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This paper examines the distribution of the mantissas of floating point 
numbers and shows how the arithmetic operations of a computer transform 
various distributions toward the limiting distribution 

1 
r(x)  — X ln b 

(1/b  x  1) 

(where b is the base of the number system). The paper also gives a number 
of applications to hardware, software, and general computing which show 
that this distribution is not merely an amusing curiosity. A brief exami-
nation of the distribution of exponents is included. 

I. INTRODUCTION 

The main purpose of this paper is to examine, from the computing 
machine's point of view, the well-known (to comparatively few people) 
unequal distribution of the "mantissas" of "naturally occurring" sets 
of numbers. The observed probability density distributions are often 
close to the reciprocal density distribution 

1 
r(t)  t ln b  (1/b  t  1), 

1609 

(1) 



1610  THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970 

where b is the number base (usually 2, 8, 10, or 16). The corresponding 
cumulative probability distribution is 

R(t) = i/b r(x) dx =  dx  
x In b 

In t ± ln b 
ln b 

where, of course, 

(2) 

R(1/b) = 0 and R(1) = 1. 

From the cumulative distribution, it follows that the probability of 
observing the leading digit N of a number that is drawn at random 
from r(t) is 

In (N ± 1) — ln (N) 
R(N  1) — R(N) —  (3) 

ln b 

and this is usually what is measured in experiments. 
A typical experiment is that of tabulating the number of physical 

constants in a table having a given leading digit (see Table I and Ref. 1, 
p. 7). The result looks reasonable. Many other examples of observing 
the reciprocal distribution have been reported. For references see 
Refs. 2 and 3. 
The reciprocal distribution has been explained in many ways. One 

popular but not immediately obvious explanation for the distribution of 
physical constants is as follows. Consider the distribution of the leading 

TABLE I—THE DISTRIBUTION OF THE LEADING 
DIGITS OF 50 PHYSICAL CONSTANTS 

Leading digit N 
Number of cases 
observed 

Expected number 
eq. (3) Difference 

1 16 15 1 
2 11 9 2 
3 2 6 —4 
4 5 5 0 
5 6 4 2 
6 4 3 1 
7 2 3 —1 
8 1 3 —2 
9 3 2 1 

50 50 
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digits of the set of all the physical constants that might occur. If the 
units of measurement were to be changed then the corresponding leading 
digit of any particular physical constant would probably change, but 
it is difficult to believe that the distribution itself would change sig-
nificantly. To believe so seems to indicate a belief that either the present 
units of measurement or else the new set have some intimate connection 
with the real world. An alternative, and more elegant, explanation is 
given by Roger Pinkham in his classic paper (Ref. 2). The explanation 
given in the present paper is based on how the computer transforms 
distributions during arithmetic operations. In particular the paper shows 
how, from any reasonable distributions, repeated multiplications and/or 
divisions rapidly move the distributions toward the reciprocal dis-
tribution. The effect for addition and subtraction is somewhat different. 
The paper also shows the persistance of the reciprocal distribution 
once it is attained. 
Since floating point numbers are the basis of most of numerical 

analysis one may well ask why this obvious and experimentally well-
verified distribution is so often ignored. Is it because it appears to 
contradict the usually accepted model of the number system in which 
numbers correspond to points on a homogeneous straight line? Not only 
are the floating point numbers not uniformly spaced in a computer 
(the difference between the two largest possible numbers is very large, 
while the distance between the two smallest positive number is very 
small, and zero is relatively isolated), but the reciprocal distribution 
shows that even in intervals in which the numbers are equally spaced 
they are not equally likely to occur. 
Thus in analogy with non-Euclidean geometry this paper proposes 

an alternative to the conventional identification of numbers with points 
on a homogeneous straight line. Instead of adopting a measure for sets 
that is invariant under translation 

=  k, 

we often prefer a measure that is invariant under scaling, namely 

x' = kx  (k  0). 

The reciprocal distribution is of practical as well as theoretical interest 
as we shall show in Section VII. In view of these examples, it is hoped 
that by adopting the machine's point of view with respect to how 
numbers are transformed by arithmetical operations, the computer 
scientists will become more aware of the importance of this distribution 
in many situations including numerical analysis. 
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II. THE MODEL 

The floating point numbers in a computing machine form a discrete, 
finite set. As is true in so many applications of mathematics to practical 
problems, we shall approximate a discrete distribution by a continuous 
one of sufficient smoothness. Anyone familiar with the upper and lower 
Riemann Integral sums can appreciate the degree of approximation 
being made (provided common sense is used in choosing the values of 
the curve between the given points). In the limit of the Riemann sum 
all the I Ax, I become less than any given e > 0; we of course need to 
stop at the granularity of the number system used, typically 10-B or 
smaller. 
In principle, it is possible to carry this error estimate throughout all 

the subsequent steps of the mathematics to see how much the mathe-
matics errs from reality; but it is customary to recognize that a little 
intuition will suffice to convince the user that the error will be much less 
than the accuracy of the experiments that the theory is designed to 
account for. Thus we have no need to get excited about such things as 
the Banach measure of a set (Ref. 4); we do not intend in this paper to 
let the mathematics obscure what is going on. The fact that computers 
are finite and operate at a finite speed for a finite length of time spares us 
from taking seriously all the confusions that can arise in mathematics 
when dealing with the infinite. 

III. THE BASIC FORMULAS 

In this section we derive the basic formulas which describe how dis-
tributions are combined and transformed by the four arithmetic opera-
tions of a computer. Let ¡(r) be the density distribution of the factor x, 
g(y) be the density distribution of the factor y, and h(z) be the density I 
distribution of the result z of the arithmetic operation. Further, let 
F(x), G(y), and H(z) be the corresponding cumulative distributions. 
For both multiplication and division, the mantissas are directly 

combined and the exponents do not enter into the formation of the 
distribution of the result of the operation. Thus, it is sufficient in these 
cases to consider the distributions for (1/b  x, y S 1). 
For multiplication, an examination of Fig. 1 shows that when the 

product falls in the shaded regions then the mantissa of the product is 
in the interval (1/b, z). Thus the cumulative distribution H(z) is given by 

J  
H(z)  f  f(x)g(y) dy dx  f(x)g(y) dy dx 

1/b  1/b  fl/b  1/bs 

1 fr/ 

f(x)g(y) dy dx 
1/bs 
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= ff(x)[G(z/bx) — G(1/b) ± G(1) — G(1/bx)] dx 
I/6 

1613 

f f(x)[G(z/x) — G(1/bx)] dx. 

Differentiating with respect to z to get the density distribution we have 

h(z) = f(z)[G(1/b) — G(1/b) + G(1) — G(1/bz) — 0(1) ± G(1/bz)] 

1/19f f(x)g(z/bx)(1/bx) dx  f f(x)g(z/x)(1/x) dx 

f  3 j "‘ ) ". g(z1bx) dx  g(z1x) dx. 
x =  x 

(4) 

Similarly for division. The shaded region of Fig. 2 shows where the 
quotient x/ y is less than z; thus the cumulative distribution for the 
quotient is 

H(z) = f  ,,b f(x)g(y) dy dx  f f f(x)g(y) dy dx lib  • ,,,, • 
+f f(x)g(y) dy dx 

z/b5 

= f f(x)[G(x) — 0(1/b) + G(1) — G(x/z)] dx 
1/b 

▪ f1 f(x)[G(x) — G(x/bz)] dx. 
Yà 

1 

=,bx 

z 

/ e 

17 --......._ 

1  z 
7, 1 

Fig. 1—The cumulative probability distribution for the product z = xy. 
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Fig. 2—The cumulative probability distribution for the quotient z = x/y. 

Again differentiating with respect to z to get the density distribution 
we have 

h(z) = f(z)[0(z) — G(1/b) + G(1) — G(1) — G(z)  G(1/b)] 

f  f(x)[ —g(x/z)( — x/e)] dx  f  f(x)[ — g(x/bz)( — x/b2)] dx 

= 12 f  xf(x)g(x/z) dx  f  xf(x)g(x/bz) dx. 
2 lib  bz 

For both addition and subtraction the difference in the exponents of 
the two numbers x and y is used to shift one mantissa with respect to 
the other before they are combined. For addition, we may suppose that 
one of the numbers, say x, lies in the range z / 2 5  x  z. The other 
term, y, therefore lies in the range z/2 y z  where k is the 
number of digits in the mantissa and we set b  =  E. Thus the density 
distribution of the sum is 

(5) 

“1-.) 

h(z) =  f(x)g(z — x) dx.  (6) 
/2 f  

For subtraction we suppose, without loss of generality, that x y> 0, 
and 

z = x — y 
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with z  x  z/e. Then the density distribution is given by 

/e 

h(z) =  x)g(z  x) dx.  (7) 

We have now derived the basic relations for the density distributions 
that arise from combining two numbers from arbitrary distributions 
according to the four arithmetic operations of a computer. 

IV. THE PERSISTENCE OF THE RECIPROCAL DISTRIBUTION 

In this section, we first show for both multiplication and division 
that if one of the factors x or y comes from the reciprocal distribution, 
and regardless of the distribution of the other factor, then h(z) is the 
reciprocal distribution. In particular, if a number is chosen from the 
reciprocal distribution, then its reciprocal is also from the reciprocal 
distribution. For addition and subtraction we show somewhat less. 
For the product set 

g(Y) — y ln  b 

in equation (4). We get for any distribution f(x) 

1 r f (x)  bx  d 4_  f(x)  x  
11(2)\  =. 6.1,/b x zlnb x x zlnb dx 

1 

(8) 

= z ln b [1/b f(r)  b f f(x) dx] —  (9) 
z ln  
1  

Obviously since z = xy, the same applies if we assume that f(s) is the 
reciprocal distribution. 
For the quotient, again assume equation (8) and put it in equation (5). 

1 1  bz  
ln b bz h(z) =-j xf(x)  dx +  2 f xf(x) x  b dx z X   

— 
z o lib f(s)  
1  {r 

dx  f f(x) dx} — z1 
zi b 
1  

(10) 

In the special case of f(s) being the "spike distribution" with all of its 
probability at x = 1 we see that the reciprocal of a variable having the 
reciprocal distribution has the reciprocal distribution. The case of x 
having the reciprocal distribution and producing the reciprocal distri-
bution, regardless of the distribution of the denominator, is covered by 
the product form, or can be worked out directly if desired. 
Thus, if in a long sequence of multiplications and divisions at least one 
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factor has the reciprocal distribution, then regardless of how the distri-
butions of the other factors are chosen the result is still the reciprocal 
distribution; the reciprocal distribution persists under multiplication 
and division and cannot be broken by any choices for the other factors. 
For addition let x come from the reciprocal distribution for some range 

with normalization factor N, , and y also come from a reciprocal dis-
tribution with its corresponding range and normalization factor Ng . 
Then writing e = trk 

h(z)  f  N, N 2   dx  
iz/2  X  Z  X 

ri 1  
= N,Na dx 

/2  Z LX Z X 
N I N  [ 

Z  Z  X 

 2 k i   X 

Na 
=  

where Na is some constant. 
Similarly for subtraction (different Ni) 

z/e  AT 2  
h(z) =  zd-x dx 

z/2 

= Ny. r.i. [1. x 
J, z x _z-_x l' 

1  

N,Ns  
ln [   z  z 

Ns —• 

a/e 

(12) 

It should be noted, however, that in the last two cases the assumption 
of the reciprocal distribution for such great ranges is suspicious to say 
the least, since we know from experience that all exponents are not 
equally likely. That the reciprocal distribution over a large range implies 
the equally likely distribution of the relevant exponents can be seen by 
examining the base 16 number system in exponents, but where the 
mantissas are in binary. Thus the mantissas can have one of the forms: 

0.1xxx • • • 
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If we assume 

1  
p(x) — x e_ 1 , x ln 16 

what are the probabilities of each of the four forms? For the first one 

Ç'  1 1  I x In 16 dx  — 4 ln 2 [In 1 — ln ] 

Similarly, each of the others is This result is quite different from that 
of the flat distribution (see Table II). 

V. THE APPROACH TO THE RECIPROCAL DISTRIBUTION 

Having shown that once it arises the reciprocal distribution persists 
for multiplication and division, we need to show how it can arise. For 
this we need a measure of how far a distribution h(z) is from the recip-
rocal distribution r(z). It is obvious that 

fl [h(z) — r(z)] dz = 0  (13) aa   

for any h(z) and this does not provide a useful measure of distance. We 
shall define the distance of h(z) from the reciprocal distribution r(z) by 

max 
1/65•51 

I h(z) — r(z) 
r(z) 

= D{h(z)1 = DIM ,  (14) 

which measures the maximum of the difference relative to the reciprocal 
distribution (it is natural to use the relative error when dealing with 
floating point numbers). 

TABLE II—PROBABILITY OF OBSERVING MANTISSAS WITH LEADING 
ZEROS IN BASE 16 NUMBERS WHEN WRITTEN IN BASE 2 

Binary 
Probabilities 

Flat Reciprocal Form Range Exponent 

0.0001.... 1/16 5 x 5 1/8 —3 1/15 1/4 
0.001x.... 1/8 5 x 5 1/4 —2 2/15 1/4 
0.0boc.... 1/4 5 x 5 1/2 —1 4/15 1/4 
0.1xxx.... 1/2 5 x  1 0 8/15 1/4 
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We showed in equation (9) that for a product, 

r(z) = fi sib r(z/bx) dx  r(z/x) dx. 

Subtracting this from equation (4) and dividing by r(z) we have 

h(z) iz)  r(z) 1b  x f(x) [  r(2) g(z/bx) —r(z/bx)  
r 1 

f(:)  / rijçz x)1 dx 

But 

bx  
bxr(z)  z In b r(z/bx) 

xr(z) — z b — r(z/x), 

and we have 

h(z) — r(z) r.  [g(z/bx) — r(z/bx)1 
rz) — j  (x)  rz/bx)  dx ( (   

+ fi f(xtezix) - r(el l d r(z/x)  x • 

Since f(x)  0 for (1/b  x  1), 

111(2)  r(z)  5 f' f(x) Mg) dx  f  DÍ gl dx r(z)  ib 

(15) 

{g1 

for all z. From this it follows that 

Digl  (16) 

regardless of the choice of f(x). 
We note that the equality would hold if f(x) were a single spike at 

x = 1, say, but that in view of equation (13), we generally expect a 
great deal of cancellation in the square brackets of equation (15) as it 
is integrated over the range. 
It is easy to examine the rapidity of the approach in the case of all the 

factors coming from the fiat distribution 

1  
P(x) — 1 — 1/b  b — 1 
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Equation (14) gives for two factors 

1 ( b y r dx  b  
- b b-1  ii/b  b-1  x 

- (b — 1)2 (In b — (b — 1) in  z I . 

In the base b = 10, this is 

h(z) =  {1n 10 — 9 In z, (17) 

which (for the proper range) is given by Ref. 5 (p. 37). The distance of 

the flat distribution is 

max 
1/105x51 

10 In 10 
— 1 

•  9 

10 ln 10 
1 = 1.558... 

-  9 

while the distance of equation (17) is equal to 0.3454. • • . See Table III 
for further results. 
Similarly for division using equations (10) and (5), we have 

h(z) — r(z) 1 r exe.mriz)r(x/z)] dx  
b r(z)  2 J1/ 

But 

x f(x) [g(x/bz)r—(z)   ] dx r(x/bz)   

2 r(z) 
z —x = r(x/z) 

bz21:-®- = r(x/bz), 

and we have 

h(z) — r(z) 
D{gl{f f(x) dx  f(x) dx} 

r(z) 

TABLE III—THE DISTANCE OF A CONTINUED PRODUCT AS A 
FUNCTION OF THE NUMBER OF FACTORS SELECTED 

FROM A FLAT DISTRIBUTION 

Number of Factors Distance 

1 
2 
3 
4 

1.558 
0.3454 
0.0980 
0.0289 



1620  THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970 

or 

DIM 

In the case of flat distributions 

1  [b + 41 
h(z)  2(b — 1)  z 

which for the base 10 is (see Ref. 5, p. 37) 

1  1 
h(z) = ] [10 ± 

and has a distance of 0.4071 • • • . 
For addition we select g(y) as a reciprocal distribution (with suitable 

normalization factor N), subtract the corresponding equations and 
divide by r(z) to get 

h(z) — r(z) 
r(z) 

[ 

f(x)   N,  N 2 dx 
/ 2  N 2 — X  X  x r(z) 

N 
.(1-.) f(x) - x [ N 2  r 1(x) 

dx. 
L2  r(x)  z — x r(z) 

But by the mean value theorem for integrals 

N, 
h(z) — r(z) 1(0)   f»(1- ») N 2  r(x) dx  
r(2)  r(0)  L /2 z  x r(z)  ' 

where 2/2 5  z(1 — 2). The integral has been shown in equation (11) 
to be exactly 1. Hence 

13(h(z)}  D{f(x)). 

A similar derivation works for subtraction. 
In view of the dubious assumption of having the reciprocal distribu-

tion over a very large range we need to examine more carefully the 
behavior of the mantissas of sums of numbers selected from some 
distribution. Let us imagine a Monte Carlo experiment. We select 
numbers from the range (0 <a 5 x b) having the probability density 
distribution p(x) with mean  and variance cr2. Divide the range into 
n equal intervals 

(a, a + h),  (a + h, a ± 2h), • • • , [a + (n — 1)h, b], 



DISTRIBUTION OF NUMBERS  1621 

where h = (b — a)/n. By counting how many numbers fall in each 
interval we get estimates of p(x). 
Let us add 2' numbers of this set of numbers. The range for the sum is 

(2ma, 2"b), 

the mean pi = 2"p and cri2 = 2k0-2. But the central limit theorem says 
that the distribution of the sum approaches a normal distribution about 
the mean with half width cri . Suppose, for convenience, that p fell in 
the middle of an interval. Then as m increases and we count the number 
of cases of mantissas in each interval (note that the m in the term 2' 
appears in the exponent only) we will find more and more of them will 
fall in the interval containing p (which has the same mantissa as pi); 
the distribution approaches a spike! This does not contradict the central 
limit theorem; it merely says that ifp  = 0 is the exceptional case), 
the distribution contracts as seen from the point of view of floating 
point numbers. In loose words, standing at the origin and viewing the 
rapidly receding mean pi , the width of the distribution cri seems to get 
narrower as compared to the sum—the sum recedes as 2, the half 
width changes as 2-12. 

VI. RANGE OF EXPONENTS 

It is now clear that in order to examine carefully the effect of addition 
(and subtraction) on the reciprocal distribution, it is necessary to know 
the distribution of the exponents of the numbers to be combined. 
Unfortunately at this time about the only model we have is as follows. 
Assume a distribution of exponents. Under multiplication and division 
the exponents are added and subtracted (with, due to carries an extra 1 
occasionally added, or subtracted) and by the central limit theorem 
we can expect: (i) that the distribution of the exponents will approach 
a normal distribution (assuming that overflow and underflow do not 
happen first) and (ii) that this distribution will gradually spread out 
proportional to the square root of the number of operations. Thus, it 
appears that in practice the distribution of exponents is probably not 
stationary. Addition tends to eliminate the smaller exponents, while 
subtraction tends to increase them. 
Experience in numerical analysis shows that the range of the output 

numbers is usually much greater than the range of the input numbers, 
enough so to make one suspect that the variance increases as indicated 
in the above model. 
As one thinks carefully about the matter of addition and subtraction 

it seems reasonable to believe that they will not greatly perturb the 
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reciprocal distribution; and the experimental data from "naturally 
occurring numbers", which must have included some additions and 
subtractions, seem to bear out this belief. 
The feeling that under repeated additions and subtractions the central 

limit theorem applies to numbers (which is true), and therefore con-
tradicts the reciprocal distribution of the mantissas, is typical of the 
"fixed point arithmetic" viewpoint of numbers—we are representing the 
sums and differences as floating point numbers, and it is the distribution 
of these mantissas and their possible approach to the reciprocal distri-
bution that is of relevance here. 

VII. APPLICATIONS OF THE RECIPROCAL DISTRIBUTION 

Besides accounting for the experimentally found distributions, the 
reciprocal distribution is relevant to many optimization situations. 
As a first example,' consider the problem of placing the decimal 

(binary) point in the number representation system in order to minimize 
the number of normalization shifts after the computation of a product. 
(It was probably the minimization of normalizing shifts that caused 
IBM to adopt the base 16 in the system 360). If the point is placed 
before the first digit, then products of the form 

0  
0.xxx... 

0.0xx... 

will require a shift to normalize the result; while if it is placed after the 
first digit, then products like 

X.X... 

X.X... 

=.x... 

will require a shift. Clearly these two cases have complementary prob-
abilities. For the reciprocal distributions the probability p of 

xy  1/b 

is 
1.1  fl ax  1  1 

=  .11/b L /b  xlnbyhib dY  dx  

ri  1 in x dx 1 tin Vbx — in 1/1) dx — ji/b in b(  x) fub b\ 
1  iln2 
1n2 b _ 2 J 

1 

1/b  2 
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But for a flat distribution, 

P — (b —b 1)2 ii,,, fi,:" dY  dx  — (b —b 1)2 f,,, (t-c - -1,-) dx  
b \21  

— (- -b — 1)  

b In b — (b  — 1) _ 
(b — 1)2 

For b = 2 this is 

t))1 

p = 2 ln 2 — 1 ''-' 0.38. 

As a second application, consider the estimation of the effect of the 
representation error of numbers in base 2 and base 16. In Ref. 7 
McKeeman reports that the maximum relative representation error 
(MRRE) and the average relative representation error (ARRE) are 
as shown in Table IV, where the average is over the reciprocal distri-
bution. 
A third example is the application to roundoff propagation. If xi has 

an error ei and x2 has error E2 , then in the product 

X1 -I- El 

X2 ±  E2   

x1x2 ± xiE2 + x2e1 -I- E1E2 

it is the leading digits that control the estimate of the propagated error. 
For the reciprocal distribution the mean is 

2 = r  x  ds  _ 1 — 1/b b — 1  
.1„, x In b  In b _ b ln b 

For base 2, this is 
1  

f —  0.72134. 
2 In 2 — 

TABLE IV— MAXIMUM RELATIVE REPRESENTATION ERROR AND 

AVERAGE RELATIVE REPRESENTATION ERROR 

MRRE ARRE 

binary 1/2 X 2-37  0.18 X 2-17  

octal 2-37  0.21 X 10-37  

hexadecimal 2-37  0.17 X 2-37 
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The second moment about the mean is 

1 ' (x — )2 b — 1 {b -I- 1 b — 1  
i  } in b n,  z  dx — b2 ln b  2 ln b 

which for b = 2 is 

1   3  1 
M 2 - 4 2 (  ) -'-•=1 0.020674. In   

For the flat distribution,  = 0.75 and M 2 =  0.020833. 
Thus we see that the effect of the reciprocal distribution on the average 

roundoff propagation is surprisingly small. 
Another example in which the reciprocal distribution must be con-

sidered is that of producing "random" floating point mantissas. To 
generate these mantissas we use the earlier result that a long sequence 
of multiplications of numbers from a flat distribution will approximate 
a reciprocal distribution. Thus random mantissas can be generated by 

Y„ = l'a_I .7..  (shifted) 

where ra is from the usual (flat) random number generator and "shifted" 
means after each product the leading zeros are shifted off. How well does 
this work? Experimental verification* is given by 8192 trials. Counting 
the number of mantissas falling in each of N catagories (see Table V). 
The last two columns of Table V give the sign changes observed in 

the difference between the observed and theoretical reciprocal distri-
bution. The expected number of sign changes might be expected to be 
(N — 1)/2, but since for N = 2 it is clear that one sign change will 
occur (because the mean of the residuals is zero) we have used N/2 as 
the expected number. The chi-square test shows that the two distribu-
tions are close; the sign change test shows that the residuals are not 
systematically distributed. From these tests, we see that the generator 
"works." It is interesting to note that the period of this generator may 
well be much longer than that of the underlying flat random number 
generator. 
It is easy to see as a general rule that when we try to optimize a 

library routine for minimum mean running time (as against the 
Chebyshev minimax run time) we need to consider the distribution of 
the input data. Hence floating point numerical routines need to consider 
the reciprocal distribution; the square root, log, exponential, and sine 

* Thanks to Brian Kernighan. 
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TABLE V— DISTRIBUTION OF 8192 RANDOM MANTISSAS 

N x 
Degrees of 
Freedom 

Residuals 

Sign 
Changes Expected 

64 61.392 63 30 32 

32 22.804 31 14 16 

16 11.150 15 8 8 

8 7.724 7 5 4 

4 3.261 3 2 2 

2 1.467 1 1 1 

are all examples. In the case of the exponential and sine, some study of 
the exponents is also necessary. 
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A Mathematical Study of a Model of 
Magnetic Domain Interactions 

By R. L. GRAHAM 

(Manuscript received March 18, 1970) 

In this paper, we initiate a study into the combinatorial aspects of a 
model of the interactions between discrete magnetic domains and their 
potential use in information processing devices. Starting with a simple 
model suggested by W. Shockley, we demonstrate certain (surprising) 
capabilities as well as inherent limitations upon the possible applications 
of the interactions described by this model. It should be noted that this simple 
model does not take into account all of the possible interactions between 
magnetic domains. 

I. INTRODUCTION 

The subject of discrete magnetic domains in certain orthoferrite 
materials has been under active investigation during the past several 
years, both from a theoretical physical viewpoint as well as that of the 
device-oriented physicist (for example, see Refs. 1-6). Considerable 
progress has resulted from these efforts, although needless to say, the 
end is certainly not in sight. Particular attention has been directed 
toward the problem of applying this new technology to the very im-
portant area of information processing devices, an area in which it 
seems to have natural and significant applications.17 It is our intention 
in this paper to examine certain mathematical aspects of these applica-
tions for a simple model of magnetic domain interactions suggested by 
W. Shockley. 

II. DESCRIPTION OF THE MODEL 

We shall begin by giving a very brief description of the physical 
situation and its translation into the mathematical model under con-
sideration. The reader whose interests motivate him to seek a more 
technical explanation is referred to Refs. 6 or 8. 
Roughly speaking, thin platelets of certain orthoferrite materials 

1627 
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possess the property that under suitable (magnetic) conditions, small 
3 mils) discrete cylindrical magnetic domains, hereafter called 

"bubbles", may be stably supported. Moreover, these bubbles may be 
manipulated by the application of external magnetic fields as well as 
by their own mutual interaction (which in general causes two bubbles 
to repel one another). In a suitable physical environment, the location 
of a bubble in a piece of orthoferrite can be restricted to a finite set of 
possible positions within the material; these are ordinarily arranged in 
a rectangular array. It is possible to apply a local magnetic field to 
specific locations within the array with the following results:t 

(i) If a bubble already occupies the position at which the field was 
applied, then nothing happens. 

(ii) If no bubble occupies the position at which the field was applied 
and no bubble occupies any "nearby" position as well, then 
(still) nothing happens. 

(iii) If no bubble occupies the position at which the field was applied 
but at least one bubble occupies some "nearby" position, then 
some bubble at a nearby position will leave its original position 
and now occupy the position selected by the field. 

To eliminate the annoying indeterminancy in item (iii) it is possible 
to apply "holding" fields to all but one of the "nearby" sites which has 
the effect that only a bubble at the unheld position can move. 
The mathematical model which will correspond to the preceding 

description will be phrased in the terminology of graph theory. The 
discrete positions at which bubbles may lie correspond to the set V of 
vertices of a graph G. Two sites which are "nearby" or "adjacent" to 
one another (this is assumed to be a symmetric relation) correspond to 
two vertices of G which are joined by an edge of G. Suppose bubbles are 
located at (the sites corresponding to) the subset X of vertices V. We 
define a command to be a directed edge e = (v1 , va) with u1 and v2 adjacent 
vertices of G. The command e transforms the locations of the bubbles 
from X to r where 

r  — Pi' U {v21 

,  otherwise. 

In other words, if there is a bubble at v, but no bubble at v2 and the 

if  vi t X,  v2 e x; 

r of course, "careless" application of a magnetic field to an orthofenite with 
bubbles can annihilate bubbles, create bubbles, split bubbles in two, deform bubbles 
into strips, and so on; but these pathological (though certainly useful) operations 
will not be considered in our model. 
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command e = (vi, y2) is applied to X, then the bubble at v1 is moved 
to y2. Otherwise, the command e has no effect on X. A program is 
defined to be sequence P = (e1, e2, • • • , er) of commands ei . In 
general, a program P maps the set 2' of all subsets of V into itself 
by le = ( • • • (X")") • • •r . It is the purpose of this paper to inves-
tigate the mathematical properties of these maps. 

III. SOME BASIC PROPERTIES OF PROGRAMS 

We begin by making the assumption that G is the complete graph on 
n vertices, that is, all pairs of vertices of G are joined by an edge./ As 
mentioned in the previous section, a program Pis a sequence of directed 
edges (e1, e, , • • • , e,.) and P acts on a subset X of the vertices V of G by 

X P  =  (.  ( ge r)  y e 

where for e = (v, v'), 

x . JX — {v} U iv'  if  v e X, v' X; 
IX,  otherwise. 

If X c V then ¡XI denotes the cardinality of X. We note 
Fact 1: For all X C V, and all programs P,  = III. 
This follows immediately from the definition of X". 
The first interesting result we state is due to W. Shockley who 

called it the 
Non-decreasing Overlap Theorem: (Shockley) For all X, Y C V and all 
programs P, 

jerl Y"I kl.X n YI. 

Proof: Assume for some P = (et , • • • , e,) and subsets X, Y C V we 
havel e n YPI<I X n YI•Since .X" = ( • • • ((X")") • • •)", there 
must exist a least j such that 

XPi+ ' n YPi+. < I n YP' 
where Ph denotes the program (e,, • • • , ea). Thus, for / = X'', 
= YP1 and e =  = (a, b) we have 

i-vni>q<IIn el. 
t Nothing essential is lost by this simplifying assumption. The vertices and edges 

of the present model should not be confused with any incidental physical vertices 
or edges in a particular device. An edge of the model may be generated for example 
by transferring bubbles from a storage zone to an interaction zone and then returning 
the resultant to the storage zone. 
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If c a, c b then c  fl implies ce r (") V. If either ar Ifl 
or be I n I> but not both then be r n V. If both a e t r) I" and 
b fl e then a e 2° np« andbs r r) 2-°. Hence, in any case 

which is a contradiction. This proves the theorem. 
Shockley noted that this result shows that there is no replicating 

program P*. By a replicating program, we mean the following: Starting 
with two fixed sets of vertices V' and V" with V' (") V" = 
and 1-to-1 map el: V" —› V', we require that for each X C V, 

n = X n V' and e(xP* n ¡Pi) = x n V'. 
In other words, P* does not disturb X ri V' and in v", e creates a 
"copy" of X (1 V'. 
To show this, suppose there were such a program P*. By choosing 

two subsets X and X' differing in a single element of V, their images 
Xi's and X'Ps must differ in two points, namely, one in V' and the 
corresponding point (under 0) in V". This, however, contradicts the 
non-decreasing overlap (NDO) theorem and therefore P* cannot exist. 
Another consequence of the NDO theorem is the nonexistence of a 

program P+ which performs binary addition in the following way. 
Suppose V' denotes a set of m  1 pairs of vertices of G, V" denotes 

another set of m pairs of vertices disjoint from V', and V' denotes a 
set of m -F 1 pairs of vertices, disjoint from V' and V". We can imagine 
these sets arranged as shown in Fig. 1. 
We can represent an integer M,  M < 2", in the m pairs of V' 

by letting the jth pair of V' denote the jth binary digit in the binary 
expansion of M. This can be done, for example, by assuming that 

for each pair 
o 
o either U0 E X, U, # X, which will correspond to 

U1' 

a 0, or Uo 0 X, U, E X, which will correspond to a 1. Thus, for m = 5 
the configuration {V, , U2 y US y V 4 y V2} (Fig. 2) would denote the 
integer 10011(2) = 19. 
The addition program P+ would operate by starting with V" in some 

fixed configuration (for example, all zeros) and with arbitrary integers 
M', M" loaded into V', V", respectively, to form the initial state X; 
after applying P+ to X we should get the sum M'  M" in Vm. 
The reason that P+ cannot exist as described is precisely that the 

NDO theorem would be violated. For consider the two additions: 
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' 

" 

o 
o 

o 
o 

o 
o 

o 
o 

2 

o 
o 

o 
o 

o 
o • • • 

o 
o 

o 
o 

o 
o 

Fig. 1—Symbolic arrangement of vertex locations for addition. 

O + (2' — 1) = 2' — 1 and 1 -I- (2' — 1) = 2'. The initial configurations 
differ in only two positions. The final configurations differ in at least 

in + 1 however, since 2"' — 1 = 11 • • • 1(2) and 2"  100 • • • 0(2) . 
Thus, by the NDO theorem we get a contradiction and our assertion 
is proved. 
We give another example of a program which does not exist. If 

e = (a, b) is a command and a, b E X then X̀ = X. In the case that 
a and b are both in X, we say that there is interference as e acts on X. 
(We can think of the bubble at b as interfering with the attempted 
movement of the bubble at a to vertex b.) Similarly, if P = (e, , • • • , en) 
we say that there is interference as P acts on X if for some i there is 
interference as ei acts on X°  ". We note 
Fact 2: If P acts on X with no interference then 

Xl» = U focr. 
zrX 

Proof: It is sufficient to establish this for the case P = e = (a, b) . 
In this case 

o 
• 

u 

VI 

• 

o 
u 

o 
u3 o 

• 

o 
• 

Fig. 2—A typical configuration representing an integer. 

us 

V5 
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lb,  if x = a; 
Ixr = 

x, otherwise. 

Thus 

u tv  IX — {a} U }b},  if a e X; 

..x  [X,  otherwise. 

But by the hypothesis of no interference, we cannot have both a and 
b E X. Thus 

X = 
,  —  U 114,  if a e X 

=  Ixr • 
..x X,  otherwise 

and the fact is established. 
Fact 3: For X = {a, b, c,  there does not exist a program P such that 

{a, b}P =  

lb, cIP =- {a, z, 

{c,  {b,z}. 

Proof: Suppose such a P exists. If P acts on these sets with no 
interference then we would have by Fact 2, 

{c,z = {{a} P, IbI PI, 

la, z} = {{M P, (c }, 

lb, z} = {lc} P fa n, 

which is impossible since the union of the left-hand sides of the equations 
cannot equal the union of the right-hand sides. Thus, if P = (e1, • • • , en) 
we may assume that there is a least i, 1 < i n, with Pi, = (et, • • • , 
e...1) such that ei acts on at least one of the sets {a, b}P", ib, cIP", 
{c, alP" with interference. To be specific, assume that it is the set 
la,  that is, e, = (tar",  (the other two cases are 

similar). By Fact 2 we have 

(a, bIP' = {{aI P", (bI P"}, 

fb, OP" --  {c} P- 1, 

ie, ar—  = 

Therefore 

b,  =  {c} P"}" = 
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and 

Hence, 

lc, a  =  = {te}' ', {b} '}. 

{a, z} = {b,  = lc, al' =  

which is a contradiction. This proves the Fact 3. 
Note that the nonexistence of the program of Fact 3 does not follow 

directly from Fact 1 or the NDO theorem. A similar argument can be 
given to show that for X = (a, b, c, d, A, B, C, D, z) there is no program 
P such that 

{a,  = {A, 

la, dIP = {B, 

lb, cIF = {C , , 

¡b,  = {D, 

IV. THE 2-VALUED BOOLEAN FUNCTIONS 

Our attention will now be focussed on the positive aspects of the 
model. In particular we shall be concerned with the problem of repre-
senting the Boolean functions of m variables with appropriate programs. 
The way in which a function is to be represented is as follows. Suppose 
m = 2 and consider the function f: {0, 1} X (0, 1 }  {0, 11 by 

f (x, y)  
o  o  o 
o  1  1 
1  0  1 
1  1  1 

If the values 1 and 0 are interpreted as "true" and "false", respectively, 
then fis just the truth function of the familiar operation of alternation. 
V will be the set of six vertices (z0, xi , yo, yi , f , f i) which we indicate 
in Fig. 3. It is not difficult to show that no generality is lost by assuming 
there are no additional vertices. In fact, by using the pair of positions 
, x, in which to observe the result of the program, instead of providing 

the separate positions fo , fi , it is true that if a Boolean function of 
m  2 variables can be represented by a program in this general way, 
then it can be represented using just 2m vertices. The program P(f) 
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zo 

r 

o 

o 

o 

o 

o 

o 

fo 

f, 

Fig. 3—Symbolic arrangement of vertex locations for computing Boolean functions 
of two variables. 

which represents fis required to have the property that 

f0 e 1X0 7 Yoli" , f. e fxo , yor'n , 
fo e {xo , y1}P(f) , f,  , y,}P(n, 

fo e (xi , Ye )1' (f)  f g fx,  
fo g {x, , 1}P(f)  f, g ix, , y, ;P1' . 

The correspondence between the indices of the vertices of V and the 
values of the variables of f is immediate. In terms of bubbles, one may 
think of the configurations shown in Fig. 4 as representing a 0 and 1 
respectively (compare Fig. 2); P(f) is required to map each of the four 
possible initial states of the xi-pair and yi-pair into the correct value 
in the fe-pair. 
It is not difficult in this case to find an appropriate P(f), for example, 

we can take 

P(f) = (so , Yo)(so fo)(si Y1) (Y1 fi). 

This is easily checked, as shown in Table I. We can write the preceding 
result in the shorthand form 

P(i) 
(0,0, o, 1) (x0 , yo)(x0 , fo)(xi , y.)(Y. , f i) • 

Note that if f is defined by 1(x, y) = 1 — f(x, y), that is, J is the com-
plement of f, then we can take 

P(J) = P(f)(xo j xi)(x0 Yi)(xo y2)(fi , ito)(fo , fi)(xo , fo) 

• 
"r-- BUBBLE 

o 
o 

o 

• 

Fig. 4—Configurations which represent 0 an4 1, 
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TABLE I-CUMULATIVE EFFECT OF P(f) 

(x, y) 

(0, 0) 4->  lx°, Yo I 
(0, 1) 4-> xo, 
(1,0) o-> xi, yo 
(1, 1) +-> XI, Yi! 

(xo, yo) 

frOP YO 
YO 
YO 

XI» yo 

(so, fo) 

fo, Yol 
YIP Yo 
Xi, Yo 
xi, Yi 

(xi, yo) 

Ifa, vol 
lyi, Yo! 
by', Yol 
ixi, Yil 

(Yi, fi) 

I/o, YO 
Yo 

Iii, Yo 
Ix', fo 

4-4 

4-> 

4-> 

4-> 

as a program which represents .7 (we leave this to the reader to verify). 
Table II, together with this remark about f, show that all of the 
16 possible 2-valued Boolean functions of two variables can be repre-
sented by programs. 
A question which naturally arises at this point is whether all Boolean 

functions of nt variables can be represented by programs in this manner. 
For in = 1, the answer is in the affirmative (the specific programs are 
left to the reader to discover); for in = 2, we have given the required 
16 programs; for nt = 3, the answer is in the affirmative but the number 
(22' = 256) of programs prohibits their listing here; for m = 4, the 
answer is once again in the affirmative but the calculations necessary to 
establish this are much too long to be exhibited (there are, after all, 
= 65536 functions to consider). The cases m = 3 and in = 4 were 

established by J. H. Spencer.' 
One may note that since all Boolean functions of two variables can 

be represented, then in particular the Sheffer stroke function given by 

o  o  1 
o  1  o 
1  o  o 
1  1  o 

TABLE II-PROGRAMS FOR BOOLEAN FUNCTIONS OF 2 VARIABLES 

P(f ) 

(0, 0, 0, 0) 
(0, 0, 0, 1) 
(0, 0, 1, 0) 
(0, 0, 1, 1) 
(0, 1, 0, 0) 
(0, 1,0, 1) 
(0, 1, 1, 0) 
(0, 1, 1, 1) 

(xo, fo) (XI, fo) 
(se, yo) (xi, fi) (so, fo) (yo, fo) 
(si, Yo) (se, fi) (xo, fo) (Yi, fo) 
(xi, fi) (so, fo) 
(xo, Yi) (So, fo) (si, fo) (yo, fo) 
(yo, fo) (Yo, fi) 
(So, yo) (So, fo) (xi, yo)  (Yi, yo) (xi, fo) (//o, fo) 
(So, yo) (xo, fo) (xi, fi) (Yi, fi) 
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can also be represented. It is well known that any Boolean function 
of m variables can be generated by expressions containing just the 
variables and the stroke function.' Hence, one is tempted to conclude 
that any Boolean function is representable by a program. The flaw in 
this line of reasoning is that in order to express a particular Boolean 
function in terms of the stroke function, many occurrences of the stroke 
function and the variables are usually required. This in turn requires 
many "copies" of the variables to be available to the program in order 
to represent f. But we initially have only one pair of positions which 
indicates the value of any particular variable and by the NDO theorem 
we have seen that there cannot exist a "replication" program which 
would form extra copies of the values of the variables. Hence, within 
this model, we cannot use this technique to generate all the Boolean 
functions. It is certainly true however that if the model were extended 
to include bubble interactions which would allow replication of con-
figurations (and such are known to exist physically), then all Boolean 
functions of m variables could be represented exactly in the manner 
described. 
These initial results create considerable optimism concerning the 

possibility of representing all the Boolean functions of m variables. 
Such hopes are shattered however by the result (which we later prove) 
that there exists a Boolean function of 11 variables which cannot be repre-
sented by any program of this type. In fact, even though the fraction of 
the total number of Boolean functions of 11 variables which can be 
represented by programs can be shown to be < 10-', the author is 
currently unable to exhibit any specific function which cannot be 
represented. Clearly, our understanding of this is less than complete. 
It is not unreasonable to hope that the representable functions could 
eventually be effectively characterized. 
We now restrict ourselves (without loss of generality) to representing 

the Boolean functions of m variables in the following way. We shall 
take V =  , ,x2 ,x , • • • x,,, ,x} to be a set of 2m vertices which 
we imagine to be arranged in pairs as illustrated in Fig. 5. As before, a 
bubble in the xi (x) location of the pair (xi ,  will denote that the ith 
variable of the function f has the value 0(1). The way in which a program 
P(f) represents fis as follows. Choose a distinguished vertex atV. There 
is an obvious 1-1 correspondence between 10, 11" and the class O of 
all subsets X C V such that X intersects each {xi , x;i1 in exactly one 
element given by 

a = (a1 , • • • , am)  fyi e V  : y, = x, if a, = 0, 

y, = x: if a, = 1, 1 < 1  m =- X. 
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x, 

o 
o 

e2 

o 
o 

o 
o 

Fig. 5—Symbolic arrangement of vertex locations for computing Boolean functions 
of m variables. 

Let A, c {0,1}",i = 0,1, be the set of all a e 0, 11" such that f (a) = 
and let e, be the corresponding subsets of C. Our object is to find a 
program P(f) which distinguishes between the sets Co and 0, . (Note 
that C0 U C, = C.) Specifically we shall say that P(f) represents f if 

for all 

for all 

X e CO3 

X e C1. 

Let C denote the subset of all subsets x C V with I x = m and 
for x and y distinct elements of V, let C(x) be the set of elements of C 
which contain x with C(y) defined similarly.t Consider the effect of 
the command (x, y) on the members of C(x) and C(y). There are four 
cases: 

(i) X e C(x), X E C(y). 
Then X ') = X and X ") e C(x), X ") e  

(ii) X e C(x), X e C(y). 
Then X ") = X — {x) U {y} and X(''") C(e), X (3.v)  e C(y). 

(iii) X e C(x), X e C(y). 
Then r ") = X and X̀ ") e C(x), X(') e C(y). 

(iv) X e c(x), x e C(y). 
Then  = X and r...) e C(x),  C(y). 

Hence, after the application of (x, y) to all the sets in C, the new sets 
C' (z), C' (y) (which now consist of all the subsets in C which contain x 
and y respectively) are related to C(x) and C(y) by 

C'(x) = C(x) n C(y), 
C(Y) = C(x) U %). 

Stated in these terms, the object of the program P(f) is finally to have 
C'"'' (a) n C = 00 after it has been applied to all the sets in C. 
We give an example which illustrates these concepts. Let f be the 

Boolean function of three variables defined by: 

t This approach was first suggested by J. H. Spencer.° 
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f (x, y, z) 

o  o  o  o 
o  o  1  1 
o  1  o  o 
o  1  1  o 
1  o  o  o 
1  o  1  1 
1  1  o  1 
1  1  1  1 

V = fx, , xf , x2 , , x2 , 4  and we take a = e . 

Co = { (x1 , x2 , x3}, (x1 , ,  lx, , , 41, {xi , x2 

Cl = (x, , x2 , 4 , (xf , x2 , 41, {e , , x2), {xf , 

A program PU) which achieves the separation is 

P(f) = (x( , x2)(xf , x8)(3; , x.)(xt x.)(x. , x0. 

That is, 

X eCE,  a = xÇ e Xi" 

X e c% = x¡ e x"). 

If C(x) denotes the initial subset of C consisting of all the sets in C which 
contain x then we may conveniently record the sequential changes 
which occur in each current C(x) in terms of the original C(y)'s as 
the successive commands of PU) are applied as shown in Table III. 
A little computation shows that the final set in the *row, the final 
C(xf), when intersected with e gives exactly 

{xi , x2 , xal, {x1 , , x31, lxi , ¶xfl, {xf  x3i1 

which equals Co as required. 
In general the problem of representing Boolean functions reduces to 

the following problem. We start with the 2m classes Cm (y) = C(Y) n C, 
y e V. We are then allowed to replace two of the classes Cm (y) and 
C'(//) by two (possibly) new classes (y) (1 Cm (y') and C'°> (y) U 
(y'). We can repeat this operation as many times as desired with 

any pair of classes currently in the list. Our objective is to eventually 
generate a specified subset C* of Cr. 
We have already mentioned that for ni = 1, 2, 3 and 4 it is possible 
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TABLE III—CUMULATIVE EFFECT OF P(f) 

(xi', x2)  (x,', x2) 

Xi:  C(X1) 
X11:  C(Xj') 

X2:  C(X2) 
X21:  C(X21) 

X3:  C(X3) 
X31:  C(X31) 

C(s i) 
C(xi') n C(x2) 
C(x11) u C(x2) 
C(x2') 
C(x3) 
C(X31) 

(22', X3) 

C(xi) 
C(x2') n C(x2) n e(x3) 
C(xi') u C(xs) 
C(x2') 
(C(xi') n C (x 2)) u C (x 3) 
(x 3' ) 

(z,, x3) 

X]: 

X11: 

X2: 

X21: 

X3: 

X31: 

C(xi) 
C(xii)nC(x2)nC(x3) 

C(x1')u 
C (x 2') n ((C(x 1') n (x 2)) u C (x 3)) 
C (x 3') u (C (x 1') n C(x2)) u C(x,) 

C (x 3') 

C(x n (C(x2')u (C(x ) C(x 2)) C(x 3)) 
C(x 1') n C (x 2) n C (x 3) 
C (x  C (x 2) 

C(x2') n ((C(xi') n C(x2)) u C (x3)) 
C (x 1)u C (x 2') u (C(x  n C (x 2)) u C(x3) 

C (x 3' ) 

(xl, X11) 

z1: C(xi) n (C(x21) u (C (xi') n C(x 2)) u C(x3)) n C(x i') n e(x2) n C(xa) 
(C(zi) n (C(x 2') u (C(xi') n C(x2))) u C(xa)) u (C(xi') n C (x 2) n C (x 3)) 

X2:  C(xi') u C(X2) 
X21:  C(x2') n (W(x11) n C(x2)) u C (x 3)) 
X3:  C(X1) L.) C(X2') u  (C(X11) n C (x2)) u C(X3) 
X3':  C(X31) 

to generate any subset of C in this manner. We proceed to show that 
for m = 11, there is a subset of C which cannot be generated. We first 
need several preliminary observations. 
To begin with, for a, b E V, let A and B denote the current sets Cw (a) 

and C )(b), respectively, after the ith command of the program P has 
been executed. In other words, at this point in time C>(a)  is the class 
of all the original subsets of C which now contain a. For example, if 
a = 4 in the preceding example, then after the fifth (and final) com-
mand of P(f), C5)(4) is  (4) n (c°)(4 n c(1))(so u C>°> (z3)). It is 
immediate that if C''' (a) c C"> (b) then the application of the command 
(a, b) as the (i + 1)-st command of the program changes nothing. Hence 
we can assume that we only use commands (a, b) for which at the time of 
their application C>1> (a)  C>'>(b)  C")(a) (we say that  (a) and 
C'"> (b) are incomparable). 
Initially all the starting classes CI» (x), ze V, are mutually incom-

parable. In general suppose we have a family of classes D = A, ; 
1 i tl, A, c C, with exactly r of the (2")  pairs of A, being comparable 
and assume A, and A2 are incomparable. Consider the family D' 
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D — {Ail — {AO U (Ai n Ail U {AI U A2}. We wish to determine 
how many pairs of the classes of D' are comparable. By definition 
D' = {Ai () A,, Al U A,, A,, A4 • • • Ail. Of course for i, j 3, 
the comparability between the classes Ai and Ai remains unchanged. 
There are several cases: 

(0 Ai D  , Ai D A2 . 
Then Ai D A, U Az ,Ai D A, n A2 • 

(ii) Ai  , Ai  A2 • 
Then A i D  n A2 • 

(iii) A, 2 A, , Ai D A, . 
Then Ai D A (-1 A2. 

(iv) Ai c  , A C A2 • 
Then Ai c A, r) A2 , Ai CA1 U A2 • 

(y) Ai g. A, , A i A2 • 
Then Ai C A U A2 • 

(tn.) Ai A, , Ai C A2 • 
Then Ai c Al U A2 

Finally, we have a most important new comparability in D', namely 
Al n A2 C Al u A,. Thus, at least r  1 pairs of classes of D' are 
comparable. An immediate consequence of this observation is 
Fact 4: We can assume that no program P(f) consists of more than ('r) 

commands. 
Proof: Since after i (nontrivial) commands of a program P(f) have 

been applied, we must have (by induction) at least i pairs of the classes 
CU) (x), x eV, being comparable and since there are just 2m classes and 
therefore ('r) pairs of classes, then P(f) must have < (r) commands. 
Theorem. There exists a Boolean function of 11 variables which cannot 

be represented by a program. 
Proof: It is sufficient to show that for m = 11, there is a subset C* 

of e which cannot be generated by starting with the 2m classes Cm (x), 
xe V, and recursively applying the transformation A, B —> A n B, 
A U B. Consider a typical program P = (el , e2, • • • , ei) and the corre-
sponding expressions C")(1), presented in Table IV. 
In choosing the ith command ei of P there are at most (r) — j -I- 1 

possibilities for ei since after (el, • • • ,e;_i) has been applied, at least i —1 
of the pairs C"-')(x), Cc' ) (y) are comparable and thus neither (x, y) 
nor (y, x) can be the next command ei . Therefore there are at most 

(2;7) [(27 . 
ll  - j + 11 = [m(2m — 1)]! 
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TABLE IV—CUMULATPTE EFFECT OF P 

P: el ex ei  ei 

zt: C(°'(xl)  C(')(xi)  C(2) (xl)  • • • C(i) (zi)  • • • • • • C(̀ )(zi) 
zl':  C(°)(ri')  C(1)(x1')  C(2) (xi')  • • • Cti)(xi')  • • • • • • C(̀ )(x1') 

z.:  Co)(x.)  C(1)(x.)  C(2)(x.)  • • • 0 0(z.)  • • • • • • C(0 (x.) 
,x,,,': C(°)(x,,,i) C(1)(x,,,I)  C(2)(x.')  • • • C(i)(xmi)  • • • • • • C(d)(x.,') 

choices for the sequence of ei , since t 5 (T) = m(2m — 1) by Fact 4. 
Also, for i 1, each column C(i) (x), x e V, contains at most two new 
classes which did not occur in the preceding column since only two 
classes are changed at each step. Hence there are at most 

[m(2m — 1)]1 (2m ) + 2m 
2 

classes which can be generated by these rules where the additional 
term +2m comes from the 2m initial sets Cm (x), x e V. On the other 
hand, since 0 contains 2'n sets X C V, then there are 2" subsets of CT 
which we must try to generate. We are doomed to failure however since 

{[m(2m — 1)]! (2;1 + 2,..} /22- ___3 0 

as m —› 00. We list these expressions for several small values of m in 
Table V. Thus, not only are we guaranteed a single Boolean function 
of 11 variables which cannot be represented by a program, but in fact 
we have at least 10016  of them. It seems quite likely that there exist 
Boolean functions of five variables which cannot be represented. 
However, at present, no specific example of a Boolean function is known 
which cannot be represented by a program. 

TABLE V— BOUNDS ON THE NUMBER OF BOOLEAN FUNCTIONS WHICH 
CAN BE GENERATED 

m [m(2m —1)]!(2m ) ± 2m 2  22»  

2 
3 
10 
11 

4324  16 
19615115520006  256 

>102"  <10m 
<10458  >10616 
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V. SOME REMARKS 

A number of partial results are known concerning the preceding 
problems which we shall only mention briefly here. 
The generation of Boolean functions as described has the following 

very natural geometrical interpretation. For a fixed integer n, consider 
the set of the 2" vertices of an n dimensional cube C" and let A,, • • • , A,„ 
represent the 2n sets of 2"-' vertices which each lie on one (n — 1)-
dimensional "face". In other words, if the vertices of C" are labelled by 
binary n-tuples in the usual way, then each A; corresponds to a set of 
2"- ̀n-tuples in which some component is constant. As before, we are 
allowed to replace any two sets A and Bin the class of 2n sets of A n B 
and AU B. We can repeat this transformation as often as desired. The 
question is: which subsets X C Cm can be generated in this manner. We 
have shown that there exists a set X C C" which cannot be so generated. 
More generally, suppose we start with a class of n formal sets 

Xi, • • • ,X„ and ask which formal expressions in the Xi can be generated 
using the transformation X, Y —) X fl Y, X U Y iteratively. It can be 
shown" for example, that all the elementary symmetric functions (using 
n and U in place of the usual • and +) can be generated. Let us call 
a well-formed expression E in the Xk's symmetric in Xi and Xi if the 
substitution Xi —› X , X. •—> Xi , leaves E unchanged. Thus we can 
write E in the form 

E =  n x, fl w.) U ((xi U xi) rl 1472) U  WB 

where the Wi are well-formed (possibly empty) expressions in the Xk's 
not involving Xi or Xi . We say that we collapse X; and Xi in E if we 
apply the transformation Xi ("1 Xi Xi , L  U Xi —› Xi , to form 

E' = (X1 fl Tvi) u (X1 fl  u W,. 
Certainly, if E can be generated using the transformations X, 
Y —› X fl Y, X U Y starting from Xi, • • • ,X„, then there is a sequence 
of collapses starting with E and ending with some single variable Xi . 
A basic theorem can be proved which asserts that if it is possible to 
generate E, then no matter how we collapse symmetric variables 
starting with the expression E we must reach some single variable Xi . 
In other words in attempting to collapse E to a single variable, we can 
never make a "bad" move. Once the structure of the expressions E 
which can be generated is sufficiently well understood, perhaps the 
representable subsets of C" can then be determined. 
Another line of research suggested by this bubble model is in the 
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following direction. For binary sequences x and y, define d(x, y), the 
(Hamming) distance between x and y, to be the number of positions in 
which the sequences x and y differ. The fact which prevented the 
existence of a program which could add two integers expressed to the 
base 2 was the fact that there are pairs of additions in which the binary 
expansions of the corresponding summands are close together (in the 
metric d) but whose sums are not close, thus conflicting with the NDO 
theorem. What we would like is a mapping m  r(m) of integers into 
binary sequences for which we have 

d(r(m), r(n))  d(r(m'), r(n1))  d(r(m  n), r(ne  n')). 

With only this constraint there are trivial solutions, for example, 

m •—> 111 • • • 1. 
If L 

With this mapping we are essentially expressing m to the base 1 (well-
known by many cultures to be inefficient for representing large numbers, 
say, those exceeding 10). Hence, we might require in addition that the 
number of binary sequences of length t which are in the range of the 
mapping r to be at least at for some fixed a > 1. Is it possible to find 
a suitable r for which an addition program is possible in this model of 
bubble interactions? 
Finally, we have just considered just one rather simple model in this 

paper. Physically, many other bubble interactions are possible (although 
some presently operate with significantly smaller margins than others) 
and this of course would lead to other models. It would be very interest-
ing to understand the corresponding questions in some of these other 
models. 
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Dielectric Guide with Curved Axis 
and Truncated Parabolic Index 

By E. A. J. MARCATILI 

(Manuscript received May 5, 1970) 

We find the field configurations and the propagation constants of the 
guided modes in a dielectric waveguide with curved axis and rectangular 
cross-section. Outside the guide, the refractive index is uniform. Inside, 
the index profile in the radial direction (intersection of the meridional plane 
and the plane of curvature) follows a parabolic law with the maximum at 
the center of the guide; in the direction perpendicular to the plane of curva-
ture the index is either uniform or parabolic, again with the maximum at 
the center of the guide. The guide with mixed profiles has been proposed as 
an easy-to-support, low-loss, ribbon-like guide for millimeter and optical 
waves while the other, with parabolic profile in both directions, is similar to 
the " SE LFOCe" or "GRIN" image transmitting guides. 
The axial field components are small compared to the transverse com-

ponents and consequently the modes are almost of the TEM kind. Within 
the guide the field distribution along a quadratic profile is a parabolic 
cylinder function of order close to an integer, and is sinusoidal along the 
uniform profile. The field components outside of the guide decay almost 
with exponential law. 
Inside the SELFOC-like guide, the field distribution of the funda-

mental mode is gaussian and except for the attenuation the characteristics 
of the beam are similar to those obtained for a guide in which the parabolic 
index profile is not truncated. 
The attenuation constant a of any mode is very sensitive to the radius of 

curvature R. Doubling R reduces a by several orders of magnitude. 
Fixing R and the difference of refractive index between the center of the 

guide and the edge of it, the attenuation constant a passes through a mini-
mum for a guide width measured in the plane of curvature which is only a 
few beam-widths. 
Radiation loss for the fundamental gaussian mode is negligibly small if 

the distance between the center of the beam and the edge of the guide is two 
or more half beam-widths. 
Guides with rectangular index profile in the plane of curvature have less 

radiation loss than similar guides with truncated parabolic profile. 

1645 
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I. INTRODUCTION 

A dielectric guide in which the refractive index decreases with para-
bolic law away from its axis acts as a lens-like medium."2 The trans-
mission through it is known even if the axis is not straight" and if the 
parabolic decrease is different in two orthogonal directions' (astigmatic 
guide). 
Though extremely useful in many respects the parabolic medium is 

not realizable since it has ever-decreasing refractive index away from 
the axis and this in turn produces an untenable physical result. Thus 
though we know that in any realizable dielectric guide with curved 
axis, radiation losses are inevitable,' the modes in the parabolic medium 
with curved axis can have no radiation loss since the refractive index 
tending towards infinity far away from the axis prevents it. 
A more realistic model is achieved by truncating the parabolic index 

distribution. We begin, in Section II, studying the two dimensional 
guide, Fig. la, in which the index profile, Fig. lb, varies as a truncated 
parabolic function along the x axis and is independent of y while out-
side of the guide the index is uniform. 
Later, this guide is modified in such a way that along y, the index 

profile is either rectangular, Fig. 2a, or another truncated parabolic 
function, Fig. 2b. 
The first of these guides has the index distribution of the dielectric 

thin-film guide proposed in Ref. 6 as a low-loss, easy-to-support ribbon-
like guide for millimeter and optical waves. It has also the configuration 
of a possible guide for integrated optics.' This guide, with curved axis 
has been analyzed in Ref. 8 ignoring radiation due to curvature. In 
Section II, both the phase and attenuation coefficients of the guided 
modes are evaluated and compared to those in a similar guide with 
rectangular index profiles along both x and y. 
The results obtained for the guide with truncated parabolic profiles 

along x and y, Fig. 2b, are applicable, at least in order of magnitude, 
to "SELFOC"' or "GRIN"' fibers, and tubular gas lenses" with 
curved axes. 
Finally conclusions are drawn in Section III, while all the mathe-

matics are given in the Appendix. 

II. MODES IN THE CURVED GUIDE 

Consider the two-dimensional curved guide in Fig. la. The parabolic 
refractive index within the guide is independent of y and equal to 

ni =  — à(1. -F -2--:)2] ,  (1) 
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Fig. 1—(a) Two-dimensional truncated parabolic guide; (b) Refractive index 
profile; (c) Electric field distribution of the fundamental mode. 

where a is the width of the guide, n, the refractive index in the center 
of it and n(1 — à), the refractive index at the edges. Outside the guide, 
the index is 

n, = n(1 — à — A,).  (2) 

We make the following assumptions: 

à « 1 

«1 
and 

 «1 — a  
a•V A  44R 

(3) 

(4) 
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Fig. 2—(a) Inhomogeneous dielectric thin film guide; (b) "SELFOC@>" or 
"GRIN" guides with rectangular cross-section. 

where X is the free-space wavelength and R the radius of curvature 
of the guide. The physical significance of inequality (3) is that the 
guided modes will have phase velocities quite comparable to that of a 
plane wave in. a uniform medium of refractive index n. The inequality 
(4) insures that the amplitude of the field components at the edge of the 
guide are small compared to their maxima within the guide. In other 
words, most of the electromagnetic field is well confined within the 
guide, Fig. lc, and consequently the loss per wavelength is small com-
pared to unity. Considering only guided modes with field configura-
tions independent of y, we can group them in two families: TE and 
TM. The field components of any mode of the first family are E„ , 
Ha, and H. while those of the second are H„ , E., and E. . In each family 
the transverse components are far larger than the axial components 
and consequently both families are essentially of the TEM kind. 
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The transverse components E„ , Hz , 11,, and E. of both families 
have the same functional dependence within and without the guide. 
Therefore we will talk from now on of the E field meaning either one of 
those four components. 
Within the guide, and subject to the conditions (3) and (4), the E 

field distribution for the pth mode is essentially 

E = exp 
2 2 

1  a 

—  He,, 2  P exp [i(ke — wt)j  (5) p 

in which the first two factors describe the field distribution along x, 
and the last gives the propagating wave dependence along the curvi-
linear z axis. Similarly to the field distribution in the lens-like medium 
(a = co), the first factor is a gaussian with its maximum located at a 
distance 

P 8AR 

from the center of the guide. The normalizing 1/e half-width à 

(6) 

aX 
w _ \L y e  (7) 

The second factor in equation (5) is a Hermite polynomial of order p 
which is also centered at x = — (a/2)  p and the argument is normal-
ized to w/2. Strictly speaking the expression (5) should have, instead 
of the Hermite polynomial, a Hermite function of order close to p. 
Interested readers can find the details in the Appendix. 
For the fundamental mode p = 0 the Hermite polynomial is unity 

and the transverse field distribution is the well-known gaussian. 
The propagation constant k, = ja in equation (5) is complex 

and the phase and attenuation constants calculated in equations (36) 
and (37) are 

and 

a 

2  1 — M  
= 41+ ce 

16 M2 wicn K(1 + M)J 

[  — co]2p+ 

./TrA dRpl 

(8) 

IM YT exp  [(1 — d)2 v a  2 a 
2 

(1  -  CO 2}  (9) 
2w 
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in which 

151, =  k n Ni 1 —  (; -71 ) 2 (1) ±  (10) 

d = 2p =  \ 1  ' (1 2 (11) 
a  it \Iv/  

4en 
= — (23.)1R,  (12) 

and the values of M and K can be found in equations (38) and (39). 
Let us discuss the physical meaning of some of these formulas. 
The phase constant # given in equation (8) is the product of the 

phase constant 0.,(10) of the lens-like medium with straight axis (R =-
a = 00), multiplied by a bracket essentially equal to one; the two small 
terms contained therein take into account the curvature of the axis 
and the truncation of the parabolic profile. 
More interesting is the attenuation constant (9). The value •Vii, Ra 

which is the normalized attenuation per radian has been plotted in 
Fig. 3 for the fundamental mode p = 0 and Al = 0. The abscissa is 
the square of the guide width a normalized to the beam-width 2w or 
its equivalent (rna/X) -V,C which is the guide width normalized to 
the free wavelength. The parameter used for the solid curves is the 
normalized radius of curvature a(12). For a given radius of curvature 
the loss per radian is highly sensitive to the width of the guide and 
passes through a minimum at width 

_Lc  LRY 
2w  \ 8/ • 

For a wide range of values of GI, say 10 to 1000, that minimum loss 
occurs when the guide width is only a few beam-widths. 
The dotted lines are curves of constant d, that is constant ratio 

2p/a between the beam displacement from the guide axis p and the 
guide half-width a/2. It is easy to understand the downward trend of 
these curves for large abscissas. Consider a guide with fixed geometry 
and decrease the wavelength X of operation. The beam remains at the 
same distance p from the guide axis but it becomes narrower and conse-
quently the field at the edge of the guide and the radiation loss de-
crease. It is surprising that the minimum radiation loss of the solid 
curves occurs when the beam displacement is a small part of the gidue 
width (d of the order of 0.1). 
Why do the solid lines have a minimum? For very narrow guides 
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Fig. 3—Radiation loss in curved guides with truncated parabolic index profile. 

aX 2p  as 
w —  ,  d=--;  p = 

wnv/8,e,  8 àR • 

(a/2w « 1), most of the electromagnetic field travels outside of the 
guide and any curvature of the axis introduces substantial radiation 
losses to this loosely guided beam. On the other hand, for very wide 
guides (a/2w >> 1), any curvature of the axis displaces the beam close 
to one edge of the guide (d close to unity) and once again substantial 
losses occur. There must be a minimum in between. 
It is interesting to compare the losses in these guides of truncated 
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parabolic index profile with guides of identical width but with rectangu-
lar index profile of height nà. In Fig. 4, the solid curves are a repetition 
of some of those in Fig. 3, while the dotted ones have been reproduced 
from Ref. 12. The abscissa is again (a/2w)2 which is identical to (T/4)a/A 

in which 
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Fig. 4—Radiation loss in curved guides with truncated parabolic index profile 
(solid curves) and with rectangular index profile (dashed curves). 
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is a dimension such that for a < A, the guide with rectangular index 
profile supports a single mode and for a > A, the guide is multimo de. 
For the same radius of curvature, guide width, and same à on axis, 

the guide with truncated parabolic profile has more loss than the guide 
with rectangular profile. The difference is very marked for large abscissas, 
but this result should not be surprising because in. the case of curved 
guides with truncated parabolic profile the beam travels close to one 
edge of the guide where there is little difference of refractive index 
between the inside and outside, while in the case of rectangular profile, 
though most of the power travels also close to one edge of the guide the 
full difference of refractive index nà is there to help in. the guidance. 
In Fig. 5 we have plotted again the attenuation per radian as a 

function of (a/2w)2, but this time we use as parameter, the value of 

a 

h  P 

which is the number of beam half-widths between the center of the 
beam and the external edge of the guide. The curves have asymptotes 
(dashed lines) parallel to both coordinates. 
For h  2, à = 0.01, the attenuation per radian aR turns out to be 

smaller than. 0.003, which is very small for most purposes. 
If the truncated parabolic profile is on a pedestal (A, 0 0), the 

losses are even smaller than those depicted in Fig. 4. The influence of 
AI in the attenuation constant (9), appears in the bracket of the ex-
ponent. The other two terms are in general small compared to unity. 
Therefore even a modest value of à, , say A, = A, is enough to reduce 
the losses depicted in. Figs. 3 and 5 by several orders of magnitude. 
What happens when p 0 0. From equation (9) we find as expected 

that for a given guide the radiation loss increases fast with the order p 
of the mode. The highest order mode that travels only slightly in-
fluenced by the guide width is characterized by 

,2 

112 — 

Naturally pm„„ is independent of à, , and when the beam center is close 
to a beam half-width from the edge, p„,.. = 0. 
It is shown in the Appendix that if the refractive index profile along y, 

Fig. la, is not uniform but has either rectangular or truncated pan, 
bolic shape, Figs. 2a and 2b, the guides have different phase constants 
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Fig. 5—Radiation loss in curved guides with truncated parabolic index profile. 
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than equation (8) but practically the same attenuation constant (9) 
provided that most of the electromagnetic field travels within the 
guide. Therefore everything said about attenuation in this section 
applies to the three guides. 
For the following examples we will only use Figs. 3, 4 and 5 since all 

the important results and formulas are there. 
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2.1 Example A 

For a guide such that 

n = 1.5, 

A = 0.01, 

= 0, 

a = 0.1 mm, 

X= 

what is the radius of curvature R for which the loss per radian is of 
the order of 10-3? 
We calculate the abscissa and ordinate of Fig. 5 to be 

(a\2  7rna Z 
\2w1 = X v'2   

and 

= 

The parameter h obtained from Fig. 5 is approximately 2 and we derive 

R =  = 3.9 mm. 
8àp 

A very small radius indeed. 

2.2 Example B 

For integrated optics a guide with truncated-parabolic profile may 
have the following characteristics 

n = 1.5, 

à = 0.01, 

à, = 0, 

a = 10p, 

X= 

R = 0.6 mm. 

What is the loss per radian? 
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From Fig. 3 or 4 we get the abscissa and parameter 

(AL)2 =  6.7,  
2w 

6t. — 47rnR (2A)  60. 

Consequently the loss per radian results 

aR = 0.018. 

If instead of parabolic the index had been rectangular, from Fig. 4 
we deduce that the loss per radian would have been 0.00018, two 
orders of magnitude smaller. 

III. CONCLUSIONS 

For losses small enough, the field configurations and phase constants 
of the modes in dielectric guides, Figs. 2a and 2b, with curved axis 
and parabolic index profile on a pedestal, are quite comparable to 
those in a similar guide in which the parabolic profile is extended to 

The attenuation constant of a mode is very sensitive (exponential 
dependence) to the radius of curvature, size of the pedestal and order 
of the mode. The higher the order of the mode and the smaller the size 
of the pedestal the larger the loss. 
Quantitative results about the attenuation constant for the funda-

mental gaussian mode in a guide without pedestal are given in Figs. 3, 
4 and 5 and in typical examples at the end at the preceding section. 
We find in these figures the loss per radian aR as a function of the guide 
width a, using as parameter the radius of curvature R, or the ratio 
between beam displacement p and guide width or the ratio between 
the beam distance from the edge of the guide, a/2 — p and the beam 
width w. The main conclusions are: 

(i) Doubling R reduces the attenuation constant a several orders 
of magnitude. 

(ii) For any R, there is a guide width that minimizes the loss per 
radian. That dimension is only a few beam-widths. 

(iii) For comparable characteristics, guides with rectangular pro-
files have lower attenuation than those with truncated-para-
bolic profile. Therefore if the transmission of images is not 
important, such as in the case of the ribbon-like guide of Ref. 6 
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and guides for integrated optics, rectangular index profiles are 
more attractive than parabolic profiles. 

(iv) The attenuation per 900 bend is smaller than 10-3 in a guide 
such that the distance between beam center and the external 
edge of the guide is larger than a couple of half beam-widths, 
that is, if 

a 

§  P > 1• 
2w 

APPENDIX 

Modes in Curved Guides 
With Truncated-Parabolic Index Profile 

We start studying the two-dimensional curved guide depicted in 
Fig. la in cylindrical coordinates. Later we will introduce a variation 
of the index profile along y. 
The parabolic refractive index distribution within the guide is 

n, = n[l — à(1 + 2 r  RY]  (13) 
a / 

where a is the width of the guide, n the refractive index in the center 
and n(1 — A) the refractive index at the edges. The refractive index 
outside the guide is 

no = n(1 — à — A,).  (14) 

Assuming that the electromagnetic field does not vary along y and 
that the only component along that direction is H, , all the field com-
ponents either inside or outside the guide are 

H, = H 

E, — 

E, — 

H  
wEon,r 

i  oH 
WEcin Or 

o 

exp [i(v0 — ca)]  (15) 

where co is the angular frequency, €0 the refractive index of free space, 
and the indices i and o refer to the inside and outside of the guide. 
The resulting wave equation for both media is 

ell 1 dH  2 
(16) 

drz r dr  '„ r 
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in which k = 27r/X and X is the free space wavelength. Within the 
guide ni is given by equation (13) and the wave equation can be re-
duced to 

cell 
± [7? ±  —  e0)11-1 = O 

by making the following substitutions 

— 2(r — R) e  

in which 

and 

eo = (1 — d), 

(17) 

(18) 

v = k,R,  (19) 

en; — k 2_ a2c12 (1 _1 
—  4  2w \  2  §- '  (20) 

aX   
(21) 

w = N r  11„.n-V-87à 

a2  a  2p 
d  —  = —  = — '  (22) 

w242  4AR  a  

cit  = -'(2)R,  (23) 

X  
A —  (24) 

n Nr8ià 

Furthermore, equation (17) has been derived making the following 
simplifying assumptions 

A «1, 

«1, (25) 

X a 
a/ «  

The physical significance of tv, d, A and the inequalities are given in 
the text. 
The solution of equation (17) is" 

Hi = 1),A  eo) = exP [ (E +2 e.)He,,(e + &))  (26) 
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where D„(  Za) is the parabolic cylinder function of order n and 
He,, (t + to) is the Hermite function of order n. Only if a  , n 
becomes an integer, the Hermite function is reduced to a polynomial 
and Hi becomes the well-known solution of the parabolic lens-like 
medium extending to infinity.3 
Outside of the guide, that is for r > R, the refractive index 91,, is 

uniform, equation (14), and the solution of the wave equation (16) is13 
the Hankel function of order y and argument knor. That is 

H. = Hr(knor).  (27) 

To match fields at the boundary r = R, the radial admittance 
H,JE0 inside and outside the guide must be identical. With the help 
of equations (15), (26) and (27), we obtain the characteristic equation 

w nDIn  (e„) 11;,1)(kn„R)  
IL   —  (  (28) 
2 D(E0)  H "  (knaR) 

in which the derivatives are taken with respect to the arguments of the 
functions. 
We should have another boundary equation for the other side of the 

guide, r  R — a, but we are interested in guides with radius of curva-
ture R man enough to push the field away from the center of the 
guide, and consequently the field at the interface r = R — a is negligibly 
small. 
To solve explicitly the boundary or characteristic equation (28) for 

k„ we need asymptotic expansions of the functions involved. From the 
inequalities in equation (25), it can be deduced that 

I Zo » 1 and  eo » n I.  (29) 

The asymptotic expansion for D,,(e0) is then' 

De0)  exP (_q  rr_271-77) &;'7-1 exp (30) 

where r(— fi) is the gaussian function of argument (-77). 
The asymptotic expansion for the Hankel function results from 

observing that as a consequence of equation (25) 

kn,,R>> 1, 

le,„R >> 1,  (31) 

kno 
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and 

- k2n2.)I >> 1. 
k, 

Therefore we can replace the Hankel function by Watson's approxi-
mation." This approximation involves Bessel functions of order one-
third and large arguments. Keeping the first term of their asymptotic 
expansions, the Hankel function results 

- .")(knoR) — Nin.R(0, —2 k2n2.)4  {—i exp  R2 (k2 eel] [3k, 

1   exp  [—is (k — len20)11} •  (32) 

Substituting equations (30) and (32) 'n equation (28) we obtain a 
simplified version of the characteristic equation 

V 2  _ 1 ±  
r( - 7 7) " 

exp + irn) 
2 

Vr2r  exp (e. 1  iTti) 
r(- 77)  2 

1 +  exp  [ 2 R  onw l 
3 e   

—  (k2. — len)w  •  (33)  

To solve this equation for k, we rewrite it as 

r(—n) = F()  (34) 

and notice that F(n) is a large quantity. Therefore the gamma func-
tion is also large and hence n must be near a pole, which makes n close 
to an integer p. Then we can replace the gamma function by the first 
term of the Laurent series (-1)2/p !(p — n), and equation (34) becomes 

(-1)"  
= P p! F(p) 

Substituting n by the value given in equation (20) we derive the ex-
plicit value of k, . This propagation constant is complex, k, = 13 ± 
and the real and imaginary parts are the phase and attenuation con-
stants of the pth mode: 

= Re k, (36) 

= kn{1  2 _L 1 +  1 al e @  A ±  1 — M  1} 
(wk e [13 m 2  2  — 2/  K(1  M) 

(35) 
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[-6;  /1// (1 — 1 31  xe P  1 ± 2M — /1/2 
a = Im k, 

dKR  (1 + M)2 

where 

(37) 

_ 

M =[1    (38) (1 _ c)2  

exp [(Rd —2 (1 — d)2] K =  2r p!  •  (39) 
[ ViRd (1 —  

In equation (37), M affects the value of a mostly via the exponential 
and not via the fraction 

1 -I- 2M — M 2  
(1 + M)2 

which for all practical purposes can be replaced by 1. Consequently 
the normalized loss per radian N/ ERa results 

(it (i — d)3] 

L =  2à Ra — 
exp [—•3  M 

• 
dK 

(40) 

Now we turn to guides in which the refractive index is a function 
of y, Figs. 2a and 2b. 
Let us start with the ribbon-like structure of Fig. 2a and assume as 

in Ref. 6 that 

à, >> à.  (41) 

Provided that most of the electromagnetic field travels within the 
ribbon, the attenuation per radian is still given by equation (40), but 
the phase constant is a slight modification of equation (36). From Ref. 12 
is deduced 

kn [r(q   
2  b 

(1 -I- 2(1 — ,à1)2441r 2 for field 
rb  polarized along y, 

(42) 

( + -2 —A,)-2  for field 
7r b  polarized along x, 

where q ± 1 indicates the number of maxima of electric field within 
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the guide along y and 

X  
A1 — n (43) 

Consider another guide, Fig. 2b, with rectangular cross-section and 
truncated parabolic index profile along both the x and y directions 

ni = n[l — A(1 -I- 2'   — aM2] •  (44) 
a 

Provided that most of the electromagnetic field is within the guide 
cross-section, the loss per radian is still given by equation (40), but 
the phase constant becomes4 

à   
+ 2  (45) 2 

/32 = P - 2 2 

11)2 kn 
q! (1)-)24+1  [1 ± (1 ± 41 )-11 A 

where q + 1 is the number of maxima of the electric field along y and 

bX  
w2 — Nilrn  (46) 

If ' 

p= q = 

and 
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Radiation Losses of the Dominant Mode 
in Round Dielectric Waveguides 

By DIETRICH MARCUSE 

(Manuscript received March 5, 1970) 

The radiation loss theory that has been developed in a series of earlier 
papers is extended to the dominant mode of the round dielectric waveguide. 
The theory is applied to the calculation of radiation losses of abrupt steps, 
gradual tapers, and random wall perturbations of the round dielectric 
waveguide. 
The radiation losses caused by an abrupt step, and consequently the losses 

of tapers, are far higher for the dominant mode of the round dielectric wave-
guide than they are for corresponding steps and tapers of the dielectric slab 
waveguide. However, the losses caused by infinitesimal random wall pertur-
bations of the round waveguide are nearly equal to the random wall losses pre-
dicted on the basis of the slab waveguide theory. In fact the losses of the 
dominate mode as well as the circular electric TEoi mode of the round rod due 
to random wall perturbations are very nearly the same. 
The theory is limited to circular symmetric distortions of the round dielec-

tric rod (diameter changes). The radiation losses caused by steps of the 
round dielectric waveguide that carries the dominate guided mode have been 
verified by experiments at millimeter wave frequencies. 

I. INTRODUCTION 

A series of earlier papers was devoted to radiation losses of TE and 
TM modes in dielectric slab waveguides.'3 The radiation losses were 
assumed to be caused either by random perturbations of the waveguide 
boundary' or by steps and tapers of the slab waveguide.3 Experiments 
to verify the radiation loss theory were conducted with millimeter 
waves in round teflon rods, and the theory was extended to cover this 
case.' 
These earlier publications were limited to the simplified case of 

1665 
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electromagnetic fields that are independent of one coordinate. In the 
case of the slab waveguide we assumed 

_a_ _ 0 
ay 

while 

(1) 

a — 0  (2) ao — 
was required of the fields of the round dielectric waveguide. Restrictions 
(1) and (2) made it possible to separate the fields into transverse 
electric (TE) or transverse magnetic (TM) modes. 
The study of the simple slab waveguide yielded much useful informa-

tion about the general properties of radiation losses and allowed us to 
infer the order of magnitude of the radiation losses caused by random 
wall imperfections. However, the dielectric slab is not a useful practical 
waveguide and can be used only as a simplified model to obtain informa-
tion about the behavior of more realistic and more complicated struc-
tures. Limitation (2) for the modes of the realistic and practical round 
dielectric waveguide precludes the application of the theory to the most 
important dominant mode of this structure. 
The present paper is devoted to a study of the radiation losses of the 

dominant mode of the round dielectric waveguide (optical fiber). To 
be able to handle the theory we still impose condition (2) on the deriva-
tives related to the geometry of the waveguide but not on the field 
distribution. The resulting theory is still very complicated so that we 
must limit ourselves to sketching the theory and stating the final results. 
The radiation losses caused by random imperfections [obeying restric-

tion (2)] are very nearly identical to the losses of the corresponding slab 
waveguide problem. However, the radiation losses of the dominant 
mode caused by steps and tapers in the waveguide are much higher 
than the corresponding losses of the TE or TM modes in the slab 
waveguide. The radiation losses of the dominant mode due to waveguide 
steps have been found experimentally to be in agreement with the 
theory. 
In order to allow the reader to obtain the information concerning the 

results of the theory unencumbered by complex mathematical formulas 
we start the paper with a discussion of the results. The remainder of 
the paper is devoted to an outline of the theory that was used to obtain 
these results. 
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II. NUMERICAL AND EXPERIMENTAL RESULTS 

2.1 Radiation Losses of Waveguide Steps 

We begin the discussion of the consequences of the radiation loss 
theory of the dominant mode of the round dielectric waveguide by 
considering the radiation losses caused by the abrupt step of the wave-
guide diameter shown in Fig. 1. As described in Section II, the radiation 
losses caused by an abrupt step can be calculated by two different 
methods. The mode matching technique infers the loss from the trans-
mission coefficient of the guided mode that continues to travel in the 
waveguide after it has passed the step. The radiation loss method 
accounts for the lost power by directly calculating the amount of power 
radiated into space. Both methods involve approximations so that we 
cannot expect to obtain exactly the same results either way. 
Figure 2 shows the results of both methods of calculation. The radia-

tion loss caused by a step with ch/ai = 0.5 as a function of kai (as 
computed by means of the mode matching technique) is shown as the 
dotted line in the figure, while the solid line represents the result of the 
radiation loss method. The curve holds for a dielectric rod with index 
of refraction n = 1.432 (n2 = 2.05). This index was chosen since it is 
representative of teflon at a frequency of 55 GHz. The agreement of 
the two methods is remarkably good considering the approximations 
involved in deriving the theoretical expressions. 
Even better agreement is obtained by a similar calculation that applies 

to a dielectric rod with index of refraction n = 1.01 as shown in Fig. 3. 
Both figures are extended over kai values that correspond to single 
guided mode operation. There are other guided modes possible over 
part of the range of kai values but these other modes do not couple 
to the dominant mode of the round dielectric rod because of the restric-
tion on symmetry imposed by equation (2). It is in this sense that the 
operation of the waveguide is single mode. No other guided mode occurs 
under the imposed conditions. The shape of the two curves in Figs. 2 

1  

 1 
Z = 0 

Fig. 1—Step in the round dielectric waveguide. 
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Fig. 2—Relative radiation loss caused by an abrupt step with ch/al = 0.5 of the 
waveguide. The two curves labeled dominant mode of the round waveguide were 
obtained by the mode matching technique (dotted line) and by the radiation loss 
technique (solid line). The two curves at the bottom of the figure labeled TE and 
TM modes represent the step losses of the slab waveguide. The radius al (appearing 
in kal) belongs to the larger waveguide section. Index of refraction n = 1.432. 

and 3 is very similar. Both curves reach into high loss regions for small 
values of kai . The curve of Fig. 3 is applicable to a clad optical fiber 
with 1 percent index difference between core and cladding. The curves 
shown on the bottom of Figs. 2 and 3 represent the step losses of TE 
and TM modes of the slab waveguide.3 These curves are computed for 
the same index of refraction. The dimension ai (of ¡cal) is the half width 
of the slab in the case of the slab waveguide. It is striking how much 
lower the radiation losses of the guided modes of the slab waveguide are 
compared to the dominant mode of the round dielectric rod. 
Because of the complexity of the theory and because the step loss 

results are so different for the round rod and the slab waveguide, it 
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appeared desirable to confirm the loss predictions of the theory with an 
experiment. The experiment was conducted with millimeter waves 
(approximately 55 GHz). A round teflon rod of 0.191 cm diameter was 
mounted between two metallic reflectors as shown in Fig. 4. The resulting 
resonant cavity could be excited through small holes in the reflector 
plates that, simultaneously, acted as supports for the teflon rod. Two 
teflon sleeves of 0.216 cm and 0.242 cm outer diameter could be slid over 
the teflon rods to produce a round dielectric waveguide with two steps. 
The losses caused by the steps could be determined from Q measure-
ments of the cavity with and without the teflon sleeves. The results 
of these loss measurements (applied to one step) are shown as crosses 
in Fig. 5. This figure also shows the theoretical loss predictions of the 
mode matching (dotted line) and the radiation loss approach (solid line) 
of the theory. Note that the parameter value ka, = 1.1 of this figure 
uses the fixed value of the narrower portion of the waveguide as reference. 
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Fig. 4—Experimental resonant cavity set up to measure radiation losses of wave-
guide steps. 

The point a2/a1 = 0.5 of Fig. 5 corresponds to the point kai = 2.2 of 
Fig. 2. The measurements support the result of the round rod theory. 
The radiation losses of the slab waveguide even for much larger steps 
are still far lower than the measured values of these smaller steps of 
the round rod. 
It is not as easy to confirm the loss predictions of the slab theory 

since a dielectric slab waveguide is somewhat of an idealization. In 
particular it is hard to excite a slab with a mode that has no field varia-
tion in the y-direction. In order to obtain some approximation to the 
slab waveguide we constructed a dielectric (teflon) ribbon whose 
dimensions on the narrower portion were 0.380 by 0.095 cm and whose 
wider dimensions were 0.380 by 0.190 cm. Note that only the narrow 
side is affected by the step. The losses of this ribbon waveguide with 
a 2:1 step were measured in the same resonant setup and compared to 
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the losses of a smooth ribbon with dimensions 0.380 by 0.095 cm. The 
radiation loss of the ribbon guide was AP/P = 0.08 for kc12 = 1.1 
(or kdi = 2.2). This radiation loss value is shown as the circle in Fig. 5. 
It is apparent that the loss of the ribbon guide is far smaller than 
the loss of the round waveguide. It is about four times higher than 
the step loss predicted for the slab waveguide. However, we must keep 
in mind that the ribbon is only a poor approximation of the slab wave-
guide. It is therefore not surprising that its radiation loss cannot be 
predicted by the slab waveguide theory. The slab waveguide apparently 
can tolerate steps in its width exceptionally well. 

2.2 Radiation Loss of Tapers 

The radiation loss theory that is presented in the theoretical part 
can be used to determine the loss of round dielectric waveguides with 
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Fig. 5—Comparison of theory and experiment. The crosses are measured step 
losses of the round dielectric waveguide. The circle is the step loss of a ribbon guide. 
The curves represent the results of the mode matching theory (dotted line) and 
the radiation loss theory (solid line). (n = 1.432, /sal = 1.1.) Note that the curve 
parameter ka2 uses the radius of the smaller waveguide section. 



1672  T HE BELL SYSTE M TEC H NICAL JOURN AL, OCTOBER  1970 

arbitrary diameter changes. Since the radiation losses of an abrupt step 
are very high for round dielectric waveguides it is interesting to study 
the radiation losses of gradual tapers." 
The calculation of the radiation losses of tapers can be simplified by 

observing that the dependence of el,, on the radius of the waveguide is 
nearly linear over a considerable range of values. Figure 6 shows the 
ratio of eope as a function of ka for n = 1.432. It is apparent that a 
straight line approximation is possible in the region 1.2 < ka < 2.5. 
We study the radiation losses of two different tapers. The linear taper 

is the simplest and therefore the most reasonable taper to investigate. 
However, there are reasons to suspect that the linear taper may have 
higher radiation losses than other forms of tapers. It is apparent from 
equation (36) of Section II that the result of the integration (aside from 
the complicated factor I (p, z) which is difficult to evaluate) depends on 
the product of the derivative of the radius function a(z) with sine and 
cosine functions of the form cos f r, Pa(z) — iSidz. (0,, is the propagation 
constant of the guided mode; 0 is the z-component of the propagation 
constant of the radiation modes.) The oscillatory function has the 
tendency to cancel contributions from those functions that appear 
multiplied with it under the integrand. The more rapidly the cosine 
function oscillates, the more effective will be its canceling influence. 

1.28 
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Fig. 6—Plot of the propagation constant 00 of the dominant mode of the round 
dielectric waveguide. (n :-.- 1.432.) 
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This consideration shows that we would like to see the values of 
00(z) — ti as large as possible. The smallest possible value, and conse-
quently the most harmful, is the value /30(z) — k that is assumed at 
the upper end of the integration range in equation (34). However, 
because of the z dependence of fib the values of /3.(z) — k are smaller 
at the narrow portion of the taper than they are on its wider portion. 
One might expect, therefore, that the narrow region of the linear taper 
contributes more to the overall radiation loss than its wider portions. 
It appears that the taper could be optimized if larger values of da/dz 
appeared at the wider end of the taper where the canceling effect of the 
sinusoidal functions is still more effective. Following this idea, it is 
possible to show that an exponential taper should distribute the radia-
tion loss more evenly over its entire length in comparison with the 
linear taper. A linear taper and an exponential taper are shown in 
Fig. 7. The exponential taper was calculated from 

a(z) = a, + (a, — a,) exp (-4.6 zi) • 

This taper is designed to equalize the contribution of the integral (36), 
at least approximately, over the entire length of the taper assuming 
that I(p, z) is constant. The discontinuity of da/dz at z = 0 does not 
contribute to the radiation loss. It would, therefore, be of no advantage 
to shape the taper such that da/dz is continuous over its entire length. 
The radiation losses of the linear and exponential tapers are compared 

in Fig. 8. Even though the radiation loss of the exponential taper is less 
than that of the linear taper, in agreement with our expectation, the 
amount of improvement is insufficient to warrant the greater com-
plexity required to produce such a more complicated taper. Figure 8 
also shows that the radiation loss of a taper is far less than the losses 
caused by an abrupt step. The radiation losses can be made as small as 
desired with a taper of sufficient length. A linear taper with a length to 
waveguide radius (on the larger portion of the guide) ratio of L/al = 400 
reduces the radiation losses, that would occur on an abrupt step, by a 
factor of 100. With X = 1 gm the value kal --- 2.5 is realized for al = 
0.4 am so that the taper would have an actual length of L = 160 
or 0.16 mm. It is apparent that much longer, more effective tapers 
are feasible. 
Figure 8 indicates that there are two distinctly different regions. 

Below Lia, = 2 the taper is so short that it acts like an abrupt step. 
The beneficial effect of the taper makes itself felt only if the taper is 
long enough. The reduction of the radiation loss of a gradual taper 
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Fig. 7—The profile of the linear (dotted line) and the exponential (solid line) taper. 

compared to an abrupt step or steep taper is caused by the canceling 
influence of the (complex) exponential function in the integral of 
equation (36). 

2.3 Losses Caused by Random Wall Imperfections 

An important loss contribution is caused by the random deviations 
of the dielectric waveguide boundary from perfect straightness. These 
radiation losses have been investigated for the slab waveguide' and for 
the circular electric TED, mode.2 The theory of radiation losses of the 
dominant mode of the round dielectric waveguide is sketched in 
Section III. 
We have seen that the radiation losses caused by arbitrary deforma-

tions of the waveguide wall can be computed by describing the wall 
deviation as a series of infinitesimal steps. We have also seen that the 
single loss for large steps is far higher for the round dielectric waveguide 
than it is for the slab waveguide. We might thus worry that the losses 
caused by random wall perturbations may also be far higher for the 
dominant mode of the round dielectric waveguide. Fortunately, this 
pessimistic expectation is not true. The radiation losses caused by wall 
roughness of the round dielectric rod are no worse than they are for the 
modes of the slab waveguide. 
The random wall losses are treated on the basis of a statistical model. 

The correlation function describing the wall perturbation is assumed 
to be a simple exponential function that is characterized by two param-
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eters, the rms deviation from perfect straightness A and the correlation 
length B. 
Figure 9 shows a series of curves of the normalized relative radiation 

loss as a function of the ratio of correlation length to waveguide radius 
B/a for a guide with index of refraction n = 1.432 (teflon). The curve 
parameter is the product of vacuum propagation constant times wave-
guide radius, ka. Also shown for means of comparison is the loss of the 
circular electric mode of the round waveguide as a dotted line. It is 
apparent that the radiation losses of the dominant mode are approxi-
mately equal to the radiation loss of the circular electric mode. A 
comparison with the results of Ref. 1 shows that the losses of Fig. 9 are 
approximately four times as high as the corresponding losses for the 
slab waveguide. For a meaningful comparison we must remember, 
however, that the slab waveguide losses were computed under the 
assumption that only one of the two slab boundaries was randomly 
perturbed. It seems reasonable to compare the losses of the round rod 
to a slab waveguide whose two walls are perturbed in a correlated way. 
In fact, if we assume that the thickness of the slab waveguide changes 
in a manner that provides equal but opposite displacement of each side 
of the guide we would obtain a four times higher loss than is shown in 
the curves of Ref. 1. The agreement between the radiation losses of the 
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Fig. 9—Normalized radiation losses caused by random wall perturbations. The 
solid lines correspond to the dominant mode of the round guide, the dashed line 
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slab waveguide and the random wall losses of the round dielectric 
waveguide is quite close. 
Figure 10 shows similar loss curves for a round waveguide with index 

of refraction n = 1.01. These curves too are about four times as high 
as the corresponding slab waveguide losses for the reason explained 
above. The curves of Fig. 10 are representative of the wall losses of 
a clad optical fiber with 1 percent index difference. As an example let 

us assume that we operate an optical fiber with a vacuum wavelength of 
X = 1 pm. The value ka = 15 corresponds to a radius a = 2.4 pm for 
the inner core of the fiber. If we assume that the correlation length of 
the exponential correlation function assumes its worst possible value 
B/a = 2.0, we find from Fig. 10 the normalized loss 

A loss factor of 

a' AP 
= 0.04. A2L p 

1 AP 
a =  —p— = 2.3 km' = 10 dB/km 

would be caused 11. an rms deviation of the waveguide radius = A 
9 .10-8 cm = 9 A. This example shows how very stringent the 
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tolerance requirements can be. In a realistic case there will not only be 
variations of the waveguide radius. In addition we do not know the 
statistical model of the correlation function that must be applied in 
each case. However, comparison of different correlation function models 
has shown that the peak and its location in Figs. 9 and 10 is not de-
pendent on the assumed statistical model. The decay of the loss curves 
toward increasing values of B/ a is strongly model dependent. 

III. THEORY 

3.1 The Dominant Guided Mode 

The field components of an arbitrary guided mode in the waveguide 
are described by the following equations:5 

E, = AJ,(Kr) cos vq5  (3a) 

H. = BJ,(Kr) sin y(I)  (3b) 

= —1:2[1c0oAJ(Kr)  couB J „(e)]cos vcj) (3c) 

(3d) 

loo 

5 

2 
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2 

= ;:cii[P0A J,(Kr)  taoiLBJ(Kr)1 sin vo 
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••••• 

15 

5 10 _1  2 
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Fig. 10—These curves are similar to Fig. 9 with n = 1.01. The curve parameters 
are the values of ka. 
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H = — zfrw€0A J „(Kr)  KO.B AKr)] sin yyb  (3e) 

=  freoE0A J(Kr) -F /3e J(r)] COS vie.  (3f) 

These equations describe the field inside of the round dielectric rod, 
r  a. The functions J, are the Bessel functions of order y, a prime 
indicates the derivative with respect to the argument (not with respect 
to r). The parameter y must be an integer in order to make sine and 
cosine periodic functions of the aximuth 4) with period 27r. The factor 

ei t-30.)  (4) 

was omitted from equations (3). The propagation constant 00 is related 
to the constants K and the free space propagation constant k by the 
relations 

/ 2 (1)2E0 C  =  11.0 

and 

(5) 

sc2 = 712 —  ,  (6) 

where n is the index of refraction of the dielectric material. The con-
stants A and B are not independent of each other. Their mutual de-
pendence is given by the boundary conditions for the field components. 
The fields on the outside of the dielectric rod r  a are given by the 

equations 

E  C -1!') (i•yr) cos ycl)  (7a) 

H = De,11(i7r) sin yrk  (7b) 

E. = 4[iya0CH̀,1)' (i-yr)  H P)(i7r)1 COS vie  (7c) 
'Y 

Eo le)(i-yr)  (i7r)1 sin yçb  (7d) 

i 
Hr = --b- [we0C 1-1 1-)- 1)(i-yr) + i'Y 00DH 1)' (i-yr)] in S..... yrk  (7e) 

'Y r 

Ho = i 2 [i-ywec,C HI,' ' (i-yr) ± tiQD v-r- H i-ir)] cos yrp  (7f) 
'Y 

where H,") is the Hankel function of order y and of the first kind. The 
prime indicates again its derivative with respect to its argument. The 
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argument is imaginary in order to ensure that the field distribution 
decays exponentially at large distance from the rod. The time and 
z-dependent factor (4) has again been suppressed. The parameter' is 
related to the propagation constant O. by the equation 

72 = e  k2. 

The field components were written down quite generally for an arbitrary 
guided mode. The lowest order or dominant mode of the guide follows 
from these equations with 

= 1. (8) 

The following discussion will be limited to the special case y = 1. The 
connection between the amplitude coefficients and the determination of 
the propagation constant follows from the boundary conditions for the 
field components. The requirement that E, , E4, , H, and 114, are con-
tinuous at the boundary r = a leads to the following eigenvalue equation 
for the determination of the propagation constant 00 of the guided mode 

{ K 2 ay' [./„(Ka)  11  [ i/e )(iya) 11} 
n i(Ka)  Ka  H; 1'(iya) 

I ay' r./  „(Ka)n  r iffi,"(iya) _ 11}  [(n2 -  _ 1) P-etj • (9) 
Ka j  12 " H nirycl)  K   

A few numerical values obtained from (9) are shown in Table I. The 

TABLE I-SOME NUMERICAL VALUES OF an 

n 1.432 (n2 = 2.05) 

ka  00a 

n = 1.01 

ka 130a 

0.5 
0.625 
0.75 
0.875 
1.0 
1.125 
1.25 
1.375 
1.5 
1.75 
2.0 
2.25 
2.5 
2.75 
3.0 

0.50000013 
0.62500485 
0.75006586 
0.8758141 
1.0043348 
1.1387424 
1.2816903 
1.434524 
1.5970437 
1.9458015 
2.3149367 
2.6937751 
3.0761411 
3.458978 
3.8409082 

2.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
12.0 
14.0 
16.0 
18.0 
20.0 
23.0 
24.0 
27.0 

2.0000001 
4.0000011 
5.0000672 
6.0006747 
7.0026448 
8.0064648 
9.0121047 
10.019281 
12.03695 
14.057344 
16.07916 
18.101671 
20.124481 
23.158808 
24.170225 
27.204311 
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connection between the amplitude coefficients as a consequence of the 
boundary conditions is stated in the following equations: 

fo)i  (ka)(sa)2 
B = 

iio 
(30a)(1 

K2 
'Y 

vo(ka) 1 + 1 rie,1)(i-ya) _ 11}A 
Ka Ji(xa)  set ya L HP)(eya) -ya 

A 

Hil)(kra) 

B 
H;''(iya) 

It is necessary to know the relation between the amplitude coefficients 
and the power P carried by the mode: 

P = 

C c 

D 

[142 i(ax)2[4(ea)  .1,2(sa)] — 2nica)1(n2  12 12 Le) 
eo A3 

+ {(a7) 2[H 7a) + 1] + 2}J;(Ka)(1 ± a' Le-) 
eo Aa 

2(goY B (13: -1-4n2k2 13,2, + le) J2(ica)1( 1)) A' .  (13) 
'0i A \ 

Equations (3) through (13) provide a complete description of the guided 
modes of symmetry cos (1). The lowest order solution of the eigenvalue 
equation (9) is the dominant mode of the round dielectric rod. This 
mode does not experience a cutoff. In principle it can be supported by 
any round dielectric rod of arbitrarily small cross section and arbitrarily 
low frequency. All other modes of the round dielectric waveguide exist 
only above their respective cutoff frequencies. All entries in Table I 
belong to single mode (with cos 4) symmetry) operation. 

3.2 Radiation Modes of the Round Dielectric Rod 

The number of guided modes that the round dielectric rod can 
support is finite at any given frequency. In order to obtain a complete 
set of normal modes of the structure we need to consider also the 
continuous spectrum of unguided modes. 
Any solution of Maxwell's equations that satisfies the boundary 

condition is called a mode if its z.-dependence (and time dependence) is 
given by equation (4). The guided modes are distinguished from the 
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unguided or radiation modes by the fact that their field distributions 
decay exponentially for increasing values of r outside of the waveguide. 
The radiation modes, on the other hand, extend to infinity. As their 
name indicates they are necessary to describe the radiation field outside 
(and inside) of the dielectric waveguide. Since there is no need to limit 
the functions describing the radiation modes to those that decay 
exponentially in the limit of large values of r we use a combination of 
Bessel and Neumann functions to express the unguided modes. How-
ever, we must require that the field remains finite on axis at r = O. 
These considerations allow us to express the unguided solutions of 
Maxwell's equations as follows: For r s a 

E, = FJ,(crr) cos ye  (14a) 

H. = GJ,(rxr) sin vck  (14b) 

=  {o-OFJ t)  coia 12 Mgr)} cos pe (14c) 

E, =  [SF ! J,((yr)  crcupGJ;(ur)] sin ye  (14d) 

H, =  kweoF r̀2. ./,(u')  creGi/(ur)] sin ve (14e) 

1/0 =  [n2uweoFJ;,(ur)  Jr(ur)] cos ve. (14f) 

There is now no restriction to the possible values that the propagation 
constant (3 can assume. The relation between 13 and u is given by 

0.2  n 2k2  0 2. (15) 

The field outside of the dielectric rod, r  a, is given by 

E, = [HJ,(pr)  IN,(pr)] cos ve (16a) 

H, = [KJ ,(pr)  MN,(pr)] sin ye  (16b) 

=  {Oili ng) + IN:(Pr)] 

[KJ,(pr)  3IN,(pr)]} cos ve (16c) 

E, =  {0 [11.1 " „(pr) + IN „(pr)] 
P  r 

pcom[KJ;,(pr)  MN,',(pr)]} sin pe (16d) 
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H, =  {weov- [H J ,(pr) + IN ,(pr)] 
P  r 

pf3[ Kt .(Pr)  lki N  (P1.)1} Sin VO 

11 4 =  {Pcdeoi H P.,(Pr) + ;(pm)] 

with 

+ 13!  [K.Mer)  MNr(Pr)i} cos me 

p2 =  k2  e2. 

(16e) 

The Neumann functions N, are here expressed in the notation of 
Jahnke—Emde.4 The determination of the coefficients of the radiation 
modes is complicated by an interesting phenomenon. The boundary 
conditions provide us with four equations. However, there are six 
undetermined coefficients in the set of equations (14) and (16). Even 
allowing for the fact that the power of the mode can be chosen arbitrarily 
so that one coefficient must remain undetermined by the boundary 
conditions, we have still one more coefficient than the boundary condi-
tions, combined with the requirement of total power carried by the mode, 
are able to determine. This situation means physically that the sets ' 
of equations (14) and (16) represent a superposition of two modes that 
could be taken apart. A similar situation would have arisen in the case 
of the slab waveguide had we not been careful to separate the modes 
into even and odd field distributions from the very beginning. The 
present structure does not lend itself to a natural separation of the 
modes into even and odd ones. However, the formal field expressions 
(14) and (16) do, nevertheless, represent a superposition of two possible 
sets of modes. One might try to take arbitrarily either the coefficient 
F or G appearing in equation (14) equal to zero to try to separate out 
the two sets of modes. This procedure is mathematically beyond re-
proach but it suffers from a practical inconvenience. The resulting sets 
of modes would not be orthogonal. It is very desirable to choose the 
modes in such a way that they are all mutually orthogonal to each other. 
It is therefore necessary to determine the coefficients in a way that 
assures the orthogonality of all the modes. The boundary conditions 
combined with the requirement of mode orthogonality and a certain 
amount of power carried by each mode are still not enough to assure 
a unique solution of our problem. This is not surprising since it is always 
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possible to combine two arbitrary vectors in an infinite number of ways 
into two mutually orthogonal vectors. 
The boundary conditions alone yield the following relations between 

the coefficients 

Fl =  (pa){[J,,(tra)N(pa) — n2 P .1";.(o.a)N,(pa)]F 
er 

+ (n2 1)k.2 _ V 
J,(o-a)N,(pa)G}  (18) 

Pa co  a 

I = ;(pa){[n2 P J(cra).1"(pa) — J „(tra)l(pa)]F 

— (n2  —2 1)1C2  v L(cia) 4Pa)G1 per WE0  a 
(19) 

K =  (pa)  {(n2 1)k2 e J,,(cra)N,(pa)F 

2  pa- cop,  a 

[J „(cra)Ar(pa)  ,no-a)N„(pa)iG}  (20)  

ir {(n2  — 1)k  M =  (pa) —  2  2 J,(oa)J„(pa)F 
po- coi.t  a 

[P .naa).1>(pa) — J,(cra)J(pa)1 4  (21) 

Equations (14), (14) , (16) and (18) through (21) are sufficient to satisfy 
Maxwell's equations and the boundary conditions. The coefficients F 
and G are, so far, completely arbitrary. We consider now two sets of 
radiation modes. The first set is distinguished by using the coefficients 
with subscripts F1 and G1 while the coefficients of the second set are 
designated by F2 and G2 . The two sets of coefficients must now be 
adjusted to render the two sets of modes orthogonal. One of the infinitely 
many solutions of this problem is 

F  F 
G2 G, 

The ratio of F1/G1 is now no longer arbitrary but is given by 

(g — b)2 (e — d)2 (c2 f2)  14 , 
G1 — \  ljg — n2b)2 (e — n2d)2 (c2 f2)  (23 a) 

(22) 
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with 

b =  40-a)N1(pa)  (23b) 
o. 

c  (n2 — 21)k  )3 J,(ua)Ni(pa)  (23c) 
pu a 

d = 12 <1.(act)J1(pa)  (23d) 
o-

e = Ji(cra)Ji(Pct)  (23e) 

f — (n2 — 21)k  e .11(o-a)Ji(pa)  (23f) 
po- a 

g = Ji(cra)Ni(Pa)•  (23g) 

Equation (23) was already specialized to the mode of symmetry cos cp, 
taking y =  1. The power carried by the radiation modes is given by 

=  ( 1 1 Y  a2)3  f r 
\2) p «,,cu(g — n2 b)  470Y  [(e — n2 d)  1 2 fo F 

[e ± (g — b) (1.±t)  [f - (e — d)(?) il 2}F2 (24) 

The normalization of the radiation modes involves the delta function in 
the same way as it did in the case of the slab waveguides. 

3.3 Radiation Losses Caused by a Step 

It has been shown previously3 that the radiation losses of arbitrary 
deformations of dielectric waveguides can be calculated from the 
knowledge of the radiation loss of a step. For simplicity we limit the 
discussion to waveguide imperfections that do not violate the condition 
(2). Condition (2) restricts the waveguide deformations to symmetrical 
changes of the waveguide diameter. More general deformations are far 
more difficult to calculate. 
A step in the round dielectric rod is shown in Fig. 1. We restrict 

ourselves to a dominant mode waveguide. The radius of the larger part 
of the waveguide must be small enough to ensure that only the dominant 
mode of the structure can propagate. Waveguides with larger radii 

suffer conversion losses to other guided modes in addition to the radiation 
losses. Such losses have been studied for the case of the slab waveguidel 
and for circular electric modes in round dielectric waveguides? 
The radiation field can be expressed as an integral over all the radia-
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tion modes. Indicating the modes by script letters with the superscript i 
for the incident guided mode, r for the reflected guided and radiation 
modes and t for the transmitted guided and radiation modes we can 
write the boundary condition at the step as follows: 

fl oe 

£(,̀) ± a, 8.r) [q,(P) e)(P)  P,(P) )(P)] dP 
Jo 

ct 8%." ± j [qt(P)  (P)  P M g:,;) (P)] dP  (25 ) 0 

gçl" + a, gçér) f [MP) 4,:)(P)  p,.(p) F;j:, ) (p)1 d p 

= c8') f [q(p)g >(p)  p,(p) &,;) (p)] d p  (26) 

X!" +  f [(1,(P)Kr(:) (P)  Pr(P)3C(,:' (P)] dP 

=  [qe(p):3C ) (p)  ,(p)ae:,;) (p)] d p  (27) 

3ej,"  ar3C,(t»  f- [grcee,(6:)(p) + pr(p)Jc:)(p)] d P 
o 

oe   

= c,5C,;$̀) f [M ee' (p)  pi(p) 4;) (p)] dp.  (28) 

These equations express the continuity of the transverse electric and 
magnetic field components at the step. The field components that are 
shown to be functions of p belong to radiation modes while field com-
ponents that are not explicitly indicated as functions of p belong to the 
dominant guided mode. The amplitude of the incident guided mode is 
unity. The approximate solution of the equation system (25) through 
(28) follows the same reasoning that was presented for the case of the 
slab waveguide.a The coefficient c. can be calculated by using the ortho-
gonality of the waveguide modes to the right of the step. The modes 
to the right of the step are not orthogonal to the modes to the left of the 
step because of the different waveguide size. It is thus not possible to 
separate the coefficients q, and p, (which, incidentally, belong to the 
two orthogonal sets of radiation modes) from the coefficient a, of the 
reflected guided mode. This problem makes it impossible to obtain an 
exact solution of the equation system. We neglect the reflected radiation 
modes when we calculate the coefficient c, . This approximation is 
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justified by the fact that for large steps the radiation favors the forward 
direction so that q, and pr can be assumed to be small. For very small 
steps where the ratio of forward to backward scattered power can be 
expected to be more nearly unity we need not worry about the coeffi-
cients of the reflected radiation modes since the modes of the two guide 
sections become more nearly orthogonal to each other. 
The transmission and reflection coefficients can thus be determined 

approximately with the result 

and 

with 

= — 
2 

• 

2/112  
c, — (I,  12)P 

II — /2 
a,. — 

-I- 12 

{1 
(81A1  wi2131)(Coe0A2 

-4)Ji(Kial) en(i72a1) 

Ji(K2a2)  
132B2)  Hi l)(i'Y2a2) 

— 1 Ji(Kia2)Hil)(i-na2)] 

—  r(SIA — cui2B1)(n2coe0A2 — f32B2)J1(écia2)./i(K2a2) 

a2 
Kix2(K21  Kâ  (we0n201A1A2 coµ82B114) 

• [K,J,(K1a2).1.0(K2a2) — éc2J0(K1a2)J1(K2a2)] 

1   + 7 (CO€001A1A 2 + COMP  Ji(K2a2)  12  IBIB2)  )(,i,yez.)  

• [2 ± 2 (ia2J1(Kia2)11ó1)«72a2) — ialJI(Klal)/ 072a1) 
KI 

± 71.7: [a2JD(Kia2)Hil)(i'Y2a2) — apIo(Kicii)H11)(i72a1)]) 

+ 7: 11  1111((icill'aila)i) (iiii)(1:71a1)11ó11(i7.(11) 

- i H11(i7ia,)Hin(i72a1))1} 
71 

(29) 

(30) 

(31) 
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and with 

L. 1 f 2 A e R,  A pp   (K2a2)   
/ 2 =  -- (J11, 1)V-'2 ,-.2  04"-"2/  (I) • 

2 tc1  H, (z72a2) 

.  . 1-(12 _1) 
,  JI(K022)1/P)(i-Y2a2) —  Ji(Kial)Hin(ilf2a1)1 
\K2  72  72 L   

1  A a n , \ i n • AP 1 JI(K2a2)  r \ 
-I- 2  ,,wetp=1  (1) •  .1 niciau11 ,̀"%sev2ali 
7172  H1 (11,2a2) 

Ji(gricti.)  Ji(K2a2)  
a'  +  (,,,,,,s2AIA ± 

7172(722 — 1,.) 2 1-11"(iitai) Win(i72(11) 

• [iYi en(il'icti)Hón(itY2a1) — i•Y21-e(iYial)H(11)«.72a1)] 

±  (n2wE002A1212 ± Wile 1B 1B 2) 
K1 

• [2  a2 2 (KI JI(Kia2).1.00(2a2) — Jo(K1a2)Ji(K2a2)) tc, — K2  K2 

1 i(K2a2)  
+  II ¡I) (i72a2 ) CE2̀ 0(K1a2)1111)(i2a2)  ario(gicli)H;"(i•72a,) 

1.y2  [ia2,/,(icia2)H n ó(iY2a2) — ict1JI(Kia1)H,(31)(i-Y2a,)])]}•  (32) 

The indices 1 and 2 attached to the coefficients and parameters indicate 
that the corresponding quantities belong to the waveguide to the left 
of the step (index 1) or to the right of the step (index 2). The coefficients 
A and B are the amplitude coefficients introduced in equations (3), (10) 
and (13). The factor P in equation (29) is the power carried by the 
incident guided mode. It was assumed that the power of all the modes is 
identical. The actual power carried by the mode is accounted for by the 
expansion coefficients a„ q, , p„ q. , pa , and c, . The power coefficients 
appearing in equations (13) and (29) are also identical. 
The theory of the dominant mode of the round dielectric waveguide 

is far more complex than the corresponding theory of the slab waveguide. 
This explains why the slab waveguide is so much more convenient to 
use for studying the general properties of radiation losses. 
The radiation loss caused by the step is obtained from 

AP 
—  1 — I c, 12 — 1 a, 12.  (33) 

However, the same radiation loss can also be obtained by accounting 
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for the power carried away in the radiation modes. We can therefore 
write also 

àp  rk 
=  (1 q 12 ± 1P 12) ILI  cip 

P 
(34) 

The subscripts r and t have been dropped from the expansion coefficients 
p and q. Both reflected and transmitted radiation modes are automati-
cally included by extending the integration range from —k to k so that 
backward as well as forward traveling waves are included. The factor 
I /3 1/p appearing under the integration sign arose from converting the 
integration variable p to P. 
The theory becomes much simpler when we limit the derivation of 

the p and q coefficients to small steps. It was shown in the work on slab 
waveguidess that arbitrary deformations of the waveguide wall can be 
treated as a succession of small steps. Even abrupt tapers can be de-
scribed this way. In the limit of small step height .dia we can write 

da 
= cT-z Az. (35) 

The expansion coefficients q„ and q‘ can approximately be obtained 
from equations (25) through (28) by a method that has been explained 
in some detail in Ref. 3. 

da  •fi 
q(P) =  l(plz) —dz  ° (fl°-P) " dz.  (36) 

The subscript r or t of q is no longer necessary since q, corresponds to 
negative values of 13 while qi corresponds to positive values of P. The 
derivation of q has been simplified by expressing quantities pertaining 
to the waveguide to the right of the step in terms of the corresponding 
quantities for the waveguide to the left of the step. This approximation 
involves an expansion of the field quantities in Taylor series keeping 
only the first two terms of the expansion 

eF  . 
= F(ai)  -17)  aa. 

Vie ta cu 

(37) 

The orthogonality of the modes belonging to the same section of wave-
guide can be employed to eliminate many terms from the expressions. 
The resulting expressions for l(p, z) is far simpler than it would be had 
we considered a large step. We obtain 
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r(P,  — 4p 272p JI(Ka) 

aH  aK\ 
• 1(0 + Oh, p‘weoil  coPB 

[a7Jo(Pa) le1)(il'a) 
+ il, H11)(i,ya) JI(Pa)  

1'2 + P2 

.   

+ (i30 + e)7P(dE0A ea- ± cogB a:al) 

HV)(i•ya)  
7N0(pa) + ip e  )(i7a)  Ni(pa) — —1 N 1(pa)1 

, 

.La  72  +  p 2 
7P 

+ (k2 ± poeCA z+ B aa.---ci-l-tP i(Pa) 
+ (A  e  B  

1 
i(Pa) 

'Y P 

(38) 

The derivatives of the amplitude coefficients H, I, K, and M of equa-
tions (18) through (21) are taken by keeping F and G constant. The 
reason for this prescription is the fact that the terms containing deriva-
tives of F and G disappear from the equations because of mode ortho-
gonality. 

aH 
aa 

7122 [{a e  —un P .10(0 4 No(pa) — pa  Ni(pa)] 
2  2 2 

+ [ —pa —  pa ± n2(pa — — r2)1 .1,(cra)N,(pa) acr 
2  2p 

— 1). I,(a-a)N o(Pa)} F ± (n2  — wEop« 
1.)k213 
2 

• {eV. o(ua)N,(pa)  p• i(cra)No(Pa) —  i(ua)Ni(pa)}G] (39) 

a 2  2 _ — —71-12 [{a  P Jo(Œa) Po(pa) —  Ji(pa)] 
2  cr  pa 
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2 
n2(pa —  i(o.a)J i(pa) 

ary 

2 

±  (n2 — 1)J,(0-a)io(pa)}F + (n2  — 1)k213  
coeop0.2 

OK 
aa 

2 
•{0-Jo(o-a).11(pa)  pJ,(0-ci)Jo(pa) —  Ji(ria) -11(Pa)}G]  (40) 

(71,2 — 1)0 
2o-

•[ {o-.1" 0(o-a)N i(pa)  pJ ,(0-a)111„(pa) —  .1,(o.a)NI(Pa)}, Cdpft p 

▪ {aJo(0-4 No(pa) —  Ni(a)] 

▪  J(oc)N(pa) —  J1  cra)No(Pa)}G1  (41) 
po-a 

am  it- p 
(n2 — 1)k2 

LI:34713 {crJo(cra)J i(pa)  pJ,(0-a)J0(pa) — 

{aJo(o-a)[.10(pa) — —pa 1 " ,(pa)] 
1 

1 
+ —2 i(cra) i(Pa) —  l(cra) 0(pa)}Gl• 
pera 0-

2 
(aa)  (pa)}F 

a 

(42) 

Equation (36) holds for q as well as for p. It is only necessary to insert 
F1 and G1 in equations (38) through (42) to obtain the q coefficients 
while the p coefficients are obtained by replacing F1, G1 with F2, G2. 
In order to use equation (34) for the relative power loss caused by 

radiation, it is necessary to calculate q and p with the help of equations 
(36) and (38). The coefficients appearing in these equations must be 
obtained from equations (39) through (42), and (10), (13), (22), (23), 
and (24). It should be apparent that this theory is of considerable 
complexity and can be handled only on an electronic computer. It is 
sad that the dominant mode in a round dielectric waveguide leads to 
such a complicated theory in comparison with the simple treatment of 
the slab waveguide. 
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3.4 Random Wall Perturbations 

An important source of loss is the radiation that is caused by small 
random perturbations of the waveguide wall. Such radiation losses have 
been discussed for slab waveguides in Ref. 1 and for round dielectric 
waveguides operating with the circular electric guided mode in Ref. 2. 
Equation (36) of our present analysis can be used to calculate the loss 
of the dominant mode of the round waveguide caused by random wall 
perturbations. Since the step losses of the dominant mode of the round 
waveguide are so much higher than the corresponding losses of TE and 
TM modes of the slab waveguide one might fear that the losses caused 
by infinitesimal random perturbations of the waveguide wall may also 
be substantially higher. Fortunately, this is not the case. The losses 
caused by random wall perturbations are of the same order of magnitude 
for all types of dielectric waveguides that have been studied so far. 
The losses caused by random wall. perturbations are calculated with 

the help of a statistical model. Instead of using equation (34) for a 
particular waveguide we form the ensemble average (AP /P) over many 
statistically similar systems. For very slight perturbations of the wave-
guide wall we can assume that I(p, z) is independent of the z coordinate 
and write equation (36), after a partial integration, in the form 

q(p) = +00 — /)I(p)  ' dz.  (43) 

The argument z has been dropped from I(p) since this function is no 
longer dependent on z. The partial integration had the beneficial effect 
of causing a(z) instead of its derivative to appear under the integration 
sign. It was shown in Ref. 1 how substitution of equation (43) in (34) 
makes the scattering loss dependent on the correlation function 

R(u) = (a(z)a(z — u))  (44 ) 

after the expectation value has been taken. It is, therefore, possible to 
write the average value of the relative radiation loss as 

AP 
= 2L f (130 — 13)2[I -1(1) (P) 12 ± 1 1(2) (P) ilF(0) -1'31 (43  (45) 

—ie 

with 

F(0) =  R(u) cos (e. — e)u du.  (46) 

The superscripts 1 and 2 indicate that the function I(p) has been corn-
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puted for both types of radiation modes that are associated with F1, 
and F2  G2 • 

If we use for the correlation function a simple exponential function 

R(u) = A2 exp (—  
B 

(47) 
' 

F(0) specializes to' 

F(3) - 

IV. CONCLUSION 

A 2 

B[(00  i3)2 

(48) 

We have found that the radiation losses of the dominant mode of a 
round dielectric waveguide are much higher than the corresponding 
losses of TE and TM modes of the slab waveguide. The radiation losses 
of the dominant mode of the round dielectric waveguide with an abrupt 
step have been verified by a millimeter wave experiment. The step 
losses of a ribbon waveguide were also measured and found to lie between 
the losses of the dominant mode of the round waveguide and the TE 
mode losses of the slab waveguide, but closer to the latter. It is thus 
apparent that the slab waveguide can tolerate abrupt steps exceptionally 
well. 
The radiation loss of a tapered round waveguide can be minimized 

by using a gentle taper instead of an abrupt step to accomplish the 
change of the waveguide radius. The losses of a linear taper are only 
slightly higher than the losses of a taper that was designed to equalize 
the loss contributions from different parts of the taper. It appears, 
therefore, that the design of optimum tapers is not profitable compared 
to their greater mechanical complexity. 
The losses caused by slight random wall imperfections are very similar 

for the dominant mode and the circular electric TED1 mode of the round 
dielectric rod as well as the TE and TM modes of the dielectric slab 
waveguide. This result is surprising since the step losses of the dominant 
mode of the round waveguide are so much higher than the step losses 
of the slab waveguide. However, this result shows that the radiation 
losses caused by slight random wall perturbations can be studied with 
the help of the simple model of the slab waveguide and the results so 
obtained can be used to evaluate the performance of round dielectric 
waveguides. 
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Excitation of the Dominant Mode of a 
Round Fiber by a Gaussian Beam 

By DIETRICH MARCUSE 

(Manuscript received May 4, 1970) 

The excitation of the dominant HE,, mode of a round optical fiber by a 
gaussian beam has been calculated. The calculation is based on the assump-
tion that reflected waves can be neglected. It is thus applicable only to fibers 
with low index difference between core and cladding. 
It is found that optimum excitation of the HE,, mode is achieved for 

loosely guided beams if the product of the beam half-width w times the 
radial decay constant y of the HE,, mode outside of the guide is unity, 
yw = 1. For tightly coupled modes ew must be equal to the core radius in 
order to achieve optimum excitation. As much as 99 percent of the power 
can be transferred to the Hen mode. 
Also investigated are the effects of an off-set or tilted beam on the mode 

excitation. The mode excitation drops to 36 percent if the amount of off-set 
equals the beam half-width. The effect of tilts depends on the parameter kd, 
free space propagation constant times core radius of the fiber. For small 
values of kd or loosely guided modes, the mode excitation is very sensitive 
to tilts of the gaussian beam. As long as the HE,, mode is the only mode that 
can propagate, increasing values of kd lead to less sensitivity with respect 
to tilts. For multimode operation of the fiber, the sensitivity to tilts increases 
with increasing values of kd. The minimum of tilt sensitivity coincides with 
the minimum spot size of the guided mode. 

I. INTRODUCTION 

Communication by means of optical fibers requires that light energy 
can be coupled into the fiber in an efficient way. Of the different 
methods of exciting an optical fiber, the simplest consists of shining 
a beam of laser light on the end of the fiber. It is the purpose of 
this paper to investigate the power loss that results at the transition 
from a laser beam propagating in free space to the lowest order 
HEii mode of a round optical fiber. 

1695 
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The geometry of the problem is sketched in Fig. 1. It is assumed 
that the fiber core is embedded in an infinite material, its cladding. 
For simplicity it is assumed that the value of the refractive index 
outside of the core is unity. The theory is manageable only if re-
flections from the end of the fiber are neglected. The transmission 
coefficients are calculated by matching only the transverse component 
of the electric or of the magnetic field at z = O. Finally, an average of 
these two values is taken. 
The incident beam is assumed to have a field distribution of the 

form 

2 

Er = A exp [— (12-0.) exp (—ikz) for z 0  (1) 

and 

1/2 
= (-!-2) E, 

with 

(2) 

IC =  = w(e0120)1".  (3) 

Since the field components of the fiber modes are conveniently ex-
pressed in cylindrical polar coordinates r, c and z, it is advantageous 
to transform the incident field to these coordinates. 

E, = Er cos 0;  Eo =  Er sin 0;  (4) 

FIBER CORE  fl= 

tr 

— 
4 
zd 

Z = 0 

Fig. 1—Gaussian beam incident on the core of a dielectric fiber with refractive 
index n. 
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H,. = H, sin ci); 110 = H, c084.  (5) 
The amplitude coefficient ct of the HEn mode is approximately de-

termined by the equation 

with 

and 

Cg-   2P 

I, = f (Er3C: — Ee3C)r dr de 

12 =  f  (8' W0 — 0,1/,)r dr de). 

P is the power carried by the incident gaussian mode. The script 
letters indicate the field components of the guided HEn mode,1 while 
the other field components belong to the incident gaussian mode. 
The r integrations must be carried out numerically while the  in-

tegrations can be done analytically even in the more complicated cases 
of an off-set incident field distribution shown in Fig. 2 or a tilted in-
cident field distribution shown in Fig. 3. 
The field components of the guided modes are described by cylinder 

functions. The arguments of these functions inside of the fiber core at 
r < d are Kr with the radial propagation constant ic determined by 

K2 =  lee — (9) 

where fl is the propagation constant of the guided mode in z direction. 
On the outside, r > d, the argument of the cylinder functions is yr 
with 

-y2 = [32 — le.  (10) 

The decay constant y determines the rate at which the field in-
tensity of the guided mode decays outside of the fiber core. For large 
values of r the fields behave like 

exp (—yr).  (11) 

Equation (6) for the amplitude transmission coefficient is not exact. 
It was derived under the assumption that reflections at z = 0 are 
negligible. The power transmission coefficient T follows from 

T = jc, 12.  (12) 
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Fig. 2—Fiber excited by a gaussian beam off-set with respect to the fiber 
axis by an amount a. 

IL NUMERICAL RESULTS 

We begin the discussion of the dependence of the transmission 
coefficient T from the incident gaussian field to the guided HEn 
mode with the simplest case shown in Fig. 1 for a refractive index 
n = 1.01. The gaussian beam is perfectly aligned with its beam waist 
being coincident with the end of the fiber core at z = 0. The trans-
mission coefficient as a function of the product yw is shown 
in Fig. 4. Each curve belongs to a different value of kd. 
The normalization of the curves with respect to the radial decay con-
stant y is convenient since it compresses the dependence of the curve 
on the horizontal axis. The position of the peaks would differ by two 

Fig. 3—Fiber excited by a tilted gaussian beam. 
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Fig. 4—Transmission coefficient T as a function of yiv for several values of 
kd and i = 1.01. 

orders of magnitude if the curves were drawn simply as functions 
of w. 
Two remarkable properties can be deduced from Fig. 4. The 

transmission coefficient approaches extremely close to MO percent. 
The dependence of the transmission peaks as a function of kd is 
shown in more detail in Fig. 5. According to this figure, the transmis-

LO 
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1 0.94 

0.92 

0.90 

0 88 

n=1.01 

O  10  20  30  40  50  60 

kd 
70 

Fig. 5—The peak values of the transmission coefficient as a function of kd. 
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sion coefficient can be as high as 99.7 percent. These values are prob-
ably slightly optimistic as we shall see shortly. 
The position of the transmission peaks can be predicted for two 

regions of operation. For small values of kd the guided mode is 
only loosely supported by the fiber core. Most of the field is on the 
outside decaying according to equation (11). In this case the trans-
mission curves peak at 

yw = 1.  (13) 

This means that the 1/e point of the exponential decay of the mode 
field coincides with the corresponding point of the gaussian curve. 
For A. = l and kd = 5, we have d = 0.8v so that for this example 
1/y = w = 311.L; kd = 10 correspond to if), = w =  
The HEn mode is no longer the only possible guided mode for 

large values of kd. At the value 

2.405 
kd — (n — 1)172 

(14) 

the TErn mode begins to propagate. For n = 1.01, this point appears 
for kd = 17. For tightly guided modes, most of the field energy is 
concentrated inside of the fiber core. In this case, the peak of the 
transmission coefficient occurs at 

w = d/21.  (15) 

For a very tightly guided mode, the propagation constant ap-
proaches /3 = nk so that we obtain from equations (10) and (15) 

= (n2 — 1)1kd/21.  (16) 

For n = 1.01, we thus have yW = 0.1 kd. This relationship is indeed 
apparent in Fig. 4. 
For larger refractive indices of the core, our approximation becomes 

questionable. This breakdown of the approximation is apparent in 
Fig. 6 where n = 1.432. The curve with kd = 3 exceeds the value unity 
very slightly, violating the principle of conservation of power. This 
shows that our approximate values for T are slightly too large. 
However, for small values of n — 1, it can be expected that the ap-
proximation is good because back-scattering of power from the end 
of the fiber core becomes negligible. This expectation is confirmed 
by the fact that none of the curves in Fig. 4 exceeds the value unity. 
It is hard to predict the degree of accuracy of the approximation. 
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Fig. 8—Transmission coefficient T as a function of rytv for n = 1.432. The curve 
with kd = 3 exceeds T = 1 indicating a breakdown of the approximation. 

The values of Fig. 4 are perhaps slightly too high but it is clear that the 
power transmission from the gaussian mode to the guided HEn mode 
is very efficient even if it does not quite reach 99.7 percent. 
Since perfect beam alignment cannot be achieved, it is important 

to know how sensitive the transmission coefficient is to misalignments 
of the beam. 
Fig. 7 shows data for the transmission coefficient T as a function 

of the amount of off-set "a" of the gaussian beam shown in Fig. 2. 
The independent variable of Fig. 7 is the product ya. Each curve 
was drawn for its optimum value of yw according to Fig. 4. Fig. 7 
shows that the transmission coefficient decreases to 0.36 if a = w. 
This is a simple relationship that apparently holds for all values of 
kd. An off-set of the gaussian beam is thus not as critical as one might 
have feared. The direction in which the beam is off-set with respect 
to the polarization of the input field has been found to be unimportant. 
The same curves shown in Fig. 7 were obtained for any direction of 
the off-set. 
The dependence of the transmission coefficient on tilts of the input 
field is shown in Fig. 8. Again w was chosen so that the maximum 
transmission coefficient is obtained in the absence of a tilt. The trend 
of these curves is interesting. The transmission coefficient is very 
sensitive to tilts for small values of kd. This is not surprising since the 
fields extend far from the fiber core so that a slight tilt causes the 
two wavefronts of the input field and the guided mode to become 
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Fig. 7—Peak transmission coefficient T as a function of beam off-set. 

seriously misaligned. As the guided mode (and since maximum trans-
mission is assumed also the input field) contracts, the transmission 
coefficient is far less sensitive to tilts. The least sensitive curve ap-
pears for kd = 20 in Fig. 8. The next guided mode can be excited 
by the input field as soon as kd exceeds the value 17. As more and 
more guided modes appear, the transmission coefficient to the lowest 
order mode, the HEn mode, becomes more sensitive to tilts. The 
best operating point as far as sensitivity to tilts is concerned is ap-
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Fig. 8—Peak transmission coefficient as a function of tilt angle a. 
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parently close to the point where the next guided mode begins to 

propagate. This behavior can be explained as follows. If the wave 

length is kept constant and d is increased, the radial extension of the 
field decreases at first for increasing values of d. However, as d in-
creases further, the field cross-section increases again. The least 

sensitivity to tilts occurs at the minimum field cross-section. 

III. CONCLUSIONS 

A numerical study of the excitation of the lowest order HE  mode 

of the round optical fiber by an incident gaussian mode showed that 

the achievable transmission coefficient is very high. The predicted 

optimum value of 99.7 percent may be slightly overoptimistic because 
of the approximate nature of the calculation. However, Snyder2 

predicts transmission coefficients as high as 80 percent for the case 
of excitation by a truncated plane wave. The gaussian beam is far 

better matched to the HEn mode so that a much higher transmission 

coefficient is not surprising.3 
An off-set of the peak of the gaussian beam equal to its beam half-

width w decreases the transmission coefficient to 36 percent. Tilts of 

the input field distribution are more serious for small values of the 

ratio of fiber core radius to wavelength. The least tilt sensitivity is 

obtained under conditions where the HEn mode is operated close to 

the cut-off frequency of the TE01 mode. The beam cross-section as-

sumes a minimum at this point. 
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The Capacity of the Gaussian 
Channel with Feedback 

By P. M. EBERT 

(Manuscript received April 28, 1970) 

In this paper we provide a rigorous proof that feedback cannot increase 
the capacity of the channel with additive colored gaussian noise by more 
than a factor of two. We also give a tighter bound showing that any increase 
in capacity is less than the normalized correlation between the signal and 
noise. It is further shown that gaussian signals and linear feedback process-
ing will achieve capacity. 
The practical implications are that (i) feedback should be used to simplify 

encoding and decoding since there is little to be gained in the way of in-
creased capacity and (ii) the various proposed schemes which use linear 
feedback are doing the correct thing. 

I. INTRODUCTION 

When Shannon first showed that feedback could not increase the 
capacity of a memoryless channel, he mentioned that the capacity 
could be increased when the channel had memory.' One example of 
such a channel is the additive colored gaussian noise channel with an 
average power limitation on. the transmitted signal. We prove here 
that the capacity of this channel is never more than twice the capacity 
without feedback and as the noise becomes white the capacity ap-
proaches the forward capacity. The limiting case has been attributed to 
Shannon for years and has only recently been rigorously proven.' 
We derive an exact expression for the mutual information between 

the input and output of the channel. The application of different bounds 
to this expression produces twice the forward capacity with the weakest 
bound, or the forward capacity plus the normalized correlation of the 
signal and noise with a slightly stronger bound. It is shown that a 
gaussian signal maximizes the information, and consequently the opti-
mum feedback technique is linear. 
Our results are based on the model shown in Fig. 1. The added noise 

1705 
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n(t) 

MODULATOR s Ct) 

Fig. 1—Channel with noiseless feedback. 

spectrum is normalized to 1 at infinite frequency, is bounded, and has 
an integrable logarithm. This allows us to represent the noise as in 
Fig. 2. The noise now consists of a white component plus a filtered 
version of the white noise. The imposed restrictions are for mathematical 
purposes only and are of no practical significance. 

Theorem 1: The mutual information between the input and output 
of a channel with additive gaussian noise with spectral density N(w) and 
arbitrary causal feedback processing, as shown, in Fig. .1, is given by: 

T 
1(m; YT)  f  o Els(t)  z(t) 1m, Y,] dt 

T 
"  es(t)  z(t) 1 Y,] dt  (1) 

where Y, is y(r), O  T <  t and the expectations are conditioned on Y 
or Y, and m. z(t) is a linear causal functional of white noise with the 
properties that: 

z(t) = fa h(t —  dw(r)  h(t  r) dv(r) 

1 1 + H (w) 12 = N 

The two functions w(t) and v(t) are independent Wiener processes. The 
reason for introducing the second term is to make n(t) = z(t)  th(t) a 
stationary process. 

Fig. 2—Model of nonwhite noise. 

(2) 
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Proof: We first observe that ih(t)  z(t) is equivalent to noise with 
spectral density N(w). A causal filter, h(r), will exist whenever Ar(w) 
represents the square magnitude of a causal filter 

1 G(w) 12 = N(w) 

H(w) = G(w) — 1. 

The logarithm of G(0) is 

¡ ln N(w)  iB(w) 

where B(w) is the phase characteristic of G(w). The conditions of cau-
sality, no lower half plane poles, will be met when B(co) is one half the 
Hilbert transform of In N(w). The conditions on N(co) insure that 
in Ar(w) has a Hilbert transform. 
Now to prove formula (1) we use a theorem due to Kadota, Zaki 

and Ziv2, which we state without proof: 

Theorem A:  The mutual information between the input parameter 
m and the output processes ITT of a finite power system disturbed by addi-
tive white gaussian noise is 

1( M; Yr) = ¡E  m, ,) di — E f ek6(t, m, Y,)/Y,] dl, 
0 

where et, m, Y,) is the causal modulating function. 
This result is applied to the non-white noise problem by considering 

z(t) to be part of the signal. The inclusion is only useful when one is 
calculating the mutual information; it is not to be included in the 
calculation of transmitter power. Theorem A cannot be applied directly 
since the signal, 4), which is taken as s(t)  z(t) is not completely de-
termined by m and Y„ but is also a function of the process v(t). To 
find /(m; YT) we use the decomposition, 

I(m, V;17,) = I(m; Y„)  I(V; Y,I m),  (3) 

where V is the process v(r). 
From Theorem A we have, 

/(7n., V; Y,.) = f [s(t)  z(1)12 dt 

7' 

— ¡E J. E2[8(t)  z(t) Y,] di  (4) 
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and 

I (V ; Y I m) = Ef [s(t) + z(t)r dt 

- g fEls(t) + z(t) I Y„ m] dt, 0 

which together with equation (3) proves Theorem 1. s(t) -F z(t) has 
finite energy because s(t) must have finite energy and z(t) will have 
finite energy whenever the channel has finite capacity without feed-
back, as we shall see when we evaluate E[z2(t)]. With this basic result 
we can derive several interesting corollaries concerning the information. 

Corollary I: (Pinsker)* Under the conditions of Theorem I, 

I(m; Yr) < 
T 

where C is the capacity at the channel without feedback. 
First we observe by equation (3) that 

/(m; YT) < /(m, V; Yr) 

which is given by equation (4). Furthermore the second term in equa-
tion (4) is negative and can be ignored, thus 

1( M; YT)  E f (s  z)2 dt.  (5) 
o 

/(m; YT) can be further bounded by 

l( M; YT) -5 E f  dt +E f  dt  (6) 

since (s + z)2 2s2 + 252. 
The next step is to calculate the variance of z, since this enters di-

rectly into /(m; Yr). 

E f 2() dt = TE(2), 

E(z2) = é je I H(co) 12 dco = 

= 27r 

1 
—J  IG(w) —ll2dw 

1  •  t  1 
exp —In N(co)  ln N(w)i  2 — 1 dco 

2 

* The factor of 2 has been mentioned earlier by Pinsker but no proof has yet 
been published. 
t Indicates the Hilbert transform. 
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=27r fc° [1 — N(u)] da) 

—  foe {exp [1 ; 1n N(co) ln N(0)] — 1} dw. 
ir 2  2 

This latter integral, as chance would have it, is almost identical in 
structure to an integral which arises in evaluating the spectral density 
of a single sideband FM wave (at the carrier frequency) which is 
modulated by a gaussian signal. The quantity 1/2 ln N(w) here plays 
the role of the autocorrelation function of the gaussian signal, and 
although for our problem 1/2 ln N(w) is not in general an autocorre-
lation function, the integral may be discussed via the technique used 
in the FM problem (see Mazo and Salz)3. 
Define: 

1 [1 in  _ 1(0  
27r _00 2  2 

then 

d  d  d  d 
cz [G (co) —1] =- G (co) c,,  F (co) --- [G (w) — 11 (1  F (o) + 1--0F(w). 

In the time domain this becomes 

—ith(i) = —itf(t) — i f' rf(r)h(t — r) dr 
0 

, because both h(r) and f(r) are zero for negative T. Both f(r) and h(T) 
are finite for small T and thus 

h(r = 0) = f(r = 0). 

The integral we are interested in is 2 Re h(r = 0) which is equal to 

1 ' 
2 Re f(r = 0) =  f ln N(w) dcd. 

Thus far we have shown that 

E f.37 di  E f z2 dt 
O 

=E f82 dt — —T f [1 — N(w)] cho — li- fe ln N(w) dco. 
r  ' 

o  27r _,,,,  2/r  

One more trick is needed to prove the corollary. We have, up to this 
point, considered only normalized channels which had N(.0) = I. 

(7) 
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This is valid because normalization cannot affect the ratio between 
capacity without feedback to that with feedback. Some channels can-
not be normalized in this manner, i.e., N(00) -= 00 or N(00) = O. 
The latter case has infinite capacity and thus the corollary applies. 
The former presents no problems due to the following lemma. 

Lemma: Consider the channel without feedback. By the water pouring 
argument' we know that the signal energy which achieves capacity obeys: 

S(co) 
,{K — N(co),  N(w) e_ K; 

= 
0,  otherwise. 

If we define a new noise le(co) 

No w  = iN(co),  N(co)  K; 

1K,  N(w) > K. 

This new channel has the same capacity without feedback and a larger 
capacity with feedback. 
Proof: The expression for capacity without feedback is the same 

for N(co) and e(co). The capacity with feedback can only be increased 
since /O W  N(co) for all co. For if the capacity with N(co) were larger, 
one could add a noise with spectrum N W — N°(co) at the receiver 
and do just as well as if the noise were N(co). 
We now normalize the noise, N°(co), in order to apply equation (6), 

which makes K = 1. The capacity without feedback is: 

C= I fe ln  do), 
47r  N (co) 

(8) 

P = 2r fe [1 — eco)] dei. 

With feedback from equations (6), (7) and (8) 

'( n; YT) E f  dt — TP ± 2TC 

or 

/(m; Y7)  
-5 2C. 

T 

A tighter bound can be obtained by returning to equation (5) and 
writing: 

1 
I(M; 177)  — [E f s° dt  E f z2 dt]  E  sz dt, 

— 2  0 0 
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which by the preceding argument is equal to 

C  E  dt. 
o 

1711 

The correlation Ese is equal to Esn° because n° and e only differ by a 
white component. Thus the capacity can be increased only by the 
correlation of the signal with the noise. The noise n° is not the original 
noise, however the difference occurs only at frequencies not used for 
signaling without feedback. As N(w) becomes white, the energy in 2 
decreases and consequently Es2 must go to zero. 
More insight into the problem is supplied by the following theorem. 

Theorem 2: Capacity can be attained with a gaussian signal s(t). 

Proof: First we observe that 

E[s(t)  z(t) m, Y,] = s(t, m, Y,) 

This is true because s(t) is known given m and Y, 
on W, which can be calculated given Y, and s(t). 
functional of ib because /i) is gaussian. 

E[z(t) I W 

, and z(t) is dependent 
E[z(t) I W,] is a linear 

E[z(t) I IV,] = fo K(t, r) dw(r). 

The first term in equation (1) depends only on the correlation prop-
erties of s(t, m, Y,) and w(r) and therefore we can use a gaussian s of 
the appropriate correlation. For the second term we use the property 
that a least-squares linear estimate has no more energy than the more 
general least square estimate. 

Ex2 =  E(x — d)2 =  E(x — 2)2 

where 2 is the least-square linear estimate of x and î is the least-square 
estimate. Since 

E(x — e  E(x — :e)2, 

E:e. 

Therefore, since E[s(t)  z(t) I Y,] is the least-squares estimate of 
s(t)  z(t) given Y, we have 

... / ".... ,... 

1 7'  1  T  ./..... \- 

1 (n t ; yr)e iEfo es - I - z I In, I'd dt — —2E fo (s + 2)2 dt 

but for a gaussian signal this inequality is an equality. In addition the 
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signal power is unchanged and the feedback processor need only be 
linear. Therefore one need consider only gaussian input and linear 
processing in calculating capacity. 

II. GENERALITY OF THE MODEL 

The restrictions on N(w) are in fact only needed for isr(c...1). If a 
noise spectrum is such that the logarithmic integral of N2(w) is minus 
infinity then the capacity of the channel is infinite without feedback. 
Therefore the bound applies to any channel which has a finite capacity 
without feedback. 
The bounds are all valid for noisy feedback as well, however it is not 

clear that gaussian signals are optimum in that case. 
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New Theorems on the Equations of 
Nonlinear DC Transistor Networks 

By ALAN N. WILLSON, JR. 

(Manuscript received March 26, 1970) 

It has long been recognized that equations describing de transistor net-
works do not necessarily have unique solutions. The Eccles-Jordan ( flip-
flop) circuit is an excellent example of one for which the dc equations may 
have more than one solution. 
Only recently, however, has a comprehensive theory concerning matters 

such as the existence and uniqueness of solutions of the dc equations of 
general transistor networks begun to take shape. This paper represents 
another contribution to the evolution of that theory. 
A key concept in the development of the recent theory is the concept of a 

"Po matrix." We give a generalization of that concept, showing that one 
can specify properties possessed by certain pairs of square matrices, analo-
gous to the properties possessed by a single Po matrix. Pairs of matrices 
possessing these properties are called 'W o pairs. Use is made of this NI, o pair 
concept to prove results which are more general than some of the existing 
ones. We provide an extension of much of the existing theory in such a 
manner that a broader class of dc transistor networks may be considered. 
In particular, the new results provide one with the ability to answer certain 
questions concerning the existence, uniqueness, boundedness, and so on, 
of solutions of the equations for any network which is comprised of tran-
sistors, diodes, resistors, and independent sources. 

I. INTRODUCTION 

Suppose a network is constructed by connecting in an arbitrary 
manner any number of transistors, diodes, resistors, and independent 
voltage and current sources. Without loss of generality, we may consider 
the network to have the canonical form shown in Fig. 1; that is, we may 
consider the network to be a multiport containing resistors and jade-

1713 
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1 2n -1 

9an 

4b— an+ 

1 2n+i 

Dd  +d 

t{ 

Fig. 1—Canonical form of a transistor network, 

pendent sources, with transistors and diodes connected to the ports.* 
There are some fundamental questions that one should then, hopefully, 

be able to answer. For example: Do the equations that describe this de 
network have a unique solution? With the exception of certain uniqueness 
results for a special (but none the less important) class of transistor 
networks, all of the previous explicit results in Refs. 1, 2, and 3, which 
have shown methods for obtaining answers to such questions, have 
been concerned only with the class of transistor networks for which, 
after setting the value of each independent source to zero, there exists a 
short-circuit admittance matrix (a G matrix) to characterize the linear 

* It will become apparent that the theory can also accommodate many other struc-
tures which are of the Fig. 1 type except that the multiport contains additional 
linear elements (such as controlled sources). We do not stress this point though, 
since in the present context such elements seem somewhat unnatural. 
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multiport of Fig. 1. It is the primary purpose of this paper to show how 
that restriction can be removed. We shall show in fact that almost all 
of the previous results are but special cases of results that follow from 
a more general theory in which the assumption of the existence of a G 
matrix for the linear multiport is unnecessary.* 
Section II concerns methods for characterizing a general multiport 

containing resistors and independent sources. In Section III, we consider 
the model for a transistor. An equation for dc transistor networks is 
then developed in Section IV and, after explaining some notation in 
Section V, we develop the W. pair concept in Section VI. Sections VII, 
VIII and IX show how the W. pair concept provides a generalization 
of the existing results concerning dc transistor networks. Finally, we 
consider an example network in Section X. 

II. LINEAR M ULTIPORT CHARACTERIZATION 

A multiport having n ports (an n-port) is characterized by determining 
every combination of the 2n port voltages and currents that the network 
admits (see Ref. 4). We discuss here two methods of characterizing 
multiports that contain resistors and independent sources. The first 
method makes use of the familiar concept of a hybrid matrix. The second 
method uses a pair of matrices in a manner that was apparently first 
suggested—for multiports containing no independent sources—by 
V. Belevitch.5 

2.1 The Hybrid Formalism 

When the value of each independent source is set to zero, for a multi-
port containing only resistors and independent sources, the multiport 
becomes, of course, a resistive multiport. H. C. So has proved (as a special 
case of a theorem in Ref. 6) that any resistive multiport has a hybrid 
matrix description. That is, for any resistive n-port, it is always possible 
to label the port voltage and current variables in such a way that there 

* Pragmatista might argue that in any "physical" network, there will always be 
enough stray" resistance present which, if taken into account, will guarantee the 
existence of, say, a G matrix. It seems to this writer, however, that by taking such a 
point of view, one does not obtain an entirely satisfactory understanding of matters 
(even practical matters). To know that fundamental results do not depend (if, in 
fact, they don't) upon such fortunate occurrences as those (and for many transistor 
networks this is the case) seems to be the more satisfactory situation. Furthermore, 
it should be noted that in the analysis of a physical network, to obtain a tractable 
problem, it often behooves one to neglect the presence of unimportant elements. 
Thus, it is not necessarily true that such stray resistors will always be present in the 
model of the network which the analyst desires to consider. 
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exists an integer m, O  m  n, a pair of n-vectors* 

x = (il • • •  Vm+1 y • • •  vO 7' , 

= (24. / • • •  V . 7 im + 1 y • • •  

and a real n X n matrix H, the hybrid matrix, such that the network 
admits the port variables v, ,4 as the voltage and current, respectively, 
at the kth port, for k = 1, • • • , n, if and only if the vectors x and y satisfy 

y = Hx.  (1) 

Thus, a resistive multiport may always be characterized by a hybrid 
matrix. 
When independent sources whose values are nonzero are present 

in an otherwise resistive multiport, a hybrid matrix will not generally 
suffice to characterize the multiport. Clearly the vectors x = y = 
(0, 0, • • • , 0)7 which satisfy equation (1) for any matrix H do not always 
specify an admissible combination of port variables when independent ; 
sources are present. One might hope, however, that a characterization ' 
of the type 

y = Hx + c,  (2) 

where c is some constant vector (whose elements are real numbers), 
might always be possible. Indeed, we are about to show that this is the 
case. There is one problem, however, that was not present in the con-
sideration of resistive n-ports that must first be dealt with: there are ways 
to interconnect independent sources and resistors such that the resulting 
structure doesn't make sense. That is, the independent sources might 
impose self-contradictory constraints on the network. We rule out such 
possibilities by agreeing that, when we refer to "a multiport containing 
resistors and independent sources," we always assume that the multiport 
possesses the following property: 

Assumption: The linear graph that is formed by associating an edge 
with each resistor, each independent source, and each port, has no 
cut-sets containing only current source edges for which the values of 
the current sources cause a violation of Kirchhoff's current law. Similarly, 
no circuits of voltage source edges for which the values of the voltage 
sources cause a violation of Kirchhoff's voltage law are present. 

This assumption in no way restricts the generality of our work. We 

* We use the superscript T to denote the transpose of a vector or a matrix. Thus, 
the vectors x and y above are both column vectors. 
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are simply ruling out multiports, like the 2-port of Fig. 2, for which the 
set of admissible port voltage and current combinations is empty. 
We have worded the Assumption so that the presence of, say, a series 

connection of two 1-ampere current sources in an otherwise resistive 
multiport does not cause the multiport to be inadmissible. We have 
done this because no violation of Kirchhoff's laws results from such 
interconnections of resistors and sources; the network is perfectly legiti-
mate. One should be aware, however, that if "superfluous" sources are 
present in a network, it will follow that one cannot uniquely determine 
the value of each branch voltage and current in the network. That is, 
even though one might be able to uniquely determine the value of the 
voltage across the pair of 1-ampere sources, there is no way to determine 
the value of the voltage across each individual source. Aside from such 
ambiguities, it follows (see below and the proof of Theorem 1 in Ref. 6) 
that the value of all branch voltages and currents can be uniquely deter-
mined for a multiport satisfying the Assumption, whenever the values 
of the "independent" port variables are known. 

Theorem: Any multiport containing resistors and independent sources 
can be characterized by equation (2), where H is a hybrid matrix charac-
terization of the corresponding resistive multiport that is obtained by setting 
all independent source values to zero, and c is a vector of real numbers. 

A proof of this theorem can be constructed by incorporating a few 
simple observations and minor modifications into the arguments used 
by So in Ref. 6. We therefore simply sketch the main ideas: First, if the 
linear graph mentioned in the Assumption contains any current source 
cut-sets, then it must be the case (because of that Assumption) that 
these sources have values such that Kirchhoff's current law is satisfied. 
That being the case, the port behavior of the multiport will clearly be 
unaltered if a sufficient number of current sources are removed (by 
coalescing appropriate nodes) to eliminate such cut-sets. A similar 
observation applies to voltage source circuits. Therefore without any 
loss of generality, we may consider the linear graph to have no current 
source cut-sets and no voltage source circuits. Next, by Lemmas 1 and 
2 of Ref. 6, it then follows that there exists a tree* for the linear graph 
for which all voltage source edges are branches and all current source 
edges are links. At each port, one of the two port variables is then desig-
nated as "independent," the choice depending upon whether the edge 
corresponding to that port is a branch or a link. The existence of the 

* In case the linear graph is not connected each reference to the word tree should, 
of course, be changed to forest. 
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Fig. 2—An inadmissible n-port. 

hybrid matrix H and the vector c for the characterization (2) then follows 
in the same manner as the existence of a hybrid matrix for a resistive 
multiport follows from So's arguments. 

2.2 Belevitch's Formalism 

For some multiports, it might be that (after setting all independent 
source values to zero) a hybrid matrix exists such that the vectors x 
and y in equation (1) satisfy x y (s,, • • • , v.) and = i (1:1 • • 

1„) T. In this case the hybrid matrix is given the special name, admittance 
matrix. Similarly, if it happens that H exists such that x = i and y 
then H is called the impedance matrix. For many resistive multiports, 
neither an impedance matrix nor an admittance matrix exists. It is still 
possible, however, to characterize any n-port for which a hybrid matrix 
exists in terms of the vectors y and i. Obviously, x and y satisfy equation 
(1) if and only if y and i satisfy 

[Ia —Hy]v =  (3) 

where the n X m matrix H, and the n X (n — m) matrix H, are defined 
by H = [Hi Hd, and similarly [Ili Id is the n X n identity matrix. 
The characterization (3), being equivalent to equation (1), is perfectly 

adequate for any resistive n-port. It is, however, but a special case of a 
more general characterization due to Belevitch, namely: 

Pv = Qi,  (4) 

where P and Q are n X n real matrices. Belevitch's characterization 
can be used for quite a broad class of networks, including some rather 
pathological ones which require dependent sources, or gyrators and 
negative resistors to realize, and for which no hybrid characterization 
exists. For example, the one-port called a norator, for which the set of 
admissible port voltage and current combinations is the set of all pairs of 
real numbers, may be characterized by [O]v = [011. We should note, 
however, that if one allows the aforementioned elements to be present 
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in an n-port, then even equation (4) cannot always provide a ehara,e-
terization. The nullator, for example, a one-port whose only admissible 
combination of port voltage and current variables is the pair (0, 0), is 
such an n-port. 
When an n-port contains independent sources it can often be charac-

terized by the equation 
Pv = Qi  c,  (5) 

where P and Q are real n X n matrices, and c is a constant vector. Clearly, 
any n-port containing only resistors and independent sources has such a 
characterization. It is this class of n-ports which is our primary concern 
in the study of transistor networks. We note, however, that equation 
(5) is adequate for characterizing a much broader class of n-ports. 

III. NONLINEAR TRANSISTOR CHARACTERIZATION 

In Fig. 3, a commonly used large signal de transistor model is dis-
played. It is easily verified that the voltage and current variables defined 
in that figure obey the following relationships: 

[v: V2 

BASE 

Ívj 
e 

1 J 1.(14)J 
rr. + rb  Tb 

Tb  Te  Tle 

COLLECTOR 

L2 

EMITTER 

afie 

a TLC 

Fig. 3—Large signal de transistor model. 

(6) 

(7) 
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Each of the parameters a., and a, may assume any value in the open 
interval (0, 1). The parameters rk , r„ and r„ , which account for lead 
resistances, are sometimes omitted by device modelers (their presence 
is sometimes accounted for by including appropriate additional resistors 
in the network to which the transistor model is connected). To accom-
modate these various points of view we specify only, therefore, that the 
values of the parameters rk , r, , and r, be nonnegative. Thus any or all 
of them may be zero. 
Depending upon whether the transistor being modeled is a pnp or 

an npn, the graph of each of the functions fl and 12 has one of the general 
shapes shown in Fig. 4 (at least for values of lvj that are "not too large"). 
Often these functions are described by an equation of the form 

(y) = mk[exP(nkv) — 1],  = 1, 2),  (8) 

where mk and nk are appropriately chosen constants, both being positive 
for a pnp transistor, and both negative for an npn. On the other hand, 
for example, a piecewise-linear representation is sometimes specified 
for 11 and fa. 
The nature of the functions f, and 12 for large values of Iv' depends 

upon which assumptions the modeler is willing to make, and which 
effects he is interested in considering. For large negative (in the pnp 
case) values of y, for example, the graph of fk approaches—according 
to equation (8) —the horizontal asymptote i = —mi. Thus, if the 
modeler chooses to use equation (8) to describe fi for all values of y, 
the range of f, will not be the entire real line. If, on the other hand, the 
effect of ohmic surface leakage across the p-n junction is included in 
the model, the graph of the function lb will approach asymptotically 
a straight line having a small, but positive, slope. The range of such 
a function is, obviously, the whole real line. One might also wish to 
include the effect of avalanche breakdown in the reverse-biased region. 
If this is done, the graph of fk will have a shape reminiscent of that of 
a Zener diode in the y <O part of its domain. 
In the forward-biased region there are also effects, particularly apparent 

for large values of y, which the modeler may or may not wish to recognize. 
For example, there is the so-called high-level injection phenomenon 
which tends to decrease the value of the forward current and which, 
using equation (8), is usually accounted for by a decrease in the magni-
tude of nk for large values of v. In addition, there is the effect of the ohmic 
resistance of the crystal which tends to reduce the value of forward 
current for large values of v. 
From the point of view of the device modeler, the question of whether 
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or not to include some of the effects mentioned above is often a minor 
issue. For many networks the behavior will be essentially the same 
whether or not, say, surface leakage is accounted for in the transistor 
model. From the point of view of the network analyst, however, the 
situation is somewhat different. For example, the matter of whether 
or not the functions fk map the real line onto the real line can, in some 
cases, make the difference between whether or not there exists a solution 
of the network's equations. Similarly, other results that have been 
obtained recently (presented later, beginning in Section VII) also seem 
to depend upon the graphs of the functions fk having certain special 
properties. 
It seems safe to say that no matter which "special effects" are included 

(or omitted) in the description of the transistor, the functions fh may 
at least be considered to be strictly monotone increasing mappings of 
the real line into itself. For the purpose of formulating the equations 
for transistor networks, this is the only hypothesis that we shall make. 
When additional hypotheses regarding the nature of these functions 
are needed (to obtain certain results concerning properties of these 
equations) those hypotheses will be mentioned explicitly. In each case 
it will be clear that the additional hypotheses are, in some appropriate 
sense, rather weak. 
Similar remarks can be made for the diodes that are shown in Fig. 1, 

which might also be present in transistor networks. Thus, we assume 
that each diode is described by an equation of the type i f(v) where, 
at this point, we only assume that the function f is a strictly monotone 
increasing mapping of the real line into itself. 

IV. EQUATIONS FOR TRANSISTOR NET WORKS 

Suppose we are given a de network consisting of transistors, diodes, 
resistors, and independent voltage and current sources, connected to-
gether in an arbitrary manner. Let there be n transistors and d diodes. 
Clearly, there is no loss of generality if we consider the network to be of 
the type shown in Fig. 1. Using the results of Section III, we may describe 
the nonlinear devices in the network by the equations 

y = TF(x),  x = X — Ry,  (9) 

where T = diag[T, , Tj, with T, a block diagonal matrix with n 2 X 2 
diagonal blocks of the form 

for k = 1, • • • ,n,  (10) 
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• 

(a) 

- v 

(b) 

Fig. 4—General shape of the functions fi and f,;  (a) pnp transistor, (b) npn transistor. 

and T2 the d X d identity matrix. Also, R = ding [R1 , RA, with Ri a 
block diagonal matrix with n 2 X 2 diagonal blocks of the form 

[ r.(k) + rt(,k) 

,‘„.(n) ] r?) ± 11,k) ' 
k = 1, • • • , n,  (11) 

and R2 the d X d matrix whose elements are all zeros. The function F 
has the form F(x) = [0;0, • • • , f2n+d(e2n+d)]T1 where each of the fk is a 
strictly monotone increasing mapping of the real line into itself. 
Using the results of Section II, the effect of the linear multiport in 

Fig. 1 is to constrain the vectors of port variables, 2 and y, to obey the 
relationship 

P± = —Qy  c,  (12) 

where P and Q are (2n + d) X (2n + d) real matrices and c is a real 
(2n + d)-vector. The minus sign appears in equation (12) as a consequence 
of having chosen the reference direction for the port currents (the elements 
of the vector y) to be opposite to that which is usually assumed. 
By using equations (9), we may easily eliminate the variables 2 and 

y from equation (12), resulting in the equation 

(PR + Q)TF(x) ± Px = c.  (13) 

The central problem in determining the values of all branch voltages 
and currents in a de transistor network is the determination of a solution 
of equation (13). The rest is relatively straightforward, for if z is a (unique) 
solution of equation (13), then the (unique) vectors 2 and y, such that 
equations (9) and (12) are satisfied, may immediately be computed 
from equations (9). 
Since the matrix T is nonsingular, it follows that whenever either 

(PR  Q) or P is nonsingular, equation (13) can be transformed into, 
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respectively, one of the equations 

F(x) ± Ax = b, 

AF(x) + x = b. 

(14) 

(15) 

The first of these equations has been studied rather extensively (see 
Refs. 1-3 and 7) and for most of the results obtained there, it can be 
shown that parallel results are possible for equation (15). Both of these 
equations, however, are but special cases of the equation 

AF(x) + Bx = c,  (16) 

which accommodates equation (13) directly. It is, therefore, this equation 
to which we shall now direct our attention. It will be shown that most 
of the results which have been obtained to date for equation (14) have 
rather natural (though not obvious) extensions to equation (16). It is 
important that such extensions be possible because one is often forced 
to deal with equations like (16) in the analysis of transistor networks. 
Clearly, this is the case whenever both of the matrices (PR ± Q) and 
P of equation (13) are singular—and this can easily happen (for example, 
if the matrix R contains all zeros, then it will happen whenever there 
exists no admittance matrix nor impedance matrix for the linear multi-
port of Fig. 1). 

V. NOTATION 

The following notation shall be used throughout the remainder of 
the paper: For each positive integer n we denote by E" the n-dimensional 
Euclidean space, the elements of which are ordered n-tuples of real 
numbers, which we consider to be column vectors. The origin in E" is 
denoted by O. If x = (z1, • • • , xn)r and y = (y,, • • • , y„) r are elements 
of Er̀ we denote their inner product by (x, y) = E-,_, skyk . The norm of 
each x E E" is denoted by 1141 = (x, x)*. 
If A is an n X n matrix, then for k = 1, • • • , n, A k denotes the kth 

column of A. A principal submatrix of a square matrix A is any square 
submatrix of A whose main diagonal is contained in the main diagonal 
of A. A principal minor of A is the determinant of any principal sub-
matrix of A. If D is a diagonal matrix, then D > 0 means that each 
element of the main diagonal is a positive number; similarly, D k 0 
denotes that each element of the main diagonal is nonnegative. We 
denote the n X n identity matrix by either I„ or, when the dimension 
is unimportant or is clear from the context, simply by I. The direct 
sum of two matrices A, B is denoted by A C) B. A square matrix of real 
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numbers A is said to be strongly row-sum dominant if its elements 
aii satisfy cti. > E ii jaii! for i = 1, • • • ,n. 
If f is a real valued function defined on E' then fis said to be monotone 

increasing if for all x < y it follows that f(x)  f(y). We say that f is 
strictly monotone increasing if f(x) </(y) for all x < y. For each positive 
integer n, we denote by Œn that collection of mappings of Em onto itself 
defined by: F E r if and only if there exist, for i = 1, • • • , n, strictly 
monotone increasing functions f mapping r onto E' such that for 
each x = (xl , • • • , x„) T E Ern, F(x) = [f1(x1), • • • ,  

VI. PAIRS OF MATRICES OF TYPE M9c, 

Many of the recent results referred to above, concerning equation 
(14), have relied heavily upon certain properties that a matrix is known 
to possess whenever it is a member of a class of matrices that has been 
given the name Po . In a similar way the results that follow rely upon 
useful properties that are possessed by certain pairs of matrices. We 
shall define a class, the elements of which are these pairs of matrices, 
and give it the name 2,. 
The class of matrices called P. was defined by M. Fiedler and V. 

Pt e. They proved that the following properties of a square matrix of 
real numbers, A, are equivalent: 

(i) All principal minors of A are nonnegative. 
(ii) For each vector x  O there exists an index k such that z,. 0 0 

and xk(Ax)k O. 
(iii) For each vector x  O there exists a diagonal matrix Dz 

such that (x, Dix) > 0 and (Ax, Dzx)  O. 
(iv) Every real eigenvalue of A, as well as of each principal submatrix 

of A, is nonnegative. 
Sandberg and Willson proved that another property can be added to 
this list of equivalent properties," namely: 
(y) det (D  A) 0 0 for every diagonal matrix D > O. 

The class of all matrices possessing one (and hence all) of the above 
properties is called P. . 
We shall now state a theorem which provides a useful generalization 

of the concept of the class of P. matrices. 

Definition: For each pair of n X n matrices (A, B) we shall denote by 
e(A., B) the collection of all the n X n matrices that can be constructed 
by juxtaposing columns taken from either A or B while maintaining 
the original relative ordering of the columns. Thus, M e e(A, B) if 
and only if for each k = 1, • • • , n, either Mk = Ai or Mk = B,.. 
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Obviously e(A, B) contains e matrices (for certain pairs (A, B)— 
namely for those having Ak = Bk for one or more values of k—it can 
happen that two or more matrices in e(A, B) are identical). 

Definition: The pair of n X n matrices (M, N) is said to be a comple-
mentary pair taken from e (A, B) if and only if both M and N are members 
of e(A, B) and for each k = 1, • • • , n, either Mk = Ak and Nk = Bk 
or else Mi = Bk and Nk = Ah . 

It is obvious that (A, B) is a complementary pair taken from e(A, B). 
It is also clear that 0(A, B) = e(B, A) and, moreover, that if (M, N) is 
any complementary pair taken from e(A, B), then e(M , N) = e(A, B). 
Furthermore, for each M E e(A, B) there exists N G e(A, B) such that 
(M,  is a complementary pair. 

Theorem 1: The following properties of a pair of n X n matrices of real 
numbers (A, B) are equivalent: 

(t)  del (AD ± B)  0 for every diagonal matrix D > O. 
(ii) There exists a matrix M E e(A, B) such that del M  0 and such 

that det M • det N  0 for all N E e(A, B). 
(iii) For each vector x O there exists an index k such that either (ATX),. 

0 or (BT x),. 0 0, and such that (A T x),,(Br x),  O. 
(iv) For each vector x s O there exists a diagonal matrix D,  0 such 

that either (A rx, D,A rx) > 0 or (Br x, D,Brx) > 0 (that is, 
such that (A rx, D,A rx) ± (Br x, D,Brx) > 0), and such that 
(A T x, D,Brx)  O. 

(v)  For each complementary pair of matrices (M, N) taken from 
e(A, B), each real value of X that satisfies det(M — XN) = 0 is 
nonnegative. 

(vi) There exists a complementary pair of matrices (M, N) taken from 
e(A, B) such that M-1N E P0. 

(vii) There exists a matrix M e e(A, B) such that del M  0; and, 
for any complementary pair of matrices (M, N) taken from e(A, B) 
with del M s 0, .111-1N E P0. 

In this paper, we do not make use of properties (iii), (iv), or (v) of 
Theorem 1. The proof that the remaining four properties are equivalent 
is given in the Appendix. A complete proof of Theorem 1 is given else-
where.' 

Definition: The class of all pairs of matrices which possess one (and 
hence all) of the properties listed in Theorem 1 is called 'W0. 
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To see that properties (i) and (ii) of Theorem 1 are in fact generaliza-
tions of the previously mentioned properties (v) and (i), respectively, 
that define Po is a simple matter. It happens that for any n X n matrix 
B the pair (/„ , B) E Veo if and only if B E P0. (This follows from pro-
perty (vii) of Theorem 1.) With our attention restricted to pairs of 
matrices of the type (I„ , B), it is clear that property (i) of Theorem 1 
is equivalent to property (v) which determines those matrices B that 
that are in Po . Concerning property (ii) of Theorem 1, an arbitrary 
matrix N. E e(I„, B) is either the matrix 1„ or else, a matrix formed from 
B by replacing some of the columns of B by the corresponding columns 
of /„ . Consequently, det N = det By where BN is the principal sub-
matrix of B that is formed by removing from B the columns that are 
not present in N and then removing the corresponding rows. Hence, 
since det In 0, we may take I„ to be the matrix M in property (ii) of 
Theorem 1, and observe that this property then becomes: det BN k 
for all N E e(I„ , B). It is now clear that this property is equivalent 
to the property (i) that defines the class of Po matrices. (Note that there 
are exactly 2" — 1 principal minors for each n X n matrix, and that 
the set e(I„,B)\{in} contains exactly 2" — 1 members.) 

VII. THEOREMS ON FxISTENCE AND UNIQUENESS 

7.1 First Existence and Uniqueness Theorem 

The following theorem, which is proved in Ref. 2, provides a necessary 
and sufficient condition for the existence of a unique solution of equation 
(14) for all F that are strictly monotone increasing "diagonal" mappings 
of E" onto E" and for all b e E". 
Theorem 2: If A is an n X n matrix of real numbers, then there exists a 
unique solution of equation (14) for each F E if" and for each b E E" if 
and only if A E P9. 

Using this theorem along with the results of Section VI we can prove 
the following (more general) theorem. 

Theorem 3: If A and B are n X n matrices of real numbers, then there 
exists a unique solution of equation (16) for each F E r and each c G E" 
if and only if (A, B) E  . 

Proof: (if) Let (A, B) E W0. Then, by Theorem 1, there exists a com-
plementary pair (M, N) taken from e(A, B) such that M -1N E P0. 
For each F = [11(•), • • • , f „( • )r. E n et G = [g,(•), • • • , g1'(•)J7 denote 
the mapping (also in F) defined by 
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uk(.) = 
i f, ( • ) if Mk = 

Ak  ' for k = 1, • • • ,n. 

G'(.) if Mk 0 Ak , 

Clearly, the vectors x and y satisfy 

AF(x) + Bx = MG(y) + Ny 

if they satisfy the relation 

Yh = { Xi  if Mk = A, , for k = 1, • • • ,n,  (17) 

fk(xk) if Mk  Ak e 

and since this relation defines a homeomorphism of E't onto itself, it 
follows that there exists a unique solution of equation (16) for each 
c E E" if there exists a unique solution of the equation 

MG(y) + Ny = c  (18) 

for each c E E". But, that this is so follows immediately from Theorem 
2 and from the fact that 31-1N E P.. 
(only if) Suppose (A, B) ENV. . Then, by Theorem 1, there exists a 

diagonal matrix D > 0 such that det(AD ± B) = O. Choosing F(x) 7--- Dx, 
we have F E r, while equation (16) does not have, with this choice of 
F, a unique solution for all c E E".  D 
There are corollaries to Theorem 2, given in Ref. 2, that also may be 

generalized in a similar manner. For example, the following result is a 
generalization of an important special case of Corollary 1. of Ref. 2; 
it shows that the condition (A, B) È W. is still sufficient to insure the 
uniqueness of a solution of equation (16) (if a solution exists) even 
when the mapping F is not onto. 

Theorem 4: If F(x) = [11(x,), • • • , f(x)1T , where each fk is a strictly 
monotone increasing mapping of El into El, and if (A, B) ENV. , then 
there exists at most one solution of equation (16) for each c E E". 

Proof: Suppose that, for some c E E", 2 and re are solutions of equation 
(16) with xl — 2 0 O. Then, A[F (xi) — F(x2)1 ± B(xl — 2) = O. But 
then, since F is a strictly monotone increasing "diagonal" mapping, 
there exists a diagonal matrix D > 0 such that F(e) — F(x2) = 
D(xl — re), and hence (AD ± B)(re — x') = O. Since xl — x' 0 O it 
follows that det(AD ± B) = 0, which implies that (A, B) EÈW..  0 

7.2 A Nonuniqueness Theorem 

From the proof of the "only if" part of Theorem 2 (given in Ref. 2) 
it follows that whenever A EE P. , there exists a mapping F E r and a 
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vector b E E" such that equation (14) has more than one solution. On 
the other hand, even if A Et Po , if the mapping F E ê is "fixed," then 
it is easy to see that the nonuniqueness of solutions of equation (14) 
need not necessarily follow for any b E Eltake F(x)  x and Ax  —2x, 
for example]. I. W. Sandberg has shown," however, that if one assumes 
that the "fixed" mapping F has another special property, rather than 
assuming that F E  then the nonuniqueness of solutions of equation 
(14) follows, for some b G E", whenever A EE Po . Moreover, he has 
shown that under these hypotheses and for any ô > 0, there exists some 
b E E" such that equation (14) has two solutions, x and y, which satisfy 
liz — yll = a. The special property that F is assumed to have is given in 
the following definition (in words, the property is: that it be possible 
to draw a straight line having any given positive slope, and any given 
length, between some pair of points on the graph of each of the functions 

Definition: For each positive integer n we denote by 8" that collection 
of mappings of E" into itself defined by: F E 8« if and only if there exist, 
for k = 1, • • • , n, continuous functions fk mapping E' into E' such that 
for each x E E", F (x) = [f i(x 1), • • • , f „(x.)] 2' , with each of the /k satisfying, 
for all e> 0, 

inf {f k(a + (3) — f k(a): — co <a < 001 = 0, 

sup Ifk(a + 13) — fk(a): —  <a < °° j = °° • 

By using Theorem lit is possible to prove the following generalization 
of Sandberg's result: 

Theorem 5: Let F e 8% let (A, B) EEW 0 be a pair of real n X n matrices, 
and let ô be a positive constant. Then, for some c E Em there exist solutions 
of equation (16), x and y, satisfying ix — yil = 8. 

Proof: Since (A, B) EE 'W„ there exists a diagonal matrix D = 
diag(di , • • • ,  > 0, such that det(AD  B) = O. Therefore, there 
exists x* E E", with lx*Ii = ô, such that (AD + B)x* = O. Since F e 
there exists x e E" such that 

fk(xk) — ik(xk — ek) = xl,dk  for  k= 1, • • • ,n. 

Let c = AF(x)  Bx, and let y = x — x*. Then 

A[F(x) — le(y)]  B(x — y) = A[F (x) — F (x — x*)]  Bx* 

= (AD + B)x* = O. El 

For a mapping F to be a member of 8'1, it is not necessary that F E 
It follows from the above definition of 8" that F E 8' implies that each 
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of the functions fk is a monotone increasing function from E' onto some 
interval in E' whose length is infinite; the k need not, however, be 
strictly monotone increasing, nor onto E'. For those F E 8" for which 
each of the functions I, is strictly monotone increasing, we have the 
following corollary to the two preceding theorems. 

Corollary: Let F (x)  If i(x,), • • • , f „(x)] r e 8' and let each of the functions 
f „ be strictly monotone increasing. Then there exists at most one solution 
of equation (16) for each c E E" if and only if (A, B)  . 

VIII. RESULTS ON CONTINUITY AND ROUNDEDNESS 

For many systems whose behavior is described by an equation having 
the form (16), the vector c may be regarded as the system's input and 
the vector x may be regarded as the system's response or output. Those 
properties that one might expect well-behaved systems to possess are 
likely to include continuity and boundedness. Thus, one might expect (i) 
"small" changes to result in the value of the system's output when 
"small" changes are made in the value of the system's input, and (it) a 
bounded sequence of input vectors to yield a bounded sequence of 
outputs. We now show that such properties are indeed possessed by 
the type of system that is the main concern of this paper. 

8.1 Continuity 

When the n X n matrix A is a member of the class P. and the mapping 
E r, it follows that the solution x of equation (14) is a continuous 

function of the (input) vector b.2 Using this fact, it is easy to prove the 
following theorem. 

Theorem 6: For each F ES" and each pair of n X n matrices (A, B) Ewa 
the solution x of equation (16) is a continuous function of the vector c. 

Proof: Proceeding as in the "if" part of the proof of Theorem 3, we see 
that the theorem follows immediately from the facts that equation 
(17) is a homeomorphism and that the aforementioned result guarantees 

- that y, the solution of equation (18), is a continuous function of c. 

8.2 Boundedness 

In Ref. 2 a theorem (Theorem :5) is proved which shows that, when 
F E r and A E P. , bounds can be obtained for the solution of equation 
(14) whenever bounds for b E E" are given. The proof of a more general 
theorem concerning equation (16) can be constructed quite easily by 
using that theorem, and by using the same technique that was used in 
the proof of the preceding theorem, along with the trivial observations: 
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(i) For any nonsingular n X n matrix of real numbers, M, and any 
real numbers a,,  = 1, • • • , n, there exist real numbers, 
a; S.  , I = 1, • • • , n, such that when each of the components 
ei of the vector c satisfies a, S ei S a, , it follows that 
a; S (lric) i , for i 1, • • • , n. 

(ii) For any given real numbers 7. S 5, , i = 1, • • • , n, there exist 
for the homeomorphism (17), real numbers 7', s  , i = 1, • • • , n, 
such that whenever x, y satisfy equation (17) with -y,  y, ô,, 
for i= 1, • • • ,n, it follows that 1,', S xi S.& , for i = 1, • • • ,fl. 

The more general theorem, whose quite obvious proof is omitted, 
is the following: 

Theorem 7: Let F e r, let (A, B) E 'Wo be a pair of n X n matrices, and, 
for i = 1, • • • , n, let ai be given. There exist, for i = 1, • • • , n, real 
numbers-y, 8, such that for any c = (c, , • • • , c)T E Er̀ with ai er 13, 
for i = 1, • • • , n, if x satisfies equation (16), then  S xi S 8; for i = 
1, • • • , n. 

According to Theorem 7, (A, B) E 'W,, is a sufficient condition for a 
bounded sequence of vectors c to yield a bounded sequence of solution 
vectors of equation (16), for all F e r. The following theorem shows 
that (A, B) ewo is also a necessary condition. 
Theorem 8: If (A, B) is a pair of real n X n matrices, then (A, B) ÈWo if 
and only if for each F E r and each unbounded sequence of points z', , , • • • 
in  , the corresponding sequence c', e2, c', • • • [ck = AF(e) 
k = 1, 2, 3, • • •J ia unbounded. 

This theorem, which is a generalization of Theorem 4 of Ref. 2, can be 
proved in a manner which is a quite obvious generalization of the proof, 
given there, of that theorem. Thus, an appeal to Theorem 7 proves the 
"only if" part, and the "if" part is proved by assuming that (A, B) EE'W 
and then choosing the same kind of mapping F E r as was chosen in 
Ref. 2, for which an unbounded sequence of vectors xh yields a bounded 
sequence of vectors Ch. 

IX. COMPUTATION OF THE SOLUTION 

A. Gersho7 has shown that whenever FE r n Ca (that is, whenever 
each of the functions fk is a continuously differentiable strictly monotone 
increasing mapping of the real line onto itself), it is possible to compute 
the solution of equation (14), for any A E Po and any b E E", by making 
use of a. gradient descent algorithm due to A. A. Goldstein.' The following 
theorem extends this result to the class of equations of the type (16). 
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Theorem 9: Let M be an arbitrary positive definite symmetric matrix, 
and let Q : —> E' be defined by 

Q(x) = [AF(x)  Bx — c]TM[AF(x)  Bx — c], 

where F E if" r C', (A, B) CM?. ,and c E E". For each x E E" and each 
y 0 let 

(2(x) — Q[x — 7VQ(x)]  
ex, 7) =  7 II VQ(x) 112 ' 

1,  
t.   

where V Q(x) denotes the gradient of Q at the point x. Then, if 8 is any real 
number satisfying 0 < 8 5 ,¡, and if 2 is an arbitrary point in El', the 
sequence ix": k = 0, 1, 2, • • • 1 converges to the solution of equation (16), 
where (for k = 0, 1, 2, • • • ) the 2 satisfy 

= 2 —  

each lek being any real number that satisfies .3 5 g(x", 7") 5. 1 — 8 if 
g(x", 1) < 8, or yk = 1 if g(x", 1) ._ b. 

Proof: This proof uses generalizations of some of the ideas in Ref. 7 and 
relies ultimately upon the Goldstein algorithm." 
We first remark that the sequence {2 } is well-defined: It is easy to 

show (see the first part of the proof of Theorem 1, p. 31, Ref. 11) that 
for each x E E", g(x, •) is a continuous function on [0, cc). This being 
the case, it is clear that if g(x", 1) < 8, then for each e in the interval 
[8, 1)—and, in particular, for each in the interval [6, 1 — 8]—there is 
some yi" in the interval (0, 1) such that g(x", 7") = e. 
Let S = lx E El': Q(x) 5 Q(x°)1. Using the fact that M is a positive 

definite symmetric matrix, and using the fact that F e 5", (A, B) E Wo 
implies that I i APT (x) ± Bx II —> co if and only if ll x II --> ea (Theorem 8) 
we have that the set S C E" is bounded. By continuity of Q, S is closed. 
Thus, S is compact and, therefore, the gradient VQ (which is continuous 

_ on E", since F E e) is uniformly continuous on S, and VQ is bounded 
on S. Also, Q is bounded below on S. [Indeed, we have Q a 0 on E" and 
by the existence and uniqueness theorem, Theorem 3, there exists 
exactly one point x* (x* E S) at which Q(x*) = 0.1 
It is easily verified that, for each x E E", 

V Q(x) = 2(ADz + B)r M[AF(x) + Bx — c], 

where, for k = 1, • • • , n, the kth diagonal element of the diagonal matrix 
Dz > 0 has the value of the derivative of the function fk , evaluated at 
the point xk . Since (A, B) E wo implies that det (ADz ± B) 0 0, and 
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since dot M 0 0, it follows that VQ(x) = O if and only if x is the solution 
of equation (16). 
In view of the above, it follows directly from Goldstein's theorem that 

the sequence 121 converges to the solution of equation (16).  El 
Other methods of computing the solution of equation (16), in certain 

cases, also exist. If one performs a transformation of the type (17) on 
the independent variable x (in theory this can always be done) then the 
solution of equation (16) can easily be computed by first computing the 
solution of an equation of the type G(y)  M-INy = Ic, where 
G e r and 111-IN E P0. Methods of computing the solution of certain 
equations of this type may be found in Refs. 1-3. 

X. EXAMPLE 

With the aid of the modern computing facilities that are commonly 
available today, it is clearly a rather routine matter to obtain an equation 
of the type (16) for any given transistor network. Moreover, it is not 
unfeasible, even for networks of moderately large size (say, up to 4 or 
5 transistors), to consider the straightforward evaluation of the 2" 
determinants specified in property (2) of Theorem 1, and thereby resolve 
the issue of whether or not the matrices involved in the equation are 
a Nft20 pair. Due regard would of course have to be paid to the matter of 
performing sufficiently accurate computations. 
On the other hand, even without the aid of a computer, it should often 

be possible to use a little ingenuity and a few devices* to reduce the 
computations involved in the application of the above theory to many 
specific problems to a point where they will just about fit onto the back 
of an envelope. Consider, for example, the following analysis of a three-
transistor network: 
For the network of Fig. 5, the voltage and current variables defined 

there must satisfy the following equations: 

T ' 

II T(2) 

T̀3)_ 

* According to R. Bellman: "a device is a trick that works at least twice." 12 

(19) 
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Fig. 5—Example of a three transistor network. 
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where (we are using the transistor model of Fig. 3, with rb= r„ = r4 = 0) 
each of the 2 X 2 matrices eh', k = 1, 2, 3, is of the form (10). A hybrid 
characterization has been used for the linear part of the network. As 
indicated in equation (3), this hybrid characterization can easily be 
converted into a characterization of the Belevitch type. Thus, denoting 
the 3 X 3 blocks of the hybrid matrix in equation (20) by Hii , H12 H91 
1122 , in the usual manner, one obtains 

L/  1/1315 = 1"Hi,  12: (21) 
—H22  /121 —I 

where v = (vi , v3 , , v2 , v4 , /4) 7 and jis similarly defined. We could now 
simply reorder the columns of each matrix in equation (21) in such a way 
that the resulting equation would have the same form, except that the 
subscripts on the components of the vectors v and i would occur in the 
natural order (1, 2, 3, 4, 5, 6) and then use that equation, along with 
equation (19), to produce an equation of the type (16) for our network. 
In this example, though, it's probably easier to reorder the rows and 
columns of the matrix T (recall, T = T(1) e Te2) e T 8̀1 ) to obtain 
from equation (19) an equation that is compatible with equation (21). 
Thus, 

=[I  —1F(v), 

—Q  I 
(22) 
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where 

F (v)  [f,(v,), 12(1)2), fo(v2), f2(v2), MN), f 5(14)1 7 

and 

P -= diag [a;.1) , «,.(2) , an,  Q  diag [a? , a?) , ariwj. 

Eliminating i from equations (21) and (22) we obtain 

[II„  0  / (v)  I -H,2 v = c.  (23) 
H2, —I  —Q  I J  [0 -H2. 

Note that since det H1, = det H22 = 0,itis impossible to put this equation 
into either of the forms (14) or (15). Clearly this would be the same situa-
tion no matter which ordering of subscripts was chosen for the components 
of v. The cause of the difficulty is simply the fact that neither an impedance 
matrix nor an admittance matrix exists for the linear part of our network. 
Let us determine whether or not the pair of matrices 

(CHH::  :HZ] 
is a V0 pair. We shall try to verify property (1) of Theorem 1. Let 01, • • • , 155 
denote arbitrary positive real numbers, and let  = diag (8, , 32 , 83), 
rr = diag (64, 86, 84). We wish to show that 

det  tH„ 0 I  — P  0 +  — I 21 . H2, - I -Q I 0 Zi11  H22 
By multiplying the above matrix on the left by the (nonsingular) matrix 
diag (13 13) and then multiplying on the right by diag (tir , /3), we 
obtain the equivalent statement: 

det [  1/11 Ar -1112 -  0 O. 
—  — Q :H22+ (1. H21P) AII 

The 3 X 3 submatrix in the upper left corner is nonsingular and diagonal. 
The 3 X 3 submatrix in the lower left corner can be diagonalized by 
performing a single elementary row operation on the matrix; namely, by 
subtracting 1/(82 ± R1) times the second row from the fourth row. 
Having done this, our problem reduces to one of showing that 
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det 

a,  o  o 
O d. -F R, 
o  0 0, +111 

1 —  0  0 

O  1 — ac," 

o 0  1 — ai" 

—1  0  0 

-1  -(1 ± e R, 8,,)  0 
o  o  -(1 + ant. a.) 

1  l — ce a, a, 
(1 — 04") a. +  + R, 0 0.+ R, 

O  0, + (1 — a!") 8,  G, 

O  G,  G, + (1 — al")) a._ 

0 O. 

It is easy to verify that whenever det An 0, then 

det  [Au A-121  o 

!Am A22] 

if and only if det (A22 — A2121---1Al2)  0. In our case both An and A 2 I 

are diagonal and hence we can immediately reduce our problem to: 

det 

1  1 —aj" 1 — a?' 8.8. 
a, 

8.+11,  

o 

0 O. 

It is obvious that the above determinant is always positive. First, note 
that every term in the matrix is nonnegative except, possibly, the 
' (1, 2) term, which may be either positive or negative (or zero). In the 
I event that the (1, 2) term is positive (or zero), we have 1/(b2 + R1) k 
(1 — «,.")(3285)/(Ô2  R1), and hence we observe that the matrix is 
strongly row-sum dominant. This implies that its determinant is positive. 
In the event that the (1, 2) term is negative, we do not necessarily 

have dominance; however, considering an expansion of the determinant 
along its first row we see that, because of the assumption that the (1, 2) 
term is negative, the value of the determinant is computed as the sum of 
two positive terms. 
We have thus shown that, no matter which (positive) values are 

assigned to Ri , R2 , R3 , or which values the transistor's current gains 
assume [0 <a  < 1, 0 <a ° <11, the pair of 6 X 6 matrices that appear 
in equation (23) is a Wo pair. Thus, all of the results concerning a solu-
tion's existence, uniqueness, continuity, boundedness, and so on, hold 
for this equation. 
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APPENDIX 

Proof of Part of Theorem 1 

In this appendix we prove the equivalence of properties (i), (ii), (vi), 
and (vii) of Theorem 1, which define the class of pairs of matrices *Wo . 
We omit the proof of the equivalence of the three remaining properties, 
since those properties are not referred to in this paper. A complete proof 
of Theorem 1 is given elsewhere.' We begin by proving a useful lemma: 

Lemma 1: For each positive integer n the polynomial 

(co) d, do • • • d.  (c,) d, do • • • d.-, ± • • • + (c.) d2 • • • d. 

(co,) d, do • • • d.-2 ± • • • + (c.c.+11/2) do • • • di, ± • • • ± (c2.-1) 

in the n variables d, , do , • • - , d. is nonzero for all positive values of the 
variables if and only if at least one of the coefficients c0, • • • , co—, is nonzero, 
and all nonzero coefficients have the sanie sign. 

Proof: (By induction) For n = 1 the statement is obviously true. 
Let N be a positive integer. Then any polynomial of the above type in 
N ± 1 variables, (co)di • • • dN+1 + • • • ± (c2N+-1), can be written as 
P(d, , • • • , dot). dor+ , Q(d, , • • • , 4) where P and Q are both poly-
nomials of the above type in N variables. Then, assuming that the state-
ment is true for n = N, P  Q s 0 and P • Q 0 for all positive values of 
the variables d, , • • • , d, if and only if at least one of the coefficients 
c0, • • • , + is nonzero and all nonzero coefficients have the same sign. 
But, we know that P • dN.,,  Q  0 for all dN...1 > 0 if and only if P 
Q  0 and P • Q  O. E 

A.1 Property (i) is Equivalent to (ii) 

Let D = diag (d1, • • • , cl.). By expanding det (AD  B) along the 
first column we have 

det (AD ± B) =  det P  det 

where the first columns of P and Q satisfy P1 = A1 , (21 = B1 , and for 
k = 2, • • • , n, Pk =  Qk =  (AD ± B)o . Both P and Q are independent 
of d1 . We now expand det P and det Q along their second columns, 
resulting in 

det P = d2 •det R  det S, 

det Q = d2 det  det V, 

and hence, 
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det (AD  B) = d,d2• det R  di• det  + clo• det U  det V, 

where 

B 1  =  A 1  3  R 2  -  A 2 e 

= A1 y S2  =  B 2 7 

U 1  =  B 1  U 2  -  A 2 

V y  Bl ,  V 2  =  B 2 

and fork = 3, • • • ,n, 

Rk = S,, = U,, = V k =  (AD  B)h • 

Proceeding in this manner until all columns of (AD  B) have been 
encountered, we obtain an expansion of det (AD  B) as a polynomial 
in the variables {d1 , d2, • • • , ci„} whose coefficients are the determinants 
of the matrices in e(A, B). By using Lemma 1 it thus follows that (i) 
and (ii) are equivalent. 

A.2 Property (vi) Follows from (i) and (ii) 

According to (ii) there exists a complementary pair of matrices (M, N) 
taken from e (A, B) such that det M  0. Let D = diag (d,, • • • , cln) > 
0, then det (M-1N  D)  0 if and only if det (MD + N)  O. But, 
using property (i), det (MD  N) = det (At)  B) • det D  0, where 
the matrices .et = diag (di , • • • , ci.) > 0 and /3 = diag (di , • • • , a.) > 
are defined by dk = dk and ak = 11f M,, = Ak , and dk = 1/dk , ak = dk 
otherwise (for k = 1, • • • , n). Thus, M-1N E Po . 

A.3 Property (i) Follows from (vi) 

Using the notation above, it is clear that for each diagonal matrix 
D> 0, det (AD + B) = det (MD  N) • det D. Thus, if 111-1N G Po it 
follows that det (AD -I- B) 0 0. 

A.4 Property (vii) is Equivalent to (vi) 

Clearly property (vi) follows from property (vii). Thus, we need 
only prove that (vi) implies (vii). Let (11f, N) and (P, Q) both be comple-
mentary pairs taken from e(A, B) with 111-1N E Po and det P  0. 
For any D  diag (d1, • • • , cl.) > 0, det (P-1Q  D)  0 if and only if 
det (PD -F Q) O. But det (PD  Q)= det (MD  N) • det D0 , where 
the matrices.!) = diag (d„ • • • , (î,,)> 0 and /3 = diag  (1, • • • , >0 
are defined by cl,, = cl,, and a, = 1 if Pk = Mk , and ci,, = 1/dk ,ak = dk 
otherwise (for k = 1, • • • , n). Thus, P-1Q E P0. 
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Theorems on the Computation of the 
Transient Response of Nonlinear 
Networks Containing Transistors 

and Diodes 

By I. W. SANDBERG 

(Manuscript received June 15, 1970) 

We consider in detail the nonlinear equations encountered at each time 
step when certain implicit numerical-integration algorithms are used. 
In terms of only the properties of the Jacobian matrix of the pertinent set of 
differential equations, we present necessary and sufficient conditions for 
the existence and uniqueness of the solution of the nonlinear equations for 
all continuous forcing functions and any given step size. Since engineers 
often think about dynamic nonlinear transistor network problems in terms 
of the eigenvalues of the relevant Jacobian matrix, the results described are 
of immediate conceptual value. In particular, it is possible to carry out 
the algorithms whenever the conditions presented are satisfied. 
Several other types of results are also presented. For example, for a 

special but significant and useful numerical-integration formula, theorems 
are proved concerning properties of the computed sequence such as the 
extent to which the sequence is relatively immune to small local errors in-
troduced at each step as a result of the fact that it is ordinarily not possible 
to compute the solution of a certain equation exactly. 
All of the results are concerned with network models that are often used 

in computer simulations. In fact, we heavily exploit some special properties 
possessed by the nonlinear functions associated with such models. 

I. INTRODUCTION 

The set Po of all real square matrices each with all principal minors 
nonnegative plays a key role in the study1-3  of nonlinear equations of 
the form F(x)  Ax = B, and more generally' of equations of the form 
CF(x)  Ax = B, in which F(•) is a "diagonal monotone-nondecreasing 
mapping" of real Euclidean n-space E' into itself, A and C are real 

1739 
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n X n matrices and B is an element of E'. Such equations arise in the 
dc analysis of transistor networks, the computation of the transient 
response of transistor networks, and the numerical solution of certain 
nonlinear partial-differential equations. 
In Ref. 3 a nonuniqueness theorem is proved which focuses attention 

on a simple special property of transistor-type nonlinearities. It shows 
that for any transistor-type exponential F(•) the equation F(x) 
Ax = B has at least two solutions x for some B r En whenever A e Po. 
The theorem shows that some earlier conditions" for the existence of a 
unique solution cannot be improved by taking into account more in-
formation concerning the nonlinearities, and therefore makes more 
clear that the set of matrices Po plays a basic role in the theory of 
nonlinear transistor networks. Ref. 3 also contains material concerned 
with the convergence of algorithms for computing the solution of 
F(x)  Ax = B as well as of more general equations, and some related 
problems concerning the numerical integration of the ordinary dif-
ferential equations which govern the transient response of nonlinear 
transistor networks are considered briefly. 
The primary purpose of this paper is to present the results of a 

continuation of the numerical integration study initiated in Ref. 3. 
Here we further exploit the special property of transistor-type exponen-
tial nonlinearities used in Ref. 3. 
We consider in detail the nonlinear equations encountered at each 

time step when certain implicit numerical-integration algorithms are 
used, and, in terms of only the properties of the Jacobian matrix of the 
pertinent set of differential equations, we present necessary and suffi-
cient conditions for the existence and uniqueness of the solution of the 
nonlinear equations for all continuous forcing functions and any given 
step size. Since engineers often think about dynamic nonlinear transistor 
network problems in terms of the location of the eigenvalues of the 
relevant Jacobian matrix, the results described in Section 2.2 are of 
immediate conceptual value. In particular, these results are of a very 
different character than those that appear in the literature, and when-
ever the conditions presented are satisfied, it is possible to carry out 
the algorithms. Under the assumption that the conditions are satisfied, 
we also show that there are convergent algorithms for solving the non-
linear equations, and that the Jacobian matrix of the nonlinear equa-
tions is essentially always at least weakly well-conditioned in a sig-
nificant sense. 
A part of Section 2.3 reports on a general result concerning conditions 

under which it is possible to invert nonlinear mappings in r. More 
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explicitly, we show that a proposition proved by G. H. Meyer enables 
us to give a short proof of a new theorem which is a considerably 
stronger result than that described and used in Ref. 11. 
We also present a set of results concerning properties of an important 

class of transistor-diode networks for which certain implicit numerical-
integration algorithms can be carried out for all values of the step size, 
and, for a special but significant and useful numerical-integration for-
mula, theorems are proved concerning some properties of the computed 
sequence such as the extent to which the sequence is relatively immune 
to small local errors introduced at each step as a result of the fact that 
it is ordinarily not possible to compute the solution of a certain equation 
exactly. 
Finally, in addition to other results, we present new theorems con-

cerning the existence of solutions of the nonlinear de equation under 
very realistic assumptions from the viewpoint of models often used 
in computer simulations.t 
Section II contains a detailed discussion of the results and their 

significance. 

II. TRANSIENT RESPONSE OF TRANSISTOR-DIODE NET WORKS AND  IM-

PLICIT NUMERICAL-INTEGRATION FORMULAS 

2.1 Introduction 

We shall consider explicitly only networks containing transistors, 
diodes, and resistors. However, the material to be presented can be 
extended to take into account other types of elements as well. In addi-
tion, we shall focus attention on the use of linear multipoint integration 
formulas of closed (i.e., of implicit) type, since such formulas are of 
considerable use in connection with the typically "stiff systems" of 
differential equations encountered. 
A very large class of networks containing resistors, transistors, and 

diodes modeled in a standard manner is governed by the equation" 

du 
TF[C-1(u)] + GC-1(u) = B(I),  t 0  (1) 

t Results concerning the de equation are directly relevant to the problem of 
computing the transient response to the extent that in order to numerically integrate 
the differential equations it is ordinarily necessary to first solve a de problem to 
determine the initial conditions. 

4 As a practical matter, the models of transistors and diodes employed here are 
often used in computer simulations. Of course in some eases it is necessary to use 
more complicated models. 
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with G = 0(/ RO)-' and where, assuming that there are q diodes 
and p transistors, 

(i) T = T, 0 T2 0  • • • 0  T, 0  , the direct sum of the identity 
matrix of order q and p 2 X 2 matrices Tk in which 

T,, = 
— ar (k)1 

1 

1 

with 0 < ce) < 1 and 0 < oe) < 1 for k = 1, 2, • • • , p. 
R = R, C) R2 0  • • • 0  R, C)R0,the direct sum of a diagonal 
matrix Ro = diag  , r2, • • • , ro) with rk  0 for k = 1, 2, • • • , q 
and p 2 X 2 matrices Rk in which for all k = 1, 2, • • • , P 

[ (k) r(k) -I- e  /, 
Ro =  ° 

r, (k) 2e) 

with r.(k)  0, e  0, and r̀ok) O. (The matrix R takes into 
account the presence of bulk resistance in series with the diodes 
and the emitter, base, and collector leads of the transistors.) 

(iii) a is the short-circuit conductance matrix associated with the re-
sistors of the network. (It does not take into account the bulk 
resistances of the semiconductor devices.) 

(iv) F(•) is a mapping of  into E12"°) defined by the condition 
that 

F(x) = [fi(x1), 12(x2), • • • I 121,4, 1(X2 P+9)1 er  

for all x e .0 ' with each f i(•) a continuously-differentiable 
mapping of E' into El such that f(a) > 0 for all a a E1. 

(v) C'(•) is the inverse of the mapping C(-), of È 2"°1 into itself, 
defined by 

C(x) = ex  rF(x) 

for all x a E(''' with c diag (c, , co , • • • , c(22+0), r = diag (ri 
T,, • • • , T(2 „ 2)), and with each Ti and each ci a positive constant. 

(vi) B(t) is a (2p + q)-vector which takes into account the voltage and 
current generators present in the network, and 

(vii) u is related to v the vector of ideal-junction voltages of the semi-
conductor devices (v does not take in account the voltage drops 
across the bulk resistors) through C(v) = u for all v E  

Equation (1) is equivalent tot 

t In Ref. 5 it is shown if B(•) is a continuous mapping of [0,  ) into E'P', then 
for any initial condition um e E(2P+0 there exists a unique continuous (2p ± q)-
vector-valued function u(S) such that u(0) = um and (1) is satisfied for all t > O. 



NONLINEAR NETWORKS  1743 

t 0 (2) 

in which of course 

f(u, t) = TF[C'(u)] ± GC-1 (u) — B(t)  (3) 

and 0 (2,4. 0 is the zero vector of order (2p -I- q). 
It is well known that certain specializations of the general multipoint 

formulae '7 

= E akY„-k  h E  (4) 
k= 

in which 

= — 1(1/u-k (n — k)h)  (5) 

can be used as a basis for computing the solution of equation (2). Here 
h, a positive number, is the step size, the ak and the bk are real numbers, 
and of course yo is the approximation to u(nh) for n  1. 
In the literature dealing with formulas of the type (4) in connection 

with systems of equations of the type (2), information concerning the 
location of the eigenvalues of the Jacobian matrix J„ of f(u, t) with re-
spect to u plays an important role in determining whether or not a given 
formula will be (in some suitable sense) stable. In particular, an as-
sumption often made is that all of the eigenvalues of J. lie in the strict 
right-half plane for all t 0 and all u. For f(u, t) given by equation (3), 
we have 

1   
Ju = T diag {ci f:[ g f g (111)] } ±  G ding  {ci Tiri[gi(ni)l}  (6) 

in which for j = 1, 2, • • • , (2p -I- q)gi(ui) is the jth component of C-I (u). 
Thus here Ju is a matrix of the form 

TD, -I- GD,  (7) 

where DI and D 2 are diagonal matrices with positive diagonal elements. 
A simple result concerning (7), Theorem 4 of Ref. 3, asserts that if there 
exists a diagonal matrix D with positive diagonal elements such thatt 

(i) DT is strongly column-sum dominant, and 
(ii) DG is weakly column-sum dominant, 

then for all diagonal matrices D, and D, with positive diagonal elements, 

t The terms "strongly-column sum dominant" and "weakly column-sum domi-
nant" are reasonably standard. However, they are defined in Section III, 
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all eigenvalues of (7) lie in the strict right-half plane. This condition 
on T and G is often satisfied./ 
The subclass of numerical integration formulas (4) defined by the 

condition that b_, > 0 are of considerable us e" in applications involv-
ing the typically "stiff systems" of differential equations encountered 
in the analysis of nonlinear transistor networks. With b_, > 0,  is 

defined implicitly through 

1/.4-1  + 1)h) = E akY.-k  h E 
k=0 

in which the right side depends on y„_k only for k t 10, 1, 2, • • • , r] , and 
for f(u, t) given by equation (3), we have 

y.+1  hb_IITF[C-1 (y.,1)] + GC-1 = qn 

in which 

= É  ± h É  hb_,B[(n -1- 1)h]. 
k-O  k=0 

(8) 

Obviously, the numerical integration formula (8) makes sense only if 
there exists for each n a  e E  such that (8) is satisfied. 

2.2 The Jacobian Matrix J,, and Necessary and Sufficient Conditions for 
the Existence of a Unique Solution y,,+, of (8) for All q„ E  

Here we shall make the additional assumption that the functions 
fi( • ) are such that the mapping F(•) belongs to the set e " ei defined 
in Section 3.1. This assumption is satisfied whenever the f,(•) are the 
usual Ebers-Moll exponential-type nonlinearities. That is, if29-1- °) con-
tains all of the mappings F(•) such that for each j 

fi(xi) = a,[exp (b,xi) — 1] or f1(x) = a,[1 — exp (—bis,)] 

for all x; t E' with cti and bi positive constants. 
Our first result, Theorem 1 of Section III, is a rather strong result 

concerning the relation between properties of the Jacobian matrix J. 
and properties of equation (8). Let Z denote the set of all real numbers 
0- such that det (crI + J.) = 0 for some u E E(' ). In other words, let 
Z denote the set of all real numbers cr such that —cr is an eigenvalue of 
J. at some point u. According to Theorem 1, equation (8) possesses a 
unique solution y„.1 for each q„ E È 2"°' (and hence each B[(n -1- 1)h] e 
V ') if and only if (hb_1)-1 e E, and also if (hb_,)-1 e Z• then equation 
(8) possesses at least two solutions for some q„ e È 2P") (and hence for 

t See Ref. 5 for examples, 
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some B[(n ± 1)h] e E""°'). Therefore, in particular, equation (8) pos-
sesses a unique solution for all g„ e E12"°) and all h e (0, fi], in which fi 
is an arbitrary positive constant, if and only if the intersection of the 
interval Rfib_1)-1, co)  and e is the null set, and equation (8) possesses 
a unique solution for all q„e  and all h> 0 if and only if Z contains 
no points of the interval (0, 00). Finally, as a somewhat peripheral 
matter, according to Theorem 1, the de equation TF(v)  Gv = B has 
at most one solution y for each B eE('' if and only if 0 Z. 
The statements made in the preceding paragraph are surprising to 

the extent that on the one hand they are rather definitive and on the 
other hand they involve only the location of the real eigenvalues of 
./ Since engineers often find it helpful to think about nonlinear 

systems in terms of the location of the eigenvalues of a pertinent 
Jacobian matrix, it is also of interest to note here that equation (8) can 
possess more than one solution y„.„L for some q„ and some h > 0 only if 
the transistor-diode network is locally exponentially unstable at some 
operating point, that is, only if at some operating point u, — J. has a 
real positive eigenvalue. 

2.3 Existence of Convergent Algorithms for Computing the Solution of (8) 

Throughout this section we assume that the fi(•) are such that the 
additional condition that F(.) e g,(2"°) is satisfied. 
Whenever (hb  is not contained in the set ar, of Section 2.2, equation 

(8), which we shall write as Q(y„.,i)  qn, possesses a unique solution 
Y.4-1 for any g„ aÈ 2"°) . We show here that when (hb_1)-1 # S and each 
j,( .) is twice continuously differentiable on El ,t there exist steepest 
descent as well as Newton-type algorithms each of which generates a 
sequence in È 2"°) which converges to u ..n+1 • 
Assume that (hb,) e Z. The Jacobian matrix (/  hb--1.4.+J  of R(•) 

satisfies 

det (/  hb-IJ...,) 0 0 for all ?in+ , a  (9) 

Hence Q(•) is a local homeomorphism on E12'+°' and since there exists 
a unique y„4.1 aE""°) such that Q(y.+1) = q. for each g„ e E 2"°1 (2(•) 

t Indeed, while we can write (8) as Q(y.4.1)  q. with Q( • ) a continuously-dif-
ferentiable mapping of E(2P+0 into itself with Jacobian matrix (I -I- hb_1.1,„,.,) recall 
that for R(•) a general continuously-differentiable mapping of E n into itself with 
Jacobian matrix .1, det J 0 0 throughout Ê does not imply that (and is not implied 
by the statement that) for each x e e there exists a unique y e e such that 
R(y) = x, even for n = 1. 

This differentiability condition is obviously satisfied if the f;(•) are the usual 
exponential functions. 
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is a homeomorphism of E(' ) onto itself. Thus, with HI any norm 
on  

WY)  °°  °°•I 

Let R(•) be defined by the condition that R(y) = Q(y) — q. for all 
y e È 2"°) . Then R(•) satisfies II R(y) II —> co as II y ii —› cc and the 
determinant of the Jacobian matrix of R(•) does not vanish throughout 

Therefore, assuming that R( ) is twice continuously differenti-
able on E('') , it follows (see the Appendix) that the solution y„.„, of 

= 0(2"„) can be computed by using certain steepest descent or 
Newton-type algorithms. 

2.4 The Jacobian Matrix (I ± hb-14„.), and Inversion of Nonlinear 
Operators on E" and Jacobian Matrices 

As in Section 2.3, let the additional condition that F(•) e Œ,;2P") be 
satisfied and let Q(•) be the mapping of E("+°) into itself with the prop-
erty that equation (8) can be written as Q(11.+1) = q. . According to 
Theorem 2 of Section III the Jacobian matrix (I + hb-iJ,,„+,) possesses 
the property that there exists a constant E > O such that 

det (I ±  E for all y„4.1 e E(2"°) (10) 

if and only if the matrix 

Rhb-1)-1T  71-1[(hb-1) c̀  G], 

which we shall call S, belongs to the set P of all real square matrices 
each with all principal minors positive. Thus when S e P the matrix 
(./  „„+,) is well conditioned in at least the weak sense of (10). 
This fact is of some interest for two reasons. First, certain standard 
algorithms require that the matrix (I + hb..1.1„„i.,) be inverted along a 
sequence of points (yel } in order to compute the solution y.i.i of equa-
tion (8), and, secondly, Theorem 3 of Section III shows that if 
det [(hb_i)-1./ ± J.] 0 0 for all u EE(29 ") and all (hb_,)-1 e a' in which 
g' denotes either (0, co)  or any interval contained in (0, co),  then S e P 
for all but at most a finite number of points (hb_ e contained in g'. 
Therefore, referring to the material of Section 2.2, if Q(y..,.,) = q. pos-
sesses a unique solution y.+1 for all q. e È"+°) and all (hb_ e e g', then 
(I ± hb_iJ„) is at least weakly well conditioned at all but at most a 
finite number of points contained in g'. 

t since Q(•) is a homeomorphism of Eep+o onto itself, Q(•)-1 exists and is contin-
uous. Therefore, the image of any closed ball in Eeri-c) under Q( )-I is contained in 
some closed ball in Eq2P+c), and hence II Q(y) II --> co as IIv  co. 
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Since the elements of (/  hb_iiggi.,) are bounded on  E È 2"°), it 
follows from a theorem described by M. Vehovecn that for each q„ E 

E("") there exists a unique y,,.,. È 2"") such that Q(y„,.,) = q„ if S e P. 
More explicitly, the theorem describedt by Vohovec asserts that if R(•) is 
a continuously-differentiable mapping of Em into E" with J(R). the Jaco-
bian matrix of R(•) at an arbitrary point q e E", if the elements of 
J(R)q are bounded on E", and if there exists a positive constant E such 
that det J(R)  g E for all q e Eri, then R(•) is a homeomorphism. Thus, 
using the theorem of Ref. 11 and Theorems 2 and 3 of Section III, 
we are able to show that if det [(hb-1)-1/  J,.] 0 0 for all u E  

and all (hb_i)-1 e g', then for all but at most a finite number of points 
(hb_1)-1 r gi, (8) possesses a unique solution y„.„ for each q„  
Although this result is obviously much weaker than the existence 
proposition presented in Section 2.2, it shows that the theorem of 
Ref. 11 can be exploited to provide some insight in connection with 
the specific problem considered here. 
The theorem of Ref. 11 is of interest primarily because the key hy-

pothesis concerns only the determinant det J(R)g (as opposed to the 
condition of Palaist that 11 R(q) 11 --> co as  q  00). Theorem 4 of 
Section III is a general result which is considerably stronger than the 
theorem of Ref. 11. It shows that the condition of the theorem of Ref. 
11 that there exist a positive constant e such that det J(R)g e for all 
q can be replaced with the condition that there exist real constants a> 
and b  0 such that 

det J(R)„   1 a  b 1 q  for all q E" —  1 11 

2.8 A Class of Networks for Which (8) Possesses a Unique Solution for 
All Values of the Step Size 

There is an interesting class of transistor-diode-resistor networks 
with the property that for each network in the class, equation (8) pos-
sesses a unique solution for all h > O (i.e., for all h > 0, all qg e  
and all diagonal matrices c and T with positive diagonal elements). In 
order to define and discuss that class, consider the de equation TF(v) 
Gv = B in which y is the (2p -I- q)-vector of semiconductor ideal-junction 
voltages and B e E(2"°) . If p > 0 and the matrix R of Section 2.1 is 
the zero matrix, y1 is the emitter-to-base voltage of transistor one, y2 
is the collector-to-base voltage of transistor one, and so forth. By port 

t According to Vehovec, the theorem was recently proved by I. Vidar, and the 
proof is expected to appear in the journal Glasnik Matematicki. 
e See Ref. 12 and the appendix of Ref. 13. Here IIII  denotes any norm on Ê. 
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j of the transistor-diode-resistor network we mean the terminal pair 
between which the voltage yi appears. Again we shall make the assump-
tion that F(•)  (2P+e) . 
In Ref. 3 it is proved that TF(v)  Gv = B possesses at most one 

solution y for each B e E'") if and only if T'G e P0. It is also proved 
in Ref. 3 that equation (8) possesses a unique solution y„.>1 for each q„ E 
Ed' ) and each h > 0 if M"G e Po for all M r 5(T) in which here 5(T) 
denotes the set of all real matrices having the same form as T and with 
the "a's" of M not larger than those of T.t In other words, it was also 
proved in Ref. 3 that equation (8) possesses a unique solution  for 
each q„ E  and each h > 0 if the dc equation possesses at most 
one solution for each B E E"'") for "the original set of a's as well as 
for an arbitrary set of not-larger a's." Before proceeding, and for the 
sake of completeness, we mention here that the same result can be ob-
tained by way of the approach of Section 2.2; a direct corollary of The-
orem 5 of Section III, Corollary 1, shows that if 111"G e Po for all M e 
5(T), then det (01  J„) r 0 for all real Gr 0 and all u e  
Theorem 5 of Section III provides considerable information concerning 

the nature of the class of networks for which M"G e Po for all M e 5(T). 
In particular, the theorem shows that M"G r Po for all M e 5(T) 
if and only if M"G e Po for all M e 50(T) in. which 50 ( T) is the set of 
all 22 real square matrices M having the same form as T and with 
each "a" of M either zero or the corresponding "a" of T. The the-
orem also shows that "M'G e Po for all M r 5(T)" is equivalent to 
each of six other statements involving T and G. For example, according 
to Theorem 5, we have M"G e Po for all M e 5(T) if and only if either 
T'(G  D) E Po for all diagonal matrices D with positive diagonal 
elements, which has an obvious network interpretation in terms of the 
addition of resistors to the network characterized by G, or T-1G e Po 
and (Tw)-1Gwe Po for all pairs of matrices Tw and Gw obtained from T 
and G, respectively, by deleting an arbitrary set w of rows, and the same 
set of columns, of both T and G. 
When the matrix R of Section 2.1 is the zero matrix, the last condition 

on T and G of the preceding paragraph also has a simple network 
interpretation: Given T and G, we have T"G e P0, and any network 
obtained from the network characterized by T and G by short-circuiting 
an arbitrary set w of at most all but one of the (2p ± q) semiconductor 
junctions possesses the following property. With respect to the voltage 
vector y,„ associated with the junctions not short-circuited, and with 

t See Definition 4 of Section III for a precise definition of g(T). 
t See Definition 5 of Section III for a precise definition of go(r). 
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the components of v., taken in the same order as those of v, the "new 
T and G" matricest T., and G,. satisfy (71,.)-1G,„ e Po . As reasonable 
as this condition or any of the other seven equivalent conditions of 
Theorem 5 might seem, and even though, as Theorem 6 of Section III 
shows, T-1G e Po implies that (T,.)-1G,. e Po whenever w has the property 
that if the port number associated with one junction of a given transistor 
is contained in w, then the port number associated with the other 
junction of that transistor is also contained in w, it is the case that 
there are transistor-diode-resistor networks for which 11-1 G e P. and 
111-IG e Po for some M e 3(T). In fact, Ref. 14 presents an example in 
which p = 3, g = 0, T'G e P. ,and T-1(G  D) P. for some diagonal 
matrix D with positive diagonal elements. However, the class of networks 
for which T-1G e Po implies that M- ter e P. for all M e 3(T) is clearly 
quite large; it obviously includes all networks in which p = 0, it includes 
all networks in which the base terminals of all transistors are connected 
to a common point, and as Theorem 7 of Section III shows, the class 
includes all networks in which T-1G e Po and p = 1 or p = 2.tt 

2.6 Results Concerning the Numerical-Integration Formula  = 

The general multipoint formula (4) reduces to the well-known 
implicit numerical-integration formula 2/  4" ,n+I  =  yn  147,1+1 when ao = 
b-1 = 1, b0 = 0, and ak = bk = 0 for 1c = 1,2, • • • ,r. For that important 
special case, and with 9..+1 given by equations (3) and (5), (y.+11 is 
defined implicitly through 

y»,1  TF[C-1(Y.+1)]  GC-1(Y.+1) = y. hB.  (11) 

for all n 0, in which B„ = B[(n  1)h]. Here we describe some detailed 
results concerning the relation between the sequences {  ) and 1/3„ 
We assume throughout this section that G is such that there exists a 
diagonal matrix D with positive diagonal elements with the property 
that both DT and DG are strongly column-sum dominant. This condi-
tion, which is often satisfied,i guarantees that there exists a unique 
solutione y„4. 1 of equation (11) for each (y. hB.) e 

t It is a simple matter to show that the "new T and G" matrices are 71,‘, and G.,. 
tt It is proved in Ref. 14 that if q = 0 and if p  1 or p = 2, then T-1G e Po 
implies that T.-1 (G  D) a Po for all diagonal matrices with positive diagonal ele-
ments. Thus, by the equivalence of statements (i) and (y) of Theorem 5 of Section 
III, it follows at once that if T-1G a Po then M-'G a Po for all Ill cg(T) if q = 0 and 
p = 1 or p = 2. The proof of essentially the same end result given here is of a very 
different nature and is quite short. 
See Ref. 5 for examples. 
$ A result mentioned in Section 2.1 implies that if DT and DG are both strongly 

column-sum dominant, then det  )-1/ -F Joi 0 0 for all u a Eq2P+0 and all h > O. 
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Let II • Iii be defined by the condition that fi y II, =  v; I for all 
E E . According to Theorem 8 of Section III, there exists a positive 
constant â depending only on the ci , the ri , T, G, and D such that 

II Dy Iii (1 ± 310- fi DYo  h E  (1 + 810-k II DB (n-k) III 

for all n  1. Therefore, it follows that for all h > 0, the sequence 
Yi , Y2  is bounded whenever the sequence B„ B2, • • • is bounded, 
and yi , 7/2 , • • • approaches 0(2„.) the zero vector of E(' ) whenever 
B1 , , • • • approaches 0(2...). 
Typically at each step an iterative algorithm is employed to compute 

the solution y„4.1 of equation (11). Since it is ordinarily not possible to 
compute y..,., with infinite precision, it is important to consider the 
effects of the errors which are introduced. While, ideally, we would like 
to determine the sequence ly„,11 defined by equation (11) and some 
initial-condition vector yo , suppose that we determine instead a sequence 

l such that, with e an arbitrary positive constant, II De —  Ill 
E for all n  land 

yti hiTF[C-1(y,t+i)]  GC-1(y,t 1)} =  + hB„  (12) 

for all n  0. That is, suppose that at each step the local error II D(û. — 
y'r,) III in solving for "y.,.," is at most e. Then, according to Theorem 8, 
and with o the positive constant referred to above, 

II D(y„ — ) II,  (1 ± Sh)" fi D(yo — ûo) 

E  E (1+  oh)-' for all n  1 
k-o 

in which so is the approximation to yo . Therefore, given an arbitrarily 
small positive constant p, for any h > 0 it is possible to choose ù0 and 
e > 0 such that the accumulated-error vector (y„ — so satisfies II y. — 
en Ili p for all n  1. 
Finally, Theorem 9 of Section III provides us with a conceptually 

interesting uniform bound on the norm of the difference between cor-
responding elements of the sequences fy,s1 and f u.) in which u. = u(nh) 
for all n  0 and u( • ) satisfies the differential equation (1). According 
to Theorem 9, there exist positive constants 8 and p, both independent 
of h, such that 

II Mun — yn) Iii  (1 + 8h) nII  D(uo — Yo) Iii + Ph 

for all n  1, assuming that the elements of B(•) and (d/ell)B(•) are 
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bounded and continuous on [0, co). In particular, if yo = uo we see that 
there exists a positive constant p', independent of h, such that II u„ — 
y. Ili s p'h for all n  1, provided only that the assumptions of this 
section are satisfied and that B(•) and (d/dt)B(•) are bounded and 
continuous on [0, co). 

2.7 Conditions Which Imply That T-10(I + RO)-' e 

In this section and in Section 2.8 we present some results concerning 
properties of the de equation TF(v)  Gv = B. These results are directly 
relevant to the problem of computing the transient response of tran-
sistor-diode networks to the extent that in order to numerically integrate 
the differential equation (1) it is ordinarily necessary to first solve a 
dc problem to determine the initial conditions. 
As indicated in Section 2.1, G = 0(1 ± RO)-' in which R takes into 

account the bulk resistances associated with the semiconductor devices. 
Here we present some material concerning conditions which imply 
that 71-1 0(/ + ROY' belongs to P0. 
Let p > 0. Theorem 10 of Section III asserts that T-1O(/ -I- ROY' E Po 

whenever 7 10 E 130 and R satisfies 
arma. ar(k))-ir.(k) = ri k) 

a(1 k)(1 — crj(k) )-I r(k)  7.k) 

for k = 1, 2, • • • , p. This rather special result shows that if F(•) satisfies 
the additional condition that F(•) belongs to the set ey+g) defined in 
Section 3.1, and if the network associated with T and û possesses the 
property that there is at most one solution y of the dc equation TF(v) 
Ov = B for each B e E(201 Q), then it is always possible to add certain 
resistors of positive value in series with each transistor lead such that 
the dc equation of the resulting network possesses at most one solution. 
Theorem 11 of Section III directs attention to the fact that there is 

a nontrivial class of transistor networks for which T-1O(/ RO)-' E Po 
for all R. According to Theorem 11, if p > 0 and Ois such that T-1O e Po 
for all "a's" (i.e., for all a,.(k)  and a'fk) belonging to (0, 1)), then for any 
particular set of "a's" T-10(1 + ROY' c Po for' all R.t 
Given T, an interesting characterization of the class of short-circuit-

conductance matrices O such that M-10 e Po for all M E 3(T) is provided 
by Theorem 12 of Section HP According to Theorem 12, M -lû Po 
for all M c 3(T) if and only if T-10(I + RO)' c Po for all R satisfying 
certain inequality-type conditions. In particular, if the base-lead 

t A similar result is proved in Ref. 2 under the assumption that  is not duplex, 
'The set 0(T) is described in Section 2,Ô, 
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resistance of each transistor is taken to be zero, then 11/-0̀ e Po for all 
M a 5(T) implies that T-10(I RO)-' e Po for all nonnegative values 
of each emitter-lead resistor and each collector-lead resistor. 

2.8 Ebers-Moll Models and the Existence of a Solution of TF(v)  Gv = B 

In Section III, a set if, of mappings F(•) is defined such that each 
element of if3 possesses certain important properties possessed by an 
arbitrary F(•) of the type that arises when an Ebers-Moll exponential-
nonlinear-function model is used for each transistor and diode. In 
contrast with the set of all F(•) such that each f i( • ) is a strictly-mono-
tone-increasing mapping of El onto El , an arbitrary element F(•) of 
if 5 possesses the properties that for each j, f i(-) is bounded on either 
[0, co)  or (— co,  0], and the two nonlinear functions associated with the 
same transistor are both bounded on either [0,  ) or (— 00, 0]. The set 
is contained in e)2P+  G)  and contains every Ebers-Moll exponential-

nonlinear-function-type F(•). 
The first part of Theorem 13 of Section III asserts that the equation 

TF(v)  Gv = B possesses a unique solution y for each F(•) e if, and 
each B e En"t°) if and only if T"G e Po and det G  O. It is the "only if" 
part of this proposition which is the new result presented here. The 
proof exploits some special properties of transformerless resistor net-
works; it shows that if T"G e Po but det G  0, then there are functions 
t( • ) and d(•), both functions taking on only the values 1 or —1, such 
that there is no solution y of TF(v)  Gv = B for some B e E''') for any 
set of Ebers-Moll-modeled transistors and diodes with the property 
that for all k transistor k is a pnp device (as opposed to a npn device) 
if and only if t(k) = 1, and for all j diode j is a p-n junction if and only 
if d(j) = 1.t 
The discussion of the preceding paragraph concerning the proof of 

Theorem 13 shows that it is not possible to make stronger assertions 
concerning the existence of a unique solution of TF(v)  Gv = B for 
all B e E ') for Ebers-Moll-modeled transistors and diodes unless 
we take into account more information about the nature of the semi-
conductor junctions. A good deal of progress in this direction has 
recently been made, and we state here without proof the following 
complete result dealing with diode-resistor networks. 

Theorem 1.4:t Let p = 0 and q > O. Let F(•) E if, (see Definition 12 of 

t In contrast, the proof of the "only if" part of Theorem 3 of Ref. 1 shows that if 
A 0 P, then there is a mapping F(•) with each fi( • ) a linear function such that F(x) ± 
Ax = B does not possess a unique solution for all B e En. 
t The proof of Theorem 14 will be presented in a subsequent paper. 
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Section 3.31), and for j = 1, 2, • • • , q let s equal either 1 or —1 depending 
on whether f 1( •) is bounded on [O, co) or (— co, 01, respectively. Then, with A 
any real symmetric nonnegative-definite matrix of order q, there exists a 
unique solution y of F(v) -F Av = B for all B e E° if and only if there is no 
real q-vector n such that n o  , A = 0„ , and n e S, in which 

S = { y: y E« and y,s,  0 for j = 1,2, • • • , 

III. THEOREMS AND PROOFS 

3.1 Notation and Definitions 

Throughout Section III, 

(i) unless stated otherwise, p and q denote nonnegative integers 
such that (p  q) > 0, and n denotes an arbitrary positive 
integer; 

(ii) the set of all real n-vectors is denoted by E", O is the zero element 
of E", and if y E e and j is an integer such that 1  j n, then 
vi denotes the jth component of v; 
Itv II =( E7, 4) 1 / 2 and 11v Ik = E  IVi I for all v E En; for any 
real n X n matrix M, 11 M 1 1 denotes sup 1m: 11 MxII 

(iv) the transpose of an arbitrary (not necessarily square) matrix 
M is denoted by Mtr; 

(y) I„ denotes the identity matrix of order n, and I denotes the 
identity matrix of order determined by the context in which 
the symbol is used; if RI , Q2, • • • , Q. are square matrices, then 
RI 0 (22 0 • • • 0 Q„ denotes the direct sum of Qi , Q2, • • • Qn 
in the order indicated; 

(vi) if D is a real diagonal matrix, then D > 0(D  0) means that 
the diagonal elements of D are positive (nonnegative); and 

(vii) we say that a real n X n matrix M is strongly (weakly) column-
sum dominant if and only if for j = 1, 2, • • • , n 

>  E I mii F. 

Definition I: The set of all real square matrices M such that every princi-
pal minor of M is nonnegative (positive) is denoted by Po (P). 

Definition 2: Let e ) denote that collection of mappings of E(' ) 
into itself defined by: F(•) e Œ,'"+") if and only if there exist for j = 

z In the network case, A = G, and it is often possible to determine by inspection 
whether or not there exists an n 8, such that Gn = 0, and ,7 E S. 
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1, 2, • • • , (2p + q) continuous functions fi( • ) mapping E1 into E' 
such that for each xe È 2"«) , F(x) = fl „i, I) / , f 2,, • • • ) f(2P+q)(X(2p+,0)1tr, 
and 

(i) inf 
.( - «,,œ) 

(ii)  sup 

[fi(a + 0) — i(a)1 = , 

[fi(a + 0) — fi(a)] = + 00  

forallfl > 0 and all j = 1,2, • • • ,(2p + q). 

Definition 3: Let 3 denote the set of all real matrices M such that M = 

M 0 M2 0 • • • 0 My 0 1-, with 

M k = [ 1  —a, k)1 
(k) 

- a1 

O  a;» < 1, and 0 :ga» < 1 for all k = 1,2, • • • , p. As suggested, 
if q = 0, then M = M 0 M2 0 • • • 0 M ID , while if p = 0, then 111-
Ici 

Assumption 1: Throughout Section III, G denotes a real nonnegative-
definite matrix of order (2p + q). 

A tool that we shall use often is: 

Lemma 1: A real square matrix M is an element of Po if and only if det 
(D + M)  0 for all real diagonal matrices D > O. 

Lemma 1 is proved in Ref. 2. 

3.2 Theorem 1: Let F(•) F,i2P+u) with each f,(•) continuously differentiable 
on (— 00 , 00) and f,' (a) > 0 for all a L (— 00 , 00). Let T e 5, let C(•) 
[that is, c + TF()], G, and J. be as defined in Section 2.1, and let  be a 
real nonnegative constant. Then 

cry + TF[C-1 (y)] + GC-1 (y) = r  (13) 

possesses at most one solution y for each r e E(''' if and only if 

det  + J.)  0 for all u r E ,  (14) 

and if u > 0 and condition (14) is satisfied then for each r e En"+° there 
exists a solution y of (13). 

3.3 Proof of Theorem 1 

We have 
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det (il J„) 

= det (al + TFi[g(u)]{c  TFIg(u)Jr. + G{c  TP[g(u)] Li) 
= det {c  rFlg(u)}} -1 •det fo-c  urF'[g(u)]  TF'[g(u)] + G, 

in which g(•) is the mapping of E"") onto itself defined by g(u) = 
C-1 (u) for all u E E(2"°), and r[g(u)] = diag Ifag1(u1)]}. Since det 
+ rT[g(u)]} > 0 for all u, det (01 ±  0 0 for all u if and only if 

det{(ur  T)Flg(u)]  (uc  G)}  0 for all u. 

For each j gf(•) maps r onto E', and since F(-)  2P+ e) with each 
f i(•) continuously differentiable on (— co,  ) and fi(a) > 0 for all 
E (— co, co), the image of E' under the mapping f;[g,(•)] is (0,0D )t 

for all j. Thus, by Lemma 1 (since det(o-r  T)  0)(ur  Tri(ac 
G) e Po if and only if 

det(crl  J„)  0 for all u.  (15) 

The equation 

cry + TF[C-1 (y)] ± GC-1 (y) = r 

possesses a solution y if and only if x = C-1 (y) satisfies 

o•C(x)  TF(x)  Gx = r, 

that is, if and only if 

(err  T)F(x)  (Œc  G)x = r.  (16) 

But equation (16) possesses at most one solution for each r  
if and only if (ur  T)-1 (0-c ± G) E Po (see pp. 105-107 of Ref. 3) and 
hence if and only if condition (15) is met. 
Suppose now that u > 0. Since G is nonnegative definite, det(ac 

G) 0 0. If condition (15) is satisfied then (0-r ± T)-1 (erc ± G) E Po 
and hence for each r E'20> , equation (16) possesses a solution x 
(see p.99 of Ref. 3).D 

3.4 Theorem 2: Let T 3, and let F(•) eif'") with each f()  continuously 
differentiable on (— co,  03) and f(a) > 0 for all a E (  co, co). Then for 
each u  0 there exists a positive constant E such that det(o-/  J„)  E 

for all u e E'"' if and only if (crr  T)-1-(ac ± G) e P. 

t For any 0 > 0 and any a (— co, co), f i(a ± 0) — f i(a) = f'(&) for seine 
[a, a ± Pl. 
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3.5 Proof of Theorem 2 

We have 

det (cl Ju) 

= det  + TP[g(u)]fc  rP[g(u)]  + Gic  rF'[g(u)]ri) 

= det fr ± rr[g(u)]  •det 1(or  T)Flg(u)]  (cc  G)1 

det (Flg(u)] + A)  
= det (UT ± T) (277+2)  (17) 

(ei  Tif;[91(Lt1)1) 

in which A = (o-r  T)-1(0-c + G)• 
For each sequence et , e2, • • • , e(2„,.a) with each ei either zero or unity 

and el , e2 , • • • , e(2p+a)  not the sequence 1, 1, • • • , 1: let m,, ••• 
denote the determinant obtained from A by deleting rows 

Pi 7 P2  ' • • y pi and columns Pi , P2, " • , Pi in which PI P2 "  •  = 

ei = 11. Thus for each sequence e1, e2 ,  • • •  e(2,,,,,) other than the 
sequence 1, 1, • • • , 1  is a principal minor of A. Let 
mi,1.....1 = 1, and let cli = fag ;(4)] for all j. Then by a standard 
expression» for the determinant of the sum of two matrices 

det (FIg(u)] + A) = E' dcl'2" • • • e ieem,„.„,...,„ ‹,., 

in which Ei denotes a summation over all 2'29' sequences el, e2, • • • 7 
e(2„«) and clº = 1 for all j. It is clear that 

(2p+g) 

+ 7-1r[g,(1,)]) =  clì C • • • erc̀o°."::ic.,....• • • 

in which each  is a positive constant. Thus with 
det(err  T), 

det (cl Ju) 
E, cl', "4' • • • cl;(4=c.,..... • • • 

Suppose that all principal minors of A are positive. Then there is a 
positive constant 8 such that 

for all el , e2 7 • • • 7 e(2P+0) and hence (since di > 0 for all j) det(ol 
J.)  778 for all u e E ". 
As in the proof of Theorem 1, the range of each cli = f»;(14;)] is (0, cc), 

and for any positive constants Pi V r9 1 • • •  Pc2p+q) there exists a u t 
.È2)  such that di = pi for all j. If A P then at least one principal 

--= 

E , (1'1'4' • • •   (18) 
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minor of A is not positive. If A e Po , then det(F'[g(u) + A]) = 
for some u. Therefore to complete the proof it is sufficient to show that 
if A e P. but A e P then there is no constant e > O such that det (a/ + 
J„) > e for all u. 
With A e Po and A e P, for at least one sequence e-; , 4 , • • • ,  

= O• 

If det A = /no .0, ....„ = 0 we have 

inf  det (0/ ± J.) = 

since det(a/  J„)  0 as d, —> 0 for all j. Suppose now that det A > 
and that m„.,  = 0 for some sequence 4 , 4 , • • • ,  . 
Then with di .= d for all j for which e; = 1 and (4 = d' for all j for which 
e; = 0, we have [see equation (18)] det(o-/  —> 0 as d --> co .0 

la Theorem 3: Let T e 5, let F(•) e 22)+e) with each f ,(•) continuously 
differentiable on (— 00  co) and f;(a) > 0 for all a e (— co, co), and let 
S denote [0, co)  or an interval contained in [0, cc). Then for all but at most 
a finite number of points  contained in g, there is a real constant e, > 
such that det(0•1 + Jo) e. for all u e E°P+°) if and only if det  + Jo) 0 
0 for all o• e g and all u E  

3.7 Proof of Theorem 3 

As in the proof of Theorem 1, (ar  (crc  G) e Po for all ç e g 
if and only if det(a/  J„)  0 for all cr E g and all u. We shall also use 
the fact that since det(ar  T) > 0 for all cr  0, each principal minor 
of (ur  T) -1(oc  G) is a finite-valued rational function of Cf for all 
o. k O. 
(if) If det(cr/ + Jo) 0 0 for all u and all a e g, then (crr  T)'(crc 

G) e P, for all a e S. It is clear that (ay + T) i(crc  G) e P for all suffi-
ciently large u > O. Thus each principal minor of (ur  T)-1(crc -F G) 
is nonnegative for all cre g and is positive for all sufficiently large o-> O. 
They are therefore positive for all but at most a finite number of values 
of a e S. Thus, by Theorem 2, if det(cr/  J„)  0 for all a e g and all u 
there exist for all but at most a finite number of points  e g a positive 
constant E, such that det(a/  J„)  e for all u. 
(only if) If det(cr/  J„) = 0 for some a e g and some u, then, for 

that o-, (ar  T)" (uc  G) P . That is, for that 0' at least one principal 
minor of (ur  T)"(uc  G) is negative. This means that (ur  T)" 
(ac  G) e Po for all contained in some interval g' C d, and by Theorem 
2, for all a e g' there is no e. > 0 such that det(/  J,)  E, for all u. D 
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3.8 Theorem 4: Let R(•) be a continuously differentiable mapping of 
E" into E", and let J(R) a denote the Jacobian matrix of R(•) at an arbitrary 
point g e E". If the elements of J(R)2 are bounded on E", and if there exist 
real constants a > 0 and b  0 such that det J(R), k (a + b II g yi for 
all g e E", then R(•) is a homeomorphism of E" onto E". 

3.9 Proof of Theorem 4 

If Ref. 16 Meyer proves-e that R(•) is a homeomorphism of E" onto 
En if J(R)' exists for all q e E" and there exist real constants a > 
and ti  0 such that 11 J(R):111  a -I- 1311 q 11 for all g e E". 
With g an arbitrary element of En', let XL , X2 p • • • p Xis denote the 

eigenvalues of J (R)T j (R). , and let X1 = mini [ >1/4;1. Then XiXa • • • X. = 
[det J(R)q]2 (a  b II g 11)-2, and since the elements of J(R). are 
bounded on e, there is a constant X > 0 such that X, 5 X for all j and 
all g e E". Thus 

N I/2  x--(112)(7,-0 (a + bit q  11) -I  (19) 

for all g. For any x e Er̀ and any g e E", xtr.l (R):r.1 (R)ax  Xixtrx; that is, 

II J(R)ex II k (X1) 112 11z  k X-1112)(n-1) (a  bll q  II. 

With x = J(R);'y in which y is an arbitrary element of E", we have 

x(1.12)(n-1)(a  
blIg II) 

which shows that our hypothesis concerning det J(R). ensures that 
Meyer's condition on 11J(R):Ill is satisfied. El 

3.10 Some Further Definitions 

Definition 4: For each T e 5, let 3(T) denote the set of all matrices M 
such that M. = Mi e 111.2 0  • • • 0  M„ (E) I« with 

M„ = [ 

and 

—8(fk) 

(k) O <  (5,(.1')  a,(.k)  if a, > 0 and 8̀,.*) = 0 if ci,k) = 0, 

O <  4(1.2)  a (2) ; if al(k) > o and o» = o if a (1k)  =  o, 

for all k = 1,2, • • • , p. As suggested, if q = 0, then M = MI ED M 2 e 
• • • 0 M„ , while if p = 0, then M = I . 
t Meyer's result is a generalization of a well-known result of Hadamard.17 Hada-

mard proved that R(•) is a homeomorphism if J(R).-1 exists for all q e E n and 
satisfies II J(R)41-1 II 5 a for all q L E. for some positive constant a.17 
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Definition 5: For each T e 3, let 30(T) denote the set of all 220 matrices 
M such that M =  0 1112 e • • • cp m„ o with 

M k = [ 1  -o!.)] 

and 

f5k)  a (k) 

—01 

or 

8;*) a;k) or 

for all k = 1,2, • • • , p. As suggested, if q = 0, then M = M 1 M2 
• • • ED M„ , while if p = 0, then M = 10. 

Definition 6: Let Qupi-o) denote the family of all 2'0") — 1 sets w = 
i2  • • •  , including the null set, such that r < (2p -I- q) and 

w C 1, 2, • • • , (2P + 01. 

Definition 7: For M an arbitrary square matrix of order (2p  q), and 
for each w e  , let M. denote the principal submatrix obtained 
from M by deleting rows  i2 , • • • , i,. and columns i 1 1  2 e  e ir • 

(If w is the null set, then M. = M.) 

Definition 8: For each j e 11, 2, • • • , (2p + q)), let U, denote the 
(2p + q)-column-vector with unity in the jth position and zeros in all 
other positions. 

Definition 9: For each T e5 and each w e Q(ep+o) , let 1' denote the 
matrix obtained from T by replacing the jth coltunn of T with Ui for 

all j e w. 

3.11 Theorem 5: Let T e 3. Then the following statements are equivalent. 

M -1G e Po for all M e  
(D. -I- T)-1 (D.  G) e Po for all diagonal D. 
Db k O. 
T-1 (G  D) e Po for all diagonal D  O. 
(D. + T)-1 (De  G) e Po for all diagonal D. 
Db > O. 
T-I (G  D) e Po for all diagonal D > O. 
(T.)-1G. e Po for all w e 

e Po for all w e . 

M'G e Po for all M e 30(T). 

0 and all diagonal 

> 0 and all diagonal 
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3.12 Proof of Theorem 5 

[(i) and (ii) are equivalent] 

By Lemma 1, (D. ± T)'(D,, + G) t Po if and only if det [(D. + T)-1 
(DA G) D] 0 for all diagonal D> 0. Thus (D. ± T)' (DA G) 

e Po for all D. 0 and all D,, 0 if and only if 

det [(DbD-1 -F D. + T)D  G] 0 

for all D. 0, all DA 0, and all D > 0, and hence if and only if 

det [(A  T)D  G] 0 

for all diagonal A  0 and D > 0. Let TA = (A -I- T)(I  A)-1. Then 
(D. -I- T)-1(Dh G) r Po for all D. 0 and all DA 0 if and only if 

det [TA(/  A)D  G] 0 

for all A • 0 and all D> 0, and hence if and only if det (TAO + G) 
for all diagonal 1 > 0 and all A  0. By Lemma 1, this means that 
77,1G e Po for all A k 0 if and only if (D. -I- T)-1(Db  G) e Po for all 
D. k 0 and all D,, k 0. We observe that TA = (T A)i e (TA), e • • • G 
(TA),, e in which, with A = diag (X, X 2  «  7 X(29+2))7 

(k) 
—a, 

(TA)1, = 
1 

(h) 
— a 

s1  X2k-1 

1 +  X21, 

1 

for k = 1, 2, • • • , p. Thus for each A  0, TA e U(T); and if 111 is an 
arbitrary element of (T), there is a A  0 such that III = TA . There-
fore (D. + Ty' (D,,  G) e Po for all D. 0 and all D,, k 0 if and only 
if 11,1-1G e Po for all /If e 3(T). 

[(i) and (iii) are equivalent] 

Repeat the proof of "(i) is equivalent to (ii)" with each statement 
that D. k• 0 replaced with D. = diag (0, 0, • • • , 0). 

[(ii) and (iv) are equivalent and (iii) and (v) are equivalent] 

Suppose that (ii) and (iv) are not equivalent. Then (D. -I- T)'(DA 
G) e Po for all D,.> 0 and all D,, > 0, and for some DI;  0 and some 

k 0, with D*. > 0 or DI > 0 or DI > 0 and DI > 0, (DI -I-
T)'(D*,, + G) Po . Thus some principal minor of (D*. Tr'(D*,, + G), 
and hence of (D",  T)-'( D I G) det (Dt  T), is negative. Let 
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(Dt , DI) be some negative principal minor of (Dt  T)"(D*. 
G) det (Dt  T), and let m(Dt  J,  -I- (I) be the corresponding 
principal minor of (DI ±  Tri(D ±  G) det  ±  T) 
for all real e 0. Thus nt(D",  ,  ± d) is a polynomial p(e) in e 
for e 0, and p(e) k 0 for all E >  O. Therefore p(0)  0, which con-
tradicts m(Dt ,  < O. 
A proof that (iii) and (y) are equivalent can be obtained by modifying 

the previous paragraph in an obvious manner. 

[(vi) is equivalent to (e)] 

- By Lemma 1, 71-'(G  D) r Po for all diagonal D > 0 if and only 
if det [T'(G  D)  Di 0 0 for all diagonal D* > 0 and D> 0, and 
hence if and only if det (G  TD*  D)  0 for all D* > 0 and all 
D > O. Therefore, by Lemma 1, 71."(G  D) Po for all D > 0 if and 
only if (G  TD*) r Po for all D* > 0, that is, if and only if det [G,„ 
(TD*).] k 0 for all w r Q(29+0  and all D* > O. Since (TD*). = T.Dt 
we see that T"(G  D) e Po for all D > 0 if and only if 

det  DJ  0 for all w rQ(2p4.,2)  and all D* > 0. (20) 

But, by Lemma 2 (which follows) condition (20) is equivalent to the 
condition that det [(T)"G,„  Dt] > 0, and hence that det [(T)"G„, 
Dt] 0 0, for all w e Q(2n+g) and all D* > 0. Thus by Lemma 1, T-J(G 
D) e P. for all D > 0 if and only if (T,J -iG,„ e Po for all w E  

Lemma 2: If A is a real square matrix of order n such that det (D + A) = 
, for some diagonal D > 0, then det (D  A) < 0 for some diagonal D> 0. 

Proof: Using the notation of the proof of Theorem 2, 

det (D + A) =  d:' e • • • d:,"  (21) 

for all D > 0. Since  = 1, if det (D ± A) = 0 for some D > 0, 
then for at least one sequence e; , e, • • • , ef, we have m.,,  <0. 
If  = det A < 0, then there exists a positive constant 0 such 
that det (D + A) < 0 whenever 0 < di < cri for all j. If det A k 0, 
' then, with d  d for all j such that e = 1 and d ,• = d' for all j such 
that e; = 0, there exists a positive constant 0.2 such that det (D ± A) <0 
for all d > 0.2 [see (21)].  D 

[(vi) and (yid) are equivalent] 

We shall prove that 

[(Tw)-1G1. = (77)-1G„, for all w e  

Obviously the equality of (22) is satisfied if w is the null set. 

(22) 
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It is convenient to introduce the following notation. Let u denote the 
1 X 1 matrix containing the entry 1. Let e denote what might be called 
the empty matrix, a matrix with no rows or columns; by this we mean 
that f is to be interpreted in the following manner: e 0ç = ç, I. = 
when s = Or  = ç, and if M, and M2 are any two (ordinary) matrices, 
then e e ml = mi , Mi e = M, , and M, 0 ço 0 M2 = ml e M2 
Let w rQ(237+.2) and let w not be the null set. The matrix T can be writ-

ten as the direct sum T, C) 7'2 C) • • • C) T„ C)  . In terms of u and yo, 
T. =e,C) t2 0 • • • ED 40 I. , in which s = q  where q is the num-
ber of elements contained in the intersection of the sets w and 2p -I- 1, 
2p ± 2, • • • , 2p ± q}, and for k = 1, 2, • • • , p: tk = Ts, if both (2k — 1) 
and 2k are not elements of w, tk = e if both (2k — 1) and 2k are elements 
of w, and tk = u if either (2k — 1) t w and 2k e w or (21c — 1) 4 w and 
2k e w. Thus (T.)- =  t.71 0  o  —1 C) I.. But (Tw)' = 

fii,-1 0 • • • 0 f';' 0I , in which for k = 1, 2, • • • , p: l'* Tk 

if both (2k — 1) and 21c are not elements of w, 

O 

if both (2k — 1) and 21c are contained in w, 

a,11 
=[1 
0  1 j 

if (2k — 1) t w and 21c e w, and 

= [1 
(k) 

a f 

o 

if (2k — 1) e w and 2k e w. Thus we see that [(T10)-1],r = (T.)-1. Let 
() (T)  denote the (2p + q — r) X (2p  q) matrix obtained from 
(T T' by deleting rows i,, i2, • • • , ir. But all elements of columns 
, j, , • • • , i,. of oo  (T T' are zeros, and hence, with Goo  the matrix 

obtained from G by deleting columns i,, i2 , • • • , , 

KT T1Gl. = (.)(T) G(.) 

= [(T T IG. = 

[(viii) and (i) are equivalent] 

If 111-1G E P. for all M E 50(T), then [(Tv)-1G]. e P. for all w  
Thus, statement (viii) implies statement (vii). Since we have proved 
that (vii) is equivalent to (i), it suffices to prove that (i) implies (viii). 
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Suppose that 111-1G t Po for all M e 3(T). Let e be an arbitrary ele-
ment of 3.(T). Then [e + (3(T — Ir1)] c 3(T) for all ô t (0, 1], and 
therefore [21?  b(T — SI)]-1G e Po for all (5 e (0, 11. At this point a 
I continuity-type argument similar to that used in the proof of [(ii) and 
(iv) are equivalent] shows that X2t-1G t P0. E 

3.13 Corollary 1 (Corollary to Theorem 5): 

If T 5 and 31-G̀ t Po for all M t 3(T), then det (crI ± J.) 0 0 for all 
0 and all u e E" 1 provided that for all j f1 (•) is continuously dif-

ferentiable on (— cc, co) and f(a) > 0 for all a e (— ce , 00). 

3.14 Proof of Corollary 1. 

If T t 3 and III-1G t Po for all M t 3(T), then, by the equivalence of 
(i) and (ii) of Theorem 5, (ay  T)-1((rc + G) t Po for all u k 0. The 
first portion of the proof of Theorem 1 shows that if (er  T)-1(uc 
G) e Po for all (r k 0 and if for all j fi( • ) is continuously differentiable 
on (— co, 00) and f'i(a) > 0 for all a t (— 00, 00), then det  -I- J.) 0 
for all Cf 0 and all u e E12"°) . 

3.18 Definition 10: For p > O let Qi2p+g)  denote the subset of Q(2p+e) 
containing all sets w belonging to Q(20 .0 such that w is not the null set 
and 2k t w if and only if (2k — 1) e w for k = 1, 2, • • • , p. For p = 0, 
let Va„.0) denote the family of all sets contained in Q(20+q) with the 
exception of the null set. 

3.18 Theorem 6: If T e 3 and T-'G e Po  then (T,)-'G,,  e Po for all 
W t 

3.17 Proof of Theorem 6 

Let T t 5, and let 77-1 G e Po . By Lemma 1, det (TD + G)  0 (and 
hence det (TD +G) > 0) for all diagonal D > O. Let w = (i1,i2, • • • , 
t  , and let d,. = d for k = 1, 2, • • • , r. 
It may be the case that (TD + G) is a block matrix of the form 

[ (TD  G),,  H12 

H21 (dt + 1122) 

in which D is a direct sum of all 2 X 2 and 1 X 1 block matrices on the 
diagonal of T which do not appear in T„ , and H12 , H21 , and H22 are 
independent of D. Clearly det D> O. If (TD + G) is not of the form (23), 
then by a sequence of interchanges of rows and corresponding columns of 
(TD + G) we obtain a matrix of that form. 

(23) 
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Thus, for some /7 of the form indicated above and for the correspond-
ing constant matrices H,2, H„ , and H 22 whose elements are elements 
of G, 

det (TD  H 12 G) = det [(TD±G) w 
H 12  ± II 22)I 

for all d, > 0 for j w. For all sufficiently large d > 0, det (di' + H22) 
> 0, and then 

O < det (TD  G) = det  + H22) • det [(TD  G)„, 

— 112(dt ± 1122) -11121] 

for all di > 0 for J e w. Since H12(dP  H22) -IHe1 approaches the zero 
matrix of order (2p -I- q — r) as d  00 , we must have det (TD  G). 
• 0 for all di > 0 for j e w. Therefore, since (TD). = T.D. , we must 
have det (T.D.  G.)  0 for all D. > O. But this means (see Lemma 
2) that det (T„,D.  G.) 0 0 for all D. > O. Thus, by Lemma 1, 

E Po . EJ 

3.18 Theorem 7: If T e 5 with p = 1 or p = 2, and if T-1G e Po with 
G the short-circuit conductance matrix of a transformerless positive-
element resistance network, then (T.) -1G,„ e Po for all w e  

3.19 Proof of Theorem 7 

Suppose that T'G e Po with p = 2. Theorem 6 asserts that (T.)'G. 
e P. for all w e  . But, aside from the null set, the sets 
w = i, , i,, • • • 1 ir that are contained in Qup+,)  but not in Qi2p+Q) 
possess the property that T„, = Ti e .1.(2+q-,•) , or T,„ = u e T2 e 

where u is the 1 X 1 matrix containing the element 1, or 
• =  
If T. = I(4.,„„) , then obviously (T„)-1G,„ e Po. If  = Ti e 

, then for any D„, = diag [D, (7) Dc2,.,,,A with D, > 0 and 
•  > 0 diagonal matrices of order 2 and (2 ± q — r) respectively, 

[ det (T„,D.  G.) = 771D, + G11 G12  (24) 

G21  D (2+a-r) 4 - G22 

in which G,1, G,2,  G,,,  and G 22 are the appropriate block matrices 
of G. . Since det [A2+,-,)  G,2] > 0, we have 

det (T.D. + G.) = det  G22]•det TiD, ± G11 

Gi2[ D(2+q-,) ±  G221  1G211 • 
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But G11 — G12[D(21-1-,.)  G221-1G2i is the short-circuit conductance 
matrix of a transformerless common-ground 2-port network; it is of the 

form 

[ 

g12  g22 

with gi,  0, g22  Of gI2  0 , gll  gi2 , and g,2  g,2 • Therefore' 

det {T,D2 G11 —  4- G22]-10211 > 

for all D 2 > 0 and all D(2,0-r) > 0, det (T.D.  G.) 0 0 for all D. > 0, 
and hence, by Lemma 1, (T,,,)-1G,,, e P0. Finally, the case in which 
= u e  T2 e ./.(1+«_,) can be treated in a manner similar to that used 

to show that (77,„)-1G,„ e P. when T,„ = T, C)  , since, with w 
such that T,„  C) 71 = u  2 e  , and with D an arbitrary diagonal 
matrix of order (4  q — r), a sequence of interchanges of rows and 
corresponding columns of (T.D ± G.) can be performed to obtain a 
matrix of the type that appears on the right side of equation (24). 
Therefore (T.)'G. e P o for all w e Qup+,1) • 
When p = 1, aside from the null set, the sets w= , -1 i2  • • • ) 

that are contained in Qup+Q) but not in Q2,.,.2) possess the property 
that T. = /(2.,. ) and obviously when T,. =  ,  P.. El 

3.20 Theorem 8: Let T e 3 and let G possess the property that for some 
diagonal matrix D> 0, both DT and DG are strongly-column-sum dom-
inant. For each j = 1, 2, • • • , (2p ± q) let f i(•) be a continuous mono-
tone-nondecreasing mapping of E' into itself such that fe(0) = 0, let 
h e (0, co), and, with F(•) and C(•) defined relative to the f ,(•) as in 
Section 2.1, suppose that the sequences {yn} and iw„) in .È"+" satisfy 

y, F +  TF[C-1 (g.+1)] +  .+  = y,, w,, 

for all n  O. Then there exists a positive constant â depending only on the 
c•, the Ti T, G, and D such that 

(i) II Dy,  II, (1 + Shr"II Dy„ II, +  (1 + (M r  H, 

for all n  1, and 

(ii)  II  g.) Ii'--(1+ oh) 'j 1) (Y0 —  li+E±(1  e r k 
k=0 

for all n  1, in which rg„) is any sequence in E('') with the property 
that II D(g„ — yt) j,  E for all n  1 with E a positive constant and the 
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sequence fy*„} such that 

hITF[C-1 (yti)]  GC-1 (0+1)1 =  + tc,, 
for all n  O. 

3,21 Proof of Theorem 8 

We shall first prove part (ii). With D such that DT and DG are 
strongly-column-sum dominant, we have for all n 

Dy„, hIDTF[C-1 (Y.+1)]  DGC-1 (y.+1)} = Dyn  Dwn 

and 

Dye, ± h{DTIe[C-1(e+i)]-1- DGC' e.,)} = Dye  D(g„ — yt)-1- Dw„ 

in which we shall take yt, to be go . As in the proof of Theorem 2 of 
Ref. 3, we write 

F[C-1(e.1)] = diag CI _Er(rn.);(n)i) (Yn+1 — ye-Fi) (25) 

and 

1   )(  _ 
—  dia g ( C1 Tir(n); Y"1-1 

*  (26) 

in which r(n) 1 depends on the jth components of y„, and 
r(n)  0 for all n  0 and all j. 
Thus, with Q = DTD-1 and R = 

{I  hQ diag  r(n)1 hR diag  1 »D(y„, — y,t,) 
ci Tir(n)1  ci rir(n) i 

= D(yn —  —  — 

for all n  O. At this point we shall use the proposition that if M is any 
real matrix of order (2p ± q) with the property that there exists a 
positive constant n such that m„- —  m, I  n for all j, then 
Mx Ili  II x Ill for all x  . Now let 

M = {I  hQ diag r(n)i  hR diag  1 )} 
ci Tr(n)1 ci rir(n)i 

for arbitrary n  O. Then for arbitrary j 

m11 E  = 1 ± hqi  r(n)1 hrii(ei  . + 1 ) 
(ci ir(n) i)  ir(n), 

— h 
r(n), 1 

qii 
ci rirSi ci 7 ir(n)1 

, and 
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r(n);  
> 1 ± h(qii —  Wit) ci re(n) 

1   
h(rii — E ir,I) c, + re m 

> 1 + oh, 

in which 

o = min { min c¡l(rii 

!Therefore 

Ii MY.4-1 — yt-FI) IIi 

E I  , min T71(q22 — E I q11 1)}• 

(1 + 8h)-1 II D(Y. — e) — D(g. — le) Ili 
5 + 810-1 fl D(y. —  + (1 + OW' II D(g. — yt) 

(1 -F M)'  D(Y.  yt) Iii ± €(1 ± Ohri 

for all n  0, and hence 

! II D(y„ — y*„) II, e_ (1 ± Shr" II D(Y0 — e) Iii + € E (1 Vi rk 

for all n e_ 1. Finally, since flD(Y,, —  D(Y. —  ± 
!II D(yt — go  D(y. — yt)  E, and since yt, =  , 

II D(y„ —  (1 +  MY0 — go) + .t (1 + 811)-k 

for all n  1, which completes the proof of part (ii) of the theorem. 
The proof of part (i) is similar to that of part (ii). Using 

Dy , h{DTF[C-I (Y,,+i)]  DGC-1 (Y.+01 = Dy. Dw. 

'for all n  0, and equations (25) and (26) with y,t+, = O for all n, we 
'find that 

II  (1  h SY' II Dy„ JI ± (1  h  II Dw. 

for all n  O. Therefore 

II Dy,. (1 ± la) n II Dy, (1 -I- U)  II Dwc.-k; Ill 
le«.1 

for all n  1. 
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3.22 Theorem 9: Let T t 3 and let G possess the property that for some 
diagonal matrix D > 0, both DT and DG are strongly-column-sum dom-
inant. Let B(•) denote a real continuously-differentiable (2p -I- q)-vector-
valued function of t for t e [0, co) such that both B(•) and (dIdt)B(•) are 
bounded on 10, 00). With F(•) such that each MO) = 0, and with C(•) 
defined relative to F(•) as in Section 2.1, let u(•) satisfy 

du 
+ TF[C-1(u)] ± GC-1(u) = B(t),  t 

and, with h an arbitrary positive constant, let un denote u(nh) for all 
n > 0. Let { yj be a sequence in  such that 

y..1 ± h[TF[C-1 (y„,)]  GC-1 (y„,.1)] =  hB[(n -F 1)h], n  O. 

Then there exist positive constants 5 and p, both independent of h, such that 

II  — yn) Iii -5 (1 + Sh)  11 Muo — Yo) Iii + ph 

for all n  1. 

3.23 Proof of Theorem 9 

The sequence { unl satisfies 

h{TF[C-1 (u„,)]  GC-1 (u.+01 

= u„  B[(n -I- 1)h] +,,,  n 

in which En is often referred to as "the local-truncation error at step 
n." We shall first bound e,,. 
Since B(•) is bounded on [0, co), and since for some D > 0, both 

DT and DG are strongly-column-sum dominant, a direct modification 
of the proof of Theorem 1 of Ref. 5 shows that u(•) is bounded on 

[0, 00); and hence since 

— 2-d2u  = J ITF[C-1 (u)]  GC-1(u)} — JuB(t)  B(t),  t k 0  (27) 
dt 

with (d/dt)B(•) and the elements of the Jacobian matrix Ju bounded, 
it is clear that (ceu/dta) is bounded on [0, co). By the usual Taylor-
series-type argument we can show that for arbitrary n  0, E„ = Vet I„ 

in which for each j the jth component of Un is the jth component of 
(d2u/dt2) evaluated at some point contained in the interval [nh, (n 

1)h]. Thus there exists a positive constant pi. such that 

II DE„ Ili 5_ 1h2 pi for all n  0.  (28) 
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Therefore, using (28) and the equations 

u„.,.,  h TF[C-1 (u„,)]  GC-1 (u0,,)) 

= u„  B[(n  Uhl +  , 

y.+1  hITF[C-1 (y.i.1)]  GC-1 (y„, 

= y„ B[(n ± 1)h], 

n 

n  0 

by an argument similar to that used in the proof of part (ii) of Theorem 
8, and with ô as defined there, we find that 

Mun+1 — yft÷i) Iii (1 + M)' II Mu. — Y.) Ill ± (1 ± Sh) tiii2P1 
for all n  0, and hence that 

71 

h 1) (u. — y.) (1 + Mr"fl  D(uo — yo) H + h2f)1 E o + am-
k 1 

(1 + &11)0 II Muo — Yo)  É (1 + 610-k 
k- I 

5 (1 ± Shr" II D(uo — yo) Iii -I- 4/is ipi 
for all n  1. ID 

3.24 Definition 11: Let R = R1 eR2 e ••• o R, C) Ro in which 
Ro = diag (r, , r2 , • • • , /•) with ri 0 for j = 1, 2, • • • , q and 

Rb = r(dk)  +  
b 

n.(k)  7e) +  71,k)  b 

with r  0, rik) k 0, and le) k- 0 for all k = 1, 2, • • • , p. As suggested, 
if q = 0, then R = R1 C) R2 0 • • • C) R„ , while if p = 0, then R = R0. 

3.25 Theorem 10: Let T 3. If p > 0 and if R satisfies 

— o4k))-1r.;k) = rk) 
acfk)(1 atfor e  71,k) 

for k = 1, 2, • • • , p, then T-1G(I  RG)-1 e PG whenever 71-1 G e P0. 

3.26 Proof of Theorem 10 

By Lemma 1, T-1G(I  RG) -1 e P, if and only if 

det  RG)-1 Di 0 0  (29) 

for all diagonal D* > O. But (29) is satisfied if and only if 

det (T-1G  D*RG  D*)  O. 
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Here, since 

a(.k)(1 — cx,.(k) )-1r.(k) = le ) 

ce (fk)  a (.k))-1r (k) =_. ri(5k) 

for k = 1, 2, • • • , p we have R = DT" for some diagonal matrix D  0. 
Thus (29) is satisfied if and only if 

det  ± DD*)T-1G  Di 0 O. 

When T"G e P. we have 

det (17-1 G  D) 0 0 

for all diagonal D > O. Thus (29) is satisfied for all D* > 0 whenever 
r'GEP0. 

3.27 Theorem 11: If M'G E P. for all M E 3, then for any T e 3, 
T"G(I  RG)"  P. for all R. 

3.28 Proof of Theorem 11 

Let T e 3. As in the proof of Theorem 10, T"G(I  RG)  E P. if 
and only if 

det [(77-1  D*R)G  D*] 0 0 

for all diagonal D* > O. It is a simple matter to verify that for each 
D* > 0 and each R there exists an 51. e 5 and a diagonal matrix D > 
such that (T"  D*R) = DM'. Since M -1G e P. for all M e 5, we 
have (by Lemma 1) 

det (D/FI'G  D*) 0 0 

for all D* > O. EI 

3.29 Theorem 12: LetT e 3 with p > 0 and q  O. Then 31.-1 G e P. for 
all M e 3(T) if and only if T-IG(I  RG)" e P. for all R such that ,(1 _  >  re ) 

_  > 
fork = 1,2, • • • , p and ri 0 for all j such that 1  j  q. 

3.30 Proof of Theorem 12 

As in the proof of Theorem 10, T-1G(I  RG) ." e P. if and only if 

det (T"G  D*RG  D*) 0 0  (30) 
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for all diagonal D* > O. The inequalities ri 0 for all j such that 1 
j  q and 

ar000. _  > 

ce(1 — àrk))-Irk) > re) 

for /c = 1, 2, • • • , p are equivalent to the condition that It = D1T-1 ± D 2 

for some diagonal matrix Do 0 and some diagonal matrix D, E S, in 
which S is the set of all diagonal matrices D  0 such that DT-1 is 
symmetric. Hence 77-1 G(I  RG) -1 Po for all such 1? if and only if 

det  D1D*)T-1 D*D e  Di 0 0  (31) 

for all diagonal D* > 0, Do 0, and D, e S. 

Let A = diag (X, , X2 , • •  X(29-1- 0 ) be such that 

D2 = D*-1 / 1A(/  DiD*) 

in which 

A = diag (8  Si s-1   2 2 • • 5, SP) 0  I. 

if q > 0, A = diag (S 1, ô2, h, • - • , 4  4 )  if q = 0, and 

-= 1 -  C e) CX:.k)  for k = 1, 2, • • • , p. 

The left side of (31) is 

det [(I -I- D,D*)(T-1 A-1 A)G ± D*1 

which can be written as 

det [(I + DID*) A-1 (/ ± A) AA D*]  (32) 

with 

7U1 =  A(/  A)-1 (7T-I à-1A) 

and 

AA = diag (e, e, E,  E• • • , 5:„ ,g,) 0 I, 

if q > 0 and AA = diag  , Si, , , , • • • , , SD if q = 0, in which 
for k = 1, 2, • • • , p 

= 1 — e ae)(1 -4- X  ) (1 --I- X . . -2k) 1 • 

But (32) vanishes if and only if det (T.VG  D) vanishes, in which 
=  +  A(/  D1D*)-1D*. We observe that D is a positive 

diagonal matrix and that given any diagonal D' > 0 and given any 
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A k Owe can choose D* > 0 and DI E S so that D D'. Thus T-1G(I 
RG)" E P. for all  = A T" ± DO with D, e S and D, k 0 if and 
only if 

det (TrG 

for all A  0 and D > 0, that is, if and only if Tl'G e P. for all A k 
(see Lemma 1 of Section 3.1). But 

T A =  , C) T, C) • • • C) T „ C) I, if q > 0 

and 
T = T, C) T, C) • • • (D 710 if q = 

with 
(k) 

= 
1 

(k) 
- af 

X2k 

1 ±  X21-1 

1 

for all k = 1, 2, • • • , p. Therefore T-1G(I  RG)" e P, for all R = 
(DiT" ± D2) with D,  0 and Di r S if and only if III-1G r P. for all 
M e 5(T). El 

3.31 Definition 12: Let  denote the set of all F(-) such that 

(i) F(•) eif"+«) , and 
(ii) for each j = 1, 2, • • • , (2p + q) there exists a real constant 

Oi such that f i(.) is a strictly-monotone-increasing mapping of 
E' onto either (Os , ) or (—  , (31 and 

(iii) whenever p > 0, f ,(2k-1)(.) and f2k( • ) are both bounded on either 
[0, 00) or (— co , 0] for k = 1,2, • • • ,p. 

3.32 Theorem 13: Let T E5, and, referring to the network of Fig. 1 in 
which it is assumed that R (see Section 2.1) is the zero matrix, let G denote 
the short-circuit conductance matrix of the linear portion of the network. 
(The linear portion is assumed to contain only sources and linear resistors 
of nonnegative resistance.) Then the equation F(x)  T"Gx = B pos-
sesses a unique solution x for each F(•) r f, and each B e .E(29+ «) if and 
only if T-1G r P. and det G s O. If T'G e P. and det G = 0, then there 
exists a real (2p ± q)-vector n such that (i) n  B, and for some F(•) e 
all of the components of F(an) are bounded on a r [0, co), and (ii) for any 

F(•) e if, with the properly that all of the components of F(an) are bounded 
on a e [0, co) the equation F(x)  T-1Gx = B does not possess a solution 
for some B r  
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Fig. 1—General network containing transistors, diodes, resistors, and sources. 

3.33 Proof of Theorem 13 

(if) If T"G e Po with det T-1G 0 0, and if F(•) e , then, since 
each fi(.) is a strictly-monotone-increasing mapping of El. onto (i3;  , œ) 
or (— œ , 3 e) for some real constant 13 , by Theorem 4 of Ref. 2, the 
equation F(x)  T'Gx = B possesses a unique solution z for each 
B e Ecap+o . 

(only if) Assume that 77-1G e Po. Then since Œa is contained in 
by Theorem 1 of Ref. 3, for each F(•) e ff3 there exists a B e 

such that there are at least two solutions x of F(x)  T"Gx = B. 
Assume now that T-1G e Po and that det G = 0. We shall use the 

proposition that if R(•) is any continuous mapping of E124 ') into itself, 
then R(.) is a homeomorphism of E(''> onto itself if and only if R(•) 
is a local homeomorphism on E("+" and II R(x) II —> co as  °°•«t 
Let R(.) be defined by the condition that R(x) = F(x)  T"Gx for 

all x e E" ) . For any F(•) e ff3 the operator R(.) is a local horneo-
morphism on E" ' , since with F(•) such that each fi(•) is a strictly-
monotone-increasing mapping of E' onto È the mapping [F(•)  T"G] 
is a homeomorphism of E"P") onto itself.' In addition, for any F(•) e 
and any B e È 2"°) , there is at most one x e E'20 °) such that R(x) = B.' 
Let us suppose that for each B e È 2"1 and each F(•) e if  there 

exists a solution x of R(x) = B. Then for all F(•) e if,  R(•) is a homeo-
morphism of È"") onto itself, and hence for all F(.) e ifI I R(x) I —> co 
as II xli —> 00. But, by Lemma 3 (which appears below) È 20 °' contains 
a vector n such that n  8, n; e 10, +1, —11 for all j, and Gn = O; and if 

t See Ref. 12 and the appendix of Ref. 13. 



1774  THE BELL SYSTEM TECHNICAL JOURNAL, OCT013ER 1910 

p > 0, 77 satisfies n .(2k- I) ,2k  O for all k = 1, 2, • • • , p. Let 3(77) denote 
the subset of  containing all elements F(•) with the property that 
Mani) is bounded on a E [0, œ) for all j = 1, 2, • • • , (2p + g). Since 
n(2k-1) 712k  0 for all k = 1, 2, • • • , p when p > 0, it is clear that &3(n) 
is not empty. However, for any FM e 33(n) we have II R(an) II = 
II F (an) II with II F (an) II bounded on a e [0, 00 ), which contradicts the 
aasumption that there exists a solution x of R(x) = B for each F(•) t 53 

and each B e  

Lemma 3: Let G be the short-circuit conductance matrix of the linear 
portion of the network of Fig. 1. If det G = 0, then there exists a vector 
n e E('' such that Gn = 0, n  0, and ni e {0, +1, —1) for all j = 
1, 2, • • • , (2p + g); and if p > Ori also satisfies fl(2k -1) 712k k 0 for k = 
1, 2, • • • ,p. 

Proof of Lemma 3: 

Let N denote the (2p ± q)-port resistor network obtained from the 
network of Fig. 1 by removing all transistors and diodes and by setting 
the value of each source to zero. The short-circuit conductance matrix 
G possesses the property that if v e E'") denotes the vector of port 
voltages of N and i e E(2"°) denotes the corresponding vector of port 
currents (with polarities as indicated in Fig. 1), then i = —Gv. 
Let det G = O. Then the open-circuit resistance matrix of N does not 

exist. Therefore there exists a port e of N such that there is no path 
through resistors of N that connects the two terminals of port 4 when 
all other ports are open-circuited. Let a one-volt source be placed at 
port so that v e = 1. Then when all ports j of N with j  are open-
circuited, ie = 0 and there is zero current in every resistor of N. Let S 
denote a set of port numbers of N with the following properties. The 
number e is not contained in S and when all ports j with j e S are short-
circuited and all ports j with j e S U /I are open-circuited then zero 
current flows through the one-volt source; when any port ji S 
and all ports j with j e S are short-circuited and all ports j with jeS U 
ft, j are open-circuited then nonzero current flows through the one-
volt source. It is clear that such a set S exists (with the understanding 
that S might be the null set). In general S contains r port numbers 
where 0  r  (2p ± g — 1). 
If r = (2p ± g — 1), then with ye = 1 and with all remaining com-

ponents of v equal to zero, we have Gv = O. Obviously in this case we 
can take the vector n of the statement of Lemma 3 to be v. 
If r  (2p ± g — 1), then, with ve = 1, with vi = 0 for all j e S, 
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and with all ports j S  [el open-circuited, there exists for each 
jesu VI some path through the one-volt source and the resistors of 
N that connects the two terminals of port j. Therefore when r  (2p -F 
q — 1), when all ports j S  Itt are open circuited, when ve = 1, and 
when vi = O for all j E S, the open-circuit voltage ri at each port j with 
Hsu lei is well defined and nonzero. Since no current flows in any 
resistor of Ar when ve = 1, vi = 0 for all j t AS, and all ports jeS U ft} 
are open-circuited, it follows that vi r  +11 for all j e S. With 
ve = 1, with ve = 0 for all j e S, and with vi the corresponding open-
circuit voltage for each jeSl..)  , we have Gv = O. When p > 0, the 
vector v also satisfies the condition that vck-ovn  0 for all k = 
1, 2, • • • , p since if v(2k-1)V2k  were negative for some k, then for that 
k v(2,_,) = 1 and v2k = —1 or v(2k-1) = —1 and v2k = 1; in either case 
I Vak-1)  u2k I =  2 which contradicts the proposition that a network 
of nonnegative resistors can have no voltage gain. E 

APPENDIX* 

A theorem due to R. S. Palaist asserts that if R(•) is a continuously-
differentiable mapping of E" into itself with values R(q) for q e E", 
then R(•) is a diffeomorphism' of En onto itself if and only if 

(i) det J. 0 0 for all q e  , in which .12 is the Jacobian matrix of 
R() with respect to q, and 

(ii)  R(q)ii —› °° as  II  °°• 
If R(•) is any twice-continuously-differentiable mapping of E" into 

itself such that conditions (i) and (ii) of Palais' theorem are satisfied, 
then E" contains a unique element x such that R(x) = O in which 
is the zero element of E", and there are steepest decent as well as 
Newton-type algorithms each of which generates a sequence in E" that 
converges to x. To show this, let is f(y) = II R(y) 112 for all y e .Em in 
which ¡I •I I denotes the usual Euclidean norm (i.e., the square-root 
of the sum of squares). Since condition (i) of Palais' theorem is satisfied, 
the gradient Vf of f(•) satisfies (Vf)(y)  O unless f(y) = 0,1 and 
since condition (ii) of Palais' theorem is satisfied, the set S= y r E" : 
1(n)  f (x(w)1 is bounded for any x,'" E E". Therefore we may appeal to, 
for example, the theorem of page 43 of Ref. 18 according to which for 
any x̀°) r E", for any member of a certain class of mappings 4p(•) of S 

• The material of this appendix together with some misprints appears in Ref. 3. 
t See Ref. 12 and the appendix of Ref. 13. 
A diffeomorphism of E. onto itself is a continuously differentiable mapping of 

E„ into E. which possesses a. continuously differentiable inverse. 
Here we have used the fact that ( Vf)(y) = 2..4,"R(y) for all y  
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into Ern, and for suitably chosen constants 'yo  , • • • , the sequence 
x(°) , x(1) , • • • defined by 

= x(k)  7exx(k)) for all k > 

belongs to S and is such that II R(x ) II —> 0 as k —> co. However, 
since R-1(•) exists and is continuous, it follows from 

x") = Iri[R(x̀ h))] for all k 
and the fact that R( P)) —> O as k —÷ c o , that limk, x (k)  exists and 

lim x") = R-1(0), 
k—no 

which means that lim,„ x rk)  is the unique solution x of R(y) = O. 
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Characterization of Second-Harmonic 
Effects in IMPATT Diodes 

By C. A. BRACKETT 

(Manuscript received May 20, 1970) 

We discuss characterization of the tuned-harmonic mode of operation in 
IMPATT oscillators, and introduce an equivalent circuit which incorpo-
rates the large-signal, "single-frequency" oscillator admittances at the 
fundamental and second-harmonic frequencies. Complete characterization 
of this mode is equivalent to specifying the behavior of each of the four 
elements of the equivalent circuit as functions of the oscillation state vari-
ables: fundamental voltage and frequency, second-harmonic voltage and 
relative phase. Using the approximate large-signal analysis of Blue,' the 
values of the equivalent circuit elements are presented, as an example, for 
a 6-GHz IMPATT diode under a variety of oscillation conditions. This 
equivalent circuit is used to clarify the role played by the fundamental and 
second-harmonic, single-frequency oscillator admittances in. the tuned-
harmonic mode. 
Using an approximation to the equivalent circuit, we investigate the 

criteria for stable oscillation of the tuned-harmonic mode. It is found that 
the stability criteria are in general quite restrictive. For the same 6-GHz 
germanium diode, the range of stable phase is investigated, as a function 
of the RF parameters, for certain special cases. It is found to be possible 
to satisfy the stability criteria for the phase which gives an optimum en-
hancement of the fundamental power output if certain conditions on the 
external RF circuit are satisfied. 

I. INTRODUCTION 

It was found by Swan' that the introduction of a trapped resonance 
at the second harmonic of the oscillation frequency in a 6-GHz Ge 
IMPATT diode oscillator provided dramatic increases in the output 
power and efficiency, as compared with the results obtained with the 
ordinary single quarter-wave transformer coaxial circuit. Since that 
time several authors'  have reported both theoretical and experi-

1777 
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mental examinations of the effect. It appears that the addition of a 
properly phased second-harmonic voltage improves the phasing of the 
RF current relative to the fundamental voltage so as to increase the 
negative conductance and (at least at lower frequencies) give an in-
crease in the power output at the fundamental frequency. The circuit 
conditions required for the observation of this effect have been incom-
pletely understood. 
The purpose of this paper is to present the results of an analytical 

study of the interaction of an IMPATT diode with a circuit having 
resonances at two harmonically related frequencies. The analysis is 
begun by the introduction of an equivalent circuit for the diode by 
which these two-frequency oscillators may be characterized. A stability 
theory is then developed along the lines taken by Kurokawa which 
examines whether a particular circuit, even though matching the 
impedances required by the diode at both frequencies, will or will not 
provide a stable oscillation.9'10 The stability theory is examined in 
some generality, and three special cases are studied for which tractable 
analytical results can be obtained. It is found that in the case of zero 
fundamental or second-harmonic voltage, the theory reduces to the 
single-frequency stability criteria derived by Kurokawa. In more 
general cases, the theory indicates that by designing (or adjusting) 
the circuit carefully one can obtain stable operation at phase angles 
which enhance the fundamental power. However, the theory also 
indicates that stable operation may be impossible if the circuit-diode 
interaction is not just right, even though the diode and circuit are 
matched to each other at the two frequencies. 
In a final section, a numerical example is given in which the theory 

is applied to a model of a 6-GHz germanium IMPATT diode, using 
the approximate large-signal analysis of Blue.' 

II. TWO-FREQUENCY CHARACTERIZATION 

The IMPATT oscillator is truly a single-frequency oscillator only at 
very small ac voltages and currents. At larger signal levels the non-
linearity is very strong, and therefore there should be strong inter-
actions between harmonically related signals. However, by operating 
the diode in a well-designed single-frequency circuit, the power output 
may be limited to a single frequency. This may be done, for example, 
by presenting short-circuit, open-circuit, or reactive loads at the har-
monic frequencies. In the case of short circuited harmonics, the har-
monic voltage amplitudes V are zero, and only the fundamental 
voltage V1 is nonzero. It is then common practice to calculate a large-
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signal diode admittance as a function of V, and to use this admittance 
to describe device behavior. On the other hand, for the case of open-
circuited harmonics, the harmonic currents, Ik are zero, and only the 
fundamental current II is nonzero. It is then preferable to characterize 
the diode by a large-signal impedance which is a function of the RF 
current amplitude I . Both of these conditions constitute tunings at 
the harmonic frequencies, albeit ones that are particularly useful and 
simple to express analytically. 
To consider other, more general, loading conditions at the harmonic 

frequencies, one must introduce two more variables (amplitude and 
phase) for each additional frequency for which the amplitude is nonzero. 
One of the most important points is that the input admittance (for 
example) at the fundamental frequency is no longer a unique function 
of V, and the frequency f; but instead defining the state of oscillation 
requires a vector whose components are V1, • • • , Vie , f, , • • • , 
where N is the maximum harmonic number of interest and c,ok is the 
phase of the kth harmonic voltage relative to the fundamental. This 
vector does uniquely describe the state of oscillation, and for every 
such vector, there exists a set of complex admittances yi • • • yg which 
are uniquely determined. If this is not so, it simply means we have 
inadequately described the system and must include more component 
signals, either harmonics or subharmonics. 
We shall limit the discussion to include only two harmonically related 

frequencies and consider that Vk = 0 for k > 2. This also means that 
we will only discuss the admittance characterization and not the im-
pedance characterization. 
A convenient way of utilizing the information already known about 

the large-signal single-frequency admittance of the diode is to separate 
the input admittances at the two frequencies as shown in Fig. 1. This 
equivalent circuit shows a fundamental port and a second-harmonic 

Fig. 1—Equivalent circuit of the IMPATT diode which includes nonzero voltages 
at two harmonically related frequencies. Port 1 is the fundamental port and port 2 
is the second-harmonic port; yli and y22 are the large-signal single-frequency diode 
admittances at the fundamental and second-harmonie frequencies, respectively. 
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port. The admittances y1 1(V1) and y22(V2) are the large-signal single-
frequency admittances that would be measured at the fundamental if 
there were no harmonic (or subharmonic) voltages present. That is, 
they are just the ordinary large-signal admittances y(V) at the fre-
quencies f and 21. 
The admittances y12(Vi , V2, f, tp2) and y21(Vi , V2 f, 92) account 

for the conversion of current between the two frequencies and it is the 
study of their effects that is the main subject of this paper. The phase 
‹p2 is defined by the assumed voltage waveforms 

vi(t) = V, cos coot 

and 

v2(t) = V2 cos (loot ± p 2) . 

The input admittances are 

V2 eXP (iS02) 
Yinl = Yll  yi2  VI 

and 

V,   
Yin2 = Y22 + Y21 V2 eXP (J(P2) (2) 

at the fundamental and second-harmonic frequencies respectively. 
Since yli and y22 are independent of the phase ye,2 by definition, equations 
(1) and (2) show that the input admittance loci for fixed VI and V2 will 
be counter rotating closed curves as a function of ‘,02 . These curves will 
enclose the admittance points yii and y22 separately providing that 
Y12 and y2i are not strong functions of (p2 . If, for example, YI2 and Y21 
are independent of cp2 Y and Yin2 will be circles centered about 
Yu and y.2 respectively, the radii of which depend upon the ratio ' 
V2/V1. They generally turn out to be somewhat elliptical in shapes 
although, in many cases, of very low eccentricity. 
Figure 2 is the calculated' large-signal, single-frequency, admittance 

plane plot for a 6-GHz germanium diode, from which yll and y22 may 
be obtained directly. Figures 3 and 4 show 17;„1 and l'i„2 for various 
fundamental frequencies when the voltages are held constant, demon-
strating the elliptical and circular behavior noted above. Note that in 
Fig. 4 the second-harmonic input admittance has a positive real part 
for some ranges of the phase q>2. To operate at such phase angles and 
RF voltages, the external circuit must supply power to the diode at 
the second-harmonic frequency, and thus these conditions are un-
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Fig. 2—The calculated large-signal single-frequency admittance of a 6-GHz 
germanium IMPATT diode at a bias current density Jo =  340 A/cm2. 

realizable when operating into a passive circuit. The diameter of these 
admittance contours is inversely proportional to the second-harmonic 
voltage amplitude V2, however, so that at higher values of V 2  the 
entire contour may lie in the left-half plane. 
The rather simple structure of the Y 1 and Yin2 loci of Figs. 3 and 4 

suggests that y12 and y21 might be rather insensitive functions of tp2 . 
This is borne out by the plots of Fig. 5 in which y12 and y21 are shown 
at constant fundamental voltage VI and several values of V 2, with ‘,02 
ranging 0  cp2 5 22r. This figure also establishes that ya and liso  do 
not change drastically as a function of V 2. It was also found that yi2 
and 1/21 depend upon V, in an approximately linear fashion. This is 
shown in Fig. 6 where y12/17i and y2i/V1 are plotted versus V1 for 
several values of ip2 with V 2 constant. Thus, for moderate values of 
V1 and V 2, we can make the approximation that y12 and y21 are both 
proportional to V1 and independent of (p2 and V 2. To demonstrate this 
analytically, let the phase of the fundamental voltage ei  0, and con-
sider a power series expansion of the currents il2 =  Yl2 V2 exP  and 
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Fig. 3—The input admittance,  at 3, 4, 5 and 6 GHz as it is modified by 
the presence of a second-harmonic voltage for VI = 10 volts, Vg = 1 volt and 
Jo = 340 A/cm2. 

7:21 = Y2I VI exP (i<pi.)• Selecting the lowest-order terms having the 
appropriate frequencies, we find that 

Y12 cc Vi exP (— ..b01) 

and (3) 

Y21 cc V1 exP (içoi) 

which confirms the approximate linear dependence on V1 and gives 
the appropriate form of the 42i dependence. It will be convenient later 
to approximate yi, and y2/ by the quantities 

gia = KIT 71 exP (—  = KY' exP [—  -  (4) 

Y21 =  K 2V 1 exP (içoi) = K217 1 exP [j(çoi  #2)], 
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where Ki = I Ki I, K2 = I K2 I, %Li = arg (K1) and ifr2 = arg (K2). Note 
that for ei = 0 (only the phase ç02 — çoi is important),  = arg (y22) 
and #2 =  arg (y21) which is what will usually be assumed. 
The quantities gl2 and V. may be defined as the average of y12 and 

Y21 over the phase ço2 . For the 6-GHz oscillator example, the calcu-
lated values of g12 and g21 as a function of frequency are shown in Figs. 
7 and 8 and the phases %Li , IL2 and  + 42 are shown in Fig. 9. Obvi-
ously these are only first-order approximations, but the complexity of 
the stability analysis requires some suitable approximation to obtain 
qualitative understanding. 
The interaction of the diode equivalent circuit of Fig. 1 with an 

external circuit can be visualized by connecting an admittance Y2 to 
the second-harmonic port. The fundamental input admittance is then 
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Fig. 4—The input admittance, Yi„2, at the second harmonic of 3, 4, 5 and 6 Glag 
for the same conditions as Fig. 3. 
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and (p2 for moderate values of V2. 

Y12Y21.  
Yin]. = YI 1 —  v 

LI22  2 • 
(5) 

Tuning the second harmonic by adjusting Y2 provides the possibility 
of almost any input admittance Y,, 1. In particular, I Y2 I = 00 gives 
the short-circuit termination and Y-,.1 = yii . Equation (5) also pre-
dicts a pole in Y,„1 at the frequency for which y22 ± Y2 = O. This is 
not an ordinary pole as in linear circuit theory however for two reasons: 
(i) Y22 may have a negative real part because it is an active device, and 
(ii) y22 is a function of V2 so that the "pole" at y22 + Y2 = 0 moves 
with changing V2 . This means that a resonance type of behavior should 
be observed, but that the only condition where y22 + Y2 = 0 is for 

0, which is just the single-frequency oscillator condition at 2f. 
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In. STABILITY OF T HE OSCILLATIO N STATE 

Given an oscillation state which prescribes the admittances at the 
two frequencies, there are two requirements on the circuit that must 
be met in order that this be an obtainable state of steady oscillations. 
These are the requirements of circuit realizability and oscillation-state 
stability. The realizability criterion is simply that the required circuit 
have admittances whose real parts are greater than zero. The stability 
criterion is that any perturbation away from the given state will asymp-
totically return to the original state. 
The stability problem has been recently discussed by Kurokawa " 

for the single-frequency negative-resistance oscillator. By following the 
approach used by Kurokawa and extending it to two-frequency inter-
actions, the equations governing the stability of the harmonically 
tuned oscillator are derived in Appendix A. In this section, they are 
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applied to several special cases, and theoretical examples of their use 
with the 6-GHz germanium oscillator model of Blue are given in 
Section IV. 
In Appendix A, it is shown that the stability of an oscillation-state 

for small perturbations is determined by the solution of the system of 
equations 

where the vector e is defined as 

E = 

and the matrix B is given by 

bad VI 

Set2/ V2 

igio2 — 24,01) 

(6) 

(7) 
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As discussed in the Appendix, Sa,, 8a2 and (5((p2 — 2ipi) are the 
perturbations in the fundamental and second-harmonic voltage ampli-
tudes and the relative phase, respectively. Vi and V2 are the limper-
turbed values of fundamental and second-harmonic voltage amplitudes. 
The remaining quantities in the B matrix are defined as follows. The 

fundamental and second-harmonic external circuit admittances are 
Yi(coo) = G10 iBic, and Y2(2co0) = G20  jB20 respectively. The 
primes on Yi and Y2 in equation (8) denote differentiation with respect 
to frequency at coo and 2co0 respectively. K1 and K2 are defined in equation 
(4). 
The saturation parameters 8, r and u, r are defined by equations 

(55) through (58) in the Appendix. They relate to the nonlinear satura-
tion of the diode's conductance and susceptance at the fundamental 
and second harmonic frequencies, respectively. The significance of s 
and r is shown schematically in Fig. 10, with u and y interpreted by a 
similar diagram for the second-harmonic admittance. 
We have also introduced the angles ai and a2 which give the slope 

on the complex plane of the circuit admittances at coo and 2w0 

COS a  —    
Gg 

cos a2 —    
1/Gg  BZC, 

sin a, — 

Sin ce2 — 

(9) 

(10) 

and the angles 71 and 72 which measure the slope of the admittance 
curves y11(V1) and y22(V2); 

COS  =  v r2  ± 82 

COS  — Vti2 Yi 

sin  —  + 82 , 

Sin  —  V   
V U2 y2 

(12) 

Also, 010 and 020 are defined as in equations (48) and (49) of the Appendix 
but with the phase tp, set to zero. That is 

Oo =  — #1 

020 = «P2 — e2. 

ein + 0 20  11/2. 

and 

Note that 

(13) 

(14) 
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Fig. 10—Interpretation of the saturation parameters s and r for the fundamental 
admittance yu. Similar definitions hold for u and e for the second-harmonic ad-
mittance yez. 

For the Ge oscillator considered here, the direct relationship between 
cP2, 020 and 0,0, as determined from equation (13), is shown in Fig. 11 
for several frequencies. 
The angles al, 1,1 and 0,0 are shown in Fig. 12 which is a plot of the 

negative of an assumed circuit admittance — VI M and the diode 
single-frequency admittance y11(V1) in the neighborhood of the funda-
mental frequency. The point of intersection at co. gives the frequency 
and amplitude of the fundamental oscillation with zero second-har-
monic voltage. As the voltage V, is increased by presenting an appro-
priate value of Y2(100), the frequency will shift to some new value 
co, generally accompanied by a change in voltage to V,. This shows 
that the current injected into the fundamental circuit by the yi,V2 
exp(iso2) current source of Fig. 1 is just that sufficient to obtain the 
difference between the admittances — Y1(w,) and yii(Vi). This addi-
tional admittance may be considered as a vector pointing from y11(Vi) 
to —17,(wo), and it is the angle 010 measured clockwise about the y11(Vi) 
point that determines the orientation of this vector. Its length is given 
by ly,21 V2/V1 . The angle a, gives the slope of the circuit curve at 
— Y, (w,), and the angle 71 gives the relative change in reactive to real 
part of yll(V1) with increasing voltage V, at the operating point. The 
angles az, 72 and 132,, may be defined in a similar manner in the second-
harmonic admittance plane. 
The solution of equation (6) subject to a small initial perturbation 

has a decreasing amplitude with increasing time if the eigenvalues of 
the stability matrix B all have real parts greater than zero. Suitable 
tests have been devised to determine this property." The general case 
is difficult to do analytically and generally difficult to interpret if done 
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numerically because of the large number of parameters of the system. 
This is done however for the 6-GHz oscillator example given in Section 
IV, and the results are compared with the simplified results of this 
section. 
In. the remainder of this section, three special cases are examined 

which are severe approximations to the general case, but which yield 
interesting information. The first of these is that of a single-frequency 
oscillator, V, = O. The second is the fictitious weak-coupling case 
which does not apply to the germanium diodes modeled here, but is 
included because of simplicity and for completeness. The third case is 
that of a strongly coupled small-signal approximation which gives 
qualitatively most of the features observed from the complete study 

3.0 
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Fig. 11—Oscillator phase relations for the 6-GHz germanium example; y5.2 versus 
020 with loci of constant 010 at 3, 4, 5, 6, 7 and 8 GHz. 
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Fig. 12—An assumed fundamental admittance plane plot showing the angles 
al, 72 and 010. The device admittance is yil(a2) and the negative of the circuit ad-
mittance is —172(c0). A similar diagram defines a2, 72 and 020 in the neighborhood 
of 2w2. 

of the eigenvalues of B, which is carried out in Section IV for the ger-
manium diode case. 

3.1 Single-Frequency Limit 

In the very special case of V2 = 0, only the first and third parts 
of equation (6) remain and they give the conditions 

sin(ai — 71) > 0  (15) 

and 

K2 V1 
sin (a2 +  920) <0. 

17 

These are simply the conditions required for stability of a single-
frequency oscillator [equation (15)] with the added condition (16) due 
to the coupling to the harmonic. If the coupling to the harmonic, 
ic2, is zero for V2  =  0, equation (16) does not apply. Thus, for the 
single frequency oscillator with V2 =  0, the familiar stability relation is 
recovered.' 

(16) 
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3.2 Weak-Coupling Limit 

For an oscillator having very small Ki and K2, the first two parts of 
equation (6) decouple. This gives 

sin(ai — 7i) > O  (j = 1, 2) 

which are the single-frequency stability conditions at coo and 100 for 
j = 1 and 2, respectively. The third equation then requires 

sin(ai  010) ±  sin(a, ± Om) < 0 (17) 

where the parameter 12 is defined by 

_ K2ViI /7 I (18) 
e  V, I 17; 1- 

We may write equation (17) as 

sin(4,02 E) < 0  (19) 

where E is defined by the equations 

p sin e =  — «,) +  sin(  4/2 — 0£2)]  (20) 

and 

p cos e = —[cosc,p, —  —  cos(4/2 — a,)].  (21) 

For a given pair of V„ V, and for a fixed circuit, equation (19) thus 
gives the range of cp, for stable operation in the weak coupling limit. 

a.a Small-Signal, Strong-Coupling Limit 

For very small signals the admittances y, and y22 are independent 
of VI and V, so that s  r mu m y = 0 provides another approxima-
tion of some interest, providing that the coupling is still significant. 
' In this limit, we obtain four constraints which are necessary and 
sufficient" to insure that the matrix B have positive eigenvalues. 
These are 

k, = —sin (a, + 010) — et sin (a, -I- 020) > 0,  (22) 

k, = —sin (al ± 010).sin (22 ± 020) 

± 3 cos (a, ± 0,0)• cos (a, ± 0,0) > 0,  (23) 

k, = sin (a, ± 020) ± et sin (al + eso) > 0,  (24) 

k. = k,k, — k, > 0,  (25) 

where µ is defined by equation (18), 
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The significance of this case is that for g = 1, conditions k1 > 
and k3 > 0 are contradictory. This implies that /4 = 1 is a critical 
value and is indeed unstable, whereas for ei approaching zero or in-
finity stable states of oscillation do exist. These g « 1 and g >> 1 
stable states are exclusive of each other so that, as the conditions of 
oscillation are changed, if g passes through the value unity a discon-
tinuity in the oscillation will occur wherein the phase, the power and 
the frequency may all jump suddenly to new values. 
To demonstrate the existence and exclusive nature of the g « 1 

and g >> 1 limits, consider equations (22) through (25) Note first of 
all that if a solution is obtained for a given value of p, the solution for 
the reciprocal of that value of g is obtained by interchanging the sub-
scripts 1 and 2 on the angles a and 0. Thus, we need only consider the 
limit g « 1; the limit p» 1 being obtained from symmetry. For ez 
1, equations (22) and (24) yield [Using equation (13)] 

— 4/1 + al <  <  —  ± al (ki > 0)  (26) 

and 

4/2 — a2 <  <  ±  — a2 (k3 > 0)  (27) 

respectively. For purposes of illustration we consider a1 = a2 = ift 

Then the regions defined by equations (26) and (27) may be plotted 
in the q,2, a plane. From equation (25), if kl, k, and k4 are > O, k2 > 
0 is automatically satisfied. Consider the constraint k4 > 0, which may 
be written 

—cos(ai 010)[2 sin(al ± 010 + «2  020) 

sin(«I Oio — «2 — 020)] > 0.  (28) 

We see that cos(a, -I- 010) = 0 is a critical condition, on either side 
of which the term in the brackets must also change sign. Thus, the 
lines 

= ei — a ± 7,-/2 (k4 = 0)  (29) 

in the 'Pz,  a plane are critical lines. Further, consider cos(al 010) > 
0, then 

sin(ei -I- 4/2 — 2a) > —sin(2e2 — e2)/2 (k4 > 0).  (30) 

Equation (30) represents a curved boundary in the (.02, a plane and 
must be computed numerically. In Fig. 13 the regions bounded by 
equations (26), (27), (29) and (30) are plotted. The data used for this 
figure (4,, and ip2) were taken from the Ge IMPA.TT example at a fre-
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Fig. 13—Regions of stable ip2 versus a(cei = cx2 = a) in the strongly coupled 
small-signal limit at 4 GHz; m « 1. 

quency of 4 GHz from Fig. 9. Figure 13 shows that, for µ << 1, there 
are two disjoint regions. Also indicated are the values of ço2 for which 
010 = 0, r/2, r, 3r/2. The angle on (Fig. 12) measures the relative 
location of the diode's actual input conductance with respect to the 
single-frequency large-signal negative conductance, at the fundamental 
frequency. For —7r/2 < 0,2 < 7r/2, cos 010 is positive and the input 
conductance is less negative than it would be for zero harmonic voltage. 
For this range of Bin then, the fundamental output power is degraded 
by harmonic tuning. On the other hand, for r/2 < 0,o < 3r/2, the 
input conductance is more negative than for V2 = 0, and the funda-
mental output power is enhanced by the presence of harmonic tuning. 
These relationships can readily be seen by rewriting equation (1) 

V2 cos 0,,, 
Re (Yi.,) = —gi  Y12 I  VI 

Indeed, 010 = ir maximizes the fundamental output power for the 
particular values of Vi, V2 being studied. We see that at 4 Gllz, the 
maximum fundamental power point exists within a stable region for 

1. It is also interesting that the minimum fundamental power 
phase (Ow = 0) is in a separate region which requires a considerably 
different circuit. 
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To obtain the similar diagram for p» 1, the same considerations 
can be reapplied to k1 through ko or the subscripts on cp and a can be 
interchanged. Either way, Fig. 14 shows the result. Comparison of 
Figs. 13 and 14 shows indeed the disjointed, mutually exclusive be-
havior of the g « 1 and p» 1 regions of stability. Additionally, it 
shows that for a given circuit (i.e., a given a), there are two stable 
ranges of phase cp, (if any at all) depending on the value of g relative 
to unity. One of these encompasses the Oi. = 7 maximum power phase 
and the other encompasses the ei. = 0 minimum power phase. A change 
in the bias current, which does not alter significantly the circuit vari-
able a, may well change the relative value of is from >1 to <1 or 
vice versa, and such a change would necessitate a change of phase 
to a different branch. Thus, which branch of the stability diagram 
the oscillation state is in is determined by the history of tuning and 
bias current changes. This type of behavior would be observed experi-
mentally as a hysteresis in frequency or power or both, which if analyzed 
would indicate that the input admittance of the diode at the funda-
mental frequency is a nonunique function of the fundamental RF volt-
age. The presence of this effect would be indicated if one were able 
to obtain two different values of power output for the same frequency 

0  0.5 1.0 

/ 

1.5 20 

Fig. 14—Regions of stable f2 versus r2(ai = a2 = a) in the strongly coupled 
small-signal limit at 4 GHz; >> 1. 
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by changing the bias current only, without retuning the RF circuit 
in any respect. Observation at a single frequency is required in order 
to rule out the possibility of multiple-valued circuit admittances.'5 
In the next section, we compute the regions of stability for the 

germanium IMPATT example in full generality; that is, we use the 
complete form of the matrix B, equation (8). This must be done nu-
merically so a limited number of cases can be examined, and the results 
are compared with the approximate forms of this section. 

IV. 6-GFIZ GERMANIUM OSCILLATOR EXAMPLE 

Using Blue's approximate large-signal analysis,' the equivalent cir-
cuit parameters of Fig. 1 have been calculated for a germanium diode 
of depletion layer width 4.75 microns with an assumed avalanche zone 
width of 1.5 microns. This gives a critical field E. = 1.87 X 105 V/cm 
for a bias current density Jo = 340 A/cm2, which agrees quite well 
with the value obtained from a more exact numerical treatment. The 
design of this model was an attempt to model the germanium diodes 
reported by Swan' and by Gewartowski and Morris.' Because the 
Read theory is slightly incorrect in its reactive effects, the frequency 
of maximum negative conductance was at about 6 GHz for the model 
but appeared to be at about 8 or 9 GHz for the actual diodes. In com-
paring the results of this work with those of the experiments, it there-
fore seems most useful to discuss frequency relative to fr„, at which 
maximum output power is obtained. Thus, 4 GHz in this analytical 
work is roughly equivalent to 6 GHz in Swan's experiments. Table I 
lists the large-signal information obtained from Figs. 2, 8 and 9 that is 
needed for the solution of the stability constraints. This information 
was obtained for Vi = 10 volts and Vy = 10 volts, and a de bias current 
density Jo = 340 A/cm2. 
It is known that at resonance in a low-loss circuit where the real 

part of the admittance is constant or nearly so, the external Q can be 
written 

(2ext  _ coo dB 
2Go do) 4.1  Dee 

where Go is the real part of the admittance at coo and B is the suscep-
tance. Resonance is defined by the vanishing of B(w0). It is useful 
here to extend this definition to define the slope parameters 

D, = 
coo dY, 

do.) 
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TABLE I-DIODE LARGE-SIGNAL PARAMETERS ATV] = V2 = 10 VOLTS 

3 GHz 4 GHz 5 GHz 6 GHz 

g11 (mhos/cm2) 

922 (mhos/cm.2) 

agi  
(mhos/G[112-volt) 

W I 

obi 

5.8 

15.6 

0.0 

1.1 

0.21 

0.20 

-0.2089 

0.9031 

1.25 

1.25 

12.7 

12.7 

0.22 

0.65 

0.125 

0.0 

-0.3056 

0.7742 

0.86 

0.70 

15.4 

8.5 

0.24 

0.30 

0.065 

0.0 

-0.395 

0.6181 

0.59 

0.385 

15.6 

4.3 

0.21 

0.20 

0.035 

0.0 

-0.477 

0.4798 

0.42 

0.205 

(mhos/cm2-volt) 
aVi 

ag2 
-av2 (mhos/cm2-volt) 

ab2 (mhos/cm'-volt) 
a V2 

et (-21- radians) 

4/2 (m- radians) 

ici (mhos/cma-volt) 

K2 (mhos/cm2-volt) 

at the fundamental frequency and 

wo 
D2 = 

uso 

d Y2 
dw -2co 

at the second harmonic. If, at co = co. and ed = 2co0, Gfo and G o vanish 
respectively, then D, and D 2 reduce to the external Q's of the circuit 
at these two frequencies, particularly since the major portion of the 
diode's susceptance is considered to be part of the external circuit. 
Since, at an equilibrium point, from equations (44) and (46) of the 

Appendix 

G,. = g, - V2 cos 01 

and 

020 = g. - K. V, cos 02, 

specification of the parameters DI and D 2 permits the calculation of 
I Y; I and I Y I from the information of Table L 
The general stability criteria for the matrix B are as follows: Let 
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B be represented 

1799 

a b c 

B= d e  f 

g h i 

The condition that the eigenvalues of B all be positive implies that 

k, = a + e + i> 0, 

ka = ae ± ei -I- ai — bd — fh — gc > 0, 

ka = det B >0 

and 

k. = k,k, — ka > 0.  (31) 

These conditions must be checked numerically, and the number of 
independent variables for a general study is quite large. In the calcula-
tions done here, the circuit variables have been restricted to a, = a2 = 
a, with two sets of slope parameters; (1) DI =- 50, D2 = 500 and (ii) 
131 = 50, D 2  =  10. The restriction on a, and a2 is quite artificial but 
allows comparison with the approximately determined regions of Section 
III. The two sets of slope parameters DI, D 2 are an attempt to model 
(i) a high Q and (ii) a low Q second-harmonic circuit, respectively, 
I and to thereby approximate the two conditions g« 1 and g >> 1 for 
the same set of diode data. 
The results of these calculations are shown in Figs. 15 and 16 for 

I the frequencies 3, 4, 5 and 6 GHz. These show the values of stable 
second-harmonic phase cp, as functions of the circuit angles, al = a, = 
a. These regions repeat themselves with a periodicity of 2r in both 
4,02 and a. Only the principle branches are shown but it should be under-
stood that wherever one of these regions extends across the boundaries 
chosen, it should be reflected back into the region at the opposite 
boundary. Figure 15 is for the case Di = 50, D 2 =  500, and corresponds 
to a value of  < 0.4 everywhere. Figure 16, for which DI = 50, D 2 = 

10, corresponds to values of L from near or slightly less than unity, to 
greater than 4 to 8 (the only exception is in Fig. 16a where one region 
appears having a value of j.4  0.02). It should be noted that the value 
of bc  1 is no longer a critical value, inasmuch as stable states may 
now exist for which 1.‘ = 1. They do not appear to be large in number, 
however, and one may think of 1.‘ = 1 as a transition value for which 
Ithe area of the stable regions in the ço 2, à plane becomes small. 



1800 

2.5 

2.0 

t, 
1.5 

0. 

1.0 

05 

2.5 

THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970 

= 

7r/2 

37r/2 (a) 
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Fig. 15—Large-signal regions of stable io2 versus rt(ai = as  as obtained 
from the eigenvalues of the complete B matrix for the germanium oscillator example 
at (a) 3 GHz, (b) 4 GEE; (0) 5 GHz, and (d) 8 GHz; circuit variables DI = 50, 
Dt = 500; diode variables V1 = V2 = 10 volts, Jo ---- 340 A/cms. This figure has 
o < 1 everywhere. 

Consider the 4-GHz results and compare Figs. 15b and 16b with 
Figs. 13 and 14. The locations of the stable regions in the cp2, a plane 
show a one-to-one correspondence but with greatly distorted shapes. 
It therefore appears that the strongly coupled small-signal approxima-
tion used in Figs. 13 and 14, together with the p « 1 and p >> 1 cases, 
does give useful information about the general location of these stable 
regions for more realistic cases. The general properties of disjointedness 
and mutual exclusiveness are no longer strictly true (for example, 
there is some overlap of the regions centered at a = w in Figs. 15d 
and 16d). However, it is easy to see that tuning discontinuities may 
still occur, and that the circuit angles à must be considerably different 
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to obtain oscillation at 010 = /I-, for example, for the two different sets 
of values of slope parameters considered. 
It is interesting that the angles ce, and a2 (and therefore, a) are 

equal to r/2 for simple shunt resonant circuits at both co and 2w, and 
that the stability diagrams show no cases of stable operation for this 
condition. Because of the approximations of this analysis, this cannot 
be construed to be a general conclusion, even for the diode modeled. 
It does show however, that such conditions may arise and that obtaining 
just the correct phase relations for maximum output power with a 
given circuit may be extremely difficult. 

2.5 
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7r/2 

1.5 - 
tv 
19. 

1.0 - 

05 
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2.0 

1.5 

1.0 

05 

377/2 
(a) 
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r/2 

(c) 

(h) o 

Í 14=0 

'2/2 

3 IT 

filo = 

7;12 

3 7/2_ 
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0.5  1.0  1.5  2.0 0  0.5  1.0  1.5  20 
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Fig. 16—Large-signal regions of stable 492 versus 5(a, = al = a) as obtained 
from the eigenvalues of the complete B matrix for the germanium oscillator example 
at (a) 3 GHz, (b) 4 GHz, (c) 5 GHz, and (d) 6 GHz; circuit variables DI = 50, 
D2 = 10; diode variables VI = V2 = 10 volts, To = 340 A/cm2. This figure has 
> 1 everywhere except as noted. 
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Another observation is that the angle 010 = ir for maximum funda-
mental power output does have a stable realization in almost every 
case examined, even with the restriction a, = a2. 
If the points of operation along the circuit admittance curves  
172(26,0) are near minima of their real parts, the angles al and a2 are 
restricted to lie in the range 0 < ai < ir, j = 1, 2. Such a limitation 
seems to imply different possibilities at the four frequencies calculated. 
At 3 GHz, stability is obtained in the neighborhood of 010 = ir and 
only for the Dy = 500 case (µ < 1). At 4 GHz, stability near 012 = ir 
is only obtained for the Dy = 500 (is < 1) case, but there are additional 
stable states at or near 012 = 0 for both the D2 = 500 (g < 1) and D2 
= 10 (,.1 > 1) cases. Also, at 4 GHz, Fig. 16b shows a region which 
encompasses the 02 = ir/2 point which is a crossover between enhanced 
and degraded fundamental power. The 5-GHz cases are very similar 
to those at 4 GHz except that there are more enhanced-power stable 
states for the D2 = 10 (µ > 1) case than at the lower frequencies. 
At 6 GHz, this shift is more advanced with roughly an equal number 
of stable states in the enhanced power region for the Dy = 10 (II > 1) 
and D, = 500(g < 1) cases. 

V. SUMMARY AND CONCLUSIONS 

An analysis of the stability of the tuned-harmonic mode in IMPATT 
oscillators has been presented using a simplified model of the frequency 
conversion in the avalanche diode. It has been shown that the stability 
constraints are generally quite restrictive and difficult to satisfy, par-
ticularly for diodes showing strong harmonic interactions. The goal 
of this work has not been to present a set of design curves which insure 
stable tuned-harmonic operation, but rather to consider the difficulties 
which the stability constraints present. 
When the circuit restricts the voltage across the diode to be largely 

sinusoidal, this analysis reduces to that of the stability of a "single-
frequency" oscillator. For nonzero fundamental and second-harmonic 
voltages V1 and V2 a characteristic parameter g has been defined 
[equation (18)] which is dependent upon both diode and circuit char-
acteristics and degree of excitation. The value of g = 1 appears to be 
somewhat critical in that the stable regions for µ > 1 and g < 1 are 
usually separate. Any tuning or bias changes which force I.4 to pass 
through unity are very likely to produce sudden changes in the output 
variables, i.e., power and frequency. For example, the eagle-frequency 
oscillator is destined to have IA >> 1 because of the small value of V2. 
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However, for equal V, and V 2 and D2/D1 10, p, < 0.4. Thus the 
single-frequency oscillator and the tuned-harmonic oscillator (high Q, 
2c.o0 circuit) are likely to operate in different regions of stability. 
The numerical treatment of the stability criteria have been restricted 

to the case where the circuit angles a, and ce2 are equal. Thus the 
results presented here cannot be considered complete. However, in the 
example studied, it was found that at an operating frequency two-
thirds the frequency of maximum output power, the phase cp2 for maxi-
mum power is indeed stable and also corresponds to a realizable cir-
cuit. It was also found that it is possible to degrade the output power, 
and therefore, harmonic interactions when improperly adjusted can 
severely lower a diode's output power from that which would exist 
with no harmonic voltage at all. 
As a necessary part of this instability analysis, a two-port model 

for the interaction was introduced and characterized for the 6-GHz 
germanium IMPATT model presented. This characterization illustrates 
the role of the second harmonic in introducing a "pseudo-pole" into 
the nonlinear admittance of the fundamental, and it clarifies the rele-
vance of the single-frequency admittance plane characterization for 
the tuned-harmonic mode of operation. 
This analysis also has assumed that y12 and y21 may be described 

by equation (4). If, on the other hand, y12 and y21 are assumed constant, 
' then this analysis becomes identical with that of two nonlinear oscilla-
tors coupled through a linear circuit. That analysis can be carried 
through in the same manner as presented here. In such a case, the 
weakly coupled case becomes of considerable interest and has been 
treated by Schlosser.' 
It is not necessary, of course, to introduce the two-port model of 

Fig. 1 at all, with its attendant assumptions and approximations, but 
it is possible to consider the perturbation of the oscillation-state di-
rectly from the numerical solution of the IMPATT equations. This 
would be a more accurate method to pursue; however, it is felt that 
the approach presented in this paper provides insight that might be 
obscured in a more complicated approach. 
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APPENDIX A 

Derivation of the Stability Matrix 

In this appendix, the stability of the oscillation-state is considered 
using a linearized perturbation treatment about any general large-
signal operating state. The result of this appendix is the derivation of 
the state-equation (6) and the stability matrix B, equation (8). 
Consider a prescribed state of oscillation satisfying the two condi-

tions 

i(coo)  ini(17 , V 2 1 ç°1  ç°2) =  0  (32) 

and 

17 2 (20, 0)  Yin2 ( VI V 2 e i01t (P2)  =  0 1 (33) 

where Y, (w0) and 172(2 4  are the circuit admittances at (do and 2w0 
respectively. An approximation is made that the input admittances 
of the diode, Yi., and 17j,2, are slowly varying functions of frequency 
as compared with the circuit admittances Y1(c00) and Y2(14. This is 
facilitated by considering the depletion layer capacitance, for example, 
to be a part of the external circuit. Generally speaking, equations 
(32) and (33) prescribe a functional dependence of co, the frequency 
of oscillation, upon the voltage amplitudes and phases for small varia-
tions. For small variations in w we can approximate 

dY 
dw Yi (coo ± oi) í l'400) 

and 

• (5, 

dY 
Yaw° ± 62) r-z--1 Y 2(2c00) ±  • 02 . 

2 ca. 

The Sk can be determined by allowing the voltage amplitudes and 
phases to be slowly varying functions of time 

Mt) = a,(t) cos Pot  ,(t)]  (34) 

and 

v2(t) = a2(t) cos Paot ‘,02(t)].  (35) 

Differentiating with respect to time gives 

dv,  .  Re {[x.o.  .cw  --a-, exp [j(coot ço,)]}  (36) 
dt 
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and 

• di,o2 1 de/2 
—  Re {[2jw, + —di ± a-2 —dt 1a2 exP [i(2co0t dv2 q,2)i} • 
dt 

Thus, we can identify' 

and 

dei . da, 

d(p2 . 1 da2 
02 = —dt — 1 7t2—dt ' 

and therefore 

111(<00 SI) Y,(coo)  .(dç°1  . 1 da,\ 
, dt  a, de I 

and 

dY 2 
Y2(2w0 (52)  Yam)) + dw 

.(dy02 _  da, 
2..  \ dt  j a, dt 

(37) 

(38) 

(39) 

are the circuit admittances related to slow variations of the amplitudes 
and phases. 
From the equivalent circuit of Fig. 1, the currents at the fundamental 

and second harmonic are 

il(t) = Re {[Ynai exP (jgh)  gi2a2 exP (iv2)]•exP (itoot)} 

and 

i2(t) = Re dY2ia, exP (jel)  g22a2 exp (À02)]•exp U2%01 , 

which may be rewritten using the assumptions (4) as 

ii(t) = [— gia,  Kict1ct2 cos(lpi —ç2  — 1,1,1)] cos(wot ± et) 

Klaia9  — S°2  IP,)] sin(w0t  el.)  (40) 

and 

i2(1) = [—g2a2  K2a;  cos(4e2 — 24,01 — #2)] cos(2co0t ça2) 

-FE—b2a2  tc2a sin(,, — 2,  — #2)1 sin(2w0t  1,02)• 

Here we have introduced 

gl, = — g,  ibi 

(41) 
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and 

Y22  —g2  jb, . 

Kirchoff's laws for the nonequilibrium case are 

+ Re t Yi(coi)a, exp (içoi)  exp (jcu0t)1 = 0  (42) 

and 

i2(t) ± Re Y2(e2)a2 exp (j,22) exp (j24,001 = 0,  (43) 

where col and co2 are the perturbed fundamental and second-harmonic 
frequencies. 
Equations (40) and (41) with (42) and (43) give the following four 

differential equations for the quantities ai(t), a2(t), io,(t) and ca(t) 

G1 — + G/ Cl2e1 + Bp I._ dai 

1 dt  I  

b1)  dV1  ' 1  da, 
dt  G1  = a, dt 

G2  g2 G, 6422 ,  = B, da2 
2 di -r- 2 aa dt  

, da2 
—(B2 ± b2) — B‘ c—°2  G l dt  2 a2 dt 

Here we have defined Y1 = G1 + iBi, Y2 =  G2 +  jB2 and the primes 
denote differentiation with respect to co. Also 

—K1a2 cos 01 e 

and 

01 = 2e1 — <,02 — %PI 

02 = g92  24°1  li/2 • 

(44) 

—K1a2 sin ei ,  (45) 

(46) 

—x2a1 sin 02 .  (47) 

—K2a1 cos 02 , 

(48) 

(49) 

Equations (44) through (47) may be rewritten so as to contain only 
a single time derivative in each 

B(G, — g1) — G;(B,  bi) ± I Y; I2 

= —K1a2[B; cos B,  G¡ sin 01.1,  (50) 

y ï  1  _ddeti G;(G, — g)  B(B,  b1) ±  2 

— a2[G; cos 0, — B; sin OIL (51) 
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2 1  d a2 

B;(G2 — 02) — G“B2  b2) ±  Y ; I Ti2 dt 

=- —Ke e; cos 02 +  sin 021,  (52) 

G(Ga — 92) + B;(132 + b2)  I  12 ddet2 

= —x2a1[G; cos 02 — B; sin 02].  (53) 

Since cp, is an aribitrary quantity with no physical significance, it can 
be eliminated in favor of the difference phase (p2 — 2(p, since this appears 
in both 81 and 02. This is done by multiplying equation (51) by 2/1 Y; 12, 
equation (53) by 1/1 Y; 12 and subtracting equation (51) from (53), 
giving 

d 
(s02 — 2v,) 

+ G(G2 — 92) + B2'(B2  b2) — 2 G M -  01) +  bl) 
r; 12  111i 12 

(G cos 02  B; sin 02) (GI cos 01 — 13; sin 01) 
= —K2cti y; 12  2 K1 a2  1 y 2 

(54) 

Equations (50), (52) and (54) form the set of differential equations 
for ai(t), a2(t) and yea — 2401(t) which will be linearized for small 
perturbations around the oscillation state. These perturbations take 
the form 

a, = V1 ± 

a2 = V2 ± Sa2 , 

and 

Sth — 1101 =  9,20 —  4'10  0(e2 — 24, 

where VI, V2, vio and ço20 are the unperturbed values of ai(t), aa(Oe 
cpi(t) and e2(t). The perturbations in the voltage amplitudes will change 
gi, b1, 92, b2 away from their values à 1, -1, . j2, - In2 which correspond to .   
Sa, = 6c12 = (5(ço2 —  0. Thus, we define the saturation parameters 
s, r, u, 7./ which describe the linearized variation of gi around g„ etc., 
by the equations (see Fig. 10) 

V, S(G,0 — 9,) 
s —  (55) 

GI,  ' 
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and 

V, «Bin -1-1),)  
r — 

G,0  t5a,  ' 

V, 5(G,0 — g,) 
u 

ba, 

V,  Ô( B20  b2) 

V —  G20  8a,  ' 

(56) 

(57) 

(58) 

where the zero subscript on the circuit variables denotes their evalua-
tion at coo or 2ca0 as appropriate. 
Equations (50), (52) and (54) may now be cast in a simple matrix 

form 

ch , 
= 

dt 

where the vector E is defined as 

E = 

(59) 

Sa,/Vi 1 

Sa,/V2 (60) 

d(e2 — 2s0,) 

and the matrix B is given by equation (8) of Section III. Equation (59) 
indicates that the perturbations decay with time, giving a stable state 
of oscillation, if the eigenvalues of the matrix B are all positive. 

APPENDIX B 

List of Symbols 

a, , a,  Slowly varying amplitudes of the fundamental and second-
harmonic voltages; equations (34) and (35). 
Stability matrix; equation (8). 

B1, B2  Fundamental and second-harmonie external circuit suscep-
tances; following equation (47). 

b, ,b0 Imaginary parts of yil and y22, the susceptances of the 
single-frequency oscillator admittances; following equa-
tion (41). 

D„ D,  Fundamental and second-harmonic external circuit slope 
parameters; Section IV. 

G, , G2  Fundamental and second-harmonic external circuit con-
ductances; following equation (47). 
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g ,  g2  Negative of the conductances of the single-frequency os-
cillator admittances; following equation (41). 

K i , K2 Complex normalized form of y12 and y21; equation (4). 
8, 7'  Saturation parameters for the admittance yii; equations 

(55) and (56). 
u, y Saturation parameters for the admittance y22; equations 

(57) and (58). 
, V2 Fundamental and second-harmonic voltage amplitudes; 

preceding equation (1). 
, Y. Fundamental and second-harmonic external circuit admit-

tances; Fig. 1. 
Y .,,, , 1 %12  Fundamental and second-harmonic IMPATT diode input 

admittances; equations (1) and (2) and Fig. 1. 
g  I , Y22  Fundamental and second-harmonic "single-frequency" os-

cillator admittances; Fig. 1. 
YI2 Y21  Conversion transfer admittances between fundamental and 

second harmonic; Fig. 1. 
Y12 , g2i  Approximate form of yi2 and y21; equation (4). 
ai y az  Fundamental and second-harmonic circuit admittance 

slope angles; Fig. 12. 
7' , 7 2  Fundamental and second-harmonic single-frequency diode 

admittance slope angles; Fig. 12. 
0,, 02 phase variables; equations (48) and (49). 
010 020  01 and 02 for cpirs 0, equation (13). 
K1 K2  Magnitudes of K1 and K2; equation (4). 

Stability parameter, equation (18). 
Po  Fundamental and second-harmonic voltage phases; pre-

ceding equation (1). 
, 11/2  Arguments of K1 and K2 ; equation (4). 

410 Fundamental radian frequency. 
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An Analysis of Adaptive Retransmission 
Arrays in a Fading Environment 

By Y. S. YEH 

(Manuscript received December 3, 1969) 

We analyze in this paper the performance of adaptive retransmission for 
improving two-way communication between antenna arrays in a randomly 
fading environment. 
For a stationary environment, S. P. Morgan has shown that complex 

conjugate retransmission reaches a stable state and maximizes the signal-
to-noise ratio of a maximal ratio diversity reception system. We show that 
a simpler system using phase conjugate retransmission will also stabilize 
and maximize the signal-to-noise ratio of an equal gain diversity reception 
system. 
Where the fading is slow in comparison to the system settling-down time, 

both systems provide a significant improvement in transmission. 
Subject to Rayleigh fading, we have obtained the average signal strength 

and its cumulative probability distribution for various combinations of 
numbers of antennas in the two arrays for each of the above mentioned 
systems. This information is useful in choosing an optimal division of 
diversity branches for the two antenna arrays. It is further observed that 
although the phase conjugate retransmission system is much simpler to 
implement, its performance is only slightly inferior to the corresponding 
complex conjugate system. 

I. INTRODUCTION 

Adaptive antenna arrays have been the subject of numerous in-
vestigations.1-3  In an adaptive transmitting array, the individual 
element is excited according to information derived from the incident 
pilot field. For example, in a complex conjugate system, the excitation 
currents are proportional to the complex conjugate of the incident 
voltages while the total power radiated is kept constant. In a phase 
conjugate system, the currents are kept constant while the phases 
are adjusted according to the conjugate phase of the incident voltages. 

1811 
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In a free-space environment, that is, plane wave incident from 
a particular direction, it is well known that phase reversal would 
steer the radiated beam toward the source antenna. Cutler and °there 
have shown how phase reversal can be achieved by frequency con-
version of the pilot signal. 
The role of adaptive retransmission in a multipath fading environ-

ment, for example, mobile radio, tropscatter communication, and so on, 
has received far less attention. Still unanswered is the question of 
whether the phase conjugate or the complex conjugate retransmission 
schemes could improve the communication link and reach a stable 
state. In his work, S. P. Morgan has shown that, in a stationary 
arbitrary environment, stable state and maximal power transfer can 
be achieved by complex conjugate retransmission.3 
In this paper, we show that the much simpler phase conjugate 

system will also reach a stable state. Furthermore, assuming equal 
amplitude transmitting currents on the antenna elements, the sum-
mation of voltages received at one array is equal to that of the other 
array and is maximized. Consequently, the phase conjugate retrans-
mission system will maximize the signal-to-noise ratio (S/N) of an 
equal gain diversity reception system.4 
In general, the fundamental differences of the two retransmission 

schemes are that the phase conjugate retransmission maximizes the 
sum of the amplitudes of the voltages received and the complex 
conjugate retransmission maximizes the total power received. 
Where fading is slow in comparison to the time required to reach 

an equilibrium state, both systems could be used to improve the 
quality of a fading communication link. 
We investigate the performance of these two systems in actual 

fading environments. In particular, we want to know how these two 
systems differ in average S/N, what the S/N probability distributions 
are, how much they improve fading statistics over a single branch 
system and, finally, what the optimal division of number of antennas 
would be between the two antenna arrays. 
In order to answer these questions, we must first establish the 

characteristics of the medium which links the two antenna arrays. 
For example, in a mobile radio the signal received by a single antenna 
is rapid varying and can be characterized by Rayleigh statistics over 
distances of a few hundred wavelengths.3 However, over an extended 
range of observations, other large-scale phenomena such as distance 
variations, shadowing, and channeling by streets will produce slow 
variations of the average signal strength received. The adaptive 



ADAPTIVE RETRANSMISSION  1813 

retransmission system per se can reduce the rapid fluctuations but will 
be of little help in reducing those long-term variations. Consequently, 
the comparison of the performance of adaptive retransmission ar-
rays will be based on their relative effectiveness in reducing the 
rapid Rayleigh fading. 
The Rayleigh fading is also an excellent approximation in other 

communication systems such as long-range UHF and SHF tropospheric 
transmission,4 and so on. Furthermore, results obtained from Ray-
leigh fading can give significant insight into the performance of 
adaptive antenna arrays under other fading conditions. 
Based on Rayleigh fading statistics, we investigated the cumulative 

probability distribution (CPD) of the signal strength of an m:n array 
system. By m:n we mean that there are in antennas at station 1 and 
n antennas at station 2. The analysis is done by the Monte Carlo 
method on a digital computer. The 99 percent reliability level* as 
well as the average signal strength for a unity transmitter power are 
obtained. It is interesting to note that with the help of interpolation, 
in most cases, only 96 computer samples are sufficient to yield a 
CPD which is accurate up to a few tenths of a dB for all the infor-
mation we need. 
The average S/N of the two retransmission schemes are compared. 

It is observed that although the phase conjugate system is much 
simpler to build, it is only slightly inferior to the complex conjugate 
retransmission system. 
For other types of fading distributions, the techniques described 

here can readily be applied. 

H. ANALYSIS OF THE PHASE CONJUGATE RETRANSMISSION 

The configuration of the arrays is depicted in Fig. 1. The open cir-
cuit voltages and the transmitting currents in each array are rep-
resented by column vectors with the time factor exp (W) suppressed. 
The mutual couplings are neglected and the antennas in each array 
are assumed to be identical, with input resistance R during trans-
mission and admittance G during reception. 
The transmitting current vector /2 at array 2 produces the received 

voltage vector at array 1, 

171 = Cri2 (1) 
where r is an m X n matrix whose elements are proportional to the 
*The 99 percent reliability level is defined such that for 99 percent of the time 

the signal strength is above this level. 
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1 
ARRAY 1  ARRAY 2 

Ill ANTENNAS  11 ANTENNAS 

Fig. 1—Arrays in adaptive retransmission system. 

transmission between a particular pair of antennas. The real constant 
C stands for the average transmission loss. 
By reciprocity, the received voltage at array 2 is, 

V, = crci,  (2) 
where the superscript t stands for the transpose of the r matrix. 
Here according to our definition of phase conjugate retransmission, 

the elements of /1 and /2 are of unity amplitudes although their phases 
could be different. Multiplying equations (1) and (2) by I and 12, 
respectively, we obtain the following 

(V, , I,) = c(r12 , /1),  (3) 

( V2 ,I2) = c(gi, , Iz)  (4) 
where the brackets ( ) stand for inner product. Equations (3) and 
(4) are equal, and we obtain the following reciprocity relation 

(V„ II) = (V2 .12).  (5) 

2.1 ;Stabilization of the Phase Conjugate Retransmission System 

Let array 1 be excited initially with current II which produces V2 at 
array 2. And let array 2 be excited with 12 which produces V, at array 1. 
Equation (5) holds and we have the following 

Evl,Il, = E V2./2,  (6) 

where the subscript i stands for the ith element of the array. 
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Consider now the excitation at array 2. Since the  are of unity 
amplitude, the quantity E7-1 V2./2; can be maximized by choosing 
IL to be phase conjugate to V2; . We shall call this real maximum quan-
tity X. Let V; be the voltage vector produced by I. ; then we have 

:E: I7u.11 == :E: vaL == :E: IT721 == X.  (7) 

Let us now consider the excitation of array 1. Obviously the quantity 
Vli/i, can be maximized if we choose If, to be the phase conjugate 

of VI, . It then follows that 

E  = E  =  (8) 

Let n be the voltages produced by I. . We obtain, by applying equa-
tion (6), the following, 

E  = E Vi =  X.  (9) 
i-1 

Now I can again be chosen to be phase conjugate to V. and we obtain 

E ni“ = E ivI =  (10) 

This process continues with each new choice of / representing the actual 
retransmission adjustment made by the antenna system. It is obvious 
from equation (10) that each retransmission yields a new value of X 
which is real and bigger than or equal to the previous value. However, 
because of the finite number of antennas involved, X cannot increase 
indefinitely. The iteration process must therefore finally settle down to 
a value X f which no longer changes. If this is so, we have 

E v/;, = E Vi = X,.  (11) 

The fact that X, is real, and also that we cannot vary the phase of 
4 and e, to make X f  larger automatically guarantees that e, and e, 
are phase conjugate to n and 17„ respectively. In this case, our phase 
conjugate retransmission apparatus will no longer change the phases of 

and I, because they have already reached their proper value. 
Therefore, we have arrived at a stable state. In this case equation (11) 
can be further simplified to 

E Inl = E Inl = Xf• (12) 
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So far we have demonstrated that each retransmission tends to in-
crease X and a stable state must finally be reached. It still remains 
to be shown that this stable state yields the absolute maximum X. 
It is quite possible that several pairs of I and /2 exist such that they 
are phase conjugate to V1 and V2 but their corresponding Vs are 
different. This is similar to the existence of different eigenstates in 
matrix analysis. As is well known in matrix algebra, unless the 
initial vector is orthogonal to the maximum eigenstate, we would in-
variably obtain the maximum eigenstate through iterations. 
Since the phase conjugate operation on V to produce I is a non-

linear operation, an analytical analysis along the above lines is ex-
tremely difficult, if not impossible. However, in the next section we 
show with computer simulation that the phase conjugate retransmis-
sion process converges rapidly and the probability of ending up in 
a nonmaximum state of Àf  is  practically zero. 

2.2 Computer Simulation 

The convergence test was done by choosing a 3 :4 array system as a 
particular trial case. We started by arbitrarily choosing a II matrix, 
which was defined by rrj = //1.2 ± J/2 — 1 + j[I 12.3 ± 2 — J/1.2]. 
The initial values of /1 were chosen such that, 

/1 = [1, exp e, exP(i0)].  (13) 

The phase angles O and  were allowed to run through 0 to 2r, in 10 
equal steps. Therefore, we had 100 different initial trial values of 
For each initial set of /2 , we calculated V2 produced and formed /2 which 
produced V1 . /2 was then readjusted according to the VI just produced. 
In each retransmission, we also computed the quantity X. It was ob-
served that in all these one hundred trials, the currents and X approached 
their specific final values within a few retransmissions. For this particular 
choice of r, X, = 31.3719. The first value of X obtained, that is, 
E1,-1 I V2i I was always smaller than X,  but after the first retrans-
mission, it invariably came very close to X, . For example, in one case 
the first X was 10.72; after retransmission at array 2 we obtained a X of 
30.73 at array 1. After this array retransmitted back to array 2, the 
value agreed with Xf to the fourth decimal place. 
Next we tried to determine if Xf  is the absolute maximum. In other 

words, we wanted to check if Xf was bigger than the X, that is,  V21 , 
produced by any arbitrary I,. This survey was done by varying O and cp 
in 50 steps from 0 to 2.r. Computation indicated that all the 2500 values 
of X produced were smaller than X, and that Xf  was indeed the real 
maximum. 
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A similar test was performed on a 4 : 5 array system and we obtained 
similar results as reported for the 3 : 4 system. In the 4 : 5 array system, 
the r„ were defined as (I — J)/3 ± I2J/6 — 5 ± j[(/ — /2 J)/1.4 
3.5]. 

III. SIGNAL-TO-NOISE RATIO 

Let V," be the voltage response at the ith elementary antenna. 
Furthermore, let nii be the corresponding noise voltage which satisfies, 

= N2 j j, 

o i j 

where the ( )„, stand for time average. 

3.1 SIN of Phase Conjugate System Using Equal Gain Diversity Com-
bining Technique 

The S/N of an m-branch diversity equal gain system is, 

S/N = [E I V, i I] /mN2 = X2r/mN2. (15) 
2 

Recall that there are n elements at the other array, which radiates a 
total power to the amount of nR, therefore the S/N of the received 
signal per unit power radiated is, 

S/N = X,/nniN2R.  (16) 

It is therefore obvious that the S/Ns at both arrays are identical. 

3.2 S/N of Complex Conjugate System Using Maximal Ratio Diversity 
Combining Technique 
The excitation currents of a complex conjugate retransmission sys-

tem are related to the incoming voltages by, 

/2 =  K 2 V*2 

= K,V1 

(14) 

(17) 

(18) 

where K1 and K2 are scalars to keep the total radiated power constant. 
For unity transmitter power, the received power at arrays 1 and 2 
are maximized and are equal,3 

G 
Pin = P2R = — C2x. 

where a„, is the maximum eigenvalue of the hermitian matrix rr, 

(19) 
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The validity of equation (19) is subject to the constraint that when 
the adaptive retransmission array starts operation, its current vector 
should not be orthogonal to the maximum eigenvector of the rr 
matrix. The S/N of a multibranch maximal ratio reception system 
then is, 

, 
S/N  = RN2 

It can be seen that the 5/Ns at both arrays are equal. 

IV. EVALUATION OF THE CUMULATIVE PROBABILITY DISTRIBUTION 

(20) 

The complexity of the quantities A. and At makes a closed form 
solution of the CPD extremely difficult, if not impossible. Therefore, 
we try instead the Monte Carlo method and aim at a numerical 
solution. The essence of the method is to choose for each element of 
the r matrix a random variable of the form u + jv. The variables 
u and v, according to our assumption of independent Rayleigh fading 
statistics, are normalized independent gaussian variables. For a par-
ticular m:n array system, we can therefore evaluate the maximum 
eigenvalue 4, by repeated matrix multiplication.° The value At is 
evaluated by iterations according to the retransmission schemes defined 
in Section 2.2. 
The computed values of A.n, and At are stored. Then we start the 

whole process again by choosing elements for another r matrix and 
evaluate the corresponding A.,„, and 4. The CPD curves are developed 
after a sufficient number of calculations. 
Two tests of convergence are made. The first is the comparison of 

the calculated CPD curves of variables 1u1 + jvi 12 or 1ui + jv1  12 + 
u2 + jv2 12 to that of the known theoretical curves. It is understood 
here that u's and v's refer to independent normalized gaussian random 
variables. Hence, these curves represent respectively the CPD of 
maximal reception of single or two-channel Rayleigh signal.° 
The results are presented in Fig. 2. A close look at Fig. 2 indicates 

that as far as the 99 percent reliability and the average signal levels 
are concerned, 900 sample points are sufficient for a single Rayleigh 
and 300 sample points for two Rayleighs. 
A second test is made on the 2:2 and 2:4 antenna system and is 

shown in Fig. 3. The dB scale is chosen such that the average S/N 
of a single Rayleigh variable, that is, the received S/N of a 1:1 array 
system, is at 0 dB. It is observed that 96 samples are already sufficient 
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Fig. 2—Comparison of Monte Carlo method and theoretical calculation, p, 
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to yield what we want since these points lie very close to the curve 
drawn through the points computed from 900 samples. With the re-
quired sample points greatly reduced to this number, it is possible 
to make a fast and inexpensive check of an extensive combination 
of n7,:n arrays. 
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maximal ratio reception. o, 960 points; x, 96 points;  curve fitted to 
960 points. 
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V. DISCUSSION OF NUMERICAL RESULTS 

We look at the complex conjugate retransmission system first. 
Incorporated with maximal ratio diversity reception, this system 
provides the best S/N performance obtainable from a particular 
m:n array system. 
The average S/N is presented in Fig. 4. It is seen that for small 

numbers of v., there do exist appreciable improvements in average 
signal level as m changes from 1 to 4. However, as n increases the 
advantage diminishes. For example, a 1:50 array has the same average 
signal level as 2:44, 3:39, and 4:35 arrays. This is in sharp contrast 
to the case of adaptive arrays with nonfading signals. In that case, 
plane wave incidence is assumed and an m:n array would have the 
same S/N as a 1:mn array (Fig. 4). 
A simple explanation of the difference between the fading and the 

nonfading arrays is the following: In both cases, the 1:mn adaptive 
retransmission system guarantees that the voltages produced by the 
mn elements at the single array add in phase. In the m:n system, the 
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Fig. 5-99 percent reliability level. Complex conjugate retransmission maximal 
ratio diversity reception. 

voltage components produced by the n antennas again add in phase 
at each antenna of the "m" array if plane wave incidence is assumed. 
Consequently, the power received is identical to that of the 1: inn 
array. However, in a random environment the n voltages components 
at each antenna element in the m array no longer add in phase; there-
fore, the m:n system receives less power than that of the 1:mn system. 
With reference to Fig. 2, we notice that for 99 percent of the time, 

the single Rayleigh signal has a value above —20.6 dB; we will 
designate —20.6 dB as the 99 percent reliability level. Hence the dif-
ference in dB values of two antenna systems for a particular re-
liability indicates their difference in signal threshold or their difference 
in the required transmitter power. The 99 percent reliability level 
is presented in Fig. 5. We next define fading range as the dB difference 
between the average S/N and the 99 percent reliability level. There-
fore, fading range should provide a good indication of the smooth-
ness of the received signal. The fading range is presented in Fig. 6. 
It is seen that as n increases, the 99 percent reliability level ap-
proaches the average signal level. In other words this means that as 
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Fig. 6—Fading range of an m:n array system. Complex conjugate retransmis-
sion maximal ratio diversity reception. 

the number of diversity branches increases, the fading range starts 
to diminish. Figure 7 presents the CPD of a 4:32 array system. We 
note that the CPD curve is extremely flat and the signal level varies 
within a -+-I dB range, indicating a greatly reduced fading range as 
compared to either Figs. 2 or 3. 
We discuss now results obtained from the phase conjugate retrans-

mission system. In this system, as was discussed in Section II, the 
S/N, of an equal gain diversity reception system is maximized. It is 
observed that because of this maximization effect, the performance 
of the phase conjugate system is not much inferior to that of the 
complex conjugate system. For example, the CPDs of the S/N for 
both systems in the case of a 2:4 array system are presented in 
Fig. 8. The CPD curves of the two systems differ approximately by 
the average S/N difference. Therefore, the difference in average S/N 
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Fig. 7—CPD of a 4:32 array system. Complex conjugate retransmission maximal 
ratio diversity reception. 

of the two systems is also a good indication of their difference in 
percentile reliability levels. 
The average S/N of the two systems is shown in Fig. 9 for 2:n 

and 4:n array systems. It is seen that for the same m:n array, the 
difference of the two systems is small, that is, within a dB or so. 

VI. CONCLUSIONS 

We observed that in a fading environment, both complex conjugate 
retransmission and phase conjugate retransmission systems are capable 
of reaching a stable state and yield optimum results by greatly in-
creasing the S/N at the receiving stations. 
The performance of these two systems differs little. Therefore the 
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PERCENT PROBABILITY THAT AMPLITUDE > ABSCISSA 

0.1 001 

Fig. 8—CPD curves of a 2:4 array system. o, complex conjugate retransmis-
sion with maximal ratio reception; x, phase conjugate retransmission with equal 
gain reception. 
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Fig. 9—Average S/N of antenna systems 2:n and 4:n   
complex conjugate maximal ratio reception;   phase conjugate retrans-
mission equal gain reception. 

choice of a particular scheme should be based on practical con-
siderations. For example, in the phase conjugate system, the total 
power is divided equally among all the antenna elements. On the other 
hand, the complex-conjugate retransmission system requires that the 
total power be distributed in a complicated fashion. In practice this 
means that each antenna-feeding appartus must be equipped to 
handle power far exceeding that of the phase conjugate system. 
In view of the simplicity of the phase conjugate retransmission com-

pared to the complex conjugate retransmission (which must keep the 
total power transmitted constant), and only slightly inferior per-
formance, the former appears to be a more attractive system. 
As far as the division of diversity branches is concerned, it can 

be seen from Fig. 4 that for small numbers of antennas, 
an m:n array would have similar performance to an mn:1 array. 
However, as the number of elements involved becomes larger, this 
relation no longer holds. For example the performance of a 4:n array 
would approach a 1:n array as n, increases indefinitely. 
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Microwave Line-of-Sight Propagation With 
and Without Frequency Diversity 

By W. T. BARNETT 

(Manuscript received May 5, 1970) 

Amplitude measurements were made for 68 days in 1966 for seven 
4-GHz and 6-Cils signals on a typical radio relay path. Identical mea-
surements were also made for one 4-GHz signal on a second path having a 
common reception point with the first path. We present the results from an 
analysis centered on the fade-depth distribution for fades exceeding 20 dB. 
The more significant results are: 

(i) The fade-depth distribution for all single (nondiversity) channels 
in a 5-10 percent band on the same path are essentially the same. Further, 
the distribution has the Rayleigh slope. 
(ii) The single-channel fade-depth distributions deer for 4 and 6 GHz 

on the same path; the distributions also differ for the same 4-GHz frequency 
on adjacent paths with a common reception point. 
(iii) One-for-one frequency diversity can be characterized during multi-

path fading periods for either the 4- or 6-GHz bands by the ratio of two 
quantities. The first is the precent frequency separation between diversity 
components. The second is the nondiversity fade-depth distribution. 

I. INTRODUCTION 

Line-of-sight microwave systems are affected by multipath propaga-
tion. When this phenomenon is present, the output from a receiving an-
tenna can be practically zero for seconds at a time. Experimental data 
are difficult to obtain because long time periods of continuous coverage 
are needed to observe sufficient fading activity at the fade depths (30-
40 dB) of interest for high performance systems. The literature is ex-
tensive on this general topic'  -7 but limited and in some cases contradic-
tory' for these fade depths. The results available regarding frequency 
diversity are even more limited'. For these and other reasons, an extensive 
experimental program was undertaken in 1966. 

1827 
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Continuous amplitude measurements were made for 68 days at a rate 
of 5 samples per second per channel for seven 4-GHz and six 6-GHz 
signals on a radio relay path at West Unity, Ohio. Identical measure-
ments were also made for one 4-GHz signal on a second path having a 
common reception point with the first path. Here a 68-day summer 
period (July 22 to September 28) in 1966 has been subjected to detailed 
analysis. 
We present the results of the data analysis and their interpretation 

along with pertinent background information. Briefly the order of 
presentation is (i) experiment description, (ii) determination of the 
reference values used for calibration, (iii) nondiversity results, (iv) 
frequency diversity results, (v) a mathematical description of pairwise 
fading which is used to interpret the improvement obtained from fre-
quency diversity, (vi) 4/6 GHz crossband results, (vii) adjacent hop 
results, and (viii) a comparison of space and frequency diversity. 

II. SUMMARY 

New results have been obtained from the data concerning 4-and 6-GHz 
propagation on line-of-sight paths. The present analysis was centered 
on the fade-depth distribution for fades of 20 dB or more. A simplified 
listing of the significant findings follows. 

(i) During nonfading conditions, the received microwave signal 
power was constant for the entire test period to within ±1 dB 
including equipment variations. 

(ii) The fade-depth distributions for all single (nondiversity) chan-
nels in a 5-10 percent band are essentially the same and have a 
Rayleigh slope. 

(iii) The single-channel fade-depth distributions differ for 4 and 6 
GHz on the same path; the distributions also differ for the same 
4-GHz frequency on adjacent paths with a common reception 
point. 

(iv) The performance of a one-for-one frequency diversity system 
can be specified for either the 4- or 6-GHz bands by the ratio 
of two quantities. The first is the percent frequency separation 
(100 àf/f) between in-band diversity signal components. The 
second is the experimental nondiversity fade-depth distribution 
P(L). In these terms the improvement (/) of a diversity system 
relative to the nondiversity system as obtained from the data is 
simply 

/ = 0.13 —àf /P(L). 
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This model is based upon the in-band frequency diversity data 
and is in agreement therewith. 
The factor / characterizes frequency diversity during multi-

path fading periods. As such, it should be applicable to different 
climates and terrains for path lengths of approximately 28 
miles. 

(y) The improvement from 4/6 GHz crossband diversity was not 
significantly better than in-band diversity of 2 percent or more 
separation. 

(vi) Adjacent section diversity with a common point (as based on 
data on a single channel) was not significantly better than in-
band frequency diversity. This raises some provoking (unan-
swered) questions about the correlation of selective fading on 
adjacent routes, for example, limitations on the maximum pos-
sible diversity improvement to values less than those expected 
from independent fading. 

(viz) The performance of space diversity" is comparable to that of 
one-for-one frequency diversity on the same hop. 

(viii) The polarization of the radio signals had no noticeable effect on 
the amount of fading. 

These results are presented in detail along with the necessary back-
ground information in the following sections. 

III. EXPERIMENT DESCRIPTION 

The transmitted power in microwave radio systems is constant. Prop-
agation data can therefore be obtained from in-service systems without 
interfering with their operation by using suitable monitoring equipment. 
Such equipment (MIDAS*) was installed at West Unity, Ohio, to monitor 
and record the received envelope voltages of standard TD-2 (4 GHz) 
and TH(6 GHz) signals. A list of the channels is given on Table I. 
Briefly there were seven 4-GHz, six 6-GHz, and two space-diversity 
channels on one hop and one 4-GHz channel on a second hop. A functional 
block diagram is shown on Fig. 1. 
West Unity, Ohio, was chosen as the measuring site for this experiment 

because it lies along a major route in an area with a reputation for con-
siderable fading. Further, the hops measured have average lengths (28.5 
and 29.4 miles) with negligible ground reflections. The two paths differ 
in azimuth by 68 degrees and their profiles are given on Figs. 2 and 3; 
clearance is adequate even for the extreme case of equivalent earth radius 
(k) equal to two-thirds. 

* An acronym for Multiple Input Data Acquisition System. 
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TABLE I—RADIO CHANNELS MEASURED AT WEST UNITY, OHIO 
From Pleasant Lake, Indiana (28.5 mi) 

Channel No. Frequency Antenna Polarization 

4-7 3750 Horn V 
Reflector 

4-1 3770 H 
4-8 3830 V 
4-2 3850 H 
4-9 3910 V 
4-11 4070 V 
4-6 4170 H 

6-11 5945 . 2 H 
6-13 6004.5 H 
6-14 6034.2 V 
6-15 6063.8 H 
6-17 6123.1 H 
6-18 6152.8 V 

6-UD 6152.8 Upper Dish V 
6-LD 6152.8 Lower Dish V 

From Paulding Ohio (29.4 mi) 

4-6 4170 Horn 
Reflector 

V 

Note: The 4-X channels correspond to standard TD-2 radio system signals; 
6-X corresponds to TH. 

The MIDAS equipment derived received signal strength information 
by sampling the voltage of the 70-MHz IF signal at a point where it was 
linearly related to the RF signal. At any instant the particular channel 
being measured was selected automatically by MIDAS. A common 
detector then converted the IF amplitude measurement to a de voltage 
which was quantized into one of 32 contiguous steps over a 45-dB range. 
The MIDAS input-output curve is given as Fig. 4. 
The data were recorded on paper tape along with the necessary timing 

information. Measurements were made throughout the 68-day period 
at a rate of 5 samples per second on each channel. The information was 
recorded for all channels at rates of either 1 sample per 30 seconds, 1 
sample per 2 seconds and 5 samples per second (normal, intermediate, 
and fast rates) depending on the fading activity of the channels under 
test. The recording rate was automatically selected by MIDAS so as 
to record all significant fading. During computer processing of the data, 
the amplitude value at a sampling instant was assumed to hold until the 
next sampling instant. 
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Fig. 1—Experimental layout, Pleasant Lake to West Unity (Paulding to West 
Unity not shown). 
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Fig. 3—West Unity—Paulding, Ohio, path profile. 

4  1 
O  -10  -20  -30  -40  -50 
INPUT POWER IN RELATIVE DECIBELS 

Fig. 4—MIDAS calibration curve. 
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An important feature of the experiment was long-term continuous 
coverage. Deep fades are rare events occurring at unpredictable times; 
the test equipment had to be on-line continuously to obtain an adequate 
sample. 
The required test equipment reliability and measurement uniformity 

was obtained by maximum use of common equipment. The essentially 
continuous coverage was obtained by recording mainly the significant 
fading data. Even so the subsequent processing was a formidable task, 
even with the computer, because of the high volume of raw data. 

IV. NONFADING SIGNAL VALUES 

A fade is defined as a decrease in the envelope of the received signal 
voltage with respect to a reference or free-space value. Thus before fading 
data can be quantified, the reference or nonfading value must be deter-
mined. 
If the atmosphere between the transmitting and receiving antennas 

was homogeneous (that is, no vertical or horizontal variations in the 
index of refraction), then the single frequency RF power at the output 
of the receiving antenna would be invariant for a fixed transmitted 
power.* Its value (called the free-space value) could be calculated in a 
straightforward manner. However, even during nonfading periods, there 
are small time-varying random deviations in the refractive index which 
cause small scintillations in the received power even when the average 
value remains constant. There are also long-term variations in the re-
ceived RF power due to equipment variation. For our purposes we must 
determine the nonfaded received power as a function of time and, if 
possible, quantify the scintillations. 
Inspection of the data showed that the midday hours had the least 

amount of fading. Here the differentiation between fading and free-space 
scintillations is made on the basis of the magnitude of the effect. Fading 
causes variations of one or more quantizing levels in the envelope from 
hour-to-hour on most of the 15 channels. 
To establish a reference value, midday periods were sought which had 

no fading with respect to either time or frequency. It was easy to find a 
total of 129 midday hours simultaneously for all channels on 30 different 
days scattered throughout the entire 68-day period. 
Table II gives the summaries for the midday values. The table shows 

the average signal in terms of quantizing level for five consecutive time 
periods of from 9 to 20 days duration. Several points can be made about 

* Assuming adequate ground clearance and no ground reflections. 
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TABLE II-AVERAGE NONFADED VALUES 
(in terms of quantizing levels) 

Time Periods 

1 2 3 4 5 

Pleasant Lake 
4-7 4 4 4.5 4 4.5 
-1 2 2 2 1.5 1.5 
-8 3 3 3 2.5 2.5 
-2 3 3 2.5 3 3 
-9 4 4 4 4 4 
-11 4 4 4 4 3.5 
- 6 4 3.5 3.5 3.8 3.5 

6-11 2 1.5 2 1.5 1.4 
-13 2 2 2 1 1 
-14 2 2 2 ‘) - 2 
-15 1 1 1.5 1 1 
-17 2 2 2 2 2 
-18 2 1.5 2 2 1.5 

6-UD 4 3.5 3.5 3.8 3.5 
6-LD 5 4.5 5 4.5 4.2 

Paulding 
4-6 2 2 2 3 2.8 

Total 
Hours in 
Period 254 375 482 264 263 

Hours 
Used 31 22 24 25 27 

Total 
Days in 
Period 9 16 20 11 12 

Days 
Used 7 7 7 5 4 

Note: Quantizing level 4.X means that the average value was 0.X of a level 
offset from the center of level 4 in the direction of level 5. 

this data. First the maximum peak-to-peak variation on any channel is 
one level or about 2 dB while the average variation is ±t of a level or 
about ±0.5 dB. Further some of the channels, for example, 4-1 and 
6-13, exhibit a definite trend over the 129 hours. The belief is that these 
long-term effects are attributable to the radio equipment. 
In any case, the average deviation of ±0.5 dB is small enough so that 

a single reference value for each channel can be used for the entire 
time period. This simplifies data reduction considerably. 
Now consider the statistics of small scintillations in the received signal 
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power. Table III gives the percent distributions by level for all the chan-
nels for the 129 midday hours. Of course this distribution includes the 
long-term equipment variations in the reference values as well as the 
short-term scintillations. Note that the channels with the minimum 
variations in average value from Table II are those with most of their 
"90 percent hours" in a single level. These are 4-9, 4-11, 6-14, and 6-17. 
It is assumed that the variations on these channels are due only to scintilla-
tion and that this effect can be represented by a probability distribution 
which is normal in dB. The « of this distribution can be found from the 
percent values given in Table III with the results shown in Table IV. 
The agreement between these channels is excellent. The conclusion is 
that the scintillation effect over a 68-day period is universal with a cr of 
0.6 dB superimposed on an equipment variation of ±0.5 dB. The rms 
variation in reference value is then ±0.8 dB. 

4.1 Channel Calibration 

The data on reference values were combined with the MIDAS calibra-
tion curve to calibrate the 15 RF channels in dB. First, all the 6- and 4-

TABLE III-SIIMIVIARY OVER ENTIRE 68 DAYS 
(Data for 129 Hours on 30 Days) 

Channel 
Freq. 

Percent of Time in Level 

1  2  3  4 

Hours with 90 Percent 
or More of Time in Level 

5  1  2  3  4  5 

West 
Unity 

4- 7 0.32 78.25 21.43 63 
- 1 18.1 80.50 1.40 12 93 
-8 17.52 81.34 1.13 0.01 9 88 
- 2 0.01 86.25 13.74 95 
- 9 7.41 91.94 0.65 1 111 
-11 10.36 88.93 0.71 96 
-6 0.77 32.50 66.73 1 16 58 

6-11 28.57 69.60 1.83 9 47 
-13 34.56 63.68 1.76 31 71 
-14 6.01 92.65 1.34 4 118 
-15 83.95 16.01 0.04 94 6 
-17 2.10 94.96 2.94 113 
-18 17.88 78.96 3.16 4 69 1 

6-IID 34.65 65.27 0.08 18 42 8 
6-11) 33.2 66.80 24 66 

Paulding 
4- 6 4.09 58.04 37.87 2 59 42 
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TABLE IV—LONG-TERM STANDARD DEVIATION 

Channel u in dB 

4-9 
4-11 
6-14 
6-17 

0.56 
0.59 
0.58 
0.56 

GHz channels were simultaneously lined up at their reference level which 
was specified as 0 dB. By inspection, 29 dB values were chosen over the 
fading range in order to give minimum ambiguity over the entire set of 
channels; thus each quantizing step on each channel was not used more 
than once. In this way all the 6- and 4-GHz channels were simul-
taneously calibrated; this was done so that an arbitrary subset could 
be chosen for analysis without having to recalibrate. Figure 5 gives an 
example of the results of the calibration procedure for channels 4-7, 
4-2, and 4-9 for fades greater than 20 dB. 
Because the calibration curve is nonlinear, this process requires some 

judgment. The minor combined effects of the nonlinear calibration 
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Fig. 5-Calibration example. 
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curve and differing reference levels for different channels are discussed 
in conjunction with the single channel outage statistics. 

V. SINGLE CHANNEL RESULTS 

The raw data were obtained continuously for almost all of the 68 days 
(5.9 X 106 seconds). Of this total, 5.26 X 106 seconds was used as the 
data base; the balance was lost mainly because of routine radio main-
tenance. To condense the data, a criterion was used to select by computer 
only those time periods which exhibited fading. The start of such a time 
period was defined by, and included, ten consecutive measurements 
containing any one channel faded below approximately 10 dB. The 
end of the time period was defined as that instant for which the next 
110 consecutive measurements on any channel did not have a fade 
exceeding approximately 10 dB. 
From the total of 5.26 X 106 seconds, 7.8 X 106 seconds (14.8 percent) 

were selected for analysis. The average length of the periods selected 
was sizeable. There were only 96 distinct periods selected; these had 
an average length of 8.1 X 103 seconds (2 I) hours.) Further one-half 
of the analysis time was in intervals of four hours or longer. Thus 
any effects due to beginning or ending a time period should be minimal. 
The data were processed by computer to determine the total amount 

of time during which each signal was less than a certain amount. The 
4-GHz single-channel fading results are given on Fig. 6 for fades greater 
than 20 dB. These results and all those to follow are given as a fraction 
of 5.26 X 106 seconds. It is apparent that these statistics are essentially 
the same for all the 4-GHz channels and have the Rayleigh slope, 
that is, 10 dB per decade of probability over the entire range of data 
points. The solid line on the figure is a least-square fit of a Rayleigh 
slope line to the data points, most of which are within ±1 dB as shown 
by the dashed lines. This scatter is due to both the uncertainties in 
the reference value and to the nonlinear calibration. 
The 4-2 points outside the 2-dB corridor from 22 to 29 dB are due 

to the nonlinear quantized calibration. From Fig. 5 note that for 4-2 
the dB values used lie near the bottom of the quantizing levels up to 
31 dB at which point they change to the middle of the quantizing levels. 
This gives the effect noted on Fig. 6, that is, the data points are shifted 
to higher fade values for a constant probability. Other anomalies of 
this type in the single-channel results are explainable in this manner. 
For these results and for all others described here, the polarization of 

the signal (s) had no apparent effect. 
The 6-GHz signal channel results are given on Fig. 7 for fades greater 



1838  THE BELL SYSTE M TEC HNICAL JOURNAL, OCTOBER 1970 

5 cn 
in 

o  

All 

I-
0- 1•  0-3  

o 

o   5 

2 

Ui 

io•  4 

o 
•  5 
o 

o  
u_ 

10-5  
20  25  30  35  40  45 

FADE DEPTH IN dB (RELATIVE TO MIDDAY NORMAL) 

•  a ̀a A 
••‘.. 0,‘ 

\  

• • 

o 4 

o 4 

0  4 

e 4 

V 4 

X 4 

• 4 

- 7 

- 1 

- 8 

- 2 

- 9 

- 11 

- 6 

• ' 

I.  , 

.  ..: 

- e 
.• 'elk 

o  
t 

a 
• 

• 
e, 

Fig. 6—Fade-depth distribution; 4-GHz channels. 

than 20 dB. Again all 6-GHz channels have essentially the same statistics 
with the solid line being the least-squares fit with a Rayleigh slope. 
Almost all data points are within ±1 dB of the average above 40 dB 
except for 6-15 from 37 to 40 dB. This discrepancy is attributable to 
nonlinear quantizing as discussed for 4 GHz. The increased scatter 
above 40 dB is thought to be due to decreasing measurement sensitivity. 
The single-channel results for the space diversity groupingl° (the 

6-18 signal is received on the horn reflector and two dishes) and for 
the 4-GHz channel on the Paulding route are given on Fig. 8. The lines 
are the least-squares fit with a Rayleigh slope. 
Figure 9 gives a summary of the single-channel statistics and for 

comparison, the true Rayleigh curve. The equations of the least-square 
lines are 

West Unity  4:  P = 0.25 10-"" 
6:  P = 0.53 1.0-Fil°  

SD:  P = 0.43 10-P/I0  
Paulding  4:  P = 0.77 10-"" 

where F is the fade depth expressed in dB (F  20 dB). The channel 
with the most fading was the 4-GHz Paulding followed by 6 GHz, space 
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diversity grouping (SD) and 4 GHz. The 4-GHz channels have signifi-
cantly less fading than either 6-GHz (by 3.3 dB) or 4-GHz Paulding 
(by 4.9 dB). The 0.9-dB difference between signals on antennas of 
different height, that is, 6 GHz compared to SD, is thought to be more 
apparent than real, although it may be a small height effect. 
It should be noted that having essentially the same fade distribution 

for the 6-18 signal as received on both the dishes and horn reflector 
implies two things. First, the effect of 6-GHz multimoding in the horn 
reflector, circular waveguide, and combining networks must be negligible 
because the dishes use dominant mode elliptical waveguide and no 
combining networks. Secondly the effect of decreased clearance at 
midpath for the lowest dish is less than 0.9 dB. 
One way of explaining the significant differences shown on Fig. 9 is 

to examine them in terms of the terrain and the radio path lengths. 
Pearson' has given data taken in Britain on the relation between worst-
month fading and the terrain as characterized by the path roughness.* 

* Path roughness is the standard deviation of terrain height measurements at 
one-mile intervals on a line between transmitter and receiver with the end pointe 
of the path excluded. 
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Assuming that the 68-day period is equivalent to the British worst-
month data, Table V can be compiled from Fig. 9 and Ref. 7. 
The 6-GHz British point has been obtained by assuming that the 

path length is 50 percent longer at 6 GHz than it is at 4 GHz; that is, 
the path length is cast in terms of wavelengths. 
There is good agreement between the British and the West Unity data. 

Thus the difference in depth of fade for a given percentage of time is 
apparently directly related to the terrain roughness and to the path 
length in wavelengths. Of course this is not sufficient evidence to justify 
the extensive use of these parameters. It has long been known, at least 
qualitatively, that fading is more severe over smooth terrain or water 
than on rough paths of comparable frequency, length, and atmospheric 
conditions. 

VI. FREQUENCY DIVERSITY RESULTS 

The simultaneous measurements on a number of different frequencies, 
together with computer processing of the differences in signal level with 
frequency, have provided much more quantitative information than 
previously available on the improvements to be expected from the use 
of frequency diversity. The diversity results specify the total amount of 
time during which the stronger of two signals was less than a certain 
amount (this means that both signals simultaneously were less than 
the given amount). 

6.1 6 GHz 

The results for the 6-GHz pairs for fade depths  20 dB are given 
on Figs. 10 through 16. Fifteen pairs were obtained from the six 6-GHz 
I channels and they are grouped according to frequency separations as 
shown in Table VI. 
Four lines are shown on each figure. The uppermost is the nondiversity 

line which is the average single-channel fade-depth distribution as dis-

TABLE V—PATH ROUGHNESS EFFECTS 

0.1 Percent Fade Depth 

' Roughness British West Unity 

Pleasant Lake 4 GHz 16.0 meters 23.5 dB 24.0 dB 
6 GHz 16.0 meters 29.0 dB 27.3 dB 

Paulding 4 GHz 8.5 meters 28.0 dB 28.9 dB 
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Fig. 10-6-GHz frequency diversity; 30-MHz separation. 

cussed previously. The bottom solid line which is tagged with a value 
of a parameter mR is a curve fitted to the data. The dashed lines are 
relative to the fitted line and denote a ± 2-dB corridor which is an estimate 
of the uncertainties in the data due to nonlinear calibration and reference 
value determination. The fitted curve is obtained by assuming that the 
diversity data is jointly Rayleigh distributed with respect to the non-
diversity curve. The parameter mR is related to the amount of correlation 
between the two components of the distribution. This concept will be 
discussed in more detail later. 
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Inspection of these results (Figs. 10 through 16) shows that for a 
fixed frequency separation, the scatter of the data points with respect 
to the fitted diversity line is small below 30-dB fade depth but increases 
somewhat for larger fade depths.* However for fade depths of 40 dB 
or less, all the data points lie within the ±2-dB corridors except for 

* On the figures, 10-6 = 5.26 seconds which means that there were few samples 
at the higher fade depths. 
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17/18 on Fig. 10. This latter result is an anomaly because all other 
combinations which include 6-17 or 6-18 are quite consistent within 
their group. In fact, the consistency of the data points for different 
pairs having the same frequency separation is remarkable. Also note 
the excellent agreement between the data and the fitted line for the 
pair with the maximum frequency spacing (210 MHz). 
As the frequency separation increases, it is to be expected that the 
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diversity performance will improve. This is borne out on Figs. 10 through 
16 and is described by increasing values of mR for increasing frequency 
separation. The performance of frequency diversity relative to non-
diversity will be discussed in a later section. 

6.2 4 GH: 

The results for the 4-GHz frequency diversity pairs are given on 
Figs. 17 through 24. Twenty-one pairs were obtained from the seven 
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different TD-2 channels and they are grouped according to frequency 
separations as shown in Table VII. 
The lines on the figures have exactly the same meaning as in the 6-GHz 

case discussed in the previous paragraphs. 
Inspection of the results shows that the scatter of the points with 

respect to the fitted diversity line is small for fade depths less than 30 
dB except for 7/1 on Fig. 17 which has been ignored as an anomaly. 
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For greater fade depths, the scatter increases and the data points tend 
to fall off faster than the fitted line except for Fig. 23 which has a distinct 
upward bulge. The fast rolloff might result from noise or interference 
effects in the radio system. Since the 6-GHz results do not exhibit these 
effects, the MIDAS system and the data reduction procedures are 
probably not the source of this rolloff since all of the radio channels 
were treated identically. Further some of the pairs follow the fitted 
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line without any rolloff, for example, 4-9/11 on Fig. 21 and 4-7/2 on 
Fig. 20. The reasons for the anomalies are not explicitly known but it is 
assumed that they are not generated by multipath fading. In any case, 
the fitted line is a conservative approximation to the data except for 
Fig. 23. 
Just as in the 6-GHz case when the frequency separation increases, 

the diversity performance improves. This is described by increasing 

ABSCISSA 

2 

5 

io-7 

NONDIVERSITY 

MR = I° 

\ 
\ 
\ • \ 
\ 

\ 
\ 

\ 

\ 
N 

0 \ 

\ 
\ 

\ 
‘ 
\ 

N 

s 
N 
\ 
N 

% 
\ 
‘ 
N 

011/18 

\ 
\ 
‘ 
\ 

‘ 
\ 
‘ 
\ 

\  N 
‘ 
\ N 

\ 
N 
\ 

% 
\ 

, \ \ \ 

\ 
‘ 
\ 

\ 
N 

20  25  30  35  40  45 

FADE DEPTH IN dB (RELATIVE TO MIDDAY NORMAL 

Fig. 16-6-GHz frequency diversity; 210-MHz separation, 



LINE-OF-SIGHT PROPAGATION  1849 

TABLE VI-6-GHz FREQUENCY DIVERSITY RESULTS 

Figure 
Frequency 

Separation (MHz) 
Number 
of Pairs 

10 
11 
12 
13 
14 
15 
16 

30* 
60 
90 
120 
150 
180 
210 

3 
3 
3 
3 
1 
1 
1 

* This is also the nominal bandwidth of the working channel. 

values of mR for increasing frequency separation and will be discussed 
in a later section. 

VII. DESCRIPTION OF SIMULTANEOUS FADING AT DIFFERENT FREQUENCIES 

Multipath fading is caused by complicated interference phenomena 
and it is possible that various descriptions of simultaneous fading are 
useful. Models for fading can be postulated on two levels. First there 
is a mathematical (statistical) description of the characteristics of 
multipath fading. Second, on a more fundamental level, there is the 
model for the physical process that creates fading and from which the 
mathematical (statistical) model could be derived. At the present 
time there is no physical process model which gives results that agree 
well with the experimental data. On the other hand, a statistical model 
based on the joint Rayleigh probability distribution has been useful 
in the description of space diversity, and it is applied here (with con-
siderable success) to frequency diversity. However the physical process 
model is still the ultimate goal and the experimental data and empirical 
formulas presented here should aid in attaining this goal. 
The following discussion briefly gives the relevant details of the joint 

Rayleigh distribution as applied to the data. For a Rayleigh variate, 
the probability that the envelope voltage R1 of the signal normalized 
to its rms value has a value less than L is 

Pr(R, < L) = 1 — exp( —L2).  (1) 

Similarly the probability distribution of the envelope voltage R 2 of a 
second signal normalized to the rms value of the first signal is 

L2 
Pr (R1 < L) = 1 — exp (--i) (2) 

v 
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where 
v2 = (/4).,((e)„,,)-1 .  (3) 

The joint probability distribution function of the variables RI and R, is' 

L./0-k')  (L/n)./0-k.) 

Pr (R, < L, R, < L) = .1:  dX, f o dX,P(X, , X2) 

(4) 
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with 

P(X„ X2) = (1 — k2)I0[2k(X1X2) 1/2 ] exp[ — (X1 + X2) 

where le is the correlation coefficient of e and e . For use in this paper 
m„ has been defined as 

mR = 103(1 — k 2).  (5) 
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Typical computed results are shown in Fig. 25 for y2 = 1. For deep fades, 
asymptotic forms of equations (2) and (4) are quite useful. 

Pr(R2 < L)  L2v-2 (6) 

and 
(10 3/mR)(L 4/2) 2). 

Pr(R, < L,  < L)  (7) 

The region of validity of equations (6) and (7) depends on y, L, and mi2 . 
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For example it is the region in Fig. 25 where the lines are parallel to 
the mR -= le line. 
The joint Rayleigh distribution, calculated from equation (4), was 

fitted to the diversity data points by overlaying plots of the joint dis-
tribution for various values of mR and choosing the one with the best 
apparent fit. The results of this are the bottom solid lines on the diversity 
plots with the value of mR next to each line. In the fitting, somewhat 
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more weight was given to the values at 30-dB fade rather than at 40 dB 
because of relative sample size. Also note that the curvature of the 
joint Rayleigh fits the curvature of the data points for the smaller fade 
values. 

VIII.  IMPROVE MENT 

The quantity of interest in any diversity scheme is the amount of 
improvement relative to the nondiversity performance. Here this per-
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formance measure is defined as the ratio of fractional outage of the 
nondiversity signal to that of the diversity signal for a fixed fade depth. 
Description by this factor (/) is convenient because it avoids detailed 
description of the many schemes that are used to process the two signals. 
The best of these switching or combining schemes will provide per-
formance equal to or somewhat better than that described by the fade 
reduction factor. 
The fraction of the total time that a nondiversity signal is faded 
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depends on frequency, path length, terrain, antenna placement, and 
climate. The last of these determines the fraction of the total time that 
fading conditions exist on a given path. The periods used in analysis 
were those for which fading conditions were in existence. Any change 
in the total time of such fading periods would have no effect on the 
statistics since they pertain to the fading phenomena and not to the 
length of time (assuming an adequate number of samples are available). 
However, the statistics have been normalized by adding in the remaining 
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or nonfading time. The effect of this or any like change in the amount 
of the nonfading time is a uniform shift in the nondiversity and diversity 
curves without changing their shape or their ratio; that is, the fractional 
time scale is multiplied by a constant. This last fact has been heavily 
utilized in the analysis where this ratio has been called the improvement 
factor (/). Note that the improvement factor does not depend on how 
often fading conditions exist but rather upon what happens within 
these selective fading periods. 
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TABLE VII- 4-GHz FREQUENCY DIVERSITY RESULTS 

Figure 
Frequency 

Separation (MHz) 
Number 
of Pairs 

17 
18 
19 
20 
21 

22 

23 

24 

20* 
60 
80 
100 
140 
160 
220 
240 
260 
300 
320 
340 
400 
420 

2 
2 
3 
2 
1 
2 
1 
1 

1 

* This is also the nominal bandwidth of the working channel. 

Referring to the asymptotic forms for the joint Rayleigh model, 
equations (6) and (7), the asymptotic form of the improvement factor 
(I) for Rayleigh fading can be stated as 

Pr (R1 G L)   (mR/10')  
I —  (8) 

Pr (RI < L, R2 <  L) Pr (Ri < L) 

where, for the time being, it is assumed that both signals have the same 
rms value (that is, y2 •-- 1). 
The experimental improvement factors were obtained from the ratio 

between the fitted diversity line and the nondiversity lines for the 6-GHz 
and 4-GHz frequency pairs at a 40-dB fade depth. The values are plotted 
on Fig. 26 versus the parameter àf/f. Here f is taken as 3950 MHz for 
the 4-GHz band and 6175 MHz for the 6-GHz band and Af is the average 
frequency separation for a grouping on a single figure, for example, 
Af -= 240 MHz for Fig. 22. If the ±2-dB uncertainty were included, 
the points plotted on Fig. 26 would change to vertical lines between 
1.58 and 1/1.58 of the average value shown. Even with this large range 
of uncertainty, it appears that the improvement and el are linearly 
related as shown by the lines on the figure. The equations of the lines are 

4 GHz: I = 1 (ML-2 for I  10,  good accuracy; 
2 f 

(9) 

6 GHz: I = 1 M I  for 1 I  10, less accurate but conservative; 
f 
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where F = —20 log L is the fade depth in dB. This is the asymptotic 
form of the formulas including the variation with fade depth as shown 
in equation (8). 
Using equation (8) as a guide, it is conjectured that the experimental 

improvement can be separated into two parts which contain respectively 
the nondiversity fading and the frequency diversity effect, that is, 

m/102 
/ —   P(L)  (10) 
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where P(L) is the measured probability that a nondiversity fade exceeds 
—20 log L dB and m is a frequency diversity parameter. Of course both 
these quantities are functions of frequency, path geometry, terrain, 
and antenna placement. 
Consider first the variation of m with el and secondly the difference 

in improvement between the 4-GHz and 6-GHz bands. 
The nondiversity results [P(L)] can be written as (see Fig. 9) 

6 GHz: P. = (.53)L2, (11) 
4 GHz: P4 =  (.25)L2, 

where F = —20 log L is the fade depth in dB. Then from equations 
and (10) 

6 GHz: m6 = (103)W ML-2(.53)L2, 

= 132.5 41  • 
f 
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c 

(9) 

(12) 

Fig. 26-1966 West Unity in-band frequency diversity improvement ratio at 
40-dB Fade Depth (L = 0.01). 



LINE-OF-SIGHT PROPAGATION  1861 

4 GHz: m4 = (10a)W (A1)L-2(.25)L2 , 
1 (13) 

= 125 — f • 

The difference between mo and m4 is small. Thus as desired m depends 
primarily upon normalized frequency spacing and not upon either the 
nondiversity fading distribution or the radio frequency band (4 vs 6 GHz). 
For further use it is assumed that m = 130 if/f. 
Using equations (9) and (10) again and forming a ratio gives 

I  P (14) 
I.  P. 

which agrees very closely with the experimental ratio of 2 shown on 
Fig. 26. Thus equation (10) correctly predicts the relative improvement 
between the 6- and 4-GHz bands. Further this relative improvement 
depends upon the nondiversity fading results and not upon the normalized 
frequency spacing. 
To recapitulate, the asymptotic value of improvement of an in-band 

frequency diversity pair relative to the nondiversity signal at a fade 
depth of —20 log L dB can be stated for the experimental data as 

0.13 Af 

I -   ( P(L)  15) 

where P(L) is the probability that the nondiversity signal fades below 
the given depth. In this formula, I is not affected by the relative amount 
of time that fading conditions do or do not exist. However both the 
numerator and denominator in equation (15) would change by the 
same multiplicative constant when the ratio of nonfuling to fading 
time changes. Thus the terms P(L) and 0.13 ef individually apply 
only to the experimental path but their ratio is more generally useful. 
This ratio (I) characterizes frequency diversity during multipath 

fading periods. Although I was obtained from experimental data on 
one path, it should pertain to other paths of about the same length 
but having different terrain and climate. The terrain and climate play 
a major role in determining the fraction of time that multipath fading 
conditions exist but they probably will have only a secondary effect 
on the relation between a nondiversity signal and a diversity signal 
within a multipath fading period. 
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IX. CROSSBAND FREQ UE NCY DI VERSITY 

Results were also obtained for a subset of the 4-Gliz and 6-GHz 
channels where the diversity pair consists of one channel from each group. 
The channels used for analysis were 4-2, 4-1, 4-7, 4-6 and 6-11, 6-15, 6-18. 
The results are given in Figs. 27 through 30. The groupings for each 
figure are for one of the 4-GHz channels in diversity with each of the 
6-GHz channels. As before, there are several curves on each figure. The 
two uppermost are the average nondiversity results for each band with 
the 6 GHz being 3.3 dB poorer than the 4 GHz for a fixed probability. 
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Again the joint Rayleigh distribution was fitted to the data by over-
laying plots of the joint distribution for various values of mi, . In this 
case the rms values are unequal by an amount 

OT 
—10 log v2 = 3.3 dB 

V2 =  0.47. 

(16) 

The asymptotic form of the improvement factor / between the diversity 
curve and the top nondiversity curve (6 GHz) is given as in equation (8) 
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mR/103  
Pr (R, < L) 

This corresponds to the improvement obtained if a 4-GHz channel were 
used to protect a 6-GHz channel. 
The asymptotic ratio between the bottom nondiversity curve (4 

GHz) and the diversity curve is then 

(17) 

/m,„ = v2 mR/1°3  (18) Pr (R, <L) — v21- 
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which corresponds to the improvement obtained if a 6-GHz channel were 
used to protect a 4-GHz channel. In these formulas, nzi, and Pr (R, < L) 
are Rayleigh quantities with mR related to the correlation coefficient and 
—20 log L equal to the fade depth in dB exceeded by the envelope voltage 

Inspection of the results shows that the points have more scatter than 
the 6-GHz in-band diversity data and just about the same scatter as the 
4-GHz in-band diversity data, that is, the fitted line is a good repre-
sentation of the data from 20 to 30 dB with increasing divergence for 
greater fade depths. 
As to quantitative interpretation, the results do not appear to be as 
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yielding to analysis as the in-band diversity. This may result because the 
frequency spacings are a significant percentage of the average center 
frequency, for example, spacings of 1775 MHz (4-6/6-11) to 2405 MHz 
(4-7/6-18). The improvement values obtained from the fitted lines on 
the figures at 40-dB fade depth are presented in Table VIII. 
The results do not show a consistent behavior as 9. function of frequency 

separation. 4-7, which has the largest frequency separation, shows slightly 
more improvement than 4-1 or 4-2 but less than 4-6 which has the smallest 
frequency separation. However, 4-2, 4-1, 4-7 are tightly bunched in 
frequency whereas 4-6 is about 300 MHz closer to the 6-GHz band. 
In any case, these results are comparable to the in-band diversity re-

sults, that is, the improvement from crossband diversity was not sig-
nificantly better than in-band diversity of two percent or more separation. 
Thus there may be a saturation effect which will appear for frequency 
separations above say 10 percent. There is neither enough data nor a 
theory to prove or disprove such speculation. 

X. CROSS ROUTE DIVERSITY 

Diversity results were obtained for various 4-GHz and 6-GHz channels 
on the Pleasant Lake hop in diversity with the single 4-GHz channel 
measured on the Paulding hop. The previous data strongly implies that 
it may be very misleading to rely on the results for a single channel. 
However, this data is included for completeness. To review: the Paulding 
data is for a different path but for the same time periods. One would there-
fore expect the diversity performance to be very good since the signals 
from the pair of paths should be reasonably independent. However this 
did not appear to be the case. 
The data are shown in Figs. 31 and 32 in the groupings presented in 

Table IX. The lines on the figure have exactly the same meaning as the 
corresponding ones in the crossband section. In this case the 6-GHz fit 

TABLE VIII—CROSSBAND IMPROVEMENT VALUES 

Fig. 27 
Fig. 28 
Fig. 29 
Fig. 30 

250 
200 
150 
500 

125 
100 
75 
250 

* /. 1„ = v /„, from equation (16) with T., ' = 0.47 but 0.5 has been used in this 
table for convenience. 
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1 867 

is good but the 4-GHz fit is poor below 30 dB in that the data has an 
upward bulge. There is no explanation available for this anomaly. 
In any case, the improvement obtained when the two channels in the 

diversity pair are on different hops is not significantly better than in-band 
diversity (see Fig. 26). This is surprising and raises questions about the 
correlation between fading on adjacent hops, for example, the maximum 
possible diversity improvement may be limited to values less than that 
expected from independent fading. 
To repeat, this is based on a single channel and as such the data base 
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TABLE IX-CROSS-ROUTE RESULTS 

Figure Diversity Pairs /....  

31 6-11 with 4-6 PA 
6-18 with 4-6 PA 

400 300 

32 4- 7 with 4-6 PA 
4- 6 with 4-6 PA 

800 250 

*  = y2 
4/4-PA, y2 = 0.322 (used 0.31) 
6/4-PA, y2 = 0.715 (used 0.75) 
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is simply not sufficient to draw any profound conclusions about cross-
route effects. 

XI. COMPARISON OF FREQUENCY AND SPACE DIVERSITY IMPROVEMENT 

The empirical results for space diversity given in Vigants" can be 
compared with those obtained here for frequency diversity. The improve-
ment factor for space diversity is 

82  
1,„ - 2.75DX 10"" 

where 

(19) 

s is vertical separation between equal antennas in feet, 
D is path length in feet, 
X is wavelength in feet, and 
F is fade depth in dB. 

Using D = 28.5 miles and equation (9) gives the various diversity 
improvement factors as presented in Table X. 
These are plotted in Fig. 33 for a fade depth of 40 dB. Several points 

are immediate. First the improvement increases with frequency for space 
diversity and decreases with frequency for frequency diversity; that is, 
space diversity becomes relatively more effective as the operating fre-
quency increases. The maximum improvement for frequency diversity 
is 100 for the maximum allowable spacing of 4 percent in the standard 
6-GHz frequency plans. Space diversity of 26 feet will give this improve-
ment. Since this spacing is reasonable, it can be said that space diversity 
is "better" than frequency diversity at 6 GHz. At 4 GHz, the correspond-
ing values are I = 625 for 12.5 percent and 79' spacings. In this case, 
frequency and space diversity are comparable in performance. 
These comparisons have been made only for one-for-one space and 

frequency diversity on a single hop; additional data and studies are 
needed to clarify our understanding. 

TABLE X—DIVERSITY IMPROVEMENT FACTORS 

4 GHz  8GHz 

Frequency  0.5( f, f )10'11°  0.25( ef )10F10 

Space  (s2/106)10Fn°  1.5(e/105)10'm 
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Computed Transmission Through Rain at 
Microwave and Visible Frequencies 

By DAVID E. SETZER 

(Manuscript received May 5, 1970) 

In this paper we present tables which contain the Mie scattering coef-
ficient, absorption coefficient, extinction coefficient, equivalent medium index 
of refraction and phase delay for raine conforming to the Laws and Parsons 
drop-size distribution. These transmission characteristics have been calcu-
lated for microwave frequencies of interest in common carrier radio relay 
systems, 300 to 1.43 GHz, that is, 0.1 to 21.0 cm, at rain rates from 0.25 
to 150.0 mm/hr. We also include the extinction coefficients for the visible 
wavelength 0.6328 g. 
The microwave tables were generated by using a Mie scattering computer 

program similar to that designed and previously reported by Deirmendjian. 
The calculations at 0.6328 g were made separately by employing the usual 
assumptions for droplets with very large circumference to wavelength ratios. 

L INTRODUCTION 

The Mie extinction properties are of basic importance to those 
interested in developing an understanding of the influence of rainfall 
on open air communication systems. In this connection we have gen-
erated a rather extensive set of tables of extinction properties of rain. 
The tables have been used within Bell Laboratories to study a variety 
of transmission problems, examples of which are the investigation of 
satellite ground station interference by Gusler and Hogg (1970),* the 
study of microwave transit time variations by Gray (1970), Pierce's 
(1969) investigation of the problems associated with the synchronization 
of digital networks and Setzer's (1969) study of the extinction properties 
of atmospheric aerosols. ' A set of tables with similar results was 
published by Medhurst (1965); however, his presentation. only includes 

* The attenuation constants used by Gusler and Hogg were based on empirical 
data. The calculated values presented in this paper were used for comparison purposes 
only. 

1873 
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total attenuation.5 Our tables include the Mie scattering coefficient, 
absorption coefficient, extinction coefficient, the van de Hu1st equivalent 
medium index of refraction and the van de Hu1st phase delay for rains 
conforming to the Laws and Parsons drop-size distribution. These 
transmission characteristics have been calculated for incident micro-
wave wavelengths of 0.1, 0.2, 0.3, 0.5, 1.0, 1.62, 1.88, 2.73, 5.0, 7.5, 10.0, 
15.0 and 21.0 cm (corresponding to 300, 150, 100, 60, 30, 18.5, 16, 11, 
6, 4, 3, 2 and 1.43 GHz) at rain rates of 0.25, 1.25, 2.5, 5.0, 12.5, 50.0, 
100.0 and 150.0 mm/hr. Also included are the extinction coefficients 
for the visible wavelength 0.6328 12 at the above rain rates. 
The calculations in the microwave region were performed on a 

GE 635 computer using a scattering program similar to that previously 
presented by Deirmendgian (1963).6 Since the raindrop circumference-
to-wavelength ratio (rd/X), that is, size parameter, for the visible 
wavelength, is outside the range of validity of the computer program, 
approximate characteristics were calculated for 0.6328 1.1. The usual 
assumptions for spheres with very large parameters were employed. 
The indices of refraction used in this report and shown in Table I 

are for a rain temperature of 20°C. They were obtained by cross check-
ing many of the standard optical and microwave references and are 
thought to be reliable. 

II. DROPLET SIZE DISTRIBUTION 

All computations in this paper are based on the assumption that 
raindrops are spherical and the distribution of rain is as was measured 
by Laws and Parsons and quoted by Kerr (1951).7 The Laws and 
Parsons distribution is presented in Table II as the percentage of 
total water volume within specific size ranges. In order to use the 
computer program, it is necessary to express the distribution in terms 
of the number of droplets per unit volume within specific size ranges. 
If the droplets are assumed to fall at the terminal velocity V0, that is, 
up and down drafts are neglected, then the conversion is 

di) rz.--!, Rf•P(d,, , d,)/[V(a)Vo(a)],  (1) 

where D(di, , d1) represents the size distribution in units of droplets 
per unit volume in the droplet diameter range di+, to d, . Henceforth, 
the diameter range di+, to d, will be called M i . R f is the total rainfall 
rate which is typically specified in mm/hr; P(d,, , d,) is the volume 
percentage rainfall in the diameter range M i as measured by Laws 
and Parsons; à is the average diameter in the range ,Adi ; and V(à) 
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is the volume of a sphere of diameter à. The terminal velocities of 
raindrops Vo(à) are presented in Table III.' 
For an example of the function D(d,,i , c/) resulting from the use of 

equation (1), refer to Fig. 1. 

III. TRANSMISSION PARAMETERS FOR MICRO WAVE FREQUENCIES 

The Mie coefficients and the equivalent index of refraction of the 
rain medium are defined by van de Hu1st (1957).8 For a detailed des-
cription of these parameters, please refer to his work. Essentially, 
the scattering coefficient  (X) and the absorption coefficient 13.b. (X) 
are measures of the total energy scattered and absorbed by a unit 
volume of rainfall. In the simple case of a single scattering aerosol 
the ratio of intensity of the transmitted beam /,(X) to that of the 
incident beam /o(X) is 

I(X)/I0(X) = exP[— Oext(X) ./],  (2) 

where / is the length of the propagation path through the rain and the 
extinction coefficient p.,(x) is 

= 0..(x) + o.b.(X).  (3) 
A plane-parallel medium containing many scattering particles can 

be represented by a slab of homogeneous material having a complex 
refractive index fn. Carefully note that this sort of representation can 

0.2  0.3 0.4  0.6  1.0  2.0  3.0 4.0 5.0 
DIAMETER (MILLIMETERS) 

Fig. 1—Laws and Parsons drop-size distribution for 150 mm/hr rain. 
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be designed, by selecting the appropriate value of e, to preserve the 
input-output relationships but all detail of the scattering process 
within the medium is lost. According to the van de Hu1st (1957) defini-
tion of ñí, the amplitude and phase of the incident wave are changed 
by the slab in the proportion 

exp[ — (211/ X) Im(1 — fri)] • exp[— (2r/i/X)Re(e, — 1)],  (4) 

where the first term is recognized as defining the amplitude ratio and 
the second the phase.' The values of 151 ezt  Ad>. e eisost , e and the phase 
angle described above have been calculated for the specified microwave 
frequencies. The results appear in Tables IV through XVI. The reader 
is advised to use special care when attempting to apply the van de Hulst 
phase angle and medium index ni. It is recommended that van de Hulst's 
derivation be studied carefully so that the meaning and limitations of 
these functions are well understood. For example, light reflected from 
the slab cannot be derived by using the refractive index ni, but should 
be computed by means of the actual scattering functions. 
Also, it should be noted that although ñí is calculated, (a — 1) is 

used to determine the phase angle. Since el is very close to one, cancel-
lation of the leading terms reduces the significant places in. the numerical 
value of the phase angle to one or two at most. Consequently the values 
given in the phase change column of Tables IV through XVI exhibit 
noticeable discontinuous jumps. 

IV. TRANSMISSION PARAMETERS FOR 0.6328 1.t 

The Mie coefficients Oi are defined as 

e,(x) = f‘c 7,(X, r)n(r) dr, i = 1, 2, 3,  (5) 

where r is the droplet radius; n(r) is the continuous size distribution, 
and  r), i = 1, 2, 3 are the extinction, scattering and absorption 
cross sections, respectively for droplets of radius r. The smallest ratio 
of raindrop circumference to wavelength for the combination of a Laws 
and Parsons rain and 0.6328 µ is approximately 1500. For most purposes, 
the laws of geometric optics can be applied in such cases and therefore 

r)  27rr2.  (6) 

Also, since the index of refraction of water at 0.6328 ti is a real number, 
1.33, the absorption coefficient will be zero. It follows from equations 
(3), (5) and (6) that 

13,0.6328p) = fi„„.(0.632811),  (7) 
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2/r f r2n(r) dr.  (8) 

This expression and the Laws and Parsons distribution were used to 
generate Table XVII. In this connection the Laws and Parsons dis-
tribution D(di+, , di) was used to approximate the continuous function 
n(r). 

V. GRAPHICAL REPRESENTATION 

For the purpose of illustration, a graph of extinction coefficients 
versus total water content and rain rate is included (see Fig. 2). Not 
all wavelengths are represented because some of the curves are too 
closely grouped in the neighborhood of those shown. Those that were 
excluded, were excluded for reasons of clarity only. One point of some 
interest is the location of the attenuation curve for 0.6328 it in Fig. 2. 
Note that it represents a reversal of the trend exhibited as wavelength 
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Fig. 2—Rainfall water content and rain rate versus extinction coefficient eoxt. 
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TABLE I-INDEX OF REFRACTION OF WATER AT 20°C 
Wavelength (cm)  Index of Refraction 

0.10 
0.20 
0.30 
0.50 
1.00 
1.62 
1.88 
2.73 
5.00 
7.50 
10.00 
15.00 
21.00 
0.6328 

2.587 - 0.937(i) 
3.039 - 1.575(i) 
3.505 - 2.007(i) 
4.364 - 2.521 i) 
5.900 - 2.900 i 
7.001 - 2.544 i 
7.500 - 2.500 i 
8.070 - 1.990 i 
8.670 - 1.202 
8.770 - 0.915(i) 
8.871 - 0.628(i) 
8.916 - 0.422(i) 
9.000 -0.275(1) 
1.33 -0.0(i) 

TABLE II- LAWS AND PARSONS DROP-SIZE DISTRIBUTIONS FOR 
VARIOUS PRECIPITATION RATES 

Drop 
Diameter (cm) 

Rain Rate (mm/hour) 

0.25 1 1.25 2.5 1 5 1 12.5 1 25 50 1 100 1 150 

Percent of Total Volume 

0.05 28.0 10.9 7.3 4.7 2.6 1.7 1.2 1.0 1.0 
0.1 50.1 37.1 27.8 20.3 11.5 7.6 5.4 4.6 4.1 
0.15 18.2 31.3 32.8 31.0 24.5 18.4 12.5 8.8 7.6 
0.2 3.0 13.5 19.0 22.2 25.4 23.9 19.9 13.9 11.7 
0.25 0.7 4.9 7.9 11.8 17.3 16.9 20.9 17.1 13.9 
0.3 1.5 3.3 5.7 10.1 12.8 15.6 18.4 17.7 
0.35 0.6 1.1 2.5 4.3 8.2 10.9 15.0 16.1 
0.4 0.2 0.6 1.0 2.3 3.5 6.7 9.0 11.9 
0.45 0.2 0.5 1.2 2.1 3.3 5.8 7.7 
0.5 0.3 0.8 1.1 1.8 3.0 3.6 
0.55 0.2 0.5 1.1 1.7 2.2 
0.6 0.3 0.5 1.0 1.2 
0.65 0.2 0.7 1.0 
0.7 0.3 

TABLE III-RAINDROP TERMINAL VELOCITY 

Radius, cm Velocity, m/see 

0.025 
0.05 
0.075 
0.10 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.30 
0.325 

2.1 
3.9 
5.3 
6.4 
7.3 
7.9 
8.35 
8.70 
9.0 
9.2 
9.35 
9.5 
9.6 
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TABLE XVII-MIE EXTINCTION PARAMETERS AT 0.6328 be WAVE-
LENGTH, H20 INDEX OF REFRACTION 1.33-0.0i, FOR LAWS AND 

PARSONS RAIN 

Rain Rate 
(mm/hr) 

Scattering Coef. 
(km)-1 

Absorption Coef. 
(km)--' 

Extinction Coef. 
(km)-' 

0.25 0.08093 0.00 0.08093 
1.25 0.2482 0.00 0.2482 
2.5 0.3977 0.00 0.3977 
5.0 0.6519 0.00 0.6519 
12.5 1.273 0.00 1.273 
25.0 2.069 0.00 2.069 
50.0 3.221 0.00 3.221 
100.0 5.689 0.00 5.889 
150.0 8.046 0.00 8.046 

decreased from 21 to 0.1 cm. This phenomenon is also illustrated in 
Fig. 26 of a paper previously presented in this journal by Chu and 
Hogg (1968).9 It serves to warn the reader that he should be very 
careful when applying the common rules of thumb relating wavelength 
and attenuation. 
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A Linear Phase Modulator for 
Large Baseband Bandwidths 

By C. L. RUTHROFF and W. F. BODTMANN 
(Manuscript received June 3, 1970) 

A linear phase modulator with a stable carrier frequency would be a 
useful component in radio systems—especially in coherent phase-shift-
keyed PCM systems with baud rates of the order of 100 megabauds per 
second. 
The Armstrong modulator appears adequate for these applications; the 

circuit functions required for its realization are well understood and 
amenable to the techniques of integrated circuitry. 
In this paper, an analysis of the signal and distortion properties of 

the Armstrong circuit and variations of it are presented and applied to 
three system applications: as a replacement modulator for existing low-
index analog systems; for multilevel coherent phase-shift-keyed PCM 
systems; and for frequency-division frequency-modulation multiplex 
systems which are of interest in radio trunk systems. 

I. INTRODUCTION 

A linear phase modulator with a stable carrier frequency would be 
a useful component for the following three applications. 

(i) As a replacement modulator for the reflex Klystron in an 
otherwise all solid-state repeater of the TL System.' 

(ii) For frequency-division frequency-modulation multiplex systems 
with baseband bandwidths of the order of 100 MHz.' 

(iii) For multi-level coherent phase-shift-keyed PCM systems with 
baud rates of the order of 100 megabauds per second.' 

The modulator described in this paper appears adequate for these 
applications. It is based upon the original Armstrong circuit which is 
well suited to large baseband bandwidths and is reasonably linear for 
low modulation indexes.' An important feature of this method of 
modulation is that the carrier frequency can be stable with respect 

1893 
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to ambient effects since it can be derived from a temperature-stabilized 
quartz crystal oscillator. The baseband bandwidths which may be 
achieved are those for which low-index double sideband amplitude 
modulators can be built. 
An analysis of distortion is presented for the types of baseband 

signals used in the three applications discussed above, and a circuit is 
described in which the phase deviation can be increased to any desired 
value. 

II. CIRCUIT DESCRIPTION 

The Armstrong modulator is illustrated in Fig. 1. The baseband 
signal is modulated in a double-sideband suppressed-carrier amplitude 
modulator with a sufficiently low index of modulation to ensure suitable 
linearity. At the modulator output another carrier, 900 out of phase 
with the first, is added to the sidebands. The residual AM is removed 
by the limiter whose output is a low-index phase-modulated signal. 
The phase distortion can be made arbitrarily small by choice of the 
carrier to sideband power ratio at the limiter input; the result is a 
nearly linear, low-index phase-modulated signal. 
Let the baseband signal be 

e = v(t), with  I v(t) I 1.  (1) 

The output of the double-sideband suppressed-carrier amplitude modu-
lator is 

e. = mv(t) cos wat (2) 

where m S 1 is the index of modulation. 

A quadrature carrier is added to e. in approximately the correct 
phase to obtain 

e, = sin (wat  E)  mv(t) cos wat. (3) 

BASEBAND  I DSB—SC 
AMPL TUDE 

SIGNAL V(t)  MODULATOR 

ea 

COS coot 

STABLE 
CARRIER 
SOURCE 

LIMITER 

SIN( w ot+e) 

—90° 
PHASE SHIFT 

Fig. 1.—Armstrong phase modulator. 

PHASE  H MODULATED 
OUTPUT 
SIGNAL 

SIN [ toot  (t)] 
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= 1/1 -F 2mv(t) sin E ±  M Y(t) 

[  M V(t) cos e  
«sin coo t  ±  tan'  (4) 

1+ mv(t) sin el ' 

where E is small and represents any error in carrier phase. 
If this signal is passed through a perfect limiter the envelope be-

comes constant, leaving an angle modulated signal whose phase modu-
lation is 

cp -i  mu(t) ece  (t) = tan   (5) 
1 ± mv(t) sin E. 

When the nonlinear distortion is small, the controlling distortions 
will be second and third order so terms in the expansion of equation (5) 
beyond the third will be omitted and (5) becomes 

cp(t)  mv(t) cos e — nev(t)2 sin E cos E ±  M 311( 03 sid E COS E 

-n e  V(t)3 cos' e.  (6) 
3 

Ideally, e = 0 and the first term in equation (6) is the desired modu-
lating signal; the second and third terms will be zero and the last term 
is the third-order distortion. When e 0 0, second-order distortion 
occurs and the desired output signal amplitude is reduced by the 
factor cos E. 

It can be seen from equation (6) that the distortion can be made 
as small as desired by the proper choice of m, which is proportional to 
the phase deviation. In order to determine suitable values of m, v(t) 
must be specified; we shall consider three signals of interest, corre-
sponding to the three applications listed in Section I. 

2.1 CaSe 

The signal v(t) is gaussian noise uniformly distributed in a band-
width extending from 0 — W Hz. 
For nonlinearities of the type described in equation (6) the desired 

results can be computed by well-known methods.' 

(7) 
2m2o-2 sin2 €(1 — W-) 

82(1) 

So(f)   2 „ ..Eri _1( w/)21' à  
(8) 
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where, 

So(f) = m2 cos2 (0-2 /2W), with — W  f W, is the spectral density 
of the phase of the output signal, 

S2(f), 83(f) are the spectral densities of the second- and third-order 
distortion terms, respectively. 

0.2 is the mean square value of v(t), that is, the power in v(t), and 
mu is the rms phase deviation. 

2.2 Case II 

v(t) = 1ÉT Q cos (np  qt.  (9) 
n -1 

The baseband signal, v(t), is a frequency-division frequency-modu-
lated multiplex signal. Each term in equation (9) is an FM carrier with 
its own frequency modulation q„ . Bennett has derived the number 
and types of modulation products produced by the last three terms of 
equation (6) for v(t) as in equation (9).5 The second-order term of 
largest amplitude has the form 

e3 = m2Q2 sin e cos € cos [(m ± n)p -F (q, ± qn)Jt.  (10) 

Similarly, the controlling third-order product has the form 

e3 = —m3 Q3 COS3 E cos [(1 ±  m  ±  n)p  (qi q„)]t.  (11) 
2 

The total power in the signal of equation (9) is 

0-2 =m (22  (12) 
2 

where N is the number of terms in equation (9). From equation (6) 
the output phase modulation for an individual channel is 

e, = mQ cos e cos (np  q„)t.  (13) 

The ratios of signal-to-distortion power for single modulation prod-
ucts are, 

1   2 

1 e2 1  [2 mQ sin E 

(14) 

2   2 
ea 2 12  [ m 2 Q2 cos 2 e] •  (15) 

In order to determine the tota signal-to-distortion power ratios it is 
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necessary to compute the number of products falling in the kth channel, 
1 < k  N. Assuming power addition for these products the total 
signal to distortion ratios become 

D,  2m2o-2 sid E (N, 

) S   2   

(16) 

(17) 

where 

N is the total number of channels, i.e., the number of terms in 
equation (9), 

N2 is the equivalent number of in ± n type products and includes 
other second-order products weighted in accordance with their 
contribution to the distortion power. It is a function of k and N, 
and 

N, is the equivalent number of t ± m ± n. type products and in-
cludes other third-order products weighted in accordance with 
their contribution to the distortion power. It is a function of k 
and N. 

Expressions (16) and (17) for the signal consisting of N sine waves 
are much like expressions (7) and (8) for the case of the noise-like 
signal. It has been shown by Bennett that the sum of randomly phased 
sine waves of equation (9) behave like noise as N increases without 
bound and if the power and bandwidth are finite.' It is of interest to 
see in the present context how fast expressions (16) and (17) approach 
(7) and (8) as N increases; this is shown in. Figs. 2 and 3. It is evident 
from the figures that the signal-to-distortion ratios are not a strong 
function of the number of channels, the ratios changing a maximum of 
2 dB while the number of channels goes from 10 to infinity. 
For a more detailed look at the behavior of the distortion products, 

the number of the various types of products falling in the kth channel 
for the 500-channel case are shown in Figs. 4 and 5. 

2.3 Case III 

In this case the baseband signal is a sequence of pulses which phase 
modulate a carrier in the format of a phase-shift-keyed system. A 
4-level polar baseband signal is written 

v(t) = 170 E  k„p(i — nT),  (18) 

D,  mdcr4 COS4 E (2N3 
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o N = 10 

X N = 25 

o 

o 

o 

o 

0 

(1-1 fl/w) 

o 

0  0.2  0.4  0.6  0.8 

k/N OR Ifl/ W 

1.0 

Fig. 2—The effect of the number of channels on the ratio of signal-to-second-
order distortion. 

where, 

p (t) is the pulse shape, 
T is the time interval between adjacent pulses, and 

k„ = ±1, ±3. 

In a 4-level PS K system, a maximum peak deviation of ±3r/4 radians 

0.2  0.4  0.6  0.8  1.0 

k/N OR Ifl/ W 

Fig. 3—The effect of the number of channels on the ratio of signal-to-third-
order distortion. 
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Fig. 4—Number of second-order distortion products. 
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Fig. 5—Number of third-order distortion products. 
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4 

S6=4 TAN -/  MV(t) 

M =0.669 

0 

TIME, t —  

Fig. 6— Modulator input and output pulses. 

-OR= V (t.) 

is required. Deviations of this magnitude may be obtained by multi-
plying the output of the modulator in a resistive multiplier circuit. 
As an example, suppose the modulator output is multiplied by four. 

The peak deviation required in the modulator is then 3r/16 radians. 
Raised cosine input pulses, v(t), and the corresponding phase devia-
tions in the output of the modulator are shown in Fig. 6 for this case. 
The output pulses were computed from equation (5) for e = 0. The 
value of m was chosen to result in a peak deviation of 37r/16 radians 
for the pulse corresponding to k„ = 3. For this example, m = tan 
3T/16, and 

k„  2w t  T  T 
v (0 = —6 [1 + cas  ] ,  -- 5 t 5 —• 

In Fig. 6, the phase deviation, e, is shown for pulses having k„ = +1, 
+3. Some pulse compression is present in the larger pulse and the 
parameter m has been chosen for the correct peak deviation. For the 
smaller pulse the peak deviation is seen to be too large by about five 
degrees. If uncorrected, this error would cause the system performance 
to be degraded a few tenths of a dB! The peak deviation can be cor-
rected by a gain adjustment in the circuits in which the smaller pulses 
are generated.3 

III. MODIFIED ARMSTRONG MODULATORS 

There may be applications in which it is desirable that the output 
carrier frequency equal the frequency of the source carrier. The circuit 
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of Fig. 7 will accomplish this purpose while minimizing the degradation 
due to tones generated in the final mixer. The carrier frequencies of 
any high-order products of the two input signals which fall into the 
output band will be exactly at the carrier frequency of the output 
signal and result in minimum degradation. 
If the times (N — 1) frequency multiplier is replaced by a times 

M multiplier the flexibility in the choice of output carrier frequency 
is increased while the feature described above is retained. In either case 
the frequency multipliers should be resistive rather than reactive. 
Finally, in the balanced modulator illustrated in Fig. 8 the phase 

deviation is doubled for a specified ratio of signal-to-third-order dis-
tortion. 

IV. CONCLUDING REMARKS 

The Armstrong modulator has three attractive features. 

(i) The carrier frequency can be derived from a frequency stabi-
lized oscillator. For example, a single source can be used in both 
modulators used to derive two cross-polarized channels for a 
short hop radio system or a satellite radio system. The identical 
carrier frequencies serve to minimize the effect of co-channel 
interference due to cross-polarization coupling. 

(ii) The functions required to realize the modulator—limiting, 
mixing, and multiplication—are amenable to circuit integration. 

(iii) The modulator is suitable for very large baseband bandwidths, 
particularly high-speed pulse sequences for PSK-PCM systems. 

A short hop radio system has been described recently which has about 
the same communication capacity for either large index analog phase 
modulation or digital PSK-PCM.9 In a system designed for either type 
of operation, it is convenient to do the digital processing at the inter-

v(t) DSC-SC 
AMPL TUDE 
MODULATOR 

STABLE 
CARRIER 
SOURCE 

LIMITER 

-90 ° 
PHASE SHIFT 

xN MIXER 

Fig. 7—A modulator with output frequency equal to frequency of stable carrier 
source. 
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_01 DSB-SC AMPLITUDE MODULATOR 

MODULATING SIGNAL V (t) 

ANTENNA 

T - R FILTER 

E -W 

COS wo -90° PHASE SHIFT 
STABLE CARRIER SOURCE 

COS wot 

—COS 2 coot 

x2 

H  PHASE SHIFT +90°  

rMICROWAVE POWER SOURCE  

DSB-SC AMPLITUDE MODULATOR 
SIN 2 Olot 

LIMITER 

SIN [Not + 01 (t.)] 

MIXER cos[..t+02(t)-0,(t)] 

SIN 

LIMITER 

2 Not + ø2(t)] 

Fig. 8—Balanced Armstrong modulator. 

t 
PRIMARY POWER SUPPLY 

W - E 

PCM REGENERATOR 
POWER AMPLIFIER 
MICROWAVE POWER SOURCE 

dc POWER INPUT 
t, 

ANTENNA 

T -R FILTER 

E - W 

Fig. 9—Repeater of configuration for analog phase modulation or digital CPSK-
PCM modulation. 
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mediate frequency; if PSK-PCM is to be used, the IF amplifier can be 
replaced by a digital regenerative repeater and no other changes need 
be made (See Fig. 9). 
A digital regenerative repeater has been described which is appro-

priate for this application; it requires a phase modulator with require-
ments which are met by the configuration of Figure 7: that incidental 
AM be small, that the frequency be stable, that the linearity be adequate 
for multi-level operation, and that the power consumption be small.' 
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Eventual Stability for Lipschitz 
Functional Differential Systems 

By GERALD A. SHANHOLT 

(Manuscript received April 3, 1970) 

In this paper it is established that for Lipschitz functional differential 
systems, the eventual uniform asymptotic stability of the origin is preserved 
under absolutely diminishing perturbations. 

I. INTRODUCTION AND NOTATION 

In two recent papers, A. Strauss and J. A. Yorke have investigated 
"eventual" stability properties for systems of ordinary differential 
equations." In particular, they have shown that for Lipschitz systems, 
diminishing perturbations preserve eventual uniform asymptotic sta-
bility.' It is the purpose of this paper to extend a somewhat weaker 
form of this result to functional differential systems. Namely, it will be 
shown that for Lipschitz functional differential systems, the eventual 
uniform asymptotic stability of the origin is preserved under absolutely 
diminishing perturbations. 
The following notation will be used in this paper: E" is the space of 

n-vectors, and for x in E", I x I denotes any vector norm. For a given 
number r > 0, C denotes the linear space of continuous functions 
mapping the interval [—r, 01 into E", and form in C, IIçbII = sup I ea) I, 
- T  O  0. For H > 0, CH denotes the set of 4 in C for which II0II  <H. 
For any continuous function x(u) whose domain is —r  u -5 a, a  0, 
and whose range is in E", and any fixed t, 0  t a, the symbol x, will 
denote the function x,(0) = x(t  0), —T  O  0; that is, x, is in C, 
and is that segment of the function x(u) defined by letting u range in the 
interval t — r  u  t. 
Let F(t, 4)) be a function defined on DR = [0, co)  X CH into E", and 

let ±(t) denote the right hand derivative of x(u) at u = t. Consider the 
functional differential system 

±(t) = F(t, xj.  (1) 

1905 
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Let (8, 0) be in DR. A function x(s, 4))(t) is said to be a solution of 
equation (1) with initial function 4) at t = s if there exists a number 
b > () such that 

(i) for t e [s, s + b), x,(8, 0) is defined and in CH; 
(ii) x(s, 0) = 0; and 
(iii) x(s, 4,)(t) satisfies equation (1) for s 5 t < s ± b. 

x(8, 4))(t) is unique if every other solution with the same initial function 
4) at t = s agrees with x(s, 4))(t) in their common domain of definition. 
If F is continuous on Dg, then for every (8, 4,) in Dg there is at least 

one solution of equation (1) with initial function 4) at t = 8.3 If, more-
over, F is Lipschitzian in 4), that is, there is a constant L such that for 
every irki, 952 in CH 

I Rt, 4)i) — P V, 02) 1 L 1101 — 02 II  (2) 
for t  0, then there is only one such solution. Generally, under such 
assumptions, one can only expect solutions to exist over a finite interval. 

II. PRELIMINARIES 

We now define the stability concepts to be used herein. These defini-
tions are stated for equation (1) in which it is assumed that for some 
H, 0 < H  c(), F is continuous and Lipschitzian on Dg. 

Definition 1: The origin is eventually uniformly stable (EvUS) if for 
every e > 0, there exists a ô = 8(e) > 0 and a = a(e)  0 such that 
II x(s,  4)) i I < e for all 114)11 < 3 and tk sk a. It is uniformly stable 
(US) if one can choose a(e)  0. 

Definition 2: The origin is eventually uniformly attracting (EvUA) if 
there exists constants n > 0 and a .. 0, and if for every e > 0 there 
exists a T = T(s) > 0 such that I l x,(s, 4)) II < E for 114)11 < n, 8 k R, 
and t s -F T. It is uniformly attracting (UA) if one can choose fl = 0. 

Definition 3: The origin is eventually uniform-asymptotically stable 
(EvUAS) if it is both EvUS and EvUA. It is uniform-asymptotically 
stable (UAS) if it is both US and UA. 

The above definitions show that EvUS, EvUA, and EvUAS are 
weaker stability concepts than their respective Lyapunov counterparts: 
US, UA, and UAS. Also, it should be noted that in these definitions we 
do not require that the zero function be a solution of equation (1). 
When the origin is US, this implies that the zero function is a unique 
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solution of equation (1) for any s >_ 0. Thus, we see that EvUS 
(EvUAS) is a natural generalization of US (UAS) in which it is not 
assumed that the zero function is a solution. Finally, it is important 
to note that UA does not imply that the zero function is a solution 
(Ref. 1, example 2.8). 

Definition 4: Let V(t, 42) be a function defined for (t, 4.) in DH. The 
derivative of V along solutions of equation (1) will be denoted by 
P(,)[t, x(s, OM and is defined to be 

1 
P.m [t, x(8,  = lirn sup  V[t ± h,  42)] — V[t, xt(8,4))]) • 

h-.0 + 

If F is continuous and Lipschitzian, and if the origin is EvUAS, 
then the existence of a Lyapunov type comparison function can be 
established. By following D. Wexler' and A. Halanay5 one can prove 
the following theorem. 

Theorem 1: Let F be continuous and Lipschitzian on Dff, and let the 
origin be EvUAS. Then there exists a number K, O < K < H, and a 
function V (t, 42) with the properties: (i) there exists functions a(r), b(r) 
continuous, positive, and monotone increasing for r > 0, with a(0) r--
b(0) = 0, such that for m in (0, K] 

a(ii 0 II)  V(t1  b( 11t1 II) 

for m <II yb II K, t  d(m), where d(r) is a continuous, nonnegative, 
and nonincreasing function for r > 0; (ii) there exists a function c(r) 
continuous, positive, and monotone-increasing for r > 0, with c(0) = 
such that 

e(i)ft, xe(s,  x(s, 0) Ill 

for 11011  K,  d(K); and (iii) for 0 < r  Mod e_ K • 
t d(K) 

I V (t, 42,) — V (t• 4)2) I 111(r)114,1 — 952 II, 

where 31(r) is continuous and monotone-decreasing on (0, K]. 

III. PERTURBED EQUATION 

We now prove a theorem which shows that the EvUAS of the origin 
of the nominal equation 

(t) = F(t• I) (N) 
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is preserved for the perturbed equation 

i(t) = F(1, xt)  G(t, x,) (P) 

when F and G satisfy certain conditions. In particular, G(t, 4,) is required 
to be absolutely diminishing, that is, for every m in (0, H) , there exists 
a 7 k• 0 and a function g„,(t) continuous on [-y„„ 00) such that for 

m  011 < H, t 
,+1 

IG(t, ck)I  g„,(t) and /„,(t)  f  gm(s) ds —> 0 as t —> œ. 

Theorem 2: Suppose that F and G are continuous and Lipschitzian 
on Di, that G is absolutely diminishing, and that the origin is EvUA S for 
equation (N). Then the origin is EvUAS also for equation (P). 

Proof: Define J „,(t) = sup [/„,(s): t — 1  s < 00] for t  1. Since 
/„,(t) —> 0 as t —> CO , this implies J „,(t) —> 0 monotonically as t —> œ. 

Let 0 < E  K, choose 14 II < 3(E) = bla(E)/2], and pick 
O = 0(e)  0 and such that 

2LM(8).16(t) < min [a(E), c(3)] (3) 

for t  0, where L is the Lipschitz constant associated with F. Then 
for tks k a(E) = max [1, 0(E), d(8)],  xi(s, cf>) II < e. Suppose not, 
that is, for some t s, xi(s, (I)) II = e. Let q be the first t-value greater 
than s for which II sa(s, 4.) II = E, and let p be the last t-value less than 
q for which II xp(s,  = 8. Then 

x,(s, çb) II =-5 E,  p  t  q.  (4) 

For t in an interval on which x(s, 0)(1) exists, we evaluate 

T (P)[t, Xt(Se 41)]  ▪  "er (N)[ty X t(Sy 

• lim sup I (V{ t ± h, xi+h[t, x,(8, 0)11 
n 

— Vt  4- h, 8->5[t, x,(8, 

en] 

lim sup 37-4- {I  xe(s, 4,)] 
+  n 

- yt+h[t, x(8, 0)] I I 
where the function V is as described in Theorem 1. By assuming—with 
no loss of generality—that L> 1, we obtain' from the above inequality 

x(s, (1))] — cf I (8, 0) Ill + 1,111  I G[I, x,(8,  I. 
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Employing the absolute diminishing character of G and equation (4), 
we obtain by integrating the above from p to q 

a(E)  b(S) — (q — p)c(8)  LM f 6,8(0 di.  (5) 

Using the easily shown fact that 

fgm(s) ds  f_i 

and equations (3) and (5), we see that 

a(€)  b(8) —  — P)c(8)  1(4' — P  1)Jà(P) 

< b(S)  a(e)/2 = a(s). 

Hence, we arrive at a contradiction which shows that the origin is 
EvUS. 

Let n (5(K), e = a(K), and 
T(E) = a(e)  2[LM d(1)  b(K)11c(6).  (6) 

Consider s  t1 and II 11 < n. Thus, x(s, 0)(0 exists for all t  8. 
Moreover, since the origin is EvUS, to prove EvUA it is sufficient to 
show the existence of au, s±a 5u5 8+ T, such that II x„(8, cp) U < 
8(f). Assume the contrary, that is, 

e_ x 4,) K,s-Fa t es + T. 

Employing the same procedure as above, we arrive at the estimate 

a(S) < b(K) — (T — a)c(6)  ML(T — a ± 1)J 6(s + a). 

Using the monotonicity of Ja and equations (3) and (6), we compute 

a(8) < b(K) —  (T — a) ± M  5(1) = 0. 
2 

This contradiction then completes the proof of this theorem. 

1„,(8) ds,  t u  1, 
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Information Theory and Approximation of 
Bandlimited Functions 

By DAVID JAGERMAN 

(Manuscript received April 15, 1970) 

For bandlimited functions, simultaneous approximation of a function 
and several of its derivatives is considered. Concomitant entropy estimates 
are obtained. A feasible algorithm for the transmission of information is 
discussed. This algorithm has been applied to the design of a class of PCM 
systems.' 

I. INTRODUCTION 

It is the purpose of this paper to discuss both the best approximation 
of sets of bandlimited functions under Sobolev norms and the con-
comitant information-theoretic estimates. The Sobolev norms are 
useful when it is desired to approximate simultaneously the function 
and some of its derivatives. This requires an amount of information 
beyond that for approximating only the function. Section II gives the 
necessary background definitions of width, entropy, and capacity; 
theorems providing representations of bandlimited functions, as well as 
a form of Mitjagin's inequality relating approximability to entropy, 
are proved. The distinction between capacity and entropy is comparable 
to that between communication and storage, since capacity refers to 
the number of distinguishable functions transmitted from a signal 
source while entropy measures a bit requirement for the reproduction 
of a function to within a specified accuracy. A constructive approach 
to communication requirements implies an explicit means of representing 
any function of the signal source by numbers with a uniformly bounded 
number of digits. The procedure or algorithm used is usually obtained 
from an infinite series representation with subsequent truncation and 
quantization. Pulse code modulation systems provide examples of this 
procedure. Section II gives a precise definition, while Section III presents 
an explicit construction of a feasible algorithm. This algorithm has been 
applied to the design of a class of PCM systems.' 

1911 
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Sections III and IV contain the theorems and proofs which provide 
upper bounds on widths and entropies. Section III discusses signal 
sources with finite instantaneous power. Section IV considers signal 
sources in which the total energy is finite. 

II. PRELIMINARIES 

Let A be a subset of a Banach space X; it is desired to approximate A, 
that is, uniformly all elements of A by means of n-dimensional sub-
spaces X„ of X. The deviation Ex„(A) of A from X„ is defined by 

Ex„(A) = sup inf 11f  — g II.  (1) 
ItA iteX. 

The deviation provides information on how well A may be uniformly 
approximated by elements of the given space X„ ; however, another 
choice of X„ might provide a smaller deviation. Accordingly the nth 
width, cli„(A), of A relative to the space X is defined bya 

d,(A) = inf E x„(A).  (2) 
x„cx 

If the infimum is attained, then a corresponding X. is called an extreme 
subspace. The following properties are immediate. 

0 5 d,,+1(A)  ce(A),  n  0,  (3) 

ce(A) = sup II x 11 ,  (4) 
)(tit 

B C A  d(B) e c(A).  (5) 

If X has finite dimension m, then clx„(A) = 0 for n  m. 
A set of sets whose diameters do not exceed 2e(e > 0) and whose 

union contains A is called an e-covering of A. A finite set S C X such 
that for f e A there is ageS with ilf —gil e e is called an 6-net of A. 
Clearly d(A)  e for a set A possessing an e-net of n elements. If A is 
totally bounded then al...., e(A) = O. To see this, choose a covering 
of A consisting of n 6-balls, then their centers constitute an 6-net of A. 
Let N1(A) (presumed finite) be the number of sets in a minimal 

e-covering of A; then the absolute e-entropy, H,(A), of A is defined by 

H1(A) = log N ,(A)  (6) 

in which the logarithm is taken to base two. " 
Let N(A) be the number of elements in a minimal E-net S C X of A; 

then the relative e-entropy, H(A), is defined by 

111,(A) = log N(A)  (7) 
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in which the logarithm is taken to base two. ' For A totally bounded, 
let xi , • • • , x,, be the elements oían c-net, and let B-(1  j n) be a 
ball of radius E about xi ; then the sets Ui = Bi nA constitute an 
e-covering of A; hence 

He(A)  (A).  (8) 

The minimum number of binary digits, d, of an integer expressed in 
radix two needed to identify uniquely every element in a minimal 
e-covering of A satisfies 

[H,(A)]  d  [I- le(A)] ± 1  (9) 

in which [x] designates the integral part of x, that is, the unique integer 
satisfying x — 1 < [s]  s. Thus H .(A) may serve as an absolute 
measure of efficiency for processes designed for the storage and trans-
mission of information. 
Let a set co of n real numbers be chosen, and also a mapping from A 

onto 0„ = w X • • • X w (p times); that is, 

X E A —› a = (ai • • • ap) ny " , a,, ew. 

Let the algorithm r define a one-to-one and onto mapping of 0„ to an 
e-net S of A in which r(a) e S approximates x e A to within E; then the 
volume v(r) is defined by 

V(11) = p log n. 

In view of expression (8), one has 

V(F)  1-11,(A)  H.(A). 

(10) 

Thus the greater v(r) is, the less efficient is the algorithm r compared 
to the absolute standard H. (A). 
If D C A has the property that 

f g,  f,geD  II f — g >  (12) 

then D is called e-distinguishable. Let Me(A) be the number of elements 
(presumed finite) in a maximal e-distinguishable subset of A. then the 
e-capacity, C.(A) is defined by 

C ,(A) =, log M.(A),  (13) 

the logarithm being again taken to base two.' For a transmission 
system, C1(A) measures the number of distinguishable signals of the 
source or of the processed signal at the output of the receiver depending 
on the identification of A. The following inequalities hold between 
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e-capacity and e-entropy: 

C2(A)  H.(A)  C.(A).  (14) 

To show this, consider the inequality on the right. Let D be a maximal 
¿-distinguishable subset of A; then &balls about each element of D 
constitute an ecovering of A for, otherwise, there would be an x E A 
not covered and hence more than E away from every element of D. This 
would contradict the maximality of D. For the inequality on the left, 
let D be a 2€-distinguishable subset of A, then the number of elements 
of D cannot exceed the number of covering sets of diameter 2e or less 
in an ¿-covering of A for, otherwise, there would be at least two elements 
of D in the same covering set. This would contradict the 2E-distinguish-
ability of D. 
It is possible to bound 1-1'.(A) above and below in terms of d(A) 

(refer to Ref. 2 where Mitjagin's inequalities are given). An improved 
form of Mitjagin's upper bound is proved below. 
Theorem 1: Let A be a totally bounded subset of a real, normed, vector 

space X. Let the nth widths relative to X be din(A), and let 

N = max En : d 1(A) k (1 — a) 6] 

with a an arbitrary number satisfying 0 < a < 1; then 

Hi(A)  N log  (2do, ± 2 —  
aE  a ) 

Proof: Let EN be an N-dimensional subspace of X for which EEN (A) < 
(1 — a)€, then VxcA3ycEN D 11x — y11 < (1— a)e. Let AN be the 
set of all such y for every x A. An ae net of AN is an ¿-net of A; hence 
H(A) < e,(AN)  C «.(AN). Let y, , • • • , ym be an a 6-distinguishable 
subset of AN, and let Bk C EN be balls with centers yk and radius iaE, 

then they are disjoint and are all contained in the ball B with center 
the origin and radius dio + (1 — .4--a)e. Let AN be the volume element 
in EN ; then XNM(aE)N XN[dx, ± (1 — IcE)Er. The inequality of the 
theorem follows on taking logorithms. 
The class of functions to be studied consists of the space B defined 

by the conditions that 1(t) c B, be analytically continuable into the 
complex plane as an entire function of exponential order one and type a, 
and that it be bounded on the whole real axis — 00 <t < co. The follow-
ing inequality is valid for B, 

sup I At) I sup 
-.<t<so 11(4 I. 

Important subspaces of the space B, are the space C, defined by 

(15) 
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f e C,  A(n) =  (16) 

in which 

A(n) = sup I f(e + in) I,  Z, n real,  (17) 
—co<t<ece 

and the space W, defined by 

f  f L2(— c 0 , co).  (18) 

Several representations for B, exis0 however, the following repre-
sentations are needed for the present investigation. Let 

0(4  co sin Git 

4,;(t, o(t — ih, cr), 
then one has the following: 
Theorem 2: 

h -=  

(19) 

(20) 

eC,,=> f(t) = E f(A)431(t, Cr ) 

for all complex I. The series converges uniformly in every closed, bounded 
region. 
Proof: Consider the integral 

f   t(r)   
IN = 27ri  (e — o sin (re de '  e e 

taken over a square Ce, with corners at (N ± ¡.) (±1 ±i)h, and N so 
large that jis in the interior of the region bounded by CN . The theorem 
is clearly true when t = ¡ch (k integral); it will hence be assumed t # ¡ch 
for any integral k. The index N  0 is an integer. Evaluation of IN by 
use of residues yields 

f(t) = E fuh),/,;(t, + I sin 0-4  (22) 
i--.v 

thus, to prove the implication to the right, it is sufficient to show IN —'0, 
N —> co. Let 4,') be the integral (21) extended over that part of CN given 
by E =  ¡)h; then 

n ) S 

(21) 

A(n)   
¡Om)  dn. (23) 

.L.(v+ i)h (N  1-)h -I- in — t I sin (7r(N 
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Since 

(N +  +  — t  (N +)h — t 

sin (T(N  -1- io-77) I = cosh 0-77 

one has 

, 1   r(N+4)1. 
I e  — r (N  -)h — I e I L(N+i)h e (71) d .(25) 

Writing equation (25) in the form 

A( 
r(N-Filh 

) dn, „  2  (2N ± 1)h   1   n e I  (9N + 1)h — 2 I I (2N ± 1)h L (N-r ph 

(26) 

using equation (16) and the following lemma.' 

œ  lim f T f(n)d = 0, 

shows that .11P --> 0 uniformly in t. The same conclusion applies to the 
integral extended over e= —(N -I- eh. 
Let .1e) be the integral (21) extended over n = (N  Dh; then 

.r,v2) 

(27) 

ov+i),,  f(e  i(N  Dh)   
"L,..4).  (28) 

Since 

I + i(N  — t I (N  4)h — t I,  (29) 

I sin (0-E + ir(N  P) I 1  —2e e''') 

one has 

2   I 1e) I  (2N ± 1)h   e_'(N+ e A.((N -I- Ph). (30) 
,(1 — e-=) (2N -I- 1)h — 2 I t 

In view of equation (16), e —> 0 uniformly in t. The same conclusion 
applies to the integral extended over n = — (N  Dh. For the implica-
tion to the left, one may observe that 4>i(t, o) C«, , and that the series 
converges uniformly. 
The series of Theorem 2, which is clearly interpolatory, is called the 

cardinal series.' 
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For f(t) e L2 (- cc,  .0), the Fourier transform relations are given by 

F(u) = fle-"af(t)dt,  (31) 

1(1) = ;i f:e"̀F(u) du.  (32) 

The Fourier transform of OM, 0.) is 

1 (72 y  — • ih 
4,(u, CI) =   

a. 
lu I < e; (33) 

=0, 

The Parseval relation now shows that the sequence it,i(t,  - co < j < co 
is orthogonal over (- co, co) with respect to unit weight; thus, 

re 
Leacki(t, 6044(4 0•) di = 0,  j k; 

h,  j k. 

The following theorem may now be stated for f e W,. 
Theorem 8: f e W, 

(34) 

fI f(t) 12 dt = h ± I f (jh) 1., 
-CC  i» - 60 

f(t) = 5-1r)i Le'F(u) du, 

F(u) = kirz, if f(jh)e-i"i h , lu I < 

Proof: The Paley-Wiener theorem' shows that f e W, has the repre-
sentation given in Theorem 3; hence, by the Cauchy-Schwartz inequality 

1(e  +  {sinh   r F(u) 12 du}i. = ( *fl n I).  (35) 
-  27n  _, 

Equation (35) shows that W, C C, ; thus, by Theorem 2, f is in the 
closure of the system 44(4 cr), - co < j < co. The Parseval relation now 
follows from equation (34). To establish the formula for F(u), it is 
only necessary to show 

fe' E f(jh)e-'''' du .s0,  M, N-+ co, M, N -› - co , (36) 
—o• i 1. 

because each term is the Fourier transform of the corresponding çtli term 
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of the cardinal series. One has 

cr N 2 o 

= 

= A/ 

E f(jh)e-"lh du  < 2 0- 

1.  
E f(jh)e"  ih du 

.  m 

2 

E f(jh)e""'  2 du,  (37) 
N  

i 

5 40-2 E I f(jh) 12 —> 0.  (38) 
i-m 

The limit zero is obtained as a consequence of the Parseval relation of 

Theorem 3. 
To obtain a representation for the class B, ,1° let 

4,(t (1 — 8ffOm Y 0( 4 1  

m > 0 integral,  0< S< 1, 

0,(t) = 0(t — jh),  h = 10. (1 — 6);  (40) 

then one has 
Theorem 4: f e B, 

(39) 

f(t) =  f(ih) 01(0. 

The series converges absolutely and uniformly in every closed, bounded 
region. 
Proof: The function 

Isin   So- (s 01m 
(1 — S)m  — Set Se  

(s — 0 f  (41) 
(1 — r5)m 

belongs to W /(,_8) for each positive integer ni and arbitrary s, hence the 
cardinal series applied to this function yields the expansion 

fsin  50-   (s — Or 
(1 — S)m   

J(t)  So-
(s — t) 

(1 — Om 

sin   (s — jh)le 
(1 — S)m   

=   Su   
( (1 — 6)ms — jh) 
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Let s = t; then the required representation is obtained. The absolute 
convergence follows from the boundedness of I (jh) I and 

I MO I = 0(  (43) 
Approximation will be studied in the uniform norm and the following 

Sobolev norm 
r T/2 

f w - J._ T/2 
r(t) 12+  I 1(1) + • • • +t. 14) (t) 12) dti  (44 ) 

in which gi , • • • , g, are positive numbers. For the space B,, the symbol 
13,1 1. will be used for the corresponding normed space. The symbol 
B' 8(M) will be used for the subset defined by I f (t) I M, — 00 <t < 00 . 
For the space W, , the corresponding normed space will be denoted by 
Wo!., , and W„T.,(B) for the subset in which 

{f  (t) 12 dt}1 <B.  (45) 

III. THEORETICAL INVESTIGATION OF B, 

Let Br, designate the vector space .13 normed by 

I f  =  max  I ¡(t) I  (46) 
-T/2 1 T/2 

and let B2(M) be the subset of .B1; satisfying 

¡(t) e M,  —  < t < œ.  (47) 

The completion of Bra is the space CT of functions continuous over 
[ — T/2, T/2] and normed by equation (46). 
Let 

0-T 2c)1 2c 
c =  , 8„ = 1 — (— , n > — , 

Wrt  ir 
(48) 

m = [712e - (n — 1)] ,  m  1; 

then the following theorem provides a bound on the nth width, 
d 7(/3(M)), of .137(M) relative to the space C". 

Theorem 5: c T (B(M)  (2111 
Proof: The series representation of Theorem 4 will be used. The func-
tion 

g(t) = E f(jh)Oi(t)  (49) 
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establishes an approximation to f(t) whose error is given by 

f(t) — g(t) = ip Nf(jh)01(1). 

From equations (39) and (40), one has 

I OM) I  N s 
r   1I ( I - 

Define the function p(x) by 

p(x) =  x  0  x < 1, 

= p(x  1) foral! x, 

then the Sonin (Euler—Maclaurin) summation formulai' is 

(50 ) 

(51) 

(52) 

b 

E  = f W(x) dx  p(x)W(x)1 — f p(x)W'(x) dx  (53) 
a<iib  a  a 

in which a < b are arbitrary numbers. Use of equation (53) with 

W(x) =  76 )  

x — 

1 ( m   1   

a = N  b= œ 

yields 

X > T/h,  (54) 

2   

gi(t)  I 1;,/ m 
7 3(N +  — 

Let 

m (Ar +  — 1:)] k 1; 
Le  2  2h 

then 

(55) 

(56) 

E I 0,(0 I -2--  (57) 
IiI>N  ir M 

Thus, from equation (50), one obtains 

II f - g II 
2M 
wm 

(58) 
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and hence 

dgf,(13,7:01) ) < 2M  
(59) 

/  7rm 

For n odd, one has 

ce:T(Bf(m)) 
2M exP  [7r2e8 (7i 

while if n is even, one has df r ; hence, in all cases 

exp {— [121  — 1 — 11)11 

C < 2M   

— 1 — 
2e  h 

(60) 

(61) 

The fractional guardband 8 is now chosen as in equation (48) from which 
the inequality of the theorem follows. 
When n is large, a more accurate estimate of cl„cr  may be obtained by 

using a polynomial approximation to BT.. . Let 

f(t) = f(72-1x) = er), (62) 

and let L(x) be the Lagrange interpolation polynomial established for 
g(x) on the zeros of Tn(x), the nth Tchebysheff polynomial of first kind, 
over [ —1, 1]; then the standard error formula for Lagrange interpola-
tion' yields 

max I g(x) — L(x)  1  max  g )(x)  (63) 
—1 st  n! 2" 

Bernstein's inequality (15) and equation (62) now yield 

11 f(t) — L(2¡' 1) IL  2111 n! 

hence one has 

Theorem 6: 

(64) 

T( E0  „  2111 ! -2- (1" n  '  n  0. 

Let HT, be the space of functions ¡(t) possessing derivatives up to 
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order s satisfying f, J,• • • , f̀') L2(—T/2, T/2) and normed by equa-
tion (44); then Theorem 7 provides an estimate of the nth width of 
B, (M) relative to H'. 

Theorem 7: Let 
{ 2 1 = E .-. 
—0 T2r(s  — r — 1)12 (28 — 2r  j_ — 1)(s — r)   

* 

in which 1.4 = 1 and the sum is considered zero when s = 0, then 

Mr 711(2cr   
d*:(B7.;.•(111 )) 

n! (2 )(2n --1- 1)1 

Proof: For the function g(x) of equation (62), the identity 

— url g(.)(u) du , g(x) = P(x)  _ 1)!  (65) 

(in which P(x) is a polynomial of degree not exceeding s — 1), will be 
used to obtain a polynomial approximation to g(x) in the Sobolev norm 
(44). Let L(x) be the Lagrange interpolation polynomial for g(x) 
formed with n nodal points on [-1, 1] and co(s) the corresponding 
fundamental poynomial; then one has 

= L(x)  g (E)c..)(2),  E [-1, 1].  (66) 

The polynomial .1(x) defined by 

1.(x) = P(x)  (67) J_1 (x —   L(u) du , _1)! 
will be used to approximate g(x) in the Sobolev norm; its degree does 
not exceed n  s — 1. Let 

I g")(x) I M,  Ix  1;  (6S) 

then, from equation (66), one has 

fir)(x) —  

<   r - ur- 0.,04 I du,  O  r < s,  (69) 
n! J_, (s — r — 1)1 

g x) — I(1) (x) I 5 I w(x) I.  (70) n! 
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The norm (44) for the interval [-1, 1] may be written 

--  =  E  I gr(x)  — I'>(x)  dx,  (71) 
--I  r 

in which 1,0 , • • • ,  k 0; the pr and IA. are related through the change 
of variable t = (T /2)x. Using equations (69) and (70), one has 

e n+ • 
I g - 1 11; 5  2 n! 

-1  {  2 
U r t-1  

Ev \, (s -r - 1)! 1 r -  ")(u) Idu)  p,.w(x)2 dx.  (72) 
0 r - 

Define the function k(u, s) by 

k(u, y) = (x - u)' r-1(x - v)1-1-1  dx;  (73) 
naz (u . • ) 

then equation (72) may be written: 

Ig -I jI  I 
n12 tr_o (s  

1 f k(u, y) I ca(u)w(v) I du dv  P. f 1 ce(x)2 dx} • -1  (74) 

The Cauchy-Schwartz inequality shows that 

- k(u, v)  (1 -  
2s - 2r - 1 

(75) 

hence, 

II  Mnï:.{„E;(8 -r_.  1)I2P(28 - 2r - 1) 

•(fl (1 -  w(u) I du)2 + pa f 1 co(x)2 dx} •  (76) 
-1 

Further application of the Cauchy-Schwartz inequality yields 

f I-1 ri r   
(77) " p) 2(s - r - 1)12 1,221-2 (2s - 2r - 1)(s -  P.! ú(x)2 dx. 

A good choice for w(x) is 
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, ,  2"  „ 
cum = —  r,(x),  (78) 

(n 2n ) 

where P,s(x) is the nth Legendre polynomial. The coefficient of P(x) 
in equation (78) makes w(x) monje. Since 

2  
.13.(x)2 dx — f-t  2n -I- 1 '  (79) 

one obtains 

2nlen+1  (  2 \ I 
n! 

.-1 v,221'   
— r —  (23 — 2r — 1)(8 — r)  v'f  (80) 

The Bernstein inequality (15) shows that 

M„.E. 5 Men";  (81) 

hence 

II  Mee   Y 
n!  (2n) 2n -1- 1 

n 

•1,P) 2(8 — r — I)? (2s — 2r — 1)(s — 7 .) ± p,}i • (82) 

Finally the change of variable t = (T12)x and the replacement of y, by 
the original M. yield the result of the theorem. 
The results of Theorems 5, 6, and 7, may be translated into estimates 

of entropy by use of the Mitjagin inequality of Theorem 1. The estimates 
so obtained will apply only to the subset of B,,(M) for which f(t) is real. 
Doubling the bounds will provide estimates for complex valued f(t). 

Theorem 8: Let O < a < 1, (1 — a)e G (2M/re), f(t) real, 

-= 

then 

2111 
1 + In  „ 

2M Tv. OVE   
ln  • 
r(1 — a)e  2M   

1 + In 7(1 21-11"«)e  ln ln Ira — a)e_ 
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I I e:( 1")) "5- {2 +  (1 (m  1)) 7]} log  + 2 — A 
7r  ae  a I 

Proof: According to Theorems 1 and 5, one must solve the inequality 

2M _ 
— eirm 

for the largest integer m; thus 

2M   
me" 

— 7(1 — a)e 

Consider the function 

(83) 

(84) 

F(x) = 5 — x — ln x,  S > 1.  (85) 

F'(x) = —1 —  ;  (86) 

hence, by the mean value theorem, 

F(5 — h) = —In  h(1  ,  — h < E < 8.  (87) 

One has 

Let 

F(6 — h) = 0;  (88) 

then, since h is positive, 

0 < —ln +  + a  _1 ,  (89) 

0< — Sin S + h(1 + S ± ln 8) — h2;  (90) 

thus 

In 15  
h >  (91) 

1 +  ± ln ' 

and 

1+5   (92) 

The inequality 

x + In x  (93) 
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is thus satisfied by 

hence, setting 

1+ 3   
x<  1 ±  + hi 

=- ir(1 2—M a)e 

and taking cognizance of the integral character of m, one has 

2M   
1 + ln  

m  ln r(1  2—M a)  E •   

1 ±  ln 7,-(1 2—M a)E  ln ln r(1 2—M ak.  

provided 

(1 — 0)€ < —2M • 
Ire 

(94) 

(95) 

(96) 

(97) 

For the computation of d„, , one has from equation (48) 

m =  S:2_2(n  21 •  (98) 

Hence 

Let 

then 

accordingly 

— 2) < m + 1,  (99) 

{1 („n 2c 2))12(n — 2) < 7r(m ± 1).  (100) 

n = 2 ±  

v(1 1)2  —  <!(m ± 1); 

(101) 

(102) 

<{+(((m+ 1))1}.  (103) 
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Thus n satisfies 

n  2 ± [271 {1 ±  (m + 1)) Ll ; (104) 

the theorem now follows from equations (96), (97), (104), and Theorem 1. 
When e is small, a more accurate estimate of entropy may be obtained 

by use of Theorem 6 in place of Theorem 5. Accordingly one has 

Theorem 9: Let O < a < 1, n= (2M/(1 —  

1  /2 

n 
f(t) real; max (--ec , e  , 

then 

H  (M)) 

< 1.11 
2 ln 7? ±  —  ln (1 ln n)-

ec 

2  1  
ln (—ec ln r1) ± 1 ± 

2 ln  _ 

1 log  (2M 2 — a)ere  ±  a 

Proof: According to Theorem 6, one may consider 

2M (cy 
(1 — a)E. 

Stirling's formula provides the inequality 

n! > n"e-"(27rn)1, 

and hence one may consider 

2M  fee "  „ 
(277)4 \  "" 

Let 

ec 
n = — x 

2 ' 

then equation (107) becomes 

Consider the function 

2M   
n — (1 — a)E(rec)i ' 

x s+1,fac  e ac . 

F(x) = ô — (x ± a) ln z; 

(105) 

(106) 

(107) 

(108) 
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then, by the mean value theorem 

— h < E < S.  (111) 

Let 

then 

Let 

then 

and hence 

x =  —  a,  F((5 — h) = 0;  (112) 

O ô — ((5 ± a) ln  In ((3 ± 1 +  •  (113) 

ô  1/e;  (114) 

h 
ln  + 1 ± —a ' 

(5 ± a) ln 5 —  

28 + a — a In S 
x 

In  + 1+ —a 

Thus, in terms of n and n, one has 

n< 

2 ln n  —  In (1 ln n) 
ec   

in (-2 in  + 1 +  1  
ec  2 ln n _ 

(115) 

(116) 

(117) 

The lower bound on  in the theorem assures the satisfaction of the 
conditions on x and (5 in equations (112) and (114). Use of Theorem 1 
now provides the inequality of the theorem. 
Theorem 10 provides an entropy estimate deduced from the width 

result of Theorem 7. 

Theorem 10: 0 < a < 1, n = (Mr(2c)7(1 — a)e(eo.)) 

max  /2) ,  = (1 ± p.10-2 ± • • • +  f(t) rea/; 

then 
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2 ln n  — 4 ln (2 ln n 
ec 

1  
ln  ln 7/) +  1 + 

21n,_ lj
log (2 74 ± 2 —a a) 

\  CZE  • 

Proof: The investigation parallels that of Theorem 9. A difference 
occurs in the estimation of do . The Bernstein inequality of (15) shows 
that 

do 5 M el;  (118) 

hence the estimate of the theorem. 
The case m = 1 of the representation given in Theorem 4 may be used 

to obtain an explicit c-net for B(M), and hence to provide a constructive 
algorithm for the transmission of information from such a source. The 
representation for f(t) E B,,(M) takes the form 

o.  
sin 1 — (t — jh) sin 1 —  (t — jh) 

f(t) =  Kih) 
1 — 0-  (t — jh) 

1 —   

Crh  =  7r(1  .  (119) 

In order to proceed, it is necessary to estimate the quantity A(S) 
given by 

So  o.  
sin  _  (t — jh) sin 1 (t — jh) 

—   
A(5) -= sup  E   

Scr cr 
1 (t — jh)  1-7:773(t — jh) 
— 

Theorem 11: A(6) 5 1/0 for 0 < O < 1. 

Proof: The Cauchy-Schwartz inequality yields 

sin  5°.  1  (t — jh) I2 
A(6)2 e. sup  E _..<,<..  so.  

1— 5(t — jh) 

sin  e (t — jh) 
1 — 8 

• sup  E 
—oo< t<œ j — eo o.  

(t — jh) 
1—o 

• (120) 

•  (121) 



Scr (t — jh)  h 
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From the Parseval relation of Theorem 3, one has 

-cc 

2 
0-

sin 1 — 3 (t — jh) 

 (t — jh) 
1—o 

1 rœ 
h J 

O m  cr  s. 1 — 8 (t — jh)1 2 
1 r 

1—o 

The theorem is established. 
Let 

1 —e 8 (t — s) 

 (t — s) 
1 — 

sin  1 — (t — s) 

Oc-
(1  s) 

1— o 

S = SUP (iih) I; 
- Lo< j <00 

then a corollary to Theorem 11 is 

Corollary: 

SUP  I f(t)  45 /61. 
—co<t<oe 

Proof: From equations (119) and (120), one has 

sup 
L <Lo 

f(0 I SA(0). 

The result follows from Theorem 11. 
The function 

2 

2 

ds = 1, (122) 

1 
ds = —• (123) 

(124) 

(125) 

8u u  
si n1 — 8 (t — jh) sin 1 — 8 (t — jh) 

Kt) = E f WO    (126) 
1,15.v   1  15  (t — jh)  1  45  (t — jh) 

—  —  

constitutes an approximation to f(t). The error may be assessed by 
application of equation (51) for m = 1, and Sonin's formula (53); thus 

Al f l  1  T\ -1 , ( N  , 1 , TY1 
II I — g 11' -. 7ri-8. UN + i — §id  1- 1- i -h Ft) ). (127)  

For 0 < a < 1, let 

M _L (ca. — a)e 5.0)2V 11 ± 1; (128) 
N — [a _ a) 672  Ô (1 ± {-.,  \ (1 — 3)M I f / — 2 J 

then direct verification establishes 

III - 9 Ilu < (1 — cr)€.  (129) 
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It may be observed that for large c, one has 

N   c   
7r(1 — S) — 2h' (130) 

that is, N is approximately the number of nodal points jh in (— T/2, T/2). 
Let 

— [A (S)1(jh)] 
P,(f)   

and 

(131) 

= (13-N(1), • - • , ON(/));  (132) 

then the set U0 is defined to consist of all f(t) generating the same vector 
= 13(1). It will now be shown that the diameter of Up does not exceed 

2e. Let MO, /2(0 e Up ; then 

fi(jh) — We) I  A270 (133) 

One has 

1(0 — 12(1) = E (MA) — f2(j)) 

sin   (t (t — jh) sin   (t — jh) 
1— o   1 — S   

1   (t — jh)  1  —  (t — jh) 
— 3   

and hence, by equation (129), 

11(/) — 12(1) I  E I11(jh) — 12(A) I 
IneN 

.  Scr  
1  (t — jh) sin 1   (t — jh) 
—   — 
Su o.  

1 — (t — jh)  1 —  (t — jh) 

(134) 

± 2(1 — a)e  (135) 

in which N is chosen as in equation (128). From equation (133), one has 

2ae 
f  12(1) I Ao)  

• E 
iii SIV 

Su  u  
sin  (t - jh) sin 1 _ 6 (1 — jh) 

Su  cr  
1  (t — jh)  1  0 (t  jh) 
—  —  

-I- 2(1 — a)E.  (136) 
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Use of equation (120) shows that 

1111 - 12 11. 2E.  (137) 

The sets Ug are centerable with respect to themselves; that is, there 
exists an element g(t) E U p whose distance from any other element of Ug 
does not exceed E. Consider the function g(t) defined by 

8o• o-
sin 1 — 8   

(t — jh) sin  (t — jh) 
2ae  1 —   

g(1)  E 03.(f)  4--)   
ri10.1 2W ocr  1 (i — jh)  1 o- (t — jh) 

—   — 
(138) 

One has 

I i(jh) — g(jh) 1  cee  j  N,  (139) 
— A(8) ' 

and 

f(t) — g(t) 

Scr  sin  _ 3 (t — jh) sin  °_ 8 (t — jh) 

o.  = E (f(ih) — 9(ih))  So-
iiisN  (t — jh)  (t — jh) 

1 —  1 — 8 

.  ou  o.  sm  (t — jh) sin  (t — jh) 
1 —   — + E Yih)  1   

1 8 (t  jh)  1   (t — jh) —0- — 

hence, by equations (120), (129), and (139) 

Ill - g 5. E.  (141) 

The required constructive algorithm, r, is thus given by the mapping 
f —> g in equations (131) and (138). 

Theorem 12: V(C) = (2N + 1) log f [A(8)M /2aE] — [—A(3)M/2ae] + 11, 
in which N is given in equation (128). 

Proof: It is necessary to enumerate the number of distinct g(t) which 

are generated by r(B,(M)). Since 
A(S) 1 f(jh) 1<  A(S)M. 

2ae  =  2ae  ' 

(140) 

(142) 
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the number of distinct values of (Mt) is 

L  _ 2ae  L   ± 1, 2ae 

and hence the number of distinct vectors 13(1) is 
2N + 1 

{ [ A  (2‘52 :1 ]  [  A  2( 52EM ]  +  1 }  • 

(143) 

(1-14) 

The theorem follows from equation (144). 

Corollary 1: v(r) e (2N + 1) log ([M/2aeSt] — [—M/2aee] + 1). 
Proof: Theorem 11. 

Corollary 2. v(r) e (2N ± 1) log (A 1 icte(S) + 2). 
Proof: Corollary 1 and the inequalities 

2a 8)I  .7re W ' [e( M  <  M  

< [  M  M  

IV. THEORETICAL INVESTIGATION OF W, 

Using Theorem 3 for f, g e W, , the Sobolev inner product 

r T/2 

(fe (1)1 = (fo  mtiù + • • • + Pi(') g(a) ) di 
— T/2 

takes the form 

T 
sin  (u — v) 

(1, g). =  7,(u _ 

(146) 

• (1 + µ,uv + • • • ± giu'v')F(u)C(v) du dv,  (147) 

in which F(u), G(u) are the Fourier transforms off, g respectively. The 
corresponding positive definite quadratic form Q is 

. T 
„ „  (u — v) 

Q = II =  L.  7re. — o 
• (1 + puv + • • • + ii,,u'v°)F(u)P(v) du dv,  (148) 

and an operator K generating Q is given by 
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T 

KF = 
a sin — (u — v) 

2   f_, r(u — v) 

• (1 + ¡hut, ± • • • ± y,u'v°)F(v) dv,  u  u;  (149) 

thus 

Q = f PKF du.  (150) 
-0 

The equation defining the eigenvalues and eigenfunctions of K is 

K(1). = XkCI)k  k  0,  (151) 

in which the ordering X.  Xi k X2  • • • is used. It follows from the 
Hilbert-Schmidt theory" that the eigenvalues are denumerable and of 
finite multiplicity and the eigenfunctions form an orthonormal set 
which, from the positive definite character of K, is complete in L2(— o, 0"). 

Let „,k(o.e, f. en"4).(u) du;  (152) 

then the Parseval relation for Fourier transforms shows that the 
sequence gim(t), OM, OA, • • • is orthonormal over (— co,  00); further, 
from equations (147), (150), and (151), one has 

(0, ,  = f (1,K(1); du = f  j Cl'k du = O j k 

=X1 j = k.  (153) 

Thus the sequence {41k(t)}7, forms an orthogonal system with respect to 
the Sobolev inner product (146). The system W 011 is also complete 
in W,r.. as a consequence of the completeness of the system {(1)(u)}̀: in 
L2 (— a, u). 
Define the n-dimensional subspace X. C W, by 

X„ = X„(4)0 , • • • , en-i) (154) 

then Theorem 13 provides the nth width of W„T,(B), relative to H , 
in terms of the eigenvalues of K. 

Theorem .13: de. (W::,,(B)) = 

Proof: Let f(t) e W ,,(B); then 

i(t) =  (155) 
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Let 

g(t) = E a(t) E X n ;  (156) 
k-0 

then the orthogonality of the Ok(t), (153), yields 

IIf —gII = Ê Iak l2Xk .  (157) 
k— 

Thus 

CO 

mf Il f  g  12.  I ak 12 '4 . 
OC Xn 

From the monotonicity of the X, , one has 

CO 

(158) 

inf  x.Elak 12;  (159) 
pcXn  k=n 

however, the orthonormality of the (t),(t) over (— 00, 00) shows that 

j I1t) 12 dt =  I ak 12 B2, 
—c0  1c=0 

and hence from equation (159) 

Ex„(TV:,,(B)) =  sup  inf ilf— g H.  BX„. 
eWc ,.(B) (rein 

Thus 

d„(Wf.„(B))  BX„ 

Consider the ball U„,i defined by 

(162) 

g(t) =  a040(1),  11911.  B Q;  (163) 
k O 

then, by a theorem on balls in a finite dimensional subspace of a Banach 

space,2 

=  (164) 

Thus the theorem will be established if it is shown that the ball U.+1 
defined in equation (163) is contained in fv,,„(B). It is only necessary 
to verify that 

<  f' 1 g(()  12 dt = î I ak 12 B2.  (165) 
k•o) 
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One has from 

II g 11 = L I ak 12 xk e_ B2X,.  (166) 
k=0 

that 

2, 1 ak 12 E  ak 12 , k-o  k-o  — 
(167) 

and hence the theorem is proved. 
Use of the series representation of Theorem 4 permits one to estimate 

d„H° (W f.,(B)). The quantities m and S. are as in equation (48); addition-
ally, the corresponding interval 14, is defined by h. -= ir(1 — 8„)/o-. 

Theorem 14: 

Proof: Let 

and 

then 

e'   jj < 2  B  
ir 

((2m ± 1)(n — 1— T 

f(t) =  f(jh)0,(t), 

g(t) = E Kih)oi(t); 
Iii 

J(t) — g(t) I  E I f(jIL)  I I Mt) I. 

Since, by Parseval's relation of Theorem 3 

L. 11(0 12 dt = h É 1 i(ih) 12 5 B2, 
i 

Schwartz's inequality applied to equation (170) yields 

I  g(t) 12  

One has, from equation (51) 

2B2 ml"'  1   
II I — g 112u ir2hL7i) N > Fl•  (173) 

j N (.  T\2"+2 

(171) 

(172) 
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One may use Sonin's formula, equation (53), to effect the summation 
in equation (173); thus 

III riî  - g IIu 

The choice 

leads to 

(  ( h(2m + 1) N +  — 
2  2h  7r  \  2  20 

1')y  a(N 1  nj 

(174) 

= 

III cm   - g Ilu 
71- (h (2 m ± 1)(N ± -1§ — 

Thus equation (176) shows that 

B /214   d2 "°+1  
e ((2m ± 1)(N +  — ; 

2h 

and, hence, for n odd 

< 2 Bo   

For n even, one has 

((2m ± 1)(n — 

(175) 

(176) 

(177) 

(178) 

d -m z. riv:0(B\  2B e  4 •  (179) 
j Ir 

((2m ± 1)(n — 1 — 

thus equation (179) applies in all cases. The fractional guardband is 
now chosen as in equation (48), and the inequality of the theorem 
follows. 
Theorem 13 permits an immediate corollary to be obtained from 

Theorem 14. 

Corollary: For s = 0, one has 

4  e   2  -21,1 

T  
Xn r h„_, 

(2m + 1)(n — 1 —   
h„_, 
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As was done in Theorem 7, polynomial approximation will be used 
to estimate dr • (W (B)). The estimate is given in Theorem 15. 

Theorem 15: 

' 
dr:(W:..(B))  BF( )  (2c)' 

n!  (27A  . 
n J uz + 1)(2n + 2s + 1))4 

Proof: The estimate will be obtained from equation (80). In order to 
estimate M„,„ , consider 

f(t) — (2T)  "F(u) du,  (180) 

from which one has 

1  r-
g(x)  (27ryi  a e ")'F (u) du. 

Accordingly 

(181) 

(TV  1  r  '  T/91 

2l (2,  J. 7r)4 e,u(_,_,.(iu )7u( ) du.  (182) 

By use of the Schwartz inequality, one obtains 

I g̀ f ) (x) 12 ..5 (--7j 2' -2-.7-r f' e du Le ., I F (u) 12 du.  (183) 

The Parseval relation for Fourier transforms 

rI f(t) 12 dt = f I Fu) 12 du  B2 (184) 

and equation (184) now yields 

g(x) 12 B2    
7r 2r + 1 

Thus 

M.+.  B(e )÷  en+, 
7r (2n + 2s + 1)4" 

(185) 

(186) 

The remainder of the analysis is the same as in Theorem 7. 
Theorem 13 again permits an immediate corollary to be obtained 

from Theorem 15. 
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Corollary: 

(2c)2'2' 
Xn+.  2c r 

71 

n12 Cnn)2(2n ± 1)(2n ± 2s ± 1) 

Theorems 14 and 15 lead to corresponding estimates of entropy 
through use of Theorem 1. 

Theorem 16: Let 

2c)1)2, 
n k 2 + (1 +(  0 < a < 1,  ¡(1) real, 

and 

==  (  2U9   (2c'1L \ITO (1 - a)E Vir 

then 

{2 +  (1 +  (rn 
4 )21} 1°g  (2B °  + 2— a)  a 

Proof: From Theorem 14, one has 

2 ( 1 y   
;B  

(2m + 1)(n — 2 — leg:2)Y 

From equation (48), one has 

2m + 1  3,  T (2c 2)) ; 
/4,-2  71 

hence 

Since 

1 

2  Be-)  e 
1 

((n — 

  <1  for n  2+ 

((n — 2) — (24 )' 

2)1  (2c))  

(187) 

(188) 

(189) 

(190) 
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cl._1(Wf.0(B)) obeys the inequality 

d„_,(Vno(B))  (191) 

According to Theorem 1, one may consider 

(1 — a)E;  (192) 
\ir / 

m = [in  (21B_ co€  C I)] 

The remaining analysis is the same as that of Theorem 8. The inequality 
of the theorem now follows. 

Theorem 17: Let 0 < a < 1, n = FB(2c)°/(1 — a)Eeen-c), 

n  max 4 ,  , e e c  f(t) real, 
el2 

and hence 

(193) 

then 

2BX 
2 In n ± 1 — ln (-2— In 77)1 

,4 — ec ez is + 1 +  r log (  + 
2   

1  aE  a / 
In (-2 In ?I) + 1 ± 

6C ln n 

Proof: The proof parallels that of Theorem 9. 
It may be useful to observe 

2c 2 

ir 
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A Satellite System for Avoiding Serial 
Sun-Transit Outages and Eclipses 

By C. W. LUNDGREN 

(Manuscript received March 20, 1970) 

The motions of satellites phased in particular, slightly inclined orbits 
are timed so that different satellites are north and south of the equator 
when sun-caused outages occur in geostationary equatorial systems. 

I. INTRODUCTION 

Communication satellite systems experience predictable service 
interruptions involving the sun. A sun-transit outage occurs when the 
pointing angles from a receiving earth terminal to a satellite and to 
the sun so nearly coincide that the additional noise power presented 
by the sun renders transmission unusable.' When a satellite passes 
through the earth's shadow, its solar primary power is interrupted and 
its sunlight-dependent heat balance is upset. 
A geostationary system serving a common coverage region may in-

clude several satellites spaced less than 100 (175 mrad) in the syn-
chronous equatorial orbit. Figure 1 illustrates the timing of sun transits 
and eclipses occurring in rapid series for three geostationary satellites 
during one day at the spring equinox, observed from an earth terminal 
located on the equator at longitude 0°W. One sun transit near noon 
and one eclipse 12 hours later are observed for each satellite served by 
this terminal. Eclipses of closely spaced satellites may occur at the same 
time, and sun transits of different satellites may also occur simultane-
ously within a large coverage region. 
Daily sun transits of all geostationary satellites serving an earth 

terminal occur during one week in the spring and again in the fall. 
Service interruptions can last five minutes or more per satellite. Affected 
outage regions are large and move so rapidly that terrestrial restoration 
is unattractive. 
Conversely, a minimum of one working and one spare geostationary 

satellite are required for restoration independent of terrestrial facilities. 

1943 
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-ECLIPSE OF 

SATELLITE 1 

--SUN TRANSIT OF 
SATELLITE 1 

PARALLEL 
ee -RAYS FROM 

SUN 

SATELLITES 

Fig. 1—Sun transits for earth terminal on equator, and eclipses of geostationary 
satellites at equinox. 

Such redundancy is also required for adequate protection against 
satellite failure, since satellite replenishment intervals are prohibitively 
large. 
A fully redundant geostationary system incorporates duplicate trans-

missions to working and spare satellites and duplicate reception from 
these satellites continuously at all earth terminals. Partially redundant 
systems depend upon redirection of earth antenna beams to spare 
satellites.* 
Rapid, highly coordinated switching between geostationary satellites 

is required at all earth terminals to restore serial sun-transit outages. 
Numerous residual transmission "hits" result from such switching. 
Also, the orbit spacing must be sufficiently large to prevent simul-
taneous mutual outages of the different satellites at different locations 
within the coverage region to avoid additional switching complexity. 
A spacing as large as 8° (140 mrad) is necessary to prevent mutual 
sun-transit outages within the contiguous United States.t 
Alternatively, serial sun transits are avoided by phasing the satel-

lites in particular, slightly inclined orbits with motions timed so that 
one satellite is north of the equator and the other is south during both 
the spring and fall outage events. Only one switch of reception between 

* If the earth terminals are equipped with duplicate antennas, transmitters, and 
receivers, the capacity of both satellites can be utilized except during outage periods. 
t The 48 contmental states, excluding Alaska and Hawaii. 
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the separated satellites is required per sun-transit season. The exact 
timing (hour) is unimportant and may be different for the convenience 
of each earth terminal. Except for these two switches, all earth termi-
nals throughout the coverage region are afforded uninterrupted recep-
tion throughout the year. Mutual sun transits within the same coverage 
region are also avoided by this satellite diversity, and the large orbit 
spacing discussed above for geostationary satellites is unnecessary.: 

II. SUN TRANSITS AND ECLIPSES 

Sun transits and eclipses of geostationary satellites occur during the 
spring and fall seasons. The exact dates of the former depend primarily 
upon the latitude of the receiving earth terminal. 

2.1 Sun Transits of Geostationary Satellites 

The geometry and duration associated with a sun transit are con-
trolled by (i) the off-axis gain of a properly pointed earth antenna, 
(ii) the receiving system noise temperature, (iii) the solar noise power 
profile, and (iv) the minimum acceptable signal-to-noise ratio. 
In Fig. 2 the sun's rays are assumed to be parallel; refraction cor-

SUN 

.--SATELLITE 
SHADOW AXIS 

" 

DESIRED 
SIGNAL PATH — 

•.GEOSTATIONARY 
SATELLITE 

PLANAR CONIC SECTION 

ACTUAL OUTAGE REGION 

LOCAL HORIZONTAL 
PLANE AT OUTAGE 

CENTER P,,  ..,...- PATH OF OUTAGE 
ss  CENTER P 
\ 

',.EARTH 
TERMINAL 

EARTH 

Fig. 2—Planar approximation of geography affected by a sun-transit outage. 

rections are neglected, assuming a sufficiently large angle of incidence 
to the atmosphere for the desired ray SE. The affected outage region 
is defined approximately by the locus of all points on the illuminated 
earth's surface for which earth antennas aimed at satellite S also point 
t See Sections 3.3 and A.5. 
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a prescribed minimum angular distance a° away from the sun's center. 
An estimate of the geography involved is provided by the elliptical 

intersection of a cone of angular radius a°, symmetrical about satellite-
shadow axis SP with its apex at S, and the horizontal plane at P. It is 
elongated north-south in the figure. 
The sun is assumed to be a uniform disk source of thermal noise 

about 0.5° in diameter.* Shapes and magnitudes of the solar noise 
power profile vary strongly with time and radio frequency. Edge 
brightening at the lower microwave frequencies approaches a factor of 
two, and comparable variations of total flux with time are common." 
A minimum solar noise temperature for the mean quiet sun (total 

flux averaged over the disk) is about 25,000 K for a single polarization, 
inferred from measurements at a wavelength of 10.3 cm. ' This is 
approximately the minimum temperature presented to a sun-pointed 
ideal antenna at 4 GHz whose beamwidth is less than 0.5°. 
Convolution of an appropriate solar noise profile with a known earth 

antenna gain pattern provides an estimate of increased noise versus 
angular displacement of the sun center from the main beam axis. 
Estimates for the minimum displacement permitting acceptable recep-
tion at 4 GHz range from about 0.6° (10 mrad) for very large earth 
antennas (30 m) to greater than 1° (18 mrad) for small antennas 
(8m)." Corresponding minor axes of outage regions range from 800 
to 1300 km. Major axes occurring along satellite-earth longitudes are 
equal to the minor axes at the equator and approach 1.5 times the 
latter at high latitudes. 
Because of synchronism between earth rotation and satellite revolu-

tion, each outage region appears to move. One at 41° north latitude 
traverses the contiguous United States from west to east in approxi-
mately one-half hour at noon of the time zone at the satellite's longitude 
(see Appendix A). 
Figure 3 illustrates the path of an outage region. Each path is tangent 

to the latitude intercept of the center of the satellite's shadow at ap-
parent noon at the satellite's longitude. For all other longitudes in the 
Northern Hemisphere, the path lies slightly to the north of this latitude. 
Hence, in very late February or early March, short daily outages 

affect earth terminals situated near the United States—Canadian border. 
Two to three days later these terminals experience maximum outages 
lasting five minutes or more, depending upon transmission parameters 
and permissible signal-to-noise ratios. Outages at these terminals end 

* The optical disk has a diameter of about 29 minutes of arc, in geocentered 
angular measure. 
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SATELLITE 
LONG I TUDE 

95° W 

Fig. 3—Approximate paths of sun-transit outages for geostationary satellite. 

after an additional two to three days, the outage paths progressing 
southward at a rate of about 30 latitude per day. All outages affecting 
United States earth terminals above north latitude 26° cease prior to 
mid-March. 
Conversely, in the fall the daily outage paths progress from south 

to north, affecting southern United States terminals about October 1 
and ending in the north about mid-October. 
In Fig. 3, based on parameters adopted in Appendix A, a given earth 

terminal is affected about six days, twice yearly, while the contiguous 
United States experiences outages throughout a 14-day period, again 
twice yearly. If a multiple-feed antenna or a rapid-slewing antenna is 
employed to switch reception at an earth terminal from an affected 
satellite to another 6.8° (120 mrad) westward in the geostationary 
orbit, transmission from the latter satellite is interrupted only 30 
minutes later. 

2.2 Eclipses of Geostationary Satellites 

Eclipses of geostationary satellites can be expected for a total of 
about 90 evenings per year in the spring and fall. Concurrent eclipses 
occur for geostationary satellites spaced less than 17.6° (310 mrad). 
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Eclipses occur near apparent midnight of the time zone at each satel-
lite's longitude, beginning in late February or early March and ending 
by mid-April. Fall events begin about September 1 and end about mid-
October. Eclipses lasting about 70 minutes occur on the dates of the 
spring and fall equinoxes; those lasting longer than one hour occur 
about 50 days per satellite per year. 
Communication satellites are provided with batteries to prevent 

circuit outages and to maintain antenna pointing, attitude control, 
station keeping, telemetry, and command capabilities during eclipses. 
However, concomitant voltage and temperature fluctuations, loss of 
the solar reference for antenna pointing, and related ground command 
activities may contribute to an increased likelihood of satelite failure 
or a reduction in transmission capacity during eclipses. 

III. DIVERSITY SYNCHRONOUS SATELLITE SYSTEM 

A minimum arrangement of two slightly inclined, circular synchro-
nous orbits with deliberate phasing of one working and one spare 
satellite in their respective orbits is suggested for providing space 
diversity during outage periods. The specific orbit parameters and 
satellite phasing are chosen so that they may remain unchanged 
throughout the year. Thus satellite station-keeping fuel expenditures 
are comparable to geostationary values. The parameters are also chosen 
so that only one noncritical handover of reception between satellites is 
required per sun-transit season. 

3.1 Basic Satellite Phasing in Specific Inclined Orbits 

Figure 4 illustrates the relationship between a "figure 8" pattern 
traced out by a synchronous satellite and the magnitude of its orbit 
inclination. Recent descriptions of such patterns are given by Rowe 
and Penzias,' treating the efficient use of orbit longitude. 
Figure 5 illustrates the satellite phasing and timing of motions 

required for a two-satellite diversity system. The time reference selected 
for describing these motions is initial time to mean solar hours, marking 
the advent of 12 o'clock noon (apparent, or sun time) on the date of 
the vernal equinox at average 0 of mean longitudes 01 and 02 degrees 
west for satellites S1 and S2, respectively (0 = (0i ± 02),„). For satel-
lites sharing radio frequency bands, a minimum orbit spacing between 
interfering satellites is generally specified consistent with resolving 
powers of the earth antennas. Accordingly, a minimum satellite spacing 
x degrees is assumed between mean longitudes 01 and 02. 
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Fig. 4—Earth synchronous orbits and figure 8 patterns. 

In terms of 0, chosen for service to a particular geographical region, 
the mean orbit longitudes shown in Fig. 5 are 

0, = (0 — x/2),  02 = (0 -I- x/2) degrees west.  (1) 

Dimensions of 8 patterns allowing adequate diversity between 
properly phased satellites are determined in Appendix B. Peak satellite 
displacements from the equatorial plane (geostationary orbit in Fig. 5) 
coincide in the spring and fall with sun transits of each satellite's mean 
longitude meridian. 
For example, in Fig. 5(a) satellite S, is northernmost in its 8 pattern 

prior to apparent noon at average longitude 0. To an observer located 
at earth longitude 01, this coincides with alignment of the sun behind 
the 8 pattern for satellite S, . 
At apparent noon at longitude 0, satellite S, in Fig. 5(b) moves 

very slowly toward the geostationary orbit, while 52 is approaching 
the southernmost point in its 8 pattern. The sun is located midway 
between the 8 patterns. 
Shortly after apparent noon at longitude 0, the sun aligns behind the 

8 pattern for satellite S2, as observed from earth longitude 02. At this 
time, satellite S2 reaches its peak excursion, while satellite S, moves 
more rapidly towards the geostationary orbit [Fig. 5(c)]. Tick marks 
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on the 8 patterns are labeled according to each satellite's location at 
times referred to longitude O. 
Paths of the sun on consecutive days during the spring sun-transit 

season are also indicated. Note that these daily paths progress from 
south to north in accordance with a decreasing southern declination of 
the sun's rays at this time of year (cf., Fig. 3). 
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Circles of radius a° centered at each satellite define the minimum 
pointing angle to the sun for earth antennas directed at the satellites. 
Hence, reception from satellite Si is interrupted when the sun is within 
the circle for S1. Tick marks give positions of the sun along its path, 
again at times referred to longitude O. 
In Fig. 5, uninterrupted reception from satellite Si is assumed 

throughout the late fall and winter, until March 7. At any convenient 
time between March 1 and March 7, an earth terminal observing these 
motions redirects its reception from satellite Si to satellite S2. This 
allows uninterrupted reception from S2 until the fall sun-transit season, 
during which this noncritical procedure is reversed. 
Note that the 8 patterns in Fig. 5 are larger than required by a 

single earth terminal. The dimensions determined in Appendix B are 
sufficient to prevent serial sun transits throughout the entire latitude 
range of the coverage region, so that only one outage region from 
either satellite may traverse any part of the coverage region on any 
day. This simplifies switching between satellites in restoration schemes 
involving large numbers of working satellites and a minimum of one 
spare satellite.* However, for the basic scheme involving duplicate 
transmission via equal numbers of working and spare satellites, the 
dimensions of the 8 patterns may be reduced until the outage circles 
(a°) are almost tangent to the geostationary orbit. Redirection of the 
earth antenna appropriate for Fig. 5 is required on or about March 4 
for such reduced 8 patterns. 
Note also that the satellites spend most of the time near the extremes 

of the 8 patterns, providing near-maximum diversity separation for 
several hours near noon. This tolerance to timing errors is particularly 
useful since the apparent alignments of the sun in Fig. 5 and the timing 
of transit events are somewhat different for observers at different loca-
tions within the coverage region. Allowances are made in Appendix B 
in the computation of required diversity separation for both latitude 
and longitude ranges of the coverage region, assuming that uninter-
rupted reception from the unaffected satellite is required continuously 
at all earth terminals throughout the coverage region. 
The diversity performance is made nearly independent of arbitrary 

satellite spacing x by phasing each satellite so that its maximum lati-
tude excursion occurs at sun transit of its mean longitude meridian. 
Tick marks in Fig. 6 illustrate a daily progression of satellite posi-

tions at apparent noon at longitude O throughout the year. This regular 
shift is observed in the ideal case at the earth terminals because such 

* Discussed in Section 3.3. 
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Fig. 6—Shift of daily satellite positions. 

inclined synchronous orbits tend to maintain fixed orientations in 
space as the earth revolves around the sun (about 10 per day), illus-
trated in Fig. 7, by virtue of conservation of orbit angular momenta 
m1 and m2. Orbit perturbations, or departures from the above ideal 
motions, are approximately the same as those for geostationary orbits 
and are corrected by firing small station-keeping rocket motors at 
intervals throughout the lifetime of the satellites. 
Specification of orbit stabilization with respect to the fixed stars is 

necessary to obtain properly timed satellite diversity automatically 
throughout the year; the precision required for diversity is needed only 
during outage seasons. 
Hence, the daily period of satellite motions in their figure 8 patterns 

is less than 24 hours of civil time (mean solar hours). The actual side-
real period is 23" 56E8 048.09054 in mean solar time measure. 
The daily shift of positions is utilized, by the deliberate orbit orien-

tations and satellite phasing in the orbits, so that the apparent positions 
of satellites Si and S2 are reversed automatically in time for diversity 
reception again during the fall outage season (see Fig. 7). Positions are 
also reversed daily, providing diversity for satellite eclipses near mid-
night, assuming sufficiently large orbit inclinations. 
Conversely, lesser accumulated shifts must also be considered in 

computing the minimum diversity separation for sun transits for 
coverage regions located far from the equator, since sun transits occur 
either before, or after actual equinoxes (see Figs. 5 and 6, and Appen-
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dix B). Sun transits are observed in the Northern Hemisphere prior 
to the vernal equinox and again after the autumnal equinox. Offsets of 
approximately two weeks from the symmetrical case are representative 
for the contiguous United States. Of course, dates of satellite eclipses 
are independent of earth latitude and the ideal symmetry is applicable. 

3.2 Orbit Parameters 

Satellite motions and initial conditions are illustrated in Figs. 7 and 
8 for two diversity satellites. 

3.2.1 Inclination of Orbits 

The planes of orbits for satellites Si and S2 are tilted slightly with 
respect to the earth's equatorial plane by inclination angles i, and i2. 
For the idealized case of equal inclinations, the minimum required 

magnitudes range from about 2 degrees for avoiding serial sun transits 
to about 9 degrees for avoiding serial and concurrent eclipses (see 
Appendix B). 

3.2.2 Alignment of Inclined Orbit Planes 

Positioning of the figure 8s is accomplished by aligning the orbit 
planes in slightly offset opposition as shown in Fig. 8. Two plane inter-
sections with the earth's equator result, each forming acute angles 
(90 — x/2) degrees symmetrically with the mean equinox axis (inter-
section of planes of the equator and of the earth's orbit around the 
sun; direction from earth towards the sun at the vernal equinox). 
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Fig. 8—Synchronous orbits phased for sun diversity. 
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3.2.3 Phasing of Satellite S 

The time of the ascending node in orbit 1 for satellite S, , for spacing 
x degrees is 

= to — [(6 + x/30)] mean solar hours,  (2) 

so that at time t = to — x/30 hours satellite Si necessarily assumes its 
maximum north latitude (upper limit of excursion for left-hand figure 8 
pattern in Fig. 5). From Fig. 8, note that the semi-major axis of the 8 in 
geocentered angular measure is equivalent numerically to orbit inclina-
tion i1. 

3.2.4 Phasing of Satellite Si 

The descending node in orbit 2 for satellite S2 is specified by 

12 =  10  [(6 — x/30)] mean solar hours,  (3) 

for which satellite S2  assumes its maximum south latitude at time 
t = to ± x/30 hours. 

3.2.5 Satellite Motions Related to the Sun and Seasons 

By synchronizing satellite motions and timing with respect to the 
earth's revolution about the sun as shown in Fig. 7, the required space 
diversity is obtained during both spring and fall outage seasons. 
Satellite motions and timing are specified above in terms of initial 

conditions at the vernal equinox. Of course, actual satellite launching 
is not restricted to any season, provided that satellite motions coincide 
with those for the specified system at the times when sun-caused 
outages occur in geostationary equatorial systems. 

3.3 Phased Multisatellite Systems 

Two satellites are required for the basic diversity system. The 
diversity satellites may be placed as desired in orbit longitude con-
sistent with an assumed minimum orbit spacing x. 
An obvious system growth is to add uniformly spaced, alternately 

phased working and spare satellites along the orbit (Fig. 5). Note that 
one of a diversity pair of spare satellites can restore all working satel-
lites if fast switching may be employed daily at the affected earth 
terminals. Reception is transferred in sequence between transitted 
active satellites and the unaffected spare.* The orbit spacing between 
second-adjacent satellites (same phasing) should be sufficient to prevent 
mutual sun transits of the latter satellites within the coverage region. 

* The affected spare is available as an additional working satellite. 
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For this case, only half of the orbit spacing required by geostationary 
satellites is required by the diversity satellites (about 4° for avoiding 
mutual outages within the contiguous United States). 
Conversely, for satellites which may be closely spaced (x A  1°), 

efficient use of the orbit may result from judicious incorporation, in a 
manner consistent with the satellite phasing and timing described 
above, of orbit loading techniques suggested by Rowe and Penzias.° 
Deliberate relative phases in adjacent 8 patterns may prevent major 
multiple sun transits of all satellites near the same latitude and mini-
mize daily switching to different unaffected satellites (Section 3.1). 
For large orbit inclinations,* (i) tracking of satellite and earth 

antennas is required, (ii) reduction in latitude of the coverage region 
results, (iii) transmission at low angles of arrival is more susceptible 
to atmospheric degradation, and (iv) the interference exposure between 
radio relay and satellite services is increased. 

3.4 Antenna Requirements for Earth Terminals and Satellites 

Only slight geometric departures from the geostationary case are 
required to obtain diversity for avoiding sun-transit outages; some-
what larger departures are required for avoiding eclipses. Hence, 
satellite radio transmission parameters appropriate for corresponding 
geostationary designs are essentially retained. 
Earth antennas need follow only slow and very small periodic satel-

lite motions. These motions are accomodated reliably by conventional 
24-hour cyclic cam drives (sidereal time measure). Costs and mainte-
nance for such antenna drives are virtually insignificant when compared 
with those for full automatic tracking. Cyclic drives are appropriate 
for a large deployment of small earth antennas requiring moderate 
beam-pointing precision, while costs for full automatic tracking are less 
significant for a smaller number of large antennas requiring precise 
beam pointing. 
A minimum earth antenna steering requirement accommodating 

orbit inclinations up to 10° (175 mrad) and satellite longitude drifts 
from assigned orbit stations of ±10°, for satellite elevations of 5° or 
more, is reported by the Communications Satellite Corporation for 
quasi-stationary satellites.' Such earth terminals are compatible with 
the diversity satellites, since in the ideal application the smaller de-
sired orbit inclinations are also maintained continuously. 
The spin axis of a satellite is maintained perpendicular to its orbit 

plane, in the simplest wheel-mode attitude stabilization. Satellite 

* For z = 1°,  10.7° and for x  5°, 1  24°, from equation (7) of Ref. 6. 
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antenna pointing referred to this axis benefits from partial compensa-
tion of pointing errors otherwise accompanying departures from the 
equatorial plane in the inclined orbits.* 

IV. CONCLUSIONS 

Space diversity is provided automatically at times of sun transits 
and eclipses by a convenient modification of a geostationary system 
in which the satellites appear to move in figure 8 patterns. Alternate 
satellites are oppositely phased, so that when one satellite is north the 
other is south. Orbit orientations and timing of satellite motions are 
arranged so that near the spring and fall equinoxes, when geostationary 
satellites transit the sun, the diversity satellites are at extreme north 
and south positions, allowing uninterrupted reception from at least 
one satellite. 
The contiguous United States is cleared of serial sun-transit outages 

if orbit inclinations of about two degrees are employed. Concurrent 
satellite eclipses are also reduced in frequency and duration, and are 
avoided by increasing the orbit inclinations to about nine degrees. 
Neglecting perturbations common to synchronous orbits including 

the geostationary orbit, the satellite deployment is steady state. 
Satellite launching requirements, mean station-keeping precision, and 
lifetimes are comparable to the geostationary case. 
Diversity is provided automatically during both spring and fall 

outage seasons, requiring two noncritical switches between satellites 
per year. 
Relatively minor modifications of earth terminals and satellites 

designed for geostationary service are required. 
The diversity satellites are positioned as desired in orbit longitude 

without degrading system performance significantly, consistent with 
minimum orbit spacings to control interference from neighboring 
satellites. 
Transmission via the unaffected satellite of a diversity pair can be 

switched in sequence daily to restore all transitted active satellites of 
a larger system. 
One-half the minimum orbit spacing required by geostationary 

systems to prevent mutual outages of neighboring satellites within 
large coverage areas is required by the diversity system, since only 
alternate satellites experience outages on a given day. 
Sun-transit outages in satellite circuits can be restored without 

involving terrestrial facilities. 

*For j = 2°, a peak uncompensated pointing error of 0.3* is representative, 
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APPENDIX A 

Simplified Geometry and Numerical Examples for Geostationary Satellites 

A.1 Minimum-Latitude Circle Tangent to Outage Path 

At the satellite longitude, conjunction of the sun and satellite occurs 
at apparent noon and the satellite's shadow intercepts a minimum 
latitude, shown in Fig. 9. On successive days in the spring, the shadow 
path becomes tangent to a smaller north latitude at the satellite's 
longitude, and lies slightly to the north of this latitude for all other 
longitudes. 
Figure 9 illustrates the sun's rays on March 4, 1970. From an alma-

nac, the apparent declination of the sun for 0 hours ephemeris time 
(E.T.) is —6° 40' 54".5 and on March 5, is —6° 17' 49.0.8 
Ephemeris transit of the sun on March 4 is given as 12" 11m 508.39 

and the reduction AT from universal time (U.T.) to E.T. for the year 
1970.5 is approximately 408. The ephemeris time corresponding to solar 
transit at west longitude X° is 

X   E.T.  E.T. (TRANSIT) + [1.002738] .à7) (24h ) hours, 

X < 180°,  (4) 

where the coefficient in brackets is the approximate ratio of the mean 
solar day to the mean sidereal day. Allowing for a 6-hour time differ-
ence from the Greenwich Meridian to the Central Time Zone, 

C.S.T.  E.T. — LT — 6" hours.  (5) 

Assume a transit of geostationary satellite stationed at X -= 95°W: 

C.S.T.  1211 118'.84 + 61120/8.93 — Oh 0'11.67 — 6h Om.  (6) 

From equation (4), the ephemeris time of this event is 1811 32/8.77 on 
March 4. Interpolating between 01 on March 4 and Oh on March 5, the 
sun's apparent declination is 

18.55  
D = —6.682° + 24.00  (0.385°), 

—6.38°. 

(7) 
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Note from Fig. 9, 

Sm çoin, = —Fe sin D,  (8) 

h + R(1 — cos ‘,9 • ) 
S —  cos D  min  km,  (9) 

where somi„ is the north latitude of the satellite's shadow at the time of 
sun transit. 
Then 

sin ÇOmin  COS D 

sin D[(1 — cos somi.) 
(10) 

from which it is determined that emin 41.0° north latitude, assuming 
geostationary orbit altitude h = 35,900 km and mean spherical earth 
radius R = 6373 km. 

A.2 Estimate of Speed with Which Outage Centers Traverse U.S.A. 

Figure 10 shows the contiguous United States represented by a 
longitude span of 60° centered at the satellite longitude and located at 
north latitude cpm.(41°). Consider a projection of the extreme longitude 
meridians (i.e., ±30° referred to the satellite longitude) parallel to an 
assumed shadow axis between the span center at B' and the satellite 

at B, such that orbit arc intercept AC is specified. 
The geocentric orbit radius is 

AO = CO = R +h = 42,270 km.  (11) 

Then the radius of latitude circle ie,min  is 

R" = R cos cp.in A" 4810 km.  (12) 

The approximate distance measured along latitude circle yemin  for this 
model of the United states is 

27r60 —„ 
5040 k  (13) 360  m. 

Recognizing equilateral triangle A'OC', the orbit chord is 

AC = A'C' = R"  4810 km.  (14) 

The solution of an oblique triangle with sides a, b, c and opposite 
angles A, B, C is 
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—a2 c2 
cos A — 

25e 
(15) 

so that the orbit are may be found from 

—(AC)2 ± 2(R ± it)2 
cos (A-0-C) — (16) 

2(R ± 

Then the desired geocentered angle representing the orbit intercept of 
all parallel sun's rays simultaneously illuminating this model is 

AC = cos- (A-0-C)  6.5 degrees.  (17) 

The time required for a satellite's shadow to traverse a stationary 
representation of the United States is numerically equivalent to the 
time for the fractional revolution of a satellite from position A to C: 

(24 X 60)m 
t„.  6.5° X  — 26.0 min.  (18) 

360° 

However, the actual elapsed time t, is greater by virtue of earth rota-
tion during this interval. The effective longitude span of the United 
States is very approximately 

A'C' + ' "" 60° + 26'.0 X —15°  66.5°.  (19) 
60m 

Accounting for a correspondingly enlarged orbit intercept, 

t,  t,,,,,, X  28.8 min,  (20) 
60° 

so that an outage region traverses the United States from west to east 
in approximately one-half hour. The exact interval depends primarily 
upon (pion . 

A.3 Estimation of Size of Outage Region—Example 

A conic figure of revolution about axis SP in Fig. 2 defining the 
affected outage region subtends total angle 2a measured at the satellite. 
To enable example calculations without specific reference to antenna 
pattern data, a worst-case minimum angular separation a = 1° be-
tween a satellite and the sun center is adopted.* 

*The value a = 1° is assumed for a hypothetical 4-GHz satellite system incor-
porating 55 percent efficient, 30-ft diameter parabolic reflector earth antennas, a 
receiving system noise temperature of 200 K, and a 3-dB allowable increase in 
received thermal noise power. 
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The horizontal plane at the location of the satellite's shadow P at 
time of transit is shown in edge view in Fig. 11. Slant range S = SP 
is found from equation (9) to be about 37,470 km. The conic section 
defined by this plane and the outage cone is elliptical; point P specifies 
its motions. 
The east-west semi-minor axis r is equivalent ,to the radius of the 

right circular intersection of the cone and a plane through P normal to 
satellite-shadow axis SP: 

r = S sin 

655 km.  (21) 

The north-south semi-major axis r' in Fig. 11 is found from a pro-
jection of the above circular intersection upon the local horizontal 
plane at P: 

r' — cos (çor„,„ — D) 

970 km. (22) 

A.4 Estimate of Outage Duration 

The maximum duration of an outage occurring at an earth terminal 
located on latitude yomin is approximately that fraction of time ti [equa-
tion (20)] for the satellite's shadow to travel the 1310-km width of the 

,SATELLITE 

.-•••••". 

DI 

—etnin-0 --

Fig. 11 —Determination of outage region at P. 
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above outage pattern. Allowing for earth rotation, and noting that the 

600 longitude span A'C' at latitude mjfl corresponds to chord A'C': 

2r 2r  
t, X  <t < t, X A, c, 

7:5 minutes < td < 7.8 minutes. 

For the satellite stationed at longitude 95° west, the path of its 
shadow on March 4, 1970, approaches latitude 41° north near Omaha 
at 12:32 p.m. C.S.T. Taking dimensions of the outage region into 
account, the West Coast should just begin to experience outages north 
of Eureka, California, at about 10:16 a.m. Pacific Standard Time, and 
the last outages, near Boston, should cease about 1:50 p.m. Eastern 
Standard Time. 

(23) 

A.5 Geostationary Satellite Spacing and Serial Outages 

Several identical satellites are assumed deployed along the geo-
stationary orbit. Earth terminals are assumed capable of receiving 
signals from at least one pair of adjacent satellites, either simultane-
ously or one at a time. The orbit spacing between satellites is assumed 
to be uniform, but adjustable to alter the timing of serial sun transits. 
Numerical assumptions made in. previous sections are retained for 
illustration; earth terminals are assumed to be located along the outage 
path (worst case). 

A.5.1 Case 1—Minimum of 30 Minutes Between Switches at an Earth 
Terminal 

If each satellite is assumed to possess spare circuit capacity adequate 
for the restoration of one transitted satellite, it is of interest to esti-
mate the orbit spacing between satellites required for a prescribed 
outage-free interval between switches at an affected earth terminal. 
The interval between onsets of serial outages at a given earth terminal 
for satellites spaced 6.5° in orbit, allowing for earth rotation is about 
28.8 minutes (Section A.2). Then, an approximate minimum satellite 
spacing for a 30-minute clear interval is (3012/28°2.8) X 6.5° "" 6.8°. 

A.5.2 Case 2—Minimum of 30 Minutes Between Adjacent Outages 

If multiple satellites are deployed without spare capacity and an 
earth terminal receives simultaneously from adjacent satellites, but 
does not switch between them, a 30-minute required clear time be-
tween outages of the adjacent satellites leads to a greater estimated 
satellite spacing. The elapsed time for the center of a first (easterly) 
outage region to depart an affected earth terminal and travel eastward 
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until reception is regained (a distance equal to the semi-minor dimen-
sion; Section A.4) is approximately 7'.6/2  3.8 minutes. The elapsed 
time for the center of a second outage region to approach the same 
earth terminal is also 3.8 minutes, measured from onset of the second 
outage. The sum of elapsed times and the required 30-minute clear 
interval is 37.6 minutes. The minimum satellite spacing, scaled from 
the 28.8-minute interval between arrivals of shadows at the terminal 
for satellites spaced 6.5° (Section A.2) is approximately (37m.6/28°I.8) X 
6.5° = 8.5°. 

A.5.3 Case 3—Minimum of 30 Minutes Free of United States Outages 

An estimate of the satellite spacing required for a 30-minute clear 
interval between outages of earth terminals throughout the contiguous 
United States for the case without switching is desired. A time equiva-
lent of the satellite spacing for a 30-minute clear interval between 
adjacent outages at a single earth terminal is about 37.6 minutes 
(Section A.5.2). A satellite spacing of 6.5° is necessary for simultaneous 
sun transit of a first satellite at the extreme eastern terminal and a 
second satellite at the extreme western terminal; a time equivalent of 
this spacing is approximately 28.8 minutes (Section A.2). The sum of 
these intervals, 66.4 minutes, accounts for transits of all terminals 
within the assumed 60° longitude span at 41° north latitude. The 
approximate minimum satellite spacing for a 30-minute clear interval 
throughout the United States is (66°I.4/28m.8) X 6.5° = 15.0°. 

A.5.4 Case 4—Minimum of 30 Minutes Free of Outages Throughout One 
Time Zone 

The time equivalent of spacing for a 30-minute clear interval at a 
single terminal without switching is 37.6 minutes. The time equivalent 
of spacing for simultaneous sun transits of adjacent satellites at eastern 
and western terminals bounding a 15° time zone is approximately 
(15°/60°) X 28'11.8 -L- 7.2 minutes. The required interval is about 44.8 
minutes, accounting for outage dimensions and all terminals within 
one time zone. The resulting minimum satellite spacing is approxi-
mately (44m.8/28m.8) X 6.5° "i" 10.1 °. 

APPENDIX B 

Estimation of Minimum Required Space Diversity 

B.1 Minimum Orbit Inclinations for a Prescribed Coverage Region 

Figure 12 relates the latitude extremes of a desired coverage region 
to limits of the sun's apparent declination angle for which sun transits 
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of diversity satellites can affect transmissions. First, two conic figures 
of revolution as described in Section A.3 having angular radius a 
define the northernmost and southernmost outage regions for geo-
stationary satellite S.. Minimum orbit inclinations for diversity satel-
lites S. and S. are estimated by geometric construction. Parallel sun 
rays are assumed and atmospheric refraction is neglected for all but 
extreme latitudes in the presence of fairly large angles of incidence.° 
One approximation implicit in the figure is that the satellites occupy 

the same mean orbit longitude. This enables a highly simplified geo-
metrical analysis and the uncertainty introduced is shown later to be 
insignificant. 

B.2 Determination of Minimum Orbit Inclinations 

For geostationary satellite Sm in Fig. 12, apparent declination angle 
limits 8. and 3. are calculated for which the satellite shadows intercept 
north geographic latitude limits ço,, and ye,,  of an assumed coverage 
region in the Northern Hemisphere between points P. and P. respec-
tively. Slant range segment P,,S”, is determined from the solution of 
oblique triangle P.OS., : 

P„S„, = [R2 + (R  h)2 — 2R(R  h) cos ic„P ,  (24) 

and 

P.S„, = [R2 -I- (R  h)2 — 2R(R  h) cos sooll km.  (25) 

The declination angles corresponding to northern and southern 
boundaries of the coverage region are 

S. =  cas -1 [ 2(P„S,,)(R  h) 
—R2 ± (P.8.)2 h)21 degrees 8,  (26) 

and 

8, = cos  h)2] -  degrees S,  (27) 
2(.1).S.)(R  h) 

where the units designation S denotes angular displacement south from 
thegcelestial equator. 
The angle measuring bisector PmSm is denoted by ô.., where 

= (0. ± cl,,)„„ degrees S.  (28) 

Synchronous satellites S. and S. are shown in Fig. 12 located on 
great circle C of a geocentered sphere of radius (R  h) whose plane 
contains the mean geopolar axis and an assumed common satellite 
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meridian circle. The satellites are also assumed to be symmetrically 
opposite and equidistant from the equatorial plane. The required 
distance between parallel sun's rays through satellites Sn and S. having 
mean apparent declination 6„, is determined by constructing segment 
0.0. perpendicular to S.P. through P„ . The base of isosceles triangle 
0„S.,0, represents the required ray separation. Making the approxi-
mation 

0„S,„  0,8„,  P„S„,,  (29) 

and denoting the angle 0„-S.-0„ by 7, 

-y =-  — (5.  2a degrees.  (30) 

From the solution of an isosceles triangle, 

0.0, A. [2(P„S,,32(1 — cos -y)]1 km.  (31) 

Constructing segment S„Sa perpendicular to S.P. through S,,, its 
length is 

0„0. km. 

The length of chord 8„8, between the satellites on circle C is 

S„S. = 8„8„/cos 8. km. 

(32) 

(33) 

The total geocentered arc 8„8, on circle C corresponding to chord 

SnS„ is found from the solution of isosceles triangle S.OS„ (not illus-
trated). Note that 

OS„ E--- OS, = OS. = (R  h) km.  (34) 

Then 

—(S„S.)2 2(08„,)2 
cos "8 n8 81  2(08.32 

Note from Fig. 12 that equal orbit inclinations in and i, are determined 
by the minimum geocentered angular displacements of synchronous 
satellites S. and S, from the equatorial plane, necessary for avoiding 
simultaneous sun-transit outages between latitudes cp„ and cp.. Hence, 

i„ = j. = (S„S.)/2 degrees.  (36) 

(35) 

While the simplified geometry of Fig. 12 results from an assumption 
that the satellites' mean longitudes are identical, recall from Section 3.1 
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that the maximum satellite excursions are made to occur at the instant 
of zenith transit viewed by an observer at each satellite's longitude. 
Thus, for earth terminals situated along the longitude meridian of— 
and receiving from—satellite Si, the minimum required orbit incli-
nation i, is identical to tn. Very slightly increased inclinations are 
necessary to accommodate receiving earth terminals far from this 
longitude. 

B.3 Correction for Longitude Span and Latitude Location of Coverage 
Region 

The maximum time difference At' between sun transit of a geosta-
tionary satellite centered over the United States and observed along its 
longitude, and sun transit of the same satellite observed at a longitude 
displaced by ±300, for a minimum latitude of 26°N is about +0.3 
hour, allowing for earth rotation (Fig. 3; Section A.2). The magnitude 
of accumulated time shift .Cii2 (civil time versus sidereal time) relating 
positions of satellites at Oh to Oh at the vernal equinox, arising from 
location of the affected coverage region north of the equator, is about 
1 hour (Fig. 6). An approximate worst-case adjustment of orbit inclina-
tions providing the required displacement of diversity satellites from 
the equator at times when sun transits would otherwise be observed is 

i,„   degrees.  (37) 
cos RI At, I -I- At2 I)(3600/24h)] 

8.4 Illustrative Calculation 

It is assumed that latitude limits ‘,0„ and ç. for the United States 
coverage region to be cleared of outages are 49°N and 26°N, respec-
tively. A spherical earth model is assumed with radius R = 6373 km. 
The height of the geostationary orbit h is assumed to be 35,900 km. A 
conic sun-transit outage figure is assumed (Fig. 12), having a radius in 
angular measure of a = 10. 
Numerical results are obtained using all preceding relationships: 

From equations (24) and (25), P. & = 38,394 km, 
= 36,652 km. 

From equations (26) and (27),  ,5„ = 7.2000, 
S„ = 4.375°. 

From equation (28),  ô.. = 5.788°. 
From equation (30), -y = 4.825°. 
From equation (31),  = 3,232 km. 
From equation (33),  = 3,249 km. 
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From equation (34),  08„, = 42,273 km. 

From equation (35),  cos (SS) = 0.997047. 
From equation (36), i„ = i. = 2.201°. 
From equation (37),  2.337°. 

For larger earth terminals, assuming a = 0.7° for 25-m antennas, 
the corresponding worst-case minimum equal orbit inclinations pro-
viding the specified diversity is 2.045 degrees. 

B.5 Minimum Orbit Inclinations for Avoiding Serial Eclipses 

The earth's shadow is assumed to be a circular cylinder with a 
diameter equal to the mean diameter of the earth. This amounts to 
neglecting atmospheric refraction and the distinction between the 
umbra and penumbra shadow regions. For satellites with batteries, 
the net radiation energy lost per eclipse corresponds to a time inte-
gration of the actual solar-array power output. This is nearly the energy 
loss which would result if the solar source were completely obstructed 
while the satellite traversed the assumed cylindrical shadow. 
An approximate relationship between declination D and the orbit 

arc eclipsed is illustrated by Figs. 13 and 14. The length of geosta-
tionary orbit radius OS is (R  h) km, so that 

0'8 = (R  h) I sin D I km.  (38) 

Angle  in Fig. 14 is thus determined: 

sin  ( ) degrees.  (39) 

Fig. 13—Simplified geometry describing satellite eclipses. 



DIVERSITY SATELLITES 

RIGHT CIRCULAR 
SECTION THROUGH S 

EARTH 

A 

1971 

•  GEoBTATIONARY ORBIT 

- -S 

Fig. 14—Projection of points A, C upon right section of earth's shadow through S. 

The length of the chord intercept common to both the orbit and the 
cylindrical earth shadow is determined by a normal projection of the 
orbit upon a right circular section of the shadow through S. From 
equations (38) and (39), 

AC = A'C' A  2R cos {sin-1 [(R ± h) I sin D 1} km.  (40) 

If the fraction in brackets in equation (40) is smaller than unity for 
a given declination D, an eclipse of the orbiting satellite is indicated. 
For zero values of apparent declination, the chord AC is simply twice 
the mean earth radius R. 
The corresponding orbit arc AC is next calculated from the solution 

of oblique triangles: 

AC = cos _, {—(AC)2 2R2  2R2} degrees.  (41) 

Hence, the minimum space diversity in geocentered angular measure 
necessary for avoiding serial satellite eclipses is identified numerically 
with the maximum orbit arc intercept, occurring for D = 0°. From 
equation (41), the maximum resulting geocentered angle, corresponding 
to one earth diameter, is approximately 17.6°. Then each minimum 
orbit inclination is = is necessary for avoiding serial eclipses in the 
manner of Section 3.2 is approximately 17.6°/2 = 8.8°. 
• Finally, it is of interest to estimate the time required for the satellite 

to traverse shadow arc AC. The interval àt. is numerically equivalent 
to the resulting arc fraction times the orbit period, corrected for the 
earth's revolution about the sun: 

AC 
At, = [1.002738](24 X 60)' X 360  minutes.  (42) 
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Adaptive Predictive Coding of 
Speech Signals 

By B. S. ATAL and M. R. SCHROEDER 

(Manuscript received December 13, 1968) 

We describe in this paper a method for efficient encoding of speech 
signals, based on predictive coding. In this coding method, both the trans-
mitter and the receiver estimate the signal's current value by linear pre-
diction on the previously transmitted signal. The difference between this 
estimate and the true value of the signal is quantized, coded and trans-
mitted to the receiver. At the receiver, the decoded difference signal is added 
to the predicted signal to reproduce the input speech signal. Because of the 
nonstationary nature of the speech signals, an adaptive linear predictor 
is used, which is readjusted periodically to minimize the mean-square 
error between the predicted and the true value of the signals. 
The predictive coding system was simulated on a digital computer. The 

predictor parameters, comprising one delay and nine other coefficients 
related to the signal spectrum, were readjusted every 5 milliseconds. The 
speech signal was sampled at a rate of 6.67 kHz, and the difference signal 
was quantized by a two-level quantizer with variable step size. Subjective 
comparisons with speech from a logarithmic PCM encoder (log-PC M) 
indicate that the quality of the synthesized speech signal from the predictive 
coding system is approximately equal to that of log-PCM speech encoded 
at 6 bits' sample. 
Preliminary studies suggest that the binary difference signal and the 

predictor parameters together can be transmitted at approximately 10 
kilobits/second which is several times less than the bit rate required for 
log-PCM encoding with comparable speech quality. 

I. INTRODUCTION 

The aim of efficient coding methods' is to reduce the channel capacity 
required to transmit a signal with specified fidelity. To achieve this 
objective, it is often essential to reduce the redundancy of the trans-
mitted signal. One well-known procedure for reducing signal redundancy 

1973 
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is predictive coding.*2-5  In predictive coding, redundancy is reduced 
by subtracting from the signal that part which can be predicted from 
its past. For many signals, the first-order entropy of the difference 
signal is much smaller than the first-order entropy of the original 
signal; thus, the difference signal is better suited to memoryless encod-
ing than the original signal. Predictive coding offers a practical way of 
coding signals efficiently without requiring large codebook memories. 
Many previous speech coding methods° have employed schemes 

which attempt to separate the contributions of the vocal excitation 
from that of the vocal-tract transmission function. The well-known 
channel vocoder of Dudley' was the first attempt in this direction. Al-
though vocoders can reproduce intelligible speech, there is appreciable 
loss in naturalness and speech quality. This degradation in speech 
quality arises from various operations in the vocoding process, which 
are either inaccurately performed or are based on certain idealized 
approximations of speech production and perception processes. 
The present paper describes a different approach" to encoding of 

speech signals, based on predictive coding, which avoids the difficulties 
encountered in vocoders and vocoder-like devices. Although predictive 
coding utilizes such well-known characteristics of speech signals as 
pitch and formant structure, its operation does not rely solely upon a 
rigid parameterization of the speech signal. That part of the speech 
signal which cannot be represented in terms of these characteristics is 
not discarded but suitably encoded and transmitted to the receiver 
where it is used in the synthesis of a close replica of the original speech 
waveform. 
Previous studies of predictive coding systems for speech signals' 

have been limited to linear predictors with fixed coefficients. However, 
due to the nonstationary nature of the speech signals, a fixed predictor 
cannot predict the signal values efficiently at all times. For example, the 
speech waveform is approximately periodic during voiced portions; 
thus, a good prediction of the present value of the signal can be based 
on the value of the signal exactly one period earlier. However, the 
period of the speech signal varies with time. The predictor, therefore, 
must change with the changing period of the input speech signal. In 
the predictive coding system described below, the linear predictor is 
adaptive; it is readjusted periodically to match the time-varying charac-
teristics of the input speech signal. The parameters of the linear pre-
dictor are optimized to obtain an efficient prediction in the sense that 

• Another name often used for this kind of encoding is Differential Pulse Code 
Modulation. 
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the mean-square error between the predicted value and the true value 
of the signal is minimum. 

II. PREDICTIVE CODING SYSTEM 

2.1 Description 

A block diagram illustrating the principle of predictive coding is 
shown in Fig. 1. The input signal s(t) is sampled at the Nyquist rate 
to produce the samples s„ of the signal. The predictor forms an estimate 
et, of the signal's present value based on the past samples r„._, , 7*„_2 , • • • 
of the reconstructed signal at the transmitter. The predicted value .g. 
of the signal is next subtracted from the signal value s„ to form the 
difference e5„ , which is quantized, encoded, and transmitted to the 
receiver. At the same time, the transmitted signal is decoded at the 
transmitter and the signal reconstructed in exactly the same manner as 
is done at the receiver. The reconstructed signal is then used to predict 
the next sample of the input signal. 
At the receiver, the transmitted signal is decoded and added to the 

predicted value of the signal to form the samples rt, of the reconstructed 
signal. The predictor used at the receiver is identical to one employed 
at the transmitter. The samples r.' of the reconstructed signal are finally 
low-pass filtered to produce the output signal r' (t). 

2.2 Signal-to-Quantizing Noise Ratio 

Consider the predictive coding system shown in Fig. 1. Let P. be 
the mean-square value of the input signal samples s,,, Pa be the mean-
square value of the difference signal samples 8„ , PG be the mean-square 
value of the quantizing noise in the decoded difference signal 15,.', and 
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Fig. 1—Block diagram of a predictive coding system. 
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P. be the mean-square value of the quantizing noise in the reconstructed 
signal r . We will now show that, in the absence of digital channel 
transmission errors, the signal-to-quantizing noise ratio P./P. of the 
reconstructed signal is given by 

P.  P. Pa (1) 

In other words, the signal-to-quantizing noise ratio of the reconstructed 
signal exceeds the signal-to-quantizing noise ratio of the decoded differ-
ence signal by a factor equal to the ratio of the mean-square value of 
the input signal to the mean-square value of the difference signal. The 
predictive coding system is thus superior to a straight PCM system 
whenever PIPi is much greater than 1. For a signal such as speech, 
this is indeed true. The results obtained by computer simulation of 
the predictive coding system (see Section 3.3) show that P./Pa is 
about 100 for speech signals. By using predictive coding, one could thus 
expect improvement of about 20 dB in signal-to-quantizing noise ratio 
over a PCM system using identical quantizing levels. 
To prove equation (1), we will first show that the error between any 

sample of the reconstructed signal and the corresponding sample of 
the input signal is identical to the error introduced by the quantizer, 
the encoder and the decoder. 
The error e„ between the sample r„ of the reconstructed signal and 

the sample s„ of the input signal is given by 

e„ = r,', — s„ .  (2) 

In the absence of digital channel transmission errors, we can replace r„' 
in equation (2) by r„ and rewrite equation (2) as 

e„ = (r„ — g„)  (s„ — s„).  (3) 

It is readily seen in Fig. 1 that 

=  g „  (4) 

and 

8„  s„ — à„ . 

On combining equations (3), (4) and (5), one obtains 

e„ =  — 8„ . 

(5) 

(6) 

The right side of equation (6) represents the error introduced by the 
quantizer, the encoder, and the decoder. Thus, the error in the nth 
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sample of the reconstructed signal is identical to the error in the nth 
sample of the decoded difference signal. 
The signal-to-quantizing noise ratio of the reconstructed signal is 

by definition P./P. and can be written as 

P. P. Pa 

P. = Pa.P. • 

Since the mean-square value P. of the quantizing noise in the recon-
structed signal is identical to the mean-square value P. of the quantizing 
noise in the decoded difference signal, P. on the right side of equation (7) 
can be replaced by P,, and one obtains 

P.  P. Pa 
P.  P P, 

III. APPLICATION OF PREDICTIVE CODING TO SPEECH SIGNALS 

(7) 

(1) 

3.1 Linear Prediction of Speech Signals 

Two of the main causes of redundancy in speech are: 

(i) Quasi-periodicity during voiced segments' and, 
(ii) Lack of flatness of the short-time spectral envelope.' 

The exact form of the predictor for the speech wave depends on the 
model used to represent the human speech production process. A 
reasonable model for the production of voiced speech sounds is obtained 
by representing them as the output of a discrete linear time-varying 
filter which is excited by a quasi-periodic pulse train (see Fig. 2). The 
output of the linear filter at any sampling instant is a linear combination 
of the past p output samples and the input. The number of past samples 
p is given by twice the number of resonances (formants) of the vocal 
tract which are contained in the frequency range of interest. For ex-
ample, in the case of speech signals band-limited to 3 kHz, it can be 

Fig. 2—Model for the production of voiced speech sounds. 
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assumed that there are typically three to four formants.6 A suitable 
value of p is thus 8. 
Let sn and U„ be the amplitudes of the output and input signals 

(see Fig. 2) at the nth sampling instant. The nth output sample s„ is 
then given by 

= E aks„_, ± (I „ , 
k =1 

where 

(8) 

Un = eUn_m ,  (9) 

M is the period of the excitation signal and e takes account of the 
variation of the amplitude of the input pulse train from one period to 
the next. For natural speaking conditions, the period of the excitation 
signal is usually below 15 milliseconds, and, as a first approximation, 
the effect of time variation of the coefficients ak from one pitch period 
to the next can be neglected. Under this assumption, we find 

s„ — esn_kf = E ak(sn_k — esn_h_m)  — OU„ , .  (10) 
k=1 

Since Un = eUn_m , equation (10) reduces to 

= 13S,.-Ar E  cek(sp-k —  
k=1 

(11) 

which determines completely the structure of the linear predictor. 
A block diagram of the predictor as described by equation (11) is 

shown in Fig. 3. The delay M as well as the parameters al , a2, • • • , a„ 
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ID1 z 

PREDICTOR 

P2 (z)  

0 OUTPUT 

1 

P2 (2)=  ,,111Z 

n = 1 

Fig. 3—Block diagram of the predictor for speech signals. 
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and e are variable and are readjusted periodically to match the charac-
teristics of the input speech signal. Ideally the readjustment of the 
predictor parameters need be done only when there are significant 
changes in the characteristics of the speech signal. This implies that 
the predictor should be readjusted at short intervals during transitions 
and at long intervals during steady state portions of the speech signal 
and, consequently, a long buffer storage is needed to ensure transmission 
of parameters at a uniform rate on the channel. In order to avoid the 
use of a long buffer storage, the predictor parameters were readjusted 
at a fixed time interval in our study. This time interval was chosen 
to be 5 milliseconds to ensure that the prediction be efficient even 
during rapidly changing segments of the speech wave. 
For unvoiced sounds, the quasi-periodic excitation U„ in equation (8) 

is replaced by a noise-like excitation. Generally speaking, the transfer 
function of the filter for unvoiced sounds must include poles as well as 
zeros. However, we find that for all practical purposes it is sufficient to 
include only the effect of poles. Equation (11), thus, represents the 
linear predictor for unvoiced sounds too if fi is assumed zero. 

3.2 Determination, of Predictor Parameters 

The predictor parameters are determined by minimizing the mean-
square error between the actual speech sample and its predicted value. 
The predicted value à„ of the nth speech sample is given by 

gn = Ogn- Ilf -I- E ceh(s,.-k — esn-k-m)• 
1 

The prediction error sample ET, is then given by 

E„ = s„ — ,§,, 

= (8n —  M) —  E  —  • 

(12) 

(13) 

The mean-square prediction error (e)av is given by 

=  E (14) 

where the sum extends over all the samples in the time interval during 
which the predictor is to be optimum. 
The problem of minimizing the mean-square error (E  by suitable 

selection of the predictor parameters does not admit a straightforward 
solution due to the presence of the delay parameter M in equation (13). 
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A sub-optimum solution was obtained by minimizing the total error 
in two steps. First the parameters f and M are determined such that 
the error El , defined by 

1 
El = — E —  = ((S, —  , N n " 

is minimum. Using these values of /3 and M, the mean-square error (r„ 
is minimized by a suitable choice of parameters al , • • • , a, . 
To find the values of the parameters e and M which minimize the 

error E, as defined in equation (15), we first set the partial derivative 
of E, with respect to e equal to zero: 

aE, — = —2((sn —  
813 

(15) 

= 0,  (16) 

where the ( )., indicates the averaging over all the samples in the 
given 5-millisecond time segment during which the predictor is to be 
optimum. 
On solving for e from equation (16), we obtain 

= (8n8n— ef)av  (812.-111)nv •  (17) 

We next substitute the value of from equation (17) into equation (15). 
After rearrangement of terms, we obtain 

E7 = (8:) — (8.8._.):,/(sn2_.),iv •  (18) 

Since the first term on the right side of equation (18) does not depend 
on M, it can be omitted in finding the minimum value of the error. 
Further, E, is minimum if the second term on the right side of equation 
(18) is maximum. The optimum value of M is thus determined from 
the location of the maximum of the normalized correlation coefficient 
p given by 

P = {  f (8.2).„(8:_m)-J M > O.  (19) 

Next, the predictor parameters a, , • • • , a„ are obtained such that 
the mean-square error (E!)„, as given in equation (14) with e and M 
fixed at their optimum values is minimum. Let 

trn = S,, — Os„_Af . 

The error (e)„, is then given by 

71 

E 
k=. I 

}2 ) 

(20) 

(21) 
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The optimum values of the coefficients a„ • • • , a, which minimize 
(E)„ are obtained by setting the partial derivative of (E„2>i,„ with 
respect to a1, • • • , «, equal to zero. Or, 

a(aE a'n> ((t) n 

=0 for j = 1, 2, • • • , p. 

Equation (22) can be rewritten in matrix notation as 

= 

where .)1) is a p by p matrix with its (ij) th term ¡pi; given by 

(P  

(22) 

(23) (23) 

(24) 

a is a p-dimensional vector whose 5th component is ai and t is a p-di-
mensional vector whose 5th component  is given by 

=  •  (25) 

The optimum predictor coefficients a„ cx, , • • • , a, are obtained by 
solving equation (23) for a. For the case when cl) is a nonsingular matrix, 
the solution of equation (23) presents no difficulty. The vector a can 
be obtained by multiplying ik with the inverse of the matrix cb. A more 
efficient computational procedure" for solving equation (23), which 
does not involve matrix inversion, takes advantage of the fact that 4) 
is a symmetric matrix, and thus can be expressed as the product of a 
triangular matrix and its transpose. Equation (23) can then be written 
as three separate matrix equations. These equations involve triangular 
matrices only and their solutions can be expressed by a set of recursive 
equations.11 
A singular 4) matrix implies that one or more of its eigenvalues is 

zero. The matrix 4) can be modified to become nonsingular by adding a 
small positive constant to its diagonal elements. Equation (23) is 
solved again with the matrix c1) replaced by the matrix ci)'. The modi-
fied matrix  is symmetric and has the same eigenvectors as the matrix 
c1), but its eigenvalues are all positive; thus it is a positive definite sym-
metric matrix and has a unique inverse 

3.3 Computer Simulation of the System 

The predictive coding system using adaptive predictors was simu-
lated on a digital computer to determine its effectiveness for coding 
speech signals. The transmitter and the receiver are illustrated sepa-
rately in Figs. 4 and 5, respectively. The sampling rate used in this 
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Fig. 4—Transmitter of the predictive coding system. 

simulation was 6.67 kHz. Prior to sampling, the input speech signal 
was filtered with a low-pass filter with 3-dB attenuation at 3.1 kHz 
and an attenuation of 40 dB or more for frequencies above 3.33 kHz. 
At the transmitter, the difference 8. formed by subtracting the pre-
dicted value gn from the speech sample sn was quantized by a two-level 
(1 bit) quantizer with variable step size q. The parameter q was re-
adjusted every 5 milliseconds to yield minimum quantization noise 
power. The parameters of the adaptive predictor were also computed 
once every 5 milliseconds and sent to the receiver together with the 
binary difference signal and the step size q of the quantizer. The opti-
mum value of the delay parameter M V MS obtained by locating the 
maximum of the correlation coefficient p as defined in equation (19) 
for values of M between 20 and 150. The parameter p was set at 8. 
The speech signal was reconstructed at the receiver by a feedback 

loop containing an adaptive predictor identical to the one used at the 
transmitter. Here, the predictor too, was reset every 5 milliseconds 
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Fig. 5—Receiver of the predictive coding system. 
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according to the predictor-parameter information received from the 
transmitter. The reconstructed speech samples were finally smoothed 
by a 3.1-kHz low-pass filter to form the output speech signal r'(t). 

IV. RESULTS OF SUBJECTIVE TESTS 

Two different subjective tests were conducted to judge the quality 
of the reconstructed speech signal produced at the receiver of the pre-, 
dictive coding system. In the first test, trained listeners compared the 
reconstructed speech signal with speech from a logarithmic PCM 
(log-PCM) encoder" that used the same input signals and a sampling 
frequency of 6.67 kHz. The compression characteristic employed in a 
log-PCM encoder is defined by the equation 

V log [1 + e--1- ] 
V   

y —  s log (1 ± g)  gn x,  (26) 

where y represents the output voltage corresponding to an input signal 
voltage x, g is a dimensionless parameter which determines the degree 
of compression and V is the compressor overload voltage." The com-
pressed signal y was quantized at bit rates varying from 5 bits/sample 
to 7 bits/sample with g = 100 and V .= 8 X the rms speech signal 
voltage. t Speech samples from both male and female speakers were 
used in these tests. The results of the subjective tests indicated that 
the quality of the reconstructed speech signal was better than that of 
log-PCM speech with 5 bits/sample but slightly inferior to one with 
6 bits/sample. The corresponding measured signal-to-noise ratios for 
log-PCM speech were 21 dB and 27 dB, respectively. 
In the second test, the reconstructed speech signal was compared 

with the input speech signal contaminated by additive white noise 
obtained by randomly inverting the polarity of successive Nyquist 
samples of the input speech signal." This noise is subjectively similar 
to the distortion introduced by predictive coding and is therefore 
particularly appropriate for reproducible comparisons. This noise has 
an added advantage in that its absolute amplitude at any instant of 
time is proportional to the absolute amplitude of the input speech 
signal. This proportionality permits the calculation of a precise signal-
to-noise ratio (S/N). Based on the results of these tests, the equivalent 
S/N of the reconstructed speech in the predictive coding system de-

f The integration time for computing the rms value of the speech signal was 
several seconds and included speech samples from a number of speakers. 
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scribed above was found to be about 25 dB which is in good agreement 
with results obtained by the subjective comparison with log-PCM. 

V.  ADDITIONAL MODIFICATIONS  OF THE PREDICTIVE CODING SYSTEM 

5.1 Spectrum of Quantizing Noise and Its Influence on the Subjective 
Quality of the Reconstructed Speech 

For frequencies above 500 Hz, the frequency spectrum of voiced 
speech sounds generally falls off with frequency with an average slope 
between —6 and —12 dB per octave. The spectrum of quantizing 
noise in the predictive coding system, on the other hand, is approxi-
mately uniform. The signal-to-quantizing noise ratio (S/N) of the 
reconstructed speech, thus, also falls off with frequency. This is illus-
trated in Fig. 6 where the spectrum of a short segment of the speech 
signal is compared with the spectrum of the corresponding quantizing 
noise. As can be seen, the S/N is very poor at high frequencies. In-
formal listening tests of the reconstructed speech appeared to confirm 
the above observation. The quality of the reconstructed speech can 
thus be improved by a suitable shaping of the spectrum of the quantiz-
ing noise so that the S/N is more or less uniform over the entire fre-
quency range of the input speech signal. The desired spectral shaping 
can be achieved by pre-emphasizing the input speech signal at high 
frequencies by means of a fixed filter whose amplitude versus fre-
quency characteristic rises with frequency above 500 Hz with a 

_QUANTIZING NOISE 

Fig. 6—Spectra of speech and quantizing noise. 
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slope of 12 dB per octave. The spectral distortion can finally be elimi-
nated by a filter at the output of the receiver whose frequency versus 
amplitude characteristic is exactly opposite to that of the pre-emphasis 
filter. The results of computer simulation indicate that the quality of 
the reconstructed speech in the predictive coding system employing 
pre-emphasis is considerably better than that of the system without 
pre-emphasis. 

5.2 Improved Prediction of Voiced Speech 

The redundancy due to the quasi-periodic nature of voiced speech 
is removed in the predictive coding system described earlier by a pre-
dictor P1(z) consisting of a delay of M samples and an amplifier with 
gain es as shown in Fig. 3. It is possible to improve the prediction of 
voiced speech by employing a predictor Pi(z) consisting of two delays 
and two amplifiers such that 

Pi(z) = Piz-m  -I- 025-2m . (27) 

The parameters ifil and ie, are calculated by minimizing the mean-
square error E, defined by 

El =  « 8n —  fi1811— Al —  028n-1 M) 2)av • (28) 

The modified predictive coding system including pre-emphasis of the 
input speech signal together with the second-order predictor PI (z) as 
given in equation (27) was simulated on the computer. The results of 
subjective tests similar to those described in Section IV indicated that 
the quality of the reconstructed speech was somewhat superior to that 
of log-PCM speech at 6 bits per sample. The equivalent S/N was found 
to be 30 dB. 

VI. QUANTIZATION OF PREDICTOR PARAMETERS 

No attempt was made in the study reported here to quantize the 
predictor parameters. Preliminary calculations were made to estimate 
the number of bits required to transmit the information to the receiver. 
Since the predictor parameters (one delay and nine other coefficients) 
carry the information about the signal spectrum, it should be possible 
to encode them at a bit rate comparable to one used in conventional 
formant vocoders. This suggests a bit rate of approximately 10 kilobits 
per second for transmitting the binary difference signal (6.67 kb/s) 
and the predictor parameters (3 kb/s). Recent studies by Kelly" 
indicate that it is indeed possible to encode the transmitted informa-
tion within 9600 b/s without significant loss in speech quality. 
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VII. CONCLUSIONS 

The study reported here shows that predictive coding is a promising 
approach to digital encoding of speech signals for high-quality trans-
mission at substantial reductions in bit rate. Unlike past speech coding 
methods based on the vocoder principle, the predictive coding scheme 
described here attempts to reproduce accurately the speech waveform, 
rather than its spectrum. Listening tests show that there is only slight, 
often imperceptible, degradation in the quality of the reproduced 
speech. Although no detailed investigation of the optimum encoding 
methods of the predictor parameters was made, preliminary studies 
suggest that the binary difference signal and the predictor parameters 
together can be transmitted at bit rates of less than 10 kb/s or several 
times less than the bit rate required for PCM encoding with comparable 
speech quality. 
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All Terminal Bubbles Programs Yield the 
Elementary Symmetric Polynomials 

By R. P. KURSHAN 

(Manuscript received May 18, 1970) 

R. L. Graham has discussed various combinatorial aspects of the 
behavior of magnetic domains or "bubbles".' Representing the initial 
state of a configuration of n magnetic domains by the n-tuple of in-
determinates B = (X„ - • • , X„), he showed that subsequent configura-
tions of magnetic domains obtainable (within the constraints of the 
problem) correspond exactly to subsequent n-tuples of Boolean ex-
pressions in the X's*  obtainable from B through an application to B 
of a product of transformations ("commands" in Ref. 1) of the form 
Tii(1  <j n) where if P = (P„ • • • , P„) is an n-tuple of Boolean 
expressions in the X's, then T„(P) = (Q„ • • • , Q„), 

fP, U Pi if k = 
Qk = P , ñPi if k =  k = 1, • • • ,n. 

otherwise 

Furthermore, he showed that 

if 3 is an CD-fold product of such transformations  CD 
and if T is any other, then (T o 5)(B) =  

This provides a limitation on the number of distinct n-tuples of the 
form 91(B) = (PI, • • • , P„) where 91 is a product of transformations, 
and hence provides a limitation on the number of distinct Pi's thus 
obtainable from various it's. Graham showed that for n = 11, this 
limitation implies that not all Boolean expressions in the Xi's are 
realizable as a P,. 
This led to an (as yet unsuccessful) attempt to characterize those ex-

pressions which are realizable. The purpose of this note is to observe a 
fragmentary result in this direction: that if 3 is as above, then 3(B) = 

* A Boolean expression in the X's is either a term of the form Xi (1 i n), a 
term of the form P V Q or a term of the form P n Q, where both P and Q are Boolean 
expressions in the Xi's; expressions may be reduced as if the Xi's were sets. 

1991 
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(Si, • • • , S.) where Si is the elementary symmetric polynomial in 
XI, • • • , X. of degree á (here interpreting U as + and n as •). The 
situation will be rephrased in terms of a milking. 
For a fixed n let R be the (Boolean) commutative semiring generated 

by Xi, • • • , X„ subject to the relations: 

for á = 1, • • • , n, (1)  Xi, 

(2) fX.  f = f foral! fE R. 

It follows that 2X; = Xi(i = 1, • • • , n) and hence, each ! E  R is a 
Boolean polynomial in the indeterminates Xi, • • • , X., (that is, the 
X's behave like sets with respect to -I- and • interpreted as J and n 
respectively). 
Throughout, if x E R" (the set of n-tuples of elements of R), then 

for 1  k  n, xj, will denote the kth coordinate of x, that is, x 
(xj, • • • , ze, • • • , x.). Let T (or TO be the set of transpositions of 
{1, • • • , n1 and fort E T—say t = (i, j),  < j—define t: R"—> R" by 

ffi fi if k = i 

(tf)k = if  if k = j  • Let B =B,. = (X, • • • , X„) e R" 

If k otherwise 

and set en Ur.° (B) where m = (;)* and 71' = {- I 1I 2 • • • t1, j ti ) • • • 
tk E T1. A point C E e„ is said to be terminal if t(C) = C for all t E T. 
It is not hard to see that (Si, • • • , S„) is a terminal element of en where 
5,(1 i n) is the elementary symmetric polynomial in X1, • • • , 
of degree i; in what follows it will be shown that this characterizes the 
terminal elements of en. 
The elements of R may be partially ordered byf 5g•#>fd-g =g. 

For D E R", 1  j  n, define D' E R" by M = Di(Xi, • • • , X 
0, X1+1 , • • • , X.), 1 5 i n. 

Lemma 1: C is terminal <=> C1 C2 • • •  C.. 

Proof: Obvious. 

* BY (f), en = U'k-o Tk(B); on the other hand en = Urk_o Tk(B)  r  et: 
using notation developed below, this can be proved by induction on n as follows. 
If n = lit is clear; assuming it is true for a given n, identify en with {Dn+1I D E 

C  (see remark following Lemma 3). Using the theorem below and the 
induction hypothesis, there is a e such that g(13.4.1) = (Se+1, Se+1, • • • ,  
X„+1), and â is a product of at least (2t) transpositions. Let g' = (1 2)(2 3) • • • 
(n n + 1)g; then gi(B„.1.1) = (S1, • • • , S.+1), g' is a product of (;)  n = (nr) 
transpositions and if for some «It (914)(B.+1) = r(B.+1) then 'it must be a product 
of at least n transpositions. 
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Lemma 2: If f, g E R are such that X1 divides no summand of either, 
then f Xi/Li = g + X ih2  = g• 

Proof: Writing f  Xih, as a sum of products of X.'s, both f and g 
are precisely the sum of those products which are not divisible by Xi. 

Lemma 3: If D E en, then for each j = 1, • • • , n there exists i such 
that D! = O. 

Proof: Assume D E en and 1 j n. Find ti, • • • , t, e T such that 
tB = D where t = trt,_, • • • ti . If r = 1, say t = (a, 13), a < 13; if j a 
then D! = 0 and if j = a then Dis = O. Now assume the assertion is 
true whenever r < u, and D = t„ • • • t,B. Find i such that (t„_, • • • 
t,B)! = 0 and let in = (a, 0), a < fi. As above, if i p£ a then D! = 
and if i = a then Dlo = O. Induction on r completes the proof. 

Given D e e„, Lemma 3 provides the machinery for associating Di 
in a natural way with an element ./3' of en_i: making the initial associa-
tion Xi —> Xi...1 in B„andi—>i —1 in T„ for i> j, define D' = t: • • • 
t.B„_, where if t„, = (a, a),a < e then 

t, = it. if (t„a_i • • • ti.B„)Ii 0 0 for i = a, el 
lidentity otherwise 

for 1 s m  r. It is clear that Di represents a collapsing of D at a 
coordinate i where D! = 0 plus a permutation 7r of the other DVs: 
= (D,f,11, Dir(21; • .) E Rs-1. 
However, the extent of possible permuting is limited by the com-

pleteness of the order S on the les as is demonstrated in the next two 
lemmas which apply for 1 S  j, k  n. 

Lemma 4: D E en, Di 5 Di j i. 

Proof: It suffices to note that an application of a transposition to a 
member of en preserves the order of the indices. 

Lemma 5: D.  Dk D!  DI. 

Proof: Writing Di = D!  Xig and Dk =  Xih, obtain DI -F 
Xih  Dk = Di -1-• Dk = D!  Xi(g  h) which by Lemma 2 
implies that Di, =  DI, that is, D; 

It follows from Lemmas 1, 3, 4 and 5 that if C e en is terminal, then 
=  • • • ,  0) and O' is terminal in e„, for 1 j n. 

Theorem: C e e„ is terminal <=> C, = is„ (1 < i s n). 
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Proof:  This direction is clear. 

By induction on n—if n = 1 then e = 1.8 I and B = (Xi) so the 
assertion holds. Now assume the assertion holds for n < k, and let 
C E ek be terminal. Then each 0' is terminal in ek_, and hence by the 
induction hypothesis each Cf =  = 1, • • - , k — 1; j 1, • • • ,k). 
In particular then Ci X1X2 • • • X* for i = 1, • • • , k — 1. Further-

more, each Ci can be expressed as C. = Pi • • • ± P, where each 
P. is a product of some but not all of the Xi's. It follows for i < k that 

E P„„ and consequently Ci = E C =E = Si. 
i-1 

It is left to the reader to show that Ch = Si, and thus complete the 
induction argument. 
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