy comparisons include only the 
effects of leakage. 
The estimators used in the simulations were generated by using the 

function A(w), described by equation (63), in equation (21). This is 
equivalent to applying the weighting by multiplication in the time do-
main or by convolution in the frequency domain. The use of equation 
(63) in simulations greatly reduces computation time. All of the simula-
tions used N = 512 and f. = NIT = 7040 Hz. 
All of the estimation methods presented above use approximations. 

In this section we shall demonstrate just how good the approximations 
are. 
Consider the case where a tone of frequency fo , angle 00 , and ampli-

tude Bo is being measured while another tone, at frequency I, , angle 
and level Bi , is also being received. The presence of fi will affect the 

accuracy of any estimate one makes of fo or Bo (due to leakage). The 
size of the errors in the estimates of fo and Bo will depend upon which 
formula (method) is used and upon the values of fo , B0, 0, fi , B1, 
and 01. The combination of parameters that causes one method to 
give the worst estimates will, in general, not be the combination that 
causes another method to be at its worst. Thus it is difficult to compare 
methods. 
We have compared the three methods on the basis of the worst 

estimates each will make when 00 and fo are confined to a specified 
range of values (for example, 990 S fo S 1003.75 Hz and 0 5 00 S 360 
degrees) and B0, B1, fi , and 01 are fixed (for example, Bo = B1 = 1 
and 01 = O degrees). 
Notice that if 11 is equal to some multiple of 1/T then its Air will be 

very small except for K near Tfi . Thus such an 11 cannot cause much 
error in any of the three methods of estimation of 10 , which use AK 
values. For this reason we have fixed fi at a value that is an odd multiple 
of T. 
Tables V and VI illustrate how inaccurate frequency and level esti-

TABLE V—POOREST ESTIMATES WITH INTERFERENCE SEPARATION IN 
THE RANGE 55 ± 6.88 Hz, No SPECIAL WEIGHTING 
Method  Frequency Error, Hz  Magnitude Error, dB 

It  6.82  .596 
2  7.37  .580 

t Method 1 using only six estimators, those from / — 2a to  -I- 3e. 
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TABLE VI—POOREST ESTIMATES WITH INTERFERENCE SEPARATION IN 
THE RANGE 178.96 ± 6.88 Hz, No SPECIAL WEIGHTING 

Method  Frequency Error, Hz  Magnitude Error, dB 

3.08  .0628 
2  3.75  .165 

t Method 1 using only six estimators. 

mates are when no special weighting (M = 0) is used. The interfering 
tones corresponding to the simulations described in Tables V and VI 
were located at 1051.88 and 1175.63 Hz respectively. The frequency 
and magnitude error entries in these, and subsequent, tables give 
absolute values only. 
The simulation results presented in Tables VII and VIII indicate that 

substantial improvement in the accuracy of frequency and magnitude 
estimates can be achieved when weighting is used. The data in Table 
VII shows that when the two tones are separated by a "small" frequency 
difference accurate frequency and level estimates can be obtained by 
using Method 3 with Class II or Class III weighting. Table VIII in-
dicates that as the frequency separation increases Method 2 with_Class I 
weighting is better. The accuracy of estimates made on closely spaced 
tones can, of course, always be improved by increasing N and T while 
keeping the ratio NIT constant. 
It is interesting to note from Figs. 3 and 8 that, for a given value of 

TABLE VII—POOREST ESTIMATES WITH INTERFERENCE SEPARATION IN 
THE RANGE 55 ± 6.88 Hz 

Class I Weighting 
Method  M  Frequency Error, Hz  Magnitude Error, dB 
1  1  .89  .11 
1  2  3.32  .47 
1  3  6.16  .96 
2  1  .513  .12 
2  2  .104  .11 
2  3  .409  .5 

Class II Weighting, R = 1000 
Method  M  Frequency Error, Hz  Magnitude Error, dB 
1  7  1.14  .120 
3  7  .0651  9.35E-3 

Class III Weighting 
Method  M  Frequency Error, Hz  Magnitude Error, dB 
1  2  2.11  .225 
1  3  5.12  .821 
3  2  .034  .026 
3  3  .149  .0655 
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TABLE VT TT  P . OOREST ESTIMATES WITH INTERERENCE SEPARATION IN 
THE RANGE 178.96 ± 6.88 Hz 

Class I Weighting 
Method  M  Frequency Error, Hz  Magnitude Error, dB 
1  1  1.67E-3  2.79E-4 
1  2  3.98E-4  5.25F,5 
1  3  4.55F,2  4.70E-3 
2  1  5.73E-3  1.42E-3 
2  2  1.47E-4  2.19E-5 
2  3  2.13E-5  1.55E-6 

Class II Weighting, R = 1000 
Method  M  Frequency Error, Hz  Magnitude Error, dB 
1  7  5.56E-3  2.05E-5 
3  7  8.09E-2  1.07E-2 

Class III Weighting 
Method  M  Frequency Error, Hz  Magnitude Error, dB 
1 
1 
3 
3 

2 
3 
2 
3 

9.10E-5 
1.85E-2 
3.35E-3 
5.94E-4 

1.19E-5 
1.90E-3 
3.21E-3 
9.62E-6 

AI, there is not a great deal of difference between the weighting con-
tributed by I -I,,(w) or G„(w). However, from Table VII it is obvious that 
the use of 02(w), when the tones are close together, will yield much more 
accurate estimates than Class I weighting. 
In equation (101) the "pointer", a, was defined. The value of a is 

used by the system to determine whether the frequency being measured 
is above or below the frequency of the largest estimator, Ai . Our 
simulation studies showed that under certain circumstances a, as 
calculated by equation (101) will point in the wrong direction. In 
general this happens when the contributions to A1_1 and A14.1 due to 
the interference is equal to or greater than the difference in the con-
tributions to the same estimators due to the tone being measured. Thus 
if 1211-11 P•'D'I A +1 I, a small difference in their magnitudes can change 
OL In our simulations this effect only caused trouble when fo and fi were 
separated by less than half the width of the main lobe of the weighting 
function, 11(w). 
Since we have fixed 130 = B1 = 1 in the simulations we have ignored 

the adverse effects of "large" level differences on the accuracies of the 
various methods. Leakage from an interfering tone with a high level, 
relative to the tone of interest, would certainly tend to reduce the 
accuracy provided by any of the three methods, no matter which weight-
ing is used. 
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VII, CONCLUSIONS 

The discrete-tone measurement system we have been discussing is 
particularly well suited to systems that involve computer-controlled test-
ing or measurement, provided the real time needed for the computations 
is available. Two advantages are: 

(i) The only interface hardware is the A-D converter (with its 
lowp ass filter). 
(ii) The system is capable of measuring many received frequencies 

and levels during the same computation time. 
For a given number of samples taken at a given sampling rate, the 

accuracy of the system can be significantly improved through the use 
of some type of weighting function. We have examined three classes of 
such smoothing functions and have developed formulas which permit 
the extraction of received signal frequencies and levels from the DFT 
coefficients. The results of system simulations, presented in Tables V 
through VIII, show that the inherent accuracy of the described system 
can, through the proper use of weighting functions and estimation 
methods, be made satisfactory for many applications. 
With Method 2 considered to be a special case of Method 3, the tables 

show that the best estimation method, for all of the weighting functions 
examined, is Method 3. 
The tables also show that there is no "best" weighting function. The 

weighting to be used for any particular application should be selected 
only after a consideration of the expected tone frequencies, the relative 
levels, the measurement accuracy desired, and the desired value for N. 
The sampling frequency, NIT, should be more than twice the highest 
frequency to be measured. 
It is interesting to observe that the Taylor (Class II) weighting func-

tion used in the simulation is, for the situations simulated, not signifi-
cantly better than the Class III weighting, G2(t), which is essentially 
that proposed by Blackman.' There may be other situations, however, 
when the nearly optimum main-lobe width of the Taylor functions is 
useful. 
If the system could tolerate the relatively large amount of computer 

memory required, then the discrete Dolph—Chebychev functions de-
scribed by equation (27) could provide some advantages. 

VIII. ACKNO WLEDGMENTS 

We are indebted to Messrs. D. R. Johnson, B. R. Saltzberg, and 
R. A. Smith for helpful discussions. 



228  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1970 

REFERENCES 

1. Cochran, W. T., and others, "What is the Fast Fourier Transforms?," IEEE 
Trans. Audio and Electroacoustics, AU-15, No. 2 (June 1967), pp. 45-55. 

2. Gentleman, W. M. and Sande, G., "Fast Fourier Transforms—for Fun and 
Profit," American Federation of Information Processing Societies Proc., 
29, Washington, D. C.: Spartan, 1966, pp. 563-578. 

3. Bergland, G. D., "A Guided Tour of the Fast Fourier Transform," IEEE 
Spectrum, 6, No. 7 (July 1969), pp. 41-52. 

4. Papoulis, A., The Fourier Integral and Its Applications, New York: McGraw-
Hill, 1962, pp. 48,49. 

5. Blackman, R. B. and Tukey, J. W., The Measurement of Power Spectra, 
New York: Dover, 1958, pp. 95-100. 

6. Helms, H. D., "Nonrecursive Digital Filters: Design Methods for Achieving 
Specifications on Frequency Response," IEEE Trans., AU-16, No. 3 (Sep-
tember 1968), PP. 33 6-342 . 

7. Bingham, C., Godfrey, M. D., and Tukey, J. W., "Modern Techniques of 
Power Spectrum Estimation," IEEE Trans. Audio and Electroacoustics, 
AU-15, No. 2 (June 1967), PP. 56-66. 

8. Dolph, C. L., "A Current Distribution for Broadside Arrays which Optimises 
the Relationship between Beam Width and Side-Lobe Level," Proc. IRE, 
84, No. 6 (June 1946), pp. 335-348. 

9. Cook, C. E. and Bernfeld, M., Radar Signals—An Introduction to Theory 
and Application, New York: Academic Press, 1967, pp. 178-182. 

10. Taylor, T. T., "Design of Line-Source Antennas for Narrow Beamwidth 
and Low Side Lobes," IRE Trans., AP-3, No. 1 (January 1955), pp. 16-28. 

11. Klander, J. R., and others, "Theory and Design of Chirp Radars," B.S.T.J., 
39, No. 4 (July 1960), pp. 782-790. 

12. Kuo, F. F. and Kaiser, J. F., Systems Analysis by Digital Computer, New 
York: Wiley, 1966, Chapter 7. 

13. Larsen, A. G. and Singleton, R. C., "Real-Time Spectral Analysis on a Small 
General-Purpose Computer," 1967 Fall Joint Computer Conf., AFIPS 
Proc., Washington, D. C.: Spartan, 1987, pp. 665-674. 

14. Penhune, J. P. and Martin, L. R., "Determination of Doppler Velocity and 
Ballistic Coefficient from Coherent Radar Data," ESD-TDR-85-41, Tech-
nical Rept. 378, M.I.T. Lincoln Labs., Lexington, Mass., pp. 11-53. 



Reed-Contact Switch Series 
for the I.F. Band 

By M. B. PURVIS and R. W. KORDOS 

(Manuscript received October 17, 1968) 

A series of switches using a miniature dry-reed sealed contact in a cable 
switch configuration has been developed to provide switching capability 
from de to 100 MHz. We present a description of the development, per-
formance characteristics, and mechanical design features. 

L INTRODUCTION 

The nationwide network of transmission facilities is not only growing 
in number of routes and capacity but also in terms of service capability 
and administrative flexibility. Within the network there are usually 
alternate routes for providing service between two points. Intercon-
nection between points may ultimately be controlled by a remote, 
centralized, real time machine that contains an accurate map of the 
state of the network. 
The broadband restoration system, for example, can detect failures, 

make routine maintenance checks and report to a regional control 
center where an alternate route between the two points is selected. The 
control center then remotely operates the wideband switch at each 
junction of the route to effect a restoration of service. 
One component group needed to implement these systems is a family 

of wideband switches capable of meeting the transmission requirements 
of low insertion loss, high isolation loss, high crosstalk loss, and having 
an impedance well matched to the 75-ohm system impedance. 
The 266B (8 X 8 matrix), 274A (1 X 8), and 273B (1 X 2) switches 

have been developed to meet these requirements with low operate power, 
small size, and moderate cost. All of these codes use 237-type miniature 
dry-reed sealed contacts in a cable-switch' arrangement to provide an 
extremely high isolation loss in the open state and a low insertion loss 
and good impedance match in the closed state. Appropriate matrix 
configurations are achieved by interconnecting the cable switches with 

229 
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stripline networks designed to provide good system performance from 
de to 100 MHz. The requirements, performance characteristics, me-
chanical design features, and a description of the development of 
these new wideband switching matrices are presented in this paper. 

H. REQUIREMENTS 

The restoration transmission requirements for an 8 X 8 matrix of 
64 crosspoints used to interconnect 75-ohm coaxial transmission paths 
over the frequency range of de to 100 MHz are: 

Insertion loss  0.6-dB maximum 
(closed-contact loss) 
Isolation loss  95-dB minimum 
(open-contact loss) 
Crosstalk loss  95-dB minimum 
Return loss  28-dB minimum 

Transmission requirements for the 1 X 2 matrix and the 1 X 8 matrix 
are identical to those of the 8 X 8 matrix except for the crosstalk loss 
requirement, which is not pertinent in single-level matrices. Where more 
than one switch is enclosed in the same housing, the crosstalk require-
ment will apply between switches. 
Speed of switching is not a stringent requirement, and operation in 

the millisecond range is satisfactory. Compact matrix size and moderate 
manufacturing cost are additional features required for practical ap-
plication in the restoration switching systems. 
The switch arrays, 8 X 8, 1 X 8, and 1 X 2 are illustrated schemat-

ically in Fig. 1. Photographs of the three switch types are shown in 
Fig. 2. The major elements of the design in a transmission sense are the 
coaxial crosspoint developed from the cable switch, the input/output 
circuit boards, and the coaxial jacks. From the schematic diagram, one 
can see that in the 8 X 8 and 1 X 8 designs the closure of any crosspoint 
leaves seven open crosspoints connected by stubs on each associated 
circuit board or "tree." Because of the length of these stubs, the struc-
tural considerations become important design parameters that seriously 
affect performance. The design considerations in each of these elements 
are presented in the sections that follow. 

III. CABLE SWITCH THEORY 

An extremely high isolation-loss requirement in the megahertz range 
normally precludes the use of conventional electromechanical switches, 
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Fig. 1— Array schematic: (a) 8 X 8, (I)) 1 X 8, (c) 1 x 2. 
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such as the wire spring and flat spring relay, the crossbar switch, and 
the ferreed, because of their generally large open-contact capacitance of 
between 0.1 and 1.0 pF. However, an arrangement of two or more 
conventional switching elements connected in series by a length(s) 
of low-loss transmission cable is particularly well suited for operation in 
broadband switching applications where extremely high isolation is 
required. This broadband switching crosspoint is called the cable switch. 
Applying conventional lumped constant analysis to a string of open 

switches (that is, serially connected switches with substantially zero 
transmission paths between them) produces the following conventional 
and well known voltage divider approximation expression: 
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IV0 /V., = coCR/K ± 1  (1) 

when coCR «1 and where 

w = angular frequency, 
C = open switch capacitance, 

K  1 = number of switches, and 
R = the load impedance. 

Fig. 2—Photograph of switch arrays: (a) 8 x 8, (b) 1 x 8, (c) 1 x 2 (4 
switches per package), (d) 1 X 2 (1 switch). 
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In other words, each switch added to the string reduces the ratio by 
adding one to the denominator. 
The above expression does not apply, however, when coaxial cables 

are connected between the switches. In particular, for (K + 1) switches 
with K pieces of identical lossless coaxial cables interconnecting them, 
the following expression applies (see Appendix): 

vo„t I 
vh, I — 

vont 

17,„ 

coCR 

A K ±  (A — wCZ0 sin I3d) 

wCR 
K 

E AK-nA. 

K-1 

(2) 

n=0 

for practical components where the values of An are given in the following 
table: 

n An 

0 1 

1 A 

2 2A2 — 1 

3 4A3 — 3A 

K 2AA,,_, — AK_2 

and A = cos a d ± sin 0 d/2wCZ0 for lossless lines where: 0 = (E,4,/c) 3 
(phase constant). 

ER =  relative dielectric constant of coaxial cable, 
1.4 = relative permeability constant of coaxial cable, 
c = velocity of light, 
d = distance between contacts from switch to switch, 
Zo = characteristic impedance of coaxial cable in ohms, and the 

remaining symbols have the same meanings as in equation (1). 

When the length of transmission line, d, between two switching ele-
ments equals one-quarter wavelength, equation (2) indicates that the 
isolation loss in dB of the overall switch is twice the isolation loss of the 
individual switching element. However, a plot of equation (2) for the 
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Fig. 3—Isolation loss improvement for the cable switch. Multiplying factor 
for the isolation loss in dt of a two-element cable switch as a function of cable 
length between switching elements. (Z. = R). 
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Fig. 4 — Equivalent circuit for the cable switch: (a) open, (b) closed. 
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specific case of two switching elements (Fig. 3) shows that greater than 
one and one-half times the isolation loss in dB of a single switching ele-
ment can generally be realized with a length of cable of only 0.005 
wavelength. In addition, for short lengths of transmission cable the 
increase in isolation loss of the cable switch over that of a single switch-
ing element is relatively independent of frequency. This results in an 
extremely broad frequency bandwidth of operation. 
As equation (2) indicates, a further increase in isolation loss can be 

obtained by adding more cable sections and switching elements to the 
structure. This, of course, increases the insertion loss as well as the 
physical length of the cable switch. Alternately, a choice of Z. less than 
the system impedance will result in a further increase in isolation loss. 
However, in practice Z. is chosen equal to the system impedance in 
order to avoid an impedance mismatch between the switch input and 
the termination when the switching elements are closed. 
Figure 4 shows a schematic representation of the open and closed 

Fig. 5.— Crosspoint elements and assembly. 
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cable switch in which each switching element is approximated by a small 
closed-contact resistance. For the closed state, the insertion loss of the 
cable switch is about equal to the combined loss of the individual switch-
ing elements since the loss of the short transmission cable is negligible, 
and the impedance of the cable is generally equal to the system imped-
ance. This factor of two in the insertion loss for a two-element cable 
switch is the only penalty in achieving the marked improvement in 
isolation loss desired. 
The cable switch concept reduces crosstalk between various signal 

paths in the switching matrix because whenever the switch structure is 
effectively shielded, crosstalk will be defined in terms of the isolation 
loss of the individual crosspoints. 

IV. COAXIAL CROSSPOINT DESIGN 

The crosspoint assembly and its piece parts are shown in Fig. 5. A 
cross-sectional view of the assembly is shown in Fig. 6. As can be seen, 
the crosspoint consists of three miniature dry-reed sealed contacts 
separated by short lengths of coaxial line. Three contacts are used 
since the isolation loss of a single contact is approximately 45 dB 
(wCR  10-2) at 100 MHz in a 75-ohm system. The contact gap capaci-
tance is approximately 0.2 pF. 
The outer conductor of the crosspoint is a copper tube of 0.210 inch 

O.D. with a length of 7.82 inches. The tube allows free movement of the 
contact assembly thereby minimizing forces on the contact leads and 
preventing rupture of the contact seals. The tube wall is 0.005 inches to 
provide adequate structural strength for the assembly. Since the signal 
penetration of the tube wall is only of the order of 300 microinches at 
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Fig. 6— Cross-section of crosspoint assembly. 
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100 MHz, the integrity of the coaxial transmission line is preserved, 
and there is no crosstalk coupling to the control windings. 
The tube length provides approximately three inches between the 

contact make points with two inches of coaxial line between the glass 
bottles of the contacts. Since this line segment is loaded with a molded 
polypropylene sleeve whose dielectric constant is 2.3, the equivalent 
electrical length is about three inches or 0.03 wavelength at 100 MHz. 
Equation (2) indicates that the open circuit isolation loss in dB of this 
three-switch crosspoint approaches 2.3 times that of a single contact. 
The diameter of the center conductor and the dielectric material 

between the contacts proved to be one of the most easily changed vari-
ables, and a wide range of diameters and materials were evaluated. The 
diameter of the copper center conductor that gave the best return loss 
in the 8 X 8 matrix was found to be 0.010 inches (Zo = 120 ohms). The 
higher impedance (with respect to 75 ohms) of the center conductor 
section is required to offset the capacitance of the tree networks as 
discussed in Section 5.1. 
The yield strength of the annealed copper conductor between contacts 

is reached with 1.25-lbs force so that any stresses applied to the cross-
point will be absorbed by the center conductor thereby protecting the 
contact seal. 
In initial switch models, the center conductor was wrapped around 
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Fig. 7— Crosspoint insertion loss: (a) with 237B contacts, (b) with 237G 
contacts. 
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the contact leads and soldered. Although performance was adequate, 
experience has indicated the use of the connecting sleeve, Figs. 5 and 
6, between the contact and the center conductor facilitates manufacture. 
A dielectric end plug fits over the contact lead and into the copper 

tube. This plug supports the lead during the assembly process. A heat 
shrinkable polyethelene tube is shrunk over the entire assembly to 
provide mechanical stability in manufacture. 
The insertion loss of the 237B contacts was found to be of the order 

of 0.15 dB at 100 MHz. This high loss characteristic occurs because 
only a relatively short length of the contact blade is plated with gold 
and silver. To provide a continuous surface conductor along the blade 
with a better conductivity than the nickel-iron blade alloy, a barrel 
plating process was developed by the Western Electric Company, 
Allentown Works. These barrel-plated blades are assembled in a re-
cently coded contact, the 237G. The leads in this contact are solder 
dipped for 0.1 inch to provide easy assembly and a good bond with the 
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sleeve. The insertion loss characteristics of the cable switch when made 
from the standard 237B contact and he new 237G contact are con-
trasted in Fig. 7. 
Each contact is driven by a 300 turn, 5 layer, 32 gage coil. The coils 

of a given crosspoint are series connected giving an overall resistance of 

.rwr 

(b) 

Fig. 9 — Tree networks: (a) 8 x 8, (b) 1 X 8, (e) 1 x 2. 
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about 11 ohms. Figure 8a shows the flux distribution along the axis of 
an operated crosspoint. Figure 8b shows the interfering flux from diag-
onal crosspoints in the 8 X 8 array. Current reversal in alternate columns 
of the array provides an interfering flux cancellation so the resulting 
flux level is well below the contact operate levels when driven at the 

design level of 4.5 ± 1 volt. 

V. CROSSPOINT INTERCONNECTION 

5.1 Use of Tree Networks 

Interconnecting crosspoints in a matrix arrangement without intro-
ducing serious impedance mismatch is a formidable problem, especially 
when the matrix is required to switch signals above 10 MHz. Since 
only one crosspoint in any row or column on the matrix can be closed 
and terminated at a given time, each closure can be represented by a 
continuous transmission path along which a number of open crosspoints 
are attached at various intervals. These open crosspoints are essentially 
open-circuit stubs which can easily degrade the transmission perform-
ance of the switch by causing severe impedance mismatches. Moreover, 
any general matrix construction in which switching elements are bussed 
together in rows and columns can result in different lengths of open-
circuit stubs depending on which crosspoint is closed. 
In an effort to make all transmission paths through the switching 

matrix appear alike electrically, tree networks, Fig. 1, are used to con-
nect groups of crosspoints to the various input and output connectors 
of the matrix. Through use of tree networks the rows and columns of 
the matrix are formed so that no long open-circuited stubs exist. How-
ever, short stubs still exist at the positions where the open crosspoints 
are connected to the closed transmission path. Open-circuit stubs 
are equivalent to small capacitors short circuiting the closed transmission 
path and, unless carefully designed, usually preclude meeting the return 
loss requirement of 28 dB at frequencies above 50 MHz. 
The tree networks for the 8 X 8, the 1 X 8 and the 1 X 2 matrices 

are shown in Fig. 9. 

5.2 Tree Network for 8 X 8 Matrix 

The equivalent circuit of a single closed transmission path through 
an 8 X 8 matrix is shown in Fig. 10. As can be seen, the circuit is sym-
metrical from end to end, making the electrical characteristics identical 
for both directions of transmission through the matrix. 
The open-circuit stubs represented by short capacitors C1, C2, and 
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(a) untuned circuit (R = contact resistance of the 237 G contact; Cl, C2, C9 = 
equivalent capacitance of open-circuited stubs; /1., /2, la, 14, 16 = 75,0 transmission-
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the design, it cannot provide a solution in closed form to the design 
problem. The organization of the 8 X 8 matrix was dictated by such 
factors as minimization of the stub lengths by minimizing the distance 
between crosspoints, symmetry in the array, interfering flux from ad-
jacent crosspoint coils, and the availability of suitable materials for 
design. 
The 0.375-inch dimension between crosspoints is a reasonable lower 

limit for mechanical assembly of the crosspoint array since the O.D. 
of the driving coils is approximately 0.31 inches. Circuit board material 
standard thickness is it inch so that the buildup of the strip line tree 
circuits is readily accomplished. Flux interference was not a problem 
as seen in Fig. 8. The question became, then, whether utilizing the 
insights given by the above circuit analysis, the system design re-
quirements could be met for the adopted physical configurations. 
Initial efforts on the tree structure followed conventional stripline 

technology in which a planar center conductor is positioned between 
parallel ground planes by dielectric layers. Dielectric materials with 
a low loss and a uniform dielectric constant over the frequency band 

hE. tl  /2  J2•3 
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Fig. 12 — Equivalent circuit of a closed connection through a 1 X 8 matrix: 
(a) 1-to-8 direction, (b) 8-to-1 direction 



REED-CONTACT SWITCH  243 

include the polyolefins and polyphenylene oxides. These are widely 
used for microwave (300 MHz to 300 GHz) printed circuits. However, 
the frequency band of concern is well below that for which these more 
expensive materials are designed, and their generally poorer mechanical 
stability and peel strength suggested an alternate approach be taken. 
Epoxy glass has relatively better mechanical properties and peel 

strength and is more economical than the above materials. It also has 
considerably higher loss and dielectric constant. 
The compromise solution, Fig. 11, is the use of Arinch-thick epoxy 

glass board with one-ounce copper and an air space above the circuit 
to lower the effective overall dielectric constant. The impedance levels 
and capacitance of the various branches of the tree were adjusted 
experimentally with the pattern shown in Fig. 9 resulting. 
A shunt resistance, as seen in Fig. 10b, was added at the input and 

output of the circuit to compensate for the series resistance of the tree 
and crosspoint. The resistor used, Fig. 9, is the 257A type ceramic with 
evaporated tantalum nitride film element. It is mounted directly on the 
board by its leads. 
The ground plane spring is formed from a single stamped part of 

five thousandth-inch beryllium copper over-plated with fifty millionths 
of hard gold for corrosion resistance and sealing to the end plates and 
side rails of the switch assembly. The thickness of the material guaran-
tees a minimum of 100 dB crosstalk loss through the circuit boards in 
the assembled switch. The spring's rolled edges compress when slid 
into the side rail slots while the front slotted edge seats firmly to the 
face of the switch. The circuit board assembly is forcibly held in position 
by the bracket which seats against the rear slotted edge. The result is 
a well defined geometry insensitive to the temperature ranges to which 
the switch will be exposed and efficiently sealed against crosstalk. 

L1  L4+ 2L 5 

Fig. 13 —Low-frequency approximation of a tuned path through a 1 x 8 matrix. 
L., L4 =  equivalent inductance of high impedance transmission lines; 

e Off  =  equivalent lumped capacitance of open-circuited stubs; R = contact 
resistance of the 237G contact; Res = shunt resistance to adjust real-part of 
input impedance.) 
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5.3 Tree Network for the 1 X 8 Matrix 

The tree network for the 1 X 8 matrix is shown in Fig. 9. The tree 
differs from that used in the 8 X 8 matrix because the 1 X 8 matrix 
is physically asymmetric from end to end. In such an array the tree 
is used to either connect one input to one of eight possible outputs (1-
to-8) or to connect one of eight possible inputs to one output (8-to-1). 
Fig. 12a shows the equivalent circuit of a closed transmission path 
through the matrix in the 1-to-8 direction, and Fig. 12b shows the 
equivalent circuit for the 8-to-1 direction. The only possible way to 
approach a good input impedance match for this matrix for both direc-
tions of operation is to: 

(i) minimize the lengths 12 and /3 so that C1, C2, and C3 can be 
approximated by a single shunt capacitance, CSH 

(ii) adjust the length of 1, and the characteristic impedance of 
1, , ¿4, and /5 such that the low-frequency equivalent series 
impedance of l equals 14 ± 215, and 

(iii) add a shunt resistance across Cam to compensate for the series 
resistance of the tree and the crosspoint. 

As can be seen from the low-frequency equivalent circuit of the resulting 
network, shown in Fig. 13, the input impedance is essentially the same 
when viewed from either end with the other end terminated in the 75-
ohm system impedance. 
The circuit board for the 1 X 8 matrix is shown in Fig. 9. In order 

to achieve the higher stripline impedance, a thinner epoxy glass board 
is used, and the ground plane spacing is increased as shown in Fig. 14. 

6.4 Tree Networks for the 1 X 2 Matrix 

The tree network for the 1 X 2 matrix is also shown in Fig. 9. The 
analysis parallels that presented for the 1 X 8 matrix. The simpler 
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Fig. 14 — Cross-section of tree network for 1 X 8 and 1 x 2 matrices. 
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nature of the matrix was confirmed by the relative ease of obtaining an 
experimental solution to the design problems. 

VI. CONNECTORS 

Standard 478A and 477B jacks accommodating type 728A coaxial 
cable are used for signal interface. The 478A jack flange was modified 
to allow closer placement of the input jacks on the 8 X 8 array. 
The crosspoint control windings for each crosspoint are individually 

terminated in standard commerically available connectors allowing 
wide latitude for control circuit design. 

VII. STRUCTURE 

Since the structure carries the signal ground, the integrity of the 
structure at each crosspoint is vital to the maintenance of high return 
loss. A failure of a tube joint will bring the return loss for that crosspoint 
to 10 dB even though all other joints are structurally sound. The struc-
ture must also be tight to prevent crosstalk. Gaps at the flanges of the 
connector, between the tree circuits and the tube face, or along the rail 
at the spring will quickly raise the crosstalk above the minimum re-
quired limit of 95 dB below the signal level. 
The tube array in each switch code is fixed to the base on one end and 

pinned on. the other to provide axial freedom for thermal expansion. 
This degree of freedom is sufficient to protect the solder joints between 
the tubes and the end plates and those between the contact assembly 
and the circuit boards. 
The switch assembly has been vibration tested over the range of 5 

to 500 Hz. Resonant points were found for the structure in early models 
and modifications were made to provide a stiffer structure at those 
frequencies. Tests of the switch models shown in. Fig. 2 led to the in-
clusion of shipping blocks in the 8 X 8 switch to provide damping of 
the pinned end of the tube assembly during transport. The switches 
otherwise withstand anticipated shock and vibration in normal shipping 
and installation. 
The switch has been cycled over the temperature range of 40°F to 

140°F at relative humidities to saturation without incident. 

VIII. PERFORMANCE 

Switch performance has been measured at three Bell Laboratories 
locations: Merrimack Valley at North Andover, Massachusetts; 
Holmdel, New Jersey; and Columbus, Ohio. The switch has also been 
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RESISTANCE COMPONENT 
R / Z0 

Fig. 15 —Return loss for a single crosspoint in an 8 >< 8 array: (a) 8250 0 
resistor, (b) 27400 resistor. 
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Fig. 18 — Return loss for the 8 x 8 array from dc to 100 MHz: (a) with 
8200-ohm shunt resistance, (b) with 2740-ohm shunt resistance. 
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measured at the Western Electric Works in Kansas City where produc-
tion has been scheduled. 
Return loss results on a given piece of apparatus are reproducible 

to within 1 dB over the range from 28 to 48 dB. Insertion loss is repro-
ducible to 0.02 dB. 75-ohm attenuators are used in bridge circuits as 
calibration standards for the measurements program. 

8.1 Return Loss 

The return loss for a single crosspoint of an 8 X 8 array is shown in 
Figure 15. The presentation is in the form of a Smith chart. The trace 
is swept from 100 kHz to 100 MHz with the output of the switch ter-
minated in 75 ohms. Two curves are obtained for each crosspoint by 
testing each end as the input. Since the physical structure is mechanic-
ally symmetric, performance should be the same. The electrical asym-
metry observed is the result of mechanical tolerances of switch elements 
with respect to the tuned circuit performance when seen from opposite 
ends. 
The return loss characteristic for two 8 X 8 arrays is shown in Figure 

16. The envelope of performance of all sixty-four crosspoints swept 

à 0.96 

\t III 
',AIN 

111 61eA  
111‘  

_ mu m „...e LOB m.,„1.10  

0.98 

RESISTANCE COMPONENT 

R/Z0 

Fig. 17 — Return loss for the 1 x 8 array from de to 100 MHz: (a) 1-to-S 
direction, (b) 8-to-1 direction. 
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from 100 kHz to 100 MHz from both ends, that is, 128 curves on each 
graph, is shown. The return loss is obviously better at the lower fre-
quencies where the geometric factors are a smaller fraction of a wave 
length. No one crosspoint defines the envelope of the plot for more than 
a fraction of the frequency swept. The scatter at the higher frequencies 
is a function of both switch geometry and mechanical tolerances. The 
return loss of the switch with 8200-ohm shunt resistance is seen to be 
better than 30 dB over most of the band. The improved performance at 
the higher frequencies obtained with the 2740-ohm resistance is at the 
expense of the performance at the lower frequencies. In either case the 
performance limit of 28 dB is met. 
The return loss for the 1 X 8 array is shown in Figure 17. The eight 

traces for either end as input indicates the design compromises required 
to meet the return loss objective. The switch could be optimized for 
either input at the expense of the return loss for the opposite end input. 
The return loss for the 1 X 2 switch is shown in Figure 18. No shunt 

resistor was used in this design since it readily meets the requirements 
for either end as input. 

0.90 

0.92 

•11111111111 
RESISTANCE COMPONENT 

R/zo 

Fig. 18 — Return lose for the 1 >< 2 array from de to 100 MHz in 1-to-2 
direction and in 2-to-1 direction. 
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8.2 Insertion Loss 

The insertion loss for the 8 X 8 array is shown in Fig. 19. Only the 
two crosspoints are shown which represent the upper and lower limits 
of the insertion loss for the switch. Fig. 19b indicates the loss for the 
switch with shunt resistors of 8200 ohms. Fig. 19a indicates the loss for 
the switch with 2740-ohm shunt resistors. The higher insertion loss of 
the second switch is seen to be the penalty for the improved return loss 
as shown in Figs. 16a and 16b. 
Figures 20a and 20b indicate the insertion loss for the 1 X 8 and 

1 X 2 arrays respectively. 

8.3 Isolation and Crosstalk Loss 

These losses were found to exceed 105 dB across the band on all 
codes of switches. The crosstalk loss is at least as good as the isolation 
loss since the results of crosstalk loss are essentially the same as for 
isolation loss. There are no significant differences between near end, far 
end, terminated and unterminated crosstalk observations. 
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Fig. 19 —Insertion loss for the 8 X 8 array from de to 100 MHz: (a) with 
2740-ohm shunt resistance, (b) with 8200-ohm shunt resistance. 
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Fig. 20 — Insertion loss from de to 100 MHz: (a) 1 X 8 array, (b) 1 x 2 
array. 

IX. SUMMARY 

A series of switches designed to meet Bell System requirements across 
the de to 100 MHz band have been designed and models built. Tests 
show the performance characteristics over the band meet system re-
quirements and that the physical structures are mechanically satis-
factory for the environmental conditions anticipated in transport and 
installation. 

APPENDIX 

Derivation of the V.,/Vtu Relationship for the Cable Switch 

A.I Network Transfer Matrix 

Any network can be described in terms of an ABCD transfer matrix: 

Il 

Y' NETWORK 

Vi = input voltage 
v,  It = input current 

V, = output voltage 
I, = output current 

[  B  V2 
Ii  cA 

where 1,3,) is the ABCD transfer matrix. 

(3) 
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A.2 Overall Matrix 

The overall ABCD matrix of a series of networks in tandem is equal 
to the matrix multiplication of the individual network ABCD matrices: 

NETWORK-  NETWORK - 

VIN 
(Al 

c, Bi)D i 

A B 

Dioverall 

A2 B2) 

(C2  D2 

ETWORK- 3 
Iota 

A3 B3 ) 
\I/OUT 

(C3  D3 

Ai B1 Í A2  B2 14  [ 3  B3 ' 

C, D,„  C, D,, .C, D,, 
(4) 

A.3 Equivalent Matrix 

The equivalent circuit for one of K identical sections of the cable 
switch is given by: 

'IN 
2C 

't‘ 

VIN  

JI 

 I (  

ci   
LOSSLESS 

TRANSMISSION 
CABLE OUT 

volt, 

l«- - NETWORK-I -- 4 6-  NETWORK-2 -  - NETWORK-3 - 

Now, the ABCD matrices for the 3 networks in this circuit are: 

Networks-1 and 3 

[A, B, = A, B, = 1 1/ jw2C Ci D,  C, D,  0  1 

Network-2 

[ A2  B2 j 

C2  D2 Ícos f3d  jZo sin a/ 

j sin fid/Z0 cos ed 

(5) 

(6) 

where fi = 2/r/X 
X = wavelength 
d = length of transmission line 
Z0 = characteristic impedance of the transmission line. 

The ABCD matrix of one of the K identical sections can be obtained by 
matrix multiplication: 



REED-CONTACT SWITCH 253 

[A,. B1.1 C 1.  D 1„ 

cos fid ± sin e  
ce2CZ. 

.sin Od 
Z. 

Note: A,„ = D,. 

A.4 Switch Circuit 

cos $d sin d  
jf)1.1  

j( W 2 C) 2Z 0  i ZO sin od 

cos ¡3d ± sin ¡3d  
co2CZ0 

The equivalent circuit for the entire cable switch is given by: 

A ' 

VIN 

2C 

NE T WORK- IN 

SECTION 

2C 'OUT  

(7) 

VOUT 

NETWORK-OU T 

The ABCD matrices for the networks in this circuit are: 

Network-OUT 

[A... B...] = [1 ± 1/ jto2CR 1/ iw2C1 

C... D..  .  1/R  1 

Network of K identical sections 

[AK BK1 _ PI, B1.1 K 

CK DK .  Lc1, Di. 

Note: AK = D K • 

By matrix multiplication: 

n.  44„  B„  C„ 

0  1  B1.(0)  Cl.(0) 

1  A,.  B1.(1)  C,,(1) 

2  2A21, — 1  131.(2A1.)  C,,,(2A1.) 

3  4M. — 3A 1,  B1„(421;„ — 1)  C„(411;, — 1) 

K-1  K-1 

(8) 

(9) 

K  2111.AK-1 — AK-2 B1. E  E A 1-"A„  (10) 
n=0  73=0 

Network-IN 
[A in B,„1 = [1 15021 . 

C,„  Di„J  ,0  1 
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The overall ABCD matrix for the cable switch can be obtained by 
matrix multiplication: 

[A B 

C DJovroii 

A K (1 jwC1R)  BRK jwC2AC' (1 ± jcie21CR) 

' jcalCR) 
CK(1    A K 

A.5 Special Case: I.., = 

For the case where /.., = 0: 

¡Tout 

Vin 

Therefore, for the cable switch: 

/Tout   1   
Vi.  +  1  \  BK   (1 +  1  

jcoCRi  R  jco2C  jco2CR) 

AK  rp,  CK  
.  K 
ricoC  (co2C)2 

CK 
AK + 

Since coCR «1 for practical values of C and R, 

V01,,,  jcoCR 

jco2C 
(12) 

(13) 

(14) 
A K ± 213,,c0 C  C  

jco4C 

Substituting the expressions for BK and CK in (10) and the expressions 
for Bi. and CI. in (7) into (14) gives: 

jcoCR   

+ (cos Od  sin ed coCZ,, sin (3d) E VI.  K-1 

co2C4  .-0 

coCR 
V,„  K-1 

AK + (A1. — coCZ0 sin ¡id) E Af.-1- "A0 
.-0 

Since Ai. >> coCZo sin Oci for practical values of C and Z,„ 

1 V.„, I  K coCR   
V  1 E AK—A. 
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A Lumped-Circuit Study 
of Basic Oscillator Behavior 

By N. D. KENYON 

(Manuscript received August 27, 1969) 

This paper presents an experimental study of the oscillations set up 
in a circuit consisting of a negative conductance and a multiple-resonant 
load. Its purpose was to verify that such a circuit can account for many of 
the irregular phenomena commonly observed during tuning of practical 
microwave solid-state oscillators; such effects as discontinuous frequency 
changes, low circuit Q-factors, power variations, spurious oscillations and 
noise conditions are all readily reproduced in a simple low-frequency ana-
logue. There is close correspondence with a first-order analysis. 

I. INTRODUCTION 

In the course of routine locking-bandwidth measurements on 
IMPATT diodes in the 50-60 GHz range, some observations were made 
that could not be accounted for by the simple theory ' of injection 
locked oscillators. In particular, locking ranges of about 100 MHz for 
—40 dB injected power were measured, indicating an extremely low 
effective circuit Q-f actor  In addition this range was asymmetrical 
about the free-running frequency, and was not exactly proportional to 
the injected voltage. On occasions there was at one end of the locking 
range a hysteresis between locking and unlocking conditions. 
Other phenomena commonly observed during tuning experiments on 

solid-state oscillators include the following: 

(i) A discontinuous change in frequency (here referred to as a "jump") 
as a parameter is varied (bias current, perhaps, or a tuning stub). 
If the tuning is reversed the jump occurs at a displaced frequency 
("hysteresis"). 

(ii) In the neighborhood of a jump, the hitherto single line spectrum 
may acquire sidebands at displacements of order 0.1 to 1 percent. 

(iii) Under some circuit conditions a broadband noisy output may be 
obtained. 

255 
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To explain these effects the passive circuit "seen" from the diode 
terminals must be treated as more complex than the simple resonant 
circuit normally assumed. Kurokawe has analyzed the case in which 
the active element is as simple as possible, but is connected to a passive 
load impedance of general form Z(w); it is found that most of the ob-
servations can be accounted for by ascribing certain patterns to the 
locus Z(w). The conditions are summarized in Section II. 
Since the form of Z(w) for a packaged diode in a waveguide structure 

can be very complicated, is difficult to determine precisely, and more 
difficult still to design, a lumped-circuit approach at low frequency 
was used to verify the theoretical predictions. The frequency of 350 kHz 
was chosen so that measurements would be relatively unhindered by 
stray capacitance effects, but that spectra could be analyzed with 
sufficient resolution. 

II. SUMMARY OF ANALYTICAL PREDICTIONS 

When a negative conductance — a + j.D is connected to a load 
G -I- jB, the voltage amplitude A and frequency co of the resulting 
equilibrium oscillation are determined by 

Q(A) =- G(co)  (1a) 

— B (A) =- B (w) .  (lb) 

These equations define the intersections in the complex impedance 
plane of the loci 0(A) — j.È(A) = — 1-7 and G(cú) ± jB (co) =  
these being referred to as the "device line" and "load line" respectively. 
For a single-tuned parallel-resonant circuit, Y(w) is a straight vertical 
line; for multiple-tuned circuits it may acquire bends and loops. From 
K-urokawa's analysis of the latter situation, the following predictions 
emerge: 

(i) Let O be defined as in Fig. 1. Stable oscillation at the point P is 
only possible if 0 < O < r. Moreover, whenever the condition 0 —> 0 
obtains, the noise of the oscillations will greatly increase. 
(ii) In Fig. 2, the line PT is the device line or, if that is not straight, 

PT is the tangent to the device line at P. The point T lies on a line drawn 
through the frequency points coo ± Au) on the load line. If the resistive 
component G' of PT satisfies 

.90 
G' = —4A, -a--A 

then spurious oscillations will grow at co, ± àw. If spurious oscillations 



co 

BASIC OSCILLATOR BEHAVIOR 

G 

Fig. 1 — Definition of o at oscillation point. 
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are not small, the values of coo, A0, and so on will be affected, and the 
first order condition above will not apply. 
(iii) Figure 3 shows an injected signal of small amplitude ao at a 

frequency co. close to, but not coincident with, the intersection of device 
and load lines at coo . The perpendicular d is constructed from co, to the 
device line (which is here assumed straight); locking occurs if the length 
of d is not greater than ct0/A0 . There are additional requirements for 
stability of locked oscillation, the principal one being that the angle f3 
be less than 7/2. 
(iv) The relationship between injected current, oscillation amplitude 

and locking range for a near-horizontal device line (aD/30  0) is 
determined by JAB  = ao/Ao , àB being the susceptance change from 
coo to unlocking frequency. Thus if ao and A. are held constant the ex-

ro 

G 

Fig. 2— Definition of G' for spurious sidebands. 
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to 

Fig. 3 — Injection locking conditions. 

tremities of the locking range will be those for which B(w) — B(coo) 
±ao/A0 . 
If the device line is not horizontal, but has a small gradient g, then 
must be corrected by the factor (1 — g AG/3,B). 
(y) The theory can be applied equally well to the case of a negative 

impedance —1i(A)  j.g(A) simply by reading current for voltage and 
vice versa, and substituting R, X, Z, and so on, for G, B, Y. The circuit 
used must then of course have large impedance far from resonance, to 
inhibit undesired oscillation. 

III. ACTIVE ELEMENTS 

Both negative conductances and negative resistances were used, 
taking the circuit forms shown in Fig. 4. The negative conductance is 

2 

(a) 

A 

AI 
V=A0 

Fig. 4—Negative admittance and impedance circuits. 

(b) 
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readily seen to be 

—MR,  (R, ± R3 + R3)  
(R,  R2)R3 

where R3 is the amplifier output impedance and g the voltage gain. If 
there is a phase shift (2nr  io) across the amplifier, this equation con-
tains a complex g: 

which introduces an imaginary component B into 2. The amplitude 
A of oscillation depends on the saturation behavior of the amplifier 
g(A): as A grows, 1.1(A) (and therefore 0) declines until the equilibrium 
condition (la) is established. At the same time the frequency settles 
such that the total circuit susceptance is zero (lb). 
The theory leading to the predictions of Section II assumes that the 

device characteristic 2(A) is independent of frequency. This is so here 
if µ(A) is not frequency dependent and the circuit is free of parasitic 
capacitance. 
The negative impedance of Fig. 4(b) is 

—R1 + R,. 

By making R, low, 2 is confined to a few hundred ohms. The behavior 
of g(A) is very similar to I-7(A) above, but the circuit has the disad-
vantage that no point in the oscillating loop can be grounded; thus 
large errors arose when injection-locking characteristics were measured. 
We confine our attention here to the negative admittance circuit. 

IV. METHOD OF MEASUREMENT 

The amplifier used was a C-Cor 1319F transistor video amplifier, 
with a small signal gain of 40 dB into 50 ohms, and a bandwidth of 15 
MHz. The characteristic  (A) for a given feedback resistor was estab-
lished by direct measurement, not by calculation from g, R1, R2  . 

Figure 5 shows schematically the essentials of the experiment. Apart 
from the active 2 and passive Y(w) networks, there is an oscilloscope, 
an injection signal source, a monitoring circuit for the frequency spec-
trum, and a bridge for passive admittance measurements on Y(w). 
Monitoring equipment is hung on to a current pick-up lead, which 

has a negligible loading effect on the circuit. From a counter the fre-
quency is known to 0.01 kHz, oscillations usually being stable to this 
degree. The wave analyzer determines to the same accuracy the fre-
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Fig. 5— Schematic of low-frequency experiment. 

quency of sidebands. Finally a convenient display of the spectrum is 
provided by up-converting into a spectrum analyzer. 
To make passive measurements the negative admittance was removed 

and the RF bridge connected by a short cable to the points shown. The 
wave analyzer was employed as a very sensitive null detector (to —90 
dB). 
The arrangement of Fig. 6 was convenient for giving an oscilloscope 

display of the admittance. 

C )  . G »Isti 

 I(  1 
Fig. 6— Admittance display circuit. 



BASIC OSCILLATOR BEHAVIOR 261 

The oscilloscope beam is driven in a circular path of radius propor-
tional to the current through Y(co). The spot is brightened by a 2 ns 
pulse at the instant of maximum voltage. The ac voltage amplitude is 
approximately constant. The circuit is obviously of limited bandwidth 
and was not used for quantitative measurements. 

V. MEASUREMENTS 

5.1 Characterization 

The device line — 17(A) was established from oscillations with a 
single-tuned parallel-resonant circuit (Fig. 7, inset). Since the imaginary 
component E was small, the frequency was close to the resonant fre-
quency, and the latter was varied by changing L. The oscillation fre-
quency wo and amplitude A were measured, and then the bridge was 
used to determine the admittance Y(coo): this quantity is plotted di-

7 

6 

5 

o 
O  10  20  30 

G IN mmho 
40  50  60 

Fig. 7 — Conductance saturation curve at 350 kHz. 
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rectly as the device line, since — V(A) = ifr(wo) at equilibrium. Figure 
7 gives the conductance-saturation characteristic at 350 kHz, these 
amplitude points being then superposed on the device line plot of Fig. 8. 
The variation of these characteristics over the range 310-390 kHz were 
found to be quite small. The device line is seen to be neither steep nor 
sharply curved: thus, the negative admittance is a good approximation 
to the idealized one assumed in the analysis.' 
It may be worth noting at this point that tuning of the shunt in-

ductance L is roughly equivalent to a complete vertical displacement of 
the locus Y(w) in the complex admittance plane. The device line in this 
experiment remains stationary, and the frequency of oscillation and 
amplitude vary according to the changing point of intersection. However 
similar phenomenological observations are to be expected if it is the 
device line that undergoes a vertical displacement—this commonly 
occurs for bias current changes of solid-state microwave sources. In 
succeeding paragraphs it is assumed that only the relative vertical 
relationship of device and load lines is significant, and that this can be 
changed at will by tuning of L. 

5.2 Double Resonant Circuit 

The addition of a series resonant circuit L2, C2 , R across the parallel 
L1, C, provides a number of interesting situations (Figs. 9, 11, 13). 
The resonant frequency is the same for both circuits. 
Defining Q1 = WOC/Re Q2 = woLa/R, and b = B/R, we have 

ab/aw 1.0 = 2C1R — 2L2/R = (2/ 4 (Qi — Q2). 

The susceptance of the series circuit tends to compensate that of the 
original parallel circuit in the neighborhood of resonance, and the com-
bination becomes broader band than either of the two; the effective 

o 
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Fig. 8— Device line plot at 350 kHz. 
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Fig. 9 — Double-tuned circuit behaviour. 

Q at coo is the difference Qi - Q2 , which may obviously be made as low 
as desired. We shall consider in turn the three cases Q1 > Q2 QI = 
Q2 Q1 < Q2 • 

5.2.1 Case 1: Q1 > Q2 
Figure 9 shows a typical measured Y(w) locus for this case. We im-

pose the further condition that at no point is the device line steeper 
than this load line so that the requirement 0 < O <  (See j in Section 
II) is met. The measured amplitude at each frequency is also plotted 
in Fig. 9, and corresponds to the appropriate points of the device char-
acterization, including the general decline with increasing frequency. 
By comparison with the single-resonant case the frequency points are 

o 
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relatively crowded at the center of the locus, and there is considerable 
variation of G in this region. When this circuit is connected to the de-
vice, the oscillations generated vary continuously in frequency and 
amplitude as L1 is tuned, and there are no unstable points. 
The small-signal locking behavior of this kind of circuit was in-

vestigated. A variable-frequency source of constant short-circuit current 
(5 mA peak) injected a driving signal into the terminals of 17 (See Fig. 
6). Oscillation amplitude at 350 kHz was determined, together with 
the frequencies w1, co, at which the oscillator fell out of synchronism 
with the driver. Then the negative admittance was removed, and the 
change of susceptance 2AB of the passive circuit between co, and oh was 
accurately determined (by the addition of known capacitances across 
the terminals to maintain bridge balance). This procedure was repeated 
for various (Q, - Q2) by changing R. 
The results appearing in Table I show good consistency of AB with 

a/A, except for the last two cases. These have critically low Q and the 
locking phenomenon is affected by excessive noise and drifting. Figure 
10 shows susceptance and frequency ranges as a function of injected 
current level for a particular value of R and A. The ,à13 - a relationship 
is linear, as expected, while the locking range falls off at higher levels. 
Over the linear region the voltage-gain X fractional-bandwidth product 
is constant, as for a single-tuned circuit, namely, 

g X b = 21(Q1 - Q2). 

We have thus confirmed that the locking range of an oscillator for a 
specific circuit is co, - co2 , where 

B(ro,) - B(c02) f = 2a/A. 

[For microwave circuits the right-hand side would be better expressed 

TABLE I 

2àf  A  alA  
(kHz)  (Volts)  (mmho)  (mmho) 

1.95 
2.6 
3.6 
5.5 
7.1 
9.7 
16.6 
19.0 

5.8 
5.3 
4.9 
4.7 
4.6 
4.5 
4.5 
4.5 

0.85 
0.94 
1.02 
1.08 
1.08 
1.12 
1.11 
1.11 

0.82 
0.96 
1.05 
1.08 
1.10 
1.06 
0.99 
0.94 

(Qs = Q2) 
(Qt < Qs) 
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Fig. 10 — Locking range vs. driving signal in broadband circuit. 

265 

as (4/R)(Pi/Po), where Po is the output power and Pi the available 
driver power.] Moreover the combination of two tuned circuits of 
similar Q can give a very low effective Q and correspondingly large 
locking gain-bandwidth product. 

5.2.2 Case 2: (21  Q2 

Under this condition a cusp appears on the admittance locus: Fig. 
11(a) compares this with the Q2 = O case (—markers are at 5 kHz 

(a) (b) ( 2.5 k H z/cm) 

Fig. 11 — Circuit admittance for G. = 0 and Q2 =  cases. 
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intervals). Oscillations right at the point of the cusp are very noisy 
(Fig. 11b). When Qi is slightly greater than Q2, the load line may be 
parallel to the device line (0 = 0) over a considerable band, and the ex-
tremely noisy broadband output results (Fig. 12). 

5.2.3 Case 3: Q2 > Q1 

A loop appears in the admittance locus (Fig. 13a). Part i in Section 
II states that if the device line has the slope indicated by the dotted 
line, the region between the points A and C (at which the device line 
would be tangent) has 0 > O >  7r and is therefore unstable. As the 

(A) 

¡y (w) 
(a) 

(b) (5kHz/cm) 

Fig. 12 — Broadband noise conditions. 
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Fig. 13 — Admittance loop for Q 2 > Q . 
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circuit is tuned (by decreasing Li) the frequency moves through D to A, 
at which it jumps to B; tuning the other way, the frequency moves down 
to C, then jumps further down still to D. Fig. 13(b) shows the behavior 
of the amplitude. There are two regions of overlap DA, BC in which 
oscillation is entirely stable at either of two points, depending on the 
way in which this oscillation was set up. By accurate measurements of 
the slope of Y(co) at the jump frequencies, and the slope c9B/19a of the 
device line at the appropriate values of A and f, it was established that 
the jumps AB and CD occurred very close to the points of tangency of 
the device line to the Y(co) locus. 
If a large parallel conductance G„ is added to Y(co), all oscillation 

ceases (Fig. 14). Reduction of G„ is now equivalent to a leftward dis-
placement of Y(co); at the dotted position oscillation of low amplitude 
is initiated. Clearly this oscillation can never begin at any point on the 
loop, except the cross-over point P. If a low-amplitude signal is initiated 
at P, it is possible for the spectrum to contain both frequencies, though 
usually one will predominate. 

5.3 Spurious Oscillations 

The condition of part ii in Section II requires that the line joining 
points coo ± Aco should intersect the tangent to the device line through 
coo at a point to the left of A0. Considering Fig. 15(a) (shaded part 
unstable) we see that for the double-resonant circuit such intersections 
invariably occur to the right. In practice, noisy sidebands were only 
observed in such a circuit when the device-line had been given a sharp 
curvature. 
Figure 15(b) shows that the sideband condition will be fulfilled if 

co 

G 

Fig. 14 — Signal initiation. 



o 

-20 

In  -60 

-80 

BASIC OSCILLATOR BEHAVIOR 

/Y() 

(a) 

(b) 

Fig. 15 — Spurious sideband conditions. 

0  20  40  60 

G N mmho 
80 

Fig. 16 — Sideband measurements. 

100 120 

269 



270  THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1970 

the frequency points to the left of coo can be crowded together. This was 
achieved by the addition of another series resonant circuit of inter-
mediate Q and tuned to about 330 kHz. It was then very easy to get 
spurious sidebands over an appreciable range of frequencies. A typical 
case is shown in Fig. 16. As L1 is reduced the frequency climbs to 343.5 
and jumps to 380; between 340 and 343.5 there are noise sidebands, 
beginning at 340 with very small amplitude, progressing through greater 
amplitudes and additional sidebands at coo ± nàco; before the jump, 
the first sidebands were almost the same amplitude as the principal 
oscillation, and interstitial components at coo ± nidico/2 and so on also 
appeared (Fig. 17). 
Accurate measurements were made in the case of very small side-

bands, for which the small signal theory may be expected to apply. 
In Fig. 16 the admittance Y(co) is shown accurate to within 1. mmho 
(relatively) on each scale. The line through co„ ± Aco is thus subject 
to little uncertainty. The measured device-line slope at coo gives an 

iJ 
(a) 339.7 kHz 

(D) 341.5 kHz (C) 343.5 kHz 

Fig. 17 — Oscillation spectra. 
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intersection at T as shown, and PT ____-'-' 33 mmho; the measured value of 
( —4--A0 aO/aA) was 39 mmho, indicating that the intersection should 
have been more to the left. Other similar measurements gave discre-
pancies of the same order and of both signs. Obviously only a small 
error in the amplitude or device slope measurements will move the 
calculated intersection considerably. Moreover it is not known how the 
weak function i(w) alters the theoretical sideband condition. 

5.4 Further Observations 

Hysteresis between locking-in and unlocking frequencies was observed 
even with double-tuned circuits, usually where the load-line is most 
inclined to the vertical. The effect is ascribed to the second-order effect 
of amplitude variations, and is such that more power is required to 
pull-in an unlocked oscillator than to maintain locking at the same 
frequency. 
Low-frequency switching between two states was found for some 

critical adjustments of a triple-tuned circuit in which two loop-type 
resonances interfere. The time-constant was associated with that of 
build up and decay of oscillations in the circuit. 
The oscillator could be pulled by a small injected signal, when the 

frequencies were widely different but the circuit admittances similar, 
as by the cross-over of a loop. 
Where spurious sidebands were present, locking of the whole pattern 

occurred whenever the driver was close to any of the sidebands. 

VI. CONCLUSION 

Measurements on a low-frequency lumped circuit model have sub-
stantiated earlier theory5 concerning the interaction of a negative ad-
mittance and a multi-resonant circuit. The model described is not cap-
able of simulating devices whose characteristics are more complicated 
than the simple form I7(A). For example, it is not easy to duplicate with 
lumped elements the observations which have been made on microwave 
oscillators, involving generation of the same frequency at two different 
diode bias currents, or utilizing second-harmonic tuning or sub-har-
monic pumping. 
However the experiment shows that many of the complex phenomena 

associated with tuning of solid-state microwave oscillators may be 
reproduced under these simplified conditions, and that therefore it is 
very frequently the microwave circuit, rather than the device, which 
is at fault. In addition, the practicability of broad-banding circuits for 
deviator and locking-amplifier applications has been demonstrated. 
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Radiation Losses of Tapered Dielectric 
Slab Waveguides 

By DIETRICH MARCUSE 

(Manuscript received November 10, 1969) 

In this paper we calculate radiation losses of a single mode dielectric 
slab waveguide for TE and TM modes. The theory is based on the deter-
mination of the radiation losses of one abrupt step. We obtain the losses 
of arbitrarily deformed wave guides by regarding the arbitrary deformations 
as a succession of infinitely many infinitesimal steps. This method yields 
the same results as a very different method presented earlier. It allows us 
to calculate the losses of TM modes that were hard to obtain by the earlier 
method. 
The radiation losses of single mode slab wave guides with abrupt steps of a 

2:1 ratio are surprisingly low and can be kept below 1 percent by dimen-
sioning the guide properly. The loss advantage of linear tapers becomes 
noticeable only when the tapers are very long. An optimized taper changes 
more rapidly in its wider portion and becomes more gradual in its narrow 
part. 

I. INTRODUCTION 

The study of radiation losses of dielectric waveguides, which has 
been described in three earlier papers, ' has been extended to cover 
abrupt steps in a single mode waveguide as well as continuous tapers. 
The mathematical theory of radiation losses caused by a step in the 
waveguide is used to compute the losses caused by tapers by regarding 
the taper as a succession of infinitely many infinitesimal steps. This 
method can also be used to rederive the equations for a dielectric slab 
waveguide with small wall distortions presented earlier.' Both the 
earlier method and the derivation based on small steps lead to identical 
results. The perturbation theory used in Ref. 1 was not very well suited 
for calculating the losses of TM modes. The step method is equally ap-
plicable to TM and TE modes and allows us to derive for TM modes 

273 
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the corresponding expressions which for TE modes were presented in 
Ref. 1. 
The radiation losses of steps and tapers are surprisingly small. A 

step which changes the thickness of a dominant mode slab waveguide 
to one half of its original value causes a loss of only about 1 percent for 
TE modes and about 2 percent for TM modes if operated at favorable 
frequencies. The losses of tapers are even smaller and can be made as 
small as desired for sufficiently long tapers. 
Comparison of the radiation losses of slab waveguides with round and 

rectangular waveguides (to be published) shows that the slab wave-
guide losses are exceptionally low. The losses caused by steps in circular 
waveguides are higher by an order of magnitude. 

II. THE MODES OF THE SLAB WAVEGUIDE 

We state briefly the TE and TM modes of the dielectric slab wave-
guide. For simplicity we assume that all the fields are independent of 
one spatial coordinate so that we can write symbolically 

a 
ay 

(1) 

Incidentally, it is only because we limit the discussion to cases where 
equation (1) applies that it is possible to speak of transverse electric 
(TE) and transverse magnetic (TM) modes. In the general case the 
modes are hybrids and possess longitudinal E as well as H components. 
The modes of the dielectric slab waveguide consist of a finite set of 
guided modes and a continuum of radiation modes. The slab geometry 
is shown in Fig. 1. 

2.1 TE Modes 

The field components E,, E, and Hy vanish. The remaining com-
ponents of the magnetic field can be obtained from E, 

i a H, =  E —  — --E  (2) 
az Cil j.e 

aE. H =  (3) 
WM 8x 

The dependence of the field component on the length coordinate z and 
on the time t is given by 

(4) 

This factor will be omitted from the following equations. 



DIELECTRIC TAPER LOSS  275 

n= 

 z 

Fig. 1— Dielectric slab waveguide. 

2.1.1 Even Guided Modes 

E, = A. COS KX 

E. = A .e7d cos Kde-71' 
(5) 

The coefficient A. is related to the power P carried by the mode by the 
following equation 

A, —  2we e  •  (6) 
itio 

The relation relation between K, y and ao is given by 

K =  Rnk)2 —  ,  (7a) 

= [020 — k2P  (7b) 

k = (4E0110)1.  (8) 

n is the index of refraction of the dielectric slab. The index of the sur-
rounding medium is taken to be n = 1. The eigenvalue equation for the 
determination of an is 

tan Kd = •  (9 ) 

A few numerical values for eo are shown in Table I. The TE modes are 
power orthogonal. With the power flow P in z-direction (per unit length 
of y) we have 

P  =  E " dx. 
cam Jo   

2.1.2 Even Radiation Modes 

E„ = B. cos crx 

= C,eiPI 'l 

ixi 

ixi  di 

(10) 
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TABLE I-SOME NUMERICAL VALUES OF eo 

kd n TE Mode Pod TM Mode fhd 

2.5 
5.0 
10.0 
20.0 

1.01 

2.50271 
5.01550 
10.06061 
20.16711 

2.50263 
5.01519 
10.06016 
20.16680 

0.25 
0.5 
1.0 
1.5 
2.0 
3.0 

1.432 

0.25781 
0.54916 
1.21972 
1.93825 
2.66839 
4.13075 

0.25207 
0.51677 
1.12809 
1.84210 
2.58934 
4.08131 

Propagation constants of TE and TM modes 

(The asterisk indicates the complex conjugate value) with 

u = [(nk)2 - 

P = 11G2 - 

C, = 4B. exp (-ipd)(cos i 2-- sin crd) ,  (14) 

B. = {  2  2 2p2wilP rfl(p cos od  o-2sin2  

(12) 

(13) 

(15) 

The power orthogonality of the radiation modes can be expressed by 
the equation 

P f5(p - p') =  0 E„(x, p)Et(x, p') dx.  (16) 
WM   

P is the power flowing per unit length (in y-direction) in the z-direction. 
The odd TE modes have been listed in Ref. 1 (together with the even 

TE modes). Since we are limiting the discussion of TE modes to sym-
metrical tapers excited by an even mode we will not need the odd TE 
modes in this paper. 

2.2 TM Modes 

With the restriction imposed by equation (1) the only nonvanishing 
components of the TM modes are H2, 

i 
(17) 

We  aZ 

Fly E. = - i  
we ax 

(18) 
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We have no occasion to use the odd guided TM modes, therefore only 
the even guided modes will be listed. 

2.2.1 Even Guided Modes 

I I d} . H, = A. cos Kx  for  x  

H, = A,e'd cos Kde" I'l for  xl k_d 

The amplitude constant is related to the power P carried by the mode 

.4, — 2w€P   14 

100  We   ± n272 ± -ydf 

(19) 

(20) 

The constants K and a are related to eo by equations (7a) and (7b). 
The eigenvalue eo of the even guided TM modes is obtained as a solution 
of the eigenvalue equation 

tan Kd =  2.  (21) 

A few numerical values for po are shown in Table I. The power orthogo-
nality of the guided TM modes can be expressed by 

P L = dx  f EE E* dx.  (22) 
0 e  0  €E, ,Em 

Even Radiation Modes 

H, = B, cos ox 

Hy = 

x 

jxl kd 
(23) 

with p and y given by equations (12) and (13) and with 

C, = B,(cos od  1:2̀1 sin 0-d)e  (24) 
n p 

The amplitude B, is given by 

R, =  2w€P 

tne(n2p2 cos2 ad ± s sid ad) 

2.2.3 Odd Radiation Modes 

= B, sin 0-x  for  Ixl 

= ixxi  Iceeipi=t 1 for  k I d 

(25) 

(26) 
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with 

Co = -1/30e-1"1(sin  -  cos od) n p 

and 

Bo - p 1  2c0EP   P • 
Iro(n2, sin' o-d 4- 4 coe o-d)f 

n 

The power orthogonality of the radiation modes is expressed as 

Pô.0 45(p - pi) = f e -H ,,(x, p)Ht(x, p') dx. 
2,co  E 

(27) 

(28) 

(29) 

All the modes are orthogonal among each other. The amount of power 
P carried by each mode is normalized to the same value. The actual 
power carried by the field is determined by the expansion coefficients. 

III. TE MODE RADIATION LOSS 

Prior to discussing the radiation losses of a waveguide taper we 
calculate the losses of an abrupt step in the dielectric slab waveguide. 
We limit our investigation to the case that only the lowest order guided 
mode of each type exists. These modes do not experience a cut-off and 
can exist on waveguides with vanishingly small thickness. The steps 
are considered to be sufficiently small to keep the guide dimensions below 
the point where a second guided TE or TM mode becomes possible. 
The geometry of the step is shown in Fig. 2. The loss problem is 

solved by assuming that one guided (TE or TM) mode is incident on 
the step. The discontinuity in the waveguide causes a reflected mode 
as well as forward and backward traveling radiation modes to occur. 
The unknown amplitudes of these modes are determined by requiring 

REGION  I  REGION 2 

ed2 

Fig. 2— Abrupt step in a dielectric slab waveguide. 
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that the transverse field components are continuous at the step. For 
TE modes we get the following equations: 

E vf 

H ") 

+ are'  foe  q,.(p) e(p) dp 

floe 

= ege"  j qt(P)gui)(13) dp, 
o 

foe q,.(p)l e (p) dp o 

(30) 

(31) 

= ogle  f qt(p)H (p) dp. 

The superscripts i, r and t indicate incident, reflected and transmitted 
waves. The field components whose p dependence is explicitly shown are 
radiation modes, the other field components belong to guided modes. 
There are two ways to compute the radiation losses. We can calculate 

the coefficients c, and a, of the transmitted and reflected guided mode 
and calculate the radiated power loss from 

.àP = 1 — ci I2_ I a, 12 (32) 

or we can calculate the coefficients q, and q, and obtain the radiation 
losses from 

ro k 
75- = j  q, ¶2 ILL  F r q, 12e cip.  (33) 

- k  o 

Both methods should, of course, lead to the same result. 
It is impossible to obtain exact solutions of equations (30) and (31); 

a comparison of both methods (32) and (33) allows an estimate of the 
validity of the approximations that are used to solve these equations. 
We obtain approximate solutions by the following argument. Since 

all modes of the same waveguide section are orthogonal we can use the 
orthogonality of the modes to isolate c, on the right hand side of equa-
tions (30) and (31). We get for TE modes from (30) 

=  (1 -F a,) j E".E"• dx  (34a) wzP 

and from equation (31) 
f. 

c• =  (1 — a,)  E E„(̀)• dx. 
we& 

(34b) 
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The coefficient q, was neglected. For large steps the radiation is 
scattered predominantly in forward direction so that q, is indeed small. 
If the step height is small the fields EL') and E")(p) become more nearly 
orthogonal so that q, again does not contribute very much to equations 
(34a) and (34b). The propagation constant 132 belongs to the guided 
mode on the waveguide to the right of the step while fl belongs to the 
guided mode to the left of the step. Because of the different waveguide 
size these propagation constants are not the same. 
Equations (34a) and (34b) allow the determination of c, and a, 

2(3,02  1  EwE" )• dx c, —  (35) 
± $2 we f 
0, - o2  a,=  (36) 
01 ± /32 

The integral can be evaluated with the help of equation (5) so that we 
obtain 

—  4(n2 — 1)1311321c2 cos ic, d, 
ci  

[(al d1  —)(02 d2  .1)1  + e2)2(131 —  + o, 
-y„ -y2 

• [7, cos  c/2 —  sin K1 d,  (71 — 72) cos ic,  (37) 

The determination of q, and q, is not quite as simple. The functions 
EL,e')(p) and E„")(p) belong to different waveguides and are not orthog-
onal. For large steps with predominantly forward scattering q. may 
again be negligible but this is certainly not true for small steps. We 
would need different approximations for large and small steps. To avoid 
this difficulty we consider only small steps and construct large steps 
and waveguide tapers as a succession of small steps. For infinitesimal 
steps the modes E,") and e ) are very nearly orthonormal and reflected 
guided modes can be neglected. Using the orthogonality of the modes 
we obtain 

and 

with 

MP) = ú3o + 0)/  (38) 

4,(P) = (/30 — 0)/  (39) 

/ = 1, f .E!')e ).(p) dx .  (40) 
cogr 0 

The expression I does not depend on the sign of ti, we therefore obtain 
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qr(p) from qi (p) by reversing the sign of the propagation constant 
of the radiation mode. We may drop the subscript r and t and obtain 
after integration 

q(p) = —(n2 — 1)k2 

p cos Kd cos o-d Ad   
(41) 

(7) ¡ 030  p ) [i  (eo d 130)0)2 cos 2 crd  g2 s in2 
7() 

The difference Aci = d2 — dl is assumed to be small. Because of the 
relation between qr(p) and qt(p) we can write equation (33) more simply 

=  q(P) 12  dO • P 
(42) 

IV. APPLICATION TO TAPERS 

Equation (41) can immediately be extended to apply to symmetrical 
waveguide distortions of arbitrary shape. We assume that the shape of 
the waveguide wall is described by the function f(z) as shown in Fig. 3. 

We can then write 

df 
—dz dz .  (43) 

The amplitude q(p) was calculated for a small step at z = O. Locating 
the step at z the guided wave arrives there with the phase C'e" instead 
of with phase zero as assumed in equation (41). The radiation mode was 
also referred to z = O. Referring it to a step at z adds the phase factor 
e to equation (41) because the amplitude B of the radiation mode 
enters equation (41) with its complex conjugate value. A step at z 
would be described by an expression like (41) with an additional phase 

factor 
e-i coo-te). (44 ) 

Fig. 3 — A symmetrical wall distortion (symmetrical taper) of a dielectric slab 
waveguide. 
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It must be assumed that ec (but not f3) is a function of z if the guide 
thickness is changing. 
The total radiation loss of a section of waveguide (for example a 

taper) of length L is given by equation (42) with 

q(p) = —(n2 — 1)k2 

.fL   •.(fi0 -0)[7, 
p COS icd cos crde-'̀se-p»  

dz , dz. 

13 (e0 d + )13-2)(p2 COS2 crd + cr2 sid crd q 
'Yu 

(45) 

Except for the restriction to symmetrical waveguides, equation (45) 
describes the same problem as treated in Ref. 1. In fact, we can obtain 
equation (57) of Ref. 1 by a partial integration. The formulation of 
Ref. 1 applies to the case that the thickness of the waveguide at z 
and z = L is very nearly the same. The function f(z) deviates so little 
from the half thickness cl of the perfect waveguide that fie, IC and y can 
be assumed to be independent of d. With these assumptions, we obtain 
as a result of a partial integration 

(n2 — 1)0 p cos icd cos o-dçoe   
q(P) —  (46) 

I o I (ao d  ,eyile)(p2 coe  (72 0-d)1 1 

with 
,L 

9,03) = j  dz.  (47) 

The agreement with equation (57), Ref. 1, is perfect if we keep in mind 
that the functions describing the upper and lower side of the waveguide 
are now identical except for a minus sign and that the function f(z) — d 
of Ref. 1 is now redefined and replaced by f(z). 
The fact that equation (45) is identical to the theory of Ref. 1 proves 

the validity of our method of continuous steps. 

4.1 TM Mode Radiation Loss 

The radiation losses of the lowest order guided TM mode at a sym-
metrical step in the dielectric slab waveguide can be calculated from 
equations (30) and (31) by changing the subscript x to y and y to x. 
The c, coefficient for the lowest order (dominant) even TM mode is 

2/i/2  
c,= 1 +  (48) 
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and the a,. coefficient is 

with 

(n2 — 1)$1 cos K2 d2 
—  2  2  2  2 

(a2  01)(14  ±  72) 

and 

12 = 

II /2  
a,. — 

I, ± /2 ' 

4 7172 

(49) 

(  n2k2 2 -r 71 (Z1) (  n2k2 2  2 2 -r 72 a2 

- 1P 2 ie ±  n 271  32 + 
• {Kik2 sin K1 d2 — al. e) cos ici d2 
[72(n2k2 e - e) - ey,k2],- -(..-.) 005 K, dl} (50) 

4 7172   (n2 — 1)32 COS K2 d2  
(e - e)(2, + -A) . „ ( n2k2  , 

L 
,  n2k2  , , 11 

PiP2 ¡el + nm -r 71 ai) (e ± n27: -r 72(k2)] 

• 41(0 + e - e) sin Ki d2  n2-y2 k2 cos K1 d2 

n2[(72 — 71)1c2 7ice —  cos K1 (ill •  (51) 
The corresponding expression for the TE modes, equation (37) is 
apparently considerably simpler. 
The expression for the radiation loss of TM modes on a dielectric 

waveguide of arbitraty shape is obtained from 

113 
-  L k  q (p) t2 ±  I TO(p) 121  (10 (52) 

with the coefficient of the even radiation modes 

q(p) = 
al ah 

L, (n2 — 1)1)1'4000 Cos o-d -yer sin cid) cos icde-"5" + — _ 
-f   2 

az/  
z, d 

o 2o3o  0) {7rso  a (3,1n+. (n 2p 2 cos  crd  sin 2 o,d)} 

(53) 

and the coefficient for the odd radiation modes 

go(P) = 
ah 

(n2 — 1)P74(1300 sin o-d — -yo- cos o-d) cos tcde-*̀ ")'(- az  az)  
y  dz. 

o 20°  a){,rao 113  ( 2 n2k2 2 , _ d)(n2p2 sin 2 crd  c; co o crd ) 
130 

(54) 
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The restriction to symmetrical waveguides was dropped so that equa-
tions (52) through (54) hold for waveguides of arbitrary shapes as 
shown in Fig. 4. A comparison of equations (53) and (45) shows im-
mediately how equation (45) could be generalized to an arbitrary wave-
guide shape. Corresponding expressions for the odd TE radiation modes 
could immediately be constructed by a comparison of equation (61), 
Ref. 1, with equation (54). The function h(z) describes the shape of the 
dielectric slab waveguide at the lower air-dielectric interface. The theory 
of dielectric slab waveguides with rough wall, as presented in Ref. 1, 
was limited to TE modes. The same procedure which lead from equations 
(45) to (46) allows us to derive the TM-mode radiation loss equations for 
waveguides with rough walls. 

(n2 — 1)fry4(130,6 cos o-d  yo- sin o-d) cos Kep(e) —   
q.(  P) — 

and 

gow = 24e. G, ny  yd)(n2p2 sir 2 o-d n°--1 cos 2 crd)} 
n 2k2 2 

2400 I ( a  + 7d) (n2p2 cos2 o-d + ; sid ce-c1)}4)>4 
2 + n2-y2 
lee 2 

(n2 — 1)p-y1(30/3 sin crd — yo- cos o-d) cos rtd[e(a)   

(55) 

(56) 

The Fourier component ço(a) is given by equation (47). The correspond-
ing Fourier component #0) follows from equation (47) by replacing 
f(z) with h(z). 

V. NUMERICAL RESULTS 

The radiation losses caused by a symmetrical step with the ratio 
c/z/di = 0.5 for n = 1.01 are shown in Fig. 5. The solid curves are 
obtained from equation (42) with the help of equations (45) and (53) 

.—f (z) 

4 t  f  

h (z) 
= 

Fig. 4 — An asymmetrical wall distortion of the slab waveguide. 
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Fig. 5 — TE and TM mode losses caused by a step in the slab waveguide. Solid 
line calculated from (42), (52) dotted line calculated from (32). n = 1.01, d,/d1 
=. 0.5. 

by approximating the step with a steep linear taper of length Lida = 1. 
For very short tapers, the radiation loss is independent of the length of 
the taper. The dotted curves were obtained from equations (32) and 
(37) for TE modes and equations (48) through (51) for TM modes. The 
agreement between the results obtained by the two different methods is 
quite good. It is also apparent that TE modes and TM modes suffer very 
nearly the same losses in this case. It is surprising how low the radiation 
losses are in the region of kdi = 11. Both modes pass this considerable 
step with a power loss of less than 1 percent. For kdi > 20 the larger 
portion of the waveguide can support more than one guided mode. This 
is the reason why the loss curves were not extended past this point. Both 
the TE as well as TM modes show minimum loss values for particular 
values of kdi suggesting the possibility of optimizing waveguide steps. 
Fig. 6 shows the radiation losses of the even, lowest order TE and TM 

mode for a step on a single mode waveguide with n = 1.432. The TE 
and TM mode losses are quite different for this waveguide with high 
dielectric constant. The fact that for TE as well as TM modes there is 
an increasing discrepancy between the two methods of calculation for 
increasing values of kd, with the dotted curve for the TM modes even 
becoming negative, may indicate that the solid curves are more reliable. 
For small values of kd, the agreement between the two methods becomes 
quite good. The losses of the TM mode are generally higher than the 
TE mode loss. However, even in this case the TE mode loss can be 
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made approximately 1 percent while the TM mode loss can be as low 
as 2 percent if the step is used at its optimum point of operation. For 
kdi > 3 the larger waveguide section ceases to be single mode. 
The dependence of the TE-mode radiation losses on the ratio of the 

width c/2/d1 of the guide on either side of the step is shown in Fig. 7. 
This curve was computed from equations (32), (36) and (37). The 
dielectric constant of the waveguide material was chosen as n = 1.01 
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and kdi = 10 was used. It is apparent that the radiation losses increase 
rapidly as d2/di —› O. 
So far we have discussed the radiation losses of abrupt steps. The 

reduction of the TM-mode losses as the step is changed into a taper is 
seen in Fig. 8. This figure was calculated from equations (52) and (53) 
for a ratio of d2/d1 = 0.5 of the straight guide sections that are con-
nected by a symmetrical linear taper. It is apparent that the linear 
taper needs to be quite long before a substantial improvement of the 
radiation loss is obtained. The actual length of an effective taper need 
not be very large. The length of the taper is represented in Fig. 8 as the 
ratio of its actual length to the half width d1 of the thicker waveguide 
section. Extrapolating the result of Fig. 8 to a value of Lid, = 100 
appears to lead to a loss reduction to approximately 1/10 of the loss 
of the abrupt step. With X = ljz we find that kdi = 1 corresponds to 
di = 0.16 g so that L/di = 100 corresponds to L = 16 g. 
It appears that there are more effective shapes than linear tapers. 

Equations (45), (53) and (54) show that the loss of a taper is essentially 
determined by two factors, the magnitude of the derivatives df/dz and 
dh/dz and the value of /30 — O. Rapid oscillations of the function 
exp [i(00 — e)z] cause the value of the integral to be small. The largest 
value of 13 is a = k. The worst value appearing in the argument of the 
exponential function is, therefore, po — k. The propagation constant of 
the guided mode depends on the width of the waveg-uide and is therefore 
a function of z. The optimum taper, that is intended to connect two 
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30 35 40 

Fig. 8— TM mode radiation loss as a function of the length L of the taper. 
n = 1.432, kcli = 1.0, d2/(14 = 0.5. 
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different waveguides in a given length, would attempt to use larger 
values of df/dz and dh/dz on the wide part of the taper where ao — k 
is still larger and provide smaller values of these derivatives on its 
narrow part where e„ — k is smaller. A linear taper radiates more on its 
narrower portion where the field is less tightly guided. An optimum 
taper would attempt to distribute the radiation loss uniformly over the 
length of the taper. 

VI. RANDOM WALL DISTORTION 

In Ref. 1 we computed the losses of the lowest order guided TE 
mode that is caused by random distortions of one of the two waveguide 
walls. For the sake of completeness we include here the corresponding 
formula for TM modes which can be immediately obtained from the 
theory presented in Ref. 1 and our present equations (55) and (56). The 
ensemble average of the relative power loss of the lowest order even TM 
mode (caused by the distortion of one wall by a random process whose 
correlation function is a simple exponential function, equation (85) of 
Ref. 1) with r.m.s. deviation A and correlation length B is given by 

(AP)  A271,(n2 — 1)2 rk  p C052 Ko d   

P  27rBao  [(ao  a) , , 1- 1][  n2k2  
B2 0,2, n21‘2 1- lea  

_fee cos o-d ±  2sin o-d)2 woe sin crd — .-ycr cos o-d)21 
2  de. 

171202 cos 2 0.d 
crr sid o-d  n 2p2 sin2 o-d +  cos2 

(57) 

The radiation loss that is obtained from this equation is shown in Figs. 
9 and 10, by the solid lines. The dotted curves are reproduced from 
Ref. 1 and give the loss of the TE mode for comparison. The curves 
labeled AP-/AP+ show the ratio of backward to forward scattered 
power. The conclusion to be drawn from these curves is that the TM 
mode losses caused by small random wall perturbation are very nearly 
the same as for TE modes. Neither type of mode seems to offer a distinct 
advantage. 
The radiation losses of slab waveguides with random wall distortions 

are representative of the losses of round waveguides with similar wall 
distortions. However, the radiation losses of slab waveguide tapers are 
considerably lower than those of round waveguides. (A discussion of 
round waveguides will be published.) 
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VII. CONCLUSION 

We have derived radiation loss formulae for the dominant mode 
dielectric slab waveguide. The losses for steps and tapers in the wave-
guide were calculated for TE as well as TM modes. The theory of radia-
tion losses for random wall imperfections, that was developed earlier for 
TE modes, was extended to TM modes. 
The radiation losses of abrupt steps with a 2:1 ratio were found to 

be surprisingly low (a few percent). The advantage of gradual linear 
tapers over abrupt steps becomes appreciable only if the taper is much 
longer than the width of the slab. 
The losses of steps and tapers of the slab waveguide are exceptionally 

low. Dielectric waveguides with round and rectangular cross sections 
have considerably highest losses. However, the method of describing 
waveguide distortions as successions of abrupt steps is applicable to 
all dielectric waveguides and simplifies their treatment considerably. 
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An Efficient Heuristic Procedure 
for Partitioning Graphs 

By B. W. KERNIGHAN and S. LIN 

(Manuscript received September 30, 1969) 

We consider the problem of partitioning the nodes of a graph with costs 
on its edges into subsets of given sizes so as to minimize the sum Of the costs 
on all edges cut. This problem arises in several physical situations—for 
example, in assigning the components of electronic circuits to circuit 
boards to minimize the number of connections between boards. 
This paper presents a heuristic method for partitioning arbitrary graphs 

which is both effective in finding optimal partitions, and fast enough to be 
practical in solving large problems. 

I. INTRODUCTION 

1.1 Definition of the Problem 

This paper deals with the following combinatorial problem: given a 
graph G with costs on its edges, partition the nodes of G into subsets no 
larger than a given maximum size, so as to minimize the total cost of 
the edges cut. 
One important practical example of this problem is placing the com-

ponents of an electronic circuit onto printed circuit cards or substrates, 
so as to minimize the number of connections between cards. The com-
ponents are the nodes of the graph, and the circuit connections are the 
edges. There is some maximum number of components which may be 
placed on any card. Since connections between cards have high cost 
compared to connections within a board, the object is to minimize the 
number of interconnections between cards. 
This partitioning problem also arises naturally in an attempt to 

improve the paging properties of programs for use in computers with 
paged memory organization. A program (at least statically) can be 
thought of as a set of connected entities. The entities might be sub-
routines, or procedure blocks, or single instruction and data items, 
depending on viewpoint and the level of detail required. The connections 

291 
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between the entities might represent possible flow or transfer of control, 
or references from one entity to another. The problem is to assign the 
objects to "pages" of a given size so as to minimize the number of 
references between objects which lie on different pages. 
To pose the partitioning problem mathematically, we shall need the 

following definitions. Let G be a graph of n nodes, of sizes (weights) 
> 0, i = 1, • • • , n. Let p be a positive number, such that 0 <w  p 

for all j. Let C = (cii), i, j 1, - • • , n be a weighted connectivity matrix 
describing the edges of G. 
Let k be a positive integer. A k-way partition of G is a set of nonempty, 

pairwise disjoint subsets of G, y,, • • • , v, such that J, v, = G. A 
partition is admissible if 

I v, I p for all i, 

where the symbol I x stands for the size of a set x, and equals the sum 
of the sizes of all the elements of x. The cost of a partition is the summa-
tion of c,i over all i and j such that i and j are in different subsets. The 
cost is thus the sum of all external costs in the partition. 
The partitioning problem we consider here is to find a minimal-cost 

admissible partition of G. 
There are three other problems which are equivalent to this one. 

First, minimizing external cost is equivalent to maximizing internal 
cost because the total cost of all edges is constant. Further, by changing 
the signs of all cii's, we can maximize external cost, or minimize internal 
cost. 

1.2 Exact Solutions 

A strictly exhaustive procedure for finding the minimal cost partition 
is often out of the question. To see this suppose that G has n nodes of 
size 1 to be partitioned into k subsets of size p, where kp = n. Then there 
are (;) ways of choosing the first subset, (7) ways for the second, 
and so on. Since the ordering of the subsets is immaterial, the number 
of cases is 

(npXn —p (p)\p 
For most values of n, k, and p, this expression yields a very large num-
ber; for example, for n, = 40 and p = 10 (k = 4), it is greater than 1020 . 
Formally the problem could also be solved as an integer linear pro-

gramming problem, with a large number of constraint equations neces-
sary to express the uniformity of the partition. 
Because it seems likely that any direct approach to finding an optimal 
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solution will require an inordinate amount of computation, we turn to 
an examination of heuristics. Heuristic methods can produce good 
solutions (possibly even an optimal solution) quickly. Often in practical 
applications, several good solutions are of more value than one optimal 
one. 
The first and foremost consideration in developing heuristics for 

combinatorial problems of this type is finding a procedure that is power-
ful and yet sufficiently fast to be practical. A process whose running 
time grows exponentially or factoiially with the number of vertices of 
the graph is not likely to be practical. In most cases, a growth rate of 
more than the square of the number of vertices is still not too practical. 
(If the running time of a procedure grows as f(n), where n is the number 
of vertices involved, we shall refer to it as an f(n)-procedure.) 

1.3 False Starts 

To point out a few pitfalls, we mention some unsuccessful attempts at 
heuristic solutions to the partitioning problem. 

1.3.1 Random Solutions 

One tactic is simply to generate random solutions, keeping the best 
seen to date, and terminating after some predetermined time or value 
is reached. This is quite fast, although actually an n2-procedure. Un-
fortunately, this approach is unsatisfactory for problems of even 
moderate size, since there are generally few optimal or near-optimal 
solutions, which thus appear randomly with very low probabilities. 
Experience with 2-way partitions for a class of 0-1 matrices of size 
32 X 32, for example, has indicated that there are typically 3 to 5 
optimal partitions, out of a total of () partitions, giving a probability 
of success on any trial of less than 10. 

1.3.2 Max Flow-Min Cut 

Another partitioning method is the Ford and Fulkerson max flow-min 
cut algorithm'. The graph is treated as a network in which edge costs 
correspond to maximum flow capacities between pairs of nodes. A cut 
is a separation of the nodes into two disjoint subsets. The max flow-min 
cut theorem states that the maximal flow values between any pair of 
nodes is equal to the minimal cut capacity of all cuts which separate 
the two nodes. In our terminology, a cut is a 2-way partition, and the 
cut capacity is the cost of the partition. The Ford and Fulkerson algo-
rithm finds a cut with maximal flow, which is thus a minimal cost cut; 
this represents a minimum cost partition of the graph into two subsets 
of unspecified sizes. 
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There are several difficulties involved in using the Ford and Fulkerson 
algorithm for our partitioning problem. The most severe of these is the 
fact that the algorithm has no provision for constraining the sizes of the 
resultant subsets, and there seems to be no obvious way to extend it 
to include this. Thus if flow methods are used to perform a split, then 
further processing is necessary to make the resulting subsets the correct 
size. If the subsets are greatly different in size, then use of this algorithm 
will have produced essentially no benefit. Hence in spite of its theoretical 
elegance, the Ford and Fulkerson algorithm is not suitable for this 
application. (Note however, that since it does find the minimal cost 
unconstrained 2-way partition, the value it produces is a lower bound 
for solutions produced by any method.) 

1.3.3 Clustering 

A class of much more intuitive methods is based on identifying "nat-
ural clusters" in the given cost matrix—that is, groups of nodes which 
are strongly connected in some sense. For example, one can use very 
simple heuristics for building up clusters, based on collecting together 
elements corresponding to large values in the cost matrix. But again 
these methods do not in general include much provision for satisfying 
constraints on the sizes of the subsets, nor do they provide for syste-
matic assignment of "stragglers" (nodes which do not obviously belong 
to any particular subset). 

1.3.4 X-0 piing 

Lin, working on the Traveling Salesman Problem, [See Ref. 2] cate-
gorized a set of methods of improving given solutions by rearranging 
single links, double links, triplets, and in general, X links. He referred 
to a change involving the movement of X links as a X-change. If a con-
figuration of the system is reached in which no X-change can be made 
which results in a decrease in cost, the configuration is said to be "X-opt." 
For the partitioning problem, an analogous operation is the inter-

change of groups of X points between a pair of sets. Thus a 1-change is 
the exchange of a single point in one set with a single point in another 
set. A configuration is then said to be "1-opt" if there exists no inter-
change of two points which decreases the cost of the partition. Experi-
ments to evaluate 1-opting for 2-way partitions of 0-1 matrices (32 X 32) 
within which about one-half of the elements were nonzero, show that 
apparently optimal values can be achieved in about 10 percent of the 
trials; values within 1 or 2 of the optimal can be achieved in about 75 
percent of cases. 
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It appears fruitless to extend X beyond 1 (1-opting is already an 
re-procedure), or to extend 1-opting experiments to partitions into 
more than two subsets, since more powerful methods have been devel-
oped. These methods are the topic of the next sections. 

II. TWO- WAY UNIFORM PARTITIONS 

2.1 Introduction 

The simplest partitioning problem which still contains all the sig-
nificant features of larger problems is that of finding a minimal-cost 
partition of a given graph of 2m vertices (of equal size) into two subsets 
of n vertices each. The solution of the 2-way partitioning problem is the 
subject of this section. The solution provides the basis for solving more 
general partitioning problems. In Section 2.6, we discuss 2-way partitions 
into sets of unequal size. 
Let S be a set of 2m points, with an associated cost matrix C = (c, I), 
j = 1, • • • , 2n. We assume without loss of generality that C is a 

symmetric matrix, and that cii = 0 for all i. There is no assumption 
about nonnegativity of the ci i's. We wish to partition S into two sets 
A and B, each with n points, such that the "external cost" T = EA X a cab 
is minimized. 
In essence, the method is this: starting with any arbitrary partition 

A, B of S, try to decrease the initial external cost T by a series of inter-
changes of subsets of A and B; the subsets are chosen by an algorithm 
to be described. When no further improvement is possible, the resulting 
partition A', B' is locally minimum with respect to the algorithm. We 
shall indicate that the resulting partition has a fairly high probability 
of being a globally minimum partition. 
This process can then be repeated with the generation of another 

arbitrary starting partition A, B, and so on, to obtain as many locally 
minimum partitions as we desire. 
Given S and (cii), suppose A*, B* is a minimum cost 2-way partition. 

Let A, B be any arbitrary 2-way partition. Then clearly there are subsets 
X C A, Y C B with IX1 = I YI  n/2 such that interchanging X and 
Y produces A* and B* as shown below. 

As= A - X +Y 

E3= 8- Y + X 
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The problem is to identify X and Y from A and B, without considering 
all possible choices. The process we describe finds X and Y approxi-
mately, by sequentially identifying their elements. 
Let us define for each a e A, an external cost E. by 

= E 
VID 

and an internal cost I. by 

I. =  

Similarly, define Eb Ib for each b e B. Let D. = E, — I. for all z e S; D. 
is the difference between external and internal costs. 

Lemma I: Consider any a e A, b e B. If a and b are interchanged, the 
gain (that is, the reduction in cost) is precisely D. + D b —  2Cab . 

Proof: Let z be the total cost due to all connections between A and 
B that do not involve a or b. Then 

T = z + E,, + E,. — c.b • 

Exchange a and b; let T' be the new cost. We obtain 

T' = z + I + lb + 

and so 

gain = old cost — new cost = T — T' 

= D. + D,. — 2cab • 

2.2 Phase I Optimization Algorithm 

In this subsection we present the algorithm for 2-way partitioning. 
First, compute the D values for all elements of S. Second, choose 

a; e A, b1 e B such that 

g, =  + Db,  2 ca16i 

is maximum; ai and b correspond to the largest possible gain from a 
single interchange. (We will return shortly to a discussion of how to 
select ai and bi quickly.) Set ai and bi aside temporarily, and call them 
a; and b; , respectively. 
Third, recalculate the D values for the elements of A — fad and 

for B — 1b11, by 

D; = D, + 2c„„ — 2c,b,  xeA — faj, 

= D + 2c„,, —  yeB — lb,!. 
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The correctness of these expressions is easily verified: the edge (x, ai) 
is counted as internal in D, , and it is to be external in D, so c, must 
be added twice to make this correct. Similarly, c.rb, must be subtracted 
twice to convert (x, 14) from external to internal. 
Now repeat the second step, choosing a pair a , b from A — aI  

and B — lb;} such that g2 = Do.,  D b., — 2C..• b.. is maximum (ct 

and bl are not considered in this choice). Thus g2 is the additional gain 
when the points cg and b are exchanged as well as a;. and b ; this ad-
ditional gain is maximum, given the previous choices. Set étt and 1) 
aside also. 
Continue until all nodes have been exhausted, identifying (ca , b), • • • , 

(a„' , b), and the corresponding maximum gains g3, • • • , g„ . As each 
(a', b') pair is identified, it is removed from contention for further choices 
so the size of the sets being considered decreases by 1 each time an 
(a', b') is selected. 
If X = a, a, • • • , a, Y = b, b, • • • , b, then the decrease in 

cost when the sets X and Y are interchanged is precisely gl g2 + • • • 
gk . Of course En, g. = O. Note that some of the es are negative, 

unless all are zero. 
Choose k to maximize the partial sum  gi = G. Now if G > 0, 

a reduction in cost of value G can be made by interchanging X and Y. 
After this is done, the resulting partition is treated as the initial partition, 
and the procedure is repeated from the first step. 
If G = 0, we have arrived at a locally optimum partition, which we 

shall call a phase 1 optimal partition. We now have the choice of re-
peating with another starting partition, or of trying to improve the phase 
1 optimal partition. We shall discuss the latter option shortly. Figure 1 
is a flowchart for the phase 1 optimization procedure. 

2.3 Effectiveness of the Procedure 

One general approach to solving problems such as this one is to find 
the best exchange involving say X pairs of points, for some X specified 
in advance2. The difficulty encountered is that use of a small value of 
X is not sufficient to identify good exchanges, but the computational 
effort required grows rapidly as X increases. 
The procedure we have described sequentially finds an approximation 

to the best exchange of X pairs. X is not specified in advance, but rather 
is chosen to make the improvement as large as possible. This technique 
sacrifices a certain amount of power for a considerable gain in speed. 
Since we construct a sequence of gains g.• , i = 1, • • • , n, and find the 
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Fig. 1—Flowchart of phase 1 optimization procedure. 

maximum partial sum, the process does not terminate immediately when 
some g, is negative. This means that the process can sequentially identify 
sets for which the exchange of only a few elements would actually in-
crease the cost, while the interchange of the entire sets produces a net 
gain. 
Numerous experiments have been performed to evaluate the pro-

cedure on different types of cost matrices. The matrices used have in-
cluded (i) 0-1 matrices, with density of nonzero elements ranging from 
5 percent to 50 percent, (ii) integer matrices with elements uniformly 
distributed on [0, k], k = 2, • • • , 10, (iii) matrices with clusters of 
known sizes and binding strength. Results on all of these matrices have 
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been similar, so we shall only summarize them here. A more extended 
discussion may be found in Ref. 3. 
A useful measure of the power of a heuristic procedure is the proba-

bility that it finds an optimal solution in a single trial. Suppose that p 
is the probability that a phase 1 optimal solution found using a random 
starting partition is globally optimal. We have examined the behavior 
of this probability as the size of the matrices involved is varied. Experi-
ments show p is around 0.5 for matrices of size 30 X 30, 0.2 to 0.3 for 
60 X 60, and 0.05 to 0.1 for 120 X 120. The functional behavior of p 
is approximately p(n) 
These values are derived primarily from 0-1 matrices having about 

50 percent l's (randomly placed). Experiments on matrices with lower 
densities of l's yield larger variances, but substantially identical mean 
values for p. 

2.4 Running Time of the Procedure 

Let us define a pass to be the operations involved in making one cycle 
of identification of (at, b;), • • • , (a„' , b), and selection of sets X and 
Y to be exchanged. The total time for a pass can be estimated this way. 
First, the computation of the D values initially is an n2-procedure, since 
for each element of S, all the other elements of S must be considered. 
The time required for updating the D values is proportional to the 
number of values to be updated, so the total updating time in one pass 
grows as 

(n — 1) + (n — 2 ) + • • • +  + 1 

which is proportional to n2. 
The dominant time factor is the selection of the next pair a; , b to 

be exchanged. The method we have used to perform this searching is to 
sort the D values so that 

D „  • • • k. D„„ 

and 

Db, Db.  • • • k Db. 

When sorting is used, only a few likely contenders for a maximum gain 
need be considered. This is because when scanning down the set of Do's 
and Db's, if a pair D14, Dbi is found whose sum does not exceed the 
maximum improvement seen so far in this pass, then there cannot be 
another pair ab, b, with k  j, with a greater gain, (assuming 
cii 0) and so the scanning can be terminated. Thus the next pair 
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for interchange is found rapidly. Sorting is an n log n operation, so in 
this method, the total time required to sort D values in a pass will be 
approximately 

n log n  (n — 1) log (n — 1) ± • • • ± 2 log 2 

which grows as n2 log n. 
To reduce the time for selection of an (a, b) pair, it is possible to use 

techniques which are faster than sorting, but which do not necessarily 
always give the maximum gain at each stage. For example, one method 
is to scan for the largest D. and the largest D b  and use the correspond-
ing a and b as the next interchange. This method is essentially linear-
time and would probably be implemented as part of the recomputation 
of the D values. It is best suited for sparse matrices, where the prob-
ability that Cab >  0 is small. A slight extension, involving negligible 
extra cost, is to save the largest two or three D.'s and D,,'s, so that if 
the largest pair does not give the maximum gain (because Cab is too 
large), then another can be tried. Experience indicates that three values 
are sufficient in virtually all cases, even for matrices with a relatively 
high percentage of nonzero entries. Use of this method reduces running 
time by about 30 percent in the present implementation, with very 
small degradation of power. 
The number of passes required before a phase 1 optimal partition is 

achieved is small. On all matrix sizes tested at the time of writing (up 
to 360 points), it has been almost always from 2 to 4 passes. On the basis 
of this experimental evidence, the number of passes is not strongly 
dependent on the value of n. 
From the foregoing observations, it is possible to estimate the total 

running time of the procedure. If we use a method which sorts the D 
values at each stage (time proportional to n2 log n), then the running 
time should grow as n2 log n. If a fast-scan method is used, and the 
number of passes is constant, the running time should have an n2 
growth rate; this is a lower bound. 
For comparison, examination of all pairs of sets X and Y, and evalua-

tion of the costs would require time proportional to 

2 k"#:  (nk) 2 n22  (nk) 2 

=  712 (21 
2 n 

72. 4,4 1 y 

for large n. This function grows as n2/24n. 
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Running times have been plotted in Fig. 2. The observed times have 
an apparent growth rate of about n 2.4 , which is reasonably close to 
n2. Although on the logarithmic plot this curve is close to linear over 
the range n = 20 to n = 130, it may actually be n2 log n; insufficient 
data is available to check this. All times are based on an implementation 
in FORTRAN G on an IBM System 360 Model 65. 

2.5 Improving the Phase 1 Optimal Partition 

In this section, we discuss a method which might be used to improve 
the partition produced by the phase 1 procedure, which may not be 
globally optimum. The method suggested in this section is based heavily 
on experimental evidence, although there are quite plausible reasons 
for performing the particular set of operations. The basic idea is to 
perturb the locally optimal solution in what we hope is an enlightened 
manner, so that an iteration of the process on the perturbed solution 
will yield a further reduction in the total cost. If this tactic fails, nothing 
has been lost except some computation time, since the best solution 
seen so far is always saved. 
Computer results for problems with up to 64 points suggest that 

whenever a phase 1 optimal solution is not globally optimal, I X I = 
Y I n/2. Roughly, this implies that if X I and I Y I had been small 

in 
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compared to n/2, they would have been found by the process; it is only 
larger sets which are not identified all the time. 
A successful heuristic to find the correct X and Y in this case is to 

find a phase 1 optimal partition for each of the sets A and B, say A —› 
[A, , A-21 and B —> [B, , B2]. (That is, find near-optimal partitions of A 
and of B separately.) Recombine the 4 sets into 2, say A° = A, U B, 
and B. = A, LJ B2, and continue with phase 1 optimization. If our 
expectation is correct, the new X and Y will be small, and thus readily 
identified by the phase 1 process. 
When A is split into A1 , A 2 and B into B, , B, there are two ways in 

which the smaller sets can be recombined. A series of tests was made on 
matrices of moderate size (up to 64 X 64), in which both possible recom-
binations were done, generating three phase 1 optimal values for each 
starting partition. For matrices of size 32 X 32, the apparent optimal 
value was observed at least once in each triple of values, for a large 
number of cases. With matrices of size 64 X 64, there were occasional 
failures. 
It might be noted that the extra time involved for the recombination 

approach is three times that required to do a completely new partition 
from a random start, assuming an n2-procedure. 
It is possible to estimate whether a particular improvement tactic 

is profitable or not in the following way. Suppose that some method 
increases the probability of finding an optimal partition from p to p', 
while it increases the running time from t to t'. Then in a fixed amount 
of time, it is possible to do k trials of the basic procedure, and kt/t' 
trials of the improved method. The corresponding probabilities of 
achieving an optimal solution are 1 — (1 — p)" and 1 — (1 — p')"/e 
respectively. The improved method is then desirable if the second ex-
pression is greater than the first; by simple manipulation, this condition 
becomes 

1 — p̀ < (1 — p) ". 

On the basis of the numerical values in this section, it may be useful to 
try the recombination method. 

2.8 Partitioning into Unequal-Sized Sets 

It is simple to modify the procedure to partition a set S with n ele-
ments into two sets of specified sizes n, and n2(n1 ± n2 = n). Assume 
ni < n2. Then restrict the maximum number of pairs that can be ex-
changed in one pass of the procedure to n1. All other operations are 
performed on all elements of each set. (The starting partition is into 
two sets, of n, and n2 elements respectively.) 
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Suppose we wish to partition S into two sets, such that there are at 
least ni elements and at most n2 elements in each subset; ni -F n2 = n, 
but they are not specified further. 
The procedure is easily modified to handle this sort of constraint 

by the addition of "dummy" elements. These are elements which have 
no connections whatsoever; that is, they have zero entries in the cost 
matrix wherever they appear. Add 2n2 — n dummies so S has 2n2 
elements, and perform the procedure on it. The resulting partition will 
assign the dummy elements to the two subsets so as to minimize the 
external cost; at this point the dummies are discarded, leaving a parti-
tion into two subsets that satisfy the size constraints given. 

2.7 Elements of Unequal Sizes 

We have made the assumption so far that the elements (vertices) of 
the graph are all of the same size. This requirement may be relaxed to 
a large extent by converting any node of size k> 1 to a cluster of k nodes 
of size 1, bound together by edges of appropriately high cost. The size 
of the problem will obviously increase proportionally to the value of k, 
so it may be necessary to sacrifice some accuracy to keep the number of 
generated nodes within reasonable bounds. 

III. MULTIPLE- WAY PARTITIONS 

3.1 Reduction to 2-Way Partitioning Problem 

So far, the discussion has been concerned exclusively with the basic 
problem of performing a 2-way partition on a set of 2m objects. In this 
section we extend the technique to perform k-way partitions on a set of 
km objects, using the 2-way procedure as a tool. 
The essential idea is to start with some partition into k sets of size 

n and by repeated application of the 2-way partitioning procedure to 
pairs of subsets, make the partition as close as possible to being pairwise 
optimal. (Section 3.2 treats the question of what starting sets to use.) 
Of course pairwise optimality is only a necessary condition for global 
optimality. There may be situations where some complex interchange 
of three or more items from three or more subsets is required to reduce 
a pairwise optimal solution to globally optimum; at the moment, no 
reasonable method for identifying such sets is known. 
There are () pairs of subsets to consider, so the time for one pass 

through all pairs is (assuming an eprocedure) (k2)n2  (kia)2/ 2  = 

(number of points)2/2. In general, more passes than this will actually 
be required, since when two sets are made optimal, this may change their 
optimality with respect to other sets. 
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Experience indicates that the number of passes is small and the process 
converges quickly. For example, our algorithm selects (i, j) as the next 
pair of sets to be optimized, where either i or j has been changed since 
the last time the pair (i, j) was selected. Using this selection process, 
the average number of passes through each pair of sets is a slowly grow-
ing function of both k and n. For matrices of size 100 or less and k < 6, 
the number of passes has been less than 5. [The average number of 
passes is computed as the average number of pairs considered to reach 
pairwise optimality, normalized by ().] 
In any particular trial, there is a correlation between the number of 

pairs selected and the quality of the final partition. To get a better 
solution requires more work. 
Convergence is rapid: two passes account for more than 95 percent 

of the improvement in most cases; the remaining passes contribute only 
small further reductions. Let p(n, k) be the proportion of minimum cost 
solutions found for a particular n and k. For k fixed and small compared 
to n, the functional behavior of p(n, k) is similar to the case k = 2, but 
the actual values are lower. Roughly, we observe p(n, k  1)  p(n, k) 
for k in the range 2-4, and n up to 100, with considerable variation 
depending on the matrix being tested. For instance, for matrices of 
size about 40, p(40, 2)  0.4, p(42, 3)  0.2, and p(40, 4)  0.1. 
Another interesting question is measurement of how close to optimum 

the partitions found are. The solutions obtained by pairwise optimiza-
tion have values concentrated in a narrow range. In almost all cases, the 
largest value found by the procedure is within 4-5 percent of the smallest. 
As another measure, if e is the mean cost of random partitions and b is 
the cost of the best partition observed, then virtually all partitions 
found have values y such that 

— b  0.1(c — b). 

For instance, one test case was a series of 4-way partitions of a 0-1 
matrix of size 80. This matrix had 1278 nonzero entries (a density of 
0.2), corresponding to 639 edges in the graph. The mean value of 
randomly chosen partitions was 480.6. Twenty-four partitions of this 
matrix were found using the method described above. The lowest 
value encountered was 352 (1 time), the highest 365 (1 time); the mean 
value was 359.5, the median 360. 

3.2 Starting Partition 

In this subsection we discuss various methods of generating good 
starting partitions, based on modifications of the basic procedure. 
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The primary reason for choosing good starting partitions is that this 
particular form of preprocessing reduces the amount of work required 
to make the system pairwise optimal. It may also make the probability 
of an optimal solution higher, although this tendency is very difficult to 
evaluate. 
Several methods for finding good multi-way starting partitions which 

are based on repeated application of the procedure itself have been 
investigated. The essential idea is to generate a k-way starting partition 
by first forming an r-way partition, then an s-way partition on each of 
the resulting subsets, and so on, up to t-way. (Here k = rs • • • t.) The 
partitions found this way will in general be better than those which are 
completely arbitrary. A pairwise optimization stage is applied to the 
final set of subsets. 
For example, if k is a power of 2, then perform a 2-way split, then a 

2-way split on each of these subsets, and so on until the desired size of 
subsets is found. 
This general approach is prone to the following difficulty: the first 

split divides the original set into r subsets by trying to make the internal 
connections in each subset as large as possible. Obviously this may con-
flict directly with the next stage, which is to try to divide each subset 
further. Carried to several levels, it can lead to a relatively poor overall 
solution. In experiments with 4-way partitions of matrices of sizes up to 
64 X 64, this method yields optimal solutions approximately as often 
as does starting with a 4-way partition in the first place. In addition, 
this method will be effective if the matrix happens to have natural 
clusters of approximately the correct size (that is, equal to the final 
subset size). 
A second method which can be used is to partition the set of kn ele-

ments into a set of n and a set of (k — 1)n, using the slightly modified 
version of the basic procedure discussed in the first part of Section 2.6. 
The set of n elements is set aside, and the next n elements from the 
remaining (k — 1)n are identified. This continues until k subsets have 
been formed; again the pairwise optimization technique is used to 
improve on this partition. 
This method can make an error in the identification of the first set 

which will bias the choice of the second, and so on; the effect is most 
severe for the case where k is large, so each set is small. 
The method of breaking off subsets sequentially has another potential 

flaw: regardless of the starting configuration, it will identify approxi-
mately the same set each time it is used on a particular problem, and 
hence little is gained by using it twice on one cost matrix. However 
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variations in the order of performing pairwise optimizations can still 
produce different final partitions in general. 
Limited computational experience with sequential break-off followed 

by pairwise optimization suggests that it yields solutions which are on 
the average at least as good as (and sometimes slightly better than) 
those provided by pairwise optimization applied to an arbitrary k-way 
starting partition. Pairwise optimization yields the optimum with a 
higher probability, however, because it is less susceptible to error caused 
by a bad choice made early. For instance, in tests on the 80 point matrix 
mentioned previously, sequential break off yielded 4-way solutions with 
a mean value of 358.6, but the lowest value found was 355. (The highest 
was 363.) These may be compared to 359.5, 352 and 365 for the standard 
partitioning method. 
Running time for the sequential break-off method is lower than for 

straight pairwise optimization. 
Insufficient data is available for a direct comparison between se-

quential break off and the method of repeated subdivision. 
In all cases, the original process, be it a completely random generation 

of some initial configuration, or the production of a good starting parti-
tion, is followed by a pairwise optimizing phase. It is unlikely that using 
better starting partitions will lead to worse results than random starts, 
on the average. Whether the possible improvement in results and running 
times will justify the extra computational effort required to generate the 
starting partition depends on the characteristics of the particular class 
of matrices being studied. 
Some limited experiments were performed to compare the present 

procedure with a multi-dimensional scaling technique', on a Boolean 
matrix of 316 points, with about 1400 nonzero entries. The results in-
dicated that the procedure identifies clusters well, even when no attempt 
is made to provide a good starting partition. 

3.3 Expansion Factor 

The introduction of dummy elements was mentioned in Section 2.6 
as a method of handling partitioning into subsets of unequal sizes. This 
can be viewed equally well as a means of introducing "slack" into a 
solution, in an attempt to get a lower overall cost by allowing "ex-
pansion." That is, so far we have treated the problem of finding a parti-
tion with a constraint on the sizes of the subsets, and on the number of 
subsets, since given kn points, we have tried to find the best partitions 
into exactly k subsets of n points each. Suppose we now relax this 
second constraint by permitting the addition of dummy elements to in-
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Fig. 3 — Cost reduction by expansion. 

crease the size of the problem, and attempt to find the best solution in-
volving any number (greater than or equal to k) of subsets, with at most 
n points in each. This solution with k or greater subsets will in general 
have a lower cost than the constrained solution. 
Figure 3 shows an example in which introducing slack permits a 

lower overall cost. Assume n is 3 and all nodes are size 1. The vertical 
edges have cost 1 and the horizontal ones cost 2. Any partition into 2 
equal subsets has a cost of at least 3, but there is an obvious partition 
into 3 subsets with cost 2. Any nontrivial partition into 4 or more sub-
sets has a cost greater than 2, so 3 subsets represents the optimal ex-
pansion. It is possible to find the minimal cost solution and the cor-
responding optimal amount of expansion as follows. Suppose the problem 
has kn points to be partitioned into k sets of n points each. Starting with 
no slack (kn points), the optimal assignment is found. Then n dummies, 
enough to create one extra subset, are added, making a (k  1)n prob-
lem, and so on. Eventually, one subset is produced which consists 
entirely of dummies. When this occurs, we take the partition with this 

set of dummies removed as our optimum solution. 
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Laser Speckle Pattern— 
A Narrowband Noise Model 

By CHRISTOPH B. BURCKHARDT 
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We represent by an electrical model the imaging of a one-dimensional 
coherently illuminated and diffusely reflecting surface by an optical system 
with a rectangular aperture. We then obtain the statistical properties of 
the image intensity from the statistical properties of the square of the en-
velope of a narrowband noise signal in the electrical model. The analysis 
is simple because use can be made of results known in communication 
theory. The results agree with those obtained in, a direct way. 

I. INTRODUCTION 

The speckle pattern in the image of a coherently illuminated and 
diffusely reflecting object has been analyzed by Enloe'. Enloe's results 
show a remarkable similarity to some results occurring in the theory of 
narrowband noise (See Ref. 2, pp. 397 ff.). This similarity prompts the 
question whether Enloe's results can be derived by the use of an elec-
trical model analogy involving narrowband noise.* In this paper we will 
show that this is indeed possible for the special case of a one-dimensional 
subject and an optical system with a rectangular aperture. The analysis 
is simple because we can use results known in communication theory 
and the results agree with those of Enloe'. 

II. THE OPTICAL MODEL 

The optical model is shown in Fig. 1. In plane P1 there is a coherently 
illuminated row of scatterers which scatter with random phase (a one-
dimensional diffusely reflecting surface). At a distance d in plane Pg 

there is a lens. In front of the lens there is a rectangular aperture with 
an amplitude transmission H(x2 , y2). The distance dis large compared to 
the focal length f of the lens and therefore to a good degree of approxima-

*Such an analogy was already suggested by Rigden and Gordon.3 
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Fig. 1— Optical model. 
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tion the image of the scatterers in plane Pi is situated in plane P 3 at a 
distance f from the lens. Enloe computed the intensity as well as the 
autocorrelation of the intensity in the image plane.' 
As a help in understanding the following electrical model we make 

the following comments regarding the optical model. Suppose that the 
instantaneous value of the electric field e(xl , t) in the object plane Pi 
is given by 

e(x, , = 4 -1Àd ) exp (-271-jv01). (1) 

e(x, , t) is zero for yi 0 0. The time-independent phasor is 

= a(a,), Xd  (2) 

where we have introduced the spatial frequency coordinate 

a XI 

Xd (3) 

(We write a( ) as a function of the spatial frequency xi/Xd and not of 
xi in order to simplify the following computation.) For later use we also 
introduce 

a =, Yi 
Xd 

Since the lens is situated in the far field of the object, the phasor A(x2 y2) 
in plane P2 in front of the aperture is the Fourier transform of a(ai), 

(4) 

A(x2 , y2) =f f  exp (2.71-ja1x2) exp (27ri31Y2) dal ce •  (5) 
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Since a(ai) is zero for 0, 0 0 the above two-dimensional Fourier trans-
form operation reduces to the one-dimensional Fourier transform 
operation 

A (x2 , Y2) = f a(a1) exp (27rja1x2) da, .  (6) 

It is seen that A (x2, Y2) is a function of x2 only and we will therefore 
write A (x2). The phasor behind the aperture, B(x2 y2) is obtained as 
the product of A(z2) and the aperture transmission function H(x2 , Y2) 

B(x2, Y2) = A(x2) • H(x2 yo).  (7) 

As was mentioned we assume a rectangular aperture function. We 
assume that H(x2 , Y2) can be written as 

11(x2 y2) = 111(x2) • Ha(Y2).  (8) 

Since our object is one-dimensional we are only interested in the image 
intensity at y2 = O. The image intensity at y3 = 0 is not influenced by 
H2(Y2) except for a factor which remains constant over all z3. For 
equation (7) we can therefore write 

B(x2) = A (x2) • Hi (x2) (9) 

with the understanding that B(x2) does vary in the y2 direction but that 
this variation is of no interest to us. So much for the optical model. 
We will now present the electrical model. 

III. THE ELECTRICAL MODEL 

The electrical model is shown in Fig. 2. The electric field in the obj ect 
plane is scanned by a detector whose output voltage is proportional 
to the instantaneous value of the electric field in the object plane. (In 
the optical region there are no such detectors available. This should 
not present any conceptual difficulties since we can scale up our model to 
a longer wavelength where there are such detectors.) 

Pi 

FILTER 

'DETECTOR 

Vo (t) 

DISPLAY OF 
ENVELOPE 

Fig. 2 — Electrical narrowband noise model. 

t3 

P3 

y3 
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The electric field «xi , t) in plane P1 is given by equation (1) and the 
output voltage v,(t) of the scanning detector is 

(v,t 
Mt) = c,a —Xd) exp (-27rjy0t).  (10) 

vi is the scanning velocity and we have 

xi = vet.  (11) 

c, denotes a constant of proportionality which is of no interest. The 
Fourier transform of vi(t) of equation (10), Frvi(1)] is given by 

FT[v,(t)] = ci —1,, A lvi (y — yo)] 
Xd  [Xd 

(12) 

= c2A [— (Y — Po)] • 
vI 

Xd 

A (y) is the Fourier transform of a(t). c2 is a constant of proportionality. 
The Fourier transform or spectrum of vi(t) is centered at yo as shown in 
Fig. 3. In the optical model the spectrum A (x2) is multiplied by the 
aperture transmission function H1(x2) in plane P2. See equation (9). 
In order to simulate this in our electrical model we have to pass the 
voltage v,(t) through a temporal frequency filter with the frequency 
response Hi[(Xd/v1)(v — yo)]. The spectrum B[(Xdivi)(1, — Ye)] at the 
output of the filter is then given by 

Xd Xd  Xd 
(y — yo)1 =A1 -v,  —  I ][—vi (I/ -  1'0)] •  (13) 

LVI  The filter Hi[(Xd/vi)(y — yo)] is shown in the electrical model of Fig. 2 

and its frequency response is sketched in Fig. 3. (The frequency response 
,H,[(Xclivi)(y — yo)] in the electrical model corresponding to the rectangu-
lar aperture transmission function of the optical system can only be 

Fig. 3 — Spectrum of the electrical signal and frequency response of the filter. 
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realized with a time lag, but this need not disturb us.) At the output of 
the filter we have the voltage vo(t) 

v„(  = c3b (le exp ( — 271-frot) ,  (14) 

where b(t) is the Fourier transform of B (y). c, again is a constant of 
proportionality of no interest. The output device scans the image plane 
with a velocity y2 and 

V 2 =  (15) 
v  d 

because in the optical model the image is demagnified by a factor d/ f 
with respect to the object. The inversion of the optical image with re-
spect to the object is accounted for by inverting the coordinate system 
in the image plane P 3 , see Fig. 1. We can now write for equation (14) 

yo(t) = c„b(11 exp (-27r-jvot) 
Xf  (16) 

= c, b  exp ( — 27rjv0 . 
Xf 

In the optical model we detect the intensity in the image plane, that is, 
the square of the absolute value of the phasor. Therefore in our electrical 
model the output device displays I b(x, / Xf) 12. 
The voltage v0(t) at the output of the filter is narrowband compared 

to y0. We now consider Mt) as a narrowband noise voltage. Another 
equivalent representation is (see, for example, Ref. 2, p. 397) 

ve(t) = N e(t) cos 2rv01  N (t) sin 278-pot,  (17) 

----- where 

N (t) = Re  
Xf)1 

N ,(t) = Im [b M ] • 
X 

(18) 

Re [ ] means "real part of" and Im [ ] means "imaginary part of". 
We now assume that the filter is so narrowband that its impulse response 
is much wider than the time over which v1(t) shows any appreciable 
correlation. (This assumption is the equivalent of Enloe's assumption 
that the optical spread function is much wider than the average distance 
between the images of scatterers with independent phase.) If this 
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assumption holds, the voltage vo(t) results from many independent 
values of v.(t). According to the central limit theorem v(t) and therefore 
(t) and Ar .(t) show a Gaussian distribution. The voltage y, (t) therefore 

has the statistical properties of narrowband Gaussian noise which are 
discussed for example in Ref. 2, pp. 397 if. As was mentioned, the square 
of the envelope corresponds to the optical intensity. The envelope E(t) 
is obtained as 

E(t) = [N(t)  .e,(t)P 

= ({Re [b N]}2 {Im [b K}2)4 
« 

(19) 

According to Ref. 2, equation (9.18), E(t) has a Rayleigh probability 
distribution density W (E) 

E exp ( — E2/2  
W(E) =  (20) 

The average value of the square of the envelope (E2)o, which is equal to 
the average value of the optical intensity (I)D„ is given by [Ref. 2, Eq. 
(9.21a)] 

(E')„, = (I)„„ = 2k  (21) 

We are now also interested in the autocorrelation R(s) of the intensity I 

R(s) = (I (xo)I (so s))„, 

= (E2(x3)exo s))„, . 

According to Ref. 2, equation (9.24), R(s) is given by the following 
expression 

R(s) = 44/2[1  k,;(8)] 

le,(8)], 

where we have used equation (21). As explained in Ref. 2, [equations 
(9.10b and 9.12b)] k0(s) is the autocorrelation of the spread function 
corresponding to a filter with the frequency response Hi((Xd/vi)P). 
This is the frequency response of the filter in our electrical model (see 
Fig. 2), but centered at zero frequency. The frequency response Hi ((Xd/v1)P) 
is shown in Fig. 4. k0(s) is normalized to one at s = O. (The above dis-
cussion holds when the frequency response of the filter is symmetrical 
about the origin as is true for our case.) The spread function is the 

(22) 

(23) 
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FREQUENCY 
RESPONSE 

Fig. 4—Frequency response of the filter fill(Xd/vi)Pl. 

Fourier transform of the frequency response and so we have 

FT[Ii1()-±1v, v)] = c.h(lx (24) 

where H1(E) and h(t) are Fourier transform pairs. ci is a constant of no 
interest. Therefore we obtain for /co (s) 

le0(s) =  v1,11:1) dt 

pe) p(i) 

P(0)  PM 

p(U) = f h*(1)h(1 -I- u) dt.  (26) 

Using equations (23) and (25) we finally obtain for R(s) 

P2(8-71)1 
R(s) = (12).11 ±  2 P (0)  (27) 

This last equation is the same as Enloe's equation (14) if the last term 
in that equation is disregarded. The last term in Enloe's equation (14) 
vanishes if the spread function of the filter is much broader than the 
average distance between images of scatterers with independent phase. 
The power spectrum follows from the autocorrelation function in the 
same way as in Enloe's analysis and this derivation will not be repeated 
here. 
In summary: We have derived the statistical properties of the intensity 

in the image of a one-dimensional coherently illuminated and diffusely 
reflecting subject with the help of a narrowband noise model. Use was 
made of results known in communications theory. 

where 

(25) 
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Erratum 

On page 3440 of the December 1969 Bell System Technical Journal, 
Reference 6, "Comparison of An Energy Density Antenna System with 
Predetection Combining Systems for Mobile Radio" by W. C. Y. Lee, 
was mistakenly listed as an unpublished work. That article was pub-
lished in the IEEE Trans. on Communication Technology, 17, No. 2 
(April 1969), pp. 277-284. 
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