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We consider the problem of source coding subject to a fidelity criterion
Jor a simple network connecting a single source with two receivers via a
common channel and two private channels. The region of attainable rates
s formulated as an information-theorelic minimsization. Several upper
and lower bounds are developed and shown to actually yield a portion of
the desired region in certain cases.

I. INTRODUCTION
1.1 Informal statement of the problem

To fix ideas, let us consider the following problem. Suppose that we
are given a data source whose output is a sequence U, U, - - -, that
appears at the source output at the rate of 1 per second. The [ Ui} &
is a sequence of independent copies of the discrete random variable
U, with probability distribution Pr {U = u} = Q(u), u € U a finite
set. Our task is to transmit this data sequence over a communication
channel having a capacity of C bits per second so that it is represented
at the output as Uy, Us, - - -, €U. We assume that the data are trans-
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mitted over the channel in blocks of length n, and allow processing at
both the channel input and output (encoding and decoding). We define
the “‘error rate” as

A=ELY du(Us, O, (1a)
nrEg=1
where
0: = ﬂ,
du(u, @) = {7 » % (1)

is the Hamming metric. Thus, A is the average fraction of data digits
delivered in error.

The question we pose is: What is the smallest capacity C such that
(for n sufficiently large) we can transmit the data through the channel
and achieve an arbitrarily small A? The well-known answer to the
question is that the minimum capacity C is the entropy H(U), de-
fined by*

H{U) = — X Q(u)logQu). (2)
uEU

Now consider the case where the random variable U is a pair (X, Y)
where 2 € X and y € Y. We have

Q(u) = Q(I, y) = Pr {X = I, Y= y};
and

Setting U = (X, ¥), A [as defined in (1)] is the fraction of pairs
delivered in error. Thus, we conclude that H(X, Y) is the minimum
channel capacity required to transmit the source output {(X&x, Yi)}
with the error rate A arbitrarily small.

Next, let us assume that, as above, U = (X, Y), but that it is only
required to transmit the sequence {X;} through a channel having a
capacity Cy, and to deliver it at the channel output as { X}, Let

1 n
Ax = E = Z dH(Xk, Xk)
N k=1
be the error rate for a system with block coding of block length n.
The special assumption here is that the random sequence {Yi}i-; is
available to the encoder and the decoder. See Fig. 1.

* All logarithms in this paper are assumed to be taken to the base 2.
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Fig. 1—Source coding with side information.

Again we ask: What is the minimum capacity C, required to trans-
mit {X;} with Ax arbitrarily small (with n sufficiently large)? The
answer!? is that the minimum C, is the ‘“‘conditional entropy,”

H(X|Y), defined by

HEXIY) = - £ Q&) log%‘f—gyy))

= — Zv: Qr(y)[g Qxr(x|y) log @xiv(z|y)], (3a)

where
Q@) =Pr(Y =y} = ¥ Q1) (3b)
teX
and
Qxiv(zly) = %(fg;g) = Pr{X =z|¥ = y}. 3¢)

Note that H(X|Y) + H(Y) = H(X, Y).

Let us remark that the above still holds if, instead of deliver-
ing {Y:} to the decoder, we delivered a sequence {¥.}, where
Ay = E(1/n)¥i-1du(Y, Vi) can be made arbitrarily small. Thus,
the capacity of the ‘‘side channel’” must be at least H(Y).

Finally, we turn our attention to the problem to which this paper is
devoted. Let the source output be { (X, Y4)}i2,, as above. We assume
here, however, that there are two receivers. Receiver 1 is interested in
obtaining a reproduction {X;} of the sequence { X}, and receiver 2 is
interested in obtaining a reproduction {7} of the sequence {Y,}.
Assume further that a network consisting of three channels is avail-
able, as in Fig. 2. The first of these channels is a “common’’ channel
(with capacity Co) that connects the transmitter to both receivers, and
the other two are “private” channels that connect the transmitter to
each of the two receivers (with capacities C; and C,). Assuming that
we use block coding with block length n, the error rates are

Ay = E% 3 du(Xs, X5) (4)
k=1
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Fig. 2—Source coding for a network.

and

Ay = BEX 3 du(Ys, ). (4b)
NE=1

We say that a ‘“‘rate-triple”’ (R, R1, R») is achievable if, for any triple
of channel capacities (Cy, C1, C3) for which C; > R; (+ = 0, 1, 2) and
any e > 0, transmission over the network of Fig. 2 (with these
capacities) is possible (with 7 sufficiently large) with Ax, Ay = e
Our problem is the determination of the set ® of achievable rate-triples.

Before stating our results, we digress to give a formal and precise
statement of the problem as well as some other specialized information.
This digression can be omitted by the casual reader.

1.2 Digression—formal statement of the problem

Let { (X}, Yi)}s=1 be a sequence of independent drawings of a pair
of random variables (X, Y), X € &, Y € Y. X and Y are finite sets
and Pr{X =2V =y} =Q(,v9), € X, y € Y. The marginal
distributions are

Qz(@) = X Q=,y) and Qr(y) = Z Qz,9).
vey : zeX

Often, when the random variables are clear from the context, we write
Qx(z) as Q(z), ete. Define, form = 1, 2, - - -, the set

I.=1{0,1,2,---,m — 1}. (5)
An encoder with parameters (n, Mo, M1, M,) is a mapping

fe: X* X Yr = Inryg X Ingy X Ly (6)
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Given an encoder, a decoder is a pair of mappings
F50: Ipgy X Ippy— X (7a)
I57: Iaey X Iy — Y™ (7b)

An encoder-decoder with parameters (n, M, My, M,) is applied as
follows. Let
fe(X, Y) = (8o, Sy, S), (8a)
where
X=(Xy -, X0 and Y= (Yy -, Y.
Then let

X = 18°(S0, 8), (8b)
¥ = 15(80 Sy). (8c)
The resulting error rate is
A = max (Ax, Ay), (9a)
where
Ax = By % du(Xs, %), (9b)
A=D1 kzz;l au(¥e, D), (9¢)

dg (-, -) is defined by (1b), and X, 7, are the kth coordinate of X
and Y, respectively. The Hamming distance Dg(u, v) between the
n-vectors u and v is the number of positions in which u and v differ.
Thus, Ax = E(1/n)Dx(X,Y) and Ay = E(1/2)Du (Y, Y).

The correspondence between the encoder-decoder pair (or “code’)
as defined here and the communication system of Fig. 2 should be
clear. Note that the capacities of the channels in that diagram must
be at least C; = (1/n) log. M; ( = 0, 1, 2).

A triple (R, Ri, R2) is said to be achievable if, for arbitrary
e > 0, there exists (for n sufficiently large) a code with parameters
(n, Mo, My ,M,) with M; < 2*(Ei+9 4 = (, 1, 2, and error rate A < e
We define ® as the set of achievable rates. Our main problem is to
ascertain the region @®.

It follows from the definition that ® is a closed subset of Euclidean
three-space and the ® has the property that

(Ro, Ry, Ry) € ®R— (Ro+ €, B1 + e, Ba + &) € ®,  (10)
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& =0,7=0,1,2. The region ® is therefore completely defined by
giving its lower boundary ®, where

0—1 é {Ro, Rl, Rz) e ®R: (Ro, Rl, Rz) E (R, (11)
R, 2R:(:1=0,1,2) > R; = R:( = 0, 1, 2)}.
It follows immediately that ® too is closed.

It can also be verified by a simple ‘“time-sharing” argument that ®
is convex (see appendix). This leads us to the following equivalent
formulation of the problem. Let a; = 0,7 = 0, 1, 2 be arbitrary. Then
define

Tl(ao, ay, az) = min (aoRo + a1R1 + asz).

(Ro, Ry, By) €R

Then it follows from the convexity of ® that the lower boundary ®
is the upper envelope of the family of planes > 3a:R: = T:(ao, e, @2).

We can think of 7'1(a, a1, @2) as the minimum cost of transmitting,
using a code with rate-triple (R, Ri1, R2) over the network of Fig. 2,
when the cost of transmitting a bit per second over the common channel
is a9 and the costs of transmitting a bit per second over the private
channels to receivers 1 and 2 are «; and a», respectively. Now, since
information sent over the common channel (in Fig. 2) can alternatively
be sent over both private channels, it is never necessary to consider
the case where the sum of the costs of a bit per second on the private
channels a; + a2 < ap, the cost of a bit per second on the common
channel. Similarly, we need never consider the cases where a; > aq, or
az > ag, since information transmitted over a private channel can
alternatively be sent over the common channel. Since we can nor-
malize o as unity, the following theorem should be plausible. A com-
plete proof is given in the appendix.

For R = (Ro, R,, R,) satisfying R;: = 0, and ¢ = (a1, @2) arbitrary,
let the “cost’’ be defined by

C(a, R) = Ro + a1R1 + aaRz. (12)
With « held fixed, let
T(e) = min C(e, R). (13)
Re®

The indicated minimum exists because ® is closed. For « arbitrary,
let 8(a) be the set of R € ® that achieve T'(e) = C(e, R).
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Theorem 1 :
GHac U s,
aca

(#) U S$(e) S @,
ace

where the boundary ® is defined in (11), @ s the set of @ = (a1, as) that
satisfy
0=ajya =1, a1 +az 21,

and @' is @ with the elements (0, 1) and (1, 0) deleted.

Remarks:

(1) (0, 1) and (1, 0) are the only pairs in @ with zero elements. Thus,
@ and @' are nearly identical.

(2) The theorem implies that ® is upper envelope in (Rq, R1, Rs)-
space of the family of planes defined by

Ro 4+ aiR1 4+ azR: = T(a),
e E G.

1.3 Upper and lower bounds on &
1.3.1 Lower bounds

We can immediately give some lower bounds to the region & We
state them as

Theorem 2: If (Ro, Ry, R2) € ®, then
(@ Ro+Ri+R:2 H(X,Y),

(b)) Ro+ R, = H(X),

(¢) Ro+ R, =z H(Y).

Proof : Suppose that (Ro, Ri, R:) € ®. Then, for arbitrary ¢ > 0, we
can (for sufficiently large block length n) reproduce {X:}, and {Y4}
with arbitrarily small Ax, Ay, with capacity triple (in Fig. 2)

(CoyC1, C2) = (Ro+ €, R1+ ¢ Rz + ¢).

That is, with a code with M; = 27¢,¢ =0, 1, 2.
Since the total capacity of the three channels is Co + C1 + C3, we
must have

Co+C1+Cz=Ro+R1+Rz+3E§H(X,Y).
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Letting ¢ — 0, we have established (a). Inequality (b) follows in an
identical way on observing that the common channel (with capacity
Cy) and the private channel to receiver 1 (with capacity C1) together
transmit {X;}. Inequality (c) follows, similarly.

Let us remark that inequality (a) is an expression of the fact that
a communication system with the constraints imposed in Fig. 2
cannot perform better than in the “best of all possible worlds” situa-
tion in which the receivers can collaborate. It is therefore called the
“Pangloss bound.” The set of triples (R, Ry, R2) that satisfy Y _3R:
= H(X,Y) are called the “Pangloss plane.” Corresponding to rate-
triples that lie on the intersection of ® and the Pangloss plane, the
approximately H (X, Y) bits per second that characterize {X,, Y}
can be split up into three parts (corresponding to the information
transmitted over the three channels in our network) such that { X, Y}
can be essentially perfectly reconstructed by the three receivers in the
network. In this situation, the information transmitted over the com-
mon channel represents a kind of “core” process. Furthermore, the
smallest R, such that (Ro, R1, R:) € ® and lies on the Pangloss plane
(for some Ri, R,), can be thought of as a measure of the “common
information” of {X;} and {Y.}. This point is explored thoroughly in
Ref. 3.

1.3.2 Some easily achievable rate-triples
We now assert that certain rate-triples are achievable.

Theorem 3: The following triples belong to ®:

(4) Ry=H(X,Y), Ri=R.=0

(B) Ro=0, R, = H(X), Ry, = H(Y)
(C) Roy= H(Y), R, = H(X|Y), R, =0
(D) R, = H(X), R, =0, R, = H(Y|X).

Proof: To achieve (A), simply transmit { (X, Yx)} over the common
channel (and do not use the private channels). To achieve (B), trans-
mit {X:} and {Y.} over the private channels to receivers 1 and 2,
respectively (and do not use the common channel). To achieve (C),
transmit {Y:} over the common channel (requiring a capacity of
about H(Y)), and deliver { ¥;} to receiver 1 to use as side information
for transmitting {X:} over the private channel to receiver 1. This will
require a capacity of about H (X |¥). We do not use the private channel
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to receiver 2. Triple (D) can be achieved as in (C) by reversing to roles
of X and Y.

Let us remark that points (C) and (D) lie on the Pangloss plane
(i.e., they satisfy relation (a) of Theorem 2 with equality), since
HX)+ H(Y|X)=H(Y)+ HX|Y) = H(X, Y). Furthermore, be-
cause of the convexity of ®, all triples that are linear combinations of
triples (A) to (D) are also members of ®. The situation is summarized
in Fig. 3. The plane labeled “(a)” in the figure is the Pangloss plane
defined by Ry + R:1 + R: = H(X, Y). Theorem 2(a) states that the
region @ (and therefore its lower boundary ®) lies above this plane.
Similarly, Theorem 2(b, c¢) states that ® and ® lie above the planes
labeled ““(b)”” and “(c)” in Fig. 3.

Now the points labeled “4,” “B,” “C,” and “D” in the figure are
points (4) to (D) respectively in Theorem 3. As we mentioned pre-
viously, points C and D (as well as 4) lie on plane a. Thus (from the
convexity of ®), the triangle ADC lies in ® and must therefore be part
of the lower boundary ®. Further, since points D and B lie on plane b,

-
n Y

—
.

)

Fig. 3—Estimates of rate-region ®.

@)

a

R2
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the line DB is part of ®. Similarly, line BC is part ®. Finally, since
points B, C, and D are achievable, so are the points on the triangle
BCD. Thus, the only unknown part of the lower boundary @ lies in the
(upside-down) triangular pyramid with base BCD and apex at point
E (the intersection of planes a, b, ¢). The coordinates of point E are
easily seen to be (R, Ry, R:) = [I(X;Y), H(X|Y), H(Y|X)].

Let us remark here that there is one special source distribution
Q(z, y) for which point E is achievable.t In this case, the entire bound-
ary region @ lies on planes a, b, ¢. This special case is when X, ¥ can
be written X = (X', V), ¥ = (Y', V), where X’ and Y’ are condi-
tionally independent given V. Then I(X,Y) = H(V), H(X|Y)
= H(X'|V), H(Y|X) = H(Y'| V), so that point E is R, = H(V),
R, = H(X'|V), R: = H(Y'| V). Clearly, if, in the system of Fig. 2,
we transmit V over the common channel and X’ and Y’ over the two
private channels, we can reconstruct X = (X', V) at receiver 1
and ¥ = (Y, V) at receiver 2. This requires a capacity triple
Co=H(V)+ ¢ Ci=HX'|V)4+¢ Co=HY'|V)+ e (>0
arbitrary), so that point is in fact achievable.

We now give a characterization of the region ® (and therefore of ®)
in terms of information theoretic quantities. This characterization is,
in fact, the main result.

1.4 Characterization of ®—the main result

Suppose we are given Q(z,y), z € X, y € Y, an arbitrary prob-
ability function, where X, Y are finite. Let ® be the family of prob-
ability functions p(z, y, w), where z € X, y € Y, w €W, and W is
another finite set, for which

2 pE,y,w) =Q,y),z€ X,y € Y. (14)
v W

Each p € @ defines discrete random variables X, ¥, W in an obvious
way. For each p € @, define the subset of Euclidean three-space

®R® = {(Ro, Ry, Ro):Roe 2 I(X,Y; W), R.= H(X|W),
R, 2 H(Y|W)}, (15a)
and then let
®*= (U a®)s, (15b)
PEC

t M. Kaplan has shown that, in fact, this special case is the only one for which
point E is achievable.
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where ( )¢ denotes set closure. Then our main result (the proof of
which is given in Section III) is

Theorem 4: ® = ®*.
Remarks:

(1) Let us define ®r as the family of “test channel” transition proba-
bilities. That is, ®r is the family of all p,(w|z,y) (x € X,y € Y, w EW),
where W is a finite set, and for each (z, y), p.(w|z, y) is a probability
function on W. Corresponding to each p, € ®r, we have p(z, y, w)
= Q(z, y)p:(w|z, y) € ®. Further, for each p € ®, we have p:(w|z, y)
= [p(z, y, w)/Q(z, y)] € ®r. Thus @ is in 1-1 correspondence with @r.

(2) Since ® is convex, Theorem 4 implies that ®* is convex also.

(3) Theorem 4 can be invoked to show that T'(e) defined in (13) is
also given by

T(e) = ilelfp IX,Y; W)+ aH(X|W) + a:H(Y|W)]. (16)

Thus, from Theorem 1, the lower boundary ®, and therefore ®, is
essentially determined by 7T'(e) given by (16).

(4) Theorems 2 and 3 can be verified easily by using Theorem 4.
Thus, if (Ro, R1, R2) € ®, from Theorem 4 for arbitrary ¢ > 0 we can
find a triple of random variables X, ¥, W such that

Ro+Ri+R.ZIX,Y; W)+ HX|W)+HY|W) — e
=HX,Y)+[HX|W)+ HY|W)—-HX,Y|W)]— ¢
> H(X,Y)— e H(X,Y), ase—0. (17)

This is Theorem 2(a). The second inequality in (17) follows from the
fact that the entropy of a pair of random variables is less than the sum
of the respective entropies. Part (b) of Theorem 2 follows from

I(X,Y; W) + HX|W) = I(X; W) + I(Y; W|X)
+ HX|W) 2 I(X; W) + HX|W) = HX). (18)

The first equality in (18) follows from a standard identity [Ref. 4,
Eq. (2.2.29)].

Theorem 3 follows from Theorem 4 on taking W as follows: (4)

=(X,7), BYW=0,(C)W=Y, (D)W =X.

(5) Although Theorem 4 charactenzes ® and ® by an information
theoretic minimization, it must be emphasmed that the minimization
is not, in general, easy. In fact, there is no nontrivial case for which
we have succeeded in calculating the entire boundary ® analytically.
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Its major utility at this point has been in finding upper bounds on ®
by guessing at a p or p: and calculating the corresponding triple
[I(X,Y; W), H(X|W), H(Y|W)], which must lie above ®. See the
example below. The problem of computation of ® both analytically
and numerically is still open.t

(6) For p € @, we can define the quantities

ﬁ,,(w)=Pr{X=x,Y=y|W=w}, zEX,yE YweW,

which can be thought of as the transition probabilities of the “backward
test channel.” For a given (z, y), we can think of 8., = B8.,,(W) as a
random variable. Of course, 8., must satisfy

Bzy = 0, (19a)
X Bu=1, (19b)

and
EB.y = Q(z,y), (19¢)

where the expectation is taken over the distribution for W. Further,
IX,Y;W)=H(X,Y)—HX,Y|W)=H(X,Y)

1
- EZB:VIOE—

B (20a)

X|W)=E¥Lp: loggm, HY|W)=E Z Bi? log 7, (20b)

B(l) ) ﬁ(Z) )

where
B =3 By =Pr{X =2z|W}, and BP = ):Bzy
= Pr{Y = y|W}, (20c)

and the expectation is taken over the distribution for W. Using this
idea, it is possible to characterize, for example, T (a) as follows (see
Ref. 3, for a precise proof of this characterization). Given Q(z, y),
T E X, y € Y, define ® as the family of collections of random vari-
ables, {8.,}, ¢ € X, y € U, which satisfy (19). Then

T(e) = min [I(X, Y; W) + s H(X|W) + aH(Y|W)],

T One reason for the difficulty is that I(X, YV; W) + axH (X |W) + a.H (Y |W) is
apparently neither convex nor concave in p..
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where I(X,Y; W), H(X|W), H(Y|W) are given by (20) and the
minimum (which can be shown to exist) is over all sets {8.,} in ®.

This characterization may have value in the computation problem,
since the quantities in (20) are linear functions of the joint distribution
function for the {8.,} and the constraints of (19) are also linear in-
equalities in this distribution function. Thus, calculation of 7'(e) is a
linear programming problem.

(7) If p € @ is such that X and Y are conditionally independent
given W, then H(X,Y|W) = H(X|W) + H(Y|W). Thus, with
Ry=I(X,Y;W),R,= HX|W), R, = H(Y|W),

R+ Ri+ R, =HX,Y)-HX,Y|W)+ HX|W) + HY|W)
=H(X; Y);

and (Ro, Ry, R:) € & and lies on the Pangloss plane. Reference 3
shows that this class of triples (corresponding to a p € @, with X, ¥V
conditionally independent given W) completely characterizes the inter-
section of ® and the Pangloss plane.

1.5 An example

As an example of the preceding, let us consider the special case where
the source is the ‘“‘doubly symmetric binary source” (DSBS), where
X =9Y={0,1}, and

Q(x; y) = '}(1 - po)‘sl-y + 1?0(1 - sx«v): r, Yy = O) 1: (21)

and the parameter p, satisfies 0 < po < 4. We can think of X as being
an unbiased binary input into a binary symmetric channel (BSC) with
crossover probability p,, and Y as being the corresponding output,
or vice versa. To get a clearer picture of the set of achievable rates ®,
let us restrict ourselves to the plane in (R, R,, R.)-space, where
R; = R,. The intersection of ® and this plane can be plotted in a two-
dimensional picture.

Let us first take a look at the implications of Theorems 2 and 3. In
this source,

H(X)=H(Y) =1, H(X|Y)=H(Y|X) = h(pd)

and
H(X,Y)=H(X)+ H(Y|X) =1+ h(po),

where
h(A\) = —Xlog A — (1 — N) log (1 — 1), 0=A=1 (22

is the entropy function. [We take A(0) = A(1) = 1.] With R, = R,,
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Theorem 2 yields
Ro+ 2R, 2 1+ h(po), (23a)
Ro+ Ry = 1. (23b)
Thus, ® and therefore the lower boundary ® must lie above the lines
labeled a and b in Fig. 4.

Now Theorem 3 implies that points A[Ro = 1 + h(po), B1 = 0],
and B(Ro = 0, R, = 1) are achievable, so that any point on the line
connecting them is also achievable. But we can do better. Let us drop for
a moment the requirement that By = R,. From Theorem 3, C and D, the
points [Ro = 1, R1 = h(po), Rz = 0] and [Ro = 1, Rl = 0, Rz = h(po)]

¢

1-h(Pg) = H(X.Y)J A

F=(5hig), 1)

Ro

Ry =Rz

Fig. 4—Estimates of rate-region ® for the DSBS.
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are achievable. Thus, the point in (Ro, R1, R2)-space halfway between
them is also achievable. But this point,

[RO = 1, Rl - %h(po)y R2 = %h(po)];

satisfies B, = R, and is therefore of interest to us now. Point F in
Fig. 4 is therefore achievable, and therefore so are line segments AF
and FB. But line segment AF coincides with line a, so that it must be
on the boundary ®. So far, the unknown part of the boundary curve
@ lies in triangle FHB. We can do better, however, by using Theorem 4.

Theorem 4 asserts that any triple in ®‘®’, p € @, is achievable. We
therefore guess at a p € @ that defines random variables X, Y, W,
and then assert that the triple Ro = I(X, Y; W), R, = H(X|W),
Ry = H(Y|W) is achievable. Since we choose a p € ® such that
Ry = R, this triple is of interest in our present discussion. The p € @
we have chosen is (with ‘W = {0, 1}) given by Table I. The quantity
p1 = 3(1 — V1 — 2 pg). One way of characterizing p is to think of W
as an unbiased binary input and X, Y the respective outputs of two
independent BSC’s, each with crossover probability pi. Note that
these two BSC’s in cascade are equivalent to a single BSC with cross-
over probability, 2p:1(1 — p1) = po.

With X, Y, W so defined, X, Y are conditionally independent given
W, so that (R,, Ri, R;) lies on the Pangloss plane. [See remark (6)
following Theorem 4.] We have

Ro=1(X,Y;W)=H(X,Y) - H(X, Y|W)
= 1+ h(po) — 2h(py),

R, =R, = H(X|W) = h(py). (24)

This is point G in Fig. 4. Line segment A is therefore on the boundary
®. From these simple arguments, we see that the unknown part of
the boundary ® lies in the triangle GHB.

To obtain a still tighter bound on &, we employ the same technique
as above—i.e., “‘guessing’’ at a p € ® and then deducing that ®(®

Table |
XY 00 o1 ‘ 10 1
0 (1 — p)? (1 — p) il — ) ip}
1 ipi l i1 — pll) l ip:(l —pu) 1A — p)?
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Table 1l

XY 00 01 10 1

1 1
0 ﬁ(l—ﬂ—%—o Poja Po/s ﬁ(ﬁ—%’
1 1
1 3 (3 = % Po/s Do 3 (1 -8 %’

C @®. Let 8 be a parameter for which
pr=301—-vV1—-2p)=g=4. (25)

Then let W = {0, 1}, and p(z, y, w) be given by Table II. Then the
triples (Ro, R1, R, )E ®, where

Ry=I(X,Y;W)=H(X,Y) - HX, Y|W)
1 1
=1+h(1’o)+§<l—ﬁ—%))log§(l— —%9>
Po1oa Pt 4 Lo _PoY o Ll(g_Pe

and
R, = R, = H(X|W) = H(Y|W) = h(B). (26Db)

For B = pi, the triple of (26) coincides with that of (25), i.e., point G
in Fig. 4. For 8 = %, the triple of (26) is Ry = 0, Ry = R, = 1, i.e,,
point B of Fig. 4. As 8 increases from p; to %, the family of rate-triples
of (26) generate a curve ¢, which lies below the line GB and therefore
constitutes a tighter upper bound on ®. We conclude that the unknown
portion of ® lies in the shaded region in Fig. 4.

In Section 2.5 we give some insight into how we “guessed’” at these
distributions p € @.

Il. GENERALIZATION TO A FIDELITY CRITERION

In this section we formulate a generalization of the problem of Sec-
tion I in which we require that the source sequences {X;} and {Y}
be reproduced to within a specified fidelity criterion and not, as in
Section I, essentially perfectly. The proofs of the main theorems ap-
pear in Section III.

2.1 Definitions and formulation of the problem

Let {(X4, Yi)}5=1 be a sequence of independent drawings of a pair
of random variables X € &, ¥ € Y, where the ‘“source alphabets”
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% and Y are either discrete sets, the reals, or arbitrary measurable
spaces. We assume that we are given a probability law that defines
(X, Y). If x and Y are discrete, then we write

Q(I:y)=Pr{X=er=y}; zE X,y € Y.

If &, ¢y are the reals, then (X, ¥Y) may be defined by a probability
density Q(z,y), —® < 2,y < «. For arbitrary measurable , v,
the pair (X, Y) is defined by a probability measure @ on & X . The
marginal distribution for X, ¥ will be defined similarly by Qx, Qv
respectively.

As in (5), define the set I, = {0,1,---,m — 1} form = 1,2, ---.
An encoder with parameters (n, Mo, My, M) is [as in (6)] a mapping

fg:‘x"X‘y"—»IMGXIM,XIM,. (27)

We assume that the sequences { X} and {Y,} are to be reproduced as
sequences of elements of sets & and 9, respectively, called “repro-
ducing alphabets.” Thus [as in (7)], corresponding to a given encoder,
a decoder is a pair of mappings

59 Iagy X Ipg, — &, (28a)
I Iy X Iy, — Ym. (28b)

Let us adopt the convention of denoting n-vectors with bold-face
type (either upper or lower case) and the components as the same sub-
scripted letter in ordinary type. For example, u = (uy, - - -, %n).

An encoder-decoder with parameters (n, Mo, M., M,) is applied as
follows. Say

fE(X) Y) = (SUJ Sly SQ)) (29&)
whereX € X, Y € Y», and (So, Si, S2) is a triplet of indices. Then set,
X = [0S, 8), Y= f8(S S, (29b)

where X € &7, ¥ € 4. The encoder-decoder is said to have average
distortion (Ax, Ay), where

Ax = EDy(X,X), Ay = ED.(Y,Y), (30a)
and the single-letter distortion functions are defined by
Dy(x, x) = . i dy (zx, £1), (30b)
N k=1
5 1 n
Ds(y,y) = - L_gl da(yx, §x), (30c)
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xE X" XE X",y € Y, § € Y, and di(-, -) is a given nonnegative
per-letter distortion function for the X-receiver and dx(-, -) is a given
nonnegative per-letter distortion function for the Y-receiver. An
encoder-decoder with parameters (n, Mo, M, M,) with average dis-
tortion (Ax, Ay) is said to be a code (n, Mo, M1, Ms, Ax, Ay).

A rate-triple (Ro, R1, R2) is said to be (Ai, As)-achievable if, for
arbitrary € > 0 and = sufficiently large, there exists a code
(n, Mo, M]_, Mz, Ax’, A}’) With

M, € 2nketo, 4§ =0,1,2,
and
Ax S A1+ ¢ Ay = A2+ e

The set of all (A;, Aj)-achievable rate-triples is called ®(A;, Az). Our
main problem is to ascertain ®(Ay, Az), A;, Az = 0. Clearly, this gen-
eralized problem reduces to the problem of Section I, if & = &,
Yy = 4, dy = d» = dg, and A; = A, = 0. As in Section I, the region
® (A4, As) is completely defined by the boundary ®(Ai, As), where
® = ®R(Ay, A,) is defined in (11). Further, we show in the appendix
that ®R (A1, A;) is convex and that Theorem 1 holds with ® = ® (A, As).

2.2 Rate-distortion functions and conditional rate-distortion functions

A major tool in this study is rate-distortion theory. Specifically,
joint, marginal, and conditional rate-distortion functions (or simply
“rates’) are used both in evaluations and bounds. These functions
and their properties are dealt with in Refs. 1, 4, and 5. Here we only
summarize some pertinent definitions and properties.

The marginal, joint, and conditional rates are defined as follows.
Consider first the case where the alphabets &, &, <, 4, are finite and
Q(z,y), @x(z), Qv (y) are probability functions. Then the (joint) rate-
distortion function is defined by

Rxy(Ay, A;) = min [(XY; X 7), (31)
where the random variables X P are defined by a “test-channel”
q:(#; 9|z, y)—i.e., a probability function on & X 4 for every (z,y)
€ % X . The information in (31) is calculated for the joint distribu-
tion

Pr {X =z, YV = II,X = &, P = ﬁ} = Q(x) y)q!(£) glzi y) (32)
The minimum in (31) is taken with respect to all test channels ¢, such

that Edy(X, X) £ Ay, Ed,(Y, ¥) £ A,, where the expectations are
taken with respect to the distribution (32). The minimum always
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exists. Similarly, the marginal rates are defined by

Rx(A,) = min I1(X;2X), (33a)

qy(z|z) : Ed1(z,%) SA1

Ry(4,) = min I(Y; ?); (33b)

o (#lv):Bd(Y,7) SAs

where the expressions in (33) are interpreted analogously to that of
(31). Detailed discussions of these quantities and their significance
can be found in Refs. 1 and 4.

Another quantity that plays a crucial role in our study is the “con-
ditional rate distortion function.” Let <X, %Y be finite, and let Q(z, )
be given. Let p(z, y, w) be a probability function on & X Y X W,
where W is a finite set such that ¥ .p(z,y, w) = Q(z,y). Then
p(®, y, w) defines a triple of random variables X , Y, W, where the
marginal distribution for X, ¥ is Q. The conditional rate-distortion
functions are defined as

Rxyiw(Ay, A;) = min (X, ¥V; X 7| W), (34)

where the minimum (which always exists) is taken with respect to all
test channels g.(2, 9|z, y, w) such that Ed:(X,X) < Ay, Edy(Y, D)
= As. The conditional information in (34) is defined in Ref. 4, p. 21
The conditional rates Rx w(A;), Ry ;w(A:) are defined analogously. A
detailed discussion of conditional rates is given in Ref. 5. Of course,
these definitions are meaningful if X = Wor ¥ = W. Roughly speak-
ing, Rx v w(A1, Ay) is the channel capacity required to transmit X, ¥
and to reproduce it as X, ¥ to within an average distortion (A, As)
when both the transmitter and receiver know W.

We shall need several properties of the conditional rate-distortion
function in the sequel. The first is given in Ref. 5. For A = 0,

Exiw(A) = min L Pr{W = w}Rx/w-u(lu), (35)

where Rx|w-u(-) is the rate-distortion function calculated for a source
with outputs € & with probability distribution Px,w (z|w) (the con-
ditional probability function for X given W = w). The minimum is
taken over all sets {A,}wew such that 3 .Pr {W = w}A, < A.

A second fact of importance is that, say, Rx;w(A) is a continuous,
convex, nonincreasing function of A for A = 0. That Rx;w(A) is non-
increasing follows from the definition. The proof that it is convex
parallels the proof of the convexity of the ordinary rate-distortion
function. The continuity of Rxw(4), A > 0 follows from its convexity.
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Finally, the continuity of Rx w(A) at A = 0 follows from (35), and
the continuity of Ry w-w(A) at A = 0.
A third fact we shall need is that, for any X, W,, W,, A = 0,

Rx\w,w,(4) £ Rx w,(4). (36)

This follows from Rx w,w,(A) = inf I(X;X|W,W,), where the
infimum is with respect to test channels g¢.(£|z, w1, w:) such that
Edy(X, X) < A. Included in this class of test channels are those that
are independent of ws, i.e., ¢:(£|z, w1, w2) = q.(£| 21, w1). This subclass
is exactly the class of test channels in the minimization for computing
Rxw,(4).

The final property of conditional rates is stated as a lemma below.
The proof is given in the appendix.

Let X € £ be a random variable with probability distribution
Qx(z) = Pr (X = z}, where X is a finite source alphabet. Let & be a
finite reproducing alphabet and let d(z,£) 20,z € %, £ € X be a
distortion function.

Now let {W}i-; be a family of disjoint finite sets and let
{pr(z, w)}7=1 be a family of probability distributions on % X W, such
that

Z pk(x) w) = QX (I)

wEW
The random pairs (X, W) are defined by
PriX =z, W,=w} =mn@w), zE€XweEW.

Let Rx w,(A), A = 0 be the corresponding conditional rate-distortion
function.

Next, set W = Y 7_,W;, where Y indicates union of disjoint sets.
Define the probability distribution on & X W:

p*(z, w) = %pk(z, w), for wEW,1=<k=Zn

and let (X, W) be the corresponding random pair with conditional
rate-distortion function Ry w(A), A = 0. Clearly, p*(-) is a mixture
of the n disjoint probability distributions {p.}, with prior probability
1/n. We now state the lemma.

v

Lemma 6: For arbitrary {Ax}i=1, Ax = 0,
1 n
Rxm( Z Ak) = . Z Rx wi(A).
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We note here that all the above is meaningful for the case where
Q(z, y) is a probability density function or @ is an abstract probability
measure. We need only make the obvious correspondences between
discrete distributions and more general probability measures and
replace “minimum” in (31), (33), (34), and (35) by “infimum.”

We conclude this section by taking a look at the specialization of the
above to the case where d; = d» = dg, the Hamming distortion defined
in (lb), and A1 = Az = 0. Then

Rxr(0,0) = H(X,Y), Rx(0)=H(X), Ry(0) = H(Y),
Rxyiw(0,0) = H(X, Y|W), Rxw(0) = H(X|W),
Ryiw(0) = H(Y|W),
where the entropy H (-) and the conditional entropy H (- | -) are defined
in (2) and (3), respectively. Analogous to the relation

HX|Y)+ H(Y)=H(X,Y) £ HX) + H(Y), (37a)

which holds for this special case, the following is established in Ref. 5
for the general case:

Rxy(A1) + Ry(Az) < Rxy(Ay, Az) < Rx(A1) + Ry(A,). (37b)

Further, it is shown in Ref. 5, Corollary 3.2, that the left inequality in
(37b) holds with equality in some neighborhood of the origin {(A;, As):
0 = Ay, Ay £ v}, provided that

Qz,y) >0, alzE€ x,y € Y, (38a)
and d,, d» satisfy

di(z,£) > di(z,2) =0, z# %,
ds(y, 9) > da(y,y) =0, y =4

2.3 Characterization of ®R(A,, A.)—the main result

(38b)

We first state two simple theorems that are generalizations of
Theorems 2 and 3. The proofs are analogous to the proofs of Section I,
and are therefore omitted. Theorem 6(a) is also called the Pangloss
bound.

Theorem 6: If (Ro, Ry, R2) € R(Ay, As), then
(@) Ro+ R1+ R: = Rxy(Ay, As).
() Ro+ Ry = Rx(Ay).
(¢) Ro+ R = Ry(Ay).
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Theorem 7 : The following triples belong to ® (A4, Az):

(A) Ro = ny(Al, Az), R] = Rz =

(B) Ro =0, R;,= Rx(A1), R:= Rr(4).

It is also possible to generalize Theorem 3(C) and (D), but this must
await presentation of the main result, which we now give.

Consider first the case where &, Y are finite. Let Q(z,y), z € X,

Yy € Y be given. Now let ® be the family of probability functions
p(z,y, w), wherez € X, y € Y, w € W, W is another finite set, and

z py,w) =Q@y), z€XyE Y. (39)
wEW

Thus, @ is exactly as in Section 1.4. Now each p & ® defines three
discrete random variables X, ¥, W in the obvious way. For p € @
and A;, A; = 0, define the subset of Euclidean three-space

m{ﬂ)(Ah Az) = {(RO) Rly R2) : RO 2 I(X Y Wv),
2= Rxjw(A1), R:2Z Ryiw(Ad)}. (40a)

Then let
®*(Ay, Az) = [ LEJ 001(”)(131, AT, (40b)
P

where ( )¢ denotes set closure. Since Rxw (A1) and Ry w(A;) are con-
tinuous for A;, A, = 0, we conclude that ®*(A;, A;) is continuous in
(A1, As) according to the Hausdorff set metric. This metric p(S;, S2)
between two subsets Sy, S; of a Euclidean space is defined by
p(81,82) = sup inf [|r — 7o + e inf [lrs — 7],
neES) nES €8 nES
where ||| denotes Euclidean norm.

If Q is either a density or a probability measure, then ®*(A;, As)
can be defined in an analogous way. In this more general case, we must
require that the source has the property that there exists an £ € £,
9 € 4 such that

Edi(X, %) < @, Edy(Y,9) < . (41)

If &, Y are finite, then (41) is always satisfied. We can now state our
main result.

Theorem 8: R (A1, Az) = ®R*(Ay, As).
Remarks:

(1) Theorem 8 reduces to Theorem 4 when X, Y are finite, d; = d
= dH, and Al = Az = 0.
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(2) If we define ®r as in remark (1) following Theorem 4 as the set
of test channels p.(w|z, y), then ®7 is in 1-1 correspondence with ®.

(3) Since ®(A1, A:) is convex, Theorem 8 implies that ®*(A;, A,)
is convex also.

(4) Since Theorem 1 is valid for ®(A;, A;), the present theorem
implies that 7'(a), defined in (13) is also given by

T(e) = iléf(P[I(X, Y; W) 4+ aiRx w (A1) + azRy w(As)].  (42)
P

Thus, from Theorem 1, the lower boundary ®(A,, A:), and therefore
® (A1, A,), is determined by T'(e) given in (42).

(5) As in remark (4) after Theorem 4, Theorems 6 and 7 can be
obtained directly from Theorem 8. The steps parallel those in remark
(4) and will be omitted. We will, however, give the generalization of
Theorem 3(C) and (D). We state this as follows. The following triples
(R()r Rl) RL’) e (R(Aly A2) :

(C) Ry = Ry(Az), R, = Rxn?(Ax), R, = 0,

(D) Ry = Rx(41), R1=0, R;= Ry x(4s),
where the random variable ¥ is defined by the test channel that
achieves the infimum in Ry(A;) (assuming that the infimum can be
achieved; if not, a simple modification is possible), and X is defined
by the test channel that achieves Rx(A;). In the discrete case, we can

achieve point (C) as follows. Let p3(9|y) be the test channel that
achieves I(V; ¥) = Ry(A»). Let W = 4 and let

p(z,9,9) = Q(z, y)p:9ly) € .

The random variables X, Y, ¥ are defined in an obvious way by
p(z, y, 9). Further, since X, ¥ are conditionally independent given Y,
I(X,v; ) = I(Y; ) + I(X; 7| Y)

= I(Y; ) = Ry(Ao).
Also, tPe conditional rate Ry i-(A.) = 0. Thus, from Theorem 8, with
W = ¥, we have (Ry, R, R2:) € ®R(Ay, A;) where
Ro=I1(X,Y; W) = Ry(4,)
R: = Rxw(A)) = Rxv(4Av),
R, = Rnw(Az) = 0.

This is point (C). Point (D) is obtained on reversing the roles of X
and Y.
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Since ®(A;, Az) is convex, any linear combination of points (4) and
(B) of Theorem 7 and (C) and (D) above also belongs to ®(A;, A,).
But there is no guarantee in this case that points (C) and (D) will lie
on the Pangloss plane. There are cases for which a portion of the
Pangloss plane is known to be realizable, as is shown in the example
below.

2.4 A technique for overbounding ®(A, As)

In this section we present an intuitively sensible ad hoc scheme
for choosing probability distributions p € @ that yield triples
[I(X,Y; W), Rx,w(A1), Ry;w(A:)] which are often close to or actually
on the boundary curve ®(A;, A,). In fact, in many cases this triple
will lie on the Pangloss plane.

A natural coding scheme to apply to our network would be to send
a ‘“‘coarse’”’ version of the source output (X,Y) over the common
channel, and then send to each receiver over its private channel only
the necessary ““fine tuning” it needs to meet its fidelity requirement.
This reasoning leads us to the following family of rate triples that
belong to ® (A4, A;). Assume for simplicity that &, Y, &, Y are finite.

Let Ay, A = 0 be given. Let 81, 8. satisfy

B1 = A1, B2 = Ao

Now let q.(%, 7|z, y) be the test channel that achieves I(X, V; X, ¥)
= Rxy(B1, B2). Then with W = (X, ¥) we have that the triple
(Ro, B, R2) € ®R(Ay, As), where

Ry=I(X,Y; W) = Rxy(By, B2),
and
By = Rxix7(&1), R = Ry x¥(As). )

Note that the rates corresponding to Theorem 7(A4) and (B) and to
points (C) and (D) in remark (5) following Theorem 8 can be gen-
erated as special cases of the rate in (43). We do this as follows:

A: Let (Bl; 62) = (Al; AZ)

B: Let By, B2 be large enough so that Rxy (81, 82) = 0. Then X, ¥ are
degenerate.

C': Let B, be large enough so that Rx(8:) = 0, and let 8; = A,. Then
X is degenerate.

D: Let B be large enough so that Ry(8:) = 0, and let 8; = A;.

The power of this technique is illustrated by the following theorem,
which asserts that under weak assumption the family of rates given
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by (43) includes a substantial subfamily that lies on the Pangloss
bound and therefore on the boundary.

Theorem 9: Given a source that satisfies

() x =&, Y =79, x, Y finite,
(12) Q(z,y) > 0,dlzE X,y E Y,
(743) di(z, £) > di(z,x) =0, all distinct z, £ € X, and du(y, 9)
> do(y,y) = 0, all distinct y, § € Y.

Then there exists two neighborhoods of the origin

n = {(Ax,Az)ZO_-<= AI,AQSa}

{(B1,B2):0 = B1,8: < b},

where 0 < a < b, such that, if (A, A2) € m and (By, B2) € ns, then

N2

Ro + R1+ Ry = Rxy(4y, Ay),

where (R, R1, R2) s given by (43).

The theorem can be proved using Shannon lower-bound techniques!-®
and, in particular, the proof is similar to that of Theorem 32 in Ref. 5.
Since the proof requires the generation of special machinery that is
only tangential to the main ideas in this paper, we have elected to
omit it.

2.5 Examples

(A) Our first example will be the DSBS considered in the example
of Section 1.5. Here & = 4y = {0, 1}, and

Q(Ir Z‘I) = '%(1 - PO)Bz.u + %pﬂ(l = 6:.1/): T,y = 0) 17 (44)

where the parameter p, € [0, 3 ]. The distortion function will be the
Hamming metric, i.e., diy = d: = dg, where dy is defined in (1b).
Again, as in Section 1.4, we consider only the plane in (R, R1, Rs)-
space where Ry = R, and A, = A, = A. We employ the technique of
Section 2.4 to obtain an upper bound for ®(4, A).

Making use of Ref. 1, pp. 46-50 (Ex. 2.7.2), we have

1 4 h(po) — 20(B), 0 =B =m
L(1 — po) — ${L(28 — po) + L[2(1 — B) — pol},
PpmE=p=3 (45a)

RxY(ﬂ, B) =
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where

p1 =} — $V1 — 2p,, (45b)
h(A) = Xlogh — (1 — N log (1 —2)), 0SA=1, (45¢)
L(\) = —\log X, 0=\N=1.  (45d)

Now, from Ref. 1, the random variables X and ¥, which satisfy
I(X,Y;X7) = Rxv(B, B) are such that

PriX=z|8=%Y=35 =Pr{X =z|X =z
= (1 = B)az.i + ﬁ(l - 53.5); z,%5 = Oy 1 (46&)
and

PriY =y|X =% 7 =3 =Pr{Y =y|Y = 5}
= (1 - 6)51/.17 + B8(1 — Bv.i)x vy E= 0, 1. (46b)
Thus, again from Ref. 1 (p. 46, Ex. 2.7.1), for 0 < A < B,

Rx%7(A) = Rx1%(A) = Ry|77(A) = Ry7(4)
= h(8) — h(A). (47)

Thus, we conclude that, for arbitrary 0 < A < 8 <}, the triple
(Ro, By, Ry) € R(A, A), where Ry = Rxy(8, 8) [as in (45)], and R,
= Ry = h(B) — h(A). Let us note that, for 0 £ A < 8 < p;, these
rate-triples (R, R,, R») satisfy

Ro+ Ri+ R = 1 + h(po) — 2h(A) = Rxv(A, A), (48)

and therefore lie on the Pangloss plane and ®(4, A). One special case
occurs when A = 0, 8 = p,. This yields the rate-triple of (24)—i.e.,
point G in Fig. 4. In fact, the distribution p(z, y, w) € @, which we
guessed at in Section 1.5, was obtained by setting W = (X, ¥), where
X, ¥ are as above for 8 = p1.

(B) Our second example is a source where Q(z, y) is a density func-
tion and &, &, Y, Y are the reals. The ad hoc technique used in the
previous example (4) will work here with obvious modifications. The
random variables X, Y in this case will be jointly gaussian with EX
=EY =0, EX*=EY*=1, and EXY =1, 0 £ r £ 1. Thus, the
density

1 2 4 92— 2
Qz,y) = mexp - @ 2(;/__ rz)rxy) ' (49)

We take the distortion to be di(-, ) = da(-, -), where
dl(x,£)=($—f)2, -°°<$,.'2<°°.
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For 0 < 8 < =, it can be shown! that

1 1 -1

y%( m’), 0sg=1-r,

Rxv (8, 8) = 11 147
§10g<2ﬂ—(1—7‘))’ 1-r=g=s1l,

0, g =L
Further, the random variables X, ¥ which satisfy I(X,Y; X, )

= Rxv(B, B8),0 < B = 1 are such that, given X=%¥V=%XandY
are gaussian with

(50)

EX|X=%7=7% =3,
EY|X=%7Y=3% =3,
var X| R =% P =3 =var(Y|X =%,V =3) =
Thus,'4for0 < A =£8< 1,
Rx 77(A) = Ryiz7(4) = ';‘103 g

Thus, we conclude that, for arbitrary 0 < A < 8 =1, the triple
(Ro, Ry, R:) € ®(A, A), where R, = Rxy(8,8) [as in (50)] and
R: = R, = % log B/A. Again, observe that for 0 = Asg=1—r,

1—12
A

Ro+Ri+ Ro=glog (1“5 ) = Rar(8,8), ()

and therefore (Ro, R, R:) lies on the Pangloss plane and therefore on
®(A, A).

I1l. PROOF OF THE MAIN RESULT—THEOREM 8

The proof of Theorem 8 consists of two parts: (¢) the “converse’’
part, which asserts that any point in ®(A;, Az) belongs to ®R* (A4, Az)
and (#7) the “direct” or “positive” part, which asserts that any point
in ®* (A1, As) belongs to ®(As, Az). We give the proof for the case where
,  are finite sets. The proof for arbitrary &, Y follows in a parallel
way with integrals replacing sums, etc., in the standard way. We will
begin with the converse.

3.1 The converse

Let (fz, f§°, fi") define a code (n, Mo, M1, M, Ax, Ay). We find
a p*(z;y, w) € @ for an appropriate set W such that

( :f];llog MD’ '—[1;, 10g Ml’ ;1), 10g MZ) E (B.(P')(Ax’ AY) _g (R* (AXy AY)- (52)
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The converse follows on applying the definition of (A;, As)-achievable
rates and applying the continuity of ®* as discussed in Section II.

First, let fe(X,Y) = (S, Si, S2) where S; € I, is a random vari-
able (2 = 0, 1, 2). Then we have

1 m 1 @ 1 @ 1
Jlog Mo = - H(So) = [ I(X,Y;8) = » [HX,Y) - H(X, ¥|S0)]

(4)

i [H X, Xa) — HX, Yl 86 X, = Ty, Fy » =, Fiid]
(53)

3I>—-

These steps are justified as follows:

(1) From S, € Iy,

(2) Standard inequality.

(3) Definition of I (X, Y; So).

(4) HX,Y) = > :H(Xy, Y) follows from the independence of the
pairs (X4, YVi), k = 1, 2, -+, n. The rest is also a standard identity.

NOW, for 1 =k = n, let Wi = (So, X1, n sy Xk—ly Y[, s eosiy Yk—l), a
random variable belonging to, say, Wy, a finite set.! Relation (53) is
then

Liog o2 L 3 1(x,, ¥i; W), (54)
n nrg=1
Next, let X = f8% fs(X,Y). Let Ay = Edy(Xi, X1), 1 <k < n.
Then
Ax = EDi(X,X) = - z Axg. (55a)

N k=1

We now write

1 W1 . @ 1 N

(3) 12

= ;Llcg I(Xkyx'SOr Xl) "',Xk—l)
)1 n

= . ZII(Xk,Xk’So, Xy, o0y Xim)

6)1 » n

2 4 Z Rxy vi(Aw) % n k§l Rx,w,(A), (55b)

k=1

where Vk = (So, Xl, e ey X};_l), and IV;, = (Vk, Y], o wiary Yk_l) as
above. These steps are justified as follows:

T We can, of course, take Wy = Iary X LK1 X Yk,
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(1) Since X is a function of S, and S;, we have that, conditioned on
So = so, X can take no more than M, values (since Sy € I,). Thus,
H(X|So = s0) < log My, all sq.

(2-4) Standard inequalities and identities.

(5) From the definition of (kale(Alk), since Edl(Xk, Xk) = A1

(6) Follows from (36).

A similar derivation yields

1 12
% log M = — kgl Ry, wi(Az), (56a)
where
Ay = 3 A (56b)
NE=1

We are now in a position to define p*(z, y, w). With W, defined as
above, let
pi(z, y, w) = Pr {X; =z, Yi=y, Wi= w},

TEX,YE Y, wE W

Let
Plk(a;, w) = Z Pk(x; Y, w)l

v

pa(y, w) = X pe(z, ¥, w)

be the marginal distributions for (X4, W) and (Y, W), respectively.
The {W,} can be considered a class of disjoint sets. Let W = ZW,
and define the probability funetion on & X Y X W

n.

IIA

p*(x, y, w) = ,—lzpk(x, y,w), weE Wy 1=k

Since

n 1
Z 7’* (171 Y, “‘) = Z Z - Pk(I; Y, w) = Q(Il y)r
wEW E=1 wEwe T

we have p* € ®. The random variables X, ¥, W are defined by p* in
the obvious way. We can think of W as being generated by choosing an
integer K € [1, n] without bias, and setting W = W, when K =k,
1 < k £ n. A straightforward calculation yields

I(X,Y; W) = %é I(X,Y; W), (57a)
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Furthermore, Lemma 5 can be applied to pix, pax to yield

Riw(Ax) < & & Rrymi(A0), (57b)
Ryiw(Ay) = %ké:l Ryw,(A). (67c)

Inequalities (57a, b, ¢) can be substituted into (54), (55), (56), re-
spectively, to obtain

L log Mo 2 I(X, Y; W)
1
7—Llog M1 2 Rxnv(Ax)

+log M3 2 Reim(a),

which is (52). This completes the proof of the converse.

3.2 The direct half

We begin the proof by stating a lemma concerning conventional
source coding for a single memoryless source. The source is defined by
a random variable X € , with probability distributions Qx(z), and
a reproducing alphabet & with distortion function dy(z,#). As
above, X = (X,, -+, X.) are n independent copies of X. Let Q¥ (x)
= II2-,Qx(xx) be the probability distribution for X. Let E(A) be the
rate-distortion function.

A source code with parameters (n, M) may be thought of as a
mapping f: X" — € C &n, where card @ < M. LetX = (X, - -, X.)
= f(X). Then D:i(X,X) = 1/n3Y?_1d1(X, X;) is a random variable.
We are interested in the quantity

I'(A1+8) = Pr{Dy(X,X) = A+ 8} = z QY (x)®(x), (58)
xeqxn

where &(x) = 1, if D[x, f(x)] = A + 5, and &(x) = 0, otherwise. We
now state a lemma, which follows immediately from Lemma 9.3.1 and
inequality (9.3.31) of Gallager.*

Lemma 10: Let A = 0, and ¢, 6 > 0 be arbitrary. Then there exist A,
B > 0 such that for all n = 1, 2, - - - there exists a code with parameters
(n, M) satisfying
M < 2nRMA)+a
and
(A + 8) = Pr{Dy(X,X) = A+ 6§} < Ae53n.
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With the aid of this lemma the standard source coding theorem
follows readily (Ref. 4, Theorem 9.3.1).

Next, let us consider a compound source for which the source output
in 7 time units is an n-vector X = (X, - -+, X,) € X" The {X} are
still independent, but the X are not identically distributed.

Let ny, ns, ---, ns be such that Y>J-n; = n, and let Qi(-),
Q:(+), -+, Qs(-) be J probability distribution functions on X. The
source is characterized by the fact that a known subset n; of the n
coordinates of X are distributed according to Q;(:), j =1, -+, J.
Let R;(A) be the rate-distortion function corresponding to @;(-) rela-
tive to the distortion function d;. A code is defined exactly as above,
and X = f(X). We now have

Corollary 11: Let A; 20,7 =1,2,---,J, and ¢ & > 0 be arbitrary.
Then there exist A;, B; > 0,7 = 1, -+, J, such that, foralln = 1,2, - -+
and any set {n;}] such that Zn; = n, there exists a code with parameter
M satisfying

M < I_Io exps (n{R;(8) + €]} = exps (£ n{R;(A) + <1} (598)

and

F(A+5) =Pr(DiX,R) 2 A+38) <5 425m%  (59b)
=0

where A = n'Y n;A;. The (Aj, B;)’s are the (A, B) of Lemma 10 corre-
sponding to Q;(-).

The corollary follows immediately from Lemma 10 on noting that,
for any random variables {U;} and any set of constants {c;},

PriXU;z Xl =2 Pr{lU;2c¢l

Let us also remark that the Q¢ (x) used to compute I'(A + §) in the
corollary is of the form

@ = 1 G [ @:@a) [ Q@) (60

where the 7;th coordinate of x has distribution Q;(-), 1 £k = n;,
0s;=J—-1

Let us now turn to our network coding problem. An alternative
(though equivalent) way of defining a code for our network with
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parameters (n, Mo, M, M,) is

(1) A mapping
g: X* X Yy» — ¢, (61a)

where € is an arbitrary set with cardinality <M, The mapping g is
called a “core code.”
(2) For each w € @, a mapping

g o X Yy — eP C X, (61b)

where card ¢® < M,.
(3) For each w & @, a mapping

gin: an X yYyr — e < g, (61c)
where card € < M,.

The code defined in this way can be used on our network (Fig. 2) as
follows. Let € = {w.}}. Then, if g(x,y) = w;, the index 7 is trans-
mitted over the common channel. Let €& = {X,}M, 1 <7 £ M,.
Then, if g(x,y) = wi, and ¢ (X, y) = X, we transmit the index I
over the private channel to receiver 1. The decoder at receiver 1,
knowing the indices 7 and [, emits X;;, and the resulting distortion is
D, (x, %.;). Receiver 2 works analogously.

Let us fix our attention on receiver 1, and assume that ¢g& (x,y)
= g (x). Then we define the quantity ¢(x, w;)(x € X*, w; € @) as
the probability that X = x € X" and Y = y such that g(x,y) = w..
Thus,

gx,wi) = 3 Q"(xy). (62)
yio(x,y)=wi
Q" (x,y) 2 IT#-1Q(xx, ys) is the probability distribution for X and Y.
Then, as in (58) with X = ¢&(X), W = ¢(X, Y),

DA+ 9 2 Pr (DX K) > A+ 8] = T T ax, womi(x), (638)

where
oy |1, if Di[x, g (x)] > A1 + 3,
i(x) = 0, otherwise. (63b)
Substituting (62) into (63), we obtain
My
Frai+8)=x{ X Q"(xy&x)]}, (64a)

i=l (z,9) €Gi
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where
G; = {(x)Y):g(x:Y)=Wl'}, 1=7= M, (64b)

Now our goal is to show that there exists a code for n sufficiently large,
with Mo, My, M, appropriately chosen, and with I'(A, + &) arbitrarily
small.

Let us assume that we are given a probability distribution p(z, y, w)

E® where 2€E X, yE Y, w E W. Let pw(w) = X..,p0(z, 3, w),
w € W be the marginal distribution of W. Assume with no loss of
generality that pw(w) > 0. Let

_p,yw
pb(xy ylw) - pw(’W)

be the ‘“backward test channel.”” For x € X*, y € Y, w € W", let

p™(x,y, w) = Ii=1p(Tk, Yx, W)

be the probability distribution for X, ¥, W (n independent drawings
of X, Y, W). Let p@(w)=IIi-pw(ws), and pi”(x,y|w)
= JT7=1pe(zk, y&|we). For (x,y, w) € X X Y* X W, let

P (X, (W) _ & pu(Tk, Ye|wi)
0@y &% Qa0

be the information ‘“‘density.” Of course,

EimX, Y; W) = I{X,Y; W} = nl(X,Y; W}.

1 (x,y; w) = log

Finally, let A; = 0 be given and let {A,}wew satisfy

Rxyw(A) = ¥ pw(w)Rxiw-u(lu), (66a)
=
and
A= Y pw(w)A.. (66b)
=

See (35). A similar expression can be written for Ry w(A,).

We now return to our network coding problem. With p &€ @ given,
we set out to construct a core code ¢ with certain desirable properties.
For any core code g: X" X Y»— € = {w;}¥* C W, let N = the
number of occurrences of symbol w in code vector w;, 1 < 7 < M,,
w & W. The existence of a desirable core code is assured by

Lemma 12: Let p € ® and ¢ > 0 be arbitrary. Let I* = I(X, Y ; W)
correspond to p € ®. For n sufficiently large, there exists a code g as in
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(61a) such that
(2) M, £ 2n(I*t0

(M)%LﬂmW)éﬁmwﬂleWwWEW,
() Pr(S) = 2 Q"(xy) =¢
(x.y)¢8.

where y
Se=1{0,y): 2 ixy;9@xy)] 2 I* — ¢,
and (X, y; w) s defined in (68).

We defer discussion on the proof of Lemma 12 to the end of this
section.

Let us suppose that ¢ is a code that satisfies conditions (z), (3%),
and (447) of Lemma 12. Let {g& }i™ be a family of encoders as in
(61b). Consider expression (64a). The term in braces is

2 Q™ (x, y)®:i(x)
(x,y) €Gi
= b Q™ (x, y)®:(x) + » Q" (x,y). (67)

(x,y) €GiNS, (x,5) €GiN 85

But if (x,y) € G: [i.e., g(x,y) = wi)] and (x,y) € S, then
Q™ (x,y) < 2-I"=9np{” (x, y|w.),

so that the first summation in the right member of (67) can be over-
bounded :

S2-@-an 2 " (x, y| wi)®i(x)
(x.yz x 0(!.3;)! =wi

L2-(I—an T o (x v) | w)di(x) (68)

S2-'=a9n 3 ™ (x| w) @i (X).

Combining (68), (67), and (64), we have
F(Al + 5) = Pr [Dl(x, i) > A+ 6}

sr -0 T T aralwn@+ L T QW)

i=1 (x,y) EGiN S;

<o-U*—on i: 28" (x| wi)®i(x) + Pr (S7). (69)
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Now consider
i (x|wi) = H Do (T | wir),

where w; = (w;1, Wiz, ***, Win), 1 £ 7 £ M, With N, as defined just
above Lemma 12, we see that (for a given 7) pi® (x| w.) is the same form
as Q) (x) in (60) with n; = Ni,. It then follows from Corollary 11
that, with w; held fixed, we can find a source code for X—i.e., a
mapping gé’—with parameter M = M, such that, for arbitrary
e, 6 >0,

My £ expa{ ¥ Ni[Rxiw=u(Au) + €]}, (70a)
w &
and
Z pb(") (XIW.')(I’i(X) = 2 sz—B"Nwr (70b)

where ®;(x) is defined in (63b) with A; = n 'Y uNiwAw, and {Au}
satisfying (66). The { (4., B.)} correspond to ps(z|w). Further, since
the {N.,} satisfy condition (i) of Lemma 12, (70) becomes [using
(66)]

My Zexp:{n L (pw[w]+ o (Rxiw=u[Au] + €}
wEW

< exp: {(n(Rxiw[A1] + eH[X] + ¢)} (71a)
and

Y pP (x| w)di(x) € L A,2-Berrw@ (-0 < C2-nBG-9 (71b)
x wewW

where C = (card W)-max,A4, and B = min,Bwpw.(w). Substituting
(71b) into (69) and using conditions (z) and (777) of Lemma 12, we have

I'(A; + 8) < 2I*=9)M,.C2-"BA—o + Pr (S7)

<2-n(B-Be2)  ¢— (0, asn— o« and then e — 0.
Since we can do an identical construction for ¥, we have proved

Lemma 13: Let p € ®, and let the corresponding information be
I(X,Y; W) = I* Let Ay, A: 2 0 and ¢, & > 0 be arbitrary. Then, for

n sufficiently large, there exists a coding scheme as in (61) with param-
eters (n, Mo, My, M,) such that

(2) My g 2eTH0),
(#) M, £ 2n(RxIw@An+e,
(171) M, < 2 (RYIw(Ad+0),
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and

(v) Pr {D1(X,X) > A1+ 8] < ¢
(v) Pr {Dy(Y,Y) > Ar+ 8} < e

The following corollary follows from Lemma 13 in the usual way
(exactly as does Theorem 9.3.1 in Gallager?).

Corollary 14: Let p € ®, and let the corresponding information
I(X,Y; W) = I* Then, for arbitrary A, A; = 0, the rate-triple
[1*, Rx w(Ay), Ry|w(Az):] 18 (A1, Ag)-achievable. Thus, ®R® (A4, Ag)
C ®R(Ay, Ay), for all p € @.

The direct-half now follows on noting that, if S; € S, and 8, is
closed, then the closure Sf & S,. Thus, ®* (A1, As) = [U,R® (A, Ag) ]
C ®(Ay, A,), which is what we had to prove.

It remains to prove Lemma 12. Since the proof is nearly identical
to that of Lemma 9.3.1 in Gallager,* we will only outline the steps.
Let ¢ > 0 be arbitrary. For w € W=, let N,(W) = the number of
occurrences of symbol w € W in the n-vector w. Then define

N (W)

n

T(e) = |v?l€ wn:all w € W, pw(w)\ < e}-

Then, paralleling Gallager, there exists a mapping ¢ [as in (61a)] for
which
M, £ 20"+

and

Pr { IO DIS I — ¢ or 9% & T(9)
< Pi(A) + exp [—er=2} 2 g(n),

where e > 0 is arbitrary and

A = {(x, Y, W): either%i"')(x, Y;W) > I* + eor

%z"“’(X,Y;W) ST — or W T(e)} ,

and P.(-) is probability computed with respect to p(z, y, w) € ®. By the
weak law of large numbers, if ¢, < ¢, then £, — 0, as n — .

Let the code whose existence we have just asserted be {w;}{. There
must be at least one code vector, say, wi, which belongs to 7'(¢). Now

PrigX,Y) & T(e)} = &(n).
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If x, y are such that g(x, y) & 7'(¢), change g(x, y) to wi. The new code
has ¢(x,y) € T(e) and

Er %i‘"’tx,me, Y)] < I* — ¢f < 2t(n) 0.
Thus, this new code satisfies conditions (z), (#7), and (777) of Lemma 12.
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APPENDIX
A.1 Proof of the convexity of R(A,, Aq)

Let A, A; be given and held fixed. Write ®(A,, A;) as ®.

Theorem 15: ® is convex.

Proof: The theorem follows by a ‘“time-sharing’ argument. Let R™,
R® &€ ®,and 0 < 6 = 1. We must show that

R € @®, (72a)
R =6RD 4+ (1 — RO, (72b)

Let (gr, g5, 95”) and (hg, h5°, hE?) be codes with parameters
(nly Mél)y M{l), ML(’”J Ag)y Agl)) &nd (7!»2, A[(()Z)l Aliz)y M§2)) Ag)) Ai?))’ re-
spectively, where AY, AP < A, AP, AP £ A.. Say 6§ = A/B, where
A, B are integers, 0 < 4 < B £ «. We show how to construct a code
(n, Mo, My, M s, Ax, Ay), where

L jop M= 8 (l log M ) de i, o= o)(l fog M,‘2’> o (13)
n n1 Na

(1=0,1,2), and Ax < A,, Ay < A,. This will establish (72) for
rational 6. Since the region ® is closed, (72) must hold for all 8, estab-
lishing Theorem 15.

We now define a code with block length n = eny + dns, where
c=An, d = (B — A)n,. Let (x,y) € X" X Y" be a sequence of n
pairs. Partition this sequence into ¢ blocks of n; pairs and d blocks of
n, pairs. Encode-decode the first ¢ blocks using encoder-decoder
(&, 95°, 98”), and encode-decode the remaining d blocks using encoder-
decoder (hg, h§2, hy?). Denote this combination encoder-decoder
by (f&, f§°, f8?). Consider fg(x,y) = (So, S1, S:). The quantity
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S:(z = 0, 1, 2) takes values in a set with
(M®)e- (MP)d £ M,

members. This set can, of course, be put in 1-1 correspondence with
I;. Thus, forz =0, 1, 2,

1 d 6 146
+log Mi = Z1og M + Zlog M = % log Mp + % log M,

which is (73). Further, the new code has Ax < A;, and Ay £ A, so
that the lemma follows.

A.2 Proof of Theorem 1

Again let A;, A; = 0 be given and fixed, and write ®(4;, A2) = ®,
and a(Al, Az) . @.

We first establish part (i2) of the theorem. Let R € $(a), « € @'.
If R & ®, then there exists an R = (Ry, Ry, B,) € ®, such that
R;<Ri i=0, 1, 2, and at least one of these inequalities holds
strictly. Thus,

Cle,R) — C(q,R) = (Ry — Ro) + as(Ry — Ry)
+ as(Ry — Ry) < 0. (74)

The inequality follows from @i, @2 > 0. This contradicts R € $(a).
Thus R € ®, which establishes part (i7).

It remains to establish part (7). We must first obtain some pre-
liminary facts.

Lemma 16: Let (Ro, R1, R2) € ®. Then

(@ for a;20(=0,1,2), (Ro+ ao, R1+ a1, R:+ a;) €E ®,
(b) for 0=26=1, [(1 —6)Ro R+ 6Ro, R; + 6R,] € @,
() for 0=<01,6,=1,
[Ro + 6:R: + 6:Rs, (1 — 6)Ry, (1 — 62)R.] € ®.
Proof :

(a) follows immediately from the definition of ®.

(b) follows on noting that data sent through the common channel
can be transmitted instead through each private channel.

(c) follows on noting that any data transmitted through either
private channel can be transmitted instead over the common channel.
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Next, for Ry, R2 = 0 write r = (R, R;), and define the function
F(t) = F(Rl, Rz) = min{Ro: (Ro, R1, Rz) e (R}. (75)
The minimum exists because ® is closed. Clearly, (Ro, Ry, R:) € &
only if Ry = F(Rl, Rz)
Lemma 17: F(r) is convex.

Proof: Let ®, r® be arbitrary. Then [F(r®), r®], [F(r®), r®] € Q.
Since ® is convex, for0 £ 6 £ 1,

O[F(x®), r®] + (1 — O[F(r®), r®]
= [6F(x®) 4+ (1 — O)F (@), 0rV + (1 — Or®P] € Q.
Thus, by the definition of F(-),
Florf® + (1 — O)r@] S oF (r™) + (1 — O)F (@),

establishing the lemma.

Now it follows from the convexity of F(:) that, for arbitrary
r* = (R}, R3), RiR? = 0, there exists constants a; = a;(r*), 7 = 1, 2,
such that, for all r,

F() — F(r*) 2 ga.-(R: = R, (76)

This is a statement of the well-known fact that any convex curve lies
above a plane of support. Here the curve is the locus of points in
(Ro, Ry, R»)-space given by Ry = F(r) = F(R,, R,), and the plane is
the locus of points Ry = F(r*) + ¥ i-1:(R} — Ry). Note that the curve
and the plane coincide at r = r*.

Now let R* = (R;, R, R}) € ®. Then R; = F(R}, R3). Let R =
(Ro, Ry, R,) be any triple in ®. Then with r = (Ry, R,), (76) yields

F(r) + aiRy + azR2 2 Rj + aiR] + asR3.
Since, by definition of F(:), F(r) £ R, we have:
Ry + aiR} + aaR3 = {‘neilol1 (Ro + a1’y + azR»)
= min C(e, R) = T(a),
RER
where C(a, R) and T(e) are defined by (12) and (13), respectively.
Thus, we have shown that, if the triple R* € ®, then R* € $(e),

where « need not necessarily belong to Q.
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Now suppose that R* = (R}, R}, R} € ®, and R* € $(a) where,
say, a; < 0. From Lemma 16(a) (with a > 0), R = (R, R} + a, R})
€ @&, and

C(“: ﬁ) < C(as R*):

which implies R* € S(e), a contradiction. Thus, a; (and similarly
;) 2 0. Next, suppose R* € ®, and R* € 8(a) where, say, a1 > 1.
Then, from Lemma 16(c), R = (R; + R}, 0, R3) € ®, and

C(e, R) < C(a, R¥),

that R* € ® and R* € $(e), where a; + a; < 1. By Lemma 16(b),
R = (0, R} + Rj, RS + R}) € ®, and

C(e,R) < C(e, RY),

again a contradiction. Thus, ay, and similarly @, < 1. Finally, suppose

a contradiction. Thus, a; + a; = 1. We conclude that

RS U 8(a), (77)
acad

ay + a2 = 1. This is part (7). This completes the proof of Theorem 1.

where @ is the set of @ = (ay, @;) that satisfy 0 < oy, @2 < 1, and

A.3 Proof of Lemma 5

Let {Ac}? be given, and, fork = 1,2, -+, n, let qu (2|2, w), £ € &,
w & Wy be a test channel for which

Z Z d(x )ﬂ)q‘k(fl z, 'w)Pk(x: 'w) é Akt (78”')
wEW .2
and
I(X; X| W) £ Rxywi(As) + ¢ (78b)

where € > 0 is arbitrary. For w EW = YWy, 2E€ X, £ E &,
define the test channel

qi(&|z, w) = qu(d|z, w), forw EW, 1 £k = n.
Then
2 d(z, £)q(E|z, w)p*(z, w)

z,9w

n 1 1

= X X X -dz 8)qu@|z, wpiz,w) £ - 3 A
k=1 wews zy N nE=1
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Thus, corresponding to the distribution p*(z, w)-q}(£|z, w),
1
IX,X|\W) 2 Rxnv( = ; Ak)- (79)
However, by a straightforward calculation,

IX,X|W) = %éﬁll(X,Xka) < 1 i Rx w,(Ak) + €. (80)

N E=1

The inequality follows from (78b). Combining (79) and (80) and letting
e — 0, we have Lemma 5.
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When a suitable interfacial dopant, such as W, is introduced at the
interface between the dielectrics of a DDC cell, the write-erase character-
istics of the cell are greatly improved. The useful range of the dopant con-
centration is determined to lie between about 10* to 10' atoms/cm?. The
interfacial dopant allows the fabrication of a DDC cell with relatively
thick 810, layers (> 50 A). The result is a substantially permanent memory
cell that can still be subjected to electrical write-erase at reasonable gate-
voltage conditions.

I. INTRODUCTION

There has been an increasing interest in recent months in the dual
dielectric metal insulator semiconductor (MIS) cell as a nonvolatile
semiconductor memory element. A true nonvolatile semiconductor
memory could replace the omnipresent magnetic memory because
associated with it one also expects fast access capability as well as
interface compatibility with other semiconductor logic circuits. Key
features in such a semiconductor memory cell, then, are: true non-
volatility, high-speed access capability, and ease of write-erase opera-
tions. The development of the dual-dielectric charge-storage (DDC)
cells have followed two parallel paths, both enjoying a limited success
vielding commercial products. The first centers around the concept of
the floating gate,' an artificially created metallic charge-storage site
located at the dual dielectric interface. The second uses the naturally
occurring interfacial states existing at the dual-dielectric interface as
the charge storage sites, as in metal-nitride-oxide-semiconductor
(MNOS) memory transistors.? The advantages and disadvantages of
these two approaches to the realization of DDC cells is reviewed
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briefly. And then the concept of the interfacial dopants, the heart of
this paper, emerges as a particularly beneficial compromise between
these two concepts, resulting in an optimum DDC cell, with true non-
volatility, yet with undemanding write-erase conditions.

1.1 Floating-gate concept

The early DDC cells were built around a floating gate introduced as
the charge-storage site located between the two dissimilar dielectric
layers. The charge exchange between the floating gate and Si in this
structure was achieved via electron tunnelling through a thin SiO, layer
grown on the Si substrate. The advantage in the floating-gate concept
lies in that the potential well can be tailored to the write-erase needs.
In practice, a difficulty was encountered in achieving true nonvolatility
in these cells, at least in large-volume-memory situations, because any
single shorting path between the floating gate and either the Si sub-
strate or the external gate was sufficient to cause rapid loss of the entire
charge on the floating gate. It has been suggested® that this short-
coming may be overcome by replacing the continuous-metal floating
gate with mutually isolated small metal islands separated by dis-
tances shorter than the Debye length at the Si surface. Since then,
attempts have been made! to fabricate and characterize dual-dielectric
MIS cells with metal islands at the dielectric-layer interface. In general,
the nonvolatility has not been exceptionally good (the retention time
being on the order of several hours) presumably because the existence
of the metal islands have. degraded the quality of the dielectric layers,
leading to higher leakage. The metal islands are also expected to give
rise to a field-enhancement effect, causing more rapid stored-charge
decay.

A more successful approach® to achieve true nonvolatility has been
to insert a continuous floating gate between thick (approximately
1000 A) SiO, layers. However, due to its large oxide thickness, this
structure would require prohibitively large gate voltages to effect
write-erase if tunnelling were to be used. Thus, injection of electrons
from Si into the floating gate is accomplished by use of hot electrons
created by biasing a nearby pn junction into avalanche.® This approach,
although it gives rise to excellent nonvolatility, suffers from the lack of
a ready electrical means to eject electrons from the floating gate. The
erase operation is only possible either by thermal means or by ultra-
violet irradiation, thus severely limiting the versatility of these de-
vices. Although some arrangements which permit electrical erasing
have been proposed and tested,” they usually require increased com-
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plexity in the cell structure as well as high gate voltages, and therefore
do not appear practical at present.

1.2 MNOS cells

Another DDC cell structure uses the naturally occurring interface
states at the dividing planes of the two dissimilar dielectric layers.
The structure commonly referred to as the MNOS cell is the outgrowth
of SizNSi0.-Si MIS studies carried out initially by Szedon et al.®
Since then, there has been a considerable amount of work done in this
area in the past few years, culminating in experimental memories as
large as 2048 bits.? It has been well established that ease of write-erase
operations in these devices requires use of very thin (a little less than
30 A) Si0, layers on Si so that the charge exchange between the
interfacial storage sites and Si may proceed via direct tunnelling across
the Si0; layers.

Figure la, a schematic energy-band diagram of an MNOS structure
under bias, illustrates the direct tunnelling mechanism. Electrons from
the Si conduction band tunnel through the energy barrier associated
with the thin oxide layer to final states at the oxide-nitride interface.
Some of these electrons may further penetrate into the nitride layer by
hopping along the bulk traps. However, the majority of them are
expected to reside at or near the dual-dielectric interface. If the oxide
thickness is larger than about 30 A, an appreciable current flow is
possible only when the electrons originating from the Si conduction
band tunnel to the conduction band of the oxide and then proceed to
the dual-dielectric interface (as in the Fowler-Nordheim tunnelling in
Fig. 1b). In this case, however, most of the electrons reach the nitride
as hot electrons and only a small fraction of them are captured by the
interface states. Since the Fowler-Nordheim tunnelling probability is
significantly smaller than the direct tunnelling case at a given field,
a higher field must be applied to induce a comparable current density.
This would raise the field in the nitride and further impede electron
trapping in the nitride. It is clear from the above that the conventional
MNOS cells are expected to work well only with thin oxide layers. A
similar argument is expected to hold true in the case of hole tunnelling
in MNOS structures, although the discussion so far has been given in
terms of electron tunnelling for simplicity.

A major drawback in the MOS cells is, however, a direct consequence
of the thin SiO, layer. The nonvolatility is limited by charge leakage
through the thin SiO, layer by direct back-tunnelling. Although some
claims have been made that nonvolatility of 10 to 100 years is possible
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Fig. 1—Energy-band diagram of charging of the dual dielectric interfacial region.
(a) Direct tunnelling of electrons. (b) Fowler-Nordheim tunnelling of electrons.
with MNOS structures, it appears that this feat is only achievable by
use of thicker SiO, layers with the ensuing penalty in write-erase gate-
voltage pulse both in height and width. The MNOS structures operable
with a short write-erase time, say in 1-us range, appear to have a non-
volatility usually considerably less than 1 year.

Outer dielectric layers other than SizN4 have also been used in dual-
dielectric charge-storage cells. A notable example is the use of Al;Os.
In 1970, Nakanuma et al.,’ for example, showed that Al;O; is a suitable
outer layer. The nonvolatility of these cells is again critically dependent
on 8i0, layer thickness. Cells with 8iO, layers about 100 A in thickness
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were fabricated and showed good charge retention. However, their
write-erase gate voltages had to be 50 volts or more and of 1 ms or so
in duration. Also, the ejection of electrons from the interfacial states
during the erase operation appears to be rather sluggish, possibly
because the density of states is not high enough and/or the barrier
height appears to be too high. Some attempts to increase the interfacial
state density by, for example, varying the Al,O; deposition conditions
appear to result in a lack of reproducibility and/or loss of good non-
volatility.

1.3 Interfaclal dopants

It is apparent from the foregoing that while a true nonvolatility in a
dual-dielectric cell can only be expected with a structure utilizing rela-
tively thick (greater than 50 A) SiO, layers, this has led to write-erase
operations requiring high voltage and/or long pulses. These problems
have arisen from the fact that the naturally occurring interfacial
states are not really ideal for the various roles they have to play.
Attempts to increase their density, which allows shorter time for
write-erase, usually result in lossy outer dielectric layers. Although
no specific description is available in the literature, past attempts in
this regard appear to be comprised of variations in outer-layer-deposi-
tion conditions to achieve a certain degree of off-stoichiometric outer
layers, at least in the vicinity of the interface.

It is reasonable to expect that if a method for controlling interfacial
states without degrading the dielectric properties of the dual-dielectric
layers were available, one might overcome the aforementioned diffi-
culties. We wish to show in this paper that, indeed, such a means has
been found. Interfacial states induced by certain dopants deliberately
located at the interface do have beneficial effects such that considerable
improvement in write-erase operations have resulted in conjunction
with the use of relatively thick (greater than 50 A) SiO, layers, which
are essential for nonvolatility.

Interfacial dopant-induced states of a sufficient density will increase
the capture probability of the incoming electrons. This is schematically
illustrated in Fig. 2. Furthermore, the energy levels associated with
these dopant-induced states will depend on the choice of the dopant.
This would allow a suitable condition for the erase operation. The
energy levels should not be excessively deep, since this would require &
prohibitively high field for ejection of stored electrons. The energy
levels should not be too shallow, since the stored charge might easily
decay through thermal activation. The naturally occurring interfacial
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Fig. 2—Energy-band diagram of dopant-induced interfacial states. These states
efficiently capture electrons arriving at the dual-dielectric interface following Fowler-
Nordheim tunnelling through a relatively thick energy barrier.

states clearly do not possess a comparable versatility as charge-storage
sites.

We find that there exists a range of dopant concentration which
gives rise to optimum benefits. The upper limit of this range is dic-
tated by the considerations that island formation by the dopant, either
during its deposition or during the subsequent outer-layer deposition,
is not really desirable since the dielectric property of the dual-dielectric
layers is usually degraded. Furthermore, the initial deposition of the
outer layers is strongly influenced by the presence of nonuniformity and
may result in lossy layers. The upper limit also depends on the choice
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of an outer layer and a dopant. Thus, Al,O; with a nonoxidizing dopant
such as Ir appears to limit the dopant concentration below 1 X 10/
em?. On the other hand, Si;N, with W may tolerate up to 5 X 10%/cm?.
The lower limit is naturally dictated by the ease of write-erase opera-
tions and appears to lie at around 1 X 10%/cm?.

1.4 Selection of dopants

It is desirable that the dopants selected be physically confined at
the dual-dielectric-layer interface. This means that both during dopant
deposition and during subsequent outer-layer deposition, any migra-
tion of the dopant is undesirable. The preferred method for depositing
the dopant on the surface of the SiO, layer is thermal evaporation.
Since good-quality outer layers are, at present, only obtainable through
chemical vapor deposition (CVD) techniques at somewhat elevated
temperatures of about 900°C, it is important that the deposited dopant
does not diffuse into the SiO, layer and the outer layer at these tem-
peratures. It is equally important that the deposited dopant does not
evaporate away during the first phase of the outer layer growth. The
vapor pressures of W, Pt, Ir, Ta, and Nb at 900°C are all lower than
10~ torr." On the other hand, Al has a vapor pressure of 1.5 X 10~
torr;! thus, considerable amounts of Al could be lost. At any rate,
control of the final dopant concentration may be more difficult in the
case of Al

The vapor pressures of the dopant oxide may also be an important
quantity to consider especially when the outer layer is an oxide layer.
For example, tungsten oxide has a vaper pressure of approximately
2 X 10¢ torr.”? The diffusion constant. of Pt into SiO, at 900°C is
reported® to be 7.3 X 107! ¢m?/sec. Compare this with the diffusion
constant of Al into SiO, at 990°C of 8.2 X 10" ¢m?/sec' and that of
P into SiO. at 900°C of 9 X 10— cm?/sec.'s

It is evident from the above that indeed the suitable dopants avail-
able are quite limited in number from the thermodynamic properties
alone. The dopant-induced interfacial states should also possess suit-
able properties. This might narrow the choice down further. We discuss
this aspect in more detail when we examine the electrical behavior of
these cells, since it is in this aspect that the dopant-induced states
come into strong play.

Il. CELL FABRICATION

Our experimental vehicles have been capacitors and IGFETSs built
on an Si substrate about 5-ohm-em n- or p-type, oriented (111) or

INTERFACIAL DOPANT FOR DDC CELL 1729



(100). The usual mechanical-chemical polish was given before the
first thin SiO; layer growth was carried out in dilute O; in He at about
1100°C. Prior to this important thin-SiO.-growth step, the wafers were
oxidized in 100 percent O, to a thickness of about 1000 A. This initial
oxide was kept until the wafer was ready to receive the treatment for
the thin oxide layer when this thick oxide layer was stripped in a
buffered HF and thoroughly rinsed in deionized water. The thin-oxide-
growth time was kept at 10 minutes. The partial pressure of O, was
varied to give rise to the desired first SiO, layer thickness of 50 A to
150 A. The dielectric breakdown strengths of the thin-oxide layers
were usually 7 to 8 X 10® V/em defined as the dc field at which the
current density reaches 5 X 10~% A/cm?.

The dopant evaporation was performed with an E-gun. A quartz
oscillator monitor was located about 5 cm away from the source and
the samples were located at various distances away from the source
depending on the amount of dopant desired. A shutter was employed
to initiate the dopant flux as well as to shut it off. An exposure time of
2 minutes was generally used. The monitor had a capability of mea-
suring 5 X 10'®/cm? of deposited dopant to within 50-percent accuracy.
A dopant concentration of 5 X 10%/cm? could easily be obtained on
the sample surface when the sample was located at about 50 cm away
from the source.

The dopant-covered samples were then ready for the outer-dielectric-
layer deposition, which was either an Al;O; deposition using the well-
known techniques of AlCl;-CO;-H; CVD or an Si;N, deposition via
SiH+~NH; CVD. A ratio of SiHy to NH; of about 0.01 was used to
obtain SizN, layers of least conductance.'* We feel that freedom in
choosing CVD conditions for optimum results in outer layers, such as
low conductance and/or high-dielectric constant, need not be sur-
rendered in our case since the interfacial states configuration is more or
less independent of the chemical nature of the outer layer when the
interfacial dopants are employed. This is important because a true
nonvolatility requires not only relatively thick SiO, layers but also
good insulating outer layers. Outer-layer thickness in the 300-A to
700-A range were investigated in this study.

Some of the doped and undoped dual-dielectric layers were sub-
jected to Rutherford back-scattering experiments!? to ascertain dopant
location and its concentration. The dopant concentration was within
a factor of two of the estimated values from the indication on the
monitor. The dopant location is judged to be at the dielectric interface,
to the degree that this type of probe can be used to certify this.
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The dual-dielectric layers were finally contacted with Al by evapora-
tion from a devitrified carbon crucible through masks defining 15-mil-
diameter circular areas for test capacitors. In addition, we have fabri-
cated IGFETSs with the dual-dielectric gate insulator for examination,
more or less following a standard procedure. Again Al was used as the
gate electrode.

lll. MEMORY CHARACTERISTICS

IGFET threshold voltages are the most convenient parameter to
assess memory behavior of the dual-dielectric charge-storage cells.
Figure 3 shows write characteristics of a cell with interfacial dopant W

Al,03 5208 W 1.5x 10'5/cm?
Si0, 70A  N-CHANNEL

THRESHOLD VOLTAGE IN VOLTS

0 | 1 | | |

0.1 1.0 10 102 103 10?
WRITE—PULSE WIDTH IN us

Fig. 3—Shifts in threshold voltage in n-channel IGFETSs with dual-dielectric gate
insulation consisting of 70-A-thick 8i0; and 520-A-thick Al,O; after application of
positive-gate-voltage pulses. Solid lines apply to structures containing 1.5 X 10 /cm?
of W at dual-dielectric interface; dashed lines apply to structures with no interfacial
dopant. The initial threshold voltages were at 1 volt.
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of 1.5 X 10%/em? in concentration. The n-channel IGFET threshold
voltages attained after positive-gate-voltage pulses (with respect to
the Si substrate) were applied are plotted as a function of pulse width.
The threshold voltage was initially at about 1 V. After each pulsing,
the threshold voltage shifted to a larger positive value as one might
expect since the pulsing resulted in elec@ron injection from the Si sub-
strate into the storage states. The SiO,-layer thickness was about 70 A
and the Al;Os-outer-layer thickness was about 520 A. It is evident
that this structure allows shifts in threshold voltages of as much as
7 V with only a 35-V, 100-ns pulse. A similar shift can be obtained with
a 30-V pulse when the pulse width is increased to 100 us. For compari-
son, plots are shown obtained with cells located on the same wafer
identical to those discussed above, except that the W dopant was not
present. These curves are shown in Fig. 3 in dashed lines. With 35
volts, it is necessary to use a 10-ms pulse width to produce a similar
shift in threshold voltages.

Al,0; 5208 W 1.5x 10'%/cm2

Si0, 708  N-CHANNEL

THRESHOLD VOLTAGE IN VOLTS

4 | ] -35V | |
0.1 1 10 102 103 104
ERASE—PULSE WIDTH IN ps

Fig. 4—Shifts in threshold voltage, initially at 8 V, after application of negative-
gate-voltage pulses to the IGFETs described in Fig. 1.
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W 1.5x10'®
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Fig. 5—Shifts in threshold voltages, initially at — 8 V, after application of positive-
gate-voltage pulses to the IGFETSs described in Fig. 1.

Even more spectacular differences between memory cells with and
without the interfacial dopant are evident when one examines the erase
characteristics shown in Fig. 4. The initial threshold voltage was at 8
V prior to application of erase-voltage pulses. The usual sluggish erase
behavior of an Al,0;-Si0,-Si structure has clearly disappeared with
similar structures with W as the interfacial dopant. An important
additional feature of cells with interfacial dopant W is the fact that
Al,04-810,-Si structures allow positive charging as well, which is usually
not the case without the interfacial dopant. Figure 5 shows the erase
characteristics after positive charging to the extent of —8 V in thresh-
old voltage.

Dual-dielectric charge-storage cells with thicker insulator layers show
similar improvements when the interfacial dopants are used. Figure 6
shows the erase characteristics of cells with a 100-A-thick SiO, layer
and 570-A-thick Al,Og layer. Again curves pertaining to cells with and
without interfacial dopant W are shown for comparison. As expected,
the pulse voltages required to induce comparable threshold-voltage
shifts are increased from the values needed with thinner structures
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Al,05 5708 W 1.5x10'5/cm2
Si0 1008  P-CHANNEL

THRESHOLD VOLTAGE IN VOLTS

]
102 103 104
ERASE—PULSE WIDTH IN us

Fig. 6—>Shifts in threshold voltage, initially at 8 V, after application of negative-
gate-voltage &ulses to p-channel IGFETs with dual-dielectric gate insulation con-
sisting of 100-A-thick SiO, and 570-A-thick Al,Os. Solid lines apply to structures
containing 1.5 X 10'6/cm? of W at dual-dielectric interface; dashed lines apply to
structures with no interfacial dopant.

(Fig. 4). However, dramatic improvements in erase characteristics in
structures with the interfacial dopant are clearly evident. Here again,
the initial threshold voltage of 8 V was used prior to the erase opera-
tion. The write characteristic also shows similar improvements.

One does not expect a strong dependence of the erase characteristics
on the initial amount of charge in storage (although the self-induced
field is linearly super-imposed on the externally applied field) because
the induced field is very small compared to the externally applied field.
This is shown in Fig. 7 where the threshold voltages after application
of the erase pulse are plotted as a function of pulse height with the
initial threshold voltages as a parameter. A pulse width of 200 us was
used for this experiment. As can be seen, the erase curves quickly con-
verge with each other. For a —30-V pulse, the resulting threshold
voltages are identical for all practical purposes. This is a useful feature
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Fig. 7—Shifts in threshold voltages, initially at three different values, in IGFETSs
described in Fig. 4 after application of negative-gate—voltafe pulses of 200-s duration
and various pulse heights. Also shown are shifts in threshold voltages, initially at 8 V,
after application of pulses of 10 us, 1.0 s, and 0.1 gs in duration.

in that the various initial threshold voltages may represent cells that
have gone through various amounts of information storage time after
the simultaneous write operation. Figure 7 also shows erase curves
using shorter pulse widths for comparison.

The interfacial-dopant concentration is expected to have a lower
limit for which the beneficial aspect of the interfacial dopant is not so
evident. This lower limit is established to be about 1 X 10%/cm?, as
can be seen from Fig. 8. Here the amount of interfacial dopant W is
1.5 X 10%/cm? When compared to the mate cell with no interfacial
dopant, the erase curves show some effect, but it is not as pronounced
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Al,03 400A W 1.5x10'%/cm?

Si0, 126A  P-CHANNEL

——__6__“
*‘s\

THRESHOLD VOLTAGE IN VOLTS

-45
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Fig. 8—Shifts in threshold voltage, initially at 8 V, after application of negative-
%ate-voltage pulses in p-channel IGFETs with dual-dielectric gate insulation of
25- A-thick S10,, 400- A-thick Al;0;. Solid lines apply to structure with 1.5 X 1014/cm?
gf W at dual-dielectric interface; dashed lines apply to structures with no interfacial
opant.

as in earlier comparisons with interfacial-dopant concentration at a
larger value.

It is well known that MNOS cells do not function well when the
Si0; layer thickness is larger than 50 A. This is not the case when the
interfacial dopant is introduced. Figure 9 shows write-erase charac-
teristics of MNOS cells with a 500-A-thick Si;N, layer and a 100-A-
thick 8iO, layer. Not only does this cell function well with 1.5 X 10/
em? of W interfacial dopant but it also shows negative charging. It is
virtually impossible to charge MNOS cells negative with any SiO,
layer thickness when no interfacial dopants are present. The mate cell
with no interfacial dopant (see Fig. 9) shows some charging with posi-
tive charges. However, it is not possible to erase this cell before a
catastrophic breakdown sets in. In Fig. 9, an initial value of 8 V in
threshold voltage is again used for erase curves and 1 V for the write
curves. For cells with no interfacial dopant, the initial threshold
voltage was near zero.

1736 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1974



SigNg 480A W 1.5x10'®
Si0, 100A  P-CHANNEL

50

a5V
40
26
-
5]
>
z
w 4=
2 35
5
g
a 27
-
5]
b oy
w
& \
%Q;— pa—
-

-4 ] ]
0.1 10 102 108 10 108
PULSE WIDTH IN us

Fig. 9—Shifts in threshold voltages—initially at 1 V after application of positive-
gate-voltage pulses, and initially at 8 V after application of negative-gate-voltage
ulses—in IGFETs with dual-dielectric gate insulation consisting of 100-A-thick
giOz and 480-A-thick Si;N, and containing 1.5 X 10*/cm? of W at dual-dielectric
interface. Dashed lines show shifts in threshold voltages, initially at 0 V, after applica-
tion of negative-gate-voltage pulses in same IGFETs but with no interfacial dopant.

We have also examined dual-dielectric charge-storage cells with inter-
facial dopants other than W. Ta induces storage states with a behavior
indicative of two distinet energy levels for electron trapping. The
shallower level can be filled with electrons and emptied as well. How-
ever, the second deeper level can only be filled, or at least it was im-
possible to completely empty this level. This behavior was observed
for both SisNy and Al.SO; outer layers. We do not understand the
behavior of Ta-induced states well enough at present to warrant
further discussion at this time.

We have also examined Ir-induced interfacial states. Their behavior
is fairly close to that of W-induced states. Exact comparison, however,
requires a further study. It could be conjectured that the dopant-
induced states may show in their behavior marked correlation with the
relative oxygen affinity of the dopant employed. Ir and W more or less
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lack the ability to steal oxygen from SiO: or Al;O; in our thermody-
namic environment, while Ta is expected to be oxidized.

IV. SUMMARY AND CONCLUSION

It is shown in this paper that when suitable interfacial dopants such
as W are introduced in a well-defined concentration range, the write-
erase characteristics of dual-dielectric charge-storage cells are enor-
mously improved. The upper limit of the dopant is dictated by its
influence on the dielectric properties of the outer layer and is deter-
mined to lie at about 10'*/cm? for Al;0;. Cells with 5 X 10'%/ecm? inter-
facial dopants showed marked increase in charge leakage. The lower
limit is determined to lie at about 10/em? by comparison with cells
with no interfacial dopants.

The improvement in write-erase characteristics of these cells is of
such a magnitude as to allow using relatively thick SiO; layers (greater
than 50 A) in these cells, which is mandatory for long memory-reten-
tion time ( longer than 20 years at100°C). (Detailed studies of retention
time will be published separately.®) This study indicates that cells
with thinner outer layers (approximately 300 A of outer layer and
approximately 60 A of 8i0,) that would operate at gate-pulse voltages
in the 25-V, 1-us range, should be feasible.
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We present a simple, relatively efficient method to predict the nonvolatility
of dual-dielectric, charge-storage cells. Using this method, charge-retention
times of several hundred years can be predicted unambiguously from ez-
periments of several days’ duration made at elevated temperatures and with
externally applied, accelerating fields. The method s first presented in the
context of a simple, physically reasonable model of the bias and temperature
dependence of the characteristic relaxation time of the device, It is then
used to analyze a particular device structure. At 80°C, we predict that this
device can maintain a flatband-voltage shift in excess of 4 volts for approzi-
mately 500 years. Our analysis suggests that this method can be applied
to a variety of dual-dielectric, charge-storage cells to predict their non-
volatilities.

I. INTRODUCTION

The retention time'—® of charge in dual-dielectric, charge-storage
cells'®™2 (DDC’s) is of central importance in evaluating and comparing
these devices. An ideal device would hold its charge at a constant level
indefinitely. While, of course, such an ideal device is physically im-
possible, nonideal, charge-storage memory cells have been fabricated
that are expected to have minimum charge-retention times on the
order of tens of years. And, as such devices are improved, even longer
retention times can be expected. The question that naturally arises is
how to evaluate such devices in a few days to predict their charge-
retention times.

The primary purpose of this paper is to describe a method of bias-
temperature stressing in which the decay of the stored charge is greatly
enhanced and, as a result, from which one can predict the charge-
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retention time of the device under normal operating conditions (zero
bias and room, or somewhat higher, temperature). We stress at the
outset, moreover, that our primary concern is charge retentivity and
not device reliability. Bias-temperature-stress methods are often used
to good advantage in reliability studies to artificially reduce the
lifetime of the device. Here, we are using similar methods to arti-
ficially reduce the retention time of charge stored on the device.
For reliability studies, one makes use of models in which the device
lifetime is governed by temperature and applied bias. Owing to the
complexity of the aging, however, these models are often quite tenta-
tive. Here we use a well-defined model in which the rate of decay of the
stored charge is governed by temperature and bias. As in reliability
studies, experimental results are used to determine the parameters of
the model. While the bias dependence of the rate of decay of stored
charge has been noted previously,” the work we report on here is the
first in which bias and temperature stressing have been used simultane-
ously to predict charge retention under normal operating conditions.
We feel obligated, therefore, to elaborate our approach and findings in
some detail.

At the heart of our method of prediction are the observations (2)
that there exists an “envelope” function that sets an upper bound on
the total stored charge that can be present in the device at any given
time, independent of initial conditions, (i7) that this envelope function
is determined primarily by the characteristic relaxation of the device,
and (#%) that this relaxation is a strong function of temperature and
electric field. By focusing attention on the envelope function, which
properly indicates the long-time decay of the stored charge, we avoid
incorrect predictions of decay time based on extrapolations of the
initial portion of the charge-decay curve. (If the charge decay is
plotted versus log time, such predictions are overoptimistic; if it is
plotted versus time, such predictions are overpessimistic.) From mea-
sured values of the characteristic relaxation obtained at elevated tem-
peratures and under applied bias, relaxation times of interest at room
temperature and under zero bias can be predicted. Owing to the non-
linearities inherent in the charge decay, these zero-bias, room-tem-
perature relaxation times are functions of the initial stored charge;
the larger the initial stored charge, the smaller the relaxation time.
For example, for one version of our device! we find that, for an initial
charge corresponding to a flatband voltage of 10 V, a relaxation time
of 3-10¢ years is predicted ; for 7 V, we predict 6-10* years. Using our
results, predictions of relaxation times can also be made for devices
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operated under bias and at other than room temperature. For ex-
ample, at 80°C under zero bias we predict for 10 V a relaxation time
of 100 years and for 7 V 300 years. Linear extrapolations of the initial
portion (¢ < 7re1ax) Of the charge-decay curve would result in misleading
estimates of charge-retention times on the order of 10% years.

It is important at the outset to stress that we are concerned in this
paper with devices® with ‘“‘thick” oxide layers; that is, with oxide
layers between the semiconductor and the charge-storage sites suffi-
ciently thick that the rate of decay of charge via back-tunneling
through the oxide layer is small compared to the rate of decay of
charge through the insulator layer between the storage sites and the
gate. While one can accelerate the back-tunneling charge decay of thin-
oxide devices’ by applying an electric field, we believe that, unless one
has an exceptionally good means of characterizing the specific tunneling
processes of interest, such information is of little direct value in esti-
mating the decay in the absence of such field, i.e., under normal oper-
ating conditions. The applied voltage, of course, can accelerate or
decelerate decay through the oxide layer or the insulator layer, depend-
ing upon its polarity. If electrons are stored, a positive gate voltage
enhances the decay in thick-oxide devices because the decay is through
the insulator, whereas the same voltage reduces the decay in thin-oxide
devices” where the primary decay is back through the oxide. One
reason for studying thick-oxide devices is to determine the limits on
the retention time of charge-storage devices imposed by charge decay
through the insulator layer. Such limits are of considerable interest,
especially for devices whose back-tunneling decay is sufficiently low
that, based on this decay mechanism alone, one might exaggerate the
device’s charge-storage capabilities.

In this paper we first discuss in general terms the physical processes
that lead to the decay of the stored charge. A relatively thick oxide
layer is used so that the primary discharging current is through the
insulator layer. This current through the insulator is found to be char-
acterizable as a thermally activated flow of charge via defects with a
very low, but strongly field-dependent, mobility. We then discuss how
this strong temperature and electric-field dependence of the decay
current can be used to controllably accelerate the discharging of the
DDC. A simple, physically reasonable, empirical model is introduced
to explain the experimentally measured decay of the flatband-voltage
shift in time with temperature and externally applied bias as param-
eters. The mathematical expression for the decay current is sufficiently
simple that all quantities of interest, particularly device relaxation
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times, can be calculated analytically. From the high-temperature,
high-accelerating-field results, it is possible to predict low-temperature,
zero-bias behavior. We can thus unambiguously determine nonvola-
tility on the order of tens or hundreds of years on the basis of experi-
ments performed in several days or weeks.

Before proceeding, it must be emphasized that the method of bias-
temperature stressing that we develop here is not limited to devices
which behave according to our simple empirical model. Indeed, as we
point out in Appendix A, the central ideas at the heart of the method
are valid, within certain limits, to a variety of models: the method is,
within certain bounds, insensitive to the details of the actual decay
process. We discuss the physical processes that we believe are opera-
tive in our devices first, however, because this will permit the reader
to familiarize himself with the actual devices to which our method is
then applied. Although our results indicate the general features of a
particular, detailed decay model, we emphasize that we are not pri-
marily concerned with establishing the existence of such a model.

Il. PHYSICAL PROCESSES

The structure and fabrication of the memory devices studied here
have been described in detail elsewhere.”® For our purposes here, it
suffices to note that a typical device consists of the following layers
(see Fig. 1): a metallic contact (taken fixed at zero voltage), n- (or p-)
type silicon, 70 to 200 A of Si0, (referred to as the oxide layer, or
simply the oxide), a set of suitable dopant-induced storage states
(referred to as the storage states), 400 to 500 A of Al,0; or SisNy
(referred to as the insulating layer, or simply the insulator), and a
metallic contact (referred to as the gate). Inclusion of the specific
states, which are the interfacial dopant-induced states, makes it
possible to store either electrons or holes, whichever is desired, as well
as to provide very well-defined storage sites for the elementary charges.
The oxide and the insulator are sufficiently thick that tunneling from
one side of either to the other side can be neglected.

The device can be charged either negative or positive as follows.
Negative charge can be stored by driving the gate to a high positive
voltage (=2 50 V) for a short period of time (/2100 us). Some electrons
in the Si tunnel into the conduction band of the oxide, traverse the
oxide, and then are trapped in the storage states or pass completely
through the device to the gate electrode. Positive charge is stored by
driving the gate negative to force electrons out of the storage states,
through the oxide, and into the semiconductor.
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Fig. 1—Schematic of the structure of the MIOS memory device under five differ-
ent, applied-bias conditions. The location of the interfacial, dopant-induced, charge-
storage states is indicated. They are assumed to be charged negative.

Our experimental results indicate that these multilayered memory
devices discharge as follows. (Refer to Fig. 1 in which a device is shown
under five different biases. Note, in particular, Fig. 1a, in which the
semiconductor is inverted near the Si0..) The (negative) stored charge
produces large electric fields in both the oxide and the insulator. In the
first few hundred milliseconds, some fraction of the charge is lost
through thermionic emission or tunneling into the conduction bands of
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the oxide and/or the insulator. For most of the stored charge, however,
the trapping levels are sufficiently deep that these processes are very
improbable. Charge can tunnel into traps in the insulator, and through
such imperfections a discharging current can pass into the conduction
band of the insulator and flow to the gate. Some charge can also pass
completely through the insulator in the forbidden band by means of
these traps. In addition, in a similar manner, a discharging current can
be present in the oxide and flow to the Si.

The size of the discharging current is expected to be strongly field
dependent.~ In addition, we note that increasing the (positive) gate
voltage enhances the electric field in the insulator and decreases this
field in the oxide. The manyfold increase in the decay current which
occurs when a positive voltage is applied to the gate thus implies that
the primary discharging current is passing through the insulator. In-
versely, when a negative voltage is applied to the gate, a decrease in
the decay current is observed. In this case, the change in the applied
fields is such as to increase the current through the oxide and decrease
the current through the insulator. A detailed study of the reverse gate-
bias decay was not undertaken because of the long time intervals
required even at high temperatures. For the present, it is sufficient to
note that the total decay current increases with positive voltage and
decreases with negative voltage applied to the gate.

The physical details of the transport of the charge within the insu-
lator can be narrowed down as follows. The strong temperature en-
hancement of the decay of the charge indicates that thermal activation
rather than tunneling plays the dominant role in enabling charge to be
transferred toward the gate. The question of whether the charge passes
through the insulator to the gate entirely within the forbidden band,
or partially in the conduction band, is more difficult. The relatively
low thermal activation energies observed (=2 0.6 eV) suggest that the
rate limiting portion of the transport is not associated with the con-
duction band. If it were, much higher decay currents would be ex-
pected. We infer, therefore, that the current is controlled by the traps
in the bulk of the insulator.

For charge transport from one trap to the next, one might expect
the current to be proportional to exp [(E, + ¢8a/2)/kT], according
to Poole’s law." (Here E, is an ionization energy, & is the electric field
in the insulator, and @ is the intertrap spacing.) However, Poole’s
law, or its extension and modification by Frenkel'*'® and others'—*
include only the thermal excitation of carriers and do not include
velocity-versus-field effects connected with the transport from one site
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to the next.® Current density is proportional to gnv, where n is the
number of charges per unit volume and v is the carrier velocity. One
expects n to be thermally activated; however, in an insulator, » can
be a rapidly varying function of applied fields,?~2 whether electron
transport is in the conduction band or in a defect “band,” as seems to
be the case here. Thus, whereas for pure Frenkel-Poole behavior the
excitation of electrons is the rate-limiting, field- and temperature-
modulated process, for our devices both n and » are so modulated.

Our experimental results indicate that the discharging current is
proportional to the empirical expression

&o(T) exp (—Eo/kT) exp [+ 6/ 6.(T)], n

where &,(T) is a very slowly varying, decreasing function of the tem-
perature T. To the accuracy of the experiments, the activation energy
E, is independent of the applied field. The decrease of &,(T) with
temperature could be due to an increased overlap between polarized
electronic states because of increased lattice vibrations. The electric
field dependence can in general be expected to be more complicated
than that given in eq. (1). Fortunately, eq. (1) suffices for our purposes,
partially because the decay curves are relatively independent of the
detailed dependence of the discharging current on electric field. See
Appendix A for a discussion of more complicated field dependences.

One final point should be made regarding the decay current. As part
of the assumption that the rate-limiting process controlling the charge
decay is the trap-controlled current within the bulk of the insulator,
we have assumed that the number of carriers in transit is independent
of time. In other words, as a trap in close proximity to the storage
states loses its charge to a trap somewhat closer to the gate, the emptied
trap is quickly refilled with a charge from a storage state. Thus, the
average time for a charge to pass from a storage state to an empty trap
is much less than the average time for a charge to pass from one trap
to the next. This results from the high density of storage states, and
makes the effective number of carriers available for transit independent
of the magnitude of the stored charge and hence independent of time.
This is reasonable throughout most of the decay owing to the large
number of stored electrons. Near the end of the decay, however, when
the amount of stored charge is much less than its initial value, the rate-
limiting process may become the transfer of charge from the storage
states into the insulator. We ignore this effect, since, by the time it
becomes important, the fundamental relaxation time of the device will
be well determined.
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From the foregoing discussion, it is evident that we can artificially
enhance the decay greatly by increasing the temperature and the
electric field in the insulator. In so doing, however, we must be very
careful that we do not excessively enhance charge-transport mecha-
nisms that under normal operating conditions would play no sig-
nificant role. For example, by applying too large a potential at the
gate, the field in the oxide will be enhanced to such an extent that the
storage layer will be slowly charged by electrons tunneling from the Si
into the conduction band of the oxide. Excessive temperatures, on the
other hand, may enhance decay into the insulator’s conduction band,
exaggerating this mode of charge transport. These effects are often
easily detected experimentally, and they give rise to upper limits on
the increases in temperature and electric field possible to enhance
charge decay for measurement purposes.

Although the decay of charge from the storage states can be en-
hanced by increasing either the temperature or the insulator electric
field, the enhancement from either is insufficient to bring the decay
times into the range of days. However, this can be achieved by com-
bining higher temperature with higher fields. Of course, we again must
be careful to avoid introducing decay processes that under normal con-
ditions would be insignificant. (An example of this would be Schottky
emission.) Nonetheless, we find that we can obtain the entire charge
decay curve within a few days (at most) without introducing extrane-
ous decay mechanisms. From these curves, we can predict the normal
decay curve and hence the charge-retention time of the memory ele-
ment. In this way we avoid having to determine this retention time by
extrapolating the initial portion of the time dependence of the charge
decay. In the next section we see how the nonlinear dependence of the
rate of decay on the quantity of stored charge leads to characteristic,
charge-decay curves from which one can predict the nonvolatility of
DDC’s.

In those cases where certain alternative conduction mechanisms are
activated, this method may or may not work. In some devices, the
charge decay is via Fowler-Nordheim tunneling from the storage states
into the conduction band of the oxide or the insulator, or it is via direct
tunneling from these states into the semiconductor. Neither of these
decay currents will be affected by changes in the temperature; how-
ever, both such currents will be strongly modulated by applied bias.
In the case of Fowler-Nordheim tunneling, our method is directly
applicable. For direct tunneling, however, in which the primary decay
is via Si-Si0. interfacial states, we must be very careful as we increase
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the bias not to enhance the tunneling into semiconductor states in the
valence or conduction band, which under normal conditions would
play no important role in the discharging of the DDC. Perhaps one can
modulate the decay by altering the thickness through which the elec-
trons tunnel, either by physically squeezing the sample or by con-
structing samples of varying thicknesses.

lIl. EMPIRICAL MODEL AND MEASUREMENT TECHNIQUE

Let us assume that we have some (negative) charge stored in the
interfacial, dopant-induced states. The quantity of charge stored in
these states is proportional to the measurable flatband voltage V,. Also
proportional to V, is the field in the insulator under zero-bias con-
ditions. In the presence of a finite bias voltage V;, an additional field
proportional to the bias voltage will be linearly superimposed on the
zero-bias field (with a different constant of proportionality). Thus,
using expression (1) and expressing fields in terms of voltages, we
write for the time rate of change of V;, the flatband voltage,

AV _ V(D) Vi + bV,
a (D ‘*"p[ V.(T) ]

(2)

where V, and 7 are experimentally determined functions of temperature
only and b is a relative constant of proportionality (see Appendix B).
Equation (2) presumes decay via the insulator; for decay through the
oxide, one would have the factor (V;, — V3) in place of the factor
(Vs + bV3). This empirically satisfactory expression is reasonable
physically, as explained in Section II. It also permits a simple, analytic
treatment of all significant features of the decay. Should the flatband
voltage decay according to a relation other than (2), one can still
employ bias-temperature stressing. This is indicated in Appendix A.

Before solving eq. (2), we should clarify two points. () We do not
require eq. (2) to be valid for ¢ < 1 minute. It may be valid there but,
being interested in the long-time decay of the charge, all we need to do
is to integrate eq. (2) from some time ¢, on the order of minutes after
charging, when the experiments are begun. (i7) Since dV /dt does not
vanish as (V, 4+ bV,) — 0, eq. (2) is clearly not valid as t — =. As
remarked in Section II, this difficulty results from assuming that there
are always a large number of stored charges, whereas in fact near the
end of the decay this number becomes small. Again, this difficulty need
not concern us, since we do not have to consider the leakage after the
bulk of the stored charge has decayed away. (See Appendix A for a
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more general treatment.) With these limitations in mind, we proceed
to solve eq. (2).

The solution to eq. (2) follows at once after a separation of variables
and an integration from (t1, V1) to (¢, V). The resulting V5 (t) for the
decay of the flatband voltage as a function of time ¢ at temperature T
and applied bias V5 is given by

V() = Vao(T) log. {(exp [—V2/V(T)] + [t — t2)/7(T)]
-exp [bVy/V.(T) )7} (3)

For a single value of T, this function is sketched in Fig. 2 as a function
of logio (t/t1) for several V; and for hypothetical, illustrative values of
V., =, and b. The purpose of plotting as a function of logie (¢/¢1) is to
call attention to the actual long-time behavior of V(). For & < ¢
&L 7(T) exp [— (V1 + bVy)/V.(T)], Vss(t) is relatively flat. However,
for t 3> 7(T) exp [— (V1 + bV3s)/V(T)], V1s(t) is given approximately
by V.(t) where, if {, is any convenient scale factor,

Va(t) = Vo(T) log, [7(T) /0] — bVe — V.(T) loge (t/41).  (4)

The function V,(f) is the previously mentioned envelope function for
each T and V.. It is shown dashed in Fig. 2. (Note log. z = logio z/
logio e.) Although # may be assigned the same value as t, the two

20 <N <

"\‘7 \\ FIXED T
N\ NN\ b=1

>
Ve
7

)

FLATBAND VOLTAGE Vg, IN VOLTS
©
]

S
|

0 |
10 102 108 t2 104

TIME t IN MINUTES

Fig. 2—Schematic illustrating a possible decay of the flatband voltage Vu(t) as a
function of logio (¢/t1) in a hypothetical device for four different applied biases Vs
at a fixed temperature 7. For simplicity, we set b = 1. Also shown are the envelope
functions V.(tg) associated with each V.
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must be distinguished. Our ¢, refers to an initial condition, while V .(¢)
is independent of the initial conditions, ¢, and V1, and satisfies V5 (¢)
< V.(t) (see Appendix C) and

Vi) & V.(b), t>rexp[—(Vi+bVy)/V,] (5)

When V.(t) is plotted versus logio (¢/t1), V, is the slope and = is the
intercept [V.(r) = 0] for zero bias (V, = 0). From the experimental
V(t) curves obtained for several V, at a given 7, it is possible to
readily determine (T, V,(T), and b, the three parameters in eq. (4).
From the envelope function V,(¢) drawn tangent to V,(t) as shown in
Fig. 2, we obtain V,.(T) from the slope of V.(t), b from the difference
between V.(f) (for fixed ¢) at different V3, and 7(T) from the value ¢,
of ¢ where V,(t) = 0:

log. [ (1)/i] = log. ( ) + 37 (a5 (®)

¢ ‘N V.(T)

In Fig. 2, t, for V, = 8 V is shown (f; = 5-10*3 minutes). It is a test
of the form of eq. (2) that V.(T), b, and 7(T) be independent of V,
to within experimental accuracy. That this is indeed the case is dis-
cussed in Section IV. We now repeat the above for other temperatures
in the range 150°C < T' < 300°C. We find that both =(T') and V,(T)
appear to be “thermally activated” :

7(T) = roexp (Bo/kT), Vi (T) = V.o exp (E./kT). (7

Since the slope V, may arise from a combination of physical processes,
identifying it with a thermally activated process may be somewhat
misleading. (The parameter b is a weakly decreasing function of 7.
Since we are interested only in predicting zero bias (V, = 0) behavior,
we need not concern ourselves further with extrapolating b to room
temperature. In other words, we can for each temperature use the b
measured at that temperature to extrapolate to zero bias. Once we
know the zero-bias result, we can extrapolate to the desired tempera-
ture. Since b enters only as bV, and V), is zero, this latter extrapolation
can be performed without knowledge of b.) The quantities 7,, Ea, V4.,
and E, are obtained from the usual (1/T) plots. We assume, and
indeed from our discussion in Section IT it is not unrealistic to expect,
that we may extrapolate r and V, to room temperature using (7). We
must now relate these quantities to the characteristic relaxation time
Trelax, the charge retention time, of the storage device.

In Fig. 3 we define 7reax(7,) graphically, again for hypothetical
device parameters. It is simply the “roll-off”” time of V;5(): Vo(7relax)
= V,, where V1 = V(). [As shown in Appendix C, V= V3 (0)
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Fig. 3—Schematic illustrating a possible decay of the flatband voltage V() in a
hypothetical device for room temperature (7' = T') and zero applied bias (Vy = 0)
for two different quantities of stored charge, V1 and V. The size of the characteristic
relaxation time 7remx is indicated for both cases. Note that V), — V§ =V, — V¢
=0.69 V..

for t1 < Trelax. ] Solving (4) for 7re1ax at room temperature T, for Vi = 0,
we obtain

Trelax = T(Ta) exp [— Vl/Vn(To):]- (8)

Indicative of the nonlinearities inherent in the charge-decay process,
Trolax 18 & function of the initial stored charge, and hence the initial
flatband voltage V,, increasing as V; decreases. (Compare 7relax and
Tranx corresponding to different amounts of initial stored charge V:
and V7, respectively, in Fig. 3.) Again we emphasize that 7re1ax cannot
be obtained from (linearly) extrapolating V (f) based on its behavior
for ¢ << Trelax. SINCE Trelax 18 oN the order of 10* years at room tempera-
ture for devices reported on here, it is doubtful whether room-tem-
perature, zero-bias experiments alone will be able to predict 7relax.

Although 7re1ex provides a measure of the charge retention time of
the device, we must, in addition, know how far ¥V, has decayed below
V1 by the time 714 before full significance can be attached to this
definition of characteristic decay time. Returning to eq. (3) and letting
ty =0, Vy = V3 V, = 0, we obtain for V() under zero bias

V,b(t)=V,1og,[e+V:/V-(1+ ‘ )_’]- 9)

Trelax

1752 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1974



In arriving at eq. (9), we have used eq. (8). Thus,

V/b(Trclnx) = V‘l’ - V, log,, 2
= V3 — 0.69V,. (10)

We thus obtain the very important result that, at the roll-off time
Trelax, V 5 has dropped 0.69V, volts below its initial value. This amount
is independent of V7§, the initial flatband voltage. Of course, V5 (7ro1ax)
must be several volts positive so that eq. (2) will still be valid. In addi-
tion, 0.69V, thus defines the decay that must be taken into account
when including this device in circuits. In determining V, from the
envelope of a decay curve, one must be careful to convert from logyo
to log,:

_ Velts) — Vo(to)

V.= Togso (a/ts) X 0.434,

where 0.434 = logy e.

Another characteristic decay time is the time at which the flatband
voltage drops below a certain margin voltage V,,. We refer to this time
as the margin time, 7margin, or simply 7,.. It follows at once from eq. (9)
that 7, as a function of V,, and V, is given by

Tm = 7(T){exp [=Vn/V.(T)] — exp [-V/V(T)]}  (11)

as a function of T under zero bias conditions. A plot of 7margin i8 pre-
sented in the next section.

IV. EXPERIMENTAL RESULTS

Bias-temperature-enhanced, charge-relaxation experiments were
carried out on the recently devised dual-dielectrie, charge-storage
cells.® Aluminum oxide (Al:O3 ¢ = 9) was used as the insulator. The
thickness d, of the SiO, (e = 4) was 125 A, and that of the Al,O;, d;,
550 A. Thus, b = C,/C; [see eq. (25)] is predicted to be given by
C, _ ESiO,A d;

b= C: do  €ao0,4

= 2.0.

Experimental values for b ranging from 0.8 to 1.2 were obtained over
the temperature range of 150°C <7 =< 300°C. The reason for this
discrepancy is not known. Some possible explanations are discussed in
Appendix D. The area of the devices was about 1-10° um?, and the
doping of the n-type silicon was about 6-10" per em?. Tungsten of a
density of about 2 to 3-10" per em? was used to produce the interfacial
storage sites.
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Table |

Sample® | (o) | 1/7-10° cwobe) | coalte) | (minstes) | P (mhntes)
His-4 | 150 | 2.36 15 | 244 | 26.100 | 12 | 375100
HSl o0 | 211 | {19 | 195 | 770 | 12| 4800
His4 o0 [ 190 | {0 | 176 | d7am) | 108 | 1700
HISL | g00 | 174 | {,0 | 133 | 3300 | 08 | 6210

* H15 is the wafer label and 1 or 4 is the chip label.
T Estimated value.

Table I presents a summary of the experimental results which we
have analyzed most carefully. Four representative charge decay curves
are plotted in Fig. 4. The envelope function V.(f) associated with
each curve is shown as well. From the V,(t) we obtain the data given
in Table I. One might do better by attempting to fit the actual experi-
mental curves with eq. (3), but we have found V.(f) adequate for our
purposes.

In studying Fig. 4 one may wonder why the slope of the decay curves
seem to diminish at higher temperatures. In fact, as is clear from egs.

FLATBAND VOLTAGE Vg, IN VOLTS

0 |
1 10 102 103 104 105
TIME t IN MINUTES

Fig. 4—FExperimental results under four different conditions: T = 150°C,
Vo = 156 V; 250°C, 7 V; 250°C, 10 V; 300°C, 10 V. In each case, the element was
charged by setting V» = 50 V for 100 gs.
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(2) and (7), |dVs/dt| increases as T increases, as one would expect.
One must remember that we are plotting V,,(t) versus logio (t/t1).
Thus, the enhanced decay has shifted V;(t) to lower ¢, reducing the
apparent decay of V;, when plotted on a logy, ¢ scale. The authors
must admit to having expended some effort themselves getting used to
plotting V, versus log ¢ rather than log V5 versus ¢, as is common in
many decay problems.

By plotting the values of r and V, given in Table I as funections of
1/T, the activation energies E, = 0.61 eV for r and E, = 0.065 eV for
V. can be determined [see Fig. 5 and eq. (7)]. From Fig. 5 we can
also calculate 7, and V,, [eq. (7)]: 7, = 2.0 minutes and V,, = 0.41 V.
Using the E,, 7, E,, V., so determined, we use eq. (7) to extrapolate
7(T.) and V,(T,), where T, is room temperature (290°K, 17°C). We
find 7(T,) = 7.7 X 10° minutes and V,(T,) = 5.5 V. With these
values, we can predict the room-temperature, zero-bias relaxation
times using eq. (8).

The activation energy K. of 0.61 eV is comparable to activation
energies ranging from 0.4 to 1.2 eV reported for Frenkel-Poole con-
duction through oxide layers.2¢-2* We conclude, therefore, that B, may
be interpreted as being associated with an activation process. Although
E, is relatively small, being on the order of several kT’s, its existence
does result in an appreciable variation of V, with T' (as observed experi-
mentally). We do not have a simple independent quantitative explana-
tion of its magnitude and caution the reader against interpreting E, as
being associated with a simple, thermally activated process.

As discussed in Section III, the charge-retention time of our dual-
dielectric, charge-storage cell is well-characterized by the device
“roll-off,” or relaxation time, as defined in Fig. 3. Owing to the non-
linear dependence inherent in the charge decay, Tre1ax depends upon
the “initially” stored charge, which we denote in terms of flathband
voltages by Vi = Vg (4). In Fig. 6 we plot rrelax as a function of Vi
for several temperatures of interest. For room temperature and a V,
of 10 V, 7re1ax is 3-10% years; for 7 V, 6-10¢ years. That 7,e1ac is a func-
tion of stored charge should be carefully noted. Lastly, we note that,
for room temperature at 7reax, Vs has dropped (0.69)(5.5) = 3.8V
below V1. At 80°C the drop is only 2.4 V owing to the reduced value,
of V, (=3.4V at 80°C). However, NOW Tre1ax for 10 V is only 100 years,
and for 7 V, 300 years.

In Fig. 7 we plot 7margin as a function of V, for zero bias and for the
same temperature used in Fig. 6. As is obvious physically, the larger
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]
3

7

/

Vs IN VOLTS

107

T7(T) IN MINUTES

106

108 ] | | ] | 1
17 18 19 20 21 2.2 2.3 2.4

RECIPROCAL TEMPERATURE (1/T-103)

Fig. 5—Experimentally determined parameters = and V, plotted versus 1/T to
determine the activation energies E, and E..

the initial stored charge (initial flatband voltage Vi), the longer the
time required for the flatband voltage to drop to the margin voltage
V., here taken to be 4 V. The horizontal lines give the upper limit or
largest possible 7margin fOr the given temperature. For V1 between 4 and
5 V, 7m goes rapidly to zero, as is clear from Fig. 3. For V; less than
4 V, ., is obviously meaningless.
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103

107 1 1 | | |
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INITIAL FLATBAND VOLTAGE V4 IN VOLTS

Fig. 6—The predicted roll-off or device relaxation time for zero-applied bias
(V, = 0) and temperatures of —40°C, 17°C, 80°C, and 100°C plotted as a function
of “initial’”’ flatband voltage V, = V (1), where ¢&; = 1 minute.

V. CONCLUSION

In this paper we have discussed a method of predicting the retention
time of charge in dual-dielectric, charge-storage cells. The method is
based on the realization that an envelope function V,(f) exists, that
this function is determined primarily by the characteristic relaxation
of the device, and that this relaxation is a strong function of tempera-
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Fig. 7—The é)redicted margin time for zero-applied bias (V3 = 0) and tempera-
tures of —40°C, 17°C, 80°C, and 100°C plotted as a function of “initial” flatband
voltage Vi = V (t), where ¢{; = 1 minute. The horizontal line above each curve is
the upper limit for 7margia 88 V1 is taken larger and larger.

ture and applied bias. By choosing an appropriate function to represent
the dependence of the discharging current on the applied bias and
stored charge, it is possible to discuss all the interesting features of the
time-dependent charge decay in terms of simple mathematical expres-
sions. We were thereby able to predict, on the basis of experimental
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data obtained under bias-temperature stressing of representative
devices, the time dependence of the shift in the flatband voltage at
zero bias and operational temperatures (room temperature to 80°C).
In particular, we can characterize the nonvolatility of the DDC’s in
terms of a roll-off or relaxation time 7, and a margin time 7., both
dependent on the level of initial charging. Although these times are on
the order of 10* years, they were determined from experimental data
taken over a period of only a few weeks. This was possible because our
method of bias-temperature stressing greatly enhances the dominant
discharging processes, speeding up the charge decay without intro-
ducing significant decay from otherwise insignificant decay modes.
Because of this, we feel that our method will greatly facilitate the
realistic prediction of the nonvolatility of DDC’s.
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APPENDIX A

Equations (1) and (2) in the text are admittedly oversimplified,
despite the ease they render in interpreting the data. Nonetheless, the
characteristic decay V(¢) discussed in the text is approximately ob-
tained in a variety of cases, e.g., tunneling or Frenkel-Poole, even when
it is known that the rate of decay is proportional to more complicated
voltage dependences than exp (V/V,). It is the purpose of this appendix
to outline why this is so. For simplicity, we assume that conditions are
such that only one decay mode is important.

Usually we can write the decay of the stored charge, or, equivalently,
that of the flatband voltage V, in the following form,

av
G =~V 46V — 1)), (12)
where, in turn,
JV) = AerV ) V' =V + bVy, (13)

A being a dimensional constant and g(V’) a function of temperature
and applied bias as well as of various powers of ¥’ (and possibly of
log, V’). The point of writing f(V’) in the form given in (13) is to focus
primary attention on the exponential nature of the functional depen-
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dence of f(V’) on V. Thus, f(V’) can be approximated over a wider
range of V by a Taylor expansion of g(V’) in (13) than by a Taylor
expansion of f(V’) directly.

Suppose at #; & 7relax, V = V1. Then, assuming f(0) < f (V') for
V of interest, we can readily integrate (12) if we approximate g(V’)
by g(Vi) + ¥(V — Vi), where v may be chosen in various ways
(Vi= Vi-+ bVs). For example, we may desire upper and lower
bounds for V (), in which case we can use upper and lower bounds for
g(V"). In some cases, ¥ = ¢'(Vy) or v = [g(V1) — g(V3)1/ (V1 — V2)
give such bounds. In all cases, we obtain the characteristic decay of
which eq. (3) is one example.

A somewhat more appealing approach that avoids approximating
quantities in exponents is the following.?:® Again, assume f(0) < f(V")
to write the integral of (12) in the form

i Qv "’dVe—"“’"g )

—tm = [ 3 77 4
According to the intermediate-value theorem, this becomes
1
Iy — ty = / AVes g/ (V!
2 1 A g (VS) € g ( )
= [ — o), (15)
Ag(Vy)

where Vi < V3 < Vy. (Physically, we must have g'(V’') > 0.) Thus,
given V, and ¢,, for each V. of interest, ¢, follows from (15) to within
the uncertainty of choosing ¢’(V3). (This will normally be, at most, a
factor of 2 for Vo= 1/2V;.) The envelope function V,.(f) follows at
once from (15) by setting ¢, and exp [—g (V)] to zero.

t = e 72 /Ag" (V3). (16)

If we note that V.(t) = V.(t) + bV, differentiating (16) with respect
to V, at fixed ¢ and assuming that g’(V3) is only weakly dependent on
Vs, it follows at once that

av,

Under these conditions, the vertical separation between envelope
functions V.(f) corresponding to two different applied biases Vi and
V% (at the same temperature) will be b(V} — V3), even when these
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envelope functions are not straight lines, but are given in general
by (16).
Equation (15) may be rewritten in the characteristic form as

g(Va) — g(Vy) = —log. [1 + AesVg' (V) (t: — t1)],  (17)
where we may write
g(Va) = g(V) =g (V) (Vs = V). (18)

Equation (18) follows from the mean-value theorem (V, < V4 < V).
Thus, while it is clear that the exact solution will in general not be
precisely given by (17) and (18), such a solution will still show the
same general features as the above for physically reasonable ¢(V). It
should be noted that, since ¢’(V3) and g’(V) actually represent aver-
aged quantities, and since g(V)) is simply an initial condition, the
results given in (17) and (18) are rather insensitive to the detailed
dependence of g(V’) on V.
One final point should be noted. For V sufficiently small and V, = 0,

we may write

av . _ o

=IOV (19)
The solution to (19) is the common exponential decay {exp (—t/t,),
o = [f(0)]!'} now with voltage V an exponential rather than a
logarithmic function of time {. For ¢ >> 7wy, clearly V(¢) will be of
this form. But this is well beyond the region in time of the primary
decay of the charge, and it is this primary decay governed approxi-
mately by (17) to (18), which is of crucial importance for evaluating
charge storage devices.

APPENDIX B
B.1 Decay through the insulator

Section II indicated that the electric field & in the insulator drives the
charge-decay current [see eq. (1)7]. This electric field arises from the
stored charge and the applied bias. The purpose of this appendix is to
express & in terms of two measurable voltages, the flatband voltage,
which measures the stored charge, and the applied-bias voltage.

Let C, be the capacitance of the oxide in series with the semicon-
ductor, and let C; be the capacitance of the insulator. We assume C,
(as well as C;) is independent of voltage. (We thus ignore the bias
dependence of the semiconductor capacitance.) Simple capacitative
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division implies that, if V5 is applied to the gate and there is no stored

charge, then the voltage V» dropped across C; is given by
1/C; )

1/ Ci + 1/ Co

On the other hand, if a charge @ is stored and V; = 0, then the voltage

V. across C, is given by

Vo=V, (20)

Va=Q(C:i+ Co)™ (21)
See Fig. 1b. But Q is related to the flatband voltage V, by the relation
Q=CVp. (22)

See Fig. 1d. Thus,
|4 1/C, (23)

« = Vi, F1/0,

The total voltage drop Vr across C;, which produces &, will in general
be a superposition of the two; thus,

_ _ 1/C,
V'I' - Va = me (Vlb + be)r (24)
where
b= Co/Ci- (25)

In passing from eq. (1) to eq. (2) in the text, we have let V,(7") absorb
the prefactor (24). Thus, V,(T) depends both on the physical processes
of the decay and on the geometry of the device.

It is important to note that b can be greater than as well as less than
unity. In principle, b can be computed from knowledge of C, and C\.
It is more easily obtained from the measured decay curves, a more
reliable method. Its slight temperature variation is somewhat of a
puzzle. If at higher temperatures additional capacitances C; and C,
arose in series with C; and C,, respectively, then b would become b’

given by
! S Co 1 + C‘/C; .
v = & (o) (26)

One expects the semiconductor portion of the device C, to be more
susceptible to degradation than the insulator side Cy. If C; = « and
C, < =, then b’ < b, as observed. For lower temperatures, b is close
to its value predicted by (25). Fortunately, b is determined within
experimental error at a given temperature to be independent of Vs.
Thus, at each temperature we can predict zero-bias behavior. We can
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then predict room temperature, zero-bias behavior from higher tem-
perature, and zero-bias behavior without knowledge of b. This is be-
cause only the factor bV, enters eq. (2), and V, = 0 for zero bias.

B.2 Decay through the oxide

If the primary discharging current is through the oxide (rather than
through the insulator, as assumed throughout this paper), then the
electric field that produces this current must be calculated from the
voltage across the oxide. Using the notation introduced above, we
note that the portion ¥, of the bias voltage V; dropped across the
oxide is

1/C,
1/C: +1/C,

On the other hand, it is clear from Fig. 1b that the contribution V, of
the voltage resulting from the stored charge is just ¥, given by (23).
Thus, the total voltage drop Vz across C, is given by

1/C,
i7c +17¢, 7 = 7 e

Thus, unlike the case of Vr (24), no geometrical factor analogous to
b enters.

Veo="V, 27

Vi=VimVi=

APPENDIX C

In this appendix, we derive two minor results used in the text.

(#) To show that V() < V.(f), we need only compare the argument
of the log, in eq. (3) with ¢; = 0 and V, = V3 with that of eq. (4) when
written

V.() = V. log. [( 0+ ffem”’-)_l]- (29)

From (3), we have

Va(®) = V. log. | (77 + Lavar)™] (30)

As the argument of the log, in (30) is less than that in (29), it follows
at once that
V() < V(D). (31)

[Additional decay mechanisms important for very short times (<1
minute), which are not included in (30), will, of course, reduce Vy;
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even further.] It may be noted that ¥, and ¢, may be chosen so that
Vsu(t) given in (3) exceeds V() and V; approaches V. from above.
Such unphysical behavior would result if one mistakenly chose a value
of ¢, too large; that is, if, after completing the charging of the device
(t = 0), one recorded V', at ¢, using a clock that read a time sufficiently
larger than 0 at ¢ = 0.

(#) To show that V2 V§{ when t; K Trelax, We calculate Vi from
eq. (3), in which we set Vy = V§, t; = 0, and V; = 0. Then it follows
that

-1
V= V,log. [e"i’/"- (1 -+ = b ) ] (32)
relax
If now {; < Trelx (the usual case), then
Vi V=7, (33)
Trelax

Since V, < V¢ and t; &~ 10~27,e1ax at most (for room temperature and
zero bias 107 is typical), we may use Vi = V{ to a very good degree
of approximation. The actual, initial, flatband voltage may be larger
than V¢, owing to other decay mechanisms which may be important
for ¢ < 1 minute. It is V1 [or V{ obtained from V' using eq. (3)], how-
ever, with which we are concerned.

APPENDIX D
The “b-Factor”

The disagreement between the predicted b-factor (25) of 2.0 and
the much smaller measured b-factor (Table I) of 0.8 to 1.2, which we
shall call b, calls into question our assumption that the electric field
in the insulator is spatially constant. This follows because, if the field
is spatially constant (and if the current per carrier depends only on
the electric field, as is physically reasonable), then the measured and
predicted b-factors, b’ and b, would agree. Since, in fact, they do not
agree, we conclude that the field is not spatially constant, a result,
perhaps, of charge stored in the insulator. It is the purpose of this
appendix to investigate some consequences of charge stored in the
insulator (in addition to charge stored at the oxide-insulator interface)
on the decay of the flatband voltage Vs.

Let us begin by asking what information our flatband-voltage mea-
surements tell us in light of the possibility of having charge storage in
the insulator. Referring to our empirical result (2), we note that, at a
fixed temperature, the rate of decay of V(t) is a function of
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[Vs(t) + b'Vs]. Thus, whatever electric field governs the decay of
V(8), it too must depend on V, and V, in the form [V, (f) + b'V,].

The next step is to express the various fields and voltages of interest
in terms of the stored charge. Let Q,(f) be the charge stored at the
oxide-insulator interface at time ¢, p:(z, t) the density of charge stored
in the insulator, ¢; the dielectric constant of the insulator, and ¢, that
of the oxide. It follows (see Fig. 1d) that the flatband voltage is
given by

V() = QT“) + ﬁ d"@ (d: — z)dz (34)
= V,(@t) + Val(d) (35)
= L""p_r(_:’_t) (d.’ - z)d:c (36)
=Vr(t), (37)
where
pr = pi + (Q./A4)d(x). (38)

Here A is the cross-sectional area of the device, d; is the thickness of
the insulator, 8(z) is the usual delta function, V, is the contribution of
Q. to Vyp, and V. (the m referring to moment of charge) is the con-
tribution of the charge stored in the insulator to V;. (Throughout our
discussion, we are assuming that no charge is stored in the oxide.) A
straightforward but more involved calculation leads to the electric
field in the insulator, 0 < z < d;, under general charging and applied-
bias conditions:

Bz, ) = (1+b)-[Q(‘)/‘l +b—+/ azr 042, 0 ‘)(1+b—)

[ -2)] o

. _ Vs o, pp(x, 1) "
- (14 b) l[bz_ +ﬁ de P2 (1+bd—i)

-[ar e (1= 7)) o

If we integrate (39) or (40) over the insulator, we obtain the average
field times d;, the voltage drop across the insulator V,(t) given by

Va)) = (1 + 0)7'[V.(t) + Vault) + V4]
= 1+ b)7[Vn(t) + bVs]. (41)
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Using these results, we can discuss what physical effects can and cannot
lead to the observed behavior (b’ < b).

Owing to the presence of charge in the insulator, the electric field
at the oxide-insulator interface will be reduced from its value in the
absence of such charge. If E(0*,t) controls the decay, perhaps this
reduction can lead to a reduced b-factor. Unfortunately, this effect
would result in (b’ > b) rather than (b’ < b). To see this, we note
from (39) that

E@O* ) = (14 )47 [V, () + bV = bVa())]

= l;{b;)d [ 2 Vi) — b'Va(t) + b’Vb]- (42)

If this expression is to be a function of [V (t) + b'Vs], it is necessary
that

Vis(t) = ('/b)Va(t) — b'Vm(D). (43)
To satisfy both (35) and (43), it is necessary to have
Val) = L= Va0 (44)
and
V) = ToT Ve (45)

However, if b’ < b, then 1/b < 1/b’, and the coefficient of V;(¢) in
(44) is negative. This is rather disturbing since, as a result of the initial
charging and subsequent decay of the charge through the insulator,
one would expect V. (f), as defined in (35), to be positive. In addition,
(44) implies that, as V,, decreases during charge decay, V. must
increase algebraically. This can occur only if charge stored at the
oxide-insulator interface becomes trapped in the insulator neutralizing
the charge trapped there. This effect would be enhanced if more charge
were neutralized near the interface (z = 0) than in the middle of the
insulator. Although this may be the source of (b’ < b), the origin seems
physically unreasonable of the bulk trapped charge of sign opposite
the stored charge which, although not neutralized by the charging
current, is neutralized by the decay current. We conclude that, if
(b’ < b), then the field at the interface probably does not control the
charge decay.

We note in passing that, since the voltage drop Va(t) across the
insulator (41) is already a function of [V,s(t) + bVs], it also cannot
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be the average field in the insulator which is controlling the decay.
This hardly requires further elaboration.

One effect that charge stored in the insulator has on the decay is to
enhance the electric field near gate (z = d;) relative to the field near
the interface (z = 0). This enhancement may be sufficient to remove
charge stored in the region z, < z < d; of the insulator during the
initial portion of the decay, leaving significant stored charge only in
the region 0 < z < z, of the insulator and at the interface. If, during
the remainder of the decay, the decay rate is governed by the electric
field at z,, we then expect to observe (b’ < b). Let us see how this
comes about.

If pi(z, t) = O for z > z,, then the electric field at z = =z, is, accord-
ing to (39), given by

b (Y
E(xa:t) (1+b)d { V(t)""bvb
i %[(b +1) % = bV,,.(t)]} . (6)
where
dg
Q0 = 4 [" araa', 1 (47)
-4 [0 * da'pi(@, 1), (47a)

the size of the stored charge in the insulator. Alternatively, using (40)
for the field, we obtain

_ b Q(t)
E(z,t) = T+ [ —b'Ve(t) + (1 +b) =~ 4+ bV ] , (48)
where Q(t) is the total stored charge defined by

Q) = Q.(t) + Q.(t). (49)

For E(z, t) to be a function of (Vs + b'V}), it is necessary that
[using (37)]

Vs m <bTpp 2 (1 + b)Q(‘) (50)
or that
_1+1h Q(t)
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Now (b’ < b) implies that C;Vr () < Q(f), which means in turn that
some charge is stored in the insulator, a consistent result.

Having seen how a measured b-factor (b’) can arise which is less than
the computed b-factor (b), we must inquire as to whether the effect is
sufficient to explain the measured results. For simplicity, let us assume
that p; is uniform for 0 < z < z,. Then it follows that

Ve = % + g— 1 — 2./2d). (52)

It then follows from (48), (51), and (52) that

Q/C: _ 1+ Q./Q. _ L+, 53)
Ve 1+ @Q/Q)(1A — x,/2d) 1+ 1/b

If we consider the case at hand where b = 2.0 and b’ is essentially 1,
then (53) implies that z, must be at least 0.50 X d;, that is, that the
stored charge in the insulator must extend at least 50 percent of the
distance from the interface to the gate. If Q./Q, is 1.0, then z, = d..
Thus, Q./Q, must be at least 1.0 for, if it were smaller, then z, > ds,
which is not possible. Therefore, if the charge stored in the insulator
is uniform between z = 0 and = = z,, then it is necessary to under-
stand the observed b’ that 0.50 < z,/d; < 1 and 1.0 < Q,/Q,, the
latter implying that more charge must be stored in the bulk at the
insulator than at the interface.

In the preceding paragraph, we have assumed that the stored charge
was uniformly distributed in the region 0 < z < z,. In fact, we expect
the charge to be more dense near the interface (z = 0) where the field
is lowest than near = = z,. To satisfy (51), this would require larger
values of Q,/Q, and of z, than for the uniform case. We have also
assumed that it is the electric field at z, that controls the decay. It is
possible that E(z,t) for z < z, in fact performs this function. This
would further increase the values of @.,/Q. and z, required to achieve
(b’ < b). One’s lattitude here is rather limited, however, for, as we
have seen, if it is E(0*, {) which controls the decay, then @./Q, becomes
negative. We offer the above, therefore, as possibilities only.

Another source of the (b’ < b) effect is that the charge may be
extraction-limited, that is, controlled by the field at z = d.. If we put
z, = d; in eqs. (46) and (47a), then we again obtain (51) relating the
total stored charge to its first moment. We noted above that we could
understand the measured b-factor for z, = d; and a uniform, stored,
insulator charge if Q,/Q. = 1.0, a reasonable but perhaps somewhat
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large value. However, if the current is extraction-limited, then we
expect that the charge would be more dense near x = d; than in the
bulk of the insulator. As a hypothetical example, suppose that the
stored, insulator charge is uniform for ; < z < d; and zero for 0 < z
< 21. Then from (37) we obtain

— Qa t 1 € .
vr=c+ea(i-3) e
It then follows from (49) and (51) that
Q/C: _ 14+ 0./Q. 141/ (55)

Ve 1+ Q/Q)Q —zi/d)/2 1+1/b

This relation provides a much greater possibility for obtaining (b’ < b)
than (53). For example, if Q, > Q,, then

b < (14 2/b) < b/2. (56)
0!‘, if 2 &2 d.‘, then
b = b[(1 + b)Q./Q. + 117, (57)

from which " = 1 would follow for b = 2.0 if Q,/Q, = 0.333, a very
reasonable value. For z, < d;, somewhat larger Q,/Q, would be re-
quired to satisfy (55). However, in most cases ,/Q, would be smaller
than that in the previous example (53), in which the stored charge
was assumed near the oxide-insulator interface. We conclude that,
while we have indicated the possibility of how (b’ < b) can come about,
further work is required to really pin down and calculate the measured
b-factor b’.
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Input Amplifiers for Optical PCM Receivers

By J. E. GOELL
(Manuscriﬁt received March 1, 1974)

This paper describes the noise performance of input amplifiers for
optical pulse-code-modulation repeaters. The noise is treated in terms of
an effective noise generator in parallel with the photocurrent induced in the
detector and the effective noise, in turn, is related to error performance. The
analysis applies to both conventional and integrating front ends. Both
field effect and bipolar transistor amplifiers are treated. For the latter, an
optimum bias current that minimizes the effect of thermal noise is derived.
Finally, predicted and measured performance are compared for silicon
field-effect transistor input amplifiers at 6.3 Mb/s and 50 Mb/s, and for
bipolar transistor and GaAs field-effect transistor input amplifiers at
274 Mb/s.

I. INTRODUCTION

The factors which limit the performance of an optical receiver are
optical quantum noise, leakage noise of the detector, thermal noise
introduced by the detector load resistor, and various forms of noise
introduced by the input amplifier. If an avalanche detector is used,
the leakage noise has two components—one which is gain independent
and the other which is gain dependent. In addition, the gain process
introduces a signal-dependent noise. In high-speed pulse-code-modu-
lation (PCM) receivers, input-amplifier noise plays an important
role in the determination of system performance. If leakage current
is negligible, it can be shown!? that without avalanche gain the
required signal power to achieve a given error probability varies as
the square root of the thermal noise power and with optimum avalanche
gain with the sixth root of the thermal noise power. Furthermore, the
optimal avalanche gain varies as the cube root of the thermal noise
power.*

* These results assume an excess noise coefficient of 0.5.
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In applications employing a detector with a capacitive impedance
such as nuclear particle counters® and television camera input ampli-
fiers, an approach has been employed in which the input circuit
integrates the signal and the signal is equalized after amplification.
Personick? has analyzed the performance of PCM repeaters with
integrating front ends and Goell has experimentally verified some of
his results at 6.3 Mb/s.5

The noise performance of an amplifier is often stated in terms of
noise figure. This approach is attractive when thermal noise can be
reduced by matching the source impedance to the optimum noise
impedance of the amplifier. For optical receivers and other systems
with a capacitive source the noise of the source is often a negligible
portion of the total thermal noise, and the noise contributed by trans-
former losses would more than negate the advantage gained by trans-
formation. For this case, noise figure, which is inversely proportional
to source noise power, is a poor figure of merit and it is better to treat
the noise directly.

The approach chosen here is to describe the noise of the amplifier
by an equivalent input noise current generator which produces the
same noise at the output as the internal sources of the amplifier. The
intermediate step of finding a short-circuit input noise current gener-
ator and open-circuit input noise voltage generator is dispensed with
here because it does not contribute to physical understanding when the
noise figure concept is not employed.

If the linear portion of the receiver is modeled by a cascade of an
amplifier, an equalizer to give a flat frequency response in the band of
interest, and a filter to set the noise bandwidth and control the pulse
response, then the equivalent current is a particularly convenient
way to express the noise. This approach is conceptually simple, the
effect of equalization is implicitly included, and filtering has the same
effect on the equivalent noise as on the signal.

The error performance of a PCM receiver can be related to the ratio
of the peak signal to rms noise ratio at the regenerator. It will be shown
that this ratio is equal to the ratio of the average received signal power
to an effective noise current which can be readily derived from the
equivalent input noise current.

In the previously mentioned work by Personick the amplifier noise
was modeled by the series voltage and shunt current noise generator.
Results were given only for field effect transistor (FET) input ampli-
fiers. In this paper the noise of both field effect and bipolar transistor
amplifiers is analyzed. The effect of spreading resistance and load
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Fig. 1—Typical input circuit of an optical repeater.

noise is included and the application of the method to cases in which
the noise of more than one stage is significant is described. The ap-
proach is used to compare the performance of silicon bipolar and field
effect transistors and GaAs field effect transistors as a function of bit
rate. Theoretical predictions are compared with measured results
for silicon FET input amplifiers at 6.3 Mb/s and 50 Mb/s® and for
bipolar transistor and GaAs FET input amplifiers at 274 Mb/s.

Il. CALCULATION OF EQUIVALENT NOISE

A model of the initial stages of a typical optical receiver is shown
in Fig. 1. The resistor R, is provided to return the detector bias current
to its source. Equalization is provided to compensate for the frequency
dependence of the amplifier gain, and filtering is provided to limit the
noise bandwidth and shape the signal. For the cases to be described
here, it is convenient to think in terms of an cqualizer to give a flat
frequency response followed by a filter which describes the frequency
dependence of the transfer characteristic of the receiver, although in
practice they can be combined. In some applications, such as where
matched filtering is to be employed, another approach might be used.

The detector circuit without avalanche gain can be modeled as
shown in Fig. 2. Here 7, is the induced photocurrent, C; the detector

el
'I l' T i _ Rr l

Fig. 2—Detector circuit.

\L
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Fig. 3—Equivalent noise circuit.

junction capacitance, R,s the diode spreading resistance and S.s the
noise current spectral density associated with it, C. the capacitance
of the interconnection circuit, S, the noise current spectral density of
the de return resistor, and S; the spectral density of the gain-inde-
pendent diode-leakage noise current.” With avalanche gain, 1, is the
photocurrent multiplied by the mean gain, §.

The performance of any linear amplifier can be described by the
equivalent circuit of Fig. 3. Here, the impedance Z; is the parallel
combination of the input impedance of the circuit and the output
impedance of the preceding circuit, and 4 () is the current amplifi-
cation of the stage. Seq is the frequency-dependent equivalent noise
current spectral density of the noise current generator which when
applied to the input gives the same output noise spectral density as the
internal noise generators.

An equivalent circuit which applies to both bipolar and field-effect
transistors is shown in Fig. 4. Spreading resistance has been ignored
for the present, but will be analyzed later as a separate stage.

The equivalent noise current spectral density is given by

Seq = Seql -+ Seqzs (1)

where Seq is the contribution to Seq of Sy, the emitter (source) noise
current spectral density, and Seq is the contribution to Seq of S, the
collector (drain) noise current spectral density. The calculation of
Seq1 and Seqe for common emitter (source), collector (drain), and base
(gate) stages is described in the appendix. A comparison of amplifier
configuration is also given.

At low frequencies, that is, when the transit time of carriers through
the device is short compared to the period of the signal, for a field-
effect transistor at pinch-off

8y = 4kT6(we,)?/gm + 2el, @)
* The effect of the gain-dependent leakage noise has been described by Personick.?
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Fig. 4—Equivalent circuit for both bipolar and field effect transistors.

and
Sy = 4kTTgm, (3)

where T is the temperature, g is the transconductance, I, is the gate
leakage current, ¢, is the gate capacitance, and k is Boltzmann’s
constant.” For junction field-effect transistors, I' = 2 and @ varies
from 75 to %% With currently available devices, drain noise has
been found to predominate with an untuned input circuit.

At very low frequencies account must also be taken at 1/f noise.
The 1/f noise region for junction field-effect transistors extends to a
few hundred kilohertz, while for metal-oxide semiconductor field
effect transistors it can extend to above 10 MHz. For GaAsFETs
intervalley scattering adds an additional component of noise. For this
case I' = 1.1.°

For bipolar transistors with short base transit time, the input and
output noise generator spectral densities are given by

Sl ] 2615, (4)
Sy = 2el,, (5)

where I, is the base current and I, is the collector current.” The above
applies for the case of short base transit time and the base current
much greater than the reverse base saturation current.

lll. EFFECTIVE NOISE IN PCM RECEIVERS

For PCM systems, performance is measured in terms of required
power to achieve a specified error probability and the error probability
is determined from the ratio of the peak signal to the rms noise at the
regenerator input. In this section the relationship between the peak-
signal-to-rms-noise ratio, the average received signal, and the equiv-
alent noise will be described.
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We shall assume that the detected photocurrent, an undistorted
version of the transmitted signal, is given by

S Tibelahy(t — kTh),
k=—0

where
/” ho(t — kTo)dt = 1,

b = 0, 1 depending on the signal statistics, T} is the bit interval, and
I,.T, is the detected charge if a single pulse were received. It is assumed
that the transmitted pulses are distinct.

The output signal is given by

3 bihmho(t — ET4),
k=—o0

where 4,(f) has been normalized to have unit peak amplitude and hn
is the peak output signal current. It will be assumed that intersymbol
interference is negligible, that is, that at the sampling instant, t,

ho(ts — kTy) = 0
k= 41, £2, ---.

An inconsequential time displacement has been ignored. Then the
transfer function is given by
Al o haH o(w)

ToloH p(w)’

where H,(w) and H,(w) are the Fourier transforms of hp(t) and ho(t),
respectively. The mean-square noise after amplification and filtering
is given by

(6)

1 -]
Qe 2
ni= 21‘_/; | A (w) |28 eq (w)dw.
Substituting the mean-square noise into eq. (6) gives the peak-signal-

to-rms-noise ratio

him I
N7 .
where
1 /w H,(w)|?
= 5o | —_H,,(w)l S eqde. ®)
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Thus the quantity \/E is an effective noise current which relates the
thermal noise to the average induced photocurrent.

For the case where most of the noise originates in the first amplifier
stage we will see that under conditions which apply in several cases
of interest the equivalent noise can be expanded in the Taylor series

Seq(w) = Zdj(w)gj.

7
It is then convenient to put the effective noise in the form

Ton = fo 2 a;(2mh)79;, (9)

J

e
g, = (21r)f+1/;

and f, = 1/Ts. The normalization ratio was chosen so that the g’s
depend only on the shape of the pulse relative to the bit interval, not
on the bit interval.

It can be shown??® that for binary PCM with an avalanche detector
the power required to achieve a specified error probability, P, is
given by

where
2

Ho@) 2 (10)

H,,(w)

_ @
2y

[ ok 23], (11)
where
n = detector quantum efficiency,

electronic charge,

®
Il

optical frequency,

Il

detector quantum efficiency,

mean detector gain,

in @ W ow
Il

mean-squared detector gain,

and
G = V2 erfc'(2P,).

The function erfc is the error function complement. For a gainless
detector when thermal noise predominates, the first term in the bracket
of eq. (11) can be neglected.
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A value of § exists' which minimizes p. The ratio of ¢?/g* can be
approximated* by g=. Then the value of § which minimizes p is given by

V2, \1/+D s
oo = (221 o

and the required power at optimum gain is given by

(z+2)/(z+1) 1/(z+1) ___x/(2z+2)
hognie (o Yo (4 1 ™. g

Popt = ne = ) Tent

IV. APPLICATIONS

In this section, the effective noise for both field effect and bipolar
transistors will be described. Emphasis will be placed on conditions
encountered in receivers operating in the 1-Mb/s to 1-Gb/s range.
It will be assumed that most of the noise originates in or before
the first amplifier stage. Corrections for the load, subsequent stage,
and spreading resistance noises will be included.

Both detectors and transistors have distributed junction capacitance
and series resistance followed by a case capacitance. However, at the
frequencies to be covered here the equivalent circuit can be approxi-
mated by capacitors across the detector source and transistor base
(gate) separated by the total spreading resistance of both devices.
The spreading resistance can be considered as a separate stage with a
transfer function 4 (w) given by

1

AW = TR,

and noise current spectral density
S, = 4kTw?CER,,
where C, is capacitance across the detector source.
The gain-independent leakage current I4 can be accounted for by a

noise spectral density
Seqd = 2eId

in parallel with the detector current generator. Noise of spectral
density S, is contributed by the return resistor, R,, which will be as-
sumed to be on the amplifier side of R,. This assumption is valid as
long as the contribution of R, to the noise is small.

* Silicon detectors with = between 0.3 and 0.5 are available today commercially.
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The total equivalent noise current spectral density ean be written as
Seql + Sr + Seqz

Seq=Sn+Seqd+

| A (w)]?
1
Fgm+_
4kT |0(wC,)? RL]
= 4kTw*CIR, + 2el { 0 e ]
el +2elat pean +g FRAE

where
1 Ca
7~ &+ (0 F )
Co = Co + Cu,

and R, is the amplifier load resistance. Thus,

1 4+ w?C3R? 0(wC

an%4kT[wzCiR, + * (1 + W2C2R?)

R,
rgm+RiL i
+——g’2n ((E—wCCdR)

+ wz(c, + c.,ﬁ') ” + 2, (14)

where
Cl = Cd + Cﬂl + ng-

In practice R, can be made extremely large so

R,
E <1
and, from eq. (9),
1
1, Tt g,
izn = 2elafs9, + 4k TS, o + —RR 9o

I'ga + R_
+ (2mf)* 49, + —g—-—LCZ

T'ga + R—
+ (27 —g——’* C2 + g,C3R%} 94 (15)

m

From this relation, it is clear that, from the standpoint of thermal
noise, R, should be as large as possible, even if signal integration takes
place.
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For junction field-effect transistors such as the 2N3823, the gate
noise is negligible. Assuming R, is large and the detector leakage
current is negligible gives the simple relation

2
= 8kab(32;rbel) 9a (16)

Thus, for this case which is typical for junction FETs operating at a
bit rate below 25 Mb/s, the quantity

Nz
C.

is a figure of merit for the required power without avalanche gain.
Under the above assumption, the effective noise current increases
with the § power of the bit rate.

We now turn our attention to the bipolar transistor. Unlike the FET,
for a bipolar transistor the optimum bias is dependent on frequency.
For a bipolar transistor,

Seql = 26[[,,
2el C + M
R A
where Z,, the impedance across the base, is given by
11, Ci
7= %0+ FcE.)
and
kT
Ry, = 5

Assuming that the de current gain equals the ac current gain, the
equivalent noise current spectral density is

Seql + chz
[A(w)[?

%I, (1 + %) + ;;ll‘i + 2ely + o [4kTC?,R, + 2el,C2R:

9%ly  4KT\ | (kT : + 202, ]
+(—3 +32RL){0( )-I—C’R + 2R, }
%l L (KT \?
+o (% + g, )C’”(m)‘

1780 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1974

Seq=Sa+Sd+

I




Then
_ 9l
&= 2f,,eH(1 + é)lb + e;‘;—g + 1.,} g, + (21rf,.)2{

+ 03R§Ib+(§’ Gl )[c (kT) + C3R: + 2C3R, (kT)“sg
B3Ry 1y

B
(54 2 Y (T o]

At values of base bias which will shortly be shown to lead to minimum
effective noise at frequencies up to about 1 GHz,

R,
R,
(2mf)*CiCIR39 4 K CiR3 9o,

2kTC3R,

L3

and then

; 1 2kT
ﬁ;= 2fbe[[(1+5)h+-§%€:+“}ga

2kTC3R, I, , 2kT o [ kKT
2 =0 A == v
+ o | BIGR (B Y (5 )] e] am

The base capacitance is the sum of the diffusion, depletion, and
stray capacitances. The diffusion and depletion capacitances increase
with base bias and the stray capacitance is bias independent. We will
approximate C', by

Cl ~ Cﬂ + Cﬂlb-

The optimum bias current is then found by differentiating 7% ; how-
ever, a third-order equation results. Assuming most of the noise
originates from the first stage (Rz — =), the optimum bias current is

(18)

9

kT
[bo — waca (1 + B)go )

L4 (B+ 56

The second radical is close to unity under most practical conditions
(e.g., up to 1 Gb/s with 8 = 100, C3/, = 1 pF) and thus I, is set by
the zero bias capacitance. Substituting 7,, into 72y, again assuming all
of the noise originates in the transistor, gives

T = Teto {1+C"I”"(1+C"I"°>}, (19)

2C.
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where

. 8k Tf3Ca 1
23;;:% 9a92(1+3)' (20)
The term Csly, is the diffusion capacitance at optimum bias.

We can now go back and determine correction terms for the noise
contributed by the series and load resistance terms at Is,. The ratio of
the effective series noise current to 22y, is given by

C P

P
C. g—oﬁ (21)

Tons
= = 2nf,CaRs

Tefto
and the ratio of the effective load noise current to iz, by

Zr ., 4KkT

— e N a 22
7—:3; BeRLIbo ( )

The input time constant at optimum bias is given approximately by

_C ’(1 + B89, T
RC, = N 5 o (23)

Since g, > 9. and 8> 1 for practical conditions, the time constant
will greatly exceed the bit interval. Finally, the current gain at opti-
mum bias is given by

) = £

1 wC; (1 + ﬂ)gn‘
1+Jw50¢ \V 9o

Thus the transfer function is a function of w/w, and, for a fixed pulse
shape and B, the frequency dependence of the current gain, A4 (w),
scales with bit rate and its magnitude is independent of bit rate.

V. EXPERIMENTAL RESULTS

The preceding analysis will now be compared with experimental
results that have been obtained by Goell at 6.3 Mb/s and 274 Mb/s
and by Runge at 50 Mb/s.

The 6.3- and 50-Mb/s repeaters employed 50-percent-duty-cycle
rectangular return-to-zero (RZ) optical pulses. For 274 Mb/s, the
optical pulses were nonreturn-to-zero (NRZ). For the 6.3-Mb/s
repeater the baseband pulses were RZ and for the other two repeaters
the baseband signal was NRZ. In all of the cases the baseband pulses
were close to the shape to be expected with a raised-cosine spectrum,
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Table | — Signal formats and pulse shape integrals

Transmitted Equalized P P
ulse Pulse o A
Case I 50 percent RZ 0.30 0.13
uty cycle
Case 11 50 percent NRZ 0.40 0.036
uty cycle
Case III NRZ NRZ 0.55 0.085

but with some intersymbol interference at the highest bit rate. For
the purpose of this paper we shall assume a raised-cosine spectrum.
Since the error rate is a rapid function of the signal level, the effect
of intersymbol interference on error rate can be accounted for by a
reduction of received average power equal to the reduction of the
worst-case pulse-pattern signal to threshold level. The integrals 9,
and 9, are summarized for each of the signaling formats-in Table I.

For the 6.3-Mb/s and 50-Mb/s repeaters, SiFET front ends were
employed. In the former case, g» was 0.006 mho and the total circuit
capacitance 8 pF and for the latter these parameters were 0.006 mho
and 6.7 pF, respectively. For the 274-Mb/s repeater two front ends
were tested ; the first with a common-emitter followed by a common-
collector stage, the second with a common-source GaAsFET input
stage followed by an emitter follower. In both cases the input capaci-
tance was 4 pF. The bipolar transistor used was an FMT4000.

Figure 5 shows the base current vs collector current for the
FMT4000. The current gain for this device is 160 for base currents
to well below 1 uA.

Both the calculated and measured effective noise current is shown
in Fig. 6 for the FMT4000. The experimental values were inferred
from the power which gave the signal-to-noise ratio experimentally
determined to give a 10~ error probability. Experimental curves are
given for the input transistor and for the complete receiver. At very
low bias currents the noise originating after the first stage becomes
significant. Near optimum bias, which was calculated to be 5.5 w4,
the required signal is increased by about 0.5 dB by noise originating
after the first stage.

The measured optimum for the first stage is about 4 wA indicating
the base noise is somewhat higher than assumed in the theory. The
error-rate performance was found to be optimum at about 7 uA with
about 2% dB more power than predicted from the calculated first-stage
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Fig. 5—I. vs I, for an FMT4000 bipolar transistor with 10 V collector bias.

and measured subsequent-stage noise. The pulse response for pseudo-
random data indicated that about 1} to 2 dB of this discrepancy were
due to intersymbol interference.

The measured and calculated effective noise currents for all of these
bit rates are summarized in Table II. For the GaAsFET case an
FMT901 transistor was used with a g, of 0.016 mho. The leakage was
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Fig. 6—FEffective noise current vs base bias current for an FMT4000 bipolar
transistor.

under 1 pA, which is negligible for 274 Mb/s. Only about half the
total noise originated in the GaAsFET. This accounts for a significant
part of the error. The noise of the later stages could have been reduced
by the inclusion of an extra stage in the front end. However, the
performance would still have been inferior to that of a bipolar transis-
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Table || — Comparative performance

Me:; Me:g Cal-
_ sur sur
lg:e g:{:& E?Z:gl Device gm g |C TOt—&l g i 9“#";-
(Mb/s) | Fulse | Fulse it OV | TR N
Shape | Shape (nA) 1/,;—’- Tett
eff (n A)
(nA)
6.3 | 509% RZ | RZ SiIFET 6 8.0 0.46 040 | 0.39
50 509% RZ | NRZ | SiFET 6.4 6.7| 4.2 * 3.68
274 NRZ NRZ | BP 160 (4 | 49 42 23
274 NRZ NRZ | GaAsFET | 16 4 |79 55 36
* Not available.

tor. The theoretical and experimental effective noise currents shown
in Table II for the 6.3-Mb/s and 50-Mb/s cases are in close accord
with theory.

VI. COMPARISON OF DEVICES

Several considerations enter into the selection of an input stage for
an optical receiver. Among these factors are sensitivity, dynamic
range, power consumption, temperature stability, and cost. Each of
these factors, with the exception of the last which is beyond the scope
of this paper, will now be discussed.

Equations (15) and (20) indicate that the effective noise for bipolar
transistors and field-effect transistors without leakage have a different
dependence on frequency. Since the rate of noise increase with fre-
quency is lowest for bipolar transistors one would expect them to be
best at high frequencies. At lower frequencies FETs could be expected
to be superior. GaAsFETs have appreciable leakage currents. With
the FMT901 transistor the leakage varies between 0.1 and 100 wA,
though it is typically below 10 xA. Thus the noise performance degrades
at low frequencies. In addition, 1/f noise may be a problem. To date
little is known about this source of noise in GaAsFETs and the possi-
bility of its being significant at bit rates on the order of 10 Mb/s
cannot as yet be ruled out.

Figure 7 illustrates the dependence of the noise of SiFETs,
GaAsFETs, and bipolar transistors as a function of frequency. The
leakage current noise, shown separately, must be added to the device
noise to get the total circuit noise. This is especially important for
(GaAsFETs where the leakage of the device can be the limiting factor.
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Fig. 7—Effective noise current vs bit rate.

The second case of Table I (50-percent-duty-cycle optical pulses,
NRZ baseband) is chosen to illustrate the behavior to be expected.
It is assumed that the device parameters of Table III apply. The FET
curves terminate at the frequency where ¢g,Z; = 1. From the curves
for this case bipolar transistors are superior to GaAsFETs above 150
Mb/s and to SiFETs above 20 Mb/s. If leakage were negligible, the
GaAsFET would be superior to the SiFET. However, since for cur-
rently available devices the leakage runs from about 0.1 to 100 pzA
it must be taken into account in the determination of the relative
merit of the GaAsFET. For example, with 0.2 uA of leakage the
GaAsFET is superior to the SiIFET above about 5 Mb/s. Unless the
leakage is below about 1 pA it is never superior to the bipolar transistor.
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Table Il — Device parameters for Fig. 7

. C gm
Device (pF) (mho) 4
Bipolar Transistors 4 160
SiFET 8 0.005
GaAsFET 4 0.016

The previous cases apply to readily achievable results with com-
mercial devices. However, these devices are not optimized for optical
receiver applications. Figure 8 shows the optimum bias as a function
of bit rate for each of the cases of Table I. The optimum bias current
is extremely small and for many transistors the beta will start to drop
before optimum is reached. By reducing the area of devices the range

10
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Fig. 8—Optimum bias vs bit rate.
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Fig. 9—Reciprocal gain vs frequency with gain bandwidth product (gm/27C:) as
a parameter.

of operation can be extended. Furthermore, it will reduce the capaci-
tance. If the stray and detector capacitances can also be reduced an
additional improvement in performance can be achieved.

The upper frequency at which an FET can be used is set by the gain
bandwidth product of the device in the circuit. Iigure 9 shows the
gain versus frequency with ¢./27C. as a parameter. With an inte-
grating second stage the second-stage noise becomes insignificant if
the reciprocal gain, 1/¢.Z:, at the highest frequency of interest is
below 0.5 while for the noise from a nonintegrating second stage to be
insignificant the reciprocal gain must be below about 0.1 at the highest
frequency of interest.

For an FET, ¢g,» and C, are both proportional to gate length.*
Increasing gate length increases drain noise (g./C; = 1/length). On
the other hand, decreasing gate length reduces the total capacitance
more slowly than g, due to the detector and stray capacitance and
thus increases the noise contribution of the succeeding stages. Thus
an optimum value exists’ which can be determined from eq. (15) or
eq. (14) if the load noise is frequency independent.

* Gate length refers to the dimension perpendicular to current flow and width to
the direction of current flow. The former dimension is readily changed. The latter
can press the technology.

t G. L. Miller has recently pointed out that €, = Ca is the optimum condition
when the first-stage drain noise predominates.

OPTICAL PCM RECEIVERS 1789



With improving technology it is expected that the gate width can
be significantly reduced. Typical commercial silicon devices with
5-um gate widths have gain bandwidth products of 132 MHz; experi-
mental devices with 0.5-um gate widths have been reported with a
gain bandwidth product near 1 GHz."

We will now direet our attention to the question of dynamic range.
Without avalanche gain, for an ac-coupled FET the voltage swing
at the detector for the required minimum signal increases with the
square root of the reciprocal bit rate. This effect has not been fully
analyzed and data are not presently available indicating the bit rate
at which amplitude distortion prevents proper equalization. However,
at 6.3 Mb/s, problems were not encountered with the signal 10 dB
above that required for 10~ error rate.

For a bipolar transistor the signal current can become comparable
with the bias current leading to gain variations with word pattern
for an integrating front end. For example, with a —31-dBm signal
(10~° error rate at 274 Mb/s) without avalanche gain the signal
current is about 0.4 uA average. Since the optimum bias is near 5 A
this is appreciable. The ratio @/Iba is proportional to 1/vC, and
independent of frequency. Thus the ratio of the required minimum
signal current to bias current is frequency independent, but can be
expected to increase as C, decreases.

If C, could be greatly reduced so that

ViZeo > I,

then the bias could be turned off and integration would not take
place. The noise would only be present when the signal was on and
would be given by

qu = 23Isignnl-

This expression is identical to the one which applies to ideal photo-
multipliers and avalanche detectors with an infinite electron/hole
ionization coefficient and large gain ; the required signal is 3 dB above
the quantum limit.

Present bipolar transistors have a higher transconductance-to-
device-current ratio than an FET. Thus, they consume less power.
With avalanche gain where the required optical power is relatively
insensitive to amplifier noise (varies at § root), supply power may often
be the deciding factor. It has recently been suggested that FETs
have the same limiting transconductance-to-current ratio as bipolar
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transistors,"! e/kT. However, as yet this limit is not approached under
practical considerations.

Finally, bipolar transistors operated well above the reverse satura-
tion current have better temperature stability than FETs. In appli-
cations employing de coupling this could be an important consideration.

APPENDIX

The equivalent input noise current spectral density of a cascade
of circuits is calculated as follows. First, the circuits are partitioned
in any convenient manner. Next, the output impedance of each stage
is found going from the input to the output of the cascade since the
output impedance is a function of the input loading. Next, the contri-
bution of the equivalent noise current of each stage is referred to the
input by dividing it by the produet of the short-circuit current gains
of all of the preceding stages. Finally, the individual contributions are
summed in the square sense, that is,

Sea = Sl + 3 St T mrmo—sr (24)
=St & Sk L T
where A ;(w) is the short-circuit current gain of the jth stage and S,
is the value of Se, for the 7th stage.

The current gain, output impedance, and contribution to Seq of
Sy and S: (Seq: and Seq2) for the common emitter (source), base
(gate), and collector (drain) configurations are summarized in Table IV
in terms of the common emitter (source) parameters. The primed and
subscripted impedances are the parallel combination of the impedance

Table IV — Equivalent parameters

Configuration Equivalent Equivalent Chifsent wais
(Common Noise Due Noise Due A( )g Output Impedance
Terminal) to Si-Sear to S1—Seaz o
Emitter (source) Si Sa 9 1 7 [ Zi+2Z: ]
zi L —a_zl(z’ a..) Lzl 422+ Za+onzis
u-Z.'( ! a...) "+ Za
Zi+2s
Base (gate) S Z1S: Zy+gmZ,Zs Z\+Zs+omZi 2
Zi4onZiZs | ZiAZatonZiZs | | B+ Zr+ZatomZiZs
Collector (drain) | Zi(gmZ:—1)8: (Z1+22)S: Z3(1+gmZy) z 7142,
Zi(gmZ1+1) Zi(1+gmZ) Zi+2, P2+ Zi+ ZsFomZiZs
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with the same subscript and the output impedance of the preceding
stage.

When
Zy > Zi, Zs, Zy+ Zs

and
Zo>1/0m

the common emitter (source) and base (gate) configurations give
appreciable current gain. Under this condition the approximate
relations of Table V apply for Seqi, Seq2, 4, and Z, emitter (source)
and base (gate) stages; and for Seq1, Seq2, and A for a common collector
(drain) stage. Table V also gives approximate parameters for output
impedance for a common collector (drain) stage for the cases

gmZ1> 1, Z3> 7
and
Zs K guZiZs, 23K 2y

The first case is typical of bipolar and the second of field-effect transis-
tors. The || symbol represents the parallel combination of impedances.

Insight into the choice of circuit configuration can be gained by
examining the results given in Table V when the preceding assump-
tions apply. If the gain of a single stage is large enough that the noise
of subsequent stages is negligible, then all three configurations give
identical results for Seq: and S.q. For this case, the choice of configura-
tion would be made on the basis of output impedance. Since the
detector impedance, except at extremely high frequencies, is large, a
common base (gate) stage can usually be ruled out and the selection

Table V — Approximate equivalent parameters

Configuration
(Common terminal) Sear Seaz A(w) Zo
. S2
Emitter (Source) Sy m —gm(Z.\|Z)) Zy
Sa i
Base (Gate) Sl g—m(Ta"Z—l) 1 ﬂmZ,ZI
Collector (Drain) Sh B gn(Z:\|1Z)) | Zi| 2 (Case I)
gm (Z-HZI) gmzl

a%. (Case IT)
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between the common emitter (source) and common collector (drain)
stage made on the basis of desired output impedance. Parenthetically,
it is interesting to note that the output voltage for the two cases is
identical—the first gives voltage gain but the second presents a higher
impedance to the source. -

For multistage amplifiers a cascode configuration [common emitter
(source) stage followed by a common base (gate) stage] is often
chosen for the first two stages. A cascode amplifier has a wider band-
width than a common emitter (source) stage and thus can simplify
equalization. However, it does not lead to the lowest total noise since
A = 1 for a common base (gate) stage and therefore the full value of
Seq1 for the following stage contributes to the equivalent noise spectral
density.

The approach which gives the lowest equivalent noise is a cascade
of common emitter (source) stages—possibly followed by a common
collector (drain) stage to match impedance—because common emitter
(source) stages exhibit the current gain of common collector (drain)
stages, but present a higher output impedance to the following stage,
thereby minimizing the second-stage Seq2 contribution to S.q.
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Reduction of Multimode Pulse Dispersion by
Intentional Mode Coupling

By D. MARCUSE
(Manuscript received May 3, 1974)

Guidelines for the design of multimode, step-index fibers with intentional
fluctuations of the refractive index of the core are given, with the aim of
reducing multimode pulse dispersion. It appears possible to engineer a
fiber with carefully designed refractive index fluctuations, the azimuthal
variation of which is governed by the function cos ¢ and the z dependence
of which has a spatial Fourier spectrum with a sharp cutoff frequency.
By limiting the location of the index fluctuations to a region below a certain
radius Tmax, coupling to modes with large azimuthal mode numbers can
be avoided and power loss via coupling to radiation modes can be held to a
minimum.

I. INTRODUCTION

Optical fibers supporting many guided modes suffer from multimode
dispersion. A pulse launched into a multimode fiber excites many
modes, each traveling at a different group velocity. At the far end of the
fiber the pulse is spread out in time because of the different group
delays of each mode. This multimode dispersion effect is usually more
serious than the single-mode dispersion caused by the dispersive effect
of the dielectric material of the waveguide core and by the inherently
dispersive nature of mode guidance. Discussions of multimode dis-
persion in the absence of mode coupling can be found in Refs. 1, 2,
and 3.

8. D. Personick discovered that multimode dispersion in fibers can
be reduced by intentional (or unintentional) mode coupling. If the
power carried in the fiber transfers back and forth between slow and
fast modes, averaging takes place, so that the pulse no longer breaks
up into a sequence of pulses but is forced to travel at an average group
delay with a concomitant reduction in pulse spreading. Although the
spread of a pulse carried by uncoupled modes is proportional to the
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length of the fiber, it only becomes proportional to the square root of
its length if the pulses are coupled among each other.*=®

However, reduction of multimode pulse dispersion by means of
mode coupling must be bought at a price. Any mechanism that causes
coupling among the guided modes also tends to couple guided modes to
the continuum of radiation modes. Power coupled into radiation modes
radiates away causing losses. Radiation loss can be reduced by careful
control of the coupling process.® It is possible, at least in principle, to
provide strong coupling among the guided modes but only very little
coupling to radiation modes. The loss penalty can thus be controlled
and kept to small amounts.®®

Coupling between two fiber modes is caused by a specific spatial
frequency of the Fourier spectrum of the coupling function. Two modes
couple via a spatial frequency that is equal to the difference of the
propagation constants of the two modes. Control of the loss penalty
for multimode dispersion is thus possible by shaping the ourier spec-
trum of the coupling function. In general, it is desirable to achieve a
spectrum that provides a sufficient number of spatial frequencies below
a critical frequency and a sharp cutoff of the spectrum at the critical
spatial frequency.®®

In this paper we discuss means of mode coupling by employing in-
tentional fluctuations of the refractive index of a fiber whose unper-
turbed core has a constant index of refraction (step-index fibers). It is
necessary to shape the core-index fluctuations so that only modes with
adjacent azimuthal mode numbers » couple to each other. Additional
control of the coupling process must be provided by a sharp cutoff of
the coupling spectrum that can be achieved by careful design of the z
dependence (z is the axial direction) of the index fluctuations. F inally,
radiation losses can be minimized by limiting the index fluctuations
to a region near the fiber axis.

The paper begins with a discussion of the requirements on the Fourier
spectrum imposed by the desire to minimize the loss penalty. Next we
provide explicit expressions for the power-coupling coefficients and
estimate the amount of index fluctuation that is necessary to achieve
a desired reduction in multimode dispersion.

This discussion is intended as a guide to the fiber designer, pointing
out the possibilities available for reduction of multimode dispersion
and explaining the difficulties that must be overcome.

Il. SHAPING THE SPATIAL FOURIER SPECTRUM

We consider two modes with propagation constants 8; and 8;. Inter-
action between these modes is described by a coupling coefficient that
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depends on the distortion of the core boundary or on refractive-index
irregularities. The azimuthal symmetry of the irregularity provides
selection rules for the coupling process. The z dependence of the
irregularity enters the coupling process via its spatial Fourier spec-
trum. A sinusoidal component of the Fourier spectrum of the form

F(0) cos 6z (1)
couples the two modes only if the relation?®
|B: —B;| =0 (2

is satisfied. (This requirement stems from first-order perturbation
theory and is valid provided that the coupling is weak.)

It is not hard to envision a sufficient number of spatial frequencies
that couple all modes among each other. However, as pointed out in
Section I, coupling to radiation modes causes power loss by radiation
from the fiber core.*® It is thus essential to avoid coupling between
guided and radiation modes. To see whether this is possible, we must
study the spacing (in 8 space) between the guided modes. I have com-
puted the propagation constants of all the guided modes for a step-
index fiber with

V = (n} — n3)ka = 40, 3)

where n; = refractive index of fiber core, n, = index of cladding,
k = free-space propagation constant, a = fiber core radius. The prop-
agation constants were obtained as solutions of the simplified eigen-
value equation of the optical fiber.!* When the propagation constants
are listed in order of their numerical values, regardless of mode number,
they appear approximately evenly spaced. This behavior of the propa-
gation constants of fiber modes contrasts with the behavior of the modes
of a dielectric slab. Here we find that the spacings between modes in-
crease monotonically so that the spatial frequencies, required to couple
nearest neighbors, also increase.? By providing a cutoff to the Fourier
spectrum of spatial frequencies contained in the coupling function, we
can provide coupling among lower-order modes of the slab and uncouple
either the last guided mode or a few of the higher-order guided modes,
depending on the value of the spatial cutoff frequency (see Fig. 1).
Once the highest-order (or a few high-order) guided modes are un-
coupled from the rest, there is no danger of incurring radiation loss
caused by the coupling process. Things are not quite that simple in
the round optical fiber because the modes are not naturally arranged
with ever-increasing spacings between neighbors.
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Fig.
endgence of the index fluctuations. The shape of the function is unimportant except
or its abrupt cutoff.

A good approximation to the actual solution of the eigenvalue equa-~
tion is obtained if we approximate the Bessel function by the formula’

o) — ﬁ cos [(:c2 — %)} — v arccos (i) - 17;] -

@ = 7

In weakly guiding fibers the transverse electric field component can be
represented as '+
E, = AJ,(xr) cos (ve)e 2, (5)
with
k = (nik? — %)L (6)

To a good approximation, we may assume that E, = 0 at the core
radius r = a. This approximation is better for modes far from their
cutoff value but it gives a reasonable indication of the propagation
constants for practically all modes. An approximate eigenvalue equa-
tion of the guided modes thus follows from (4),

™

[(xa)? — »*]* — v arccos (é) S % = (2m — 1) 5 )

form = 1,2, 3, - - -. By regrouping this equation we obtain a form that
is useful for iterative solutions,

2] 4
ka = {v2+[(m—%)w+varccos(é)]} . (8)
Using (6) and (7) we derive the following approximate expression for
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the spacing between guided modes,

. TAm — Ay (m — D
ag=—SJ8% 4 , : ()
Bl v [(xa)? — »2]}
AB is the spacing between modes that are separated by an amount Ay
of the azimuthal mode number » and by a change Am of the radial
mode number m.

If we place no restriction on the allowed values of Ay or Am, it is
impossible to shape the spatial Fourier spectrum of the coupling func-
tion so that coupling to radiation modes is avoided. It is thus necessary
to introduce definite “‘selection rules” for the coupling among the
guided modes. We shall see later that it is possible to shape the refrac-
tive-index distribution or the deformation of the core-cladding bound-
ary such that only modes with

Av = +1 l (10)

can couple to each other. We shall thus assume that the selection rule
(10) is enforced and continue our discussion on this assumption. The
allowed values for Am remain arbitrary. However, it is true that the
spatial frequencies for coupling between modes (that is, the value of
AB) are larger for larger values of Am. Since it is our aim to introduce
a cutoff frequency into the spatial Fourier spectrum so that modes
with large spatial frequency separation will be uncoupled, we restrict
the discussion also to a limited range of values for Am and consider
only the case

Am =0 or =+1. (11)
Using (10) and taking Am = 0 we obtain from (9)
_&| (m—Hr | Am =0
An] = vB |[(ka?) — »* ]} 1) ser Ay = 1. a2
For Am = 41 we obtain from (10) and (9)
_ & |[m =1 +vIr l Am = —Av
|a8] = l—lB [(ka)? — »*7]} 1/ for Ay = +1 . (13)

The case Am = + Av has been excluded since it leads to larger spatial
frequencies than those obtained from (13).

Figures 2 and 3 illustrate the boundaries of various regions in mode-
number space v, m. Both figures were drawn for V' = 40 [see eq. (3)],
n1 = 1.515, and ny = 1.5 so that n;/ns = 1.01. The solid line delineates
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Fig. 2—Various regions in mode-number space », m. All curves belong to V' = 40,
ns = 1.5, and n1/na = 1.01 with the exception of the solid line labeled (V = 30).
The solid lines indicate the boundaries of the range of guided modes for the respective
V values. The broken line labeled Am = 0 delineates the area below which coupling
of modes with the selection rule Ay = =1 and Am = 0 is possible. The broken line
labeled Am = — Aw limits the range of coupling with the selection rule Av = 1,
Am = — Av. The dash-dotted line is the limit of the coupling range caused by the
location of 7 = Tmax = 0.8a. The spatial Fourier spectrum cuts off at fmaxa = 0.15.

the boundary of guided modes; it is obtained by plotting those values
of » and m that result in xa = V [see eq. (14)]. All guided modes are
located to the left and below the solid line. The broken lines* represent
lines of constant spatial frequency. They result from plotting the com-
binations of » and m values that result in A8 = fumax. The line labeled
Am = 0 was computed from (12) and the line Am = —Av was ob-
tained from (13). The broken lines delineate the boundaries for mode
coupling with the spatial Fourier spectrum of the coupling function of
Fig. 1, the cutoff frequency of which is § = 6max. Modes below and to
the left of the broken lines couple to their nearest neighbors via the
selection rule Ay = =1 and Am = 0 or Am = —Av. Modes located
to the right and above the broken lines cannot couple to each other

* The meaning of the dash-dotted lines and the solid line labeled (V = 30) will be
explained later.
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Fig. 3—Same as Fig. 2 except that faxa = 0.165, rmax = 0.5a.

since no spatial frequencies achieving this coupling are available.
Figures 2 and 3 differ only in the choice of the cutoff frequency 6max.
There are no transitions with Ay = =1 that couple via smaller spatial
frequencies than the ones indicated in the figures. It is thus apparent
that it is possible to provide coupling among most guided modes by
means of the Fourier spectrum shown in Fig. 1. However, modes to
the right and above the uppermost broken line remain uncoupled. It
is necessary to uncouple a few higher-order modes in order to avoid
coupling into the continuum of radiation modes. The conditions shown
in Fig. 2 achieve this goal almost completely. Only the mode m = 1,
v = 34, lying on the boundary of the guided-mode region, is coupled
to radiation modes as well as the other guided modes. Power is thus
able to flow out of the guided-mode region causing radiation losses via
this one guided mode. This power loss could be avoided by decreasing
omIX'

The conditions prevailing in Fig. 3 would result in a high loss penalty
since all modes with m < 4, » > 21 on the boundary of the guided-
mode region couple to guided as well as radiation modes. However, we
shall show later that it is possible to prevent mode coupling for modes
exceeding a certain maximum » value that can be chosen by a suitable
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design of the intentional index fluctuations. It is thus possible to
achieve a low loss penalty even for the conditions shown in Fig. 3
provided the coupling mechanism is carefully designed to avoid cou-
pling for modes with » > 20.

Modes located between the two broken lines in Figs. 2 and 3 can
couple only to their neighbors above and below in the mode-number
plane. However, since the members with low » values below the line
Am = — A are able to couple to their neighbors to the left and to the
right, all modes below the uppermost broken line are actually coupled
together.

We can give an approximate rule for calculating the spatial cutoff
frequency appearing in Figs. 2 and 3. We begin by specifying the
maximum » value on the mode boundary for which mode coupling
should cease. As mentioned earlier, the design specification for this
value vmec Will be given in the section on mode coupling. Next we need
to know the corresponding value of m on or near the mode boundary—
the solid line in Figs. 2 and 3. We obtain it from the cutoff condition
xa = V and (8),

~1_ rmax ik 1oya_ 2y
Mmax = 7 - a.rccos( % ) + = (Vv vEa b (14)

Substitution of vmex and Mmex into (12) using B = nok yields the
desired value for AB = Omax. For V = 40 and vuax = 20 we obtain
from (14) Mmax = 4.61 and from (12) fnaxa = 0.17 in agreement with
Fig. 3. Of course, it does not make physical sense to use a noninteger
Mumax, but it is advisable to use this value in (12) in order to obtain a
more accurate value of Omax. Incidentally, (14) defines the mode
boundary if we use it for all possible values v = Vmax.

1. POWER COUPLING COEFFICIENTS

Mode coupling in multimode dielectric optical waveguides is most
conveniently described by a coupled-mode theory. The power coupling
coefficients are defined as follows :*:°

hm.um = (le.nMI2>- (15)

The symbol ( ) indicates an ensemble average. The coefficient K, s,
stems from the coupled amplitude equations and is defined as®

wep 2r

4P J,

The angular frequency of the radiation is w, € is the dielectric permit-

Kynym = o /; ® rdr(n? — )& Eume (16)
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tivity of vacuum, and P designates the power normalization constant
of the modes, the electric field vectors of which are indicated by script
letters. The refractive-index distribution of the actual guide with index
fluctuations is n while n, indicates the index distribution of a perfect
guide from which the actual guide deviates only slightly. Our interest
is focused on introducing intentional index fluctuations for the purpose
of mode coupling. We are thus free to choose n to achieve our goal.
It was pointed out earlier that coupling to radiation modes is unavoid-
able unless certain selection rules are imposed on the coupling process.
Our discussion in the last section was based on the selection rule
Ay = +1. To achieve this selection rule we must require that the
refractive-index distribution be of the following general form:

n? — ng = 2mAng(r) f(z) cos ¢. (17)

We know from earlier work that the ¢-dependence of this index dis-
tribution leads to the desired selection rule.?

We found in the preceding section that it is also desirable to avoid
coupling among modes with large v values. It follows from the proper-
ties of Bessel functions that the field intensity of the transverse field
components is very weak