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The feasibility of a microwave quasi -optical polarization diplexer has
been demonstrated using photo -etched copper strips with thin mylar backing
as a practical example. The insertion losses of the principal polarization
and the cross polarization have been calculated and measured. The con-
ducting strips must be aligned in a preferred direction, namely, perpen-
dicular to the plane of incidence, to minimize cross -polarized radiation,
whereas orientation of the plane of the grid with respect to the beam direc-
tion is not restricted. The measured cross -polarized radiation agrees with
predictions from simple theoretical models of a magnetic current sheet
for the transmission mode and an electric current sheet for the reflection
mode. This type of diplexer has been successfully employed in studying
the polarization properties of the 20-GHz signal from the ATS-6 satellite.

I. INTRODUCTION

To achieve frequency reuse by employing orthogonal polarizations
in a radio communication system, it is essential to avoid cross polari-
zation in the feed patterns that illuminate the antennas; this relies
upon the diplexing of two orthogonal polarizations with high isolation.
Waveguide-type polarization couplers perform diplexing well where a
carrier with an associated bandwidth of about 10 percent is involved.
However, it is difficult to provide a low -loss ( <0.1 dB) waveguide di-
plexer to separate effectively and simultaneously the two polarizations
in each of two widely separated common carrier bands, such as 18 and
30 GHz. The difficulty stems from the vulnerability of an oversized
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waveguide to higher -order modes in the higher -frequency band. Con-
tamination by only 1 percent of the power in higher -order modes may
cause unacceptable cross -polarized radiation in the feed.

The necessity for overcoming this problem has led to the suggestion
of using a closely spaced wire grid as a quasi -optical polarization
diplexer. The purpose of this paper is to describe feasibility studies of
this quasi -optical approach. Not only should the insertion loss be
small and the feed pattern distortion slight in the principal polariza-
tion, but minimization of the cross -polarized radiation should also
be achieved. Our measurements have shown that the wires must be
oriented in a preferred direction to minimize the cross -polarized radia-
tion. This property is explained theoretically by utilizing a magnetic
current sheet for transmission through the grid and an electric current
sheet for reflection from the grid. This preferred direction requires
that the wires be perpendicular to the plane of incidence determined
by the beam axis and the grid normal, as shown in Fig. lb. One notes
that the classical application of a polarizer, which consists of a wire
grid parallel to an aperture plane, always satisfies this condition.

In Section II we calculate the insertion loss and cross -polarized
radiation using simple theoretical models. Section III describes the
measurements and the comparison between the calculated and mea-
sured cross -polarized radiation of wire grids in various configurations.
Section IV discusses applications and includes concluding remarks.

To avoid confusion about the definition of cross polarization,' the
following two explicit expressions

1=9cos¢-4;sin4) (1)

P2 = sin 4. if) cos 4) (2)

are defined as the two orthogonal polarization vectors which are the
cross polarization of each other. The carat "A" indicates unit vector,
and (6, 4)) are spherical coordinates as shown in Fig. la; 01 and 02
within the immediate vicinity of the Z axis are in the nominal X and
Y directions, respectively. The usual antenna pattern measurements
yield directly the patterns for the two polarization components under
this definition. If a feed pattern with the polarization vector (1) or
(2) (often called a balanced -feed radiation2) illuminates a paraboloid
with its axis oriented in the Z direction, the reflected field in the
aperture of the paraboloid is free of cross polarization.

II. THEORETICAL CALCULATIONS

2.1 Insertion losses

Implementation of quasi -optical polarization diplexers requires pre-
diction of the insertion losses for both the principal and the unwanted
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Fig. 1-(a) Geometry of a quasi -optical polarization diplexer. (b) Preferred con-
figuration of quasi -optical polarization diplexing.

cross polarization. If the polarization grid is made of uniformly spaced
copper strips with a thin mylar backing, the calculation is facilitated
by the equivalence between the periodic grating and the capacitive
diaphragm in a parallel -plate waveguide.3 Neglecting the effect of the
thin mylar layer, the power reflection coefficient for an incident wave

DIPLEXING OF MICROWAVES 1667



polarized perpendicular to the strips is approximately given by3.4

B2 cos2 0
R1 =

4 B2 cos2 0 '

where

(3)

B = -4b ln sec (

is the shunt susceptance, b the grating period, d the width of the
conducting strip, X the wavelength, and 0 the angle of incidence be-
tween the direction of propagation and the normal to the grating
plane. Equation (3)* is based upon the low -frequency approximation
(b << X) for a grating of infinitely thin perfectly conducting strips.
Using Babinet's principle, the power transmission coefficient "71,1" for
an incident wave, polarized parallel to the plane determined by the
strip and the propagation direction, is also approximately given by
eq. (3) provided the strip width d in the expression for B is replaced
by the spacing (b - d).

If we employ the numerical value, b = 0.5 mm, d = 0.2 mm,
X = 1.05 cm, and 0 = 45°, as used in the experiments later, substitu-
tion into eq. (3) yields the insertion loss of the cross polarization

-10 logio Ri = 36.8 dB
-10 logio T = 28.8 dB,

which is equivalent to an insertion loss of only 0.001 dB and 0.006 dB
for the transmitting and reflecting principal polarizations, respectively.
Typically, the cross polarization in a Cassegrain feed aperture that
illuminates a polarization diplexer is of the order of -20 dB or less ;
thus, the improvement provided by use of a quasi -optical polarization
diplexer reduces the residual cross -polarized components in the grid
aperture to negligible values.

However, the residual cross polarization discussed above is only part
of the possible cross -polarized radiation ; the following calculations
show that the co -polarized field in the grid aperture may also give
rise to off -axis cross -polarized radiation if the strips are not oriented
in a preferred direction.

Equation (3) is known to be accurate when the strips are parallel to the plane
of incidence for all strip widths. However, to the authors' knowledge, the rigorous
demonstration, in the literature, of its accuracy for other strip directions is restricted
to the cases (b - d)/b << 1, or d/b << 1.

t Equation (3), for the idealized grid, shows that d = b/2 provides the minimum
value of the quantity, max [R1, T11]. Therefore, the grid was designed to have both
copper strip width and gap spacing equal to 0.25 mm. However, this specification was
close to the resolution limit of the fabrication process in use at the time, which re-
sulted in a grid with the above measured dimensions.
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2.2 Magnetic current sheet

For the case of transmission through an arbitrarily oriented wire
grid, a magnetic -current -sheet model is used to calculate the radiation.

If a wire grid is placed in front of a radiating aperture that produces
a wave collimated in the Z direction, the on -axis radiation is linearly
polarized perpendicular to the conducting direction of the wire grid.
We shall find the polarization properties of the off -axis radiation.

Let the plane of the wire grid be oriented in an arbitrary direction,
as shown in Fig. la, with the following unit normal

11 = sin 0 cos a g sin /3 sin a i cos /3. (4)

In order that an incident electric field, E1 = E1, may pass freely
through the wire grid, the direction of the conducting wires

iv = sin 7 y + cos 7 i (5)

must be the same as that of the equivalent magnetic current density
2i1 X El (see the appendix) :

X E1 = Ell/cos' + sin2 sin2 a

i.e.,

and

sin 7 =

cos y =

[ Lcos2 0 + sine 0 sine a

sin 0 sin ag
(6)

Icos2 (3 a] ,

cos fig

cos f3

Alcos2 sin2 sin2 a

- sin 0 sin a
4cos2 sin2 /3 sin2

The far -zone electric -field radiation of a magnetic current sheet can
be written

E1 =
2

e-AR f ER X X Einepau  11c/A,
7ikR (7)

where k is the free -space phase constant, and R and R are the distance
to the far -field point and the corresponding unit direction vector. The
points on the magnetic current sheet are defined by R'. The polariza-
tion is determined by the bracketed vector product in eq. (7),

Pi = 1 x (fi X E1) = Eolcos2 /3 + sin2 sin2 a [0(- cos 4) sin 7)
+(i)( - sin 0 cosy + cos 0 sin 95 sin 7)]. (8)
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The dot product of eqs. (1) and (8) gives the principal polarization
component

Pi. pl = -E1 cos 0[1 - sine 0 (1 - cos 0) - sin 0 sin 0 cot 7]. (9)

If we substitute the above product for the bracket in eq. (7), it is seen
that the on -axis radiation is the same as that without the wire grid,
while the off -axis radiation is only slightly perturbed. Here the factor
cos Q accounts for the larger slanted area of the grid.

Now the dot product of eqs. (2) and (8) gives the cross -polarization
component

P142 =E1cos $[sin 0 cos 0(1 - cos 0) + sin 0 cos 0 cot 7]. (10)

The cross polarization on axis vanishes, as expected. When the
direction of the conducting wire is perpendicular to the beam axis,
i.e., 1, = 90 °, only second -order cross polarization, as represented by
the first term in eq. (10), is present with maxima in the 0 = 45° planes.
This second -order cross polarization is negligibly small for narrow feed
patterns. However, this residue can become a considerable item for
broad feed patterns, as will be demonstrated by an experiment de-
scribed later.

When the direction of the conducting wire is not perpendicular to
the beam axis, i.e., -y 90°, the second term in eq. (10) represents
first -order cross -polarization lobes with maxima in the 4) = 0 plane.
This term is kept small if both 0 and (90 ° - 7) are small. Therefore,
fine adjustment to reduce the residual cross polarization can be
accomplished by rotation of the grid in its own plane in the case of a
narrow feed pattern.

2.3 Electric current sheet

Next, consider the case of reflection from the wire grid. The reflected
field is entirely due to the fields radiated by electric currents flowing
in the wires. If the grid is fine enough, these currents will flow only
in the direction of the wires. Thus, we may use an electric current
sheet model to compute the field reflected from the wire grid. To obtain
perfect reflection from the grid, the direction of the conducting wires
must be the same as the induced electric current direction 4 X H2,
where H2 is the incident magnetic field for this case. The far -zone
electric field of an electric current sheet can be written

jkZ0
E2 2r/i e-3kR f {E X [P X (4 X 112)]) ow /lc/A, (11)

where Zo is the free -space impedance. The polarization is determined
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by the vector product inside the bracket in eq. (11) :

P2 = E X fE X (4 X HO = 14 X H21[6(sin 0 cos 7
- cos 0 sin 41 sin y) + ( - cos 4, sin 7)]. (12)

The above polarization is orthogonal to that of eq. (8). The principal
and cross -polarization components are obtained by the dot products
of eq. (12) with eqs. (2) and (1), respectively.

P2*/)2 = -H2 cos 0[1 - sine 4,(1 - cos 0) - sin 0 sin 4) cot 7] (13)

P2' p, = H2 cos 0[Sin 4 cos - cos 0) + sin 0 cos 4, cot J. (14)

Here the relation 14 X 112I sin y = H2 cos 0 follows the symmetry
with respect to 4 between the incident wave and reflected wave of
which the magnetic field is equal to H21.

Since eqs. (13) and (14) are identical to eqs. (9) and (10) except for
a proportionality constant, the properties of the off -axis cross -polarized
radiation described in the previous case are also valid for this orthog-
onal case in reflection.

III. EXPERIMENT

3.1 Insertion loss

The insertion loss of the combinations of a dual -mode horn and a
wire grid were measured at 28.5 GHz and 19 GHz in both transmission
and reflection. Figure 2 shows the sketch of the 28.5-GHz experimental
model. The dual -mode horn has been described elsewhere.5 The wire
grid was made by photo -etching a copper -covered mylar sheet; copper
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Fig. 2-Schematic of experimental assembly for 28.5 GHz.
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strips 0.2 mm wide and 0.018 mm thick are spaced 0.3 mm apart on
a mylar sheet 0.013 mm thick. The grid, mounted in a circular wooden
rim, can be rotated in its own plane, which is oriented at 45° with
respect to the horn aperture. The 19-GHz experiment uses a scaled
dual -mode horn and 24.7 -cm -diameter circular grid with the same
copper strips and the same mylar sheet described earlier.

The measured minimum insertion loss on axis, for both transmission
and reflection, was found to be only about 0.1 dB for the principal
polarization; the discrepancy with the calculated 0.001 and 0.006 dB
can be explained by measuring error and slight pattern distortion due
to diffraction around the grid.

The maximum insertion loss of the cross -polarized field, on axis,
at 19 and 28.5 GHz for both transmission and reflection is shown in
Table I. The symbols II and 1 indicate that the grid wires are parallel
and perpendicular, respectively, to the plane of incidence.

The measured data are only in qualitative agreement with the
approximate prediction from eq. (3). However, the effect of the mylar
sheet (0.013 mm thick with a dielectric constant of 3), imperfect
polarization of the horn radiation, and diffraction around the grid
have been neglected in the approximate calculation. It was observed
that the measured insertion loss of the cross polarization depends
somewhat upon the spacing between the horn and the grid.

3.2 Radiation patterns at 28.5 GHz

The measured cross polarization in the radiation patterns is found
to be negligible if the conducting strips are aligned in the preferred
direction normal to the beam. But for the conducting strips in non -
preferred directions, such as those parallel to the plane of incidence,
maximum cross -polarized radiation is obtained in the transverse
planes-AC for transmission and BC for reflection-both perpen-
dicular to the plane of Fig. 2. To illustrate the predictions of the theo-
retical models in the preceding section, we present the measured

Table I - Measured insertion loss of cross -polarized fields

Grid -Wire
Position

28.5 GHz 19 GHz

Transmission Reflection Transmission Reflection

i* 24 dB 25 32.5 30it 28 dB 30 38 34
Eq. (3) 28.8 36.8 32.3 40.3

Conducting strips are parallel to the plane of incidence.
Conducting strips are perpendicular to the plane of incidence.
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transverse plane patterns at 28.5 GHz for four combinations of horn
polarization and conducting strip directions.

The transverse plane patterns in Figs. 3 and 4 were measured with
the radiation transmitted through the grid. In Fig. 3 the horn polari-
zation is perpendicular to, and the conducting strips parallel to, the
plane of Fig. 2. The average of the cross -polarization lobe maxima is
about 20 dB below that of the principal polarization in the same direc-
tion (0 = 6°), and agrees well with the prediction of eq. (10) [relative
to eq. (9) with y = 45°] as shown by the dotted curves. In Fig. 4,
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ANGLE OFF BEAM AXIS IN DEGREES

7 = 45°

0 = 0°

POLARIZATION

MEASURED

--- CALCULATED

Fig. 3-Radiation patterns of a transmitting grid at 28.5 GHz with conducting
strips parallel to the plane of incidence.
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Fig. 4-Measured radiation patterns of a transmitting grid at 28.5 GHz with
conducting strips perpendicular to the plane of incidence.

the horn polarization is parallel to, and the conducting strips per-
pendicular to, the plane of Fig. 2. The measured cross polarization
of less than -40 dB essentially confirms the theoretical prediction of
negligible cross polarization from eq. (10) (7 = 90°), since the mea-
suring accuracy of the cross -polarization level is reliable down to about
-40 dB.

The transverse plane patterns in Figs. 5 and 6 were measured with
the radiation reflected from the grid. In Fig. 5 both the horn polari-
zation and the conducting strips are parallel to the plane of Fig. 2,
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Fig. 5-Radiation patterns of a reflecting grid at 28.5 GHz with conducting strips
parallel to the plane of incidence.

and the measured cross polarization is essentially the same as that
of the transmitting case in Fig. 3. In Fig. 6, both the horn polarization
and the conducting strips are perpendicular to the plane of Fig. 2,
and the measured cross polarization of less than -40 dB is similar
to that of Fig. 4. Thus, the results show that in employing quasi-
optical polarization diplexers the off -axis cross -polarized radiation
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Fig. 6-Measured radiation patterns of a reflecting grid at 28.5 GHz with con-
ducting strips perpendicular to the plane of incidence.

can be suppressed only if the conducting wires are perpendicular to
the beam (i.e., perpendicular to the plane of incidence).

Owing to limitation of the measuring accuracy, it is difficult to
measure the second -order cross polarization, the (1 - cos 0) term in
eqs. (10) and (14), of the wire grid for narrow feed patterns. Therefore,
we conducted an experiment with a broad feed pattern to check this
term, which grows rapidly when 0 increases. The radiation patterns
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Fig. 7-Radiation patterns of a small dual -mode circular aperture feed (D/X = 1.39
at 16.5 GHz).

of a small dual -mode horn' (see inset in Fig. 7) were measured with
and without the wire grid.

In the absence of the grid, the measured 45° plane patterns of
principal and cross polarization are as shown in Fig. 7. The measured
patterns in other planes (not shown) exhibited circular symmetry in
the co -polarized radiation pattern, and less than -40 dB in cross
polarization everywhere. When the small dual -mode aperture was
covered by a wire grid, the measured pattern in co -polarization re-
mains essentially the same as without the grid ; however, the cross
polarization in the 4) = 45° plane rises to -26 dB as shown in Fig. 7.
The calculated cross polarization, which is plotted as a dotted curve,
shows good agreement with the measured pattern. The cross -polarized
radiation of a small grid -covered aperture is similar to that of a dipole.

Thus, the above results demonstrate that the wire grid is a good
polarizer for large apertures, whereas improper use of the wire grid
can even enhance the cross -polarized radiation of a small aperture.
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IV. DISCUSSION

It has been observed' that there will be no cross polarization in the
main reflector aperture of an offset near -field Cassegrainian antenna
provided no cross polarization illuminates the subreflector. This ideal
condition can be approximately realized by application of a quasi -
optical polarization diplexer to the feed of an offset Cassegrainian
antenna with large effective F/D ratio. The quasi -optical polarization
diplexer can also be used on a symmetrical Cassegrainian antenna as
demonstrated by its application in an earth -station receiver" for the
20-GHz ATS-6 signal.

The basic philosophy of the quasi -optical polarization diplexer can
be simply stated as a cleaning up of the two orthogonal polarizations
simultaneously just before illuminating the subreflector. This cleaning
process is especially desirable if the feed is an offset reflector with
relatively small F/D ratio. But the conducting wires must be oriented
in a preferred direction, perpendicular to the plane of incidence, to
avoid the off -axis cross -polarized radiation. For the broad feed pattern
of a small dual -mode aperture, the second -order cross -polarized radia-
tion from a classical polarizer may exceed that of the dual -mode aper-
ture without the polarizer. The accuracy of the theoretical predictions
demonstrates the utility of equivalent current sources for such analyses.

To avoid excessive spill -over loss and pattern distortion, the quasi -

edge illumination less than - 20 dB. The main disadvantages of quasi -
optical feed systems appear to be bulkier volume and heavier weight
compared with conventional waveguide diplexing feed systems, especi-
ally when both polarization and frequency diplexing are performed
by quasi -optical components. But these components have an ad-
vantage in handling high power without difficulty. Equation (10) in-
dicates that fine tuning (y 90°) of the residual polarization response
may be accomplished by rotation of the grid in its own plane.

APPENDIX

To calculate the field transmitted through the wire grid, a magnetic
current equivalent source is chosen, the choice being governed by the
following considerations.

Given the tangential electric and/or magnetic field on the bounding
surface of a source -free region, we may place equivalent sources on the
bounding surface to correctly reproduce the original field in the source -
free region :9

(i) Magnetic current :K =Et X n, backed by a perfect electric
conductor on the bounding surface.
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(ii) Electric current : J = ii X Ht, backed by a perfect magnetic
conductor on the bounding surface.

(iii) Combination :
K = Et X 4, magnetic current

operating

J = A X Ht, electric current free space.

All three equivalent sources give identical results if they are based
on the true fields, Et and Ht. However, in the case of transmission
through a grid, we do not know the true magnetic field He on the
source -free side of the grid. If the polarizer is fine enough, one can be
sure, though, that the tangential electric field is perpendicular to the
wires. Thus, the field transmitted through the grid can be predicted
most accurately by the magnetic current equivalent source backed by
an electric conducting plane on the grid. Since a tangential magnetic
current imaged in an electric conducting plane is equal to itself, we
may include the effect of the electric conducting plane by using twice
the magnetic current, 2K, operating in free space.

The far field radiated by the magnetic current density, 2K, in free
space is

E1 = 47jkR f [(2K) X E]ouvfidA.
grid
gaps

(15)

If the grid spacing is very small compared with wavelength, then,
as the magnetic current 2K = 2E t X ii varies from zero on the grid
wires to maximum in the space between, the other terms in the inte-
grand of eq. (15) are essentially constant. Thus, we may replace the
fluctuating K with its average value, Kavg,

jk .E1 = -
471-R

e-AR r [(2Kavg) X E]eficwlidA. (16)

Although we know the direction of K, we do not know its magnitude
unless the reflection coefficient of the grid is known. In the usual case,
the grid is designed to introduce negligible insertion loss for the de-
sired polarization, whence E1 on axis should equal that present when
no grid is used. In this case, the magnitude of 2Kavg would have to be
such that

2Kavg = 2E1 X fi (negligible insertion loss) (17)

in order that eq. (16) will result in the correct on -axis value for E1.
By substituting eq. (17) into eq. (16), we arrive at eq. (7), the desired
equation for computing the field transmitted through the wire grid.
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Material Structure of Germanium -Doped
Optical Fibers and Preforms

By H. M. PRESBY, R. D. STANDLEY, J. B. MacCHESNEY,
and P. B. O'CONNOR

(Manuscript received July 8, 1975)

The structural characteristics of preforms and optical fibers fabricated
by modified chemical vapor deposition were studied by optical, interfer-
ence, and scanning electron microscopy. It was observed that the structural
features resulting from the deposition process are preserved through subse-
quent processing and appear in the fiber with the exception of a region at
the center of the fiber. Here, selective evaporation of dopant material from
the inner surface of the deposit results in a refractive index depression on
the axis of the optical waveguide.

I. INTRODUCTION

The chemical vapor deposition process, in which oxides are de-
posited and simultaneously fused on the inner surface of a fused silica
tube, has become a valuable technique for fabricating low-loss' .2 and
graded -index optical fibers.3 In modifications and refinements of this
technique, higher depositional rates and very low -loss single -mode
fibers4 have also been achieved.

An important question that arises in utilizing this process concerns
the correlation of the deposited material structure in the preform to
that in the resulting optical fiber. Can one be confident, for example,
that the same distribution of refractive index that is introduced into
the preform by changing the material composition of the deposited
layers exists in the fiber pulled from this preform? This determination
is necessary if one is to reliably fabricate those graded -index profiles
required to achieve a minimum of pulse dispersion.' This is due to the
fact that the shaping of the index profile is quite critical because the
reduction -in -pulse -dispersion -vs -profile curves exhibit a singularity-
like behavior in the region of the optimum index distribution.'

Evidence for the preservation of the deposited profile has recently
been reported, based on the observation of a linear increase in refrac-
tive index in a fiber which was pulled from a preform in which the
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dopant concentration was increased in the same manner.' In this
paper, we present results of optical, interference, and scanning electron
microscope studies8 of a graded, near -parabolic, index fiber and pre-
form as further aid in understanding the transition of material from
the preform to the fiber state. A main conclusion of this study is that
the structural features resulting from the preform deposition process
are preserved and, after suitable scale transformation, appear in the
fiber. Due consideration should therefore be given to depositional
characteristics that may ultimately affect transmission behavior.

II. OBSERVATIONS

The preform originates from an approximately 1 -m -long 12 X 14 -
mm fused -quartz tube which is collapsed into a rod after the deposition
process. In the structure studied here, the deposition started with an
initial layer of borosilicate to prevent impurity diffusion into the core.
This layer was deposited with 41 traversals of a oxyhydrogen burner
which provides the heat to react the BC13, SiC14, and 02 starting
materials. The core deposition process consists of systematically in-
creasing the flow of GeC14 while holding the flows of SiC14 and BC13
constant, thus producing an increasing Ge02 content and associated
increased refractive index with increasing deposit thickness. The
GeC14 flow was increased 11 times, in such a manner as to produce a
near -parabolic index variation from the cladding interface to the
center of the core. The number of torch traversals during each of the
11 steps was controlled to make the thickness of each step approxi-
mately equal. After collapse, a length of preform was pulled into a
fiber with an overall diameter of -,-,100 Am by the use of an electric
furnace.

A slice transverse to the axis of the remaining length of preform was
made and then polished to a thickness of approximately 10 mills for
interference and optical microscopic observations. Transverse samples
of the fiber were also prepared for interference -microscope and scan-
ning -electron -microscope studies.8 In the latter case, after a short
length of fiber is scored and broken to ensure a flat end, it is etched in
a 25 -percent solution of hydrofluoric acid for several minutes and then
flash -coated. The last step is performed to prevent charge build-up on
the sample during scanning -electron microscope observations.

An overall view of the preform sample observed with conventional
optical microscopy is shown in Fig. la. The sample is -4.2 mm in
diameter with a core diameter of 4 mm. The irregular shape is due to
pieces of the cladding which broke off during the cutting and polishing
procedure. It should be noted that the preform is under considerable
stress because of the difference in the expansion coefficients of the
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core and the cladding. If this stress is not to be relieved by shattering
upon cutting, extreme care must be used. In this case, the preform was
cut with a diamond wire saw with controlled lubrication. Even so, the
preform did crack, as seen by the dark curved line in the left-hand
section of the sample.

Figures lb and lc obtained by optical microscopy show expanded
views of the central region and of a portion of the entire cross section.
The cladding, the borosilicate layer, and the first five germania-
borosilicate steps are labeled. The regions between the steps are quite
distinct, as are the individual layers within each step. Each of these
layers, as noted, corresponds to a traversal of the oxyhydrogen burner
along the tube. During step 3, for example, the GeC14 flow was main-
tained constant for nine traversals of the burner, producing the nine
layers observed in Fig. lc.

An expanded view of one-half the preform sample as observed by
interference microscopy is shown in Fig. 2. The refractive -index differ-
ence between the cladding and a point in the core of the preform is
given by the fringe displacement at that point times the wavelength
of observation and divided by the thickness of the sample. One ob-
serves the straight parallel fringes in the fused silica cladding on the
right indicating the uniform composition of this region, as expected.
The drop in the level of the fringes indicates the termination of the
cladding and the start of the borosilicate step that has a lower index
of refraction than pure fused silica. Again, in this region, which extends
for about 375 eum, the composition is relatively uniform and no evi-
dence is seen of the 41 layers which comprise this step. This tends to
indicate that some boron diffusion occurs, smoothing out the indi-
vidual layers. It does not appear, however, that boron diffuses into
the cladding, as evidenced by the relatively sharp transition occurring
ti 10 Am between the cladding and this step.

At the termination of the pure borosilicate layer, germania deposi-
tion commences. The first three of these steps are labeled. Note, in
particular, that step 3 exhibits nine sinusoid -like variations which, as
discussed previously, correspond to nine torch traversals used in
depositing this step. The reason for this index variation within each
layer may be due either to a difference in composition of the particles
reacting homogeneously (i.e., in the gas phase) and heterogeneously
(i.e., on the surface of the tube),' or to temperature variation effects,
depositing different concentrations as the torch passes. These com-
positional variations become quite sizable as the number of layers in
each step decreases towards the center of the core. Note that in all
steps the integrity of these layers is maintained and that relatively
sharp boundaries exist between the steps. The transitions are most
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clearly seen between the first few steps in which the change in ger-
manium content is largest. These observations indicate that little, if
any, germanium diffusion occurs between adjacent steps or within a
given step itself.

The situation is quite different at the center of the core. Despite the
fact that the germanium concentration was varied in a smoothly in-
creasing manner in the last several steps, a large disturbance in the
center is observed, with a corresponding dip in the refractive index.
We believe this is due to the evaporation of germania at the inner
surface of the deposit during the elevated temperatures experienced
in the collapse process. The fact that the last two or three layers
appear to broaden towards the center also indicates the existence of
some germanium flow extending beyond the immediate central seg-
ment. It may be possible to compensate for this effect by a germanium
overdoping in this region.

Quantitative index measurements indicate a maximum index differ-
ence between core and cladding of approximately Amm = 0.016 and an
index difference between the cladding and the borosilicate layer of
An = 0.004. Both values are in very good agreement with the corre-
sponding measurements made from the microinterferrogram of the
fiber, which is shown in Fig. 3a, and indicate a preservation, for the
most part of the material composition through the pulling process.

Note in Fig. 3a the uniform cladding containing straight parallel
fringes, the subsequent drop owing to the borosilicate layer, and the
gradual grading of the index profile to a maximum near the axis.
The grading was near -parabolic and has been related to a reduction in
pulse dispersion for this fiber.9 These regions are again shown in the
transmitted -light photomicrograph of Fig. 3b. The core which appears
as the bright central area is surrounded by the relatively dark borosili-
cate layer. Beyond that is the grayish cladding with an overall diameter
of 96 Am.

The resolution of the interference microscope is not sufficient to
resolve any layer or step structure in the fiber. To obtain greater reso-
lution, we made use of scanning electron microscopy. Preparation of
the fiber samples was described previously, and results of observations
are shown in Figs. 4 and 5.

Figure 4 presents three micrographs taken at increasing magnifica-
tions centered on the axis, and Fig. 5 is a composite photograph of a
section of one-half the fiber at somewhat greater magnification. The
main points to be noted are the preservation of the step and layer
structure in the fiber and the appearance of the elevated region near
the axis. This feature is a region that did not etch as rapidly as the
surrounding area, because of a lack of contained dopant and agrees
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(a)

(b)

(C)

1--1 1 0 11. m

e---1 2 p, m

1----1 1 p. M

Fig. 4-Scanning-electron-beam-microscope photographs of fiber at increasing
magnification.

with the preform observation of germanium departure during collapse.
The appearance of the distinct step and layer structure displays the
further lack of germanium diffusion even during the pulling process
and indicates the maintenance of compositional and structural in-
tegrity from the deposition through the pulling process, with the ex-
ception of the central region.

We further investigated this latter region in another fiber prepared
in the same manner by chemical vapor deposition. In this fiber, the
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GeC14 flow was increased at each of ten steps to produce a linear varia-
tion in concentration. The number of layers in each step varied some-
what from the fiber considered above.' Scanning -electron -microscope
photographs of etched fiber samples are shown at increasing mag-
nification in Fig. 6.

The depression of the index on the axis because of the loss of dopant
is quite pronounced in this fiber and appears as the micron -or -so in

(a)

(b)

(c)

i-I 1 0 ki, m

I-4 2µm

1---1 1 IA, m

Fig. 6-Scanning-electron-beam-microscope photograph of fiber having linear
refractive -index profile.
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diameter, raised, tapered pip in the center. Note also the preservation
of the distinct step and layer structure. The refractive index depression
is also observed in this case in the microinterferrogram of the fiber
shown in Fig. 7. It is seen as a dip in the fringe normally passing
through the center of the fiber. Slight modulations of the refractive
index can also be observed at each of the ten steps in this case owing
to the relatively large change in germanium concentration between
the steps.

It is important to note that, despite the structural features that
exist on such a small scale, the losses of these fibers were less than 5
dB/km in the region of 1.0 Am. This is presumably due to the fact
that these features are very uniform in the direction parallel to the
axis of the fiber and hence do not contribute in a large way to scatter-
ing losses. Small-scale variations of such features if existing, however,
could form a lower limit on losses achievable with fibers fabricated
by this technique.

20pm

Fig. 7-Microinterferrogram of linear refractive -index profile fiber showing index
depression in center.

STRUCTURE OF OPTICAL FIBERS 1691



In summary, structural features resulting from the preparation of
both the preforms and graded -index optical fiber by the chemical
vapor deposition process have been observed by optical, interference,
and scanning electron microscopy. These features can be directly
related to steps in the fiber fabrication. It was observed that structures
present in the preform were preserved through the drawing and were
present in the fiber. For instance, optical and interference observations
indicated that germania concentrations varied within each deposited
layer, and this variation was not substantially altered by subsequent
processing steps except in the centermost layers. Here, flow of the
deposit during collapse and vaporization of germania, probably as
GeO, led to a depleted region of lower refractive index at the fiber
center.
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A primary interest in any method for producing synthetic speech is to
minimize the number of bits per second required to generate acceptable
quality speech. An efficient method for transmitting the linear -prediction
parameters has been found by using the techniques of differential PCM.
Using this technique, speech transmission is achieved employing fewer
than 1500 bits/s. Further reductions in the linear -prediction storage re-
quirements can be realized at a cost of higher system complexity by trans-
mission of the most significant eigenvectors of the parameters. This tech-
nique in combination with differential PCM can lower the storage to
1000 bits/s.

I. INTRODUCTION

The method of linear prediction has proved quite popular and suc-
cessful for use in speech compression systems.' -4 In this method, speech
is modeled as the output of an all -pole filter H(z) that is excited by a
sequence of pulses separated by the pitch period for voiced sounds, or
pseudo -random noise for unvoiced sounds. These assumptions imply
that within a frame of speech the output speech sequence is given by

s(n) = aks(n - k) un,
k=1

where p is the number of modeled poles, un is the appropriate input
excitation, and the ak's are the coefficients characterizing the filter
(linear prediction coefficients). Figure 1 illustrates the frequency -
domain, as well as the equivalent time -domain, model of linear -pre-
diction speech production. To account for the nonstationary character
of the speech waveform, the parameters ak of the modeled filter are
periodically updated during successive speech frames.' Generation of
speech in this method requires a knowledge of the pitch, the filter

* A frame is a segment of speech thought adequate to assume stationarity of the
speech process. Typical frame lengths employed range from 10 to 30 ms.
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OF ORDER p

(b) TIME-DOMAIN MODEL

Fig. 1-Discrete model of speech production as employed in linear prediction.

parameters, and the gain of the filter (amplitude of input excitation)
in each speech frame.

A primary interest in any method for producing synthetic speech
is to minimize the number of bits per second needed to generate ac-
ceptable quality speech. The smaller the information storage require-
ments (bits per second), the more attractive the system becomes for
the important applications of voice answer -back and speech trans-
mission.° To achieve the minimum storage requirement for a given
system, an efficient means of quantizing the generating parameters
must be determined. Using conventional pulse code modulation (PCM)
techniques in which the amplitude of each parameter is uniformly
quantized into 2B levels, it has been found necessary to allot at least
five bits (B = 5) of information for both pitch and gain and at least
11 bits for each ak.' The corresponding storage requirements for this
method of quantization of the linear -prediction (LPc) parameters is
unacceptable for many applications, and an improved scheme for
quantizing the parameters is needed.

For the usual 12 -pole linear -prediction representation, the dominant
portion of storage is allotted to the filter coefficients (132 bits per
frame in the PCM method of information transmission). The extremely
fine quantization of the ak's is necessary because small perturbations
in the coefficients can sometimes cause radical changes in the important
pole frequencies of the modeled filter H (z) and may even cause the
filter to become unstable (poles outside the unit circle). To overcome
the limitations of quantizing the predictor (filter) coefficients, it has
been found quite profitable to transmit different but informationally
equivalent sets of parameters.4,6 The most suitable parameters have
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been experimentally determined to be the log -area ratio coefficients
gi.4 These coefficients are nonlinearly related to the filter coefficients by

1 k,gi = log 1 - ki (1)

where the ki's are termed the parcor coefficients.1,2.4.6 If we denote a'
as the ith linear prediction coefficient for a jth-pole linear -prediction
model, then

ki = 0).

The parcor coefficients have the very important property that if

1k11 < 1, i = 1, ,p,

(2)

(3)

then it is guaranteed that the linear -prediction filter is stable.4 Thus,
small perturbations in the parcor coefficients or log -area coefficients
will not affect the stability of the modeled filter.

Since the log -area coefficients are nonlinearly related to the filter
coefficients, transmission of the log -area parameters is equivalent to a
nonuniform quantization of the linear -prediction coefficients. By
transmitting the log -area parameters, the number of bits allotted to
the filter parameters can be effectively reduced by nearly 1.3'4'6 In this
paper, we offer two additional methods of quantization of the necessary
synthesis parameters (pitch, gain, and filter coefficients) that can even
further reduce the storage requirements of a linear -prediction vocoder.
One proposed method of quantization uses the technique of differ-
ential PCM (DPCM) to transmit the linear -prediction parameters. This
scheme exploits the fact that the LPC parameters are themselves pre-
dictable from previous samples. Using this method, speech transmis-
sion that is practically equivalent to the unquantized synthesis can
be achieved using fewer than 2000 bits/s.

The second method of transmission exploits the redundancy between
the linear -prediction parameters. The LPC parameters can be predicted
not only from the given parameter's past values, but also in some sense
from values of the other parameters. The suggested scheme involves
the transmission (using DPCM techniques) of the most significant eigen-
vectors of the log -area parameters. For the typical speech utterance,
the space of the 12 log -area coefficients can be effectively represented
by only the first five or six eigenvectors. The transmission requirement
for this method is fewer than 1200 bits/s.

The organization of this paper is as follows. In Section II, we briefly
discuss the concept of DPCM coding. In Section III, we show that DPCM
coding offers a significant improvement over PCM coding for trans-
mission of the linear -prediction parameters. In Section IV, the results
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are presented of a synthetic speech experiment using the proposed
DPCM scheme. In Section V, we discuss several methods of DPCM coding
that are more suitable for real-time implementation. Included in this
section is a discussion of adaptive quantization (ADPCM) and adaptive
DPCM prediction. In Section VI, we discuss the method of orthogonal
linear prediction. The results of synthetic speech experiments are
included in this section. Finally, we conclude with a summary and
discussion of the results presented in the paper.

II. DIFFERENTIAL PULSE CODE MODULATION

The idea of differential PCM is similar in philosophy to the concept
employed in linear -prediction speech analysis. In DPCM, we assume that
the transmitted parameter in a given frame of interest can be estimated
by a linear combination of the parameter in previous frames.? If we
let x,. denote the value of the transmission parameter x in the rth
frame (where x can represent pitch, gain, log -area coefficients, or what-
ever), then this assumption implies

n

Xr E
sal

(4)

where n is the order of the DPCM prediction analysis. The DPCM tech-
nique calls for the transmission of the difference between the predicted
value /, and the true value x,..

Figure 2 illustrates the structure of the DPCM coding system. In the
implementation of a DPCM scheme, a feedback path around the quan-
tizer is used to ensure that the error in the reconstructed (quantized)
signal 2r is precisely the quantization error for the difference signal
er = X r where / is the predicted value based upon the quantized
signal fr. The predictor coefficients bi are chosen to minimize the power
of the difference signal er. The mathematical analysis required for the
solution of the optimum set of bi's is exactly the same as the analysis
for the calculation of the linear -prediction coefficients, ai, i = 1, , p.
The determination of the bi's is made by solving the familiar correla-
tion equations :

n N
bi >2 xr_ixf_k = -

i=1 r=n

N
E xrxr_k,
r=n

1 s k s n, (5)

where N is the number of frames in the utterance.
The advantage of DPCM coding is obvious when one realizes that,

if xr can be accurately estimated from previous samples, the informa-
tion necessary for transmission (as expressed by the difference signal
x,. - 1) is necessarily less than the information required for coding
the signal without exploiting its predictability. The advantage of

1696 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1975



Fig. 2-Differential PCM (Qz = quantizer; PR = predictor; = xT =

DPCM coding can be precisely specified by noting that, for a given fine-
ness of quantization, the quantization error is proportional to the
variance of the signal present at the quantizer.? Thus, the improve-
ment in performance (as measured by the frequently used standard
of signal -to -quantization -error ratio) using DPCM strategy over straight
PCM coding is given by the ratio of the variance (power) of x,. to that
of the difference signal

(e)G =
((x, -T )2)

(6)

Using the optimum predictors bi, the resulting gain over PCM is ap-
proximately* given by

biCi\-1 (4)
ac.pt = (1 - 2, (7)

CO ((Xr 17)2)

where -
N

ei = E xrxr_i. (8)
T=74

For equal standards of synthetic speech quality, the gain obtained
by using a DPCM strategy over that of PCM coding can be traded off to
reduce the rate of information transmission. Of course, for G < 1, it
is disadvantageous to use DPCM coding. However, for the transmission
of parameters that are reasonably smooth in their variation from one
transmission frame to the next, it is guaranteed that DPCM coding is
superior to PCM coding. In the next section, we demonstrate the effi-
ciency of DPCM techniques for the coding of the linear -prediction speech
parameters.

III. DPCM IMPROVEMENT IN CODING LPC PARAMETER

To illustrate the efficiency of DPCM techniques in the coding of the
synthesis parameters, Fig. 3 shows the improvement factor G.,t, in
decibels as a function of the number of DPCM predictors. The figure

* The gain is approximate because the effects of the quantizer in Fig. 2 are ignored.
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Fig. 3-G0t for the sentence, "May we all learn a yellow lion roar."

8

shows G.,,t for the first two log -area coefficients (g1 and g2), * pitch
period and power.'" for the all -voiced utterance, "May we all learn a
yellow lion roar." The improvement factor was calculated by con-
sidering each particular parameter across the entire sentence and then
calculating the optimum predictors using eq. (5) and G.pt using eq.
(7). The results depicted in Fig. 3 are for a male speaker, but the results
are typical of those obtained for other male and female speakers. For
the complete ensemble of parameters necessary to produce synthetic
speech (12 log -area coefficients, pitch, and power),I the set of improve-
ment factors were all significantly greater than 1.

Figure 4 shows a typical plot of the improvement factor calculated
for a sentence containing unvoiced sounds, "Few thieves are never

* The parameters were calculated at the rate of .50 samples per second. The filter
parameter was calculated by the covariance method (Ref. 1), and pitch was measured
by a method developed by B. S. Atal (Ref. 8).

t Power is defined as the energy in the speech frame. For the synthetic system
employed, it is more convenient to transmit power instead of the amplitude of the
input excitation.

Log -area coefficients were transmitted because of their optimum quantization
properties.
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Fig. 4-G.pt, for the sentence, "Few thieves are never sent to the jug."

8

sent to the jug." In this sentence, the DPCM improvement over PCM

coding is not as dramatic as for the all -voiced sentence. The reason
for the decreased values of G.pt is that the synthesis parameters tend
to change sharply during the unvoiced -voiced transition. Thus, during
the transition region there is an abrupt reduction in the correlation
between successive samples, and very little information can be gained
about the signal from past values. Another reason for the reduced
values of Gc.pt, is that the variation of the LPC parameters during un-

25

20
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PITCH

G1

POWER

G2

2 3 4 5 6 7 8

NUMBER OF PREDICTORS

Fig. 5-G.pt, for the sentence, "Few thieves are never sent to the jug." A separate
DPCM analysis is used in each unvoiced and voiced segment.
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voiced sounds is inherently more random than during voiced sounds
and is thus less predictable. Fortunately, during unvoiced regions the
quality of the synthesized speech is more tolerant to quantization
noise than during voiced regions.4 Thus, the diminished values of the
Gopt's is not as significant as might at first appear.

One method of increasing the improvement factor for utterances
containing unvoiced sounds is to update the DPCM predictors when-
ever the spectral properties of the speech signal change from unvoiced
to voiced sounds. Figure 5 shows Gaps for the same sentences as were
used to obtain the results of Fig. 4, but in this figure the optimum
DPCM predictors were separately calculated for each different section
of unvoiced and voiced speech. The improvement factor for this form
of DPCM coding is about 5 dB better than a single calculation of the
predictors. In a later section of the paper, we discuss another method
for updating or adapting the DPCM predictors to the changing spectral
properties of the speech signal.

IV. SPEECH SYNTHESIS

4.1 Synthesizer

The improvement factors for the LPC parameters demonstrate that
DPCM coding is superior to PCM coding. To confirm the results of the
Gopt experiments, a synthetic speech system was constructed in the
manner illustrated in Fig. 2. To take advantage of the fact that the
improvement factor saturates near n = 1 (Figs. 3 and 5), only a simple
first -order DPCM system was used. The optimum predictor was recom-
puted for each separate unvoiced and voiced region and the LPC
parameters were calculated at a rate of 50 samples per second. The
speech was synthesized using the formulation discussed by Atal and
Hanauer.' After quantization, the parameters were geometrically
interpolated (linear interpolation on a logarithmic scale) to allow
pitch synchronous resetting of the synthesizer.

The quantizer used in the DPCM coding of the synthesis parameter
was a nonuniform quantizer that was designed to exploit the properties
of each parameter's error signal. An experimental investigation has
indicated that the difference signal for pitch, power, and g1 are most
suitably modeled by a zero mean gamma density,

where

Alic
xP(er) = ,--- e P (-Ceti),

21,17r ler I

=
Aio.7 5

cr
k
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The higher -order log -area coefficients are more Laplacian in character :

P er(er) = 4 exp ( -
where

I et3,1 )

0-= V2/3.

A signal with a gamma distribution is highly concentrated near its
mean, but can also readily achieve values more than three standard
deviations from its mean. A Laplacian signal is less concentrated than
a gamma signal near its mean value. Figure 6 illustrates the statistical
characteristics of a zero mean, unit standard, deviation signal with a
gamma density, a Laplacian density, and a gaussian density. Figure
7 shows a comparison between the calculated distributions for the
difference signal of several typical synthesis parameters and their
approximated distributions.

For a gamma -behaved signal, the properties of the optimum quan-
tizer are summarized in Table I.' The xi values in the table define the
ends of quantizer input ranges, and the yi values are the corresponding
outputs. Thus, for a two-bit quantizer, an input between 0 and 1.205 is
quantized as 0.302. Similarly, an input between 0.229 and 0.588 for a
four -bit scheme is quantized as 0.386. The properties of the optimum
quantizer for Laplacian signals are summarized in Table II.' Included
in these tables is the expected mean square between the difference

-3a -2a -0- 0 a 2a 3a

Fig. 6-Comparison of a gaussian, gamma, and Laplacian density with zero mean
and unit standard deviation.
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--GAMMA

-LAPLACE

-3cr -20' -o 0 cr 2cr

Fig. 7 -Comparison between calculated density and approximated density for
difference signals.

signal and the quantized difference. Thus, for a four -bit quantization
of a gamma signal, the mean square error is 0.0196.

Tables I and II are constructed for signals with unit standard devia-
tion. To obtain the levels y. and boundaries xi for signals with standard

Table I - Optimum quantizers for signals with gamma density
(p. = 0, Q2= 1)

B 1 2 3 4 5

i xi ?if xi yi X. yi xi yi xi yi

1 00 0.577 1.205 0.302 0.504 0.149 0.229 0.072 0.101 0.033
2 00 2.108 1.401 0.859 0.588 0.386 0.252 0.169
3 2.872 1.944 1.045 0.791 0.429 0.334
4 co 3.779 1.623 1.300 0.630 0.523
5 2.372 1.945 0.857 0.737
6 3.407 2.798 1.111 0.976
7 5.050 4.015 1.397 1.245
8 00 6.085 1.720 1.548
9 2.089 1.892

10 2.517 2.287
11 3.022 2.747
12 3.633 3.296
13 4.404 3.970
14 5.444 4.838
15 7.046 6.050
16 00 8.043
MBE 0.6680 0.2326 0.0712 0.0196 0.0052
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Table II - Optimum quantizers for signals with Laplace density
= 0, cr2 = 1 )

B 1 2 3 4 5

i xi yi xi yi xi yi xi yi xi yi

1 co 0.707 1.102 0.395 0.504 0.222 0.266 0.126 0.147 0.072
2 00 1.810 1.181 0.785 0.566 0.407 0.302 0.222
3 2.285 1.576 0.910 0.726 0.467 0.382
4 00 2.994 1.317 1.095 0.642 0.551
5 1.821 1.540 0.829 0.732
6 2.499 2.103 1.031 0.926
7 3.605 2.895 1.250 1.136
8 00 4.316 1.490 1.365
9 1.756 1.616

10 2.055 1.896
11 2.398 2.214
12 2.804 2.583
13 3.305 3.025
14 3.978 3.586
15 5.069 4.371
16 co 5.768

MSE 0.5 0.1765 0.0548 0.0154 0.00414

deviation different from unity, simply multiply the given values by
the actual standard deviation.' The standard deviation for each param-
eter can be approximated as the rms power of the unquantized error
signal. The rms value of the unquantized error signal is obtained
directly from the calculation of the optimum DPCM predictors and is
given by

cr2 = Co -

4.2 Experimental results

Four sentences were synthesized in the experimentation:

A. Few thieves are never sent to the jug.
B. May we all learn a yellow lion roar.
C. It's time we rounded up that herd of Asian cattle.
D. Should we chase those young outlaw cowboys?

High -quality recordings of these sentences were made by two male and
two female speakers, and these utterances were used to obtain the
analysis data for the DPCM coding method.

" To obtain the mean square error, multiply the values by the signal variance.
t Since the properties of the unquantized error signal are explicitly known, it is

sometimes advantageous to use a more complex nonuniform quantizer to truly
optimize the transmission system.
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Various schemes were tested for assigning bit rates for each indi-
vidual error signal. From informal listening experiments, it was de-
termined that synthetic speech that was negligibly different from the
unquantized synthesis could be generated according to the following
bit assignment :

Pitch: 3 bits/frame
Power : 3 bits/frame

Unvoiced -voiced : 1 bit/frame
gi: 4 bits/frame
g2: 4 bits/frame
g3: 4 bits/frame
g4: 4 bits/frame
g5: 3 bits/frame
g6: 3 bits/frame
g7: 2 bits/frame
ga: 2 bits/frame
gg: 2 bits/frame

gio: 1 bit/frame
gll : 1 bit/frame
g12: 1 bit/frame

The total number of bits dedicated to the complete set of LPC param-
eter is only 38 bits/frame or 1900 bits/s. On the average, an additional
100 bits/s are required to transmit the necessary DPCM information
(DPCM predictors, standard deviations, and initial values of the LPC
parameters). As can be observed from Figs. 8, 9, and 10, the spectro-
gram of the DPCM synthetic speech closely resembles that of the un-
quantized synthetic speech but requires only a fraction of the storage.

As the bit rate for the DPCM linear prediction vocoder is lowered
below the value of 2000 bits/s, the quality of the synthesis slowly
begins to deviate from that of the unquantized synthesis. Since the
log -area parameters are approximately ordered in terms of their sensi-
tivity, the most expandable bits are those allotted to the lower -ordered
gi's.4 Depending on the speaker and the utterance, the bit rate can be
lowered to between 900 and 1500 bits/s and still allow acceptable
quality synthesis.* Figures 11, 12, and 13 illustrate the above examples
for a bit -rate of 1400 bits/s (3; 3; 1; 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1). The
synthetic speech in these examples is slightly degraded from the un-
quantized synthesis, but the speech is still readily understood and the
vocal attributes of the speaker are still apparent. It should be appre-

Acceptable quality speech synthesis is defined as speech containing all the in-
formation content of the original without containing any annoying degradation in
speech quality.
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ciated that the necessary storage requirements to produce acceptable
quality synthetic speech in this method are nearly s the requirement
for the PCM transmission of the LPC parameters (see Section I).

V. REAL-TIME DPCM TRANSMISSION

The DPCM scheme developed in Section III suffers from the draw-
back that the calculation of the DPCM predictors and the quantizer
step size are delayed until all the LPC parameters are available. For
real-time speech synthesis, it is desirable that the process of parameter
transmission be done concurrently with the measurement of the LPC

parameters. In this section, we discuss several schemes for achieving
real-time transmission while still retaining almost the performance of
the optimum DPCM strategy.

5.1 Average statistical system

The first means of obtaining a real-time system is based upon the
observation that the optimum DPCM first -order predictor for many of
the LPC parameters is nearly equal to one [b1 = 1.0 in eq. (4)]. Thus,
the optimum linear prediction of the parameter x,. is approximately
x,._1. Table III is a comparison of the improvement factors G.pt ob-
tained for b1 = 1.0 and b1 set equal to the optimum value. The overall
improvement factors for b1 = 1.0 are not significantly different from
the optimum values, and the delay in calculating the optimum b1 can
be avoided by simply letting 191 = 1.0.

To design the optimum quantizer, it is necessary to know the stan-
dard deviation of the signal to be quantized. However, our statistical
studies have indicated that the standard deviation of the various
difference signals are quite stable across different utterances and
different speakers. Table IV shows the measured standard deviations
for each difference signals computed with b1 = 1.0. Table IV also

Table Ill - Comparison of Goo in decibels with b1 set equal
to optimum value and b1 = 1.0. Sentence A is "Few

thieves are never sent to the jug" and sentence
B is "May we all learn a yellow lion roar."

Pitch Power 91 92

Sentence A
b1 = Optimum 23.7 12.2 14.7 12.2
b1 = 1.0 20.2 10.1 14.1 11.0

Sentence B
b1 = Optimum 33.8 19.0 24.0 19.6
bi = 1.0 33.1 18.8 23.9 19.2

LINEAR -PREDICTION VOCODER 1711



Table IV - Measured standard deviations for the
synthesis parameters

Updated No Updating

Pitch Period 13.01 16.5
Power 27 X 105 27 X 105
91 0.697 0.959
92 0.729 0.830
g3 0.509 0.559
g4 0.510 0.554
95 0.413 0.446
96 0.417 0.430
97 0.386 0.406
98 0.385 0.406
96 0.377 0.399
gio 0.346 0.364

0.332 0.342
g42 0.322 0.328

contains the standard deviation for a system in which the prediction
scheme is not updated for each unvoiced and voiced region.

Using the standard deviations listed in Table IV and the quantizer
discussed in Section IV, a robust transmission scheme is achieved.
For example, the difference signal for the pitch period can be accurately
quantized for differences as small as two samples or as large as 50 for
three -bit quantization.* The synthetic speech quality for the average
statistical system compares quite favorably to the optimum scheme,
and has the added advantage of real-time implementation.

5.2 Adaptive system

5.2.1 Adaptive DPCM prediction

The DPCM predictors can also be calculated without knowing the
entire sequence of parameters by an adaptive method that is based
upon the technique of "steepest descent."" In this scheme, an initial
estimate of the DPCM predictors is determined and then a new set of
predictors is calculated to reduce the prediction error. The perturba-
tion in the predictors is in a direction opposite the gradient of the pre-
diction error taken with respect to the DPCM predictor vector. The
resulting perturbation is given by

or (b = B B. sgn (er)  Zr-1/ Zr-k I , (10)

where B is the adaptation rate (typically, B = 0.09), and Zr is the

If a nonlinear smoothing algorithm (Ref. 10) is applied to the raw pitch measure-
ments, the variance of the corresponding difference signal is reduced by more than
4. A two-bit quantization can then be used for pitch without diminishing the quality
of the synthesis.
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quantizer value of the parameter. For the prediction of the (r 1)th
sample of the parameter, the DPCM predictors are given by

bri+i = b; r (b

For a quantizer with B > 2, it can be shown that the adaptation
scheme will match the changing spectral properties of the speech signal
and result in near -optimum performance." For the two methods given
above, it should be noted that, in addition to the on-line calculation
of the DPCM predictors, it is unnecessary to transmit the predictors.

5.2.2 Adaptive quantization

In the previous section, the quantizer was constructed to take ad-
vantage of the known properties or average statistical properties of
each parameter's difference signal. In this part of the paper, we intro-
duce an alternate technique for estimating the signal variance. This
method is based upon an adaptive approach developed by Cummiskey,
Jayant, and Flanagan." In their scheme, a simple uniform quantiza-
tion of the difference signal is used, but the step size for every new
input is varied by a factor depending on which quantizer slot was
occupied by the previous sample. Numbering the quantizer slots in
the manner shown in Fig. 14, the updated step size Ar±i is calculated
from the previous step size Or by

Ar+i = irM(IHrF), (12)

where Hr = 1, 2, , B and the multiplier function M( ) is a time -
invariant function of the quantizer slot number.

OUTPUT

2

3A,

H, = 1

H, = 3

H, = 2

H, = -3

H, = -1

H, = -2

-1,
 INPUT

Fig. 14-Numbering of quantizer slots for adaptive quantization.
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To adequately match the step size to the signal variance, the mul-
tiplier function must be properly chosen. Table V shows the multiplier
functions found to be experimentally optimum for quantizing speech
waveforms. Using this adaptive scheme (ADPCM) and these multipliers,
the quantization of the difference signals can also be efficiently achieved
even when the initial step size is a poor estimate of signal variance.
Table VI is a comparison of the signal-to-noise ratio for the adaptive
scheme with a crude initial estimate of step size and the optimum
quantizer discussed in Section IV. The results in Table VI are an
encouraging demonstration that it is not necessary to know the sta-
tistical structure of the difference signal to efficiently quantize the
signal. In fact, it can be shown that, if the properties of the signal are
nonstationary, the adaptive method is more suitable than the scheme
used in Section IV.

It should be noted that the above scheme does not apply for one -bit
quantization (B = 1) . A simple strategy for one -bit quantization has
been developed by Jayant." Let cr and cr_1 denote the values of suc-
cessive bits in a one -bit scheme, then

Or = (13)

where P has the typical value P = 1.5. Although this method was
developed for quantizing speech waveforms, it performs quite well
in quantizing the parameter difference signals. A comparison of this
method and the optimum technique is shown in Table VII. Again, the
adaptive scheme works well even with a poor initial estimate of signal
variance.

5.3 Synthesis

To subjectively evaluate the performance of the adaptive methods
suggested in this section, several speech utterances were synthesized.
The synthesis scheme was again the one described by Atal and Han-
auer,' but an adaptive quantizer and a second -order adaptive predic-

Table V - Step size multipliers for B = 2, 3, and 4 (Ref. 7)

2 3 4

M(1) 0.80 0.90 0.90
M(2) 1.60 0.90 0.90
M(3) 1.25 0.90
M(4) 1.75 0.90
M (5) 1.20
M(6) 1.60
M(7) 2.00
M(8) 2.40
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Table VI - Comparison of the signal-to-noise ratio for the
. adaptive quantizer with crude initial estimate of step

size and the optimum gaussian signal uniform
quantizer. The analysis is for the sentence,

"May we all learn a yellow lion roar."

Bits
92 ga

Adaptive Optimum Adaptive Optimum Adaptive Optimum

2 12.6 13.6 18.3 18.4 15.6 16.5
3 18.0 20.4 21.8 21.8 19.2 20.0
4 22.8 21.9 24.9 23.9 24.0 23.1

tion DPCM technique was used to transmit the LPC parameters. The
initial estimates of the predictors were b1 = 1.0 and b2 = 0.0. A second -
order analysis was performed because adaptive prediction makes the
G,,t function saturate at a larger value than a nonadaptive predictor.'
The initial estimate of the quantizer step size was set equal to the
standard deviations of the parameters listed in Table IV. For param-
eters in which the quantizer uses only one bit, a first -order system
with b1 = 1.0 was used.

Employing the bit assignment cited in Section IV, the quality of the
synthetic speech was only slightly worse than the optimum scheme.
Figure 15 shows a comparison of one example of the optimum scheme
and the adaptive method. To achieve the performance of the optimum
scheme, it has been found necessary to allot approximately one bit
more per frame to the most sensitive parameters (usually pitch and
power).

VI. ORTHOGONAL LINEAR PREDICTION

In the DPCM method of transmission, the value of the parameter xr
is predicted from previous values of the given parameter. However,

Table VII - Comparison of the signal-to-noise ratio for a
one -bit adaptive quantizer and optimum one -bit

gaussian signal uniform quantizer

gi 92 93

Adaptive Optimum Adaptive Optimum Adaptive Optimum

7.3 8.5 8.8 9.9 8.2 9.7
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the LPC parameters have been experimentally determined to be quite
redundant." Thus, the parameter xr can be predicted not only from
its own past values but also in some sense from the values of the other
LPC parameter. A more efficient method of transmission can then be
obtained by exploiting all the available information about a given
parameter.

One means of exploiting the redundancy among the LPC parameters
is to generate a set of orthogonal parameters that are linear combina-
tions of the original set. The new parameters are uniquely (one to one)
related to the LPC parameters and are calculated to be independent of
each other and therefore do not contain any mutual information. If
the original parameters are redundant, only a small subset of the
orthogonal parameter will demonstrate any significant frame -to -frame
variation. The process of obtaining the appropriate orthogonal param-
eters is referred to as an eigenvector analysis." The orthogonal param-
eters are termed eigenvectors, and each vector's statistical variance
is termed the eigenvalue of the eigenvector.

To determine the eigenvectors, we first calculate the covariance
matrix of the log -area parameters R across the utterance. If we denote
gi; as the ith log -area parameter in the jth frame, then the elements
of R are

where

1 Nrik = - 1 E (gi; - mO (gki - mk),

N
mi = N E '

and N is the number of frames in the utterance. Given the covariance
matrix, the set of eigenvalues X i are found by solving the set of simul-
taneous equations

- XII = 0,

where I is the identity matrix and IA I denotes the determinant of the
matrix A. The eigenvectors (Di are then found as solutions of the
equation

Xic1), =

To illustrate the behavior of the LPC parameters and the correspond-
ing orthogonal parameters, Table VIII contains a listing of the typical
variance (eigenvalues) of each calculated eigenvector parameter across
the four utterances examined. The redundancy in the original log -area
coefficients is reflected in the fact that more than 90 percent of the
total statistical variance is contained in the first five or six eigenvectors.
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Table VIII - Measured eigenvalues for the four
sentences analyzed:

A. Few thieves are never sent to the jug.
B. May we all learn a yellow lion roar.
C. It's time we rounded up that herd of Asian cattle.
D. Should we chase those young outlaw cowboys?

A B C D

1 2.62 2.23 1.75 2.75
2 1.44 0.80 1.29 1.58
3 0.67 0.54 0.85 0.6
4 0.44 0.38 0.52 0.36
5 0.25 0.32 0.31 0.28
6 0.21 0.24 0.17 0.22
7 0.10 0.12 0.13 0.16
8 0.09 0.10 0.10 0.15
9 0.08 0.08 0.08 0.09

10 0.06 0.05 0.06 0.06
11 0.03 0.04 0.04 0.06
12 0.02 0.01 0.02 0.03

The higher numbered orthogonal parameters have a relatively small
variance and can therefore be considered essentially constant through-
out the utterance. Thus, the total information in the 12 log -area
parameters can be effectively represented in the space of only the first
six eigenvectors.

The redundancy in the LPC parameters is not surprising in view of
the fact that the speech signal can be synthesized with only three
formant parameters (F1, F2, F3) . Thus, the information contained in
the 12 log -area coefficients are effectively duplicated in the space of
only three formant parameters. The method of orthogonal linear pre-
diction can be viewed as a constraint technique for squeezing the
original parameters into a smaller but informationally equivalent set
of parameters. The informationally equivalent set is formed by the
most significant orthogonal parameters (significance is measured in
terms of the standard deviation, or eigenvalue, of the orthogonal
parameters).

Experimental studies of a variety of speech utterances have shown
that quite acceptable quality synthesis can be generated by trans-
mitting only the six most significant orthogonal parameters, pitch,
and power. The synthesis is performed by calculating the LPC param-
eters from the transmitted orthogonal parameters and a priori knowl-
edge of the average values of the least significant orthogonal param-
eters. For acceptable quality synthesis, only 22 bits/frame are needed.
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The allotment of bits was as follows :

Pitch: 3 bits/frame
Power: 3 bits/frame
Unvoiced -voice : 1 bit/frame
First orthogonal parameter : 4 bits/frame
Second orthogonal parameter: 3 bits/frame
Third orthogonal parameter : 3 bits/frame
Fourth orthogonal parameter : 2 bits/frame
Fifth orthogonal parameter : 2 bits/frame
Sixth orthogonal parameter: 1 bit/frame.

The total transmission storage requirement in this technique is
1100 bits/s for the synthesis parameters, 100 bits/s for the DPCM in-
formation, and an initial one-time investment of 240 bits* for the
necessary eigenvector information. Figures 16 to 18 illustrate the
synthetic speech spectrograms generated by this technique for the
examples previously examined. Depending on the speaker and the
utterance, the bit rate for the synthesis parameters can be reduced to
between 600 and 1000 bits/s and still yield acceptable quality speech.
The low bit rate required for orthogonal linear prediction is quite
attractive, but unfortunately this method involves a complex eigen-
vector analysis and a delay in transmission to collect the statistical
data necessary for the calculation of the eigenvectors.

VII. SUMMARY AND CONCLUSIONS

The goal of this paper was the development of a more efficient
method of transmitting the LPC parameters. One proposed method
involved the use of DPCM techniques. In DPCM transmission, we take
advantage of the predictability of the parameter from its previous
values to develop a more effective transmission scheme. Acceptable
quality synthetic speech can be generated with DPCM by allotting
between 1000 and 1500 bits/s. This rate of information transmission
is significantly better than the bit rates necessary for the conven-
tional PCM methods.

To enhance the practical application of the DPCM system, the
methods of adaptive quantization and adaptive prediction were dis-
cussed. These methods allow the on-line calculation of the DPCM
predictors and quantizer step size. To further decrease the storage re-

 Four bits for the average value of each of the six least significant parameters
(24 bits) and three bits for each of the 12 coefficients required to compute each
orthogonal parameter from the log -area coefficients (36 X 6 = 216 bits).
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quirements of the LPC vocoder, the redundancy of the log -area param-
eters was exploited. By transmitting only the most significant eigen-
vectors, a considerable saving in bit rate can be achieved.

The techniques discussed in this paper are not limited to the trans-
mission of the LPC parameters, but can also be used in conjunction
with other vocoder systems. For example, the bit rate of a formant
vocoder4 can be reduced using a DPCM scheme for transmitting the
necessary information. These transmission techniques have wide
application and can prove very beneficial in a variety of synthesis
schemes.
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On the Theory of Self -Resonant Grids

By I. ANDERSON

(Manuscript received May 27, 1975)

An approximate theory is developed to predict the frequency response
of a self -resonant grid. The grid is comprised of capacitive and inductive
elements and exhibits a band -stop resonance. The analysis is based upon
the derivation, from physical considerations, of an equivalent circuit
representation of the grid structure. Predicted results compare well with
measured data.

I. INTRODUCTION

Arnaud and Pelow's have recently described measurements of the
transmission properties of several new types of self -resonant, metal grid
structures. These grids, which are readily fabricated by photolitho-
graphic techniques, have applications as millimeter -wave quasi -optical
filters, or diplexers, in communications satellite antennas and in beam
waveguide systems. The grid elements are symmetrical such that the
grids may be used with two orthogonal polarizations. In this paper,
we derive theoretical expressions for the frequency response of the
simplest of the new grids and compare the results with measured data.

The grid to be considered here is a periodic array of "Jerusalem"
crosses as shown in Fig. la. We wish to determine the grid frequency
response in terms of the dimensions of the elements when the planar
transmitted wave is incident normally. On account of the complex ge-
ometry of the grid elements, an exact treatment as a boundary value
problem would be prohibitively difficult. Computer -oriented, numeri-
cal techniques2.3 have provided a powerful means of solution for grid
structures in the form of arrays of rectangular, or circular, apertures.
The successful application of these techniques requires,4 however,
considerable caution in approximating the unknown aperture fields.
When the aperture geometry is complicated, as here, this aspect of
the numerical approach poses a considerable difficulty.

Now, in general, the transmission properties of grid structures can
be described' in terms of an equivalent impedance, together with a

In eq. (2) of Ref. 1, X should be replaced by X/2.
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Fig. 1-Jerusalem-cross array and approximate equivalent circuit.

section of transmission line which represents propagation in free space.
For example,6 consider the transmission of a plane wave incident nor-
mally upon a grid of thin, perfectly conducting, parallel metal strips of
period p. When p << X, where X is the wavelength, the equivalent
impedance is a shunt inductance, or capacitance, depending upon
whether the electric vector of the incident wave is parallel to, or per-
pendicular to, the edges of the strips. In the following section, an
approximate circuit representation of the present grid is derived from
physical considerations and from the known results for grids of
parallel strips. This approach lends itself to a simple understanding of
the grid transmission properties and, furthermore, leads to useful
design formulae.

II. ANALYSIS

As shown in Fig. la, the period of the array is p, the width of the
inductive strips is w, and the separation between adjacent crosses is
g. The length and width of the capacitive segments of each cross are
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d and h, respectively, and the thickness of the grid is t. It is assumed
that

t w p, h p <X, and g d X. (1)

The electric field, Ei, is incident normally on the grid with the electric
vector directed as shown. For purposes of discussion, we shall refer
to this as the "vertical" direction; the incident magnetic field, Hi, is
then in the horizontal direction. The effect of the vertical "dipoles,"
each of length d and width h, at the sides of the crosses is negligible
for d << X. It is therefore assumed that only current that flows parallel
to Ei, along the vertical inductive strips and across the horizontal
capacitive strips, is significant in determining the field scattered by
the grid. On the basis of this assumption, we now consider the mag-
netic and electric fields in the vicinity of the grid.

Since w << p and h << p, the magnetic field about the grid, due to
current flowing along the vertical inductive strips, is approximately
the same as that about a corresponding uniform inductive grid of
period p and strip width w. Hence, the stored magnetic energy of the
Jerusalem -cross grid may be represented approximately by the equiva-
lent inductive reactance, X(w), of this uniform grid, where'

X (w) = 1

and

ln [ cosec Trwp F(X, w)} (2)

F(X, w) =

with

[ Pf?!(1 - 3s)]2 , (3)+Qc(22

Q = [1 - (-3-)2]-1
X

1 ;
7W

C COS2 ( -2p) s = 1 - c. (4)

The reactance X(w) is normalized with respect to the intrinsic im-
pedance of free space. The first term in (2) can be derived6 from mag-
netostatic considerations; the second term is a correction factor which
is negligible when p << X. Since t << w, the effect of thickness upon the
inductive reactance is negligible.8

With regard to the distribution of electric field, it is noted, from
symmetry considerations, that there is no component of electric field
normal to the grid on the planes A and A' of Fig. la. Without dis-
turbing the electric field we may, therefore, insert a pair of infinitely
thin, perfectly conducting plates at A and A' which are perpendicular
to the plane of the grid and distance p apart. In the quasi -static case,
when p << X, the electric flux about the grid elements within this
parallel -plate transmission line is concentrated between the gaps of
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the horizontal capacitive segments. We assume this concentration to
be maintained at all frequencies for which p < X. Since g << d, the
effect of fringing at the extremities of the segments is negligible and the
electric flux, per unit width of the parallel -plate line, is d/p times that
of a corresponding uniform capacitive grid of period p, gap width g,
and thickness t. This implies that the stored electric energy, of the
Jerusalem -cross grid, may be represented approximately by an equiva-
lent capacitive susceptance

B(g, t) = -d B.(g, t),
P

(5)

where B.(g, t) is the (normalized) susceptance of the corresponding
uniform grid. For the case t = 0 we have'

B u(g, 0) = '1) iIn [cosec (11-j-)] + F(X, g)} , (6)
X 2p

where F(X, g) is given by (3) with w replaced by g. The equivalent
impedance of a uniform capacitive grid of thickness t includes6 a seg-
ment of transmission line of length t. When t < 0.5X, this transmission
line may be represented by a II -network of shunt capacitors and a
series inductor. In the present case, t << X, the series element may be
neglected and the total susceptance is10'

rB.(g, t) = B.(g, 0) + 2Xgpt
(7)

The second term in (7) may be derived equivalently by considering
the additional (parallel -plate) capacitance introduced by the finite
thickness of a capacitive diaphragm in a parallel -plate transmission
line of height p. From (5), (6), and (7), the capacitive susceptance of
the Jerusalem -cross grid is approximately

B(g, t) = 4
T,d iIn [ cosec ( 7r-

2p
) ] + F(X, g) +

2g
-irt I (8)

We have obtained approximate values of reactances with which to
describe the stored magnetic and electric energies of the grid and now
consider the equivalent circuit representation. It has been assumed
that only current that flows vertically along the inductive strips, and
across the gaps of the horizontal capacitive segments, is significant
in determining the transmission properties of the grid. This suggests
that the Jerusalem -cross grid can be represented approximately by a

' In Ref. 10, the sign of the second term for B, in eq. (83) on p. 200 should be
positive.
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reactance, X,, where
1

X° = X(w) B(g, t) '

shunted across a transmission line of impedance Zo as shown in Fig. lb.
The impedances in the equivalent circuit are normalized with respect
to the impedance (Z0) of free space, and the impedance seen by a plane
wave incident normally on the grid is Zi. The grid transmission co-
efficient is now expressible in terms of the grid reactance X,. The input
impedance, Zi, is

Zi = 2.X91 + jX
The corresponding voltage reflection coefficient, R, is

R = Z - 1Zi + 1

and the grid power transmission, 1 T12, is

(9)

(10)

4X?,1T12 = 1 - 1R12 = (12)1 + 4Xf,

Substituting (2) and (8) into (9) and (12) then gives the grid trans-
mission response in terms of its dimensions. To the present order of
approximation, 1T12 is seen to be independent of h when <<p.

A first -order approximation for the rejection wavelength X,., defined
by the equation X, = 0, is readily found by assuming p << X so that
the terms F(X, w) in (2) and F(X, g) in (8) may be neglected. Further-
more, if the effect of grid thickness is also neglected, by putting t = 0,
and if the cosecants are replaced by the small argument forms, we find

X (w) ti In T-2 )1) , p « X (13)

4d 2p \
B(g, t)Rd., p X, t 0.

x irg

From (9), the wavelength, X,., at the rejection resonance is then

X,. 2 Vdp In ( -rw
vg22

) In A-3)

(14)

(15)

This result provides an approximate functional dependence of the
resonant wavelength upon the grid geometry.

The effect of the dielectric sheet which supports the grid has been
neglected in the preceding analysis. In general, the presence of an
adjacent, low -loss, dielectric layer will increase the grid susceptance,
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B (g, t), by modifying the electric field in the vicinity of the capacitive
gaps. In the case examined by Arnaud and Pelow,' however, the sheet,
which has a relative permittivity of about 2.5, is thinner than the grid
itself and, as such, is not expected to modify the grid transmission to
the present order of approximation,

III. COMPARISON WITH MEASUREMENTS

The grid measurements of Arnaud and Pelow' were conducted under
approximately plane wave conditions and for a range of incidence
angles from 5 to 45 degrees.* It was found that the frequency of the
rejection resonance, and the shape of the transmission response, were
practically independent of the angle of incidence within this range.
Figure 2 shows the predicted frequency response for normal incidence,
as obtained from (12), compared with measured data for an incidence
angle of 5 degrees. The experimental curve is from Fig. 3 of Arnaud and
Pelow's paper and is for a grid of dimensions p = 1.400 mm, d = 0.750
mm, w = h = 0.180 mm, g = 0.090 mm, and t = 0.018 mm. The
shape of the transmission response is predicted well by the theory ;
the error in the prediction of the rejection frequency is 7 percent. The
first -order expression (15) for the rejection wavelength is within 10
percent of the value obtained from (12).

IV. CONCLUSIONS

We have examined the transmission properties of a self -resonant
grid that is comprised of capacitive and inductive elements. An

*No measurements were taken at exactly normal incidence to avoid multiple
reflections within the measuring system.
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approximate theory has been developed to predict the frequency
response of the grid when illuminated by a plane wave at normal inci-
dence. The theory is based upon the construction of an appropriate
equivalent circuit in which the values of the reactances are obtained
by modification of known solutions for simple, parallel strip grids. A
comparison of results with measured data shows an error of 7 percent
in the prediction of the grid rejection resonance. By way of compari-
son, the corresponding approximate expressions (2) and (6), for parallel
strip grids as obtained from rigorous analyses,' can be in error by
about 1 to 5 percent over the range of frequencies considered here.
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An Approximate Method for Calculating
Delays for a Family of
Cyclic -Type Queues

By S. HALFIN

(Manuscript received May 22, 1975)

A study of the marker -register dial -tone delay problem in No. 5 crossbar
switching machines led to a special type of cyclic queuing model. In this
paper, we present a method for calculating approximately the steady-state
delays of an arriving customer. When applied to the marker -register
problem, the model emphasizes the order in which markers are assigned
to waiting calls and the fact that part of the markers' time is unproductive
when an "all registers busy" condition occurs. Some numerical results are
presented, which agree with the observed phenomenon that, for a constant
marker load, the delays of Touch -Tone ® calls are influenced by the load
on the dial -pulse originating registers, and vice versa. The results are
compared to those of a simulation of the same problem. The numerical
results compare favorably in the range of loads that produce a dial -tone
speed of between 0.05 and 0.15.

I. INTRODUCTION

The queuing model described in this paper resulted from a study of
the marker -register dial -tone delay problem in No. 5 crossbar switching
machines. A number of queues with Poisson arrivals of equal rates
are served in a cyclic order by a server with constant service time.
Upon arriving at a nonempty queue, the server chooses a customer
from the queue at random. After one service time, the customer either
leaves the system with a certain predetermined probability or rejoins
his queue. In both cases, the server uses a fixed amount of time and
moves to the next queue; thus, at most one customer leaves the system
following each arrival of the server at a queue.

Related models were treated by Cooper,' Cooper and Murray,' and
Eisenberg.' In Refs. 1 and 2, the server either empties the queue being
served or serves all those present at the queue in its arrival epoch.
The case of two queues with different arrival rates is treated in Ref. 3.
In these papers, the Laplace-Stieltjes transforms of the waiting time
distributions were obtained. Attempts to obtain the distributions for
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similar models by approximate methods were made by Leibowitz' and
Schay, Jr.'

The method presented here approximately calculates the steady-
state delays of an arriving customer. The approximation is carried out
by modifying the model to achieve a manageable state space. Next,
the method is applied to the problem of dial -tone delay in the No. 5
crossbar switching machine. The order in which markers are assigned
to waiting calls and the fact that part of the markers' time is unpro-
ductive when an "all registers busy" condition occurs are emphasized
in the model. The numerical results presented agree with the observed
phenomenon that, for a constant marker load, the delays of T ouch -
T one® calls are influenced by the load on the dial -pulse originating
registers, and vice versa. The results are compared to those of a simu-
lation of the same problem.

Several features of the No. 5 crossbar machine, which may have an
influence on the dial -tone speed, were excluded. Some of these features
were investigated in subsequent work by H. A. Guess' and are de-
scribed in more detail in Section XVI of this paper.

II. THE MODEL

Let N queues E1, E2, , EN, N > 2, be given. Customer arrivals
to each queue constitute independent Poisson processes, all having the
same rate X. The queues are served by a single server in the following
way : At each point in time, the server is at some queue. Transitions
in its position occur at discrete time epochs which are equally spaced
with periods of duration T. At such time epochs, the server moves
instantaneously to the next nonempty queue in a circular order, chooses
a waiting customer in that queue at random, and stays with this
customer until the end of the period. The served customer then leaves
the queue with probability p*, or remains in the queue with probability
q* = 1 - p*. If all the queues are empty at a transition point, then
no change occurs in the position of the server.

We assume further that T is small with respect to the accuracy
with which we want to know the delays, and thus all the arrivals can
be assumed to occur at the transition epochs and the queuing process
can be considered in discrete time. Thus, if Xj,k is the number of
arrivals to E i at the kth time epoch, then all X j,k, 1 i :5- N, k > 0,
are independent identically distributed random variables, all having
a Poisson distribution with mean XT.

III. THE FULL STATE SPACE

The state of the queuing system at any time epoch is defined as the
(N 1)tuple (m 1, m2,  , m N, n), where m i is the number of waiting

1734 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1975



customers at Ei, and n is the position of the server before the transition.
We call the set of all such states the full state space. It is then clear
from the discussion in the previous section that our queuing system,
with the full state space, is a stationary Markov chain. Thus, in
principle, one can calculate transient and steady-state probabilities.
However, the full state space is much too large for practical computa-
tional purposes.

Consider, for instance, the dial -tone delay problem where a typical
number of N is 15. Then, even if the system is so underloaded that
each mi can be restricted to be either 0 or 1, we have 2'5 X 15 ti 500,000
states. A natural approach, which we follow in the remainder of the
paper, is to approximate the behavior of our system with systems
having a smaller size state space.

IV. THE "BLACK BOX" APPROACH

Some important facts about the system can be deduced by consider-
ing only the total number of customers in all the queues s =
m2 +  + m N. It is clear that the system with this single state is
again a stationary Markov chain. It is, in fact, a discrete version of
an M/D/1 queue, with the added feature that a customer who is held
by the server returns to the queue with probability q*. Alternatively,
the service time measured in units of T may be considered as having
a geometrical 1/p*.
the system is the p = XNT/p*; thus, we have Theorem 1.

Theorem 1: A necessary and sufficient condition for the nonsaturation
of the system. is XNT < p*.

Note that, because of the symmetry, a particular queue in the sys-
tem is saturated if and only if the system as a whole is saturated;
hence, Theorem 1 provides a saturation condition for all the individual
queues.

Let us denote by A: the probability that a Poisson -distributed ran-
dom variable with mean XNT attains the value i. The system has the
following transition probabilities. For s > 0,

Pr (s -) s') = 4-sq*
and

Pr (0 8') = A a,.

The equations for the steady-state probabilities P8 are then
.,+1

P., = AiTo E + ge-se)P. s' = 0, 1, . (1).-1

Equations (1) can be solved recursively, starting with Po = 1 - p.
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One can also calculate the generating function

P(u) = > Psus

(p* - a) (1 - u)
uq* p* - ue a (1- u) 7

where a = ANT. By evaluating /5'(1), the expected value of the total
number of customers in the systems is

2a - a2
:9- = 2(p* - a) (2)

V. THE MODIFIED MODEL

We now consider our original system with a new state space. A
state will now consist of a triplet (m, M; n), where m = m1, M = m2
±m3 +  + m N, and n is the same as previously, namely the posi-
tion of the server before a transition. It is clear that the new state
space is much smaller than the full state space; however, the Markovian
property is lost. This can be seen by the following argument : If M
was positive at time k - 1, and if in the transition between k - 1 to k
the server skipped a large number of queues, then those M customers
were concentrated in the remaining queues; thus, it is probable that,
in the k to k 1 transition, a small number of queues will be skipped.

At this point, we modify our model to make it a Markov chain with
respect to the new state space. To do this, we need to define one-step
transition probabilities so that the behavior of the modified model
will approximate that of the original model. Let the position of a
customer be the queue number where he waits. Our key assumption
concerns the probability distribution of the positions of the M cus-
tomers, given the state (m, M, n).

For the remainder of this section, let us enumerate the queues
E2, EN by starting with the queue following the position of the
server and observing the cyclic order, skipping El. Next, we make the
following assumptions : Let M > 0 ; then

(i) The positions of the M customers are independent, identically
distributed, random variables.

(ii) The probability that any one of the M customers will be in the
ith queue (in the new order) is ri(M), where

i(M) = b(M) (N - i - 1)R (M) = 1, 2, , N - 1,M(N - 2)

where b(M) = 11(N - 1) - [R(M)/2M] and determination
of R (M) is described below.

1736 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1975



The rationale behind assumption (ii) is that a customer is less likely
to be in a queue that has just recently been visited. The average differ-
ence between the number of customers in the first and last queues is,
according to assumption (ii), 31[71(M) - I -N -1(M)] = R(M), which
should be approximately equal to the expected number of arrivals
during one full cycle of the server. Thus,

R(M) r., XTRo(M),

where Ro(M) is the expected number of nonempty queues, given M.
Finally, we approximate Ro(M) by

Ro(M) = - 1) [1 NN 21y],

where the right-hand side is the expected number of nonempty queues
among E2, , EN, if the M customers are uniformly distributed.
We conclude this section by using the new assumptions to calculate
some probabilities that will be needed later.

Let J denote the number of successive empty queues following the
position of the server (when E1 is disregarded), J = 0, 1, , N - 1.

The distribution of J depends on M. Let

Qi(M)

qi(M) = Pr (J = j - 1)
j= 1, 2, , N.

Using assumptions (i) and (ii), we have

Q1(M) = [ E1 a; (M) j = 1, , N - 1

QN(M) =

and

10 if M > 0

11 if M = 0,

q1 NI) = UM) - Qi+i(M) j = 1, - , N - 1
qN(31) = QN(M).

VI. TRANSITION PROBABILITIES FOR THE MODIFIED SYSTEM

Given a state (m, n), the transition probabilities of the position
of the server can be expressed in terms of the Q1(M) and qi(M)'s as
follows.
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For m > 0,

{q,_
(M) if n' > n

Pr (n -> n') = QN_.+1(M) if n' = 1
0 if 1 < n' n.

Form = 0, M > 0,

{qns-n(M)
if n' > n

Pr (n -+ n') = 0 if n' = 1
qN-Fni-n-1 if 1 < 72/ < it,

and, for in = 0, M = 0,
if n' = n

Pr (n -> n') =
0 if n' n.

(3)

Let us denote by Ai and ai the probability that Poisson -distributed
random variables with means X(N - 1)T and XT, respectively, attain
the value i. We can now write the state transition probabilities.

For m > 0, M > 0:

Pr [(m, M, n) -> (m', 111', n')]
a,,_,nq,_(M)[Am,_m_F1p* + A Ap_mq*] if n' > n
Am,_mQ/v+i-n(M)Eam,-,n+ip* am,_mq*] if n' = 1,
0 otherwise.

For m = 0, M > 0:

Pr [(0, 111, rt) -> (m', 111', 11')]

For in > 0, M = 0:

Pr [(in, 0, n) -> (m', M',

0

and finally, for in = M = 0,

= am,[Am,-m+ip* AM'-mq*]

X

{qn,-n (M) if n' > n
0 if n' = 1
qN+ni_n_i(M) if 1 < it' < n.

Pr [(0, 0, n) (in', M', n') ] =

am,_mq*] if n' = 1,

if n' 1,

Am, if n' = n
(4)

0 if n' n.

VII. STEADY-STATE EQUATIONS FOR THE MODIFIED SYSTEM

If we consider the total number of customers in the system s = m
+M, then it is clear that all the results of Section IV remain valid
for the modified system. In particular, ANT < p* is the necessary
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and sufficient condition for the existence of a steady state. In the
following discussion, we assume that this condition is satisfied. Let
P(m, M, n) be the steady-state probability of the state (m, M, n)
satisfying the following equations.

For n' > 1, in' 0, M' 0 :

(m', M , n')
70-1 m' 3/14-1= E E a,,_ aq ,_  (M) + AM' -Me]nil m=0 M.-1

N M'A-1
XP(11, M, n) E E am,[Aity_m_Fip* + Am,--mq*]

n=71' M=1

XqN-Fn'-n-l(M)P (0, M, n) ani,21m,P (0, 0, n') . (5)

For n' = 1, in' 0, M' 0:

N m'A-1 A!'
P , M', 1) =E EAM'-mQ N4-1-n(M)Eami-m-Fle am,-mq*1

n..1 M..0

XP(m, M, n) a,,A m,P (0, 0, 1).

VIII. NUMERICAL SOLUTION OF THE STEADY-STATE EQUATIONS

Equations (5) can be solved either as a system of linear equations
with the auxiliary equation

E P (in, M, n) = 1
m,M,n

or by starting with any initial distribution and iterating it through (4)
until a desired degree of convergence is obtained.

It seems adequate to adopt the second method since the steady state
of the modified system is of interest to us only as an approximation
to the steady state of the original system. Thus, an extensive compu-
tational effort to obtain an accurate solution to (4) is not warranted.
A good initial distribution to start the iterations can be obtained in
the following way. We have

NE E M, n) = P.
m+M-8 n=1

s = 0, 1, ,

where the P8 were computed by the method outlined in Section IV.
If we divide the s customers uniformly among the queues and make
the position of the server random, we get the following distribution :

Po(m, s - n, n) =
N
-1 s)

n

s = 0, 1, m = 0, , s n = 1, , N,
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where B(m,l/N,$) is the binomial probability of m successes out of
s trials, with probability of success = 1/N.

IX. EVALUATION OF THE DELAYS FOR THE MODIFIED SYSTEM

Let Am, M, n, k) be the probability that a customer arriving at
E1 will wait k service periods before leaving the system, given that
on his arrival the system went into the state (m, M, n). The customer
stays for at least one service period, so k > 1. Notice also that m > 1.

Theorem 2: The delay probabilities satisfy the following recursive
equations:

and

where

=

v*
f (m, n, 1) = QN-n-Fi(M)

f(m, M, n, k + 1) = o2

1, M 0, 1 n N; k> 1,

am,,gni_n(m)cAms_m+ip* + A m,_mq*J
Itf =M-1 ne.-nt

X f(m', M', n', k) if M > 0, n < N

0 if M = 0 or n = N
rm ]0.2 = E E A w_mQN+1.-. ) e ry

- 1 am'-m±l*
X f (m' , M' , 1, k).

M'=M m'=7n -1

Proof: f(m, M, n, 1) equals the probability that the server moves to
E1, that the particular customer is selected for service, and that he
leaves the system after the service period. Hence, the formula for
k = 1.

For k > 1, we have

f(m, M,n,k 1) = E Pr Um, M, n) -(m.'M', n')
,M' ,n'

r the customer stays in El] f (m', M', n', k).

Using eq. (4), we get that al is the part of the right-hand side cor-
responding to n' 1 and o2 is the part of the right-hand side corre-
sponding to n' = 1.

Theorem 2 provides a method for calculating the delays conditional
on the state. Let f*(k) be the probability that a customer arriving at
E1 will wait k service periods before leaving the system, given that
before his arrival the system was in the steady state.
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Theorem 3:

co oo N
f(k) E Ef (m' , Ill', n', k)P* M', n') k = 1, 2,

m' =1 M'=0 n'=.1

where

P* (in', 111', n') =

and

P* (m' , 111', 1)

 [p* P (m' + 1, M, n) q*P (m', M, n)]]

for m' 1,M'>0,2 n' N.

Proof : The theorem is valid if it is shown that P* (m.', M', n') is the
probability of the state (m', M', n') at the point of arrival of the
customer, say, point u, for all in' > 1, M' > 0, 1 < n' < N. The
probabilities of states with in' = 0 is zero, since there is at least one
customer in B1. We know that at u - 1 the system was in a steady
state. The transition probabilities between u - 1 and u, conditional
that at least one customer arrives at .E1, are obtained from (4) by re-
placing a, with a, where

n'-1 M'+11 [P OW, Mi, 11') - ao E E1 - ao n =1 M =1

 (A Ar-M-4-1P* + A Ap_mq*)P (m', M, n)]

1

N AP
= [P(in' , 111', 1) - as E E QN+1-,(m)1 - a0 n =1 M =0

a, =

1
a1 i= 1, 2,- ao

0 i = 0.

The expressions for P* (m', 111', it') can now be calculated by operating
on the steady-state probabilities with the modified transition prob-
abilities and using the fact that the steady-state probabilities satisfy
eqs. (5).

X. VALIDITY OF THE MODIFIED SYSTEM

The difference between the original and the modified systems is in
the rules of the server movement. In the modified system, the server
does not follow the cyclic order. However, to calculate the delay dis-
tribution, we are interested only in the pattern of the time points
when the server is in El, and that, hopefully, is similar to the cor-
responding pattern in the original system. The degree of similarity
is difficult to check, except by simulating the original system. Verifica-
tion of the "reasonability" of the modified system may be made by
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checking whether each En receives the same number of visits by the
server, and if E1 gets the right amount of expected number of waiting
customers, i.e.,

P(m, M, n) 1
m=0 0

and

n = 1, , N

EmE E P(m, M,n)
m=o A f =o n=1 N

where g is given by eq. (2).

XI. THE MARKER -REGISTER SYSTEM

In the rest of the paper, we apply the model to the dial -tone delay
problem in the No. 5 crossbar switching machine. Following are some
operational features of the No. 5 crossbar switching machines which
are relevant to the dial -tone delay distribution.

Calls appear on line link frames (LLF). The dial tone markers (DTM)
which are not busy are paired to the waiting calls. Under "normal"
operation, i.e., when several DTMs are free, the LLFs look for available
DTMs according to a fixed preference order. When all the DTMs become
busy, a gate is closed and the DTMs serve first those LLFs that contain
waiting more than one call waiting,
only one call will be served during the gating period.

When a DTM becomes idle following the "all markers busy" condi-
tion, it looks for a waiting call according to the following scheme. Each
DTM has its own order in which it scans the LLFs. Thus, for example,
when there are four DTMs and 60 LLFs, the first DTM will scan the LLFs
in the natural order from 0 to 59, the second DTM will start at LLF 15,
go to 59, and then come back to 0 to 14, etc.*

When a DTM locates an LLF with waiting calls, it chooses one of those
calls and proceeds to look for an originating register (on) for the call.
The above choice may be considered random for all practical purposes.t
If the DTM finds a vacant OR, then it connects the call to the on, and
the calling customer gets a dial tone. If no OR is available, then the
DTM releases the call, and it continues to wait in its LLF and to bid for
a DTM. In both cases, the holding time of the DTM is constant and
approximately equal. We denote this time by T, where T is approxi-
mately 0.25 second. In fact, this time is approximately 0.21 second in

" This is the recommended arrangement, although not all No. 5 crossbar entities
observe it.

1. We omit consideration of the systematic preference for serving calls in vertical
group 2.
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the case where no OR can be found, but we ignore this difference to
simplify our model.

We also assume that the distribution of holding times of the oRs
is negative exponential for a conservative estimate of the delay dis-
tribution. The arrival of calls to each LLF is assumed to be Poisson,
with the rate being equal for all LLFs. We denote the rate for a single
LLF by X. Finally, in many cases there are two types of calls, dial -pulse
and Touch -Tone, where both types are served by the same DTMs but
require different oRs. When there are two types of calls, the ratio be-
tween their arrival rates is assumed to be the same in every LLF.

XII. A QUEUING MODEL FOR ONE TYPE OF CALL

The system described in the previous section is quite complicated,
and it appears that, to model such a system and be able to derive
numerical results from the model, some simplifying assumptions are
inevitable. One such model was proposed by W. S. Hayward.' Its basic
assumption is that, in order to be served, a call must find both a
marker and a register idle. Once the marker and register start process-
ing a call, they act independently of each other, each having exponenti-
ally distributed holding times. To solve the resulting state equations,
Hayward introduced a system with one type of server, which approxi-
mates the behavior of his model.

markers are assigned to waiting calls, and takes into account the
fact that the time a marker spends serving a call is nearly the same,
whether or not it found a free register.

First we assume that each DTM serves only those LLFs which are of
high priority on its list. Thus, in the example of the previous section,
the first DTM will serve only the first 15 LLFs, the second DTM will serve
only the next 15 LLFs, etc. Such an assumption is justified under heavy
load conditions. We denote by X the number of LLFs which are served
by one DTM.

Next, we assume that each DTM serves its LLFs in a cyclic order and
that, whenever it finds a LLF with waiting calls, it serves exactly one
call. This assumption is asymptotically valid under heavy traffic
loads, because of the gating procedure described in the previous
section.

Finally, we assume that. whenever a DTM serves a call there is a
fixed probability p* that an OR will be available and thus that the
waiting time of the call will end (i.e., the customer gets a dial tone).
This assumption would hold if the availability of the oRs is independent
of the number of waiting calls, which is clearly not the case. This
assumption will cause our model to somewhat underestimate the
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delays, while the first assumption tends to overestimate them. The
value of p* can be taken approximately as the delay probability of a
call, given that the arrival process of the calls to the oRs is Poisson, and
therefore it can be computed by the Erlang C formula.

Thus, we arrive at the model which was described in Section II,
with the server the DTM. The server chooses a customer (call) from
the queue at random. After one service time, the customer either leaves
the system with probability p* or rejoins his queue (that is, waits in
his LLF). The server then moves to the next LLF having a waiting call.

XIII. SOME THEORETICAL AND NUMERICAL RESULTS

It was shown in Section IV that the occupancy of the DTM is

XNT
P = *

Hence, a necessary and sufficient condition for nonsaturation of the
system is XNT < p*. Also, the expected total number of waiting calls
in the LLFs which are served by the DTM is

=
2(1 p)

P (2 - pp*) .-
Thus, for a fixed occupancy of the DTM, the expected total number of
waiting calls is a monotone decreasing function of p*. The same is
true for the expected delay, W, since by Little's formula

XTN pp*'
and so

TTT

= 2(1- p) p* 13)

A standard measure for the quality of service is the dial -tone speed
(DTs), which is the probability that the call will have to wait three
seconds or more for a dial tone. Figure 1 presents some computed
values of the DTS for various values of p* and X with p held constant
at three different values. It is seen that DTS is also a monotone de-
creasing function of p*, for a fixed DTM occupancy.

XIV. A MODEL FOR TWO TYPES OF CALLS

Consider now the case of a system having dial -pulse and Touch -Tone
calls ; this is the usual situation in No. 5 crossbar offices today. Let
the arrival rates from each LLF be X1 and X2, and let the probabilities
of finding available registers be p: and p2* for dial -pulse and Touch -Tone
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= 0.224p
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p (AVAILABILITY OF REGISTERS)

Fig. 1-DTS as a function of p* and X for constant DTM occupancy p (queuing model).

calls, respectively. The loads on the DTM due to the two types of calls
are

XIN T
P1 = * and X2NT

P2 =
P*

'
2

To approximate the delays of this system, we consider a system with
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one type of call, for which A = Al + A2 and p = p1 p2.
priate p* of this system satisfies

The appro-

X1 +A2
= Xi/PI A2/P;

Now the state probabilities can be computed by the approximate
method; however, it is necessary to modify the formulas for the
computation of the delay distributions to obtain those distributions
conditional on the type of call.

Let fi(m, M, n, k) be the probability that a call of type i (i = 1, 2)
arriving at LLF No. 1 will wait k service periods before leaving the
system, given that on its arrival the system went into the state
(m, M, n). The recursive formulas of Theorem 2 have to be modified to

and

fi(m, M, n, 1) = QN-n+I(M)

M, n, k 1) = cr ± 0.2
M 1, M>0, 1 n N , k>1,

where cri is as in Section IX except that f is replaced by fi and

[ m - 1a2 = E E AM'-mQN+1_n (M) am,_,n+ip*
= M = m- 1

(7*- 2 I P I- 1 to*
+

2)][f M' 1 k)].

The proof of the validity of the modified formulas is along the same
lines as the proof of Theorem 2.

XV. NUMERICAL RESULTS

Several computer runs were made for a typical large system with
60 LLFs, 4 DTMs (N = 15), 100 dial -pulse oRs and 50 Touch -Tone ORs,
with both dial -pulse oRs and Touch -Tone oRs having a mean holding
time of 13 seconds. T was taken to be 0.25 second in all runs. The
parameters varied were A = Al + A2, the total input rate per LLF, and
a = Xi/X2 (the ratio of the rates of the two types of calls).

Figures 2 and 3 describe the results for a = 2, that is, when the
ratio of the loads is the same as that of the ORs. Figure 2 describes the
behavior of the occupancies of the oRs and the DTM, while in Fig. 3
the DTS is plotted as a function of X. Figures 4 and 5 present the cor-
responding results for a = 3. The values of A were chosen to be near
the point of saturation, i.e., where the occupancy of the DTM ap-
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Fig. 2-Occupancies of the DTM and oils as a function of X (queuing model).

0.174

proaches 1. In this range, the DTS is sensitive to small perturbations
in X.

Figure 6 shows the dependence of the DTS on a for a fixed X (X =
0.158 per second). It can be seen that the quality of service deteriorates
as a diverges from the neighborhood of the ratio of the number of
dial -pulse oRs/number of Touch -Tone oRs (which equals 2 in our case).
This is consistent with the observation that Touch -Tone delays are
significantly influenced by the dial -pulse OR load for a constant offered
load to the DTM.

The results were compared with those of a simulation model which
we constructed for the system described in Section XI. Tables I and
II present a comparison between the results of the queuing model and
the simulation. We compare the intensities of input for which levels
of the DTS are reached between 0.05 and 0.25 for a balanced system
and between 0.05 and 0.15 for an unbalanced system. Examining those
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Table I - Values of A for which given levels of DTS are reached,
for Al/A.2 = 2

(a) Dial -Pulse Calls

DTS Queuing Model Simulation

0.05
0.10
0.15
0.20
0.25

0.1680
0.1705
0.1720
0.1730
0.1735

0.1695
0.1735
0.1760
0.1775
0.1790

(b) Touch -Tone Calls

DTS Queuing Model Simulation

0.10
0.15
0.20
0.25

0.1690
0.1705
0.1720
0.1725

0.1690
0.1720
0.1740
0.1760
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Fig. 4-Occupancies of the DTM and ORs as a function of X (queuing model).

Table II - Values of x for which given levels of DTS are reached,
for A4/A2 = 3

(a) Dial -Pulse Calls

DTS Queuing Model Simulation

0.05
0.10
0.15
0.20

0.1540
0.1565
0.1580
0.1585

0.1550
0.1590
0.1610
0.1620

(b) Touch -Tone Calls

DTS

0.05
0.10
0.15

Queuing Model Simulation

0.1575
0.1590
0.1600

0.1600
0.1625
0.1640

CYCLIC QUEUE DELAYS 1749



0.32

0.28

0.24

wo 0.20
w
a.
tn
w
z
0
I-

0.12

0.08

0.04

0
0.155

NO. OF DTMs= 4
NO. OF LLFs = 60
NO. OF DIAL-PULSE ORs = 100
NO. OF TOUCH-TONE ORs = 50
DTM HOLDING TIME = 0.25 SECOND
OR HOLDING TIME = 13 SECONDS

DIAL-PULSE ARRIVALS -3
TOUCH-TONE ARRIVALS

DIAL-PULSE

TOUCH-TONE

0.156 0.157 0.158
ARRIVALS PER FRAME (X)

0.159

Fig. 5-nTs as functions of X (queuing model).

0.160

tables, we observe that the differences in the corresponding figures
for the two models in these regions are less than 4 percent of the total
input. Also, it can be observed that the computed DTS grows faster
in the queuing model than in the simulation. The reason is that the
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Fig. 6-DTs and DTM occupancy as functions of Xi/X2 for a fixed A, A = 0.158.

assumption made in Section XII, that the probability of finding all
registers busy can be computed by the Erlang C formula, is incorrect
in this region. Figure 7 compares the DTS as computed by the two
models. Again we conclude that the fit is fair in the "critical" region.
It would have been desirable to validate the results by performing a
field trial. Such a trial should consist of measuring the DTS for a No. 5
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crossbar machine with high constant loads. However, observing Fig. 8,
where the cumulative distributions of the hourly DTS from the simu-
lation were plotted, one sees that these distributions have long tails.
This implies that, to get a reasonably accurate estimate for the DTS,
say, with a standard error of 1 percent, we would have to run the
trials for around 25 hours while keeping the load constant. This seems
to be a difficult task.

XVI. SUMMARY AND CONCLUSIONS

We presented a method for modifying the original model, as pre-
sented in Section II, to a model which has a much smaller state space.
Methods were described for calculating the steady-state distributions
of the states and of the delays is the modified model. The model was
applied to the problem of calculating dial -tone delays in the No. 5
crossbar switching machine. This was accomplished by making some
simplifying assumptions about the order of service of the waiting calls
by the markers. The numerical results were compared to those of a
simulation, and found to be close on an important range of the DTS.
This gives us a certain amount of confidence that both models are
valid, which is especially important because of the difficulty in validat-
ing the models by experimental data, as discussed in Section XV.
However, the reader should be aware that several features of the No.
5 crossbar machine, which may have an influence on the DTS, were
excluded.
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A major effect not covered by the present model is the effect of
horizontal group blocking on dial -tone speed and on dial -tone marker
waste usage. Recently obtained field data and theoretical studies re-
ported in a subsequent paper by H. A. Guess' have shown that dial -
tone speed and dial -tone marker occupancy can be appreciably in-
creased by horizontal group blocking caused by high average line link
frame loads and also by poor load balance. Consequently, the dial -tone
speeds associated with a given call origination rate in an actual No.
5 crossbar office may be higher than would be predicted by our model.
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Recently obtained field data and theoretical studies show that, for a fixed
subscriber calling rate, dial -tone delay in No. 5 crossbar can be appre-
ciably increased by high average line -link frame loads and also by poor
load balance. The increased delay is caused by waste dial -tone -marker
usage generated by a small number of calls that encounter horizontal
group blocking in obtaining a dialing connection. This paper discusses
an analytical model to predict the time from receiver off -hook to receipt of
dial tone under various service conditions in No. 5 crossbar.

I. INTRODUCTION

1.1 Description of the dial -tone connection process

In a No. 5 crossbar switching machine, dial tone is provided to a
subscriber line, terminating on a line -link frame (LLF), by an originat-
ing register (oR), terminating on a trunk -link frame (TLF), via a series
of three network links : line links, junctors, and trunk links. The dialing
connections are set up by dial -tone markers (DTMs), which are common
control devices. Each line -link frame contains a number of crossbar
switches that are used to establish connections between subscriber
lines and trunks, or between subscriber lines and service circuits, such
as originating registers. The crossbar switches that form line concen-
trators on which groups of subscriber lines terminate are called hori-
zontal groups. Maximum size offices typically contain from 4 to 6
DTMs, 40 to 60 LLFs, 20 to 30 TLFs, and up to 140 ORs. Each LLF contains
10 horizontal groups and each horizontal group is a concentrator con-
taining between 29 and 59 subscriber lines on the input side of the
switch and 10 line links on the output side of the switch.

To provide dial tone to a subscriber, the off -hook signal from the
subscriber line initiates a bid for a DTM through a connector circuit
unique to each LLF. As soon as a DTM becomes available, it locates an
unoccupied OR and then attempts to find a dialing path (consisting of
a line link, a junctor, and a trunk link) connecting the OR with the
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subscriber line. As soon as the connection is established, the DTM
releases and proceeds to serve other calls waiting for dial tone. The
OR provides dial tone, receives the dialed digits, obtains a completing
marker, transmits information to it, and releases. The completing
marker then establishes the connection between the calling subscriber
and an outgoing or intraoffice trunk.

If all oRs are busy, the DTM releases and the call rejoins what is
effectively a queue of calls waiting for a DTM. If an OR is available, but
no (unoccupied) dialing path connecting the OR with the subscriber
line can be found, the DTM will release the OR, obtain a second (usually
different) OR, and try to find a dialing path between that OR and the
subscriber line. When a DTM is unable to find a dialing path between
a given OR and a given subscriber line, a matching failure is said to
occur. If, on the second try, the DTM cannot find a dialing path, the
DTM releases and the call rejoins the queue of calls waiting for a DTM.
In such a case, a DTM second -failure -to -match (DTM2FTM) is said to
occur.

The method of assigning DTMs to waiting calls is controlled by a type
of "gating" circuitry designed to equalize service and to reduce the
incidence of long delays in obtaining dial tone. When one or more
DTMs are free (light traffic operation), the LLFs look for DTMs according
to a fixed preference order. When all DTMs become busy and a request
for a DTM occurs, a gate is closed and only the LLFs containing
waiting for dial tone at that moment are put inside the gate. The
DTMs then proceed to serve the LLFs inside the gate. If more than one
call is waiting on an LLF, only one call will be served during the gating
period. Once a call on an LLF is served during a given gating period,
that LLF is put out of the gate, whether or not the DTM is successful
in establishing a dialing connection for the call. When all LLFs with
requests at the start of the gating cycle have been put out of the gate,
the gate opens ; if there are sufficient waiting calls to cause all of the
DTMs to become busy again, a new gating cycle will be started; other-
wise, light traffic operation will resume. During a gating period, a DTM
that becomes idle scans the LLFs in cyclic order. Each DTM has a
different starting LLF for the scan so as to equalize service. (The de-
scription of the gating procedure is taken from Refs. 1 and 2.)

1.2 Effects of matching failures on dial -tone delay

Repetitive matching failures can occur in establishing the dialing
connection essentially because the first -stage crossbar switch on which
the subscriber line terminates (the horizontal group) is a concentrator
whose output links (line links) have holding times that are much
longer than the holding times of the common control devices that set

1756 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1975



up the dialing connections (the DTMs). The average line -link holding
times, being largely determined by conversation holding times (with
allowance for ineffective attempts), can be on the order of 150 seconds
or more, while the DTM holding times are typically on the order of
0.25-0.40 second.

Although matching failures (blocking) can occur when one or more
of the 10 line links on a horizontal group are unoccupied, repetitive
matching failures under such conditions are rare because a DTM is
quite likely to be successful in establishing a dialing connection after
a few attempts. The expected holding time in a blocked condition of
a call that finds all 10 line links busy is the lesser of the length of time
for one of the 10 line links to become free (with a short added time
for DTM uses and matching failures in setting up the dialing path) and
the length of time that a subscriber is willing to wait.

Since, at average busy -hour load levels, less than about one percent
of all originating calls are predicted to encounter an all -10 -line -links-

busy condition, previous dial -tone -delay studies have assumed the
effect of matching failures on dial -tone delay to be small. However,
the fact that line -link holding times are much longer than DTM holding
times means that a call which finds all 10 line links busy can remain
blocked for long enough to consume a large number of DTM uses (except
at calling rates sufficiently high that very little of the offered blocked-
call load is carried by the DTMs). Thus, it is possible for a small number
of calls experiencing blocking to generate a disproportionate number of
waste DTM uses, increase DTM occupancy, and thereby increase dial -
tone delay for all other calls in the office.

II. ANALYTICAL MODEL (LIMITING FORM)

2.1 Assumptions

Since the main effect of matching failures on dial -tone delay is
caused by the resulting waste DTM use, and since the dial -tone delay
distribution of the small proportion of calls experiencing repetitive
matching failures can be calculated approximately (see Section 5.2),
the effect of matching failures on the dial -tone delay distribution of
calls that do not experience repetitive matching failures has been repre-
sented in terms of a queuing model with two classes of calls, good calls
and bad calls, defined as follows :

(i) A good call experiences no matching failures but is subject to
delay caused by DTMs and oRs.

(ii) A bad call experiences total network blocking (no dialing con-
nection available) and defects from the system after an expo-
nential waiting time.
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We will first describe the mathematical structure of the analytical
model used for dial -tone delay calculations. We will refer to this model
as the limiting model. Next, we derive the DTM saturation load' and
prove that it is not changed by the presence of bad calls.

In Appendix B, we prove that the equilibrium queue length and wait-
ing time distributions of the limiting model are the limits in distribu-
tion of a sequence of equilibrium distributions arising from a model in
which the expected bad -call arrival rate approaches zero and the
expected bad -call waiting time (until defection) approaches infinity
in such a way that their product, total erlangs of bad calls, is constant.

In the limiting model, a good call arrives and finds a random
(truncated) Poisson -distributed (but time -independent) number of
bad calls permanently present in the system.t The queue discipline
is characterized by random order of service. The DTMs cannot dis-
tinguish between good and bad calls when choosing a call to be served.
This corresponds to the fact that, in the No. 5 crossbar switching
machine, a DTM cannot recognize that a 10 -line -links -busy condition
exists on a particular horizontal group and, hence, cannot avoid wasting
time serving calls for which no dialing path exists. Equilibrium good -
call queue length distributions are computed conditional upon the
number of bad calls present in the system. Calculating the expectation
of the conditional distribution over the distribution of bad calls gives
the unconditional dial -tone -delay distribution for good calls. The con-
ditional distributions depend on the total office calling rate and on the
number of LLFs, DTMs, and oRs but do not depend on the horizontal
group load or the load variation. Hence, delay distributions for a range
of frame load and balance effects can be calculated using the same set
of conditional distributions, thereby greatly reducing the computer
time needed for parametric studies.

Since DTM holding times are approximately constant (for a given
set of office parameters and traffic characteristics) and since these
holding times are small with respect to the accuracy with which it is
necessary to be able to predict delays, we treat the dial -tone delay
process as a discrete time queue with a constant service time of T
seconds. Good calls are assumed to arrive in batches according to a
Poisson process at times kT, for k = 1, 2, . Immediately upon
arrival, the good calls join the queue of good and bad calls waiting
for dial tone. Calls are chosen at random from the queue for service

The DTM saturation load is defined to be the good -call originating load below
which a steady state good -call -queue -length distribution exists and above which
such a steady state distribution does not exist.

t When the bad -call input is assumed to be peaked, the number of bad calls in
the system has a (truncated) negative binomial distribution. This is discussed in
Section IV.
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by the DTMs with each call-whether a good call or a bad call-having
an equal probability of being chosen. A good call served on the DTM
cycle beginning at time kT will either acquire an OR, receive dial tone,
and thereupon exit the system at time (k 1)T, or else will fail to
acquire an OR and will return to the queue of calls waiting for dial
tone at time (k 1)T. A bad call served on the DTM cycle beginning
at time kT will return to the queue of calls waiting for dial tone at
time (k 1) T. Note that since new arrivals occur only at the time
points kT, a DTM that is idle on the cycle beginning at time kT will
remain idle at least until the start of the cycle beginning at time
(k 1)T. The dial -tone delay for a call is the length of time from the
moment when the call arrives to when it obtains dial tone and (simul-
taneously) leaves the dial -tone queue. Thus, the minimum possible
dial -tone delay in the model is T seconds.

In the analytical model, two DTMs serving N line -link frames are
used to represent four DTMs serving 2N line -link frames. A single DTM
holding time equal to the office average DTM holding time is used for
both good and bad calls. In actuality and in the simulation models,
bad calls have somewhat longer DTM holding times than good calls
and good calls that encounter a condition of all-oRs-busy have some-
what shorter DTM holding times than good calls that do not encounter
a condition of all-oRs-busy. Comparison of results from the analytical
model with those of the gating simulation model indicates that these
simplifications tend to offset each other in the range of interest.

A further simplification in the analytical model concerns the manner
in which availability of oRs is treated. Since No. 5 crossbar offices
typically contain over 100 oRs and since the oRs are in tandem with
the DTMs, it is presently not practical to keep track of the number of
occupied oRs directly in an analytical model. Availability of oRs is
treated by assuming that at each time point kT, all oRs are busy with
probability q and two or more oRs are free with probability p = 1 - q.
The calculated probability that exactly one OR is free and that a
dialing connection is available between this one OR and the given sub-
scriber line is sufficiently small, in the occupancy range of interest,
so as not to warrant the additional complexity caused by introducing
this effect.

The idea of using a discrete time model and the method of treating
OR availability through use of a fixed probability of all oRs busy are
due to Halfin.3 Following Halfin, the probability q is taken to be the
erlang C probability of all oRs busy. At OR occupancies above about
0.90 with frame loads low enough that few second failures to match
occur, this method of treating OR availability somewhat underpredicts
the delay caused by an all -registers -busy condition (based on corn -
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parison with simulation results). The underprediction arises because,
at higher OR occupancies, once all oRs become busy they tend to remain
busy for a time period equal to several DTM cycles, as one would expect
from the erlang C delay formula.

Preliminary studies were made using an analytical single -server
cyclic queuing model, developed by S. Halfin,3 which represented the
No. 5 crossbar gating process in considerable detail but did not take
into account the effects of horizontal group blocking. These studies
showed that the delays predicted by the cyclic queuing model do not
differ appreciably from those of a discrete -time M/D/1 queue with
feedback and random order of service. The latter model requires
about 1/30th of the computer time required by the former. Both
models overpredicted simulations. For these reasons, explicit repre-
sentation of the gating process was not attempted and a discrete -
time M/D/2 queue with feedback and random order of service was
taken as the starting point for developing an analytical dial -tone -delay
model to include effects of horizontal group blocking.
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Fig. 1-Comparison of analytical and simulation models. Dial -tone delays are at
1400 CCS/LLF and 0.70 DTM OCC (excluding DTM2FTMS).
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Comparison of simulation results with predictions using the limiting
analytical model (based on two markers and random order of service)
shows that the predicted delays typically fall somewhat above or very
close to simulated delays based on four markers with gating order of
service and somewhat below simulated delays based on four markers
with random order of service. In the light of these results and because
of the large scatter in actual measured No. 5 crossbar dial -tone delays,
it did not seem worth the considerable added complexity to include
explicit representation of the gating process in the analytical model.
Typical results are shown in Figs. 1 and 2.

2.2 Queue length equations for the limiting model

The queue -length process for good calls in the limiting model is a
discrete -time Markov chain with finitely many irreducible classes
{ek} that are noncommunicating in the sense that no transition be-
tween different classes is possible. Hence, each class is itself an irre-
ducible Markov chain. The kth class is the queue -length Markov chain
for a discrete -time AI/D/2 queue with random order of service,
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Fig. 2-Dial-tone delays are at 1600 CCS/LLF and 0.80 DTM OCC (excluding DTM2FTMS).
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"feedback" (occurring when an all-oRs-busy condition is encountered),
and k blocked calls residing permanently in the system. The DTMs
cannot distinguish these k permanently blocked bad calls from the
good calls in the system, so each of the k bad calls and each of the good
calls in the system compete on an equal basis for DTMs. Upon comple-
tion of service by a DTM, a bad call rejoins the queue. With probability
q, the good calls served at any given time period rejoin the queue and
with probability p they leave it. We will show that each of these
queuing systems has the same saturation load and we will describe
how the equilibrium -queue -length distribution and the equilibrium -
waiting -time distribution for each system is calculated.

Viewing the whole process again from the standpoint of a Markov
chain with finitely many noncommunicating classes, the queue -length
and waiting -time distributions referred to above may be regarded as
being conditional on k, the number of blocked calls (permanently)
present in the system. Now let k be a random variable with a truncated
Poisson distribution of mean x, or, equivalently, regard the Markov
chain as having any initial distribution r(k, i), where i denotes the
number of good calls in the system and where the marginal distribu-
tion it (k, ) of the number of bad calls in the system is truncated
Poisson with mean x. Then the (unconditional) equilibrium -queue -
length and equilibrium -waiting -time distributions for this system may
be computed by taking the expectation (with respect to the truncated
Poisson distribution of k) of the conditional queue -length and waiting -
time distributions for each of the individual systems represented by the
classes Ck.

Let X,, denote the number of good calls in the queue at time nT and
let Y denote the number of bad calls (permanently) present in the
queuing system. Let

Pk (i, j) = Pr [X.+1 = j I X. = i and Y = k]

and let Pk (i) be the equilibrium -queue -length distribution for the case
of k bad calls. Let A (n) be the probability that n good calls arrive in
one service time interval (of length T). Then, by assumption,

A (n) =
n!

= 0 otherwise,

e-XXn
n = 0, 1, 2,

where

X = XINT
Xi = LLF originating call rate (calls per second on one LLF),
N = number of LLFS served by the two DTMs.
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The transition functions Pk (  ) are given by

Po(0, j) = A(j)
P0(1, j) = pA(j) qA(j - 1)
Po(i, j) = pA(j - 2) + qA(j - i) for i > 2, (1)

and for k > 1,

Pk(0, j) = A(j)
Pk(i, j)

= PR(k-1)A(j-i)+2ikA(j-i+1)-Fgi-1)A(j-i+2)]/
+ i)(k - 1)] qA(j - i) for i> 1. (2)

Note that Pk(i, j) = 0 for i > j + 2 and that Pk(j + 2, j) > 0.
If the equilibrium distributions Pk () exist, then they satisfy the

equation

Pk(j) = 'i2Pk(i)Pkci, (3)

Let fic be the generating function for the kth queue length process;
then

fk(z) = Pk (i)z1.

The generating function fo is easily seen to be given by

fo(z) = p(z - 1)[(z 1)Po(0) zPo(1)]
z2eX (1-z) (p qz2)

If Po(  ) exists, then lim.ti f o(z) = 1, and hence

Po(0) -}Po(1) = 1 - X

(4)

(5)

Let SP) (p) denote the saturation load of the kth process with two
DTMs, as discussed above, and let ASP) (p) denote the saturation load
of the analogous one-DTM system with k blocked calls. It can be shown
that Sin (p) = p for all k = 0,1, 2, , i.e., a necessary and sufficient
condition that a steady-state queue length distribution exists in the
one-DTM system is that X < p.* Using this result, we will show that
Si2)(p) = 2p for all k = 0, 1, .

Since the Markov chain for the kth process above is irreducible,
Po(0) > 0 and Po(1) > 0 whenever the stationary distribution Po(  )
exists. Hence, it follows from eq. (5) that S,?) (p) < 2p. Since Sk22)(P)

* This result can be proved using a theorem of Kushner (Ref. 4) and some properties
of generating functions.
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Si?) (p) SO2) (1)) < 2p for k2 > k1 > 0, it suffices to show that
(p) > 2p for all k > 0.

Consider a two-DTM system with 2k blocked calls, which differs from
the 2kth process defined above only in that (i) each DTM maintains a
separate queue with half the originating traffic being assigned to one
of the DTMs and the other half being assigned to the other DTM and
(ii) each DTM serves k blocked calls. Let S2k(p) denote the saturation
load of this modified system. Then clearly, S2k(p) Sg(p) and, by
symmetry, :-.S2k(p) = 2S1' (p) = 2p, because the modified system
simply consists of two identical one -marker systems working sep-
arately, with each being assigned half the incoming traffic. Hence,
Six' (p) > 2p and so SP) (p) = 2p for all k > 0.

Thus, for X/2p < 1, a stationary distribution exists for the kth
process for each k > 0. In the sequel, we will confine ourselves to the
case where X/2p < 1. In this case, fo exists and is analytic for I z I < 1
and continuous for I z I = 1, so the numerator of the expression on the
right-hand side of eq. (4) must vanish for any I z J < 1 for which the
denominator vanishes. It is easy to see that the denominator has a
single real root on the open interval ( - 1, 0) and that z = 1 is a root.
By applying Rouche's theorem to the functions z2 exp [X (1 - z)]
and p qz2 along the circle I z = 1 + E, one can show that for X/2p
< 1 and for E > 0 sufficiently small (depending on X and p), the ex-
pression z2 exp EX (1 - z)] - (p qz2) = 0 has exactly two roots in
the open disc I z I < 1 + E. Thus, the root on (-1, 0) and the root
at 1 are the only roots within the closed unit disc and

( + 1)Po(0) tP0(1) = 0,

where t is the unique root of the expression

z2eX (1-z) (p qz2) = 0, 1 < z < 0.

(6)

(7)

Solving eqs. (5) and (6) for Po(0) and Po(1) yields the unique
solution

- t(2p - X)
Po(0) = (1 - )p

P0(1) =
(1 + E) (2p - X)(1-)p' (8)

where t is defined by (7). The values Po(j) for j 2 can now be com-
puted recursively from (3) using (8).

When k > 0, computation of Pk() by the method of generating
functions involves numerical solution of some rather unwieldy
differential equations. The following approach, which makes use
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of properties of recurrent Markov chains, is easier to implement
computationally.

In Appendix A we show that, for X/2p < 1, P k() is given by
c(a rg), where c and r are constants and a, g are the two (particular)
eigenvectors, defined by (9) below, of the transition matrix Pk(i, j).*
We further show that the condition, a; 7.13; 0 for each j, deter-
mines r uniquely and provides an easy way to calculate r. Once r is
obtained, the constant c is uniquely determined by the condition that
E7=oPk(i) = 1. Since the quantities a; and f3; can be computed re-
cursively, the above observations lead to a simple algorithm for com-
puting Pk(). The results are given below, the proof is in Appendix A.
Let

ao = 1
ce1 = 0

an+2 =

n+1
an - E oliPk(j,n)

1=0

10=0
01 = 1

(3n+2

Pk (n + 2, n)

n+1
On EPk(i, n)

1=0

Pk(n ± 2, n)

It is shown in Appendix A that there is a unique constant r satisfying

n (9a)

mn r

lim mn = r = lim M,,,
n n -woo

n > O. (9b)

all n> 3 (10a)

(10b)

where, for n > 3, the increasing sequence in and the decreasing se-
quence Mn are defined by

7n n = max [
a;- : a; < 0, 0; > 0

Jgn

Mn = min I- : ai > 0, 0; <0]
j:cn Pi

Since the quantities inn and Mn can be computed recursively, eqs.
(10a), (10b), and (11) yield a well-defined algorithm for computing r.

Once r has been computed, Pk(j) can be calculated from (3), setting
Pk (0) = c, Pk(1) = rc and determining c by the requirement that
Er=oPk(i) = 1.

* Each of c, r, a, and depends on k. For each integer j 0, ai and Ai, denote the
jth components of the eigenvectors a and g, respectively.
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Since recursive calculation of Pk (j) by (3) involves successive sub-
tractions, it is essential to perform all computations in double precision.

In a No. 5 crossbar switching machine, the measured DTM occupancy
during an hour is defined to be the total work time (in seconds) of all
the DTMs divided by the product of the number of DTMs and the number
of seconds in an hour. Thus, the measured occupancy is the average
fraction of time that a given DTM is occupied. In the mode] the (steady-
state) DTM occupancy is defined to be the limit, as n approaches in-
finity, of the expected fraction of time that a given DTM is occupied
during the n work cycles of length T beginning at times T, 2T,  ,nT.
This limit is equal to the probability that a given DTM is occupied on
a work cycle beginning with the system in steady state. Hence,

DTM occupancy = P (two or more calls are waiting for dial tone)
+ 1P (exactly one call is waiting for dial tone)

= 1 -P (no calls are waiting for dial tone)
- ILP (exactly one call is waiting for dial tone).

As discussed earlier, the number of bad (blocked) calls waiting for
dial tone at any given time has a truncated Poisson distribution in the
model. Let

x = total erlangs of blocked calls on two DTMs
K = maximum possible number of blocked calls that can be in the

system (waiting for dial tone) at any times
K Xk

CzIC
k=0 IC

7_

:i

.

Then the probability that k blocked calls are in the system is given
by (xk/k OcTI. Let pu denote the (steady state) DTM occupancy for
the case of no blocked calls in the system and let Pb denote the (steady
state) DTM occupancy including the effect of blocked calls. It follows
from (5) that

Hence,

p. = X/2p.

Pb = 1 - cTill'o(0) - 1 DTI-13 o(1) + xcT1P1(0)]
= 1 - cTii(1 - p.) - (x /2)cilP 1(0) .

2.3 Delay equations for the limiting model

In this section, we calculate the dial -tone delay probabilities for a
call that arrives when the system (just prior to the arrival of the call)

* The truncation parameter K determines the number of conditional delay dis-
tributions to be calculated, so K should be taken to be no larger than needed to retain
sufficient accuracy in the calculations. For values of x in the range of interest e-zcxic
differs from 1 by less than about 10-3 for K = 5; thus, for computational purposes,
K may be taken to be 5.
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is in steady state. Recall that the queuing model is in discrete time
with arrivals at times nT and DTMs operating at times nT. Calls served
on the DTM cycle beginning at nT either exit the system at time
(n + 1)T or else return to the queue at time (n + 1)T.

Thus, the steady-state probability that a call experiences a dial-
tone delay of (m + 1) T seconds can be computed recursively in terms
of the probability of a delay of mT seconds by straightforward condi-
tional probability calculations involving matrix multiplications.

Let

Y = number of bad calls (permanently) present in the system
X n = number of good calls in the queue at time nT
g = number of good calls in the queue immediately after an arrival

when, just prior to the arrival, the system was in steady state.

Thus, .g. is the total queue length just after arrival of a call when the
system is in steady state. Let

Queue is in steady state at time (n - 1)r
with k bad calls permanently present in
the system, and at least one good call
arrives at time nT

Pk(j) = P

Then

Xn = j

P[S- = .ii I' = k] = Pk(j).
Let

Pk(i, j) = P [Xn+1 = j

and

X n = i, Y = k, and at least one good]
ncall arrives at time T

(n)
(

nA (n) - 1
A

A- 0) =
1

=0 otherwise.

Then A (n) is the conditional probability that n calls arrive at time
nT given that at least one call arrives at time nT and Pk (i, j) is defined
by eqs. (1) and (2) with A used in place of A. Also,

Pk(j) = 'i:A.P (i)Pk(i, 3).

Let W,, (i, k) be the conditional probability that a call arriving in
steady state has a dial -tone delay of nT seconds, given that the queue
length of good calls upon arrival of the call is i and that the number
of bad calls permanently present in the system is k. Thus, letting D
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denote the dial -tone delay, we have

W k) = = nTl± = i and Y = kJ i > 1.

Then

w,(i, k) = min[1, +2 i) ] P 2> 1,

and W.+1( , k) can be computed recursively from W. ( , k) as de-
scribed below.

Let X. = i _. 1 and consider any one given call out of the i calls
present at time nT. Let

[X.+1
= j and the given call does

Pk (i, j) = P not leave the system on. the DTM X  = i and Y = k
cycle beginning at time nT

Then

W k) = E (Pk (i, j)W k),
j=0

and, for i > 1, 6)k j) is given by*

[ min(2, i) ],-LpA
( 3

. i + 2) + qA(j - i)]
r min (.2, i)
L jqA

= L2+1][ [(i - 2)A (j - i ± 2) -I- 2A (j - i 1)]

-FqA(j - [ +2 qA (j - i)

and, for k > 2,

Tik(i, :7) = [1 k +i]
2 (i

1)(2
_k

P

)
- 1)

t=o i - 1\
k 2

-qA(j - i) 2

k
qA ( j - i).

The second term on the right-hand side of the above equation is
the probability of the event that : (i) the given call is selected for

The derivation of (Pic(i, j) for k z 2 is given below. The derivations of (Pk (i, j)
for k = 0 and k = 1 are analogous and are omitted.
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service by the rams, (ii) all oRs are busy, and (iii) X n+1 = j. (Recall
that, in the model, either all oRs are busy, with probability q, or else
two or more oRs are available, with probability p = 1 - q). The
first term is the probability that : (i) the given call is not selected for
service and (ii) X+1 = j. In the first term, the expression in large
brackets is the conditional probability that Xn+1 = j given that the
call is not selected for service. This conditional probability is itself
composed of the probabilities of two mutually exclusive events. The
second term within the large brackets is the (conditional) probability
of the event that all oRs are busy and X+i = j. The first term within
the large brackets is the (conditional) probability that two or more
oRs are free and Xn+i = j. The sum from 1 = 0 to 1 = 2 in this term
pertains to the cases where 0, 1, or 2 good calls, respectively, are selected
for service by the DTMs. Since this sum is part of a probability condi-
tional upon a given good call not having been selected by the rams,
the available population from which the DTMs may select calls con-
sists of k bad calls (k > 2) and i - 1 good calls (i > 1). Since the
selection is without replacement, the selection probabilities have the
hypergeometric form shown above.

By the law of total probabilities,

and

where

P[D=nTJY=k]= W n(i, k)P[X = Y = k],
i=1

PED > nT I Y = = 1 - PED = niT Y = kJ,

P[D > nT] = > Y = kJ,
k=o K

K

CrK = E xk/k !.
k-=0

(13)

III. CALCULATION OF OFFERED BLOCKED -CALL LOAD

In the limiting analytical model, the number of blocked calls in the
system has a time -independent truncated Poisson distribution with
mean x. This section describes a method for computing x, the mean
offered erlangs of bad calls, in terms of the distribution of carried load
among horizontal groups in the office. Using the limiting analytical
model in conjunction with these methods for calculating the offered
blocked -call load, we can calculate the No. 5 crossbar dial -tone delay
distribution in terms of the calling rate and the distribution of carried
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load among horizontal groups in the office. Thus, we can predict the
effect of frame load and balance on dial -tone delay in No. 5 crossbar
offices.

We first construct a model for an individual horizontal group and
express the expected bad -call load from one horizontal group as a
function of the carried horizontal group load. To get the total ex-
pected bad -call offered load for the office, the expected contribution
from an individual horizontal group is integrated (numerically) over
the office horizontal group load distribution. The model, described
below, for representing an individual horizontal group may be called
a modified finite source Palm delay model.

We assume that the input to a horizontal group is from a finite
number of sources with equal calling rates and that call -holding times
are exponential. The number of sources N is taken to be 35 although
in actuality most horizontal groups have 49 or 59 subscriber lines.
The reason for the use of the lower number of sources is that an earlier
study by W. S. Hayward, Jr.' showed that blocking on concentrators
with unequal line occupancies can be approximated by blocking calcu-
lations based on equal calling rates and a lower number of sources.
The use of 35 sources was suggested by J. G. Koppel."

The calculations take into account the fact that an incoming call
cannot occupy a subscriber line when all ten line links are occupied.
Calls that or will eventually
obtain a line link. While waiting for a line link to become available,
a call is assumed to have an exponential waiting time until defection,
with a mean of 30 s.*

In the case of ideal load balance, each horizontal group in the office
is assumed to have a true carried load of 2 erlangs. In the case of less
than ideal load balance, the distribution of true carried load among the
individual horizontal groups is assumed to be normal with mean 2
and coefficient of variation c9, where 2 is the office average carried
horizontal group load and where c, is the group -to -group coefficient
of load variation for the office. The term c, may be inferred from office
load balance data either by using analysis of variance or, more com-
monly, by subtracting a standard value of the residual variance from
the total measured variance of the office horizontal group load
distribution.

* This is the same value that was used in step-by-step dial -tone -delay calculations.
(See Ref. 7.) These calculations are based on the Palm delay model8 using an assumed
mean call holding time of 150 s and an assumed j factor of 5. In the notation of Ref.
9, this value of j corresponds to a mean -time -to -defection of 30 s. In Ref. 9, it is also
stated that this value was found to be slightly conservative for most applications,
based on review of panel office data reported in Ref. 9 and other (unpublished)
step-by-step data.
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To obtain the total offered blocked -call load for the office, we write
the offered blocked -call load for an individual horizontal group x(z)
as a function of the individual horizontal group carried load z and
integrate the function over the office distribution of carried load. We
now describe how x(z) is calculated.

Let N denote the number of subscriber lines per horizontal group.
As discussed above, N has been taken to be 35 in all computations.
Let X. denote the combined originating and terminating rate when
n subscriber lines are occupied and let AL. denote the subscriber line
hang-up rate when n subscriber lines are occupied. Then

X. = X(N - n) 0 << n < 9

=X (N - n) 10 n N - 1
2

and
= n/H
= 10/H + (n - 10)/Hb

0 n 10

11 <n <N,
where H denotes the office average line -link holding time and Hb de-
notes the reciprocal of the defection rate for a call that is waiting for
a line link to become available. As discussed above, Hb is taken to be
30 s based on results in Ref. 9.

The parameter X (combined originating and terminating rate per
unoccupied subscriber line) is an unknown whose value will be ob-
tained from the horizontal group -carried load z. The factor of z appear-
ing in the definition of X. for 10 1 reflects the fact that,
when all 10 line links are busy, an incoming call cannot cause a sub-
scriber line to be occupied. The definition of the hang-up rate An for
11 n < N reflects the assumption that, when all 10 line links are
occupied, the holding times of the subscriber lines for which no line
links are available should be shorter than full call holding times.

For a horizontal group with carried load z, let

= steady-state probability that n (out of N) subscriber
lines are occupied.

Then, using standard methods for computing the steady-state dis-
tribution of a birth -and -death process,'°

= c and 'T = c Xo x"_11
for n > 1,

/21" An

where the constant c is determined by the requirement that

N

E 1.
n
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Then the carried horizontal group load z is given by

9

Z = E n.7rn + 10 E rn
n=1 n=10

(14)

It is not hard to show that the carried horizontal group load z is a
strictly increasing function of the subscriber line occupancy rate X and
that z < min [10, XNH]. This makes it easy to determine numerically
the unique value of X corresponding to a given carried load z.

Once X has been determined, the quantities X., A., and rn are used
to compute the offered blocked -call load contributed by the hori-
zontal group. We take x(z) to be the expected number of occupied
subscriber lines for which no line links are available. This yields the
value

N
x(z) = (n - 10)7n. (15)

n=11

IV. PEAKEDNESS OF THE BLOCKED -CALL STREAM

In the model discussed in Section III, blocked calls arrive according
to a Poisson process and defect after an exponential waiting time.
Since blocked calls constitute an overflow stream and since it is well
known" that overflow traffic usually has a peakedness* greater than 1
and hence is not Poisson, some discussion of the peakedness of the
blocked -call stream is in order.

The blocked -call stream is the superposition of overflow traffic from
all of the (typically 400 to 600) horizontal groups in an office. In the
case of an office with ideal load balance (identical horizontal group
loads), all horizontal groups would have equal expected contributions
to the blocked -call stream and standard limit theorems would suggest
that the blocked -call stream should be approximately Poisson.

Comparisons of calculated and observed dial -tone delays discussed
in Section V (covering measured DTM occupancies up to about 0.84)
indicate that, when the blocked -call stream is assumed to be Poisson,
the calculated delays generally fall in the midrange of applicable data.
However, there is a large variability in observed dial -tone delays
measured in the same office under nearly identical levels of DTM

occupancy, second -failures -to -match, and percent all-oRs-busy. The
presence of this variability may be regarded as evidence that, in some
busy hours, the blocked -call stream may be peaked in nature. Peaked-
ness of the blocked -call stream is capable of accounting for substanti-

The peakedness of a stream of calls is, by definition, the variance -to -mean ratio
of the number of busy servers when the stream is offered to an infinite group of
servers with independent identically distributed exponential holding times.
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ally higher calculated dial -tone delay at a given level of DTM occupancy,
second -failures -to -match, and percent all-oRs-busy than would be
calculated under the assumption that the blocked -call stream is
Poisson.

One would expect the blocked -call stream to be peaked whenever
most of the blocked calls are contributed by a small number of highly
overloaded horizontal groups. Data on the horizontal group load dis-
tributions during individual busy hours are not available for the test
discussed in Section V and would be impractical to obtain on an on-
going basis in any office. In the absence of data from which one could
deduce directly the blocked -call peakedness, a treatment has been
made using some results which R. I. Wilkinson obtained in the course
of formulating his "equivalent random" method of characterizing
overflow traffic."

Wilkinson" assumes that traffic arrives and departs according to a
birth -and -death process in which the arrival rate is increased when-
ever the number of calls in the system exceeds a nominal number and is
decreased whenever the number of calls in the system is less than this
nominal number. The equilibrium distribution of the number of calls
in the system resulting from these assumptions is shown to be negative
binomial and, hence, this distribution is completely determined by its
mean and variance (or by its mean and peakedness). Wilkinson then
shows that negative binomial
true overflow distributions under a number of different conditions.

The effects of peakedness of the blocked -call stream on dial -tone
delay were explored using the limiting analytical model of Section II
by replacing the (truncated) Poisson distribution of blocked calls by
a (truncated) negative binomial distribution of blocked calls. (Note
that this does not require recomputing the conditional delay distribu-
tions.) In this manner, dial -tone delay distributions were calculated
and compared with the observed dial -tone -delay distributions dis-
cussed in Section V, assuming peakedness values of 2 and 4. The re-
sulting delay curves approximated the higher delays observed for
given occupancy parameters. These calculations indicate that much
of the observed variability in dial -tone delays under nearly identical
load can be explained by peakedness of the blocked -call load.

It is not difficult to modify the birth -and -death model discussed in
Appendix B so as to accommodate peaked blocked -call input using
Wilkinson's method of representing this input.12

Thus, when a negative binomial blocked -call distribution is used in
the limiting model, the resulting distribution of the good -call dial-
tone delay may be regarded as the limit of a sequence of good -call-
delay distributions corresponding to models with blocked -call input
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having the peaked form suggested by Wilkinson." The limit is taken
as the bad -call -arrival rates approach zero and the mean bad -call -
waiting times approach infinity with their products approaching posi-
tive constants. Incorporation of the negative binomial distribution in
the limiting model is accomplished simply by replacing the terms of
the truncated Poisson distribution in eq. (13) with the corresponding
terms of the negative binomial distribution," using any convenient
truncation.

V. COMPARISON OF CALCULATED AND OBSERVED DIAL -TONE
DELAY DISTRIBUTIONS

5.1 Summary

Theoretical dial -tone -delay distributions, calculated using the ana-
lytical model discussed in Section II, were compared with dial -tone -
delay measurements made in a field test. The test was conducted in
a No. 5 crossbar office with 60 LLFs, 4 DTMs, 68 dial -pulse (DP) oRs,
and 68 multifrequency (MF) oRs. The data discussed in this section
are from the time period February through April, 1974.

The main conclusions of this study are that (i) the calculated delays
generally fall in the midrange of applicable data, (ii) there is a large
variability in observed dial -tone delays measured under nearly
identical levels of DTM occupancy, second -failures -to -match, and
percent of all-oRs-busy, and (iii) the field data show a clear increase
in the ratio of waste DTM usage to total DTM usage as frame load
increases. The observed amount of increase in waste DTM usage agrees
with theoretical predictions.

In this section, the manner in which the dial -tone -delay measure-
ments were taken is discussed and the method used to obtain the
calculated delays is outlined. Next, some of the sources of variability
in No. 5 crossbar dial -tone delays are identified and an explanation is
given as to why a large variability in observed delays should be ex-
pected. Two data plots are given indicating, respectively, the effects
of frame load on waste DTM usage due to second -failures -to -match and
the effects of frame load on incoming -first -failures -to -match. Finally,
the conclusions of the study are discussed.

5.2 Methods of obtaining the calculated and observed delay distributions

Hourly dial -tone -delay measurements were made by placing ap-
proximately 900 test calls per hour, using a standard 3-s dial -tone -
delay testing machine which had been modified to record the pro-
portion of test calls with delays exceeding X seconds, for X = 0.5,
1.0, 1.5, 2.0, 2.5, and 3.0.
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.The observed actual DTM occupancy pb for a single hour is expressed
in terms of the measured parameters by the formula :

Pb
(Total DTM peg count) (0.015) + (Measured seconds of DTM usage)-

(4)(3600)
(16)

The term in eq. (16) involving the DTM peg count is to adjust for the
seconds of DTM usage which DTM usage measuring devices do not
record.

The (adjusted) DTM holding time for each hour was computed by
A. R. Thorne from the DTM peg count, the all-oRs-busy peg count,
the adjusted DTM usage [the latter of which comprises the numerator
of eq. (16)], and an additional "light -traffic adjustment" (used when-
ever the observed actual DTM occupancy is below 0.80). Most of the
adjusted DTM holding times are between 0.28 s and 0.31 s. A DTM
holding time of 0.30 s is assumed in the theoretical dial -tone -delay
distributions discussed in this section.

To compare predicted dial -tone delays with measured dial -tone
delays, it was necessary to infer the observed increment in DTM occu-
pancy due to DTM second -failures -to -match (DTM2FTM). This incre-
ment, denoted by A, is taken to be

where

(Total DTM2FTM peg count) (HBC 0.015)a = (17)(4) (3600)

HBC = DTM holding time during a second -failure -to -

match (seconds).

A value of 0.40 s is used for HBC, based on data obtained during an
earlier di .l -tone -delay field test.6 The observed good -call DTM occupancy
A. is defined to be

= A (18)

Dial -tone -delay distributions were calculated, using the analytical
model, for a range of values of actual DTM occupancy Pb and good -call
DTM occupancy Pu, where the parameters Pb and pu are defined in
Section II. The specific manner in which the distributions were calcu-
lated is discussed below. The results of these calculations were tabu-
lated into a set of dial -tone -delay distributions, indexed by the pairs
(Pb, Pu). To compare the calculated and observed dial -tone delays,
measured dial -tone -delay distributions from data -collection hours with
similar values of Ab and pu were plotted on a graph along with one
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theoretical dial -tone -delay distribution selected from the tabulation
discussed above, such that pb rA.: Pb and Pu R-.,' iiu hold for the values
kb and A. corresponding to the observed delays shown on the graph.

These graphs are shown in Figs. 3, 4, and 5. Table I lists data per-
taining to each of the observed delay curves on each of the graphs.
At the top of each graph are listed the actual DTM occupancy pb and
the good -call DTM occupancy pu used for the theoretical dial -tone -delay
curve (the solid line) on the graph. Also listed are the ranges of the
Pb and iiu values corresponding to the observed dial -tone -delay curves
on the graph. The plotting symbols on the graphs indicate measured
dial -tone delays. The dotted lines are smoothing curves fitted to the
measured delays by the computer plotting routine used to draw the
graphs.

The predicted dial -tone -delay distributions were obtained in several
steps. First, values of the good -call origination rate per LLF Al were
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Fig. 3-Calculated and observed dial -tone delays. Actual occupancy in calcula-
tions = 0.75 (data: 0.740 to 0.758). Good -call occupancy in calculations = 0.70
(data: 0.684 to 0.697).
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Fig. 4-Calculated and observed dial -tone delays. Actual occupancy in calcula-
tions = 0.82 (data : 0.795 to 0.837). Good -call occupancy in calculations = 0.76
(data : 0.744 to 0.782).

computed so as to produce good -call DTM occupancies of p. = 0.60,
0.66, 0.68, 0.70, 0.72, 0.74, 0.76, 0.78, and 0.80. The values of Xi were
obtained numerically from the formula p. = X1NT/2p given in Sec-
tion III. Note that p, the erlang C probability of all-oRs-busy, is a
function of Xi, whereas N and T are constants. For the office in which
the test was conducted, N = 30 and, as discussed above, T = 0.30.
In computing p, an average OR holding time of 10.25 s was assumed
based on data from the test. In all cases, the calculated values of p
were greater than 0.99, so the all-oRs-busy condition has a calculated
probability of less than 0.01 under the conditions to which these
distributions apply. (The observed fractions of all-oRs-busy were
also below 0.01 during most of the hours of the test. Hence, oRs do
not appear to have caused much of the dial -tone delay observed in
the test.)

Next, the conditional delay distributions corresponding to these
parameters were computed using the analytical model. Using eq. (12),
values of x (total erlangs of blocked calls) corresponding to a range
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Fig. 5-Calculated and observed dial -tone delays. Actual occupancy in calcula-
tions = 0.82 (data: 0.795 to 0.837). Good -call occupancy in calculations = 0.76
(data: 0.744 to 0.782). (Note that a blocked -call peakedness of 4 is assumed in the
calculations shown above. Figures 3 and 4 are based on an assumed blocked -call
peakedness of 1.)

of values of pb were computed for each fixed value of pu. For each such
pair of pb and pu, the good -call dial -tone -delay distributions were then
computed by (13) using the value of x, obtained as discussed above,
and the conditional delay distributions corresponding to pu. The re-
sult of these calculations is a set of good -call dial -tone -delay distribu-
tions indexed by the pairs (pb, p.).

These good -call dial -tone -delay distributions include the indirect
effect of bad calls in that they reflect the increased DTM congestion
produced by the bad calls. As discussed earlier, the direct effect of bad
calls is expected to be small and therefore may be accounted for in a
somewhat approximate manner. To reduce the number of variables
that need to be considered, a single blocking probability is used in
lieu of integrating the blocking probability formula over an assumed
distribution of expected horizontal group loads. For the purpose of
computing an average blocking probability PB, the average waiting -
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time -until -defection of a bad call (BcwT) is assumed to be 10 s.* A
consequence of this assumption is that the total bad -call origination
rate corresponding to x total erlangs of bad calls on two DTMs is x/10
bad calls per second. The total origination rate of good calls on all
30 LLFs is 30X1. The average blocking probability PB corresponding to
the occupancy pair (pb, p.) is then defined to be the ratio of the bad -
call origination rate to the total origination rate of good and bad calls.
Thus,

x/10
PB = x/(10) 30X1'

(19)

where x and X1 are the values corresponding to the occupancy pair
(Pb, p.)

The conditional delay distribution of bad calls should be nearly
exponential with mean delay HT/ (10 - a), where HT is the average
call holding time and a is the carried horizontal group load in erlangs./
For each occupancy pair (pb, p.), the theoretical dial -tone -delay dis-
tribution for all calls is then given by

-P(D > 1) = (1 - pB)P G(D > t) PB {exp [
(10

HTa)
t]

, (20)

where PG (D > t) is the good -call dial -tone -delay distribution cor-
responding to the occupancy pair (pb, p.).

In the theoretical dial -tone -delay curves shown in Figs. 3, 4, and 5,
a = 0 is used in eq. (20). The effect on P(D > 3 s) of setting a = 0,
rather than using a more nearly correct value for each graph, is less

The value of BCWT = 10 s used in calculating PB is consistent with the mean-
time -to -defection Hb = 30 s used in the horizontal group blocking calculations in
Section III. The difference between the numerical values arises because these two
parameters are defined differently. For the purpose of calculating PB, it is assumed
that a bad call arrives, remains waiting for dial tone an exponential length of time
with mean BCWT, and then defects. In the horizontal group blocking model discussed
in Section III, a call which finds all 10 line links busy may either defect or may
eventually obtain an idle line link. The call contributes to the bad -call load during
the time that it remains waiting for one of the line links to become available. Thus,
the quantity in the horizontal group blocking model corresponding most nearly to
the parameter BCWT is the mean time until a call that finds all 10 line links busy
either obtains a line link or defects. Based on delay calculations for the horizontal
group blocking model discussed in Section III, and assuming a mean -time -to -defec-
tion of 30 s for calls that do not obtain a line link and a mean line -link holding time
of 150 s, the mean time until a call that finds all 10 line links busy either obtains
a line link or else defects is calculated to be between about 10 and 12 s for horizontal
group carried loads in the range of interest. Thus, it is reasonable to take BCWT = 10 S.

t This expression for the conditional delay distribution of bad calls should over-
estimate their delays somewhat because the expression does not account for finite -
source effects. Since the fraction of calls experiencing these delays (i.e., the fraction
of bad calls) is typically less than 0.01, the effect on 3.0-s dial -tone -delay probabilities
of neglecting finite -source effects is typically less than 5 X 10-4. For this reason,
these effects are neglected in eq. (20).
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than 8 X 10-4 in all cases. This error is in the opposite direction from
the error, of comparable magnitude, resulting from not including
finite -source effects in the bad -call delay distribution.

Since the analytical model is a discrete time model with a time step
of T seconds, P(D > kT) = P[D > (k 1)T] for k = 1, 2, . In
Figs. 3, 4, and 5, T = 0.30. Because of the way that dial -tone -delay
measurements are taken, a call which is recorded as having a delay
greater than t seconds may actually receive dial tone within a few
milliseconds after time t. Thus, in comparing the theoretical dial -tone
delays with the observed dial -tone delays, the observed fraction of
dial -tone delays greater than, t seconds is taken as representing the
observed fraction of dial -tone delays greater than or equal to t seconds.
The theoretical delay curve plotted is the curve P(D > kT) for
k = 1, 2, , interpolated so as to produce a smooth curve.

5.3 Sources of variation in observed No. 5 crossbar dial -tone delays

Dial -tone delay in No. 5 crossbar is influenced by a number of
factors capable of producing a large variation in delays measured in
different hours within the same office under very similar conditions
of DTM occupancy, percent all-oRs-busy, and second -failures -to -match.
As discussed in Section IV, much of the variability in dial -tone delay
measured under very similar load conditions can be explained by
differences in peakedness of the blocked call stream. Whenever most
of the blocked -call load comes from a small number of extremely over-
loaded horizontal groups, the blocked -call stream should have a peaked-
ness greater than one. When a large number of moderately overloaded
groups contribute to the blocked -call load, the blocked -call stream
should be approximately Poisson (peakedness equal to one). Thus,
differences in the individual busy -hour -load balance would be expected
to produce different amounts of blocked -call peakedness, which in
turn can account for appreciable differences in dial -tone delay mea-
sured under nearly identical average load conditions. For example,
Fig. 5 shows dial -tone delays calculated assuming a blocked -call peaked-
ness of 4 for the same conditions shown in Fig. 4, which is based on a
blocked -call peakedness of 1.* The calculated delay curve in Fig. 5 fits
the top two observed delay distributions rather closely.

Some additional identifiable sources of dial -tone -delay variation
under similar load conditions are : (i) within -hour trends in traffic,
(ii) nonstandard (and possibly erratic) gating caused by improper
functioning of the master traffic controller circuitry, (iii) DTM prefer-

The method by which blocked -call peakedness is treated in the model is dis-
cussed in Section IV.
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ence for calls from a small subset of lines on each horizontal group,
(iv) variation in DTM first -failures -to -match, and (v) competition be-
tween DTMs and completing markers for line -link connectors.

The first of these sources should produce effects similar to those of
blocked -call peakedness. The second source may cause nonuniform
congestion. The third source is predicted to result in a slight outward
shift in the delay curve. The fourth and fifth sources should be reflected
in increased measured DTM holding time and in increased DTM occu-
pancy. Although approximate allowances can be made for the average
congestion increase produced by some of these phenomena, no quanti-
tative estimate is available for their total contribution to hourly
variation in dial -tone delay.

In addition to identifiable sources of dial -tone -delay variation, simu-
lation studies indicate that there can be an appreciable residual varia-
tion in simulated hourly No. 5 crossbar dial -tone delays obtained in
different runs with identical input parameters (and, hence, with identi-
cal expected load conditions).*

Figure 6 shows four dial -tone -delay distributions obtained using
the gating simulation model. In this model, the blocked -call stream
is Poisson. These distributions were produced by simulating four
individual hours, using identical input parameters. The delay distribu-
tions shown are for the calls that did not encounter horizontal group
blocking and are based on the total number of such calls processed
during the hour. The set of four 3-s dial -tone delays has a coefficient
of variation of 0.28 and a mean of 0.069. (The coefficient of variation
is the ratio of the standard deviation to the mean.) Plotted on the
graph along with the delay curves are error bars indicating the 2 -sigma
limits of 0.034 and 0.107 associated with the above mean and coeffi-
cient of variation.

Actual dial -tone -delay measurements are based on test calls. During
a given busy hour in a typical No. 5 crossbar office, approximately
900 test calls are made on a fixed set of 60 (out of 600) horizontal
groups. The use of test calls introduces sampling error, which is not
represented in the distributions shown in Fig. 6 and which would
have an associated coefficient of variation of about 0.12 for the parame-
ters applicable to Fig. 6.

5.4 Data on frame load effects

Figure 7 is a data plot of line -link frame load versus waste DTM usage
due to second -failures -to -match based on data from the test. The
quantity "DTM usage fraction due to 2FTMs" shown on the ordinate is

' This result is one of the main conclusions of an earlier No. 5 crossbar dial -tone -
delay simulation study conducted by S. Halfm.3
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Fig. 6-Simulated No. 5 crossbar dial -tone delays. Distributions are based on simu-
lation of four individual hours with identical inputs.

defined by

DTM usage fraction due to 2FTMs --=Total DTM usage due to 2FTMs
Total DTM usage

A

Pb

Figure 8 is a data plot of line -link frame load versus incoming -first -
failure -to -match (IFFM) based on data from the test. In each figure,
each of the data points represents data from 1 h. The average actual
DTM occupancy (averaged over all the data -collection hours with
measured line -link frame loads of 1100 ccs/LLF or more) is 0.54; the
DTM occupancy range is from less than 0.40 to 0.84.

Existing theory indicates that, for a given office configuration (in-
cluding a given junctor pattern), IFFM is directly and primarily de-
pendent on frame load. This conclusion is borne out by Fig. 8, which
demonstrates a well-defined trend (with a moderate amount of data
scatter) of increasing IFFM with increasing frame load.

The extent to which frame load affects DTM usage and dial -tone
delay in any given hour depends, in an indirect way, on several differ-
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Fig. 7-Effect of frame load on increased DTM usage due to 2FTMe. The assumed
DTM holding time during a 2yrm = 0.40 s.

ent variables, including DTM occupancy and the distribution of carried
load among horizontal groups. Because of this dependence, the nature
of which has been discussed more fully in previous sections, the data
scatter in the plot of waste DTM usage fraction versus frame load (Fig.
7) is much larger than in the plot of IFFM versus frame load (Fig. 8).

The curve labeled "THEORETICAL" in Fig. 7 was calculated using the
limiting analytical model [eq. (12)] and the horizontal group blocking
model discussed in Section III. In these calculations, the blocked -call
load was assumed to be Poisson (peakedness equal to 1).

To obtain the theoretical curve, it was first necessary to determine
what calling rates should be assumed in the calculations. The calling
rates were inferred from the data upon which Fig. 7 is based by first
using linear regression (least squares) to express the observed good -call
DTM occupancy, A, as an empirical function of the observed frame load,
CCS/LLF. For each value of the frame load, the calling rate was taken
to be the particular calling rate corresponding to the least squares
value of Pu, assuming an average DTM holding time of 0.30 s and a
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zero probability of all-oRs-busy. The justification for the assumptions
regarding the DTM holding time and the probability of all-offs -busy
is given earlier in this section.

Next, the horizontal group blocking model discussed in Section III
was used to compute the expected blocked -call offered load correspond-
ing to each value of frame load and (empirically associated) calling
rate. The office distribution of carried horizontal group load was
assumed to be normal with group -to -group coefficient of variation
inferred from the office horizontal group load distribution using the
method discussed earlier. The calculated values of offered blocked-

call load were then used in eq. (12) to compute the theoretically pre-
dicted fraction of waste DTM use, (pa - p.)/ pa, corresponding to these
frame loads and calling rates.

Since both the theoretical and the observed values of waste DTM

use depend not only on frame load but also on the calling rate, neither
the data plotted in Fig. 7 nor the theoretical curve shown on the figure
should be regarded as being applicable to calling rates or load balance
conditions other than those upon which this figure is based.
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The purpose of Fig. 7 is to illustrate-for the conditions of calling
rate, frame load, and load balance represented in this study-an
empirical relationship between frame load and the ratio of waste DTM
usage to total DTM usage with increasing frame load and to show that
this empirical relationship is consistent with predictions of the theo-
retical models.

5.5 Conclusions

The conclusions which the author has drawn from this comparison
of theoretical and observed dial -tone -delay distributions are as follows :

(i) Where two or more observed delay distributions appear on the
same graph, the theoretical delay distributions usually fall
approximately midway between the maximum and minimum
observed delay distributions. This indicates that, in the
(actual) DTM occupancy range spanned by these data (DTM
occupancies up to about 0.84), the analytical model shows
good agreement with the data.

(ii) Much of the large variability in observed 3-s dial -tone delays
measured under nearly equal conditions of DTM occupancy,
second -failures -to -match, and percent all-oRs-busy can be ex-
plained by assuming the blocked -call stream to have different
peakedness values (ranging from 1 to about 4) in different

peakedness, illustrated by
which the peakedness is taken to be four, would be expected
whenever most of the blocked -call load comes from a small
number of extremely overloaded horizontal groups. Low
blocked -call peakedness, illustrated by Fig. 4 in which the
peakedness is taken to be 1, would be expected whenever a
large number of moderately overloaded horizontal groups con-
tribute more or less equally to the blocked -call load.

(iii) Simulation results indicate that there should be a large residual
variability in 3-s dial -tone delays measured in different
(simulated) hours under identical expected load conditions.
This variability, illustrated in Fig. 6, is in addition to the
variability due to blocked -call peakedness discussed above.
A third nonnegligible source of variability in observed dial -
tone delays is the sampling variability associated with the use
of test calls to measure delays.

(iv) For the conditions of calling rate, frame load, and load balance
represented in this study, the observed increase in the ratio of
waste DTM usage to total DTM usage as frame load increases is
consistent with theoretical predictions. This is illustrated in
Fig. 7 and discussed in Section 5.4.
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APPENDIX A

Computation of the Two -Marker Stationary Distribution for k > 1

The purpose of this appendix is to prove that the limit r defined
by (10) exists and that the quantities vi = cy; r13i, satisfy (21),
where a; and Ai are defined by (9).

v;>0, all j>>=0

2) 0 = 1;
5+2

I); = E viPk(i, j),
i=0

<c.

all j 0

(21)

We first show that there exists exactly one positive number r such
that v; = a; r/3; satisfies (21). Then we show that the limit in (10)
exists and is equal to this number.

When X < 2p, we know that the stationary distribution Pk exists
and Pk(j) > 0 for each j. Let Ira = Pk( j)/Pk(0). Then for r = Pk(1)/
Pk(0), we have

= 1,
= r,

5+2

it = E j),
i=0

all j>0.

Now let v; = ai Oh with r as defined above. Then, it follows from
(9) that

Vo = 1,

V1 = r,
5+2

215 = E viPk(i,j),
1=0

all j > 0. (22)

Since vo = iro and v1 = 71 and since the vectors v and 7c both satisfy
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the same recurrence relation, which has the property that the jth
term for each j >= 2 is uniquely determined by the 0th and 1st terms,
we see that 7,1 = ir; > 0 for all j 0. Since the Markov chain is posi-
tive recurrent for X/2p < 1, it follows from (22) and Karlin" that
Er=0 vi <00 . Hence, v satisfies (21). Thus, there exists at least one
value of r for which = a; + 01 satisfies (21). If r' is any number
such that v; = ai r',35 satisfies (21), then by uniqueness of the
stationary distribution, r' = ii;/74; = Pk(1)/Pk(0), so r' = r. Thus,
exactly one such r exists.

Since a; r13; > 0 for each j, it follows that (10a) holds. Hence,
the increasing sequence in is bounded above by r and the decreasing
sequence Mn is bounded below by r. So both in = lim m and
M E--- limn W,, exist and satisfy

m r M,

mn m,

M M..

(23)

(24)

If either of the inequalities in (23) were strict, then m < M and, in
view of (24), each x in the interval in < x < M would satisfy

m x 111 

for each n, from which it follows that v; = a; xf3; satisfies (21).
This contradicts the uniqueness of r and proves that m = M = r.

It is easy to extend the above result so as to give a method for
computing the stationary distribution of any irreducible positive re-
current Markov chain on the nonnegative integers such that a fixed
positive integer no exists for which P(j + no, j) > 0 and P(j n, j)
= 0 for all j and all n > no.

APPENDIX B

Convergence in Distribution to the Limiting Model

In the limiting model, the number of bad (i.e., blocked) calls in the
system is a time -independent, truncated -Poisson -distributed random
variable. We will show that the steady-state distributions of good- and
bad -call queue lengths and the steady-state good -call dial -tone -delay
distribution in the limiting model are the limits of the corresponding
distributions for a sequence of models in which the bad call queue
lengths form birth -and -death processes.

In the nth model, the bad -call arrival rate, denoted by X(n), ap-
proaches zero and the bad -call mean waiting time until defection, de -
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noted by H(n), approaches infinity in such a way that their product
(total expected erlangs of bad calls) approaches a finite positive con-
stant x.

The physical motivation for considering the limiting model is that
the actual situation is one in which blocked calls appear infrequently
(relative to total call arrival rates) and tend to remain in the system
for a long time (relative to DTM holding times). The mathematical
motivation is that the limiting model is much easier to analyze than
a model in which the bad -call arrival and departure processes are
represented explicitly.

Preliminary computations using a single marker version of the
analytical model, which represented the bad -call arrival and departure
processes explicitly, showed that different bad -call arrival rates and
waiting times had little effect on dial -tone -delay distributions as long
as the product of the bad -call arrival rate and bad -call waiting time
remained constant. In addition, these distributions were all quite
close to those obtained from the limiting form of the model. These
results make sense intuitively because bad calls simply cycle through
the system, absorbing some DTM uses while present, and eventually
defect; thus, what should matter is mainly the distribution of the
number of bad calls in the system at any time. In the version of the
analytical model discussed in this appendix, the blocked call queue
length distribution is shown to be a truncated Poisson with mean
equal to the total erlangs of bad calls.

Let K be the maximum possible number of bad calls that can be
in the system at any time. In all computations using realistic No. 5
crossbar busy -hour input parameters, the expected erlangs of bad
calls have been low enough that the Poisson probability of more than
five blocked calls being present in a two -marker system has been less
than 10-3. Hence, K may be taken to be 5. (Note that in an actual
No. 5 crossbar office, the maximum number of bad calls that can be
in the system at any time is trivially bounded above by the number of
subscriber line terminations in the office.)

Let Sn(p) denote the saturation load of the nth model. Since no
more than K blocked calls can be in the queue at any time, in the
nth model, we have 2p = Sr(p) S n(p) > S$ (p) = 2p for all n ;
hence, :37, (p) = 2p. Thus, the saturation load of the nth model is the
same as the saturation load of the limiting model. For the nth model,
let

X1,1,1) = number of good calls in the queue at time mT ,
Y(n) T) = number of bad calls in the queue at time mT

p n(k , 1) = DIY (n)[(in + 1)T] = 11 Y(n) (mT) = k}.
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In the nth model, 17(n) (t), the bad -call population size at time t, is a
finite -state space birth -and -death process with birth -and -death rates

X4:1) = X(n)

=0

!gy(n) - H(n)
=0

0 1

otherwise

0 m K

otherwise.

Since the queuing model is in discrete time, only the values of Y(n)(t)
at t = mT are of interest. The transition matrix pn(k, 1) is given by

p = eTAn,

where An is the infinitesimal generator matrix of the birth -and -death
process Y(n). (See Ref. 15.) Since X(n) = 0 and limns,, H(n)=
it follows that limn, An = 0. Hence,

lim pn(k, = Okz

for each k, 1 = 0, 1,  , K, where 8k1 = 0 for k 1 and 8kk = 1.
We also have

(25)

P{X;774.1 = j, Y(n)[(m 1)T] = = YgT) = k}
= pn(k, l)Pk(i, j),

where P j) is given by (1) and (2). Since the nth model has satura-
tion load 2p, we know that a stationary queue length distribution
7rn(j, 1) exists for X/2p < 1 and satisfies the equation

lrn(j, 1) = rn(i, k)pn(k, 1)P k(i, j). (26)
1c=0 i=0

Let rn( , 1) be the marginal equilibrium distribution of the number of
bad calls in the system. Then

and by (26)

rn(,1) = rn(j,l)

ao 00

Irn() = E E rn(i, k)pn(k, 1) P k(i, j)
k=0 i=0 j=0

(27)

=
ktirn(, k)pn(k, 1). (28)

Hence, irn( , k) is the stationary distribution of a Markov chain whose
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transition matrix is pn(k, 1). Using standard theorems on birth -and-
death processes (Ref. 10) it follows that, for all values of 1 = 0, 1, , K,

7.( , k) = Ern PE 17(n)(t) = k I Y(n)(0) =

-1CxaK.'n

k!
0 K

= 0 otherwise, (29)

where
Xn = X(n)H(n)

and
xnt

CznK = -FA
k =0 rt,:

We will now show that

Ern
C; iX.k

7rn(j, k) = k! Pk(3) (30)

for all k = 0, 1, , K and all j = 0, 1, , where Pk is the stationary
distribution of good -call queue length in the model with k bad calls
permanently present in the system. The right-hand side of (30) is the
queue -length distribution for good and bad calls in the limiting model.

Let X(n) denote the number of good calls in the queue for the nth
model in equilibrium. Since the number of bad calls present in the
nth model is always less than or equal to K for all n, it is clear on
intuitive grounds and can be proved rigorously using stochastic order-
ing that

PEX(n) PK(i) (31)

for each j.
To prove (30), it suffices to show that if ir,, is any subsequence of

irn for which limn, r,,, (j, k) r(j, k) exists for each j and k, then

and

(i) k) = k)Pk(i, j)

-1
(ii) E Ir(j, A') = lc

zK
!

x
j=o

To see that (i) and (ii) are sufficient, note that, by uniqueness of
the stationary distribution, Pk, (i) and (ii) imply

c-lxkr(j, k) = ikt P k(J). (32)
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Since 0 < r( j, k) :C. 1 for all j and k, every subsequence re, contains
a further subsequence 71-0,, for which the limit limn- rn,i(j, k) exists
for all j and k. In view of the above discussion, all of these subse-
quences have the same limit, namely the right-hand side of (32).
Equation (30) follows.

We now prove (i) and (ii). Condition (i) follows immediately from
(25) and (26). To see that (ii) holds, we proceed in two steps. First,
note that by (27), (29), and Fatou's lemma,

t
E 1r(i, k)
J. -o -cTi k!Xk

for each k. If any of the above inequalities were strict, then

il te ir(j, k) <1.
k=0 j=0

Hence, to prove (ii) it suffices to show

co K
E E r(i, k) .- 1,
i=0 k -O

i.e., we must show that, in the limit, no probability mass escapes to
infinity. Let E > 0 and choose jo such that

E PK(.1) < E.
2.-ao

Then, using eq. (31),

co K JO K

E E ir(i, k) E E 7 r (i, k)
i=0 k=0 i.=0 k=0

JO K

= Jim E E it"" (i, k)
n i=0 k=0

= lim P[X(n") .' j0]

i0

?-.- E PK(i)
i=0

1 - E.

Thus, (ii) holds and eq. (30) follows.
It can be readily shown, using the above results together with

standard theorems, that the delay probabilities in the nth model
converge to those in the limiting model. (See Refs. 16 and 17.)
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Preface

The papers in this special supplement to The Bell System Technical
Journal differ markedly from the more quantitative typical B.S.T.J.
papers, which are characterized by their analytical and experimental
approach, usually with a definitive telecommunications tie-in. The
reason for this contrast is that these papers, taken together, are in-
tended to serve a quite special purpose.

In its defense work for the U.S. government for the past several
years, the team of Bell Laboratories and Western Electric, with close
support from many contracting firms, has carried out the development
of what is believed to be the most complex real-time software/hardware
system ever successfully undertaken. These papers constitute an in-
tegrated story of the scope of the software task, the way it was organized
and managed, and the principal lessons learned (problems encountered
as well as successes achieved).

We are making this story available in the hope that the computer/
data-processing community and others might profit from those de-
velopmental and administrative approaches that proved to be par-
ticularly effective and avoid those avenues that were found to contain
pitfalls.

THE B.S.T.J. EDITORIAL COMMITTEE
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SAFEGUARD Data -Processing System:

Foreword

The U.S. government needs and obtains a wide range of services
from the nation's businesses. From the Bell System, these services
range from the large amounts of ordinary telephone service required
to carry on its day-to-day operations to the development of complex
systems designed to ensure the nation's defense. With respect to the lat-
ter, Bell System policy is summarized in a remark by H. I. Romnes at a
stockholders' meeting on April 15, 1970:

"The Bell System engages in military work as a responsibility we
owe our country. We make available some of the communications
expertise of the Bell Telephone Laboratories and the Western
Electric Company to carry out programs for which responsible
agencies of the government have a defined need. We did not seek
out military work nor do we seek to expand the amount we have."

The largest system development ever carried out for the Depart-
ment of Defense by the Bell System started with some exploratory re-
search and development work in 1957 and culminated with the com-
pletion of installation and testing of the SAFEGUARD Ballistic Missile
Defense System in early 1975. Western Electric was the prime con-
tractor for the SAFEGUARD system and Bell Laboratories was responsi-
ble for the design. Major subcontractors were Raytheon and General
Electric for the radars, Martin Marietta and McDonnell Douglas for
the missiles, and Univac and IBM for the data-processing system.
SAFEGUARD may be the most complex system ever produced by a

single, integrated, research and development project and the system
would take many volumes to describe. The overall design required the
solution of many complex technical problems, and the major subsys-
tems-the two radars, the two missiles, data processing, command
and control, and communications-are lengthy stories in themselves.
However, the data-processing subsystem development probably has
the greatest relevance to the Bell System. This is so because more and
more systems are organized around a stored -program, general-purpose
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computer, controlling system operation on a real-time basis. SAFE-
GUARD is an extraordinarily large system of this type. It provides a
sort of upper bound for the other developments in many ways. For
that reason, this supplement to The Bell System Technical Journal
consists of papers that describe the major issues arising in the de-
velopment of the data-processing subsystem, with emphasis on the
software. The material included is limited to that which is felt to be
useful to the general computing community, and is an attempt to de-
scribe the lessons learned rather than just the successes. As a result, other
system developers may be helped in identifying some management
techniques and technical approaches to avoid as well as those that
might be useful to them.

To restrict this supplement to a manageable size, the level of detail
had to be restricted. The papers are highly interdependent and are
intended to be read as a group. Although many details of the design
and development are not treated here, the volume as a whole provides
a comprehensive summary of the pragmatic approach required for a
highly schedule -sensitive project.

The volume begins with an introduction and overview paper. This
paper provides important background material for all the other papers,
including not only the general organization of the data-processing
system but also the role of the data processor in the overall system and
a brief history of the ABM system.

The remaining papers are organized into six sections, each covering
a major facet of the effort. The Systems Engineering section consists
of one paper that discusses the generation and control of requirements.
Fundamental control of the entire software development was achieved
through the Data Processing System Performance Requirements dis-
cussed in this paper.

The Hardware section contains papers describing the data-process-
ing system architecture, emphasizing the modular nature of the system
and the maintenance and diagnostic techniques that were important
parts of the strategy for obtaining high availability.

The Real -Time Software Development section contains the descrip-
tion of those aspects of the design that depend most critically on the
real-time nature of the application and the multiprocessor computer.
The successful use of a pool of identical processors to provide the total
required processing capacity was one of the major features of the
project, and these papers summarize the impact of this system charac-
teristic on the design of the operating system and the overall structure
of the software. In particular, the techniques used to structure the
software to make the most efficient use of all processors are described
in the paper entitled "Process Design : The Structure of Real -Time
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Software Systems." Other papers in this section describe the facilities
and techniques used to test and debug the system.

The Support Systems section discusses those facilities that were of
major importance in supporting the development of the real-time
software. The overview paper which introduces this section provides a
critical examination of some key decisions in establishing the support
environment, which is necessary to every software development. As a
result, this paper, and the other papers in this section, should be par-
ticularly relevant to other such efforts.

The Development Tools and Techniques section contains two papers
that describe special techniques that were used to improve program-
ming efficiency. Although it was not possible to gather enough data to
establish unequivocal efficiency improvements, the results are in-
teresting enough to warrant consideration on other projects.

The final section, Project Control, describes some of the more im-
portant techniques used throughout the project to monitor progress
and maintain control. Although no panaceas were found for any of
the well-known problems of controlling software developments, the
successful completion of the project demonstrates that adequate tech-
niques are available. Since industry -wide experience indicates that
many large software developments in the past have had as much
trouble with general project control as with the technical aspects of
design, the discussion of the variety of project control techniques used
and their effectiveness is believed to be important.

It is impossible in a brief description of a large system development
to find any adequate way to acknowledge the contributions of everyone
involved. In addition to the major subcontractors listed earlier, im-
portant contributions were made by a large number of other organiza-
tions. Although all the authors were major participants in the activities
which they have documented, many other individuals made contribu-
tions equally important. Each of the over two thousand people involved
during the course of the project made real contributions toward its
success, and it is not possible to acknowledge individually here the
very large number of these who provided the key technical and mana-
gerial innovations that were vital to that success.

THOMAS H. CROWLEY

Executive Director
Safeguard Design Division
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SAFEGUARD Data -Processing System:

Introduction and Overview

By N. H. BROWN, M. P. FABISCH, and C. J. RIFENBERG

(Manuscript received January 3, 1975)

This paper provides the background information necessary for under-
standing the other papers in this volume, and serves as an introduction
to them. It provides a brief history of SAFEGUARD, discusses the hardware
and the software involved, and then focuses on the technical and managerial
approaches to producing the software.

I. INTRODUCTION

SAFEGUARD is an antiballistic missile (ABNI) system primarily de-
signed to respond to attacks by intercontinental ballistic missiles. It

of three major subsystems : missiles, radars, and data
processing and control. Incoming missiles, after being detected and
tracked by the radars, are intercepted and destroyed by defensive
missiles. The radars and defensive missiles are controlled by the data-
processing system.

Development of the large, real-time data-processing system for the
SAFEGUARD Ballistic Missile Defense System was a significant under-
taking from any point of view. Developing a system with unique
processing and availability requirements led to the involvement of
thousands of people and a very substantial commitment of resources.
The resulting multiprocessor data-processing system entailed the de-
velopment of new and sophisticated algorithms, the design of unique
testing programs, and the extensive employment of simulations.

These SAFEGUARD papers primarily emphasize the techniques and
methods of a software development effort that produced millions of
lines of code. Although the classified nature of the project precludes
description of a few of the innovations in both software and hardware,
most of the important problems encountered involved no security
questions and the objective of these papers is to serve the data-
processing community by imparting some of the lessons that were
learned.
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II. OVERVIEW

2.1 Historical context

At Bell Laboratories, research and development on the first anti-
ballistic missile (ABM) system, the NIKE -ZEUS, began in 1957. The
data-processing hardware requirements for NIKE -ZEUS were met by
the development of special-purpose digital computers, an outgrowth
of the use of analog computers in previous air defense systems. NIKE -
ZEUS field test sites were established in New Mexico, California, and
the Pacific. Applications programs and techniques were developed for
using digital computers as controllers for tracking and missile guidance,
for trajectory estimation and discrimination, and as planning and re-
source allocators in battle management. These application programs
were installed and tested at the field sites during the late 1950s and
early 1960s. In 1962, an historic intercept was achieved when a NIKE -
ZEUS missile launched from Kwajalein Atoll in the Pacific successfully
intercepted a TITAN ICBM launched from Vandenberg Air Force Base.

With the termination of the NIKE -ZEUS project in 1963, NIKE -X
system development began. This system required a highly reliable
data-processing system (DPs) that could support a peak throughput
of about 10 million instructions per second and a peak i/o transmission
for radar control of about 70 thousand 64 -bit words per second. To
achieve these requirements, a special-purpose digital computer was
designed using integrated circuits and core storage techniques. A field
test site for the NIKE -X development was established at Meck Island,
part of the Kwajalein Atoll. Testing at this site has had significant
impact on the development program.

In 1967, the basic design of the NIKE -X machine was incorporated
into the SENTINEL ABM system. Throughput requirements were met by
a multiprocessor capable of using as many as ten processors.

Originally, the goal of SENTINEL was the protection of cities from a
ballistic missile attack. In 1969, new objectives, including the protec-
tion of U. S. MINUTEMAN ICBM bases rather than cities, were an-
nounced. This redirection was indicated by a new system name,
SAFEGUARD. SENTINEL equipment remained unchanged. The field test
site for NIKE -X now became the Meck Prototype System. Its objec-
tives were redefined from those of an R&D program to those of sup-
porting SAFEGUARD design. A detailed test program was established
for the Meck system, providing indispensable support for SAFEGUARD
in hardware, software, and algorithm development, as well as multi-
processor operation and reentry environment characterization.

The entire software development of SAFEGUARD has been directed
at the specific needs of a real-time, high -throughput, very reliable
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computing system. The applications programs, operating system, sup-
port software, and data -reduction facilities were all designed to meet
these objectives.

2.2 System description

There are three types of sites in the SAFEGUARD system : Perimeter
Acquisition Radar (PAR), Missile Direction Center (MDC), and one
Ballistic Missile Defense Center (BmDc). Figure 1 provides a functional
overview of these sites. Although several PAR and MDC sites were
planned, only one of each is being deployed. The PAR site utilizes a
single -face, phased -array radar to provide early detection and tra-
jectory data on threatening ICBMs. Functions of this site include long-
range surveillance, detection, and target selection of threatening ob-
jects, and ICBM -threat tracking for SPARTAN intercept. This last
capability significantly increases the long-range SPARTAN field of fire.
The PAR site does not perform missile guidance. The MDC complex
uses the target trajectory and classification data from the PAR along

PERIMETER ACQUISITION
RADAR & PAR DATA-
PROCESSING SYSTEM

BALLISTIC MISSILE
DEFENSE CENTER
DATA-PROCESSING
SYSTEM

 SAFEGUARD
OPERATIONAL
CENTER

 SINGLE -FACE PHASED -
ARRAY RADAR

 LONG-RANGE
SURVEILLANCE

 DETECTION, TARGET
SELECTION

 TRACK SPARTAN
INTERCEPT

MISSILE -SITE
RADAR & MDC DATA-
PROCESSING SYSTEM

 MULTIFACE PHASED -
ARRAY RADAR

 ABM TRACK GUIDANCE

 THREAT TRACK

 SURVEILLANCE

Fig. 1-SAFEGUARD system.

SPRINT & SPARTAN
MISSILE FARMS
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with additional data supplied by its multiface phased -array radar.
This site provides additional surveillance and target tracking and also
performs the functions of track and guidance for the SPRINT and
SPARTAN missiles. Both PAR and MDC sites report to the BMDC, a
central command center. The BMDC provides a command interface
with other military systems and a means of disseminating command
directives and controls.

The PAR and MDC radars are controlled by the data-processing sys-
tems, collocated with the radars. At the PAR and MDC sites, application
programs perform surveillance, tracking, target classification, radar
management and testing, intersite communication, and display func-
tions. Additional application programs at the MDC support the battle
management and missile guidance functions. The BMDC data-processing
system primarily contains display and command/control programs.

Both PAR and mDc radars are controlled by the DPS through the use
of digital commands. These commands are used to control beam
pointing, frequency selection, receiver gating, thresholding, etc. The
SAFEGUARD system design makes use of some constraints on the
combinations of radar operations that can be performed and, there-
fore, on the sequences of pulse transmissions. Appropriate radar com-
mands must be generated by the application programs and sent to the
radar at least every few milliseconds. The radar pulse patterns used
in SAFEGUARD provide a framework for the time design of the real-
time application programs.

2.3 DPS requirements

The data-processing system design was dominated by requirements
for high throughput and stringent availability/reliability constraints;
i.e., requirements supporting a high probability that the system would
be available when required for a mission and highly reliable during the
mission.

The fact that the radar is controlled by the DPS contributed signifi-
cantly to both input/output (i/o) and processing requirements. Appro-
priate radar commands must be generated by the application programs
and output to the radar at least every few milliseconds, yet the DPS
must be able to complete processing between two radar events. This
contributes to estimates of a peak -load throughput of 10 million
instructions per second.

Input/output requirements were further increased by a variety of
special-purpose peripherals such as missile controllers and data -trans-
mission controllers for intersite data transmission. The DPS was also
required to communicate simultaneously with computing peripherals,
especially disc and tape, as well as to provide status information to,
and receive commands from, system -control personnel.
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The nature of the application imposed requirements for high avail-
ability; therefore, a maintenance system was required for fast recovery
and quick fault isolation and repair in the event of a hardware
malfunction.

Size and complexity increased the problem of verifying the system.
This imposed a requirement for a system exerciser that could be used
to verify as much of the system as practical.

2.4 Tactical site configuration

This section describes in detail four aspects of a site DPS configura-
tion : hardware, software structure, maintenance and diagnostic sub-
system, and exercise subsystem. Except for the absence of an exercise
subsystem at BMDC, the DPS structure is similar for MDC, PAR, and
BMDC.

2.4.1 DPS hardware

Figure 2 shows the equipment at the MDC site consisting of a central
computer and associated peripherals. The central logic and control
(cLc) is the multiprocessor computer used to drive each DPS. Under
software control, the cLc can be configured into two separate partitions
of arbitrary size, each capable of operating as an independent corn -
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Fig. 2-SAFEGUARD data-processing system equipment.
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puting system. Application software executes on the larger partition.
Exercise drivers (described below) for the application software and
support activity execute on the smaller partition, which also provides
a pool of spare equipment.

The cLc can be configured with up to ten processors. Single -processor
throughput of about 1.5 million instructions per second is achieved by
a combination of design techniques including instruction execution
overlap and use of high-speed arithmetic algorithms. Instruction over-
lap is achieved by utilization of three asynchronous control units for
instruction fetch, operand fetch, and arithmetic execution. Every
processor has access to each of several read-only instruction memories
called program stores, and several read/write memories called variable
stores. These stores have a memory cycle time of 500 ns and a double
word size of 64 bits to provide a memory bandwidth in excess of that
required for maximum performance of a single processor.

The input/output controller (ioc) controls the transfer of data
between the cLc and its peripherals. Since processors do not com-
municate directly with peripherals, processing and i/o can occur
simultaneously. The ioc provides full -duplex operation on 16 channels.
Priority circuitry within the controller allows time -multiplexed opera-
tion of the channels. The ioc executes commands from ioc programs
resident in variable store. Both processors and peripheral devices can
initiate ioc program execution.

A timing generator provides a real-time clock and a programmable
mechanism for initiating activities at specified times. It can cause the
initiation of an ioc program when a specified time of day has been
reached. A status unit provides a means of monitoring, in real time,
the status of any DPS unit. It also serves as a central point for the
distribution of control over the DPS.

cLc peripherals are divided into several subsystems. The Main-
tenance and Diagnostic Subsystem and the Exercise Subsystem will
be described later.

The radar interface controller is the primary interface between the
radar and the i/o controller of the cLc. Control and data words are
exchanged between these two units. The radar control computer
accepts formatted binary words from the cLc and distributes data to
the appropriate radar subsystem where a digital -to -analog conversion
takes place.

The recording subsystem contains the standard computer peripheral
devices : magnetic tape transports, disc memory units, line printers,
and card reader.

A man -machine interface is provided through the display subsystem
which includes cathode -ray -tube displays with light pens, wall dis-
plays, and teletypewriters.
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Digital data are transferred between sites by means of the intersite
data transmission controllers.

The missile launch subsystems convert cLc commands into control
signals for the collocated and remote missile farms and receive missile
status conditions, encode them, and send them to the cLc.

2.4.2 DPS software structure

The collection of application software used to drive the DPS is called
the application process. The application process is built from basic
computing units called tasks, which are single routines with or without
subroutines. The operating system, considered to be part of the
process, schedules tasks from a predetermined, priority -ordered task
list for execution on the next available processor. Once in execution,
a task is not interrupted before completion except for error conditions.

A bit string associated with each task on the priority -ordered task
list indicates completion of predecessor condition (s) prior to task
execution. The operating system enables execution of the highest -
priority task with all predecessor condition bits set. Thus, an im-
portant part of process design is development of the priority -ordered
task list and the predecessor conditions for each task. The predecessor
conditions fall into three main types :

(i) Time-Functionally, the programmable feature of the timing
generator is utilized in setting predecessor condition bits.

(ii) i/o
or by a peripheral device. In either case, a task does not "hold"
a processor while waiting for i/o completion. Instead, upon i/o
completion, a predecessor condition bit is set for a designated
task.

(iii) Other task completion-Long-running computations are often
subdivided into several shorter ones. Appropriate sequential
computational requirements are preserved by designating other
task predecessor conditions.

Where possible, the application process is asynchronous, i.e., tasks
are only enabled when data are available to be processed.

2.4.3 Maintenance and diagnostic subsystem (M&DSS)

The M&DSS is composed of test equipment and software that sup-
ports digital equipment maintenance. The 111&DSS verifies the avail-
ability and readiness of DPS hardware by conducting nonreal-time,
programmed, diagnostic tests on equipment through an independent
data bus connected to each digital unit. These special AIM) data paths
are also used to support other objectives of the li4cDSS which include
initializing DPS hardware and, in the event of a malfunction, auto -
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matically supporting DPS recovery operations. The M&DSS also provides
a centralized control point for status monitoring, equipment allocation,
and manual interface with DPS software.

The M&DSS has two distinct facilities for running diagnostics. The
primary one involves the M&D processor group, which uses a modified
CDC Model 1700 computer system to provide fully automatic, high-
speed execution of test programs with automatic interpretation of
results through use of fault -location dictionaries. The other facility
involves the M&D console group, which uses a cathode -ray -tube display
console for manual execution of diagnostics and interpretation of re-
sults. Each facility is linked to all the digital racks in the DPS and to
certain digital racks in the radar areas. These data paths provide the
means by which M&DSS software can access each unit as required for
DPS initialization, recovery, and diagnostic operations.

2.4.4 System exerciser

A system exerciser was designed for PAR and MDC sites. It provides
support for development and integration of the applications processes,
evaluation studies that include fidelity validation of various simulators,
and site readiness verification of both local and multisite system
configurations.
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Fig. 3-Functional representation of the hardware configuration for the PAR sys-
tem exerciser.
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Software was developed to run on the exercise partition of the cLc
to generate simulated radar returns and simulated intersite communi-
cation. Special hardware was developed to inject the simulated threat
data at the receiver of the radar. This allows testing a significant por-
tion of the radar and drives the data processor with realistic data at
its actual interface with the radar. Figure 3 provides a functional
representation of a PAR exercise configuration.

The principal communication between the two partitions is through
the exercise control unit (Ecu). The ECU intercepts application program
orders to the radar, and intersite messages, and directs them to the
exercise partition. The ECU routes simulated radar returns generated
by exercise software to the radar -return generator for conversion to
analog waveforms and injection into the receiver of the radar.

The exercise software is a real-time process similar in construction
to the application process. An off-line facility is used to simulate a
threat and generate tapes with a time sequence of the manner in which
the threat appears in the radar viewing volume. These tapes are used
by the exercise process in generating replies to application -process
radar transmissions.

2.5 Software development

2.5.1 Tactical Software Control Site

To develop the large number of programs required for the deployed
system and its support, a Tactical Software Control Site (Tscs) was
established at Madison, New Jersey. The software development
organization, consisting of designers, programmers, test teams, and
many others, was located at a few distinct facilities in northern New
Jersey, all within a few miles of each other, and a single North Carolina
location.

A test bed was required to reproduce accurately the software en-
vironment existing at site such that performance of software in its
operational environment could be verified; software testing could be
accomplished in close proximity to the design organization; and testing
could precede site availability to reduce development time. To repro-
duce the site software environment, the test bed was required to have
a representative complement of computing hardware for the PAR and
MDC; replicate the interfaces between the computer and peripherals;
replicate the peripheral devices to the extent that device performance
and characteristics were not completely isolated from the computer ;

and provide the capability for actually netting the PAR and MDC
processes for purpose of system testing. Thus, a test bed was established
at TSCS and contained separate PAR and MDC configurations correspond-
ing to the PAR and MDC sites. The configurations provided peripheral
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hardware needed by software, but did not include all of the analog
portions of the radar or missile interfaces. Communication paths be-
tween PAR and MDC test-bed configurations were included via the data -
transmission controllers. This permitted TSCS netted testing in advance
of system testing at the sites.

Experience from previous development projects indicated that all
available test-bed time would be required for system testing, operat-
ing -system development, and hardware installation and maintenance.
Support functions (e.g., software preparation and analysis) were there-
fore designed for operation on general-purpose computers such as the
IBM System/370 and HIS 635. These machines were then also re-
quired at TSCS.

2.5.2 Software development cycle

The software development cycle for SAFEGUARD was not substan-
tially different from that of other large systems. In practice, individual
phases of the development cycle overlapped since the general approach
followed was integration of a basic working system with increasingly
more complex capabilities. The separate phases of the development
cycle consisted first of the requirements -generation phase, in which
system requirements were determined, established, negotiated, docu-
mented, and rigorously controlled. The design phase consisted of
process design and program design. In process design, the system re-
quirements were translated into a software architecture which defined
global data structures, tasks, task priorities, and task -timing require-
ments for the data-processing environment. In program design, the
local data base, algorithms, and control structure for the individual
tasks were determined. In the coding and unit -testing phases, code was
written, compiled, and checked at the unit or task level, using a simu-
lator, drivers, and standard debugging techniques. Next, at the test
bed, separate process -integration teams combined blocks of new, de-
bugged unit code into processes for increasing functional capabilities.
When the tactical software achieved a predefined level of capability,
it was sent to site for site integration.

Activities at site were similar to those at the TSCS. However, at
site the entire complement of peripheral hardware was available for
integration with the system. Moreover, it was at site that formal
acceptance tests were run. The final phase of system development was
system integration, in which the PAR, MDC, and BMDC sites were "netted"
and the coordinated operation of the entire system was achieved.
During all phases of system development, evaluation played a strong
role. A separate organization was responsible for evaluating system
requirements, implementation algorithms, and system -test results.
Feedback resulted in frequent changes and refinements in many areas.
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Following is an expanded overview of some important features of
the SAFEGUARD software -development cycle.

2.5.3 Requirements

The Data Processing System Performance Requirements (DFsFR8)
are a set of documents that define the requirements of SAFEGUARD
tactical programs for the PAR, MDC, BMDC, and system exerciser
processes. Requirements were generated by the system engineering
organization in accordance with overall system objectives, which were
defined by the Department of Defense. Changes to the requirements
were made as a result of detailed software design by the development
organization, Meek prototype system -test -program data, system -
evaluation efforts, and detailed review with the U.S. Army SAFEGUARD
System Command (usAsAFscom).

The DPSPRs met their original objectives of providing a clear defini-
tion of the computing requirements. They have continued to be the
up-to-date system definition of SAFEGUARD performance, and have been
used to specify all system -testing and acceptance requirements.

2.5.4 Design

Process design was the definition of overall software structure in-
cluding task assignment and global -data -base design. The objective
of process design is to meet system requirements with the minimum -
cost DPS configuration. This activity was complemented by program
design which involved developing the algorithms, internal data base,
and control structure necessary to implement the function defined for
a task. This activity led to a detailed software specification, including
specific mathematical equations or decision tables.

Decisions were made in both process and program design to support
early development of a system to which greater capability would be
gradually added. Emphasis was placed on modularity in design to ease
system growth.

It was found to be essential to initiate the design of the data record-
ing and reduction system early in the development cycle. An attempt
was made to define data to be recorded for each computing function,
and to design the data base to include consideration of recording and
the subsequent analysis to be carried out upon the recorded data.

In many areas simulations were used to validate the design. In some
cases, a few selected equations were implemented on a time-sharing
system for a quick exploration of correctness and adequacy. In others,
a subset of the real-time computer program, complete with its inter-
face structures, was simulated.

The size of individual programs and the time required for their
execution were two major parameters which were controlled. Initial
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sizing and timing estimates were made early in the development based
on past experience with similar programs. Throughout the course of
further development, sizing and timing estimates were tracked on a
monthly basis.

Design reviews were held frequently and proved to be an effective
means for communicating problems and solutions relating to planning
or design issues to other members of the project. These were attended
by a review board consisting of both designers and project managers.

2.5.5 Coding and unit testing

All of the software preparation and most unit testing was performed
using commercial computers. This was primarily because test-bed time
was too valuable to be consumed for compiling and unit testing.

Most SAFEGUARD software was written in CENTRAN, an extensible
intermediate -level language resembling a subset of PL/1. CENTRAN gen-
erated efficient code. It provided many of the advantages of high-level
languages, but could be interspersed with assembly language and
system macros when necessary. It was adopted as the project standard.

To facilitate program preparation and unit testing, a linkage editor,
a CLC simulator, and a disc library system were also developed for
execution on the IBM System/370. The linkage editor bound units of
CENTRAN object code for execution on the cLc or clic simulator. The
library system functioned as an editor and disc -file manager, which
helped control CENTRAN source and object code. The linkage editor
and simulator were developed on the SAFEGUARD project, while the
library system was a SAFEGUARD modification of an existing IBM
proprietary program.

2.5.6 Process integration

Following unit debugging, collections of units were tested for in-
creasingly greater functional capabilities on the PAR or MDC test beds
by independent integration teams. Frequently, large drivers were de-
veloped to assist in early functional testing. Subsequently, the system
exerciser was used to stress and drive the application process to various
conditions and loads.

Detailed analyses of integration tests were possible because the
application and exercise processes contain real-time recording functions
which were designed as an integral part of the software. Recorded
data were reduced and analyzed primarily off line on the IBM System/
370 using the SAFEGUARD Date Reduction System, although summary
information was available on line.

A hardware/software cLe performance monitor was developed and
installed at the TSCS. It was used primarily to validate that the process
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performance was consistent with its design. Troubles, such as heavily
loaded time frames and long -running tasks, were analyzed. When
possible, design changes were made to provide a more balanced system.

2.5.7 Site and system integration

When the application and exercise processes achieved predefined
capabilities, they were sent to site for further integration. Capabilities
already established at TSCS were reverified in the expanded hardware
environment. Further testing concurrent with and complementary to
test-bed integration was conducted, with primary emphasis on full
process testing using the system exerciser. A comprehensive series of
acceptance tests was run to demonstrate that system capability was
consistent with requirements. Tests ranged from satellite tracking and
identification to system exercises which drove the system to design
traffic levels.

During system integration, which is the final level of product testing
prior to delivery to the customer, it was not possible to exhaustively
test all tactical threat environments. An "Endpoint Test" was defined
at the design traffic level for each of the various system -operating
modes. A series of tests was designed for each mode, at first simulating
all communications with other sites, then netting pairs of sites, and
finally netting the system.

The stress level was reduced in early testing by selecting subsets
of the Endpoint Test environments and by running buildup tests at
these lower stress levels before operating the netted system at design
traffic levels. The use of a common environment for a number of tests,
with traffic buildup by addition to this environment, and buildup of
physically internetted sites in stages, led to the "test -chain" approach
to testing. This approach, in which all tests in the chain support the
Endpoint Test, greatly simplified the problems of integrating a dy-
namic system.

Commercial computers were installed at site during the site -and-
system integration period for data -reduction support. This support
was required on location to provide prompt analysis of data recorded
during testing. Tight schedules and lack of available cLc time required
that this facility be provided by a support computer.

2.5.8 Evaluation

System evaluation was primarily an analytical activity which, be-
cause of the complexity of the SAFEGUARD system, relied heavily on
simulation. A SAFEGUARD system simulation was designed to provide
insight into overall system operation with particular emphasis on
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battle -planning functions. Initially, the simulated system was made to
operate in accordance with performance requirements. Since, quite
properly, performance requirements often permit the designer con-
siderable latitude, modeling of the system in this initial phase often
entailed considerable invention. The goal was to ensure that objectives
would be achieved if the system operated in accordance with perfor-
mance requirements and that inadequacies in system design would
be identified and corrected before resources were wasted attempting
to implement a faulty design. Since there was a practical limit to the
level of detail in which the various weapon system functions could be
modeled, more detailed simulations of the particularly critical func-
tions of surveillance, tracking, target selection, and guidance were
added. By employing these simulations in concert, considerable insight
was gained into detailed system operation.

As the design of the tactical hardware and software stabilized, these
simulations were continually updated to provide a more accurate
representation of tactical operation, and a continuous evaluation of
the evolving system. Early development of detailed but evolving
simulations permitted in-depth analysis of most critical areas of SAFE-
GUARD operation. A number of significant design modifications can be
attributed directly to evaluation activity. A noteworthy example is
the restructuring of both the PAR and Aim overload -response software
to provide improved performance in a high -traffic environment.

Systematic and detailed analysis of the Meck prototype -system
tests, which were designed to stress critical functional capability, pro-
vided confidence in the validity of analyses based on simulation.
Finally, simulation, in addition to providing a tool for evaluation of
overall system performance, permitted the definition of explicit
thresholds for use in acceptance tests of the entire netted system.

2.6 Project organization and control

2.6.1 Organization

Organizations were established for each of the major software
efforts, PAR, MDC, BMDC, and System Exerciser. A separate systems -
engineering organization was responsible for requirements and evalua-
tion. Support -software development organizations were also established
for each major support activity such as DPS maintenance software,
real-time support software, nonreal-time support software, and com-
puter operations. Each major activity was directed by a project
manager.

The software development organization consisted of engineers and
programmers primarily from Bell Laboratories, IBM, and Western
Electric. While project responsibility rested with Bell Laboratories,
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IBM was responsible for much of the software development. These
development activities were directed by IBM managers who were in
turn responsible to Bell Laboratories project managers for completion
of the tasks. For the most part, Western Electric engineers and pro-
grammers were integrated directly into Bell Laboratories organizations,
with the notable exception of test -bed -facilities management, which
was turned over to Western Electric early in the development cycle.

2.6.2 Control

Overall scheduling for the project was the responsibility of the
system -engineering organization. Project managers were held respon-
sible for coordinating and setting schedules for software under their
control, consistent with overall schedules.

Schedules were documented at several levels of detail in a manage-
ment -information system. Visibility was provided by frequent design/
schedule reviews, and by a Principal Event Report. The principal
events were selected major milepost achievements in performance,
and were scheduled within the total network of activities related to
software and system development. A written report as to the per-
formance achieved relative to the defined requirements for a principal
event was required within 72 hours of the schedule date. All open items
were reported with a schedule for their completion. Upon completion
of an open event, written confirmation to management was required.

Further development control and discipline were achieved by the
use of additional techniques. A Policies, Procedures, and Standards
(prs) Manual was established and maintained. The manual provided
detailed policies and standards to ensure uniformity and control within
the project. PPSs were written on change management, documentation,
management reporting, programming standards, etc. Software change
management standards were established early, and they were extended,
modified, and adapted for use on each major activity. Typically, this
included documenting troubles on standard Trouble Report forms and
keeping track of them and their solutions in a Status Accounting
System. Stable software was "frozen," stored, and officially released
by a central organization.

Because of the difficulty of employing subcontractors on a large
complex software development, very careful attention was given to
defining interfaces and a detailed task description, monitoring, and
evaluation system was devised. This system was fundamental to the
success of the development effort.

Comprehensive documentation standards were also established early.
Support software documentation emphasized requirements and user
information; tactical software documentation emphasized require -
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ments, design information, test plans, and well -commented listings. In
general, documentation and software development were synchronized.

The emphasis on planning was fundamental to the overall manage-
ment approach. Although no single planning format or technique was
prescribed, each project manager was required to plan in detail for the
complete design, implementation, and testing of his part of the system.

2.6.3 Resource requirements

Resource estimation and control were generally the responsibility
of project managers. Normal budgetary procedures were used, requir-
ing justification to and approval by upper management and the
customer on a yearly basis. Manpower needs were estimated by pro-
ject managers using experience and algorithms from other large pro-
jects together with a detailed plan of the work to be performed.
Manpower restrictions were resolved by replanning and modifying
schedules.

Support -computer needs were estimated by project managers and
analyzed by the support -computer project manager, who coordinated
the acquisition of support equipment. Application -computer require -

Table I - SAFEGUARD software development-quantities
of instructions and statements

Real -Time Software Instructions

cLc operating system 100,000
MDC applications 300,000
MDC exerciser 50,000
PAR applications 200,000
PAR exerciser 25,000
BMDC applications 60,000

Total 735,000

Support Software Source Statements
cLc software preparation support 210,000
System simulation 50,000
Exercise support 30,000
Data reduction 150,000
Configuration management 70,000
Logic simulation 70,000

Total 580,000

Installation and Maintenance Software Instructions
MDC radar installation 50,000
PAR radar installation 110,000
PAR radar test 60,000
Maintenance & diagnostic 300,000
Diagnostic operating facility 120,000
DPS installation & test 190,000

Total 830,000
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ments were established and monitored through periodic sizing esti-
mates by the PAR, MDC, and BMDC project managers.

The size and duration of the SAFEGUARD development effort was
large indeed. Table I shows the size of the major components of soft-
ware : real-time software, consisting of MDC and PAR applications and
exercise programs, BMDC applications programs, and the cLc operating
system, totalled 735,000 instructions; support software, such as com-
pilers and simulators executed on commercial computers, totalled
580,000 statements, some assembly language, and some PL/1 and
FORTRAN; installation and maintenance software for the data-process-
ing system and the radars totalled 830,000 instructions. At least several
hundred thousand additional instructions were developed for other
purposes, such as test drivers and specialized simulations. The total
development interval, starting with the generation of SENTINEL re-
quirements and concluding with SAFEGUARD system integration,
spanned 90 months.

III. CONCLUSION

Perhaps the most important lesson to be learned from SAFEGUARD
is that a large, well -conceived development project, however ambitious,
can be completed successfully. During the development, the number
of sites was changed, drastically reducing the size of the deployment.
This, coupled with test results, as well as changes in objectives, led
to modifications in the overall system design. However, it can reason-
ably be said that the complete development, including the integration
of the first installed sites, was performed on schedule and that the
system met the prescribed performance specifications. Although cost
performance is a little bit harder to define because of the effects of
inflation over the period and because of changes in the deployment,
it seems clear that costs were controlled reasonably.

To reiterate an observation made earlier, implementation of the
SAFEGUARD data-processing system was a significant undertaking, one
of the most complex ever attempted. Its production entailed the de-
velopment of a highly reliable multiprocessor computer system, and
the generation of millions of lines of code. The papers that follow
describe some of the design of the system as well as the lessons that
were learned and the techniques employed.
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The Data -Processing System Performance Requirements (DPSPRs)
specify the required performance to be provided by the SAFEGUARD system
software. They were developed primarily by one systems engineering
department at Bell Laboratories. Their objective was to specify the required
functional performance in sufficient detail to permit software development.
The DPSPRs evolved from similar documentation that was developed for
systems prior to SAFEGUARD. Their history, development, use, and
document control system are described. Suggested improvements are also
discussed.

I. INTRODUCTION

The Data -Processing System Performance Requirements (DPSPRs)
are a set of documents that specify the required system performance
to be provided by the tactical real-time software. A separate set of
requirements exists for each site : one for the Missile Direction Center
(mDc) site, one for the Perimeter Acquisition Radar (PAR) site, and
one for the Ballistic Missile Defense Center (BMDC). The DPSPRs
include requirements for such functions as site communications, dis-
plays and controls, radar control, interceptor response planning, and
missile guidance. Since the SAFEGUARD system must operate con-
tinuously in real time with minimum down time, the DPSPRs also
include requirements for exercise and fault detection to verify total
system performance. The DPSPRS do not include requirements for
installation and checkout software, software error control, or process
initialization.

The primary objective of the DPSPRs is to specify the required
functional performance in sufficient detail to permit the development
of the software by the designers, yet not in such detail as to overly
limit design freedom. A second objective is to state functionally how
the system is to operate in its different defense modes. Thus, the DPSPRs
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formalize for the customer-the Army SAFEGUARD System Command
(sAFscoM)-the required system functions, their interactions, and the
expected system performance.

The DPSPRs contain detailed requirements for each identified system
function. They are not part of the high-level contractual documenta-
tion, and they do not contain the detail required to subcontract soft-
ware development. They are written at an intermediate level along
functional lines, but they do not dictate the organization of the soft-
ware. For example, one section, Target Selection, provides require-
ments for calculating a set of parameters from quantities specified in
another section, Track. When the software was designed, it was found
more efficient to have the track software calculate the parameters and
pass them to the target selection software. Because the DPSPRs did
not specify software organization, it was possible to choose the more
efficient software implementation.

This paper provides a retrospective view of the DPSPRs, identifying
different aspects of their development that either worked well or should
have been done differently. The history of the DPSPRs is given first,
followed by a description of how they were developed. A short descrip-
tion of how they were used is given next, followed by a section on
document control. The conclusion summarizes recommendations that
may be useful for the generation of future data-processing performance
requirements.

II. HISTORY

Prior to SAFEGUARD, considerable experience had been gained from
the design of the NIKE -ZEUS, NIKE -X, and SENTINEL ABM Systems.
As part of NIKE -X research and development, a series of documents
was developed to specify how various system functions would be
performed. They described, for example, how the radars were to
gather target trajectory data required to launch and guide a missile
to intercept a target. These documents were the forerunner of the
DPSPRs.

In January 1967, system studies were initiated to determine the
feasibility of deploying a thin area -defense system, later defined as
SENTINEL, using components (radars, data processors, missiles, etc.)
developed for NIKE -X. The first Data Processing System Performance
Requirements documents were written for the SENTINEL system.

In April 1969, Bell Laboratories was redirected by the Department
of Defense to develop the SAFEGUARD ABM system. The initial issue of
the DPSPRs for SAFEGUARD was completed in July 1969 in accordance
with this redirection. The time interval was short because many of the
DPSPR concepts and functions that had been developed for SENTINEL
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were applicable to SAFEGUARD and because this first issue contained
mainly qualitative requirements; i.e., many parameter values were
still to be determined. The purpose of this first issue was to disseminate
as much information as soon as possible to the software designers, who
had already organized to develop the SENTINEL system. This issue was
succeeded by a second, more quantitative issue in May 1970, which
was placed under internal document control.

On March 31, 1971, the DPSPRs were submitted to the customer for
baselining. Baselining the DPSPRs consisted of a detailed document
review and preparation of changes, after which both the customer and
Bell Laboratories agreed to accept the documents. This process was
completed on May 31, 1972. The baselined DPSPRs were then submitted
for formal configuration control procedures under which all changes
had to be (and must still be) approved by the SAFEGUARD Local
Configuration Control Board.

III. HOW THE DPSPRs WERE DEVELOPED

Development of the DPSPRs was the function of the system design
department, which initially consisted of about thirty engineers and
programmers. Their first step was to write an "operational concept"
paper for SAFEGUARD. The concept paper identified the defense objec-
tives, the command and control configuration, and the general oper-
ation of the radars and missiles in their defense roles.

Based on the concept paper, the DPSPRs were organized according
to the operational functions required at each site. The organization of
a typical DPSPR is shown in Table I. The DPSPRs were arranged so
that each section addresses a major system function. The ordering of
the sections within a DPSPR was primarily based on the sequence in
which the functions must be performed. Each section includes three
main subsections : objective, operational description, and requirements.

Table I - MDC DPSPR organization

1. General
2. MDC Site Management
3. Radar Management
4. Surveillance
5. Track
6. Target Selection
7. SPARTAN Interceptor Response
8. SPRINT Interceptor Response
9. SPARTAN Guidance

10. SPRINT Guidance
11. Equipment Tests
12. Exercise Subsystem
13. System Constraints
14. Displays and Controls
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The operational description includes, in most sections, a general de-
scription of how that function is to operate in different system -defense
modes. It has been suggested that the DPSPRS should have had one
section devoted to a complete operational description of the system
rather than appearing throughout the documents. Since the level of
detail varies from section to section, this suggested reorganization
could probably have provided a more consistent description of the
functional operation of the entire system. The concept paper did not
provide the detailed descriptive information that was later felt to be
lacking on the project.

Original plans called for each DPSPR section to have an inputs/
outputs subsection that would define the interfaces among functions.
These subsections were never included in the DPSPRS, primarily be-
cause there was insufficient time. Since the requirements for each
function either specified or implied its inputs/outputs, it was felt that
these subsections could be omitted. In retrospect, this probably was
a mistake. For instance, an implied output of one function was missed
by the software designers in a specific case in which one function was
required to stop or inhibit an action previously started by another
function. This mission output was not discovered until later during
functional integration testing of the designed software. Then, many
questions were raised :

(i) Is it really necessary to stop the action?
(ii) What happens if the action is not stopped?

(iii) Can the missing output be implemented without jeopardizing
schedules?

(iv) How much retesting is required if a modification is made?

Clearly, a perturbation in the software development effort occurred
that might have been avoided if the inputs and outputs had been
explicitly stated.

The general policy for writing requirements for a function was to
state the requirements without descriptions of how the function should
be implemented. In many cases, this was difficult to do; it was often
easier to say how a function should be done rather than to state a
performance requirement for the function. This led to two problems.
First, when a requirement specifies how something is to be done, the
software designer feels constrained. He may know a better way to
implement the requirement or he may want to try other ways. Second,
if a performance requirement does not exist for a function and only the
technique is specified, then the test designer must generate his own
performance requirement, or his tests will check only to see that the
proper technique has been implemented. For this -reason, it has been
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suggested to both system designers and software designers that the
DPSPRS should have included only system performance requirements
with no mention of implementation or algorithms. This is a philosophi-
cally "pure" notion which might or might not work. The method of
specifying requirements depends largely on the project organization
and the talent of the people involved. For example, before writing a
DPSPR function, the systems engineer discussed the particular function
with his counterpart, the software designer. In some instances, pri-
marily those in which there was a lack of specific experience, the de-
signer requested that complete design details be supplied. In other
cases, the designer wanted only an overall performance requirement
because he felt he knew how to produce the design. Requirements were
written both ways, but experience suggests that it is probably best
to state the performance requirement and then provide a recommended
technique to be used at the designer's option. In summary, the system
designers tried to reason out the level of detail to be included and took
the pragmatic approach of "getting the job done" and trying to satisfy
both the software designer and the customer.

IV. HOW THE DPSPRs WERE USED

In software design, the DPSPRS were used in three phases : setting
up the software structure, establishing the internal organization of
each basic function, and functional testing.

In setting up the software structure, the routines and subroutines
needed to perform the functions were based on the requirements in
the DPSPRS. In software design, primary emphasis was placed on
definition of the inputs required to perform the functions and the
outputs required by other functions.

Next, the internal organization of the defined routines and sub-
routines was established. At this time, emphasis was placed on defining
both the particular algorithms required within a function and the
interfaces between routines.

As the design of the routines approached completion, the DPSPRs
were continually consulted to determine if the designs met require-
ments. DPSPRS were then used to determine the functional testing
required for the completed design.

In system evaluation, the DPSPRS were used primarily as a reference
document. The first stage of system evaluation was to verify that the
DPSPR specifications would meet system objectives. The evaluation
program then determined if the implementation met the DPSPR re-
quirements. The system evaluation effort led to development of new
system functions, changes to existing ones to provide better perform-
ance, and sometimes modification of the requirements themselves.
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The DPSPRs were used by the customer as the documents that speci-
fied performance of the system they were buying. The customer
coordinated with the design engineers in the formulation of all pre -
baseline versions of the DPSPRs. After baselining, the customer was
deeply involved in the evaluation and discussion of each change
proposed for the DPSPRs. In addition, the DPSPRs were used by the
customer for his independent evaluation of the system design.

V. DOCUMENT CONTROL

After the first issue of the DPSPRs was published and distributed, an
intensive review was held with software designers and system evalu-
ators. This resulted in changes to add new requirements, to expand
upon old ones, and to correct errors. No formal accounting of the
agreed -upon changes was kept, and some systems and software de-
signers were not made aware of these changes until they received their
copies of the next issue. Clearly, there was a need for a better method
of keeping track of problems and their solutions and a need for timely
revisions.

To solve this, a document control system was established in which
all DPSPR-related problems were identified by a Trouble Report (TR)
and the solution to each problem was described by a Correction Report
(CR). TRs could be written by anyone uncovering a problem, but had
to be approved by the writer's immediate supervisor. Once approved,
the TR was given a number, recorded in the log book, and sent to the
supervisor responsible for the affected DPSPR. After his approval for
action, the TRs were assigned to the persons responsible for the par-
ticular sections that were related to the problem. Each solution was
described in a CR to be approved by the TR originator. So both the TR
originator and CR originator had to agree upon the solution. When
agreement was reached, the CR had to be approved by the supervisor
responsible for the applicable DPSPR.

Since changes to the DPSPR generally implied corresponding changes
in the software design, all cRs were reviewed and approved by all
affected software design departments, with final approval delegated to
higher levels of management as the software delivery date was ap-
proached. After final approval, the CR was sent to publications for
preparation and distribution of the revision pages for the CR.

Three different methods of achieving this approval were tried before
an adequate approval sequence was found. Figure 1 shows a flowchart
of each of these methods. First (Method 1), after the DPSPR coordinator
approved the CR, a copy was sent to each affected software design
supervisor for an assessment of the software impact of the change in
terms of cost and schedules. When all assessments were received by
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the DPSPR coordinator, the assessments were attached to the CR and
the CR was then routed in turn to the head of the system design depart-
ment, to the head of the software design department affected by the
change, to the heads of all other software design departments, and
finally to the director of software design. This procedure resulted in
significant delays in the return of impact assessments and in depart-
ment -head routing. It only worked efficiently when the DPSPR co-
ordinator hand -carried the CR through the approval sequence.
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The procedure was then changed (Method 2) to one in which the CR
was immediately routed to department heads and, at the same time,
information copies were sent to all software design supervisors whose
design would be affected by the change. When each department head
received the CR for approval, he requested software impact estimates
from his supervisors. This procedure was more effective than the
previous one; however, cRs tended to become backlogged in the de-
partment -head routing process. This resulted primarily because no one
representative of the design organization had the responsibility to
ensure that each CR received appropriate and timely action.

The final procedure (Method 3) was quite similar to the previous
one except that one department head was designated as the change
coordinator with the responsibility of ensuring that each CR received
the appropriate attention and that all software changes were properly
coordinated.

The DPSPRs were submitted to the customer for baselining on March
31, 1971. From that time until the DPSPRs were finally baselined in
May 1972, changes were allowed in the DPSPRs by means of the pro-
cedure described above. This allowed the DPSPRs to be reasonably
current during this period; however, additional effort was required by
the customer to review the TR/CR changes as well as the submitted
DPSPRs. After baselining, the only change to the TR/CR procedures
described above was that approved cRs were incorporated into an
Engineering Change Proposal (EcP) which required customer approval
before the cRs associated with the ECP were forwarded to publications
for generation and distribution of revision pages. There were instances,
of course, where software design changes had to be made to make the
system work before customer approval could be obtained. The control
procedures allowed for this as a "management risk."

The control procedure enabled the project to keep track of all
problems and their solutions and to control the changes in system
design. However, after the document control procedures had been
prepared, a few suggestions were made that might have improved the
process.

First, in addition to detailing the specific change to the DPSPR, the
CR should have included the rationale and/or study that led to the
change. In cases where significant changes were made, they were
generally documented in a memorandum; however, little or no rationale
accompanied many small changes. Including the rationale would prob-
ably have reduced duplication of studies that were conducted by the
system designer and the software designer to evaluate changes.

Second, the software design organization always should have been
a party to the initial approval of a correction report. This was done
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when the TR was originated by software design, but was not done
when a TR was initiated by system design or by system evaluation.
By coordinating all correction reports through the software designer,
there probably would have been fewer unapproved CRS to rework.
This would also have made the software designer aware earlier that
a change in his design was being proposed.

Third, the TR/CR approval sequence and publication of the change
should have been streamlined as much as possible. Even though the
designers knew of the change, most other DPSPR users were not aware
of it until the revision pages were issued. One change to the approval
sequence that might have shortened the approval cycle time would
have been to establish a formal calendar date for final review and
approval at the highest necessary management level when the CR
began its approval sequence. Each CR would be reviewed on that date
and rescheduled if a final approval decision could not be reached. This
approach would have forced timely attention to each CR in the ap-
proval cycle.

VI. CONCLUSIONS

One of the most fundamental needs in a software development
project is a clear statement of requirements. The DPSPRs were designed
to meet this need and were successful in doing so. They have also
provided valuable insight into the design of testing and evaluation
procedures. The most notable deficiency in the DPSPRs was a lack of
explicit definition of interfaces among the various functions. More
concentrated effort in specifying exact definitions of these interfaces
would have greatly helped the software designers. The most important
lesson learned in setting and maintaining requirements is that changes
to the system design must be carefully controlled. It is essential that
software designers be made fully aware of the content and implications
of each system change.
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The Central Logic and Control (CLC) unit is the digital computer that
controls SAFEGUARD. Its development represents the first reduction to
practice of large-scale multiprocessing in a computer system. This paper
describes the CLC and explains some of the decisions behind its design.

I. INTRODUCTION

The Central Logic and Control (cLc) represents the first practical
application of the multiprocessing concept to a large-scale computing
system. A modular design is employed in which as many as ten proc-
essors and two Input/Output Controllers (rocs) share as many as 32
memory racks. The units are interconnected by a flexible switching
network that allows the system to be partitioned into two independent
computers. Partitioning can be controlled by software, and complete
reconfiguration may be accomplished in less than one second.

This paper focuses on the architecture of the cLc, and on how system
requirements influenced the decisions behind its design.

II. DESIGN PHILOSOPHY

2.1 System requirements

Availability, reliability, and performance requirements are placed
on the cLc because of its importance to SAFEGUARD. The data-process-
ing system is required to be fault -tolerant. This means that the system
must be able to perform its workload in the presence of any single
malfunction. In addition, the cLc is allowed only a limited amount
of down time. High -reliability specifications are placed on each of the
components from which the cLc is fabricated to increase the mean-
time -to -failure. High cLc performance requirements are dictated by
the nature of its primary job, controlling a radar tracking system in
real time and the launch/guidance of missile interceptors. Sufficient
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Fig. 1-Central Logic and Control unit.

reserve power must be available to handle peak loads. A block diagram
of the cLc is shown in Fig. 1.

2.2 Resulting architecture decisions

2.2.1 Modularity

The cLc is composed of five types of elements : up to ten processors,
sixteen racks of program store, sixteen racks of variable store, two
rocs, and two time -and -status units. This system is capable of opera-
tion with only one element of each type and may grow in a modular
fashion. The ioc provides peripheral -world access to the computer
while the time -and -status unit provides a number of special functions
which include real-time clocking, monitoring system status, and con-
trolling the configuration of the hardware resources in the system. The
multiple elements communicate via well-defined interfaces and are
interconnected by a flexible switching network.

The method of interconnecting elements within the multiunit com-
puting system must permit ease of growth and be consistent with the
availability and reliability requirements. The switching method chosen
for the cLc is based upon a distributed implementation of the switching
network such that a portion of the switch is included with each unique
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system element. Both economic and availability considerations favor
a distributed switch in which each added processor and storage ele-
ment comes with its own portion of the switching system to allow
smooth system growth. System availability is enhanced because a
failure of a portion of the distributed switching system affects only
the unique element to which it is attached.

All communication among elements of these five types is handled
asynchronously on a request -and -acknowledge signaling basis. The
collection of processors is capable of asynchronously accessing any of
the collection of memory elements. The switching network is such that
if each processor makes an access to a different memory element, then
all may receive service simultaneously. Priority circuits at each
memory element resolve conflicting requests sequentially.

2.2.2 Multiple processors

Although it would have been possible to design a single processor
system with sufficient performance, the cLc is a multiprocessor machine
for three reasons. First, a single processor sufficiently powerful would
have been a complex machine, difficult to design and difficult to get
working. Second, a single -processor system would not have been
expandable; if a more powerful machine were later found necessary
and none were available, major software changes would have been
required. Also, multiple processors satisfy a wide range of processing
requirements including smaller applications. Finally, the multipro-
cessor design increases availability because processing can continue
even if some processors have failed.

2.2.3 Two memory types

A multiprocessor design hinges around its storage design. A number
of possible strategies are available to handle the necessary references
of the multiple processors to main storage. The first strategy used in
the design is the splitting of main storage into two independent portions
called program (or instruction) store and variable (or operand) store.
This organization doubles the data flow rate to each processor at the
expense of independent instruction and operand fetch circuitry within
each processor. One of the reasons for this architecture is to physically
separate programs and data sets for reliability purposes. Thus, program
store is a read-only memory, while variable store is a read-write
memory which holds real-time i/o data and provides storage for the
results of calculations.* To optimize memory utilization of the cLc

 Program store is read-only in the sense that processors have no instructions that
write data into it. Software can alter program store via the store transfer unit which
is described in a later section.
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during the software development phase, additional switching paths
are provided from variable store to each processor to allow instructions
as well as operands to be stored in variable store.

2.2.4 "n +1" redundancy

To achieve nearly continuous operation as economically as possible,
the crx employs n + 1 redundancy. Each of the five types of elements
has at least a single replacement that is not required for running the
application software and is therefore redundant. For example, if the
application software requires 15 racks of program store for execution,
then at least 16 are provided. The n + 1 element may be switched
in to replace a failed element.

2.2.5 Partitioning

The cLc can be partitioned into two independently operating comput-
ers, each capable of executing its own job stream. By convention, these
two partitions have been differentiated by the terms green and amber,
with green usually the larger of the two fractions. However, since the
computer is composed of a number of modular elements, the boundary
defining which are green and which are amber is almost completely
flexible, as illustrated in Fig. 2. In fact, all elements may be brought
into the green partition to operate as a very large multiprocessor com-
puter with as many as ten processors sharing the job load. As a further
degree of flexibility, some elements, such as memory elements, may be
placed into a shared green/amber state where they are available to
both partitions simultaneously. Finally, an element may be defined
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Fig. 2-Element partitioning within the cLc.
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to be neither green nor amber and is said to be isolated. This state
is necessary to remove malfunctioning elements without shutting down
the entire system.

It is even more significant that partitioning is under program control.
Further, the control logic for effecting partitioning is redundant. There
is a fundamental asymmetry to the control of partitioning which allows
the green partition to have priority over the amber partition. The
partitioning logic may be placed into a state whereby a master/slave
relationship exists between the green and amber partitions. Control
software residing on the green partition may alter the partitioning of
the system at any time. The amber or slave partition can in no way
alter the partition boundaries. This will be described in more detail
in Section 3.4.1.

III. DETAILED DESCRIPTION

3.1 The processors

The processor is the most important element in establishing the
real-time computing capacity of the cLc, so the design of a high-speed
processor has been a primary goal. Each processor contains three
control units that operate asynchronously with respect to each other.
Timing within each control unit is overlapped to some degree so that
more than one instruction may be in execution. High-speed arithmetic
algorithms and associated logical implementations have been exploited
advantageously to increase the flow of operands through the arithmetic
sections. The resulting processor design can execute successive fixed-
point add operations on full -word 32 -bit operands at an average rate
of 4.15 million per second.

The processor organization, as shown in Fig. 3, is best explained
by considering a typical arithmetic operation. Three functions must
be performed : instruction fetch, operand fetch, and arithmetic execu-
tion. Three control units allow these functions to be overlapped,
thus avoiding simple concatenation of the functions for successive
instructions.

The Program Control Unit (Pcu) prefetches instruction words from
program store into an instruction word buffer. The Pcu then extracts
instructions from the buffer and determines which of the control units
will participate in executing the instructions. For those instructions
involving operand access, the operand control unit will address vari-
able store to fetch or store all operands to be used internal to the
processor. For those instructions involving arithmetic operations, the
arithmetic control unit will perform all fixed-point and floating-point
arithmetic.
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3.1.1 Program control unit

The Pcu supplies instructions to the operand and arithmetic control
units. Reference to program store is by absolute address from a location
specified by a program address counter. A change from sequential
operation can be effected either by interrupt or by executing a jump.
Instruction sequencing is optimized by use of four double -word buffer
registers that form an instruction stack. Whenever branches in the
instruction sequence are encountered, alternate path fetching is em-
ployed to fetch both the normal path word and the jump path word.
Both of these words are placed in the instruction stack to await a jump
decision. Since many jumps are conditional to an arithmetic test
within the processor, having both paths available will in general
reduce the time needed to proceed regardless of which jump decision
is made. In addition to the above optimizing, short instruction loops
may be entirely contained within the instruction stack and executed
without further access to program store. To smooth and optimize
instruction flow to the other control units, instruction list buffers exist
at the interface between the program control unit and the other control
units.
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3.1.2 Arithmetic control unit

The arithmetic control unit contains fifteen addressable A -registers
for temporary storage of operands. All arithmetic operations are per-
formed on operands from the A -registers with results returned to
these registers. The registers make data currently in use immediately
available to the processor. Within the arithmetic control unit, Ao is
defined to be a fixed accumulator for all arithmetic operations. The
Ao-register functions alone as a single -length accumulator or in con-
junction with an extension register to form a double -length accumu-
lator. The double -length accumulator will handle the double -length
results obtained for multiply operations and will hold the quotient
and remainder for divide operations. The two -address arithmetic
instructions will always place the result in Ao and have the option to
overwrite the second named register. This method allows some of the
generality of a three -address format without the need for a third
address.

3.1.3 Operand control unit

The operand control unit fetches operands from variable store;
it performs any required operand fetching address arithmetic itself.
Fifteen addressable B -registers provide temporary storage of addresses
or index values. The operand control unit can perform shifts and edits
on data contained in the B -registers. (Edits are instructions that access
only a selected portion of a register.) Data can be exchanged between
B -registers and A -registers.

The operand control unit provides a set of 15 addressable Z -registers
which are used to control the operation of the entire processor. Inter-
rupt jump and return addresses are found in the Z -registers. Memory
protection is controlled by these registers ; the appropriate bit in a
Z -register must be set to allow the processor write access to a particular
segment of variable store. One of the Z -registers is a delta clock which
acts as an alarm clock. The delta clock will generate an interrupt if it
is not reset before a selected primary countdown interval is exceeded.

3.2 The memories

To further increase the data -flow rate between processors and main
storage, program and variable store are further subdivided into
modular groupings, as shown in Fig. 4. Variable store is organized as
16 independent racks, with an independent data path from each rack
to each of the processors. Since queuing is heavier at program store
than at variable store, program store is organized as 32 independent
modules with an independent data path from each module to each of
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the processors. Processor addressing is interleaved between two
modules; that is, the address structure is arranged so that adjacent
program store words reside in two separate modules.

The memory module cycle time of 500 ns and the double -word size
of 64 bits are selected to provide a memory bandwidth in excess of
that required for maximum performance of a single processor. Each
program -store and variable -store rack holds 16,384 64-bit words. There
are four parity bits associated with each memory word.

In a multiprocessor system, the need frequently arises to prevent
one processor from modifying data that another processor is accessing.
A lock mechanism is also needed to avoid ioc and processor interfer-
ence at variable store. To allow resolution of these problems, a special
memory instruction called biased fetch is included. A biased fetch
reads a word from variable store and, in one memory cycle, restores
the word with the upper two bits set to binary ones. (Two bits are
chosen because the parity of the memory word is not regenerated
during the read/modify/write cycle.) The original word, before modifi-
cation, is returned to the processor or we. The processor or ioc can
test the upper two bits of this word to determine whether access to
the data has been granted. If these bits are zeroes, the data are avail-
able ; if they are ones, the data are not available.
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3.3 The Input/output controllers

In any computing system, input/output is of paramount importance
and frequently determines throughput. The i/o Controller (ioc), which
is shown in Fig. 5, directs the flow of information between variable
store and the peripheral devices. Processors are thus relieved from
communicating directly with the peripherals. Processors and rocs can
operate simultaneously. The i/o subsystem, which consists of the ioc
and its associated peripherals, is duplicated to achieve system avail-
ability requirements.

A basic feature of the Dm is its ability to simultaneously and con-
tinuously service several peripheral devices. The fastest way to service
any individual peripheral device is to transfer its entire block of data
by preempting all of the transfer facilities. Since this violates the rule
of simultaneous service to several peripheral devices, it is necessary
to time-share the ioc facilities among all devices.

Each ioc contains 16 channels; each channel contains independent
input and output cables, thereby allowing full -duplex operation.
Priority circuits are utilized to allow time -multiplexed operation of the
channels.
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Each peripheral is assigned a priority order which takes into con-
sideration the allowable latency of a peripheral device requiring access
to variable store. High-speed, synchronous devices usually are assigned
higher priority channels than buffered, asynchronous devices.

The ioc is a programmable device. Its operations are controlled by
commands it reads from variable store. The instruction repertoire
includes jump commands and simple data operation commands. An
ioc program can be initiated by a processor or by a peripheral device.
The ioc accesses i/o programs by indirect addressing.

3.4 Associated equipment

Although the processors, the memories, and the rocs are the principal
components of the cLc, three other devices deserve mention : the status
unit, the timing generator, and the store transfer unit. A block diagram
of the time -and -status unit, which includes the above functions, is
shown in Fig. 6.

3.4.1 Status unit

The status unit is essentially a register memory that may be read
or written by all processors in a given partition. By reading from the
status unit, processors obtain information about the condition of the
data-processing system : parity errors, time-outs, power on -off, etc.
By writing into the status unit, processors control the data-processing
system.

Partitioning is controlled by signals from the status unit. Software
can specify whether each component of the data-processing system is
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to be partitioned green, partitioned amber, or is to be isolated. The
status unit enables communication between elements in the same par-
tition and disables communication between elements in different par-
titions or to elements which are isolated.

Since there are two status units, subtle logic -design problems exist.
For example, status information from peripheral devices partitioned
amber must affect only the amber status unit and not the green. One
status unit must be designated the master and the other the slave in
such a way that partitioning signals from the master status unit take
precedence. Transients caused by powering up a status unit must not
disturb this relationship.

The status unit also interacts with the ioc. If certain status unit
bits change, the status unit presents a command request to the ioc.
The ioc program thus initiated informs software of the event.

3.4.2 The timing generator

The timing generator performs two basic functions that are essential
within a real-time system. The first is that of initiating activities at
points in time that can be specified by program means. The second
is that of providing an accurate time value which can be used in record-
ing the time of occurrence of specific events during operation of the
SAFEGUARD system. This is accomplished in the cLc by providing a
time -of -day binary counter which is driven from a precise 5 -MHz
generator. As with other system components, for availability reasons
the timing generator is duplicated. The timing generator is syn-
chronized with a time -of -day standard. In addition, there is a pro-
cedure to synchronize the timing generator in the amber partition to
the timing generator in the green partition. This is necessary whenever
the amber timing generator is shut down for maintenance.

To fulfill the function of initiating activities at specified times, the
timing generator performs time -notice comparisons of the time -of -day
clock to a time -arranged list of orders stored within variable store.
This activity is analogous to that of an alarm clock set to turn on
various software processes. This function is handled via an i/o channel
to relieve the processor from the housekeeping function of presenting
time -notice orders to the clock. As long as the time -notice list has been
prepared in advance, the ioc will methodically transfer a new order
from the list maintained in variable store. In addition, the ioc will
interact with the global data sets maintained in variable store to
trigger various software events without necessarily providing a direct
processor interrupt.

The second function of providing an accurate time value is accom-
plished by allowing all processors within the same partition to directly
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access the clock and fetch time of day as a binary word. Access to the
timing generator is designed so that, regardless of the number of
processors in queue, each processor may obtain time of day in less
than a microsecond. The time -of -day value can be used to attach a
time tag to various recorded events or to determine whether certain
system deadlines have been missed.

The timing -generator and status units may be thought of as hybrid
devices within the cLc from the viewpoint that they may be accessed
directly by a processor using the internal switching network within
the computer or they may be accessed as a peripheral device using an
i/o channel. As these devices either provide control information or
report status, they are not accessed frequently during normal opera-
tions and so they share the same switching port and i/o channel. To
take advantage of the economy of sharing interfaces, they are grouped
together in the same equipment rack which is designated the time -
and -status unit.

For partitioning purposes, the time -and -status units are paired with
the rocs to which they are attached. Thus, time -and -status unit
number one is always configured in the same partition as i/o con-
troller number one. The same philosophy holds true for many of the
peripheral devices connected to the ioc in the SAFEGUARD system.

3.4.3 Store transfer unit

The time -and also includes a third function called the
Store Transfer Unit (sTu). The STU is the only device that can write
into the program store elements. For reasons of economy, it shares the
same direct switching interfaces with the timing -generator and status
units. New program segments flow from either tape or disc through the
ioc to the STU and into the appropriate rack of program store via the
internal switching network within the computing system. During re-
covery of the cLc, the STU associated with the ioc that is on-line at the
time handles the reloading of the tactical software process into program
store.

3.5 instruction repertoire

The instruction repertoire for the cLc processor has been specified
to accommodate the addressing structure of the computer. The pro-
cessor can address program and variable store. A 20 -bit internal
address is used which, when mapped into actual memory addresses,
allows addressing the maximum of 256 K double -words for both pro-
gram and variable store. In addition, the processor contains internal
register areas for temporary storage of operands. All arithmetic opera-
tions are performed on operands from the registers. The use of this
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type of memory hierarchy separates the two functions of operand fetch
from main storage and arithmetic execution. The instruction repertoire
takes this into account so that the access of operands from variable
store is distinct from arithmetic operations.

The addressing structure of the cLc will accomodate dynamic re-
location of data sets. This requires that the processor have the cap-
ability to store and modify addresses locally within its registers. A
method of double indexing is employed, using the contents of as
many as two B -registers and a 12 -bit displacement value contained
within the instruction itself, to form an address value.

There are two different instruction lengths, 16 bits or 32 bits. Most
instructions work with operands contained in the fast internal registers.
The method of addressing operands from these registers is charac-
terized by the use of two -address instructions with register addresses
in the range of 0 to 15. These instructions use the half -word (16 -bit)
length which contains an 8 -bit operation code and two register ad-
dresses. Instructions which access variable store utilize the longer 32 -bit
instruction length. In addition to the operation code and address dis-
placement value, the memory access instructions also specify two
B -registers used in address generation and the source or destination
register in either the A, B, or Z register areas. There is also an instruc-
tion which references variable -store operands in absolute fashion using
a full 20 -bit address field contained within the instruction. In addition,
a subset of instructions, designated "true" instructions, permit con-
stants to be stored within the instruction itself. These constants may
be directly loaded into the internal registers of the processor.

The processor can handle both fixed-point and floating-point data
represented in fractional two's complement notation. All arithmetic
operations are normally performed on 32 -bit operands for both fixed -
and floating-point data. Exceptions include a half -multiply instruction,
the ability to manipulate exponents, and the ability to perform address
arithmetic on 20 -bit values. Floating-point numbers are usually
normalized. There is no hardware capability to perform double -pre-
cision arithmetic.

3.6 Hardware concept

The SAFEGUARD hardware concept permits fabrication of the data-
processing system from a standard stock of racks, chassis, and inte-
grated -circuit packages. The design is based upon integrated -circuit
technology using a modified direct -coupled -transistor -logic circuit hav-
ing circuit delays in the 5- to 6-ns range. The hardware provides a
flexible system for interconnecting groups of integrated -circuit pack-
ages on chassis, and chassis into racks as shown in Fig. 7. To enhance
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reliability, the integrated -circuit packages are wire -wrapped to achieve
connections on the chassis. Each chassis can accommodate 275 inte-
grated -circuit packages and, therefore, more than 600 logic circuits.
The chassis are housed in a water-cooled rack with two chassis mounted
side by side on a chassis carrier plate which locates, supports, and
cools the chassis. The chassis carrier plates are mounted on a 1 -inch
vertical pitch within the rack. There are a maximum of 59 levels in
the rack housing 118 chassis.

It was recognized that a large multiprocessor would present a need
for a large number of access connections. In fact, there is a need for
more access connections to the chassis than could be provided with
rear access only. Therefore, the chassis also uses both sides for addi-
tional access terminals. The rear contacts to the chassis are made in a
conventional plug-in manner. The side contacts use a linear -actuated
cam arrangement to engage the side contacts after the chassis has
been situated properly in the rack. This arrangement results in wiring
fields on three sides of the rack. In addition, internal connections are
provided at the interface between the chassis, which are situated side
by side on the carrier plate, to provide near -neighbor connections be-
tween groups of chassis. In total, the rack provides for more than
40,000 possible signal connections. It should be noted that having
rack wiring on three sides has resulted in a diamond orientation of
racks on a floor plan to allow physical access to all four sides of a rack.
Rack -to -rack interconnections are provided by plug-in coaxial ter -
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minal fields at the top of the rack which allow as many as 11,520
connections in this area.

To preserve the integrity of the high-speed pulse transmission be-
tween the various units that make up the multiprocessor, a charac-
teristic impedance of 100 ohms is maintained for the transmission
of all signals. Coaxial cables are used for all connections between racks
and for all rack wiring runs in excess of five feet. Twisted pair is pre-
dominantly used to wire the rack. The chassis connector maintains a
fixed impedance across the connection by providing both a signal and
a ground path using a highly reliable double -contact arrangement to
gain entry to a chassis.

The memory racks include a 16-K by 68 -bit -per -word core memory
unit and the associated interface logic switching circuits which pro-
vide interconnection to the multiple units in the system. The core
memory units are air-cooled and operate at a cycle time of 500 ns
and have an access time of 300 ns.

3.7 CLC performance

One of the primary reasons for the development of a parallel and
modular computing system for SAFEGUARD is the potential for high
performance. In addition to the properties this architecture possesses
for high availability, a multiprocessor organization possesses a great
deal of reserve power which, when applied to a problem with the
appropriate degree of parallelism, can yield high performance. This is
the type of problem which is associated with a radar tracking system
and which must be solved in real time.

In a multiprocessor system, the processors gain access to main
storage according to a priority rule. The rate at which each processor
executes instructions depends, therefore, on the severity of this queuing
at main storage. Throughput will be defined as the number of in-
structions of a particular instruction mix executed per second by n
processors.

Adequate performance, or throughput, of a parallel processing sys-
tem depends upon a number of hardware factors, which include the
speed of the processor, the speed of program store including its priority
circuit, the total number of processors relative to the total number
of independently addressable program stores, and the number of in-
structions executed per memory word fetched. From a software view-
point, the distribution of programs and data sets within the modular
memory and the instruction mix of the particular programs in execu-
tion are also important factors which directly affect throughput.

Since variable store queuing will, in general, be less than that at
program store, its effect has been eliminated in the throughput data
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presented here. This has been done by dedicating a separate variable
store rack to each processor for experimental studies.

Throughput data have been gathered using multiprocessor hardware
with configurations containing as many as ten processors. Benchmark
programs have been used which provide varying instruction mixes.
Four instruction mixes were selected for testing. The NOP mix, con-
sisting of no -operation instructions, defines an upper bound on through-
put. The LOGICAL mix is a representative mix that is similar to cLc
operating system code that might be executed during real-time opera-
tions. The `PATH mix is also a representative mix, being a portion of
the cosine subroutine from the cLc operating system. The JUMP mix
consists exclusively of jumps and represents a kind of lower bound on
throughput.

Figure 8 shows the effect of requiring all processors to execute out
of one program store. The number of instructions executed per second
increases with the number of processors until the program store is
returning instructions as fast as it can. Throughput levels off when
this point is reached, and a further increase in the number of processors
does not increase throughput.
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Fig. 8-N processors executing from one program store.
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Figure 9 shows the effect of providing an equal number of processors
and program stores. For this case, the number of processors and pro-
gram stores is incrementally increased from one to ten. The program
stores are not dedicated to a processor on a one -for -one basis, but
their access by the processors is randomized such that several proces-
sors may be attempting to read from the same program store at once.
Hence, some reduction in throughput due to queuing is expected. The
effect of queuing is small for one to ten processors. Figure 9 shows that
throughput increases linearly with the number of processors. Data are
shown for the LOGICAL and MATH mix only.

The data presented in Fig. 9 are for the case of an even distribution
of memory access over all program stores. It is interesting to deter-
mine what happens to throughput for the case of an unequal work -load
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distribution. A series of runs were made for both the LOGICAL and
MATH mixes where the number of processors was kept equal to the
number of program stores with one important difference. One of the
program stores was selected as a "favored" program store and its
fraction of total instructions executed was varied from 0 to 100 percent
while the remaining program stores shared the remaining work load
equally. Figures 10 and 11 show the results for the six to ten processor
cases. The curves represent throughput as a function of the "favored"
program store. Zero percent means ten processors are executing out of
nine program stores. Note that throughput is a maximum when the
"favored" program store shares equally in the work load.

The curves of Figs. 10 and 11 are useful in that they show the sen-
sitivity of throughput to an unequal distribution of the work load
in memory. For instance, if one considers a 10 -percent reduction in
throughput to be serious, the above curves show for the seven -processor
case that a single program store can have almost 40 percent of the
work load without a serious reduction in throughput. For the ten -
processor case, the corresponding number is approximately 25 percent.
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Therefore, as long as the work load is not too unequally distributed,
the dependence of throughput on work load distribution should not be
critical. Throughput dependence on more than one program store
having more than an equal share of the work load has not been
investigated.

IV. CONCLUSIONS

4.1 Success of the modular design

The use of the well-defined interfaces and modular hardware building
blocks capable of communication within the framework of a distributed
switching system provides the basis for a dynamic computing com-
plex-a structure that is capable of incorporating new functional units
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offering unique economic or performance advantages.* This structure
has been very useful in satisfying the wide range of computing applica-
tions within the SAFEGUARD system. These range from a single proces-
sor, nonredundant installation to a ten -processor, maximum -sized
system. Not only does this structure handle the wide variations in
system sizing, but it can easily accommodate changes that may result
from new or revised system requirements.

4.2 Reduced cost for "n 1" philosophy

Historically, early fault -tolerant systems, such as ESS-1, employed
100 -percent redundancy through use of a complete standby system.'
That is, the system required to support the full work load is duplicated,
with data processing proceeding in parallel on each system. This
organization is conceptually simple and upon detection of a failure in
either system, the other system can carry on the data-processing
work load.

The multiunit system approach to gaining high performance can
provide high system availability without the need for costly, complete
duplication. The n 1 redundancy approach has reduced the amount
of equipment added for redundancy and for system exercise to a frac-
tion of that required for a complete standby system.

4.3 Instruction repertoire

The cLc instruction repertoire was designed long before cLc soft-
ware was written. As a result, programmers seldom use certain instruc-
tions and often wish for others. For example, character manipulation
instructions are lacking, as is one instruction that will store all proces-
sor registers.

4.4 Status -unit performance

The status unit, as implemented in the cLc design, represents a
comprehensive method of gathering system status and providing con-
figuration control information to the various parts of the data process-
ing system. The use of the status unit to control the configuration of a
partitionable machine is unique and has been proven successful during

the SAFEGUARD project.

* This structure, for example, will very easily accomodate the addition of an array
processor, such as the Parallel Element Processor Ensemble (P1:PE), or it will easily
allow direct connection of a high data rate peripheral subsystem to the modular
variable stores. Although not a part of the present SAFEGUARD system, extensions
to the multiunit architecture, as described above, have been seriously considered and
are entirely feasible.
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4.5 CLC performance

The performance of a multiprocessor system depends upon a number
of factors including the speed of the processor, the speed of the memory
element and the speed of its priority circuit, the total number of
processors relative to the total number of independently addressable
memory elements, and the number of instructions executed per memory
word fetched. The distribution of programs and data memory and the
instruction mix of the particular program being executed are also
important. cLc performance as a function of the number of processors
and the number of independent program -store data paths has been
measured by D. B. Knudsen, and the information presented in Section
3.7 is a result of that effort.

V. SUMMARY

The requirement that a computer function properly even though
some of its components fail has been a primary goal in the development
of the SAFEGUARD computer. The multiprocessor approach was chosen
to achieve high performance and availability. The multiunit architec-
ture has provided a system which satisfies a wide range of computing
requirements on the project through the use of a single design.
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The SAFEGUARD Maintenance and Diagnostic Subsystem ( M&DSS) is
a unique, independent, hardware group within the data-processing system
through which the nonreal-time functions of fault detection and isolation
are performed. In this paper, the M&DSS hardware and fault detection
software are described and system performance is reviewed.

I. INTRODUCTION: AN OVERVIEW OF SAFEGUARD MAINTENANCE
OPERATIONS

The specific tactical mission for which the SAFEGUARD system has
been designed is of extremely short duration compared to the life
of the system. Once such a mission has begun, fault isolation and repair
are of no concern; at this point, mission success in the face of hardware
failures is totally dependent on real-time fault detection and, when
necessary, the automatic execution of system recovery. Thus, the
fault detection and isolation features of the Maintenance and Diag-
nostic Subsystem (M&Dss) are oriented primarily toward the goal of
maximizing system availability, the probability that, at any random
point in time, a complete set of fault -free Data -Processing System
(DPs) resources exists.

The M&DSS contributes to maximizing system availability in two
ways. First, M&D tests are periodically run on critical DPS equipment
to supplement real-time fault detection methods in minimizing the
mean -time -to -awareness of hardware faults. These tests are auto-
matically scheduled by real-time software in the green partition and
the test requests are sent to the M&DSS over a special interface through
the status unit. In this way, every processor in the DPS is switched
into the amber partition and tested once every hour; the complete
amber partition is tested once each hour; and the green i/o controller
with its slaved peripheral controllers is switched amber and tested
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once every four hours. The M&DSS passes test results back to green
system software again via the status unit interface.

Second, and more important, the M&DSS minimizes the mean time
to repair of faulty racks by rapidly identifying a minimum set of
replaceable or easily repairable modules in which the fault is located.
These fault isolation functions may be initiated in response to fault
symptoms detected either in real time or during the nonreal-time
scheduled tests described above. In either case, fault isolation takes
place with the failed rack isolated from the rest of the DPS.

The M&DSS accomplishes this goal through the unique integration of
two significant maintenance concepts. First is the use of a special
two-way maintenance data path into each DPS digital unit, which
bypasses normal data paths. Second is the use of a small general-
purpose computer dedicated to system testing, which applies tests over
the maintenance paths and interprets test results.

The communication interface between the green partition status
unit and the M&DSS provides a rapid and flexible means for bringing
maintenance resources to bear on any DPS fault indication. Nonethe-
less, until a specific faulty rack has been identified, the particular
response to be made to any given fault indication often involves
judgments based on the total status of DPS resources. Thus, normal
SAFEGUARD maintenance operations involve a significant degree of
manual interaction. In general, two primary maintenance management
functions are performed manually :

(i)

(ii)

Monitoring and response to overall system status as reported
by green system real-time software and hardwired displays.
Direct control of maintenance testing : The M&DSS will not
honor any scheduled test request unless manual "permission" is

granted, any test in progress may be manually aborted, and
alternate tests may be requested via green system software and
the status unit interface.

II. THE SAFEGUARD MAINTENANCE TASK

In its largest configuration, the SAFEGUARD DPS consists of as many
as 50 digital racks, each containing up to 100 logic chassis. Each chassis
can have between 500 and 600 logic gates. A total installation can have
over 2000 chassis with over 500 unique chassis designs. Approximately
two million distinguishable faults can occur distributed over these
2000 logic chassis in the typical installation.

The primary goal of the SAFEGUARD M&DSS is to provide rapid fault
isolation for the largest, most common class of faults likely to occur.
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Other, more subtle faults will involve longer isolation times, but by
optimizing isolation for the most common faults, the required overall
mean time to repair will still be met. Several assumptions are made
concerning this major class of faults which must be handled by the
Al&DSS :

(i) Only hardware faults are considered.
(ii) Only permanent faults are considered. Transient and inter-

mittent faults, when they occur in the green partition, are
handled by real-time error response mechanisms.

(iii) All faults have equal probability of occurring.
(iv) Only one fault will occur at a time : Measured device failure

rates support this assumption.

These assumptions, along with further assumptions regarding real-
time fault detection capabilities and the distribution of the various
classes of faults expected, provided input to a series of parametric
studies designed to arrive at specific Al&DSS design objectives. The
studies led ultimately to the goal of a four-hour mean time to repair
for 90 percent of all DPS faults. The mean time to repair includes the
time to :

(i) Isolate the fault to a reasonable number of suspect chassis.
(ii) Remove these chassis and test them on an automatic test set

that identifies the specific faulty chassis and the failed circuit
pack.

(iii) Repair the chassis.
(iv) Replace all chassis and verify the repair.

An analysis of the possible trade-offs of time between these activities
led finally to the requirement that the NI&DSS be capable of isolating
90 percent of the class of faults defined by the assumptions above,
to three or less logic chassis within 15 minutes of their detection.

III. M&DSS HARDWARE

The conventional approach to digital fault diagnosis involves apply-
ing a set of input data to the particular circuit under test and, by
comparing the output of the circuit to an expected value, deducing
the location of the possible circuit faults that could have caused any
observed differences. Obviously, the larger and more complex the
circuit between input and output, the greater the number of circuit
faults that could cause any specific output error, and the greater the
ambiguity in the final fault resolution. The primary design feature of
the Al&DSS (Fig. 1) is aimed at overcoming this problem.
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Fig. 1-Maintenance and Diagnostic Subsystem.

Every digital rack within the SAFEGUARD DPS is equipped with a
unique internal logic interface to the M&DSS. This interface consists
of special programmable Pulsed -Set -and -Indicate circuits (Psis) con-
nected to most data and control registers within the rack. These
circuits provide the means to read from or write into these registers
independent of normal data paths. The PSIS are connected via an
internal data bus to a maintenance buffer chassis within the rack
through which the Psi'd registers may be selectively accessed.

The proper placement of PSIS was an integral part of the logic design
process for each SAFEGUARD digital rack. Through Psi access, large
blocks of sequential logic are effectively dissected into smaller com-
binational blocks, each having a number of inputs and outputs acces-
sible via the M&DSS. This not only makes it quite simple to implement
system recovery, as will be explained later in this paper, but also
results in two important advantages related to fault isolation. First,
it makes possible considerably greater fault resolution than can be

had in standard logic design. Second, it makes practical the simulation
approach to fault dictionary construction.'
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Testing a digital rack, therefore, involves the repetitive execution
of a simple four -step "program" :

(i) "Set" data onto one Psi -accessible register.
(ii) "Set" bits in one or more control registers to enable circuit

operation.
(iii) "Indicate" (read) the contents of another psi -accessible

register.
(iv) "Compare" the result to an expected value.

The execution of such programs is one of the primary functions of a
digital rack called the M&D controller. The M&D controller receives
maintenance programs from one of several program sources, translates
and executes the program in a unit called the sequencer, and communi-
cates with the rack being tested through fan -out logic called a data
tree. The data tree is connected to the buffer chassis of each digital
rack in the DPS through a separate maintenance channel.

Once the communication channel to a particular rack has been
established, the sequencer uses this channel to set data into and read
data from selected registers within the rack. Data returned through
the "read" instructions can be compared within the sequencer to an
expected value and the results of the comparison will be returned to
the program source. Again, these three operations, write, read, and
compare, are the essence of the sequencer function. The sequencer
can also specify up to two additional channels to allow interface
maintenance tests between racks.

DPS recovery is implemented through the M&DSS via sequencer
"write" instructions stored in a protected core memory (part of the
M&DSS itself) and designed to accomplish two functions :

(i) Set the appropriate partition bits in the status unit to configure
a minimum DPS.

(ii) Initialize operational registers in selected DPS racks to boot -load
a simple DPS control program and pass control to it; this pro-
gram then completes the recovery operation.

When recovery is initiated, the M&D sequencer automatically
switches to the recovery memory as its program source.

Since the M&DSS is used for both fault diagnosis and system recovery,
it must be extremely reliable. The M&D controller, the heart of the
NI&DSS, can overcome most single faults within itself. It has built-in
redundancy, built-in fault detection logic, and Psi access that permits
the application of M&D tests to one of the redundant sequencers via
another. The chassis involved in system recovery are duplicated, as
are the stores containing the system recovery programs.
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IV. NONREAL-TIME MAINTENANCE SOFTWARE

The M&D test program itself is the most basic unit of nonreal-time
maintenance software. Conceptually, the design of an M&D test is
quite straightforward, in keeping with the limited command repertoire
of the 1I&D sequencer described above. Design begins at the level of
"micro" tests, each oriented toward a single logic circuit path. Each
consists of a number of set-up instructions that set a test vector into
a register via PSI access, further instructions which toggle the necessary
control bits to cause the test vector to propagate through the logic
path to an "output" register, and finally an instruction to compare the
output data to an expected value.

From 200 to 2000 such "micro" tests might be designed to cover all
the circuits within a logic block. The size of a logic block depends on
functional boundaries of logic within a rack. Five to ten such logic
block tests typically make up the total test for a single SAFEGUARD

digital rack; over 300 block tests are involved in the maintenance
facility for the largest SAFEGUARD DPS configuration.

Three independent means exist for applying 1&D tests to the digital
equipment. The first and most direct means employs a mobile console
that is used only during installation of a site. This console, containing
a simplified version of the main M&D controller, has its own control
panel and associated tape machine. The mobile console connects to
the normal i\1&D buffer chassis in each rack to verify the operation of
the rack before the installation of system cabling.

After system cabling is installed, the M&D controller has direct
access to each rack, and the second means of applying tests is made
available. This consists of the M&D console (shown in Fig. 1) through
which tests are transferred to the M&D sequencer from magnetic tape,
and test results are displayed on a cathode-ray tube (cRT).

Both the mobile console and the CRT console, however, are extremely
slow, depending on magnetic tape as a test program source. Moreover,
both return test results to the user in the form of an identification of
the compare instructions that failed and the resulting error patterns.
Fault isolation then requires a fairly knowledgeable maintenance man
to interpret test results. Thus, while the CRT M&D console is a part of
the tactical maintenance center, it exists primarily as an emergency
backup to the third and most important test facility, the m&D Pro-
cessor (mDP).

The MDP is a modified CDC Model 1700 general-purpose digital
computer. It provides the means for fully automatic high-speed selec-
tion and transfer of tests to the M&D sequencer and the automatic
interpretation of test results.

The total collection of M&D logic block tests is stored on AIDP disc
along with all AIDP operating software, including a test control program
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that accepts commands ranging from a request to test a single logic
block to a request for a test of an entire' digital subsystem.

These test commands may be sent to the AIDP automatically from
green partition software or manually from its own TTY. In this latter
mode, which is normally used for fault isolation, the test program
saves the error symptoms (Nun noncompares) encountered and then
requests that the fault dictionary tape for the logic block test which
detected the fault be mounted on one of the NIDP tape transports.
Another MDP program then searches the dictionary to find fault lists
for the noncompares detected. After the lists are processed, the result
is printed out as a list of suspect chassis.

The MDP provides the additional bonus of extending the diagnostic
capabilities of the Al&DSS beyond psi -accessible boundaries. The use of
fault dictionaries is limited to SAFEGUARD digital logic, but faults in
other equipment may be diagnosed by applying functional tests
through psi -accessible registers in a digital unit that interfaces with
the unit being tested. An MDP program controlling the test analyzes
test results as they occur and branches to other tests along a program
path that terminates with the identification of one or more likely
faulty circuit cards, or the output of an error code pointing to a written
manual procedure to be followed for a final fault resolution. This ap-
proach has been successfully applied to the main SAFEGUARD memories
and CRT consoles and their supporting equipment.

V. M&DSS APPLICATIONS AND PERFORMANCE

Any evaluation of overall SAFEGUARD M&DSS performance must, of
necessity, consider the entire maintenance concept, not only the
M&DSS itself, but also the role of the partitionable DPS, its status unit
interface with the NI&DSS, and the function of system recovery. All
play a significant part in achieving the required system availability/
reliability product.

At this time, however, the full-scale system tests that will eventually
yield specific maintenance system performance data are just beginning.
Nonetheless, data do exist in two categories. Extensive testing has
been done on the detection and dictionary -isolation capabilities of the
basic M&D tests.' The NI&DSS has also been used extensively in the
maintenance of the DPS equipment at the tactical sites during the
installation and test period. Maintenance experience in this environ-
ment, while not directly translatable to the tactical situation, has
produced considerable insight into NI&DSS performance.

More than anything else, experience to date has demonstrated the
fundamental power and flexibility inherent in the primary M&DSS

feature, the extensive maintenance data interface with the entire DPS,

in concert with the general-purpose computing capability of the
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maintenance data processor. Just as encouraging, however, has been
the performance of a set of extended M&DSS capabilities developed
during the early phases of installation and operation, before the
widespread availability of NI&D tests and dictionaries. A brief descrip-
tion of these capabilities is instructive as background for the quantita-
tive performance data to be discussed later.

Central to all the extended capabilities of the Al&DSS is a set of MDP
programs known as Digital Unit Exercisers (Dux). One such program
exists for each unique DPS rack type. Each DUX program provides the
capability to control the functional operations of a rack on a macro-
scopic level and to "dump" the contents of individual registers or
groups of related registers within the rack. DUX perform these func-
tions by accepting commands in a functional language, translating
these commands within the MDP into appropriate M&D sequencer
"write" commands, and transferring these to the sequencer for exe-
cution. Subsequent "read" commands are used to dump the desired
registers, and the results are output on MDP peripheral devices.

In actual hardware maintenance operations, DUX have been used
primarily to provide manual interaction, via the Ans,Dss, with a set
of real-time programs originally developed to verify the complete
functional capabilities of the DPS. * Data currently being gathered at
SAFEGUARD sites show that this mode of fault detection and isolation
continues to play an important role.

Table I shows the results of data that have been gathered on the
actual use of all MDP resources for a three-month period at the tactical
sites. As mentioned earlier, the basic M&DSS and MDP software capa-
bilities were designed to optimize fault detection and isolation on the
most common class of faults anticipated, namely, single "hard" device
failures. This class is shown in the table under the heading Hard Faults.
The Other category includes timing and intermittent failures, design
errors, and a variety of miscellaneous failures, largely mechanical in
nature. It is important to note that these data were gathered midway
during the site test and integration period, a time when design errors
are indeed expected to be uncovered, and when frequent handling of
the equipment, because of change activity, directly contributes to a
greater number of intermittent and mechanical problems.

In view of these facts, the data shown in Table I are extremely
encouraging. They show that, for the period covered, the mseDss success -

Though not the subject of this paper, it is worth noting that the various DUX
capabilities also provide an extremely powerful means for system software debugging
by allowing dumps and snaps of otherwise inaccessible DPS registers without perturb-
ing the very condition being probed. This capability has found extensive use through-
out SAFEGUARD software development.
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Table I - MDP performance (July-September 1973)

Total Faults*

Fault Type
Grand Total

(75)Hard Faults
(51)

Other
(24)

M&D tests only Detect. 96% (49) 83% (20) 92% (69)
Isol. 92% (47) 54% (13) 80% (60)

DUX/ITPs required Detect. 8% (2) 0% (0) 3% (2)
Isol. 17% (4) 0% (0) 11% (4)

All MDP resources Detect. 96% (49) 92% (22) 95% (71)
Isol. 100% (51) 71% (17) 91% (68)

In those cases where isolations exceed detections for a given capability, the fault
was usually first detected by a user program. The CDC 1700 was then used to gather
enough additional data to achieve isolation.

fully achieved its design goals with respect to the Hard Fault class.
Moreover, through use of the MDP extended capabilities, the M&DSS

achieved at least its detection goals with respect to all faults.* Finally,
the M&D tests alone come very close to achieving design objectives for
all faults. Experience, then, supported by the data shown above, leads
to a number of specific conclusions regarding M&DSS performance.

Maintenance considerations must be an integral part of logic design.
SAFEGUARD development schedules did not allow two or three iterations
of the PSI placement -simulation -evaluation cycle. As a result, during
test design, cases were discovered where additional psis, or a more
efficient distribution of existing Psis, would have produced significant
improvements in fault detection, isolation, or both. In particular,
more Psi access to control circuits and within logic feedback loops
would have made it possible to define smaller and more independent
logic blocks. In the most serious cases, hardware change orders were
processed to add or rearrange psis. Nonetheless, nonoptimum PSI
placement remains as the single most significant limitation on detection
and isolation.

Increasing the speed of the entire M&DSS would significantly extend
its fault -detection capabilities. In its present design, the M&DSS
executes a complete read -write -compare cycle in approximately 35 As,
more than two orders of magnitude slower than many internal logic
events in the DPS. In the design of the M&DSS, speed was sacrificed for
reliability; for example, communication between the M&D controller
and each DPS rack is in serial form to minimize the number of con-

' Isolation times using DUX are significantly longer than for M&D tests. Thus, we
cannot conclusively say whether or not the goal of 15 -minute isolation for 90 percent
of all faults has yet been achieved.
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Hectors, relatively low -reliability components, in the entire path. As a
consequence of this design decision, however, the M&DSS is limited in
its ability to detect failures that only affect logic timing. A compare
instruction can verify whether or not the expected value eventually
appeared in a psi's register, but not whether it arrived there on time.
If, however, the M&DSS operated at system speed, it would be more
effective in diagnosing this class of faults.

The extended capabilities of the M&DSS described earlier in this
section are effective, however, in compensating for both the short-
comings owing to M&DSS speed and those owing to insufficient Psis.
By using M&D access to load and set into execution the more complex
real-time functional test programs, the effects of timing faults and
faults in complex control circuits can be detected. DUX capabilities
can then be used to sample various psi'd registers along the more
elaborate functional path exercised by the test program, and the
results can be interpreted to obtain fault isolation to a functional
level. In fact, there are very few DPS fault conditions that cannot be
handled by one or another of the maintenance tools available through
the M&DSS. It is this aspect of experience that leads to a final conclusion
on M&DSS performance.

The total M&DSS concept offers great power and versatility as a
digital maintenance facility. "Total concept" means the integral
combination of PSI access and general-purpose computational control
of the Psis. On-line dictionary search makes possible the rapid isolation
of the largest class of common device failures, while the extended
capabilities available through the MDP allow the remaining faults to
be dealt with in such a manner that the only limitation is the ingenuity
of the maintenance man.

In retrospect, the full range of M&DSS capabilities has yet to be fully
explored. For example, again because of project schedule constraints,
the logic block partitions originally defined have not been changed;
but different partitions, chosen perhaps with timing faults specifically
in mind, might allow timing faults to be handled via straight M&D
test/dictionary methods. Conversely, the real-time DPS capability
verification tests that have proven to be so useful in conjunction with
the DUX might themselves be restructured with fault isolation more in
mind (they were not originally designed for this purpose) ; it would
then be possible to use the MDP to analyze the fault symptoms obtained
through PSI access to yield on-line chassis level isolation information.
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This paper provides an overview of one aspect of the SAFEGUARD
approach to digital maintenance-the Maintenance and Diagnostic (M&D)
program -fault dictionary. The M&D program detects the presence of faults.
The associated fault dictionary provides fault lists for automatic fault
isolation; it is generated by executing the maintenance program in an
environment simulating the action of hardware in the presence of faults.
The paper also provides some detailed discussion of simulator -performance
improvements.

I. INTRODUCTION

A SAFEGUARD data-processing system consists of racks of equipment
for three functional areas : a large real-time central computer facility,
a large peripheral subsystem, and a Maintenance and Diagnostic
Subsystem (imms)." This paper describes an essential aspect of the
SAFEGUARD maintenance plan, the Maintenance and Diagnostic
program -fault dictionary.*

Fault -isolation dictionaries are available for most maintenance
programs. Dictionaries provide a correspondence between fault -
diagnostic -test failures and possible hardware faults (or faults of
replaceable units) which could cause the failures. They have been
used successfully in the No. 1 Electronic Switching System (Ess)3,4;
however, ESS and SAFEGUARD dictionaries differ in their format,
generation, and use. Both Armstrong' and Godoy6 have described a
method for efficiently simulating the action of hardware in the presence
of faults. Their technique is used in the generation of SAFEGUARD
fault -isolation dictionaries.

*Maintenance and Diagnostic programs are described by Hahn and Slojkowski.'
In addition, supplemental maintenance programs are used to test hardware, which
cannot be exercised by these programs, or to provide increased fault detection.
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A test -control program accesses the dictionaries to isolate detected
faults. After receiving results of test failure, the test -control program
performs set union and intersection operations on the sets of fault
lists in the dictionary entries associated with failed and passed tests
to isolate them to an acceptable number of replaceable units (chassis).*
If a maintenance program is completed without failure, the test -
control program can either consider the rack fault free, schedule
additional maintenance programs for execution within the M&D con-
troller, or schedule supplemental maintenance programs.

II. CONSTRUCTION OF SAFEGUARD DICTIONARIES

2.1 Approach

The dictionary approach to fault isolation was chosen early in the
design cycle primarily to satisfy a requirement that craftspeople with
moderate skill, working at a large number of installations, be able to
quickly accomplish fault isolation. Simulation was considered as the
only feasible method for generating dictionaries since there was no
hardware time available for fault insertion, and the logic was too
complex for manual dictionary generation.

Figure 1 is a block diagram of the Logic Simulation Facility (LsF).
For simulation purposes, each rack is divided into several, often
overlapping, logic blocks, none of which exceeds 20,000 gates. This
maximum gate count is a serious design limitation which occasionally
causes functionally integral logic blocks to be subdivided. Had time
permitted, this design limitation would have been eliminated. Each
SAFEGUARD data-processing system has over 300 maintenance pro-
grams designed to detect faults in the logic blocks. The tests within
the program are designed manually. Most of these programs have
associated fault -isolation dictionaries generated through simulation. A
few programs (mostly for rack interface blocks) were not simulated
since they were only testing a small portion of a block functionally
much larger than 20,000 gates. Before programs are run on the simu-
lator, they are debugged on the hardware to verify that predetermined
logic values within compare instructions are correct. By debugging
on the hardware rather than the simulator, the possibility that the
simulated logic block is incorrectly constructed or initialized is

eliminated.
Circuit interconnections and other pertinent wiring information for

the computer units are described in manufacturing tape files. The data
in these files are used by an automatic wire -wrap machine to wire the

* These chassis (500 to 600 logic gates) are, in turn, repaired by replacing integrated -
circuit packages.
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chassis and racks. These files are used to construct a simulation data
base and to simulate the hardware at the logic -gate level.

In addition to the manufacturing files, there are two primary inputs
to simulation : the maintenance program discussed above and a set of
supplemental instructions. These supplemental instructions enable the
test designer to set any gate in the simulated logic to any logic state.
They are particularly useful in initializing gates on the boundary of
the logic block which are driven from logic not being simulated. It is
through these instructions that the simulated logic block goes from an
unknown state to a state representing the hardware at the start of
testing.

The true logic value simulation, pictured in Fig. 1, is a simulated
execution of the maintenance program in the absence of faults. Since
the program has "run clean" on the hardware (i.e., all compare in-
structions are correct in predicted true logic value), the true logic
value simulation is used to find discrepancies between simulation and
hardware execution of the maintenance program. Discrepancies are
usually caused by erroneous supplemental instructions or by de-
ficiencies in the logic -block data base. These differences are usually
resolved through changes to the instructions or data base. Standard
aids are provided to assist in identifying causes for discrepancies (e.g.,
gate timing traces of change from known to unknown logic value).

The LSF fault simulator is a deductive simulator (see Ref. 3). At
any given simulation time, each gate in the circuit has a true logic
value (possibly unknown) and a fault list (possibly null) associated
with it. A gate's fault list contains all faults in the circuit which, if
present singly, would complement the true logic value of the gate.
Every fault present in a gate's fault list is said to be detectable at the
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gate. The simulator assumes that only single, hard faults occur in the
hardware. Transient failures, most timing faults, and marginal faults
are not considered. Unit gate delay is assumed. At each interval of
simulation time, the fault -free logic value and the fault list for a gate
are computed if either the logic value or fault list of any of the gate's
inputs has changed in the preceding time period. When a compare
instruction of the maintenance program is simulated, the instruction
number and all faults associated with the compared register (i.e., all
the faults which, if present singly, would cause a bit to be comple-
mented from its true logic value) are output to a fault tape for later
dictionary generation. Thus, for each compare instruction, there exists
a list of faults which are detected by that compare instruction due to
their causing an incorrect logic value in the compared register.

Statistical programs provide the maintenance programmer with
both summary and detailed information on the faults detected and
faults simulated but not detected. This output from the simulator, in
many cases, is more important than the dictionary (described in
Section III) and is a significant advantage of the simulation approach
to dictionary generation. The statistical information is used locally to
improve the detection quality of a given program. It is used globally
in directing efforts to improve detection in certain areas (e.g., to design
a supplemental maintenance program) or conversely, to suspend effort
in an area already achieving good detection.

2.2 Simulation performance improvements

The initial version of the simulation facility required extensive
computer usage for dictionary generation. Estimates indicated full
utilization of an HIS 635 computer for a period of about two years.
Even this large cost was an underestimate since many programs would
have to be simulated more than once either because the corresponding
hardware was significantly changed or because the program was sig-
nificantly modified to improve detection. Therefore, considerable effort
was devoted to reducing computing requirements. Some resource -use
reduction resulted from internal algorithm and code modification. The
four major items below, however, have most significantly reduced
resource requirements, with a cumulative effect of approximately a
ten -fold reduction.

2.2.1 Fault list paging

Core storage requirements for fault lists can become excessive. This
necessitates partitioning of the simulation into n fault runs, each simu-
lating faults in only 1/n of the total number of gates. Results for
partitions are merged into a single dictionary. Since the entire M&D
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Table I - Computer time savings due to software paging

Block Partitions
No Paging Paging

Total Elapsed Hours
No Paging Paging

100 13 210.0 110.0
2 50 12 19.4 10.0
3 20 6 11.1 3.5
4 6 1 7.3 2.2
5 4 1 5.1 1.9

4 1 4.0 1.3

program must be simulated for each partition, the time required for
calculating the true logic values is multiplied by the number of par-
titions. When n. becomes large this introduces a very significant
overhead. However, it was determined by experimentation that core
requirements for fault lists during simulation peak sharply after a few
tests and then fall off quickly (particularly after implementation of
other performance improvements to be described). An objective of
reducing the number of partitions and total elapsed time was then met
by a fault -list paging algorithm which minimized the time required
during the absence of paging at the expense of time required during
demand paging. The number of partitions for very large blocks is not
always reduced to one in order to prevent the paging overhead from
exceeding the overhead inherent in dividing the block into a few
partitions. On the average, the number of partitions required is reduced
by about 75 percent while elapsed computer time is reduced by 40 to
75 percent. Table I provides some sample computer time savings due
to demand paging of fault lists.

2.2.2 No simulation of conditionals

In simulation, unknown logic values appearing on the output of
gates can be due to either one or more uninitialized boundary-access
terminals or to a race condition in a flip-flop. The fault list associated
with a node whose state is unknown is not unique, since detection of a
fault is dependent upon the particular logic value present. Armstrong5
provides a method for nonexact treatment of fault lists in the presence
of unknowns in order to reduce simulation time. The method was
successful because the majority of unknowns appear only transiently
and are replaced by known states before monitoring is performed.
This method flags faults as "conditional" if their detection is con-
ditioned on the logic value actually existing at an unknown input. It
provides a more accurate simulator than one which ignores conditionals.

Experimentation was performed on the trade-off involved between
computer time required for simulation of conditionals versus decrease
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in fault isolation by nonsimulation of conditionals. Simulation of
conditionals required from four to ten times as much computer time
as did nonsimulation of conditionals. An additional 3 to 5 percent of
the faults in the test blocks had no chassis isolation or wrong chassis
isolation when dictionaries were generated without simulating con-
ditional faults. It was concluded that conditionals should not be
simulated so that computer time could be more profitably used.

2.2.3 Fault elimination

Fault isolation is essentially a process of applying tests and observing
passes and failures (i.e., a fault signature) until only faults on an
acceptably small number of replaceable units have the same signature.
For example, Table II illustrates fault signatures for three faults.
Faults a and b are indistinguishable in signature while Fault c is

distinguished from a and b at Tests 5 and 9.
The effect upon isolation of not simulating all faults for all tests

was investigated; e.g., one could stop simulating a fault after it is
detected once or twice (i.e., fails one or two tests). In the example

in Table I, if a fault were no longer simulated after one detection,
Faults a, b, and c would now be indistinguishable since they have the
same signature through the first detection (i.e., Test 4). On the other
hand, if the fault were no longer simulated after two detections,
Faults a, b, and c would have the same isolation as simulating all

faults for all tests, since Fault c is still distinguished from a and b at
Test 5.

Several blocks were simulated varying the number of detections
required before a fault was eliminated from simulation. Results showed
that eliminating a fault after two detections provided dictionaries with
essentially the same isolation as eliminating a fault at three or more
detections; yet simulation time (all other factors being equal) was
reduced by 80 percent compared with no fault elimination. Table III
provides some representative statistics. The net simulation time sav-
ings is even greater since eliminating faults after two detections

Table II-Sample fault signatures

Faults
Tests

1 2 3 4 5 6 7 8 9 10

a
b

P P P F F F F PPP
P P P F F F F PPP
P P P F P F F P F P

Note: P = Test passes in presence of fault. F = Test fails in presence of fault
(detects fault).

S78 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



Table Ill - Computer time savings due to fault elimination

Eliminations' Savings: 1: 2: 3:

1 92 83 97 100
2 88 90 98 100
3 83 91 98 100

No Elim. 92 99 100

Number of detections prior to elimination.
: Percent simulation time savings vs no elimination.
: Percent detected faults isolated to 1, 2, 3 chassis.

contributes to the sharp peaking of core requirements for fault lists
and, therefore, is partially responsible for making fault -list paging
possible.

2.2.4 Fault collapsing

Another attempt at reducing simulation time was "fault collapsing,"
i.e., merging two faults if detection of one guarantees detection of the
other. For example, consider the string of invertor gates shown in
Fig. 2. The effect of the output of C being stuck in logic value one is
indistinguishable at the monitorable output from the effect of the
output of A being stuck in logic value one. Therefore, a test will either
detect both faults or neither fault. If both faults are located on the
same replaceable unit, there is no loss in isolation by "collapsing" one
onto the other and simulating only one of the faults. In order not to
reduce replaceable unit isolation, strong restrictions are placed on
candidates for collapsing. Only faults on strings of gates located on a
single chassis are considered for fault collapse. Thus, a fault might be
isolated to the wrong integrated -circuit package but not the wrong
chassis. Typically, 15 percent of the faults in a logic block are col-
lapsed resulting in computer savings of about 10 percent. One problem
experienced with this limited fault collapse is that additional time is
required to evaluate the accuracy of the simulator, and to repair
chassis based on the ambiguous integrated -circuit -package isolation
information in the dictionary. Table IV summarizes the results of the
parameter trade-offs.

2.3 Other methods tried and their limitations

A study of a technique for building dictionaries, called Reachability
List Dictionaries (R -LIST, was conducted. Figure 3 is a diagram of

INPUT

Fig. 2-Sample logic string.

OUTPUT
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Table IV - Summary of computer time savings
vs dictionary degradation

Parameter
Times Savings

(%)

Dictionaryt
Degradation

(%)

Paging 40-75 0

No simulation of conditionals 60-90 3-5
Fault elimination 80-90
Fault collapse 10-12 0

 HIS 635 elapsed computer time vs full simulation.
t Percent of faults with no or incorrect chassis isolation compared with a dictionary

created without using the parameter.

a simple logic block. An R-LrsT is associated with each output gate
(e.g., 4, 5, and 6).

The R -LIST contains all gates (or faults) that lie on paths which
feed the gate. The R -LISTS may be derived from the total connectivity
matrix for the complete block. The R -LISTS may also be obtained by
performing a reverse trace to all input (or boundary) gates to the
logic block (e.g., gates 1, 2, and 3 of Fig. 3). The R -LIST can be
created from the logic block description alone, without any dynamic
simulation. Therefore, there was promise of providing a very economi-
cal method of generating dictionaries providing the isolation was
good. Experiments were performed to determine the isolation capa-
bility of dictionaries constructed using these techniques. They showed

poor isolation capability because :

(i) Lists were much longer than expected and embraced many
chassis. Each list contained over 50 percent of all possible fault -

producing gates.
(ii) Lists overlapped ; that is, many of the gates in any one list

appeared in all lists.*

Problems associated with automatically generating tests for large,

asynchronous, sequential logic are well known.' It is difficult to adapt
known test -generation algorithms to such circuits. SAFEGUARD de-

signers were successful, however, in supplementing manually generated
tests with automatic addition of compare instructions to outputs not
already monitored. Usually, outputs were not monitored because the
complexity of the circuit was such that the programmer did not
realize the full effect of establishing correct logic configurations on
control lines. The simulator was modified to "look" at all output points

* The R -LIST technique was further refined and met with somewhat greater
success when applied to sss 1-A.
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EACH OUTPUT

a, b, c, 2, d

<111) 2, d, e, f, 3, g, li

I

3, g, h, j, k, f, 2, d, e

Fig. 3-Sample block with output gate R-usTs.

for additional propagated faults. This simple technique is being used
to increase detection by 3 to 10 percent (an increase which typically
required several programmer months).

III. EXPERIENCE WITH DICTIONARIES

Dictionary entries are associated with test compares which could
detect a fault. Functionally, a dictionary entry appears in the form
shown in Fig. 4. For example, if Test N failed (i.e., observed output
was not 1012) with observed error pattern 1102, Faults F, G, C, D, and
E are candidates for having caused the failure. The test -controller
program on the CDC 1700 computer processes dictionary entries corre-
sponding to both matched and mismatched test compares in order to
compute a list of faults that have fault signatures consistent with ob-
served test results. The test controller then prints out a list of suspect
chassis (with suspect integrated -circuit packages) ordered by chassis
with the greatest number of faults on the computed list.

A sample of 31 dictionaries was examined to determine the number
of suspect chassis associated with each compare and with each error

TEST COMPARE N
TRUE LOGIC VALUE 1012

THREE POSSIBLE ERROR PATTERNS
111 0002 WITH POSSIBLE FAULTS

A,B CHASSIS I

C,D,E CHASSIS 2
(2) 1102 WITH POSSIBLE FAULTS

F,G CHASSIS I

C,D,E CHASSIS 2

(3) 1112 WITH POSSIBLE FAULTS
A,B CHASSIS I

H CHASSIS 3

Fig. 4-Functional dictionary entry.
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pattern within the compare. For example, in Fig. 4, test compare N
shows that faults from three different chassis could cause the test to
fail. Figure 4 also shows that faults on only two different chassis could
cause any of the three possible error patterns.

These results show that chassis lists are usually short (on the
average, 95 percent of the error patterns for a dictionary had three or
fewer suspect chassis). Figure 5 indicates that both the tests and the
logic are functionally designed; i.e., groups of tests are usually exercis-
ing logic that has been reasonably arranged on a small number of
chassis. This fact contributes to making the dictionary useful even
when there is no exact match between an error pattern in the dictionary
and the one occurring during the running of the maintenance program,
as is shown below. It also contributes to the success of the above -
mentioned performance improvement studies.

Additional testing was performed to determine the accuracy of the
simulator and the degree of dictionary isolation. Test approaches
included limited hardware fault insertion, comparison with another
independent simulator, off-line analysis of dictionaries, and vigorous
program testing of simulator versions. The results confirm that the
simulator accurately generates dictionaries for hard faults, and diction-
aries usually isolate detected hard faults to three chassis more than
90 percent of the time (i.e., if one can detect the hard fault, one can
isolate it).

Table V summarizes three different ways of evaluating how well the
dictionary approach isolates faults. The first column shows the ex-
perimental results from actually inserting 102 randomly chosen faults

100

H. 90
cn

cc Ei
w < 80

z
w 0
>
R. 70<a
D - o

60
D
U

<
(9 U' 50< c,

0
L -

< 40

30

ERROR PATTERNS

1

COMPARES

1 2 3 4 5 6 7

NUMBER OF CHASSIS ON LIST

Fig. 5-Typical number of chassis per fault list.
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Table V - Preliminary fault isolation evaluation results

Number of Chassis Fault Insertion
(%)

Independent
Simulation

(%)

Analysis
(%)

1 76 70 85
2 or fewer 87 81 96
3 or fewer 93 92 98
4 or fewer 94 94 99
5 or more 4 3 1
No or wrong 2 3

into a processor (99 detected). Physical fault insertion exercised the
processor dictionaries in their actual environment. Faults were isolated
to three chassis 93 percent of the time. The second column sum-
marizes the results of simulating 261 detected faults on an independent
simulator and then searching the appropriate 32 dictionaries for
isolation. Finally, the third column summarizes the results obtained
by analyzing the 300,000 possible detected faults covered in 19 ran-
domly chosen dictionaries. The size of the 19 logic blocks covered by
the dictionaries ranges from 12 to 31 chassis and averages 22 chassis.
This analysis assumes that when the M&D program is run on the hard-
ware in the presence of a fault, the first two detections of the fault will
occur exactly as predicted in simulation and, therefore, will always
yield correct isolation (i.e., the isolation list for a fault is exactly the
set of chassis associated with the first two detections). The advantage
of this type of analysis is easy determination of the approximate
isolation for very large numbers of faults. Again, isolation to three
chassis is better than 90 percent.

Dictionary isolation evaluation is continuing with emphasis on
increased hardware fault insertion, off-line analysis of dictionaries, and
initial field experience. Results to date have been generally consistent
with those presented in Table V. In fact, dictionaries have been used
in the field to isolate to the integrated -circuit package. The feedback
to programmers on detection has been instrumental in improving the
quality of program fault coverage. Simulation statistics on processor
programs, for example, show they now detect 87 percent of the simu-
lated detectable faults. A four -man committee reviews simulator
information on undetected faults and makes recommendations for
improvement code. This technique has increased detection by as much
as 25 percent in some areas. In most cases, the maintenance program
was resimulated after the recommended improvement code was added.
In such cases, the simulation data base was first made consistent with
the latest hardware changes. In a few cases, where the computer time
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for simulation was large, improvement code was added to the end of
the program so that the dictionary remained correct with entries
corresponding to the added program instructions at the end of the
dictionary.

Hardware changes which cause a divergence from the simulated
hardware are a significant problem. These hardware changes eventually
cause maintenance programs to noncompare when run against fault -
free hardware. Such a condition causes rapid modification of the main-
tenance program. Often, however, the corresponding dictionary cannot
be immediately regenerated. Since it is difficult to quantify the re-
sulting dictionary degradation, maintenance personnel eventually lose
confidence in the dictionary and stop using it. Dictionaries seem to be
worthwhile for hardware that is modified only occasionally.

There has been much discussion about the need for a "nonexact-
match"' strategy to handle such items as marginal, transient, and
multiple faults or faults improperly handled due to parameter trade-
offs or minor hardware change. The general strategy of on-line pro-
cessing of dictionary entries allows a very simple algorithm for isolating
faults causing exact match. Nonexact match can be handled by inter-
action between maintenance personnel and dictionary. Simple informa-
tion requests, such as "List all chassis associated with the first six non -
compares or previous six compares," can be answered from the general
dictionary entry (see Fig. 4). Such information tells maintenance
which logic was being tested at the failed instructions. Since the
chassis list is usually short, it is a good starting place for further
manual troubleshooting. Thus, maintenance personnel can use the
dictionary in homing in on the fault. Not all this interactive capa-
bility is currently available. A microfiche print summarizing dictionary
entries (i.e., which logic chassis could cause the failure) is being pro-
vided to allow such interaction, although less conveniently.

IV. CONCLUSIONS

As others have noted, simulation facilitates detection feedback.
Statistics provided by simulation agree with the laboratory experi-
ments (i.e., they are believable). Since the statistics indicate which
faults are not detected, they enable the M&D programmer to improve
detection, resulting in a better maintained system. Since good detection
is required for good isolation, this benefit of simulation should be con-
sidered when one chooses a dictionary generation method. It often

A nonexact match situation results when a fault causes the maintenance program
to noncompare when it is run on the hardware and the dictionary entries do not
indicate any fault consistent with the observed error patterns.
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overshadows the dictionary itself. If the simulator is efficient, the
augmented M&D program can be resimulated.

The consistently high quality of the processor -unit dictionaries, for
example, indicates the practicality of dictionaries for large logic blocks
(20,000 gates) using SAFEGUARD hardware technology."' Both the
fault model and the simulation were simplified, yet isolation remained
quite good. (In fact, multiple faults were often correctly isolated.)
Thus, dictionaries for large, stable blocks are useful in isolating faults
to a small number of chassis. Because the format actually indicates
suspect integrated -circuit packages, the dictionary is further useful in
repairing the chassis. On the other hand, dictionaries are marginal, at
best, for very small logic blocks, blocks with very low detection, or
blocks subject to a very high rate of hardware change activity. Diction-
aries can be regenerated for blocks experiencing high hardware change
order activity providing the computer time required for regeneration
is reasonable.
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The Central Logic and Control (CLC) is the digital computer that con-
trols SAFEGUARD. This paper describes the novel features of the CLC
operating system, presents its design rationale, and points out its limita-
tions. Emphasis is on the characteristics that make the operating system
suitable for applications other than SAFEGUARD. These include its ability
to control as many as ten processors, its ability to initiate the execution. of
a program within milliseconds of an event, and its ability to detect and
isolate faulty hardware racks without manual intervention.

I. INTRODUCTION

The Data -Processing System (DPs) at a SAFEGUARD installation is
controlled by a stored program computer, the Central Logic and Con-
trol (cLc). cLc software can be divided into a set of applications pro-
grams plus an operating system. From the point of view of the operating
system, all applications programs are simply the user or the user
process.

Although assemblers, compilers, and linkage editors are usually con-
sidered part of an operating system, the cLc operating system provides
none of these. All program preparation takes place on a separate
support computer, currently an IBM System 370.* The programs com-
piled and link -edited on this machine, including the operating system
itself, are brought to the cLc on magnetic tape as load modules.

II. THE ARCHITECTURE OF THE CLCt

The cLc consists of one to ten identical processor units sharing a
common memory system, two Input/Output Controllers (rocs), and
two Timing Generators (Tars). Processors are independent of one

The reasons for this are discussed in Ref. 1.
t A more complete hardware description appea:s in l,ef. 2.
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another in the sense that each executes its own instruction stream
without knowledge of the instruction stream being executed by any
other processor. An interrupt causes a processor to switch instruction
streams in response to an error condition it has detected, such as
arithmetic overflow. Memory is of two types : program store, read-only
core from which processors may fetch instructions but not data; and
variable store, ordinary core which processors may read or write.
Memory racks are shared and not associated with a particular processor
so that any processor can reference any memory location. Processors
always reference program store by absolute address; they may refer-
ence variable store either by absolute address or through base registers.

Data transfer between the cLc and its peripheral devices is per-
formed by an ioc that operates independently of the processors. ioc
programs residing in variable store may be initiated either by a proces-
sor or by a peripheral device ; these programs may perform elementary
storage -to -storage operations, such as setting or clearing bits in variable
store, as well as i/o.

The ioc controls a variety of peripherals. Some of these are con-
ventional data-processing devices such as the disc drive units, the
magnetic tape transports, the card reader, and the line printer of the
recording subsystem ; the teletypes ; and the cathode-ray tube dis-
plays of the display subsystem. Other equipment such as the radar
subsystem, the missile subsystem, the TG, and the Maintenance and
Diagnostic Subsystem (M&Dss) are also considered peripheral devices
only because they communicate with the ioc rather than with the
processors directly.

The TG, part of the eLc, contains a time -of -day clock incremented
every 200 ns. The TG can cause the initiation of an ioc program when
a specified time of day has been reached. By suitable ioc programming,
this notification may be made repetitive.

The M&DSS is particularly important to the operating system. It can
inject logic signals into and sense logic signals within DPS racks at
predefined M&DSS test points. Under the proper conditions, the M&DSS
can control DPS equipment by means other than their normal inter-
faces. For example, an M&DSS instruction that places the proper pattern
on ioc test points could cause an i/o operation to be performed.
M&DSS instructions can originate from various sources, only one of
which will be mentioned here : the M&DSS read-only core memory.
M&DSS executes instructions from this source in response to one of three
stimuli : manual intervention, failure of the cLc operating system to
reset a sanity timer, or an explicit request from cLc software.

The SAFEGUARD data-processing system includes standby equip-
ment. There is one extra processor, program store, variable store, ioc,
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and TG. A given peripheral device is either duplicated and wired to a
particular ioc or switchable under program control to either ioc. Soft-
ware can establish a green partition and an anther partition such that
equipment in the green partition cannot communicate with equipment
in the amber partition, and vice versa. The amber partition has two
purposes. Spare equipment is partitioned amber, so it may be used as
a pool of inactive equipment from which replacements for green units
are drawn; for example, the operating system can substitute the amber
ioc for the green me. When it contains sufficient equipment, the amber
partition may function as an independent computer. The operating
system then executes independently in each partition.

III. THE SUPPORT MODE AND THE PROCESS EXECUTE MODE

The SAFEGUARD data-processing system is used for three different
activities with distinct requirements :

(i) Tactical execution of a user process.
(ii) Debugging of a user process.

(iii) Utility operations such as saving the contents of disc packs
on magnetic tape.

The operating system reconciles conflicting requirements between
these three environments by functioning in the process execute mode
for item (i) or the support mode for items (ii) and (iii).

In the support mode, the cLc operating system reads requests from
job control cards to invoke utility programs. Some of these programs
allocate space on DPS disc volumes; others install load modules created
on the support computer onto DPS disc. Still others temporarily or
permanently patch load modules.

Debugging is easier in the support mode than in the process execute
mode. In the process execute mode, program testing is hampered be-
cause manual interactions such as a teletype input cannot be exactly
reproduced for each test run and because the cause of an error is diffi-
cult to determine when several processors have been executing simul-
taneously. In the support mode, on the other hand, the operating
system allows simulated manual inputs to be generated as specified by
a card deck, each card tagged with the time of day it is to be processed.
Also in the support mode, the operating system allows all processors
but one to be idled when a programmer -specified condition occurs.
Only one user job can run at a time, although that job may use more
than one processor. A more detailed discussion of the operating system
support mode debugging capabilities appears in this volume.'

The second mode of the cLc operating system, the process execute
mode, is discussed in depth in Sections V through IX.
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IV. RECONFIGURATION, LOADING, AND DPS RECOVERY

Selection of either the support mode or the process execute mode is
under the control of the cLc data-processing system operator at the
time the system is initialized. The major events following a request for
the process execute mode will now be examined.

First, the operating system attempts to identify faulty hardware,
such as an ioc that appears unable to reference a particular variable
store. Next, it establishes a green partition sufficiently large for the
user process (by examining tables stored on disc along with the
process), and partitions amber all equipment not needed. Finally, it
loads the user process from disc, it enables the sanity timer, and
execution begins.

The same sequence of events can also be initiated manually or
automatically during execution when DPS sanity is in question, in
which case it is called DPs recovery. The reason for this operation is
discussed in Section IX.

Both manually initiated loading and DPS recovery involve the M&DSS.
Each causes the M&DSS to execute a program that idles all processors,
causes the ioc to load a portion of the operating system into memory,
and restarts all processors. The remainder of the load or the recovery
is performed by the operating system as described above.

V. THE PROCESS EXECUTE MODE

Two fundamental constraints are placed on the cLc operating
system in the process execute mode :

(i) Timing. Certain user process computations are required as often
as every 6.5 ms.

(ii) Error Control. The incidence of a hardware or software failure
must not cause the operating system to lose control.

The following sections of this paper examine how the four operating
system functions of processor management, main storage management,
i/o management, and error recovery are performed as a consequence
of these constraints.

VI. PROCESSOR MANAGEMENT

The problem of processor management is simply stated : How shall
the ci,c processors (as many as ten) be best utilized to perform the
SAFEGUARD process control calculations within the real-time constraints
imposed by system requirements? To provide the necessary through-
put, the multiple processors must be permitted to perform certain
calculations in parallel, but how shall this capability be provided to
the programmer? Shall the programming language allow statements to
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be executed in parallel as in ALGOL 68? The answer is no. Parallelism is
excluded from the language, and instead the operating system is
allowed to execute simultaneously as many "independent" programs
as possible, as in conventional multiprogramming systems.

Recognizing that it may be necessary to prevent one program from
interfering with another through alteration of shared data, the operat-
ing system provides functions equivalent to Dijkstra's4 P and V so
that "independent" programs may cooperate, thus becoming no longer
truly independent. Programmers can write parallel algorithms in-
volving several programs. The operating system will assign programs
(now called tasks) to processors so that as many processors as possible
are busy. The assignment algorithm is sketched later.

The real-time constraint can be approached in two ways. "Time"
often suggests "interval timer," the expiration of which usually causes
a processor interrupt, followed by the initiation of the time -dependent
computation. This method becomes decidedly unattractive if the time -
dependent computation must be performed on more than one processor,
for the operating system would have to decide which processors to
interrupt, save the previous state of each, initiate new tasks on several
processors, and later restore the processors to their original tasks.
Therefore, this interrupt -driven approach is discarded in favor of a
simpler method that is suggested by the following observation. Assume
the time -dependent calculation must be completed within 6.5 ms from
the time of request and further that it can be structured as P tasks each
having an execution time T of less than 6.5 ms. Then if, among the
tasks that are already running at the instant the time -dependent
calculation is requested, at least P of them finish within 6.5 - 7' ms,
sufficient processors will be available to complete the desired computa-
tion. By restricting task run times to the millisecond range, the desired
behavior can be produced without timer interrupts because processors
become free every few milliseconds.

If a computation cannot be completed in milliseconds, it is divided
into pieces (tasks) that can be completed in the allotted time, and
each task is executed in turn. This requires the operating system to
recognize predecessor conditions, e.g., that Task B cannot run until
Task A completes. It is useful to allow more complex situations, such
as those represented by Fig. 1. Here, Task A is said to enable Tasks B,
C, and D, and Task E cannot execute until conditionally enabled by
both C and D. Enablement is a generalization of the "wake-up" opera-
tion of other operating systems.'

What conditionally enables Task A? It could be some other task not
shown, or it could be the operating system. One particularly important
feature of the operating system is that it can be requested to enable a

CENTRAL LOGIC AND CONTROL S93



Fig. 1-Predecessor conditions among tasks.

given task approximately every 6.5 N ms (N = 1, 2, 4, , 64). Sets
of tasks initiated this way are called timed arrays, structures that form
the basis for almost all time -dependent computations performed in the
process execute mode.

Assuming that each task is assigned a unique priority relative to all
other tasks, the following algorithm decides which task will run next
on a given processor :

(i) Of all the tasks whose predecessor conditions have been satisfied
but which are not executing yet, execute the task of highest
priority.

(ii) Allow each processor to perform step (i) independently of all
other processors.

If each processor performs this operation whenever the task it is

currently executing terminates, then no one processor is master over
another, and the operating system is not sensitive to the number
available. In fact, the number of processors can be increased or de-
creased during execution.

The way in which the operating system keeps track of the 6.5 -ms
intervals can now be explained. In Section II it was stated that the
ioc can alter bits in memory, that an ioc operation can be initiated by
a peripheral device, and that the timing generator may be programmed
to signal the ioc at intervals of 6.5 ms. Let the Kw program "satisfy the
predecessor conditions" of a task (i.e., set bits in an operating system
table), and let this task be of high priority. The above algorithm then
ensures that this task will execute as soon after the timing generator
command as a task on any processor terminates. Although an exact
6.5 -ms synchronism is not possible, the simplification of the operating
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system achieved by not using timer interrupts for this purpose out-
weighs the disadvantage of having to account for a slight timing jitter
when real-time deadlines are being planned.

The previous paragraph implies that, in the process execute mode,
the operating system is itself executed as a set of tasks. This is indeed
the case. In fact, the processor management algorithm makes no
distinction between operating system tasks and those of a user, nor
are system tasks necessarily of higher priority. In this way, execution
of the cLc operating system is distributed over all the processors and
the loss of a processor simply results in its load being equally distributed
among those that remain.

VII. MAIN STORAGE MANAGEMENT

The hardware design of the cLc processor restricts the main storage
management that the operating system can easily perform. The design
does not allow the creation of a virtual memory since program store
and variable store are both referenced by absolute addresses embedded
within machine instructions. For the same reason, code is not easily
relocatable, and a main storage management technique that assigns
the same program to different locations in memory at different times
is not feasible. A static allocation for all main storage is therefore im-
plied. With a minor exception for part of variable store, this is the
case.

Since programs are placed in fixed locations in memory, it is desirable
to make this assignment only once, prior to task execution. The
Execution Preparation Facility,' executing on the support computer,
performs this function, and the load module brought to the cLc is not
relocatable. This implies that the cLc memory rack configuration
assumed at link -edit time must be available when the load module is
read into core, and it is the responsibility of the reconfiguration and
loading function of the operating system, described in Section IV, to
ensure this.

The operating system provides a limited overlay mechanism. Two
or more programs in the load module may be bound to the same address,
and one or the other read into core as desired. The operating system
performs the disc transfer, but it is the responsibility of the user to
request the operation explicitly and to keep track of the current con-
tents of overlay areas. Data base overlays may also be performed.

The operating system provides up to ten pushdown stacks in variable
store, one for each processor. The stacks are used in the ordinary way
for passing subroutine parameters, saving return addresses, and pro-
viding local storage for subroutines. A processor's stack is initialized to
empty whenever a new task begins.
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The cLc operating system provides no other forms of dynamic
memory allocation. All other variable store usage, like all program store
usage, must be declared at compile time. The decision not to allocate
variable store dynamically meant that the maximum amount of data
to be passed between two tasks would have to be decided at design
time. This decreased operating system overhead and ensured the
existence of a data structure large enough to handle the specified
traffic level.

VIII. I/O MANAGEMENT

The traditional i/o management functions of an operating system
are i/o scheduling, buffering, i/o completion processing, reservation
and allocation of devices, and protection of one user from another. But
an operating system can also provide other services such as concealing
differences between devices so that one device can be substituted for
another or altering the appearance of the device so that it is easier to
program. In any case, an operating system should ensure the reliable
performance and efficient use of the peripheral devices.

The cLc operating system deals with two general categories of
devices. The first set consists of the conventional devices and includes
the magnetic tape transports, the disc drive units, the cathode ray tube
displays, the teletypes, the card reader, and the printer, and the
second consists of the special-purpose devices such as the radar sub-
system and the missile subsystem. These latter units are considered
first.

For the special-purpose peripherals, the cLc operating system is only
concerned with i/o completion and reliable performance. In particular,
device characteristics are not camouflaged, and no attempt is made by
the operating system to ensure the efficient use of the unit. Buffering is
generally limited to providing an input area for devices that send
data to the ioc of their own accord, under hardware rather than soft-
ware control. The operating system functions of i/o scheduling, reser-
vation, allocation, and user protection for this class of peripherals are
simple. There is only one on-line unit of each type, and the user must
do everything himself. Finally, an attempt is made to ensure the re-
liable performance of each device by monitoring some error indications
it can produce and informing the user if trouble is being reported.
These reports deal generally with the ioc-peripheral interface; the
user is responsible for sensing and responding to device -dependent error
conditions. The operating system was designed this way because the
users were not sure at the time of how they wanted to program the
special-purpose devices.

S96 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



While the operating system management philosophy for special-
purpose peripheral devices is generally one of minimal intervention, its
approach for conventional devices is almost the opposite. Emphasis is
placed on i/o scheduling and reliability and, in some cases, on altering
the appearance of the device to the user. For example, to increase disc
drive efficiency, read and write requests received by the operating
system are reordered to minimize access delays. To increase reliability,
each disc write is performed to two units so that if a subsequent read
on one unit fails, a duplicate copy is available. The magnetic tape
transports are another example. In this case, the appearance of the
device is altered so that the user sees a tape capable of recording at up
to four times the hardware rate of an individual transport. This is ac-
complished by directing suitably buffered output not to a particular
transport but to a pool of four, capitalizing on the ability of the roc
to overlap writes on as many as four transports. The designers of the
operating system knew how the conventional peripherals would be used,
so they were able to plan more sophisticated support for them.

Neither the conventional nor the special-purpose peripheral devices
generate processor interrupts when they complete a request. Instead,
every 6.5 ms the operating system tests whether any i/o has completed.
It then notifies the user via the conditional enablement of a user task.
Since processor management uses no interrupts, neither does i/o
management.

In the process execute mode, the cLc operating system makes no
attempt to conceal the differences between devices, and programs are
usually device -dependent. For tactical execution, this is permissible,
but in other circumstances, it is a handicap. This is discussed further
in Section X.

IX. ERROR DETECTION AND RESPONSE

The operating system detects errors in many ways and provides both
local and system responses to these errors, depending on the circum-
stances. Local error responses consider the frequency with which an
error is reported. If the frequency exceeds a given threshold, then
extensive corrective action is assumed to be required. For error con-
ditions that are treated in this manner, the operating system may make
a particular response before the threshold is reached, but a different
response after it is exceeded. For example, before the threshold is
reached, a device reporting errors may be reset; after it is exceeded,
further use of the device may be prevented.

This latter action suggests a general technique called "severing."
If a peripheral device or a software function is declared severed, the
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operating system rejects all future requests for that device or function.
This procedure is applicable to a variety of error conditions; its intent
is to minimize snowballing by preventing a second failure from occur-
ring as a result of the first. In the face of many errors, severing pro-
duces a relatively gradual loss of operating system capabilities and is
appropriate in situations in which the consequences of DPS recovery
cannot be tolerated.

Some operating system functions, especially processor management
and r/o management for the special-purpose devices, are never severed.
These functions execute moderately elaborate error recovery code that
attempts to prevent unrelated calls of the same type from failing.

System level responses are provided in but not initiated by the op-
erating system. A more complete discussion of SAFEGUARD error control
can be found in Ref. 6.

X. DEFICIENCIES OF THE OPERATING SYSTEM

A single mechanism for peripheral device substitution, a feature
commonly found in general-pupose operating systems, is not in the
cLc operating system. Initially, this was felt to be an unnecessary
complication because the important peripherals, the special-purpose
devices, cannot be mimicked by any other peripherals. Later, several
operating -system designers needed particular instances of this capa-
bility, and each built his own version. Allowing commands to be read
from the card reader rather than from a teletype (in the support mode)
and permitting the use of one teletype in place of another (in the
process execute mode) are both instances of peripheral device substitu-
tion, yet two different mechanisms were coded.

The operating system does not provide for communication between
tasks, and it should. An extension of conditional enablement would
be to allow a parameter list to be passed by each predecessor task.
Communication between tasks does take place, but each programmer
devises his own mechanism.

Whenever a particular subroutine was needed by one class of users,
it was made part of the operating system and accessible to all users,
thus penalizing those who did not require the subroutine by costing
them core. A subroutine library established on the support computer
would have avoided this.

XI. CONCLUSION

The clic operating system is not intended to be general purpose and
cannot easily be made so. Criteria that might be used to judge the
adequacy of a general-purpose operating system do not apply to it,
such as the ease of learning its job control language or the number of
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jobs it can process per hour. Since the real-time performance of the
SAFEGUARD Data -Processing System depends not only on the CLC
operating system but also on the user process, the operating system
would have to be considered a failure no matter how elegant it was if
the overall real-time performance of the DPS were not achieved. But
since the required performance has been achieved, the cLc operating
system can be termed a success.

The operating system's most innovative and greatest success is its
approach to processor management. The approach taken provides a
rapid response time without the conventional use of processor inter-
rupts. It also sets a logical framework in which it is possible to design,
code, and test real-time programs taking advantage of up to ten inde-
pendent processors.
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Process design, structuring the real-time program for the CLC, was one
of the difficult aspects of SAFEGUARD software development. Initially, there
were no significant guidelines or criteria. In the course of the project,
basic process -design rules were developed and significant experience was
acquired. Some techniques that emerged are the use of short -running, asyn-
chronous tasks; overlays to minimize storage requirements; and multiple
storing of programs to minimize processor queuing.

I. INTRODUCTION

Process design involves defining the characteristics, interrelation-
ships, and organizational structure of the tasks that comprise the
operating system and the applications software. It was one of the
difficult aspects of SAFEGUARD software development. Initially, there
were no specific criteria to be followed. Several iterations were required
to converge on the final process design. The purpose of this paper is to
present some of the basic guidelines that evolved in the course of the
SAFEGUARD project. The guidelines included are those believed to be
most workable and most applicable to a wide range of real-time soft-
ware systems.

II. GENERAL PROCESS -DESIGN GUIDELINES

Major efforts in the process design involved selecting from among
the available methods of enablement for tasks, selection of the time
frames in which they would execute, and the definition of task priorities.
(For a description of tasks and processor management, see Ref. 1.)

2.1 Task structure

Initial investigation of possible process structures led to the use of
both synchronous (time -enabled) tasking and asynchronous (event -
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triggered) tasking. It was clear that critical processing had to be given
high priority, and it was generally of a synchronous nature. Asyn-
chronous tasks were to be used to fill the time slots between critical
synchronous tasks and to provide a uniform distribution of processing
among the available processors. This general approach had to be
modified by a few additional considerations. First, low -priority asyn-
chronous tasks must have a short run time or they will hold a processor
too long, denying access to high -priority tasks. Second, it is generally
more difficult to design and test a process which utilizes asynchronous
tasks. Further, it is not always necessary to achieve a uniform work
distribution, e.g., during the process initialization and termination
sequence. An almost totally synchronous design was chosen for process
initialization and termination tasks to facilitate design and testing.

It is inefficient to enable a synchronous task, only to find that the
task has no data to process because a peripheral device has not com-
pleted its transfer or because other tasks have not generated it.
Ultimately, synchronous tasks were utilized when critical and periodic
response was required and when the availability of data at the same
frequency as task enablement could be guaranteed.

The asynchronous, event -triggered task is enabled by the completion
of an i/o transfer or by the successful completion of processing by a
predecessor task or tasks. Each predecessor task can conditionally
enable one or more successor tasks. A successor task is absolutely
enabled, i.e., ready to run, only after all conditional enablement
criteria have been satisfied. The predecessor -successor relationship of
conditional enablement can also help alleviate data interference prob-
lems. Table I depicts some of the process -design questions that were
faced and the type of tasks used to answer these questions.

Table I - Process design

Problem Description Task 1)escription

Support high -frequency, high -
accuracy endoatmospheric
target track.

Process intersite communications
message traffic.

Generate time -ordered, simulated
radar replies during an
exercise.

Synchronous task whose frequency is at
least as high as the update
requirements.

Asynchronous tasks whose trigger for
enablement is the arrival of intersite
communication messages.

Both synchronous and asynchronous
tasks. Tasks that generate the replies
are synchronous. These tasks condi-
tionally enable an asynchronous task
which time -orders and outputs the
simulated replies.
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2.2 Parallel processing

There were several cases where identical processing had to be re-
peated for several items in a short time frame. In this case, the through-
put requirement exceeded that of a single processor. The solution to
the problem was to parallel process, i.e., to define several tasks execut-
ing identical code. Since the code was re-entrant, only one program
copy was required even though each instance of the task could be
separately controlled and separately enabled. Again, the structure of
this processing could be synchronous, asynchronous, or a combination
of both. It was found necessary to parallel process different types of
tasks to take full advantage of the multiprocessor environment.

Obviously, multiple -instance task use may cause processor queuing
problems. These can be alleviated by storing one program copy for
each task. The critical consideration determining the number of pro-
gram copies needed is the response requirement on the tasks involved.

2.3 Data interference

One of the primary design goals was to maximize throughput of the
processing system. A natural implication of this was an attempt, in the
beginning, to multiprocess everything. This immediately triggered
task -to -task data -interference problems. Reviewing the task -response
requirements made it obvious that not only was it not necessary to
multiprocess all tasks, but in many instances it was impossible.

This observation led designers to take a closer look at task time -
frame design and the serial -processing relationship among tasks. From
these investigations evolved two basic task -design guidelines for
avoiding data interference. If possible, competing tasks should be
assigned to nonoverlapping time frames of possible execution.* If this
could not be done, an attempt was made to establish predecessor -
successor relationships among them. These techniques could be used
only infrequently when tasks were competing for data.

Since a large number of data -interference problems were not solvable
by either of these techniques, attention was directed to data -base
design. Many interference problems arose when only two tasks were
in competition, one loading the data and the other processing them. In
those instances where the competing tasks were accessing a variable
number of data items each time executed and the response requirements
on the task were not critical, a circular queue with an access mechanism
called a take -load pointer was used. With this mechanism, the loading
task uses the load pointer to control the writing of data. It never

A time frame is a time "window" in which a task is allowed to execute.
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writes beyond the take pointer. The processing task uses the take
pointer to control the reading of the data. It never takes beyond the
load point. This technique alleviated about 10 percent of the inter-
ference problems.

When two high -frequency tasks with critical response -time require-
ments were competing for data, a double -buffering technique was useful
to avoid data interference. In this case, two tasks both execute at a
high frequency and in the same time frame. One loads the data and the
other processes it. The competition question was solved by dividing
the data area into two identical buffers, one of which was being loaded
while the other was being unloaded. When unloading was complete,
the buffers were switched. This technique works, but was of limited
applicability.

As a final resort to solving interference problems, locking and un-
locking conventions were used. These conventions required use of
predefined program -logic sequences to lock and unlock data areas.
These sequences relied on a special cLc instruction called a "biased
fetch" which was implemented for this purpose. (For a more complete
description, see Ref. 2.) Locking will always work, provided locking
conventions are observed and enforced. Improper use of locking has
caused the integration effort many headaches. The improper use of
locks will manifest itself in a thousand disguises. However, it was
necessary to use locking to solve more than half of the interference
cases.

2.4 Discussion

How well is the process working? How close does the process conform
to the process -design requirements? These are two questions that were
constantly asked. To answer them, a process performance -monitoring
capability was implemented. The implementation relied on constant
monitoring of "probe" or test points within the process. Implantation
of these probes into the process and interpretation of the resulting
data proved useful for fine tuning the design and verifying that the
basic requirements were being met. This should have been done much
earlier in the design cycle. Probes should be capable of furnishing such
data as routine and subroutine execution timing ; the time differential
between when a task is enabled and when it actually acquires a proces-
sor; minimum, maximum, and average task run times, etc.

This section would be incomplete without a few words about the
position of the process designer. It became obvious that the process
designer must participate in program design and integration. He must
do this to guarantee that the program designers do not stray from the
process -design requirements on program timing and interfaces. He
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must be part of the integration effort to ensure that the process design
is actually implemented in the process. Furthermore, it was found that
the process designer required this program design experience and
integration experience to be able to accurately interpret performance
data and to use it to refine the design of the process.

III. SYSTEM SIZING CRITERIA

Estimates of the number of processors, program stores, and variable
stores needed to do the job were continually monitored in the light
of the mission to be fulfilled by the system. System sizings were an
iterative effort. As requirements solidified and understanding of them
improved, as routine, subroutine, and data -base estimates improved,
and as simulation tools for forecasting system loading improved, sizing
estimates changed.

3.1 System operating points as design input

It was the process designers' responsibility to map system perform-
ance requirements into the number of instructions needed to code these
requirements, the amount of variable store required to support the
data base, and the number of processors needed to meet throughput
requirements. The design effort attempted to balance, on a system cost
basis, the inevitable trade-offs among these three resources.

To facilitate evaluation of the impact of the various trade-offs on
process design, a contour or envelope of possible system operating
points was developed. Points on this contour reflected maximum usage
of one or more resources and/or maximum processing capability of one
or more process functions. It soon became clear that there were not
enough resources to support the "worst -case" condition for all process
functions. Further, it was not only impossible to support the worst
case, but not necessary, since all functions do not peak simultaneously.
Once the contour was identified and a feasible and reasonable set of
operating points selected from it, trade-offs could be thoroughly
examined.

After the operating point was selected, it was the responsibility of
the process designers to ensure that the design supported it. It was this
effort that required the continual resizing of the system to guarantee
that it would fit into the resources available.

3.2 Minimizing core requirements by the use of overlays

As design proceeded, program storage resources were rapidly ex-
hausted. Further investigation showed that there were certain sets of
programs that were not required to be in core simultaneously since their
functions were mutually exclusive. Another set of programs had such
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"loose" timing requirements that they could be called in from a
peripheral storage device prior to execution. Examples of such sets are
hardware test programs, display update programs, and system initiali-
zation programs.

3.3 Load balancing

One of the most critical factors that influenced selection of the system
operating point was the need to maintain a balance between the
capability of the application process and the exercise process ; that is,
the exercise process must be capable of driving the application process
at or above the system operating point.3

When planning for load balancing, two factors must be studied.
These factors are the "immediate -response" processing requirements,
representing a maximum allocation of resources applied for a short
time, and the "long-term" or residual processing requirements, repre-
senting the load over a typical processing cycle.

Since the process had two basic time frames, one approximately 5
to 10 ms and one approximately 50 to 100 ms, two levels of load balanc-
ing were needed, short term and long term. Experience showed the
most critical need for load balancing to be at the short-term level. It
was also the most difficult to satisfy. Once the short-term problem was
solved, the long-term problem disappeared. Short-term balancing was
found to be extremely sensitive to changes in routine and subroutine
execution times, and tuning the balance was always required.

IV. ALLOCATION OF RESOURCES

Consideration of possible process structures led to three basic alter-
natives for the allocation of the most critical system resources, processor
and radar time. The first alternative is fixed allocation in which the
execution time frame of each task is fixed in nonreal time by the
process designer. The second alternative is real-time allocation in which
the execution time frame of each task is determined dynamically by a
synchronous allocation task included in the process. The third alter-
native is a combination of the previous two.

Initially, fixed allocation with its heavy reliance on synchronous
tasking was favored because it appeared to be easier to design and test,
and its reactions to traffic were easier to predict. After study, this
design was rejected because it resulted in a nonuniform distribution
of the work which, it was thought, would result in unacceptable system
performance.

The second alternative to a process structure centered on attempting
to allocate almost all resources in real time. This technique yields a
much more uniform distribution of work among the processors and a
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better utilization of resources ; however, designing and testing this type
of process appeared to be very complex. In addition, it was decided
that the uniformity of the distribution of work was not as critical as
first thought.

Process design eventually included both types of allocation. This
combination allowed the process to be designed and tested in a
timely manner and yielded a nearly uniform distribution of work,
giving reasonable processor utilization.

V. OVERLOAD RESPONSE REQUIREMENTS

SAFEGUARD process designers had to answer the question of what to
do when there were more requests for service than could be accom-
modated. Because it was felt that the inherent overload handling of
the priority tasking structure was not sufficient, a predefined, fixed -
response technique was developed.

In this approach, a tunable processing load point was defined at
which overload -response rules were invoked. The exact rule to be used
depended on the outcome of an overload function which "predicted"
processor usage for the next cycle. This prediction was done by sum-
ming selected system -traffic components weighted by an appropriate
factor. Depending upon predicted processor usage, the execution of
certain lower -priority tasks was curtailed. The higher the predicted
usage, the more tasks were curtailed. Once the system entered over-
load, it remained there for the duration of the engagement.

This technique eliminated the additional testing and design required
to implement a feedback type of overload response. The feedback
technique was tried in the prototype system and was found to be
impractical.

VI. MULTIPROCESSOR QUEUING PROBLEMS

Minimizing task run times was of critical importance for certain
process functions; e.g., endoatmospheric tracking. Generally, functions
with critical response times were also those functions selected for
multiprocessing. This quickly led to a realization of the impact on task
ru ri time of processors queuing for instructions.

A decision had to be made either to use multiple copies of multiple-
instance parallel tasks or to divide the program into subunits. The final
decision was based on each task's response requirement. For example,
in one instance five identical tasks executing from a single program
copy ran 77 percent longer than single -processor run time. The same
programs were suitably subdivided and partially distributed to five
independently addressable storage units and run time was reduced to
a level about 25 percent greater than single -processor run time. Of

PROCESS DESIGN S107



course, if five complete copies were stored in five different independently
addressable storage units, there would be no increase in the parallel -
tasking time versus single -processor execution. The final decision made
was to use multiple program copies only for those tasks that always
had to execute at maximum efficiency. This was done to conserve
program storage. More commonly, large programs were divided into
subunits distributed among program storage units in such a manner as
to equalize the number of accesses per storage unit per time interval.
This general technique was found to be sufficient for a large number of
applications.

VII. SUMMARY

Initially, there were no significant guidelines to process design; these
were developed as design progressed. No claim is made that the criteria
which evolved in our design are exhaustive, but they should be ap-
plicable to a wide spectrum of real-time software systems.

It was good design practice to use short -running, low -priority,
asynchronous tasks wherever possible. This helped alleviate task
scheduler conflict problems, which arose when there were a large
number of high -priority synchronous tasks. It helped guarantee that
high -frequency, high -priority tasks would execute at their specified
frequency, and it also aided in achieving a more uniform work
distribution.

Data -interference problems arise naturally in a multiprocessing
environment. The most useful technique to solve these problems was
consistent use of software locking conventions; however, improper im-
plementation of these techniques caused problems during integration.

To minimize system overhead and to avoid wasting processing time,
tasks should be enabled only when they have work to do. Synchronous
tasking should be used only if data are available to be processed at the
same frequency as the enablement.

Since it was essential to maintain a balance of capabilities between
the application process and the exercise process, it was required that
the interfaces between these processes be established as soon as possible
and that their integrity be rigidly maintained.

Because it was necessary to measure how well the process was work-
ing, it was found that performance probes should be included in the
initial design and considerable thought should be given to their correct
placement. Performance probes proved invaluable throughout the
system -integration process, particularly in helping to identify task -
timing and queuing problems. Resolution of these problems requires
that the process designer become deeply involved in the test -and -
integration effort.
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Finally, process design is iterative. For this reason, it is important
that the design be kept as simple and straightforward as possible. This
standard guideline of programming is even more important in process
design because of the inherent complexity of the multiprocessing
environment.
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This paper considers two problems: how to build the SAFEGUARD soft-
ware so that it is testable and how to test it as realistically as possible.
The first is solved by an iterative process of adding software capabilities,
testing them, then adding more. The second problem is solved by driving
SAFEGUARD with computer -generated radar echoes.

I. INTRODUCTION

Testing activities play a crucial role in the development of all
hardware/software systems. These activities are described in terms of
two phases, system integration and system testing. The system integra-
tion phase is carried out through tests which determine that all com-
ponents of the system have been properly connected and are perform-
ing their specific function correctly. During the system test phase, the
performance of the overall system is determined through analysis of
the results obtained from some finite set of tests. The tests must reflect,
as well as possible, the environment and full range of permissible data
and control inputs. Although these phases overlap extensively, much
system integration occurs before the system test phase.

It is well known that very difficult problems may be encountered in
the system integration and test phases of complex system development
programs. The plans and some of the significant techniques used to
minimize these difficulties for the SAFEGUARD development are
discussed.

Plans for the full SAFEGUARD system tests required large-scale
analysis and simulation of the complete system. Since it is not possible
to describe all the considerations that went into this planning, discus-
sion is limited to a general description of overall system test planning.
However, the relationship between the overall system tests and the
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data-processing effort are described specifically. Particular attention
is given to the system exerciser because of the important role it plays.

II. SYSTEM INTEGRATION AND TEST PLAN

For several reasons, it is vital to prepare a detailed system integra-
tion and test plan. First, the time allocated for conducting the integra-
tion and test phases is usually not sufficient to demonstrate system
performance under all conditions. This is simply an empirical observa-
tion. It could be attributed to the lack of detailed understanding of the
objectives at the time the overall system development schedules are
being formulated. It is always possible to conceive of an infinite number
of tests of any complex system. No matter how carefully planned, the
number of necessary tests will still be very large and, therefore, require
a significant amount of calendar time to conduct. Since the system
integration and test phases are the last activities before making the
system available to the user, there is always pressure to make these
periods as short as possible. The early existence of a detailed test plan
is important because it provides strong support in arguing for reason-
able system integration and test intervals and allows optimal use to be
made of the allotted time.

Second, the system integration and test phases can overlap and,
therefore, interact extensively. The tests that are conducted during the
integration phase are designed to verify that system components per-
form as specified. Results from these tests can serve to increase con-
fidence in overall system performance. The scope of future testing can
be significantly influenced by this increased confidence. As a result,
the testing activities in these two phases should be well coordinated.

Third, there are always schedule difficulties during the system in-
tegration and test phases if planning for test tools, techniques, and
procedures does not begin long before the actual test period. Develop-
ment of the hardware/software products can be influenced by test
considerations. The test tools can often be developed more economi-
cally, and will better serve needs if identified early. Preparation of a
detailed plan is the best way to recognize required lead times and
avoid such scheduling difficulties.

Fourth, monitoring of progress is particularly difficult during these
phases of the development. It is not uncommon to find that progress
has been negative (and unknown) during parts of these intervals. A
detailed test plan can serve as a very good measuring guide to monitor
this progress.

Some general characteristics of a good system integration and test
plan are reasonably clear. It identifies the means to achieve a specific
set of objectives in a specific time, it recognizes the availability and
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capability of other tests carried out during the development, and it
reflects all appropriate constraints on the use of resources. In SAFE-
GUARD, certain features of the plan were more significant than others.
Four have been selected for more detailed discussion.

2.1 The incremental approach

Everyone recognizes that a complex system cannot be integrated in
one step, so an "incremental approach" must be used ; i.e., the com-
plexity of the hardware environment, the software, and the test cases
must be built up incrementally.

Several factors were considered in arriving at the specific incre-
mental approach for SAFEGUARD. These led to a series of steps of in-
creasing complexity, where each step included a given level of hardware,
software, and functional tests. The principal steps were :

(i) Integrate all the "control" software; i.e., demonstrate the
basic operating control necessary to perform initialization and
cycling.

(ii) Integrate those software units that are part of critical timing
chains.

(iii) Integrate additional software, which allows a simple, but con-
sistent, stream of functional processing.

(iv) Interface this software with hardware; e.g., radars.
(v) Integrate remaining software to provide complete capability.

These principal tests were supplemented with additional parallel
testing of various parts of software. Following is a brief description of
how these steps were applied to the Missile Direction Center (mix)
application software.

First, the basic control programs were merged with the operating
system, and the ability to load, initialize, and cycle was established.
Then software dealing with the radar loop was added; i.e., radar
management, search, and track programs. Ability to search and track
was then established at low traffic levels, while the radar hardware
was simulated with software. After sanity was established in the soft-
ware, the radar hardware was introduced into the testing loop. In
parallel with this activity, application programs supporting intersite
communications and command and control were tested in a separate
test bed. Similarly, both battle planning and missile guidance software
were tested in separate software environments. Ultimately, these pro-
grams were merged into a single process, and the complexity of the test
cases was systematically increased.

The incremental approach can create difficulties. It is obvious that
some mechanism must be provided to represent interfaces of programs
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that are not yet a part of the process. Dummy programs, called "stubs,"
were provided. The requirements for stubs depend on the nature of the
programs they represent and the sequence in which programs are added
and tested. If this aspect of the incremental approach is not carefully
considered during test planning, the stubs may become nearly as com-
plex as the programs themselves, thus defeating the incremental
strategy.

The selection of test cases can affect the efficiency of a test plan in
a major way. SAFEGUARD has literally hundreds of individual capabili-
ties and operates over a continuum of threat environments. Each test
was carefully designed, using a design -of -experiments approach, so that
all capabilities covering the full range of operation could be verified
with the smallest number of tests. The test design was also approached
from an incremental viewpoint, and was found to require an iterative
effort.

The sequence used in identifying the test cases for full system testing
of the SAFEGUARD MDC is briefly described here.

(i) The peak traffic level to be verified in full system testing was
selected.

(ii) The types of threats to be countered, and allowable combina-
tions, were delineated.

(iii) A sequence of tests starting with a single target and building
up to peak traffic was identified. The "single target" was
common to all test cases, as were other targets added later.
Keeping pieces of the threat environment common provided
a basis of test result comparisons-peg points along the way.

(iv) A set of high -traffic test cases was defined and all capabilities
tested were identified. This exercise was performed iteratively
with the goal of identifying a minimum set of high -traffic tests
that, as a collection, test all system capabilities and cover all

necessary threat mixes.

2.2 Success criteria

The system integration and test phases are intended to demonstrate
that the various components and the system operate as intended.
Tests are designed to subject the system to various stresses and con-
ditions. The crux of test design is the clear specification of criteria that
can be used to measure successful operation. It is obvious that this has
to be done, but it is not always recognized that the success criteria will
affect a test program in so many ways. For example, the efficiency of

the test activities is vastly improved if the success criteria, that is,
expected results, are available before the execution of the test. The
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criteria can also affect the data recording and reduction efforts. Since
the specification of success criteria is a form of testing, it is not un-
common to uncover problems in either requirements or implementation.
All these factors recommend that success criteria be identified early
in the development sequence.

This effort was both difficult and large. On the SAFEGUARD project,
sources of information that provided a basis for establishing success
criteria included results of the test program conducted at Meck Island,
desk analysis, and simulations. The greatest amount of data came from
the simulations of the system. Various portions of SAFEGUARD were
simulated in varying degrees of detail. These simulations were in turn
calibrated using analytical and field data results. Where possible, the
simulations were then used to predict system performance for each test
case. The success of a test was measured by comparing data recorded
during the test to predicted values. The simulations were large,
initiated early, and served as a basis for system evaluation activities.

2.3 Data recording and reduction

One critical step in testing a system is measuring the system's per-
formance. The basic measurement tool in the SAFEGUARD project was
the recording and reduction of test data. Because of the complexity of
the software processes and the tightness of schedules and on-line com-
puter time, the ability to process recorded data off-line was essential.
Recording and data reduction were not treated as two problems, but
rather as two aspects of the same problem.' A coordinated approach
to recording and data reduction was taken to achieve an efficient
solution.

In "high -traffic" testing, or in any mode of testing, in fact, recording
should be minimized (e.g., so that the off-line data reduction system is
not overwhelmed with data). To meet this goal and still preserve the
necessary error isolation capabilities, a "hierarchy" of recording select -
ability was defined.

The basic approach to recording and data reduction for SAFEGUARD

was to construct each process so that the ability to select the desired
mix of recording per run or per test could be accomplished with ease.
Each process has the necessary capability for all possible recording
permanently embedded in the on-line code. Data reduction program
activities of sorting and formatting are minimized by the real-time
association of sort "handles" with the recorded data. The key to the
approach lies in a hierarchical structure in which multiple levels of
recording are established. In general, three levels (high, intermediate,
and low) are sufficient, although additional levels could be used in
special instances.
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The basic three levels can be described as follows. A process is divided
into process functions. The recording necessary to isolate a test failure
to a process function or to a peripheral is the highest level of recording.
In general, these highest level data should consist of "counts" or sta-
tistics usable to determine logic flow, basic time sequencing, etc. The
lowest level of recording consists of a detailed record of the processing
of an input by a process function on a single logical pass. The inter-
mediate level of recording is designed to aid the tester in selecting the
proper low-level recording options.

A quick -look on-line computer capability was embedded in the soft-
ware to allow off-line data reduction to be bypassed on occasion. This
allows critical data to be "recorded" in on-line memory and output on
a printer immediately following test completion. The test teams used
quick -look and operating -system debugging aids2 to support integra-
tion. Using quick -look, they determined when and in what portion of
the process detailed recording should be performed. In the case of
system tests, the system test specification specifies success criteria and
prescribes the data to be recorded.

In testing the Meek prototype system, there were several examples
of missions in which millions of words of data were recorded. In con-
ducting a test involving missile launches, it is necessary to record all
data of any possible interest, for the cost of repeating such tests is
extremely high. However, the cost of repeating a test is reasonably
economical in the TSCS (Tactical Software Control Site) since no
launches are involved. Although tests are not absolutely repeatable,
they are essentially repeatable in a functional sense. This means that a
hierarchy of recording can be utilized to minimize the data recorded
in real time, minimizing the off-line data reduction required. If a test
fails, it can be repeated with selective recording performed in the sus-
pect areas of the system. Although this approach forfeits some capa-
bility to isolate transient errors, it allows trade-offs to be made in the
use of on-line computer time vs off-line data reduction time. With
hierarchical recording, better test turnaround and lower overall in-
tegration costs were achieved without any serious problem in isolating
transient errors.

2.4 Test tools

The need to provide test signals and data to "drive" any system is
clear. As the complexity of the system and its operating environment
increases, so does the complexity of the driver. It was considered vital
to devote considerable resources to the development of a driver, and
the effort was started early.
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Few ground rules were available to guide its development. As it
evolved, both special-purpose hardware and software were required.
Because this effort was viewed as one of the more significant ones, the
driver, or the SAFEGUARD system exerciser, is discussed in detail in the
following section.

III. THE SYSTEM EXERCISER

The primary role of the system exerciser is to support test and in-
tegration of SAFEGUARD applications software in the hardware environ-
ment in which it was designed to operate. But testing SAFEGUARD
against a simulator is difficult for two reasons. First, SAFEGUARD is a
complex system involving radars, missiles, and interacting sites; the
number of combinations of inputs is immense. Second, in actual opera-
tion, some inputs, such as radar noise, are random variables; these
inputs should be random during testing as well.

Because of its complexity, it was not feasible to simply assemble the
entire system and drive it utilizing the system exerciser. The system was
assembled in an incremental sequence. The development of the system
exerciser was, likewise, modular in nature. At each building stage,
portions of the system exerciser's capability were used to drive that
portion of the system included in the test bed. By relating the sequence
of capability buildup in testing to the modularity of the system, an
efficient development plan was evolved.

During the early stages of SAFEGUARD development, several goals
for the system exerciser were established consistent with the primary
role. The five most important goals are :

(i) As much of the system, hardware and software, should be
exercised as is cost-effective. The software heavily interacts
with the hardware; hence, confidence in the software/hardware
combination can only be established through successful
demonstration of their interactions.

(ii) The impact of system exerciser implementation on the ap-
plication -system implementation should be kept to a minimum.

(iii) The system exerciser's simulation of the environment should be
as realistic as is feasible.

(iv) The traffic capacity of the system exerciser should exceed the
design level of the application system.

(v) The system exerciser should provide the capability to record
the outputs of the application system.

During the development, every effort was made to retain sufficient
flexibility to allow the system exerciser to be used in other ways, e.g.,
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determining in part the system readiness and verification in an opera-
tional time period.

The discussions that follow apply to the MDC and PAR system ex-
ercisers. The approach taken for the BMDC exercise was different
because of its distinct processing function (control and display) and
relatively small size. The MDC system exerciser is the most complex.

3.1 Structure of the MDC system exerciser

Figure 1 shows the normal connections between equipment at an
MDC site. During a system exercise, these connections are rearranged
under software control as shown in Fig. 2. Data sent by the application
data processor to the radar, the missile ground equipment, and other
sites are directed instead to the exercise data processor. The system
exerciser generates plausible radar returns, missile responses, and
messages from other sites, and returns these to the application data
processor. The exerciser is separated from the system being tested; it
operates in a separate data processor connected to the application data
processor through a special digital hardware unit, the Exercise Control
Unit (ECU).

Tapes containing target and some environmental data to be used in
the simulation are prepared off-line in nonreal time by a program called
the SAFEGUARD Threat Action Generator (STAG). The design of STAG
and the real-time processes was closely coordinated.

Several decisions were made in the design of the MDC system exer-
ciser. First and foremost, the exerciser software was executed in a data
processor distinct from the application data processor. The execution
of exerciser programs in no way interferes with the execution of appli-
cation programs. The alternative of executing the exerciser programs
in real time on the application computer had been taken in the pro -
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totype system. Separation of the application and exerciser program
systems also allows the development of the exerciser to remain as
independent of the application system as possible. The potential for
the exerciser programs to corrupt the application programs while
operating in a combined form was demonstrated on occasion with the
Meek test system.

Experience with the separated application and exercise systems has
been favorable. No interference or identifiable differences in queuing
or timing between the exercise and application modes was found. For
instance, exercises were conducted that involved the tracking of
"simulated" satellites. The performance of the application process
was comparable when similar "live" satellites were tracked.

At one stage of the design, it was recognized that requirements for
exerciser data processing throughput could be reduced by about 40
percent if the exerciser's load could be made more uniform. All that
this required was to have the application program distribute in time
the data which the application data processor sends to the radar (see
Fig. 2). Changes were made to accomplish this without affecting the
capability of the application system. Other examples include the setting
of "flags" by the application program in data that it sends to the radar.
When the exercise intercepts the data, it uses the flags to help expedite
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processing. This was accomplished without compromising either the
applications or exerciser roles.

A second decision made in the design of the exerciser was to utilize
as much of the hardware in an exercise as possible. Clearly, the real
defensive missiles could not be included, but we note that the exerciser
interfaces with the system of missile ground equipment, not just at
the software/hardware interface. The full radar could not be included
because a real target environment is not available to be viewed and
because the cost of injecting simulated signals at the radar face is pro-
hibitive. As shown in Fig. 2, the ECU injects simulated signals into the
radar at the IF strip. This has allowed the applications software to be
tested with major portions of the radar. This proved to be an effective
approach from several points of view. It provided a mechanism to
identify numerous problems in the hardware and software at the TSCS
(the test bed). These problems included radar instruction sequencing
errors, tracking bias errors, miswiring, etc. Corrections were made to
both TSCS and site hardware. Software was corrected before it was
shipped to the site. As a result of the prior testing at the TSCS, relatively
few problems were found with the testing at site. Problems that were
found were largely attributed to the detailed characteristics of the
hardware not included in the exercise. The number of problems was
lower than originally expected.

A third decision in building the system exerciser was to perform
as much of the calculation required for simulation as possible before
conducting the real-time exercise. Calculations for targets, defensive
missile farms, and other sites and of hardware was done off-line, in
the STAG facility; and results were placed on tape. The real-time soft-
ware modified these data as appropriate for the real-time condition.
This approach minimized the size and complexity of the real-time
exerciser on a nonreal-time, pre -exercise basis. It also allowed programs
such as trajectory generators to be used to support exercises for differ-
ent radars; i.e., both the PAR and the NISR. This reduced the total size
of the effort.

Fourth, in designing the exerciser, a number of decisions were made
relative to the realism of the various exercise simulations. The ap-
proach was usually, but not always, to simulate the effect of a particu-
lar phenomenon, rather than the phenomenon itself. For example, in

simulating the stream of intersite messages the MDC receives from the
PAR, there were several options. The highest degree of realism would
be a detailed simulation of the PAR system interacting with the threat
environment. A much cheaper option would be to generate a represen-
tative sequence of intersite messages per threat. These threat messages
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would then be combined with a set of PAR status messages and modified
in real time as appropriate. For SAFEGUARD, the latter approach was
taken because it was economical, yet sufficient.

3.2 Exercising the exerciser

The system exerciser is a complex system, although considerably
smaller than the applications system. As the principal tool in integrat-
ing the applications software, it had to be stable and reasonably de-
bugged. There were at least two alternatives to test it. On one hand,
the testing of the exerciser could be performed in conjunction with the
testing of the applications system. On the other hand, the system
exerciser could be tested as a stand-alone system. The latter approach
was taken for SAFEGUARD, because it allowed greater control and
easier isolation of problems.

Testing the exerciser was conceptually simple. We can view the
applications software as outputting radar instructions, missile instruc-
tio ns via the missile ground equipment, and intersite messages. Those
three classes of outputs represent the stimuli to which the exerciser
responds. To test the exerciser, a simple software package called the
Exercise Standard Test Process (ESTP), which resided in the applica-
tion data processor and output these stimuli, was generated.

In simplest terms, ESTP obtains time -tagged data blocks containing
radar instructions, missile instructions, and intersite messages from a
driver tape. ESTP outputs each data block at the appropriate time.
The key part of all this, of course, is the generation of the driver tape.

The most critical output from the applications software to the real-
time exerciser is the stream of radar instructions. The real-time exer-
ciser must determine whether or not any tactically ordered radar
operations will cause the simulated radar to view any simulated
targets. To test this portion of the exerciser, a stream of radar in-
structions that cause the exerciser to perform its simulation calcula-
tions is required. The target trajectories are known, and the expected
response of the applications system is known. With this information,
the radar instructions to be generated by the applications system are
computed. ESTP assumes a "perfect" tracker but does not simulate
the application system tracker. With respect to the missile loops and
the intersite loops, similar deterministic test methods were used to
exercise the exerciser.

Because of the testing done with ESTP, relatively few problems were
experienced with the exerciser when it was interfaced with the appli-
cations software. Just as importantly, ESTP provided a vehicle for
further isolation and debugging of problems that did occur.
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IV. CONCLUSIONS

Some lessons learned from SAFEGUARD system integration and test
activities can possibly be applied to other projects. They are sum-
marized as follows :

(i) Prepare a test plan early; even though it cannot be complete
initially, it should address those items that could affect design,
or require long lead time.

(ii) Consider an incremental approach to testing. Several iterations
will be required to decide what form the incremental buildup
should take. Details will affect the program development
schedules.

(iii) Start the identification of tests early. Don't delay the specifi-
cation of success criteria. This specification requires lead time
and coordination with other activities and can go a long way
toward getting design problems resolved early. Make every
attempt to minimize the total number of test cases. The
expense of doing the necessary analysis, test specification
preparation, etc., is large and often underestimated.

(iv) Make adequate provisions for an exerciser. Consider separating
but not isolating the exerciser from the applications system.
Try to incorporate as much of the hardware in the exercise
configuration as possible. Test the exerciser to create a stable
base for system testing.
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Errors occur even in well -designed, well -tested systems. This paper
describes how errors are detected and controlled in the SAFEGUARD system
and makes recommendations pertaining to the design of error control in
large-scale, real-time control systems.

I. INTRODUCTION

SAFEGUARD is a fault -tolerant system. It can perform its tactical
function even in the presence of many types of errors, including latent
design errors, hardware failures, and operator mistakes. This paper
describes some of the automatic error -control features of a generic
SAFEGUARD Data -Processing System (DPs) and also the important role
of manual control in maintaining the operational integrity of the DPS.

II. AVAILABILITY -RELIABILITY REQUIREMENTS

What are the availability and reliability requirements of the SAFE-

GUARD system? How are they satisfied? What is the role of error
control?

As it pertains to SAFEGUARD, availability is the probability that the
system is capable of performing its tactical functions-surveillance,
tracking, intercept, etc.-at any given point in time. Reliability is the
conditional probability that the system will function through the
duration of a missile attack provided that the system is available at
the beginning of that attack. The product of availability times reli-
ability is required to be high to provide adequate assurance that the
system can, at any time, quickly detect a missile attack and success-
fully defend against it. During peacetime operation, the emphasis is
on availability so that the system can perform continuous surveillance
and be ready at all times to wage battle against offensive missiles.
During a battle, the emphasis is on reliable operation which includes
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avoiding significant interruption of tactical performance for any
reason, even in response to errors.

Availability and reliability are both enhanced through the use of
highly reliable, individual, hardware and software components, as
well as through the use of inherently fault -tolerant hardware and
software systems. For example, the DPS hardware design features
extensive component redundancy and multiprocessor control. (The
availability and reliability advantages of multiprocessor computers are
commonly accepted today.') The software design also has many
features that minimize its vulnerability to errors. For example, it has
decentralized system control. This means that total control is not
contained in any single, and thus highly vulnerable, software module.
It has distributed software execution control, i.e., all processors are
treated equally. There is no single controlling processor, which would
have an inherently greater vulnerability to errors. Also, the software
makes minimal use of particularly vulnerable data structures such as
linked lists. In addition to the use of highly reliable components and
a fault -tolerant design, thorough testing is also performed to ensure
that all components, as well as the total system itself, function as
intended.* Thus, error prevention is one of the principal means of
satisfying the availability -reliability requirements of the system. The
other is error control.

Error control enhances system availability by aiding in rapid detec-
tion and replacement of faulty components. The DPS contains re-
dundant components and, in conjunction with the software, it is

self -diagnosing. The DPS is normally configured into two distinct
partitions : one, called the green partition, is the primary computer
system ; the other, called the amber partition, is a secondary computer
system containing the redundant units. When a faulty green partition
unit is detected, a reorganization or reconfiguration of the DPS may be
initiated either by the DPS itself or manually by a DPS operator in order
to replace the faulty unit with its redundant counterpart. However,
such replacements generally require interruption of tactical perform-

ance for several seconds.
Error control also enhances reliability by confining errors to mini-

mize their effect on tactical performance, and thus minimize the need
for such replacements during a battle. The remainder of this paper
describes in greater detail how error control helps to satisfy SAFE-
GUARD's availability -reliability requirements, especially as they apply
to the DPS.

Software -debugging and system -testing methods are described in Refs. 2 and 3.
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III. SYSTEM ERROR -CONTROL STRUCTURE

How are errors detected in the SAFEGUARD system? How are the
effects of errors confined? How does the system recover from errors?
This section discusses the general approach to solving these problems.
The following two sections describe in more detail the two principal
aspects of error control, namely error detection and error response.

Figure 1 illustrates the basic system error -control structure. Errors
may be detected by hardware, by software, or by the DPS operators.
Software detections include hardware -reported errors. Likewise,
manual detections include both hardware- and software -reported
errors.

Software provides the principal responses to hardware and software
errors. There are two principal classes of error responses : local re-
sponses and system responses. Local responses are attempts to confine
or correct errors at the point of detection. System responses replace
faulty hardware or software components and restore basic system
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sanity. System responses generally require a brief (several -second)
interruption of tactical operation.

During normal peacetime operation, both local and system responses
contribute to system availability by correcting errors and replacing
faulty components. During battle -mode operation, the emphasis is on
local responses to assure reliable operation by confining and correcting
errors and to avoid the need to interrupt tactical operation for the
purpose of performing system responses.

Specific local responses depend on the type of error detected. Several
examples of such responses are described in Section 5.1. In addition to
any specific response that might be performed, one common local
response is to report the error to a centralized error logging and thres-
holding function. This function logs (records) the error -report data
onto tape for use in off-line error analysis. It also keeps a record of

error occurrences. If a report causes an error count or an error rate
for the associated class of errors to exceed a prespecified threshold,
then several additional common local responses may be taken. One
such response is to return a sever indication to the program that
reported the error. Severing is a method by which a program is per-
mitted to degrade the operation of certain noncritical parts of the
SAFEGUARD system by simply removing them from service. Its purpose
is to avoid recurrence of errors. Typical components that could be
severed are operating -system modules, such as data recording, or
certain cLc peripherals such as printers, tape units, TTYs, etc. In
addition to severing, another common local response to an exceeded
error threshold is to notify a DPS operator and/or the highest -level
software -control function called the process coordinator.* Either may
then initiate a system response.

In general, system error responses may be invoked manually, by
the process coordinator, or by a special hardware device called the
system sanity timer. (Use of the sanity timer is described in Section
4.1.) System responses involve reinitializing the software and/or re-
configuring the DPS to remove faulty components. One of the principal
system responses is DPS recovery which includes both DPS reconfigu-
ration and software reinitialization. System error responses are dis-
cussed in greater detail in Section 5.2.

IV. ERROR DETECTION

4.1 Hardware detection

Error -detection circuitry is an integral part of the DPS. For example,
the processors detect errors such as arithmetic overflow or attempts

The entire collection of operating system and application software that execute
on a single cLc partition is called a process.
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to store data into nonexistent memory locations. When such errors
are detected, a processor interrupt is generated and the processor
transfers execution control, via the operating system, to the program's
local -level interrupt -response code. Peripherals detect various types of
input/output (i/o) errors, e.g., data -transfer parity errors. Such errors
are reported to the software via i/o status returns.

In addition to the error -detection logic, which is a part of basic
circuit design, the DPS also contains hardware devices specifically
designed to aid in error detection. One such device is the cLc's status
unit. It reflects the hardware status of each processor, memory rack,
and peripheral, as well as of the radar and missile equipment. This
status information obtained from the hardware is accessible to the
software and displayed to the operators. Typical status -unit indicators
are "processor disabled," "tape unit power marginal," "missile equip-
ment internal error," etc.

Another special error -detection device is the Maintenance and
Diagnostic Subsystem (Alarms) sanity timer. This timer must be reset
by the operating system's task scheduler every 50 E 10 ms as an
indication of basic system sanity, i.e., that the software is still executing
on the cLc. If the operating system fails to reset it within the correct
time interval, the sanity timer will automatically initiate DPS recovery.

4.2 Software detection

Just as error -detection circuitry is an integral part of the hardware,
error -detection code is an integral part of the software. For example,
the operating system performs input -validity checks on call parameters
and the weapons process performs data -reasonableness checks on
important data such as radar return signals.

The software also performs several types of hardware diagnostic
tests. The operating system performs diagnostics on the DPS equip-
ment; the weapons process performs diagnostics on the radar and
missile equipment. For example, whenever the operating system re-
configures the DPS, it performs normal path diagnostics to verify that
each green -partition cLc unit functions properly. Also, during tactical
execution, cLc units and peripherals in both partitions undergo
additional tests. For example, the operating system contains programs
called real-time exercisers which test each green -partition memory rack
every five minutes. They compare the entire program -store contents
with a program -store image on disc to verify that no programs have
been modified. They "read test" each variable store rack in its entirety,
and they "write test" the first two words and the last two words of
each variable store rack by storing test -pattern data into these words
and then fetching the words to verify their contents. These four
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words in each variable store rack are reserved for this testing purpose.
The weapons process contains continuously running radar tests that
verify the basic functional operation of the radars. It also contains
manually invokable radar tests and missile tests, which are more
extensive diagnostics and which are used when faults are suspected in
this equipment.

Extensive M&DSS diagnostics, capable of isolating faults to the
chassis level, are also performed on amber (Ix units and peripherals.
All DPS units are periodically reconfigured out of the green partition
(replaced by their redundant counterparts) in order to undergo such
testing in the amber partition. The purpose of these tests is to minimize
the probability of failure in green -partition units by detecting poten-
tially faulty units before they actually fail. M&DSS tests are scheduled
by the cLc operating system and are initiated manually. Processors
may be reconfigured without terminating execution and are scheduled
for M&DSS testing hourly. Other cLc units and the i/o subsystem require
an interruption of tactical execution in order to be reconfigured. The
entire i/o subsystem is scheduled for M&DSS testing every four hours.
cLc units other than processors are not automatically scheduled for
M&DSS testing; however, such tests may be initiated on those units
manually at any time.'

In addition to hardware diagnostic tests, a system exerciser' is used
to periodically test much of the total hardware/software system.

4.3 Hardware- and software -reported errors

The hardware and the software report many of the errors they
detect to the DPS operators. For example, the operators' consoles have
many hardware- and software-controlled error -indicator lamps. A
system -status panel displays much of the information in the cLes
status unit, thus indicating the operational status (working, faulted,
off-line, etc.) of the cLc units and peripherals. Software also notifies
the operators of exceeded error thresholds via error -report messages.
With the wide variety of error -status information available to him, a
DPS operator often better comprehends the system's error environment
than do either the hardware or the software and, in many cases, he

must determine whether or not a system level response should be
initiated.

V. ERROR RESPONSES

5.1 Local responses

Local error responses are attempts to automatically confine or
correct errors at the point of detection. They are important in all
modes of operation, but especially in the battle mode where they are
a significant factor in short-term system reliability.
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Programs commonly use the centralized error-logging-and-thres-
holding function to report, record, and threshold errors they detect.
They also perform many kinds of specific local responses designed to
correct or confine the effects of a specific type of error detected. The
following are several typical examples of such responses.

A program's response to a processor interrupt might be to re-
initialize a critical portion of its data base using default values, to
unlock any locked data sets, and to exit. If an i/o error is detected, a
program might retry the i/o operation. If a radar return -tracking
signal fails a data -reasonableness check, a program might employ an
algorithm to "coast" the object's track for one radar cycle.

Suppose repeated error indications in the status unit for a peripheral
device cause an error -report threshold to be exceeded. If the periph-
eral is not essential for tactical operation, the peripheral device manager
could sever it, thereby degrading system operation but avoiding
recurrence of the errors and also avoiding the possibility of propagating
the errors into other parts of the system.

In the case where memory errors detected and reported by the
real-time exercisers exceed a threshold for a certain memory rack, the
only local response is the error-logging-and-thresholding function's
notification to a DPS operator and to the process coordinator. Either
may then initiate a system response to replace the rack with a spare.
Such a replacement might be done during surveillance -mode operation,
but not during a battle. During battle -mode operation, the software's
local responses must be able to recover from any errors that might
occur either in the memories or in other parts of the system.

5.2 System responses

System level error responses are used to reinitialize the system or to
replace faulty components. They are invoked automatically by the
system sanity timer or by the process coordinator in response to certain
errors that cannot be easily corrected at the local level. In many
instances, they are invoked manually in response to errors or com-
binations of errors reported by the hardware or the software. System
responses are performed by the operating system but they are never
initiated by it. System -error responses contribute to system avail-
ability, but they may be inhibited during a battle to prevent interrup-
tion of tactical operation.

There are three basic system level error responses : reinitialization,
reconfiguration, and DPS recovery. Reinitialization involves reloading
the system's entire data base. It can be initiated by the process co-
ordinator to restore severed software components. Reconfiguration
involves swapping DPS units between the green and amber partitions.
It provides a method for the software's process coordinator or for an
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operator to replace faulty or severed hardware units in the tactical
(green) partition with their redundant counterparts from the amber
partition. However, DPS reconfiguration is most commonly used by an
operator to switch units from the green partition to the amber partition
for M&DSS testing. The most commonly used system -error response is

DPS recovery. It is the easiest to use because errors do not have to be
localized beforehand. It is also the only system error response which
may be invoked either by hardware (the sanity timer), by software
(the process coordinator), or manually by a DPS operator.

DPS recovery reinitializes the entire hardware/software system in
approximately 10 to 20 seconds, depending on the cLc configuration
size. Once initiated, DPS recovery proceeds automatically under the
control of the operating system. It involves the following steps :

(i) Terminating process execution.
(ii) Saving the system image (including the data base, the con-

tents of the status unit, and the contents of the processor
registers) on disc for possible later analysis.

(iii) Running normal path diagnostics, and reconfiguring the cLc
to eliminate faulty units if necessary.

(iv) Completely reinitializing the software by reloading all programs
and the entire data base with fresh copies from disc.

(v) Resuming tactical execution.

VI. EXPERIENCE/RECOMMENDATIONS

The following are a few key points and recommendations based on
the SAFEGUARD experience with error control. The recommendations
are believed to be generally applicable to designing error control into
large-scale, real-time control systems.

(i) A system's error -control guidelines and error -control structure
must be defined early. They are required early in the design if

the system is to have a consistent approach to error control.
(ii) Error logging must be provided as one of the first software

functions. It is an invaluable debugging tool.
(iii) Certain error -control features, e.g., audits, must be considered

early to make implementation feasible. SAFEGUARD might have
made greater use of data -base audits if the data base had been
designed with audits in mind.

(vi) Testing local error responses is difficult, but it is important
for reliable operation. To enhance reliability, keep local re-
sponses simple and testable. To help simplify testing and to
help reduce the amount of code devoted to local responses,
categorize errors to minimize the number of different local
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responses required. Many natural opportunities for testing
local -error responses occur during early software testing. To
take advantage of these opportunities, local -error responses
must be implemented during early software development.

(v) Error responses should be easily modifiable. The desired re-
sponses may change as operational experience with a new
system provides additional information about error occurrence
rates. In the SAFEGUARD system, centralized, table-driven
error-thresholding functions and system error -response maps
permitted tailoring many of the local and system error re-
sponses as experience with the system grew.

(iv) Hardware and software status returns should be "response
oriented." They should include a simple code indicating what
to do about an error, that is : retry the operation ; reset the de-
vice or correct a parameter first, then retry ; don't retry, the de-
vice is broken; etc. More detailed status information to further
identify the nature or cause of the error may also be included,
but it should be independent of the response -oriented status.
The detailed status may be recorded by software for off-line
analysis.

(vii) Manual error control or manual override should be provided
even for automatically operating or self -repairing systems.
Manual control is essential for "bringing up" systems-even
automatic systems. It is also invaluable when automatic
systems fail to operate, or when self -repairing systems fail to
repair themselves.
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The debugging of SAFEGUARD software was performed in phases, each
with a unique environment, problems, and debugging tools. The unique
aspects of each phase are described here with special emphasis on the
debugging tools used. Although the multiprocessor configuration introduced
new kinds of software "bugs" and complicated the debugging problem, the
real-time character of the system had a greater overall impact.

I. INTRODUCTION

This paper describes the debugging approach used on SAFEGUARD.
The debugging effort is presented in terms of three testing phases :

(i) unit and module, (ii) software integration, and (iii) system level.
The tools and techniques required for each phase receive special
emphasis. Although the multiprocessor configuration introduced new
kinds of software "bugs" and complicated the debugging problem, the
real-time character of the system had a greater overall impact. The
debugging experience gained from SAFEGUARD is applicable to other
large, real-time systems, whether multiprocessor or not.

1.1 The debugging problem

The basic steps for debugging a large, real-time multiprocessor
system are essentially the same as for other software : detect the
error, isolate the cause, and provide a fix. Underlying this sequence
are two fundamental prerequisites : the ability to make an error
repeatable and to be able to collect the data required to isolate the
problem. Repeatability and data gathering, while taken for granted in
simpler environments, are severely affected by real-time and multi-
processor system characteristics. Real-time execution limits the ways
in which data may be collected. In fact, the very mechanism used to
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capture data may perturb the timing enough to cause other problems
or to make the original error disappear. The multiprocessor attribute
introduces further complexities. Active system components not in-
volved in the error may destroy critical debugging data before it can
be collected. Certain problems may manifest themselves in extremely
complex interactions requiring closely timed, coordinated, and parallel
occurrences of events. New classes of errors are introduced : timing
changes due to memory queuing effects on processor speed ; shared -
data accessing conflicts; and intermittent, phantom "clobbers" of data.
Although the great majority of errors found (e.g., incorrect register
usage, destroyed data, and bad interfaces between programs) are
similar to those encountered in simpler systems, those errors unique
to this special environment are among the hardest to find and correct.
Two other factors compounded the SAFEGUARD debugging problem.
One was the parallel development of both hardware and software.
The other was the amount of software involved, of which the real-time
portion alone contained approximately three-quarters of a million
instructions.

II. PHASE I-UNIT AND MODULE TESTING

The purpose of this phase is to test all logic paths in each program
and to test the interfaces between programs. In many instances, hard-
ware simulators extend the testing domain to encompass hardware
interfaces as well.

2.1 Environment

Most of the unit and module testing occurred on an IBM support
computer. A simulator called STACS (SAFEGUARD Tactical Simulator)
provided the primary testing vehicle.' Various special-purpose test
drivers and hardware simulators interfaced with STACS and enhanced
its value. By eliminating the real-time and multiprocessor factors,
STACS reduced the testing effort to a more common situation: program
developers systematically testing their programs in a batch -oriented
environment.

As soon as the cLc became available, the operating system was
transferred to it for unit testing. This transition was greatly facilitated
through the use of support programs that executed on the Maintenance
Data Processor (Amp). Prior to entering the software -integration phase
of testing, it was necessary that operating -system support capabilities
be thoroughly tested and verified on the cLc. This requirement necessi-
tated the early development of a basic set of debugging aids called
DEBUG.
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2.2 Debugging tools

2.2.1 The STACS simulator

STACS fully simulates the cLc processor and most of the conventional
cLc peripheral units such as tapes, discs, consoles, and TTYs. It also
simulates many of the cLc operating -system capabilities; in some cases,
it uses the actual operating -system programs. A number of special-
purpose test drivers simulate the hardware, extending the STACS

testing capability. In some cases, these drivers are written in high-level
languages such as FORTRAN or PL/1. These languages have the ad-
vantage of being stable, already known to many programmers, and
well suited to the problem at hand. The ability to link to user -written
drivers of this kind is an important consideration in designing a
simulator. A good example of what can be done under STACS was the
testing of the i/o manager of the cLc operating system. Although the
module contained complex and widely distributed hardware inter-
faces, STACS allowed thorough debugging to occur on the support
computer. The transition to the cLe produced few problems.

STACS provides a variety of debugging aids including register
initialization, execution traces, conditional register and data snaps,
and post -execution dumps. An interrupt generation capability permits
error interrupt occurrences to be simulated at any specified location
in a program. Coupled with the STACS simulation of the cLc operating
system interrupt handling, this allows exhaustive testing of program
interrupt response code. Special commands to simulate manual inputs
enable man/machine interactions, which are normally asynchronous
and not exactly reproducible, to be reduced to a single repeatable form
for testing purposes. Run-time statistics accumulated by STACS (e.g.,
the number of instructions executed and the number of memory
accesses) assist programmers in estimating program execution times
and memory queuing loads.

The ability to temporarily patch programs and data sets proved
extremely valuable. STACS supports a simple, instruction -level patch
capability. To modify a program, the programmer specifies the in-
struction to be inserted and its offset within the program. Patching
frees the program tester from time-consuming source recompilations
and provides a great deal of flexibility. For example, one STACS run
might contain many test cases, each created by using patches to change
test data between program executions. The patch capability also per-
mits verification of the correctness of the instructions or data being
changed. Such verification eliminates two common problems : patching
the wrong location and patch conflicts due to more than one patch
at the same location.
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2.2.2 MDP support program

Support programs executing on the MDP played an important role
in the transition of the operating system's support capabilities to the
cLc. These programs utilize the independent access paths of the
Maintenance and Diagnostic Subsystem (M&Dss)2 to interface with
various cLc units. Along with the capability to load and execute
bound code, they provide a set of single -processor, nonreal-time de-
bugging aids including traces, snaps, and dumps, as well as a temporary
program and data set patch capability. Attempting to debug the
operating system's support capabilities without such a set of basic
tools, which are provided by a separate support computer, would
represent a formidable task. Later, these programs provided a capa-
bility that allowed a complete and uncorrupted snapshot dump of the
system to be taken in the event of a system "crash."

2.2.3 DEBUG-a single -processor, nonreal-time tool

DEBUG represents the cLc operating system's first package of de-
bugging aids. Although it includes some multiprocessor capabilities,
which will be discussed under phase II testing, its design is more
oriented toward a single -processor, nonreal-time environment. Its
programs are not reentrant, its i/o is not concurrent with processor
execution, and some of its capabilities require overlays from disc.
DEBUG output may be directed either to printer or tape.
DEBUG capabilities include many of those provided by STACS and

the MDP support programs. They include register initialization, traces
of jump instructions or subroutine calls, conditional register and data
snaps, dumps after termination, and program or data set verification
and patching. A TTY interrupt capability allows an operator to inter-
rupt program execution, request debugging actions, and then cause
execution to resume. Using the breakpoint hardware of the cLc
processor, DEBUG provides a breakpoint capability, which allows a
trace of all accesses to a specific variable store memory location. Its
patching capability became the standard approach across SAFEGUARD

for fixing problems, thus eliminating the need for source -code re-
delivery and rebinding except at widely spaced intervals. Consistent
with this philosophy, DEBUG capabilities require no special compile -
time changes. For example, to cause a snap or program breakpoint,
DEBUG temporarily inserts an illegal instruction into the program.
When a processor encounters the illegal instruction, it interrupts, and
DEBUG gains control, performs the requested debugging service, and
then executes the instruction which has been replaced. The debugging
"hook" exists only for the duration of the run.
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2.3 Lessons learned from phase

Phase I testing would have benefitted from better compatibility
between STACS and the cLc operating system, and more complete
hardware simulation by STACS. Ideally, the transition from the support
to the target machine should be transparent. However, except for the
patch commands, the command languages as they exist are completely
different. Programmers must become familiar with a new command
language prior to beginning testing on the cLc. In addition, due to
the way it simulates cLc memory, STACS requires programs and data
sets to have a memory allocation different from their eventual mc
mapping. Thus, rebinding was required before the transition to the cLc.

The status unit is a good example of a device which should have
been simulated but was not. The status unit is a special-purpose hard-
ware unit used to collect status information from the cLc and its
peripherals.3 Both the operating system and the application software
contain numerous references to this device, and the effort required to
simulate it would certainly have been worthwhile.

The ideal situation would be to leave phase I testing with only
timing, multiprocessor, and some interface errors remaining in the
software.

III. PHASE II-SOFTWARE INTEGRATION TESTING

The purpose of phase II testing is to integrate the software, starting
with a simple nucleus of tested code and adding increments until all
of the various software components are included. Testing is at an
external interface level, which may involve the complex interaction
of many programs and hardware units.

3.1 Environment

l'hase II testing was performed on the cLc, primarily in a "hands-on"
environment. There were efforts to move toward batch operations, but
the complexity of the system and its unstable character during this
phase limited this approach. Independent test -and -integration groups
performed the bulk of the testing. For example, in the operating sys-
tem area, eight to ten people were engaged full time in the debugging
effort. The DEBUG patch capability allowed quick fixes to problems
until the next source code update was made. During this phase,
single -processor, nonreal-time testing gave way to testing in a multi-
processor, real-time environment. At regular intervals, operating -
system releases provided new capabilities to the application software.
Special drivers were used to simulate the missiles and radar, later to
be replaced by the system exerciser' when it became available. During
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this period, test -and -integration personnel, using the DEBUG patch
capability, "invented" many debugging tools as they were needed.
As the debugging environment became more constrained, the de-
bugging approaches attempted to minimize timing impact. Consistent
with this evolution, the debugging tools will be presented in order of
decreasing timing perturbation.

3.2 Debugging tools

3.2.1 Time suspension

As mentioned earlier, although DEBUG'S basic design is not intended
for a real-time, multiprocessor environment, it does include a few
capabilities for dealing with both of these complicating factors. Not
surprisingly, its approach, a form of time suspension, attempts to
collapse the system to the simpler, single -processor environment for
which it is designed.

The time -suspension strategy involves stopping the system, per-
forming a debugging operation, and then restarting the system. To
stop the system, DEBUG first stops the timing generator and then causes
each processor, except the one controlling the time suspension, to be
interrupted and to enter an idle loop. At this point, the controlling
processor performs the requested debugging operation, e.g., a memory
dump to the printer, which may consume many seconds or even
minutes. To restart the system, DEBUG first restarts the timing gener-
ator and then the processors. Each processor restores its previously
saved registers prior to resuming execution.

Time suspension suffers from several serious drawbacks. Using
interrupts to stop processors is a serial operation, requiring 10 to 20 Ais
per processor. This permits scores of instructions to be executed, and
proves particularly unsatisfactory in a "stop -on -error" situation. The
fact that all processors cannot be stopped instantly leads to several
difficulties. For example, some processors may be stopped with critical
data sets locked, causing lock recovery code to be erroneously triggered
on one of the processors still running. An even more serious difficulty
is that time suspension does not work with synchronous peripherals
such as the radar. DEBUG cannot correctly stop and restart the radar's
internal clock and, therefore, cannot preserve its timing relationship
with the data-processing system. Early in phase II testing, when
synchronous peripherals and large processor configurations were not
used, time suspension proved helpful.

3.2.2 System Image save

The "system image save" is one of the most important data -
gathering tools, providing a complete snapshot of the system. Preceding
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the save, the system is collapsed to a single -processor, nonreal-time
state. Following the operation, the software must be reloaded prior
to restarting the system. The system image includes the entire data
base, all processor registers, the contents of the status unit, and the
contents of internal hardware registers. The information is written to
tape or disc, the entire operation requiring only a few seconds. Test-
and -integration personnel invoke this capability manually when they
suspect the occurrence of a serious error. During phase II testing, the
automatic invocation of it by DEBUG in response to an error interrupt
was important. In phase III testing, a system -image -save automati-
cally occurs as a first step during system -error -recovery operations.

3.2.3 Real-time simulation

Real-time simulation on the cLc is another useful technique for
reducing the debugging effects of a time -constrained environment. Two
SAFEGUARD approaches deserve mention : one employs the timing
generator and the other eliminates it entirely. The operating system
manages processors by dividing time into discrete units, called phases.
The length of a phase is determined by the timing generator and can
be increased by simply programming the timing generator such that
the phase length is longer than it normally would be. This approach
does not eliminate the timing generator's time constraint, but does
provide a continuum of execution rates from nonreal time to real time.

The other approach used on SAFEGUARD employs a software mech-
anism instead of the timing generator to control software execution
and phase length. In order that i/o jobs may terminate properly, a
minimum time between phases is enforced. This approach eliminates
the timing generator's time constraint completely, allowing a task's
execution time to extend as long as necessary, e.g., for many seconds
or minutes in the case of a dump of processor registers on the printer.
An additional benefit is greater repeatability since the elimination of
the hardware clock reduces many of the run -to -run variations which
normally occur. However, because real-time simulation precludes
synchronous peripheral interfacing, its use was confined to the early
portion of phase II testing.

3.2.4 DARTS-a low -perturbation tool

The intent of Debugging Aids for Real -Time Systems (DARTS) is
to provide debugging capabilities in a multiprocessor, real-time en-
vironment with a minimum of timing perturbation. This environment
includes normal timing -generator and radar operation. The underlying
assumption is that debugging actions can be performed during normal
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processor idle time. The design of DARTS resembles in many respects
that of the real-time portion of the operating system : reentrant pro-
grams that are permanently resident during execution; a real-time
component driven by tables constructed in nonreal time ; and service
times low enough to be measured in microseconds.

DARTS permits the establishment of program breakpoints at which
desired debugging actions can occur. These actions include both data -
collection and data -manipulation services. Actions can be conditional,
depending on register contents, data values, the operating system
phase, the arrival of a specified point in time, or the completion of a
specified time delay. Breakpoints can be enabled or disabled during
execution, providing added flexibility. A manual input simulation
capability permits complex man/machine interactions to be reduced
to a list of DARTS commands. This feature offers a number of significant
benefits. First, repeatability is increased since the simulated inputs
can be timed precisely. In addition, the number of operators required
is reduced, the possibility of operator error is virtually eliminated, and
run times are shortened considerably. DARTS also provides an interrupt -
simulation capability which proved extremely useful in debugging the
extensive interrupt -response code within the operating system.

Instead of dumping captured data to the printer, DARTS either
accumulates it in circular buffers or writes it on tape using the operating
system's recording capability. At termination, information in the cir-
cular buffers can be dumped in chronological order.

DARTS provides a flexible, easy -to -use, high-level language with
which test -and -integration programmers can create their own de-
bugging tools. It incorporates many of the ideas and techniques
learned during the early SAFEGUARD debugging experience.

3.2.5 Event traces and error logs

The operating system provides a number of historical traces and
logs of key system events, including both normal occurrences and
errors. These data -collection capabilities are extremely valuable in
debugging and performance analysis. The normal path traces include
task executions, status -unit bit changes, and manual inputs. For
each error occurrence, the operating system generates a four -word
entry containing the time of the error, its category, and two data
words that are dependent on the particular kind of error. The event -
trace and error -log information is accumulated in memory and,
periodically, is written to tape using the operating system's recording
capability. The information remaining in memory becomes an im-
portant portion of any system image save which may be made. It
reflects the key system events leading up to a serious error occurrence.
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3.2.6 Data recording

The operating system provides a flexible and powerful data -recording
capability which permits continuous data collection onto tape with
a capacity of one hundred thousand 32 -bit words per second. Numerous
recording calls are permanently embedded both in the operating system
and the application software. These calls may be easily augmented
using DARTS. Both software and manual controls permit individual
recording categories to be turned on or off. Thus, the recording stream
can easily be adjusted to meet the needs of particular test situations
or suspected errors.

In addition to recording the various event traces and error logs
described earlier, the operating system supports special recording
capabilities relating to processor interrupts and CRT displays. Specifi-
cally, on a processor interrupt, the operating system records the
processor registers and stack information. The stack contains tem-
porary data variables and information sufficient to recreate the chain
of programs leading up to the interrupted program. These interrupt-
related data become increasingly useful in phase III testing when
continuous operation in the presence of errors, including interrupts,
becomes commonplace. The operating system provides the capability
to record CRT displays. This output can be reduced using special pro-
grams on the support computer, producing a "hard" copy of displays.
Verifying the correctness of displays in this manner is more convenient
than taking photographs.

3.3 Lessons learned in phase 11

The most obvious lesson from phase II testing is that debugging
approaches suitable for nonreal-time, single -processor systems are not
adequate for a system like SAFEGUARD. Specifically, the philosophy of
minimum perturbation as exemplified in DARTS is far superior to the
time -suspension technique used by DEBUG. For time suspension to be
feasible, hardware mechanisms to allow abrupt stopping and restarting
of all active system elements (e.g., processors and clocks) must exist.

The second lesson is that debugging aids must be developed early,
well ahead of the software which will use them. Waiting for experience
to provide feedback on what tools are needed does not allow sufficient
time for their development. A solution to this dilemma is to provide
the test -and -integration personnel with the tools to construct de-
bugging aids as the need arises. The patch capability is the simplest
example of this approach while DARTS represents its easy -to -use
culmination. An analogous problem occurred in developing individual
operating -system tests. Often the test team would identify new areas
requiring testing. However, the amount of time required ruled out the
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normal test -development cycle. The solution was a software facility
that allowed quick test generation using a simple, high-level command
language.

IV. PHASE III-SYSTEM TESTING

The purpose of phase III testing is to verify that the software and
hardware work together as a system in an environment that resembles
as closely as possible the expected operating conditions.

4.1 Environment

During phase III, "hands-on" testing continued, primarily in a
real-time, multiprocessor environment. The completed system exer-
ciser became the test driver for the process. The duration of test runs
increased and, in some instances, testing extended for periods of many
hours. As confidence in the extensive error -recovery code in the system
increased, "stop -on -error" modes of testing declined. Errors provided
unexpected opportunities to verify the software error response. Load
testing and process tuning became important. Netted tests which
involve multiple site interactions occurred frequently. Across SAFE-
GUARD the number of official patches grew into the thousands, re-
quiring extensive control- and quality -assurance measures. The
debugging tools developed in phases I and II remained available, per-
mitting changes to the software to reach the test groups in a well -
tested state. Although most of the debugging aids described previously
continued to be used, the tools that were permanently part of the
applications software and that normally caused the least timing
perturbation were the most important. These included the event traces,
error logs, data recording, and the system image save. Data recording
and reduction were the tools that had the most widespread use during
this phase of debugging.

4.2 Additional debugging tools

4.2.1 CLC hardware monitor

The cLc monitor is an external hardware monitor which includes
its own memory, extensive logic to count and filter data, and two
tape units. Although its primary use has been to gather system per-
formance measurements, it has proven valuable in debugging two
areas. One is the kernel of the cLc operating system, where normal
debugging tools cannot be used. The other includes extremely time -
critical portions of the system where the insertion of debugging
"hooks" causes an unacceptable perturbation. The mechanism for
transferring the software event information to the monitor is a single
store instruction, which increases task execution time by approximately
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1 As. A number of these monitor instructions are permanently embedded
in the software.

4.2.2 Operating system testing during phase Ill-the system test "cycler"

A special test process called the system test cycler tested the operat-
ing system in an environment quite different from that of phase II
testing. It exemplifies the kind of testing done in phase III. The cycler
allows continuous testing of the operating system over periods of many
hours. Special logic within the cycler exercises many of the conven-
tional data-processing peripherals (e.g., tape and disc) and the operat-
ing system software which manages them under extremely heavy
loads. Using a TTY command, test personnel can insert simulated
hardware faults into memory units and processors, verifying that
the operating system can detect and recover from the errors. Most of
the error -recovery mechanisms provided by the operating system can
be exercised using the cycler, either manually or automatically.
Besides uncovering numerous software and hardware problems, the
cycler provided a test-bed for verifying many of the changes made to
the operating system during phase III.

4.2.3 Visual error -detection aids

During phase 111, visual error -detection aids became increasingly
important. In a system such as SAFEGUARD, where no observable
activity normally occurs, visual signs are needed to inform the operator
as to system "health." Error indicators may prompt him to enable
recording, or they may serve as clues as to which portion of the total
recording output should be reduced. In addition to error messages,
wall display boards, and various error light indicators, the operating
system provides a CRT memory dump display. This allows areas of
memory or the status unit to be viewed. In this same category is a
printer trace4 of key events which was extensively used during the
phase II testing of the application software. It provided a window
through which the system tester could observe the continuous func-
tioning of the process. Although an important testing capability, it
was never made a permanent part of the system.

4.3 Lessons learned In phase Ill

The most important deficiency uncovered during phase III testing
was the absence of sufficient visual indications to determine what was
really happening inside the computer. One solution proposed, but
never implemented due to lack of available memory space, was a
"vital signs" CRT display. Such a display might show the accumulated
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errors on various units, the amount of i/o and processor activity, or
key radar and missile information.

V. RECOMMENDATIONS

Table I lists the capabilities discussed in this paper. If one capability
could be singled out as the key to the SAFEGUARD debugging success,
it would be the ability to patch programs. It eliminated the need,
except at widely spaced intervals, for time-consuming source -code
redeliveries and system reverification. In addition, patching provided
a flexible, easy -to -use tool through which new debugging aids and test
tools could be created.

The importance of unit and module testing cannot be overempha-
sized. A high percentage of the bugs found in the later phases could
have been eliminated in phase I. Therefore, it is highly cost effective
to provide extensive unit and module test facilities. Programs which
bypassed phase I testing, either because of extensive hardware inter-
faces or schedule constraints, generally became long-term problems
during later phases of testing.

The early consideration of three vital areas is mandatory : error
logging, data recording, and other special debugging aids. On SAFE-
GUARD, error logging and data recording could have simplified debug-
ging if they had been available earlier. The tendency to postpone
consideration of these areas because they are not critical capabilities

Table I - Use of debugging tools by testing phases

Debugging Tools
Testing Phases

cl,c simulation on support computer (sTAcs)
Unit debugging aids}AtDP programsDump capability
Unit debugging aids on
Program patching DEBUG
Time suspension
Real-time simulation
Low -perturbation aids
Manual input simulation DARTS
Error -interrupt simulation
System image save
Event traces and error logs
Data recording
CRT memory display
Printer trace of key events
ci.c hardware monitor
System test cycler

-V V
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should be avoided. In the case of other specialized debugging aids,
it is clear that waiting for actual testing experience to reveal what
tools are needed is unsatisfactory.

Although it may seem obvious, the availability of an experienced
nucleus of people may be the best guarantee of success. The Meck
test system prototype effort which preceded SAFEGUARD provided a
sizeable pool of real-time, multiprocessor experience, which proved
invaluable in testing the SAFEGUARD system.
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This paper gives a critical overview of the development of a selected set
of support software programs. These programs comprise part of the
support environment required to make the SAFEGUARD system application
software and hardware operational.

I. INTRODUCTION

In the development of the SAFEGUARD system or any other large-
scale programmed system, one may distinguish between two types of
software-application and support. Application software does the job
for which the system is intended. In SAFEGUARD, this means driving
the radars, tracking objects, firing missiles, etc. Support software
includes all other software required to make both application software
and hardware operational.

This paper, and others that appear in this section, cover a limited
set of support software programs. Included in this set are

(i) CENTRAN-A compiler for a high-level extendible language of
the same name.

(ii) SNX-A macro assembler.
XPF-A binder for preparing CENTRAN and SNX output for
execution.

(iv) STACS-A simulator for execution of XPF output.
(v) SDRS-A set of programs for reducing, i.e., decoding and

formatting, data recorded during clac execution.

All these programs have several things in common. First, their
purpose is to assist the development and debugging of SAFEGUARD
application software. Second, for reasons to be discussed in detail
later in the paper, these programs operate on computers other than
the Central Logic and Control (cLc)."

" The (Ix is discussed in Ref. 1. Discussions of support software that operate on the
eLc may be found in Ref. 2.

S149



This paper critically examines some key decisions that shaped the
programs and the environment in which they operate. In doing this,
the groundwork will be laid for the other papers in this section. The
paper is divided into two sections : the first covers support software ;
the second covers the computers on which the support software pro-
grams were developed and on which they run.

What is the value of such a critical examination? The frequency
with which programming projects fail or repeat the mistakes of their
predecessors leads to the conclusion that the knowledge required to
manage program development is largely based on experience. Perhaps
the communicating of experiences, successful and unsuccessful, may
help to transmit some of the knowledge gained on the SAFEGUARD

project.
Why is SAFEGUARD a good choice for such an examination? Because

its development and that of its prototype span a ten-year period
that overlaps the development of the "science" of programming
management. Because during those ten years many intensely creative
people were involved, and since the magnitude of the project was
enormous, their creativity was not constrained. Because the SAFE-

GUARD effort encompassed a multiplicity of organizational structures
within Bell Laboratories and its various subcontractors. Because it
seems that, at one time or another, practically everything was tried
or seriously studied.

During the ten-year period examined, one can distinguish three
successive phases of support software development. Each phase was
built on the lessons learned during previous phases, and each phase
had its own characteristic spirit. The first phase was part of the NIKE -X

antiballistic missile research and development effort in the mid -1960s.3
The second phase was the development of support software for the
Meck test system, a prototype system intended to validate some of
the results from the first phase. The third phase was the development
of support software for SAFEGUARD, which has applied the results of
NIKE -X research on an even wider scale. The topic of this paper is
SAFEGUARD support software, but since it has been shaped by a synthe-
sis of NIKE -X and Meck test system experiences, it is with these that
the story must begin.

II. SUPPORT SOFTWARE FOR NIKE -X AND THE MECK TEST SYSTEM

In the early days of NIKE -X,support software designers envisioned an
environment in which the application programmer "typed" high-level
language programs at a terminal under control of a time-sharing system
operating on the cLc. Programs would then be processed by a global
optimizing compiler and executed, with results routed to the program -
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iner at his terminal. In retrospect, these ideas are perfect examples of
the optimism that pervaded the computer industry in the mid -1960s.
As the industry lost its innocence, these ideas crumbled. The cLc time-
sharing system, Program Development Facility (PDF), was ultimately
dropped when it became apparent that there was not enough cLc time
to allow concurrent development of hardware, support software, and
application software. PDF development had lost not only its means
but its end as well, for application software development for the Meck
test system had already passed the unit testing stage where PDF could
have been most helpful.

A global optimizing compiler, NIKE -X Compiler Language (Nicola),
was abandoned after completion of three of the four planned stages
of its development. A working, but incomplete, compiler (Nicol, 3) had
been built for the cLc, but there was insufficient cLc time for support.
software development and compiler maintenance. This, combined with
a long time estimated for completion of the optimizing phase given the
available manpower and with technical problems encountered in
maintaining NICOL 3, indicated that NICOL would not be able to meet
the needs of the project. Meanwhile, coding for the Meck test system
had been done in assembly language so the compiler was needed only
for SAFEGUARD software development.

A message in the NICOL and PDF stories will recur in this paper.
Support software goals must be realistic, particularly in the sense that
they be attainable at the time they are required. Essential features
must be available on schedule. The purpose of support software is,
after all, to support the objective of building systems. Building state-
of-the-art support software as well is laudable, hut only if it con-
tributes to the main objective.

These experiences led to several important decisions that influenced
support software development for SAFEGUARD. First, it was decided
to move as much support software activity as possible to a computer
other than the cLc. This had the desired effect of making the CLC
more available for application software testing, but it also resulted in
a sizable support computer requirement which is discussed in Section
V of this paper.

A second major decision was that application program development
would be done primarily in batch rather than in time-sharing mode.
This decision was reached over the course of several years and was
based on many contributing factors. First, experiences with MULTICS
and TSS4 were disappointing, in the sense that they did not support.
the expected number of users at the predicted time. Second, other
available, or nearly available, time-sharing systems appeared to have
serious limitations : cP/cms was not file -compatible with IBM System
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360. TSO, which IBM advocated in place of TSS, was limited in capa-
bility and lacking in human engineering. No system provided adequate
availability and reliability. Third, interactive support software would
have to be written and it appeared easier, and therefore faster, to
write support software that would operate in the batch mode. Finally,
the exact trade-offs between batch and time-sharing program develop-
ment were not yet known (and perhaps still are not). It was speculated
that time-sharing might improve programmer productivity, but it
would do so at the expense of additional computer requirements. It
would have been difficult for management, already faced with large
development costs, to commit itself to time-sharing without a better
understanding of its cost effectiveness.

This shifting support software philosophy affected the development
of application software for the Meek test system. From the ashes of
PDF and NICOL emerged a set of support software tools that were
sufficient to get the job done. Application programs were coded in
assembly language. Linking and binding the various application
programs was an intricate and awkward process. Computer program
source was stored and distributed on cards. The key to effectiveness
was an ironclad set of control procedures that made the system work.
Despite a lack of sophisticated support software, the Meck test system
has consistently met its objectives.

III. BUILDING SUPPORT SOFTWARE FOR THE SAFEGUARD SYSTEM

The decision to deploy the SAFEGUARD system had a direct impact
on support software. It would be necessary to improve the programs
and procedures used to develop the Meek test system, since SAFEGUARD
was a larger and more complex undertaking. However, there was very
little time to implement these improvements and still meet tight
development schedules.

One of the first decisions made was to "borrow" software. Under
the aegis of the ESS project, Bell Laboratories had developed a modular
assembler called swAp5 that was specifically designed for portability-
as long as there was an IBM System 360 available. Borrowing SWAP,
converting it to generate CLC machine code, and relabeling it SNX 360

yielded a fast, efficient assembler at minimal cost. However, it was
necessary to provide people to maintain and modify SNX 360 as re-
quirements grew. SNX 360 was adopted by both SAFEGUARD and the
Meck test system.

What about a programming language for the deployed system?
Assembly language had been used exclusively for the Meck test
system and was favored by most of the "old pros." Management and
support software designers were concerned because experience indi-
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cated that a programmer could write and maintain a fixed number of
statements per month, no matter what language was used. The use of
high-level languages promised greater productivity. Management also
knew that system requirements would be fluid in the early stages of
development, requiring frequent changes. This supported the argument
for the use of a high-level language.

The only high-level language available for the ci,c was NICOL,
however. At that time there was a working, but incomplete, NICOL
compiler of unknown reliability generating inefficient code. It ran
slowly and was very difficult to maintain. Estimates of the time
required to complete the final phase of NICOL development, an optimiz-
ing compiler, were unacceptably long. This was due in part to the
inherent difficulty in generating optimal code for a machine whose
instruction set had not been designed with an optimizing compiler in
mind. In addition to the flaws mentioned above, NICOL did not allow
programmers to "get at the machine," i.e., access the cLc hardware
registers. This alone was enough to make NICOL unsuitable for a major
part of cLc software, the operating system. What was needed was a
language that was easy to use and available immediately, could produce
optimal code, allowed programmers to access the mc registers, was
efficient, and was sufficiently rich in syntax and semantics to serve
the needs of system programmers, tracking and filtering analysts, and
radar and missile control programmers.

What evolved from this need was CENTRAN,* a high-level extendible
language. The compiler for CENTRAN was coded as a 6NX 360 macro
package. While this implementation permitted early compiler availa-
bility, it did result in long compilation times. Later improvements
increased the speed, but not to the point where it was comparable
with most compilers.

CENTRAN offered the programmer his choice of language level, from
assembly language to something resembling a subset of PL/1, and
statements of varying levels could be intermixed. If the programmer
felt that the language syntax was inadequate, he could extend it with
relative ease. Extendibility allowed for development of the language
in stages, so a minimum facility could be made available to users
almost immediately. Reference 7 contains a retrospective look at some
of the design issues in CENTRAN.

As a postscript to the programming language issue, it is interesting
to note that use of CENTRAN was decreed rather than sold. There are
several "extreme" reasons why this had to be. On one side, CENTRAN
designers felt that the cLc programmers' attachment to assembly

* CENTRAN is described by its inventor under the name crc. See Ref. 6.
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language was excessive* and that the programmers' cries of inefficiency
were misdirected. Efficiency concerns, argued the CENTRAN designers,
should be directed first to the design of the program and data base,
rather than to the programming language. Many programs need not
be coded with scrupulous efficiency. Further, with a knowledge of a
few basic facts of cLc architecture, the programmer could write
CENTRAN statements that would generate code just as efficiently as an
experienced assembly language programmer could. The programmers
countered with arguments of their own. They claimed, with some
justification, that CENTRAN was unreliable. CENTRAN taxed SNX 360

macro capabilities as they had never been taxed before. If a program-
mer made a syntax error, his compilation would occasionally abort
without a diagnostic or produce a SNX 360 diagnostic that was meaning-
less to him. Programmers also complained about CENTRAN documenta-
tion, again with justification. It is impossible to write adequate
documentation, construct courses, and reeducate 600 programmers
overnight. These things take time to evolve, and while they do,
programmers suffer. The battle over CENTRAN raged for some time
and became quite bitter. But in the end, CENTRAN was used and
programs were written.

Programs were indeed written, several thousand of them, in fact.
A better source code storage and control mechanism was needed to
replace the card -oriented Meek test system approach. A disc -based
filing system was under development, but not near completion. Bell
Laboratories accepted the offer of the use of an IBM proprietary
system that had been used in the development of IBM programs.

This product is a comprehensive disc -based source -object listing
filing system which offers programmers many of the features required
in the software development process; for example, an editor for chang-
ing source lines, a means of temporarily changing source for testing,
and a mechanism to facilitate delivery of completed code. In addition,
the system helps to protect the programmer from his own or others'
mistakes by allowing limited access to libraries. Initially, users were
not enthusiastic about the system, and management pressure had to
be applied to ensure its use. Complaints centered around reliability
and documentation deficiencies. In retrospect, however, the decision
to use the system proved to be a good one, primarily because of the
procedural discipline it forced on the programmers.

* Part, of this attachment is really an unwillingness to give up comfortable, familiar
coding patterns. B. N. Dickman relates an anecdote that illustrates this vividly.
When he joined the project in 1967, he found that cLe programmers were hard -coding
base registers in their instructions. He implemented a USING pseudo -operation similar
to the one in IBM System 360 BAL. But he found it difficult to get programmers to
use this most helpful and completely noncontroversial feature.
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CENTRAN and sNx 360, like most compilers and assemblers, produce
relocatable object code. A program was developed to allocate cLc
memory, build the control tables needed by the operating system,
perform binding functions, structure the overlays, and perform a host
of related services. This program was named the Execution Prepara-
tion Facility (XPF).

XPF was possibly the most volatile of the support software programs.
As new capabilities were incorporated into the cLc operating systems,
XPF had to be changed to reflect these new capabilities in the bound
versions of users' programs. This could have been a massive coordina-
tion problem, but the XPF designers found a creative solution. First,
they implemented XPF in PL/1, which facilitates changes, and made
clever use of its preprocessor to automate change as much as possible.
Second, they planned a series of releases with incrementally expanding
capabilities and coordinated them with the development schedules for
the cLc operating systems.
XPF is discussed in Ref. 9. This paper by Van Sciver focuses on the

use of PL/1 and its consequences, stressing the additional flexibility
which its use affords.

All the support software discussed above is classical in the sense
that its operation is well understood by every student of computer
science and that most technical problems involved have been studied
theoretically and translated into cookbook solutions. Because of its
complexity, the SAFEGUARD application requires an additional support
facility operating in an area where the theory is not well understood.
The basic question is how does one validate a real-time multiprocessing
system as complex as SAFEGUARD? How does one really know what
has happened inside the cLc? To answer the latter question, the
capability of data recording is provided by the cu operating system.
Recording makes it possible to transmit data of the designer's choosing
to tape at the rate of three million bits per second during cLc execution.
These raw data would fill more than 150 printed pages for each second
of mic execution. Clearly, some automated techniques are required to
help the designer through this morass of data. This is the function of
reduction programs that group and format the information for orderly
and meaningful presentation. These programs are called the SAFE-
GUARD Data Reduction System (sDRs).

A lack of clearly specified requirements makes designing data re-
duction programs difficult. The designer of an assembler, a compiler,
or a simulator can take much for granted. A large body of knowledge
exists about these programs, and techniques for implementing them

The rationale behind the choice of functions may be found in Ref. 8.
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have been studied extensively. The designer of a data reduction system
has little theoretical knowledge from which to draw. Although the
data reduction problem was documented as far back as SAGE, very
few people have extensive experience in debugging large-scale real-time
systems, and even fewer people understand the importance that real-
time debugging considerations play in data base design. So the data
reduction designer gets little help from any one, and must build the
most flexible and basic package possible in the hope of meeting user
requirements as they are discovered.

SDRS is a generalized information storage and retrieval system, part
of which was borrowed from another Bell Laboratories application
and adapted for SAFEGTJAKD.'°

IV. SOME CONCLUSIONS ABOUT SUPPORT SOFTWARE

What made certain support programs more successful than others?
Obviously, the more successful ones met the needs of the users. They
were available when they were needed, were flexible enough to react
as requirements changed, and were reliable. Various methods were
used to achieve these objectives. High-level languages were used to
retain flexibility. In fact, flexibility was considered so important that
efficiency was sacrificed. Software was borrowed shamelessly, but with
the knowledge that it would have to be maintained. High -risk state-
of-the-art approaches were avoided. Incremental implementations were
planned so that programs could be used as quickly as possible. Strict
testing and release procedures were adopted to ensure quality. Pro-
grams were "frozen" after release and became subject to change -
control procedures. Stringent control was placed over the interfaces
between the facilities to ensure integrity. All these techniques helped
to build a successful support software system.

V. THE USE OF SUPPORT COMPUTERS IN SAFEGUARD DEVELOPMENT

As indicated earlier in this paper, a basic decision was made to move
as much support software work as possible from the auc to a commercial
computer. This led to major involvement in the use and operation of

commercial computers. Items to be discussed include the computers
currently being used and how they were selected, their locations, and
some of the techniques used to improve cost effectiveness.

In the mid -to -late 1960s, NIKE -X computing was performed ex-
clusively by the Bell Laboratories, Whippany, General -Purpose Com-
puter Center, which operated an IBM 7094 and a GE 635. NIKE -X
support software development work had been divided between the
GE and the IBM systems. PDF and NICOL development was being done
on the GE 635, while the cLc assembler and rudimentary binding
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facilities were tied to the IBM 7094. The IBM 7094 was to be phased
out when MULTICS became available. However, when it became neces-
sary to choose a computer for installation at Meck Island, the GE 635
PDF-NICOL package was not ready. The only alternative was to code
programs from the Meck test system in assembly language. Since there
was no cLc assembler for the GE 635, it was necessary to install an
IBM System 360/65 (which could emulate the IBM 7094 at lower
cost than the original) on Meck Island. Once the commitment had
been made for Meck, the IBM 7094 at Whippany could not be released,
since it was required for compatibility with Meck. The GE 635 then
began to disappear from the mainstream of software development
activities. It remains in use full time, principally to produce fault -
location dictionaries for SAFEGUARD equipment."

Meanwhile, the Bell Laboratories IBM 7094 was also replaced with
an IBM System 360/65 and the cLc assembler and program preparation
facilities were run under emulation. Gradually, these programs were
converted to run on the IB M System 360/65 in its native mode for
increased efficiency. As each conversion occurred, Meek test system
dependence on IBM System 360 hardware increased.

Support software for SAFEGUARD further increased the dependence.
SNX 360, the IBM proprietary library system, and parts of SDRS were
borrowed from other IBM System 360 installations. CENTRAN was built
as a macro package on top of SNX 360. XPF was coded in PL/1. Con-
version to a non -IBM computer would have severely delayed the
operational date of the SAFEGUARD system because virtually the entire
support software system would have had to be replaced.

As the project grew, the number (and size) of support computers
grew with it. Table I is a summary of the dedicated support computers
used for SAFEGUARD and the Meck test system.

The prime purpose of these computers is to provide whatever service
is necessary for program development. The challenge in operating
them is to do the job in a cost-effective manner. Some methods used

Table I - SAFEGUARD -dedicated support computers
(November 1973)

Computer Location

IBM 370/165
IBM 370/165
IBM 370/155
IBM 370/155
IBM 360/50
HIS 635
IBM 360/65
IBM 360/65/40

Madison, N.J.
Morris Plains, N.J.
Concrete, N.D.
Nekoma, N.D.
Colorado Springs, Colo.
Whippany, N.J.
Whippany, N.J.
Meek Island
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to achieve this will be discussed in the following paragraphs. Because
the list of such methods is potentially limitless, the discussion focuses
on items that might be considered surprising or controversial.

System tuning usually comes to mind first when one contemplates
increasing cost effectiveness. Two kinds of system tuning can be
distinguished immediately, synthetic and analytic. Synthetic tuning
consists of an algorithmic application of such familiar standbys as
data set placement optimization and channel balancing. Synthetic
tuning is a necessary but not a sufficient condition for a tuned system.
The slack is taken up by analytic tuning, which is an attempt to view
the computer as a system, to ferret out the bottlenecks through use
of the analyst's bag of tricks, to rank the bottlenecks in terms of their
system impact, and to propose and implement solutions.

Different types of analysts can be identified by their approach. The
most common and perhaps most effective type is the mystic, who
appears to find problems by using a logic compounded of experience
and intuition. Other types of analysts are the theoreticians, who try
to construct classical proofs that one course of action is better than
another, and the simulators, who attempt to model the computer with
a series of parameters that can be varied to determine an optimum
course of action. Neither the theoreticians nor the simulators were well
represented on SAFEGUARD. What one did find on SAFEGUARD were
the chartists. The chartist believes that it is possible to build one or
more computer performance reports that will tell where the bottlenecks
are and where tuning is required. One has only to decide which num-
bers to include in the charts and how to interpret them.

The chartist approach was very successful, but not exactly in the
way it was intended. The most significant information derived from
the charts was that the biggest system bottlenecks were the users
themselves. Reading the reports seemed to show who was a good
programmer and who was not, who was getting his job done and who
was not, and who was hogging resources at the expense of others. This
caused some rethinking about what it really meant to improve through-
put. In a global sense, if the programmers do not get their job done,
what difference does it make if turnaround time has been reduced or
CPU utilization increased? To improve throughput, both the users and
the system must be tuned.

Realization of this fact resulted in a campaign to search out those
who were using the computer inefficiently. This endeavor was called
"bird-dogging., $12

Another method used to increase the cost effectiveness of SAFEGUARD
computer -center operation was the use of plug -compatible components
when their use offered equal or superior performance at lower cost.
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This had the additional benefit of supporting the government's objec-
tive of fostering competition within the computer industry. SAFE-
GUARD experience gained in replacing IBM 2314 disc storage, IBM 2401
tape drives, and IBM System 370/165 memory does not differ sub-
stantially from that reported in the literature. However, certain key
points should be mentioned.

First, it is important to have a solid grasp of the economic situation.
A commitment to install plug -compatible equipment is also a com-
mitment to expend the funds and the manpower to select replacement
equipment and then to make sure that it works. SAFEGUARD has found
this to be a nontrivial investment. One must be relatively certain that
new announcements or price reductions will not eliminate the expected
savings. IBM's announcement of 2319 disc drives cut heavily into the
net savings that accrued from SAFEGUARD'S switch to plug -compatible
2314s. On the other hand, the conversion to plug -compatible IBM
System 370/165 memory has been enormously successful from an
economic point of view, primarily because it was decided to purchase
the IBM System 370/165s rather than convert to System 370/168s.

Second, it is important that the vendor have a good local service
organization with trained, competent people backed by a hierarchy
of expertise including the design engineers themselves. Looking back
over several years' experience with plug -compatible equipment, the
major problems encountered always seem to be due to difficulties
within the service organization.

The third and last technique for improving computer -center cost
effectiveness is the use of facilities management companies to operate
SAFEGUARD computer centers. The IBM System 370/165s at Madison
and Morris Plains, N. J., and the IBM System 360/50 at Colorado
Springs, Colorado, were all operated this way. There are many ad-
vantages to such an arrangement. Perhaps the most significant one is
the emphasis that the facilities management companies place on
service. In the case of both companies used by SAFEGUARD, the results
have been outstanding. This is partially because facilities management
companies exist to provide service and partially because of the nature
of Cost -Plus -Award -Fee (cPAF) contracts," which make it financially
advantageous for the subcontractor to do his best. Another advantage
is that Bell Laboratories need not recruit and hire additional computer
operations specialists. Finally, there is the issue of cost. Experience on
SAFEGUARD has shown that, when all considerations are taken into
account, a facilities management company can provide excellent cost-
effective service.

The principal disadvantage of subcontracting computer -center
operations is that the company selected occasionally takes a parochial
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view toward project needs. For example, one company felt that it
was extremely important to reduce average turnaround time. What
they should have tried to do was to ensure that jobs received turn
around in accordance with their importance to the project, regardless
of the effect on the average turnaround time. Here again, the CPAF

contract is a valuable tool for ensuring that the subcontractor's goals

remained aligned with the contractor's goals.

VI. SOME CONCLUSIONS ABOUT SUPPORT COMPUTERS

It is impossible to point out in a few pages all the important lessons
from almost ten years of computer -center management experience. In
this paper, the emphasis has been put on high -return items-bird-
dogging, plug -compatible equipment, and facilities management. Other
items, such as hardware and operating system change control and inter -
location compatibility, were addressed but have not been discussed.
Despite overall success, solutions to many problems were not found;
e.g., how does one get users to estimate their computing requirements
correctly, or what is an accurate measure of performance improve-
ment? Perhaps our experiences can help others to increase cost
effectiveness.
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The history of the design and implementation of CENTRAN, an ex-
tendible language, is presented as an example to language designers. The
history is viewed in the context of four groups of factors: environmental
issues, general design issues, specific design issues, and implementation
issues. The paper concludes with an evaluation of the design decisions that
were made.

I. INTRODUCTION

There are many papers about the syntax and semantics of computer
languages. There are some papers about the compilers for these
languages. But there are few papers describing how and why a language
was designed and how it was implemented. In presenting the design
history of CENTRAN,* we attempt to provide a method that language
designers may apply to improve the writing of software.

Previous attempts at building a language for SAFEGUARD either
attempted to provide a shells language like PL/1 (Nicol), the entirety
of which could be implemented or understood only with extreme
difficulty, or attempted to provide a complete syntactical uniformity
of the machine language structure, like pL360. The attempt to provide
syntactical uniformity failed because requisite hardware uniformity
does not, in fact, exist. At the assembly language level, the syntax
of a language cannot be more uniform than the structure of the object
machine.
CENTRAN can be viewed as an extendible language in which several

levels of language features exist. At the lowest level, CENTRAN is the
assembly language. At the next level, CENTRAN provides a uniformity
for the machine by completing incomplete data paths and by providing

* CENTRAN and ETC are different names for the same language (see Ref. 1).
t A shell language attempts to provide all the features users would ever want.
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uniform register usage. At this level, CENTRAN is still almost one-to-one
with the machine code, but provides a more concise syntax for the
machine operations by means of, for example, polymorphic operators.
At the next level, machine dependence may still exist in the form of
hardware register references, but CENTRAN functions as a true compiler.
At the highest level of use, CENTRAN programs can be as machine
independent as those written in PL/1.

The extended language of CENTRAN approximates PL/1 in control
structure and FORTRAN in data structure. In addition to the control
structure of PL/1, CENTRAN has CASE, BREAK, and ITERATE state-
ments. BREAK allows a program to exit a Do loop or group gracefully
(without use of a GO TO statement) ; ITERATE causes the next iteration
of a DO loop or group to begin. The data structure is similar to that
of FORTRAN except that there are based variables, simple structures,
and partial word variables. The base language has been described in
Ref. 1.

II. LANGUAGE DESIGN PROCESS

The many factors which control the design and implementation of
a language can generally be classified into four groups, the designer
having increasingly greater control over the resolution of the factors
in the later groups.

The four groups are : environmental factors (external resources and
constraints), general design issues (decisions to be made based directly
on environmental factors), specific design issues (decisions of a topical
nature to be made based on the resolution of general design issues),
and implementation issues. The resolution of the issues posed in earlier
groups are factors in the resolution of issues in the later groups.

2.1 Environmental factors

This group consists of factors over which one generally has little
or no control.

2.1.1 Necessity for a new language

First, there is the basic presumption that yet another language is
necessary. The need for a new language hopefully arises from external
considerations, rather than out of some inner need of the designer or
as a result of the "not invented here" syndrome. There must be good
justification for designing a new language rather than choosing all or
part of an existing language.

It was clearly desirable to write at least some of the SAFEGUARD

software in a language higher than machine language. There were
many cases in which the possible inefficiencies in code generated by
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a compiler could be tolerated. There were also many cases in which
it was desirable to produce working programs inexpensively, regard-
less of the cost in running time and core, e.g., drivers and other test
programs. Furthermore, if assured of good programming leverage
(object -to -source -code ratio greater than one) from a language, and
concise generated code from its compiler, it would be desirable to
write all software in that language.

In the SAFEGUARD project, the compiler for the existing high-level
language, NICOL, was unstable, and it was felt advisable to develop
a language intermediate to NICOL and the assembler language as in-
surance. Selling CENTRAN as an "intermediate level" language (rather
than a high-level language) avoided the presumption of NICOL'S demise
and avoided promising too much prematurely.

2.1.2 Manpower and implementation schedule

Two rigid constraints on the implementation of a language in an
industrial environment are the manpower available and the imple-
mentation schedule : PL/1 cannot be implemented on a FORTRAN budget.
Furthermore, the feasibility of using a high-level language must be
proven before a commitment will be made to the implementation. A
working compiler, with programs written in the language, is the most
persuasive proof of feasibility.

For CENTRAN, the requirement existed to produce something useful
within six months because the project was well under way and user
software development could not wait. Only two full-time people and
one person half time were available for design and implementation.
There was no promise of increased manpower or lengthened schedule.
Only one of these people had previously designed and implemented a
compiler. It was necessary that the structure of the compiler be clean
enough and simple enough for the available manpower to implement.
The extendibility features of CENTRAN played a role here in assuring
that the basic structure of the compiler could be implemented in a
short time. Using the SWAP2 macro facilities to write the compiler also
contributed to the quick implementation of the language.

Within three months, a skeleton compiler was written that was able
to successfully compile sample programs with which to show the
feasibility of CENTRAN. A computer listing can be powerful magic,
even among the initiated, and compiler development support was soon
forthcoming.

2.1.3 Hardware

The hardware on which the programs are to be run is more of a
constraint in the design of a language than is usually realized. Going
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from one generation of hardware to another has revealed machine de-
pendencies and influences in language design. It has often been said
that there should be more feedback to hardware design from language
design, but until the state of software technology reaches that of
hardware technology, hardware will be a fixed factor in language
design.

The language designer has the final word on how the hardware
appears to the user. He has the satisfaction of knowing that one
purpose of a computer language is to compensate for "errors" in hard-
ware design, such as to make the machine seem more uniform in
structure than it actually is or to make explicit by syntactic equiv-
alence the classes of machine operations. For example, the designer
may use "+" to add a constant to a variable as well as to add two
variables, even though the "+" may be implemented as two different
machine operations.

The SAFEGUARD Central Logic and Control (cLc) computer was the
target machine for CENTRAN. At a low level, CENTRAN supplied a uni-
formity to the cLc instruction set that did not in fact exist. For
example, there were no machine operations to move data from certain
registers to others without first moving the data to an intermediate
register. CENTRAN "completes" incomplete data paths by generating
the appropriate code. Of course, at the highest level of CENTRAN use,
no references to hardware registers are necessary.

2.1.4 Software environment

The degree to which the software environment (e.g., loaders,
binders, and operating system) is a fixed factor may affect the me-
chanics of program production and perhaps even the design of the
language itself.

At the time CENTRAN was being designed, a large body of support
software already existed. It was tedious matter to reassemble all
sNx programs each time the object module format changed, and so
it was decided that CENTRAN would conform to SNX object module
format. As a result, certain desirable language features could not be
included (e.g., multiple location counters) because they could not be
represented in the object module.

2.1.5 User population

The two attributes of the intended user population, programmer
proficiency and programmer background, affect the design of the
language. For CENTRAN, the user population (in addition to Bell
Laboratories people) consists of several subcontractors. The pro-
grammers exhibit a wide range of ability and experience.
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Programmers have an emotional investment in the first language
they learn ; it is difficult to teach a programmer a second language.
On the SAFEGUARD project, most of the experienced programmers were
assembly language programmers and had a strong bias toward writing
in machine code. This phenomenon has been noted in a more general
context by Weinberg.' CENTRAN attempted to make the transition
to a high-level language more palatable by keeping the machine
accessible if so desired. The assembly language, SNX, is actually a
proper subset of CENTRAN.

CENTRAN may have made the transition to a high-level language
too easy-some programmers still think in machine language when
organizing their programs, leading to a potential rigidity of structure
and lack of language leverage.

2.2 General design issues

While the environmental factors generally are not under the control
of the language designer, some degree of design creativity can be
expressed in the resolution of the general design issues. These issues
are : whether to create a new language or adapt an existing one, what
the degree of machine independence and the language level are to be,
how important ease of learning and ease of use are, whether the
language should in some sense be "complete," and whether the
language design should express present technology or the state of the
art.

2.2.1 Creation of a new language or adaptation of an existing language

In determining whether to create a new language or adapt an exist-
ing one, the designer must beware of contracting either or both of two
diseases : the "not -invented here" and the "it's -more -fun -to -design -
my -own -language" syndromes.

In the case of a language for SAFEGUARD, the language compiler
for NICOL 3 was found to be nonviable. An alternative seriously con-
sidered was to code, debug, and unit -test all programs in PL/1 using
IBM computers and then to hand -compile the programs into SNX so
that they could run on the cLc. This may well have been the course
taken if CENTRAN had not been produced on schedule.

There was, however, an "almost existing" low-level language, the
cLc assembly language SNX. It included the SWAP macro facilities,
possibly the most sophisticated in existence (see Ref. 2), most of the
interfaces with the operating system, and an object module generator
that almost met requirements. By building on the existing SNX as-
sembler, the designer and implementers gained a certain built-in
compatibility with existing SNX SAFEGUARD programs, familiarity with
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the format, and most important, because of manpower and develop-
ment -time constraints, free maintenance. However, the approach lost
block structure (since the assembler did not have it), efficiency with
respect to compile time (since the macro facility is completely in-
terpretive), and control over lexical analysis.

Thus, an existing assembler was used as the base language for an
extendible compiler. This allowed maximum use of existing software.

2.2.2 Degree of machine independence and language level

The two concepts, language level and machine independence, al-
though related, are not equivalent. The language level is best described
in terms of the degree of clarity and conciseness possible. Machine
independence is usually defined in terms of the degree of portability
of a program written in the language, i.e., how easily a program may
be transferred from one machine to another. A language may be very
machine dependent and of a high level.

Since there were no plans for successors to the SAFEGUARD system,
machine independence was not a major factor in the design of CENTRAN.
The level of the language, however, was a factor. As was mentioned
in the discussion of the environmental factors, at the time CENTRAN

was being designed there was a perceived need for an intermediate -
level language. At the same time, it was apparent that certain high-
level language features would soon be needed. CENTRAN's extendible
design made it feasible to satisfy both of these requirements.

2.2.3 Ease of use and ease of maintenance

A language may be constructed with consistency, uniformity, and
good debugging features, all of which makes it easy to learn the
language and to write programs. Languages of this sort are ALGOL 68

and SNOBOL 4.

Program maintenance is aided if the purpose of a program written
in the language is easy to comprehend, even though the syntax and
semantics are nonuniform. Languages of this sort are PL/1 and FORTRAN.

Are ease of use and ease of maintenance related? Programs may
be easy to write but incomprehensible once written, e.g., programs
written in PAL, QED, and APL. Programs may be difficult to write but
easy to read once written and debugged (e.g., FORTRAN, PL/1, and
COBOL). Programs may be difficult to write and difficult to maintain
(e.g., machine language programs and IBM JCL).

Another aspect of ease of maintenance that should be considered
in language design involves binding time : binding addresses to vari-
ables and programs, disc locations to files, and generated code to
source statements. In general, the later binding occurs, the easier
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programs are to maintain. "Patching" is usually easier, as is having
independent compilation of subroutines and independent order of
compilation. Late binding does, however, increase the cost in link,
load, or run time. In CENTRAN, since the object module format was
fixed, the language designer had no control over when binding was to
occur.

2.2.4 Present technology or state of the art

A decision is made, unfortunately often only implicitly, as to
whether the language is to advance the state of the art in language
design and implementation or is to represent what present technology
can accomplish.

Why design a language if it is not state of the art? Often, there is no
need to invent a new language merely to fulfill user needs for a special-
purpose language. It may be sufficient to select those features which
are needed from existing languages. In a production environment, due
to schedule constraints and caution on the part of management, state-
of-the-art language may be considered undesirable. A state-of-the-art
language and compiler represent more of a design investment and more
of a risk.
CENTRAN was never sold as state of the art. However, CENTRAN

still had to be implemented as an extendible compiler so that incre-
mental implementation would be feasible. There was no time to do
anything else.

Extendibility allowed the circumvention of general design issues by
delaying their resolution, possibly indefinitely. If the language is not
sufficiently machine independent, extend it to a machine -independent
level and code only at that level. Completeness? Extend it as necessary.
Efficiency? Start from the machine language; what could be more
efficient?

Except for the extendibility features and treatment of machine
registers, the extended CENTRAN language is not state of the art. Of
course, the extendibility features of the base language, register alloca-
tion, and subroutine interface primitives may be considered state of
the art, but the average user does not use these features.

2.3 Specific design issues

Specific design issues include : control structures, data structures,
program -development features (e.g., tables of variables and attributes,
listing format control), and extendibility features (e.g., programmer -
defined subroutines, functions, macros, and data types) to be in-
corporated into the language.
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The model chosen for the extended language for CENTRAN was PL/1.

It is believed that this was the best decision, provided that a new
language could not be designed from scratch. However, there are
several reasons why ALGOL 68 (see Ref. 4) would be a better choice
as the model. (It should be noted that the ALGOL 68 Report was not
available when CENTRAN was being designed.) Perhaps the most im-
portant reason is that "expression languages" (in which most state-
ments, as well as what are commonly thought of as expressions, return
values and can occur anywhere expressions can occur) can allow the
programmer to express himself in a degree of clarity not possible in
other languages. Furthermore, an expression language is especially
desirable for efficiency and clarity if the compiler does not do any
common subexpression analysis, and the language gives the program-
mer access to hardware registers for the purpose of improving efficiency.

In particular, one of the results of modeling the extended language
on ALGOL 68 would have been the choice of distinct representations for
equality comparison and assignment. Then assignation could return
a value, facilitating, for example, the use of register variables.

System macros (a set of utility macros used, for example, to interface
with the operating system) were sNx-style and should have been
CENTRAN-Style. While implementation of a CENTRAN representation
for all system macros was vetoed as not worth the effort, program
bugs were induced by syntactical and semantic nonuniformities.

No thought was given in language design to program patching.
Patching on the cLc was necessary, primarily due to the logistic
problems involved in recompiling programs on the IBM machine and
transporting them to the cLc. Little thought was given to data reduc-
tion because there were no requirements specified at the time. Re-
quirements for patching and data reduction should have been con-
sidered. We pay the piper : for patching, one must patch in sNx or
recompile; for data reduction, few symbolic data structures are
allowed.

On the positive side, in addition to permitting the compiler to be
built quickly, the extendibility mechanism confers additional ad-
vantages. The extended language was planned so that extensions
could be made to semantics rather than syntax. Some documentation
for the extension is free, since description for new syntax is not re-
quired. Some user education is free when new semantics can be
associated with old syntax.

Extending a language is trivial if all extensions consist of new syntax
not meant to interact with old syntax. That is how some language
designers and users of extendible languages extend a language. The
difficulty is to maintain uniformity, especially when the extension is
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not orthogonal to the old language. The classic problem here is to
add complex arithmetic to a language, extending the semantics of the
existing arithmetic operators, rather than creating new ones. Reference
1 describes how this may be accomplished in CENTRAN.

2.4 Implementation issues

2.4.1 Compiler speed and degree of optimization

There always seems to be a trade-off between the speed of a com-
piler and the optimality of the code produced. In an academic en-
vironment, where there are many student jobs, there are many
compilations and few executions. In that case, a fast compiler designed
without regard to object code efficiency is acceptable. In a production
environment, presumably little time is spent in compilation in com-
parison to the execution time for production programs. Here, highly
optimized code is desired.

One way to circumvent making the trade-off is to write two com-
pilers, but this introduces obvious problems, not the least of which is
potential incompatible language implementations.
CENTRAN is a slow compiler. This is due primarily to its interpretive

nature. While some performance improvements were made after the
compiler was written, stability requirements outweighed compilation
speed requirements, and extensive improvements have not been made.
The lesson learned is that if a program works, it is not likely to be re-
written just to improve its efficiency.

The design goal for CENTRAN was to optimize on the statement
level only, producing the best code possible for statements such as
"a = b operation c," where a, b, and c are simple variables. Sufficient
manpower to produce a global optimizer was not available. Users
would rather have more features in CENTRAN than have a globally
optimized program. The local optimization design goal of CENTRAN
was achieved, leaving global optimization to the user (aided by effec-
tive counseling).

Since the expression parser produced nonoptimal code, users were
warned against using complex expressions if they had severe running
time or space constraints. This was done also to protect the imple-
menters against the possible wrath of users complaining about ineffi-
cient code. However, the lack of optimization of code produced by
the expression parser was oversold, and programmers get much less
leverage from CENTRAN than they could.

2.4.2 Compiler structure

After the questions of degree of optimization and speed of the
compiler are resolved, there remains an issue that is the primary
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concern of the designer : compiler structure. Related to the structure
of the compiler is the question, "In what language should the compiler
be written?"

Several alternatives were considered in the implementation of
CENTRAN. First, as indicated earlier in the discussion of environmental
constraints, it certainly was not feasible to create a language com-
pletely independent of SNX. There were no resources to implement a
new output -module generator, interfaces to the operating system, and
machine -operations listing. The compiler at least had to be assembler -
ended; the output of CENTRAN had to be an input to the SNX assembler.
The question then became that of the degree of interaction between
the compiler and the assembler.

Why was CENTRAN not implemented as a preprocessor to or a co -
routine with sNx? The answer is that it was not clear at the time how
the interface could be achieved. It still is not clear that this can be
done successfully. The assembler was not designed to interface ex-
ternally with a language processor. Other problems to be considered
include the possibility of duplicate symbol tables, duplicate language
processing, the loss of the macro facility, and the introduction of
nonunif ormi ties.

A compiler -compiler was not used to implement CENTRAN because
there was none available and creating one would have meant main-
taining two languages.

The method of implementation of CENTRAN consists of a combination
of recursive descent and precedence tables. The arithmetic, logical,
and relational expression parsers are driven by precedence tables ;
everything else is recursive descent with a vengeance. All the state-
ments generated by the compiler (even those generated by the table-
driven parser in the expansion of a CENTRAN statement to machine
code) are legal CENTRAN source statements. There is no "canonical"
intermediate -level language inaccessible to the user of the extended
language. Each machine operation is (textually) generated in only one
place. All CENTRAN code generating statements are eventually ex-
panded into a set of CENTRAN statements, each generating exactly
one machine instruction.

III. LANGUAGE USAGE

3.1 Who is using the language?

CENTRAN iS the official language for the SAFEGUARD project. Except
for programs which had been written in assembly language before the
availability of CENTRAN (parts of the cLc operating system), all

SAFEGUARD programming is done in CENTRAN. Programmers may not
use machine language without management approval. No cases are
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known where it was necessary to "drop down" into machine language.
In a large sample, no programmers had machine language interspersed.

3.2 How are the extendibility features being used?

As might be expected, most extensions are made in terms of macros
used to generate CENTRAN syntax. Some programmers, however, have
extended the language in data structures, where it is weakest.

IV. CONCLUSION

4.1 The designer -implementer -educator -user relationship

From our experience in the development of the system, we can draw
several conclusions that might be helpful to others. We as designers
along with the implementers, educators, and users should not be
disjoint groups. We should be involved as an implementer to keep in
touch with reality. We should also be involved as an educator (if a
feature is difficult to explain, maybe there is something wrong with
it), and a user (uniformity in extension is best achieved by knowing
how language is being used). The implementer should act as both
educator and program counselor to get feedback on bugs being "pro-
grammed around" and to establish priorities for fixing them.

Several things about the implementer -user relationship should have
been learned earlier in CENTRAN development. First, the release cycle
should be rigidly controlled as soon as possible,
the cycle. It does not pay to give fixes to bugs informally. Next, old
versions of the compiler should not be kept around and certainly not
maintained. The maintainers are blamed for bugs that no longer exist,
and much time is spent rediscovering causes for problems long since
resolved.

Notices of new releases must go to everyone, not just supervision.
Users often underestimate the impact on schedules of changes due to
improvements to the compiler, even though the improvements were
requested.

Insofar as the designer -implementer -educator -user relationship is
concerned, we, as designers, should have contributed more to the struc-
ture and content of the CENTRAN courses. Frequent symposia (e.g.,
"Advanced Topics in CENTRAN Programming") should have been held,
with compulsory attendance.

4.2 Lessons learned

Most of what has been learned in the design and implementation
of CENTRAN has been covered in previous sections. Some of the more
critical aspects are worth reiterating.
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CENTRAN should have been an expression language. This would not
only have aided the production of more efficient, clearer, and more
concise code, but would have provided a greater degree of uniformity
to the language.

We should have given more thought to data types required for data
reduction. Maintenance of CENTRAN programs (especially patching)
should have been given greater priority in the design of CENTRAN.

Variability in the backgrounds and experiences of programmers
should have been anticipated. Not enough consideration in the design
of the language was given to the characteristics of the user population,
and not enough emphasis was placed on continuing education.

Several of the CENTRAN design approaches were advantageous.
CENTRAN was implemented by a small group of programmers. This
approach avoided communication and other problems typically en-
countered in a large group of programmers.

The register allocation mechanism, subroutine interface primitives
(Ref. 5), and extendibility mechanism designs worked well, as exhibited
by CENTRAN's short development time. The ability to have partial
word variables has been found useful. The structured programming
features have been used extensively. The ability to program at several
levels in one language made the language suitable for systems and
applications programming. Finally, and most important, the design
of the extended language is sufficient for the implementation of
SAFEGUARD software. The SAFEGUARD programs have been success-
fully implemented in CENTRAN. Several studies of the suitability of
CENTRAN for SAFEGUARD have been made outside of Bell Laboratories,
and all have arrived at positive conclusions.

REFERENCES

1. B. N. Dickman, "ETC-An Extendible Macro -Based Compiler," Proc. AFIPS
SJCC, 38 (1971), pp. 529-538.

2. M. E. Barton, "The Macro Assembler, SWAP-A General Purpose Interpretive
Processor," Proc. AFIPS FJCC, 37 (1970), pp. 1-8.

3. G. M. Weinberg, The Psychology of Computer Programming, New York: Van
Nostrand Reinhold, 1971.

4. B. J. Mailloux, J. E. L. Peck, and A. Van Wijngaarden, "Report on the Algo-
rithmic Language Algol 68," Kibernetica, 1, 1970.

5. B. N. Dickman, "Subroutine Interface Primitives for ETC," ACM, SIGPLAN
Notices, 7, No. 12 (December 1972).

S172 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



Copyright 1975 American Telephone and Telegraph Company
TILE BELL SYSTEM TECHNICAL JOURNAL

SAFEGUARD SUPPLEMENT
Printed in U.S.A..

SAFEGUARD Data -Processing System:

Systems Programming in PL/1

By P. A. VAN SCIVER

(Manuscript received January 3, 1975)

This paper deals with the development of a large systems program in a
high-level language. The reasons for selecting a high-level language, the
most extensively used features, the benefits derived, and the significant
problems encountered are described.

I. INTRODUCTION

This paper highlights the important aspects of developing a large
systems program in a high-level language. The Execution Preparation
Facility (xPF) performs the linkage editor function on the SAFEGUARD
project. When XPF was originally designed, the decision was made to
develop it in PL/1. The paper examines the most extensively used
features of PL/1, describes the problems encountered during develop-
ment, points out the lessons learned, and discusses the benefits derived
from the use of a high-level language. An appendix provides XPF de-
velopment productivity data and comparisons.

II. FUNCTIONAL DESCRIPTION

XPF is the last major step through which software must pass on its
way to execution on the cLc. Some functions performed by XPF can
be compared to those of the operating -system linkage editor in that
XPF prepares the output of the language processor for execution, sets
up the overlay environment, and produces memory maps and cross-
reference listings.

The output of XPF, called a thread, is a collection of programs and
data sets and their associated control tables bound to absolute ad-
dresses. The thread also contains installation, debugging, and data
reduction information. Inputs to XPF are user -supplied commands,
execution time parameters, assembler or compiler output, a partitioned
data set called the system file that describes the cLc operating system,
and, in an update mode, the results of previous XPF runs.
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The major functions of XPF are construction of control vector tables
(cvTs) for interthread linkage, allocation of cLc resources, primary
memory and disc storage, binding of thread units, and construction of
operating -system control tables (pars). In addition, XPF produces a
series of printed listings describing memory configuration, process
structure, forward and back referencing among units, PCT construction,
and thread summary data.

III. PHYSICAL DESCRIPTION

XPF consists of 246 subroutines, 95 percent of which are written in
PL/1. The internal structure is modular. Functions are performed by
24 independent modules that overlay each other. The XPF load module
consists of 130 overlay segments and requires 2.5 megabytes of disc
storage. The access method used to retrieve object code, while not
actually a part of XPF, is also included in the XPF load module.

XPF operates in a 400-K region, of which 260 K is occupied by the
overlaid load module. During execution, 12 internal files are used for
work space and intermodule communication. Since the disc space
needed for these files varies with the input, space allocation is con-
trolled by catalogued procedure parameters. The actual execution of
XPF is controlled by the execution time parameter field on the user's
JCL execute card. Most modules execute at the option of the user and
are controlled through this field. The mode of execution (regular, de-
bug, or update) is also directed by execution time parameters.

IV. DESIGN DECISIONS

Since most systems software is written in assembly language, one
question arises : Why was a high-level language used for this facility?
Three major factors contributed to this decision.

(i) Development time was short. It was felt that the anticipated
ease of writing in a high-level language, coupled with extensive
utilization of compiler -provided debugging capabilities, would
help provide the desired results within the allocated time.
This proved to be the case, and each of ten XPF releases was
produced on schedule.

(ii) A high degree of flexibility was required. XPF, the operating
systems, and the applications processes were to be developed
concurrently. Since XPF is the software that links the operating
systems and the applications processes, responsiveness to the
design requirements of both groups was a necessity. A high-
level language was judged to be best equipped to provide the
required flexibility. This approach proved valid. In practice,
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when a SAFEGUARD design problem could have been solved by
changing the cLc operating system, the applications processes,
or the XPF, XPF was usually chosen.

(iii) The execution of XPF was expected to be i/o limited. Therefore,
potential compiler -generated cPu inefficiency was not a major
consideration.

Since XPF was to be developed and executed under os/360, the con-
tenders for a high-level language were PL/1, FORTRAN, COBOL, and
ALGOL. PL/1 was an easy choice. The bit -handling capabilities of the
language were well known, and many members of the development
group had PL/1 experience.

V. HOW PL/1 WAS USED

This section records those features of PL/1 used most extensively in
the development of XPF.

External variables were used to store relatively small amounts of
data needed throughout XPF execution. Since the external variables
were located primarily in the root segment of the load module, their
use in intermodule communication aided in segmentation and structur-
ing of the overlay tree.

Static storage was used extensively to take advantage of what would
have been dead space in the short legs of the overlay tree. The judicious
use of static storage minimized the amount of memory required for
execution. Static variables require special attention in an overlay en-
vironment. Every time a segment is brought into memory, each static
variable is reinitialized, but in subsequent calls to the segment that
do not require overlay, the variables retain their current values.

Three types of i/o were utilized. Stream -oriented i/o was used for
printed listings and debugging output. Sequential -record -oriented i/o
was used for intermediate files for communicating between, at most,
two modules. The TITLE option was used with these files to allow
many modules to utilize the same disc area, thereby reducing overall
resource requirements. Regional I update files were used to satisfy
global communication requirements, e.g., paging of data and storage
of object and bound units.

Area variables were utilized by many modules. Each record entered
into the update files consisted of a single area variable. Individual data
entries were allocated within the area and entry addresses assigned.
The use of areas avoided excessive i/o by allowing large amounts of
data to be stored on a single record. The utilization of PL/1 area
management greatly reduced the amount of user -supplied code neces-
sary for record formatting and control mechanisms.
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In the shorter legs of the overlay tree, area variables declared with
the static attribute were employed, realizing the advantages described
earlier.

Based variables were used extensively, especially in the areas of i/o.
Based structures were declared in the calling programs, and file
managers returned pointers to the requested items.

List processing was a major requirement in XPF design. Frequent
sorts of these lists were required. The use of linked lists prevented
excessive data movement during sorts, since only the pointers needed
to be modified to change the order of the tables.

The bit handling features of PL/1, an important aspect of the decision
to use this language, were used extensively. Since the cLc uses ASCII
character representation, characters had to be interpreted as bit strings.

Label arrays were utilized in command processing. Since many
commands contained common keywords and fields, processing was
broken down to that level. Keywords and fields were interpreted and
assigned number values that were used as indices into label arrays for
keyword processing.

The PL/1 preprocessor played an important role in XPF development.
Preprocessor statements and procedures were placed on a file that
was accessed via "% INCLUDE" by all procedures. Four key functions
were performed by the preprocessor :

(i) Declarations of global data such as external variables and
based variables used in i/o were stored on the file and brought
into each procedure that utilized them. This assured identical
variable declarations throughout XPF.

(ii) Declarations of utility and file manager entry points and their
associated parameter attributes were also placed on the file.
This helped assure the consistency of parameters passed to
these subroutines.

(iii) Certain constants such as area sizes, array dimensions, and
conversion constants were subject to frequent change while
optimal values were being ascertained. Programs referencing
these constants did so via preprocessor variables. When modifi-
cations were necessary, the values of the preprocessor variables
were changed on the file and the referencing programs were
recompiled.

(iv) Preprocessor procedures were provided for frequently used
in -line code.

VI. HOW ASSEMBLY LANGUAGE WAS USED

While 5 percent of the subroutines in XPF are written in assembly
language, these amount to less than 0.2 percent of the total number
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of machine instructions. Assembly language subroutines fell into two
categories : data conversion subroutines originally written in PL/1 and
recoded in assembly language for reasons of storage economy or effici-
ency, and subroutines written in assembly language to provide facilities
not directly available in PL/1.

An example of the first is a TRANSLATE function that converts ASCII
to EBCDIC, and vice versa. This function was not supported in PL/1
Version 4. By recoding in assembly language, a 20 -K -byte subroutine
was reduced to 500 bytes and made much faster.

An example of the second is a routine to access a partitioned data
set of twenty or so members. Had this routine been written in PL/1,
one DD card for each member of the data set would have been required.

VII. MAJOR PROBLEMS ENCOUNTERED

The most serious problem encountered during development was an
obscure but critical bug in object code generated by PL/1 Version 4
that became important when a new computer with a larger memory
was installed. XPF would ABEND if loaded in the upper third of memory
because of bad code generated for bit -string operations. This made it
necessary to convert XPF to Version 5 of PL/1. Incompatibility between
these versions required complete recompilation and some recoding. Six
weeks of effort were required to complete the conversion.

Another major problem was directly related to this conversion.
Half -word storage, implemented in Version 5, caused structure align-
ments to be altered. Since boundary alignments were not required on
the development computer, some problems were not detected. It was
later discovered that XPF would not work on certain models of the
IBM System 360. The most expedient method of correcting the prob-
lem was to declare the offending structures unaligned. Portability of
XPF could probably have been ensured in advance by constantly being
aware of the consequences of PL/1 defaults.

The XPF execution problem causing the most impact was excessive
i/o usage generated by the os overlay manager and not by PL/1.
Dramatic reduction in load module accesses was accomplished by
overlay restructuring.

VIII. LESSONS LEARNED

In addition to the initial decision to use PL/1, throughout the develop-
ment of XPF many design and implementation decisions concerning
the use of PL/1 were made. Some of these proved to be sound, and
others had unfortunate results. This section deals with the results of
these decisions.

The extensive use of the PL/1 preprocessor proved to be an excellent
control mechanism. The inclusion of macros, entry point declarations,
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and global variable declarations via preprocessor procedures greatly
facilitated intermodule communication. This standardization guar-
anteed the integrity of interfaces.

As originally expected, the liberal use of PL/1 debugging aids was an
invaluable development tool. The large number of logic errors de-
tected through ON conditions such as SUBSCRIPTRANGE and STRING -
RANGE underlines the value of their use.

PL/1 provides no debugging aids for pointer variables, used ex-
tensively in XPF, so it was frequently necessary to examine a dump to
ascertain the exact nature of a problem. Since no error control phi-
losophy within XPF had been established, dumps could not be produced
at will. A global error control mechanism was instituted. By placing a
single ON ERROR block in the main procedure and removing them from
lower -level subroutines, the problem of inappropriate or inadequate
response by these subroutines was eliminated.

No global coding conventions were established at the beginning of
the project. This resulted in various methods of implementation of the
same basic requirements, some of which were more efficient than
others. A subset of PL/1 should be extracted that is most efficient for the
particular application. Programmers should be warned to avoid certain
implementation methods and encouraged to use other more efficient
ones.

Since XPF was required to execute in a 400-K region (the maximum
size for an express run), the use of small independent subroutines that
could be overlaid was encouraged. In the longer legs of the overlay
tree, this philosophy proved valid. However, in the shorter legs of the
tree, this introduced unnecessary inefficiencies because of operating
system overhead. The increased use of static storage in the shorter
legs decreased the effect, but the use of fewer subroutines would have
been more efficient.

The use of assembly language subroutines, though dictated by
reasons of efficiency and necessity, presents some disadvantages. Since
parameter definition is compiler -dependent, assembly language sub-
routines must be coded to meet the parameter passing standards and
conventions of a specific compiler. In PL/1 these proved even more
limiting since assembly language subroutines must be coded for a
specific version of the compiler. When such subroutines are utilized,
this dependency on a particular version of a compiler should be ex-
plicitly documented.

The assembly language complications are the most obvious of the
compiler dependency problems. However, as noted previously, incom-
patible compiler versions, the resulting recompilations required, and
possible machine -dependent errors are also problems. Unless a private,
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unchanging compiler is used, time must be reserved in the develop-
ment schedule for this type of updating activity.

IX. DISCUSSION

Flexibility was one key factor in the decision to use a high-level
language, and it proved to be one of the primary assets of the develop-
ment technique. Since XPF was written in PL/1, it could be fine-tuned
with less effort than if it were written in assembly language. Sections
of code could be rewritten in a relatively short period of time. This
made it feasible to experiment with implementation methods until
optimal code was produced.

One benefit of development in PL/1 that was not considered in the
original decision was the ease with which transfer of responsibility is
accomplished. Partial turnover of personnel occurred throughout the
project. The transfer of code responsibility to new personnel was ac-
complished very smoothly with no apparent decrease in productivity.
Since PL/1 can be largely self -documenting through the use of mean-
ingful variable names and standard operation symbols, it is easy to
read and understand. This ease of understanding was the primary
reason for the smooth personnel transitions.

Perhaps the most important advantage of developing a system in
a high-level language is that the compiler provides area management,
storage allocation, error control, data access, and i/o interfaces. The

requirements of the system.

APPENDIX

Over a period of two years (by Release 8), XPF grew to approximately
32,000 PL/1 plus assembly -language statements. Almost all the

Table I - Comparative productivity, Release 9

SNX Assembler CLC Simulator XPF

Total no. of subroutines 72 90 231
Total no. of source statements 69,788 63,737 34,344
No. of subroutines added or

changed 40 30 84
Percent of total subroutines 55.5 37.7 36.3
No. of source statements added

or changed 3,286 2,336 7,342
Percent of total source

statements 4.7 3.6 21.3
Man -months programmer,

management, librarian 23.5 10.5 37.0
Statements per man -month 140 222 198
Man -months, programmers only 18.4 9.0 30.0
Statements per man -month 177 259 244
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changes for each release were planned increases in capability, although
some, of course, were fixes for bugs. The total effort to produce the
first eight releases, debugged and tested, was 222 man -months. The
average productivity over this time is therefore about 140 statements
per man -month.

Table I compares Release 9 of XPF to the corresponding releases of
the SNX assembler and the cLc simulator, both written in assembly
language. The simulator was a considerably easier task than XPF for
this release because the simulator was only receiving maintenance,
while 21.3 percent of XPF was rewritten to add major new capabilities.
Nevertheless, the total number of machine instructions produced (per
man -month) by the XPF group was greater because they were coding
in PL/1, whereas the assembler and simulator groups were coding in
itssembly language.
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In evaluating and certifying the SAFEGUARD ABM system, it was neces-
sary to interrogate and analyze the massive volume of data generated during
tests. The number of different reports, listings, and plots was so large and
the variety so great that a flexible data reduction system had to be placed
at the disposal of the user community. At the same time, the system had
to be highly efficient and quickly available to be used at all. The SAFE-
GUARD Data Reduction System was designed to accomplish these objectives.

I. INTRODUCTION

Since any operational system must be tested, certified, and evalu-
ated, provision of the means for doing so must be part of its design.
The first step in certifying that a process is performing as specified
is the recording of certain significant data during test runs. These data
must be reduced and presented in a variety of ways. The SAFEGUARD
Data Reduction System (sDRs) fills this role by providing a flexible
and highly efficient facility to serve the needs of the test teams.

The fundamental capabilities of SDRS had to be available when the
testing began. The design for the real-time recording programs and
the data reduction programs had to be coordinated, since the recording
program serves as input to the reduction program. Short reduction
program development schedules made necessary the use of certain
preexisting designs and code, which had to be worked into the result-
ing system without compromising the other requirements. To accom-
plish this, a number of deliveries were planned, starting with the
simplest and most basic features. Users who tried the first system were
able to give SDRS designers useful feedback for future deliveries.

This paper discusses the experience gained in formulating require-
ments, organizing the program, developing the facility, and interacting
with users.
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II. REQUIREMENTS FOR THE SAFEGUARD DATA REDUCTION SYSTEM

To test, certify, and evaluate the behavior of a SAFEGUARD pro-
cess, it is necessary to record data from memory during the real-
time execution of the process. Debugging and integrating can con-
ceivably be accomplished by stopping the process and taking post-
mortem memory dumps, but this destroys the real-time sequence of

events. Since the SAFEGUARD processes contain hundreds of thousands
of lines of code, testing would be exceedingly cumbersome if it were
necessary to stop the test to record data. Because calls to the recording
subroutine are planned for and remain always in the code, a wealth
of internal data can be recorded without disturbing the real-time be-
havior of the process. Recording occupies some CPU time but, aside
from this effect, the process performs in the same way whether or not
recording occurs. Real-time recording is essential for a practical testing
program.

2.1 Requirements for recording

Thousands of events for which data might be taken occur during a
test. The specific data needed depend on the purpose of the test. The
cLc operating system' allows the applications process to record up to
100,000 32 -bit words of data per second, as many as eight reels of tape
during a 16 -minute test.

Unless care is taken in recording design, even this large capacity
can be exceeded. Designers tend to do more recording than is needed.
This happens because the recording decision must be made long before
testing begins. By recording almost everything, designers protect
against overlooking some data items that may be wanted. As a result,
a burden is placed on data reduction to select from a large mass of data
only those items the user needs.

The data as recorded by the cLc operating system are organized
into physical records of variable length. Each physical record contains
a header and one or more logical records. The header preceding each
logical record categorizes the data to follow. Records of one type
would contain the most common and essential items, while records of

another type might contain more voluminous data.

2.2 SDRS requirements

Consideration of the content, structure, and volume of the input
and the expected use for the output dictate requirements for the data
reduction system. Very large quantities of data are recorded from
over 1000 different data sets.

Many data structures are implemented in the processes, but four
typical ones were selected for processing by SDRS. Many more com-
plicated structures, if properly recorded, can be handled by SDRS.
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To be correctly interpreted by SDRS, the physical attributes (floating
point, integer, etc.) of each item of recorded data must be defined.
Since a majority of these items must also be defined for CENTRAN
compilations, SDRS avoids possible incompatibilities by accessing the
CENTRAN declarations.

To reduce data items not defined in CENTRAN and to allow quick
response to patches in the cLc applications processes, SDRS also pro-
vides utilities to define and modify attributes. Experience with earlier
data reduction systems, which provided only manual methods of data
attribute definition, led to the requirement for both automated and
manual methods.

There is a need to format the data so that they may be interpreted
with ease. Some factors to be considered are discussed here.

Ease of interpretation of the recorded data requires that methods
be supplied for selection of only the necessary subset of the data for
presentation. This allows the user to generate exception reports and
summaries rather than printing or plotting every data value.

Raw data may be recorded in one form, but they may be much more
useful in another. Presentation in engineering units is often helpful.
User -defined computations can be made by SDRS to facilitate evalua-
tion of data.

In some cases, related data are scattered over a series of records
and even over a series of tapes. The difficult task of correlation is per-
formed by a file handler that can associate data for a user.

Some forms of presenting data are more useful than others. Since
it is impossible to predict what particular listing or plotting form will
best serve a given user, the users need the ability to format their own
reports for presentation. Specifically, the users choose from among
four basic ways to present data : formatted reports, tabular listings,
line and point plots, and histograms. Users specify titles, subtitles,
column headings, plotting axes, and scaling parameters for plots.

To gain user acceptance, SDRS (which is not a real-time facility)
had to provide features that could satisfy quick turnaround time re-
quirements with minimum effort.

Since most users developed their requirements as they began testing,
SDRS had to provide users with plots and tabular listings which they
could then easily modify to suit their later needs. SDRS provides users
with a high-level command language in which to specify more com-
plicated reduction requirements. Sufficient default conditions are
supplied so that a simple set of user commands will result in a listing
of all data items in a logical record.

One group of five users designed 737 tabular listings and reports in
12 months, averaging 12 per man -week. The elapsed time to get a
simple tabular listing to work was about two days.
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Because thousands of corrections had to be made to applications
processes, there was a premium on quick turnaround time in processing
the recording tapes. Since many testing teams submitted reduction
runs simultaneously, it was essential that SDRS process a large volume
of records efficiently.

It would be possible to reduce data on the cLc (this will be done
during the post -installation and test phase). However, the cLc instal-
lations are limited in number, and time on the cLc is normally devoted
to testing. Therefore, a decision was made early that data reduction
should be done off-line on commercially available computers. Testing
is performed for SAFEGUARD in several locations. In each of these
locations, an off -1 ine computer of the IBM 360/370 series is used for
data reduction. The decision to use an off-line facility was correct.
Time on the test machine is limited and is in much demand for the
primary testing task.

A facility such as SDRS cannot be developed with all capabilities
operational at the time an initial capability is needed by users. The
designer can capitalize on this. If he designs a modular system and an
open-ended user command language, he can first deliver a simple sys-
tem. Feedback after the users have tried the first system can improve
the design of later extensions. In fact, while users were presented with
a proposal for SDRS and were invited to give their comments, most
suggestions were obtained only after the first version of the system
was working.

2.3 What was learned in setting requirements

The needs of users with a great many reduction requests to main-
tain were not foreseen. Since SDRS made it easy to request a large
number of different reductions, the administration of requests re-
quired automation. One user group, supporting a single process inte-
gration, generated over 7000 SDRS statements. User groups usually
solved this problem by developing their own administrative programs.

It was important to restrict users to one specific command language
to give them the ability to turn out data reduction requests quickly.
Some users, familiar with FORTRAN or PL/1, undoubtedly would have
liked full control over program execution and the use of data types
available in those languages. Restricting the number of data types
supported increased the speed with which the system was developed.

III. SYSTEM ORGANIZATION

3.1 Design considerations

The development of a system organization and design philosophy
for SDRS was influenced by a variety of factors. These included user
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requirements, schedule constraints, experience of the designers, and
successes and failures of earlier systems.

The designs of several previous data retrieval and analysis systems
were analyzed to determine their applicability to the system require-
ments. This analysis uncovered serious shortcomings in most of these
systems for the high data volume requirements of SAFEGUARD; how-
ever, several common strong points were noted in each.

A general solution to the data correlation problem was attempted
with the Mission Data Reduction (luDR) system, which was developed
for use in the Meek test system. The significant features of this system
were a command language user interface, general data sorting capa-
bilities, general data conversion capabilities, and data presentation
capabilities in the form of reports, plots, and tabular listings. The
major shortcomings of MDR were its complete dependence upon sorted
data to produce any output as well as a requirement to convert all
data before selecting the subset of interest. Both these characteristics
introduced exorbitant overhead for sequential processing.

A more specific approach to the problem was used in the systems
that were successors to MDR. These systems added a data attribute
dictionary, an efficient sequential -file data extractor, and specific
data correlation capabilities in the form of special-purpose subroutines
to the basic capabilities of UDR. The major shortcomings of these
systems were limited selectivity during the extraction phase, a re-
quirement to convert a large percentage of the total data before select-
ing the subset of interest, and limited file generation capabilities that
required many passes over the raw data to extract all data of interest.
An additional shortcoming was a dependence upon manual main-
tenance methods for the data attribute dictionaries.

A common factor in each of these systems was uncovered : The
designers had little or no control over the format of the data files
that they were required to process. In general, the files were written
without regard to the eventual processing and correlation requirements.
With few exceptions, these characteristics of the data to be processed
introduced a great deal of complexity and overhead into the systems.

Once it had been determined that none of the available systems
would meet the requirements adequately, a design was proposed that
would provide an initial capability with incremental growth potential.
The user community required delivery of the first release within nine
months and incremental releases at two -month intervals.

To meet these schedules, it was necessary to achieve a balance be-
tween the development of new programs and the adaptation of existing
programs. The advantages of short development time offered by use
of existing programs had to be weighed against their extendibility,
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flexibility, and maintainability. In addition, the efficiency requirements
for the data presentation capabilities had to be considered.

The requirements obtained from the user community were analyzed
to determine possible commonality. An attempt was made to deter-
mine the general characteristics of the data that would be generated
by the users. An estimate of the probable volume of data to be gen-
erated by these users was also made.

All users requested the same basic capabilities. These included
printing reports in a variety of forms, correlating and sorting data on
a variety of criteria, plotting data, and specifying the conditions under
which this processing was to be done. The large number of special
processing requests made it obvious that the development of a general-
purpose facility was necessary.

3.2 Basic functional components

The system consists of four basic functional components as in-
dicated in Fig. 1:

(i) The data attribute definition component defines the charac-
teristics of data items by examining their CENTRAN declarations.

(ii) The sequential data base retrieval component provides data
collection, selection, and presentation capabilities for sequen-
tially organized data files.

(iii) The hierarchical data base generation component allows the
relatively efficient creation of direct access data files.

(iv) The hierarchical data base retrieval component provides data
collection and selection capabilities as well as sequential data
base generation capabilities for direct access data files.

3.3 Lessons learned

The overall efficiency of SDRS is difficult to measure since the users
of the system specify what the system must process. This introduces
into the evaluation of SDRS performance such factors as user expertise,
user knowledge of data characteristics, and user analysis of needs.
Several design decisions were made to minimize the impact of these
factors on system performance.

Provision of methods for the user to perform many data presenta-
tion operations on a single data retrieval pass was the primary charac-
teristic of the design that provided efficient processing capabilities.
This approach, although somewhat obvious for processing sequential
data bases, is equally applicable to the processing of direct -access
data bases. This is true because minimization of the number of times
data are retrieved will minimize elapsed time and system overhead.
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Structured data recording makes it feasible to develop a simple
efficient data -filtering algorithm. This algorithm enables SDRS to dis-
card all records not requested by a user by interrogating fields in the
header and ignoring all data in the record.

Limiting the number of data structures supported makes it feasible
to design algorithms that extract and convert a minimum amount of
data. Minimizing the number of data conversions was especially critical
in the sequential data base retrieval module because of the large volume
of data. In this module, data conversion is delayed until after all user
conditions had been satisfied.

Assembly language was used in coding those critical paths of the
system that would process large volumes of data. The extra time re-
quired to develop these programs was offset by the increased efficiency
derived from this approach.

IV. DEVELOPMENT CONSIDERATIONS

The development of SDRS and the delivery of the system to the user
community with capabilities consistent with the requirements were
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accomplished on short schedules. Several development procedures and
techniques were used by the design group that may be applicable to
other development efforts faced with similar problems.

The critical need of many users for a simple data -printing capability
was the basis for the design of the first release of SDRS. This release
consisted of the basic versions of the data attribute definition com-
ponent and the sequential data base retrieval component.

Although simple from a user capability point of view, this initial
release of the system was designed to be extendible. Emphasis was
placed on development of a design that would allow inclusion of addi-
tional processing capabilities without major perturbations.

The development of an outline for further functional capabilities
was begun in parallel with the development of the initial system. This
outline served as a vehicle for planning capability development and
delivery.

Formal design specifications for each system component were not
written. However, detailed interface specifications were developed.
This made it possible for individual routines to be designed in parallel.

The development of SDRS on schedule would not have been possible
without the use of a time-sharing system. Although time sharing is
relatively expensive, development times can be minimized when rapid
correction of troubles and extensive testing are required.

The size of the system required that extensive testing be done to
verify system performance. Although testing is possible in a batch
environment, the effectiveness of the system test team was greatly
enhanced by the availability of immediate test results and on-line de-
bugging capabilities.

V. USER INTERACTION

Before SDRS was designed, users were asked to submit their require-
ments. The SDRS design group then proposed to users an initial set
of requirements. Only after the initial release was meaningful user
feedback received. Whenever possible, suggested improvements were
incorporated into subsequent versions.

A system as complicated as SDRS requires user education. Two
methods were used for this purpose : A user's manual was written and
counselors were provided. The role of the counselors was to teach cor-
rect and efficient SDRS use and to collect feedback for improvements.

The final service to users is proper test and maintenance of the
system. Users were not asked to be guinea pigs. They were allowed
to try a new SDRS only after a complete set of tests were run. During
two years of use, only Si troubles were encountered in 105,000 lines
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of source. Because of the error messages and the modularity of the
system, it was easy to identify and fix problems.

Total effort expended in user services has been 18 percent of the
manpower of the SDRS group. This is considered a minimum effective
support level.

VI. CONCLUSION

The primary lesson learned from the development of SDRS is that
user data base design is critical. Recording and reduction efficiency
is achieved by designing data bases to minimize the requirement for
further correlation and restructuring.

The real achievement of SDRS lies in simultaneously accomplishing
the objectives of flexibility and efficiency. Many systems attain one
goal or the other : SDRS attempted to do both. Two design decisions
contributed to the success of this effort. First, recorded data not
wanted by the user are ignored by the system. Second, once data are
retrieved, they are processed in as many ways as needed.
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"Bird-dogging" is the process of tracking down computer center users
who are either having problems and therefore are not getting their job done
or who are using a disproportionate share of the computer's resources.
Analysis of utilization data for the SAFEGUARD support computer centers
has shown that the problems caused by these users can be of alarming
magnitude, leading some observers to believe that bird-dogging is the single
most effective system performance tuning activity that can be performed.

scheduling and
effective cost control. This paper discusses the methods now used to identify
problem users and some experiences gained from the effort.

I. INTRODUCTION

This paper describes the function of bird-dogging as the main tool
for achieving the most efficient use of the computer. Specifically,
through analysis of computer utilization data (which may be sampled
on a daily, weekly, or monthly basis), the use of computer center re-
sources and the problems of its users are monitored in detail. This is
followed as needed with a program of counseling. The purpose of
counseling is to better educate computer users to employ effectively
the computing resources available to them (hardware, operating sys-
tem, and application software). Counseling also provides feedback to
the designers of application software to allow implementation of de-
signs that would permit better utilization of the hardware and operat-
ing system features.

Some segments of the bird-dogging campaign are conducted on a
daily basis for short-term gains, and other segments take the form of
more extensive investigations yielding long-range gains. The latter
activity more closely approximates the traditional system tuning.
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Bird-dogging has been actively supported at several project support
computer centers since the fall of 1971. Manpower allotment during
this period is estimated to be two or three full-time technical staff
members at each location. This total includes manpower employed
to develop programs for automated report generation.

II. WHY BIRD-DOG?

Although many installations are committed to ongoing efforts in
the traditional areas of systems performance analysis, few are engaged
in bird-dogging campaigns. Why, then, are the SAFEGUARD project
centers actively supporting this activity? There are two main reasons :
schedule reliability and cost control.

First, schedule reliability. During the years of developing the
system's software, timely completion of the hundreds of interlocking
software modules has been critical for project delivery. It has been
imperative, therefore, that everyone, even the below -average pro-
grammer, complete his or her responsibilities on time and successfully.
To increase confidence in meeting project schedules, those who are
unable to make it on their own must be helped.

Second, cost control. Bird-dogging helps reduce costs through short-
term immediate benefits and long-range improvements. For example,
bird-dogging usually produces immediate benefits by reducing the
resubmittal rates of "problem" programs, which increases the turn-
around potential of other programs competing for the limited comput-
ing resources.

In the long run, for example, many users having similar problems
may reveal that the documentation of how to use a particular feature
is inadequate. Following through on individual problems to gain in-
sight into underlying causes is often worthwhile and carries consider-
able long-range benefit.

III. UTILIZATION DATA

To permit monitoring the center's users, several types of utilization
data are obtained from a series of automated reports and other sources.

3.1 Automated reports

The bulk of bird-dogging data is generated by several special-
purpose report programs developed by project personnel. Most of
these programs use the System Management Facilities (smF)* data
as input. A brief description of each report and its use follows.

* smr is an optional feature of the Operating System (os) (Ref. 1), which collects
system, job -management, and data -management information.
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The stat (statistics) card report shows detailed accounting informa-
tion about each job run on the computer, sorted by supervisory group
and department. Information such as CPU time, lines printed, region
size, disc and tape setups, read -in time, and purge time are shown for
each job processed. This report is produced and examined daily and
gives indications of overall throughput, average turnaround, distribu-
tion of work among departments, and unusual jobs. It also provides a
reference for the day's activities.

The abnormal end (ABEND) report provides data about each job
that aborts. Information such as failure code, programmer name, job
name, and CPU time is provided. These data are also printed and
examined daily to give indications of particular users who consistently
have problems, specific programs that frequently fail, and repeated
ABEND codes that may be symptomatic of system problems.

The usage report provides detailed characteristics of the high-usage
programs executed by each department. It also shows a rank order
list of these high -usage programs. These data are used to pinpoint
programs to be considered for performance analysis and improvement,
as well as to pinpoint possible inefficient or unusual use of a program
by a particular department.

The high -resource report and the exception report highlight users
whose jobs exhibited certain high -resource characteristics such as ex-
ceptionally long turnaround time, extended use of central processor
time, great volume of printed output, very large use of core memory,
and utilization of several setup devices, or those jobs that experience
a job control language error after significant expense of resources.

3.2 Other sources of data

In addition to the various automated report programs that provide
utilization data, there are several other important sources of bird-
dogging data. Direct problem program monitoring and feedback from
operations personnel are the two most significant sources.

Program monitoring is achieved through use of a proprietary soft-
ware monitor that provides valuable execution profiles of user pro-
grams. Several monitors are on the market ; the project centers are
using Boole and Babbage's Program Evaluator (PPE).2 Experience to
date indicates PPE is easy to use, well documented, and consistently
helpful in providing areas for program performance improvements.
PPE indicates where and how the monitored program spends its time
and how compute -limited or input/output -limited the program is. The
effects of subsequent improvements to the program are readily ap-
parent by remonitoring.
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Operations personnel can provide valuable bird-dogging data. In
many cases, user problems may not appear in the automated reports,
or problems do appear but their magnitude is hidden.

IV. CASE STUDIES

This section presents several cases that typify many of the long-
range studies undertaken as a result of the analysis of weekly and
monthly computer utilization data.

4.1 Study 1

For a period of several months, the types and frequencies of ABENDs
at the computer centers were investigated. It was found that 15 to
20 percent of all jobs submitted eventually ABENDed and 25 to 30
percent of the total Central Processing Unit (cpu) time was spent
executing these jobs. The ABENDs were grouped into four categories :

(i) Those that were a result of insufficient estimates of the com-
puter resources required by the job (resources include CPU
time, memory; and i/o estimates).

(ii) Those that reflected problems of a data base nature.
(iii) Those that resulted from a program check condition.
(iv) Those that were symptomatic of a hardware malfunction.

The most striking observation from this study was that the inability
of users to correctly estimate the computer resources required for their
job appeared to be by far the biggest obstacle to successful job execu-
tion. As a result of this and other related studies :

(i) The support software user manuals were revised to include
algorithms for estimating required computer resources.

(ii) Modifications were implemented to os that allowed selected
critical modules to complete execution even though the actual
CPU time consumed has exceeded the programmer's estimate.

As a corollary to the problem of insufficient estimates, system per-
formance was often degraded by serious overestimation. An educa-
tional campaign was initiated by distributing to all project program-
mers an informational bulletin that clarified the specification of job
and of job step region parameters.

Because of the changing nature of the project and its computation
requirements and the scattered implementation of study recommenda-
tions, objective measurements of subsequent improvements have not
as yet been attempted.
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4.2 Study 2

The usage report indicated heavy use by one department of a
"home-grown" data reduction routine. By revising the program only
slightly, CPU time was dropped from 110 to 8 seconds per execution.

4.3 Study 3

Analysis of the execution profile for the CENTRAN compiler demon-
strated that a much higher than average number of accesses to the
CENTRAN symbol tables were required during the compilation of large
programs with certain characteristics. By specifying additional core
memory in the region size over the default, overall resource require-
ments were reduced (and, hence, cost to process the job was reduced).

Detailed data for each CENTRAN compilation were available through
the automated reports. The 75 programmers who were responsible for
programs with exceptional characteristics were contacted over a period
of several months and were requested to allocate additional memory
for their compiles. Most individuals complied and experienced a de-
crease of turnaround time (by reduced elapsed time), with an attendant
system cost reduction.

4.4 Study 4

The exception report provided a list of jobs requiring high resource
use. With the cooperation of the users, these jobs were scheduled for
evening or weekend shifts. Rescheduling of these jobs eliminated them
from competition with other jobs for limited prime -shift computing
resources.

4.5 Study 5

It was observed by operations personnel, and later confirmed by
examination of reports that correlated turnaround time and resource
usage, that certain users were taking advantage of a loophole in the
computer centers' job -scheduling algorithm. The slightly higher priority
assigned by the algorithm to jobs requiring a setup led to the sub-
mittal of jobs with unneeded setups. A job -scheduling adjustment cor-
rected the problem.

4.6 Study 6

The usage report indicated that the SAFEGUARD Data Reduction
SYSTEM (sDRs) was the largest single user of CPU resources, consuming
20 to 30 percent of all CPU time. Analysis of the facility with PPE

indicated that much of this time was spent communicating with the
operating system. Interrupt recovery capabilities were provided for
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each type of input data. These required many different recovery
routines that necessitated specifying different interrupt exit addresses
to os many times. The same capabilities were preserved by some
minor restructuring of the program and the addition of logic to deter-
mine the appropriate interrupt recovery. Post -modification bench -
marking revealed an average 60 -percent savings of CPU time for this
program.

V. CONCLUSIONS

It is the belief of the project centers that bird-dogging is the single

most effective tuning activity that can be performed. Bird-dogging is
an integral component in reliable project scheduling and effective
cost control. As in other areas of system tuning, although the fruits
of individual events and incidents seem indisputable, the successes
(or failures) of bird-dogging can seldom be proven objectively by
quantitative measure. Justification, therefore, remains mostly in the
subjective domain.

The bird-dogging effort has been hindered by design errors and
limitations in the SMF portion of the operating system and by the lack
of commercially available SMF data reduction systems suitable for
project needs.* Hence, considerable manpower was expended in de-
veloping a series of automated report programs.

The computer centers have found a software monitor, in this case
Boole and Babbage's PPE, helpful in providing data for program per-
formance improvement. Every bird-dogger should have something of
this sort available.

The ultimate success of any bird-dogging program depends heavily
upon the degree of cooperation received from the user community and
its management. Care should be taken from the outset to present sug-
gestions and criticism in a positive manner. Helping users to help
themselves will contribute to improved confidence in meeting schedules
and to lower computer center costs.
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This paper describes a type of flowchart review used as a program-
development technique in which each programmer is required to give a
box -by -box explanation of a detailed flowchart of his program to a small
group of critical colleagues. Such reviews appear to have caught all the
major software design errors before the code was written. It also cut the
software -development time by at least 25 percent, representing a return of
at least 10:1 in terms of software -development time saved as a result of
the week of the group's time spent in the flowchart review sessions.

I. INTRODUCTION

This paper describes a program -development technique used in the
programming of the sensor (i.e., radar) control portion of the early -1973
release of the software used in the Meck test system. For this release,
the sensor control was completely redesigned and reprogrammed. Re-
programming provided an opportunity to experiment with techniques
in program development. Of the techniques that were tried, "flowchart
reviews" had the largest effect on the development effort.

II. BACKGROUND

Sensor control serves as the software interface between the Central
Logic and Control computer and the phased -array Missile Site Radar
(MsR) at the Meck Island test site of Kwajalein Atoll in the central
Pacific. The most complex job done by sensor control is to resolve
conflicting requests for radar usage, e.g., target search and target track.
This is accomplished by changing the time at which one of the requested
MSR transmit/receive order pairs is executed by an amount small
enough not to degrade the validity of the resulting data. Since it is
naturally desirable to obtain the maximum amount of data from the
radar, the rules for performing this radar -order -conflict resolution are
inherently complex. The memorandum analyzing these rules is about
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100 pages and demonstrates that the resulting radar -order -conflict -
resolution algorithm meets all the system requirements.

As the test missions at Meek Island became more complex, they
began to strain the original version of sensor control. There were
problems in program execution time and also in the limitations of the
radar -order -conflict -resolution algorithm designed into the original
version. It was therefore decided that sensor control would be re-
written, essentially from scratch, using a new data structure and an
improved conflict -resolution algorithm.

The development of the new sensor control required about six man-
years of work, including algorithm design and analysis but excluding
any detailed documentation that might be written in the future. For
reasons that are mainly historical and beyond the control of the
sensor control group, the programming was done in assembly language.
Every few tenths of a millisecond of execution time was important.
The new sensor control requires about 5000 lines of assembly language
code (plus a somewhat larger number of comment lines) and executes
in about half the processor time (about 1.5 to 2 ms) of the old sensor
control.

III. THE PROCESS OF FLOWCHART REVIEW

During the reprogramming of sensor control, flowchart reviews were
used to find
the code was written. As a sensor control group policy, before coding
was started, the programmer wrote very detailed flowcharts and data -
set layouts.* The flowcharts were to be sufficiently detailed that, given
the flowchart, coding the routines would be almost a mechanical
process. In particular, every decision point and all possible branches of
control were to be shown. On the average, there were fewer than a half -
dozen lines of code per flowchart box. The data -set layouts were in
complete detail, i.e., down to the level of the bit. Given these layouts,
coding the data sets was strictly mechanical. There were no specific
format requirements for the flowcharts and data -set layouts except
that they be easy to read.

As soon as the flowchart and data -set layouts for an area were com-
plete, a review meeting was held. These review meetings were always
attended by the group supervisor and several group members. Those
group members specially knowledgeable in the area covered in a par-
ticular flowchart review were specifically asked to attend. Other mem-

A "data -set layout" is a pictorial representation of the structure of a data area.
Fields within memory locations are shown left to right across the page and con-
secutive memory locations are shown top to bottom down the page.
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bers of the group were encouraged to attend. Flowchart reviews were
also open to anyone else who was interested but, in practice, no one
outside the group chose to attend. Except for the supervisor, people
attending had either given flowchart reviews themselves or were
scheduled to give them. The programmer whose flowchart was being
reviewed, therefore, had a technically critical, but sympathetic,
audience. Although the discussion of technical alternatives sometimes
grew quite spirited, criticism of a programmer's design was never
sarcastic and there was no gloating when an error was discovered.

At the beginning of each review meeting, copies of the flowchart and
data -set layouts were passed out to all participants. Copies were not
passed out ahead of time, nor were they later given to anyone who
missed the review, primarily because it was unlikely that they would
be read.

Usually the programmer began the flowchart review by giving a
brief overview of how his code was structured. No high-level flowcharts
were used. However, it proved quite easy for a programmer to point
out what sections of his detailed flowchart represented what major
functions and, in effect, to create a high-level flowchart in the course
of the discussion. If the data -set structure used by his program was at
all complex, the programmer usually gave a summary of the data
structure at this point, leaving the definition of the specific fields for
later. Occasionally, there was some discussion of alternative data
structures at this point. Usually, however, any alternatives to the data
structure designed by the programmer were suggested during the de-
tailed discussion of the flowchart. This was probably because the func-
tional structure of the data base had been one of the earliest decisions
made and was a basis for an improved radar -order -conflict -resolution
algorithm.

After this overview had been completed, the programmer explained
his flowchart in detail. This explanation consisted simply of starting
at the beginning and going through it box by box in the same order as
the code they represented would be executed. If the descriptive phrase
enclosed by a box was not self-explanatory, the programmer gave a
brief explanation of what the code would do. For a few more complex
algorithms, the programmer set up an example on the blackboard and
carried it through during the discussion of the flowchart. The flow-
charts were sufficiently detailed so that it was not necessary to describe
how the code represented by a box in the flowchart would do the
specified function; this was self-evident. However, it was often neces-
sary to stop after reviewing all the individual boxes associated with a
particular major function and to discuss whether the design represented
by the flowchart would in fact carry out the desired function for any
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valid input and retain sanity for all possible inputs passed to sensor
control. Also, the participants in the flowchart review interrupted the
programmer with a question or comment on the average of once for
every two to three boxes in the flowchart.

The participants in the flowchart review, although sympathetic,
were expected to take an aggressive "I'm from Missouri and you have
to prove it to me" attitude toward every assertion that the programmer
made. If the programmer said that a data field began at a particular
bit in a particular word, more than half the participants would turn
to their data -set layouts to verify that. If the programmer said that
the various inputs to a given internal subroutine could be divided into
three classes, the other participants would try to think of a fourth.
If the programmer said that the inputs from another module were in a
particular format, the person responsible for that module would be
asked to verify this. If it could not be verified on the spot, e.g., be-
cause the module owner was not present, it would be checked later.
This aggressive questioning of the programmer's every assumption by
his colleagues was undoubtedly the key to the success of these flow-
chart reviews. The programmer would sometimes catch a minor error,
e.g., branch conditions reversed for a decision point, as he explained his
flowchart to the group. However, the more significant problems were
almost invariably found by the other participants.

Discovery of many more significant problems found during these
flowchart reviews often resembled the way a lawyer sometimes (at
least, on television) finds a major flaw in a witness's story during cross-
examination. Instead of anyone at first noticing the basic problem with
the design, someone would notice a minor problem. Two or three
people, including the programmer responsible for the code, would then
propose obvious patches to the design to handle this special case. The
discussion of this minor problem would, however, have focused the
group's attention on that particular area of the design. During the
discussion of the best way to patch the design to handle this minor
problem, someone would notice a second problem. Now that the group
had seen two problems related to the same aspect of the design, com-
ments would come thick and fast, with interruptions every few sen-
tences. In a few minutes, this whole area of the design would be
thoroughly explored and any problems would be obvious. Often, the
person who noticed the second minor problem, and hence triggered
the discussion leading to the discovery of the basic problem, was neither
the person who noticed the first problem nor the programmer respon-
sible for the code.

Another interesting feature of these flowchart reviews is the way two
or three people, usually including the programmer responsible for the
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code, would occasionally seize the conversational initiative and draw
the group down a side path. These side paths would often explore an
alternative design in a manner not unlike a chess player exploring the
consequences of a particular move. One person would suggest a modifi-
cation to the original design ; a second person might suggest that if you
were going to make the first change, the design could then be improved
by changing another feature. Another person might then suggest a
third change, or might suggest that if you were already going far
enough to make the first two changes, you could go all the way, make a
certain change in one of the basic design assumptions and redo a
portion of the design. These side paths were particularly useful in
finding simplifications to the original design. In at least some cases, a
few minutes of discussion saved a few weeks of programming and unit
testing. In one area, the code used to recover from machine interrupts,
the side path led to a spirited technical argument extending through
several flowchart reviews and ultimately resulting in a design with
more capabilities than any initial proposal.

As a conclusion to this description of the process of flowchart review,
it is worth reemphasizing the importance of maintaining a matter-of-
fact and unemotional atmosphere. This is essential so that the program-
mer can accept his colleagues' aggressive questioning as just the rules
of the game. Viewed in that light, a flowchart review is just a form of
professional review that is part of the programmer's job as a technical
professional. A group of programmers meeting for a flowchart review
is then not unlike M.D.s holding a seminar to discuss a particular
patient's history and the treatment that is or was being given to him.
However, if a matter-of-fact atmosphere were not maintained, the
aggressive questioning in a flowchart review would be an intolerable
insult to the programmer's pride as a technical professional.

IV. RESULTS OF UTILIZING FLOWCHART REVIEW

About two dozen flowchart reviews, including repeats, were required
for all sensor control. Although the length of the flowchart reviews
varied considerably, they averaged about two hours. Since the entire
group often did not attend a flowchart review, two dozen two-hour
reviews amounted to slightly less than a week of the group's time. As
one would expect, the number of problems uncovered at the flowchart
reviews varied considerably. However, the average two-hour flowchart
review led to the discovery of about a dozen problems, varying in im-
portance from trivial to major. As a result of the reviews, several areas
of the new sensor control were redesigned essentially from scratch,
several areas were changed significantly, and no area was left un-
changed. Perhaps the best indication of the number of changes that
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resulted is the number of times that it was worthwhile to repeat the
review. In roughly half the cases, the first flowchart review led to
sufficiently extensive changes that a second review was held after the
design had been modified. Had all the errors uncovered in the flow-
chart reviews been found a few at a time as the code was written and
tested, it would easily have required at least several more months of
the entire group's time (equal to roughly one-third of the time actually
required) to complete the development of the new sensor control. Thus,
assuming that the programmers would write detailed flowcharts or do
some other form of detailed design for their own use, there was a return
of over 10:1 on the week's worth of the group's time spent in the
flowchart reviews. These calculations exclude the time saved in system
testing by delivering higher quality software, which probably exceeds
that saved during program development. The group responsible for
programming the target search and target track algorithms used in the
Meck test system has also used flowchart reviews like those used by
the sensor control group, with similar results.

Perhaps the most striking result of using flowchart reviews was that
all the major software design errors appear to have been caught during
the reviews, before the code was written. Excluding a few cases where
changes in the system requirements or the discovery of errors in engi-
neering assumptions used by the sensor control group forced some
redesign, the design was very stable after the completion of the flow-
chart review. This illustrates both one of the successful results of
flowchart reviews and one of the chief limitations found. If the func-
tional requirements and engineering algorithms remained stable, then
the software design remained stable after the flowchart review. How-
ever, the flowchart reviews were not very useful in protecting against
unexpected changes in system requirements or errors in clearly
articulated-but wrong-engineering assumptions made by the entire
group. Fortunately, there was only one case where this problem caused
a large amount of redesign, and in that case the redesign occurred
before any code had been written.

The use of flowchart reviews led to the discovery of two disad-
vantages that seem inherent in any such highly detailed review pro-
cedure. The first is that it involves too much detail to be useful during
the preliminary design stage. Sensor control was a modestly sized set
of programs designed by a small group whose desks were only a few
steps from each other. Thus, the lack of a formal review process during
the early stages of the design was not a real problem. However, looking
back, it seems that some effort might have been saved if a more formal
top -down design approach, with design reviews at intermediate points,
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had been adopted after the basics of the data structure and radar-
order -conflict -resolution algorithm had been determined.

The second disadvantage is the level of boredom that must be
tolerated. Interest drops off rapidly if no serious questions have been
raised for 15 to 20 minutes, and the discussion becomes very boring.
During the sensor control flowchart reviews, periods of intense bore-
dom sometimes lasted over half an hour. Also, the policy of aggressively
questioning every assertion sometimes leads to three- to five-minute
discussions to resolve trivial points. Despite the boredom involved in
this nit-picking, such discussions should not be dropped. Discovery of
many major problems resulted from unsuccessful attempts to satis-
factorily resolve what seemed at first to be trivial questions.

Concerning the amount of boredom that has to be tolerated during
a flowchart review, experience throughout the flowchart review has
been that if the leader does not care enough to personally take part in
the flowchart reviews, they will not be held. If the leader of a group
lets boredom take the edge off his personal aggressiveness, then the
whole group loses its aggressiveness. Although it is hoped that the
leader would be a key technical contributor to the review process, his
chief responsibility is to maintain the group's aggressiveness despite
the inevitable boredom-and the leader's personal example is critical
in carrying out this responsibility.

To be sure, it is difficult for a supervisor to allocate the several hours
required to take part in a flowchart review. However, if a fair-sized
piece of software is being built, then the quality of the software design
is an important factor in determining the quality of the supervisory
group's output. Thus, ensuring the quality of the software design-by
one method or another-is an important part of the supervisor's job.

Besides the group leader's personal example, motivating the group
members to participate actively requires convincing them that the
reviews are productive. Because of the number of problems found
during the sensor control flowchart reviews, their usefulness was ob-
vious to the participants, although no one-especially not the group
supervisor-pretended that they were fun. As mentioned above, only
those group members who had the knowledge to make a meaningful
contribution to a particular flowchart review or who could learn from
it were specifically asked to attend the review. No one was ever asked
to participate in a flowchart review just because of arbitrary group
rules. Those group members who were asked to attend, especially the
lead programmers who were asked to participate in most of the reviews,
were told frankly that the supervisor realized that this was not one of
the more enjoyable parts of their job, but that they were being invited
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because their participation was important. In practice, there was no
problem motivating the lead programmers to participate in so many
flowchart reviews. The same personality traits that made a person into
a lead programmer in the first place also made that person willing to
put up with some boredom to obtain the satisfaction of having had a
strong personal impact on the quality of the group's work.

V. COMPARISON WITH OTHER FORMS OF PROFESSIONAL REVIEW

It is worthwhile to compare the formal group -meeting style of flow-
chart review used in the development of the new sensor control with
other forms of professional review that have been discussed in the
literature. Flowchart reviews are very similar in spirit to Weinberg's
concept of "egoless programming,"' in which programmers are trained
to encourage other members of their programming team to contribute
to their work ; e.g., by reading their programs. The intent of egoless
programming is for each program to be-as much as is practical-the
product of the collective efforts of a programming team rather than
the product of an individual programmer working in isolation (hence
the term "egoless"). The group members are encouraged to be tech-
nically aggressive in reviewing each other's work. Also, as with flow-
chart reviews, group members are encouraged to be as matter-of-fact
and unemotional as possible in pointing out errors or making sugges-
tions. As Weinberg has reported, egoless programming has worked
extremely well in some programming groups. One advantage of flow-
chart reviews compared with egoless programming is that flowchart
reviews are a formal group meeting in which the supervisor takes part.
Thus, their success is less dependent upon personalities and it is con-
siderably easier for the supervisor to ensure that the reviews maintain
a uniform standard of thoroughness.

Mills2-4 has made several very innovative proposals [e.g., chief
programmer teams, programmer librarians, top -down design/struc-
tured programming, PIDGIN (roughly similar to outlines)] as alterna-
tives to flowcharts for organizing software development. See also the
papers by Donaldson,' Miller,' Baker,7.8 and Nichols.' Chief pro-
grammer teams, especially when combined with top-down design, pro-
vide an opportunity for a great deal of professional review.

Another technique similar to flowchart review is a "walk-through" ;II)
Maucerin has used group meetings to walk through the actual code in

a manner similar to the way that detailed flowcharts were reviewed in
the development of the new sensor control. One difference between the
work reported by Mauceri and the flowchart reviews used in the de-
velopment of sensor control is the handling of problems discovered
during the course of a review session. Mauceri reported that the
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procedure his groups used was to resolve questions and problems
"off-line" ; i.e., they were put on a list to be settled later. During the
sensor control flowchart reviews, the questions and problems could be
said to have been resolved "on-line" ; that is, resolved immediately as
they came up during the review if this were at all possible. As men-
tioned above, many major problems found during the flowchart re-
views were discovered as a result of repeatedly unsuccessful attempts
to resolve what first seemed to be trivial problems. Another difference
between the sensor control flowchart reviews and the reviews reported
by Mauceri is the inclusion of unit and module test cases in the reviews
reported by Mauceri. This was not done in the development of the new
sensor control. Instead, professional review of unit test cases was ob-
tained by a technique suggested by the various experiments on code
reading. Based on the detailed flowcharts used in the flowchart reviews,
one senior person in the group did the functional design of the unit test
cases for all of sensor control. The individual programmers were still
responsible for unit testing of their own code. Thus, they had to review
the proposed unit test cases for completeness and possible redundancy.
In this way, unit test cases were examined in detail by two people.

It is interesting to compare the group -meeting -style flowchart re-
views with the widely practiced technique of "code reading," in which
a programmer's code is read line by line by either his manager or a
senior programmer. In code reading, ideally the reviewer and the
programmer read through the code together, although sometimes the
programmer merely gives the reviewer a copy of his program listing.
For code written in assembly language, the flowchart review has the
advantage that it can be done earlier in the development cycle. How-
ever, if the code is to be written in one of the better high-level languages,
it is not obvious that the professional review procedure should be
based on flowcharts. Even if one were to use a formal group -meeting
style of review, it might be better to skip writing highly detailed flow-
charts and to base the review on the actual code as Mauceri and his
colleagues did. One disadvantage of flowchart review compared with
code reading is that a flowchart review will not detect minor coding
errors; e.g., misnamed variables.

The fact that a flowchart review involves a much larger number of
people than a typically two -person code -reading session is both an
advantage and a disadvantage. As a disadvantage, the more people
involved in a given review session, the more of the group's time is con-
sumed. As an advantage, a group review appears to be able to detect
many more errors, especially errors of omission (e.g., simply forgetting
a given situation or a given class of inputs) than would be found if the
design were reviewed by any single person. One of the more interesting
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features of the flowchart reviews was the fact that no one participant
noticed half the errors that were found. This illustrates the advantage
of flowchart reviews by a group of a programmer's colleagues, as com-
pared with the more traditional managerial practice in which a pro-
grammer reviews his design, probably briefly, only with his manager.
The traditional managerial review procedure is probably inferior to
almost any reasonable procedure that involves the detailed review of
a programmer's work by a group of his colleagues.

This is not to say that a formal group -meeting -style flowchart review
is always to be preferred to code reading. Flowchart reviews are not
very useful for small changes to existing code corresponding to less
than several dozen lines of assembly language code and to flowcharts
with fewer than a half -dozen boxes. Unless it is possible to review
several such changes in one session, the flowchart review will probably
be finished-accompanied by much grumbling by the participants
whose work was interrupted-in about as much time as the people
could be brought together. In fact, some months after the original
version of sensor control was delivered to the system -integration team,
code reading was introduced into the sensor control group to help
tighten coding and testing of the minor changes being added to the
original design. How this came to pass is a story with a useful moral.

Some months after the new sensor control was delivered to the sys-
tem -integration team, minor additions had to be made to the code to
provide for some new capabilities. These additions went beyond the
software design that had been covered in the flowchart reviews. In the
time since the new sensor control had been turned over to the system -
integration team, the group, or at least the supervisor (the author),
had grown too cocky. The code had run well during the several months
of system -integration testing, and a series of minor changes had al-
ready been introduced with few problems. Probably significantly, the
design for this first series of minor changes had been included in the
original flowchart reviews; the implementation of these changes had
been delayed. The new changes that went beyond the original design
seemed at the time to be just more minor changes; no special review
seemed needed. The programmers individually tested their code and
released it after they felt that the changes had been thoroughly tested.
Suddenly, during one week, the system -integration team found bugs
in minor changes submitted by more than half the group. As a result
of this, the supervisor got a useful lesson in humility and a certain
amount of cheerful harassment from the system -integration team. To
deal with this minor fiasco, a referee system was set up for minor
changes. Each programmer submitting a minor change was required
to select a referee from among the senior members of the group. The
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programmer would discuss both his proposed change and the procedure
to be used in testing the change with the referee. The change could not
be released until the referee was satisfied with the testing as well as
with the code itself. After the referee system was introduced, the prob-
lem of bugs in minor changes came to a very satisfying end.

VI. LESSONS LEARNED

One lesson that was learned from the experiments described above is
the extent of the increase in quality and productivity that can be
obtained from the disciplined use of professional review. The use of
flowchart reviews in the development of the new sensor control :

(i) Improved and simplified the software design.
(ii) Appears to have caught all the major software design errors

before code was written.
(iii) Reduced the software development time by at least 25 percent.
(iv) Improved the quality of the software delivered.

The use of a referee procedure brought an end to the errors in minor
changes turned over to the system -integration team. Other forms of
professional review have led to similar results.

A second significant lesson can be learned by comparing professional
review with some other techniques that have also led to improvements

program quality and programmer productivity; e.g., programming
teams, modular and top -down design, and structured programming. A
common denominator to these techniques is the increased structure
and discipline placed on the process of writing software. Although what
we now know about writing software is undoubtedly much less than
what remains to be learned, it is already clear that designing and
writing software needs to be a much more structured process than it is
today.
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This paper discusses the phased implementation of structured pro-
gramming techniques over a period of two years. It was observed that, by
standardizing programming techniques, the resulting program becomes
more maintainable and programmer productivity increases. By confining
the clerical work of programming to the program librarian., productivity
again increases.

I. INTRODUCTION

Structured programming techniques have been widely publicized
throughout the data-processing industry. In March 1970, one pro-
gramming department was chosen as a pilot group to test the validity
of these techniques in the SAFEGUARD environment. This paper sum-
marizes the experience gained in the ensuing two years, as increasingly
advanced structuring techniques were used by the pilot group. Phased
introduction of each technique is discussed to indicate that the transi-
tion from a conventional to a structured environment can be accom-
plished smoothly. Effects of the phased transition on personnel are
discussed, and quantitative productivity data are provided for each
phase. Although the statistical validity of these data must be qualified,
a definite trend toward increased productivity is indicated.

II. DEFINITION OF TERMS

Within the pilot group, the term "structured programming" was
used to identify five distinct techniques. They are structured code,
top -down programming, code reading, PIDGIN, and the Program Pro-
duction Library (PPL).

Structured code is based on a mathematical theorem that shows that
any program can be developed by the appropriate nesting of three
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basic logic patterns : sequence of operations, conditional branch to one
of two operations, and repetition of an operation while a condition is
true.' Elaboration of these patterns leads to the five basic logic struc-
tures used by the group to implement structured code : sequence,
IFTHENELSE, DOWHILE, DOUNTIL, and CASE. Since only this statement
grouping was permitted, standardization of code resulted. Also, ad-
herence to these logic patterns results in complete control of all branch-
ing logic and therefore programs are easily readable from top to bottom.

Top -down programming requires that both design and code be de-
veloped from the control logic level down to the detail logic level.
Program design has traditionally followed this approach, proceeding
from system specifications to design instructions. Top -down design
adds to this requirement that the control levels be coded prior to com-
pleting the detail design of lower -level paths.

Conventional program code, however, frequently does not follow the
top -down approach. Detail level logic is often coded concurrently or
before high-level control logic. Top -down code dictates that the next
level of program code cannot be developed until all paths upon which
this code depends have been coded and (preferably) tested.

Another structured technique, code reading, was made possible by
the use of top -down programming and structured code. This is the
practice of having all programmers exchange listings to ensure that
each program is read by someone other than the author. Desk debug-
ging is significantly increased and fewer, if any, preliminary clean-up
computer runs become necessary.

Large programs, however, still present a problem since the ability
to read them top to bottom is jeopardized by their total length. To
resolve this problem, the pilot group used a segmenting technique that
breaks down the program structure into functional segments. Each
segment is then constructed so that ideally it occupies no more than
one page of a program listing.

PIDGIN is a program design language that combines English, a pro-
gramming language, and the structured conventions. This language
was used to describe each functional segment. Through this design
medium, system functions are visually broken into dependent segments
showing the relation of each segment to the overall purpose of the
program.

The last technique used in this study was the Program Production
Library (PPL). The PPL concept stems from the observation that much
of the task of computer programming is clerical. The PPL provided a
standardized means for recording, cataloging, and filing all code
generated, and it ensured a coherent library control system during
program development and maintenance. It also provided a means for
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standardizing the JcL-type interface to the computer whereby process-
ing options (Compile, Linkedit, Modify, etc.) were invoked through
key words chosen by the programmers. A more detailed discussion of
the PPL appears in Section VII.

III. PROGRAMMING ENVIRONMENT

Structured programming techniques, PPL, and program librarians
were introduced into a programming project over a one-year period and
observed for an additional year. The project comprised the develop-
ment of independent functional tests for the cLc operating system.2
The complete set of tests was developed incrementally over several
years, and the end product was a set of test specifications and the
programs implementing them. Data for this study were gathered from
the development of the test monitor facility and the first 11 test sets.
The test monitor facility provided standard result recording for all
tests, such that each test set contained no reused design or code. The
SAFEGUARD assembler level language was used for all coding.

The nature of the development environment is also important for
interpreting the results of this study. Test sets were being developed
i,1 Parallel with the operating system. The cLc was the target computer,'
but all software development occurred on the IBM 360, testing being
accomplished on the cLc or by simulation on the 360.

The activities of the pilot project group were confined solely to test
design, coding, and documentation. Testing and debugging were ac-
complished by a separate test team. However, correction of imple-
mentation and coding errors in response to error reports made by the
test group was a continuing background activity to all development
efforts. This maintenance activity reached a peak during the first two
months following delivery of each test set.

A programming team consisting of three to four people, each having
an average of two years of programming experience, was assigned to
each test set. The schedule time allowed for the development of a
test set was four to five months, or an average of 16 man -months. Each
development cycle had three stages : test specification (2 man -months),
test design (3 man -months), coding and documentation (11 man -
months).

Another equally important aspect of the development environment
was the personnel skill mix. The SAFEGUARD software proved to be a
great equalizer in that personnel new to the project had to learn not
only the complex application area, but also a new spectrum of support
software. The result was that experience with SAFEGUARD software was
frequently equal in value to overall programming experience. The
rotation of SAFEGUARD -experienced personnel to related critical project
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areas was common. In the pilot group, personnel assignments were
rotated frequently throughout the two-year period studied, thus
keeping the average programmer experience constant through each
development cycle. Over a three-year period, a total of 21 programmers
were assigned to the pilot group. Its total size ranged from 7 to 10.

The difficulty of the programming job is another important con-
sideration. In retrospect, the tests performed in earlier sets are less
complex but, at the time of their development, user documentation for
the operating system was incomplete. The complexity of the later test
sets was significantly higher; however, by this time documentation had
improved, familiarization with the general modus operandi of the
operating system had occurred, and personnel were accustomed to the
test monitor interface. Hence, the relative difficulty of the programming
job remained constant.

IV. IMPLEMENTATION PHASES

The test monitor and the first test set were developed using con-
ventional programming methods. Improved programming techniques
were then introduced in two distinct phases. The next three test sets
were developed using structured programming and represent phase I.
The next six were developed using structured programming, the PPL,

and program librarians, representing phase II.

V. QUANTITATIVE RESULTS

Table I quantifies the effect of each phase on programmer produc-
tivity over the two-year period. For this study, productivity is defined
as the number of delivered lines of code produced per day during the
coding phase. Activities during coding include design, documentation,
coding of the unit programs, and maintenance of previous test sets.
Debugging was not a part of this activity, as has been previously dis-
cussed. Source statement counts include all lines coded, including
comments and other descriptive lines required to meet documentation
standards. The object size includes both instruction and data areas
and measures the delivered product, as do the source lines. The ratio
of source to object is provided to give the reader a rough indication of
the number of executable instructions per line coded. Programmer -
days reflects cumulative elapsed days for each programmer, and it
does not account for overtime, vacations of less then one week, or
illness. Also, it reflects only days spent by programmers, i.e., it does
not include management or program librarians. It is the intent of this
study to indicate the effect of new technologies on programmer pro-
ductivity as defined above, rather than on overall product cost.
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Table I - Comparison of productivity

Delivered
Item

Source
Lines

Object Size Ratio of
(32 -bit Source to
words) Object Size

Conventional

Programmer -
Days (Coding

Phase)

Source Lines
Per Pro-

grammer -I )ay

Test Monitor 4056 1914 2.1 301 13
Set 1 6072 6540 0.9 381 16

Phase I
Set 2 9654 7300 1.3 240 40
Set 3 4271 2150 2.0 150 28
Set 4 6601 3500 1.9 130 51

Phase II
Set 5 9968 3700 2.7 165 60
Set 6 14689 7000 2.1 225
Set 7 16773 6500 2.6 150 111
Set 8 5588 3900 1.4 136 41
Set 9 11666 5830 2.0 160 73
Set 10 11596 6230 1.9 158 74

A comparison of raw productivity rates was made over the two-year
period reported. No difference between the three- or four -person team
was observed, and thus no distinction is made in Table I. The data in
Table I should not be used out of the context of the background
already provided in previous sections, since this can lead to rather
startling conclusions. Table II summarizes the data for each phase,
but must only be considered as indicating a trend rather than actual
percentage gains. The productivity figures reported are dependent on
many factors unique to the specific development environment of this
study.

VI. PHASE I

Phase I introduced structured programming, code reading, and unit -

level top -down approach into the development cycle. These techniques
can probably be introduced into any existing programming project if
the following prerequisites are satisfied. The programming language in

Table II Summary of results

Implementation
Phase

Total
Source Lines

Total
Programmer -

Days
Average

Lines per Day

Conventional 10128 682 14.7
Phase I 20526 520 39.8
Phase II 70280 994 70.8
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use must include instructions that implement the structured program-
ming logic patterns. This may require the development of a special set
of macros to support the branching logic. In the case of the project
being studied, two man -months were required to develop a macro
package to provide structured statements in the language used. At the
outset of phased introduction, a programmer experienced in structured
programming must be available for consultation. This person need not
be a member of the group itself, but should conduct an orientation
seminar for those programmers asked to use the new techniques. The
program areas selected for structured programming must be func-
tionally separate from other areas. It is difficult to introduce these
techniques into an existing program unless the new code represents a
distinct functional unit that can be restricted to having only one entry
and one exit.

The effects of phase I implementation were significant. Resistance
from programmers occurred at the orientation seminar and during the
early stages of implementation. However, once they began to use
structuring techniques for program control, acceptance was quick.
Resistance to the new techniques seemed to be directly proportional
to programming experience. That is, firmly established coding habits
were difficult to discard when they were to be replaced by a stand-
ardized method. There was also the matter of bruised pride, a definite
psychological side effect. However, experienced programmers soon be-
came convinced of the validity of standardization, based on their past
experience and the obvious benefits. For example, because of the
standardized method of coding, code reading proved to be a valuable
desk debugging tool.

Toward the end of phase I, it became evident that maintenance of
programs was easier. As is mentioned in Section III, the maintenance
activity for each test set peaked during the first two months following
delivery. Maintenance requirements generated by debugging activities
generally required one programmer full time for that period. Structur-
ing techniques made the programs easily readable and enabled them to
become community property. In fact, this standardization was so
effective that, immediately following delivery, maintenance of all
programs in a test set could be assigned to one member of the original
developing team. Maintenance responsibility included an average of
100 programs per test set. Transferability of program maintenance thus
had the effect of freeing key personnel for scheduled critical design
activities for the next test set, as well as lessening the impact of loss of
personnel through rotation. Orientation of new personnel was also
simplified, since this could be partially accomplished through code
reading.
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VII. PROGRAM PRODUCTION LIBRARY AND THE LIBRARIAN

The Program Production Library (PPL) facilitates the work of pro-
grammers engaged in code development; it also aids project and line
management wishing to review the project's progress. The PPL depends
on a computerized library system in which all types of data have a
defined source and destination. It is maintained by clerical personnel,
but no operations are carried out in it unless they are directly requested
by the programmers.

Program librarians staff the PPL. Just as structured programming
must be introduced slowly, the program librarian must be given
adequate time to learn. The librarian's first job is to provide an inter-
face with the computer center, submitting and picking up jobs. The
librarian can later be taught to change source code, working from
marked -up program listings. The skills required for this are the ability
to interpret the sequence of source changes, to make up the appropriate
change deck, to incorporate this change deck in the necessary computer
input deck so the program source change will be made, and to include
the proper tests so that the programmer will have a new set of outputs
to analyze. This represents a high level of proficiency for a program
librarian, yet it requires no programming skills.

The librarian is also responsible for maintaining current listings for
all programs being developed. During the development of interde-
pendent programs, library listings must be updated daily, since several
programmers may be working on the same program or require interface
to a common data area. However, on the project studied, each test
in the set was designed so that all required predecessor conditions were
established during the test. Each team member was assigned a specific
test, and, since only the programs within a test were interdependent,
it was not necessary to file final listings until they were ready for
debugging.

VIII. PHASE II

Phase II involved the introduction of the programming production
library and the program librarian. The overall effects observed during
phase II were not immediately visible. This was due mainly to the
learning curve of the program librarians. The acceptance of the li-
brarian service and the PPL concept was not universal, and it occurred
much more slowly than the acceptance of structured programming
techniques. Initially, it had the effect of placing one more barrier be-
tween the programmer and successful computer output. During the
project studied, the training of new librarians was a continuing activity,
because of frequent turnover. One month overlaps for training were
worked into the schedule, increasing the overall manpower required to
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support the PPL. During that training period, library performance
usually suffered. This also hampered the expansion of PPL functions,
since overall accuracy of PPL output varied. It took four to six months
before programmers began to rely entirely on the librarian service.

The sporadic accuracy and reluctant acceptance of the PPL and li-
brarians can be attributed almost entirely to frequent turnover of
librarian personnel.

The librarian's job is not trivial and requires about two months of
close supervision by trained personnel to achieve the basic skill of job
setup using change decks provided by programmers. Six months after
phase II began (Test Set 7, Table I), the impact of the training period
had been mitigated by increased experience and improved PPL pro-
cedures that defined additional fail-safe measures for new personnel.
For the remainder of the study, PPL throughput and accuracy increased
despite continuing turnover.

Another effect of this turnover was the operation of the PPL on a
"pool" basis. Since experienced librarians were scarce, all PPL activities
were centralized into a pool of three to four librarians shared by four
programming departments. This arrangement was quite effective in
handling the peak activity periods that precede each delivery.

The number of librarians required for such a pool varies according
to the amount of new development being done, the number of pro-
grammers involved, and their skill level. The ratio used in the environ-
ment described here was 6 :1; that is, one librarian for every six pro-
grammers. These personnel were not added to the programming group.
Instead, given the 6:1 ratio, in a group of seven programmers with an
average experience level of two years, one programmer was replaced
with one librarian. The remaining six programmers then produced the
same amount of code with the aid of the librarian as the original seven
programmers would have produced without the librarian.

Another observation is that personnel new to programming can gain
programming experience quickly since they are not concerned with the
detailed procedures required for job submission and job handling.
They need only concentrate on the technical aspects of programming.

IX. CONCLUSION

Standardization of programming techniques through structured pro-
gramming and its related practices leads to increased maintainability.
Background maintenance activities are more easily rotated since
structured programs become community property. The PPL concept
extends standardization to the programmer/computer interface and
as such is beneficial. The role of the program librarian removes as
many clerical tasks as possible from programmers, allowing them to
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concentrate more directly on the technical content of development. The
productivity trend indicated in Table I is presented to indicate the
effect of these new technologies on programmers. Obviously, produc-
tivity should increase as programmers are freed of time-consuming
clerical tasks as indicated by phase II. However, it can also be seen that
productivity in phase I increases simply with the use of standardized
programming techniques.
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This paper describes the management approach developed to support
the SAFEGUARD software design effort. Project organization and some
techniques used for planning and control are discussed.

I. INTRODUCTION

The magnitude and scope of the SAFEGUARD system software -design
effort presented unique management challenges across a broad front.
Solutions to problems involving organizing, planning, activating, and
controlling had to be tailored to the specific needs of the project.
Successfully achieving the objectives of perhaps the most ambitious
software development effort undertaken to date was no easy task.
Although no dramatically new techniques or remarkable insights into
the management process emerged, several useful lessons were learned.
While there was not a wealth of tradition and folklore to draw on with
regard to similar software development efforts, we found that the
fundamental management approaches and disciplines developed over
the years in hardware and systems design and other software develop-
ment activities at Bell Laboratories were in most cases directly
applicable.

II. ORGANIZATION

The organization structure that emerged for managing the SAFE-
GUARD software project is a case in point. We established an organiza-
tion designed along the general lines of major deliverable generic
systems. This organization is shown in Fig. 1. Note that there were
four centers reporting to the project director. One center was charged
with total SAFEGUARD systems design responsibility. This meant that
this center concerned itself with high-level requirements, with evalu-
ation of the design, and with customer interaction. This center under-
took software design in the form of simulation programs and other
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Fig. 1-Organization structure.
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-PROCESS DESIGN
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-SURVEILLANCE

-RADAR CONTROL

analytical tools which were necessary to support evaluation or the
development of requirements, but designed no software system de-
liverable to the customer. Each of the other three centers was charged
with design, test, documentation, and delivery of software associated
with specific radars, i.e., the prototype Missile Site Radar (MsR) at
Meck Island, the tactical MSR at Grand Forks, and the Perimeter
Acquisition Radar (PAR) at Grand Forks. The PAR center was also
charged with the responsibility for designing support software for the
tactical radars.

The departments within these centers were given specific functional
design tasks as indicated by their abbreviated titles. The identification
of a number of subprojects, derived from the total project work break-
down, permitted a second organizational structure to be superimposed
on the line organization structure of Fig. 1. Figure 2 shows one of these
subproject organization structures for the MSR weapons subsystem.
A project manager was designated for this subproject ; in this case, he
was the department head (second -level manager) of the Process Design
and Integration Department. His responsibilities as project manager

S224 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



included high-level planning for the subproject, detailed design and
its implementation, integration and testing at all levels, and monitoring
and control of all subproject critical activities. He generally was the
person who scheduled and conducted design reviews and periodic
project meetings where key engineers, programmers, first -level mana-
gers, and support personnel worked together to identify problems and
initiate action to solve the problems. The subproject meetings also
were used to disseminate information of interest to all those working
on that particular subproject. Because the organization remained intact
throughout the life cycle of the project, the project manager frequently
was called on to preside simultaneously over control of a released
system, a system in the planning and design stage, and one in the
integration and test phase. The project manager was given a great
deal of latitude as to how he managed his subproject. As is evident
from Ref. 1, a variety of management approaches were used con-
currently, and many contributed to the overall project success.
Emphasis was on results rather than technique.

PROJECT DIRECTOR

r------------
TECHNICAL

STAFF
-REPORTING
- DOCUMENTATION
- CHANGE CONTROL

PROTOTYPE
MSR

TACTICAL
MSR

SUPPORT AND PAR
SOFTWARE

PROJECT MANAGER!

-PROCESS DESIGN I -PROCESS DESIGN 1- REAL-TIME I -PROCESS DESIGN
& INTEGRATION I & INTEGRATION OPERATING SYSTEM I & INTEGRATION

-RADAR CONTROL I -COMMAND & -SUPPORT SOFTWARE I -SURVEILLANCE
CONTROL & SUPPORT

COMPUTERS
TEST DESIGN I -SYSTEM EXERCISER I -RADAR CONTROL_ _ _ _J

-TRACKING I -TRACKING
I "-M &- - - - - - - - - - -

-GUIDANCE -RADAR CONTROL -CLC TEST BED

SYSTEMS

-CLC TEST BED &
SUPPORT COMPUTERS

Fig. 2-Subproject organization structure.
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Figure 2 shows that the MSR weapons subsystem manager considered
people in other centers-for instance, the systems engineers, the cLc
test bed operation, the guidance designers, the real-time operating -
system designers, and the support -software and support -computers
people-as part of his subproject. Note the horizontal spread of this
project as it reaches across center boundaries for the people to provide
its component parts. Conceptually, it illustrates the coordinated
system of relationships among essential functions typical of a matrix
type of organization.

All together, there were 17 subprojects-some of them nested within
major subprojects like the one mentioned above-with project mana-
gers at the second level of management. Experience proved that there
was a great deal of commitment to subproject goals on the part of all
personnel involved. Clearly, this structure had the potential for con-
flict-particularly relative to critical resources like the ci,c test bed,
where goals for two or more subprojects were in competition. However,
overall project goals were pretty well understood at all management
levels so that conflicts rarely had to be referred up the line -management
chain for solution. While the potential conflict situation was recognized,
the benefits of cross-fertilization were also a consideration. Good ideas
and design approaches were frequently passed rapidly from one sub-
project to another because of subproject ties that spanned the line
organization.

In Fig. 1, note that there was a technical staff organization that had
the charter to attack certain projectwide problems, such as training,
project standards, documentation, change control, and management
reporting. In some areas it provided services to the various project
managers, such as training new people. In other areas, it acted as a
catalyst to cause project standards to be created. It was not an en-
forcement agency. For instance, this group sponsored studies and
development of structured programming and promoted the develop-
ment of critically needed macros, but it did not have the authority to
impose structured programming as a standard on any subproject. That
type of decision was in the province of the project managers.

The project management approach as implemented on the SAFE-
GUARD software project proved to be a stable organization capable of
eliciting strong project commitment at the working level and close
technical control in the appropriate line organizations.

III. DETAILED PLANNING

Once overall project and subproject goals were defined and an
organization was designed to accomplish them, a detailed development
plan was constructed. This development plan, which was prepared in
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parallel with the Data Processing System Performance Requirements
(DpsPRs),2 forecast the needs of the entire project and spelled out the
development approach.

Estimating algorithms, derived in part from a study of previous
Bell Laboratories work in electronic switching systems and software
development for earlier military systems, were used to help plan the
allocation of resources. These algorithms were applied to the estimation
of resource demands for each major activity. Schedules were then
built up within the constraints of budget, time, and manpower. Trade-
offs among these primary resources allowed the coordinated scheduling
of critical activities. This anticipation of requisite predecessor/suc-
cessor relationships between various parts of the job was designed to
minimize delays, bottlenecks, and interruptions. Obviously, the initial
plan was changed many times during the course of the project. How-
ever, it eventually led to very detailed plans which were extensively
used throughout the project.

The planned addition of large numbers of people to the project,
coupled with an increasing reliance on subcontractor performance,
presented a significant management challenge. For example, the
accomplishment of in-house training required establishment of a corps
of instructors and preparation of text materials. The overall plan had
to provide for this substantial investment in student and instructor
time. In some cases, where traditional mechanisms were not feasible,
novel techniques for evaluating and controlling subcontractor per-
formance were adopted. One such method, the Cost -Plus -Award -Fee
contract,3 was considered one of the major project successes.

In order that forecasts of manpower buildup and total project cost
be realistic, it was important that the development plan be imple-
mented and kept current. To this end, a management reporting struc-
ture was set up by the technical staff organization to update the develop-
ment plan and schedules and to provide monitoring information to
project managers.

The significance of planning was that it existed across the entire
project and that it used reasonably consistent definitions. The sub-
project managers were not required to use the algorithms that had
been put together in the original development plan in working out
their more detailed plans.

A conscious effort was made throughout the planning process to
require the active involvement of those people who were to be charged
with the responsibility of implementation. Participation in the formu-
lation of goals, plans, and schedules conduced to a personal commit-
ment to carry them out. In addition, the unconstrained format of the
plan encouraged teamwork and emphasized the use of creativity.
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IV. STANDARDS AND CONTROL

Development of appropriate standard operating procedures for de-
signing, testing, documenting, and delivering software was a difficult
and tortuous process. Since comprehensive standards did not exist at
the start of the project, to a certain extent it was necessary to develop
them in parallel with initial development of the software itself.

Rather than create a large, specialized bureaucracy, a small group
was organized to act as a catalyst for generation of necessary standards.
This group identified the need for specific standards either indepen-
dently or through requests from design or test groups. A sponsor,
usually from one of the design groups, was appointed for each required
standard. The sponsor, in concert with designers from other subpro-
jects, prepared a draft that was circulated to the management of
affected organizations. Eventually, through a process of iterative feed-
back, each standard was approved at the highest level for projectwide
implementation. In practice, this procedure proved very time-con-
suming, frequently requiring reliance on preliminary drafts when no
approved standard existed. As might be expected, one of the first
standards that was provided consisted of a procedure for changing
standards.

The standards were divided into a number of different areas, the
major ones being change management, documentation, and manage-
ment reporting. In the area of change management,' for example,
standards for "freezing" a software unit were developed. As a mini-
mum, to be considered for freezing, a software unit must have been
properly documented, successfully assembled or compiled, and success-
fully unit -tested. While freezing did not stop changes to software units,
it did require the application of configuration control procedures,
which made all proposed changes clearly visible to interested managers.

Also included in change management were standards and procedures
for reporting program malfunctions. The primary mechanism was a
standardized trouble report/correction report form that kept all
information about a problem and its solution on a single sheet of paper.
This report was eventually adapted for describing any discrepancy
between observed status and requirements and, as such, became very
widely used to track current program status.

Documentation standards attempted to identify and describe every
type of document that was needed. Since documenting any large
system is a costly and time-consuming process, each requirement was
subject to the criteria of reasonableness, usefulness, and timeliness.
First, it is not reasonable to expend a great deal of effort to produce a
formal document when the information it contains can be made
available less expensively in other ways. Second, there is no point in
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preparing a document that is not going to serve a useful purpose.
Finally, a document's utility is greatly diminished if it is not available
when, where, and in the form that it is needed. Certainly, schedule
constraints did not always allow the criteria to be met, and quite a
bit of learning as to just what was useful took place only after the
documents were put to the test of use.

Management reporting standards were keyed to a computerized
management reporting system that was developed for use on the
project. The system incorporated data bases for schedule, manpower,
and computer usage information, and was designed to produce a wide
variety of special-purpose reports.

V. DISCUSSION

Although, as stated before, no major new management techniques
emerged during SAFEGUARD development, the project's success can be
attributed at least in part to the close attention that was paid to the
content and control of requirements documents and to the early and
detailed planning of testing. Most important, highly skilled technical
people were selected for key management positions. They were relieved
of most tasks peripheral to their jobs, and, subject only to the con-
straints of necessary standards and control, they were allowed to use
their own style.

The papers that follow deal with some lessons learned in establishing
software change control systems and subcontract administration sys-
tems. A critical appraisal of SAFEGUARD project management-as seen
by the managers-is also included.
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Large software projects require control procedures to ensure that
changes to code can be made systematically. Programmers, however, wish
to be able to make changes to their programs without being bothered by
administrative considerations. This paper explores the attitudes of people
toward change control and the problems associated with establishing a
workable system.

I. INTRODUCTION

Software change control-formalizing the identification and resolu-
tion of program errors and improvements-has been critical to SAFE-
GUARD for three reasons. First, software change control promotes
systematic communication. Anyone on the project can formally record
a problem. A formal resolution is then ensured; the suggested change
is either accepted, rejected, or consciously deferred, but not ignored.
Second, software change control helps in estimating the maintenance
activity required and in scheduling new software releases. Third,
software change control provides visibility. It allows one to see what
errors have been found and what action is being taken about them.
Based on the requests for changes, one can determine which capabilities
of the software are being used. Change control can ensure that the
design intent of the software is maintained by consistently identifying
all changes made.

II. THE THREE PHASES OF SOFTWARE CHANGE CONTROL

Change control on SAFEGUARD has passed through several stages,
progressively becoming more formalized. The first stage was essentially
no control at all. At the beginning of the project, the only evidence of
what the final product would be was a requirements document and a
high-level design specification. Developers responsible for building the
final product as specified by such documents had a very special attitude
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toward the software they were creating. Typically, a programmer felt
he understood the design considerations and implementation details
of the program he was coding, and he felt his knowledge of the code
was such that he could remain fully aware of all the ramifications of
any changes to it. At this time, the programmer was not bothered with
any type of change procedures, for he did not yet have a stable pro-
duct, and possibly not even well-defined requirements. Any constrain-
ing procedures would merely have hindered him from doing his job.
This phase of no -control continued as long as the programmer did
not have to deliver his program to anyone else.

The second phase might be called informal change control. The
phase began when several programs had to be integrated, and people
other than the original programmer became involved. It was now
desirable to have problems documented on forms called trouble re-
ports and solutions-though not coding details-on correction reports.
The trouble report and the correction report should be on one sheet
of paper, to keep all the information about a problem and its solution
together. This procedure met a fair amount of resistance, yet it is only
consistent with the standard practice of the scientific and business
world, where people write down their ideas, agreements, and problems
without feeling they are needlessly harassed by paperwork. Experience
has taught them the necessity of doing so. The software world is no
different, since programmers, like people, cannot remember every
problem and situation they encounter.

For two reasons, it is important that trouble -reporting procedures
be set up before they are required. First, if they are not defined before-
hand, a vacuum will exist when they do become necessary, and each
part of the project will be forced to establish its own. Of course, the
primary responsibility of groups that are integrating and testing soft-
ware is to get a working product, not to define procedures. This
responsibility will take precedence, and thus the resulting procedures
may not be as good as one might expect. A second and more compelling
reason for having change -control procedures defined in advance is that,
at a later time when all the software on the project is brought together,
it is desirable to have a consistent procedure projectwide.

The final phase of change control for the SAFEGUARD project is
called formal change control. Since the software is being sent to a remote
site for testing and eventually will be sent to the customer, stringent
control is essential. In this phase, a central control organization having
the following objectives is involved. First, the organization provides
consistent, complete, and adequately documented deliveries to remote
sites or to customers. Second, it accepts trouble reports, noting problems
in the software, and keeps a record of what is being done about these
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problems. Third, the central control organization checks that certain
minimal standards are followed in documenting the problems fixed in
each software release, and it checks that all programs to be included
in a release are properly identified. Finally, it provides historical
backup of all SAFEGUARD software, including source code, object code,
assembly listings, and load modules.

Whether a central organization is designated to perform change
control or whether this responsibility is scattered throughout the
design, test, and integration groups, someone will ultimately do it. On
SAFEGUARD, a very small central organization was designated, but it
did not insert the actual changes into the code. Therefore, at least one
group in each process design department evolved into a control group
for that department. Each of these groups defined their own pro-
cedures, in some ways making the central organization superfluous.
Each department felt it had unique change -control problems that
could only be solved by a change -control group that reported to that
department's management. It was also felt that only under such an
arrangement would the change -control group have the requisite interest
in meeting the schedules and objectives of the department. These
attitudes made transition to formal change control under one central
organization difficult.

The transition from informal to formal change control can be smooth
only if there is adequate management backing for such a move. This
backing is necessary because of the interjection of a central control
organization that is in a position to police certain activities of the
development groups. Programmers and even managers are reluctant
to let this control organization become involved in their activities, and
will probably question both its necessity and its competence. The
degree of success this central organization has will depend first on
management backing and second on the similarity between the existing
informal change -control procedures and the desired formal ones.

III. ESTABLISHING A CHANGE -CONTROL SYSTEM

Thus far, we have considered primarily the human aspects of soft-
ware change control. The problems associated with this part of the
subject are difficult to define and the solutions nebulous. Problems of
standards and mechanisms for an effective change -control system are
easier to solve. As a rule, these standards and mechanisms are neces-
sary but not sufficient for maintaining control of software.

For three reasons, SAFEGUARD follows a standard procedure for
identifying program statements that are changed to fix a given problem.
First, the programmers responsible for maintaining the code in the
future will be better able to determine the intent of previous changes
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by being able to relate source statements via their "change level" to
a specific correction report. The change level of the program is in-
cremented by one for each correction report written against the pro-
gram, and the change level is placed on each altered statement.*
Second, both the programmer and anyone else examining the code can
double-check that the intended change was in fact put in. The third
reason, which applies only when the object code is being patched, is
that a programmer at a remote site who has solved a problem with a
patch may want to check the source code change to make certain it
does the same thing his patch did. This checking is especially important
when the source code is written in a compiler -level language.

Both source and object code are maintained using a projectwide
storage and retrieval system. This system allows the automatic inser-
tion of new change levels into the source code as new statements are
added to a program or existing statements are changed. These change
levels are then carried through to the assembly listings. In addition,
this system provides a convenient mechanism for transmitting changed
programs from development groups to testing groups and, ultimately,
to the central control organization. The library system was available
to programmers early in the project.

When a set of programs is first placed under formal change control,
a configuration listing is created. This configuration listing specifies,
at the very minimum, a list of all the individual programs with their
change levels and a precise identification of all support software
(compilers, assemblers, linkage editors, etc.) used in creating this
release. With each new release, this configuration listing is updated.

SAFEGUARD programmers write a large number of trouble reports,
and an automated mechanism is used to keep track of them. This
system was designed and built early enough in the project so that it
could have been used to record trouble reports during the informal
change -control phase. Although the software Status Accounting Sys-
tem (sAs) was available, developers all seemed inclined to invent their
own automated systems because SAS was operated by the central
organization at a time when each group wanted to maintain its own
data base. These groups should have been allowed to maintain in-
dividual data bases using SAS.

SAS can create reports by retrieving and sorting on any data param-
eter stored for each trouble report and correction report, or on any
combination of data parameters. The following information is stored
for each trouble report : trouble report number, the program in which

*Since source statements have change levels, so also do object decks and assembly
listings. The concept is also applied to load modules, patch decks, user and main-
tenance documentation, etc.
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the problem was detected, the date the problem was detected, a func-
tional description of the problem, the originator of the trouble report,
the person to whom the problem was referred for resolution, a status
indicator showing the current status of the trouble report, the date of
last status change, comments about the trouble report, and the date
the correction report is due. The following information is stored for
each correction report : correction report number, the program in
which the problem was corrected (including its change level as dis-
cussed previously), the date the correction report was written, the
originator of the correction report, an indicator showing the current
status of the correction report, the date of the last status change, and
the identification of the load module in which the updated program was
first released.

The timing of the definition of forms and procedures was important
because programmers became accustomed to the forms and procedures
used during informal change control and did not want to convert to
others. Thus, the official trouble report/correction report form was
defined early in the life of the project, avoiding the proliferation of
unofficial versions. The procedures followed during informal change
control were a subset of those followed during formal change control.
The Primary difference, of course, is the presence of the central control
organization during the formal period.

The major steps of the SAFEGUARD formal change control process
are now described. When someone discovers a problem, he writes a
trouble report and submits it to the central organization, which logs
it in and forwards it to the people responsible for the program, who
accept, reject, or defer it when it is received. They tell the change
control organization the date by which a correction for the problem
will be submitted. After the people responsible for the program have
updated their code, they write a correction report describing the
change. They test the new release and update the configuration listing
to include the new change levels of programs that have changed. They
now send the source code, the object code, assembly listings, a load
module, and all correction reports relating to this release to the central
control organization. The control organization checks that all changes
have been documented; that the source code, assembly listing, and
the object code of each program in the load module are consistent ;
that all program change levels are specified; and that the configuration
listing is accurate. This organization then prepares copies of the soft-
ware for shipment to users or remote test sites.

Although it is not being done on SAFEGUARD, the central control
organization should be responsible, upon direction from the develop-
ment areas, for actually making the changes in all released software.
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This requires a substantial commitment of manpower to the organiza-
tion, but it is one way of ensuring that the changes indicated by correc-
tion reports are indeed made, and that no others are.

IV. CONCLUSION

Two aspects of software change control that were relatively success-
ful on SAFEGUARD were a projectwide library maintenance system to
control source and object code and a standard trouble report form.
These two were not developed over a long period of time, but appeared
very early in the project. Because of this stability, software developers
grew accustomed to using them. The library maintenance system was
available during the first phase (no change control), and the trouble
report form was available at the beginning of informal change control.
It was recognized that early introduction and acceptance would be
beneficial, because transition to the later phases would be simplified.
Two additional features of the system, change control procedures and
software status accounting, proved to be more troublesome to define
and implement. Since, early in the period of informal change control,
each process area independently developed its own procedures, a
certain amount of reexamination and redefinition was required during
the transition to formal change control.

Any software change control system is destined to meet with some
resistance. Programmers as a rule have very definite ideas about what

namic nature of software makes change control a difficult problem,
not so much in establishing the mechanisms and procedures, as more
in dealing with human factors and ensuring adherence to procedures.
The first step is to recognize that change control is a problem that
should be addressed early and, in fact, will be addressed either early
in a systematic manner or later in a less organized but more costly
manner. Only the developers' admitting this and conscientiously
addressing the problem will guarantee successful change control. The
mechanisms and procedures suggested in this paper are tools, nothing
less, but certainly nothing more. The human factors are the more
important considerations in successful software change control.

S236 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD



Copyright © 1975 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data -Processing System:

A Cost -Plus -Award -Fee Contract for a Large
Software Development Program

By W. H. MAC WILLIAMS and J. E. PETERSEN
(Manuscript received January 3, 1975)

This paper describes the Cost -Plus -Award -Fee (CPAF) contract that
has been used to control a major software development effort, amounting
to approximately $30 million annually. The amount of the award fee is
determined periodically, based on a unilateral judgment of supplier
performance. The lessons learned in handling a contract of this type and
magnitude are summarized. The CPAF contract has proven to be a good
means of ensuring the continued attention of supplier management that
is necessary for obtaining high performance on time.

I. INTRODUCTION

Put very simply, the Cost -Plus -Award -Fee (cPAF) contract is a cost-
reimbursable level -of -effort arrangement in which the fee to be paid
for each (predetermined) period is based on the customer's unilateral,
subjective judgment of the supplier's performance during that period,
measured against previously -agreed -upon performance criteria. The
fee awarded is not subject to change. The award -fee contract differs
from other types of cost -reimbursable contracts such as (i) the Cost-

Plus -Fixed -Fee (CPFF) contract where the fee is fixed at the outset of
work, and (ii) the Cost -Plus -Incentive -Fee (cpiF) contract, in which the
fee is determined by applying a previously -agreed -upon formula to
objective measurements of cost and/or performance and schedule
events upon completion of the work.

The key words in award -fee are "unilateral" and "subjective." This
type of contract is a complete departure from convention and one not
eagerly sought by suppliers unless they have enough self-confidence
to take some very real monetary risks. The motivating factor for the
supplier is to maximize the profit-the all-important "bottom line"-
by high performance, and the award -fee contract is a vehicle for doing
so if the supplier is willing to take the risk of realizing a very small
profit or none at all if he does a poor job.
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In the past, CPFF contracts had often been chosen for both hardware
and software development programs. The principal technical diffi-
culties lay in communications and motivation : in getting requirements
changes implemented, getting feedback on current progress and
problems, and getting appropriate attention by supplier management.

Software development is characterized by many requirements
changes and many complex interfaces, and one must ensure close and
continued communication if a software development contract is to be
successful. Furthermore, software development is a process of evolu-
tion, and it is very difficult to set up predetermined performance goals
against which the final product could be measured; hence, a software
objective -incentive contract is frequently not desirable.

To get the good communications and motivation that are essential in
the development of software, we decided to use the Cost -Plus -A ward -
Fee method. At the time of this decision, the CPAF form of contract
was relatively new, and had not even been recognized in the Armed
Services Procurement Regulations (ASPR). It was being used principally
by NASA and the Navy, for various kinds of work including software
development, and had been well regarded by them. The concept
appeared to be suitable for our major software development extending
over several years, since it provided a financial incentive for good
performance, and this periodic pressure of profit determination offered
the best promise of continued attention by the contractor management.

Accordingly, a specific award -fee approach was devised, and pro-
posals based on this approach were invited. A contract format was
devised specifying a periodic award of fee money based on a quantita-
tive scoring of supplier performance, using stipulated subjective cri-
teria. Its provisions included developing a curve that would give
profit in terms of score and establishing an effective procedure that
would ensure prompt and continuous feedback. A selection procedure
was devised, and the supplier was chosen with the knowledge that this
was to be an award -fee contract.

The contract was signed on January 14, 1969 and with some modi-
fications has been used steadily since then.

II. DETAILS

The contract has covered up to about 800 people. At the time, the
work was divided for control purposes into 16 mission orders (missions)
covering broad areas such as MSR tactical data processing and com-
puting facilities. In turn, the missions were divided into some 70 tasks,
with titles like "Software Quality Improvement" and "PAR Instal-
lation and Test System Development." Each mission can be viewed as
an individual contract since it contains a scope of work, designates a
representative for evaluating performance, sets forth the planned hours
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and dollars estimated to do the work, assigns a base fixed fee, and
establishes an award -fee pool that can be earned in whole or in part
depending on the evaluated performance. Thus, the entire contract
is essentially a collection of mission orders handled within a common
procedural framework.

2.1 Evaluation

Evaluation of the tasks and missions is a key part of the administra-
tion of the contract and, accordingly, it has been structured carefully.
For convenience, the several steps in the evaluation procedure are
summarized in Table I.

Each task is defined by a specific task plan, and is monitored by a
designated Bell Laboratories member of technical staff, usually a
first -line supervisor. Once each month, this task monitor evaluates the
performance of the supplier on his task by means of a formal set of
scores, supplemented by a written commentary that notes prominent
strengths and weaknesses observed during the month. The monitor,
based on his subjective judgment, assigns a score between a minimum
of 59 (a failure) and a maximum of 100, about the interval of a typical
school report card. A score of 80 will return to the supplier a fee
commensurate with what would be expected for a good -quality job on
a CPFF basis. The technical evaluation form is shown in Fig. 1, and the
definitions of the categories in Fig. 2. Each technical evaluation is
reviewed and approved (possibly with changes based on mutual dis-
cussion) by the project manager, who is the task monitor's supervisor.

Table I - Summary of evaluation procedure for CPAF contract

Frequency By Whom Functions

Monthly

Monthly

Monthly

Quarterly

Quarterly

Quarterly

Quarterly

Bell Laboratories Task
Monitors

Bell Laboratories Project
Managers

DPS Control Department

Performance Evaluation
Board

DPS Control Department

Fee -Determining Officer

Management Review Board

Technical evaluation of tasks.

Management evaluation of tasks in a
mission. Due the 5th of the month.

Calculates scores for all tasks.
Sends preliminary evaluations to sup-

plier as of the 12th of the month.
Reviews evaluations.
May make score adjustments.
Recommends scores to fee -determining

officer.
Adjusts scores as recommended.
Makes errata sheets.
Reviews recommended scores.
Makes final decision on scores.
Determines fee.
Sends official evaluation to supplier.
Discusses evaluations (and reviews

contract work generally).
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Fig. 1-Technical evaluation form.

THE BASIC REFERENCE IS THE TASK PLAN.

PLANNING AND SCHEDULING - QUALITY OF PLANNING AND REPLANNING,
MEASURING AND PROJECTING PROGRESS, SCHEDULING, AND ALLOCATING
RESOURCES DURING THE REPORT PERIOD (NOT NECESSARILY HOW WELL
THEY ADHERED TO PREVIOUSLY ESTABLISHED SCHEDULES).

CONFORMANCE TO REQUIREMENTS AND RESPONSIVENESS TO CHANGE -
DEMONSTRATED ABILITY TO MEET DESIGN REQUIREMENTS AND KEEP WORK
IN LINE WITH PROJECT GOALS, EVEN IF CHANGING.

COOPERATION - IN ADDITION TO THE USUAL MEANING, PROMPT FURNISHING
OF ALL DATA ON ANY PROBLEM AREAS THAT COULD IMPAIR PERFORMANCE
OR OTHERWISE AFFECT TASK PERFORMANCE.

QUALITY OF TECHNICAL ACHIEVEMENT - IMAGINATIVENESS, ACCURACY,
COMPLETENESS, RELIABILITY, AND APPROPRIATE OPTIMIZATION OF DESIGN
AND IMPLEMENTATION. FOR EXAMPLE, EFFICIENCY OF CODE IN REGARD
TO THE USE OF TIME AND SPACE, COMPLETENESS AND TECHNICAL AND
EDITORIAL QUALITY OF REQUIRED DOCUMENTATION, INITIATIVE, IDEA
GENERATION, AND GENERAL APPROACH TO THE JOB.

QUANTITY OF TECHNICAL ACHIEVEMENT - PRODUCTIVITY IN DESIGN AND
IMPLEMENTATION OF PROGRAMS AND PRODUCTION OF DOCUMENTS. OVERALL
AMOUNT OF USEFUL WORK ACCOMPLISHED DURING THE PERIOD.

MANPOWER:

REQUIRED - THIS NUMBER IS TAKEN DIRECTLY FROM THE TASK PLAN
AND REPRESENTS THE MANPOWER PLANNED FOR THE MONTH SPECIFIED,
IN EQUIVALENT FULL-TIME PEOPLE.

ASSIGNED - THIS NUMBER IS DERIVED FROM TOTAL MAN-HOURS (INCLUDING
OVERTIME) REPORTED DIVIDED BY THE NUMBER OF HOURS IN THE
ACCOUNTING MONTH. HENCE, THIS NUMBER REPRESENTS EQUIVALENT
FULL-TIME PEOPLE.

Fig. 2-Definition of technical evaluation categories.
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Fig. 3-Management evaluation form.

Separately, each project manager evaluates the tasks for which he is
responsible within a given mission by means of a management evalu-
ation (see Figs. 3 and 4). Technical scores are calculated, based on a
weighting of the categories that varies with the individual tasks.
Management scores are also calculated, but with a uniform weighting
that is the same for all missions. The entire body of monthly evalu-
ations is sent to the supplier soon after the start of the succeeding
month, and face-to-face discussions ensue shortly thereafter.

COOPERATION AND RESPONSIVE MANAGEMENT - QUALITY OF ACCURATE AND
OBJECTIVE EVALUATION OF THE IMPACT OF REQUIREMENTS AND CHANGES.
FURNISHING DATA, INFORMATION, AND ADVICE ON KEY PROBLEMS, AND
MAKING TECHNICAL AND ADMINISTRATIVE CHANGES AS REQUIRED.

ORGANIZATION, MANNING, AND QUALITY OF PERSONNEL - ESTABLISHING AND
MAINTAINING HIGH QUALITY PERSONNEL AND A USEFUL ORGANIZATION
WHICH INTERFACES CONVENIENTLY WITH THE LABORATORIES, AND MEETING
CONTRACT MANPOWER REQUIREMENTS.

MANAGEMENT ACHIEVEMENT - QUALITY AND QUANTITY OF USEFUL OUTPUT.
MAKING EFFECTIVE USE OF PERSONNEL, CONTROLLING THE USE OF
RESOURCES, FILTERING OUT INESSENTIAL WORK, AND PROPERLY USING AND
CARING FOR FACILITIES AND EQUIPMENT.

Fig. 4-Definition of management evaluation categories.
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2.2 Review

Once a quarter, the evaluations for the entire three months are
reviewed by the performance evaluation board, which consists of the
project managers, the senior management of the division, and the head
of the local contracting (purchasing) department [who enters into the
scoring equation his own evaluation of cost and contract administration
(see Fig. 5)]. All evaluations are scrutinized and reviewed for fairness
and appropriateness of category. The project managers are permitted
to change the evaluation scores if they consider it necessary, based on
subsequent information of events during the quarter that had not been
available at the time of the evaluation, provided they can justify the
changes to the board's satisfaction. The board is permitted to change
scores to reflect a broader view, and comments are frequently made in
the minutes of the review meeting that draw attention to a strength
or weakness or emphasize a particular problem. Normally, the changes
in scores are few, and are made only for a specifically explained reason.
The board then recommends, to the fee -determining officer, a set of
scores by mission for the quarter.

2.3 Fee determination

The mission scores are converted to mission fees according to an
essentially linear algorithm, with 59 corresponding to the base fixed
fee (if any) or 0 percent award and 100 corresponding to the maximum

P E BOARD MEMBER FROM TO

CRITERIA PURCHASING DEPARTMENT'S REMARKS WT.

.
SCORE

CONTRACT

ADMINISTRATION

COST CONTROL
ACCURACY OF

RESOURCE

ESTIMATES FOR

EACH TASK PLAN

COST REDUCTION,
EFFECTIVE

REDUCTION IN

DIRECT OPERATING

COSTS, AND INDIRECT
BURDEN RATES

ADM USE DATE ADMINISTRATIVE EVATUATOR DATE
TOTAL
SCORE

COST AND CONTRACT
PERIOD COVERED

ADMINISTRATION EVALUATION

Fig. 5-Cost and contract administration evaluation.
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fee of 15 percent which would include the base fixed fee. In military
work, the base fixed fee cannot exceed 3 percent nor can the maximum
fee exceed 15 percent for R&D work (including the base fixed fee, if
any). The fee -determining officer (the local director of purchasing)
then reviews the scores from the purchasing point of view; he is em-
powered to change the fees if in his sole judgment it is appropriate.
He then forwards the official copy of the quarterly evaluations to the
supplier, together with any score changes and performance evaluation
board minutes, and with the fees for the quarter.

2.4 Supplier review

A contractor/supplier review is normally held quarterly, at the
supplier's request, by the management review board, which consists
of officials of the supplier, technical contractor personnel, and the fee
officer, to discuss the evaluations and pertinent technical and manage-
ment questions. This review may be waived by the supplier.

III. DISCUSSION

Experience has shown that firm customer management support must
be given to the process of evaluating the work and reviewing the evalu-
ations. This involves many people; for example, in July 1971, when
the job stood at 14 missions and 54 tasks, the customer monitoring
involved (part-time) 44 task monitors and 17 project managers. These
numbers may suggest amount of ; however,
this is not the case, since in a program of this magnitude one would
expect to have roughly this number of customer technical people
involved to ensure a good product. The distinctive feature is the
coordinated evaluation effort of these people. There is a tendency for
the evaluation process to become routine and thus to lose its incisive-
ness. This must be guarded against continuously, by vigorous top -
management interest, principally at the quarterly performance evalu-
ation board meetings. Not only must the evaluations be incisive, they
must also be timely. In any busy organization, there is a tendency for
paperwork such as these evaluations to lag. This must be prevented,
since prompt feedback with the supplier is essential.

The evaluations must be carefully and thoughtfully done. In the
course of reviewing a great many evaluations, some Dos and DON'TS
have been formulated. Since these have come from hard experience, it
is appropriate to include them here.

(i) Make the task plans clear and concise.
(ii) Encourage initiative.

(iii) Ensure that the score represents the exact evaluation of the
supplier for the period.
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(iv) Say why you thought the work was good or bad. If the score
is very high or very low, always include an explanation. Make
the remarks constructive, so that they may be used to maxi-
mize supplier performance.

(v) Task monitors should discuss evaluations face-to-face with
supplier counterparts.

(vi) Jot down comments as the month proceeds.
(vii) Get completed forms in on time, to permit quick feedback to

the supplier.
(viii) Don't use an unsupported adjective:

NOT "Good"
BUT "Good replanning to accomodate a peak work load."

Some problems were observed from the supplier's point of view.
Some supplier managers felt that task monitors were arbitrary in their
scoring, and sometimes they tended to please the task monitors rather
than exerting their own judgment on how best to do their jobs. At
times, requirements changes made supplier managers uncertain as to
the customer's needs and made them regard evaluations as unfair.
In the main, these problems were growing pains, and disappeared as
higher management review was applied to the evaluations.

A frequent question is "Are you paying a proper fee for the work?"
The answer is that, if you need high performance on time, then the
value of a high -quality job more than compensates for a higher fee.
If the proper evaluation of the supplier's performance results in a high
fee, then by definition you must be receiving the kind of product you
desire. And such is the case with the contract. under discussion.

IV. CONCLUSIONS

The award -fee contract discussed here has been in operation for
more than four years and has covered, as of October 1974, over $130
million of effort. The gaps in communication have been few, and by
and large they have been spotted and corrected promptly.

In summary, the award -fee contract is a good vehicle for dealing
with a large, complex, dynamic problem, where the customer needs as
good a job as he can get and on time. This type of contract requires
good faith between customer and supplier and a substantial monitoring
and evaluation effort. The format encourages good customer -supplier
communications and the active management involvement that is, in
fact, necessary to successful performance. The improved visibility of
problems makes it possible to address them quickly and solve them.
The CPAF contract format has played a very important role in getting
high -quality software on schedule in a maj or software development.
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A broad -based study of software project management for the SAFEGUARD
project is presented. SAFEGUARD posed unprecedented project manage-
ment challenges because of its size and complexity, yet the project was
successful in attaining its objectives. This account of what some of the
challenges were and which approaches were most effective in meeting them
will hopefully suggest guidelines for the management of other software
projects. Subjects include planning, methods for gathering status informa-
tion, control actions, requirements, and programming methodology; also,
differences between managing a software and a hardware project are
explored. This study is based on intensive semistructured interviews with
26 SAFEGUARD software managers at all levels concerning their experi-
ences on the project and opinions derived from them. The views expressed
are limited to those of the individual managers interviewed and do not
represent a consensus of SAFEGUARD management.

I. INTRODUCTION

For the purpose of this paper, "project management" is defined as
work planning and scheduling; gathering and reviewing status informa-
tion; and controlling and allocating human, computer, financial, and
time resources so as to meet project objectives. Control consists of a
continuing series of corrective actions resulting from status reviews.
Project management differs from management in general in that
technical questions or individual personnel matters are not considered,
except where they might affect the areas within the definition of
project management.

II. METHOD OF STUDY

Most accounts of management experience on a project are relatively
personal ones. In this case, it was decided to obtain a broad perspec-
tive by interviewing a cross section of 26 software managers about their
experiences. The interviews included subcontractor managers and in -
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volved every level of management from first to fourth; and the
participants held a wide range of jobs. There were varying degrees of
background in software and management, and widely differing manage-
ment philosophies.

A discussion lasting approximately two hours was held with each
manager. An interview guide was sent to each participant one week
before the interview. One-third of this guide contained background
material; two-thirds, questions. The guide prepared the managers for
the interviews, giving them time to consider the topics. Each inter-
view was semistructured in the sense that the open-ended questions
of the guide were generally followed; however, digressions into related
topics were also encouraged.

The authors looked for patterns in the responses and held follow-up
discussions with the managers based on the initial draft of this paper.

III. RESOURCES DEVOTED TO PROJECT MANAGEMENT

To gauge the importance placed on project management activities,
each manager was asked what percentage of his organization's re-
sources he was willing to allocate to this function. Estimates ranged
from 5 to 25 percent, with the average about 12 percent. To get a job
running smoothly, it was generally believed that more resources (up
to 50 or even 100 percent) should be devoted to project management in
the early stages of a job. On SAFEGUARD, the rapidly changing en-
vironment necessitated a high level of planning effort extending into
the late phases of the job. Several people believed that the proportion
of effort required for project management is larger on large projects;
this was especially so on such a complex project as SAFEGUARD.

IV. PLANNING

System requirements were first defined in 1969 in a system concept
paper ; by the third quarter of 1969 they were specified at a detailed
system engineering level in the data-processing system performance
requirements.' During the same time period, a complete software
development plan and schedule was prepared, along with the rationale
on which it was based. This overall plan was followed by extensive
planning in more detail at lower levels, much of it stimulated by the
requirements of the Management Reporting System (mRs). The MRS
is described in Section 5.2.

One of the most difficult challenges was establishing the proper time
relationships between different parts of the job. When this was not
done realistically, simultaneous design and coding often resulted; this
was inefficient because then interfaces were not ironed out and the
feasibility of algorithms was not investigated (and they finally had to
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be). It was found that the timing of test planning activities was fairly
critical. The optimum time appears to be approximately when pro-
gram design is complete but coding has not started, since a good test
plan should have both requirement- and implementation -oriented
components. The point in time at which users had enough knowledge
about their data reduction requirements to specify them in detail and
the point in time at which the requirements were needed by the data-

reduction system designers were usually incompatible. It was very
hard to schedule system evaluation, since the design had to be far
enough along to provide definitive information but the evaluation
had to be completed early enough so that problems could be identified
and corrections implemented before the design was frozen.

Several managers would have placed more emphasis on centralized
planning. They suggest that a group, reporting directly to the highest -

level manager, should be responsible for overall planning and schedule
control. A formal development plan for the entire SAFEGUARD project
had been prepared; however, almost everyone felt that this develop-
ment plan was useful mainly for introductory orientation.

Despite a general feeling that planning is important, a slight majority
of managers did not think it necessary to prepare written, explicit
schedule and resource plans for their own areas. Most of them do not
enjoy such planning; however, this distaste does not extend to technical
planning, such as the generation of requirements and test plans. Those
who feel that a development plan is necessary generally suggest a
written plan (with format left to the author) plus supplementary bar
charts. Most managers believe the PERT networks are not worth
the effort required.

Accurate estimation of time, manpower, and computer time re-
quired for a job was found difficult by most managers. Estimation
accuracy was not significantly affected by the size of a job. Several
managers commented that they found it difficult to evaluate schedule
performance because the work often changed after the original plan
had been created. One noted that although computer time usage was
the hardest resource to estimate, it was the least critical of all the
resources to manage (except when "turnaround" time deteriorated).

When errors in estimating occurred, the prime sources of error were
found to be neglecting learning time and underestimating the lengths
of test intervals and the amount of maintenance support required.
One manager felt that from 25 percent to 50 percent of the peak
manpower of a project must be "kept" for the maintenance phase. The
lower figure represents the manpower required to correct "bugs" but
not to implement any changes, and the higher figure represents the
manpower required to deal with a fairly high change rate.
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Several participants felt that a better basis for estimating a job was
previous experience on similar jobs rather than the use of numerical
planning algorithms. Hence, their approach was to let their subordin-
ates use their own direct experience to do the estimating and then
question them on it.

V. GATHERING STATUS INFORMATION

Gathering status information is one of the most important project
management activities. There was a fair amount of diversity in
establishing the criteria that were considered to be most important
in evaluating the worth of a particular report or information -gathering
technique ; however, timeliness and accuracy stood out. Definitiveness
(providing enough information to identify the accomplished work un-
ambiguously) ranked next. Several managers indicated that, above all,
a report or technique should make problem areas visible. Conciseness
was considered useful, but completeness ranked fairly low. Some
minor considerations were flexibility and understandability. It was felt
that asking the question, "What actions can I take as a result of this
report?" was a good approach to measuring its value.

A very strong pattern of preference for informal methods emerged,
with primary reliance on oral rather than written communications. This
preference was found to be independent of management level. One
argument advanced for oral reporting was that the useful life of status
information is short. Another advantage of oral communication is that

Also, many managers believe that they can evaluate the reliability and
accuracy of oral communication better than that of written com-
munication because they can observe the way in which a respondent
answers questions. Lower -level managers prefer making oral reports
because it takes less time and involves more personal contact with
their superiors. The main weakness of oral communication is that for
higher -level managers it may be either indirect (i.e., received second-
hand) or time-consuming.

Some managers found conventional written progress reports moder-
ately useful as reminders for low -priority items or for keeping up to
date on activities in peripherally related organizations, but most
believe that written reports have a low density of useful information.
(They may be inaccurate, heavily filtered or censored, or out of date.)
Written reports usually only formalize communication that has already
occurred. Finally, the formality of writing does cost time and money.
This cost could be such that the need for any written report should be
periodically challenged.

The types of information -gathering techniques used by different
levels of management were generally not very different. There was,
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of course, less need for detail at the higher levels. Higher -level managers
were more interested in tracking the status of capabilities; lower -level
managers more interested in components. Lower -level managers were
very well satisfied with the information available to them; however,
higher -level managers occasionally felt that some of their needs were
not met. Most of the attempts made to provide better information to
higher -level managers involved written reports. They apparently were
only partially satisfactory in meeting the needs, since higher -level
managers still primarily relied on oral communication.

The contractor's low-level managers had mixed attitudes about
technical involvement of high-level managers. They appreciated the
understanding that resulted, but believed that frequently there was
too much concern with detail. They felt that this concern indicated a
lack of trust and that it restricted their freedom to do the job in the
way they thought best. It was suggested that higher managers some-
times dipped into detail simply because they enjoyed keeping tech-
nically involved.

High-level managers, in general, recognize some of the dangers that
their subordinates cite and realize that there may be disadvantages in
their concern with detail. They also know that keeping informed is
expensive in terms of demands on the time of their subordinates.
However, one of them pointed out that perhaps the disadvantages
must be accepted as concomitants to the drive for technical under-
standing and that the advantages on the whole won out. One ad-
vantage, for example, was that technical understanding permitted
rapid evaluation of situations and made for more immediate decisions.

Reporting techniques did not change much as a result of changes
in the phase of a job, excluding reports obviously tailored for a partic-
ular phase, except that there was some tendency for more detailed
information to be needed in the later stages. The program -design,
code, and unit -test phases of a job, characterized by a large number of
parallel efforts, were the most difficult to track. Attempts at numerical
characterization of status were not always completely successful be-
cause available measuring units are generally nonuniform and are not
sufficiently descriptive of problems. The system analysis and system
design phases can be tracked by observing the status of the require-
ments and functional specification documents, and the system integra-
tion test phase by the completion of tests of various capabilities. There
is a clear need to find a way of defining more intermediate milestones
of a specific nature for the program -design, code, and unit -test phases.

It was noted that many persons receiving reports would like to have
had direct control of the level of detail and format. In some cases,
reports satisfied the needs of several people, but these "communities of
interest" were generally small in size and on the same managerial level.
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The persons making reports were sometimes unhappy about the dupli-
cation of data between reports, resulting from lack of standardization.
This situation needs to be recognized as being generally unresolvable ;
good compromises may not always be possible.

Most participants felt that they needed information on a weekly
basis in their area of responsibility. Information more than one week
old has limited usefulness for solving problems. A monthly interval is
considered sufficient for overall project status information external to
one's area of responsibility and for computer usage and manpower and
financial reports. (It was noted that the reason for the less frequent
reporting of financial status was that dollars usually cannot be con-
trolled very rapidly on a project.) Several participants believe that one
needs daily information on a few crucial items, particularly if a problem
exists, or during the final stages of a project.

5.1 Discussion and meetings

Informal individual discussions were by far the most commonly used
data -gathering method. Managers found that individual discussions
were generally more effective than meetings. However, there is often
not enough time to talk about a problem with all the individuals
concerned.

Meetings, usually held on a weekly basis, were the second most
common data -gathering technique. Most managers found that meet-
ings were more successful if they lasted no more than 11 to 2 hours,
with an agenda prepared beforehand. A majority agreed that someone
should be assigned to record and publish action items generated during
a meeting. It was also agreed that specific problems should usually be
"delegated" for later solution.

It was found that there are several common problems that occur in

meetings that a manager must learn to deal with. Occasionally, most
of a meeting may be taken up with "educating" high-level managers.
Some participants may make contributions merely to make an im-
pression. In other cases, meetings can become forums in which one
manager tries to shift the responsibility for a problem to another
manager. People may make unnecessary efforts to dig up problems
just because they believe their managers expect them to bring them up.
It was agreed that discipline should be exercised as to the frequency,
length, and size of meetings ; the principle of representation, rather
than that of full attendance of all parties, should also be followed.

5.2 Written reports

Trouble Reports (TRs) were generally considered to be the most
valuable written source of information on the project. Fairly early
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during the SAFEGUARD project, the concept of writing a TR for a pro-
gram malfunction was generalized to permit such reports to be written
on documentation and requirements as well. This idea was apparently
very well received, and ms were widely used to report and record all
sorts of discrepancies. After a program had been turned over for
integration, the tracking of these reports was the method most com-
monly used by first -line supervisors for keeping track of program status.
Several managers initially preferred local TR accounting systems to a
centralized system, since speed in gathering information and meeting
the differing needs for detail of different groups were their most im-
portant objectives. However, later in the project a centralized system
was established which met these goals. Program -review boards were
set up in several areas to evaluate ms and approve or disapprove sug-
gested program changes; they were found to be very effective.

A computerized Management Reporting System (mRs) was de-
veloped for use on the SAFEGUARD project. The system incorporated
data bases for schedule, manpower, and computer usage information.
The schedule data comprised some 3000 items, with information on
the scheduled and estimated start and completion dates of various
significant activities and events. Status information was provided, as
well as indications of dependencies between the various items. Error-

checking and data -interrelating capabilities were incorporated. On a
monthly basis, information was updated and a standard report
published. In addition, sorting and retrieval capabilities were provided
so that a wide variety of special reports could be produced, on an as -
requested basis.

The success of this system was mixed. Several managers, particularly
at the higher levels, felt that MRS was of significant help in structuring
and planning the project, in that it forced both long-range planning and
the coordination of plans between different areas. On the other hand,
the three-week time lag between gathering information and publishing
it was considered too great. Experience indicated, however, that
gathering, publishing, and distributing this much information (ap-
proximately 850 pages every month to 70 managers), with high
standards of accuracy and good coordination of dependencies and dates
across interfaces, can probably not be speeded up to any significant
degree. Several managers did not like the discipline forced upon them
or the background information lost in a fixed, computerized reporting
system. They believe that managers should be allowed to choose the
reporting method best suited for describing the status of their work.

A Principal Events Reporting System was developed which identi-
fied and carefully defined a number of important milestones on the
SAFEGUARD project. Many of the events listed were the completion
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of tests of various functional capabilities. Status reports on these events
were made by TWX within 48 hours of their scheduled completion dates.
Estimated dates were given for completion of late items, and follow-up
Twxs were sent on the rescheduled dates. A principal events report,
which described and gave the status of all items, including previously
completed events, was issued at quarterly intervals. This system was
primarily valuable to the customer and to higher levels of manage-
ment; the TWX reports were particularly useful.

Program unit reports (reports indicating the status of the smallest
program units and data sets in terms such as "design complete,"
"coding complete," "unit test complete," etc.) were considered to be of
little value by most managers.

The weekly TWX status reports sent between the test sites and the
contractor's home location were considered to be useful because of
their timeliness and conciseness. The almost universal recognition given
to the need for writing and handling a Twx expeditiously ensures that
the information is timely. Furthermore, a TWX progress report must
be concise ; this ensures that only the most important items get re-
ported. This seems to indicate that if a system of written progress
reports is to be of any value, it should be severely constrained in both
preparation time and length. (It might actually save money to require
all written communication to be sent by Twx.)

Several managers used wall schedule charts but all eventually
abandoned them as not being very useful, except possibly for initial
planning. The majority felt that their wall charts did not shed any
particular light on critical issues.

Managers primarily employed computer usage reports to spot trends
or to make budget projections rather than for control. Manpower
usage reports were not employed in manpower allocation decisions
because so many other factors were more important.

Financial reports were used for reporting on expenditures. Several
managers felt that more detailed information should have been
provided as to the sources of the data and the date on which it was
valid.

VI. MANAGEMENT REPORT ANALYSTS

One innovation that was introduced on the SAFEGUARD project was
the assignment of a staff assistant, called a Management Report
Analyst (MRA), to each second -level manager. The MRAs were, in

general, college graduates with backgrounds in planning, scheduling,
and budgeting. Besides acting as general "right-hand assistants,"
they aided the managers with budget preparation and control, planning
and scheduling, interfacing with overall project management report -
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ing systems and following up on action items. Almost all of the man-
agers who were assigned MRAs were enthusiastic about their use-
fulness. A high-level manager noted that MRAs made it possible to
accelerate schedule -information flow. Some of the managers felt that
the MRAs saved them time by buffering them from duplicate requests
for information.

There seemed to be no need to assign MRAs to first -line supervision
on a full-time basis; sharing the MRA assigned to the second -level
manager was satisfactory. One high-level manager said that he felt
that the usefulness of MRAs was such that they also should have been
assigned to the third -level managers. It might be noted that the
fourth -level managers were already assigned staff assistants.

The comment was made that MRAs were most beneficial when they
were assigned to report directly to a second -level manager rather than
to a central group supervisor. However, some managers thought it was
best to centralize the physical location of the MRAs so that there
could be interchanges concerning common problems, solutions, inter-
faces, and action items. Also, centralized training was felt desirable.

VII. CONTROL

Control relates to the corrective actions that result from the process
of comparing status to plan. The size and complexity of the SAFEGUARD
project made prediction of the likely consequences of various actions
difficult at times, complicating the process of selecting from among the
alternatives.

Good organization, adapted continuously to changing job require-
ments, was found essential to the successful implementation of manage-
ment actions. As a by-product, it was observed that the amount of
status reporting and communication required was substantially re-
duced when the organization was well fitted to the tasks to be ac-
complished and responsibility was not divided. Interface and system-
coordination departments had to be in the mainstream of activity and
authority to function effectively. Some managers would have created
a more clearly hierarchical organization. This might obviate the
problem (common among managers with strong technical orientation)
of multiple levels of management working on the same problem at the
same level of detail. Others felt that conflicting needs in a complex
project require conflicting organizations; consequently, informal
organizations and informal channels of communication should be
encouraged.

Most of the managers believe that interfaces on the project were
handled well or very well, but many agreed that specific improvements
could have been made. Some of the interface areas that were initially
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significant sources of problems were the contractor -subcontractor
interface; the interface between support software users and designers;
the interface between system engineering and development; and the
interface between users and support service activities, such as the
computation center.

Most managers found that personal contact and meetings are the
best ways to coordinate interfaces; letters of agreement were con-
sidered to be relatively ineffective (partly because of reorganizations),
although they were of some value when used with subcontractors.
Even where organizations are geographically remote, personal con-
tact is preferred. (For example, coordination with even our Pacific
site was found to work much better by phone than by TWX or letter.)
It is recommended that documentation should be used only to confirm
and record agreements after the fact.

7.1 Control of time

Most managers noted that although only slight deviations from any
scheduled end dates were acceptable to their superiors (the average of
estimates of acceptable deviation is five percent), they had (and should
have) relative freedom to change intermediate schedules.

When tasks could not be finished according to plan, the most com-
monly employed strategies for recovery were to work personnel over-
time or use extra computer time. Increasing manpower on the job or
decreasing the scope of the task were secondary choices. Slipping
schedules, decreasing or deferring documentation (surprisingly), and
decreasing the quality of testing, in that order, were considered to be
increasingly undesirable. (One manager observed that decreasing
testing is a very bad option because people have a way of forgetting
they agreed to reduce testing when a program doesn't work.)

Several managers found that overtime was ineffective except in
urgent situations, because people tended to get stale. This is felt to be
particularly true in creative jobs.

Many of the managers concluded that adding manpower to a job
is usually not a useful technique. Even if budgetary constraints do not
exist, suitable people usually are not available at the critical point of
the job. Adding people generally hurts the effort because of the train-
ing required at such a late stage in the project. (A few areas did add
people effectively late in the project but they had special skills as
trouble shooters.)

Managers generally determined that, when schedule changes are
necessary, it is best to consider all the inputs at one time and do a
complete revision. Complete revision permits the changes to be
carefully thought out and documented. (One high-level manager said
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he felt that some of his principal contributions to the project were
vetoes on changes.)

It was generally agreed that the MRS approach to controlling
schedule dates was a good one : high-level managers controlled the
schedule dates for events, while the supervisor responsible for an event
provided his own estimated date. Many managers believe that a sub-
ordinate should only be held to "end" dates (i.e., the dates at which
deliveries to another organization must be made). A subordinate
should be required to make his intermediate dates visible, but should
be permitted to modify them as he desires.

7.2 Control of human and computer resources

Allocating resources efficiently was found to be most difficult at
the higher management levels. It was hard to gain detailed insight into
how various activities contributed to the real goals of the project.
Activities, particularly in the support area, tended to go on "forever"
unless their value was questioned. Most lower -level managers con-
sidered that they had the knowledge and the freedom to allocate
manpower and computer resources productively within their own areas.

There is general agreement that selecting good people was the
factor of greatest importance in the success of SAFEGUARD. Selection
must be considered not only as an initial choice but also as the con-
tinuing process of assigning people to jobs and problems. The generally
flexible, informal management style that prevailed on SAFEGUARD
aided management greatly in this process, in that there was a lot of
"self-selection." Large numbers of nonmanagers exercised initiative
in digging out and solving problems. The strong technical capability
of proj ect members occasionally led to excessive technical discussion,
design polishing, and uneven work coverage due to a concentration on
technically interesting problems (to the detriment of important but
less rewarding ones). These difficulties were small, however, compared
to the advantages.

Although many of the programmers were inexperienced, there was a
cadre of people with three or four years experience (at the start of the
proj ect) who became the lead programmers and in some cases first -
line supervisors. Previous background of the contractor, background
gained with similar systems, was also valuable. Inexperience oc-
casionally resulted in some errors of judgment. However, one of the
surprises of this study was that inexperience had a relatively minor
overall effect on the project.

The shortage of experienced software managers on the project posed
a more serious challenge than the shortage of experienced programmers.
It was found that if there was not enough supervisory attention given
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to programming, both efficiency in attaining objectives and quality
of output sometimes suffered.

A "software mystique" can discourage managers who have no soft-
ware background from applying some of their general managerial
skills; hence, many skills may be lost.

Turnaround time was the key parameter that was monitored in the
control of support computer resources, since it had maximum impact
on schedules, overtime costs, and programmer satisfaction. Allocation
of support computer time was found to be worthwhile only when turn-
around time deteriorated, i.e., it did not pay on a regular basis.

VIII. REQUIREMENTS

Overall success in various areas of the project was considered to be
strongly correlated with the degree to which project system require-
ments were clearly and completely defined, written, and stabilized. It
was found to be necessary to focus on the feasibility of implementation
of requirements and routine details such as interface coordination as
much as on the requirements themselves. (Simulations of algorithms
on a support computer were determined to be very beneficial.) It
proved to be very challenging to pick the right level of specification of
detail without unduly restricting the designer's freedom to apply his
special competence. It was suggested that it might be useful to have a
high-level requirements document for the customer and a more detailed
one for the developer. One pitfall to avoid is the incomplete require-
ments specification, particularly with inexperienced personnel, who
often will not recognize the deficiency early enough to request timely
corrective action.

Some of the areas that the development managers believe should
have received more attention in the system requirements are :

(i) Error control.
(ii) Interface specifications.

(iii) Requirements for equipment tests.
(iv) Maintainability, reliability, and availability.

Coordination of software requirements with hardware changes was
found to be very important.

One suggested way of achieving greater focus of system engineering
on implementation is to place senior designers in the systems groups
during the first part of the project, so that they can make the systems
engineering people more aware of their detailed needs. As a system is
defined and as more detailed development starts, designers may return
to their development groups.
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IX. PROGRAMMING METHODOLOGY

Another surprise in this study was that the lack of well -developed
methodology in the programming art did not turn out to be a serious
problem. Managers did comment that lack of an established technology
meant that extra time had to be spent in experimentation, which
impacted on cost and schedules.

There are a number of things that managers believe that they learned
in the area of programming methodology. Several managers noted the
need to keep debugging and testing in mind during design. For ex-
ample, one must consider recording requirements and clarity of code.
The idea of holding design reviews with flowcharts was a technique that
many managers tried and found very beneficial. A number of managers
became strongly convinced of the virtues of structured programming,
considering it to be extremely important in the maintenance phase.

Another attitude that changed during the course of development was
the attitude toward patches. It was originally planned to make all
changes by altering source code, so that program listing documentation
could be kept under good control. It was found, however, that the
amount of recompilation and relinking necessary for a large program
made this approach impractical for priority changes or for fixing bugs
during the testing process. It was more practical to place "alters" in
the source code and recompile and relink at less frequent intervals.
Consequently, it became very important to provide good patch
facilities and good procedures for documenting patches and keeping
them under control.

Many managers found that the best documentation for programs
was a well -commented listing. This represents a change of opinion on
the part of a number of managers who had first seen some value in
flowcharts and narratives, but who later found that few people used
them in the maintenance of programs. Flowcharts appear to be better
design tools than program -maintenance tools. Narratives appear to
be of value primarily to system evaluators.

Several managers believe that more attention should be given to
developing good unit test tools early in the development cycle. This
philosophy of independent testing (i.e., test cases generated and tests
conducted by groups other than the original design organizations) was
widely used on the project and in general was quite successful.

There is general agreement that using a local "duplicate" computer
facility for checking out programs prior to shipment to site was not
only useful, but was in fact necessary to the success of the project.
Using a support computer for simulations of algorithms, system
performance measurements, etc., was very effective.
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There were some comments that standards for programming
practices should be specified to a uniform level of detail. Several
managers believe that standards should be function -oriented rather
than format -oriented; i.e., different formats should be permitted pro-
vided they satisfy the objectives of the standards.

X. DIFFERENCE BETWEEN MANAGEMENT OF SOFTWARE AND
HARDWARE PROJECTS

All participants were asked how managing a software project differs
from managing a hardware project. In general, about half the managers
believe that there is nothing essentially different, and the other half
see differences ranging from minor ones to everything being completely
different.

The largest number of noted differences occurred in the area of
development methodology. It was observed that there are more
variables in software than in hardware development. It was felt that
good engineering tools plus the constraints of physics will ensure a
reasonable hardware product, but good programming tools will not
ensure a good software product (it appears to be difficult to set up
enough worthwhile constraints). Programming is more of an art than
a science at present, and software design is often influenced by a per-
sonal approach to the problem. There seems to be a much tighter
coupling between software development and the entire system -inte-
gration process than between hardware development and the system -
integration process. This has been caused not only because logic and
control is mostly implemented in software, but also because hardware
lead-time constraints force system trade-offs to be made with software
to a greater extent than with hardware. Software design was considered
to require more time because software is usually more complex. How-
ever, in hardware design, each element is usually more thoroughly
designed because it will be mass-produced.

The management of changes was another large area of noted dif-
ference. It was considered that software is generally more volatile
than hardware and is more vulnerable to external influences. Several
managers believe that for software there is less understanding of the
impact of change on schedules and costs on the part of customer,
manager, and programmer. The lead time required for changes in
hardware is well recognized, but it is not in software.

In the area of personnel, it was noted that technical competence is
both much more important and harder to evaluate for software be-
cause the design technology is not well developed. There is a shortage
of people with both the programming and hardware backgrounds
necessary to a good system perspective.
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Quality control is at present more difficult for software; the criteria
for success (what is a good program?) are less well defined. The volume
of a worker's output is much greater in software and, thus, a super-
visor cannot examine his work very extensively. (For example, a
typical hardware group might produce 12 hardware circuits in a year
in contrast to 30,000 instructions from a software group.)

Other comments were that software subcontracting is more difficult
than hardware subcontracting because the requirements tend to be
more variable, management of software development is more of an
art, and estimation of the duration and size of hardware jobs is more
accurate.

XI. CONCLUSIONS

What major lessons may be drawn from the SAFEGUARD software
experience by prospective managers of other software projects?

(i) There appears to be great virtue in maintaining a flexible,
informal, participative style of management.

(ii) Selecting good people and matching them to the right functions
and problems are probably the most important management
functions.

(iii) Informal, oral approaches to reporting status seem to work
the best ; written reports should be kept to a minimum. When
used, they should be strictly constrained by length, time dead-
lines, and very hard-headed analysis of their purposes.

(iv) Defining and tracking concrete events based on functional
capabilities, as exemplified in the Principal Events Reporting
System, was found particularly useful by higher -level managers.

(v) Informal status reporting should be balanced with carefully
prepared and written requirements and test plans and good
configuration control of both requirements and code.

(vi) Using project management specialists as staff assistants for
managers was found to be a very productive technique.
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Glossary

ABM Antiballistic missile.
BMDC Ballistic Missile Defense Center-SAFEGUARD operations center in

Colorado.
CENTRAN Central Logic and Control Translator-The SAFEGUARD project standard

software language.
cLc Central Logic and Control-The multiprocessor computer used to drive

each SAFEGUARD data-processing system.
DPS Data -Processing System-The cLc hardware, software, and peripheral

devices.
DPSPRs Data -Processing System Performance Requirements-Documents that

specify the required performance to be provided by the SAFEGUARD
system software.

ECU Exercise Control Unit-Digital interface equipment between the cLc and
radar analog hardware used to facilitate simulation of a threat
environment.

IOC Input Output Controller-Controls the transfer of data between the cLc
and its peripherals.

M&DSS Maintenance and Diagnostic Subsystem-Test equipment and software
supporting digital equipment maintenance.

MDC Missile Direction Center-The MSR site and its remote launch facilities.
MDP Maintenance and Diagnostic Subsystem Processor-CDC 1700 computer

supporting digital equipment maintenance.
Meck Meck Island-Field test site; part of the Kwajalein Atoll.
MSR Missile Site Radar-Part of the MDC site complex; the radar equipment

for missile tracking and local surveillance.
PAR Perimeter Acquisition Radar-Long-range surveillance and tracking radar.
PPS Policies, Procedures, and Standards-Manual containing documents that

state policy defining the management, documentation, design, imple-
mentation, and control of SAFEGUARD software.

SAFSCOM Army SAFEGUARD System Command-The Army agency having re-
sponsibility for SAFEGUARD ABM development.

SDRS SAFEGUARD Data Reduction System.
SNX SAFEGUARD NIKE-X-CLC assembly language.
SPARTAN The long-range interceptor missile employed by the SAFEGUARD system.
SPRINT A fast -reacting, short-range interceptor missile employed by the SAFE-

GUARD system.
STACS SAFEGUARD Tactical Computer Simulator-Used for unit/task level de-

bugging of programs.
STAG SAFEGUARD Threat Action Generator-A software facility that enables the

simulation of a SAFEGUARD threat for use by the system exerciser.
TSCS Tactical Software Control Site-A collection of SAFEGUARD hardware that

provides a duplicate of the software environment at a deployed tactical
site.

TH/ca Trouble Report/Correction Report-Part of a control system in which all
problems were identified by a trouble report and the solution to each
problem was described by a correction report.

XPF Execution Preparation Facility-Performs the linkage editor function for
software to be executed on the cLc.
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