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Signal characteristics of the silicon diode array used as the image sensing 
element of the Picture phone®  camera tube have been studied using a 
numerical computation. Analytical representation of the target is based on 
the numerical calculation of the depletion region geometry for an array 
diode unit-cell undergoing discharge. This analysis includes the effects of 
Si-8i02 fixed interface charge density, sea resistance, substrate resistivity, 
P+ island geometry, and SiO2—Si surface inversion phenomenon. 
Computed depletion region geometries are used to calculate surface and 

bulk contributions to array dark current. It is shown that signal current 
limitations due to surface inversion can be avoided using lower values of 
sea resistance coupled with higher SiO2—Si interface fixed charge density. 
For the resistive sea target structure, inversion effects are less pronounced 
for targets fabricated with P+ islands larger than 10 gm diameter and sea 
sheet resistances less than 10" ohms per square. This signal limiting effect 
can also be eliminated by using a conductive overlay structure. 
Results of analyses of lag characteristics and electron beam limitations 

are also presented. 

I. INTRODUCTION 

The silicon target, used as the image sensing element in the Picture-

phone® camera tube, " is composed of a matrix of diffused diodes. 
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Signal characteristics of the target are the result of a complex interaction 
of the material and geometric parameters of the individual array diodes 
as well as the operating conditions of the target. We have analtyically 
investigated target signal characteristics by means of numerical com-
putations, solving explicitly for depletion region geometry and capaci-
tance and have determined signal characteristics as a function of 
Si—SiO2 interface fixed charge density, sea resistance*, substrate resis-
tivity, P+ island geometry, SiO2—Si surface inversion phenomenon, and 
electron beam acceptance characteristics. 
Section II describes the diode array format and the basic relationship 

of signal current to array capacitance. The model of the reversed biased 
unit cell and the mathematic analysis are described in Sections II and 
III. Signal capabilities of a resistive sea diode array structure are 
discussed in Section IV and extended to include the effects of electron 
beam acceptance in Section V. An alternate geometric structure using 
conductive overlays is analyzed in Section VI. The relationship between 
the array dark current characteristic and target parameters is presented 
in Section VII. In the concluding section we present experimental 
verification of the model. 

II. GENERAL TARGET OPERATION 

The Picture phone®  camera tube target is an array of 8 X 10' 
planar 13+ N diodes fabricated on a thin N-type silicon membrane, 
(Fig. 1). The optical sensing mechanism of the target is the discharge 
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Fig. 1—Silicon camera tube target. 
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* We use the term "sea" to describe the resistive layer covering the array surface 
containing the P+ diffused regions which we will refer to as P+ islands. 
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of this array of diodes by light incident on the 1\1÷ surface (side opposite 
the array). To review the details of the operation it is convenient to 
consider an individual array element, or unit cell, represented by a 
15i.im square section of the array containing a centrally located diode. 
The back surface of the target is held at a potential V. . The target 

face potential is periodically reduced to ground potential by the scanning 
electron beam (Fig. 2). For ideal beam acceptance, the target unit cell 
(consisting of the junction plus the oxide capacitance) is reverse biased 
by an amount V, immediately after scanning. At this time, the junction 
depletion region and any existing silicon surface depletion region will 
be at their geometric maximum. During the time interval (corresponding 
to a frame time, TF), that the electron beam is scanning the remainder 
of the target, the diode cell is discharged by the photon generated holes 
which diffuse to the depletion region of the device. 
The relationship between light-generated minority carriers available 

for discharge and the incident photon flux and the subsequent diffusion 
of these carriers to the diode depletion region has been discussed by 
others.' The individual diode steady state signal current can be related 
to the diode discharge by 

I = — 1 f" C(V) dV  
TF VP 

where 

(1) 

C(V) = diode cell capacitance, 
VT =  the voltage across the diode cell at the start of a frame, 
V, = the voltage across the diode cell at the completion of a frame. 

The upper integration limit will be less than V, if the tube has 
capacitive lag. Maximum signal occurs when V, = 0, which corresponds 
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.---- DEPLETION REGION 

Fig. 2—Target in scanning mode. 
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to ideal electron beam acceptance. Additional charge storage can be 
obtained by driving the diode cell into forward bias. Since increased 
lateral hole spreading causes loss of resolution under this condition, we 
restrict our analysis to reverse bias conditions. 
Figure 3 schematically shows the equivalent components associated 

with the unit cell structure. These consist of: 

(i) the diode junction capacitance, C, 
(ii) the oxide capacitance, Csin , and 
(iii) the silicon surface capacitance at the silicon-oxide interface, CDR'. • 

2.1 Mathematical Model of a Reversed Biased Diode Unit Cell 

For purposes of analysis, an individual diode can be considered as an 
axisymmetric structure composed of several mathematically distinct 
regions. Figure 4 is a schematic representation of the analytical model. 
The regions of interest include: 

(i) Oxide mask— The oxide region is considered to be a homogeneous, 
charge free region with dielectric constant ei . The potential function in 
this region is determined by solution of Laplace's equation. 
(ii) P+ diffused island—This region is considered to be at a uniform 

potential. 
(iii) N-type bulk region—That portion of the N-type bulk region, 

/HOLE 

Tc, 
T CDEP I T CDEP2 T CDEp3 

Fig. 3—Target discharge model. 
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Fig. 4—Diode unit cell geometry. 

remote from the depletion region, is considered to be at uniform poten-
tial. 
(iv) Depletion region—The potential distribution in the depletion 

region is described by Poisson's equation. The charge distribution in 
the depletion region remote from the oxide-silicon interface is considered 
constant and set by the doping level of the N-type bulk material. An 
additional charge density is assumed in the depletion region at the 
Si—SiO2 interface to describe the oxide fixed charge. The depletion region 
has a dielectric constant E2 . 

2.2 Boundary, Interface Conditions 

The target analysis is complicated because the target consists of 
axisymmetric diffused regions arranged on a square format and spaced 
such that the diode depletion regions can connect for some combinations 
of target parameters. We analyze an axisymmetiic structure and correct 
for the effects of the cell corner regions when necessary. 
Except for the boundary separating the depletion and N-type bulk 

regions (discussed in Section 2.3), the boundary conditions for this 
problem are straight-forward: 

(i) There is a radial potential distribution on target surface. 
(ii) The radial potential gradients along the axis of symmetry are 

zero. 
(iii) The condition of conservation of charge flux is applied at the 

oxide-depletion region interface. 
(iv) Radial potential gradients at the diode periphery are zero. 
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2.3 Method of Solution 

Regions of dissimilar material constants and geometrically compli-
cated boundaries make solution by "closed form" techniques difficult. 
For this reason and because of its inherent geometric flexibility, a 
numerical or finite difference solution was adopted. 
The entire diode structure is considered to be composed of differential 

elements spaced on a square mesh (Fig. 5). The potential of each ele-
ment is described by an appropriate difference equation which takes 
into account the material constants of the element and its interaction 
with adjacent elements. For example, the potential of an element in the 
depletion region at a location (I, J) is given by a difference equation 
of the type: 

A [v(1, J  1) - V(I, J)  , J — 1) — VU, J)] 
e,   

AZ  AZ 

+€A _[v(i - 1, J) —  ,  J)] -1- Ei I vu + 1, J) — VU, J)] 
AR  AR 

= —q AZA.N(I,J)  (2) 

where 

V(I, J) = potential of point (I, J), 
A., A., , A_ = areas of element faces, 

e = dielectric constant, 
AR = radial element spacing, 

= axial element spacing, 
qN(I, J) = charge density. 

Similar difference equations can be written to describe the behavior of 
other regions. 
Thus the potential of any element can be described by a linear 

algebraic equation. If the geometry of interest is described by decompos-
ing the structure into an M by N array of such elements, then the 
problem is reduced to the solution of an M X N set of linear equations. 
For a typical geometry considered in this study, the structure was 
represented by a 70 by 85 array of elements. This set of equations was 
solved by accelerated Gauss—Seidel iteration.' 
An important aspect of the solution of this problem is the specification 

of the depletion region boundary. The I)+-depletion layer boundary is 
defined by the doping profile. We assume a 13+ step junction. The 
depletion region-N-type bulk boundary is a function of impurity dis-
tribution, oxide-silicon interface charge density, and resistive sea surface 
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Fig. 5—Difference elements. 

potential and must therefore be computed for each new combination of 
diode parameters. An iterative procedure was used to calculate potential 
and to define the limits of the depletion region. Beginning at the edge 
of the P+ diffused island an iterative sweep through the potential field 
was made. At those points where the computed potential was less than 
the applied potential plus the built-in potential of the junction, VB 
Poisson's equation in difference form was applied. When a potential 
equal to or greater than VT VB was computed, the potential at that 
point was set equal to V7 ± V8. This procedure was repeated until a 
satisfactory solution was obtained. 

2.4 Capacitance Calculation 

Depletion region capacitance was calculated by treating the depletion 
boundaries as the surfaces of a two-plate capacitor. The potential field 
between the plates of such a capacitor was calculated by solving Laplace's 
equation, taking into account the different dielectric constants for the 
oxide and silicon regions. Charge density on the surface is given by 

Q =  (3) 
where E„ is the normal electric field component calculated using dif-
ference approximations for the first derivative of the potential, and e is 
the appropriate dielectric constant. 
Total diode capacitance is then equal to the integral of the local 

charge density divided by the local voltage over the total cell surface 
area. 
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HI. MATHEMATICAL MODEL OF IDEAL CELL DISCHARGE 

The model considered in the analysis of signal capability is shown 
schematically in Fig. 3. For all subsequent calculations the target is 
biased at a 12-volt potential relative to the cathode (except as noted). 
Both cathode potential drop and beam limitations (including the effect 
of the resistive sea impedance in series with the P+ island) are neglected 
in this portion of the analysis. These assumptions imply sufficient beam 
current to completely restore the target surface to cathode potential 
after each beam scan, re-establishing the initial 12-volt reverse bias 
across the junction. (With our convention reverse bias and surface 
potential sum to 12 volts.) During the time interval during which a 
diode is disconnected from the electron beam, TF, an array diode is 
discharged by the light generated hole current collected by its depletion 
region. As the unit cell is discharged, the P+ island potential increases 
approaching 12 volts for high illumination levels. The voltage profile on 
the target surface depends on substrate resistivity, SiO2-Si interface 
fixed charge density, target geometry, illumination level, resistive sea 
sheet resistance and electron beam acceptance characteristic. For the 
case of a very high resistance sea—that is, no lateral charge flow onto 
the sea—the potential of the resistive sea surface remote from the diode 
windows will remain at ground potential and the light generated current 
will act to discharge the P+N junction only. Conversely, for the case of 
a low sheet resistance sea the entire resistive sea surface potential will 
rise nearly uniformly. 

3.1 Qualitative Description of Model 
The time dependent solution of the diode cell discharge transient is 

a complicated non-linear problem. However, a reasonable model for 
this problem should include the voltage dependence of both the junction 
and SiO2-Si surface capacitances. The silicon surface capacitance is 
important since it acts in series with the oxide capacitance to affect the 
time constant of the resistive sea. For example, in the depleted mode the 
equivalent oxide surface capacitance can be half the oxide capacitance. 
The lateral voltage drop on the diode unit cell surface makes possible 

the formation of an inversion layer at the SiO2-Si interface. Since this 
effect can (for some combination of target parameters) establish the 
upper limit on sea resistance, the model should include inversion 
phenomenon. Strong inversion was assumed when the magnitude of the 
surface potential relative to the bulk semiconductor potential exceeds 
the junction reverse bias, VE ,by twice the magnitude of the bulk Fermi 
potential, Op .6 
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A quasi steady-state solution was used in which the discharge time 
interval was divided into sub-intervals over which the surface capaci-
tance was assumed time invariant. The dependence of the junction 
capacitance on voltage was explicitly described. 
An outline of the unit diode cell discharge analysis is shown in Fig. 6. 

For computational purposes, Tp was divided into several equal segments. 
The computational sequence used during each time segment was as 
follows: 

(i) At the beginning of each segment: First, the unit cell depletion 
geometry and corresponding surface capacitance were calculated subject 
to boundary conditions which include the resistive sea surface potential 
distribution from the previous time step. Second, the surface potential 
profile was recalculated to adjust for altered surface capacitance by 
imposing temporal continuity of surface charge. 
(ii) Having obtained the surface potential and capacitance profiles, 

a transient solution to the array discharge process for the time segment 

INPUT: 
SUBSTRATE PARAMETERS 
SEA RESISTIVITY 

LIGHT GENERATED CURRENT 
BIAS VOLTAGE 
INITIAL SEA SURFACE POTENTIAL 

CALCULATE : DEPLETION GEOMETRY 
CAPACITANCE FOR CURRENT 
SURFACE POTENTIAL 

TEST: 1ST TIME STEP 

NO  YES 

ADJUST: SURFACE POTENTIAL TO CONSERVE 
CHARGE TAKING INTO ACCOUNT 
CHANGE IN CAPACITANCE 

CALCULATE , FOR AN INCREMENT OF TIME (AT); 
SURFACE POTENTIAL, CURRENT FLOWING 
ONTO RESISTIVE SEA 

Fig. 6—Unit cell discharge analyses. 
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I- STOP 
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was performed with the surface capacitance profile held constant. The 
voltage dependence of the junction capacitance was accounted for. 
The time dependent surface potential profile and sea current were then 
calculated. The final potential profile was used in the first part of step i 
of the next time interval. 

3.2 Some Particular Details of Target Operation 

Target operation can be most easily characterized by considering 
operation either below or above total depletion of the silicon surface at 
the Si—SiO2 interface. When operating below total surface depletion, 
variations in sea sheet resistance can alter only the width of the depletion 
layer at the surface. Above the condition of total surface depletion, the 
resistive sea sheet resistance can control the formation of a silicon 
surface inversion layer. It should be noted that because of geometrical 
effects, total surface depletion may occur in the diode array at voltages 
significantly below the depletion voltage which would be obtained on 
a MOS capacitor with the same oxide thickness and interface properties. 

3.2.1 Target Operation Below Total Surface Depletion 

Consider a 10 Çtcm substrate target with an interface fixed charge 
density (Q,./g) of 6 X 10n/cm2 and 172. = 12 volts. Under these condi-
tions the target will be below total surface depletion. Figures 7 and 8 
illustrate the behavior of the depletion region and resistive sea surface 
potential at various intervals during discharge for two values of sea 
resistance. 
Comparison of the depletion layer geometries at t = Tp (corresponding 

to full discharge) shows that the signal obtained from the junction-only 
capacitance is not appreciably altered by differences in sea sheet resist-
ance. The surface potential profiles at t = Tp clearly indicate the dif-
ference in surface charge flow for the two values of sheet resistance. An 
effective frame time of 1/60 second is assumed.* 
Figures 9 and 10 show the corresponding sea current and junction 

potential variations over one frame time for the same two sea resistance 
values. In both cases the junction voltage reaches the 12 volt bias 
potential prior to the completion of the frame time. Therefore, the light 
discharge current specified in the calculations 6.4 pA was in excess of 
true saturation, and lateral hole diffusion in the bulk occurs during the 
latter portion of the discharge cycle. For example, for the 10" n/ CI 
resistive sea (Figs. 8 and 10), 3.1 pA of the 6.4 pA light signal corre-

* The system frame time is 1/30 second; however, due to the interlace scan 
system and large beam diameter, the diodes are charged at a 1/60 second rate. 
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Fig. 7—Calculated discharge conditions for low sea-sheet resistance. 

sponds to the discharge of the junction-only capacitance. The time-
averaged sea current is 1 pA. The lateral loss due to diffusion is 2.3 pA. 
By decreasing the sea resistance to 10" 11/111 (Figs. 7 and 9) the average 
sea current is increased to about 2 pA-giving a total average cell dis-
charge current of 5.1 pA. 

3.2.2 Target Operation Above Total Surface Depletion 

For target operation at bias voltages where the surface can be totally 
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Fig. 8—Calculated discharge conditions for high sea-sheet resistance. 

depleted, the sea sheet resistance is more critical. Sea sheet resistance 
not only controls the coupling of the oxide and junction capacities but 
can allow the formation of an inversion layer prior to total cell discharge. 
This effect can result in an additional limitation on maximum useful 
signal current. For example, consider the final depeltion region con-
figuration (Fig. 11) for a substrate resistivity (p) equal to 10 ncm, 
Si—SiO2 interface fixed charge density (Q»./q) equal to 3 X 1011/cm2 , 
and a sea sheet resistance (R.) equal to 10" 1/D.S Because of the lower 
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Fig. 9—Calculated discharge characteristics for low sea-sheet resistance. 

o 

Q../q, the depletion region is markedly different from that of the unit 
cell previously considered (Figs. 7 and 8). Note that the depletion layer 
exists even at the end of the frame time. Furthermore, the final dis-
charged condition shows surface inversion under part of the oxide sur-
face. If the inversion layer acts to interconnect adjacent P+ islands, 
then loss of resolution will occur.' Resolution loss does not occur simply 
by the existence of an inversion layer but rather when sufficient current 
flow occurs between the 13+  island and the inversion layer to connect 
adjacent P.' islands. To investigate the formation of the inversion layer, 
it is necessary to examine the Si—SiO2 interface potential distribution. 
Figure 12 shows the potential profile (for Q,./q = 2 X 1011/cm2 and 
R. = 1.5 X 10" 9/D) at three time intervals in the discharge cycle. 
It can be seen that all the light-generated minority carriers which reach 
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Fig. 10—Calculated discharge characteristics for high sea-sheet resistance. 
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Fig. 11—Calculated discharged conditions for above total surface depletion 
operation. 
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the depletion region are collected by the P+ island until that time, late 
in the discharge cycle, when the silicon surface potential remote from 
the P+ island drops to below the P+ island potential. This condition only 
occurs for high sea-sheet resistance which causes a large radial voltage 
gradient on the sea surface. 
Figure 13 illustrates the Si—SiO2 interface potential distribution 

relative to the P+ island potential at the end of the discharge cycle for 
several values of light-generated current. This figure shows that for 
low current levels a potential barrier for holes exists between the P+ 
island and inversion region. The magnitude of this barrier decreases as 
the junction current is increased. We have assumed that loss of resolu-
tion occurs when this potential barrier drops below 2kT. For this 
particular example, the diodes effectively interconnect at a light-
generated current of 2.1 pA, and the strongly inverted layer need only 
extend to within 2.6 en of the Pi- island. 

IV. TARGET SIGNAL CAPABILITIES 

In this section calculated results are presented which illustrate the 
general effect of diode parameters and operating bias on target signal 
capabilities. 
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Fig. 13—Si—SiO2 interface potential relative to P+ island potential at completion 
of the discharge cycle for several levels of light-generated discharge current. 
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4.1 Effect of Signal-Limiting Mechanisms 

Signal current characteristics of target arrays fabricated on 10 S2cm 
substrates with Q../q equal to 1, 2, and 3 X 10H/cm2 are shown in Fig. 14. 
This figure graphically illustrates the interdependence of the SiO2—Si 

6 - 
P ' ISLAND; 8 x 1.5A M 

p =102C M 

TF_ 1/60 SECOND 

4 - 

R5= 10129/0 

10'3 2/0 

Q q=I x ionicm 2 

SHADED AREA= 
INVERSION REGIME 

R, = 10129 /0  

1013 9/0 

Qss /CE = 2 X 101I/CM2 

Rs= 1012 9/0 

1013 9/0 

Qss /q = 3 x 10 1l/C M 2 

10 14 9/0 

/777277? 
10159/o 

0o  2  4  e  B  10 
LIGHT GENERATED DISCHARGE CURRENT IN pA 

Fig. 14—Effect of  on single cell signal current characteristics. 
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interface charge density and sea sheet resistance on signal current 
characteristics. 
Oxide-silicon interface fixed charge density affects the array signal 

capacity for all values of sea resistance. For example, consider a target 
fabricated with a low sea sheet resistance of 1012 2/ D. If this array has 
an interface fixed charge density of 3 X 1011/cm2, it will provide a 
6.4 pA signal current per diode. A similar target having a fixed density 
of 1 X 1011/cm' is capable of only 4.5 pA per diode. Using an estimated 
minimum sea resistance consistent with resolution,' of Rs = 1013 St/ D, 
the maximum usable signal current per diode is 5 pA for CLIg 
3 X 1011/cm2; and 3.6 pA for Q../ q = 1 X 1011/cm2. 
For high sea-sheet resistances, above 1013 SE/ D, the effect of fixed 

interface charge density on signal is even more pronounced since the 
inversion mechanism becomes operative. Consider the case of 

= Rs 1014 SE/D. From Fig. 14 we see that for Q../q  3 X 1e/cm2, 
the available signal is 3.4 pA/diode. If, however, the interface fixed 
charge is reduced to 1 X 1011/cm2, the inversion mechanism becomes 
operative and the maximum usable signal current is reduced to 1.8 pA. 

4,2 Specific Examples of Geometric Effects 

Certain combinations of P+ island geometry, interface fixed charge, 
and sea resistance can result in a limitation in the dynamic signal 
capability of the target due to diode interconnection caused by silicon 

— RS= 10 14 /0, I = 1.6 pA 

_R s 10,5 52 /0, 1..8 pA 

, —  --

8  6  4  2  0  2  4  6 
RADIAL DISTANCE IN Am 

8 

p.10S1cm 
Qs.s/q= 2 X 10"/C M 2 

Fig. 15 —Discharged conditions for 4 min window diode. 
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surface inversion. Consider the three geometries shown in Figs. 15, 16 
and 17 which illustrate the effect of two values of sea resistance on 
maximum signal current. The resistive sea potential immediately after 
the electron beam scan is assumed to be zero volts. The final surface 
potential and depletion region geometry are shown for the maximum 
discharged condition. 
In this example, the maximum P+ island surface potential is limited 

to 10 volts for the 4 1.4m window geometry and R, = 10'5 WO; this 
corresponds to a signal current of 0.8 pA. Signal current for this same 
geometry with R, = 10“ 12/O is 1.6 pA. The difference in signal currents 
results from surface inversion at the higher value of sea resistance. This 
current-limiting effect is less pronounced for the larger diode diameters 
as illustrated in Figs. 16 and 17. The effect of P+ island diameter on 
signal current characteristics for Q,./q = 1, 2 and 3 X 1011/cm2 is 
shown in Figs. 18 through 20. These figures graphically illustrate the 
interdependence of the SiO2-Si interface charge density and sea sheet 
resistance on signal current characteristics. 
The junction depth for the diode configurations of Figs. 18, 19, and 

20 is 2.5 gm. Junction depth has a pronounced effect on signal current 
capabilities for values of sea sheet resistance greater than 1014 ivn as 
shown in Fig. 21. In this example, a 1.5 gm deep junction will experience 

12 

8 

4 

o 
8  6  4 

RADIAL 

_-Rs= io'4 2 /0, 1=2.6 pA 

I  -Rs= tols û in, I = 1.6pA 

r.  
2  0  2  4  6  8 

DISTANCE IN p. r1"1 

4- 4_ 
4 +   

+ +  , 

p= too cm 
Q55 /q= 2 x to"/cm 2 

Fig, 16—Discharged conditions for 6 ban window diode. 
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Fig. 17—Discharged conditions for 8 am window diode. 

a 43 percent signal limitation due to surface inversion compared with a 
2.5 gm deep junction of the same diameter. 
The effect of target bias on usable signal current has also been inves-

tigated. Increased target bias reduces usable signal for targets with 
high sea resistance and low interface fixed-charge density. Signal 
capabilities of targets operated at 12- and 16-volt bias can be compared 
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Fig. 18—Single diode signal capability for Q.»/q -= 1 X 10" 
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in Fig. 22. For R. greater than 10" IV , reduction of usable signal for 
the higher bias case is due to inversion effects caused by larger sea 
surface-potential gradients. 

V. EFFECT OF ELECTRON BEAM ACCEPTANCE 

In order to estimate the effects of electron beam acceptance on signal 
characteristics, the following experimental-analytic approach was 
undertaken: 

(i) A mathematical model of the charge-discharge mechanism of the 
target in the scanning mode was established. 
(ii) For several target bias conditions, maximum signal current 

(maximum light level consistent with resolution) and the residual signal 
characteristic were measured. The residual signal lag was measured by 
chopping the target illumination as described in Section 5.2. 
(iii) Fabrication parameters for this target (Q.,/q, P+ island geom-

etry, sea resistance and substrate resistivity) were measured. 
(iv) The junction-only capacitance-voltage characteristic was calcu-

lated from measured target parameters. In this instance, sea resistance 
was sufficiently high so that the junction-only capacitance was the only 
signal-generation mechanism. 
(y) Using the capacitance voltage characteristic of the junction, the 

saturation signal and lag characteristics of the tube, and the mathe-
matical representation of the target charge-discharge mechanism; a 
beam-landing function was generated by a trial and error procedure 
which satisfies these measured characteristics. In this calculation the 
contribution to lag of interface trapping states was neglected.* 
(vi) Using the beam landing characteristic thus generated and the 

mathematical model, lag and beam limited signal were calculated for 
various diode 134. island geometries. 

5.1 Signal Limitations 

The resulting signal current versus P* island diameter for a junction 
depth of 2.5 gm is given in Fig. 23. Comparison of these results with 
those for perfect beam landing shows that the beam limitation causes 
a significant reduction in target signal capability. For example, a diode 
having 8 on P* island diameter and a 10" S1/ P sea sheet resistance has 
a maximum signal current capability of 2.8 pA. With beam limitation, 
signal current is reduced to 1.0 pA. It should also be noted that the beam 

* G. F. Amalie has shown that under some conditions trapping states at the 
oxide-silicon interface can contribute to target lag. 
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Fig. 22—Effect of bias on single diode signal capability. 

current limitation will accentuate surface inversion for the higher values 
of sea resistance. As one might expect, larger diameter oxide windows 
improve beam collection efficiency and thus minimize signal limiting. 
The effect of beam acceptance on the surface inversion phenomenon 

is illustrated in Fig. 24. This figure shows the locus of operation voltages 
as a function of light level for an 8-1.im P+ island diameter and a sea 
resistance sufficiently high to decouple the oxide capacitance. As light-
generated discharge current level increases the maximum target surface 
potential approaches the target bias. For a sea resistivity of 10" S// 
the maximum allowable P+ island potential can rise to the 16 volt bias 
potential without diode interconnection due to silicon surface inversion. 
If beam limitation is taken into consideration, the calculated potential 
swing is 12 to 16 volts resulting in a maximum signal level of 1.2 pA per 
diode. If the sea sheet resistance is increased to 1015 1)/o, surface inver-
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Fig. 23—Effect of electron beam acceptance on single diode signal capability. 
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Fig. 24—Calculated P+ island potential extremes as a function of discharge current. 

sion limits the P+ island potential to 11.0 volts. The maximum signal 
current for this case is therefore only 0.9 pA. 

5.2 Capacitive Lag—Transient Illumination 

Thus far only time invarient illumination of the target has been 
considered. Non-ideal beam landing results in capacitive lag for transient 
illumination conditions. The definition of lag used here is illustrated in 
Fig. 25. Light is left on for a sufficient time interval for the target to 
assume steady state operation; that is, AO — ..eharge =  A Qdlechargo  The light 
is then turned off and the instantaneous signal current at subsequent 
scanning intervals determined. Lag is then defined as the ratio of the 
signal current at 1/15 second after the light is turned off to the steady-
state illuminated signal. 
Lag is a function of the resistive sea impedance, the diode capacitance, 

and the electron beam acceptance. The electron beam acceptance is a 
function of the resistive sea surface potential. Since both the instan-
taneous diode capacitance and the sea surface potential are determined 
by the level of light-generated cell discharge current, lag is also a function 
of signal level as illustrated in Fig. 26. For the case under consideration, 
two effects are evident: 
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Fig. 25—Definition of lag. 

TIME 

(i) At high signal levels lag is enhanced by large target cell capacity. 
(ii) At low light levels, where cell capacity is reduced, poor beam 

acceptance increases lag. 

The result for this example is a minimum lag condition at less than 
maximum signal current. Since this effect is a strong function of the 
electron beam acceptance characteristic, the width of the lag minimum 
can vary considerably from tube to tube. 

VI. ALTERNATE TARGET STRUCTURE 

The occurrence of inversion effects can be minimized, but not elim-
inated, by fabricating targets with greater than 10 gm diameter P+ 
islands. 
Inversion effects may also be controlled by means of a partial conduc-

tive overlay structure. 
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Fig. 26—Calculated lag characteristic. 
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6.1 Description of Overlay Structure 

This structure is essentially that of the standard resistive sea silicon 
target array except conductive buttons have been formed in the oxide 
windows and extend over the adjacent oxide. 

8.2 Analysis 

The analysis of this structure is performed assuming that the sea 
region between buttons is at ground potential (a worst case condition) 
with a uniform potential V, assigned to the P+ island and conductive 
overlay. 
Signal capabilities of this structure were also determined by calcula-

tion of the capacitance voltage characteristic of the button. Again the 
sea region was assumed to be at zero potential and thus electrically 
isolated from the junction button. 

8.3 Conductive Overlay Characteristics 

Depletion region geometries for a range of conductive overlays diam-
eters are shown in Fig. 27. For the assumed 12 volt bias three distinct 
silicon surface conditions are represented by these examples: 

(i) Separation of 13+ island from the peripheral surface inversion 
region by a neutral N region at the interface. This corresponds to a 
11.2 4m diameter button. 
(ii) Continuous depletion layer through the diode unit cell. For 

a 9.5 gm diameter button the inversion layer formed at the periphery 
is isolated from the P+ island by an appreciable potential barrier. 
(iii) Continuous depletion layer through the diode unit cell and 

electrical interconnection of the P+ island and the surface inversion 
regions. This condition exists for the 8.0 gm diameter button. 

For the 9.5 gm button, which represents the minimum diameter 
necessary to prevent diode interconnection for the example under 
consideration, the maximum signal current is 1.9 pA/diode. This is 
slightly less than the current obtainable with a resistive sea structure 
with 10" SZ/ D sea sheet resistance. 
The major advantage of a properly fabricated conductive overlay 

structure is the elimination of inversion effects (which include signal 
limiting and video "blooming" phenomenon) inherent in the resistive 
sea type targets operated with total surface depletion. While elimination 
of inversion effects can be accomplished by controlling sea resistance 
(within the range of 1 to 5 X 1013 for Q„/q rzt', 10n/cm2) in con-
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Fig. 27—Effect of conductive overlay diameter on diode discharged condition. 

junction with large diameter P+ islands ( > 10 pm), the button technique 
offers several fabrication advantages: 

(i) Allowable range of sea resistance can be extended to 1013 to 
10" S// D . 
(ii) For this structure, the critical parameters are easily measured 

physical dimensions, that is, diffused island and button diameters. 
Furthermore, the button diameter is not particularly critical provided 
it is larger than some minimum (approximately 1.5 gm greater than the 
P+ island diameter). The maximum diameter is of course restricted to 
less than the diode center to center spacing, permitting substantial 
latitude on button size. However, two important fabricational restric-
tions must be observed. To assure signal uniformity the button diameter 
must be uniform over the diode array. Non-uniformities will be evident 
under light saturated signal conditions where the oxide capacitance 
contributes a significant portion of the signal. The second requirement 



SILICON TARGET 947 

is that the P+ island diameter be controlled to assure that the overlay 
will extend the required distance past the P+ island edge to avoid 
inversion effects. 

VII. DARK CURRENT 

Surface area and volume components of the unit cell depletion region 
can be calculated as a function of target bias (see Fig. 28). Assuming that 
target dark current is the linear summation of the bulk and surface 
components, this geometric data, with appropriate scaling factors can 
be used to calculate the dark current characteristic, that is, assuming the 
surface component of dark current is given' by 

N 
I, = — qn,S0A, 

2 

where 

So = surface recombination velocity in cm/second, 
A. = depleted silicon surface area of unit cell, 
ni = intrinsic carrier concentration, 
N = number of diodes, 
q = electronic charge, 

and the bulk component is 

N  V 
Ibtilk =  qni 

SURFACE 
AREA 

---VOLUME 

2  4  6  8  10  12 

BIAS VOLTAGE IN VOLTS 

P + ISLAND= 10 X 2.6M M 
Qss/q= 2 x 10B/c m2 
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14 

Fig. 28—Calculated depletion region geometric factors. 

(4) 

(5) 
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where 

V = depleted unit cell volume, 
ri, = effective bulk generation lifetime. 

For example, Fig. 29 illustrates the application of the above using 
measured values of So and Tg and compares this result to the measured 
dark current characteristic. 
Figure 30 shows a family of dark current characteristics for a target 

with 5 X 105 diodes normalized to bulk and surface generation rates 
for a specific geometry. A 3-volt offset is used to account for beam 
limitations. 
A plot of dark current versus diode diameter for 10 Stcm material, 

Q../q  = 3 10ivern2, and VT =  12 V is presented in Figure 31. It is 
clear, when operating above flatband, that a large P+ island diameter 
improves the dark current by reducing the depleted surface area. 

VIII. SUMMARY 

The material presented thus far represents the results of a mathe-
matical modeling of the silicon diode array. To be of practical use in 
target design the model must accurately represent target behavior. 
Since the complicated nature of the problem at hand precludes the 
normal testing of mathematical models by reduction to simplified cases, 
an experimental verification of the model's accuracy is the only recourse. 
In this section we present some comparisons of the calculated and 
experimentally measured target behavior. We also draw some general 
conclusions concerning target design. 

8.1 Comparison of Experimental and Calculated Results 

Determination of the target depletion region geometry is fundamental 
to the analysis of target performance. The most convenient experi-
mental verification of the accuracy of these calculated depletion region 
geometries is to compare the calculated depletion region capacitance for 
the case of a uniform surface potential with the measured capacitance 
of an array covered with a metallic overlay or dot. Figure 32 illustrates 
such a comparison. The solid curve represents the calculated C—V 
characteristic for a target with a Si02—Si interface fixed charge density 
of 2 X 10n/cm2 and a resistivity of 5 12cm. The measured values were 
scaled from a gold dot covering 560 diodes. Notice the excellent agree-
ment between the calculated curve and experimental measurements. 
A statistical comparison of theory with measured signal current 
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Fig. 31 —Calculated relationship between dark current and P+ island diameter. 

versus diode diameter is given in Fig. 23. The range in measured maxi-
mum signal current reflects the normal variations in beam acceptance 
and sea resistance. 
A comparison of calculated and measured dark current characteristics 

is illustrated in Fig. 29 for an array with measured parameters. It can 
be seen from these results that the bulk and surface components of dark 
current calculated from the depletion region geometric parameters and 
measured generation rates provide an adequate model for dark current. 

8.2 Some Generalizations on Target Array Geometry 

In general, several observations of the effect of target diode geometry 
on signal current can be made: 

(i) For high sea sheet resistance ( 10" 0/ El) larger diameter 

diodes have greater signal capabilities. 
First, for the case where signal is not limited by inversion this result is 

due to the simple geometric effect of having a larger capacitance asso-
ciated with the junction. 
Second, for the case where signal is limited due to surface inversion, 

larger diameter P+ islands have the effect of delaying the onset of 
inversion (higher P.' island potentials are possible). 
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Third, increased beam acceptance for large oxide window diameter 
reduces both lag and signal limitations. 
(ii) For the case where the major portion of diode leakage current is 

due to surface generation, increased P+ island diameter reduces dark 
current due to the geometric effect of minimizing available current 
generating surface. 
(iii) Silicon interface inversion effects can also be controlled by use 

of conductive overlay whose diameter exceeds the 13+ island diameter 
by 1.5 pm. 
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Image Storage and Display Devices Using 
Fine-Grain, Ferroelectric Ceramics 

By A. H. MEITZLER, J. R. MALDONADO, and D. B. FRASER 

(Manuscript received January 22, 1970) 

Thin plates of ferroelectric ceramic in combination with transparent 
conductive and photoconductive films have been used to form device struc-
tures that can store a real image as a spatial variation in birefringence. 
This image can be viewed directly by suitably polarized transmitted light or 
projected onto a viewing screen. The stored image is erasable by the applica-
tion of appropriate combinations of light and electric fields. 

I. INTRODUCTION 

Recent publications have called attention to the usefulness of fine-
grained, lead zirconate-lead titanate ferroelectric ceramics in several 
kinds of electro-optic devices. ' This paper reports initial experimental 
results from ferroelectric picture devices (ferpics) based directly on the 
electro-optic properties of these new materials. In addition, this paper 
discusses how the basic device may be used to advantage in several 
types of display systems. 

II. BASIC PRINCIPLES OF OPERATION 

A thin, transparent plate of lead zirconate-lead titanate ceramic, 
as it is initially formed, is optically isotropic. By the process of poling, 
it can be given a condition of uniaxial birefringence dependent upon the 
remanent polarization of the material. The poled material has its optic 
axis parallel to the polarization direction. Figure 1(a) shows how, by 
means of electrodes applied to its edges, a plate is poled so that the 
remanent polarization lies unidirectionally in the plane of the plate. 
In this condition (L-state) the plate exhibits uniform birefringence 
for polarized light incident normally. An image is stored by switching 
at least a portion of the domain polarization vectors in the areas where 
the plate is illuminated to a direction perpendicular to the plane of the 
plate (T-state), thus reducing the birefringence of these regions. The 

953 
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Fig. 1—Construction and operation of an elementary ferpic: (a) poling the ceramic 
plate, (b) storing an image, (c) observing the recorded image. 

required perpendicular switching field can be obtained by means of the 
arrangement shown in Fig. 1(b). The ceramic plate is coated on both 
sides with a photoconductive film and sandwiched between transparent 
electrodes. In front of the ferroelectric picture device (ferpic) is placed 
a high-contrast transparency illuminated by a beam of collimated 
incident light. When voltage is applied to the transparent electrodes, 
the high impedance of the dark photoconductive regions prevents the 
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field inside the ceramic from reaching a value producing a significant 
amount of switching. In the illuminated regions, however, the impedance 
of the photoconductor is reduced and the field in the ferroelectric in-
creases to the point that appreciable domain switching is produced 
causing the ceramic underlying the illuminated areas to be switched to 
the T-state. Thus a stored image is obtained as a spatial modulation 
of the birefringence of the ceramic. The image can be made visible 
by inserting the ferpic between a polarizer and analyzer as shown in 
Fig. 1(c). The image can be erased either by poling the sample in the 
plane (L-state) or by thermally depoling the material. 

III. EXPERIMENTAL RESULTS FRO M AN ELEMENTARY FORM OF FERPIC 

The details of an experimental device structure that operates in this 
manner are shown in Fig. 2. The device uses a 50 1.im thick plate of 
ceramic* having 65 percent lead zirconate and 35 percent lead titanate 
with two atom percent of lanthanum (designated 65/35-2 La). The 
grain size of this material is approximately one micron. Originally, the 
plate is poled to have a remanent polarization in the plane of the plate 
(L-state) by means of an. applied field of approximately 20 kV/cm. The 
sample is poled before the photoconductive film and the transparent 
electrodes are applied. The specific poling conditions used for a given 
plate are adjusted to give a state of remanent polarization causing a 
half-wavelength of phase retardation when polarized light is transmitted 
at normal incidence through the plate. 
After the plate is initially in a condition such that all regions of the 

plate in the area used for storing the picture are in the L-state, the 
photoconductive film and transparent conductive films are applied. 
In the version of a ferpic outlined in Fig. 2, the photoconductive film is 
PVKt applied simultaneously to both sides of the plate by a dip-coating 
technique. Transparent conductive electrodes are next applied. In our 
experimental devices, half-transparent films of Cr-Au are vapor de-
posited on the two surfaces; in practical devices, more transparent 
electrodes of tin oxide or indium oxide would be preferred. Fine wire 
leads are attached to these electrodes and used to connect the device 
to the voltage source used to supply a switching field in the thickness 
direction. 

Figure 2, in addition to showing the structural features of the 

* The ceramic used in our experiments was produced by Clevite Corporation, 
Cleveland, Ohio 44108. 
t The abbreviation PVK stands for polyvinyl carbazole. The material used was 

obtained from Polyscience, Incorporated, P. 0. Box 4, Rydal, Pennsylvania 19046. 
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Fig. 2—Construction details of an elementary ferpic and experimental arrange-
ment used to store an image. 

device, shows the arrangement used to write the picture information 
into the ceramic plate. A high contrast transparency is placed immedi-
ately in front of the ferpic and illuminated with collimated light. The 
voltage supply is pulsed on. In the regions where the light passes 
through the transparency, the photoconductive film becomes conductive 
and the field in the ceramic becomes large enough to produce switching 
in the form of 90° polarization rotation. (This mode of operation is 
described by Land and Thacher in connection with light gate structures 
using various configurations of metal electrodes.' In ferpic devices, the 
900 polarization-rotation mode of operation is obtained by the use of 
photoconductive films and transparent conductive films working in 
combination with metal electrodes.) Localization of the switching field 
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requires that the dielectric constant of the ceramic, KGER  , be much 
larger than the dielectric constant of the photoconductor, K pvIc . For 
the materials used in our experimental devices (KcER/Kpvic)  400. 
For a 50 gm thick ceramic plate, the writing conditions were the fol-
lowing: (z) a white light flux of 2 mW/cm2, (it) a 200 V supply, and 
(iii) a voltage pulse duration of approximately 1 minute. 
As already described, the stored image can be made visible by in-

serting the ferpic between a polarizer and analyzer, as indicated in 
Fig. 1(c), and illuminating it with light from a collimated, monochro-
matic light source. (The degree of collimation and monochromaticity 
involved are not critical. Most of our experimental work is done using 
white light from ordinary incandescent sources and, in fact, the two 
photographs included with this report were made with this sort of light.) 
If the phase retardation produced by regions in the L-state is X/2, 
efficient use of light is obtained when polarizer and analyzer are set 
parallel to each other and at an angle of 45° to the electric polarization 
vector in the ceramic. The regions in the L-state appear opaque; the 
regions switched to the T-state present no birefringence to the incident 
light and appear as bright areas to the viewer. 
The ferpic just described can be used as a kind of photographic plate 

capable of two-level (black and monochrome) image storage with a 
respectable degree of resolution. Figure 3 shows photographs made 

A  B CDE 

(a)  (b) 
UNES PTI M 

A-25.1  B-31.6  C-39.8  D-50.1 E — 63.1 

Fig. 3—(a) The original resolution test chart as seen with a microscope using 
low power magnification. 

(b) The resolution test chart image stored in a ferpic and rendered ob-
servable by means of a polarizer and analyzer used with the microscope. 
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using a low power microscope to view a pattern from a resolution test 
chart stored in a 50 1.im thick ceramic plate. The number of lines/mm 
in the individual columns marked A, B, C, D, and E is indicated in 
the figure. 
This photograph demonstrates that resolutions better than 30 lines/ 

mm are obtainable under the described conditions of operation. A 
number of experiments have been carried out to establish the principal 
factor limiting the resolution. Fringing fields within the 50 gm thick 
plate appear to be the principal factor, since both the optical techniques 
and the photoconductor used have been demonstrated to have at least 
an order of magnitude finer resolution capabilities. The present ob-
served resolution is already equivalent to 2 to 3 cycles of variation over 
a distance equal to the thickness of the plate. 
The device described in Fig. 2 has limited usefulness since, like a 

photographic plate, it can be used only once. The transparent electrodes 
on the surface prevent the polarization vector under these electrodes 
from being switched back to the L-state when a voltage is applied to 
the poling electrodes. We will next consider a form of ferpic that offers 
the capability of being electrically changeable. 

IV. AN  ELECTRICALLY CHANGEABLE FERPIC  USING AN INTERDIGITAL 

ELECTRODE ARRAY 

An interdigital electrode array deposited on one side of a ceramic 
plate provides in principle a means of switching the polarization vectors 
back into the plane of the plate after they have once been switched 
normal to it. An exploded view of the layer structure proposed for use 
in a changeable ferpic is shown in Fig. 4. In addition to enabling the 
plate to be switched into the L-state, use of the interdigital array has 
the great practical advantage of reducing the voltage required to pole 
in the longitudinal direction. As already indicated, 20 kV is required 
to pole over a 1 cm distance. If the line elements have the same spacing 
as the plate thickness, the same voltage supply (,---,200 V for a 50 pm 
thick plate) can be used to establish both longitudinal and transverse 
switching fields. The obvious disadvantage to this approach is that the 
stored image will now be broken into a number of discrete lines. The 
extent to which the presence of the lines is evident and objectionable 
will depend on the details of use. 
The ferpic structure shown in Fig. 4 constitutes an electrically change-

able image storage and display device that functions in three steps: 
(i) RESET, (ii) WRITE and (iii) VIE W. The first two steps are illustrated 
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Fig. 4—Exploded view of the layered structure used to form an electrically 
changeable ferpic. 

in Fig. 5(a) and (b); the third step involves essentially the same ele-
ments shown earlier in Fig. 1(c). In the RESET step the electrodes of 
the interdigital array are connected to the voltage supply and the 
resulting field switches the remanent polarization vectors predominantly 
into the plane of the plate. In this condition of polarization (L-state), 
every region of the plate has maximum birefringence for linearly polar-
ized light incident normally. In the "WRITE step, the elements of the 
array are connected in parallel to one terminal of the supply and the 
other terminal is connected to the transparent conductive electrode. 
Light is directed at the area to be switched causing the photoconductive 
layers to conduct and the electric field in the ceramic under the illumi-
nated area to exceed the coercive field. 
If the image to be stored in the ferpic is broken into elements, the 

spacing between lines of the interdigital array should be less than or 
equal to the size of an element. Writing the image an element at a time, 
as in a television picture, can be accomplished by modulating either the 
addressing light beam or the power supply. It is equally conceivable 
that the picture could be formed all at one time by projecting some 
desired image on the plate and switching the illuminated elements. 
The basic ideas of the interdigital array device were first demonstrated 

in a device structure using PVK films. The details of this interdigital-
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Fig. 5—Details of the RESET and WRITE steps of operation for a ferpic utilizing 
000 polarization rotation in the ceramic plate. 

array ferpic are shown in Fig. 6, and an example of the image storage 
obtained is shown in Fig. 7. The upper part of Fig. 7 shows the original, 
simple, high-contrast image. The lower part shows the image observed 
through a low-power polarizing microscope. The image was stored in a 
50 ion thick ceramic plate with a square working area 0.8 cm on a side. 
The experimental structure of Fig. 6 differs from the original structure 

described in Fig. 4 by the inclusion of an additional transparent con-
ductive electrode on the array side of the ferpic. This additional filin is 
needed because the PVT( films do not have a high enough conductivity 
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Fig. 6—Construction details of a ferpic using an interdigital array to switch the 
polarization into the plane of the plate. 

when illuminated to establish an equipotential region between the 
elements of the electrode array. While the addition of the transparent 
conductive electrode to the array side of the ferpic solves the problem 
of the low conductivity in the PVK, this modification has the disad-
vantage that it hinders erasure. The PVK film between the transparent 
electrode and the array is now subject to breakdown field strengths 
when the RESET voltage is applied. In addition, experiments with PVK 
films on devices using the 900 polarization rotation have indicated that 
the PVK film constrains the motion of domains, probably through a 
mechanism of trapping polarization charges at the ceramic-PVK 
interface. 
Our most recent experimental efforts have resulted in two significant 

developments, one related to the performance of photoconductive films 
used in interdigital-array ferpics and the other related to a new version 
of a ferpic. 
In connection with photoconductive films, we have been successful 

in realizing CdS films with a high light-to-dark conductivity ratio and 
a high conductivity when illuminated. These films have been sputter 
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Fig. 7—A simple, high-contrast image stored as a variation in birefringence in a 
ferpic using an interdigital electrode array: upper, the original image; lower, the 
image viewed in the ferpic by means of a polarizing microscope. (The horizontal 
linea apparent in the photograph are formed by the electrodes of the interdigital 
array and these are spaced 250 gm apart on the actual device.) 
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deposited on device structures consisting of ceramic plates with inter-
digital arrays vapor deposited, in registration, on both surfaces. Images 
with nearly the quality of that shown in Fig. 7 have been successfully 
stored in the CdS film devices, and, what is more important, these 
devices have demonstrated a significantly greater degree of changeabil-
ity than interdigital devices using PVK films. The experiments with 
these devices demonstrate that the ceramic and the CdS films can work 
together successfully with interdigital arrays to provide the intended 
mode of operation. 
In connection with the new form of ferpic, a refined structure has been 

developed which eliminates the necessity of having a separate set of 
electrodes or interdigital arrays in order to switch the ceramic into the 
L-state. In this new device structure, a thin ceramic plate and photo-
conductive film are sandwiched between transparent electrodes, and 
the stack is bonded to a relatively thick, transparent substrate. The 
ceramic plate is put in tension along one direction by slightly flexing the 
substrate. The direction of the tension axis in the ceramic becomes a 
preferred direction along which the polarization vectors in individual 
domains tend to align. (Because of the use of a permanent strain to 
establish this preferred direction, the device is called a "strain-biased 
ferpic.") In the strained condition, the ceramic can be switched between 
two states, corresponding to an L- and T-state, by the application of 
fields in the thickness direction. As in the earlier versions of the device, 
only the illuminated regions can be switched to the T-state. In order 
to reset the whole device to the L-state, the whole active area is flooded 
with illumination while the reset voltage is applied. An important fea-
ture of the new device is that its structure permits localized switching 
to the L-state as well as to the T-state. A paper describing in detail 
the structural and performance features of the strain-biased ferpic is 
presently in preparation and will be published at a later time. 

V. OPTICAL DISPLAY SYSTEMS WITH LASER BEAM ADDRESSING 

Figure 8 shows the essentials of a projection display system using a 
ferpic in combination with a laser beam addressing module and a 
source of viewing light. A dichroic mirror that transmits at the projec-
tion wavelength and reflects at the write wavelength is used to enable 
the laser subsystem to be positioned off the main axis. The arrangement 
shown in the schematic drawing is intended to be an electronically 
changeable, projection display. In this display system, there are three 
stages to a complete cycle of operation: (i) RESET, (ii) W RITE and (iii) 
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Fig. 8—A projection display system using a ferpic in combination with a laser 
beam addressing module and a source of viewing light. 

vrEw. During the RESET stage, the viewing light and laser beam are off 
and the whole ferpic is switched to the L-state. During the WRITE 
stage, the viewing light remains off while the picture is formed an ele-
ment at a time by moving the laser beam successively through all the 
address points. The laser beam is steered by an X-Y deflection system 
which could be an ultrasonic light deflector system of the sort recently 
developed for use in an optical memory system' or a mechanical scanning 
system. The choice exists of controlling the switching of a picture ele-
ment by modulating either the intensity of the laser beam or the in-
tensity of the voltage pulses supplied to the electrodes of the ferpic. 
Once the picture has been formed, the viewing source is flashed on. 

An important advantage of this display system is that, once written, 
the picture can be held without any further expenditure of electrical 
power. This feature would make a ferpic display attractive for many 
applications now met using storage cathode-ray tubes. The fact that 
the basic light controlling element has intrinsic memory has important 
implications for practical applications. As a consequence of this intrinsic 
memory the display is able to hold a given picture for an indefinitely 
long time. Furthermore, the picture is not volatile in the sense that it 
is retained in the event of a power failure. Depending upon the details 
of construction and associated circuitry, it may be possible to break up 
the stored picture into individual lines or elements and use a "periodic 
update" mode of operation of interest in connection with bandwidth-
reducing techniques of picture transmission. 
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In the display system proposed here, the image is formed one picture 
element at a time by a scanned laser beam, but is viewed or projected 
as a whole using incoherent light in a conventional projection system. 
This separation of the scanning and viewing functions allows a relatively 
low-power laser, in any convenient wavelength range, to be used for the 
scan, while a powerful, efficient incoherent source provides the actual 
viewed light. 
We are not able at the present stage of the device development to 

state whether or not the device will have the lifetime and switching 
speed capabilities required to make it useful in real-time display sys-
tems. (For this sort of application, ferpics would be in competition with 
devices like the TITUS tube' and the EIDOPHOR tube!) However, there 
are applications that can make use of a slowly-scanned, high-resolution 
image storage device that can hold an image for an arbitrarily long time 
and either continuously display it by an optical projection system or 
project it onto some form of hard-copy print-out. This sort of applica-
tion would not require the high cycling rates or extreme lifetimes of a 
device used in real-time display systems. 
With regard to obtaining maximum lifetime in a ferpic, there is an 

important point that deserves explicit statement: It is not necessary to 
rotate the polarization vector through a full 90° in order to obtain a 
useful effect. Operation under conditions producing full 900 polariza-
tion-rotation provides the means of obtaining the maximum bire-
fringence change with a minimum material thickness.* On the other 
hand, such a large change in polarization direction produces strains 
that could lead to premature failure of the ceramic. In devices using 
ceramics with sufficiently low optical loss,t there exists the alternative 
of switching the average polarization through an angle much less than 
90°, and then using increased thickness to obtain the desired half-
wavelength retardation change. 

VI. REFINING THE BASIC DEVICE TO  OBTAIN  GRAY-SCALE AND COLOR 

CAPABILITIES 

A ferpic, as described in this paper, is basically a two-level (black 
and monochrome) image storage and display device. However, modifica-
tion of the device structure and system configuration to include color 

* According to Land and Thacher,, a An of —0.022 is obtained in 65/35 — 2 La 
ceramic at maximum remanent polarization. This An requires only 16 pm of 
material to produce a half-wavelength of retardation for 6328 À light. 
t A new hot-pressed, lead zirconate-lead titanate ceramic composition has been 

developed at Sandia Laboratories with lower optical lose and improved electrical 
switching characteristics.7 
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and a gray-scale appears to be straightforward. For example, the system 
of Fig. 8 can be modified for color by using a sequential-field, color-scan 
technique. Instead of one source illuminating the ferpic, there would 
be three light sources (red, blue, green) with appropriate means to 
strobe these in sequence. The ferpic would operate as already described 
except that there would now be three different RESET operations per 
frame, with a voltage applied to produce a retardation of a half-wave-
length for the color flashed during the VIE W stage. In practice the opera-
tions RESET- WRITE-VIE W would be repeated in sequence for each color. 
Modification of the basic system of Fig. 8 to obtain a gray scale re-

quires that intermediate states of birefringence—and hence polarization 
—be reproducibly attainable, so that the ceramic plate functions as an 
intensity modulator and not just as a simple shutter. Experiments' with 
elementary, light-gate devices using the fine-grain ceramic have shown 
that it is possible to obtain reproducible partial switching with suitable 
circuitry. The development of a ferpic with gray-scale capability will 
depend strongly on the switching properties of the ceramic and the 
photocurrent response characteristics of the photoconductive films 
with which the ceramic is used. It is still too early to state uniquivocally 
that a gray-scale device can be obtained with all other desired char-
acteristics, but the possibility is certainly there. 

VII. CONCLUSION 

The recent development of fine-grain, electro-optic ceramic materials 
has provided the means of realizing ferroelectric devices capable of 
storing high-contrast images under the control of electrical voltages. 
The image is stored as a variation of birefringence in a thin, ceramic 
plate and can be viewed directly by suitably polarized transmitted 
light or projected onto a viewing screen. Experimental devices have 
demonstrated a resolution capability of approximately 50 lines/mm 
in 50 pm thick ceramic material and have been able to hold the image 
with no apparent change for times of the order of several months. While 
our early experimental devices have had only limited electric change-
ability, the basic material system is certainly capable of providing this 
essential feature. Images stored in these devices have been projected 
and viewed by means of simple, desk-top, commercially available, 35 
mm projection displays (modified by the inclusion of a polarizer and 
analyzer). Display systems of the sort considered appear to be well-
suited to applications such as high-resolution, slow-scan, and document 
display. 
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Some Mathematical Properties of a Scheme 
for Reducing the Bandwidth of Motion 
Pictures by Hadamard Smearing 

By E. R. BERLEKAMP 

(Manuscript recieved September 29, 1969) 

M. R. Schroeder recently proposed a scheme for compression of motion 
picture data by taking the difference of two successive frames and then 
smearing.' The smearing is accomplished by a Hadamard matrix. 
lithe Hadamard matrix is of a certain particularly well-understood 

type, then we show that if the input differential picture consists of a small 
odd number of large pulses of identical magnitudes (but arbitrary signs), 
then the output will consist of three components: 

(i) Large pulses of equal magnitude and the correct signs, matching 
each of the input pulses. 
(ii) One additional "stray" large pulse, of magnitude equal to the 

others, but located at a point where the input was zero. 
(iii) Scattered pulses of amplitude low relative to the pulses of types 

i and ii, but so numerous that they consume (7r — 2)/7- of the total energy 
of the output differential picture. 

We give an explicit formula for the amplitude of each of these pulses. 

The problem of determining the distributions of all possible outputs 
of the proposed system for other classes of inputs is shown to be equivalent 
to the unsolved problem of finding the weight enumerators for the cosets 
of the first order Reed-Muller codes. 

I. INTRODUCTION 

The fact that successive frames of a motion picture are often very 
nearly alike has led to the consideration of schemes which transmit, 
for each point of the picture, the difference between the amplitude 
of the present frame and the amplitude of the previous frame. Since 

969 
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this differential picture* is frequently zero at many points, there is 
reason to hope that the bandwidth required for transmission of the 
differential picture could be greatly reduced by appropriate coding. 
One such coding scheme which has been considered by W. K. Pratt, 

J. Kane, and H. C. Andrews,' and refined by M. R. Schroeder' is the 
following: let the differential picture be represented by a real n-dimen-
sional vector, v. (For example, if the picture is represented by a 100 X 
100 grid, then n = 10000.) Let 5C be an n X n Hadamard matrix, 
which is a self-orthogonal real matrix all of whose entries are ±1, 
and let the smeared differential picture (or transformed differential 
picture), x, be defined by x = Xv/(n)1. Let Q be the power-preserving 
clipping operator, defined by 

Q (l ix I I)/ sgn (x)  
x — 

where sgn (x) is the n-dimensional vector whose ith component is 
+1 or —1, depending on the sign of the ith component of x. Since we 
wish the quantizer to have only two outputs, we cannot take sgn (0) = 0. 
Unless stated otherwise, we assume that sgn (0) is undefined. Schroeder 
has asserted that the vector y = Qx = QaCv/(n)4 provides an appropriate 
"encoding" of the differential picture v. To "decode" one computes 
z = 1/(n)taety. The question to be studied in this paper is the quality 
of z as an approximation to v. 
Some of the heuristic arguments favoring this proposed scheme are 

the following: Since successive frames are frequently very similar, the 
differential picture will have near-zero amplitude at most points. In a 
typical case when the camera is focused on a moving subject and a 
fixed background, the differential picture will be identically zero at 
all background points. If the subject and the background each has 
uniform color (the simplest plausible case), then the differential picture 
will be nonzero only at those points on the boundary of the subject. 
Furthermore, all of the nonzero amplitudes in the differential picture 
will have equal magnitudes, although their signs will depend on whether 
they are on the leading or trailing edge of the moving subject. The 

* To be precise, the "differential picture" should consist of the difference between 
what the present frame actually is and what the decoder thought the last frame was. 
Since all of the errors in the system are assumed to arise from quantization, rather 
than from any sort of unpredictable noise on the communications channel, the 
encoder may include a replica of the decoder, thereby enabling it to compute what 
the decoder thought the last frame was. Each transmitted differential picture then 
includes an attempt to correct the cumulative effects of all previous errors. In this 
paper, we study only the quantization noise introduced in the encoding and decoding 
of a single differential picture, ignoring the complicated dynamic questions which 
arise when one studies the behavior of the system during several successive frames. 
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conventional manner of encoding the differential picture is to quantize 
the amplitude at each gridpoint. This scheme will introduce no quantiza-
tion error at all on the background points, which have zero amplitude, 
but a relatively high number of quantization levels may be required 
to keep the quantization errors along the outline of the subject down to 
a tolerable level. The Hadamard transform of the differential picture, 
on the other hand, will have its energy spread out relatively uniformly 
among the grid points. A coarse quantization of the smeared differential 
picture will introduce quantization errors throughout the differential 
picture in a relatively uniform manner. When the quantized smeared 
differential picture is unsmeared, the quantization errors, being some-
what independent, should tend to cancel out. It is thus hoped that a 
coarser quantization of the smeared differential picture might yield 
a decoded differential picture of the same fidelity as a substantially 
finer quantization of the original, unsmeared differential picture. 
A somewhat more theoretical discussion of the effects of quantization 

in the Hadamard transform domain is given in Section VI of Pratt, 
Kane, and Andrews.' The main result is that the Hadamard trans-
formation preserves energy. Hence, if the amplitudes at the various 
points in the transformed differential picture are independent zero mean 
gaussian random variables, then the energy of the noise introduced by a 
two-level quantizer would be (ir — 2)/ir of the total energy in the output 
differential picture, both before and after unsmearing. From this view-
point, the major attraction of smearing is that it distributes the quantiza-
tion noise uniformly throughout the picture. If our simple model of a 
differential picture (which has nonzero amplitude only along the 
outline of the subject) is coarsely quantized, then all of the quantiza-
tion noise appears on the outline, where it will tend to blur the subject. 
However, if this differential picture is smeared, coarsely quantized, 
and unsmeared, then its quantization noise should be evenly distributed 

throughout the subject and the background. 
We shall now study the relationship between the original differential 

picture, v, and the decoded differential picture, z. It is clear that the 
energy in the vector z is always identical to the energy in the vector v. 
Hence, for purposes of analysis, it is easiest to compute z according 

to the formula 

z = AK sgn 3Cv 

where for each frame A is a non-negative scalar chosen to make the 
energy in z equal to the energy in v. In this paper, we often omit the 
actual calculation of A. 
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In the case where y has only one nonzero component, then sgn 3Cv = 
3Cv and z = A3e3Cv. Since 3e3C = nI (where / is the n X n identity 
matrix) it follows that z = v. In other words, the system transmits 
a single pulse without error. 
On the other hand, when y has only two nonzero components, then 

the component with the larger amplitude dominates the component 
with the smaller amplitude. In this case z again has a single nonzero 
component, even though y had two nonzero components. However, 
the choice y = [1, 1—€, 0, 0, 0, • • • , 01 results in an ambiguity. If 
we instead write sr = [1, 1, e, 0, 0, 0, • • • , 01, then we may actually 
find that, in the limit as E 0,  [1, 1, 0, 0, • • • , 0]. If v = [1, 1, 0, 0, 
• • • , 0], then z is undefined because it depends on sgn 0, which is either 
plus or minus. In fact, z is undefined whenever y has an even number 
of nonzero components, all of equal magnitude; but this difficulty might 
be removable by adding an appropriate background noise function 
into v, or by choosing sgn(0)'s independently at random. To avoid 
the necessity of such considerations, we devote our primary attention 
in this paper to the case in which y has an odd number of nonzero com-
ponents, all of unit magnitude (but arbitrary sign). In this case, every 
component of 3Cv is an odd integer. Since every component of KY 
must therefore have magnitude at least 1, the sgn function is defined 
and the analysis remains valid in the presence of a small background 
noise in any or all components of v. 

II. HADAMARD MATRICES 

The requirement that any three rows of a Hadamard matrix be pair-
wise orthogonal leads to the immediate conclusion that if n > 2, then 
an n X n Hadamard matrix can exist only if n is a multiple of 4. The 
question of whether or not there actually do exist n X n Hadamard 
matrices for all n = 0 mod 4 is now one of the most intriguing unsolved 
problems in combinatorial theory. Many ingenious constructions have 
been proposed, and several of them succeed in obtaining Hadamard 
matrices for an infinite number of (scattered) values of n. For example, 
if n is a multiple of 4 and n — 1 is a prime-power, then a well-known 
construction based on quadratic residues in the finite field GF(n — 1) 
yields an n X n Hadamard matrix. Many other constructions for 
Hadamard matrices are given in Chapter 14 of Hal1,8 and more recent 
constructions have been presented by Spence,4 Goethals and Seide1,5 
and Wallis." The smallest value of n  0 mod 4 for which no n X n 
Hadamard matrix has yet been constructed is n = 188. 
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For many values of n, there exist Hadamard matrices with additional 
structure. For example, some Hadamard matrices have the property 
that the first row and first column consist entirely of -1-1's, and the 
remaining (n — 1) X (n — 1) submatrix has the property that each 
of its rows is a cyclic shift of the previous row. Such matrices are called 
cyclic Hadamard matrices. They are known to exist whenever n — 1 
is prime, or when n — 1 is the product of twin primes, or when n is a 
power of 2. A computer search by Thoene & Golombs and some cal-
culations by Baumere have shown that no cyclic Hadamard matrices 
of other orders less than 1000 exist, with the possible exceptions of 
n = 400, 496, 628, 652, 784, 976. 
From the viewpoint of an algebraic coding theorist, a shortened 

Hadamard matrix (obtained from a standard Hadamard matrix by 
multiplying each row by an appropriate sign to make the first column 
all + l's, and then deleting the first column) is equivalent to an equi-
distant binary code. The n codewords are taken as the rows of the 
shortened Hadamard matrix, with each +1 replaced by 0 and each 
—1 replaced by 1. Since the dot product of any pair of rows in the 
shortened Hadamard matrix is —1, the distance between any pair of 
words in the binary code is (n. -I- 1)/2. Further discussion of such codes 
is given in Section 13.5 of Berlekamp.1° 
The best-understood class of equidistant binary codes is the maximal-

length shift-register codes, which are also called shortened first-order 
Reed-Muller codes. In addition to being cyclic and equidistant, they 
are linear over the binary field, which means that the component by 
component binary sum of any pair of codewords is another codeword. 
Stated in terms of the original Hadamard matrices, this property means 
that the componentwise product of any pair of rows of the Hadamard 
matrix is another row of the same Hadamard matrix. Although Hada-
mard matrices with this property are relatively rare, they exist for 
every n which is a power of 2. Because of their correspondence to the 
Reed-Muller codes, these matrices are comparatively well-understood, 
and we shall henceforth confine our discussion to Hadamard matrices 
of this type. Such matrices may be taken as cyclic. 

IH. THE INDUCED COORDINATIZATION 

A 2k X 2e Hadamard matrix corresponding to a Reed-Muller code 
induces a (non-unique) coordinatization on the 2' components of each 
row, associating each component with a k-dimensional vector over 
GF(2). A set of 2 coordinates is said to form an affine subspace if the 
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corresponding 2i k-dimensional vectors form an affine 5-dimensional 
subspace over GF(2). Similarly, a set of m coordinates are said to be 
linearly (or affine) independent if the corresponding k-dimensional 
vectors are linearly (or affine) independent. 
If a set of m binary k-tuples a, , a2, • • • a, are affine independent, 

then they span an (m — 1)-dimensional affine subspace, each element 
of which has a unique representation of the form 

21+1 

E«;, 

for some j. A set of binary vectors are affine independent if no subset 
containing an even number of vectors sums to zero. An affine basis for 
the set of all 21̀ binary k-dimensional vectors may be selected in various 
ways. The "standard" basis consists of the all-zero vector and each 
of the k "unit" vectors. In general, any k  1 affine independent vectors 
may be chosen as a basis. 
If k is very large, then the probability that a randomly chosen set 

of k  1 k-dimensional binary vectors will be affine independent is 

Tr., (1 — 2-'), or about 29 percent. The probability that k randomly 
chosen vectors will be affine independent is about 58 percent; for 
k — 1, it is 76 percent. If in « k, then almost every set of m different 
k-dimensional binary vectors is affine independent. 
The first row of the 2k X 2" Hadamard matrix may be taken as all 

+1's. The 2k-1  +1's in each of the other rows occur in the components 
corresponding to some (k — 1)-dimensional subspace of the k-dimen-
sional binary vectors, and the — l's occur in the components correspond-
ing to the complementary (k — 1)-dimensional affine subspace. 
The coordinatization induced by the Hadamard matrix is invariant 

under all changes of affine basis. When translated into coding ter-
minology, this is equivalent to Theorem 15.35 of Berlekamp.1° 

IV. MAIN RESULT AND DISCUSSION 

4.1 Theorem 

Let y be a 2k-dimensional vector whose only nonzero components 
are 2m  1 units occurring at components corresponding to k-dimen-
sional binary vectors 00 , a, , a2, • • • a,„, which are affine independent. 
Let the vector z be defined by the equation 

z = ac̀ sgn 3Cv. 

Then the value of zp , the component of z corresponding to the k-
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dimensional binary vector #, is given by 

0 if # is not in the affine subspace spanned by 

Ce0  al  a2 , • • • , az. 
2i+1 

IS2k-2m (2 M 2j)! (2j)! if  a = E ai 
j! m! (m — j)! 

and the sign is given by 

2i+1 

s=   

4.2 Remarks 

We first notice that the answers do not significantly depend on k, 
but on 2m -I- 1, the number of units in the input vector v. 
Since z is defined by an equation of the form z =3C̀y, where the 

energy of y is n, the energy of z is n2 = 4k. For i = 0, 1, • • • 2m we have 

lz, 12 =  [2k-2 m(2m1] 2. 

For large m, 1 z., 12 is closely approximated by 221/7rm. Thus only 
2/7r of the total energy in z is located in those components in which v 
has units; the remaining (ir — 2)/7 of the total energy is distributed 
throughout the affine subspace. For example, if m = 5, k = 10, we 
have the following output: 

1 Input Value I 
Corresponding 
Output Value 

1 

o 

o 

o 

252 

28 

12 

252 

(Output \' 
\Value 

16 X 3969 

16 X  49 

16 X  9 

16 X 3969 

Number of such 
Coordinates 

(1,1) = 11 

(1:) + (191) = 220 

(151) + (V) = 792  

CI) =  1 

Totals  16 X 2"  1024  

For all m, we notice that if 0 = D:o a; , then 
zo I = Iz« ;I. 

In other words, if the input to the coding-transmission-decoding system 
consists of 2m + 1 pulses of equal magnitudes (and arbitrary signs) 
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located at positions which are affine independent then the output 
may be written as the sum of the following three terms: 

(i) 2m + 1 pulses of equal magnitude (and correct signs) matching 
the input. 
(ii) One stray pulse of the same magnitude as the 2m -F 1 correct 

ones. 
(iii) Other errors scattered throughout the affine subspace, having 

maximum amplitude [1/(2m — 1)] times as large as the correct pulses. 

Since each of the errors of type iii has a relative amplitude approaching 
zero for sufficiently large m, one might consider the proposed system 
"successful" in some sufficiently broad sense of that term even though 
these errors consume (71- — 2)171- of the energy in the output signal. 
The error of type ii poses a different problem, even though it consumes 
a negligible fraction of the energy. Further research may be required 
to decide whether these difficulties might be removed by replacing the 
operator Q by another quantizer with more levels. Further study will 
also be required to determine how these quantization errors propagate 
in successive frames in a dynamic system. (See footnote on page 970.) 

V. RELATIONSHIP TO THE WEIGHT ENUMERATION PROBLEM FOR RM COSETS 

In the previous sections we calculated the vector z = eQ3Cv for 
certain specific choices of v. These vectors y were chosen to be "typical" 
in some intuitive sense, and yet sufficiently simple in form to enable 
us to carry through the calculation in closed form, even when the 
dimensions of the 5C matrix (n X n) were large. 
Instead of assuming some ad hoc form for the vector y, we might 

instead ask, what is the range of the operator 3C̀Q3C? Except for the 
scalar factor, this is equivalent to determining the range of the operator 
3C̀ sgn. For, if there exists a vector x such that z = 3C̀ sgn x, then 
n sgn x = sgn Jez and z = (aè sgn 3ez)/n. Hence, every vector in the 
range of 3C̀ sgn is proportional to a vector in the range of 3C̀Q3C, and 
every vector in the range of 3eQ3C is a stationary point of this operator. 
Stated another way, (3eQ3C)2 = 3C̀Q3C. 
In more practical terms, an investigation of the vectors in the range 

of 3C̀ sgn is actually an investigation of the ensemble of possible dif-
ferential pictures which the proposed system might produce as output. 
This set is identical to the set of differential pictures which the system 
will encode and decode with zero error. 
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If 3C is an n X n Hadamard matrix, then there are 2" vectors in the 
range of ac̀ sgn. For reasonable values of n, 2" is so large that a complete 
listing of all of these vectors is not feasible. Fortunately, however, 
these 2" vectors fall into a relatively small number of classes, each class 
consisting of those vectors which have the same distribution of mag-
nitudes of component amplitudes. The problem of determining the 
possible distributions of magnitudes of the component amplitudes of 
a vector in the range of ac' sgn turns out to be identical to the problem 
of determining the weight enumerators for the coset,s of the Reed-
Muller code. This equivalence is seen as follows: If y is a real vector 
whose components have unit magnitude, then the number of components 
of 3C'y with magnitude A I is the number of rows of 3C whose dot 
product with y is ±A. On the other hand, if we convert 1 to 0 and 
—1 to 1, changing ac to 9 and y to R, then the weight of the binary 
vector sum of R and each codeword of the extended max-length feed-
back shift register code gives the distance between the received word 
R and the corresponding codeword, and the enumeration of all of these 
weights for a particular R is the weight enumerator for the coset con-
taining R. If c is a binary codeword for which w(c  R) = d and 
if le is the real vector of ±1's corresponding to c, then ti and y disagree 
in d components and agree in n — d components. Therefore, 

ts•y = n — 2d. 

Since the first order Reed-Muller code contains both the codewords 
in the extended maximum length feedback shift register code and their 
complements, there is a one to one correspondence between RM cosets 
with weight enumerator d0, d1, • • • , dn and real vectors in the range 
of 3C̀ sgn having magnitudes of component amplitudes distributed as 
follows: d components with amplitudes ±(n — 22,) for i= 0, 1, 2, 
• • • , n/2 — 1, and d./2/2 components with amplitude zero. 
The coset weight enumerators for first order RM codes of lengths 

up to 16 have been determined by R. Dick and N. J. A. Sloane." 
Their results, and the corresponding distributions of magnitudes of 
amplitude components of the output of the differential picture encoding-
decoding system are shown in Table I. Those rows which are predicted 
by our main theorem have been checked, and the relevant values of 
m have been listed. 
The coset weight enumerator for the first order RM code of length 

32 was determined by Berlekamp and Welch,12 and the results are shown 
in Table II. 
The coset weight enumerators for first order RM codes of length 
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k 64 have not yet been determined. This problem definitely merits 
further research. 

VI. ACKNO WLEDGMENTS 

I am indebted to Mr. J. R. Pierce for suggesting this problem and 
to Mr. N. J. A. Sloane for suggestions which simplified the proof of the 
identity in Appendix A. 

APPENDIX A 

A Sketched Proof of Main Result 

One of the implications of our main theorem is that if lies outside 
of the affine subspace spanned by the relevant a's, then zo = O. A 
generalization of this result is the following: 

Theorem: If the only nonzero components of u all lie in a (k — 1) 
dimensional affine subspace and # lies outside of this subspace, then zo = O. 

Proof: Using the elementary properties of RM codes and affine 
subspaces, the original 2k X 2k Hadamard matrix may be partitioned as 

= 
— 91 

where g is a 21̀- ̀X 2k-1  Hadamard matrix. In terms of this partition, 
the last 2k-1  components of y are zero and 3Cv is of the form [w, wit 
for some appropriate 2"-dimensional vector w. We then obtain 

3C̀ sgn [w,  = 2[z, 0]' 

where 

z' = 9̀ sgn ẁ. 

By repeated application of this theorem, we deduce that zp = 
unless a is in the affine subspace spanned by the coordinates of the 
nonzero components of v. If the coordinates of the nonzero components 
of y span a d-dimensional affine subspace, then an appropriate change 
of coordinates allows us to work with a 2d X 2d Hadamard submatrix, 
which is also Hadamard. The original output z vector merely gains a 
factor of two for each omitted dimension. 
Applying these arguments to the main theorem of the text allows us 

to confine our attention to the case when k = 2m. 
Since the 11:1I code is invariant under the full affine group, there is 
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TABLE II—COSET WEIGHT ENUMERATORS FOR FIRST ORDER 
RM CODES OF LENGTH 32 

Boolean 
function 
for coset* 

Number of 
such cosets Weights 

Value 
of m 
if pre-
dieted 

0 2 4 6 8 10 12 14 16 
Even Cosets 32 30 28 26 24 22 20 18 (halved) 

2345 496 X  1 0 1 0 0 0 0 0 15 16 
2345&12 496 X 120 0 0 0 0 2 2 0 14 14 
2345&23 496 X 35 0 0 0 1 0 3 0 12 16 
2345&23&45 496 X 28 0 0 0 0 0 6 0 10 16 2 
2345&12&34 496 X 840 0 0 0 0 0 2 8 14  8 
2345&123 17360 X  2 0 0 1 0 0 0 3 16 12 
2345&123&12 17360 X 24 0 0 0 1 0 1 414 12 
2345&123&24 17360 X 18 0 0 0 0 2 0 4 16 10 
2345&123&14 17360 X 192 0 0 0 0 1 2 4 14 11 
2345&123&45 17360 X 32 0 0 0 0 0 4 412 12 
2345&123&12&34 17360 X 72 0 0 0 0 0 4 4 12 12 
2345&123&14&35 17360 X 576 0 0 0 0 0 2 8 14  8 
2345&123&12&45 17360 X 96 0 0 0 0 1 0 8 16  7 
2345&123&24&35 17360 X 12 0 0 0 0 0 0 12 16  4 
2345&123&145 13888 X 320 0 0 0 0 1 1 6 15  9 
2345&123&145&45 13888 X 32 0 0 0 1 0 0 6 15 10 
2345&123&145&24&45 13888 X 480 0 0 0 0 0 3 6 13 10 
2345&123&145&35&24 13888 X 192 0 0 0 0 0 1 10 15  8 
123 155 X  8 0 0 1 0 0 0 7 0 24 
123&45 155 X 512 0 0 0 0 0 4 0 28  0 
123&14 155 X 168 0 0 0 0 2 0 8 0 22 
123&14&25 155 X 336 0 0 0 0 0 016 0 16 
123&145 868 X 32 0 0 0 1 0 1 0 30  0 
123&145&23 868 X320 0 0 0 0 1 012 0 19 
123&145&24 868 X 480 0 0 0 0 0 4 0 28  0 
123&145&23&24&35 868 X 192 0 0 0 0 0 0 16 0 16 
12 1 X 155 0 0 0 0 4 0 0 0 28 1 
12&34 1 X 868 0 0 0 0 0 0 16 0 16 
— 1 X  1 1 0 0 0 0 0 0 0 31 o 

* These functions are written in an abbreviated notation. For example, the 
second line, 2345&12 indicates that this equivalence claw of cosets includes one 
coset whose members are the 64 Boolean functions of the form X2X2X4X5 
X1X2 AX2 BX2  CX3  DX4 + EX5  F, where A, B, C, D, E, and F 
are arbitrary binary elements. 

no loss of generality in assuming that a0 = 0, that a1, a2, • • • , 
are unit vectors, and that 

= +1 for / = 0, 1, • • • , 2m. 

Any other case can be reduced to this case by an appropriate affine 
transformation of coordinates. 
We now determine the distribution of the vector 

= 
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TABLE II— C ont'd 

1 3 5 7 9 11 13 15 
Odd Cosetst 31 29 27 25 23 21 19 17 

— 32 X 1 1 0 0 0 0 0 0 31 
12 32 X 155 0 0 0 1 3 0 0 28 
12&34 32 X 868 0 0 0 0 0 6 10 16 
123 4960 X 1 0 1 0 0 0 0 7 24 
123&12 4960 X 7 0 0 1 0 0 3 4 24 
123&14 4960 X 84 0 0 0 1 1 2 6 22 
123&45 4960 X 64 0 0 0 0 3 1 7 21 
123&14&25 4960 X 336 0 0 0 0 0 6 10 16 
123&12&45 4960 X 448 0 0 0 0 1 3 13 15 
123&12&34 4960 X 84 0 0 0 0 2 4 4 22 
123&145 27776 X 10 0 0 0 1 1 0 12 18 
123&145&12 27776 X 6 0 0 1 0 0 1 10 20 
123&145&23 27776 X 80 0 0 0 1 0 3 9 19 
123&145&45&23 27776 X 16 0 0 0 1 0 1 15 15 
123&145&24 27776 X 180 0 0 0 0 2 2 10 18 
123&145&24&23 27776 X 240 0 0 0 0 1 5 7 19 
123&145&35&24 27776 X 240 0 0 0 0 1 3 13 15 
123&145&35&24&23 27776 X 192 0 0 0 0 0 6 10 16 
123&145&45&35&24&23 27776 X 60 0 0 0 0 0 4 16 12 

t All functions representing odd cosets also contain the term 12345, which is not 
shown in this table. 

Since x is the sum of the all-ones vector (corresponding to the column 
of 5C associated with a. = 0) and 2m columns of SC which correspond to 
linearly independent codewords in the RM code, it is readily seen that 

there are (2) components of x which have the value 2m ± 1 — 21. 
It follows that y = sgn x has Er_.  +1's and r t:„,.,.1 (r) —i's. 
For convenience, we may partition the components of y into 2m + 1 

subsets, each of which corresponds to the components of x with the 
same value. We call the set which consists of (2,7) components where x 
had value +1 the "significant" set of components. The sets of in-
significant components may be matched up in pairs; the set where x 
had value 2m ± 1 — 2t being matched with the set where x had value 
2m + 1 ± 21. Each of these matched sets contains () components. 
We now let 0 be a typical 2m-dimensional binary vector, which is the 

sum of 21+1 a's. By an appropriate permutation of basis vectors, 

we may assume that 
2j  2j 

e = a0 +  Eai =  E a: . 
i-1  -1 

The equation z = 3C'y now allows us to compute za as the dot product 
of a particular row of ac' and y. The equation 0 =  a; and the 
correspondence to RM codes allows us to express the particular row 
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of ae.' under consideration as the componentwise product of the first 
2j rows of X', ignoring the zeroth row, which is all plus one. Symbolically, 
if we let r„ r2, • • • , r,„, denote the first 2m rows of 5e, then 

= (r,  r2 C) • • • C) r2i)•sgn ri 
1 =1 

where "C)" denotes the componentwise product. Since 2j is even, we 
may also write 

2m  ) 

/ 2m  \ 

Zfi =  [( — ri) (—r2) 0 • • • ® (—r2i)]•sgn  r,) • 

The dot product is the sum over all 22 components of the component-
wise product of (r, C) r2 0 • • • 0 r21) and y = sgn ri). Since 
there is cancellation of the summands coming from matched sets of 
components into which we partitioned y, we need only consider the 
(2,22) "significant" components. On each of these, y takes value +1, and 
the problem reduces to the following: Given a 2m X (2,7) matrix, whose 
columns represent all ways of distributing m plus ones and m minus 
ones among 2m rows, compute the sum of the entries in the component-
wise product of the first 2j rows of this matrix. The solution is obtained 
by noting that if there are i minus ones in the first 2j rows, then the 
componentwise product is (-1)' and this happens in (2/) (2222:21) columns. 
Therefore, 

zo  =  p  ( _ 1)2  (2i,j) (2m 

Having already explained the other factors in the more general version 
of the theorem stated in the text, the theorem is reduced to the identity, 

E ( 1,,(2,;(2m - 2‘j ? (-1):(2m — 2j)! (2j) ! 
m —  I  j! m! (m — j)! 

Multiplying through by (m 02/(2m — 2j)!(2j)! reduces this to the 
equivalent identity, 

E (-1)i(7)( .7 ) (-1)2(7) , 
2,  — z 

whose proof is given by Riordan (p. 14, line 7 from bottom). 12 Q.E.D. 

APPENDIX B 

An Example 

Suppose that the differential picture consists of a 4 X 4 grid, the 
points of which are lettered as follows: 
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A B C D 

E F G H 

J K L 

M N O P 

The signs of the units in the 16 X 16 cyclic Hadamard matrix with 
which the differential picture is smeared may be taken as: 

31C = 

+ + + + + + + + + + + + + + + + 

+ + + + — + + -- — + — + — — — — 

+ + + — + + — — + — + — — — -- + 

+ + — + + — — + — + — — — — + + 

± + + — — + — + — — — — ± + + — 

± — — ± — + — — — — + + + — + ± 

+ - + — + — — — — + + + — + + — 

+ + — + — — — — + + + — + + — — 

+ — + — — — — + + + — + + — — + 

+ + — — — — + + + — + + — — + — 

+ — — — — + + + -- + + — — + — + 

+ — — — + + + — + + — — + — + — 

+ — — + + + — + + — — + — + — — 

+ — + + + — + + — — + — + — — — 

The induced coordinatization may be read from the 2nd, 3rd, 4th and 
5th rows. It is: 
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Grid Point Coordinatization 

Representation as Sum of 
Odd Number of Affine 

Basis Vectors 

A 

D 
E 

iF 

H 

N 
O 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 1 
0 0 1 1 
0 1 1 0 
1 1 0 1 
1 0 1 0 
0 1 0 1 
1 0 1 1 
0 1 1 1 
1 1 1 1 
1 1 1 0 
1 1 0 0 
1 0 0 0 

H + I + L 
E+11 +I ±L ±P 

H + L + P 
E + I + L 

E 
E +  + L 
E + L + P 

H 

I+L +IP 
E + I + P 

H + I + P 
E + Fl + I 
E + H + P 

The coordinates of B through P may also be taken as the successive 
contents of this shift register: 

G  
Now suppose the differential picture is this: 

0 0 0 0 

+1 0 0 —1 

+1 0 0 —1 

0 0 0 —1 
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The coordinates of the nonzero inputs are as follows: 

E 1 0 0 1 

H 1 1 0 1 

I 1010 

L 0 1 11 

P 1 0 0 0  

0 0 0 1 = sum 

These are affine independent, so our main theorem applies. The stray 
output pulse will be located at point B, since this is the point whose 
coordinates are the vector sum of the coordinates of the other inputs. 
We now calculate the output vector step by step, without using the 

theorem. The input picture is: 

= [0, 0, 0, 0, +1, 0, 0, -1, +1, 0, 0, -1, 0, 0, 0, -11. 

The "smeared picture" is x = 3Cv, which is given by the sum of the 
following rows: 

+  I + + - 

- - - + + + - + + -

+ - - - + - - + + - + 

+ - - + + - + - + + + 

x = -1,-1,+3,-1,+1,-1,-1,-3,+1,+3,-3, - 1,- 3,+5,+ 1,+ 1 

The quantized smeared picture is 

= Qx 

= [- - + - + - - - + + -  - +  +]. 

The decoded differential picture is given by 

Z = 3Cy 

= [-2, -6, +2, +2, +6, -2, -2, -6, +6, -2, +2, -6, -2, 

+2, -2, -6]. 
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When scaled down by a factor of six and placed on the grid, the output is 

-I- -1 -i-i +-1 

1-1 - -1 -1 

+1 --1 +1 -1 

- +1- -i -1 

In order to match the total power of the input, the output must be 
scaled down slightly more. 
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Binary Codes Which Are Ideals in the Group 
Algebra of an Abelian Group 

By MRS. F. J. MAcWILLIAMS 

(Manuscript received January 13, 1970) 

A cyclic code is an ideal in the group algebra of a special kind of Abelian 
group, namely a cyclic group. Many properties of cyclic codes are special 
cases of properties of ideals in an Abelian group algebra. 
A character of an Abelian group G of order y is, for our purposes, a 

homomorphism of G into the group of vth roots of unity over GF(2). If G 
is cyclic with generator x, the character is entirely determined by what it 
does to x; this effect is kept, and the characters are discarded. If G is not 
cyclic it is necessary to rehabilitate the characters. Without them the notation 
is impossible; with them one can prove a number of theorems which reduce 
in the special case to well-known properties of cyclic codes. Moreover the 
writer thinks that the general proof is often easier and more suggestive than 
the proof for the special case. To support this point of view we produce a 
new theorem, which of course also applies to cyclic codes. 

I. INTRODUCTION 

A cyclic code is an ideal in the group algebra of a special kind of 
Abelian group, namely a cyclic group. Many properties of cyclic codes 
are special cases of properties of ideals in an Abelian group algebra. 
A character of an Abelian group G of order y is, for our purposes, a 

homomorphism of G into the group of yth roots of unity over GF (2). 
If G is cyclic with generator x, the character is entirely determined by 
what it does to x; this effect is kept, and the characters are discarded. 
If G is not cyclic, it is necessary to rehabilitate the characters. Without 
them the notation is impossible; with them one can prove a number of 
theorems which reduce in the special case to well-known properties of 
cyclic codes. Moreover the writer thinks that the general proof is often 
easier and more suggestive than the proof for the special case. To support 
this point of view we produce a new theorem, which of course also applies 
to cyclic codes. 

987 
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The plan of this paper is as follows: Section II contains a summary of 
the properties of ideals in an Abelian group algebra. Section III contains 
a description of the group characters; the reader is assured (and we hope 
reassured) that an effort has been made to point out the analogies with 
the cyclic case. In Section IV the characters are extended to the group 
algebra. This section contains the general cases of several familiar 
theorems, for example, the dimension of the code, a lower bound on its 
minimum distance, the Mattson—Solomon mapping, and the identifica-
tion of the dual code. In Section V the structure of product codes is 
examined for the general case. Section VI contains the new theorem 
(which needs too much notation to be explained here) and the special 
ease of this theorem which applies to cyclic codes. The Appendix 
contains an illustrative example of the smallest possible nontrivial case. 

II. GENERAL PROPERTIES OF ABELIAN GROUP ALGEBRAS 

Let G be a finite Abelian group of odd order y; the group operation 
is written as multiplication. 
Let R = FG be the group algebra of G over the field F = GF(2). 

R consists of finite sums 

A = E a,g,  ap e F. 
gtO 

In FG we have two operations, addition and multiplication, defined 
as follows: 

A + B = E (a, + b,)g, 
gtO 

and for f E G, 

fA = E apfg = E 
gtO  0“7 

This implies 

AB = E E apbfh.  (1) 
htO gf-h 

We use 1 to denote the unit of G, and 1, 0 to denote the unit and zero 
of FG. 
From the first of these operations we see that FG has the structure 

of a vector space F° of dimension y over F. 0 is the zero vector and 1 
is the vector (1 0 0 • • • 0). 
An ideal a in FG is defined as follows 

a is a linear subspace of F°, 
A a=gA ca for all g G. 
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From the general theory of semi-simple group algebras,' we know 
that FG is a principal ideal ring; that is, every ideal is of the form 

= {rA, r r FG} for some element A e FG. 

We denote the ideal with generator A by (A). In fact every ideal has 
an idempotent generator; a = (N), where N = E„,a rig has the 
properties: 

N2= N, 

r e a <=> rN  r. 

Since the ground field is GF(2), and G is commutative 
N 2 =  E  ng e , 

ge0 

so that 

(2) 

N = E ngg 
[103 

is idempotent if and only if n, = np. for all g e G. 
FG is the direct sum of its minimal ideals, 

FG = (0,) ± • • • + (o,), 

and every ideal in FG is the direct sum of a subset of these minimal 
ideals.' The idempotents, 0; , of the minimal ideals are called primitive 
idempotents and have the additional properties 

E 6, = 1,  (3) 
i-1 

00j= O, i V j,  (4) 

(0,)  (0,) = 0, i j. 

Every idempotent in FG is the sum of primitive idempotents. Since 
we are over GF(2) the sum of idempotents is idempotent, and the set 
of all idempotents is a vector space I; 01, • • • , Ot are a set of linearly 
independent basis elements for I, which is thus of dimension t. 
We also define a set of "trivial" idempotents as follows: 

Let yi = 1 r G. Pick g e G, g  1, and set 

Y2 = {g, g2, g4, • • • , g2.} 

where g2" = g (this must happen since G is finite and of odd order). 
Pick f ey, U y3 and define the set y3 = if, f2, 14, • • • ,f'}. In this way G 



990  THE BELL SYSTE M TECHNICAL JOURNAL, JULY-AUGUST 1970 

is partitioned into disjoint classes, which we call cycles 

G =  U y2 U Y3 • • • •  (5) 

Define Yi E FG by 

Y , = E g,  (for example, Y2 = g + g2 + • • • + e.)• 
The Y, are the trivial idempotents. From equation (2) it is clear that 
every idempotent is the sum of trivial idempotents, and they are 
obviously linearly independent over F. Hence the trivial idempotents 
also form a basis for I over F. We have proved the following Lemma: 

Lemma 1.1: The number of trivial idempotents is the same as the number 
of primitive idempotents, and each set is linearly dependent on the other; 
that is, there exists an invertible t X t matrix (m1,) over F such that 

0, 

(m 1 i) 

171 

From a practical point of view it is desirable to find the 0, . The 
algorithm for doing this is as described in Ref. 2, except that the 
group is no longer cyclic. Briefly, we form linear combination of the 
Y, in a systematic way until we find t idempotents which satisfy equa-
tions (3) and (4). An example is given in Appendix A. 

III. GROUP CHARACTERS 

Since we shall make extensive use of the characters of the group and 
the group algebra, we give a brief account of their properties. 
For our purposes, a character of G is a homomorphism ip of G into 

the vth roots of unity over GF (2) . These vth roots of unity lie in an 
extension field GF(2°) in which the expression z° — 1 splits into linear 
factors. They form a cyclic subgroup of the (multiplicative) group 
of non-zero elements of this field. 
Formally 

,/,(f)i(g) =  (6) 
Hence 

4/(1) = 1 

(the unit of G on the left and of GF(28) on the right) and 

lk(9-1) = [#(9)]-1. 
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If G is a cyclic group of order v, with generator x, a character is a 
map x —> /3, where  is a vth root of unity. In this case one usually does 
not distinguish between the character and the value it assigns to x. 
We define multiplication of characters by 

(00(0 = 4 W(0. 

Under this operation, the characters form a group, r. The unit of OC, 
called the principal character  is the map 

g —> 1 for all g E G. 

The group G and the character group 9: are isomorphic in many ways. 
We construct a particular isomorphism and use it henceforth. 

Theorem 2.1: (Reference 3) The Abelian group G has a unique decom-
position as the direct product of cyclic groups of prime power order, 

G = G1 X  G2 X  • • • X G.,  Gi cyclic of order p:̀. 

(The primes pi are not necessarily district.) 
Pick a generator ri for G,, and a fixed primitive paith root of unity, 

ai . Let  be the character defined on the generators by 

ii/71(xi) = ar  4/1i(x1) = 1, i j. 

By equation (6) this is sufficient to define 1,/,.; on any g E G. We may 
by equation (7) define e, 

Igi(g) = [11'zi(g)J2• 

Lemma 2.2: If ye. is any character of G, then 4, can be represented in the 
form 

= II  . 
i - 1 

Proof: Let ço(xi) = O. Then 

=  =  = ço(l) = 1. 
Thus e is a power of a1, say (3 =  We then see that 

,o(n e.)  = 
Hence 

Set a = 

ço = II ec; • 
e and denote the character ço = t//: by ip„ . We then 
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have 

Lemma 2.3: The mapping a <=> 4e„ as defined above is an isomorphism 
between G and EC. 

We also use Ip„ to mean the character corresponding to a in this 
isomorphism. 

Lemma 2.4:  (b) =çot, (a), and ço„-.(b) =  

Proof: Let 

a = x̀," • • • xr ,  b =x';' • • • 

Then 

saa(b) =  [ç.;(b)]« = 
i 

The second statement is proved in a similar way. 
We shall need the following theorem which is well known, so the 

proof is omitted. The skeptical reader may easily construct an ele-
mentary proof by using the properties of the roots of unity. 

Theorem 2.5: 

(i) 
if g = 1, 

otherwise. 

if =  , 

otherwise. 

If G is cyclic, both parts of this theorem reduce to 

—1 

E J... 
y if 0 = 1, 

0 otherwise. 

Let OC(g) be a matrix whose columns are labeled by the characters 
and rows by the group elements g. The entry in row 1,G, column g 

is 4/(g). An example is given in Appendix A. 

Lemma 2.6: X(g) r(g-1) = diagonal [vv • • • v] = vi. Hence 9C(g) is 
invertible. 

Proof: A typical entry on the main diagonal is 

E ifi(g)li(g-1) = E Ik(1) = v, by Theorem 2.5 (ii). 
9,17  et0 
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A typical off-diagonal entry is 

E eacoeb(g-') = E egccotppol, 
cud  &Ica 

= E 1,/,,,(ab-1) = 0, by Theorem 2.5 (ii) since a 0 b. 
g G 

IV. CHARACTERS OF THE GROUP ALGEBRA 

If G is a cyclic group of order y, with generator x, and A •—• A(x) 
an element of FG (that is, a polynomial of degree less than y in x) then 
A(0) is the value of the character x ---> 0 on A. In the general case, 
for A --- E„.0 (tog in FG, we extend the character to the elements of 
the group algebra by 

e(A) = E agLP(g). 
orG 

Using the notation of Theorem 2.1 and those that follow, we could 
write an element of FG as a sum of terms of the form  • • • 
O ji <p". A is a polynomial in the variables z1, • • • , x1 with restric-
tions on the degree of each variable. A character is a mapping A(x, 
• • • x.) —> A (9, , • • • , 0.) where 13; is a (p 1)th root of unity. As pointed 
out in the introduction, there are certain advantages to using this 
polynomial notation as little as possible. 
If G is cyclic, we know that 

A(x)B(x) 130  = AB(x)  . 

Analogously for the general case (and with the same proof, using 
equation (1)), 

«AB) =  
If G is cyclic, it is usually the case that A (MA (fl2) 0 A(13,02). There 

is however a vital exception, namely Ae2 = A(02). Similarly, in 
the general case 

#cp(A)  IP(A)e,o(A),  but 

Lemma 3.1: ik(A)2 = ,,e(A) = If/(4.2). 

Proof: 

kb(A)12 = [E age(M2 = E aveg)2, 
ora piG 

= E ae(e). 
at° 

A cyclic code is an ideal in a cyclic group algebra. It is frequently 
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described as the set of polynomials which vanish on a certain prescribed 
set AS of vth roots of unity: 

a = {Mx): MO) = 0, e SI. (7) 

Similarly, we can characterize an ideal in the group algebra of an 
Abelian group as the set of elements of FG which vanish at a prescribed 
set of characters: 

a= {A E FG: tP(A) = 0, e S} (7') 

From Lemma 3.1 we see that in the general case, as in the special 
case, the maximal set e§ corresponding to a particular ideal must have 
a special form; in fact it is the union of sets {1P, e, 1,4, • • • 1. 
It is well known that the dimension of the cyclic code associated by 

equation (7) with the set e§ is the number of vth roots of unity not 
contained in e§, that is, the number of nonzeros of the code. Similarly 
in the general case. The following two theorems are proved in Reference 
4; we repeat the proofs here for convenience, and also supply an example 
in Appendix A. Let gi , g2 , • • • , g, be the elements of G. Associate 
with the element A the y X y matrix (ag,-.„). The entry in row i column 
jis the coefficient of gi in g.A. The ideal a, = (A) is generated as a sub-
space of R = r by the rows of the matrix (a„-,„). The dimension 

of this ideal is the rank of this matrix. 

Theorem 8.2: The dimension of the ideal (A) is the number of characters 
4, such that \KA) r O. 
Proof: The matrix  (g-1)(a„-.,,,)9C(g) has the same rank as (a„-,,,), 

since by Lemma 2.6 9C(g) is invertible. A typical entry of the product 
(a„-.9i)9C(g) is of the form 

nii = E ap.—gkegi(gO• 
pea 

Now 

E a,,k‘b.,(gh) = E  = b9,(g.)• 9,ro  r,„. 
Thus 

nil = 1,Pgi(gi)thi(A). 

In the product 9C(g-1)(ni i) the diagonal terms are of the form 

#(91 1P(0 = 



ABELIAN GROUP CODES  995 

The off-diagonal terms are of the form 

#((A) E e(gli(f) = O. 
Thus 

OC(g-inag,-‘„)9C(g) = diagonal hb„,(A), ,y„.(A), • • • I,G„(A)], 
and the rank of the matrix (a„,-.„) is the number of characters for 
which 4,(A)  O. 
We call these characters the non-zeros of the ideal (A). 
Let D be the m X y submatrix of OC(g) T whose columns are indexed 

by the group elements and rows by the m characters for which 
IP(A) = O. If a = (ai, a2, • • • , a.) is a vector of (A), then Dar = O. 
If D contains no set of t linearly independent columns, the minimum 
weight in (A) is at least t 1. This is the extension of the BCH bound 
for cyclic codes. It is generally a very weak lower bound. 

Theorem 3.3: (The Mattson-Solomon mapping—see Reference 5.) 

1 
(i) If A = E a„g, then a,  

(ii) If va, = E elmg--), then ik(A) =  . 
¡EX 

Proof: 

(i) E ik(A)e(rl) = E E aco,t(eie(r'), 
4,9C otO 

E a„ E e(gf-') = va, 
o eG  çOe 

VP ( A) =  E ciplPh(9), 
atO 

- E E Apkf(g-1)#h(o), 
ye°  

E2 E 
arG  ef.sc 

- E 13. E eQ(1-1)e9(h), 
p G  f ea 

E a. E tPo(f—i h) 
pea  lea 

-= Oh • 

Corollary 3.4: A is uniquely determined by the set of values 1,1,(A). 

We divide the group G as in equation (5) into cycles corresponding 
to the trivial idempotents of FG, and divide the character group OC 
into similar classes by the isomorphism of Lemma 2.3. 



996  THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1970 

G = YIU Y2 U • • • U ?it , 

9C =  ‘1#.2 k..) • • • U  . 

(5) 

(8) 

yi = 1 and ‘IF, contains only the principal character g',. By Lemma 
3.1 if 1//(A)  0 for some I/. gri , then 1P(A)  0 for all 2,G E  . The 
non-zeros of A are a union of cycles  . 
The minimal ideals have the smallest possible dimension, so that by 

Theorem 3.2 the non-zeros of a minimal ideal are, if possible, the char-
acters in a single class  . (This is in fact possible; an explicit construc-
tion is given in Section V.) If Oi is the idempotent of this minimal ideal 
we may define 0, by the property 

%KM = {1  1p E \Pi , 

0  otherwise. 

Theorem 3.5: The dimension of the ideal (0,) is 1 N If, 1, the number of 
elements in 'P. . 

Since every ideal in FG is the direct sum of minimal ideals, every 
idempotent is of the form C = E, €,e, , i = 0 or 1. The dimension 
of C is E ei I 41i I. From equations (2) and (4) we have immediately; 

Theorem 3.6: If C,, C, are idempotents with non-zeros 431 and 'F,, and 
c1.1 C 4.2 , then (C,) is a subideal of (C2). 

The dual code of (N) is the set of vectors bl , • • • , b, such that 
Et_, a,b, = 0 for all vectors a, , • • • , a, in (N). The dimension of 
the dual code is v — dim (N). 

If N is idempotent, the dimension of ((I ± N)) is v — dim (N). 
This follows at once from the fact that 1 = Et.., 0, . For A = E a,g, 
set A* = E  
Theorem 3.7: The dual code of (N) is ((1 ± N)*). 

Proof: Let E b,-,g E ((1+N)*); then E be E ((1. -F N) ). Since N(1+N) 
= 0, for any E clog E (N) we have 

(E aog)( E bog) = O. 

(9) 

From the coefficient of 1 in this product 

Eaob,_, = O. 

Therefore, ((1  N)*) is contained in the dual code of (N), and has 
dimension v — dim (N). Thus it is the dual code. 
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V. QUASI—CYCLIC AND PRODUCT CODES 

Let H be a proper subgroup of order u of the Abelian group G; and 
let 

G = k,H U 141l..) • • -U kH  (k, = 1, y = uw) 

be the decomposition of G into cosets of H. In this section we suppose 
the coordinate places in FG to be arranged in the order 

kih„ kih2 , • • • , k,h , k1h1 , • • • , k2hu , • • • ,  , • • • , kh. 

Let a be an ideal of FG, and denote by a, the part of a which lies in 
the coordinate places kilt, , • • • ,  a, is an ideal of PH (usually 
several repetitions of an ideal of PH), and since k,a, = a, the codes 
a, are all repetitions of ai. Each vector of a consists of w vectors of 
ct,; these are not in general the same vector, and some of them may 
be zero. If H is a cyclic group, a has the structure of a quasi-cyclic 
code. Since G contains cyclic subgroups of order p for every prime p 
which divides a, a may have this structure in several different ways. 
We make the additional assumption that G is the direct product 

G = H X K of subgroups H, K. This means that H  = 1, and each 
element of G can be expressed uniquely as g = kh, k e K, h e H. The 
character group  is correspondingly a direct product 

= Xi/ X OCK 

where XII ,ECK are the images of H, K under the isomorphism of Lemma 
2.3. Every character can be expressed uniquely as 

= CIO 111P IC  S°H e 92ff e e OCR' • 

We shall need the following result. 

Lemma 4.1: ioffçog(hk) = en(h)eK(k). 

Proof: From the isomorphism of Lemma 2.3, 

'PH(k) = 1,  çoic(h) = 1. 

Let A = E h af ahh, B = E k cK bkk be idempotents in the group 
algebras PH, FK. Let c»H , cpi, be the non-zeros of A, B respectively. 
ePH  CDK correspond to cycles of 92 K  which are, of course, also cycles 
of X. 
The Kronecker product of matrices, M, N, is denoted by M X N 
(an example is given in Appendix A). 
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Theorem 4.2: (i) C = AB is an idempotent of FG. 

(ii) The codes (C) is the direct product of codes (A), (B). 
(iii) The non-zeros of (C) are (r°H (Pli 5 (PH E  SOH C  
(iv) The minimum distance of (C) is the product of those of (A), (B). 

Proof: (i) It is clear that C = E ke% bkk Ehe57 ahh is idempotent. 

(ii) The first row of the Kronecker product 

(a) X (b) = (ah„—h,) X (b„,-,,) 

consists of the coefficients of C. The second row contains the coefficients 
of he, and the (u + 1)st row the coefficients of ke. Without further 
notation, we see that the rows of this Kronecker product generate the 
code (C) as a subspace of F°. 

(iii) OC(G) = orH(h) X XH(k). By Theorem 3.2, the non-zeros of C 
are given by 

[tu(h 1) X SCE(IG-1)r{(a) X (b)l[ECH(H) X iz(K)] 

= OC;(h-1)(a)OCH(H) X ECI(1c-1)(b) K(K). 

The triple matrix products are diagonal matrices with ones in the 
places corresponding to cp e c13H d)H) and zeros elsewhere. Their 
Kronecker product is a diagonal matrix with ones in the places cor-
responding to çoriçoir , (pH E <PH , K K . 

(iv) This is a well-known property of direct product codes. 

Given an idempotent C of FG we would like to know how, if possible, 
to find subgroups H, K such that G  H X K, and C = AB. The 
following theorem is sometimes helpful. 

Theorem 4.3: Let •Y be the set of non-zeros of C; suppose ‘1, can be expressed 
as the product of two sets of cycles cf., , CP2 where — K E ob  Fr  cb  w' and -1  2   

9C =  OCH X  SCK . (Consequently, G = H X K.) 

Then C = AB, where A, B are idempotents in FH and FK, with 
non-zeros (Di , 4)2 ; consequently the code (C) is the direct product of codes 

(A) and (B). 

Proof: 

C = E akhkh = k, E ak,hh  k, E ak,hh + • • • ± k. E akfhh. 
kheO  hell  hell  hell 

By Theorem 3.3 (i) 

akih = E inec7'h-.) = 
te.x  9,1.4,1 eel,. 

E E çe'iso2(k1h-1), 
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since by hypothesis 

11 if 1p  cp = çoi, 

0 otherwise. 

= E g.,(k7') E  

by Lemma 4.1. Set ah =  ahik(h-1), where 

/EtI i 
ah = 

0 otherwise. 

Set A =  ahh; then 

10 otherwise 
by Lemma 3.5 (ii). Define B similarly for K. Then A, B are idempotents 
in PH, FK, and C = AB. 
If H, K are cyclic groups whose orders are relatively prime, then G 

is also cyclic. The codes (A), (B) are cyclic codes in PH, FK respectively, 
and (C) is a cyclic code in FG. 
This special case has been thoroughly investigated by Burton and 
eldon' and Goethals.7 
The extension to direct products of more than two subgroups is 

theoretically obvious, but rather hard to visualize. An example for the 
cyclic case is given in Appendix 2. 

VI. A NE W THEOREM 

1 ik 
;KA) = ah = 

Everything in this paper so far is a natural extension of known results 
about cyclic codes. This section is not; the special case of Theorem 5 
for G cyclic is new and interesting (at least the writer thinks so). 
The primitive idempotents 0, of FG have been defined by the property 

= 
;1/ gri • 

We recall that the trivial idempotents are defined by the property 

Y, = E a,g, a, = .{1 g 0 u yi .,o  (11) 
t y, , 

Since these properties look remarkably symmetrical, one expects to 

(10) 
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find some symmetry in the matrix (me,) (Lemma 1.1) which relates 
O , to 17, . This in fact exists, as follows. 
We recall that 

A* = 

Theorem 5.1: 

agg E -1 
vcO 

ei = E rkYk  Yt — E rkOk • 
Jr1 

Proof: Let 

0, --- E b,g 
g O 

= E E goibp(g-i)g by Lemma 3.3 i 
g G 4,0c 

(Note that 1/v = 1 in characteristic 2.) 

= E („pi, e(g-1))g by (10). 

From definition (8) of Ti , we may suppose that T, =  , 
• • • , . Then the inner sum is 

= '01 + c(f2) + • • • + iii„(1-2 ') by Lemma 2.4, 

= er,(  • 

Thus 

Oi =  (12) 

(This is the explicit construction for 0, .) Now suppose 

= Erkek 

=  

= fl,  gc Yk , 
emk)   10, g Yk. 

Hence 'kg, (YI) = r1 eg(Y.,) = rk for all g E Yk . Substituting in equa-
tion (11), we obtain 

r,, e GF(2). 

from (9). 
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o  =  r  E g + • • • +r, E , 
ur Y, et Yt 

ri . 

Let ipk(ri) be the common value of ,p(y,) for tfr e %Pk . Equation (12) 

then becomes 

0, = E C(17*,)17k , 
k-1 

r kY k • 

With a slight change of notation, let 

O, = E moy-k . 

(13) 

Let P be a permutation matrix such that P acting on the column 
vector (Y  Y ,- 1  - 2  • • •  Y1) 7 produces (17'1; ,  , • • • , n)r. 

Theorem 5.2: 

Proof: By Theorem 5.1, 

Hence 

)71 = E 
k= I 

= E 

(ln11)2 = p• 

mik E 
k-1 

Emikm11)17, . 
k=1 

1 E  = 

k-1  lo 
Yt = Yi 

otherwise. 

We give a brief description of the special case G cyclic of prime order p. 
FG is now the polynomial ring R = F[x]/x1' + 1. Let f be the order 
of 2 mod p. If p — 1 = ef, then 

2 = gr 

for some generator g of the integers mod p. The trivial idempotents, 
other than 1, are of the form 

± x i.2  xi.4  " " • ± 
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Let 0- be the automorphism of R induced by x ---> x'; define 

2c0 = z I- e  I- x1 -F  I- se—, X. i = 1,  , e -- 1. 

Then 

= e  x **2  ±  • • •  a = g. 

Since the trivial idempotents were previously called Y, , • • • , 
have changed notation; now 

= 1,  Y2 = X0 , • • • , Yi = X , - 

We rename the primitive idempotents correspondingly, 

0 1 =  J, 0 2 =  110  • • • e Ot = 

The characters of G are defined by 

e=à(x)  ak, 

where « is a primitive pth root of unity; thus n; is defined by 

Ii if k =  
exk(ni) = 

0 otherwise. 

This may be rewritten as 

(0 a.+k  =  k, 
n,a  ) 

0 otherwise. 

In particular 

Hence 

Write 

ii = 1, 
,f(ai) = 

L.O otherwise. 

J= ExI. 

e-1 

77y  =  M y +  E  M ik Xk  ; 

k -0 

mi = X(J) = f, 

m, = x(cv"+k). 

Y, we 

04) 
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Since —1 = r 2 we have 

{ xl ,  Xi ,  f even, 

=. '  X i+./2  f odd. 

Now 

8-1 

fljO = f + E mikxk+1 , 

and 

= XI(a°"+k) =  

by equation (14) and the definition of  . Hence 

M i-1.4+1 

and 

Set 

then 

Clearly 

.-1 
oiff = f + E   

00 =  f  E mac, ; 
lo•O 

e-1 

01 = 00 a "1 = f  E  . 
k 

•-1 

J = 1+ EXII. 
k 1:1 

(15) 

The matrix corresponding to the (m11) of Theorem 5.2 is of the form 

[1  J 
iT 

where J, f are now vectors of length e and 

M = 

e 

MO f  M I  M e-I 

m,, M 2 M o 

: Md ."  MO I  I  Me-2 
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Let P be the permutation matrix which turns the column vector 
(1, X0 , • • • , X  - O T into (1, X , • • • , X e_ 1)7 . By equation (14) 

P = I for /even, 

1  0 
P  for f odd 

or Qe/2 

where 

0  1  0  0 

0  0  1  0 
of size (e — 1) X (e — 1) . 

, 1  0  • • • • • • 0 , 

From Theorem 5.2 we have 

[ 1 -I- ef,  J + 1M I = P . 
fT+ MfT frl + 

For f even, el is an e X e matrix of zeros, hence 

21/2 = I if/is even; 

for f odd, frl is an e X e matrix of ones, which we denote by K. 

M2 = K + Q" if f is odd. 

The matrix M, which is symmetric and circulant in the wrong direction, 
can be made circulant in the usual way by multiplication by a suitable 
permutation matrix. Skipping the obvious details we have the following 
theorem. 

Theorem 5.3: With  , Xi defined as above, and 

(ii)  Set 

no = 
— I 

E Mk Xi, , 
i 

6-1 

= mœ + E mknk . 
i 

m(y) = ?no 1- zmiy A- rn2y2 1-

m(Y) T == rno A- mq.  -F rn-2Y2 -F  -F 
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Then 

(1) _{0 f even, 1 f odd. 

(ii)  m(y)m(y) T = 1 mod e + 1, f even, 
e-1 

=  E  f odd. 
i-o 

Theorem 5.3 has several interesting corollaries of which we mention 
one. 
Let w be the weight (the number of non-zero coordinates) of m(y). 

The following statements come from Theorem 5.3. 
The weight of Xi = The dimension of (Ili) = f. 
The weight of ni = The dimension of (Xi) = wf, f = 0(2), wf  1, 

f = 1(2). 

Corollary 5.4: If p = 2k — 1, (Xi) is a (2' — 1, 2- ) code, with mini-
mum weight 5 k. 

Proof: For p =  — 1, we have f = k. Clearly the minimum weight 
in (Xi) is bounded above by that of X, which is k. 

The minimal ideal (ni) is the dual of a Hamming code. Hence Ili (and 
every other non-zero code word) has weight (p + 1)/2 = ef/2 + 1. 

Thus w = e/2, and the dimension of (Xi) is (p ± 1)/2. 

We can use Theorem 5.3 to discover some other remarkably poor 
cyclic codes; for example 

p = 251, e = 16, f = 16, w = 9, 

p = 1801, e = 72, f = 25, w = 39. 

[After the completion of this paper, the writer discovered that Abelian 
Group Codes have also been investigated by Berman (KIBERNETIKA, 
vol. 3, no. 3, 1967) and by Paul Camion (to appear).] 

VII. CONCLUSION 

The writer regretfully admits that she has made no attempt whatso-
ever to find out whether general Abelian group codes are of any practical 
value. One obvious thing to do is to make a computer search; the 
algorithm for finding the primitive idempotents is quite easy to imple-
ment. Another direction of research is to look for a class of groups, not 
cyclic, which produce codes with some desirable practical properties. 



1006  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970 

VIII. ACKNOWLEDGMENTS 

The writer is grateful to her colleagues, especially N. J. A. Sloane, 
for several excellent suggestions which greatly increased the clarity of 
this paper. 

APPENDIX A 

An Example of a Non-Cyclic Abelian Group 

Let G be the group of order 9 which is the direct product of two groups 
of order 3. The elements of G are 

1, x,  x 2, y,  xy,  x 2y,  y 2, x y 2, x 2y 2, 
X3  =  y' = 1. 

Let a be a primitive third root of unity over GF(2); then 

1 ± a + 2 = 0. 

The matrix  (g) is: 

IP v. 111/  

1 1 1 1 1 1 1 1 1 1 

z 1 a a2 1 a a2 1 a 
2 a  

x2 1 a2 a 1 a2 a 1 a2 a 

II 1 1 1 a a a a2 a2 a2 

xy 1 a a2 a a2 1 
a 2 1 

a 

x2y 1 a2 a a 1 a2 a2 a 1  

Y2 1 1 a2 a2 a 2 a a a 

x y 2 1 a a 2 a 2 1 
a a 

2 
a 1 

x2y2 1 a2 a a2 a 1 a 1 
a 2 

It is symmetric because the characters are written in the same order 

as the group elements to which they correspond; the argument does not 
use the symmetry of (g) . 
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The trivial idempotents are 

Y1 = 1; Y2 =  X +  X2; Y3 = y + y2; Yg  xy + x2y2; Y, = z2y + xy2. 

In order to find the primitive idempotents we need the multiplication 
table for the Y.. This also is symmetric and we write only half of it. 

Y2 Y, Y, Y, 

Ya 

Y, 
Y4 

Y, 

Y2 

174 + Yis 
Ya +  Y5 

Ya + Y4 

— 

Y, 
Y2 + 173 
12 +  Y4 

Y4 

Y2 + Ya 

— 

- 

Y, 

We have then 

1 = Y2 + (1 + Y2); Ya = Y3172 + 173(1 + Y2); 

(1 + Y,) = (1 + Ya) Y2 + (1 + Y3)(1 + Y2). 

Thus 

Ya = (Y4 + 173) + (Y3 + Y4 +  Y5), 

1 + Ya = (Y2 + Y4 + Ya) + (1 + Y2 + Ya + Y4 +  Y3) • 

1 =  Y, + (1 +  = (Y, + Y,) + (Y, + Y, +  ,) 

(Y 2 ± Y4 +  Y3) +  (1 +  Y2 + Y3+ Y4 + Y 5) • 

We multiply this equation by Yg and (1 + Y4) 

Y4 =  ( Y2 +  Y3 +  Y4) +  ( Y3 +  Y4 ±  Y5) +  ( Y2 +  Y4 +  Y,) + 0 , 

1 + 17. =  (Y2 +  17 4 +  Y5) +  +  ±  (1 ±  Y2 +  Y3 +  Y4 + 1x 5) . 

Finally, 

1 = Y4 + (1 + Y4) = (Y2 +  + Y,) + ( Y3 +  Y4 +  175) 

+  ( Y2 +  Y4 +  Y5) +  ( Y2 +  Ya +  Y5) + (1 + Y2 ± Y, + Y, + Y,). 

This is a decomposition of 1 into five mutually orthogonal idempotents, 
which are therefore the primitive idempotents. Set 

= Y2 + 173 + Y4 =. X +  X2 y y2 + xy + x2y2. 

We use the table 9C (g) to check that 

44A) = ez.(A) = 412(A) = 2.(A) =  u(A) = 1P..(A) = 

%P.m) =  = 1. 
Hence 

Y2 +  Y3 +  Y4 =  64 • 



1008  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970 

Si milarly 

Y3 ±  Y4 +  Y3 =  03, 

Y2 +  Y4 ±  1'5 = 02 , 

Y2 ±  Y3 +  Y5 =  05 , 

+  Y2 +  Y3 +  Y4 +  Y5 = O. • 

T he m atrix (a - 9) for the trivial ide mpote nt Y2 is 

1 x x2 y xY XY2 
y 2 xy 2 x 2y 2 

1 0 1 1 0 0 0 0 0 0 

x 1 0 1 0 0 0 0 0 0 

x2 1 1 0 0 0 0 0 0 0 

y 0 0 0 0 1 1 0 0 0 

xy 0 0 0 1 0 1 0 0 0 

xy2 0 0 0 1 1 0 0 0 0 

2 
y 0 0 0 0 0 0 0 1 1 

xy2 0 0 0 0 0 0 1 0 1 

x2y2 0 0 0 0 0 0 1 1 0 

T o save space w e w rite this as the K ronecker product 

1  0  0  0  1  1  b  0  0 

0  1  0  X  1  0  1  =  0  b 01, 

0  0  1  3  1  0  0  0  b 

and also w rite OC (g) as the K ronecker product. 

-1  1  1 '  1  1  1  a  a  a 

1  a  a2 ><  1 a  a 2 a  aa  a2 a 

1  a2 a  ._1 2 a  a  a  a 2a  aa 

9:(9  = 

-a ' a' a' 

a ' a a ' aa ' 

aa ' a 2a', 

-0 1 1 

b= 1 0 1 

1 1 0, 

1 1  1 

a=  1  a  a2 

2 
a  a 
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where 

(1' = 1 

It is then easy to calculate that 

where 

,1 

aba'  O  0 

O  aba' 

0  O  aba' 

0 0 

oho' = r0 1 0 

0 0 I_ 

Theorem 3.4 then says that the non-zeros of Y, are 

1P. (1P.)2, 4/x I/ 1 (41.V) 2f Ike Y ( %ex 2) 2 

which is obvious from the array 9C(g). 
This is also an illustration, though a rather trivial one, of Theorem 4.2. 

H is the group (1, x, x2); K is the group (1, y, y2). A is the ideal x ± x2 
in FH, and B the ideal 1 in FK. The non-zeros of A are „t„ , 0: and 
the non-zeros of B are sti, , ik„ , le, . Clearly Y, = AB, and the non-
zeros of Y2 are the products 'pile,: , as above. 
We can also check Theorems 5.1 and 5.2 from the following table: 

= Y, + Y2 + Y3 + Y4 + Y5, 

02= Y,  + Y4 + Y5 

03= Ya + Y4 + Y, , 

04=  Y2 + Y3 + Y4 t 

05=  Y2 + Y3 + Y, . 

It is clear that 

171 = 01 + 0, + 03 + 04+ 05, 

Y2 =  0,  + 04 + 05 , and so on; 
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and 

-1 1 1 1 

0 1 0 1 1 

0 0 1 1 1 = 1. 

0 1 1 1 0 

0 1 1 0 1., 

APPENDIX B 

An Example of the Product of Three Cyclic Codes 

Let H, K, L be cyclic groups of orders 3, 5, 7 respectively. Their 
direct product G is cyclic of order 105. (Unfortunately, this is the smallest 
possible example.) 

Write 

H= 1,  e2;  K= Y, Ya, Y4; L = 1, z, z2, z4, z5, 

Let (A,) (3, 2) and (A2) (5, 4) be the single parity check codes in FH,FK, 
with idempotents 

A = x  Xa;  A 2 =  Y + Y2 + Ya + Y4• 

Let (A3)(7, 4) be the Hamming code in FL, with idempotent 

A, =  z z2 + e. 

The direct product code has idempotent C = A IA2A3 . (C) is a (105, 32) 
cyclic code, with minimum distance 12. Each vector of C can be repre-
sented as a three-dimensional array of ones and zeros, which are situated 
at the lattice points corresponding to xiezh in Fig. 1. (The origin 
is ey'zi).) The lines of this array which are parallel to the x-axis are 
vectors of (A,); those parallel to the y-axis belong to (A2), and those 
parallel to the z-axis to (A3). 
It has been suggested (see Ref. 8) that an array like this be used 

for simultaneous burst and random error correction. It must however be 
borne in mind that such a code will be highly redundant. 
To express C as a cyclic code we write the lattice points in order 

1, g 12, p', • • • p'°4, where g is a generator of the cyclic group G, for 
example g = xyz. With this choice xiyizk becomes g" where n is the 
least integer such that 

n — i 0(3);  n  j 0(5);  n — k  0(7) 
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Ze — 

Z 5 

z4 

z3 — 

for example: 

x'  x2 

Fig. 1—xiy1zk. 

x2y3z4 = (xyz)". 
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Delta Modulation Codec for Telephone 
Transmission and Switching 

Applications 

By R. R. LAANE and B. T. MURPHY 

(Manuscript received January 12, 1970) 

A highly integrable delta modulation codec design, for applications 
where transmission bandwidth is not at a premium but where an inex-
pensive and high quality converter is desired, is considered in this paper. 
An asymmetrical codec integrator is used to improve quantizing noise 
characteristics. Charge parceling techniques which are used for performing 
the integrating function, offer advantage over conventional RC integrators. 

I. INTRODUCTION 

Delta modulation' (AM) is receiving interest for voiceband analog-
to-digital (A/D) conversion applications where coding efficiency is less 
important than the requirement for economical, but high quality A/D 
conversion, characteristics. One of the potential applications is in pulse 
code modulation (PCM) coding systems where the PCM code is formed 
by first converting the analog signals into a single bit digital code using 
per terminal AM coders. The AM bit stream is then converted into a 
PCM format using digital filtering." The technique takes advantage 
of the simple means of providing A/D conversion with AM and utilizes 
highly integrable digital hardware for providing the AM to PCM 
conversion. 
Another promising application of AM is in space division switching 

networks. Analog inputs to the network are converted into a digital 
code by per terminal AM coders. This allows implementation of digital 
switching networks which are more ideally suited to integrated semi-
conductor technology than analog networks. Requirements on network 
loss, signal distortion and crosstalk are significantly relieved. 
We describe the design of a single integration AM codec (coder-

decoder) which shows promise of meeting the conversion requirements 
for both of the above applications. Improved conversion characteristics 

1013 
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are achieved using planned integrator asymmetry. For accurate coding 
characteristics at high clock (sampling) rates, charge parceling tech-
niques are used in the integrator for reconstructing the anlaog signals. 
A highly integrable design which offers economical, per line A/D 
conversion is achieved. 

II. DELTA MODULATION CODING REQUIREMENTS 

2.1 Codec Operation 

A block diagram of a delta modulation codee, using single integration, 
is shown in Fig. 1. To perform the analog-to-digital conversion, an analog 
input is compared with a reconstructed version of itself from the coder 
integrator. The relative difference between the signals is translated into 
a single bit digital code by clocking the output of the comparator stage. 
The code is then transmitted to both coder and decoder integrators where 
it forces either a small positive or negative voltage change in the inte-
grator output. Thus, a single bit code is used for controlling the inte-
grator voltage and causes the integrator to produce a close track of the 
input signal. If a matched integrator is placed at the decoder, a similar 
track of the analog signal is recovered. 

2.2 Overload Characteristics 

Because the transmitted digital code contains information correspond-
ing to the derivative of the message function, overload characteristics 
with delta modulation become a function of signal slope instead of am-
plitude. The overload point occurs when the integrator is forced to 
produce a similar polarity voltage step during each clock cycle. Thus, 

CODER 

CLOCK 

ANALOG  
INPUT 

INTEGRATOR 
OUTPUT 

DECODER  

ANALOG  
OUTPUT 

DIGITAL 
OUTPUT 

COMPARATOR 

INTEGRATOR 

INTEGRATOR   
DIGITAL 
INPUT 

SULJ-1_ 

Fig. 1—Delta modulation codeo (coder-decoder). 
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for a sampling frequency, f, , and an integrator step, o-, the maximum 
integrator voltage slope is given by 

o-f, . 

The maximum slope of a sine wave of amplitude, A, and frequency, 

I, is 

2rfA, 

and therefore overload occurs when 

2rfA  (1) 

This sets the product of 0- and f,, ; their relative values are set by quantiz-
ing noise requirements for meeting signal to noise objectives. 

2.3 Quantizing Noise 

Granular quantizing noise has been the subject of numerous papers 
including works by Van de Weg,4 Wang,' and Iwersen." The theory 
developed by Iwersen predicts a quantizing noise spectrum which is 
in good agreement with measured noise in delta modulators.' To improve 
noise characteristics of our delta modulator, his theory is used for 
optimizing coding characteristics. Some of the basic equations and 
calculations which govern the design of our codee are reviewed in this 
section. A detailed description is given in Ref. 6. 
The effect of an asymmetrical integrator is shown in Fig. 2, where 

coding of an idle channel input or a de signal is illustrated. In this ex-
ample, the positive integrator step, cr., , is larger than the negative step, 
cr_ ; that is, 

cr, =-- o ± E, 

—o- -I- E. 

As a result, a sawtooth error wave of peak-to-peak amplitude 0- is 
generated. The noise spectrum resulting from coding a steady-state 
input with unbalanced integrators consists of frequencies given by 

h = I Q[1(1 — .6)/2]f. i (2) 

where 

Q(a) -= a — N(a). 

N (a) is the integer nearest a, and 

o = E/cr. 
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_ 
AMPLITUDE 

o 

- rr -\ \ 
rr_ 

TIME 

Fig. 2—Integrator output for an asymmetrical coder, shown with Icr+1 > 

The power at the frequency of index 1 is calculated from 
p i 20,2/r 2/2 . 

(3) 

The frequencies for which 1 is even are components of the sawtooth 
wave of peak-to-peak amplitude o- and fundamental frequency ef.. 
Additional, not so evident, sawteeth are also usually present. For ex-
ample, components of a second order sawtooth are calculated by choos-
ing values of 1 equal to aN, where a is a positive integer and N is the 
odd integer nearest 1./e. This sawtooth has a peak-to-peak amplitude 
of 2u/N  2€ and a fundamental frequency of (1 — Nb)f1/2 I. 
It is possible to significantly reduce inband quantizing noise for low 

level inputs by using a planned integrator imbalance." However, to 
guarantee good noise characteristics, the imbalance must be maintained 
between a lower and an upper limit. The lower limit must allow an 
imbalance to force the fundamental component of the fundamental 
saw-tooth wave above voiceband. The change (the spreading) of the 
noise spectral lines resulting from phase modulation of the idle channel 
spectrum by the input signal must also be considered. 
The upper limit on integrator imbalance is set by quantizing noise 

objectives. It is difficult to guarantee that the fundamental component 
of the second order sawtooth wave (of peak-to-peak amplitude  2e) 
will be kept out of voiceband. Therefore, the magnitude of the inte-
grator step imbalance, e, must be maintained at a level where it will not 
introduce excessive inband noise problems at low or quiescent input 
levels. 
Iwersen has calculated the quantizing noise as a function of signal 

level for various step imbalances using a 12-millivolt integrator step 
size and a 1.544-MHz sampling rate. The calculation is made for a 
broadband input and uses C-message weighting of the noise in the 
voiceband. Results are plotted in Fig. 3. The advantage of using an 
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Fig. 3—Calculated quantizing noise versus average speech power ford. = 0, 0.02, 
0.05, and 0.10. 

asymmetrical integrator over a perfectly balanced integrator (e = 0) is 
clearly evident for low level input signals. An optimal range of integrator 
imbalance falls into a range from e = .02 to e = 0.10. At higher values 
of :51 increased quantizing noise is produced at quiescent levels and at 
low signal levels. For lower values of 4, the fundamental sawtooth fre-
quency is close to voiceband and phase modulation of the spectral lines 
due to input signals causes excessive quantizing noise energy to fall 
into voiceband. 
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capability of 

Tía 19 X 103 volts/second. 

Additional design objectives include a 50-dB dynamic range with 
a signal-to-noise ratio better than 25 dB at the —43-dBm level, in-
creasing to better than 40 dB at the +7-dBm level. Quantizing noise 
of idle channels (zero input) should be maintained below 16 dBrn using 
C-message weighting. Design objectives for gain (loss) variation, over 
a 200-Hz to 3200-Hz frequency bandwidth, require an average 0.5-dB 
loss with loss variation maintained within ±0.25 dB. 

III. CODEC CIRCUIT DESIGN 

The relative simplicity of the delta modulation coding function makes 
feasible the realization of highly integrable and inexpensive codec con-
figurations. In this design, the codeo circuitry utilizes a combination of 
integrated semiconductor and thin-film capacitor techniques and relies 
heavily on the characteristics of the two technologies—excellent match-
ing of device characteristics on an integrated circuit (IC) chip and close 
ratio tolerances between capacitors on thin-film capacitor arrays. These 
characteristics are of special importance in the key element of the codeo, 
the integrator network, where a high degree of precision is needed for 
accurately reconstructing an analog signal from a digital input signal. 

3.1 Charge Parceling 

The integrator utilizes a charge parceling circuit (sometimes called 
the "bucket and dipper" circuit), shown in Fig. 4, to provide the digital-
to-analog conversion function. The prime advantage of the charge 
parceling approach is that it relies only on capacitor ratio tolerances 
for making the digital-to-analog conversion rather than on absolute 
resistor and capacitor tolerances required by the more commonly used 
RC type integrators. Timing problems are also not critical, provided 
sufficient time is allowed for charging and discharging small charge 
parceling capacitors in the integrator network. 
To add a voltage step to the integrating capacitor, C1, (Fig. 4) the 

+1 input (clock input) is applied to produce a positive voltage step 
of AV at the C+i capacitor terminal. This causes an equivalent change 
in voltage on both of the capacitor terminals until the increase exceeds 
the threshold of T2. As T2 turns on, charge is dumped from C+1 to Cr 
producing a voltage step on C1 proportional to the two capacitors 

[   
.à17 —  r A V'  (4) 

+1 
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(STEP 
VOLTAGE 
CONTROL) 

+1 INPUT 
(CLOCK) 

I   

L 

STEP 
GENERATOR 

r-

-2 INPUT 
(DIGITAL INPUT) 

Fig. 4—Charge parceling circuit for AM integrator. 

where AV/ is the voltage change on C, and AV' is the voltage change at 
the C.1 terminal after T2 begins to conduct. 
As the input returns to its original level, a negative voltage step of 

AV is forced on the C.,., terminals. This change causes T. to become re-
verse biased and turns T, on to recharge the C., capacitor. The recharge 
voltage for C.1 is governed by the compensation network which trans-
lates a voltage V, approximately equal to the integrating capacitor 
voltage V1, to the base of T1. Thus, C., is recharged to V, minus the 
base to emitter drop of T1 , and the net increase in integrator voltage 
due to a +1 input is 

„ C.1  
«.1 = 'AV/ = [à:V — VBET. — VRET. — (V1 — V,)] (C/ + C.,) • 

(5) 

Note that the effect of the junction capacitances of T, and T2 also must 
be considered in the step size calculation, but the effect is secondary 
and is not described in detail here. Equations including junction capaci-
tances are given in the appendix. 
Changes due to temperature in the threshold voltages of V BE T‘  and 

V BE T. are compensated by controlling the amplitude of the voltage 
step (AV) with a de voltage V. and two matching base to emitter (diode) 
voltages VD . Therefore, the effective +1 integrator step can be rep-
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resented as 

(7+1 = [V. ± 2VB — 2VBE  — (Vr — Ve)]( C+1  )•  (6) 
C+1 

To produce a negative step to the integrator the —2 input (digital 
input) is activated. This causes a voltage change on C -2 similar to the 
change produced on  by the +1 input. However, charge is removed 
from CI during the negative slope of AV and is dumped from C -2 to 
the —V supply during the positive slope of V. The effective voltage 
step produced at the integrating capacitor by this input is given by 

ale. 2  
--I-  ) = [V  2 VD — 2VBE  — (V, — V 4, ,  (7) 

Ur T apu-2 

where ot, is the common base current gain of T3. To minimize the 
effect of a, variation, a Darlington transistor pair is planned as a re-
placement for T3 in future models. 
In the delta modulation codec, a clock controls the +1 step input to 

the integrator, and consequently a tr.,' step is added to the integrator 
during each clock cycle. The digital input to the integrator controls 
the —2 step input. When present, it decreases the integrator voltage by 
O 3. Therefore, whenever a digital input is applied, the net change in 
the integrator voltage is o-+I — o--2 . When the digital input is not applied, 
the clock automatically raises the integrator by a cr+1 step. 
To optimize quantizing noise characteristics, the integrator asym-

metry is designed for 

0.02 <  < 0.10 

or, translated to the integrator step requirements (for the case 0-,. > o_) 

= 1.89 ± 0.07. 
cr+i 

An additional feature of the charge parceling integrator is that gain 
(or loss) between coder and decoder integrators can be easily adjusted. 
Gain can be adjusted either by changing the step generator voltage, 
V.,, between integrators or by using a different ratio of integrating to 
charge parceling capacitors on the coder and decoder integrators. The 
first technique might be useful as a form of automatic gain control which 
can be adjusted as a function of voltage. The second technique would 
be useful when a predetermined amount of gain (or loss) is desired. 

3.2 Compensation Network 

To prevent the decoder output from drifting to either a maximum 
positive or negative output voltage as a result of differences in the plus 
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and minus steps between the coder and decoder integrators, the decoder 
integrator must compensate to automatically adjust its step imbalance 
to match the coder integrator step imbalance. Compensation is not 
needed in the coder integrator but is added to help match coding char-
acteristics between coder and decoder. 
With the charge parceling circuits described, compensation is achieved 

by adjusting 0.i., of the decoder integrator as a function of the integrator 
voltage level. The step size is varied by adjusting the recharge voltage 
for the  capacitor. 
Figure 5 shows a schematic of the compensation network. A nearly 

linear compensation as a function of integrator output voltage is 
achieved by this configuration. Good reproducibility of compensation 
characteristics between integrators is also possible. Operation is as 
follows. 
With no current through R2, a voltage equivalent to V, is translated 

to the base of T, for recharging the +1 step capacitor,  . As V, 
increases above this level, V, also increases but begins to lag farther 
and farther behind V, , because R, can no longer supply all of the current 
required by the current source /2 . The balance of the current is supplied 
through R2  and the voltage drop across R2 determines the difference 
between V, and V1. 
The opposite happens as the integrator voltage drops below the bias 

point set by R1 and 12. Then R, will supply more current than accept-

Fig. 5—Integrator step compensation circuit. 
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able to the current source 12, and the excess current will be forced to 
flow in R2  in this case keeping Va more positive than V1. Thus, the 
amount that C+, is recharged after each voltage step becomes a function 
of the integrator voltage level, decreasing with increasing integrator 
voltage and increasing with decreasing voltage. The net effect of com-
pensation on the +1 step size can be expressed as 

= cr+, —  Vr(1 +  c+i (8) R2 CI C+1 

where cr+, is the +1 step at V1 and o-1., is the +1 step at Vr ± AV, . 
Gain (loss) variation between coder and decoder is controlled by 

reproducing the cr...2 step size. This step size becomes primarily a function 
of the dc step control voltage, V,, the ratio of C..2 to C1, and the com-
mon base current gain of the negative step charge parceling transistor. 
To meet gain (loss) variation requirements, a ±1 percent tolerance is 
needed for both the step voltage and the capacitor ratio. 
The compensation network automatically adjusts cr+i in the decoder 

to match the 0-+, to 0--2 ratio between coder and decoder. Since a small 
current is derived from C, as bias for the output buffer stage (Ti and 
T2), a drain is produced on cr+, . Variations in bias current between coder 
and decoder cause a difference in the effective cr+, step size but are 
counterbalanced by the compensation network. To minimize drain 
from C1, a high impedance connection is made at the analog output 
terminal from the integrator. 

3.3 Codee Building Blocks 

Figures 6 and 7 are schematics of the comparator and the integrator 
circuits, respectively. A combination of a comparator and an integrator 
are required by the coder; only an integrator is required by the decoder. 
Figure 8 is the block diagram of a complete codee. Thus, a codee is 
implemented from 61 transistors and diodes, 54 resistors, and 6 capaci-
tors. Transistors, diodes, and resistors are fabricated by IC techniques, 
the capacitors by thin-film techniques. 
The comparator stage (Fig. 6) compares an analog input with an 

integrator output signal. Their difference is amplified by approximately 
200 and is passed to a latching circuit (T8, T9, T12). The latch holds 
the state of the comparator output for the duration of the clock pulse 
and allows conversion of the output to a single bit digital code by the 
clocked output gate (T10 , TII). To avoid a race condition moor! 
input is made to overlap the pulse from cLocK2 input. 
The integrator network (Fig. 7) converts the clock and digital inputs 
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Fig. 6—AM comparator. 

DIGITAL 
OUTPUT 

at the integrator into controlled amplitude voltage steps by first am-
plifying the input pulses (n) and then generating a voltage step (T. , T.) 
to the charge parceling circuit. The step is controlled by a voltage 
control (V, = 1 volt) plus two temperature compensating diodes 
(T5, Tb). The charge parceling circuit uses 33-pF and 69-pF capacitors 
for the +1 and —2 steps and a 2690-pF capacitor for the integrator. 
This allows approximately a 12-millivolt integrator step voltage. Note 
that the ratio of the charge parceling capacitors represents only a 
portion of the integrator step imbalance. The effective size of the positive 
step is decreased by output stage biasing requirements and by the 
effect of parasitic capacitances in the charge parceling network. The 
compensation network is designed to provide approximately 2 percent 
of step size compensation per volt change in the integrator output level. 

IV. CODEC OPERATION 

Tests were performed on codees fabricated from discrete beam-lead 
resistors and transistors on ceramic substrates. Figure 9 shows a photo-
graph of the codee ceramic. The ceramic contains the comparator and 
the two integrators needed for a complete codee. Discrete capacitors 
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Fig. 7—A M integrator. 

were used for the charge parceling circuit and were externally mounted 
to the model. 
Measurements were made with a 1.544-MHz sampling frequency and 

a 12-millivolt integrator step size. Integrator imbalance was set at 
0.10. Figure 10 shows typical signal-to-noise characteristics of the 

codec for a 3200-Hz input signal. Similar characteristics are observed 
for other input frequencies. Signal-to-noise ratio is well above transmis-
sion objectives. Quiescent quantizing noise is measured at less than 12 
dBrnC. 
Dips in the signal-to-noise curve are caused by the sawtooth error 
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Fig. 8—Interconnecting aNI comparator and integrator blocks to form a codee. 

Fig. 9— Discrete beam-lead resistor and transistor model of 4M codee. 
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Fig. 10—Measured AM signal-to-quantizing noise ratio for a 3200-Hz input signal, 
f. = 1.544 MHz, quiescent quantizing noise = 12 dBrnC. 

waves generated by the integrator step imbalance.' The largest dip in 
the curve (Fig. 10) occurs when the input signal slope and the funda-
mental sawtooth slope are approximately the same magnitude. The 
input signal will reduce the effective slope (and therefore increase the 
length) of the fundamental sawtooth; and as the sawtooth frequency is 
reduced to voiceband frequencies, additional noise begins to appear in 
the voiceband. A worst-case condition is encountered when the resulting 
fundamental sawtooth error wave has been reduced to the midba.nd 
frequency of the voice signals. For the 3200-Hz input signal this cor-
responds to approximately a —2341Bm (90042) input signal. Additional 
smaller dips in the signal-to-noise curve are caused when higher order 
sawtooth waves are forced into voiceband; however, their effect is not 
significant. Thus, signal-to-noise problems are avoided provided that 
the integrators contain a sufficiently high unbalance to keep the funda-
mental sawtooth frequency from the voiceband until high signal levels 
are coded. 
A number of codecs have been fabricated and tested using discrete 

beam-lead devices. All have shown similar signal-to-noise character-
istics. Gain (loss) variation has been maintained within ±0.2 dB. Power 
dissipation is approximately 250 milliwatts per codeo. 
Design of an integrated version of the codeo has also been completed 
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Fig. 11—Four integrated .CM codees using thin-film charge parceling capacitors. 

and preliminary tests have indicated satisfactory codeo operation. 
The codee is fabricated from three IC chips—one comparator chip and 
two identical integrator chips. Figure 11 shows a ceramic substrate 
containing four complete codees. Thin-film capacitors are used in the 
charge parceling circuits. To relieve fabrication tolerance requirements, 
the integrated circuit models use approximately twice the capacitor 
values of the discrete model. 

V. CONCLUSIONS 

Delta modulation techniques offer highly integrable and economical 
analog-to-digital conversion elements. We have described a delta modu-
lation codee design suitable for voiceband applications where conversion 
economy and quality are more important than the transmission band-
width requirements. 
Techniques are utilized in the design to force a large portion of 

quantizing noise out of voiceband by using a controlled step imbalance 
in the integrator. Excellent noise characteristics are achieved. The design 
attempts to take advantage of integrated circuit techniques and thin-
film capacitor techniques by relying on matching of device character-
istics and on accurate capacitor ratio tolerances for reproducing coding 
characteristics. Gain (loss) variations have been maintained within 



1028  THE BELL SYSTEM TECFINICAL .JOURNAL, JULY—AUGUST 1970 

±0.2 dB using codees fabricated from discrete beam-lead transistors 
and resistors. 
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APPENDIX 

Charge Parceling—Effect of Junction Capacitances on Integrator Step 
Size 

The +1 step portion of the charge parceling circuit, including transis-
tor junction capacitances, can be represented as shown in Fig. 12. 
For AV'  VBE , ± VAR . , the circuit is approximated by Fig. 13. 
Before T2 beings to conduct, AV' must increase by VBE%  Viitg. from 
its initial value. This requires a voltage swing of AV" at the input, where 
AV" < V. The magnitude of AV" is given by 

(VAR ,  VBE.)(Crs,  CrE,  CTE.) = (AV" — VBS ,  VDR .)C-Fi 

01' 

A V" = (Vag, + V Raj@ ± C T8' -I- C TE.   
C 

CTS1 

+ V CTC 

Vc "›.-,VI 

CTE, 

 IL 

CTE2 

C TS 2 
CIT  

Fig. 12—+1 step portion of the charge parceling circuit. 
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C +1 
(  QV 

r-te CTs 2+ CTE2+CTE, 

Fig. IS—Approximated circuit (+1 step) for AV' 5 VD s ‘ VBE ,. 

Thus, charge is dumped on C, only for a portion of the input swing, 
AV — AV". After 772 conducts, the equivalent circuit becomes the one 
shown in Fig. 14, and 

(AV — AV" —  = ATTIC, 

Or 

AV, = (AV — AV")  c+1  
C+1 

and 

= AV, = [AV — (V5 s. + VRE2 ) 

(i CTS.  C eTIZ  CTE.)]  C1+1   
C +1  CI + C+1 

Note that this does not include the change in the effective +1 step size 
due to biasing current requirements of the output buffer stage. 
A voltage step is also produced on C, due to Crg. j however, the 

positive and negative portions are essentially the same and the effect 
is self-canceling. The —2 step portion of the charge parceling circuit 
is given by Fig. 15. For AV' 5 Vgg‘ VBE „ the circuit is approximated 
by Fig. 16. 
Before Ti conducts AV must change AV' by V RE , ± V 8E . . The 

C 

QV- AV 
NEGLECT 

 CTSz CTE, CI 

Pig. 14—Equivalent circuit for +I step charge transfer. 



1030  THE BELL SYSTE M TECHNICAL JOURNAL, JULY—AUGUST 1970 

AV1  

- v+ VBE2 / 

- - VBE , 

i 
-  TE 

-I(  

GTE 

CTE, 

eV , 

cTs2  
nI( 

2 

CTE 2 

Fig. 15 --2 step portion of the charge parceling circuit. 

magnitude of this voltage change at input, AV", is given by 

(V  BE ,  + CITE,  CTE,) = (AV" — Vas, —  Vss.) C-2 

Or 

AV" = (V BE , + V BE,)(1  Crs,  C rs , ± C7 p, ) 
C -2 

Thus, charge is drained from C, during the voltage swing AV — AV". 
After T1 conducts, the equivalent circuit is as shown in Fig. 17, and 

AV, = (AV — àV")  a2C-2   
C r «20 -2 

or 

cr-2 = AV1 = [AV — (VB.. + VsEJ 

CTS,  CrE,  C F: 2)1  a 2C -2   
C-2 CI ± a2C -2 

Ay' 

CTS,  CTE 2 + CTE, 

Fig. 16—Approximated circuit ( —2 step) for AV'  V Bs , ± VRE.. 
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On the Performance of Digital Modulation 
Systems That Expand Bandwidth 

By V. K. PRABHU 

(Manuscript received December 19, 1969) 

It is well known that protection against additive gav,ssian noise can be 
obtained in, m-ary digital modulation systems by expanding bandwidth 
or by increasing the channel signal-to-noise ratio. It is also well known 
that arbitrarily small error probabilities can be attained in digital systems 
by using long and complex encoding and decoding procedures. Based on 
the results of Shannon and 51e pian, we derive for an optimal system lower 
bounds to the channel signal-to-noise ratio for various probabilities of error, 
for various bandwidth expansions, and for a processing interval not greater 
than the signaling interval of the source. It is assumed that all m characters 

have equal a priori probabilities and that maximum likelihood detection 
is used in the receiver. For a bandwidth expansion, of two, and for equal 
energy code words, we also show that the performance of a coherent phase-
shift keyed system is as good as that of the optimal system. 

I. INTRODUCTION 

Various m-ary digital modulation schemes [such as coherent phase-
shift keying (CPSK), differentially coherent phase-shift keying 
(DCPSK), frequency-shift keying (FSK), and others] are currently 
under investigation for use in satellite, terrestrial, and other radio 
communication systems."' In such systems, the transmission channel 
is noisy, and bandlimited, and one is interested in finding an optimum 
form of modulation for the transmission of information from one point 
to another. By optimum form of modulation, we mean that we would 
like to transmit (with a given error rate) as much information as possible 
in a given band of frequencies and for a given amount of (channel) 
signal power. 
The complexity of the equipment required for particular kinds of 

modulation, or other considerations in the system, may rule out these 
optimum transmission schemes in favor of simple and suboptimum 

1033 
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schemes of modulation and demodulation. In order to compare the 
performance of these simpler practical modulation systems with that 
of the optimal systems, it is first essential to investigate the performance 
of these optimal systems. 
In this paper we shall assume that the noise in the channel available 

for communication is gaussian and has a uniform power spectral density 
over all useful frequency bands. [In terrestrial systems, in the frequency 
bands above 10 GHz, close spacings of the repeaters are almost always 
mandatory for reliable communication (during fading conditions pro-
duced by rain)? If low noise receivers are used in the system, it is pos-
sible that the total interference power (due to co-channel and adjacent 
channel interferers) received by the system may be very much larger 
than the (thermal) noise power in the system.' In this case, note that 
the total noise corrupting the channel may not be assumed gaussian 
in all modulation systems (especially if the number of interferers is 
small) 4.6] 

It is well known that protection against (additive) white gaussian 
noise can be obtained in m-ary digital modulation systems by expanding 
bandwidth and/or by increasing the channel signal-to-noise (power) 
ratio. In fact, Shannon has shown that it is possible to transmit with 
arbitrarily small error probability the output of a discrete source of 
entropy R over a channel of bandwidth W perturbed by additive white 
gaussian noise of average power N by using signals of average power 
S provided R is less than W log, (1 + SIN) b/s." However, such a 
transmission scheme may involve long and complex encoding and 
decoding procedures, and to attain these low error rates it may be 
necessary to provide large storage (or long delay) in the transmitting 
and receiving equipment. Practical modulation systems presently used 
for large scale communication do not in general have such large storage 
capabilities or unlimited bandwidths. Also, we must note that there 
are practical limitations on the average power of a transmitter and the 
power that can be received by a receiver. 
Since most of the practical modulation systems have a certain band-

width expansion n and since bandwidth expansion usually improves 
the (noise) performance of the system, we shall now investigate the 
optimum performance of digital modulation systems that have a (chan-
nel) bandwidth expansion n, a finite channel signal-to-noise power 
ratio SIN = p2, and a processing interval which cannot exceed one 
signaling interval T of the source.* The message source is assumed to 

* It is assumed that the time interval over which the channel is used in decoding 
one message symbol cannot exceed T. 
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be of bandwidth W0, and the channel bandwidth is assumed to be W. 
Further, it is assumed that all m characters (the output of the discrete 
message source consists of m different characters or symbols) have equal 
a priori probabilities and that the characters generated by the message 
source are statistically independent of each other. We also assume that 
a maximum likelihood detection scheme is used in the receiver. 
For such a system, we shall evaluate the lower bounds to the character 

error probability P(m, n, p2) of the optimal system so that we can com-
pare its performance with that of any practical modulation system. 
For a given error rate, the difference between the signal-to-noise ratio 
required by the optimal system and that required by the practical system 
will then be a measure of the quality of performance of the practical 
modulation system. 
Here, we would like to note that our approach is identical to that of 

Slepian in Ref. 8 in which he evaluated upper and lower bounds to 
P(m, n, p2) for n odd, n  5, and m = 128 (numerical results for m = 
32, 64, and 256 can also be found in an unpublished memorandum by 
Slepian9) when 1 P(m, n, p2) > 10-5 .* In addition to giving numerical 
results when P(m, n, p2) G 10-5 (error rates as low as 10  are desired 
in some digital modulation systems') for m = 2, 4, 8, 16 and 32, we 
give a method of evaluating upper and lower bounds to P(m, n, p2) 
for all values of n  2. We also point out the special significance of 
n = 2, and give closed form solutions for the lower bound when n = 

2, 3 and 5. 

II. COMMUNICATION SYSTEM MODELt 

The m-ary digital modulation system that we shall consider in this 
paper is assumed to have a signaling interval T. Since we assume Nyquist 
rate signaling, we shall assume that 

1 
T =  '  (1) 

2W0  

where Wo is the bandwidth of the message source. Every T seconds, 
the message source generates one of m characters or symbols. Since the 
characters generated by the message source are assumed to be sta-
tistically independent, the entropy R of the message source is given by 

R = 2W0 log2 m b/s.  (2) 

* Note that Slepian uses P(m, n, p2) in determining the threshold in analog modu-
lation systems that expand bandwidth. 
t Compare the communication system model that we discuss in this paper to 

that given in Ref. 8. 
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If S is the average power in the channel of bandwidth W, it follows 
from Ref. 6 that it is possible to transmit with arbitrarily small error 
probability if and only if 

2W5 log, m  W log, (1 + SIN)  (3) 

when there are no restrictions on the way in which the transmitter and 
receiver operate. 
Equation (3) can be shown to yield 

S/N my" — 1  (4) 

where 

n = — = 2TW = the bandwidth expansion factor. 
Wo 

The lower bound to S/N given by equation (4) is then the smallest 
signal-to-noise ratio required to transmit (with arbitrarily small error 
probability) an m-ary digital signal through a channel of bandwidth 
expansion n when there are no restrictions on the transmitting and 
receiving equipments. This lower bound to the signal-to-noise ratio 
SIN is shown in Fig. 1. 
In the communication system model we are considering in this paper, 

there is no provision for the storage of a large number of characters, 
and hence it is to be expected that we will need signal-to-noise ratios 
much larger than those given in Fig. 1 (when arbitrarily low error rates 
are desired). Since the processing interval of our communication system 
is assumed not to exceed one Nyquist interval (corresponding to the 
message source), the channel signal corresponding to time T can be used 
to decode one and only one message symbol.* If the bandwidth of the 
channel is W, the channel signal can be completely specified by samples 
taken every 1/2W seconds. In the Nyquist interval T, there are then 
n = 2WT channel samples. f We are then assuming that n channel 
samples are used to decode one message character, or that each of the 
m message symbols are mapped into a channel vector having n com-
ponents.t (In the error-free transmission scheme of Shannon, t,  1, 
successive message symbols are mapped into one channel vector. By 
making s sufficiently large, by choosing the m channel vectors appro-
priately and by decoding appropriately at the receiver, the results given 

(5) 

* This is equivalent to saying loosely that the communication system does not 
have storage capability for more than one Nyquist interval.8 
t There are certain subtle points involved in this assumption. Some of these points 

and their implications are discussed in Refs. 10 and 11. 
That is, we construct a dictionary that associates with each of the m message 

symbols a particular n-dimensional channel vector. 
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Fig. 1—Lower bound to the signal-to-noise ratio for different bandwidth expansions 
and ideal signaling. 

by Shannon may be obtained.' It is to be noted that it is essential to 
store  message characters before we can generate the appropriate 
channel vector. In our scheme of transmission, we put e = 1, and in-
vestigate the optimum performance of the system.) 
As far as the average power in the channel is concerned, the channel 

vectors can be chosen in a variety of ways.' Since all the characters 
are assumed to have equal a priori probabilities, we will make the 
assumption that all of them have the same average power S (or the 
same energy ST).* 
Since the noise corrupting the channel is assumed to be white, each 

component of each channel vector is perturbed independently by the 
addition of a gaussian variate of mean zero and variance N. 

III. EVALUATION OF PROBABILITY OF ERROR P(m, n, p2) 

Since the channel vectors corresponding to different message symbols 
have the same average power S, all these n-dimensional vectors ter-

* Other types of restrictions (such as maximum power, maximum average power, 
and so on) can also be put on the signal vectors to analyze the communication system 
given in our paper. Since all symbols are assumed to be equally likely, we do not 
consider a system in which there can be unequal distribution of power among different 
channel vectors. In particular, some amplitude modulation systems (such as single-
sideband AM) do not satisfy the requirement that channel vectors corresponding 
to different message characters have the same average power S, and hence such 
systems are not covered in this paper. 
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minate on the surface of a sphere of radius (nS)*. By choosing the chan-
nel vectors appropriately, and by using maximum likelihood detection 
receiver, it can be shown.' that the minimum probability of error 
P(m, n, p2), averaged over all symbols, satisfies the inequalities 

n, P2)  P(m,n, P2) < Q(ni, n, P2) P2 = LS—  (6) N ' 
where" 

p2) = L(0„,.„ ,n, p21-j , 

n, p2) = U(0„,,„ ,n, p2 , 

dg 
2  (n   

r/2 sin-2  g dg 

L(0 , n, p2 =  p„(X) dX, 

U(0 , n, p27,1)  L(O , n, p2 0(0) f°  

2(X)  = 1)71-('-   o "" sin„-2 

r(n   
\ 2 / 

r(k) = oe f  dx, 

(n — 1) exp (—p2U sin2  

2"/2(ir)r( +2 1) 

• j e 1 exp [— fr  P(n)e  X)2] 2  dr, (14) 

and Ma, 0) is the incomplete beta function given by 

1 0) r  — 1?-""' dl,  x -5 1;  (15) Ma, f3) — B(a   

B(a, 0) =J i''(1 — t)-1 dl.  (16) 
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The significance of the inequalities in equation (6) may be explained 
as follows. No m-ary digital modulation system with a given bandwidth 
expansion n and a given signal-to-noise ratio p2 can achieve a lower 
probability of error than that given by Q(m, n, p2).* Also, we observe 
from equation (6) that m-ary digital modulation systems can be built 
to have an error probability given by Q(m, n,  
The bounds given by equation (6) can, therefore, be used in com-

paring the performance of practical modulation systems with that of 
the optimal systems, and in estimating the quality of performance of 
the practical modulation systems. For a given probability of error, and 
m and n, we can compare the signal-to-noise ratio required for a practical 
modulation system with the minimum signal-to-noise ratio predicted 
by equation (6) for the optimal system.t 
Since we are interested in this kind of comparison and since there 

seem to be theoretical considerations which shown' that Q(m, n, p') is a 
very weak bound [it is shown in Ref. 10 that some explicit codes can be 
constructed to make P(m, n, p2) very close to Q(m, n, p2)], we shall not 
discuss the upper bound Q(m, n, p2) any more in this paper. 

IV. EVALUATION OF LOWER BOUND Q(m, n, I?) 

For the sake of comparing the performance of proposed modulation 
systems with that of the optimal systems, it is essential to evaluate the 
lower bound Q(m, n, p2) for different values of m and n. The evaluation 
of Q(m, n, p2) is rather difficult and is usually done by using a digital 
computer. Slepiad has given methods of evaluating this bound when 
n is odd, and numerical values are given for Q(m, n, p') when 1 k 
Q(m, n, p2)  m = 32, 64, 128 and 256, and n  5. 
Since error rates of less than 10-' are desired in digital systems and 

since no numerical results are available when m < 32 (in general, it is 
easier to build digital modulation systems with low values of m), we 
shall give some further numerical values for the cases considered by 
Slepian. In addition, we shall give a method to evaluate Q(m, n, p2) 
when n is even and point out its special significance when n = 2. 
First we review briefly Slepian's method of evaluating Q(m, n, 4.10 

For any given values of m and n, we evaluate by interpolation the value 
Of 0„,,(0 <  r/2) from the set of tables for lx(a, 13) given in Ref. 

* Of course, we assume that the digital modulation system satisfies other require-
ments given in this paper. 
t For n = 1 or 2, it can be shown that we can make Q(m, n, e)  P(m, n, e). 

Also, for all (integral) n, and m = 2, we can make Q(2, n, )12) = P(2, n, p2). 
s In making this comparison, we have to assume that we can estimate the band-

width expansion factor n for the practical modulation system. 



1040  THE BELL SYSTE M TECHNICAL JOURNAL, JULY-AUGUST 1970 

13. Since it has been shown'° that 

L(0, n, 0.2) = L(0, n - 2, 0.2) ± cos OG(0, n - 2, 0.2),  n > 3, (17) 

2  2 n 
o. =  -2 ' 

(18) 

G(O, n, u2) = a cos 8 sin Ob„G(0,n - 1, 0-2) 

+  -  m s OG(0, n - 2, 02),  n > 2,  (19) 
n  1 

n - 2  
b„ -  bn , '  n > 2,  (20) 

n - 1   

and 

= irk,  (21) 

2 
b2 = -1 ,  (22) 

G(0, 1, 0.2) =  exp (-u2sin2 O)[2 - erfc (u cos 8)],  (23) 

1 20. 
G(8, 2, a2) = - sin 0 exp (-u2)  -4- sin 0 cos OG(0, 1, u2),  (24) 

L(0, 3, u2) =  erfc (a) ± cos OG(0, 1, 0-2),  (25) 

where 

erfc (x) =  f exp ( - t2) dt = 1 - erf (x),  (26) 

v 
Q(m, n, p2) can be evaluated for odd n from equations (7), (9) and (17) 
through (25). However, for even n, we cannot use Slepian's method of 
evaluating Q(m, n, 132) unless we can find an explicit expression for 

L(0, 2, 0-2). 
Now it has been proved '''. that moderately high values of n(2 < 

n < 5) are required for some digital modulation systems in order to 
optimize transmission rates per unit bandwidth. Since we would like 

to compare these systems (and other systems with similar bandwidth 
expansions) with the optimal systems, we shall first express Q(m, n, p2) 
explicitly for odd n, and n  5 before we discuss the evaluation of 

Q(m, n, p2) for even n. 

4.1 Lower Bound Q(m, n, p2) for n = 3, 5 

For n = 3, equations (7), (9), (10), (13) and (14) can be shown to 

yield 
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Q(m, 3, p2 =  (erfc [p W] + (1 — 2/m) 

•exP  R P2- (1 — 1 )1  — eref  [P(e)4  (1 2 )]}) m  m 
(27) 

For m = 2, 1  4  5, we have evaluated Q(m, 3, p2) and have shown 
the results in Fig. 2. 
Let us now compare the performance of an FSK system (using square-

wave modulation, ideal discrimination detection with an integrate-
and-dump circuit as the post-detection filter) with a bandwidth expan-
sion of 3 with the performance of the optimal system. For the FSK 
system the symbol error probability PF SK can be show e'17 to be given 

by 

cot fir  n — 21> 

(27, 1P2)'  [.7r4   exp  2p 2sin 2 {r4 mn 21}] PI, SK 
COS 

2 m — 1 _{ J 

p2» 1, n < m  1.  (28) 

For n = 3 and m = 4 and 8 we have plotted PF BK  and Q(m, 3, p2) in 
Fig. 3. Noting that the error rate of the optimal system can be made 
close to Q(m, n,  for small n, it can be observed from Fig. 3 that the 
error performance of the FSK system is inferior to the optimal system 
by several decibels. However, note that the formula in equation (28) 
is an asymptotic formula and that we have calculated the bandwidth 
expansion factor for the FSK system by Carson's rule. Also, note that 
we have taken the bandwidth of the message source to be 1/2T, where 
T is the signaling interval of the source. If all these assumptions are 
reasonable, we must conclude from Fig. 3 that the performance of the 
FSK system is far from being optimum. 
Let us now consider n = 5. For n = 5, we have 

Q(m, 5, P2) 

r = Lede [P(I)] -F 5P sin2 0 cos' 0 2 1 (ioir”  ex p  p 1 

0} ( S m  5p2 c0s2 O sin' O + 2) 2 e ,2  cos O exp  p  s 

• {2 — erfc [p( V cos ou  (29) 
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where 

4w  1  2 
cos O = 2 cos Li- + -3 cos- ( —m — 1.)] ,  (30) 

and 

sin 9 = +(I — cos' 0)1.  (31) 

For m = 2', 1 S S 5, we have plotted Q(m, 5, p2) in Fig. 4. 
For n odd, and n > 5, derivation of an expression for Q(m, n, p2) 

becomes rather tedious and long, and we shall not give these expressions. 
However, for n = 7, 9, 11, 13 and 17, we have calculated Q(m, n, 172) 
for m = 2̀, 1 S S 5, and the results are given in Figs. 5, 6, 7, 8 and 9. 
These numerical results which add to the results given by Slepian were 
obtained by using his method (see Appendix A for an alternative 
method). 
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icrl 1 
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M =32 

16 
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2 

Fig. 4—Lower bound Q(m, n, 1)1) for n = 5. 
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Fig. 5—Lower bound Q(m, n, p2) for n -= 7. 

4.2 Lower Bound Q(m, n, p') for n even 

Since we can calculate Q(m, n, p2) from L(0, n, (r') and since the re-
currence equation relates L(0, n, 0-2) to L(0, n — 2, cr2) [see equation 
(17)], we can calculate Q(m, n, p2) for even n if we can calculate L(0, 2, (72). 
It can be shown that 

2 

4 

8 
16 

R1 =32 

n =7 

L(0, 2, (r') = f p,(À, 0-2) (IX 

12 14 16 

(32) 

where 

p2(>1/4 , 0-2) =  [e-°'  o-(7W cos Xe ir x {1  erf (0- cos X)}].  (33) 

Noting that ih(X, 0-2)/2 is the probability density of the phase angle 
of a sinusoidal carrier of amplitude (2A) corrupted by random gaussian 
noise of average power N (signal-to-noise ratio 0-2  =  A/N), we have 
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shown in Appendix B that L(0, 2, cr2) can be calculated for any O. Hence 
we can calculate Q(m, n, p2) for any even n. Now it can be shown' 
(see Appendix C) that* 

L(0, 2, c?) = erfc (u),  O= r/2;  (34) 

L(0, 2, c?) = erfc [cr/(2)1 —  erf c2 [a-/(2)],  O = r/4 

and 

1 erfc (O. sin 0) ± max {o, i erfc (cr sin 0) 

tan 0 —  exp (-4 2)[1 — ilia- exp (u2) erfc (0.)]} 
r 

L(0, 2, a-2) < erfc (u sin 0),  0< 0 r/2;  (35) 

* Some of these results can be obtained from Ref. 4 by putting St = O. 
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where 

Fig. 7—Lower bound Q(m, n, p') for n = 11. 

Ja, max la,  , a  b; 

b, a < b. 

14 16 18 

(36) 

Since the upper and lower bounds to L(0, 2, a2) cannot differ by more 
than a factor of two and since all quantities involved in equations 
(17) through (25) are positive, we shall now write a modified bound 

Qi(m, n, P2) =  (0,  n, 0-2)  (37) 

where 

L' (0, n, (r2) =  (0, n — 2, cl.2) + cos 0G(0, n — 2, f72),  n > 3,  (38) 

and 

L' (0, 2, 0-2) =  erfc (o- sin 0).  (39) 
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Since 

L(0, 2, 0-2)  11(0, 2, cr2),  O < O  7r/2  (40) 

note that 

P(m/ n/ P2)  Q'(n, n/ A2).  (41) 

Let us now consider the particular case n = 2. For n -- 2, 

or 

61111 

2  chi 
20. 2 

r./2  ir 

ir —• 

(42) 

(43) 
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Fig. 9—Lower bound Q(m, n, p2) for n = 17. 

Since 0„,,2 = /r/m, and pa(X, 0-2) is given by equation (33), it can be 
shown'8"°'" from equations (7) and (10) that Q(m, 2, p2) is equal to 
the error probability obtained in m-ary coherent phase-shift keyed 
(CPSK) systems. Also, for n = 2, it can be shown" that 

P(m, 2, P2) = Q(m, 2, /32).  (44 ) 

It, therefore, follows that the error rates obtained in m-ary coherent 
phase-shift keyed systems are identical to those obtained in any m-ary 
digital modulation system that has a bandwidth expansion of two.* 
Hence we conclude that the error rates of any digital modulation system 
with a bandwidth expansion of two cannot be lower than the error rates 
of CPSK systems for all m. 
Since the error rates of CPSK systems have been investigated in 

* CPSK systems can be shown 2021  to have approximately a bandwidth expansion 
of two. 
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detai1,18 '9'9'20 we shall not give numerical values of Q(nz, 2, p2) in this 
paper. However, we would like to note that18'19'" 

Q(2, 2, p2) =  erf c (p),  (45) 

Q(4, 2, p2) = erfc [pl (2)1 —  erfc2 {p/(2)],  (46) 

and 

.1 erfc (p sin 7r/m){/m) ± max 0, 1 erfc (p sin ir/m) 

tan r/m exp (— p2)[1 — ir4 p exp (p2) erfc (p)1} 
ir 

Q(m, 2, p2) < erfc (p sin /r/m),  m > 2.  (47) 

For signal-to-noise ratios greater than 5 dB, it can be shown' that 

Q(m, 2, p2)  erfc (p sin ir/m),  m  4,  (48) 

and that the error in this approximation is less than 5 percent. 
For n > 2, Q(m, n, p2) can be evaluated by using methods presented 

in Appendix B and using equations (17) through (25). However, this 
is usually difficult and tedious, and since Q(m, n, p2) and Q' (m, n, p2) 
can at most differ by a factor of two, we shall use the modified bound 
Q' (m, n, 1)2). Observe that Q'(m, n, p2) can easily be evaluated from 
equations (18) through (24), and (37) through (39).* 
For n = 4, 8, 12 and 16, and ni = 2̀, 1  L  5, we have evaluated 

Q'(m, n, p2) and the results are shown in Figs. 10, 11, 12 and 13. 

V. DISCUSSION AND CONCLUSIONS 

Based on the results of Shannon and Slepian, we have derived, for 
different probabilities of error, lower bounds to the channel signal-to-
noise ratio required by optimal systems to transmit the output of an 
m-ary message source through a channel of bandwidth expansion n. 
We assume that the channel is perturbed by additive white gaussian 
noise, all channel signals have the same average power S, and that 
the processing interval for decoding one message symbol is not greater 
than one signaling interval. When this interval can be arbitrary and 
when the transmission rate is not greater than the channel capacity, 
it is well known that the probability of error can be made arbitrarily 

*For any n, note that 02.n = ir/2, and that Q(2, n, p') = Q'(2, n, 1,2) =  erfc 
[P(n/2)1"]. 
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Fig. 10—Lower bound Q'(m, n, p2) for n = 4. 

14 16 18 

close to zero by using long and complex encoding and decoding 
procedures. 
For different practical modulation systems, we can then compare the 

signal-to-noise ratio required for different probabilities of error with 
the lower bound given in this paper for optimal systems. This will aid 
us in deciding about the optimality or nonoptimality of different sys-
tems, and in evaluating the quality of performance of different modula-
tion systems. 
By using Slepian's method, we evaluate this lower bound for odd n, 

and m = 2', 1 -_ / .. 5. We also give a method of evaluating the lower . 
bound for even n, and derive a simpler modified lower bound for n even, 
and n > 2. This modified lower bound has been evaluated for n even, 
and m = 2', 1 •_ 4  5. 
For a bandwidth expansion of two, the performance of a coherent 
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Fig. 11—Lower bound Q'(in, n, p9) for n = 8. 

18 20 22 

phase-shift keyed system has been shown to be as good as that of the 
optimal system. 
A particular FSK system with a bandwidth expansion of three has 

been compared to the optimal system, and it appears that its perform-
ance is substantially inferior to that of the optimal system. 

APPENDIX A 

Evaluation of Lower Bound Q(m, n, p2) 

In this appendix, we shall give a second method to evaluate Q(m, n, p2). 
It can easily be shown from equation (9) that 

7r 
02, =-"- ;5 for all n,  (49) 
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and that 

P(2, n, p2) = Q(2, n, p2) =  erfc [p(n/2)t]. 

Hence, we can write 

Since 

Or 

, n, 0-2) =  erfc (0). 
2 

L(0, n, 0-2) =  p„(X) dX, 

L(O, n, 71)  f r / 2 p„(X) dX  f  p„(X) dX, 
2  6  r/2 

14 16 18 

(52) 

(53) 
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L 0,n, p 2 n -2) = T(0" n p21 + 1 erfc [p(n/2)4],  (54) 
2  2 

T(0, n, 0-2) = (11 - 1) exp  (-e2)  ° dr  exp (-7.2/2) 

2"/2 )111(n  +2 1)   

• exp (ro-(2)e cos X) sin"-2 X dX.  (55) 

Expanding exp (ro-(2) 4 cos X) into a Taylor series and integrating term 
by term, we have 

T(0, n, 2) = (n - 1) exp (-Grp) [a(2)J'̀ f r4.1,-.1 
cr  exp - r2/2d, 

2„/2(7r) ir(n ± 1\  I-1  o 
\ 2 ) 

• f./2 cos' X sin"-2 X dX, 

(n - 1) exp (_2) E (2.-)e re + fl 
2(7r)4r(n -4- 1) -̀° e! 2 

2 

.1 BP + 1 n - oft -I- 1 n - 1 \ 
2 \  2 2 '  \ 2 ' 2 / 

Equation (56) can be simplified to 

T(0,  n,  0.2) exp   ÷e, (20.)D _ft +11\ ± 1 n - 1\ 
2(71-)I t! I \ 2 /  \ 2 ' 2 / 

Equations (54) and (57) yield 

1 
L(0, n, a-2)  erfc (o) ¡r) exp  

• ‘""s' (2e)' (€+i'\  («e  + 1 n   
t!  \ 2 / °"" \ 2 ' 2 / 

For m not too large and for large n, it can be shown that 

7r/2 

is small. If (3 is small, we can prove that the series given in equation 

(56) 

(57 ) 

(58) 

(59) 
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Fig. 13—Lower bound Q'(m, n, p2) for n = 16. 

(58) converges rapidly and that we may alternatively calculate 

Q(m, n, p2) from equations (7), (9) and (58). 

APPENDIX B 

Evaluation of Distribution Function L(0, 2, fy2) 

Equations (10) and (14) can be shown to yield 

where 

9 
L(0, 2, 0-2) ---- 1— Le  (60 ) 

p(X) =  [exp (-0-2) I- u(r)1 cos X exp (-0-2 sin2 X) 

• ( 1  erf (o- cos X) } ].  (61) 
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Note's' that p(X) is the probability density function of the phase 
angle X, 0  X < 2r, of the sum of a sinusoidal carrier (of unit amplitude) 
and gaussian noise [of average power 1/(20-2)]. 
We can also show" that 

0  214 
L(0, 2, 0-2) = 1 — -  E sin k0, 

7r  k= 1 iC 

where 

(r6,2)/  
h24+1 —  exp (-0-2/2)[/4(0-2/2)  / 4+ (oe /2)], 

2r 

=  ir1  A h 2 —  E  P12,.+1 B2f— (2,1+1)  e 

—eo 

(62) 

= 0, 1, 2, • • •  (63) 

= 1 , 2, 3, • • • ;  (64) 

(70. 2)1 
A-28-1 =  A2.+1 —   exp (-0-2/2)[I.(o-2 /2) +  /2)], 2 

s = 0, 1, 2, • • • ;  (65) 

and 

1  (7ro-2)1  
=  = (-1) 7r 2p + 1 exp (-0-2/2) 

• [4(0-2/2) + /„i(cr2/2)],  p = 0, 1,2, • • • .  (66) 

I(x) is the modified Bessel function of the first kind and of order n. 
Since all hk's can be calculated using either a set of tables or a digital 

computer and since the series given in equation (62) converges, we can 
calculate L(0, 2, 0-2) for all 0- and 0. 

APPENDIX C 

Evaluation of Upper and Lower Bounds 

From equations (10) and (14), and Appendix B, we observe that 
L(0, 2, 0-2) is the probability that the phase angle X, 0  X < 27r, of a 
sinusoidal carrier of zero initial phase and unit amplitude lies outside 
the range —0  X  0 when it is corrupted by random white gaussian 
noise of average power 1/20-2. 
When 0 = r/2, we can shoẁ 9'2° that 

L(0, 2, 0-2) =  erfc (o-),  O = r/2.  (67) 
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When 0 = r/4, we can also showi8'2° that 

L(0, 2, 0-2) = erfc [0-/(2)]  erfc2 [a-/(2)4].  (68) 

When 0  0 < r/2, let the sinusoidal carrier be represented by 
phasor OS in Fig. 14. Let x„ and x• represent the in-phase and quadrature 
components of white gaussian noise corrupting the sinusoidal carrier. 
The quantity L(0, 2, o-2) is, therefore, given by the probability that the 
terminus of the vector OT lies in areas marked 1, 2 and 3. 
We, therefore, have* 

tan  
erfc (0- sin 0) —  exp (-0-2){1 —  exp (0-2) erfc (0)] 

7 

L(0, 2, 0-2) < erf c (o-sin 0).  (69) 

Also, since L(0, 2, 0-2) is greater than the probability that the terminus 
of the vector OT lies in areas marked 1 and 2 (or 2 and 3), we can write 

L(0, 2, 0.2) >  erfc (o- sin 0). 

Combining equations (69) and (70), we get equation (35). 

QUADRATURE 
AXIS 

SIN 9 „NOISE 
••• 
I ' 

IN-PHASE AXIS 

Fig. 14—Derivation of bounds to L(0, 2, u2). 
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Transit-Time Variations in Line-of-Sight 
Tropospheric Propagation Paths 

By D. A. GRAY 

(Manuscript received December 12, 1969) 

We present in this paper transit-time variations in line-of-sight propaga-
tion paths and systems operating at frequencies up to 30 GHz. We discuss 
variations due to both atmospheric changes (no precipitation) and rain 
and point out some relationships to PUM systems. 

I. INTRODUCTION 

In a recent paper', J. R. Pierce considered stable synchronization of 
large digital transmission networks, and pointed out that the realization 
of such a synchronized network calls for, among other things, more 
information concerning network transit-time variations. In this paper, 
we seek extreme values for these variations in line-of-sight propagation 
paths in order to provide some of this information. Estimates are given 
for (i) the maximum variation in transit-time, AT.« which one might 
expect over the period of a year, and (ii) the maximum time derivative, 

, which one might encounter. The estimated values are related to 
digital systems, with most specific examples given for a 500 megabit 
transmission rate. Variations due to changes in the atmosphere (no 
precipitation), and those due to rain are discussed separately. In the 
longer line-of-sight paths achieved in tandem systems, repeaters are 
assumed to be stable, that is, the concern herein is with atmospheric 
variations only. Delays P.SS °dated with selective fading are not dis-
cussed, but they are believed not to exceed the given estimates of the 
maximum variations. 
The transit-time T is given by the familiar relationship 

T 
f  n ds  

e 
(1) 

where c is the velocity of light, n the medium refractive index, cis the 
differential path length, and the limits Pi and P2 represent the end points 
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of the path. If one assumes An.. , the maximum index of refraction 
change which is expected over a given period of time, and if one assumes 
that the changes in n over the entire path S are perfectly correlated and 
equal to àn.„. , then the corresponding maximum transit-time variation, 

is given by 

1 
A rmar  =  — (ànmax) S• 

C 
(2) 

In a subsequent section, àr,„n will be computed after estimating  
A similar set of assumptions concerning the time derivative ñ leads to 
an estimate of Tm,„ ) namely, 

1. 
i-„,,„ = — lio,„,„8. 

C 

II. MAGNITUDE OF TRANSIT-TIME VARIATIONS IN THE ATMOSPHERE 

( 3) 

Letting the superscript a denote the atmosphere, the estimate of 
to be used in this section is based on data found in Bean and 

Dutton.2 The data comprise eight years of point observations at six 
locations in the United States. The locations are listed in Table I where 
the maximum, minimum, and range Ln of the index of refraction are 
given in N units, with N = (n — 1) X 106. A value which approximately 
strikes an average for the six locations listed will be used, namely, 

= 1.0 X 10-4 . Substituting in equation (2), 

ArL. = 0.333 X 10-98  (4) 

where S is in kilometers. Equation (4) is plotted in Fig. 1. Since the 
atmospheric index of refraction, e, may be regarded as independent of 
frequency up to 30 GHz', the curve in Fig. 1 may be considered applic-
able up to this frequency. 

TABLE I—EXTREMES IN INDEX OF REFRACTION FOR SIX 
LOCATIONS IN THE UNITED STATES 

Location max N min N AN 

Washington, D. C. 393 277 116 
San Antonio, Texas 387 258 129 
Bismarck, N. D. 368 260 108 
Colorado Springs, Col. 307 214 93 
Salt Lake City, Utah 323 230 93 
Tat,00sh Island, Wash. 354 292 62 



2.0 

TRANSIT-TI ME VARIATIONS 

1000  2000  3000  4000 

PATH LENGTH S IN KILOMETERS 

5000 

1061 

1000 

600 o 
o 
v) 

4 

il 
4 
E 
4 

200 > 
r 
a 

o 
6000 

Fig. 1—Estimated maximum atmospheric (no precipitation) transit-time varia-
tions for long path length line-of-sight tropospheric communications systems. 

For long paths, Ail. is overestimated because the assumption that 
An is perfectly correlated and equal over the entire path becomes un-
realistic as S increases. However, the overestimation is not excessive 
because those components in An which primarily are due to seasonal 
and diurnal variations are highly correlated and combine to be of the 
order of 50 N units (approximately 30 N units for seasonal and 20 N 
units for diurnal). Thus, deal.. is conservative to within a factor of two 
for the continental United States. As an example, for a 3000-mile path 
in Fig. 1, AT:. = 1.6 its; certainly, it would be no less than 0.8 ¡is. In 
terms of a 500 Mb system, A?. = 1.6 ea is equivalent to an 800 bit 
variation. 
For short path lengths, more detailed data are needed and these are 

in Fig. 2. One notes that, for short paths, a An" which typifies a given 
region should be used instead of the Ana. of 100 N units. Therefore, 
Fig. 2 shows Ar.,.. versus path length for each of the six locations listed 
in Table I. 
Now consider the problem of synchronizing two clocks separated by 

a distance S. For a digital system of pulse spacing T, two clocks may be 
considered synchronized if they are in phase to within a factor f of a 
pulse spacing. For the sake of argument in this discussion, we choose 
f = 0.1, and we draw on Fig. 2 the lines f • T for pulse rates of 50, 100, 
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Fig. 2—Maximum atmospheric (no precipitation) transit-time variations for 
short paths. Variations are shown for six locations in the United States. 

200, and 500 Mb. The intersections of the lines f•T with the curves for 
determine the maximum path lengths for which atmospheric 

transit-time variations may be neglected. For instance, these lengths 
are respectively 5, 2.5, 1.25 and 0.5 km for the 50, 100, 200, and 500 Mb 
rates when the region of concern is Washington, D. C. For some other 
criterion of synchronization, that is for some other f, these path lengths, 
of course, will be different. 
From Fig. 2, it is evident that for any but the shortest path lengths, 

some compensation for refractive index changes must be incorporated 
in a digital system running on a universal clock. Figures 1 and 2, how-
ever, do not provide information on how rapidly one must compensate. 
This question is answered by first considering the time derivative of 
transit-time variations which are due to turbulence, and then by con-
sidering those due to the motion of synoptic scale air masses. 

III. TIME DERIVATIVE OF TRANSIT-TIME VARIATIONS 

Table II shows the rms values of the hourly transit-time variations" 
which are due to atmospheric turbulence. Because of the randomness 
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TABLE II—RMS HOURLY TRANSIT-TIME VARIATIONS 
IN THE TURBULENT ATMOSPHERE 

RMS Delay  Path Length  Frequency 
(seconds)  (miles) (GHz) 

1.5 X 10-12  2.25  10 
4 X 10-12  3.5  1 
15 X 10-12  10  1 
22 X 10-"  60  1 

of turbulent motion, one would expect the rms values to be proportional 
to the square root of the path length S. Thus, on an hourly basis, the 
variations for a transcontinental path work out to be 0.2 us, which 
is one tenth of the pulse spacing in a 500 Mb system. On the basis of a 
five minute interval, measurements show that rms variations are two 
orders of magnitude smaller than the hourly changes.4 Thus it appears 
that compensation for turbulence-induced atmospheric transit-time 
variations can be made on the order of tens of minutes for transcon-
tinental links, and even more slowly for shorter paths. 
In contrast with the turbulence-related phenomena discussed above, 

the motion of synoptic-scale air masses brings about changes in index-
of-refraction which are correlated over large regions, that is, for regions 
covering hundreds of kilometers, changes in n will be proportional to 
path length, S, not to (5)*. For instance, an advancing cold front brings 
with it a decrease in temperature 0, a decrease in water vapor pressure 
e, an increase in total pressure P, and an accompanying change AN, 
which is well correlated over the entire frontal advance. 
For the purpose of discussion, a model front is shown in Fig. 3. The 

model front passes transversely across a microwave transmission path. 
The index of refraction change .diNF occurs over a distance Si, , and the 

TRANSMITTER 

RECEIVER 

Fig. 3—Model of a frontal system moving across a line-of-sight transmission path. 
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front moves at velocity v. This model permits one to estimate the maxi-
mum rate of change of transit-time 
Proceeding with the estimate of ima. , from Fig. 3, 

6 ANF  
= 10- .v 

S, 
= 10 e4 F 

max  max 

where t5, = S5/v. Substituting in equation (3), 

A N 1P 
¡mar =  0.33 X 10' 

L aS 

S. (5) 

Estimates of the quantity ANF/15,1„,„. have been obtained from tem-
perature, pressure, and relative humidity data continuously recorded 
at Crawford Hill since January 1, 1967. The records were examined for 
events of rapidly changing atmospheric conditions. N was computed 
for conditions just prior to and just after these events using the formula' 

e 
N = 77.6 - ± 3.73 X 10  (6) 0 

where O is expressed in kelvins, and P and e in millibars. ANF was taken 
as the difference between the two computed values for each event. Table 
III gives the date, time, ANF ,t , and ANF/tA for the largest events 
recorded. It is noted from the Table that .N/ti. I -= .0788. Rounding 
off to .08, and substituting in equation (5), 

TABLE III-INDEX OF REFRACTION CHANGES ACCOMPANYING 
RAPIDLY VARYING ATMOSPHERIC CONDITIONS 

r Date Time ANF. te, (see) AN/ 1. 

2/28/67 10:30 PM 7.23 900 .00804 
7/14/67 3:00 PM 3.94 600 .00657 
10/3/67 9:00 PM -13.67 300 .0456 
2/17/68 2:00 PM 13.63 300 .0455 
3/29/68 3:30 PM 15.93 900 .0177 
4/30/68 6:00 PM 7.55 300 .0252 
6/3/68 4:00 PM 13.75 600 .0229 
7/2/68 8:00 PM 22.18 900 .0246 
7/24/68 2:30 PM 19.84 300 .0662 
8/7/68 2:30 AM 18.67 600 .0311 
8/15/68 4:00 AM -31.75 1200 .0264 
8/17/68 3:30 AM 6.18 300 .0206 
8/22/68 9:40 PM -2.42 300 .00807 
11/29/68 2:00 AM 3.67 180 .0204 
12/5/68 2:00 PM 14.18 180 .0788 
6/13/69 2:30 PM 10.12 600 .0169 
6/24/69 5:30 PM 7.49 300 .0250 
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= 2.67 X 10-13 S.  (7) 

The maximum value S over which good correlation of N can occur will 
be taken as 500 km (this value will be discussed subsequently). From 
equation (7),  1.36 X 10-1' sec/sec. In terms of a 500 Mb system, 

.0667 b/s, or 1/16th of a bit per second. 
The derived i,„„. is thought to be larger than would be encountered 

in practice. Complete parallelism (or coincidence), as shown in Fig. 
3, becomes highly improbable when the path length S approaches 500 
km. Primary reasons are: (i) a front and a transmission path can be 
oriented at angles ranging over a large fraction of ir radians; (ii) nature 
will not produce fronts composed of straight line segments, but rather 
of curves. Since a line-of-sight propagation route is made up of straight 
line segments, it will be improbable that a front would coincide with it. 
Consequently, it appears that the choice of S = 500 km is extreme, and 
that .4.. = 1/16 b/s at 500 Mb is a good upper bound. 

IV. TRANSIT-TIME VARIATIONS DIJE TO RAIN 

Letting the superscript r denote rain, then An' is specified using com-
putations of the medium refractive index for given rainfall rates under 
the assumption of a Laws & Parsons drop size distribution.' These com-
putations include the index of refraction of the medium for 6, 16 and 
30 GHz for the rain fall rates 0.25, 1.25. 2.5, 5.0, 12.5, 25.0, 50.0, 100.0, 
and 150.0 mm/hr. For rainfall rates exceeding 150 mm/hr, proportional 
scaling of the 150 mm/hr medium index will be used. 
The nature of rainfall is such that higher fall rates are associated with 

smaller areas of coverage. For this reason, long and short path length 
transit-time variations will be treated differently. For path lengths of 
the order of hundreds of kilometers, we will assume that average-path 
rainrates of about 10 mm/hr can occur. Using a 10 mm/hr rainfall 
rate, An' is equal to 0.83 N units at 6 and 16 GHz, and 0.67 N units at 
30 GHz. The corresponding values of AT' are plotted versus path 
length in Fig. 4. Comparison of Fig. 4 with Fig. 1 shows that the transit-
time variations one expects from rain are more than an order of magni-
tude smaller than those expected from the atmosphere itself. This im-
plies that as far as the dynamic range of compensation equipment in 
synchronized digital systems is concerned, atmospheric variations (other 
than rain) are the determining factor for long paths. 
For short paths, rainfall rates much greater than 10 mm/hr often 

occur. Using results for New Jersey,' transit-time variations for short 
paths are computed using the refractive index values found in Table 



1066  THE BELL SYSTE M TECHNICAL JOURNAL, JULY—AUGUST 1970 

16 

o 
0 1000  2000  3000  4000 

PATH LENGTH S IN KILOMETERS 

e 

o 
5000 

Fig. 4—Estimated maximum rain-caused transit-time variations for long path 
length line-of-sight communication systems. 

IV; they are plotted in Fig. 5 with P as a parameter, where P equals 
the number of minutes per year the given variation will be exceeded. 
Variations to be exceeded 0.5 min/year and 5 min/year are shown, and 
as before, the rainfall variations are an order of magnitude smaller than 
the atmospheric variations (Fig. 2) for the corresponding path lengths. 
When viewed in terms of the nature of convective showers (showers 

exhibiting high rainfall rates), Fig. 5 aids in estimating the upper bounds 
for the time derivative of rain-caused transit-time fluctuations. Con-
vective showers can introduce large attenuation in a path rapidly with 
onsets of the order of tens of seconds. In Fig. 5 the intersection of the 
criterion line for a 500 Mb system with the 16 GHz curve for 0.5 min/yr 
occurs at a path length of 10 km. If the onset of the rain over this path 
were to occur in 10 seconds, then i,„„. = .01 b/s, which is a factor of 6 
smaller than the time derivative for the fronts considered previously. 

IV. CONCLUSIONS 

The maximum transit-time variations encountered in the troposphere 
are due primarily to changes in the gaseous atmosphere rather than 
rain, and may amount to 1.6 p.S for a, transcontinental path; this converts 
to 800 bits in a 500 Mb system. The maximum time derivative of the 
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(a) P = 5 min/yr. 

Path Length 
(km) 

Path Average 
Rainfall Rate 
(mm/hr) 

An at 6 GHz 
(N units) 

An' at 16 GHz 
(N units) 

An' at 30 GHz 
(N units) 

1.3 140 9.44 7.42 4.64 
2.6 135 9.11 7.18 4.51 
5.2 110 7.46 5.98 3.86 
7.8 90 6.14 5.02 3.3 
10.4 80 5.48 4.54 3.0 

(b) P = 0.5 min/yr. 

Path Length 
(km) 

Path Average 
Rainfall Rate 
(ram/hr) 

An' at 6 GHz 
(N units) 

An' at 16 GHz 
(N units) 

An" at 30 GHz 
(N units) 

1.3 190 12.8 10.1 6.21 
2.6 175 11.78 9.3 5.72 
5.2 150 10.1 7.9 4.9 
7.8 130 8.78 6.94 4.38 
10.4 110 7.46 5.98 3.86 

o 
0 

4  8  12  16  20  24 

PATH LENGTH S IN KILOMETERS 

Fig. 5-Rain-caused transit-time variations for short path lengths. The parameter 
P equals the number of minutes/year the given variation will be exceeded. 
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transit-time variation is due to the motion of fronts, and has been derived 
herein: 7'„,„. = 1.36 X 10-1°  sec/sec which is equivalent to 1/16th of a 
bit at 500 Mb. Neither ArL. nor #,,,,„ appears so large as to prohibit 
the synchronization of digital systems transmitted over line-of-sight 
propagation paths. 
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Joint Optimization of Automatic 
Equalization and Carrier Acquisition 

for Digital Communication 

By ROBERT W. CHA1VG 

(Manuscript received January 22, 1970) 

In this paper, we analyze single-sideband amplitude-modulation digital 
communication systems to develop a method for jointly and optimally 
setting the carrier phase and the automatic transversal equalizer of such 
systems. Mean-square equalization error is used as the performance 
criterion. We develop a simple receiver structure and study the convergence 
of the method. Exact locations of the stationary points in the parameter 
space are determined and the classifications of the stationary points are 
obtained. We show that the mean-square equalization error has only global 
minima and saddle points, but not local minima and maxima. Thus, the 
mean-square equalization error will converge to the absolute minimum by 
the proposed method, regardless of the initial settings of the parameters. 
A simple condition on the step sizes of the adjustments is also obtained 
which ensures the convergence of the process. Explicit formulas of the 
joint optimum parameter settings and of the corresponding minimum 
mean-square error are obtained. For illustration purposes, a single-sidebancl 
digital communication system using a five- or nine-tap transversal equalizer 
is simulated on a computer. Both theory and simulation show that the 
equalization error depends critically on the carrier phase when the number 
of equalizer taps is not large, and that the minimum equalization error 
can be obtained by using the proposed method. 

I. INTRODUCTION 

In single-sideband amplitude-modulation digital communication sys-
tems with transversal filter equalization," the adjustment of the 
carrier phase is critical to the system's performance when the number 
of equalizer taps is not large. In this paper, a method is proposed for 
setting the carrier phase jointly with the automatic equalizer to minimize 
the mean-square equalization error. 

1069 
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We formulate a mathematical model of this study in Section II; 
in Sections III and IV, we analyze the system and develop a receiver 
structure. The problem of convergence is studied in Sections V and VI 
to determine if the equalization error will converge to the absolute 
minimum by the proposed method and whether such convergence 
depends on the initial settings of the parameters. We also consider 
step sizes of the adjustments. In Section VII, we derive explicit formulas 
for evaluating the system's performance. A voiceband data communica-
tion system is simulated on a computer to test the proposed method 
and the results are described in Section VIII. 

II. MATHEMATICAL MODEL 

As shown in Fig. 1, a single-sideband amplitude-modulation system 
is considered. When an impulse (5(0 is applied to the transmitter input, 
a signal a(t) is received at the receiving filter output. The Fourier 
transform of a(t) is denoted by A(/). (The Fourier transform of a 
function will be consistently denoted by the appropriate capital letter.) 
It is assumed that A (f) is band-limited between fl and f, that is, 

AU)  0, only for fl <Ifl<f2.  (1) 

The signal a(t) is demodulated as shown in Fig. 1, where the demodulat-
ing carrier frequency is t . In single-sideband systems 

i i (t)   TRANSMITTING 

El LT ER 

TRANSMISSION 

MEDIUM 

Iw (r)l ei Cil(f) 

RECEIVING 

FILTER 

a t) 

s(t) 

Fig. 1—An amplitude modulation system with coherent detection and transversal 
filter equalization. 
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Or 

f. 12 •  (3) 

The demodulating carrier phase is denoted by O. The demodulator 
output is a signal 7(t) with Fourier transform 11(1). Since A (f) is band-
limited, r(f) is also band-limited, that is, 

= 0,  ifl > f  (4) 

where fois 12 — fi when f, is fi or 12 (10 is larger than 12 — fi if f. is less 
than fi or larger than 12). 
As shown in Fig. 1, the channel is equalized by a conventional trans-

versal equalizer consisting of 2N  1 taps with gains e„ , n = —N to N, 
spaced at To-second intervals, where 

T. = —1 seconds.  (5) 
2f0 

When an impulse S (t) is applied at the transmitter input, the trans-
versal equalizer output is s(t). Clearly s(t) is the overall impulse response 
of the system. The receiver parameters (that is, the demodulating 
carrier phase O and the equalizer tap gains e„ , n = —N to N) will be 
set to minimize the difference between the overall impulse response 
s(t) and a desired impulse response q(t). The familiar mean-square 
error criterion is used. That is, O and e„,n = —N to N, will be jointly 
set to minimize the mean-square error 

go = j Kt) — q(012 di.  (6) 

For brevity, the tap gains e„ , n = —N to N, will be abbreviated 
len1 in the sequel. 

III. ANALYSIS 

In this section, we analyze the system to develop a receiver structure 
for jointly setting O and le„1 by the method of steepest descent. 
In analyzing carrier signals, it is most convenient to use Hilbert 

transform techniques. As is well known,' the demodulator output -y(t) 
is related to the input a(t) by 

-y(t) = cos (2irf ct  0)a(1) ± sin (211  0)d(t) (7) 

where d(t) is the Hilbert transform of a(t). When dealing with lengthy 
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time functions, we shall sometimes use the sign 3C, that is, 3C[a(t)] = 

It is seen from Fig. 1 that 

S(I) =  E  e e(t  nTo — NT0).  (8) 

We shall use the partial derivatives ago/a° and 880/ae„ in the method 
of steepest descent. Since q(t) is independent of 0, we obtain from 
equation (6) 

ago œ r 
j 2[9W — q(t)l e dt ae • (9) 

In writing equation (9), the order of differentiation and integration 
has been exchanged [the underlying conditions for making such an 
exchange are easily satisfied by s(t) and q(t) encountered in communica-
tion systems]. Substituting equation (7) into equation (8) and taking 
the partial derivative give 

MO- =  e { —sin [211-1,(t — nT 0 — NT0) ± O]a(t — nT 0 — NT0) ao  „.._ N 

+  cos [271-Mt — nT o — NT0) ± 0]4(1 — nT 0 — NT0)1 . (10) 

From equations (8) and (7), 

à(t) = î ea3C{ cos [2n-fc(t — nT,, — NT0)  0]a(t — nTo — NTo)) 

3C{sin [274,(t — nTo — NT0) + O]á(t — nTo — NT0))]. (11) 

In single-sideband modulation, we have either inequality (2) or 
inequality (3). Let us consider inequality (2) first. When inequality 
(2) holds, the frequency spectrum of a(t), A (f), does not overlap the 
spectra of cos 21-ft  and sin 271-ft. Furthermore, A(f) occupies a higher 
frequency band; therefore, equation (11) becomes 

3C[cos (27rf0t  0)a(t)] = cos (2i-ft  0)à(/), 

and 

3C[sin (221,/  0)â(/)] = —sin (2irft  0)a(t), 

Substituting the above into equation (11) gives 

fe ji 
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«t) = î e,,{ cos [274,(t — nT o — NT 0) + O]d(t — nTo — NT,) 
-N 

— sin [271,(t — nTo — NTo)  °]a(' — nTo — NT 0)} , 

f f1.  (12) 

Comparing equation (12) with equation (10) shows that 

as(t) 
= —07 , f f .  (13) 

Substituting equation (13) into equation (9) gives 

= f:2[8(t) — q(01:4(1) di,  f. < 11  (14) 

Since a function and its Hilbert transform are orthogonal, equation 
(14) reduces to 

a g = —2 f q(1)(1) dl,  f «5 f, .  (15) ao 

Thus, a8o/a0 can be generated by correlating q(t) with «t). Note 
that the transversal equalizer output will be «t) instead of s(t) if 
the demodulating carrier cos (2711,t + 0) is replaced by cos [221,4 ± 
O  7/2]. However, even though à(t) can be generated in this simple 
fashion, we prefer not to generate «t) because the system must be 
used instead to generate s(t) to compute the other partial derivatives 
880/ae. . Therefore, we convert equation (15) into the form 

—ago = 2 fe (t) s (1) di,  f  f .  (16) 
ao 

This step can be verified by Parseval's theorem. Now we need only to 
correlate s(t) with an easily generated (t) to obtain ago/ao. 
The above is for the case f. f . In the other case, f,  f2 the 

frequency spectrum of a(t) occupies a frequency band lower than f ; 
therefore, the two equations above equation (12) should be rewritten as 

K[cos (271,t  0)a(t)] -= sin (27f,t  0)a(1), 

3C[sin (271.1 + 0)d(1)] = —cos (271,i  O)â(t),  f.  f2 . 

Repeating the steps from equation (12) to equation (16), we get 

U9- -= —2 f_œ s(t)e(t) dt,  f.  f2 • (17) 
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Note from equations (17) and (16) that the sign of the correlator output 
must be reversed when one shifts the carrier frequency from one side 
of A(f) to the other side. 
About the equalizer tap gains, it is seen from equations (6) and (8) 

that 

—_ fe 2[8(t) — q(1)] as(t)  dt, 
gfe,,  ae. 

= f 2[s(t) — q(1)17(1 — nT„ — NTo)dt,  n = —N to N. 

(18) 

Thus, ago/aen can be generated by correlating the error signal [s(t) — 
q(t)] with the output ,y(t — nTo — NT0) of the nth tap. This is the 
concept introduced in Ref. 3 where the problem of setting the tap 
gains {e) was considered. 

IV. RECEIVER STRUCTURE 

It has been shown in the previous section that ago/ae can be easily 
generated simultaneously with ago/ae„ , n = —N to N. Therefore, 
the method of steepest descent can be used to adjust simultaneously 
O and le „1. In the training period prior to data transmission, isolated 
test pulses are transmitted. For instance, S(1) in Fig. 1 may be one of 
the test pulses. The transmission of S(t) generates a signal s(t) at the 
equalizer output. From s(t) the partial derivatives ago/ae and ago/ae„, , 
n = —N to N, are computed. The parameters O and ( e„[ are then 
changed by amounts proportional to the partial derivatives, that is, 

a ea = °old —  a — a 

(e„)„ew = '  n = —N to N, 
L-"aeen  

where a and [3 are positive proportional constants which may vary 
from one adjustment to another (the choice of their values will be 
considered in Section VI). After the changes are all made, another 
test pulse is transmitted and the process is repeated. The process is 
terminated after a prefixed number of test pulses. 
The receiver structure is shown in Fig. 2. The partial derivatives 

880/80 and aso/ae„ are computed according to equations (17) and (18), 
respectively (f. ›- f2 is assumed). If f, fi, the correlator output in 
Fig. 2 will be —ag0/30. 
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y(t-n;-NT0) 

Alm 

(t) 

(t) 

Q(f) 
q(t) 

To 

s(t) 

 ••• 

ae n 

C. 

PHASE SHIFTER 

Fig. 2—Block diagram of the joint method. (C in the block denotes correlator.) 

V. FURTHER ANALYSIS 

We now analyze the system to answer the questions: (i) Will the 
mean-square error converge to the absolute minimum by the proposed 
adjustments? (ii) Is the convergence ensured regardless of how the 
parameters O and { ej are set prior to the starting of the process? (iii) 
What is the minimum mean-square error that can be obtained by the 
proposed method? To answer these questions, it is necessary to locate 
the stationary points of g0,  to distinguish between various types of 
stationary points, to determine conditions under which go will converge 
to a global minimum, to derive explicit solutions of go when the param-
eters are set jointly or independently, and to obtain numerical data 
by simulating a real typical channel. In this section, we determine the 
location of the stationary points and distinguish between various types 
of stationary points. 
It is noted from equations (16) and (17) that ago/ao changes sign 

when the carrier frequency f,, is shifted from one side of AU) (that is, 
I fi) to the other side (f‘ 12). To avoid this complication, a quantity 
p defined by 

p = 0,  when  f, , 

= —0, when f,  12 , 
(19) 
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will be used instead of O in the following. By this change, the results 
obtained in the sequel will hold for both f, fl and f,  f2. Hence, 
the position of fc will not be identified further. 
Since it is more convenient to use matrix notations in the following, 

time samples will be used. Let 

= s(kTo NT(,), 

= q(kTo NT0),  (20) 

71, = 7(—kT0). 

Then equation (6) becomes 

where 

g = E (8k - qk)2. (21) 

Since fo is a constant, minimizing 8 minimizes 8, . 
It can be easily shown that equation (21) can be written in the 

following matrix form 

8 = E'yE — 2E'Y  't° q:  (22) 

where the prime denotes transpose, the vector E and y and the matrix 
y are defined by 

- e_N 

e_N+1 E = 

Y 

y- -N,-N • 

V—N 

V = 

VN 

• • Y —N 

_ YN.--N  • • •  YY,N - 

Yh.i  E  7h— ei—k 5 
k••—to 

v„ = 
co 
E gern—k • 

(23) 

(24) 

(25) 

(26) 
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Clearly, E and y are (2N + 1) X 1 vectors, and y is a (2N -F 1) X 
(2N + 1) matrix. One can easily show that y is nonsingular. 
We now evaluate the partial derivatives ag/ap and ag/aen , n. = —N 

to N, to determine the optimum parameter settings. From equation (22), 

a e  a „  a 
— = — .e,, — — .t, v.  (27) 
ap  ap  Op 

To evaluate the terms in equation (27), we note from sampling theorem 
that equation (25) can be written as 

= 2i0 f 7(t)7{1 —  — OToi dl.  (28) 

By Parseval's theorem, equation (28) becomes 

y,,, i = 210 f I 1'(f) 12 exp [—j2rf(h — i)To] df. .  (29) 

For single-sideband systems, the demodulating carrier phase p appears 
only in the phase characteristic of r(f), while the amplitude char-
acteristic 1 r(f) I of r(f) is independent of p. Therefore, from equation 
(29), y,,,, is independent of p and 

—a E'yE = 0. 
ap (30) 

This greatly simplifies the results. (It is important to note that this 
simplification is not possible for double-sideband and vestigial-sideband 
systems because p appears in 1 11(f) 1 in such systems.) Substituting 
equation (30) into equation (27) gives 

aE  a 
(3-,7 = —2  E'v. ap (31) 

To evaluate equation (31), we convert the elements v„ of y into explicit 
functions of p. For single-sideband systems, r(f) can be decomposed 
into the form 

1'W = H(f) exp  f  0; 

= H(f) exp (ip),  f  0; 

where H(f) is independent of p.* From equations (26), (20), (4), and 

(32) 

* H(f) is the Fourier transform of 7(t) when p = O. The amplitude and phase of 
H(f) will be denoted by IH(f)I and n(f), respectively, that is, 11(f) = 11/(f)1 exp 
ii/(f)]. 
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(32), it can be shown that 

en =  exp (— iP)  exp (iP),  n =  to N  (33) 

where 

co 

ein =  E qk  H(f) exp [j2n-f(k — n)T df  (34) 
k=-00 

and 

= E q —  H(f) exp [j274(k — n)T,)] df.  (35) 
k —oo  f • 

Note that pn and p„ are independent of p. From equation (33), we can 
evaluate the term a/apE'v in equation (31) to obtain 

0g  . 
= 2J[exP  — exp  (36) 

where 

= 

12-Ar 

P-N+I 

—  — 

V = 

V_N 

V —N+I 

_ VN 

(37) 

The above is for a g/ap. The other partial derivatives can be obtained 
from equation (22) as 

a 8 
= 2yE — 2v. (38) 

A necessary condition for a specific p and E to be jointly optimum 
(that is, to jointly minimize g) is that they satisfy 

ag 
-à—p =-

and 

(39) 

(40) 

There are special cases where the optimum setting of p is arbitrary 
(for instance, if an infinite length tapped delay line is used, the taps 
can always be adjusted to reduce the mean-square error g to zero 
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regardless of how p is set). We shall not consider such special eases here. 
This implies, as can be shown from equations (36), (38), (39), and 
(40), that the special cases where  is zero are disregarded. 
From equation (38), equation (40) can be written as 

E =  (41) 

From equations (36) and (41), equation (39) can be written as 

exp (—jp)ti'flv — exp (jp)v/y-lv = 0.  (42) 

One can show from equation (33) that equation (42) is equivalent to 

v  — exp (j4p). 

It can be shown from equations (34) and (35) that 

= Re [vYlv], 

and 

(43) 

Im  =  (44 ) 

where Re and Im denote real and imaginary parts of the complex 
number, respectively. From equation (44), one can show that equation 
(43) is satisfied if and only if 

ir Im [WY-1V] 
p = Mo -§"  ban  Re  [l,y_iti]  (45) 

where mo can be any integer including zero. Substituting equation (45) 
into equation (33) and substituting the resulting equation into equation 
(41) give 

E = exp  + 1 tai  [ter it11)1 - 
2  2 Re Ee'Y'vel 

exp  + tan-1 Im [tify-1 1 _ 
2  2 Re Y 

The value of p and E which satisfies the necessary conditions (39) 
and (40) is given by equations (45) and (46), respectively. It is clearly 
seen from equations (45) and (46) that, since ?no can be any integer, 
there is more than one set of solutions of p and E from conditions (39) 
and (40). In the following, we determine which of these solutions 
actually minimizes go . 
In conventional terminology,' each solution of conditions (39) and 

(46) 
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(40) is a stationary point of 6,, . We shall determine which of the sta-
tionary points is a global minimum. 
We first identify the minima, maxima, and saddlepoints. As is well 

known,4 a sufficient condition for a stationary point to be a local mini-

mum is that the quadratic form 

F = h'Qh  (47) 

be positive-definite at that stationary point, where Q, known as the 
Hessian matrix, is 

Q = 

and 

-  0 28  8 2 8 

ap2 Op ae- N 

0 2 g  a2 co  

ae-N Op 

0 2 8  0 2 8 

aeN OP  aeAr ae-N  " 

02 60  

h'  [hi h2 • • • h(2N+2)]. 

A stationary point is a local maximum if F is negative-definite at that 
point. At a saddlepoint, F is indefinite. To evaluate F, note from 
equations (16), (17), and (19) that 

= 2 f 4(t)s(t) dl  (48) 
a p 

and 
as(t)  eft).  
op 

From equations (48), (49), (8), and (18), we get 

a2 go  co 
- 2 f q(t)s(t) dl; 

op' 

(49) 

(50) 

a2  — 2 f 7(t — nT 0 — NT0)4(t) dl,  n = —N to N; (51) 
Op ae„ 

and 

az 
 — 2 f 7(1 —  — NT0)7(1 —  — Nn) dl, 
0e1 ae; 

j = —N to N.  (52) 
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Substituting equations (50), (51), and (52) into equation (47) and 
rearranging, we obtain after some steps 

e  2 

F = 2 f [hi(t) + f h2+.+N•Kl — nTo — NT0)1 dl 
CO  11  N 

CO 

-1- 2e f q(t)s(t) dl 
CO 

0 
— 214 f q2(t) dl. 

-0 (53) 

Now we may substitute equations (45) and (46) into equation (53) 
and evaluate the resulting expression over all possible hi to h( ,.,) 
to determine whether F is positive-definite, negative-definite, or in-
definite at a given stationary point. This determines if that point is 
a local minimum, a local maximum, or a saddlepoint. While these steps 
are important in the analysis, they are rather complex and are therefore 
given in Appendix A. It is also shown in that appendix that all the local 
minima are equal and hence all are global minima. The results in 
Appendix A are summarized in the following proposition. 

Proposition 1. 8,3 has a global minimum when p and E are given, re-
spectively, by equations (45) and (46), with mo in these equation being 
an even integer. 8, has a saddlepoint when p and E are given, respec-
tively, by equations (45) and (46), with mo in these equations being 
an odd integer. 
It is seen from this proposition that there is an infinite number of 

global minima, each one corresponding to an even integer m0. The 
distance in p between two adjacent global minima is therefore Ir. There 
is also an infinite number of saddlepoints, each one corresponding to 
an odd integer mo . The distance in p between two adjacent saddlepoints 
is also ir. The distance in p between a saddlepoint and its adjacent 
global minimum is w/2. It is instructive to illustrate these with an 
example and a figure. Consider a transversal equalizer with only one 
tap eo (such a single tap serves as an automatic gain control and 
the problem is to jointly set the automatic gain control and carrier 
phase to minimize the mean-square error). For simplicity, suppose 
that the term tan' [Im (Ley- lta)]/[Re ('fit)]  in equation (45) turned 
out to be zero. Then from the proposition go has global minima at 
p = 0, ±ir ±27r, • • • , and 80 has saddlepoints at p = ±r/2, ± 3r/2, • • • . 
The global minima at p = 0 and r are illustrated by points 1 and 3 
in Fig. 3 and the saddlepoint at p = r/2 is illustrated by point 2. 
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Fig. 3—An example illustrating the global minima and eaddlepointe of So. 

The curved surface in the figure illustrates the variation of 80 with p 
and e. . For instance, when p is fixed at ir, 80 varies with e0 as shown by 
the convex curve passing through points 4, 3, and 5. (For fixed p, 8. 
is a convex function of the tap gains e_N to eN .) As can be seen, point 
2 is a saddlepoint because varying e0 away from point 2 with p constant 
increases 80 , while varying p away from point 2 with e0 constant 
decreases 80 . 
To summarize, in this section we have located the global minima 

and saddlepoints and proved that there is no local minimum or maxi-
mum. There is also no valley' since the global minima are all distinct. 
These results will be used in the next section for the study of con-
vergence and in Sections VII and VIII for the computation and com-
parison of performances. 

VE. A CONDITION OF CONVERGENCE 

As described in Section IV, after a test pulse is transmitted and the 
partial derivatives are computed, the carrier phase and the tap gains 
are adjusted according to the equation 
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ago 
°new = Bold — a — ao ' 

0g0 
M ew .= (en)old — /3 — ae, ' 

1083 

(54) 

(55) 

where a and 19 are positive proportional constants which may vary 
from one adjustment to another. As is well known,5 the process always 
converges when a and 13 are sufficiently small, but may not converge if 
a and tl are too large. In this section, we derive a condition on a and a 
which ensures the convergence of the process. 
To facilitate analysis, we shall, as in Section V, replace O with p, 

80 with 8, the tap gains e_N to eN with the vector E, and the partial 
derivatives 498/8e_N to 08/0eN with the vector as/aE. The adjustment 
made after the kth test pulse will be called the kth adjustment (k = 
1, 2, • • • ). The values of p, E, 8, 68/8p, and 88/0B prior to the kth 
adjustment will be denoted by Pk , Eh, g(Pk , Eh), (8/ap)6(ph , Eh) and 
(8/aB)8(pk , Eh), respectively. The a and a used in the kth adjustment 
will be called ah and Ok , respectively (note that ak > 0 and Oh  >  0 
for all k so that the adjustments will be made in the negative gradient 
direction). The values of p, E, 8, as/ap, and ae/aE after the kth adjust-
ment will be denoted by ph +1 , Bk R(0  E 1 (a/a.) e(b  E 1 +1 , -,8-k+1 I —k-I-1,1 s-, -,.. - - -,,k+1, —k+1, f 
and (a/aE) g (pk + i , Ek+1), respectively. 
With the above notations, equations (53) and (54) can be written as 

a 
— a — g(p. 1 Ek) Pk+1 =  Pk  k ap  y 

a 
Ek+1 = Eh  ek —8E  g(p. , Ea). 

(56) 

(57) 

The decrease in mean-square error due to the kth adjustment is denoted 
by Agk , that is, 

àgk = g(Pk , Eh) — g(Pk+1 , Ek+D•  (58) 

Clearly ,Ci8k approaches zero when the partial derivatives approach 
zero. A stronger statement that may sometimes hold is that "ekek 
approaches zero only when the partial derivatives approach zero." 
By this statement is meant that for every e > 0, we can find a 6 > 0 
such that 

1 Ag, I a  (59) 

if 
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e(pk , Ek12 + [—aaB e(pk Ek)111É g(pk , Ek)1  •  WO 

We shall say that g converges to a stationary point if for every E > 
there is an N such that 

Et)]2  a a + [  g(th Et)]I -a—E- F,(Pt ,  < E  (61) 

for all k > N. 
The following lemma is needed in our discussion. 

Lemma. If M k > 0 for all k and ASk approaches zero only when the 
partial derivatives approach zero, 8 must converge to a stationary point. 

Proof: The proof of this lemma is simple. Assume that 6 does not 
converge to a stationary point, that is, for an E > O it is not possible 
to find an N such that equation (61) holds for all k > N. Then equation 
(59) must hold for an infinite number of k's. From this and the assump-
tions in the lemma, we see that Ag, > 0 for infinite number of k's. 
This implies that g reduces without bound as k increases, contradicting 
the fact that the mean-square error cannot be less than zero. Hence 
the lemma holds. 
The lemma provides a means of determining a, and f3,,. According 

to the lemma, 8 will converge to a stationary point if we can determine 
a, and ak such that Ag, > 0 for all k and à8k approaches zero only 
when the partial derivatives approach zero. Theoretically, such a, 
and el, can be determined using known mathematical techniques.5 
But unfortunately these techniques were developed for use with com-
puters and are too complicated to be used in a receiver (for a discussion, 
see Appendix B). In the following proposition, it is shown that ak 
and (J,, can be determined rather easily if E and p are set in some alternate 
fashion. 

Proposition 2. Let the set of positive integers be divided arbitrarily 
into two disjoint subsets X, and 5C2, each containing an infinite num-
ber of positive integers. Let ak = 0 when k E C1,3  and fi,, = 0 when 
k e X, . Let X, denote the maximum eigenvalue of y (X, > 0 since y 
is positive definite), and let [ff. (t) dt].„ denote the value of ff., (t) dl 
when E = E,,. The mean-square error g will converge to a stationary 
point if 

(62) 
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for k c 3C„ and 

0 <a,. < 
21[ r 2(1) di]  + 210 f g'(1) dt 

E& 

21 
(63) 

for k e 3C2. 
The proof of this proposition is complex and is given in Appendix C. 

The proposition states that p and E may be adjusted in any alternating 
fashiont and the mean-square error g will converge to a stationary 
point if 0k satisfies equation (62) during the adjustment of E, and 
ah satisfies equation (63) during the adjustment of p. The term Xi in 
equation (62) and the terms [f s2(t) dt]Ek and ff,,, e(t) dl in equation 
(63) can be estimated or measured. Consider first X1, the maximum 
eigenvalue of y. There are various methods of estimating the maximum 
eigenvalue of a matrix." For example, it is possible to estimate Xi 
from amplitude characteristics of the transmission medium. [Note 
from Fig. 1 that the amplitude and phase characteristics of the trans-
mission medium are denoted by W(f) I and o(f), respectively.] It is 
seen from equation (29) that the elements yh,i of y can be computed 
from r(j) I. For single-sideband systems, I F(/) I depends on I W(f) I, 
but not on co(f) and the demodulating carrier phase p. Thus, if statistics 
of I W(f) I are available (for example, in a voiceband system), yh,i 
can be computed from equation (29) and Xi can be estimated. The 
maximum possible value of X1 then can be used instead of Xi in equation 
(62). 
The factor ff. q2(1)dt in equation (63) is known because the desired 

signal q(I) is given. The other factor [f e(t)dt],, is simply the energy 
of the signal s(t) prior to the kth adjustment, and can be easily measured 
at the equalizer output. 
Summarizing the above, a condition of convergence has been described 

in the lemma. Based on the lemma, a specific condition of convergence 
has been obtained in Proposition 2. The upper bound in equation (62) 
can be estimated from a priori channel statistics and the upper bound 
in equation (63) can be easily determined prior to each adjustment. 
Thus, ah and Ok can be set accordingly prior to the adjustments to 
ensure that g will converge to a stationary point. 
It has been shown in the previous section that a stationary point 

must be a global minimum or a saddlepoint. Thus, g may converge 

t For example, one may fix p and adjust E until aa/aE approaches zero, then fix E 
and adjust p until ag/ap approaches zero, and repeat the cycle until both 05/0E and 
« Mt) approach zero. 
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to a saddlepoint instead of a global minimum. Fortunately, such a 
possibility is remote. A great advantage of gradient methods is that 
they will inherently stay away from saddlepoints.5 It has been found 
by researchers that gradient search computer program avoids saddle-
points so dependably that the only way they could test their program 
for exploring the neighborhood of a pass was to start the search there. 
Wilde and Beightler suggested the reason by sketching a bimodal 
surface to show that only one gradient line out of the infinite number 
possible actually ps.sses through the saddlepoint.5 The other gradient 
lines all lead directly to a minimum or a maximum. Hence the possibility 
of converging to a saddlepoint is remote. 
It has been shown in the previous section that the distance in p 

between a saddlepoint and its adjacent global minima is 7/2. From 
this, several tests can be devised for distinguishing between global 
minima and saddlepoints. The following one is particularly simple. 
At the design stage of the system, one may compute the value of 8 
at global minima and saddlepoints (the detailed steps in Section VII 
may be used. The value of 8 at global minima is equal to 8.1„ in equation 
(64), while the value of 8 at saddlepoints is equal to 81cd evaluated at 
Ap = 7/2.) As illustrated in Section 8.1 and Fig. 4, the value of & at 
saddlepoints can be many times larger than that at global minima. 
Consequently, a threshold can be set up such that when 8 converges 
to a value above the threshold it may be concluded that a saddlepoint 
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Fig. 4—Variation of t im a with Ap. (See example in Section VIII.) 
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is reached. Then p will be shifted by 7/2 and E readjusted. If g con-
verges to a value below the threshold, the process is terminated. This 
and other possible tests all require additional circuitry. Since the 
possibility of converging to a saddlepoint is remote, one should decide 
from actual trials whether such a test should be employed. 

VII. PERFORMANCE COMPARISON 

In the previous sections, we have considered jointly setting p and E 
for minimizing the mean-square error g. It has been shown in Prop-
osition 1 that the joint optimum settings of p and E are given, re-
spectively, by equation (45) and (46) (with mo in these equations being 
an even integer). Substituting these optimum settings into equation 
(22), we obtain the minimum mean-square error 

8.1. = E e-24iy-fil- 2ter  (64) 

It has been shown that this grnin  can be obtained by setting p and E 
jointly. Now we wish to compare gmin  with what can be obtained by 
another scheme. In single-sideband systems, it is possible to transmit 
a carrier pilot to the receiver to demodulate the received signal. The 
demodulating carrier phase therefore is 

P = 1:4 ± pre 

where p„ is the phase of the received carrier pilot and pf is a fixed phase 
shift that is sometimes introduced for signal shaping. With p fixed at 
pe pf, E can be adjusted to minimize g. The value of g thus obtained 
will be denoted by gind  , where the subscript "id" indicates that p 
and E are set independently. We now compare E ind with En, . 
To determine Eind  , let the difference between pe pf and the optimum 

setting of p be denoted by Ap. From equation (45), 

AP =. p„ pf —  1.1  tan -i   [teril  o 2 2 
Re 

where mo can be any even integer (including zero). Since E is set to 
minimize g after p is set to pe pf , E is equal to y-in evaluated at 
P = pe pe• that is, 

(65) 

E = y-lyn (66) 

where yn is y evaluated at p = p,  p,. Substituting equation (66) 
into equation (22) gives 
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giud = E e — VY1Va.  (67) 
k 

It can easily be shown from equation (33) that 

11"3"-Iv. = exP [—P(P.  Pf)lte3T-iti  2ter 

exP  Pf)ivif iv•  (68) 

Substituting equation (65) into equation (68), and substituting the 
resulting equation into equation (67), one can obtain after some manip-
ulations that 

E e _ 2(cos 2 AP) I teritaI — 2erly.  (69) 

From equations (64) and (69), the difference between 8ind  and  is 

81u1 —  = 2[1 — cos 2Ap1 Itey-itsI.  (70) 

Note that le' and y-1 are independent of 4. Thus, the only term in 
equation (70) that depends on 4 is cos 24. Now we can make the 

following observations. 
First, 8 ind  gmin  is nonnegative, meaning that independently 

setting p and E increases the mean-square error. Second, 81„d — 
varies periodically with Ap with a period of r. Third, because of the 
nature of cosine, gind  — ,nn is small when Ap is small, but increases 
rapidly when Ap increases (note the factor two in cos 24). 
For a given system, one may compute 81„d, g , and their dif-

ference from equations (64) and (69). The computation can best be 
carried out by a computer program in the following steps (see also the 
example in the next section). First, specify fo , N, and the desired 
signal q(t) . Determine the time samples fqd of q(t) . Second, determine 
H(f) from transfer functions of the transmitting filter, the transmission 
medium, and the receiving filter. Third, compute the elements y,„ ; 
of y from the equation 

f o 

= 4f0 f  H(1)12 cos [271-1(h — e el df.  (71) 

Compute the elements ah,, of 3,-1  from y,,, i . Fourth, compute the terms 
I Write I and ti'y-lv in equations (64) and (69) using the explicit equa-

tions 

'y ''ti  I = [(131— B2)2 + 4B ,  (72) 

11, = B, + B, ,  (73) 
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where 

CO 

= k o 
E 
OD 

= E 

qk f of o 

fi° qk o 

N 

BI =  E E ak.ithti 
la--N i--N 

N  N 

B2 =  
h--N i--N 

N  N 

B, = E E ah,z,e; o 
h--N 

(74) 

(75) 

(76) 

I H(f)  cos [ef)  2irf(kTo — iT,)] df, ,  (77) 

H(f) I sin [n(f)  27rf(kTo — iTo)] df.  (78) 

Finally, compute 8.,„ from equation (64) and gjnd from equation (69). 

VIII. COMPUTER SIMULATIONS 

We now apply the previous results to a single-sideband partial-
response voiceband data communication system using a five- or nine-
tap transversal equalizer. Since the results are largely similar, we shall 
describe only the five-tap case. 
Two computer programs have been written for this system. In the 

first program, 8„,in and Chid are computed using the formulas in the 
previous section. In the second one, 8mjo and eind are obtained using 
the method of steepest descent. The results of these two programa 
are described separately in the following subsections. 

8.1 Comparison of 8.i. and 81.d Using the Explicit Formulas in Section 
V// 

Consider the voiceband data communication system described in 
Ref. 8. The desired signal g(t) of such a system is the class IV partial-
response signal,' that is, 

24 sin 271-1„(1 — to)  
-  (79) 
[24(1 — 10)]2  2 — 7r 

where a time delay £0 is included to take into account the time delay 
in the channel. From Ref. 8, 

f, = 1200 1-Is.  (80) 

Hence, Ti, = 112f0 = 1/2400 seconds. We shall consider a transversal 
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equalizer with five taps, that is, N = 2. It has been defined that H(f) 
is the Fourier transform of 7(t) when p = 0. The amplitude and phase 
of H(f) have been denoted by I H(f) I and n(f), respectively, that is, 

H(f) = I H(f) I exP Lin(f)].  (81) 

It is assumed that the amplitude and phase distortions in the filters 
are negligible compared with those in the transmission medium. Con-
sequently, l H(f) I and n(f) can be determined from amplitude and 
phase characteristics of the transmission medium (which is a voice 
channel in this case). From Ref. 10 and Fig. 4 of Ref. 8, a typical 
I H(f) I is found to be 

I H(j) I = [sin 22-Tof]le.3T ' -',  o .-. f _-. fe .  (82) 

The component sin 2r/10f in equation (82) represents the desired am-
plitude characteristic of the class iv partial-response signal, while the 
term 100.32' CI,-21) represents typical amplitude distortion in a voice 
channel. The delay characteristic of five links of K carrier shown in 
Fig. 24 of Ref. 11 is representative of the delay characteristic of a voice 
channel. Therefore, it will be used here and 

n(f) = 9.89 sin [27r(f ± fo) •0.00019 — 2.203],  0 _5_ f 5 fo.  (83) 

Constant phases and time delays in the transmission medium and the 
filters are omitted in writing n(f) because their values are not available 
and because they only change the phase and time origins in the com-
putations. However, such an omission makes it impossible to determine 
the phase pe, of the received carrier pilot because the carrier pilot does 
not travel the same path as the signal. The signal is transmitted through 
the transmitting and receiving filters, while the carrier pilot is trans-
mitted outside of these filters (these filters theoretically should have 
infinite attenuations at the carrier frequency). Furthermore, the carrier 
pilot is recovered at the receiver through a separate narrowband filter 
or a phase-lock loop, while the signal is demodulated and passes through 
a low-pass filter. With these differences and without detailed phase 
characteristics of the filters, it is not possible to determine p. here. 
Therefore, we shall simply leave p, and Ap as variables and compute 
the variation of 8,„, with Ap. (It should be noted that Ail may assume 
small values in some real systems.) 
The variation of gin,/ with Ap has been determined for various values 

of t0. The curve obtained at to = —2T. is typical and is presented 
in Fig. 4. The value of gr.in is also indicated in the figure. It can be 
seen that 81.d can be as large as 0.034, while 8,1. is only 0.0014. Thus, 
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the mean-square error can increase 0.034/0.0014 = 24.3 times if the 
demodulating carrier phase p is not set properly. Note that this large 
increase is obtained for a five-tap transversal equalizer. A similar 
result has been obtained for a nine-tap transversal equalizer. These 
results demonstrate that the mean-square error depends critically on 
the carrier phase setting when the number of equalizer taps is not large. 
(It should be noted, however, that when a large number of taps are 
used, the mean-square error will not be sensitive to the carrier phase 
setting.) 

8.2 Mean-Square Errors Obtained by Method of Steepest Descent 

A computer program has been written to simulate the system de-
scribed in Section 8.1. The receiver parameters are adjusted by the 
method of steepest descent described in Section IV. Five hundred test 
pulses are used in each training period. The initial setting of the center 
tap eo is unity, while the initial settings of the other taps are zero. The 
parameter to is fixed at —2T0 as mentioned in Section 8.1. The mean-
square errors obtained with various initial settings of p are shown in 
Fig. 5. 
The points marked by " X " in Fig. 5 are obtained by adjusting p 

and E jointly using ak = 0.523 and e„ = 0.1 for all k. For instance, 
point A is obtained by initially setting p to 40 degrees above the optimum 
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Fig. 5—Mean-square errors obtained by method of steepest descent. 
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p and then adjusting p and E jointly by the method of steepest descent. 
It can be seen from these points that the mean-square error 8 always 
converges to the value of 8,,,,„ determined in Section 8.1. This demon-
strates the fact that 8.,., can be obtained by jointly setting p and E. 
The other points marked by circles are obtained by fixing p and ad-

justing E only (exk = 0 and tik = 0.1 for all k). For instance, point B 
is obtained by initially setting p to 40 degrees above the optimum p and 
then adjusting E only by the method of steepest descent. It can be seen, 
by comparing these circled points with the value of gi nd in Fig. 4, that 
the mean-square error 8 converges, as expected, to  
Only 500 test pulses are used in each training period because 

converges within this period in all cases. For instance, the convergence 
of 8 to the values shown by points A and B in Fig. 5 are illustrated, 
respectively, by curves A and B in Fig. 6. It can be seen that 8 converges 
rapidly to the final values. 

IX. SUMMARY AND CONCLUSIONS 

It is shown in this paper that in single-sideband systems the trans-
versal equalizer and the carrier phase can be set jointly by the method 
of steepest descent to minimize the mean-square equalization error. 
The system is analyzed and a receiver structure is developed. The 

receiver structure is theoretically as simple as a conventional one. 
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300 



EQUALIZATION AND CARRIER ACQUISITION  1003 

A well-known problem of the method of steepest descent is that the 
function to be minimized may converge to a local minimum instead 
of to a global minimum. To prove that this troublesome problem does 
not arise here, the variation of the mean-square error in the parameter 
space is analyzed. Exact locations of the stationary points in the param-
eter space are determined and the classifications of the stationary points 
are obtained. It is shown that the mean-square error has only global 
minima and saddlepoints, but not local minimum or maximum. Thus, 
it is not possible for the adjustments to converge to a local minimum, 
regardless of the initial parameter settings. This completely eliminates 
the problem. 
It is also shown that two adjacent global minima (or two adjacent 

saddlepoints) are separated by 180 degrees in demodulating carrier 
phase, while a global minimum is separated from its adjacent saddle-
points by 90 degrees in demodulating carrier phase. From this, a test 
is described to determine whether a global minimum or a saddlepoint is 
reached by the adjustments and to correct the settings if a saddlepoint 
is reached. This test may not be necessary because both previous ex-
perience and theoretical considerations have shown that the method of 
steepest descent inherently stays away from saddlepoints. 
The choice of the step sizes of the adjustments is also considered. 

There are methods for determining the step sizes; however, they require 
complicated computations. As an alternative, it is shown in this paper 
that the step sizes can be easily determined if the equalizer and the 
demodulating carrier phase are adjusted in different steps (the steps 
can be alternated in any manner). 
Closed-form expressions of the joint optimum parameter settings 

and of the corresponding minimum mean-square error are obtained for 
computation of system performance. For illustration purposes, a single-
sideband data communication system using a five- or nine-tap trans-
versal equalizer is simulated on a computer. Both theoretical and simu-
lation results show that the equalization error can increase by ten times 
or more when the carrier phase is not properly set. These demonstrate 
that when the number of equalizer taps is not large, the equalization 
error depends critically on the carrier phase setting. The computer 
simulation also verifies the theory that the equalization error can be 
minimized by using the joint method described in this paper. 

X. ACKNO WLEDGMENTS 

I wish to thank Miss A. C. Weingartner for writing a computer pro-
gram to simulate the data communication system described in Section 



1094  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1970 

VIII, and Miss C. A. Reichenstein for the computer program used in 
Section 8.1. 

APPENDIX A 

Classification of Stationary Points 

In this appendix, we prove the statements that: 

(i) F is positive definite when p and E are given, respectively, by 
equations (45) and (46), and mo in these equations is an even integer; 
(ii) F is indefinite when p and E are given, respectively, by equations 
(45) and (46), and mo in these equations is an odd integer; and 
(iii) All the local minima of 80 are equal. 

Consider the first statement. Let 11 be the set of all h except h = O. 
Let St be decomposed into two disjoint sets SI, and Go , where n, contains 
the h's with h1 0 0, and 02 contains the h's with h1 = 0. Consider first 
al . Since hl 0 0 in 12/ , equation (53) can be written as 

F = 2h; f [0-(t) — q(012 dl + 2h; f q(t)s(t) dl — 21t; j q2(t) dl 
-.  -.  -.0 

(84) 

where 

ç(t) = f e(t — nT. — NT 0) 
.---iv 

and 

(85) 

e. =  n = —N to N.  (86) 

For the sake of brevity, we shall denote the entire right side of equa-
tion (45) by po and the entire right side of equation (46) by E0. For 
any function G, the symbol [G]„, denotes the value of G evaluated at 
P = Po, the symbol [G],.. E. denotes the value of G evaluated at p = p, 
and E = E0, and the symbol Min G denotes the minimum value of 
G in fli . These symbols and notations may be used jointly. For instance, 
Min [G]„,„„„ denotes the minimum value of [G]„„ , E. in Sli . 
Since hl 0 0 in 91 , [F]„.. E. > 0 in S-Ei if and only if [F/2e]po.lie >  0 

in SI , or if and only if Min [F ahi]p..E. > 0. From equation (84), 
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Min [‘T-  = Miii [f  [0-(t) — q(1)]2 
Po 

±  L i  q(t)s(t) dl] 

— [f et) dl]. (87) 

In writing the above equation, we have used the fact that u(t) is inde-
pendent of E, s(t) is independent of h, and q(t) is independent of p, E, 
and h. 
Consider the first term on the right side of equation (87). From equa-

tion (85), o-(t) is a function of 1(t), where - indicates Hilbert transform. 
It can be shown from equations (7) and (19) that 

K(Oip. = EY(Olp.+./z  (88) 
Now we have 

Min [r w(l) — «or dl] 
p. 

00 r  2 

= Min f  E e[(1 — nTo — NT0)]p. — q(0] dl, 
-co 

r N  2 

=  M in f  LE eay(t — nTo — NT01.4,-/2 — q(01 dl, 
,=-N 

= {Min  [  eky(t — nTo — NTo) — q(t)] 2 dl} 
Po+ r/2 • 

Note that equation (88) is used in the second step above. Since the 
term ENN__,, ey(t — nTo — NTo) in the last expression above is similar 
to s(t) in equation (8), the whole term in the { in the last expression 
above is equal to 8,, minimized with respect to E. This proves that 
Min  [o-(t) — q(t)12 dt]„„ is equal to go minimized with respect to E 
and evaluated at p =Po ± T/2. It can be easily shown from equations 
(21) and (22) that go minimized with respect to E is equal to 
1/41[D_, q — v'y-lv]; hence, 

Min [r [0-(t) — q(1)]2 dl] 
Po 

1  V .'  2  1 , -1 
= 2fo qk  2f. LI' 

, -1 

[2y y v — exp (— i2po)yey-Its — exp (i2p0),/y- vl 

(90) 

(89) 

where equation (33) has been used in the last step. 
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We have evaluated the first term in equation (87). Consider now the 
second term in equation (87). From equations (20), (23), and (26), 

q(t)s(t) dl = 11 v'E.  (91) 

Substituting equations (33), (45), and (46) into equation (91) and sim-
plifying, we obtain, after some steps, 

1  q(1)s(1)  =  , To ti y v  exp (—j2pa)tif 

1 
exp (j2p0)v'f" Iv. 

The last term in equation (87) is 

(92) 

q2(1) dl = - 1 E- q . (93) 

Substituting equations (90), (92), and (93) into (87) and canceling out 
the terms having opposite signs, we obtain 

Mi [ F 
n —110 exp + T10 exp (i2P0 )v'fiv.  (94)  

Note that so far mo can be any integer. Let I v./y-1v I denote the magni-
tude of ti' rig. It can be shown from equation (44) that when ma is 
an even integer, the right side of equation (94) is equal to 2/fol  tey-iti 
Hence, when mo is an even integer (including zero), 

In I. 2M1,0,E. T L  a e 
m. r F  2  -1 

Since I tey-Ita I 0 0, equation (95) shows that Min IF /  „.. > O. 
Thus, [F],., E. >  in 9, when ma is an even integer. 
Now consider n2 . Since h, = 0 in S22 , equation (53) is reduced to 

F = 2 f [  h,„+N -y(t — nTo — N U] dt. 
2 

(96) 

Since 7(1 — nTo — NTo),n = —N to AT, are linearly independent and 
h2 to h2N+2 cannot be all zero in I2,S the integrand in equation (96) 
cannot be zero for all t. Hence, F > 0 in 112 . This implies, of course, 
„ E. >  in (22. 
We have shown that when mo is an even integer, [F],,„ E > 0 in 21 

and S12 . Hence, when ma is an even integer, [F],...„ > 0 for all h except 
h = O. This proves the first statement at the beginning of this Appendix. 

(95) 
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Now we prove the second statement at the beginning of this Appendix. 
Note that the derivations from equations (84) through (94) hold for 
all integer m0. It can be shown from equation (44) that when mo is 
an odd integer, the right side of equation (94) is equal to — 2/fol Write I. 
Hence, when mo is an odd integer, equation (94) becomes 

IF1  2 
• Ligi„..E. —  to  ' 

Since I p'y-lte I 0, Min [F / 24,„. E. < 0. Thus, [F. J„, E. can be negative 
in at (and hence in Q). It can also be positive in S./ (for instance, [F],,0 , E. 
> 0 in Q2). Therefore, F is indefinite when p and E are given, respectively, 
by equations (45) and (46), and m0 in these equations is an odd integer. 
This proves the second statement. 
Finally, consider the third statement. We have shown that F is posi-

tive definite and 80 has a local minimum when p and E are given, re-
spectively, by equations (45) and (46), and mo in these equations is 
an even integer. Substituting equations (45) and (46) into equation 
(22) and letting mo be an even integer, we see that the local minimum 
of 80 is 

1  .3 2  

- 94  E - e'Y-1 ti —JO te'37 v. 

(97) 

(98) 

Since the right side of equation (98) is independent of m0, all the local 
minima of 80 are equal and hence are all global minima. This proves 
the third statement at the beginning of this Appendix. 

APPENDIX B 

Discussion of Existing Method 

A number of methods are described in Ref. 5 for determining the 
proportional constant in steepest descent adjustments. It has been 
pointed out that these methods can be used to solve certain nonlinear 
equations on computer.' 2 

These methods require elaborate computations. For example, con-
sider the possibility of determining ak and eik using the theorem on page 
31 of Ref. 5. Since it is assumed in that theorem that a single propor-
tional constant is used for all parameters, we change the scale of p 
or E such that it is also appropriate to use a single proportional constant 
in our case. After this is accomplished, we can use a single constant ak in 
equations (56) and (57). To determine a,0, define 
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g(i)k  Ek  ak) — 
à 81,   

2  N  (99 ) 

ak{[ “Pk  E  8(Pk  
313   3e„  1 2) 

Choose a constant S in the range 0 <  < . Compute g(pk ,  , 1). 

If g(pk,Ek , 1)  <  (5, choose ak < 1 so that S  g(pk ,E, , a,) < 1 — 
(it has been shown that this choice is always possible). If g(pk , Ek , 1) 
6, choose ak =  1. 

It can be seen from this description that the method requires elaborate 
computations and ak must be determined on a trial and error basis when 
g(Ph , Ek , 1) < S. It is therefore difficult to use this method in a receiver. 

APPENDIX C 

Proof of Proposition 2 

In this Appendix, we prove Proposition 2. Consider first k E X1 • 

Since ak = 0 when k 3C1 , we have p,  = pi, and 

A gk =  g(pk  Ek)  8 (fek  Ek+11) 

co 
E 4224 = EârEk — 2Elv 

—  — 2EL.1v  (100) 

From equations (57) and (38) 

= Ek  ek(2yEk — 2v).  (101) 

Substituting equation (101) into equation (100), we rearrange the 
resulting equation into the form 

= 40k(yEk — v)1I — akYRYEk — v)  (102) 

where I is the identity matrix. Let the eigenvalues of y be denoted, in 
the order of decreasing magnitude, by X, , i = 1 to 2N + 1, so that 

X1  X2N+1 • 

It can be shown that y is positive definite; hence, 

X, > 0, i = 1 to 2N + 1.  (104) 

Let Ili , i 1 to 2N ± 1, be a set of orthonormal eigenvectors of 
y. Let 

Q = [u1t12 • • • 112N+ 11. 

(103) 

(105) 
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That is, the ith column of Q is u; . From well-known matrix properties, 

y = QDQ'  (106) 

where D is a diagonal matrix whose ith diagonal element is X-. Further-
more, 

QQ' = I.  (107) 

Substituting equations (106) and (107) into equation (102), one can 
write 

2N+1 

à gk =  4 fik  E — okm[(yE. —  (108) 

If eh satisfies equation (62), we can write 

1 — akx,  P1 > 0.  (109) 

Then, from equations (103), (108), and (109), we have 
2N +1 

43 Pi  E KyEk — vyuir.  (Ho) 

It can be shown from equations (38), (107), and (105) that 

g(Pk EOT  8(Pk Eh)] = 4 y r(yEk —  (111) 

Comparing equations (110) and (111) gives 

a a sh  g(14 ,Ek)it â g(iik , Ek)]•  (112) 

Now we have the conclusion: 

Conclusion 1. If equation (62) holds, eigk is bounded below by equation 
(112) which shows that agk is positive and approaches zero only when 
the partial derivatives (a/aE)8(pk , Ek) approach zero. 
The above is for k e 3C1 . Next we consider k E X 2. Since Ok =  0 when 

k E 3C2  we have Ek4.1 =  EL. From equations (58) and (22) 

A g.= g(p. ,E.) — (p.+' , 
= —2E1(vk —  

where 

(113) 

vk = exp (— jpk)ti  exp cipk»,  (114) 

v„, = exp  exp  (115) 
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From equation (56) and the two equations above, 

a 
Vk =  Vk+  =  {1 —  cos [ah 8 ( 4 I Ek) ] }[eXP ( — jp01.1.1- exp (jp,)v] 

— 38. Lak  8(p , ER)] [exP (— ipk)t. — exP (iPk)vl • 

(116) 

The vectors p and y are defined in equation (37) and their elements 
are defined in equations (34) and (35). It can be seen from equations 
(34) and (35) that the elements of p and y are complex numbers. Let 
Li be written as 

ta =  t  (117) 

where the elements of t and C are real numbers that can be determined 
from equation (34). Comparing equation (35) with equation (34), we 
see that the elements of y are complex conjugates of those of th. Hence 
y can be written as 

=  —  (118) 

Substituting equations (117) and (118) into equation (116) and then 
substituting the resulting equation into equation (113), we obtain after 
some steps, 

gh =  4{COS [ah —a 8(ph — 1}[E  cos ph ± Ea sin ph] 
Op 

a 
— 4 sin [ah —.9p g(t)h , ER)] [E; cos pk — Ea sin phi-

From equations (36), (117), and (118), 

a 
g(p. Ek) = 22E(exP (— iPk)pJ — exP (iPk)y), 

= 22"E‘(— 2j sin pht + 2j cos phO, 

4[E‘t sin ph — Ea cos ph]. 

(119) 

(120) 

It is clear from equation (56) that, if (a/ap)8(pk , Ek) = 0, then pk+i 
p. and from equation (115), [18k = 0. So we need to evaluate M I, only 
for (0/0p)8(pk , Eh) s O. It can be seen from equation (120) that, when 
(a/aP) 8(Ph , ER) 0 0, Ea and Ea cannot be simultaneously zero. Hence, 
we can define a quantity 
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(121) 

and a quantity 

C = [(Ea)2 (Eg)211 > 0.  (122) 

From equations (121) and (122), equation (120) can be rewritten as 

a 
c(p. , E.) = 4C sin (Pk —  (123) 

Substituting equation (123) into equation (119), using equations (121) 
and (122), and rearranging, we obtain, after a number of steps, 

ASk = 4C{ cos [ph — cj, — 4Cak sin (ph — tb)] — cos (ph — OM  (124) 

or 

=  SC sin [ak — (I) — 2Cak sin (pk — 0)] sin [2Cah sin (Pk — 0)]-  (125) 

It may be assumed that 0 :5p,. —  27r (a factor of 27r or its multiple 
can be dropped). Since (a/ap)g(pk , Ek) 0 0, ph —  cannot be 0, r, or 
27r [see equation (123)]. Hence, we have either 

0 < pk —  <  (126) 

Or 

<  — cf) G 2r.  (127) 

We shall consider equation (126) first. 
As can be seen from equation (56), the constant ak determines the 

size of each adjustment (note that ak > 0 is required so that the ad-
justments will be made in the negative gradient direction). We wish 
to determine the permissible range of ak , that is, to determine a number 
8 such that Aek >  0 for every ak in the range 0 < ak < 6. It can be 
shown from equations (124) and (126) that 8 can only be as large as 
1/2C; hence, the permissible range of ak is 

1 

° < a,. < 
(128) 

From equations (128) and (126), we obtain 

O < 2Cak sin (pk —  < 1.  (129) 

It can be easily shown from equation (129) that 

1 
sin [2Ccek sin (Pk  — çb)] > — 46ak sin (pk  (I)) > 0.  (130) 

7r 
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It can be shown from equations (126) and (128) that [pk — 49 — 2Cak sin 
(pk — 0)] must be in the range 

0< [ph —  — 2Cah sin (ph — 4))  7§r: (131) 

or in the range 

(132) 

When equation (131) holds, 

sin [pk —  — 2Cak sin (Pk — 51))]  .2; [Pk — (1› — 2Cak sin (pk — el • 

(133) 

Combining (133) and (130) and using equations (125) and (123), we 

obtain, after some simplification, 

2a4)  An  a  r\ 2 
Ok  k r —  -\ Pé  Pk ,  • 

ar  p 
(134) 

It can be shown in a similar manner that when equation (132) holds, 

8Ca2k [ a  2 

ek >  • =•  S(Pk  Ek) 1  •  (135) r  u p 

It has been shown from equations (126) and (128) that either equation 
(134) or equation (135) holds. In a similar manner, it can be shown 
from equations (127) and (128) that either equation (134) or equation 

(135) holds. Thus, we have the conclusion: 

Conclusion 2. When equation (128) holds, either equation (134) or 

equation (135) holds. Physically this means that, when equation (128) 
holds, M k is positive and approaches zero only when (a/a p) g (Ph, Eh) 
approaches zero. 
It is not easy to determine whether equation (128) is satisfied in 

practice because the constant C depends on E h , t, and l and is some-
what difficult to compute. Hence, we wish to replace equation (128) 
with inequality (63) in Proposition 2. 
From the definition of vk in equation (114) and from equations (117) 

and (118), we can write 

2Evk = 4[cos phJE  4[sin ph]Ea.  (136) 

From equations (136) and (22), one can show that 
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where 

Lk  g(Pk y Eft) = 4Ea COS ph ± 4Ea sin ph 

O. 

= EàiEft + E e• • 
h —co 

(137) 

Note that the terms Ef,yEk ,  q, ELt, and Ea, in equation (137) 
are independent of p. Furthermore, equation (137) holds for all Ph. 
Letting ph =, 0 in equation (137), we obtain 

Lk  [8 (ple  E k)]Pe•O =  4EJ.  (138) 

where [(PR Ek)ip, -0 is (p,. ,g  Ek) evaluated at pi, = O. Since 8(pk , Ek) 
k 0 for all ph ,we have from equation (138) 

Lk k 4E.  (139) 

It can be shown from equation (22) that 

[8(pk E,.)] _0 < 2L,. .  (140) 

From equations (140) and (138), 

—Lk < 4E.  (141) 

From equations (139) and (141), 

(Eet)2 AL: •  (142) 

We have obtained equation (142) by letting ph -= 0 in equation (137). 
If we let ph = 7r/2 in equation (137), we obtain, in a similar manner, 

(Ea)2 5. iirL:  (143) 

From equations (142), (143), and (122), 

C —k  •  (144) 

Using sampling theory, we can verify that 

=  210[f s2(1) dt]  -I- 210 f et) ell  (145) 
Ea 

where [ff„, .92(0 dt],,, is ff. s2(t) dt evaluated at E = E,.. 

It can be seen from equations (144) and (145) that, if equation (63) 
holds, equation (128) is satisfied. Thus, we have the conclusion: 

Conclusion 3. When equation (63) holds, equation (128) holds and, 
from Conclusion 2, either equation (134) or equation (135) holds. Hence, 
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when equation (63) holds, A8k is positive and approaches zero only when 
(a/ap)g(ph , Eh) approaches zero. 
Now, let us summarize the results presented in this appendix. It has 

been shown that when equation (62) holds in 3C1, M k is bounded below 
by equation (112) (see Conclusion 1). It has also been shown that when 
equation (63) holds in 3C2, M k is bounded below by either equation 
(134) or equation (135) (see Conclusion 3). It is seen from the lower 
bounds in equations (112), (134), and (135) that tigh is positive and 
approaches zero only when the partial derivatives approach zero. Since 
XI and 3C2 each contain an infinite number of k's and since the mean-
square error g cannot reduce without bound, g must converge to a 
stationary point. This proves Proposition 2 in Section VI. 
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A General Approach to Twin-T Design and 
Its Application to Hybrid Integrated 

Linear Active Networks 

By G. S. MOSCHYTZ 

(Manuscript received January 2, 1970) 

In this paper we approach twin-T design with a view to controlling the 
sensitivity of the transmission zero with respect to component variations, 
according to criteria that are of particular interest in the design of hybrid 
integrated linear active networks. We give design examples and derive 
conditions that relate null depth and component characteristics with ex-
pected zero displacement in the s-plane. 

I. INTRODUCTION 

In 1934, H. W. Augustadt invented the twin-T network while carrying 
out investigations for an economical rectifier filter for phonograph 
amplifiers.' The two main fields of application of the twin-T network 
were introduced in 1938 by H. H. Scott who discussed its uses as a 
feedback network to obtain highly selective amplifiers and stable 
oscillators.2 In the following years the circuit was thoroughly analyzed 
in the unloaded state ' and, later, in the loaded state when driven from 
a nonideal voltage source. " Consideration was also given to the net-
work's selectivity properties and to the effects of loading and network 
asymmetry. ' In the early 1960s, a somewhat new application was 
introduced for the twin-T when synthesis methods based on root locus 
techniques were developed to employ the twin-T as a compensation 
network in de servo systems." ' These investigations were limited to 
the symmetrical twin-T with fixed source and load resistances. They 
were later expanded to include wide ranges of source and load imped-
ances'« and to provide prescribed pole-zero locations' using parameter 
plane techniques. 
Recently, with the advent of linear integrated circuits, interest 

in the twin-T network has been revived yet again, this time by network 
theoreticians attempting to generate, by RC network synthesis tech-

1105 
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niques, a still wider range of pole-zero configurations than had hitherto 
been possible. ' At the same time, numerous methods of active RC 
filter synthesis were developed that rely on the basic frequency char-
acteristics of a twin-T network or modifications thereof, to provide the 
required filtering properties.22 '° These methods depend, for their fre-
quency stability on the stability of the twin-T network. To ensure a 
very high degree of stability the twin-T has been realized by tantalum 
thin film components and then combined with silicon integrated active 
circuits to produce hybrid integrated filter networks.' In applications 
of this kind null frequency and null depth tuning procedures become 
very critical, particularly because thin film resistors can only be ad-
justed in the increasing direction; furthermore the null characteristics 
(gain and phase) become more important than in more conventional 
applications, and adjustments of these characteristics should not only 
be possible but also simple. It is with respect to these problems that the 
twin-T network is reexamined once again here. 
The requirement that the six components of a twin-T network provide 

a perfect null, that is, a pair of imaginary zeros, at a particular fre-
quency imposes only two design constraints on the network. A third 
results from the impedance scaling factor chosen for the network. Thus, 
three parameters remain to be chosen by whatever criteria seem most 
important for a given application. Most often circuit simplicity domi-
nates this choice, resulting in the symmetrical twin-T. In other instances, 
practical considerations requiring that either all the resistors or all the 
capacitors be equal will determine the choice. In those cases where the 
network is synthesized to provide other than standard pole-zero loca-
tions, no choice exists at all, since all the network parameters are 
generally accounted for. 
In this paper, we select the three unconstrained design parameters 

in such a way as to control the null characteristics of the twin-T ac-
cording to criteria of particular importance in the design of linear active 
networks. In such networks the twin-T is generally part of a positive 
or negative feedback configuration whose closed loop poles are closely 
tied to the open loop zeros on the jw-axis. The latter are generated by 
the transmission null of the twin-T network. The higher the Q of the 
network, the closer the tie between the closed loop poles and the open 
loop zeros and, consequently, the more critical the sensitivity and sta-
bility of the twin-T transmission null. To obtain a measure for both, 
the zero sensitivity functions for the commonly used and for the general 
twin-T configurations are derived first. By selecting the three design 
parameters remaining in the sensitivity functions of the general twin-T 
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appropriately, it is found that a relatively wide range of sensitivity 
criteria can be met. Some of these are useful in contributing to the 
overall stability of an active feedback network incorporating a twin-T. 
Others are of interest in considerations pertaining to useful frequency 
and null depth tuning strategies in the vicinity of a perfect twin-T null. 
To guarantee stability, conditions are also derived here that prevent 

the twin-T transmission zeros from drifting to the right half s-plane. 
This implies a maximum permissible null depth of the twin-T that can 
be expressed in terms of the twin-T design parameters and the tempera-
ture and aging characteristics of its components. 

II. CIRCUIT ANALYSIS OF THE GENERAL TWIN-T 

The voltage transfer function of the general twin-T shown in Fig. 1 
is given by the ratio of two third-order polynomials, namely 

.E2 N(s) 1 + ais -F a282 a3s3  
— = T( s) =  —  (1) 
Ei D(s)  1 -I- bis b2s2 bas3 

where 

al = R3(C1 + C3),  (2a) 

a2 = Ra(Ri R2)C1C2  (2b) 

a3 R1R2R3C1C2C3 ,  (2c) 

b1 = Ra(C,  R2C2 -F R1(C2  C3),  (2d) 

b2 = Ra[RICa(Ci + C2) -F (R1 + E2)C1C2] -F R1li2C2C3 ,  (2e) 

(2f) b, — R1R2R3C1C2C3 = aa , 

and 

s = if -F jce. 

The null, or transmission zero, of the twin-T is defined by the roots 

R1 

1E2 

Fig. 1—General twin-T network. 
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of N(8) on the imaginary axis. Thus for 

N(8)  = 

the null frequency or conjugate complex transmission zeros 
±jco, are obtained. 
Using the substitutions 

CI C2   
C. —  c2  

=  + C2 ,  (4b) 

R, = Ri R3 ,  (4c) 

R,R,  (4d) 

the following two conditions for the twin-T null frequency result from 
equation (3) 

2  1 

R,R,C,C3 (5) 

and 

-I Fa  17;  (6) 

These can be combined as follows 

t   1 1   
co — • R1R2C„C2 R,R3C1C2 (7) 

Thus, for a perfect null the transmission zero of each of the two bridged-
Ts obtained by disconnecting R3 and C3, respectively, of the twin-T 
(see Fig. 2) must be equal. This fact has been used to develop a 2-step 
tuning method for the twin-T." Substituting equations (5) and (6) 
into equation (1) gives the transfer polynomials of the nulled twin-T 

and 

re3 C  1  ) 2  2 

N (8) =  ( 8 —  +  w )CON    (8) 

1  
D(8) — R3 2Ce  + R ) [82 + 4 Ric. +  R p  corl •  (9) co/v.  1-3 

The open-circuit impedance matrix of the perfectly nulled twin-T 
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Fig. 2—Bridged-T networks derived from general twin-T shown in Fig. 1, whose 
natural frequencies coincide with twin-T null frequency. (a) Ra disconnected; 
(b) Ca disconnected. 

is given in Appendix A. The voltage transfer function follows from equa-
tions (8) and (9), namely 

S2  cot 
T N(S) — 

2  CON  2 
8  -  -I- CON 

qN 

where cep, is given by equation (7), 

CON   1   
qie 2aN coN(R1C3  R.C2) 

and 

(10) 

= R  1c.  + =  1 2aN co2,vRiCa R3 1-c (12) 

Inspection of equations (8) and (9) shows that the two third-order 
polynomials of the transfer function of a general twin-T are simplified 
by one degree due to pole-zero cancellation when the conditions for a 
perfect null are satisfied. It is shown in Appendix B that even when the 
twin-T null is not perfect (that is, the transmission zeros are not on but 
only close to the jw-axis), this pole-zero cancellation still takes place, 
provided that R,CI = R2C2 - 
The most frequently used twin-T is structurally (and electrically) 

symmetrical (see Appendix A). For this case (see Fig. 3a) R, = R2 = 
R, R3 = R/2, C, = C2 C, C3 = 2C, and the coefficients of equation 
(10) are coN = 1/RC, 2crm = 4/RC and  = 1. Another commonly used 
version of the twin-T is the potentially symmetrical configuration (see 
Appendix A). This is obtained by impedance scaling one-half of the sym-
metrical twin-T by some factor p. The resulting twin-T elements are 
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(a) 

(cl 

( 

(d) 

Fig. 3—Frequently used twin-T configurations. (a) Symmetrical; (b) Potentially 
symmetrical; (c) Equal resistors; (d) Equal capacitors. 

(see Fig. 3b) R1 = R, R2 -= pR, R2 = pR1(1  p), C1 = C, C2 = C/p, 
and C3 = (1 + p)C/p. The coefficients of the transfer function [equation 
(10)1 for this case are coN = 1/RC, 2crN = (2/RC)(1  p)/ p and qN --
-}p/(1  p) . Notice that for the extreme asymmetrical case for which 
p» 1, qN takes on its maximum value of 0.5. 
Sometimes it is useful to make all the resistors of the twin-T equal. 

This enables one to gang three variable resistors in order to vary the 
null frequency. The twin-T elements are then (see Fig. 3c) R1 = R2 = 
R3 = R, C1 = C, C2 = C/2, C3 = 3C, and the coefficients of the transfer 
function are the same as those of the symmetrical twin-T. Similarly, if 
the three capacitors are to be made equal for ganging or other purposes, 
the twin-T elements are (see Fig. 3d) R1 = R, R2 = 2R, R3 = R/3. 
Here again the coefficients of the transfer function are the same as those 
of the symmetrical twin-T. 

III. SENSITIVITY  OF  TWIN-T  NULL  CHARACTERISTICS  TO  COMPONENT 

VARIATIONS 

The null or zero sensitivity of the twin-T to variations of any com-
ponent x gives a measure for the degree of change of the transmission 

characteristics in the vicinity of the twin-T null frequency as a result 
of variations of a component x. Referring to the complex frequency 
plane, the zero (or pole) sensitivity gives a measure for the zero (or pole) 
displacement due to an incremental change in the value of the component 
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x. It is defined by's 

dz 
=  (13) 
dx/x 

where z is the complex null frequency of the network. 
The zero displacement dz in the s-plane has a real and an imaginary 

component. It defines a vector or the direction in which a zero (or pole) 
travels from its initial location with incremental changes of a com-
ponent x. Since x and therefore dx/x must be real, the zero (pole) 
sensitivity defines a vector in the same direction as the zero (pole) 
displacement dz. Herein lies the importance of knowing the root (that is, 
pole or zero) sensitivity of a network since it provides insight into the 
stability of a system with respect to the component x that is expected 
to vary the most. It also provides information relevant to network 
tuning since it relates adjustments of any component x to its effect on 
the roots of the transfer function. Conversely, as we shall see later, a 
network can be designed to provide a prescribed sensitivity between 
some parameter of the transfer function such as the displacement of a 
specific transmission zero and the variation of some preselected com-
ponent x. The choice of sensitivity may be such as to result in a network 
that responds to a simplified tuning strategy or whose characteristics 
may be adjusted in a desirable way by the component x. 
The most important characteristic of the twin-T is its behavior in 

the region of the frequency null. In the s-plane this behavior is char-
acterized by the sensitivity of the transmission zero, which is initially 
located on the imaginary axis for a perfect null. The sensitivities of this 
zero, that is, z = ¡cox , to each of the six components of the general twin-
T have therefore been derived in Appendix C and listed in Table I. 
In doing so it has been found useful to characterize the general twin-T 
by the following parameters 

and 

R,   
X —  + R2 '  (14) 

C2   
—  (15) 
CI 4- C2 

-  - V?,,Cpi • (16) 

X and y give a measure for the degree of symmetry of the series elements 
of the twin-T; a relates the series elements to the shunt elements. 
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A useful check for the validity of the expressions in Table I is that 
they must satisfy the following condition for the root sensitivity of a 
passive RC network if the relative resistor and capacitor changes are 
assumed to track" 

E ni = E  = -z. (17) 

Let us now consider the zero sensitivity of the commonly used twin-T 
configurations shown in Fig. 3. 

3.1 Symmetrical Twin-T 

This case is characterized by the parameters co!, = 1/RC, a = 1, and 
X = = 0.5. The resulting zero sensitivity functions are listed in Table 
II, Part 1 and the corresponding zero displacements in the complex 
frequency plane are shown graphically in Fig. 4a*. This diagram also 
demonstrates the realization of the condition for passive RC networks 
given by equation (17). Therefore, by assuming tracking and equal 
but opposite temperature coefficients of the resistors and capacitors, 
temperature drift of the null frequency can theoretically be eliminated 
completely. If tracking of like component variations does not occur, 
the drift displacement due to the symmetrical elements Ri and R2 and 
of C1 and C3 are identical. The displacements due to the shunt elements 
R3 and C3 have approximately the same value but follow a somewhat 
less steep slope. Thus if the twin-T is being used in a feedback network 
to generate conjugate complex poles in the left half plane close to the 
jcu-axis, the stability of the network will be more sensitive to drift in 
the shunt elements than to drift of those in series. 

3.2 Potentially Symmetrical Twin-T 

This case is characterized by the network parameters coN = 1/RC, 
a = 1, and X = = 1/(1 + p). The resulting zero-sensitivity functions 
are listed in Table II, Part 2. Since they depend on the symmetry coef-
ficient p, some control on the sensitivity can be expected by this coeffi-
cient. Table II, Parts 2a and 2b list the sensitivity functions for the two 
extremes, that is, when p is much larger and much smaller than unity, 
respectively. The corresponding zero displacements are shown in Fig. 
4b. These two complementary cases can be thought of as having evolved 
from the symmetrical ease (Fig. 4a) by spreading out the displacement 

* As pointed out earlicr, the root sensitivity function given by equation (13) 
defines a differential vector in the complex s-plane. It can be shown that this vector 
lies on the branch of the root locus with respect to a component r that starts at z 
or, in other words, that the root displacement Az and the root sensitivity have the 
same argument. 
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vectors corresponding to the series components R,, R2 and C,, C,, 
respectively, and leaving the vectors corresponding to the shunt com-
ponents R3 and Cy,, unchanged. The noteworthy feature of these two 
extreme cases is that they both provide for null frequency adjustment 
(if only over differentially small frequency ranges) by a single com-
ponent, namely by R2 or C2 when p» 1 and by R, or C, when p « 1. 
Of the two cases, the former is preferable since it simultaneously pro-
vides higher selectivity than a symmetrical twin-T (that is, qs ap-
proaches its maximum value). More will be said about zero-sensitivity 
and its effect on network adjustability in Section IV. 

la Twin-T With Equal Resistors 

For this case cieN = 1/RC, a =1, X = I, and y = -I. The corresponding 
zero-sensitivity functions are given in Table II, Part 3, and the zero 
displacements are shown graphically in Fig. 4e. Since the series resistors 
are equal in this case, the corresponding sensitivity functions are also 
equal. However, the sensitivity function of the shunt resistor is smaller 
in value and flatter in slope. Therefore, in order to shift the null fre-
quency accurately, a high precision ganged 3-resistor potentiometer 
must be used whose resistor values track very closely. 

3.4 Twin-T With Equal Capacitors 

Here we have the design parameters coN = 1/RC, a = î, X = -I, and 
I, =  i. The corresponding sensitivity functions are listed in Table II, 
Part 4. Since this case is the dual of the equal-resistor case discussed 
above, the displacement vectors are negative and conjugate to those 
of Fig. 4e. Generally high precision ganged resistors are more readily 
available than capacitors, so that for variable null-frequency tuning 
purposes this case is less practical than the preceding one. 

IV. NOVEL TWIN-T NET WORKS WITH PRESCRIBED TUNING CHARACTERISTICS 

In the preceding section, the null sensitivity of component variations 
was discussed with respect to the most commonly used twin-T configura-
tions. In this section the expressions for the general nulled twin-T, that 
is, those satisfying only the null conditions given by equations (5) and 
(6), are reexamined in relation to the corresponding zero sensitivity 
functions listed in Table I. In particular we investigate how the remain-
ing twin-T parameters that are not constrained by the two null condi-
tions can be utilized to modify the dependence of the null character-
istics to adjustments of certain twin-T components in such a way as to 



1118  THE BELL SYSTE M TEC HNICAL JOURNAL, JTJLY—AUGUST 1970 

DECREASING C3 

R1 = R2 = 2R3 = R 
CI= C2=  C3/2 = C 

S = 

INCREASING R3 

(a) 

DECREASING C3 (C3) 

= R  C1 C 

R2 = pR  C2= C/p 

R3= .14 R  C3= 1 C 

p » I  (p «I) INCREASING 

R3 (R3) 

(b) 

2 

1 

DECREASING CI,C2 

_ JWN )N  
RI  _ 4 

= JWN 

INCREASING RI, R2 

1  I  I 1  1  
1  2  3  4  5 

il 

DECREASING Ca (CI) 

DECREASING C1 (C2) 

JOIN 

L_.  RI  =1 ,0 N 

INCREASING 
RI (R2) 

INCREASING 

R2 (RI) 

I  I  I   
41 5 I  2  3 

ci 

Fig. 4—Zero displacements for frequently used twin-T configurations. (a) Sym-
metrical; (b) Potentially symmetrical; (e) Equal resistors. 
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satisfy various tuning strategies that are particularly useful in practical 
applications. 
The dependence of twin-T transmission characteristics in the vicinity 

of the null frequency on variations of any component x are essentially 
determined by the zero sensitivity functions listed in Table I. Design 
equations for twin-T networks providing a specified dependence of null 
characteristics on the adjustment of a particular component x may, 
therefore, be found by setting corresponding constraints on the zero 
sensitivity functions and solving the resulting equations for the twin-T 
components. Instead of designing a twin-T to a specified dependence of 
transmission characteristics in the vicinity of the null frequency to varia-
tions of a given component x, it therefore suffices for us to design a 
twin-T to a specified zero sensitivity with respect to x. 
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The expressions listed in Table I show that, after the null frequency 
zoN has been specified, there are basically three parameters left to deter-
mine in order to design a twin-T to a prescribed zero sensitivity. These 
are the frequency ratio a, the resistor ratio X, and the capacitor ratio y. 
A parameter that sometimes provides clearer physical insight into the 
design of a twin-T than the frequency ratio a is the ratio of series to 
shunt capacitors 7, namely 

Ca  CI 
7 = c.  r = p c. • 

The two parameters are related by the expression 

a — [X(1 - X) i 
(18) 

(19) 

a has been plotted in Fig. 5 as a function of X with the parameter 7. 
The values of -y for the common twin-T configurations are included in 
Table II. From the defining equations, the limits on the four twin-T 
parameters are 

< a < co ,  (20a) 

< -y < 00,  (20b) 

0 < X < 1,  (20e) 

0 < v < 1.  (20d) 

A fundamental characteristic of the twin-T is its ability to reject a 
narrow frequency band centered at the null frequency IN and to pass, 
substantially unattenuated, the frequencies on either side of this band. 
A useful parameter characterizing the selectivity of frequency rejection 
is the inverse damping factor qm [see equation (11)1 also known as the 
pole Q. Physically q, is the ratio of the center frequency IN divided by 
the bandwidth at which 3 dB attenuation occurs* (see Fig. 6a). 
It is important, while examining the effects of the parameters listed 

in equation (20) on the zero sensitivity of the twin-T to keep an eye on 
their effect on the twin-T selectivity as expressed by qiv . Obviously, 
poor selectivity might be too high a price to pay for any set of controlled 
sensitivity functions. On the other hand, because the twin-T is a passive 
RC network, the selectivity factor qN only has a narrow range of realiza-

* This definition is only accurate for unloaded twin-T networks such as those 
being considered here. For the case of a loaded twin-T with an unsymmetrical 
frequency response, it has been found more useful to define selectivity as the slope 
of the phase 4, at the null frequency, that is, by r(ØN) 
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Fig. 5—Frequency ratio a as a function of X and parameter y. 

bility as it is, that is, 

O < qN < 0.5 (21) 

whereby the value 0.25 is realized the most frequently, namely with 
the symmetrical as well as with the equal resistor or equal capacitor 
twin-T configurations. However even within the limited range given 
by equation (21), the difference in actual frequency selectivity can be 
quite significant. This is illustrated in Fig. 6b where twin-T frequency 
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Fig. 6—Twin-T selectivity. (a) Definition of qN; (b) Frequency response for 
various q,v-values. 

response curves have been plotted as a function of the parameter q., 
Expressing qk by the same parameters as are used for the zero sensi-

tivity functions in Table I we have 

a(1 — v)(1 — X) (1 — v)[yX(1 — X)1 . 

qN  a2(1 — X) + (1 — P)  
(22) 
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With equation (22) we can easily observe the effects on selectivity that 
any sensitivity constraints on the parameters X, p, a or y may have. 
After these preliminary remarks, let us now consider in what ways 

and by which criteria it would be useful in practice to control the zero 
sensitivity functions given in Table I. Due to the RC self-duality of the 
twin-T,34 we need only consider either the resistor or the capacitor 
functions. Since both discrete and (thin film) integrated RC networks are 
generally tuned by variable or anodizable resistors, the zero sensitivity 
functions with respect to these will be examined. 

4.1 Frequency Tuning by One Component 

By making the real part of any one of the three sensitivity functions 
go to zero, it is possible to shift the null frequency accurately over a 
limited frequency range by varying only the one corresponding resistor 
rather than two as would be necessary in general. 

4.1.1 Frequency Tuning with R, 

Here we require that 

Re  —› 0.  (23) 

By inspection of Table I this condition is fulfilled if X —÷ 1, or R, >> R2. 
Then 

eiioN   et "'   (1 — 

a2) al r 

(24a) 

(24b) 

S fir —  ewe'  2(1 + a2 (1 + ja). (24e) '  ) 

Equation (24c) remains the same as for the general case, which is in-
dependent of X. However, from equation (22) we find that 

qN 1,1/4-1 —> 0.  (25) 

Therefore, condition (23) can only be realized at the expense of selec-
tivity. Incidentally, the potentially symmetrical twin-T for which 
p «  1 (see Table II, Part 2b) is a special case of the one treated here, 
namely, that for which a = 1. 

4.1.2 Frequency Tuning with R2 

We require that 

Re Sf„̀",' —› 0.  (26) 
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This condition can be approached if X  0, or R, >> R, . We then 

obtain: 

  (1 
2(1 -I- a 2) 

_iWAr 
2 ' 

' 
(27a) 

(27b) 

awN  
— 2(1 + a2) (1 ± ja). (27c) 

Aside from interchanging the sensitivities with respect to R, and R,, 
these expressions are the same as the preceding ones (equations 24a, b, 
and c). However, there is one important difference, namely in the selec-
tivity which may now actually be larger than the "symmetrical" value 
of 0.25. From equation (22) we have 

a(1 — y)  
— 2  •   a ± 1 —  (28) v 

Depending on the choice of a and y, qh, can be made to approach its 
maximum value of 0.5. Here again the potentially symmetrical con-
figuration for which p» lis a special case, namely, that for which a = 1 
and y approaches zero in the same manner as X does. This is one of a 
variety of possible cases for which equation (28) approaches 0.5. Other 
combinations of a and i are best obtained by plotting equation (28) on 
semilog paper as shown in Fig. 7. By setting the derivative of equation 
(28) with respect to a equal to zero one obtains 

arn.. = (1 — y) (29) 

and 

(1 —   
—  2 (30) 

Expression (30) is also shown in Fig. 7 by the dashed curve. Clearly 
there is a wide practical range of twin-T networks, with good-to-excel-
lent selectivity, that will satisfy condition (26) and thus provide simple 
frequency tuning over a restricted frequency range. 
One of the disadvantages of the twin-T configurations described here 

is that R2 , the frequency tuning resistor, is "floating," that is, it does 

not have one of its terminals connected to ground. Thus if it should be 
desired to switch various values of R2 in order to filter or to generate 
different discrete frequencies, hard-contact switches would generally be 
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Fig. 7—Selectivity factor gN as function of a and parameter y, for special case 
that X —› O. 

necessary since rapid semiconductor switching circuits are difficult to 
design in the floating mode, especially if transformers are to be avoided. 
For this reason the next case is of particular interest. 

4.1.3 Frequency Tuning with R3 

The required condition here is that 

Re el.' —> 0.  (31) 

Inspection of Table I shows that this condition cannot be realized 
under any circumstances. However, the following equivalent condition 
can be realized 

Re Se « /-Se  (32) 

if a >> 1. Referring to Fig. 5, it is clear that this condition can be ob-
tained in two ways, namely either by letting X approach zero or unity 
with a medium value for 7 or simply by letting 7 become very large. 
However, by inspection of equation (22), both methods result in low 
or values. Thus, although the tuning resistor has one terminal grounded 
which does have certain advantages in terms of circuit implementation, 
these may be offset by the low selectivity obtainable. 
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4.2 Null-Depth Tuning by One Component 

In some applications it may be desirable to make adjustments in the 
null depth of a twin-T after it has been initially tuned for a perfect 
null. This can be achieved with a single component (for example, 
resistor) if the imaginary part of the sensitivity function with respect to 
that component can be made equal to zero. By considering the general 
sensitivity functions given in Table I and again restricting ourselves to 
variable resistors for practical reasons (and because of RC-duality of 
the twin-T), we obtain the following three cases: 

4.2.1 Null-Depth Tuning with Ri 

Here we require that 

1„.8i„̀7 —› 0.  (33) 

The minimum of the imaginary part of 31,̀:» 
in which case the sensitivity functions become 

aw   (  1  21 
—  2 1 —  — j 
2(1 +  )  a  a 

«Wm   

2'  2(1 ± a2) \2 

— —  acoN \ 
2(1 + a2) -r jai  a>> 1 

occurs when X = 1/a2 

N 

IX »  2a 
(34a) 

(34b) 

(34c) 

As shown in the above expressions, condition (33) is realized by (34a) 
if a» 1. Furthermore, the other two sensitivity functions turn out to 
be orthogonal to equation (34a) enabling independent null-frequency 
and null-depth control by two individual resistors (for example, R, and 
R2 or R, and Ra). 
It will be remembered that any sensitivity functions requiring large 

values of a were dismissed as impractical in the cases presented in 
Sections 4.1.1 to 4.1.3 due to the resulting decrease in selectivity. This 
was quite realistic since at least the case in Section 4.1.2 could be realized 
accurately while maintaining a free choice in the selectivity constant Di . 
We will see in this section that no such freedom exists in any of the cases 
discussed and that any configuration allowing null-depth tuning by one 
component invariably results in selectivity deterioration. Practical 
implementation will therefore require a compromise between the realiza-
tion of any one of the sensitivity functions and selectivity. However, 
as will be seen, not all the cases discussed here are equally disadvanta-
geous with respect to this compromise. 
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(IN —  a (a2 _  (35) 

To obtain as large a value as possible for q1, , we let p  0 in which case 
1/a. Thus the more accurately we wish to realize expression (34a), 

the smaller the selectivity will be. 

Substituting X = 1/2 into equation (22), we obtain 

(a 2 —  1) (1 —   

4.2.2 Null-Depth Tuning with R9 

The requirement here means that 

0. 

This would be accurately realizable if we could let 

1 
X = 1 + --2-• 

a 

(36) 

(37) 

Due to the restriction given by inequality (20c), this is not possible. 
Instead, equation (37) can be approached approximately by letting: 

X —+ 1  (38a) 

and 

a» 1.  (38h) 

By inspection of equation (19) and Fig. 5, inequality (38b) follows 
directly from condition (38a). More specifically, the imaginary part of 
siz has a minimum when 

1 
X= 1 — 

a 
(39) 

which is of course realizable. With equation (39), the sensitivity func-
tions are then 

CYCON  (1  .a ) 

2(1 + a2) a2 

—  awe ' 2 (1 —  172> 2(1 + a )  a  a 

mop/  
Sie  = 2(1 + ce2) (1 + ja)  

. Ct) 
r •SO 

2 ' 

CON 
»  2a ' 

. CON 

a» 1  j 2 

(40a) 

(40b) 

(40c) 

Thus equation (40b) provides the desired sensitivity function and also, 
as in the preceding case, the other two functions are orthogonal to it 
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allowing for independent frequency and null depth tuning with two 
individual resistors. 
Substituting equation (39) into equation (22), the selectivity function 

becomes 

1 
qN — a(2 — y) 

which is largest with respect to y when y —) 0. Then qN 1/2a which, 
as in the previous case, is all the smaller the more accurately the desired 
sensitivity function (40b) is to be realized. However, the preceding case 
(namely, that in Section 4.2.1) is preferable if it is simply a question 
of finding a component with which to adjust null depth, since for a 
given value of a the selectivity coefficient is twice as large as here. 

4.2.3 Null-Depth Tuning with R3 

Here we require that 

(41) 

L e'  0.  (42) 

From Table lit is evident that to satisfy this condition a —› 0. From 
Fig. 5 we see that a has a minimum when X = 0.5. Furthermore, since 
a is proportional to 7, we can select 7 « 1 in order for a to approach 
zero. From equation (22) we obtain the selectivity coefficient 

a(1 —   
qN  — 2 + 2(1 — y) 

which is maximum with respect to y when y -› 0. Therefore from equation 
(43) we obtain qh, ̂:e, a/2. The condition for a, in this case, is the inverse 
of that for the two preceding cases. Taking this into consideration while 
comparing the corresponding selectivity coefficients shows the case in 
Section 4.2.1 to have the highest selectivity. It, like that in 4.2.2, has 
the added advantage of orthogonal sensitivity functions providing for 
both the desired null-depth tuning as well as frequency tuning by single 
components in the vicinity of the null frequency. On the other hand, if 
a variable component with one terminal grounded is preferred for the 
reasons given in Section 4.1.2, then the case in Section 4.2.3 may be 
used, provided the selectivity, which is smaller by a factor of two, is 
still acceptable. 

4.3 Orthogonal Tuning With Two Components 

Orthogonality between two zero sensitivity functions simplifies null 
adjustments in the vicinity of a perfect null, particularly if the two 

(43) 
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functions are parallel with the real and imaginary axes. Some of the 
configurations described in the previous sections provided the latter 
type of orthogonality, but only at the cost of selectivity. General orthog-
onality, which is discussed here, may be of interest for a variety of 
reasons, for example, the 90 degree phase reference required for tuning 
purposes may be easier to generate than any other arbitrary phase 
reference. 
Two vectors q = u ± je and p = w  jz are orthogonal if 

uw  vz = O.  (44) 

Thus, to obtain orthogonality between pairs of the functions listed in 
Table I, we must investigate if they can be made to satisfy this condition. 

4.3.1 Orthogonal Tuning Between Ri and R9 

This requires that 

X(1 — X) + (1. ceX) [1 ± a(1 — X)] = 0.  (45) a  a 

Solving for the roots of this equation one obtains a1,2 = ±j which is 
not physically realizable. 

4.3.2 Orthogonal Tuning Between R, and R3 

To satisfy the condition for orthogonality here, we require that 

—(1 — X) + a(1 aX) = 0.  (46) 
a 

Solving equation (46) for a results in the same nonrealizalle roots as 
were obtained in Section 4.3.1. However, one additional solution exists 
here, namely X = 0. This condition can only be approximated [see 
inequality (20c)] and has been dealt with in Sections 4.1.2 and 4.2.1 
where, as expected,  is orthogonal to  N. 

4.3.3 Orthogonal Tuning Between R2 and R 3 

It is required that 

—a + a[-1 a(1 — X)] = 0  (47) 
a 

which is satisfied when X = 1. As in the preceding case, this condition 
can only be approximated; it has been dealt with in Sections 4.1.1 and 
4.2.2. 
It is evident from the above that, apart from the cases of orthogonality 

already discussed in earlier sections, the condition for general orthog-
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onality given by equation (44) does not produce any new realizable 
twin-T configurations. 

4.4 Design Examples of Twin-T Networks With Controlled Tuning Char-
acteristics 

The design equations for twin-T networks with the tuning character-
istics described in Sections 4.1 and 4.2 have been compiled in Table III. 
Results from Section 4.3 have not been included since they did not 

TABLE III—TWIN-T DESIGN EQUATIONS FOR CONTROLLED 
ZERO SENSITIVITY 

Design Equations for 
Controlled Sensitivity 
and Sensitivity Functions 

Design Equations for 
Maximum Selectivity Remarks 

1A) 

X —› 1 
a(1 — X) 

q..i « 0.5 

Orthogonality between 

5  and ',,,','   e." 

ev1 ...0 ge  2 (1 — ),) A - I 

ei' , — i 

81;..  2(1 72) ( 1 aj)  

(1  

ev ""'  g14  2 l 

where: 

1 
ge =  2(1'V4 A-4'e 

ai)  e —  1/1 — X 

IB) 

Re CC —› 0:  X —) 0 
e(1 — p) 

O < gh, <0.5 

Orthogonality between 

Stir  and Se 

IN ,;.,_, 

(1 — v)i 
(1  j gie  2(1&e+Na3) 

— 21£ 

qx..... •-•-•  2 

where: 

Sfe'w —  2(17-72) (1 + ja)  

IC) 

Re Se —› 0:  a » 1 
1 — p 

q% «  0.5 

Variable resistor (I4) 
has one common 
(that is, grounded) 

ter minal 

v  ,..,., 
a 

q,.--,•-• i - ... « 

for  V --> 0 

cm" [I =  X j(!+ aX)] 
2(1 + A 

[/  — x)}] — 2(172)  i{1 + 4  

ei r " e —  i, 
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Design Equations for 
Controlled Sensitivity 
and Sensitivity Functions 

Design Equations for 
Maximum Selectivity Remarks 

2A) 

a » 1 

a 

......, W — 1)(1 — y) 
95 « 0.5 

Orthogonality between 

8 ik'. 8 and Sii, =  

a(a2 —v) 

1 
e 1 .v.“ '7-."*. - a 

for I, -> 0 

Si'e:e wer 

Stir Pej -j "f" 

4".." ,----- - i *1 

2B) 

cy » 1 

1 
X = (1 — --1) 

a 
—4 1  

1 — y 

Orthogonality between 

SI:. N and gisl" = Stir 

1 q.v... P.-, F. 

for Y -› 0 

-i'̀' 

•  2rx 

SI C g-j -j̀z-f;'i 

2C) 

Im e ir 
a  -. 0:  --, 0 
X = 0.5 

a(1 - 0 q, « 0 3 

Variable resistor (14)  
has one common 
(that is, grounded) 

terminal 

qs '''''''' .22  

a 
g«V  "''' ......'' ̀.i. 

for p —› 0 

81' "' '' c'(a  j — ) 

— i) 

14,'  

produce anything not already obtained in the two previous sections. 
Using the design equations listed in Table III, the detailed procedure 

for the design of two twin-T networks with prescribed tuning char-
acteristics follows. 

4.4.1 Twin-T With Null Frequency Tunable by R2 

To satisfy condition (26), we find from Table III, Part 1B, that X « 1 
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and therefore select X = 0.01. Furthermore, assuming that qk -= 0.25, 
= 2r1 kHz, and R, = 1 KO, we find R, = 99 Ka From Fig. 7 we 

find that the q.B.-curve passes through the value 0.25 when a = 0.5. 
However, with X = 0.01, 7 takes on a simpler value for a = 0.55 (see 
Fig. 5), namely 

7 = cx2X(1 — X) = 0.003. 

Solving equation (28) for Y we obtain 
a 2 

  — 0.75 
4a — 1 

and from equation (18) 

C, = 1.C2 = 0.004C, . 
Y 

From equations (5) and (18) 

1   
c — 0.292 I.LF 3 — coNeYRIR2)i 

and 

Ci =' c, = 1.168 nF. 
v 

Finally, with equation (15) 

C2 —  y C, = 3.504nF 
1 — v 

and, from equation (6) 

C3 
R, = —•R„ = 62K. 

C, 

The corresponding sensitivity functions can be calculated directly by 
substituting the values obtained above into the expressions listed in 
Table I. Considering only the relative values of the resistor sensitivity 
functions, one obtains 

Slig̀:N —  «cum   
2(1 + 0/2) (0 '99  — 1'83j),  

Sir —  awe   (0.01 — 2.365j) 
'  2(1 + a2) 

Sie  =  awe 2(1 ± a 2) (1 + 0.55j). '   

, 
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The twin-T network resulting from the above calculations, as well as 
the zero displacement vectors given above, are shown in Fig. 8. In Fig. 
9a, measurements of the frequency response of this twin-T are compared 
with those of a symmetrical twin-T nulled at the same frequency. The 
initial frequency response of the two ideally nulled networks are identical 
since both have a selectivity constant qg equal to 0.25. On varying R2 
however, the null depth of the symmetrical network decreases con-
siderably with varying null frequency compared to that of the non-
symmetrical configuration. This is also apparent from Fig. 9b, where 
the percentage frequency shift of the null is shown as a function of the 
relative resistor change Ra . Whereas this curve is not appreciably 
different for the two configurations, the simultaneous variation in 
null depth is. 

4.4.2 Twin-T with Null Depth Tunable by Ra 

To satisfy condition (42), we find from Table III, Part 20, that 
a <K 1 and select a = 0.1. Furthermore, with X = 0.5 and letting v .-
0.01, for maximum selectivity, we find from equation (22) that giv = 
0.048. 
As in the previous example, we assume that Ctfy = 271 kHz and, be-

cause X = 0.5, we select R, Ra = 10 Kn. From equation (19) we find 
= 0.0025 and, in precisely the same way as in the preceding example, 
= 0.318 11F, C1 = 79.5 nF, C2 = 0.804 nF, and R3 = 19.8 K. The 

corresponding zero sensitivity functions follow directly from Table I. 
The relative values of the resistor sensitivity functions are 

sier = 

INCREASING R3 

aCJAr  
2(1 -I- a2) (0.5 — 10.05j), 

Re 

INCREASING R1 

INCREASING R2 

1K 99K 

Fig. 8—Zero displacement and twin-T configuration for wiv = Ir • 1 kHz, gel = 0.25, 
X = 0.01, y = 0.75, a = 0.55. 
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FREQUENCY RESPONSE FOR SYMMETRICAL 
AND NONSYMMETRICAL TWIN -T 
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8 10 
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\ 
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• \ 
_  •••••,\ 

......1y,,,...-57 

-30.n •••:,....,  , 

.4%, ..... L 90 

(b) 

- :63-C"":".-----......."•---..., 32 
....Q.T."... .. 

_ -59  
..... **.-0 
-.... s. -......‹, 

.- — SYMMETRICAL -61dB 

- --- NONSYMMETRICAL 

i 1  1  I 1  1  I I 

-100 - 80 -60 -40 -20 0  20 

AR2 rohi 
R2  J 

40 60 80 O 

Fig. 9—Comparison of measurements conducted on twin-T shown in Fig. 8 and 
symmetrical twin-T. (a) Null-frequency shift and null-depth variation with variation 
of R2; (b) Twin-T null frequency as function of percentage change in R2. 

acLIN 
— 2(1 ± a2) (0.5 — 10.052), '   

siwN  awN   (1 + 0.1j), 
re'  2(1 ± ce2) 

The resulting twin-T network and the zero displacement vectors are 
shown in Fig. 10. Measurements made on the twin-T are shown in Fig. 
11a where they are compared with those of a symmetrical network 



TWIN-T DESIGN 1135 

INCREASING R3 

INCREASING R ,R2 

10K 10K 

Fig. 10—Zero displacement and twin-T configuration for wN = 2r• 1 kHz, q = 
0.048, X = 0.5, y = 0.01, a = 0.1. 

with the same null frequency. The initial frequency response of the two 
configurations differs here, since the selectivity coefficient of the sym-
metrical twin-T is 0.25, and that of the other is 0.048. The null depth 
of the symmetrical twin-T can be decreased by more than 50 dB from 
an initial 90-dB null with no measurable change in the null frequency. 
This compares with over 1 percent variation of null frequency for the 
symmetrical configuration. This is shown again in Fig. lib where the 
null depth variation is plotted versus relative change in the resistor RB . 

V. TWIN-T NULL STABILITY USING THIN FILM COMPONENTS 

The twin-T is frequently used to provide stable zeros in the design 
of hybrid integrated linear active networks. If a high degree of stability 
is required, thin film components must be used for the twin-T network. 
Just what degree of null stability can be expected with thin film com-
ponents whose temperature coefficients and aging characteristics are 
known, follows directly from the sensitivity functions discussed in the 
previous sections. This is shown in the following. 
A displacement dz in the transmission zero z of a twin-T network can 

be expressed in terms of the zero sensitivity defined by equation (13) 
as follows 

d dR •  3  c dz z  + E  •  (48) 
C, 

As shown in Fig. 12, if the twin-T transmission zero is close to the :FA-
axis it can be considered purely imaginary for purposes of computing 
sensitivities, thus 

(49) 
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SYMMETRICAL TWIN -T  NONSYMMETRICAL TWIN -T 
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A R3  

R3 

40 60 80 100 

Fig. 11—Comparison of measurements conducted on twin-T shown in Fig. 10 and 
symmetrical twin-T. (a) Null-frequency shift and null-depth variation with variation 
of Rs; (b) Twin-T null depth as function of percentage change in R3. 
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d  <I) N 

°MIN 

dz 

Z:  OPEN LOOP ZERO 

p: CLOSED LOOP POLE 

Fig. 12—Typical root locus of feedback network using a twin-T to provide the 
open loop zeros. 

Furthermore, referring again to Fig. 12, the zero displacement is given 
as 

dz = du + djcoN (50) 

Equating (48) and (50) and substituting the expressions of Table I 
in equation (48), it is possible to solve for du and djcuy 
First, however, some characteristics peculiar to thin film integrated 

circuitry must be considered. Due to the batch processing techniques 
used, component uniformity can be guaranteed much more accurately 
than with discrete components. Above all, component variations tend 
to track very closely on a given glass or ceramic substrate and these 
variations can be precisely predicted and controlled. These features 
permit a considerable simplification in the following calculations without 
any loss in accuracy. Thus, we can write 

ta,  = [8, ± e„1 AT  K, = 17 - 
Ra 

and 

(51) 

ACi AC = [o, ± ej AT ± C  =  (52) 

The temperature coefficients of the resistors and capacitors are ô, and 
8. , respectively; e, and E. are the tracking ratios between the three 
resistors and the three capacitors, respectively; IT is the temperature 
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range under consideration; and Kr and  are the percentage resistor and 
capacitor aging, respectively. Substituting equations (51) and (52) 
as well as the expressions in Table I into equation (48), we obtain for 
the real part of the finite zero displacement Az -=  jA wie 

Ao- 
2(1 ± (2)  — y) — €,(1 — X)] AT.  (53) ww  

Notice that the zero displacement parallel to the real axis depends 
only on the amount of mistracking between components and not on the 
absolute drift of the individual components. In other words, if all 
components of a kind drift by the same percentage, the null depth of a 
tuned twin-T will not change. This is to be expected since equal com-
ponent drift corresponds to a frequency scaling process. 
The imaginary part of the finite zero displacement Az is obtained in 

the same way as the real displacement above. Thus 

AWN 
WN 

=  S,) AT +  Kc 

er AT [1 -I- 1 X)] e, 2 [a2   
2  -e- 1 -F a2 

Thus, the zero displacement along the jw-axis depends on the actual 

drift of the individual components. Clearly, if the drift coefficients of 
the resistors can be made equal but opposite to those of the capacitors, 
drift along the jw-axis can be practically eliminated. 
In various active filter schemes the network poles are tied closely to 

the transmission zeros generated by a twin-T. Thus, in high Q networks, 
uncontrolled drift of the twin-T zero into the right-half s-plane could 
pull the poles over with it, causing oscillation. Similarly, drift of the 
twin-T zero along the jw-axis would cause frequency drift in the active 
filter. 
To prevent oscillation due to drift into the right half plane, the 

transmission zero of the twin-T must be located left of the jw-axis by 
some distance um,. such that, under worst case component drift, it will 
not travel across the jw-axis. Referring to Fig. 12, this implies that 

Crmln  (àZmax)  =  Aerntax •  (55) 

This condition, in turn, implies that the twin-T null depth may not 
exceed a certain maximum attenuation TN which can now be cal-
culated directly. 
It follows from Appendix B that the transfer function of a twin-T 

(54) 
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with a nonperfect null can be approximated as follows 

TN(s) 
82 +  20.8 (02N 

8 2 +  feLj  -V 8 +  2Ar 

qN 

(56) 

With equation (55), the maximum null attenuation for left half plane 
transmission zeros is then 

2gLe cr,„,i„ = 22-F-
We" 

With equations (22) and (53) this becomes 

2  ( (1 — v)(1 — X)  ) 
[e,(1 — X)  ee (1 — v)] A T. 

T'v nu' — 1 +  a2(1 — X) ± (1 — 

(57) 

(58) 

In active filter applications where the twin-T transmission zero z 
represents the open loop zero of the root locus of a pole p with respect 
to gain (see Fig. 12), the highest attainable Q of the network is all the 
more limited the larger emit , has to be chosen for stability. In the limit, 
as the loop gain approaches infinity, the closed loop pole p coincides 
with z. The upper limit on Q is therefore given by 

'mu < iiiIn 

or, with equation (53) 

(59) 

-.••• (1 + a2)   
aAT  \e,(1 — X) + e(1 — y)) 

QM«  •  (60) 

Thus, with the type of active network design represented by the root 
locus in Fig. 12, both network stability and maximum Q ultimately de-
pend on the stability of the twin-T network. 
As an example of the above, we shall consider the stability of a sym-

metrical twin-T network fabricated with tantalum thin film resistors 
and capacitors. The required ambient temperature range is assumed to 
be from 0°C to 60°C. From equation (58) we obtain 

T N max 1)t r..0.8 M er ecl 
a 

(61) 

Typically, for tantalum thin film resistors and capacitors e,. = ±5 
ppm/°C and e. = ±15 ppm/°C. Therefore TN m,,x = 7.510-e = —83 
dB. 
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The frequency drift for a symmetrical twin-T results from equation 
(54) as 

- Att) el 

(ON 

= [(f5, + (%) + i(er + e.)] IT ± Kr +  fic .  (62) 

Typically, for tantalum thin film components ,c,. = x. = 0.1% and for 
tantalum thin film capacitors 8, = 200 ppm/°C. The TC of tantalum 
thin film resistors can be controlled by oxygen doping during the sput-
tering process." It may therefore be of interest to solve equation (62) 
for the required TCR, that is, Sr , when a maximum acceptable fre-
quency drift is specified. Assuming that (AwN/cop,)„,,,„ 5 0.5% we 
obtain or = (-215 ± 50) ppm/°C. 

VI. CONCLUSIONS 

Design equations have been presented that provide twin-T con-
figurations with null characteristics that depend on individual com-
ponent variations in a predictable and controlled manner. This is 
achieved by deriving the zero sensitivity functions with respect to 
each component of the general nulled twin-T. The network parameters 
required to obtain a twin-T that can be tuned by a desired procedure 
and the extent to which such a procedure can at all be realized results 
directly from inspection of the general sensitivity functions. 
Special null tuning procedures are considered that are useful in 

linear active networks incorporating a twin-T in the feedback path. 
One twin-T configuration permits the null frequency to be shifted over 
a limited range by the variation of one component only while the null 
depth remains constant. Another enables the null depth to be varied by 
one component with negligible variation in the null frequency. The pos-
sibility of independent null frequency and null depth tuning by two 
individual components is also investigated. Orthogonal sensitivity func-
tions that are parallel to the real and imaginary axis are required to 
do this. It is shown that, apart from the orthogonality that is obtained 
as a by-product in the first two cases, any other or more general kind 
of orthogonality in the sensitivity functions cannot be realized. Design 
examples for the first two cases are given. Measurements conducted 
on the resulting twin-T configurations are presented and compared 
with similar measurements made on a conventional, that is, symmetrical, 
twin-T. This comparison demonstrates the effectiveness of the given 
design equations. 
The stability of the null characteristics of a twin-T with given 
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component characteristics results directly from the sensitivity functions. 
Limits on the permissible null depth of a twin-T are derived for the 
case that left-half plane zeros must be guaranteed under worst case 
component drift conditions. Similarly, expressions are derived that 
permit the limits on resistor and capacitor temperature coefficients and 
aging characteristics to be established in order not to exceed a given 
maximum frequency drift of the transmission null. A numerical example 
is given using the characteristics of tantalum thin film resistors and 
capacitors. 

VII. ACKNO WLEDGMENT 

Thanks are due to G. Malek who carried out the twin-T measurements 
shown in Figs. 9 and 11. 

APPENDIX A 

Twin-T Impedance Matrix 

In order to calculate the open circuit impedance matrix of the twin-T, 
it is useful to first obtain its general equivalent ir-network. This can 
be simply obtained by converting each of the two T-networks of the 
twin-T into its equivalent 7-network. This is shown in Figs. 13a and 13b, 
assuming sinusoidal input signals. The two resulting ir-networks can 
then be connected in parallel (as shown in Fig. 13c), and the resulting 
impedance directly calculated. With the two conditions for a perfect 
null given by equations (5) and (6), we get a simple r-network as 
shown in Fig. 14. The corresponding impedances are given by 

—  R,  (1 -F 1) ,  (63) 
1 ±  " 

r 

Zb —  le2 (i + —1)  (64) 
S T 

T 

and 

Ze = R, 
sr. + —1 ' 

ST 

(1 ± s-17.) 
(65) 
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R2 
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Fig. 13—(a) and (b), Conversion of the two T-networks of the twin-T into equiva-
lent ir-networks; (e), Equivalent ir-network of the twin-T. 

where 

= 

T2 —  R2 C2 

T. =  R.C„ 

R„C, = R3C2 . 

In terms of these impedances, the open-circuit impedance matrix for 

the twin-T simply follows as 

[z] — 
1  [ Z ag b  Z,)  Z. Zb  1 . 

Z.  Zb 
Z. Zb  Zb g.  Z. L1 

(66) 

So far we have considered a general twin-T that has an infinite null 
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Fig. 14—General r-network. 

at a specified frequency com . Because the corresponding general transfer 
function [see equation (10)] has the form of a quadratic fraction, it 
has geometric symmetry around CON. 
The most frequently used twin-T is structurally (and electrically) 

symmetrical. For this case. 

T1 =  T2 =  T. = r  RC,  (67) 

R3 =  R/2,  (68) 

and 

C2 = 2C. 

The impedances of Fig. 14 then become 

Z. = Z, = e (1 ± -1) 
2  87 

and 

(1+ Sr)  
= 2R 1 ± 8272 

The open-circuit impedance matrix consequently becomes 

1 ± 48r  82/-2 
sr(1 ± Sr) 

1 + 8272  

87(1 ±  Sr) 

1 + 82r2  

+ Sr) 

1 + 4sr  sY 
sr(1 + sr)  _ 

(69) 

(70) 

(71) 

(72) 

The voltage transfer function for the symmetrical twin-T then follows as 

-- 22" -- 2 827-2  + (73) 
s  4rs -I- 1 

Comparing with the transfer function given by equation (10), we have 



1144  THE BELL SYSTE M TECHNICAL JOURNAL, JULY—AUCUST 1970 

(74) 

(75) 

and the inverse damping factor 

q. = 0.25.  (76) 

It can be shown that the selectivity, that is, the inverse damping 
factor, can be increased by modifying the symmetrical twin-T into a 
potentially symmetrical network. This is possible with any structurally 
symmetrical network for which Bartlett's bisection theorem holds. 
A symmetrical network can be converted into a potentially symmetrical 
network by impedance scaling one half of the network by some factor p. 
This is shown for the twin-T in Fig. 15. The corresponding z-matrix 
then becomes: 

P  R 1 ± p 2 

827.2 ± 2(1  1)sr ± 1 
1 + sr2  

sr(1 ± sr)  sr(1 -I- sr) 

1 ± S Y 

sr(1 + sr) 

and the voltage transfer function results as 

Z21pa Tivp, — 
z119. 

S Y +  2(1 ±  p)sr + 1 
sr(1 + sr)  _ 

(77) 

2 2 S r  + 

1 
S Y +  2(1 + —)sr + 1 

In terms of the transfer function (10) we find: 

1 

2 (p ± 1) 
"  RC  p 

and 

1  p  
qe" — 2 1  p• 

p gives a measure of the twin-T symmetry. For the extreme asymmetrical 

(73) 

(79) 

(80) 

(81) 
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Fig. 15—Potentially symmetrical twin-T resulting from symmetrical twin-T after 
one-half of the twin-T has been impedance-scaled by a factor p. 

case for which p>> 1, qN„ takes on its maximum value, namely 

get,. I 

APPENDIX B 

(82) 

Twin-T with a Finite Null 

Inspection of equations (8) and (9) shows that the transfer function 
of a general twin-T is simplified by one degree due to the pole-zero 
cancellation on the negative real axis at col = 1/R3C, when the conditions 
for a perfect null given by equations (5) and (6) are satisfied. We 
investigate here the conditions necessary to ensure this pole-zero 
cancellation when the null-conditions are only approximately satisfied, 
that is, when the twin-T has a finite null. To do so we derive the sen-
sitivity of the pole and zero at w, with respect to the six parameters of 
the twin-T and investigate under which conditions the respective pole 
and zero sensitivities are the same. 
Writing the twin-T transfer function in the bilinear form with respect 

to a parameter x we obtain: 

y_L9) Az(s)  xBz(s)  
TN(9) = D(8)  U(z)  xVz(s) 

The sensitivity of a zero z with respect to x is then given by: 

8, (8 — z)Az(s) 
N(s) 

(3 — z)Bz(s) 
—  x 

that of a pole p with respect to x by 

sz (s — p)Ux(s) 
D(s) 

N(s) 

(83) 

(84) 

_x (s — p)Vz(s)  
D(3)  1,_, •  (85) 
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From equations (84) and (85) we obtain 

co,  
— 1 + a2 A.(--141) 

and 

e 1,_, -   U.(—co,) 
1 + a2 

qN 

where 

and 

(86) 

  U.(- 4  (87) 
+ (1  1 —I X)  iy2(1 

1 —1 v) 

co1 (88) 
coN 

R,   
X — R, + R2 '  (89) 

C,   
v —  (90) 

+ C2 

coN a(1 — v)(1 — X)  
qN  2cry  a2(1 — X) + (1 — 

Calculating the respective Az(—coi) and U.(—w1) functions we obtain 
the zero and pole sensitivities listed in Table IV. Comparing the func-
tions listed in the two columns of the table it is clear from inspection 
that they will be equal when 

X(1 — y) 1 
v(1 —X) 

With equations (88) through (90), this condition becomes 

R101 = R2C2 •  (93) 

Thus for all twin-T configurations in which the time constants of the 
series elements are the same, pole-zero cancellation on the negative 
real axis is maintained for differentially small perturbations of any 
element of the twin-T. For positive element changes (that is, increasing 
values) the dipole frequency will decrease, that is, move in the direction 
of the origin of the s-plane. Twin-T networks that satisfy equation (93) 

(91) 

(92) 
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TABLE IV—SENSITIVITY FUNCTIONS FOR THE NEGATIVE REAL 
POLE AND ZERO OF THE TWIN-T LOCATED AT—W1 

Zero Sensitivity Pole Sensitivity 

a2  
— W1 1 a2  (1  X) 

a2 

—  1 +  a 2 

1  
— '  1 1 + a2 

1— v  
C1)1  1  a 2 

SC. wl 1 + a2 

a 2 

W1 1 + a2 

— <el 

Se  = 

— 
1 +  a2 v(1  —  X)  

X(1 — y) 

a 

x(i —) _L. 2 (1 — X) 
1)(1  X) -I-  a  

2 

_  o 2 X 

1/(1  + e 

1 

1 + v(1 - x) 
X(1 — y) 

(1 — y) 

1 + a2 y(1 —  X)  

X(1 — y) 

= 
C X(1 —  v)  

1,(1 —  a2  

include all symmetrical configurations in which the series elements are 
identical as well as potentially symmetrical configurations in which 
the series elements are characterized by relations of the type 

R2 ---- aR„ 
(94) 

C2 =  C1/a. 

APPENDIX C 

Twin-T Zero Sensitivity 

Expressing the numerator N(8) of the twin-T transfer function 

N(s) = As(s)  x.13(s) 

the null return difference F:(8) with respect to x is given by 

(95) 
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n(s) — Ar(s) A)  — 1 -F x 1-91a  (96) 
x(s  Ax(s) 

With equations (1) and (2), the null return difference of the twin-T 
with respect to its six components can be calculated directly. 
To obtain the null return difference of the nulled twin-T, equation 

(8) can be substituted into equation (96), namely 

(3 + coi)(82 + co2N)  
r2(8) —  (97) 

where, col 

weo2NA.(8) 

= 1/R3C, = 1/R,C3 . The corresponding zero sensitivity 
then results as 

— _  ico,v 
(s) 

which simplifies to 

where a = col/coN 
from equations (1) 
the zero sensitivity 
ponente is obtained. 

n=f we, 

(8 — icoN)coic4A.(8) I 
+ coi)(82 + 64) 

(98) 

a 1 + 
Si A coN• zUcoN) x" =  (99) 2(1 -I- a 

The individual 44.1(jwif) functions follow directly 
and (2). Substituting these into equation (99), 
of the nulled twin-T with respect to its six corn-
These are listed in Table I. 
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Thermal and Electrical Properties of Coated 
Conductive Substrates for Integrated 

Circuit Chip Mounting 

By H. G. MATTES 

(Manuscript received February 10, 1970) 

Presently used substrates for integrated circuit chip mounting and 
interconnection provide limited heat sink capability and preclude the 
effective use of matched impedance transmission line interconnection. 
These characteristics can be improved by the use of very narrow microstrip 
lines on thin dielectric layers backed by thermally and electrically con-
ductive material. We propose a model for calculating the effective thermal 
resistance of layered substrates and make calculations for a variety of 
materials. The thermal problem is considered for heat extraction either 
through the edge or through the face of the substrate. Improvements in sub-
strate thermal conductance of an order of magnitude appear realizable 
cornpared to presently used substrates (for example, 0.625 mm alumina). 
We analyze the electrical parameters of narrow (0.02-0.1 mm) microstrip 
lines on coated substrates in the frequency range 10 MHz to 10 GHz. The 
characteristic impedance, propagation delay time, and attenuation are 
found to be frequency dependent, and efforts to minimize this frequency 
dependence by magnetic loading result in greater, though more constant, 
delay times. Losses may be significant  dB/cm in many cases), 
but short line lengths due to dense circuit packing allowed by improved 
heat dissipating capability will minimize this disadvantage. 

I. INTRODUCTION 

A necessary component in realizing the potential of integrated circuit 
technology is the substrate upon which the integrated circuit chip is 
mounted. The substrate must meet several requirements to avoid 
deterioration of the system's performance: 

(i) The substrate must act as a rigid, reliable mounting platform for 
the chip. 

1151 
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(ii) The substrate must allow the dissipation of heat produced on 
the chip without causing an increase in temperature which would detri-
mentally effect circuit operation. 
(iii) The substrate must permit electrical connections to and inter-

connections between chips in a manner compatible with desired circuit 
performance. 
(iv) The substrate fabrication and chip mounting must be realizable 

at a cost consistent with the cost requirements of the system. 

Presently used substrates (for example, 0.625 mm thick A1203 ceramic 
wafers) are limited in their attainment of objectives ii and iii 
outlined above. Heat sink capability is limited by the low thermal con-
ductivity and relatively large thickness of material necessary for mechan-
ical rigidity and by the difficulty in extracting heat from the substrate 
itself. High frequency (>500 MHz) performance of beam-leaded in-
tegrated circuits suffers from the transmission line mismatch necessary 
with conventional substrates as is discussed below. 
A new materials configuration, as shown in Fig. 1, is envisioned which 

would simultaneously satisfy the four basic substrate requirements 
listed above. A thin dielectric layer (0.001 mm to 0.05 mm thick) 
deposited or grown on a massive electrically and thermally conductive 
ground plane could allow efficient heat dissipation, effective electrical 
interconnection and provide a rigid, inexpensive bonding plane. It is 
the purpose of this paper to calculate the thermal and electrical prop-
erties of the coated substrate configuration suggested here. 

THERMOCOMPRESSION-BONDED 
BEAM LEAD -

DEPOSITED 
CONDUCTOR wel-r-\ 

CONDUCTIVE 
GROUND PLANE 

,DEPOSITED DIELECTRIC 

4' —  - --r 11;C5CITATC1f111315 

Fig. 1—Sehematie drawing of layered substrate, 
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II. THERMAL PROPERTIES 

The model used to represent the proposed substrate for calculation of 
thermal properties is shown in Fig. 2. All constants may be arbitrarily 
set, and the heat flow may be subjected to either of two distinct bound-
ary conditions: the sides of the disk may be held fixed at a constant 
temperature and the top and bottom faces insulated, or the bottom face 
may be held at a constant temperature and the sides and top insulated. 
These cases closely approximate two heat sinking configurations fre-
quently found in practice. The cylindrical geometry was chosen for 
ease of calculation (the square or rectangular problem, although alge-
braically simpler, results in a double series which presents formidable 
convergence problems when one is interested in a numerical result). The 
specific geometry should have little effect on the calculated values, and 
any reasonable geometry (held constant throughout the calculations) 

AREA OF UNIFORM 
HEAT INPUT ----_....... 

THERMAL 
CONDUCTIVITIES 

Ki - - ..._ 

/ 
/ 
/ 
/ 
1 

IDEAL 
HEAT SINK 

1 
% 
\ 
\ 
‘ 
N. 

I 

SIDES GROUNDED 

FACE GROUNDED 

Fig. 2—Model used in calculations of thermal properties. 
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should provide a reliable comparison between alternate substrates. 
The heat input was assumed uniform over a circle of radius A, although 
other heat input distributions might have been chosen. As in the choice 
of geometry, this should have a minimal effect on the results. (Currently 
used beam leaded chips distribute heat over an area larger than the 
silicon dimensions. It can be assumed that the entire chip-beam lead 
structure thus forms a relatively uniform heat source on a substrate.') 

2.1 Algebraic Solution 

The thermal problem has already been solved for a homogeneous 
cylinder.' In the case of a layered cylinder, it is necessary to solve La-
place's equation simultaneously in both the upper and lower regions 
and match boundary conditions at the interface. In the calculations 
described in this paper, no discrete thermal resistance was inserted 
at the interface so the matching of boundary conditions reduced to 

aT,  aT = K2 —a at z = 
az  az (1) 

where K,, T1 , K2 T2 are the thermal conductivities and temperatures 
in regions 1 (upper) and 2 (lower). The insertion of a thermal resistance 
at the interface is trivial but was approximated as zero due to the inti-
mate interface contact obtained by the method of materials preparation 
envisioned for these substrates. 
Laplace's equation was solved for the two sets of boundary conditions 

(sides grounded and face grounded) by the method of separation of 
variables. In cylindrical coordinates, V'T = 0 reduces to 

T = ‘1,0 ‘Ifiz 

+ E E ,1'„.,„[A„,J”,(6„r) B N„,(&„r)]{sin  mû} 
n  COS 

[exp (± (S„z)]  (2) 

where boundary conditions exist to impose eigenfunction solutions in the 
r direction, and .I„, and N„, are Bessel functions of the first and second 
kind respectively. The boundary condition on the grounded surfaces was 
given as T = 0 while aT /a (normal) was set equal to zero on the insulated 
surfaces. On the top surface (z = 0) the boundary condition was written: 

aT,  f-;=1. o < r < A ,  z = 0; 
—07 = 

0  A < r < B,  
(3) 
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f is the value of heat input in (watts/unit area). This boundary con-
dition was met by using the orthogonality properties of the Bessel 
functions in a Fourier-Bessel series as outlined in Morse and Feshbach 
and other texts.3 
For the case in which the sides are grounded at T = 0, the tempera-

ture distribution is found to be 

B ° B 3"lj (S   T = E 2L-k 4  [c, cosh M  -F nfi  sinh (631-1]  (4) n)  B  B 
13:Ki 

where 0,, is the nth zero of J0 (r) and 

tanh' (34-'1) -  - 1) tanh ($3Vi)  tanh (3"(W I: W')) 1 

tanh (j)[1 - - tan!, (Ç) tanii (3.e '; Tv.) )] + KK : tanh M V11-31- 

for 0 < z < TV, ; = 
tanh 2 (a.BW,) _ 1 (5) 

tanh  - - tun (esTI'L) tanh (13"(W1  W2) )1 + KK : tanh ( 1V1 113- W2) ) 

for W, < < W, + W, ; 

1, for U < z < Ws 

C2 
tanh en(Wi  W20[1 - tanha (,)]   

tanh (P2'1171) [1 - - tanh  tanh (13"(117 ' + W11 + tanh K,  (8"(1 r + 19 3(6)  B  KJ B  B 

for W, <z < TVL W2. 

For the case in which the bottom face is grounded at T = 0, the 
temperature distribution is found to be 

A2 
T = —§B f(di  d2Z) 

Ji(a 1.10(ce 
2fA  " B  "B  ‘ a:Ki 4(4  [di cosh  M  d4sinh (1'-z)] (7) 

,71  

where ot„ is the nth zero of .11(r) and 

d, = 

W, W2 
K, 

Wi+ W2 
K2 

<zO  < W, 

WI < z <  W 1 +  W 2 

;  (8) 
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— 

d, = 

1 
K, 

< zo  < W, 

; 

1 
<z < TV, -I- W2 

K2 

tanh  (41V,i 1- TV,)) tanh  (a,,IBV,){KK:  [ th (er,.BW,) tanh  (ot,(11' B+ 1V2)) 

tanh2 (44 1)  _ 1) tanh (»—L) tanb (a"(TVI  ±  K ' 
B  Kt 

for 0 < < Wi 

tan h (a..(1V1  W2 11 tame &ill)] 
B  J   

tare (terfB 1) + (IKC2 — — 1) tanh  tanh (a"(W,  Tr2)  
B  I  Kt 

for TV, < < W,  ; 

1 for 0 < z < W, 

tanh2 («"T--V ) — 1 

tanh2 ( *V') + (feit _ 1) tanh tanh (e*(WI B+ W2) )  KK : 

for W, < z < W, + W, . 

(9) 

( 1 0) 

A quantitative measure of the power dissipating capabilities of a 
substrate is given by the thermal resistance 

(degrees C  àT(°C)   T„,„„ 
\ watt  )  q (watts input)  rA,21 

clearly occurs at z = 0, r = 0 so 

(12) 

j -4) 2  
0,„. (side grounded) = 

nfin) 

• t wit? e B —  — 1) tanh (9'/'1 ) tanh (9"(1171 1-3 W2) )  1 

tanh  (0, e1)1-1 tanh  (f3.1Tri tanh  (/3.(Wi  W2))1 K, tanh  (13,41V, + WA (13) 
\ B / L  \ B  B  I J  \  B 

and 

WiK2 -I- W 2K. 57 _,  2 1 Ji(c4 
Ra.„.. (face grounded) —  wIrIC, L  1- irK.A 7, - cr: 71F— e,à 

tanh (a.(117,  + Wa) tanh (."11Br e  a [t h  (,.1v1)Unit (*"(IVI B+  W2) )  1] + 1} 
\  B   

tan'? (Y.11 r i + (K2 _ 1\ tanh  ta.,117‘} tanh  Az,,(1V, + WA K2 
B  /  K1 

(14) 



COATED CONDUGHVE SUBSTRATES  1157 

2.2 Computer Program 

A FORTRAN IV computer program was written for an IBM 360-50 to 
evaluate Rtherm-side and Riber ...f... . The first forty values of alpha 
and beta (the zeros of J, and To) are inserted in the program from the 
tabulated values of Watson.' The values of the higher zeros are obtained 
in the program by analysis of the asymptotic approximations for J1 
and Jo. 
Since the expressions for Rtherm take the form of infinite series, no 

completely precise evaluation can be made. Figure 3 shows the ap-
proximation to Roe.- rao. given by truncating the summation after 
varying numbers of terms. Plotting data similar to Figure 3 for a range 
of all input parameters (A, B, K1 , 1(2 , W 1  W2) disclosed several trends 
in the convergence of the series. The "period" of the oscillation was 
inversely correlated to the ratio A/B. This is mathematically consistent 
with the use of a Fourier-Bessel series to describe the top face of the 
disk. For ratios of A /B less than 0.02, the first maxima in the expression 
for Reber...ide is not reached until partial sums with greater than 300 
terms are evaluated. The amplitude of the oscillations in the function 
Rrherm (number of terms) was positively correlated to K2/K1 and Wi/W2 • 
The damping of the oscillation (per cycle) appeared to be relatively 
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Fig. 3—Partial Bums approximating Rf  for A = 0.0625, B = 3.75, K1 = 0.20, 
1(2 = 2.05, W I = 0.0005, W 2 -= 0.0625. 
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independent of input data. These variabilities in the behavior of Rtherm 
made determination of a precise value difficult. Additionally, only the 
first 314 terms of the series could be evaluated. The operation of the 
program was terminated at this point by a floating point overflow which 
occurred in the IBM-SSP subroutine used to generate the Bessel func-
tions. Since the largest arguments of the Bessel functions are intrinsic 
to the problem, and are not functions of the input parameters, nothing 
could be done to circumvent this difficulty. It thus became necessary 
to evaluate Rtherm  on the basis of a truncated series of 314 terms of less. 
A graphical outline of the method used to extract an approximation to 

the asymptotic value of R the,. from a finite number of terms in shown 
in Fig. 4. The first two local maxima, M1 and M 3  and the first local 
minimum, M,, were recorded; and the averages, Ai and A, , were cal-
culated where 

M 1 ±  M 2  A1=  , 

M 2 ±  ma  —  • 
2 

(15) 

(16) 

Pig. 4—Pictorial of extremum averaging technique used for improving series 
convergence. 
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In Appendix A, a theorem is stated and proved to show that the asymp-
totic value of R therm is less than A1 and greater than A 2. An average of 
the two, (A1 + A2)/2, was used as a most probable value of Rtherm • 
As a test of the accuracy of the derivation of R therms- e ide and Rtherm- face 

and the computer programs for generating these values, K2 was set 
equal to Ki (equivalent to a uniform, single layer cylinder) and values 
of Rtherm computed for W, = 0.625 mm, W2 = 0; W1 = 0.375 mm, 
W 2 =  0.25 mm; and WI = 0, W2 = 0.625 mm. The three cases were 
in complete mutual agreement, and agreed to the accuracy given with 
the published results of D. P. Kennedy for heat conduction in a homo-
geneous, isotropic cylinder.' 

2.3 Numerical Evaluation 

Several materials combinations were chosen for evaluation as possible 
substrates. Some of the considerations for inclusion were compatibility 
with integrated circuit techniques (for example, silicon), smooth surfaces 
for microdeposition of conductor paths (for example, polished silicon, 
cold-rolled aluminum), low dielectric constant (for example, SiON), 
and thermal expansion coefficient. The materials considered and the 
associated values of K used with them are shown in Table L A = 0.625 
mm and B = 3.75 cm were chosen as representative of typical inte-
grated circuit chips and substrate sizes and were used in most of the 
calculations. 
The results of these calculations for a variety of layered substrates 

are shown in Figs. 5 through 10. With high conductivity dielectrics 
(for example, A1202) the thermal resistivity of the ground plane con-
tributes significantly to the total thermal resistance, but resistances as 
low as that of beryllia are attainable for a considerable range of dielectric 
thicknesses. Low conductivity, glassy (for example, SiON, SiO2) dielec-
trics, can result in thermal resistances equal to or greater than that of 
alumina if glassy layers of greater than 0.03 mm thick are used. 

TABLE I—THERMAL CONDUCTIVITY OF SUBSTRATE MATERIALS 

Material  K (watts/em °C) 
Al  2.05 
A1203 (deposited)  0.20 
A1203 (sintered)  0.29 
Be0  1.05 
Si  0.88 
SiaN4  0.012 
SiO2 0.012 
SiON  0.012 
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Fig. 5—Aluminum oxide on 0.25 mm aluminum. 
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For comparison, thermal resistances of presently available homogene-
ous substrates were calculated and are given in Table II. 
Figure 11 shows the effect of substrate radius on Rtherm-s Ida (the 

effect on R therm - see was <2% for B  0.5 cm). In the range shown, 
heat is presumably flowing radially at r = B so increases in B add to 
Rtherm at a rate proportional to 1/B. Consequently, a "critical radius" 
exists above which R therm-s de is relatively constant. 
Radiative and convective heat losses will be negligible for the high 

conductivity layered substrates discussed in this paper. A lumped value 
of convective and radiation coefficient of 0.003 watts/cm.2 — °C 
results in an equivalent parallel thermal resistance of greater than 50°C/ 
watt for all cases considered here. 

2.4 Thermal Results 

Layered substrates consisting of dielectric layers backed by thermally 
conducting ground planes can provide substantial improvements in heat 
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sink capability over alumina ceramic substrates. Ceramic substrates 
are commonly used in 0.625 mm thickness to provide needed strengths. 
Metal ground planes could be reduced to 0.25 mm thickness while 
maintaining physical strength greater than 0.625 mm ceramic. For 
situations where heat sinking the back of the substrate is possible, 
AI203 on 0.25 mm aluminum can provide up to twice the heat sink 
capability of 0.625 mm beryllia. Metal substrates have the additional 
advantage of convenient, low thermal barrier heat sink mounting or 
even direct incorporation into the heat sink structure (for example, 
heat pipes, finned substrates). 
Although the above values of Rm.,. are significant, as given, for 

relative comparison of substrate materials and geometries, their ab-
solute significance can only be assessed in relation to other parameters 
intrinsic to an integrated circuit heat dissipating system. V. E. Holt 
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Fig. 6—Aluminum oxide on 0.625 ram aluminum, 
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has found thermal barriers of 32°C/watt for 1.25 mm chips conducting 
heat to a substrate by means of beam leads and a resin bonding layer.' 
This value is reduced to 3 to 5°C/watt by AuSi eutectic bonding. 
Imperfections in the heat sink will have to be assessed in each situation 
encountered. 

III. ELECTRICAL PROPERTIES 

3.1 Microstrip Transmission Lines • 
Electrical interconnections on the proposed substrates would best be 

made in the form of standard microstrip transmission lines.' They can 
provide transmission line interconnects necessary for high speed pulse 
and microwave electronics while maintaining low values of crosstalk 
between adjacent lines and still provide de and low frequency paths 
for other circuit requirements. The primary incompatibility of presently 
used substrates and beam-leaded integrated circuit chips is due to the 
impedance mismatch between the narrow (0.02 to 0.05 mm) beam leads 
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and the physically large transmission line (typically 50n implies 0.625 
mm line width on 0.625 mm alumina).° The removal of this discontinuity 
would require narrow conductors deposited on a dielectric layer of 
appropriate thickness to maintain the desired transmission line im-
pedance. The physical configuration contemplated for small microstrip 
lines is outlined in Fig. 12. To minimize the impedance discontinuity 
at the interconnection with beam leaded chips, W is restricted to 0.1 
ram maximum. To minimize crosstalk, this would suggest td 0.05 mm°. 
These figures, coupled with the electrical parameters of dielectric materi-
als sufficiently smooth to allow the reliable deposition of 0.02 mm 
conducting paths, are consistent with the desire to develop lines with a 
characteristic impedance of 5012, the most commonly used interface 
impedance for circuitry operating above 500 MHz. Under certain con-
ditions, as seen below, it is desirable to raise the series inductance of the 
transmission line. For this reason, provision has been made for placing a 
thin layer of high permeability material between the conducting strip 
and the dielectric. In practice the adhesion metal of a sandwiched inter-
connect (dielectric—adhesion metal—gold) might serve this purpose. 
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Fig. 8—Silicon oxynitride on 0.625 mm aluminum. 
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3.2 Transmission Line Parameters 

Although many transmission modes are necessarily present in an 
unsymmetrical transmission line such as an unshielded microstrip, the 
TEM mode will be considered of dominant interest in the frequency 
range considered here and the line parameters will be calculated for 
this mode. Several authors (for example, Assadourian and Rimai,' and 
H. A. Wheeler') have derived expressions for the characteristic imped-
ance and other pertinent parameters for microstrip transmission lines. 
Although these formulae have been generally verified in their range of 
approximation'' 'I° the physical scale of lines contemplated in the last 
section requires the inclusion of several terms which had been ignored 
in the previous derivations. 
The characteristic impedance, Z0, and propagation constant, 7, of 

any power transmission system are given by" 

jceLy\G jwC 

y = [(R  jcoL)(G  jc,t()]1.  (18) 

Zn = (17) 
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Ignoring losses (R, G  0), the propagation delay time can then be 
written 

=  = (LC).  (19) 
co 

The inductance of the line is given by two components: the inductance 
due to magnetic field energy storage in the strip conductor and the 
ground plane (the internal inductance); and the inductance due to mag-
netic field energy storage between the strip conductor and the ground 
plane (the external inductance). The internal inductance of the strip 
conductor can be derived from Ramo and Whinnery" and is given by 

sinh  (24)  si(!)2t 
\8.  15,  

a. cosh  (2t.  ( . 2E) 
6 )  ens.  

where p. is the resistivity of the strip conductor material and 3, is the 
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Fig. 10—Silicon dioxide on 0.625 mm silicon. 
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TABLE II—THERMAL RESISTANCE OF CONVENTIONAL SUBSTRATES 

Alumina 
0 .25 mm  103  6.8 
0.625 mm  46  12 

Beryllia 
0.25 mm  15.3  1.02 
0.625 mm  6.8  1.8 

Rtho rm-aide  & harm-face 

(degrees C/watt) 

skin depth of the strip conductor at the frequency, (,), of interest. [8 = 
(2p/com)]. For the frequency range considered in this paper (f > 10 
MHz) current spreading in the ground plane can be ignored for lines as 
narrow as 0.02 mm if the ground material has a resistivity 510-5 
ohm-cm. For higher resistivity materials this approximation is less 
valid, especially at the lower frequencies, but the approximation will 
be made for convenience. A more rigorous analysis in the higher resis-
tivity case would give increased internal inductance and increased 

30 

25 

5 

o 
0  1.25  2.50  3.75  5.00  6.25 

SIN RADIUS OF SUBSTRATE IN Cm 
7.50 

Fig. 11 —Thermal resistance with side grounded A --- 0.625 mm W I = 0.0125 
mm, IV2 = 0.625 mm. 
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Fig. 12—Schematic drawing of microstrip transmission lines on layered substrate. 

crosstalk through magnetic fields generated by spreading currents in 
the ground plane. The internal inductance per unit length of line due 
to fields in the ground plane can then be given by a formula similar to 
(20) 

sihh  pig) _ sin  (24) 
1   \ (5, /  \ 0, /  

L, — ivw  (21) 
0. cosh  (21„) _ cos  (24) 

8„ _ 

where p, and 8, are the resistivity and skin depth of the ground plane. 
For the dimensional range of interest (W> 24) the external inductance 
per unit length is approximately given by English and McNicho113 as 

Lezt =  (Id + uRt.)  (22) 

where laR is the relative permeability of the magnetic material. Total 
L is given by the sum 

L = L.  L,  L, .  (23) 

The total capacitance per unit length between the strip conductor and 
the ground plane is the sum of four components 

C  CT CQ +  +  C..  (24) 
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is the capacitance per unit length between the top of the strip and 
the ground at infinity". 

C  =  —4E" ln 2.  (25) 

C, is the capacitance per unit length, neglecting fringing, between the 
face of the strip and the ground plane. 

(26) 

where ER is the relative dielectric constant of the insulating layer. The 
additional capacitance per unit length due to the fringing fields at the 
edges of the strip is given by Joies" 

Cf 4eeR  in ir [1 ± (1 — exp —27'17 1  (27) 

For the case where the strip conductor is not of negligible thickness, an 
additional contribution to the capacitance is due the capacitance be-
tween the edges of the strip and the ground plane. The expression for 
this term, derived in Appendix B, is 

— ln 
2€,,ER {2t,,  2/. ± [2(4,  t.)(t,  21.)11}. 

C.  (28) 
7r  la 

Losses on these microstrip lines will be considered as a perturbation 
in the calculation of the other parameters although this approximation is 
quite poor in several of the cases considered below. Losses in the dielectric 
will be ignored, being much less than the conductor losses for the geo-
metries discussed in this paper. Under considerations similar to those 
for deriving the internal inductance, the equivalent series resistance is 
given by11'12 

sinh  (21g) + 

S. I Po  Ôo   R (29) 

L&. cosh (-28.1') — cos (-28.1")  & cosh (-281.°) — 
W 

The attenuation per unit length of line is given by" 

a  —R (nepers).  (30) 
2Z„ 

Although this expression is rigorously valid only for I RicoI «ILI, it 
will be used in all computations made in this paper. In the case where 

sin (-1.A 

cos (-8;i 
2t 
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R/cdI  I L I, the line will have a significant reactive component in its 
characteristic impedance. Equation (30) for a will then contain a con-
tribution for phase shift as well as attenuation. In this paper I Zo I, 
Re (Zo), and Re (a) will be calculated. 
The equations for crosstalk between adjacent, parallel strip lines 

derived by Kordoe apply directly to tnicrostrip lines of the dimensions 
considered here if the characteristic impedance is calculated by the 
means outlined above. In these cases, Kordos derives an expression for 
the near end crosstalk of properly terminated parallel lines of length, 1. 

V„,(s) 30 In [1 + (tafFV)2P  
[1  e V8(s)  Re (Zo)(ER)  xP (— 2.9r1)].  (31) 

V8(s) and V,(s) are the Laplace transforms of the near-end crosstalk 
voltage and the input signal respectively. The far-end crosstalk is 
approximately zero. This formula is only valid for t„, = 0. For t,„ > 0, 

would be further reduced by the "keeper" effect of the magnetic 
material on the magnetic field of the driven line. 

3.3 Numerical Evaluation 

The formulas given above have been applied to layered substrates of 
the type discussed earlier. The calculations assumed that the strip con-
ductors (Au — 2.5 X 10 °Ç—cm.) should exhibit a resistance of 
0.00412/sq. to give a de resistance <1.52/cm for the narrowest line 

considered, 0.02 mm. This results in t. = 0.00625 mm. Silicon and 
aluminum were considered as possible ground plane materials. The 
maximum doping level in silicon which allows the preservation of a 
smooth surface after processing is approximately 2 X 10" atoms/cma 
which results in a bulk resistivity of approximately 2.5 X io-32- cm. 
The constant parameters used in the calculations are shown in Table III. 
The expressions given in Section 3.2 were evaluated for a spectrum 

of frequencies between 10 MHz and 10 GHz for several physically 
realizable dielectric-ground plane materials combinations with varying 

TABLE III—ELECTRICAL PARAMETERS FOR STRIPLINE 
CALCULATIONS 

(All dimensions in cm) 

pa (Au) = 2.5 X 10-2 
Po (Al) = 2.5 X 10-6  
po (Si) = 2.5 X 10-2 

=100 
t.  = 6.25 x 10-4 

= 6.25 X 10-2 
eR (sintered A1203) = 9.6 
eR (deposited A1203) = 9.0 
en (SiON) = 3.8 
eR (SiO2) = 3.6 
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thicknesses of magnetic material. A representative sampling of the 
results is shown in Figs. 13 through 20. These data are not meant to be 
comprehensive or complete but merely to represent the effects and 
trends observed in the calculations. 
Figures 13 through 16 give Re (Z.) and T as a function of dielectric 

thickness and/or line width. The effect of the large internal inductance of 
Si on Z. and T is especially apparent for thin dielectrics (where the ex-
ternal inductance is small). It is noted in Figs. 13 and 14 that T passes 
through a local minimum at ta ,--, 0.01 mm mils. Below this value (for 
aluminum ground planes) the constant internal inductance is greater 
than the external inductance; and the capacitance, which decreases 
with ta, causes r to decrease with td . Above the minimum, as the in-
creasing external inductance predominates, the fringing capacitance 
does not decrease linearly with td so r rises. As td increases further, the 
equations used in this paper cease to be valid and the inductance will 
not increase linearly with td . 
In Figs. 17 and 18, the solid lines show the frequency dependence of 

the characteristic impedance. The variation of Re (Z.) with ca is partial-

0.24 

Z  r  LINE WIDTH 

0  a  0.025 M M 

•  •  0.05 MM 

•,............... = 
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i I  i  I  I 
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- 
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0.16 

iii 
0.12 e) 

E 

0.08 

0.04 

o 
0.005  0.010  0.015  0.020  0.025  0.050 

DIELECTRIC THICKNESS IN M M 

Fig. 13—Impedance and delay time at 1 GHz for aluminum oxide dielectric on 
aluminum ground plane. 
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Fig. 14—Impedance and delay time at 1 GHz for silicon oxynitride dielectric on 
aluminum ground plane. 

larly large in the case of Si since the frequency independent external 
inductance is small compared to the internal inductance. For pulse 
applications in which an impedance match is desirable over a broad 
frequency range, the situation may be improved somewhat by increasing 
the frequency independent component of the inductance. This may be 
done by loading the line with magnetic material, the results of which 
are shown by the dashed lines in Figs. 17 and 18. The open triangles 
show the unavoidably greater propagation delay times associated with 
the loaded lines. It can be seen from the deriving formulas that only 
the product Aint„, was considered significant, so materials of other 
permeabilities and appropriate thicknesses would be equally effective. 
The losses associated with these lines have been calculated, and a sam-

ple of the results is shown in Fig. 19. Attenuation (dB/cm) is plotted for 
two materials configurations at each of two frequencies for a range of 
substrate thicknesses. The losses are particularly great for silicon ground 
planes (0.0025n-cm) and for small dielectric thicknesses (which result 
in low values of Z.). The losses decrease rapidly as line width increases. 
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The near-end crosstalk for semi-infinite lines is shown in Fig. 20 
as calculated without the influence of the magnetic material. For all 
geometries considered in this paper the near-end crosstalk is below 
4 percent and is typically 1 percent or less. The presence of magnetic 
material would reduce this further. 
For comparison, the transmission parameters of a 5051 microstrip 

transmission line on a conventional 0.625 mm thick Alumina substrate 
are " given in Table IV. 

3.4 Electrical Results 

Effective transmission line interconnections for chip to chip on a 
layered integrated circuit substrate appear realizable. The major dis-
advantages are variation of impedance with frequency, appreciable 
delay times (and variation of delay time with frequency causing pulse 
distortion) and significant losses. These problems can be minimized by 
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Fig. 15—Impedance and delay time at 1 GHz for silicon dioxide dielectric 011 
silicon ground plane. 
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Fig. 16—Impedance and delay time at 1 GEIz for 0.0125 narn thick silicon dioxide 
dielectric on silicon ground plane. 

careful design (for example, judicious choices to t, and gR). The problems 
of delay times and attenuation (characteristics directly proportional 
to the length of the line) will also be reduced by the much greater chip 
packing densities allowable with substrates of high thermal conduc-
tivity. Nonetheless, the high losses encountered with Si ground planes 
(along with its lower thermal conductivity) make this material a dubious 
substrate choice* except for possible special cases in which wide lines 
could be used for all portions of the circuitry where attenuation need 
be considered and where the ground returns for high current lines 
(for example, power supply lines) could be deposited as surface metal-
lization. 
• This configuration (0.0025 0-cm Si asa ground plane) should not be confused 

with the possible use of high resistivity Si (1500 0-cm) as a dielectric with gold 
surface metallization and a metal ground plane. T. M. Hyltin has measured the 
dielectric loss in microstrips with high resistivity Si dielectrics." Such a dielectric, 
when used in the configuration discussed in this paper, would contribute an addi-
tional 0.5 dB/cm attenuation to the attenuation calculated above for aluminum 
ground planes. 
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Fig. 17—Impedance and delay time for silicon oxynitride dielectric on aluminum 
ground plane. 

In the case of aluminum ground planes, the losses on narrow (2 mil) 
lines are probably tolerable for present circuitry with the shortened lines 
due to higher packing. For longer lines, power leads, and so on, it may 
be necessary to use wider lines and connect to the beam leads of the 
integrated circuit chips through tapered section "transformers". The 
impedance transition need not be as great as the desired width change 
would indicate if t. could be increased under the wide lines to compensate 
for the decreased L and increased C. 
Many present applications for lower speed integrated circuit logic 

do not require matched transmission lines for all or any of the inter-
connections. The primary electrical requirement is then the completion 
of interconnects between integrated circuit chips with a minimum 
capacitance to ground. For such applications the narrow conductors 
envisioned in this paper would nearly compensate for the increased 
capacitance per unit length due to reduced &I compared with conven-
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tional 0.625 mm alumina substrates. Use of SiON dielectric (eR = 3.4) 
would additionally improve this situation. Resistive signal loss in this 
application should be negligible since typical input impedances are 
1-2K ohms. The possibility of shortened lead length due to higher 
packing densities on high thermal conductivity substrates then suggests 
the possibility of improved electrical performance. 

IV. CONCLUSIONS 

The advantages to be gained from a layered substrate are substantial 
from thermal considerations. The modifications of the electrical prop-
erties resulting from the layered geometry do not appear to present a 
significant obstacle to the development of such substrates. Indeed 
many improvements in electrical performance appear realizable with 
thin line metallization and transmission line interconnections. Layered 
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Fig. 18—Impedance and delay time for silicon dioxide dielectric on silicon ground 
plane. 
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0.030 

substrates with massive metal ground planes will adequately satisfy 
rigid mounting plane requirements, and the physical configuration of 
unbalanced microstrip lines allows the use of reliable, inexpensive 
thermocompression bonding of a beam-leaded integrated circuit chip 
to the substrate. 
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APPENDIX A 

Averaging Technique for Improved Series Conversion 

Theorem: Let T(N) be a function of varying sign with zero crossings 
enumerated 2,, , 21 ,", zi , zi., ," where jis chosen such that 

dT 
dN 

If 
Z 

E T(N) 
Zi+e 

> 0. 
Z 

E 7(N) 
A"— 

E T(N) 

(32) 

(33) 

Then 

1 T(N) --E I, T(N)  r T(N) -F:e T(N) 
N -n  <  È5 T(N) < N'O -n   •  (34) 

2 
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Fig. 20—Near end ernastalk between adjacent, paralle1:500 microstrip linee 
(4” = 0.) 
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TABLE rv-50ra STRIPLINES ON 0.625 mm ALUMINA SUBSTRATES 
Line width  0.625 mm 
Delay time  0.05 nseciam 
Attenuation  0.048 db/em 
Crosstalk  6.75% 

Proof: (See Fig. 21) 

Write 

from inequality (33), 

SO 

i+1  i+3 

E T(N) > E T(N) 
N 1+2 

> 8 1.3 -  S im) j 

S 

Fig. 21 —Enumeration of extrema and zero crossings. 

z; 
E T(N) = Si  (35) 
N-0 

(36) 

(37) 
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from inequality (32) 

IS, — s „,I >  — 81+3 I 
SO 

ISi — Si +2 I >  — Si+3  I; 

similarly 

s,,, — s,„ I > I  — 81,4 I 

SO 

ISi — 8i+2I > S,,, — S.+3 j >  — 81+4 I. 
Write 

1179 

(38) 

(39) 

(40) 

(41) 

S. = W.  (42) 

Inequality (41) holds for any i chosen in agreement with inequality 

(32) as i —› CO . Then 

I Si — W >  — W > I Si+2 — W  (43) 

define 

but fro m inequality (43) 

and from inequality (32) 

so 

giving 

SO 

From inequality (44) 

A,    —  9 

S, < 

W — Si >  — W, 

S,  Si+1 <21V 

A, < —2TV = W. 
2 

8 1+1 +  8 1+2 
2 

(44) 

(45) 

(46) 

(47) 

(48) 
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but from inequality (43) 

— WI >  WI 

and from inequality (32) 

SO 

giving 

SO 

8 1+3 <  Si+1 

S1+1  W  >  W  8 1+2 

8 8+1 ±  8 1+2 >  2W 

2W 
Ai.' >  = W 

from inequality (47) and (51) 

Ai < W < Ai+1 

and the theorem is proved. 

APPENDIX B 

Edge-ground Capacitance for Microstrip 

The capacitance from the edges of the finite thickness strip above 
the infinite ground plane is equivalent to the capacitance problem repre-
sented in Fig. (22a). This is equivalent to twice the capacitance repre-
sented in Fig. (22b). The conformal transformation W = 5in-1 (z/ td) 
results in the configuration of Fig. (22c). The capacitance per unit length 
of this configuration can be calculated by equations (26) and (27) of 
the text. This results in 

C  [cosh-1 (1 -I-
Pd 

In (1 ± [1 — exp [—  (1 + t,/td)10)1• 

For t. > td , 

cosh-1 (1 ±  in (2  —)• 
td  td 
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ts I 

td 

(a) 

\./ 
v = COSH-1  -, —t3  

Id  • 

Then 

z- PLANE 

tS S ---  2 td ---)el tS 

 X 

( b) 

W- PLANE 

— 7T/2  17/2 

Fig. 22—Conformal mappings. 

c  (21d ± 21,,) + [i ta + 21,  
  in 

/d /  21,/ 1} 

= EfiEd In {21e +  2/  [2(id  t„)(td 2 / . 
—   
7r  Id 

The edge-ground capacitance is then 

c. = 'Lee,  {2td ± 21, + [2(1a ± 1.)(1d  24) 1. 
— ta 
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The Field Singularity at the Edge of an 
Electrode on a Semiconductor Surface 

By J. A. LEWIS and E. WASSERSTROM* 

(Manuecript received February 18, 1970) 

Near the edge of a charged electrode on the surface of a semiconductor, 
the field in the semiconductor may become very large because of the accumu-
lation of charge at the electrode edge. Such large local fields are undesirable, 
not only because they may cause local breakdown, but aleo because they 
make the behavior of a semiconductor device difficult to predict. 
In the present paper we consider a simple mathematical model of an 

electrode edge-semiconductor-insulator configuration and derive conditions 
under which large local fields may be avoided. More accurately, since the 
electrode edge and semiconductor corner angles are assumed to be perfectly 
sharp, we derive conditions under which the local field in the semiconductor 
is nonsingular. It is necessary to include the effect of the surrounding 
insulator, because even for small insulator-semiconductor dielectric constant 
ratios, a field singularity in the insulator will be coupled back into the 
semiconductor. 

I. INTRODUCTION 

Beneath a charged electrode situated on the surface of a semicon-
ductor, at points far from the electrode edge, the electrostatic field is 
regular and quasi-one-dimensional, with its maximum value at the 
electrode. Near the electrode edge, however, the field may become very 
large because of the accumulation of surface charge at the sharply curved 
electrode edge.' Also, the jump in dielectric constant between the semi-
conductor and the surrounding insulating material may produce a 
large local field intensity. Such a field may be so large as to cause ava-
lanche breakdown near the edge, but, in any case, the presence of such 
an edge effect makes the behavior of a semiconductor device difficult 
to predict. 

* On leave from the Technion-Ierael Institute of Technology, Haifa, Israel, when 
this work was performed. 
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In this paper we consider a simple mathematical model of an electrode 
edge-semiconductor-insulator configuration, namely a sharp-edged elec-
trode on top of a semiconductor mesa, as in Fig. 1. We study the be-
havior of the potential, or rather its singular part, in the two wedge-
shaped semiconductor and insulator regions shown in the inset circle 
of Fig. 1, assuming that the potential is locally planar and that its 
singular part satisfies Laplace's equation, both in the insulator and in 
the semiconductor. Since the treatment is local and the electrode edge 
and mesa corner are replaced by mathematically sharp wedges, our 
analysis can only predict the existence or nonexistence of a singular 
field at the edge and cannot produce an estimate of local field strength, 
which depends on conditions far from the edge. 
We derive an estimate of the order of the singularity in the potential 

of the form  = 0(rP), where r is the distance from the corner and 
p > 0. The local field is thus of order  singular for p G 1. We con-
sider p as a function of the semiconductor wedge angle a, the electrode 
wedge angle 0, and the insulator-semiconductor permittivity ratio 
n, for a and e between zero and 1800 and r; between zero and one. 
We find that, to avoid a field singularity, we must make fit greater 

than 900 and a less than 90°. In particular, if we take  = 180°, any 
a less than 900 yields a nonsingular field. Such a configuration might 
be realized, for example, by using an overhanging electrode on an under-
cut semiconductor mesa, as in Fig. 2. The length of the overhang must 
be several Debye lengths for small electrode potential and several 
depletion layer thicknesses for large reverse bias, in order that the 
present theory be applicable. 
Figure 3 summarizes our principal results. It gives the range of a, 

for 90°  180°, 0  n  1, within which the field is nonsingular. 

Fig. 1—Mesa with sharp-edged electrode. 
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= iao° 

dware. d, 

Fig. 2—Overhanging electrode on undercut mesa. 

It should be noted that our results apply without modification to edge 
fields in capacitors and, with the appropriate interpretation, to steady 
temperature fields in conductors. In the latter case, it would be interest-
ing to study the corresponding thermal stresses, as, for example, in a 
glass-to-metal seal. 

II. A MODEL OF THE ELECTRODE EDGE 

We consider the electric field in a current-free semiconductor, near 
an electrode edge whose cross-section is sketched in Fig. 4. The sketch 
shows a typical semiconductor mesa with corner angle a, surrounded 
by insulating material, and supporting an electrode with corner angle 
0. For given insulator-semiconductor permittivity ratio n = €0/ei 
for air-silicon, 0.3 for silica-silicon), we wish to choose a and 13 to avoid 
local field singularities. 
In the semiconductor the dimensionless potential cp satisfies an equa-

tion of the general form 

V2ite = j(4,0),  (1) 

where the Laplacian operator is made dimensionless with the Debye 
length for small potential and by the depletion layer thickness for large 
reverse bias (see, for example, Ref. 2). "Large" or "small" distance then 
means large or small with respect to one of these typical lengths. In 
particular, we shall assume that the electrode is so large in a direction 
perpendicular to the cross-section that the local field may be treated 
as planar. 
We seek solutions of equation (1) which have field singularities at 

the vertex r = 0, that is, a bounded potential ço such that IV ço I is 
unbounded at r = 0. In the neighborhood of such a singularity the in-
dividual second derivatives which make up the Laplacian will be very 
large, although they must combine to make the Laplacian equal to the 
bounded function f().  As far as the singular part of the solution is 
concerned then, the specific form of f((p) is unimportant and we can in 
fact set f (ço) equal to zero. The singular solution then satisfies Laplace's 
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Fig. 3—Bounds on semiconductor angle a as a function of electrode angle /3 for a 
nonsingular field. 

equation 
\ rep  =  32,/3„2 acp/r  a, + a2,p/„2 4,02 = 0, (2) 

in the neighborhood of r = 0, both in the semiconductor (0 < O < a) 
and in the insulator (a < O < 27r — 0). At the electrode faces we have 
the boundary conditions 

e(r, 0) = (per, , 2r — 0) = 1, (3) 

while at the semiconductor-insulator interface, in the absence of surface 
charge, we have the continuity conditions* 

* As we shall see, no matter how small t? is, equation (5) couples any singularity 
in the insulator back into the semiconductor. Satisfaction of this condition is an 
essential feature of the problem. 
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INSULATOR 

// 
a' 

ELECTRODE 

SEMICONDUCTOR 

Fig. 4—Semiconductor-electrode edge configuration. 

çofr,  = cio(r, a+),  (4) 

aio(r.«-)/ao = tlaio(T, al/a9.  (5) 

We now expand ço in positive powers of r, setting 
OD 

1+ E Ake sin pkO, 
ip(r, 0) = 

for 0  0 a, 

+ E Bo" sin pk(27 —  — 0), for a  O 27r — 0, 

satisfying equation (2) and boundary condition (3). The A's, B's, and 
p's are chosen to satisfy the continuity conditions (4) and (5), which 
take the form 

A sin pa — B sin p(27I- —  — a) = 0, 

A cos pa ± „B cos p(27r — f3--  a) = O. 
These equations have a nontrivial solution only if the coefficient deter-
minant vanishes, giving the characteristic equation for p 

n sin pa cos p(27r — a — a) ± cos pa sin p(2ir —f3  — a) = 0.  (6) 

We wish to find the smallest positive value of p which will satisfy this 
equation, as a function of a, a, and n. For this value of p we have 

— 1 = 0(e), 

Vqj =  

singular for p < 1, in the neighborhood of r = 0. 
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III. THE FLAT SURFACE AND THE MESA 

Before treating the general problem, let us consider two special cases, 
in order to gain insight into the behavior of p as a function of a, e, and 
n. In the very common case of a thin electrode (13 = 0) on a flat semi-
conductor surface (a = ir), as in Fig. 5, the characteristic equation (6) 
reduces to 

sin pm- cos p7r =-• 0,  (7) 

for all n. It is satisfied by p = 1, p =  the latter being the smallest 
value of p. In this case, near the electrode edge the field is singular, like 

no matter what insulating material is used. This is the same singu-
larity as that obtained in the classical Weber problem of the disk elec-
trode. The same local behavior was also found in Ref. 3, where a closed-
form solution of the above problem was derived for the linearized 
semiconductor equation and n = 0, n = 1. 
Now let us attempt to reduce the singularity by cutting away the 

semiconductor, placing the electrode on top of a mesa, as shown in Fig. 
6 for a = /112. For n = 0 this configuration gives a one-dimensional, 
regular field, normal to the electrode, so that we might expect that it 
would be advantageous for small n. With a = 0, a = w/2, equation (6) 
becomes 

fl sin a2r cos 3-nr + cos ar sin 3-ar — 0' (8) 
2  2  2 —  

satisfied by p = 1, for all n. However, note that, for i = 0, it also has 
the smaller root p = 1 If we examine the equations for A and B, we 
find that, in this case, A = 0, so that the root p = î gives a singularity 
only in the insulator for n = 0. However, a perturbation for small posi-
tive n shows that A is of order n, so that the singularity is coupled back 
into the semiconductor for any positive n, no matter how small. 
On the other hand, for r) = 1, the smallest root of equation (8) is 

p  ¡. In this case p is independent of a, for n = 1 corresponds to a 
single dielectric filling the whole space around the electrode. Now, if 

P = 0 

INSULATOR   

/  SEMICONDUCTOR 

Ck = 

Fig. 5—Flat semiconductor surface. 



SEMICONDUCTOR SURFACE  1189 

fi = o 

7 .,._ INSULATOR  /7 1_   

/ 
MESA 

Fig. 6—Right-angled mesa corner. 

p is a continuous function of n, its value for 0 < n < 1 must lie between 
the value for n = 0 and the value for n = 1; that is, we must have 

< P < 

for 0 = 0, a = ir/2, and 0 < n < 1. For small n, the singularity is weak-
ened in some sense, but not removed, by the formation of a mesa. 
These two special cases indicate that the calculation of p = p(a,  n) 

is not completely straightforward. They also suggest that the simple 
cases n = 0, n = 1 can be used as a framework for the general calcula-
tion. 

IV. LIMITING VALUES OF PERMITTIVITY RATIO 

Let us first consider the case n = 1. In this case equation (6) becomes 

sin p(27r — e) = 0, 
independent of a, as one would expect. Its smallest positive root is 

P = p(a, a, 1) = p(í3) = 7r/(27r — 0),  (9) 

singular for e < ir. Those familiar with potential theory will recognize 
this as the singularity at the tip of a wedge-shaped electrode, protruding 
into a uniform dielectric. It has been studied in detail by Wasow, 
Lehman, and Joyce. " 
The other limiting case n = 0 gives two roots. Equation (6) becomes 

cos pa sin p(27r —  — a) = 0, 

with the roots 

P = p(a, a, 0) = P(a) = 7r/2a, 

p = p(a, 0, 0) = p(a, (3) = ir/(27r — 

The first of these roots gives a singular field in 
a> ir/2; the second gives a singular field for a ± 
only, for n = 0) but weakly coupled back into 
small positive n. 

(10) 

— «).  (11) 

the semiconductor for 
< ir (in the insulator 

the semiconductor for 
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For 0 < n < 1, p must lie between pi and the smaller of the two 
values p71, p . Now pt > pt for a < (27 — 0)/3, so that p lies between 
pi and p+c, , for 0 5 a  (2r — 13)/3, and between pl and 7071 , for (2r — 

a 5 7. Also p; < pi , for a > (27r — 0)/2, so that we finally 
obtain the series of bounds listed below: 

7r ir   
27 -13 <p < air —o —a , for 0 <a < 27 -13  3 ' 

 < p < 
2w —  2a ' 

for 2r — a 2r —  
3  <  <  2  ' 

7r — e  < P <  2w— $'  for  2  < a < 7r, 

(12) 

(13) 

(14) 

Now the largest value of the upper bound is attained at the point where 
the upper bound of equation (12), an ascending hyperbola as a function 
of a, meets the upper bound of equation (13), a descending hyperbola, 
that is at the point a = (2w — 0)/3, where p = 3r/2(27 — 0) = p. 
For 0 < w/2 this maximum is less than unity, so that a field singularity 
can be avoided only by choosing the electrode angle 0 greater than 90°. 
Similarly, the upper bound of equation (13) implies that the semi-
conductor angle a must be chosen less than 90° to avoid a field singu-
larity. 
A particularly simple way of satisfying these requirements is the 

combination of overhanging electrode (0 = 7) and slightly undercut 
semiconductor mesa (a S 7/2) shown in Fig. 7. In order that the theory 
be applicable, the length of the overhang must be several characteristic 
lengths, i.e. several Debye lengths for small electrode potential and 
several depletion layer thicknesses for large electrode potential. The 
mesa corner needs to be undercut only enough to be certain that a is 

= Ir 

c.e< el 2 

MESA 

Fig. 7—Overhanging electrode on undercut mesa. 
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never greater than 900, within fabrication tolerances. In Section V we 
document these preliminaries. 

V. ARBITRARY PERMITTIVITY RATIO 

For detailed calculations it is convenient to rewrite the characteristic 
equation (6) in the form 

(1 ± n) sin p(27 — /3) + (1 — n) sin p(27 —  — 2a) = 0  (15) 

from which it is a simple matter to calculate the derivative 

'22  2(1 —7/)p cos p(27-0— 2a)   
aa — (1 -1-7/) (27 — /3) cos p(27-0)± (1 —71)(27-0— 2a) cos p(27 — /3 — 2a) 

(16) 

Now, whereas it is difficult to solve equation (6) directly for p as a 
function of «, 0, n, because of the existence of neighboring higher roots, 
it is a simple matter to integrate equation (16), starting from a = 0, 
where p =  (27 — 13) for all n. This calculation was carried out for 
n = 0, 0.1, 0.3, 0.5, 0.7, 1.0 and for 0 = 0, 7/2, 37/4, T. The results are 
shown in Figs. 8 through 11, for the two lowest branches of p.* As 
Section IV predicts, a nonsingular field (p  1) becomes possible only 
for 13  7/2, with the range of permissible values of a and n, increasing 
from a = w/2, n a= 0, at e = 7/2, to 0 < a < 7/2, O < n < 1, at 
fi = 7 . 

This range of values of a for given 0 and n is easily found. If we set 
p = 1 in equation (15), we find that it is satisfied by two values of a, 
which bound the permissible range for a nonsingular field. Figure 3 
shows the result of this elementary calculation. For example, for 0 --
37/4,  = 0.1, the field is singular for a < 0.2917 = 52.5°, regular 
for 0.2917 < a < 0.4597 = 82.5°, and singular again for larger «. The 
slanting dashed line gives the minimum value of it and the correspond-
ing value of a, for which the field is nonsingular for given n. 

VI. ACKNO WLEDGMENT 

This problem was suggested originally by S. Sze. The authors profited 
from several illuminating discussions with J. McKenna. The calculations 
were carried out by Miss Judith B. Seery. 

* Two branches are shown to indicate the topology, although of course only the 
lower branch is of interest. 
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Determination of the Shape of the Human 
Vocal Tract from Acoustical 

Measurements 

By B. GOPINATFI and M. M. SONDHI 

(Manuscript received January 14, 1970) 

In this paper we describe methods for determining the cross-sectional area 
function of the human vocal tract from acoustical measurements made at one 
end. The pressure and volume velocity are assumed to obey Webster' s horn 
equation, which is valid for frequencies below 3.5 kHz. Acoustical 
properties below 3.5 kHz do not uniquely specify the area function. This 
paper shows how high frequency information may be incorporated into 
the mathematical model in a manner consistent with a priori information 
about the vocal tract. Some results of application of the methods by computer 
simulation are presented. It is interesting to see from the figures that nine 
numbers (namely, length, four formants, and four residues) specify the 
area function quite well for practical purposes. 

I. INTRODUCTION 

In recent years there has been considerable interest in the modelling 
of speech production in terms of the motion of the articulators. This 
interest has stimulated work on the determination of the shape of the 
human vocal tract as a function of the utterance. For frequencies less 
than 3500 Hz, wave motion in the vocal tract is essentially planar, so 
that the shape is effectively specified by the cross-sectional area as a 
function of distance from one end of the tract (say from the glottis). 
During the past two decades X-ray techniques have been used to 

determine these area functions. These techniques suffer from two major 
drawbacks: (i) In order to keep the exposure to X-rays within safe 
dosage limits, only a small number of measurements can be made on 
any one subject; (ii) The interpretation of X-ray data is a complex 
and difficult art, and a number of assumptions must be made in order to 
convert this data to area functions. The accuracy with which area func-
tions are reconstructed is rather limited. 

1195 
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In 1965, Mermelstein and Schroeder suggested the new approach 
of inferring the area functions from acoustic information.' Under the 
usual assumptions of lossless plane wave propagation, they showed that 
if the area function A (x) of a vocal tract of length 1 is of the form 

x 
log A(x) = log A° ± E a„ cos nir (1) 

rx I 

then in the limit as an —> 0 for all n, the nth eigenfrequency (with the 
tract closed at x = O and open at x = 1), is given by 

X,, = X0„(1 —  (2) 

where X„„ is the nth eigenfrequency of the uniform tract (a„  0, n = 
1, • • • ). Likewise, to the same approximation the nth eigenfrequency 
with the tract closed at both ends, is given by 

m. = go.(1 —  (3) 

Using equation (2) to obtain a2.+1 from con , Mermelstein and Schroeder 
obtained antisymmetric approximations to area functions from a knowl-
edge of formant frequencies alone. This work was extended by Schroeder' 
and Mermelsteina to include the even-order coefficients [using measured 
values of the poles and zeroes of the input admittance at the lips, which 
correspond respectively to the X's and g's in equations (2) and (3)]. 
An extension was also made by Mermelsteid who devised an iterative 
algorithm to compute the first 2m coefficients in equation (1) from a 
knowledge of (X, • • • X,,,, gi • • • 1.4„,), when the perturbations of the 
eigenvalues are too large for first order perturbation theory to be ac-
curate. Another iterative scheme has been obtained by J. Heinz, by 
applying perturbation theory to tracts of arbitrary shape.' 
These methods are applications of very general techniques (namely, 

perturbation theory and steepest descents) which do not make use of 
the special characteristics of the problem at hand. They also leave 
unanswered certain mathematical questions such as the convergence 
of the iterative procedures and uniqueness of the solution. 
In this paper, we describe two (noniterative) methods for computing 

the area function from acoustical data. Apart from clarifying the 
physical and mathematical aspects of the problem, these methods 
provide solutions in a form suitable for analyzing the sensitivity of 
the reconstructed area functions to inaccuracies of the data. They 
also enable us to answer such basic questions as: "What tube has all 
but a finite number of eigenvalues identical to those of a uniform 
tube?" 
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In Section II we introduce the wave equation and Webster's horn 
equation and list the basic properties of the solutions and eigenfunctions 
of the horn equation under homogeneous boundary conditions. 
In Section III we present a method for computing the area function, 

based upon the factorization of the kernel of an integral operator which 
transforms solutions of the horn equation to the solutions of the equa-
tion for a uniform tract. The existence of such a transform was proved 
by Marchenko,5 and the transform has been used in the solution of 
the inverse-Sturm Liouville problem by Gelf and and Levitan.° 
In Section IV we present an alternative method for computing the 

area function based upon the solution of an integral equation whose 
kernel is the driving point response to an impulse at one end of the 
tract. This integral equation was introduced without derivation by 
Krein in a paper on an application of his theory of extensions of positive 
definite kernels." Our derivation is physically motivated and uses only 
elementary theory of forced motion of a second order system. 
In Section V we present preliminary results of an application of 

our methods to the determination of vocal tract shapes and a comparison 
with X-ray derived data. Figures 3 through 9 show the results of these 
computations. 

IL MATHEMATICAL PRELIMINARIES 

For a tube of variable cross-sectional area A (x) the equations relat-
ing acoustical pressure p and volume velocity V are 

ax  A(x) at 

ax —  pc2 8t ' 

under the assumption of lossless plane wave propagation in the tube. 
These assumptions are accurate for the vocal tract for frequencies 
up to about 4 kHz. For convenience we will choose units such that 
the velocity of sound c= 1, the density of air p = 1 and the length 
of the tube is Ir. Then elimination of V in equations (4a) and (4b) 
gives 

(4a) 

(4b) 

a 0 5 x 5 r;  (5) 
ax 

and for sinusoidal time dependence, such that p = cp(x, X)e'''' the 
function cle(x, X) satisfies 
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a  34,(x 2 
ax'x) ± X A(x)cp(x , X) = O  O  x <ir (6) 

ax 

which is Webster's horn equation. Throughout this paper it will be 
assumed that A(x) > O (0  x  7r), A(0) = 1, and that A(x) has 
continuous first and second derivatives except at a finite number of 
points in [0, ir]. At the points of discontinuity A(x) and its first two 
derivatives are assumed to have finite right and left limits. Under these 
conditions on A (x) the following lemma holds. 

Lemma 1: The solution of equation (6) satisfying the initial conditions 

ck(0, X) = 1,  e(0, X) = 0  (7) 

exists, and 

[A(x)]q5(r, X) — [110(x)]4(x, X) I  (8) 

where 

0  K < co ,  0  x  7r, 

and ex, X) is the solution of equation (6) with the same initial conditions 
and A(x) replaced by a canonical shape Ao(x). The function Ao(x) is 
such that A0(0) = A(0) = 1, A0(x) is constant everywhere in [0, r] except 
at points of discontinuity of A(x) where it jumps by the same factor as 
does A(x). 

The proof of this lemma is given in Appendix A. 
The solutions of equation (6) satisfying the initial conditions (7) 

become eigenfunctions if they satisfy some homogeneous boundary 
condition at x = 7r. These eigenfunctions and eigenvalues have well 
known properties which for the specific case cb(r, , X) =- 0 we summarize 
in the following lemma. 

Lemma 2: If A(x) satisfies the conditions described above, then there 
exists a sequence Xi (the eigenvalues) satisfying 

(i) X, > 0, Xi —› ao as i Go ; 
(ii) 0(x, Xi) are solutions of equation (6) satisfying the initial conditions 

(7) and the condition ck(ir, X;) = 0; (8a) 

fT A(x)40, x,,,xx,  dx  0, i j, 

(9) 
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with 

O < a < œ; 

(iv) ex, X;) are complete in the space L2(0, ir) of square integrable 
functions. 

An immediate consequence of Lemmas 1 and 2 is the following corol-
lary. 

Corollary 2.1: If g, is the sequence of eigenvalues for the canonical tube 
Ao(x), with the conditions at x =- 0 and x = ir as in Lemmas 1 and 2, then 

1 
Xi = bli ± 09  (10) 

and the a: of Lemma 2 satisfy 

= f A0(x)4,2(x, !Li) dx  0(3) 

= '72t  o(il) 

where 1,1/ is as defined in Lemma 1. 

Finally we will require the following lemma. 

Lemma 3: There exists a function H(x t) such that 

[Ao(x)]1,1,(x, X) = [A(x)]40(x, X) + foe H(x, 0[A(t)]c1)(1, X) dt.  (12) 

This can be proved by substituting equation (12) into equation (6). 
After trivial, but involved, algebra (see Appendix B) it turns out that 
for (12) to be true, H(x, 1) must satisfy the following: 

eif(s  {[A(1)]i" H(x  = 0 ( at2' +  [A( 0  t)  13) ax2  

H(x, x) — — 1 r   dl — {[A(x)]31' I.-o  (14) 
2 o [A(t)] 

I[A(1)]iVigx, I) II-0 — 811(x ' 1) 1 = 0 • 

The theory of partial differential equations guarantees the existence 
of a solution to equation (13) under the boundary conditions (14) 
and (15). 

(15) 
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III. DERIVATION OF A (x) FROM THE SPECTRAL FUNCTION OR TWO SETS 
OF EIGENVALUES 

The spectral function is defined as a staircase function of X with jumps 
of a; at X; (i = 1, • • •). Thus to say that the spectral function is known 
is equivalent to saying that the pairs (Ai, ot;) i = 1, • • • are known. 
Appendix C shows that if X; (i = 1, • • •) are the eigenvalues of the same 
tube for the conditions cp'(0, X) = 0, OA X) = 1, afgr, X) ± be' (11- , X) = 0, 
(b 0 0), then a knowledge of the pairs (Xe, X;), i = 1, • • • specifies 
the spectral function. Also, in Section IV it will turn out [see equation 
(27), with x = 0] that X. is the ith pole of the driving point impedance, 
and 1/2a; the corresponding residue. 
We now derive A (x) , given the spectral function. In cases where A (x) 

has continuous first and second derivatives the spectral function 
suffices to uniquely determine A (z). In cases where A (x) has a finite 
number of discontinuities, the locations and magnitudes of the jumps 
are also assumed to be known. Note that equation (12) may be written 
in symbolic form as 

[Ao(x)]lii(x,  = (I + II)cp(x, X)[A(x)]4 (16) 

where I is the identity on (L2[0, ir]) and H the integral operator such 
that 

g = Hf <=, g(x) =  H(x, 1)1(1) dl.  (17) 

Define the operator U which takes a square summable sequence of 
real numbers f, , i = 1, 2, • • • to a square integrable function /(x) 
[on (0, 1r)] defined as 

f(z) =  f1[A(x)]4(x, Xi)/a •  (18) 

Define the adjoint operator U* which takes a square integrable function 
f(x) to a square summable sequence f , given by 

'r f  1 j =  (40(x , XJ[A(x)]1 dx  i  1, • • • .  (19) 
ai  

Let R and R* be defined analogously to U and U*, with [A (x)]q5(x, X,) 
replaced by 1,b(s, X;)(Ao) in equations (18) and (19). 

Then 

R = (I ± H)U 
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and 

RR* = (I ± 11)UU*(I  H)*.  (20) 

However, from the completeness and orthogonality of the [A(x)]4(x, 
it follows that UU* = I. Thus 

RR* = (I ± H)(I  H)*.  (21) 

Note that 

[(RR*  _ f f(t)  E  's  J,i) 'MY', "1) 4 0, Mi)IP(tr MA)) 
2 

r  co  \J 

0  

• [A0(1)A0(x)]1 dt  (22) 

(because [A0(x)] ex, u,)/'y, is an orthonormal and complete sequence). 
From the asymptotic formulae of Lemma 1, it is seen that the kernel 

of the operator RR* — I is of the Hilbert-Schmidt type [that is, square 
integrable on the square (0  x, t < 7r).] Therefore, if the Xi , a, cor-
respond to those of a tube with appropriate boundary conditions then 
the factorization of equation (21) is always possible. 
This essentially completes our derivation. For the kernel of RR* 

can be constructed if the X,'s and ty,'s are known [and in the case of 
discontinuous A(x), the positions and magnitudes of the jumps are 
also known]. The factorization (21) then gives H(x, t). Finally, since 
(I)(x, 0) = 1 and 1,G(x, 0) = 1 (0 < x ir), equation (12) gives 

[A(x)]  f 2 H(x, 1)[A(1)P dt  [A,,(x)]e  (23) 
o 

which can be solved for [A(x)]. 
Although, in general, the factorization of equation (18) is difficult, 

we will show in Section V an effective method of computation when 
all but a finite number of X ,'s and cx,'s are identical to the corresponding 

1.4.,'s and 7,'s. 

IV. DERIVATION OF THE AREA FUNCTION FROM THE INPUT IMPEDANCE 

In this section, for simplicity, the area function and its first two 
derivatives will be assumed continuous. Consider the forced pressure 
response y(x, t) in the tube, due to a unit ramp r(t) of volume velocity 
at x = 0. This may be obtained by including a term 3(x)r(t) on the right 
hand side of equation (4b). The resulting equation for y(x, 0 is 

_a A(x) ay(x, 1) A(x)  (92y(x, 1) ô(x)u(t) (24) 
ax  ax  at2 
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where u(t) is the unit step. Integrating equation (24) over x from 0 
to a gives 

A(a) —ay  — A(0)  — f A(x)Z(x, t) dx = —1  t 0. (25) 
o 

In this equation we have put u(t) 82y/8t2 = Z(x, t); it is the transfer 
impedance (in the time domain) from the input end to the point x. 
However (ay/ax) = 0 at x = 0 because of the boundary condition. 
Also, since the velocity of sound has been normalized to unity, for 
t  a the region of the tube beyond x = a is undisturbed. Thus for 
t a, A(s) ay/ax = 0 for x  a. Thus equation (25) becomes 

A(x)Z(x, t) dx = 1  0 5 t a.  (26) 

By expansion in terms of ck(x, Xi) it can be verified that 

Z(x, t) — 82Ye, _ f sb(x, X1) cos X,t 
2 t _k• 0 (27)  I 

where the convergence is assumed to be in the sense of distributions, 
and çbi , ai , Xi are as defined in Section II. 
Let f(t) be a function such that 

f(t)Z(x, t) dl = 1  x 5 a.  (28) 

Then by substitution into equation (26) it follows that 

L 
a 
f(t) dl = f A(x) dx. (29) 

The interesting duality in equations (26), (28), and (29) enables deter-
mination of A(x) in terms of Z(0, t) rather than Z(x, t). Multiplying 
equation (28) by A(x)Z(x, s), integrating over x and changing order 
of integration on the left-hand side we get 

f(t) dt f A(x)Z(x, t)Z(x, s) dx = f A(x)Z(x, s) dx t < a. (30) 

For s < a, the right-hand side equals unity by virtue of equation (27). 
On the left-hand side the integration limits on x can be changed to 
(0, ir) since Z(x, t) = 0 for x > t. Then substituting for Z(x, t), Z(x, s) 
from equation (27) and using the orthogonality equation (9) we get 

r . (t) E  cos Xis fos X it — 1,  s a.  (31) 
Jo CE; 
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[Equation (31) may also be obtained by multiplying equation (28) 
by [A (x)]i and using the linear transformation of Section III.] Defining 
At) = 1(1 t1), I t  a we note that 7(t) satisfies 

J(t)  L r.  z cos xis cos xit ± sin Xe X - sin  t dl — 1  1 s I a (32) .  2  I  
ce, 

since sin XI is odd. From an elementary trigonometric identity it then 
follows that 

L ra . Aim°, I I _ s i) dt = 1  s  a  (33) 

and, from equation (29) 
a 

f(t) dl = f A(x) dx.  (34) 

Thus, if Z(0, t) (which is the driving point impedance function at x = 0) 
is known, or measured, then solution of equation (33) for each a gives 
the area function. [Note that to get A(x) for x 5 a, Z(0, t) is required 
for t 5 2a, as expected from physical considerations.]* 
We close this section by noting that although we have discussed 

the method in terms of measurements made at x = 0, where the bound-
ary condition corresponds to a closed end, trivial modifications are 
needed if measurements are to be made at an open end. In the latter 
case since the pressure vanishes, 8v/Ox = O. Therefore, the same method 
is applicable to the horn equation for volume velocity, with a measure-
ment of driving point admittance (instead of impedance). The driving 
point impedance (admittance) may, of course, be evaluated from 
measurements at any end with an arbitrary, known, termination. 

V. APPLICATION OF THE METHODS TO DETERMINING VOCAL TRACT AREA 

FUNCTIONS 

As noted in the introduction, the one dimensional Webster's horn 
equation is an accurate description of wave propagation in the vocal 
tract, only for frequencies less than about 3.5 kHz. Hence the Xi of 
Section II have no physical counterpart whenever they exceed 3.5. 
We therefore start with the X, and ai (i = 1, • • • n) as measured data, 
and assume that for j> n, the X, and ai are identical with those of some 
canonical tube. In view of the asymptotic formulae of Section II, 
this assumption is reasonable. 
* For another derivation of equation (33) see Appendix D where it is further 

shown that f(a) = [A(a)]In. 
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We know of no a priori method for choosing the canonical shape so 
as to give the best match between the computed area functions and 
those of the actual vocal tract. For simplicity one might assume the 
canonical tube to be uniform. However the experimental area functions 
published by Fane all show a sharp discontinuity at the epiglottis, 
which suggests choosing a canonical tube with such a discontinuity. 
We have tried both these canonical shapes. 
Once a canonical shape has been chosen, a; , Xi , ex, X,) and «x, 
= 1, • • • n may be computed. Under the assumptions of this section, 
the factorization of equation (21) can then be carried out in the following 
manner. 
We use the vector notation 

e(x) = ['(x, X.)/, , • • • ,  X„)/a„ , 

, • • • , «x, ;4J/1'J 

e(x) = [11/(x, X.)/a1  , • • • , ex, X„)/an 

—44x, 4,)/7, , • • , — e(x, ur,)/Y] 

where k1(x) and k2(x) are n-dimensional column vectors and the super-
script T denotes transposition. Then the kernel of equation (22) be-
comes 1g(x)k2(t), and it is easily seen that H(x, 0 has the form 

H(x,  = k(x)h(t)  x > t  (35) 

where h(t) is some vector function of t. Then equation (18) becomes 

k(x)k2(t) = k(x)h(t)  kr(x)[r h(o-)hr (a) dcriki(t)  (36) 
o 

as long as X,  ¡Li , i = 1, • • • n. (If X, =  for some i, a slight modifica-
tion is necessary.) However, from the linear independence of the com-
ponents of ki(x) it follows that 

k2(t)  h(t)  [f h(o-)hr (cr) dolk1(1).  (37) 
0 

Equation (37) can be solved for h(t) by the analog circuit shown in 
Fig. 1, or by an equivalent computer simulation. Also, since equation 
(23) now becomes 

[A(x)1' + kT(x) j h(0[21(0]' =  (38) 
0 

the analog circuit of Fig. 2 yields [A (x)}. 
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Fig. 1—Analog computer circuit for computing h. 

The results of such computations for some area functions published 
by Fane are shown in Figs. 3 through 9. 
We close this section by noting that if the experimental data is in 

the form of a driving point impulse response, then the simplest procedure 
is to use the method of Section IV [that is, to solve equation (33) for 
various values of a]. We have not computed area functions by this 
method so far, but propose to do so, using impedance tube or other 
experimental data. The limitations due to the inapplicability of the 
horn equation at high frequencies apply to this method as well. The 
effect of low-pass filtering the driving point response is being inves-
tigated. 

VI. CONCLUSIONS AND DISCUSSION 

The comparison between measured and computed area functions 
of Figs. 3 through 9, indicates that knowledge of the first few (X, «) 
pairs is sufficient to get reasonable estimates of the area function. 
The X's may be obtained directly from the speech output, since they 
can be computed with reasonable accuracy from the formant frequencies. 
The a's on the other hand cannot be computed directly from the speech 
waveform, and impedance tube or other equivalent measurement would 
appear to be necessary. However, the vocal tract has physical con-
straints which might be reflected in a functional dependence of the 
a's on the X's. The possibility of such functional dependence is being 

(A0)112   - (A)'/2 

Fig. 2—Analog computer circuit for computing A. 

h 
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(E) 

Fig. 3—Area functions reconstructed from the first three poles and residues of 
input impedance by the method of Section V using a uniform canonical tube. 
Dashed curves are the X-ray measurements. 

investigated. The sensitivity of the computed area functions to changes 
in the a's is also being investigated. 
If one is willing to make acoustical measurements at the lips, then 

the method of Section IV is the most direct way of computing the area 
function. It has the added advantage that the length of the vocal tract 
need not be known. Some preliminary results on the effect of band-
limiting the impulse response have been obtained and will be reported 
in a later paper. 

APPENDIX A 

Proof of Lemma I 

Under the assumptions of this lemma, equation (6) may be trans-
formed to: 

{[A(x)]e(x, y)1"  X2[A(z)]k0(x,  = {[A(x)]11"(P(x, X)  (39) 
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except at the points x1, • • • xk , where A (x) is discontinuous. With 
xo = 0 and xh,.1 = w, equation (39) gives 

[A(x)lige(x, X) 

sin X(x — t) [A0)]11" = Mx, X) + fx, [A(t)]ç(t, X) dl, 

xi < x  xi.i , i = 0,1, • • • ,k  (40) 

where 

1,(x, X) = a,(X) cos Xx  b(X) sin Xx. 

The coefficients ai(X), b(X) are to be determined so as to make (p(x, X) 
and A(x)io' (x, X) everywhere continuous. (The conditions at x = 
give a0(X) = 1, b0(X) = 0.) Clearly for every X there exists a bound 
mi(X) = sup I [A(x)]ice(x, X)1, xi x  xi+1  . Then from equation (40), 

Fig. 4—Same as in Fig. 3, except the canonical tube was chosen with a dis-
continuity at the epiglottis. 
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1  
nt.(X)  Mx, X) I  m e) f  sin X(x —  11 MOW 

5_ [e(X)  b2,(X)]/  M m(X)/X 

where M is a bound on the integral for all i. Thus for X > 2M, 

[A(x)]ço(x, X) I 5_ 2[e(X)  b(X)]1 

2-y,(X). 

CROSS-SECTION
AL AREA 

(b) 

DISTANCE  FROM GLOTTIS 

Figs. 5-9—Area functions reconstructed from the first four poles and residues: 
(a) the reconstruction using a uniform canonical tube, and (b) the reconstruction 
with a discontinuous canonical tube as in Section V. Dashed curves are X-ray 
measurements. 

DISTANCE  FROM GLOTTIS 
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AL AREA 
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DISTANCE  FROM GLOTTIS 

DISTANCE  FROM  GLOTTIS 
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Then from equation (40), 

[A(x)]iço(x,  =  , X) + '11(X)c1(x) xi < x <  (43) 
' 

where ci(x) is bounded. Differentiating equation (40) and using a 
similar argument gives, 

[A(x)]1 arie(x, X) 1 afi(x, X)  
X  ax  ax  — 'Ye) di(x)/X,  xi <x <x +, (44) 

with d1(x) bounded. Defining 

[[A(xi+)/A(xi —)li 

and 

Ri 

sin Xxi 

the continuity conditions at xi give: 

[ai(X)1 = Rik; Ri[ai_ I (X)] 

b1(X)  b1-i(X) 

[cos Xxi sin Xxii 

— cos Xx; 

X _  R1 H () 

L.LX1  C1( 4 1. 

X   

Since the norm of Ri is unity and of ki finite it follows upon taking 
the lengths of the vectors on either side of equation (45) that for large 
enough X, 7,(X)  (X), for some finite constant K'. Since 70(X) =1, 
it follows that 'y (X) is bounded for all i, as X  co . Then from equation 
(45) 

(45) 

Lail =  [ 0(1-1)•  (46) 

bi_  However, if if a, bi satisfy equation (46), then fi(x, X) = [A.,,(x)]11,14x, X) + 
0(1/X) for x; x  x,+, , therefore from equation (43) 

EA(x)lie(x) = [11.(x)]4(x)  (47) 

with c(x) bounded. 
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APPENDIX B 

Existence of the Linear Transformation of Equation (12) 

In this appendix we prove the existence of the linear transformation 
of equation (12). Consider first the region 0  x  x1, where x1 is 
the first point of discontinuity of A (x). Then with y(x) = [A(x)]4(x, X) 
and q(x) = {[A(x)]1"1[A(x)], equation (6) becomes 

Y"(x) = — X22/(x)  q(x)Y(x).  (48) 

Consider the function 

et(x) = f H(x, t)y(t) dt. 
• 

Then 

(49) 

= c•u[H(x, x)y(x)] 

ii(x , + a   +  a211 a(xx2s ax  y(t) dt.  (50) 

After integrating twice by parts we arrive at the identity 

f2 8211 (s, t)  o ai2  y(t) dt _ aIgs , 1)  al Y(1) 
e.x  t-o3 

—H(x 
•••,)  dt ..o 

▪ fo H(x, t) cll2 ▪ dt.  (51)  

Substituting for dylde from equation (48) into equation (51) and 
adding equation (50) we get 

[821-1(x, 1) 8211(x t)  
al.' + q(1)11(x • t)] 91"(x) + X291,= ax2 

• y(t) dt  2y(x)  H(x, x) 

▪ if(x,  e 
— y(1) at  t_o dt  •  (52) 

If now H(x, t) satisfies the differential equation (13) with boundary 
conditions (14) and (15), then equation (52) shows that et(x)  y(x) 
is some linear combination of cos Xx and sin Xx. Matching of boundary 
conditions at x = 0 then shows that 

et(x)  Y(x) = cos Xx = [Ao(x)] ex, X),  o e_  . (53) 
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The proof may be extended to x > xl by a similar procedure. Thus, 
for example, in the range x,  x  x2, H(x, t) must satisfy the dif-
ferential equation (13), the boundary conditions (14) and (15) for 
z> x1 , and boundary conditions at x = xi imposed by the continuity 
requirements on 4(x, X), ex, X), A(x)e(x, X) and A0(x) ex, X). 

APPENDIX C 

Spectral Function from Two Sets of Eigenvalues 

We outline a method of getting a spectral function from two sets of 
eigenvalues. Let 4,0(x, X) be the solution of equation (6) such that 

'(ir, = a,  A(r)99'(7r, X) =  (54) 

for every X. Let ex, X) be the solution such that 

er, X) =  A (7r)ii% (7r, X) = â.  (55) 

Let X; , X, • • • be the values of X2 for which a(0, X) ± bA(0)(p'(0, X) 
= 0 and let  , ¡.4 , • • • be the values of 142 for which a4'(0, 
bA (0)11/(0, 1.4) = O. Let 

all/(0 X) + bA(0)11/(0, X)  
(56) 

m(X) — (MO: X) + bA(0)40, X) 

Then the zeroes of m(X) are ¡z,, , • • • and the poles are X1, X2, • • • • 
If X(x, X) is any solution of equation (6), then it is easily shown that 

(X' —  f A(x)X(x, X)yo(x, An) dx 

A(x)[X(x, ?1/4)(p'(x, X„) — (p(x, X„)X'(x, (57 ) 

Choosing X(x, X) =  X) — m(X)Ço(x, X) in equation (57) and using 
the boundary conditions on ex, X) and ‘p(x, X), we get 

(X2 — XD f A(x)[#(x, X) — m(X)cp(x, X)] dx = fry —  (58) 
0 

for all X. As X —› X„ 

ce2 = f A(x)e2(x, , X„) dx =- hm (a5 — 07)/[(X2 — X)m(X)].  (59) 
0 

Thus, given X, , X2 , and ALI ,  one obtains m(X) and hence al , a1, • • • • 



HUMAN VOCAL TRACT  1213 

APPENDIX D 

Derivation of Integral Equation (33) 

We give here a derivation of the integral equation (33) based upon 
the results of Section III. For simplicity we will assume that A(x) 
[and hence Ao(x)] has no discontinuities. Then from equation (23) 

(I ± H)A*(x) = u(x)  (60) 

where u(x) is equal to 1 for all x > 0. Thus if f (x) is a function such that 

[(I ± H)-14(x) = g(x)  (61) 

then 

E. ex) dx = f A(x) dx.  (62) 

Notice that if 

(I ± H)(I ± H)* = I  K  (63) 

then 

Jo A(x) dx =  [(I ± K)'u](x) dx 

(64) 

where f(x) satisfies the equation 

[(/  K)f](x) = u(x).  (65) 

The kernel of I  K is recognized as that of equation (31) with a = 71% 
Equation (33) therefore follows (for a = 7r) from the symmetrization 
of f (x), exactly as in Section IV. However, the argument given here 
is independent of the length 7r, which may be replaced by a. 
Using equations (60), (63) and (65), we have 

± 11)41(.) = [A M]t •  (66) 

Therefore from equation (17) 

f(a) = [A (a)]4.  (67) 
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Analysis of a Thin Circular 
Loop Antenna Over a Homogeneous Earth 

By S. C. MOORTHY 

(Manuscript received March 31, 1969) 

In this paper, the current distribution on a bare conducting loop, sit-
uated in free space over a semi-infinite medium, is obtained for arbitrary 
time harmonic excitations. The loop is assumed to be thin, perfectly con-
ducting and the standard one-dimensional integral equation and its Fourier 
series solution are used as the starling points. The field due to the current 
in the loop, where the semi-infinite medium is absent, is expressed as a 
superposition of plane waves. The tangential component of the field reflected 
by the interface, of the semi-infinite medium, is evaluated using appropriate 
Fresnel reflection coefficients. This reflected field serves as a new source 
for the loop and induces a current on the loop. The field due to the induced 
current is treated in the same manner, and this process is repeated indef-
initely. The summation of the original current and all the induced currents 
gives the steady-state current on the loop. 

I. INTRODUCTION 

It is well known that a high altitude nuclear burst generates an 
intense electromagnetic transient which covers a large geographical 
area.' This transient field induces currents in communication circuits 
and, if these are large enough, adversely affects communication channels. 
One problem of particular interest in land-line communication is the 
coupling to large loops formed by cables. 
The loops formed by cables deployed in practical communication 

systems are very complex and cannot be analyzed easily. Typically, 
they run for many miles over inhomogeneous terrain and contain many 
junction points; nevertheless a great deal of insight into the behavior 
of these irregular loops can be obtained by studying the behavior of 
a large regular loop over a homogeneous ground. In this paper, the 
theoretical foundations for an analysis of a circular loop over a homo-
geneous ground are developed, for time harmonic excitations. The 

1215 
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response of the loop for transient fields may be obtained by standard 
Fourier transform techniques. 
Various problems related to the thin circular loop have been con-

sidered by numerous authors. These may be broadly classified under 
two categories: loop in an infinite homogeneous medium and loop in 
a stratified medium. 
In the first category, Pocldington, Oseen, Hallen, Storer, and Wu 

have analyzed the problem of a bare thin perfectly conducting circular 
loop in free space. ' All these authors use the Fourier series expansion 
to solve the integral equation for the current in the loop. A good analysis 
of the problem is given in Wu's paper. Adachi and Mushiake analyze 
the same problem by solving the integrodifferential equation for the 
current using an iterative method." Mei, Baghdasarian and Angelakos, 
and Tang have discussed the direct numerical solution of the integral 
equation.91 ' A variational approach for determining the scattering 
cross section of a loop is given by Kouyoumjian.12 Problems concerning 
loaded loops are considered by Iizuka, Harrington and Ryerson, and 
Harrington and Mautz."-i5  The analysis of a loop in a conducting 
medium is an extension of the analysis of a loop in free space and lends 
itself to certain approximations. Kraichman, Chen and King and 
King, and Harrison and Tingley have discussed the bare loop in a dis-
sipative medium;" ' Galejs has discussed an insulated loop in a dis-
sipative medium.' Finally, the solution to the problem of two identical 
coaxial coupled loops in a homogeneous medium has been solved by 
Iizuka, King and Harrison." 
In the second category the literature is mostly on small loops or 

magnetic dipoles over different types of media and is very extensive. 
(See Ref. 21 for an extensive bibliography.) Wait has considered the 
problem of loops over a homogeneous earth;"'" recently, Sinha and 
Bhattacharya have analyzed the problem of a vertical magnetic dipole 
buried inside the earth." 
The treatment of a small current carrying loop as a magnetic dipole, 

while satisfactory for many purposes, is nevertheless inexact. Moreover, 
we do encounter situations where the loop diameter is comparable to 
the wavelength of the excitation frequency and here we cannot assume 
the current to be uniformly distributed on the loop. A typical example 
would be the excitation of a loop by a narrow electromagnetic pulse 
which contains a broad spectrum of frequencies. The purpose of this 
paper is to solve the problem of a bare loop over a homogeneous earth 
taking into account the current distribution on the loop. 
Specifically, the system under consideration is a bare, thin, perfectly 
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conducting circular loop of mean radius b, formed by bending a cy-
lindrical wire of radius a, situated in free space with its plane parallel 
to and at a distance d from the interface of a semi-infinite, linear homo-
geneous, isotropic medium (Fig. 1). The loop is excited by an electro-
magnetic wave of harmonic (exp jwt) time variation (the slice generator 
used to compute the admittance being a limiting case). It is assumed 
that koa « 1 and a « b, so that, if the loop were situated in a homo-
geneous medium the current distribution induced by a specified time 
harmonic excitation is given by the so-called one-dimensional integral 
equation. In addition it is assumed that d» a. 
It is desired to determine the current distribution /(0) on the loop 

in the aforementioned system. This is accomplished in the following 
three, more or less self-contained, sections. In Section II the field of a 
circular filamentary current in free space is expressed as a superposition 
of plane waves. Section III evaluates the reflected field when an arbitrary 
field, of the general form obtained in Section II, is incident on the 
interface between free space and the semi-infinite medium. In Section 
IV the results of Sections II and III are combined with the integral 
equation for the current on a loop in free space to determine the steady 
state current /(0) on the loop using a recurrent "reflection-induction" 
scheme. 

II. THE ELECTROMAGNETIC FIELD OF A CIRCULAR FILAMENTARY CURRENT 

Consider a circular filament of current 1*(0) (Fig. 2a) of radius b 
situated in free space. The coordinate system is so chosen that the 
loop is parallel to the xy plane at a distance d from it. The loop current 
may be expressed as a surface current density K, in the z = d plane, 
in the following manner. 

K = ae/(0)3(p — b)3(z — d)  (1) 

where p, (j) and z are the cylindrical coordinates and ao the unit vector 
in the yt. direction. The electromagnetic field due to K may be expressed 
as a superposition of plane waves as follows." 

H"' = if+e [±P, ±Q, (IP + m(2)(1 — 12 — ni2)1 

• exp ijka[lx -I- my F (1 — 12 — m2)i(z — d)]) dl dm, 

z  d.  (2) 
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5>0, FREE SPACE 

Z<0. HQMOGENEOUS MEDIUM 

Fig. 1—A thin circular loop over a homogeneous semi-infinite medium. 

E(') = n„ f l[lmP ± (1 — 12)0(1 —  — m2)-i 

— [(1 — m2)P  — 12 — m2)- , ±(1Q — mP)1 

• exp fjleo[lx ± my F (1 —  — m2)1(z — d)]) dl dm, 

z  d,  (3) 

1(ç5) 

FREE SPACE 
co, ,uo 

d 

(a) 

d 

I (0) 

z>0 
FREE SPACE 

eo. '10 

Z <Ó 

FIC'eel°MeGjle;f5CIUS C P  e 

(b) 

Fig. 2—(a) A filamentary loop current in free space, (b) A filamentary loop current 
over a homogeneous semi-infinite medium. 
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where 

P(1, m) = (le:/871-2)  K„(x, y) exp [— jk,,(1,x + my)] dx dy,  (4) 

+.0 
Q(1, m) -= —(1c2./83-2) f  1C(x, y) exp [—jko(lx ± my)] dx dy, (5) 

lc! = (02,à0e. and n. = (1.4.0/e4,).  (6) 

The quantities 1 and m are in general complex and the integrals in 
equations (2) and (3) are contour integrals, the choice of contours 
being dictated by physical considerations. A possible choice of 1 and m 
is defined by the following transformation 

= r COS Il i 
o  T  1.1, being complex. 

Let 
m  r sin 11/, 

(7) 

/(45) =  I exp (intk) •  (8) 

Substitution of equations (1), (7) and (8) into equations (4) and (5), 
and changing from rectangular to cylindrical coordinates yields the 
following equations 

P(r, 1,1,) = (kb/8T) Ë° (- 2)hi exp  Une 4k0br)(4-1 -I- 4+1), (9) 

Q(71 11/) = — i( gb/871')  4± ) (-2)' exp (in4)4(k0br)(./.., — /„+,), (10) 

where .10 denotes the Bessel function of order n. 

HE. CIRCULAR FILAMENTARY CURRENT OVER A SEMI-INFINITE MEDIUM 

Here again we consider the filamentary loop of Section II, but instead 
of being situated in free space it is situated over the homogeneous 
semi-infinite medium z < O (Fig. 2b). The total field in the region 
z 0 consists of the primary field B̀ i), H") of the filamentary current 
[equations (2) and (3)] and the field E('), 11(') reflected by the interface 
z = O. We proceed as follows to evaluate the latter. Let 

H nx, y,  = J./ Ho(l, m) exp [— jk„no(1, m).r] dl dm, z 5 d, 
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Ew (x, y, z) =  E,(1, m) exp [—jk0n0(1, m) •r] dl dm,  z 5 d, 

(12) 

where 

1-10(/, m) = [— a,P — a.„Q -F a„(1P  mQ)(1 — /2 — m2)-4] 

• exp [— jk.d(1 — 12 — m2)%  (13) 

E.(/, m) = n„{a.r[lrnP + (1 — 12)Q](1 — 12 — m2)-1 

a„[(m2 — 1)P — 1mQ](1 — 12 — m2)-1 ± a.(mP — IQ)} 

• exp [—jkod(1 — 12 — m2)],  (14) 

n„(i, m) = —E41 — a„m — a,(1 — 12 — mY,  (15) 

and 

r = a.,2c  auy  a,z.  (16) 

Each one of the constituent plane waves propagates in the "direction" 
n.(/, m). Let R1(1, m) and R, (/, m) represent the Fresnel reflection 
coefficients for the cases where the incident electric field is perpendicular 
and parallel respectively to the plane of incidence. Evaluation of the 
reflected field is achieved by resolving each plane wave into components 
with the electric field perpendicular and parallel to the plane of incidence. 
To this end we define a local coordinate system t as shown in Fig. 3. 
The plane of incidence is defined by the unit vectors a, and n.(/, m). 

Let 

= (a, X no)/[1 — (a../1.)1 1, 

11.2 = a, X a, . 

Then a„ a, and az form a right-handed coordinate system, a, is normal 
to the plane of incidence and a, and az lie in the plane of incidence. 
In terms of 14 and a, we have 

a, = (12 + in2)_(ma„ — la,),  (18) 

az = (12 + m2)_l(la  ma,).  (19) 

(17) 

t The propagation vector no becomes complex for certain values of 1 and m, the 
associated plane wave being inhomogenous. When this happens some of the terms 
used in the analysis (for example, plane of incidence, coordinate system, normal, 
and so on) become inaccurate and should be interpreted in a generalized sense. 
The results obtained are quite general and valid. 
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PLANE OF INCIDENCE 
CONTAINS ---_, 

;à2 

Xy PLANE (INTERFACE) 
CONTAINS 

INCIDENT WAVE 
(DIRECTION Flo) 

Fig. 3—Local coordinate system. 

The field vectors H. and E. are now resolved into components per-
pendicular (H,, E.J.) and parallel (H.: , Ed) to the plane of incidence 
as follows 

H. = H01. ± H0,,  (20) 

where 

= a1(12 m2)-4(1Q — mP) exp [—jk0c/(1 — r - m2)1],  (21) 

H.„ = [a,(1 — /2 — m2)- — a2(12 n12)1(iP  mQ) 

• exp [—jk0d(1 — 12 — m2)],  (22) 

E. = E01 + E0 ,  (23) 

where 

E01 = aino(/'  nz2)_(1 —  — m2)-3 (11'  mQ) 

exp [—jk0d(1 — 12 — m2)4],  (24) 

= no[a, — a2(12 ± m2)-1 (1 —  — m2)IlimP — ¿Q) 

• exp [—jk.d(1 — r - m2)].  (25) 

It may be easily verified that 

Hou =  '(n. X E,),  (26) 

Eou = —770(n0 X H,).  (27) 
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The reflected field corresponding to the incident field defined in 

equations (11) and (12) may be represented as 

11(')(x, y, z) =  H2(/,  exp [—jk0n2(1, m).r] dl dm,  z  0, 

(28) 

Èr)(x, y, z) = If  E2(/,  exP [—ik.112(1, m).r] dl dm,  z  0, 
_00 

(29) 

where 

n2(1, m) = —an l — non ± (1 — 12 — m2)tt, .  (30) 

Let 

H2 = 1121 + 11 2u ,  (31) 

=  E 21  E 2n •  (32) 

According to Fresnel's laws 

E21 = R,(1, m)E., ,  (33) 

H21 = R(/, m)}101 ,  (34) 

where 

R1(1, m) = teilc0(1 — 12 — m2)1 — m0[k2 — k:(12 m2)]i/ 

fislc.(1 — /2 — m2)i  g0[k2 — 1*12 m2)".141  (35) 

R11(1, m) = {1.6„le(1 —  — 9n2) — plc„[le — k2.(/2 m2)]0I / 

{1L0lc2(1 —  — m2)1 eik[k2 — 1c2.(/2 77/2)]q  (36) 

le =  *de).  (37) 

We also have the relations 

1121 = 17:'(n2 X E21),  (38) 

E21 = —770(112 X 1121).  (39) 

Substitution of equations (33), (34), (38) and (39) into equations (31) 
and (32) yields 

E 2  =  R I E.1  77„R1(n2 X H01),  (40) 

112 = R11101 eR1(n2 X E.1)• (41) 
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Equations (40), (41), (28) and (29) specify the reflected field com-
pletely. The 0 component of the electric field is of special interest since 
it induces a current in an actual circular loop. Taking the lb component 
of equation (40), using polar coordinates for x, y, and equation (7), 
we obtain 

Eu, 70[Rii(r)(1 — 7-2)4(P sin  — Q cos 1,e) sin (11, — 0) 

— Ri(r)(1 — r2)-I(P cos  -F Q sin 0) cos (e  

• exp [—jIced(1 —  

where 

(42) 

= [g0lc2(1 — 72)4 — bek„(le —  

[µ.0(1 — 12)4 +  — er2)1],  (43) 

Ri(r)  [Ake — r2)4 — go(k2 — lc,20-2)1i/ 

[A(1 — r2)i  14(102 — k:r2)ii •  (44) 

#), Q(r, ,fr) are defined in equations (9) and (10), and after re-
arrangement yield the following equations 

P cos #  Q sin 1,P = j(47)-11C E 11(kabr) exp 

(45) 

P sin e — Q cos e = (47T)-Ink.  exp pn,(4, — 71)1 
2  ' 

(46) 

where the prime denotes differentiation with respect to the argument. 
The 0 component of the reflected field is contained in equation (29) 
and is explicitly given by 

E:sr)(P,  z) = 

• exp [jk,,pr cos (# — e) — jicz(1 — r2)4] dl,br dr.  (47) 

The contour of integration C in the complex 1,1, plane is to be chosen 
from physical considerations. An examination of equations (42), (45) 
and (46) shows that the e integrals g, , g2 are of the form 

sin  71. . 
(48) 

e cos 
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Since 1,2 are solutions of Helmholtz equation in cylindrical coordinate 
system, we expect them to be cylindrical functions (compare with Ref. 
26, pp. 367-368). The requirement that they be bounded when the 
argument of the Bessel functions approach zero determines that they 
are the ordinary J functions. Thus we obtain, 

= 271-n(lc0pr)-1 J „(k opr) exp (jne,  (49) 

â2 = —j271-J:,(1c0pr) exp (ind)) • (50) 

Substitution of equations (42), (45), (46), (48), (49) and (50) into 
equation (47) yields the following expression for the 0 component of 
the reflected field 

+oo 

E,̀,')(p,  z) = 271- E /„2„(p, z) exp (frup),  (51) 

where 

z„(p, z) = (47r)-11e„b770 f [n2(eopb)-' „(kopr)J„(k„br)r-1 (1 — r2)R11(r) 
• o 

— ..1(1c0br)J4(k0pr)r(1 — r2)1?,(r)] 

• exp [—jka(z  d)(1 — 7.2)4] dr. 

In particular, 

(52) 

z„(b, d) = (41r)-11cbno f [ie(lcob)-2ekobr)r-1 (1 — 7-2)tRi(r) 
0 

— J2(k0bT)7(1 — .7-2)-Ri(r)] exp [—j2k01(1. — 7-2)] dr. 

(53) 

IV. CONDUCTING CIRCULAR LOOP OVER A SEMI-INFINITE MEDIUM 

In this section we consider a perfectly conducting thin circular loop 
of mean radius b situated over the semi-infinite medium (Fig. 1) with 
its plane parallel to the interface. The radius of the wire forming the 
loop is a and the height of the loop above the interface is d. 

4.1 Current Distribution 

Let Mee') (0) be the cP component of the applied electric field, /(o) (0) 
the current distribution that would be created by 4 0)(0) on the loop 
if it were situated in free space and /(0) the current distribution caused 
by Er (4)) when the loop is situated as shown in Fig. 1. Typical examples 
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of .E°) (4)) are the slice generator (used in admittance computations) 
and the  component of the electric field that would exist at the loop 
location in the absence of the loop (as in scattering problems). 
The relation between the applied tangential electric field and the 

currents induced on a loop takes the form of coupled integral equations 
which are extremely difficult to solve.° However if the loop is "thin" 
(a « b, a « X) the current distributions on the loop is given accurately 
by the so-called "one-dimensional integral equation." Thus we have 

2x 

E0)(4))(o) = /1  G(o — o')I(')(e) do', 

where 

G(x) = j(4.)_1 [kb cos x  (k0b)-1 

(54) 

• f+. R(x) exp E-  0 d ,  (55) 

R(x) = b[4 sin° (x/2) ± (d/b2)]/.  (56) 

A formal solution to equation (54) is obtained by using Fourier series 
representations as follows. Let 

where 

—  = 

+co 

(4)) = E I exp  (14), 

+ SO 

=  E  cg exP (ine), 
/1 = - 

+f  e X P  [in (413 eti )] 

n = 

r2„ 
= (27)-1 j 40) exp  (— inik) de, 

0 

= (.27r)-1 j E,°'(4)) exp (—jnct,) clip, 

= (27)-'  G(x) exp (— jnx) dx. 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

Substitution of equation (57), (58) and (59) into equation (54) yields 
the following relation between the Fourier coefficients 

= (27r) i(e) M).  (63) 
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The current distribution is given by 

=  E (a,̀")/0.) exP (in4).  (64) 
n« —00 

Let Ee) (0) be the tangential electric field, at the loop, of the reflected 
field whose incident field is caused by 1'0)(0) and let /(1) (0) be the 
current distribution on the loop caused by 4 1) (0). Let 

+.0 
n1)(0) = E a(,1) exp (jno),  (65) 

+. 
i'1(i6) = E .T;i" exP (jng4) •  (66) 

Then 

= (27r) l[e/001  (67) 

[compare with equation (63)]. Also from equations (51) and (65) we 
obtain 

Hence 

= 2rI°)z0(b, d). 

= 1,(:)[z„(b, com„]. 

(68) 

(69) 

In general, if /,̀.1̀) denotes the nth Fourier coefficient of current distribu-
tion 1 (k)  (0), induced by the kth reflected field we have 

I)= it"[zn(b, d)//30],  k = 1, 2, • • • .  (70) 

Let 

Then 

= -Ë2 exP (in). 
n•• -• 

00 

= E 
k O 

(71) 

(72) 

that is, 

In = 1(°) +  I2) ± • • , 

= 1-°)(1.  [zn(b, d)/i3]  kn(b,d)1137J2 + • • • I, 

= 1°) (1 — [z„(b, d)/13„]1 -1, provided I [z„(b, d)1/30] < 1. (73) 

Henceforth, we a.ssume that I z„(b, d)/13.1 < 1. Substituting for ./",°) 
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in equation (73) from equation (63) we obtain 

I„ = (27rYla;,°) [(3„ — z„(b, d)]',  (74) 

(0) = (27)-1 le a[tl„ — z„(b , d)]-1 exp fruk.  (75) 
n--eo 

The following expression for fl„ is obtained by simplifying equation 
(62): 

en = j(47r1e.b2)-1770(2/7r) 
r r 2 
• j  {4 (lc .02 n+ I (a) -I- M.-1(a)] —  do,  (76) 
0 

where 
via 

/1/„(x) = i I' (sin2 O  x2/ 4b2) 
ir 

Let 

Then 

• exp [—j2k.b(sid O + x2/4b2)] cos (2n0) de.  (77) 

r/2 

K„ = (2/7r) f  111,,(a)1  de.  (78) 
a-.2a min 

= j(4rkob2)-I no[i(k.b)2(K,,,i  K„,) — n2K,J.  (79) 

4.2 Input Admittance 

Let the primary source be a slice generator (delta function source) 
of voltage V located at  = 0. That is 

(4)) = [VS(0)/b].  (80) 

Substituting equation (80) into equation (61), we obtain 

= (Varb).  (81) 

Substitution of equation (81) into equation (75) yields 

I(4)) = V(4720-1 +°È [en — z„(b, d)]-' exp (fruk).  (82) 
n. -cc 

The admittance Y at the input terminals at 4) = 0 is given by 

Y = 1(0)/V = (471-20-1 E [fl„ — 4,(b, d)]'.  (83) 
11 . -00 
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The use of the delta function generator will give rise to an infinite 
input admittance' so that the series in equation (83) is divergent. 
However this difficulty is overcome by computing the difference be-
tween the admittances of two loops of different radii." 

V. SPECIAL CASES 

5.1 The Magnetic Dipole Over a Semi-Infinite Medium 

When the radius, b, of the loop becomes very small compared to the 
wavelength (that is, kob « 1) the current distribution on the loop 
becomes uniform. This enables us to retain only the zeroth terms in 
the infinite series representing the different quantities of interest. The 
field of a dipole over ground is well discussed in the literature and will 
not be considered here. The input impedance of a dipole over a semi-
infinite medium is of considerable interest and may be obtained from 
equation (83). Thus we obtain 

Zin = 471-2b[13o — zo(b, d)].  (84) 

The term 41-2b130 represents the input impedance of the loop in the 
absence of the semi-infinite medium and the term —472bzo represents 
the contribution of the semi-infinite medium. That is 

Zpri  Zoo, e 

where 

Zpri = 471-2b13„ , 

= —471-2bz0(b, d) 

(85) 

(86) 

= r(k0b)2no f J;(1c0br)T(1 — r2r1lii(r) 

• exp [—j2kod(1 — r)] dr.  (87) 

5.2 Thin Circular Loop Over a Perfectly Conducting Plane 

Let 

(b, d) = lim (b, d).  (88) 
0'—er0 

When  —› co the reflection coefficients simplify to 

Ru(r) = +1,  Ri(r) = —1. 

Substituting equation (89) into equation (53), we obtain 

(89) 
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z:(b, d) = (47)-1k2obn0 

• fe fre(k.b)-2.1,1(k0br)r-1(1 — T5)1 Je(k0br)r(1 — r2)-] 

• exp [—j2k4(1 — r2)i] dr.  (90) 

The integral in equation (90) may be simplified, by making use of the 
properties of Bessel functions, and yields 

zt (b, d) = (41rb)-in0[¡(k0b)2(t„._,  ;-„+,) — n2e„],  (91) 

where 

fr(1 — r2)-V!(k0br) exp [—j2k0d(1 — r2)1] dr.  (92) 

An alternate expression for t. is obtained as follows: 

nkobr) = 1f J.(2k.br sin 0) cos (271.0) de;  (93) 
r 

substituting equation (93) into equation (92) and changing the order of 
integration we obtain 

= j(k0b)-1M„(2d),  (94) 

where /1/.(x) is defined by equation (77). Therefore, 

zt(b, d) = j(4rk0b2)' 

• no (kob)2[M„.,(2d)  M „_, (2d)] — r2M„(2c1)).  (95) 

A comparison of equations (95) and (76) reveals a strong similarity 
between the expressions for /3. and zt(b, d). The input admittance of 
a thin circular loop over a perfect ground plane is given by 

Y = (47r2b)-1 "È re. — z:(b d)]-1 •  (96) 

The above formula agrees, with that derived by Iizuka and others,» 
for the input admittance Y(a) of a loop in the presence of an identical 
coaxial loop carrying a current distribution which has an opposite 
phase. They use the simpler Kernel given by Storer5 to computer /3„ , 
a procedure satisfactory for small loops. However they make use of the 
similarity between p„ and et(b, d) to compute the latter using the 
approximate expressions given by Storer. This procedure will yield 
erroneous results for large separation, d, for the following reason. 
The approximate expressions for 13. given by Storer, or for that 

matter Wu, are valid for k.a « 1. The corresponding condition to be 
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imposed in the evaluation of e(b, d) is, (210) «1. Thus it is seen that 
the approximate expressions of Storer give accurate values of zt(b, d) 
only for very small separations. 

VI. NUMERICAL COMPUTATIONS 

Equation (76) was further analyzed and approximate expressions 
for the en coefficients were derived in terms of Bessel and Legendre 
functions. The integral defining the z„ coefficients could not be expressed 
in terms of known functions and so was evaluated by numerical integra-
tion. However, in the evaluation of zt it was possible to use some of 
the formulae developed for ft„ for small values of d [compare with 
equation (95)]. The numerical integration was carried out by using 
the Romberg integration scheme. All the computations were done by 
FORTRAN programs on a GE-635 computer. 
Figure 4 shows the variation of the input admittance of a loop, 

when it is in free space, over moist earth and over an infinitely con-

16 
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Fig. 4—Input admittance of a circular loop, over different media, as a function of 
frequency (dlb = 0.25; alb = 0.002). G—conductance; B—susceptance. I—loop in 
free space; II—loop over moist earth; III—loop over perfect ground (e --> co). 
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ductive ground plane, as a function of frequency. The values of the 
various parameters used in these calculations are 2irb = 30 meters, 
f = 5 MHz to 13 MHz, d/b = 0.25, a/2b = 0.001, cr = 5 millimhos/ 
meter, and e/eo = 15. The last two parameters characterize the moist 
earth. The frequency range was deliberately chosen so that the moist 
earth cannot be approximated either as a highly conductive medium (low 
frequency approximation) or as a lossless dielectric (high frequency 
approximation). 
The real part G of the input admittance shows its characteristic peak 

near kob = 1 (these occur for values of kob near 1, 2, 3, - • • ) but the 
exact location of the peak as well as its magnitude depends on the 
medium below the loop. When the loop is located above a highly con-
ducting ground plane the resonance is particularly sharp at kob = 1 
since at this frequency the loop and its image are exactly half wavelength 
apart. The imaginary part B of the input admittance changes from 
inductive to capacitive near kob = 0.7 and back to inductive near 
kb = 1. Here again the transition at kob = 1 for the loop over a highly 
conducting ground plane is almost discontinuous. 
Figure 5 shows the variation of the input admittance of a loop over 

a highly conductive ground plane as a function of the distance between 
the loop and the ground plane. The curves are plotted for kob = 1, 
a/2b = 0.001 and d/b ranging from 0.25 to 5.0. It is observed that as d/b 
increases, the input admittance approaches the free space value in an 
oscillatory manner. 
The aforementioned calculations are presented only as examples 

of the different types of investigations that may be carried out based 
on the theory developed. The computer programs developed in this 
connection are very general and may be used for computations of loops 
as large as kob = 10. 

VII. SUMMARY 

The problem of a thin, perfectly conducting, circular loop situated 
in free space over a semi-infinite homogeneous isotropic medium was 
solved. Expressions for the current distribution on the loop caused by 
an arbitrary time harmonic source [equation (75)] and the input admit-
tance [equation (83)] were derived. The results are applied to special 
cases to evaluate the input impedance of a vertical magnetic dipole 
over a semi-infinite medium [equation (84)1 and the input admittance 
of a circular loop over a perfectly conducting ground plane [equation 
(96)]. Some numerical results are also given. The analysis for the general 
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case of a circular loop in an arbitrary homogeneous medium (as opposed 
to free space assumed here) over another homogeneous medium can 
be easily done by modifying the parameters. 
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