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The optical fiber drawing process is considered in its tolality—from
source to forming zone lo draw-down region and take-up end—as a prob-
lem in fluid dynamics. Fiber drewing of most glasses 18 dominated by
viscous stresses, surface tension effects, and quenching rates. This con-
irasts with the drawing of textile fibers, where other fluid properttes and
non-Newlonian effects can play important roles. Preltminary lime-in-
variani “‘base flow”’ models are developed for glass drawing, using the one-
dimensional, small-slope approximation of extenstonal flow. First-order
sensitivilies of lhese base flows io changes in operaiing conditions are
ezamined via a stabilily analysis. Two imporiant tnstebility mechanisms, -
denoted as the tensile and capillary modes of dynamic fiber response, are
discussed. Several follow-on objeciives arising from this study are described.

I. INTRODUCTION

Stringent tolerances set on optical fibers used in communication
systems have generated a need for understanding the fluid dynamics
of the fiber drawing process. The responses of this process to various
disturbances, especially those resulting in perturbations of the fiber
diameter, are of interest.

For steady-state drawing, one seeks analytic models that interrelate
the draw-down ratio, draw force, flow rate, and some characteristic
temperature. Such models serve two purposes: they predict the effects
of changes in the operating parameters and ean therefore be used in
the eontrol of industrial drawing processes; they also provide a ““base
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state” for the theoretical study of dynamie responses. Such responses
could be due to a variety of physical disturbances; for example,
mechanical vibrations, thermal transients, ambient gas flow, and even
acoustic noise. All of these disturbances may produce variations in the
diameter of the finished fiber.

In studying the perturbations of liquid fibers, cur philosophy departs
somewhat from the more traditional one of stability analysis in textile
engineering. Textile fiber studies, in general, strive to avoid fiber
rupture and gross distortions of the thread line. (See, for example,
Refs. 1 through 9.) In cases where continuous drawing of textile fibers
is impossible, much emphasis is placed on the prediction and control
of thread length, i.e., the filament lengths attainable between spon-
taneous ruptures.

The drawing of optical fibers takes filament continuity for granted.
However, the ultimate optical application is sensitive to small diame-
tral perturbations, far from rupture. Moreover, optical fibers are
usually drawn at higher viscosities and draw forces than textile fibers.
Starting from a much higher melt temperature, the subsequent viscos-
ity increase due to quenching of the glass is - much more severe than in
polymers. Also, in its molten state glass is more nearly Newtonian than
most polymers.

Our purpose, then, is to model the mechanisms by which perturba-
tions arise in the glass-drawing process and are frozen into the finished
fibers. Based on this understanding, we hope to eontral fiber dimensions
within the tolerances imposed by optical considerations (e.g. Ref. 10).

The fluid dynamics of fiber forming involve a source flow, also re-
ferred to as the forming zone, and a draw-down region. The forming
zone is usually characterized by a rapidly contracting flow issuing
from the bottom of a preform, or pulled from an corifice at the bottom
of a crudible (Fig. 1a). In drawing from preforms, we may distinguish
between a very sharply contracting configuration (Fig. 1b}, commonly
encountered with laser heating, and o more gradual contraction that
results from furnace heating (Ifig. le). We include in Fig. 1d the case
of an overheated preform, where the forming zone consists essentially
of a liquid drop from which the filament is drawn. The different
forming-zone configurations shown in Fig. 1 can imply fundamental]
differences in the flow field, as far as the steadysstate and potential
instabilities are eoncerned. For example, there is some evidence! to
suggest that the overheated preform, Fig. 1d, is capable of self-sus-
tained oscillations at critical draw speeds, whereas, at noncritical
speeds, the liquid reservoir in the pendant drop tends to absorb per-
turbations eoming from the take-up end.

The forming zone makes a continuous transition to the draw-down
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Fig. 1—Fiber-drawing methods.

region, where an essential part of the fiber contraction occurs. Typieal
draw-down ratios, defined as terminal velocity/source veloeity, in this
region run between 10 and 100. Most fiber stability studies place major
emphasis on the draw-down region, because of its physical importance
and mathematieal tractability. However, the role of incipient perturba-
tions in the forming zone cannot be ignored. The essential need for
modeling this part of the flow field, if only by numerical simulations,
is obvious. For completeness, we also recognize that a very small
amount of fiber deformation occurs beyond the draw-down region; but
this falls within the visco-elastic rather than the fluid-dynamic regime.

Much of the empirical evidence in textile and glass-fiber drawing
suggests that fluid dynamics in the draw-down region is governed by
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the so-called Trouton viscosity, a measure of the ability of fluid
filaments to sustain tensile stress as a function of elongational strain
rate, Indeed, if fiber breakage occurs in the draw-down region, it
exhibits the neck-down and cohesive separation reminiscent of tensile
test specimens. Much of the early modeling by Ziabicki!*!® and sub-
sequent efforts by Pearson,’!* Kasé,® 7 and others are based on this
notion, and for this reason we refer to these analyses as “tensile”
models.

In parallel, and possibly quite independent of the tensile mechanism,
local flow conditions may exist where surface-tension-driven phe-
nomensa play a significant role. Such “eapillary” responses could oceur
at the hot tip of the forming zone, where the viscosity is still quite low
and the filament begins to take shape. Capillary models of filament
response go back to Rayleigh’s classical work,'s'® with subsequent
extensions and experimental corroboration by, for example, Taylor,?
Tomotika,!?1% and Weber.?®

The present paper serves several purposes: (¢) it generates pre-
liminary base-flow models for the draw-down region, using the one-
dimensional, small-slope approximation of elongational flow; (#) it
makes a preliminary assessment of sensitivities, through differences in
base flow, to changes in operating conditions, such as take-up speed
and quenching profile; (#42) it presents the tensile and capillary models
of dynamic fiber response as fundamentally distinet mechanisms; it
explores their applicability to different parts of the draw process by
suitable modifications and extensions of existing theories; (¢v) it pro-
jects several follow-on efforts aimed at unified models of the steady
and perturbed drawing process, viz. more realistic base-flow models,
including heat transfer and two-dimensionality at the start of the
draw-down region, and transient-response models, which aceount for
these refinements in the base flow together with possible interactions
between capillary and tensile mechanisms.

Il. REVIEW OF EARLIER WORK

In this section, we discuss some of the literature on tensile and
capillary stability analyses of liquid filaments. Table I relates several
key publications and identifies their underlying assumptions and
physical models.

The first comprehensive study of tensile fiber models was undertaken
by Ziabicki et al.!—%.12.1%20 Motivated by the textile engineers’ interest
in potential instabilities and fracture mechanisms, the authors reviewed
existing phenomenclogical evidence on filament ‘“‘spinning.”* They

* This traditional terminology, which suggests twisting a fibrous material into
strands, will be avoided henceforth as inappropriate to the drawing of liquid filaments.
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Table 1 — Overview of tensile and capillary fiber models

Tenaile models,
physical features
discussed.

Viacosity = 3 g, inertia,
surface tension,
uenching, finite
raw-down.

Viscosity = 3 u,
stability analyses.

Viscosity = 3 u,
stability experiments.

Pertinent literature

Refa. 1-4, 12, 13, 20:

Refs, 5, 14: dynamie

Refs. 6, 7, 21, 22, 25:

analysis of attenuat-
ing fibers. including
the effects of viscos-
ity perturbations nnd
different base states.

analysis nnd experi-
mental corroboration
of relevant phyaical
factors in base state
and some dynamic
perturbationa.

experiments corrob-
orating eyelio and
transient responses of
tensile fiber modela.

Newtonian viscesity,
inertia, and surface
tension.

Refs. 16, 17, 18, 19:
comleete theories of
capillary jets. Modifi-
eation for quenching
effects given here.

Capillary models,
physical features
investigated.

Newtonian viscosity

Inertia and surface
and surface tension. i

tansion,

Pertinent literature | Ref, 16: cylindrical
filaments neglecting

inartia,

Refa. 16, 19: theory of
inviseid capillary
fluid eylinders.

Refs. 17, 18: adaptation
to contracting flowa
and quenching effecta.

Note: Numercua authors have conducted experimenta over the yeara to dem-
onatrate instabilities of capillary jets and filaments under isothermal, i.e.,
osonatant viscosity, conditions.

also cite experimental evidence that when a filament is formed, say
in the wake of a free-falling viscous drop, either a tensile (“cohesive’)
fracture or capillary separation may sever the flow.

In Ref. 12, a suitable tensile theory is developed for the prediction of
finite filament lengths, assuming the cross-sectional distribution of
longitudinal veloeities to be uniform and the steady-state flow to con-
tract with small slope. Reference 20 accomplishes the same for capillary
effects by an adaptation of Rayleigh’s classical theory (as we have
done independently for our own purposes). Ziabicki’s subsequent
publications include a thorough evaluation of experimental results,
corroborating his predietions of filament lengths.*

Ziabicki’s comprehensive effort was followed by a series of papers
by Pearson and others, aimed predominantly at tensile stability models.
Starting from the simplest possible representation’*—an isothermal
filament under eonstant viscous tension—progressively more elaborate
results were achieved by adding fiber quenching, inertia, surface
tension, and gravity. A physical interpretation of this work, however,
is difficult since the explicit features of diametral perturbation profiles
along the fiber, their time dependence, and their sensitivity to proper-
ties of the base state seem poorly understood. We will return to this in
Section VII. Ziabicki’s tensile flow models and the draw-resonances

* Like other Western readers, the author has been somewhat late in fully recogniz-
ing the si%rfiﬁcance of Ziabicki's work, much of which was initially recorded in Polish
journals, Note, however, Ref. 4 for a more recent, comprehensive account.
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predicted by Pearson et al. were corroborated by several experimen-
ters. We cite the work of Kasé®-?? and Donnelly and Weinberger?® as
examples in this area.

As mentioned earlier, the study of surfaee-tension-driven perturba-
tions contributes anaother, as yet separate, view of fiber stability which
goes back to Rayleigh’s classical work as presented in Refs. 15 and 16.
Rayleigh himself studied several simplified cases: (¢) constant viscosity
plus surface tension (no inertia), (#) inertia plus surface tension (no
viscosity), and (7%7) eonstant viscosity plus inertia plus surface tension.
Each analysis yields an exact solution of the hydrodynamic perturba-
tion equations for an incompressible liquid contained by a eylindrical
boundary with surface tension. Simplifying assumptions are made only
in solving the characteristic equations.

Weber'® showed that exact solutions of the characteristic equation
differ little from Rayleigh’s approximation. He also considered the
effect of asrodynamic drag on the perturbed filament. Tomotikal?.18
extended Rayleigh’s model to allow for an ambient viscous fluid that
surrounds the filament and is subjected to a steady elongational flow.

For our own purposes, we need to modify Rayleigh’s and Tomotika’s
work to reflect not only contraction in the base flow but also the viscos-
ity buildup due to quenching. These are essential features of such
“capillary”’ models of fiber drawing and are therefore listed explicitly
in Table I. A display of diametral response profiles along the fiber and
their dependence on wavelength and base-flow properties-is given for
comparison with tensile stability models.

lil. FUNDAMENTAL EQUATIONS AND THE ASSUMPTION OF
ONE-DIMENSIONAL FLOW

Let z = axial coordinate
radial coordihate
= axial veloeity component

1l

r

radial veloeity component

= fluid density, assumed constant

= surface tension,

= Newtonian viscosity, a funetion of temperature.

T oa v 8 o
|

In the eylindrical eoordinate system (r, 2), the Eulerian equations of
mass and momentum, conservation read:

vs+u:'+_1;=0 (1)
T 1 Tz 1 .
Pl v ] = G Lk = ()
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dr. O, 1 .
9z + ar + P ()

ploe + wur + v0.] =

where 1,, 7, 7, denote stress components. In all other instances, the
subscripts 7, 2, ¢ denote partial derivatives.
The constitutive relations fur an incompressible Newtonian fluid are

5 OF
—P+2#az

I

Te

a
Ty = —pP + 2u 71:
; @
Te = —P + 2}1. ;
dv  du
Tre = M ("3; + Fz) ?
where p is the pressure. It is one of the dependent variables, along

with u, v, and the free surface configuration r = a(z, {). Equations (1)
to (3) have the following boundary conditions:

Atz =0;
v{r, 0, &) = wvo(r, t)
u(r,0,t) = uo(r, t) (5)
a(0, t) = aolt).
At z = L, the take-up position:

o(r, L, t) = vi(r, b). (6)

At 7 = a(z, t): the kinematic condition
da |, da
= —_ _— 7
v=uo + al (7

together with tangential and normal surface-stress conditions, which
we do not reproduce in detail at this point. (See Appendix A.) Once a
solution of this boundary value problem has been found, the draw
foree at any cross-section follows from

Pz, t) = 2ara/[1 + (da/92)*]t + 2« j;a rrdr. (8)

In particular, AP(¢) = P(L, 1) — P(0, ) and, to the cxtent that the
solution for 7, contains g, p, o, the expression for AP depends on these
fuid properties.

The complete set of governing equations for the fiber drawing
process includes an energy equation from which the temperature dis-
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tribution 7'(r, #, £} in the draw-down region is determined. This, in
turn, yields p as function of position and time. Strictly speaking,
therefore, the heat-transfer equation is coupled to the fluid-dynamic
equations. However, since we give it a separate, detailed treatment
elsewhere, we uncouple it from this preliminary diseussion and in-
troduce u(r, 2}, for nonisothermal draw-down, as a function presumed
obtainable from some heat transfer model.

The general axisymmetric, free-surface flow problem posed by (1} to
(7) is a formidable one. However, for the purposes of an engineering
analysis and to gain some basic insight, much headway can be made
by taking advantage of the fact that |a.| = 0(¢) &< 1 and |u/v|
= 0(e) « 1 throughout the draw-down region. This “small slope’
assumption expresses the obvious fact that fluid flow in fiber drawing
is essentially one-dimensional. The consequences of this kinematic
feature are developed in Appendix A, taking advantage of the fact that
we are dealing with low-Reynolds-number flow away from regions-of
strong relaxation in velocity profile. Specifically, we find :

(2} v =0, ie, “plug” flow throughout the draw-down region.
(2%) T < €{7s T¢, Ta)T/00
(i1} u « er/a
(iv} 7. = 74, uniform over the cross-section
(v) r. = —o/a + 3uv,, over the cross-section,
where 8 u is the so-called “Trouton’’ viscosity for extensional
flow in a liquid filament.

These features of one-dimensional flow in the draw-down region sug-
gest that mass and momentum conservation may be expressed con-
veniently in terms of cross-sectional fluxes and stress integrals. Equa-
tions of this kind may be obtained formally by integrating over the
fiber cross-section: eq. (1) for volume conservation and eq. (3) for the
axial momentum balance. Alternatively, we may derive these equations
directly by taking a segment, of length dz, from the tapered axisym-
metric filament as control volume. We obtain for volume eonservation

(a%). + (e, = 0 (9)
and for axial momentum conservation
plav?), + pla®), — 3(atuv,)y — oa, = 0. (10)

For an eventual comparison with the early work of Pearson et al.,
we also record (10) after the terms in p and ¢ have been dropped. We
have the simplified momentum equation

atur, = M (1), (11}
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where M is an arbitrary time function. This equation merely states
that the draw force is uniform along the fiber and varies only with &.
For later reference, the time-independent (i.., steady-state) versions
of (9) and (10) yield
a% = const. = @ (12)
and
C = 3a%uv, — pQv + ao, (13)

where C is a constant of integration, viz. the cross-sectional draw force
reduced by the momentum flux.

IV, STEADY-STATE SOLUTIONS FOR THE DRAWING PROCESS

In this section, we consider solutions of the time-independent
equations (12) and (13). These constitute steady-state representa-
tions of the drawing process which are of interest for two reasons. First,
they model the steady drawing operation and yield some insight into
its controlling parameters, i.c., the dependence of draw force and
draw-down profile on the draw-down ratio, the viscosity profile, fluid
inertia, and surface tension. Second, they provide reference states on
which to build dynamic response models for fiber-stability studies. In
this context, such solutions are often referred to as base flow models.

It is well-known in fluid-dynamic stability theory that detailed
features of the underlying base flow can be quite important to the
predicted dynamic response. Hence, it is necessary that we examine
several base-flow solutions of the drawing process for the physical
features they represent.

Starting from (13), one observes that the first term on the right-hand
side represents the viscous stress effect, the second fluid inertia, and
the third a contribution from surface tension. We assume the following
fiber dimensions and fluid properties at the start of draw-down:

v = 10 em/s

a=10"%cm
v, = 100/s (e.g., Av = 100 cm/s, over Az =1 cm)
p = 2.5 gm/em?
= 200 dyn/cm
g = 100 poise for soda lime glass

1000 poise for fused silica.

Note that the temperature at the interface between forming and draw-
down zone is very dependent on as yet unknown Auid-dynamic and
heat-transfer conditions in the forming zone. Therefore, the assumed
values for 4 are rather tenuous. 100 poise probably represents a mini-
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mum for soda lime glass, as might be expected in fiber drawing from

crucibles.
Given these data, the order-of-magnitude relations between terms

in (13) are:

Viscosity  Viscous stress Inertia Surface Tension
s (poise)  3ua®’ (dyn) st (dyn) oa {dyn)
Sodu lime glass 100 3 2.5 X 107 2
Fused silica 1000 30 2.5 X 107 2

Thus, inertia effects amount to barely 1 pereent of the viseous term
under the most favorable circumstances, while surface tension ean be
important when u is near its minimum. However, physical evidence
suggests rapid quenching of glass fibers in the draw-down region.
Hence, inertia and surface tension effects soon become negligible as the
temperature drops by several hundred degrees over the first few milli-
meters of the draw-down region, causing ux to grow by several orders
of magnitude (see, for example, Ref. 23).

Disregarding, for a moment, the quenching effect that actually
occurs in the draw-down region, we briefly consider an isothermal base
gtate for two reasons. First, it permits an understanding of secondary
physical effects such as inertia and surface tension, without being
obscured by viseosity changes. Second, in later dynamic response
studies, the isothermal base state serves as a basis of comparison for
the stabilizing effeet of the quenching that does oceur.

Letting the fluid properties in (13) be independent of z, we consider
flow conditions such that inertia and surface-tension effects can be
viewed as perturbations in relation to the viscous stress. Eliminating
the radius a from (12) and (13) and nondimensionalizing according to

a( )

‘I’=U/Un, 3'=3/L, ( )’_ ac '

¥ — DU = —Welt 4+ Rel?, {14)
where vy = vatz = 0, L = length of draw-down region, and D = LC/
3ajviue, the nondimensionalized equivalent of € in (13). The inertia
and the surface-tension terms are characterized by a Reynolds number
Re = voLp/3usand a Weber number, We = o¢L/3awoue. The elementary
solution for (14) with We = Re = 0 is

¥y = e'F, (15)
where we have used the boundary eonditions
v =1 at =0
¥ =F at t=1
and £ = v./vyis the so-called “"draw-down ratio.” Note that D = InE.

we find
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NORMALIZED FIBER RADIUS

Corrections to this simple basc-state solution for small We and Re
can be found by perturbution methods. A first-order approximation
for We << D and Re « D is found by substituting (15) into the r.h.s.
of (14):

Wy = exp [mE; 4 20 (g anrrs — 1) 4 B (ermne 1)] (16)
Resubstituting this into the right side of (14) for a second iteration,

terms such as exp[ef!*F], were approximated by power gerles prior to
quadrature with respect to {. Then,

Re We InE (We + %Re)
— plinE — ST e e — a2 T
Yoy = e {1 W"‘"’C[zan’zuE’ g InE "]
2Ke 4We _ (4We + jRe) 1Re)
+Re‘"'c[an Tk * " mE f]} (17)

where the expression for 3C[a, b, ¢, d, {] is recorded in Appendix B.
Numerical results from (17) are best presented in terms of the non-
dimensional radius a/ae = X. According to (12)

X = ¥, (18)
This has been plotted in Figs. 2 and 3 for a range of values in We and

1.000
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0.700+ ——We=10
0.500~
we=0-—"

0.500|~

0.400—

0.300 ] | ] ] | ] _1 | ]
0.000 0.100 0200 0.300 0.400 0.500 0.600 0.700 0.B00 0.900 1.000

NONDIMENSIONAL DISTANCE §

Fig. 2—Perturbation solutions for base-flow profiles with increasing surface tension;
E =10, Re = 0.
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Fig. 3—Perturbation solutions for base-flow profiles with increasing fluid inertia;
E =10, We = 0.

Re. These results show a tendency for filament contraction to be de-
layed with increasing surface tension and fluid inertia, a familiar phe-
nomenon from more accurate base-flow models obtained by numerical
methods.?4

Now let us return to the more realistic case of variable viscosity. We
denocte it upy{t), where the second factor represents only the dimension-
less dependence on ¢, with 5{0) = 1. Then (14) becomes

g — D¥ = — We¥t + Rel?, {19)

Using an inverse approach, we can, for example, assume Re 5 0,
We = D = 0 (where D = InE is no longer true) and ¥ = ef»#, as in
(15). This yields

7 = ;E_E' gtinE {20)

and constitutes an inertia-dominated base flow. Experimental data
suggest that something like an expenential viseosity buildup along the
draw-down region is a fair representation of quenching effects. Note
that for this base-flow model,

X = g (nEME (21)

which has the disadvantage that X — 0 for { 3> 1. To provide a finite
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asymptotic value for X, we may assume a draw-down profile of the
form X = feof +¢ with f+¢ =1,0 < f, g <1, and solve for ¥
from (18} and 5 from (19).

We summarize the three elementary base-flow models obtained so
far with the notation [nk/2 = a:

Unquenched base flow; Re = We = 0:
X =g, ¥ = g, 7= 1 (22)
Quenched base flow; Re # 0; We = 0;

X—0Q for t— w:

X = e, ¥ =ad, g= el (23)

Quenched base flow; Re = 0; We = 0;
X finite for § — oo
X = (fest +g), ¥=1/(fef + g%, n=et/(feof +g). (24)

In addition to the inertia-dominated base flows (23) and (24}, we can
show that

. 1 i - 1 .
x=f8 ‘-+g, ‘I"-_FE(I—ZEG r), 17—66‘- (25)
is & solution of the approximate fluid-dynamic and heat-transfer equa-
tions, for small @, if we let Re = We = 0 and assume

g = peeft-TiTo),

where T, is the initial temperature and 83> 1. This represents a
quenched base flow that is not inertia-dominated, in keeping with some
of the perturbation equations diseussed later on. Note that for each of
these base-flow models da/dz = 0{aas/L). Sincea = 0(1) but as/L K1,
this means that |da/dz| <« 1 and confirms the basie assumption pro-
viding for one-dimensional flow, as discussed in Section 111. Note also
that the viscosity profiles in models (23), (24), and (25), which reflect
a cooling process along the fiber, are connected with the draw-down
profile through the parameter a. This parameter is indicative of the
quenching rate in 5, and also controls x’, the slope of the draw-down
profile,

The draw-foree follows from any of these solutions by the obvious
relation, in dimensional form,

P = ra*r. + 2awve = 3ra’uy, + wao. (26)

If we neglect « and substitute one of the base flows, we find that P
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depends on aq, vy, po a8 well as the draw-down ratio and the quench-
ing rate a; all of which could be expected on physical grounds.
Clearly, we could refine upon the viscosity profiles to be used in
simple base-flow models. Since some experimental temperature profiles
tend to show an exponential decay and the viscosity temperature
relation for many glasses is of the form » ~ ¢*T, we might consider
functions of the form :
7 = r 4+ & exp(e?t).
However, such elaborations result in a loss of mathematical simplicity
and usually lead to equations for ¥ that require numerical integration.
At that point, it seems more appropriate to solve the coupled heat-
transfer/flow problem by numerical means. This has been done and is
documented elsewhere.*

V. PERTURBATIONsEQUATIONS FOR TENSILE STABILITY MODELS

In this section, we develop the first-order perturbation equations
necessary for a lincar stability analysis of tensile fiber models. Let the
first-order solution of (9), (10}, and (11) be denoted

= a(z)[1 + d(z )]
v(z)[1 + d9(z, t}] 27
»(z)[1 + 5(z, )],
where a(z), v(z), and »(z) represent radius, veloeity, and kinematic

viscosity for a suitable base state, in dimensional form for the time
being, and &, 9, # are dimensionless first-order perturbations of these

quantities.
Substituting (27} into (9), the first-order variation of the continuity

equation reads

LT~
II

=
Il

1 1. .
d, +5dt +§7Jz“ 0. (28)

Similarly, (10) without the surface-tension term becomes
ﬁu-!-ﬁ,(;-f-!-z—’—%’) —3%1:‘1-!-&2(%:—)5—321;)
—-%d,+d(2v?—%)=/v+ﬁ(%v’—%)z/v
= —ﬁ,% — g (%)/w (29)

and from (11), the momentum equation without inertia terms,

v d(d)
2d+ﬂ+v+v—z'y,—ﬁ, (30)
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where we have used avp, = Py = const. from (11) and d(¢) is a per-
turbation of M(t). Since the examples in later sections use the base
states of Seetion IV, it is convenient to nondimensionalize the space
and time variables as

al = 3 "lilt =7 (31)
and use the notation
d(_ ) _ ’ d{_ ) _ .
S = () and —gf= () (32)

The specific versions of (28), (29), and (30) now develop as follows.
With the base states (22) or (23), eq. {28) becomes

& + 3 + e = 0. (33)

Neglecting inertia in the momentum equation, (22) and (30), for the
unquenched inertialess base state, yields

2% + 64 5+ 30 = o), (34)

where ¢ is an arbitrary function of 7. On the other hand, the momen-
tum equation (29), using the quenched inertia-dominated base state

(23) leads to .
3" — 45 — 4de?t — et = — 25" — 44 (35)

Turning now to the inertialess, quenched base state (25), we revert to
(28) and {30) as basic equations, but reserve the substitution of » and
v, from (25) for a later time.

For some of the examples treated in later sections, it is convenient
to eliminate # from (34) and (35) by means of (33) and similarly from
(28) and (30) for base state (25). The resulting equations for 4 are
recorded in Appendix C for later reference.

Conversely, the boundary conditions for some problems demand an
equation in 4. This is the case with steady-state responses to changes
in the takeup velocity, which we treat in the next section. If (27) is
used in (12) and we let @ = @(1 + 4), the first-order veriation of that
equation yields .
2i +19 = 4. (36)
Next, consider (13), where we neglect surface tension and perturba-
tions in ». As noted before, the constant C may be interpreted as a
force parameter, carried from the forming zone to the draw-down
region. Taking the first variation of (13}, letting ¢ =C(l + ¢é), and
eliminating 4 by means of (36),

LIPY YRSy SN A
AN P 3ch+g(3v ) (37)
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Nondimensionalizing the base-flow variables in this equation according
to Section IV, we have

4 Re o k Rel ‘I‘g—
- — g == — = 214 38
o— B By (BT g (38)
where
LCé )
- 3(1%1)0#0

Equation (38) is designed to yield changes in the steady-state velocity
profile, %, as a function of § and &, which are perturbations of the volume
flux and force parameter of the base flow.

In summary, this section has developed first-order perturbstion
equations based on the continuity and momentum equations of
Section III. The perturbation equations were given in terms of 4 or 4
as needed for the steady-state and dynamic-response studies to be
pursued in Sections VI and VII.

Vi. PERTURBATIONS OF THE BASE FLOW

In this section, we use the time-independent versions of perturbation
equations derived in Section V to display changes in several base-flow
solutions due to shifts in such steady-state parameters as the boundary
values and the viscosity profile along the fiber. Since these parameters
are often accessible to control in real fiber-drawing processes, their
effects on the steady flow are of operational interest. Obviously such
effects could be determined by difierencing neighboring base-flow solu-
tions in the control-parameters space; however, exhibiting the changes
(analytically) as first-order perturbations can yield useful insight for
the design of feedback controls.

We start by examining the response of steady state (24} to a change
¥z in take-up speed. Substituting the appropriate base-flow expressions
for ¥ and  into (38), one has

=3 —3
¥ Re‘*—x- i = ke X + (Re — 2) "7 4, (39)

where

pmar (=20 a-ferag

and a factor of 1/a has been absorbed in Re and k. The boundary con-
dition for (39) is

d=9;, at 3§ =3,=oq. (40)
We find
. - T kX2 g_f_
§ = Vx-els 2—(l+f)+(Re 1)@ (41)
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with
= |4 ﬂ Re/f kX1,

Vo= on+ (14 2L) 0|3 g g @+ R,
where X, = X(z;). Given (41), the corresponding changes in fiber
radius 4 follow from (36).

Additional features of interest with (41) are ¢ at z = 0 and perturba-
tions of the draw force at either end. Thus,

iy =V — k(2]
fo=130) =V 50 F J) + (Re 1) g (42)
For the draw force,

P = P(1 + p) = 3nudti,

which yields s
gty —ga S
ﬁ — q + U' v ﬁ + 2f
From this,
. . VRe k
and
- VRe |, _por kx3
dr=4+ 37 b i +§m; (44)

the changes in draw force, as funetion of %, ¢, and k.

The solution (41) is of little more than conceptual value as long as §
and k are unknown. Recall from (38) that these parameters represent
perturbations in the integration constants of the base-flow solution for
the draw-down region: ¢, a change in the volume flux, and k, a change
in the force parameter of the momentum equation. Such changes muat,
in general, be expected to enter from the forming zone when the steady
state is altered due to 4.

Fortunately, ¢§ = 0 for drawing from a preform that is fed at a
constant rate. However, the exit flow from a crucible (Fig. 1a) does
not provide such a simple condition. If operating at a low head in the
reservoir, we would expect the entrance flow into the orifice to be
affected by changes in the take-up speed. In neither case does there
exist an obvious condition for the forece parameter k [i.e., é and C, see
eq. (38)].

A theory of the forming zone should be able to relate 4o and Bo on
the one hand with ¢ and & on the other. Given such relations, these
would combine with (42) and (43) to determine ¢ and k in terms of
#1, and hence #, 4, § as functions of #;. Depending on the different
situations depicted in Fig. 1, the relations of 9i, s v8 ¢, & in the forming
zone could vary considerably. In some cases, an understanding of the
complex fluid-dynamic and heat-transfer processes of the forming

OPTICAL FIBER DRAWING 1027



zone (see Fig. 1d) would seem essential for a satisfactory representation
of speed-diameter-foree relations at the take-up end.

In the remainder of this section, we examine the sensitivity of steady-
state flow in the draw-down region to changes in the viscosity profile.
Such changes can be viewed as consequences of perturbations in the
heat-transfer mechanism. Qur primary purpose is to determine re-
sponse amplitudes for 4, the perturbation in draw-down profile, as
functions of #y, an amplitude parameter of the viscosity perturbation.
Once again we encounter the problem of assuming reasonable boundary
conditions at 2 = 0 without a dynamie model of the forming zone.

We consider two different cases: the draw-down response without
inertia effects imposed on the unquenched, inertialess base state (22),
and the response with inertia effects imposed on the quenched, inertia-
dominated base state (23). In particular, we shall be working with
egs. (76) and (77) after deletion of the time derivatives.

In both cases, we consider a viscosity perturbation of the form

P = poaey, (4ba)

which represents a distribution of arbitrary amplitude and spread,
determined by 2, and v, respectively. A family of such functions is
displayed in Fig. 4 for 1 < v = 6. Note that for a given value of ¥

5 - )
ﬂﬂmnx h 78’

(45b)

the peak viscosity perturbation, normalized w.r.t. so.

Let us consider various boundary conditions that may be applicable
to solutions of this problem. If we assume that the fiber is drawn from
a preform with constant feed and take-up conditions, an obvious
boundary condition is

4(3.) = 0. (46a)

In view of § = 0, it seems reasonable to assume that the forming zone
will respoend with ${0}) = 0. #{0) can be eliminated from these two

conditions to yield

' a'(0) _
a'(0) = Zrgy 4@ = 0. (46b)

If three boundary conditions are needed, we take
a(0) =0, (46¢)

and then, according to (46b), also 4'(0) = 0. Finally, for a fourth con-
dition, let
a'(3.) = 0, (46d)

which implies that p(3.) = 0, ie., no perturbation of the draw force
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Fig. &—Profiles of the viscosity perturbation, v/ve = de73.

occurs at the take-up end. Conditions (46) will be invoked as necessary
with increasing order of the perturbation equations.

We start by considering the inertialess perturbation eq. (77). We
have

6= — ”‘le—va(1+a)+sla+32. 47)
Y Y

Results from (47) have been plotted in Fig. 5 to represent the effect
of viscosity perturbations on the unquenched base state. Note the non-
monotonic evolution of these curves with increasing +.

Next, we examine the corresponding results, including effects of fluid
inertia. Integrating (76) after deletion of the time derivatives, the
quenched inertia-dominated base state (23) leads to

4" + 24" — 44 — 84 = ¢ + 49" + 45 + C. (48)

C is a constant of integration.
Substituting (45) into (48), we obtain

e I 1 Y e
=% (3+‘r+2)e
+ Bie?® + (B, + Bja)e?? + B, (49)
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Fig. 5—Draw-down response to the viscosity perturbations of Fig. 4, without

fluid inertia, for unquenched base flow.
Figure 6 shows (49), the effect of viscosity perturbations on the
quenched, inertia-dominated base state, over the range 1 < v < 6.
Note that the presence of quenching significantly alters the evolution
of response curves in Fig. 8, which becomes monotonic with . Typical
amplitudes in this case are about one-half to one-third as large as for
the unquenched base flow (Fig. 5).

The main inference to be drawn from a comparison of Figs. 5 and 6
is that typical peak amplitudes for 4/#, are reduced significantly due
to fluid inertia and quenching.

By way of specific example, we consider results for v = 3.5

Maximum for viseosity perturbation (Fig. 4) 8/8, = 0.110
Maximum for response without inertia on

unquenched base state (Fig. 5) d4/9, = 0.018
Maximum for response with inertia on

quenched base state (Fig. 6) d/9, = 0.005

The latter case, which represents the more realistic model, also predicts
the lower response amplitudes. Thus, for example, a 10-percent de-
parture from the nominal viscosity profile would cause only a 0.5-
percent departure from the draw-down profile.
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Fig. 6—-Draw-down response to viscosity perturbations, with fluid inertia, for
quenched base flow.

In summary, the first-order results given in this section yield a
qualitative indication of base flow responses to time-invariant changes
of the boundary conditions and of the viscosity profile. As stated in
Section 1V, a more satisfactory treatment of viscosity effects may be
achieved by numerical integration of the base-flow equations, which
introduce heat-transfer perturbations through the energy equation.
However, the question of realistic interface conditions between the
drawn-down region and forming zone remains open until the latter is
included in our model.

Vil. THE DYNAMIC RESPONSE OF TENSILE FIBER MODELS

We turn now to the dynamic response of tensile fiber models for the
unquenched and quenched base flows; i.e., we address solutions of the
equations in Appendix C, including the time-dependent terms. Un-
fortunately, the formulation allowing for fluid inertia, eq. (76}, does
not lend itself to a simple solution. We therefore seek what preliminary
insight can be gained from solutions obtainable with (77} and (78),
i.e., by neglecting inertia in the perturbation equations.

Starting with (77), which represents perturbations of the un-
quenched base flow, the operator on the left-hand-side suggests a gen-
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eral solution of traveling waveform

@ = fr + b ) (50)

and

d, = [ f(r + 3 )ds + &(x), (51)

where ®(7) is an arbitrary time function. This solution may be used
to represent radial excitations at the source or take-up end or to satisfy
boundary conditions in the presence of a particular solution. In the
former case, where ¢(0, v) = sin wr, we reconstruct a solution by
Pearson and Matoviteh!* of the form

a(3, 1) = A.1(3) sin wr + A:(3) cos wr (52)
with the terminal response amplitude
A(wl 3L) = [:A?(""J 31'4) + Ag(wl 31:)]!- (53)

This is normalized with respect to dg, the amplitude of radial perturba-
tions at 3 = 0, and plotted, for later comparison, in Fig. 7 as a function
of w, for 3; = 2.It shows a series of response peaks presumably due to
the absence of quenching from the base state (22), used in (77).
These response peaks are commonly referred to in the literature as
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‘draw resonances.”” The author takes exception to this term since it
implies the existence of natural frequencies contingent on the inter-
action of system inertia and some restoring force, neither of which is
obvious in the present model. Nevertheless, experimental evidence con-
firms the occurrence of highly amplified responses near some of the
“critical” frequencies predicted by Pearson’s model. Typical radial
perturbation profiles for ¢(3, 7} are shown in Tig. 8 for w = 100, at
T = 0, the start of a period, and T = 0.25, its quarter-point. They
illustrate the spatial amplification of surface perturbations oceurring
along the draw path.

Since the direct physical realization of radial perturbations at
3 = 0 may be difficult, we now examine the effect of viscosity perturba-
tions that are convected along the fiber as a consequence of fluctuations
in the heat source; i.e.,

p = g(r+ 3. (54

Substitution into (77) yields the inhomogeneous equation

where the dot is also used to designate differentiation with respect to
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Fi‘ig. 8a—Surface perturbation for base state [eq. (22)] with w = 100, 3. = 2,
at T = 0.
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(=]

the compound space-time argument. If we substitute
4 = h{r -} le2¥)g28
this leads to 2 = —4§; hence, the particular solution
b= —3g(r + 3% = —§5. (56}

This suggests that any space-time history of viscosity changes given
in the form (54) translates into ehanges of fiber radius by the factor
—4. It is a traveling-wave type of response only in the sense that it is
convected with the moving fluid.*

To take a specific example, consider a periodic viscosity perturba-
tion, as would be caused by misalignment of the rotating laser beam
used in heating the preform,

# = sin w(r -+ 7, (57)

* The negative sign may appear surprising at first. One notes, however, from the
continuity equation (33) written as

(e220/ar +0/0d)d = — i,

that 4 of the form g{r + }¢?) leads to ¥ = 0, This means that such a form of radial
E‘erturbat_ion can travel with the flowing fiber without perturbing the local velocity.
urther, if a constant draw force is to be maintained, the expression

P/p = wa*w’

shows that, with ' unperturbed, an increase in » requires a decrease in-a of half this
magnitude,
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where n = 1™, yielding the particular solution
dp, = — 3 8in wr cos wy — 4 o8 wr sin wy. (68)
The boundary conditions to be satisfied with the help of (51) are then

7:'(01 T) =0, ij(abf T) =0,

4,(0, r} = 4sinwir + 1. (59)

In this case, the perturbations are driven only by the variations in
viscosity.
An appropriate form for fis

f(3, 1) = ficosw(r +1) — fasinw(r + ) (60)
8o that

6,(3, 7) = 3(f1co8 wr — fasin wr)[CiJe?
— L(f,sin wr + focos wr)[S11 + @(7), (61}

wf2
[Cz]g;;z _ j’ cos w dw

n w

w2 o3
[Si]:{,"’ . j’ sln W duw

Pl w

where

and fi, f are integration constants. After determining &(r), f1, and
f1 to satisfy (59), once again a solution of the form (52) is obtained,
where 4, and A are recorded in Appendix D. It is interesting to note
that A (w, 1) for this case, if normalized in terms of # and plotted a8
in Fig. 7 shows exactly the same response spectrum, but with half the
amplitudes. Moreover, the profiles of radial perturbations along the
fiber for this case strongly resemble the ones obtained for radial excita-
tion at 3 = 0 (Fig. 8).

The sharp response peaks given by the above solutions at certain
frequencies reflect the absence of quenching in the base flow (22}. In
search of some allowance for quenching effects, we consider two ad hoe
modifications of the tensile fiber model: the base flow (25), which
includes moderate quenching together with moderate draw-down, and
base flow (23), which represents quenched, inertia-dominated, exponen-
tial draw-down.

Using eq. (78), which is based on (25}, a solution of this perturbation
equation is developed in Appendix D for the case of cyclic perturba-
tions in the starting radius (0, r) = sin wr. The resulting expression
for 4(¢, r) is recorded in (88). It turns out that the term e~ sin wr
exceeds all other contributions to the dynamiec response by several
orders of magnitude for all values of w and v of interest. Thus, the
perturbation in the fiber radius is merely a shift in the exponential
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draw-down profile of the base state, whose spatial variation is inde-
pendent of w and characterized by v, the quenching parameter of the
base-flow viscosity profile v = veerf. This perturbation oscillates in
time with constant phase along the entire draw path. T'ypical profiles
of 4 are shown in Fig. 8, again for T = 0, the start of a period, and
T = 0.25, its quarter-point. A contribution from the nonexponential
components in 4({, 7) is only seen at 7' = 0, the zero-crossing of its
sin wr term. These profiles show none of the spatial amplification evi-
dent in Fig. 8, which confirms, at least qualitatively, the attenuating
effect of the quenching process, Unfortunately, a limiting comparison
between the two models is not possible as the quenching effect is made
to vanish, since that also requires a vanishing of the draw-down in base
state (25).

If the quenched, inertia-dominated base flow (23) is employed in
the inertialess perturbation equation (30), the resulting model is indeed
subject to criticism as logically inconsistent. However, as a plausibility
argument, we might suggest that inclusion of inertia in the base flow
would at least give a qualitative indication of echanges to be expected
from a more complete allowance for inertia effects. The formal exercise,
starting from (23) and (30), closely resembles the derivation of (79).
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Fig. 9a—Swface perturbation for base state [eq. (25} with g = 0.75, w = 20,
v =28 T = 0.
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The resulting frequency response functions evolve quite clearly from
curves such as Fig. 7 with considerable smoothing of peaks and valleys.
This suppression of the response peaks, due to quenching, certainly
agrees with experimental evidence.

The main point to be made in this preliminary assessment of tensile
fiber models is that their frequency response curves and surface per-
turbation profiles bear little resemblance to the perturbations caused by
surface tension, which we discuss in the next section. To generate
more realistic response predictions for tensile fiber models, including
inertia effects and heat transfer, we will have to resort to numerical
means.

VIll. THE DYNAMIC RESPONSE OF CAPILLARY FIBER MODELS

We next inquire under what circumstances the well-known phe-
nomena of surface-tension-driven perturbations on liquid filaments
apply in the fiber-drawing problem. Indeed, there may be limited
portions of the draw path, presumably near the hot tip of the forming
zone, where the viscosity drops low enough for surface tension to be-
come significant. At least for low-melting glasses, such as soda lime,
this is o possibility, as born out by the comparison of essential terms in
the base-flow equations of Section IV. We shall characterize this type
of fluid-dynamic behavior as capillary fiber models. As we shall see,
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their spatial response profiles under harmonic radial excitation are
totally different from those of tensile fiber models. By all indications,
these two kinds of filament response are fundamentally distinet phe-
nomena. The ultimate question is to what extent they coexist and
interact in a real fiber-drawing process.

Rayleigh’s classical theory of capillary jets is our point of depar-
ture.'®1¢ It ghows that the growth rate of “varicose” perturbations
(axisymmetric harmonic surface modulations) is given by

c(B — 1)
™ B+ 1 - FRARG]’ ©2)
where
m = real, the rate of growth
a = fiber radius
A = wavelength of the perturbation
k= 2xa/\

Iy and I, = modified Bessel functions.

The denominator of (62) turns out to be negative for all £.*

If this capillary response model is locally applied to a base-low model
such as (24), assuming that base-state parameters change negligibly
over the wavelength A, we may use it to construct the dynamic re-
sponse along a contracting fiber. Then the evolution of a small surface
disturbance may be synthesized using the stepwise relation between
displacement amplitudes at successive instants of time

Unpr = Un (“;"'1 + mAt) , (63)
where

Un and U, = peak amplitudes of sinusoidal surface perturbations
at ¢, and 441, respectively
% = gtepwise scale factor due to fiber draw-down
M = m at center of wavelength
Al = bagy — s

I

Our response simulation convects the end points of a given perturba-
tive wavelength at their respective speeds, while computing local fiber

* Note that (62) results from a simplification of the characteristic equation,
neglecting inertia effects, which in turn precludes initial conditions on perturbative
velocities. However, it can be shown that the quantitative effect of this approximation
on m is trivial (Ref. 19).
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where s, ¢, are end points of the perturbative wavelength. The non-
dimensionalized surface tension is assumed to vary as

§ = Foede,
allowing for possible changes along the fiber (small values of 5 approxi-
mate a linear dependence).

Figure 10 shows a set of response histories in terms of log [U/x] for
g =01, k=100, 50=025 F=0, 5 =300, and 0.0008 = &
< 0.0016, illustrating the build-up to different asymptotic levels as a
function of a.

Figure 11 shows typical profiles of surface perturbations along the
fiber for Aq = 15.7, which corresponds to a frequency of 200 Hz. As
expected, the varicose response consists of sinusoids whose wavelength
is progressively stretched due to fiber draw-down and whose amplitudes
are modulated according to a response history such as given in Fig. 10.
Note that this behavior differs drastically irom the tensile fiber re-
sponse of Figs. 8 and 9, which are also driven by radial harmonic
excitation at the origin.

Figure 12 displays asymptotic response amplitudes for a range of
initial wave numbers 27 /A, and several values of g, the terminal radius
in units of @, for the base flow. For fixed g and &, the response has &
maximum in the neighborhood of Aq = 50. The low responses at short
wavelengths are due to vanishing of the Rayleigh instability as Ao — 27

160
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Fig. 11—Plot of deflected surface shapes for ke = 15.7.
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while for large As, hence large %o, the perturbations encounter a rapid
viscosity build-up along the fiber. Contrast these response curves with
the ones for tensile models, and a fundamental difference is again
apparent.

The influence of the terminal radius g, is illustrated in Fig. 13. As
expected with @ in the denominator of (62), increased draw-down
(decreasing g) will enhance terminal perturbations. The second curve
on that figure indicates the effect of 3, the growth rate of surface
tension. Finally Fig. 14 shows the decrease in response with initial
viscosity, no and the increase with rising values of &, the initial surface
tension.

Since the above simulation averages fiber properties over a perturba-
tive wavelength and does not ensure continuity of perturbative surface
velocities between time steps, it seemed appropriate to corroborate it
by a slightly different model, due to Tomotika,!”-"¥ which is also germane
to our situation. In Tomotika’s study, filament contraction is effected
by a surrounding medium subjected to extensional shear flow, as in
some of Taylor’s experiments.’ This apparent difference in base flow
and the need to let ambient viscosity approach zero for our purposes
seems to limit the applicability of Tomotika's model to the fiber-
drawing problem. However, as we shall see, it agrees quite well with
our adaptation of Rayleigh’s theory.
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Tomotika finds the following asymptotic expression for interface
perturbations as a function of several model parameters:

log [0/xJa = ot} [ viBIiE, (64)
where ’
£ = ratio of filament to ambient viscosity
£ = 27a/\ = local wave number of the perturbation
# = nondimensicnalized surface tension
¢ (k) = a kernel that is detailed in the references.
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The behavior of this expression is illustrated in Fig. 15 by plotting
it against 2, for various values of & These plots show that, in the
absence of quenching, the stabilizing effect of ambient shear flow
diminishes steadily with ambient viscosity while the maximum response
shifts to higher frequencies. This behavior is altered significantly if
exponential changes of filament viscosity and surface tension are in-
troduced to represent quenching effects, similar to our modification of
Rayleigh’s analysis. Equation {64) then changes to

LOG [U/X] o

. = ko . _—
log [0/ = 732 jﬂo y(l — ) p(B)dE,

o
200 250 300 350 400

(65)

450

NOTE:  STANDARD CASE 18
&=0001 -0
hg=100  Og=0D25
g=01 0 = 300
UNLESS VARIED AS SHOWN

LOG [UfX] = VS Mg

4
i
i

i
;

~. - ‘
- LOG [UfX] e VS ap

I 1 | 1

0.4 0.2 0.3 0.4 0.5

R

Fig. 14—Amplification factor vs ne and &o.
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LOG (U /Xleo

F:.n =2m’;0

Fig. 15—Amplification factor vs & for £ » = {Tomotika’s model with constant
viscosity and surface tension).

and (%) is another kernel detailed in the references. Plots of this
expression in Fig. 16 show good agreement with Fig. 12 for large &
(and g = 0.1). Plots of (65) for £ = 10% and various values of the
terminal base flow radius are given in Fig. 17. They show the same
response of [ J/x]., for g — 0 as Fig. 13.

In summary, these results indicate that the two capillary models of
quenched fiber responses, obtained by modifying Rayleigh’s and
Tomotika’s analyses, are essentially equivalent. Note again that none
of the response curves, such as Fig. 17, bear any resemblance to those
of tensile fiber models.

An additional piece of insight into capillary response mechanisms
comes from Weber's work.”? He reproduces Rayleigh’s analysis by a
somewhat different approach and obtains an exact equation for m, as
well as a simplified expression that agrees with (62). Weber shows that
the small errors in (62) are essentially due to the neglect of radial
components of the flow field. He demonstrates this conclusively by
rederiving (62) from a one-dimensional representation (recorded in
Appendix E) which captures all salient features of the capillary re-

where
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Fig. 16—Amplification factor vs Fo for a =0.001, ¢ =0.1, and 1 < ¢ 5 108
(modification of Tomotika's analysis for quenched base state)
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Fig. 18—Comparison of capillary and tensile instabilities.

sponse mechanism. Thus, multidimensionality is not the criterion that
distinguishes capillary from tensile response models. The fundamental
difference seems rather to lie in the energy source from which the
perturbations are fed: surface tension in one case and axial stress in
the other.

Figure 18 attempts to emphasize this distinction in a pictorial
fashion: (z) In the capillary model, surface tension, by overcoming
viscous stresses, tends to accumulate fluid from both directions into
periodic “beads,” ultimately pinching off individual droplets as the
minimum energy configuration. A multiplicity of such separations ean
occur independently of each other, and the essential physical mecha-
nism is equally as valid for stationary, uniform filaments as it is for
contracting base flows. (¢2) In the tensile model, on the other hand,
the “worst” among random localized constrictions, due to surface
perturbations, causes a tensile stress concentration which further
reduces the cross-sectional area and results in a single, “‘run-away”’
tensile separation. This is the familiar necking of any tensile test
specimen. The tensile stress associated with draw-down in the base
flow is an essential prerequisite for this mechanism. Surface tension
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will indeed contribute to tensile resistance in the necked down section,
but it does not fundamentally alter the separation process.

Thus, the capillary mechanism is a contest between surface tension
and viscosity, independent of filament draw-down, whereas in the
tensile mechanism the viscous stresses, jointly with surface tension,
attempt to resist the draw force.

IX. SUMMARY AND CONCLUSIONS

Several important observations result from the discussions in the
preceding sectiona.

(3)

()

(44%)

Optical fiber drawing differs from textile fiber “spinning’ in
several essential ways. The flow of glass in the forming zone
and draw-down region is dominated by viscous stresses.
Inertia and surface tension play secondary roles. (They be-
come noticeable only for the lower-melting glasses and then
only in limited portions of the flow field.} This contrasts with
polymer fiber forming, where, in some instances, viscosities can
be quite low and other effects may be of comparable importance.
Moreover, glass fibers are quenched over a wider range of tem-
peratures than polymer fibers. This, together with the extreme
temperature-dependence of glass viscosities, causes viscosity
profiles along the draw path to rise much more abruptly than in
textile fibers. Finally, and perhaps most importantly, molten
glass can be considered very nearly Newtonian, which is not
true for most polymers. Given the above physical features and
the small-slope assumption of gradual draw-down, we can
justify one-dimensional base states as useful representations of
steady flow in the draw-down region.

Given a base-flow model, its sensitivity to changes in operating
conditions, such as the take-up speed and temperature profile,
can be estimated by first-order perturbations. It turns out that
the draw-down profile is relatively insensitive to significant
viscosity changes, assuming that interface conditions between
the draw-down region and forming zone have been modeled
correctly. For nontrivial forming zones, e.g., Fig. 1a, b, or d, it
is difficult to make reasonable assumptions for these conditions.
Since we lack a complete understanding of the forming zone,
but expect its flow field to change with perturbations in the
draw-down region, our results must be considered tentative.
Fundamental differences exist between the tensile and capillary
models of dynamic fiber response. The tensile mechanism seems
to prevail in most of the draw-down region. For low-melting

OPTICAL FIBER DRAWING 1047



glasses, we conjecture that the capillary model may apply in
the short and very hot transition between forming zone and
draw-down region, where surface tension can sustain perturba-
tions that subsequently propagate by the tensile mechanism.
The interactions of these two phenomena and their relation to
dynamic responses in the forming zone itself are presently not
understood, In the following we amplify each of these points to
some extent.

The base-flow models we supplied in Section IV are admittedly
qualitative, A heat-transfer analysis was circumvented in this pre-
liminary study by assuming exponential viscosity profiles; suggested
by qualitative experimental evidence. Exact solutions of the eoupled
one-dimensional momentum and heat-transfer equations are now being
carried out to allow for different kinds of heating in the forming zone
and various cooling mechanisms in the draw-down region. The resulting
simulation will be able to provide more detailed operational trade-offs
between steady drawing parameters. It will also assess the limited in-
fluence of fluid inertia, surface tension, and gravity. Finally, this
modeling effort presentis a natural opportunity for experimental cor-
roboration by suitably instrumented steady-state runs, using laser
and/or furnace-heated preforms or crucibles.

As an extension of one-dimensional base-flow models; radial-heat-
transfer mechanisms should be simulated, leading to nonuniform eross-
sectional viscosity distributions at the start of the draw-down region.
These viscosity distributions must be input to a perturbation model of
axisymmetric free surface flow which generates the nonplanar velocity
profiles expected in the transition between forming zone and draw-
down region, Ultimately, the detailed flow fields of forming zones such
as Fig, 1b and d may have to be simulated by discretization technigues.
1f properly combined, these efforts may, hopefully, result in a unified
base-flow model that properly allows for interactions between the
draw-down region and forming zone in representing steady-state re-
sponses to changes in the control parameters of the draw process.

Finally, as mentioned before, it appears that vastly different fre-
guency regponse curves and longitudinal profiles of surface perturba-
tions characterize tensile and capillary dynamic responses as fundamen-
tally distirict physical mechanisms, (Note the intuitive distinetions
given at the end of Section VIII,} They do not seem derivable, in proper
relation, from some universal fiber stability analysis, The question is
then, what must be done to develop them into parts of a realistic and
unified dynamie response model.

Since analytic sclutions for tensile responses of nontrivial base flows
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in the draw-down region are not possible, numerical solutions by modal
analysis or space-time integration are being attempted. This is ex-
pected to shed further light on the anti-intuitive response profiles ob-
tained from the “inertialess’ perturbation equations. Similarly, the
capillary model applied so far to an elementary base flow may be im-
plemented, by numerical means, for conditions representative of the
transition between forming zone and draw-down region. Combining
these extensions of the tensile and capillary response models, it may
be possible to relate dynamic records of thermal or mechanical surface
perturbations coming out of the forming zone to diameter variations in
the finished fiber.
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APPENDIX A
Implications of the Smali-Slope Approximation

We briefly sketch the consequences of the small-slope approximation,
la.| << 1 and |u/v| < 1, as they evolve from (1), (2), (3), and (4) by
scaling arguments. Let

v = 1¥, u = e, B = g p= 1;_:1'-: (66)
a = apX, r = aof, 2= Lf, and t=v""-
1]

Then the small-slope assumption amounts to

=0(“—£)= e << 1.

Substitution of {66) into (4) yields

Uo

Yo

r, = B0 _T_Jé[._i_zn\pr]&&[—)—ui’,

L L poly L
| ad
o (67)

T = E% - rt+2ﬂ¢/i] =7 T
1
Trz = E%ﬂ [—E‘PE + E‘P{:I = FG_UU,I._"’
where pol/uowo = 0(1) and will be omitted henceforth. Substituting
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(66) and (67) into (3),

o [‘I’f-l- (v.,ao (¥ + ;)

11
= (—i+ 29T + EE[E"P(‘I’E + éop) Je
Considering the case pvoL/uo = Re << 1,

0= e(—1+ 208 + % (¥ + o) T

Hence,
(n¥ee = 0.
If no constraint is to be imposed on 3, we have
Y, =0 (68)
and

LoV
Tea = % engy = 0 e(re, 70y 70) .

Now, from (1),

T + (iﬂ;ﬁ) (ee + ¢/6) =0
L2+
and because of (68)

pr= o/t = — 7Y (69)
Then,
Fo=Fo= —t — q¥; (70a)
€
T = — ﬁ ﬂf‘I’H
and
o = —t + 297, (70b)

¢ 18 determined from the normal stress condition at the fiber surface
£ = X. In dimensional form,

2 T Z -1
Tr + azz‘l"a - 20'371-8 = 0(0':(1 -I—aai)* ) (71)

Substituting (66) and (70} into (71) and dropping terms of 0(e?) and
higher, as well as a.., one finds

- ¥ (72)

for all values of & where # = oL/upgwoas With this result, 7, from (70a)
becomes

A P @3
where 3% constitutes the “Trouton” viscosity. (The additional 5%,
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term, augmenting 2¢¥; in (70), originated in #, of (71). This, in turn,
is due to ¢; of (67), the cross-sectional contraction that necessarily ac-
companies the extensional flow of fiber drawing.) We also note from
{72) and (70) that

(t+ 0¥ =17, =78, = 0, (74)

which agrees with the radial equilibrium equation if (66), (68), and
{70) are used in {2) and we let e < 1.
The tangential surface stress condition at § = X reads

alrr— ) + {1+ a¥)ra=0 {75)

and, if rendered dimensionless, has leading terms of 0(e) ; hence, it will
be ignored. For completeness, we also note that the kinematic boundary
condition (7), rendered dimensionless and time-invariant, yields

_ _ 2
¥ X!
which is the time-invariant continuity equation (9).

APPENDIX B
Second-Order Perturbation Term for the Base-Flow Solufion [Eq. {17)]

X[a, b, ¢, d, f]—§(1+—+d+ + = )+§°(1+d+ )
+ _1.__ (1 + d+4+ @ (aef'nE — 2be—UnEINN)
InE 2
+ (1 + d) ( ezrzuE + 2abe(tnE,'2)r —_ gie g‘lnE)

3
+ f_g, eMinE | a’_; e@InE _ %?_'e—(a:nmz)r]

IE[(a—zb)(1+d+§)
+(F+2-F)a+a+ g+ + 240
cl(l + d) [aF(lnE, 0) +bF( l’;E,;)]

+ 2 P, 1) + abF (“’;E , ;) + P R _mE, ¢

i %2 [aG(lnE, $) + oG ( ln2E’ f):H
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where

Font) = [(f — per + %]

1 . 2 2 2
Gy, §) = ;[(f +7+?)3ﬁ—¥]'

and

APPENDIX C
Differential Equations for First-Order Dynamic Perturbations in the Radius, &

Using (33) to eliminate # from the first-order variations of the
momentum equations, we obtain from (35), which reflects the
quenched, inertia-dominated base state (23) with inertia effects in the
perturbation equation,
4 + G-tk + AN — AA-e2t — Dfele—td +'Sd"e_“

— 44" — B4’ = 4" + 44" 4+ 2. (76)

From (34), the inertialess momentum equation, and the unquenched,
inertialess base state (22}, we obtain

&+ aten = o, @)

Note in (76) and (77) that ( )’ = &( )/9% and ( ) = a( )/dr,
where 3 = az/L and 7 = avet/L. Finally, from (28) and (30), the
inertialess momentum equation with the quenched inertialess base
state (25), we can find

9 10 o e

(5?.'*’;05)(& +O(d)——§“ﬂ, (78)
where ¢ = v/vp as in (25), ¢ = 2/L and r = tvo/L. In this case,
( )Y =2a( )/et.

APPENDIX D
Detalled Results lor Forced Dynamic Responses of the Tensile Fiber Model

The detailed expressions for 4, and A, resulting from (58) and {61)
are

Al = ! %[00313{,2 + ‘ﬁ X [(—Blsmm/Z + Bz cos f.d/2)
X [Ci]3. — (Bicos w/2 + B:sin w/2) X [Sz‘jl:f%.]]
1. . 1 — )
4: = {2 [sinJ¢? + ‘ﬁj X [(B;cos w/2 + B,sin w/2)

X [Ci]%3, + (— By sin /2 + Bacos 0/2) X [Si]::ﬁg,]] ;
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where ¢ = &%z and
W - w2
B, = [C-i + o St + cos]
e (79)

B, — [Si — St sin]
2e
Recall that 3 = az/L.

w/2e

We now parallel the development of Section V1L for the quenched
base flow (25). Equation (78) with # = 0 suggests a solution of the form

a(t, 1) = Re {fo [ explats’ ~ DY explintr — O35

+ doexp(iur — af) |,

where
g . .
E= f ey Jo=fitifs,  ®o= &+ (80)
o o({%)
Explicitly,
é(t, r) = Aisin wr + A2 cos wr,
where

A D) = for esU' =D () 8in wk — fa cos wE)dl — e,
(81)
A:(0) = fre“""”(fl cos wf + fa28in wi)d{’ + de
0

deseribing the {-dependent phase and amplitude of the response. Note
that ¢ = z/L and r = tvo/L, whereas in (79) 3 = a{ and 7 = avel/L.

We use the same boundary conditions as in developing (52). For
cyelic radial perturbations at { = 0,

40, r) = sin wr, (82)
together with the velocity conditions
#0,r) =0 9(1,r) =0.
An expression for 7 is obtained by eliminating ' from (28) and (30)

9 = ga- + 24— 2 + 260, (83)

where G(r) is an arbitrary time function and the differentiation symbols
mean ( ) = 8{ )/dr, ( Y = 3( )/8¢. Substituting (81) into (83)
we find

a(t, r) = Visin wr + Va2cos or
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with

Vl(f) = —"f—w R ﬂ(f’—n(fl cos wf + f; sin wE)d(”

-9 f:e““"“(fl sin wt — fa cos wé)dy’
+ 2eaf [(%a + 1) by, — %@1]
% . .
+ F— (f]_ 33148 NE - f!! Ccos “’E) + 2G1
Va@) = 22 [ e b(fisin ot — fucos wpas
-2 jr exU' =0 (f; eos wf + f2 80 wi)dl’
0

ey (pee)e

+ F (f1cos wf + fasinwf) + 2G,.  (84)
Ultimately, {(82) leads to

=0, Dy = —1
fi= (Blcl + B.Cy)/ (B} + Bj) fa = (fiBs — C2)/B,

G, = ;b—, (e + facoswEy — [fi sin wto) (85)
0
G, = — 'Pi(; {w + f1cos wky + fasin &),
where
B, H(l) — K1) + ,cos wk — 1
__ e _ Y1
B, = . © K1) — H(1) + o 8IN wi) (86)
e W 0
‘T
¥ - @
C.= [ 1 == e 1D
(‘Pl «t ) Vo

The subscripts 0, 1 denote evaluation at { = 0, 1 respectively, and the
quantities H, K are defined as

I3 . . ;
HG) = [ et sin wgds

2 (87)
K($) = L e=U"—1 cos wEdd”
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With this notation, we ultimately get

a, r) = [FLHG) — LK) + e~ sin wr
+ [[iK(@) + fH()] cos wr.  (88)

APPENDIX E
Weber's Derivation of the Capiffary Stability Equation

This appendix gives a simplified derivation of the stability equation
for the capillary fiber model based on assumptions that are quite
equivalent to those made for the one-dimensional tensile model. In
fact, the rationale used here closely parallels that of Section III.

The analysis proceeds in terms of equilibrium and continuity equa-
tions, which we write in dimensional form for the entire filament cross-
section. The perturbed surface radius becomes a + & and a given cross-
sectional element is displaced by wvdt along the fiber over the time
inerement dt. The radius of this element now becomes

06 a6
a+5+§idt+a—zvdt. (89

Since the last term is of higher order, it will be neglected.

The constitutive relations are as in (4) and the derivation of an ex-
pression for r, is quite similar to Appendix A. The main difference arises
in the radial stress boundary condition, where, in distinction from the
treatment of (72), the longitudinal curvature term cannot be neglected
for varicose perturbations. Then the r.h.s. of (72) beecomes

o (a% + a”) (90)
and, instead of (74),
e (aE + a") + 3. 91)
The continuity equation yields
%a’ +v =0 92)

Now, combining (8) and (10},
. = pl + pwv', (93)

where the last term was apparently overlooked by Weber but seems to
have little effect on the resulting stability equation.

Substituting (91) and (92) into (93) and assuming surface perturba-
tions of the form & = &*™ cos kz/a, leads to the stability equation

(B) + a SR
2 2 _ Bayh2
mi o m R = o s (L= BR (94)
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The unstable root, of interest here, is

= (3»“)52 g Loy 7o (3“)25‘ 4
1= 2pa? + PPE {1 BNt 4 50t " (95}
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An Injection-Molded Plastic Connector for
Splicing Optical Cables

By A. H. CHERIN and P. J. RICH
(Manuscript recelved February 24, 1976)

An injection-molded plastic splice connector for splicing optical cables
has been fabricated and evalualed. Five aptical cables containing 90-pm
0D graded-index fibers with 556-um core diamelers were spliced, yielding
an average splice loss of 0.20 dB for the 425 splice joinis measured.
Fifly percent of the losses measured were less than 0.1 dB and 95 percent
of the splice joints had losses less than 0.8 dB.

Assembly methods for splicing optical cables using this conneclor and
a multiribbon optical-fiber cuiting tool capable of culting 144 fibers stmul-
taneously are also described.

I. INTRODUCTION

The feasibility of splicing groups of optical fibers in a laboratory
environment has been demonstrated by a number of investigators.'—®
The next phase in the development of optical-fiber splicing is to pro-
duce splice connectors, based on the concepts that have shown labora-
tory feasibility that are adaptable to field use. A field-adaptable
gplicing technique will require that telephone crafts people be able to
splice groups of optical fibers in a routine fashion, with relatively
simple tools, in a hostile field environment.

In this paper, an injection-molded splice connector fabricated using
a mold designed to optimize reproduction of mold dimensions is
deseribed and evaluated. Assembly methods for splicing optical cables
using this connector and a multiribbon optical-fiber cutting tool
capable of cutting 144 fibers simultaneously are also deseribed.

I5. DESCRIPTION OF SPLICE CONNECTOR AND PRECISION-MOLDING
TECHNIQUES
A precision metal mold was used to fabricate a 12-ribbon, multi-
groove substrate with prealigning slots. The molded plastic substrate
which forms the base for the optical cable splice connector is shown
in Fig. 1. It consists of twelve sections. Each section has a prealignment
slot and a set of twelve fiber-alignment grooves spaced 90 um apart.
1057



0.0011 N,

0.0035 ™
0.0036 - 0.0009
12 PLACES

Fig. 1—Precision-molded substrate for 12 X 12 optical-fiber splice connector.

The splice is made by properly seating a precut set of ribbons into
groovee and sliding them together to form a butt joint. A coverplate
is attached to the substrate and matching material is injected through
a slot in the coverplate to complete the splice. The completed splice
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Fig. 2—Histogram of spacing between the internal grooves of metal master.
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Fig. 3—Histogram of spacing between the internal grooves of molded polycarbonate
substrate.
connector can join two optical cables, each consisting of twelve ribbons
that house twelve 90-um ob fibers.

The transverse alignment of the fibers in the grooves of the connector
is a critical parameter in attaining low-loss splices. Tight tolerances
were placed on the center-to-center spacing between the grooves. The
design tolerance for the center-to-center spacing was 3.55 £ (.05 mils.
Less stringent tolerances were placed on the depth of the grooves.

The metal master was measured in an optical toolmakers micro-
scope to determine how well it was machined. Figure 2 is a histogram
showing the spacing between the internal grooves. The average groove
width was 3.51 mils. Using the metal master in a screw-injection
molding machine, a number of polycarbonate substrates were fabri-
cated under different molding conditions. Samples were randomly
selected from s batch that was melded to replicate the master as
closely as possible. Figure 3 is a histogram showing the spacing between
the internal grooves of the molded polycarbonate substrate. The
average groove width was 3.49 mils compared with 3.51 mils obtained
for the metal master.

Figure 4 is a derived cumulative distribution function of Figs. 2
and 3 showing & comparison of the groove-width dimensions for the
master and plastic part. A very small amount of shrinkage, less than
0.1 mil, appears to have occurred in the plastic substrates. Measure-
ment repeatability in obtaining this data with the toolmakers micro-
scope was =+0.05 mil.
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lil. SPLICE TONNECTOR ASSEMBLY TECHNIQUE

The splicing of optical cables requires the integration of a number
of operations ineluding stripping of the ¢able sheath, ribbon prepara-
tion, removal of the plastic coatings from the fibers, fiber-end prepara-
tion, and, finally, the assembly and protection of the splice connector
itself. Approximately 1 hour and 45 minutes is required to splice two
optical cables consisting of 12 ribbons (each containing 12 fibers)
together with the molded connector. Using current techniques, the
majority of this time {about 1 hour) is spent stripping the ribbons
and assembling them in the fiber organizers. Fiber-end preparation
using the multiribbon cutting tool described in the Appendix requires
about 15 minutes to prepare both ends of the cable. After the 144
fibers have been cut, the organizer is removed from the cutting tool
and clamped to a micropositioner stage in preparation for insertion
into the substrate of the splice connector., As shown in Fig. 5, tapered
prealignment combs allow the ribbons to be lowered into the prealign-
ment slots and grooves of the substrate. A mechanical wiper is attached
to each organizer and is used to massage the fibers to assure that they
are seated properly in their grooves. After the wiping process is com-
pleted, epoxy is used to permanently fix the wipers in place. The splice
is closed by means of an assembly that enables the eoverplate to be
tacked in place with extra-fast-setting epoxy. An epoxy index-matching
material is then injected through the slot in the coverplate to com-
plete the splice. To assemble the connector itself requires only 30
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Fig. 4—Cumulative distribution function of groove widths.
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Fig. 5—Splice with coverplate epoxied in place showing expanded view of one
ribbon joint.
minutes. Since splicing is a parallel operation, all twelve ribbons are
spliced simultaneously.

tv. EVALUATION OF SPLICE CONNECTOR

Using Corning Glass Works graded-profile 90-um op fibers with
55-um core diameters, adhesive sandwich ribbons® were made and
formed into short prototype cables for the splicing studies. Following
the procedures outlined in the previous section, five different cable
splices were assembled and measured. Included in the statistics quoted
were all ribbon-to-ribbon splices with twelve fibers present at the
splice joint. When fiber breakage occurred, ribbon-to-ribbon splices
with less than twelve fibers present were included in the statisties if
proper alignment was maintained. Figures 6 and 7 show, for the 425

OPTICAL-CABLE SPLICER 1061



160

1401
425 SPLICES

5>1.5dB
MEAN LOSS 0.20 dB
STD. DEV. 032 d8

120}

NUMBER OF SPLICES
o]
o
I

40

20r

0 £ P I _—
0 01 02 03 04 05 06 07 08 08 10 11 12 13 14 15
SPLICE LCSS IN dB

Tig. 6—Histogram of total splice loss data.

splice joints measured, the histogram and derived cumulative distri-
bution function of the total splice loss data taken. The average splice
loss was 0.20 dB with a standard deviation of 0.32 dB. Fifty percent
of the total losses measured were less than 0.1 dB and 95 percent of the
splice joints had losses less than 0.§ dB. Five additional outliers, not
shown in the histogram but included in the statistics, had losses of
1.60, 1.64, 1.79, 2.03, and 2.66 dB. Four of these high-loss splices
occurred in one of the cable splices.
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Fig. 7—Derived cumulative distribution of total splice loss data.
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To determine the loss in a splice joint, an input beam with a numeri-
cal aperture approximately equal to that of the fiber was used and the
input and cutput power to the splice joint was measured. This tech-
nique for mensuring the loss in a splice joint has been deseribed in
detail in & previous paper.! The detector used in this study consisted
of a United Detector Technology pin long-line photodiode housed in
8 special glycerin-immersed fixture built to aceommodate a ribbon
organizer. To maintain aceuracy in the splice ioss measurements when
measuring large groups of fibers (144 fibers in a linear array), it is
necessary to establish aceurate positioning of individual fibers on the
surface of the detector. Variations in the sensitivity, as a function of
position on the active surface of a large area detector, can cause errors
in the measurements which are greater than 0.1 dB.

V. REQUIRED IMPROVEMENTS AND DISCUSSION

To maintain a high splice yield with this method of parallel splicing
of large groups of optical fibers, 12 contiguous fibers must be present.
If fibers are broken in the ribbons during ribbon stripping, fiber
organizing, or end-preparation processes, gross misalignment (> 10-um
transverse misalignment) can cccur at the splice joint. The small
alignment grooves shown in Fig. 8 do not provide adequate guidance
unless the 12 contiguous fibers are present to foree partial alignment
of the fibers in the connector.

e

CURRENT DESIGN

ALTERNATE DESIGNS
Pig. 8—Alternate groove depths.
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Typically, two fibers per cable end are broken in the ribbon stripping,
cleaning, and organizing processes. The fiber-end preparation process
vields-about 99.7 percent efficiency. Thus, three to five ribbons within
the group of twenty-four ribbons being spliced In a connector have
less than twelve surviving fibers and have the potential for being badly
misaligned.

The development of automated ribbon-stripping techniques and
better fiber-handling methods will improve the yield of this process.
It is very probable, however, that some fibers will break. To prevent
high splice losses in an entire ribbon, if breakage oceurs, requires a
redesign of the molded conneetor. Increasing the alignment groove
depth as shown in the connector designs of Fig. 8 will tend to provide
guidence for individual fibers independent of the ribbon structure.
When guidance of this type is achieved, the breaking of an individual
fiber will not affect the alignment of the remaining fibers in a ribbon,
and splicing performance will be greatly improved.

APPENDIX
A Muitlribbon Optical-Fiber Cutting Tool

The production of low-loss splices between optical fibers or the
splicing of groups of optical fibers in the form of fiber ribbons and
cables requires a reliable and convenient method of fiber-end prepa-
ration. Two basic techniques of end preparation have been developed
and are described in the literature. The first, a conventional grinding
and polishing technique, has been used by Miller® and Cherin! in the
splicing of optieal-fiber cables and ribbons. This technique of end
preparation could be utilized in a controlled environment to prepare
the ends of factory-installed cable connectors.? The second method of
fiber-end preparation requires the controlled fracturing or breaking of
fibers as developed by Gloge et al.” A simple cutting tool for preparing
the ends of individual fiber ribbons has been used by Chinnock et al.*
and Cherin and Rich'? with excellent results. A properly engineered
tool of this type seems well-adapted for use under field conditions.

In this Appendix, we briefly describe the design of a cutting tool
that, operating on the principle described by Gloge et al.,” is capable
of cutting 12 fiber ribbons (144 fibers) simultanecusly. The cutting
tool has been designed to be compatible with the injection-molded
splice connector described in this paper.

A.T Cutting tool and ribhon organizer
The fiber-cutting tool, shown in Fig. 9, consists of four basic parts.

{7) A precision diamond-tip-stylus scoring assembly used to create
a crack or origin of fracture on the outer surface of the fibers.
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CLAMPING FIXTURE

POLISHED CURVED
SURFACE

DIAMOND TIP
STYLUS ASSEMBLY

PRECISION SCREW TO
APPLY LONGITUGINAL STRESS

Fig. 9—Fiber ribbon cutting tool.

(#5) A polished curved surface over which sets of fiber ribbons are
securely clamped. When the fiber ribbons are stressed over this
surface, the stress distribution necessary to form flat hackle-
free ends on the fibers is ereated.

(#%i) Clamps to secure the fiber ribbons during the scoring and
stress-application portions of the eutting process.

(i) A precision screw, which displaces a clamp and causes the
application of a longitudinal stress within the fibers.

A ribbon organizer is used to hold 12 ribbons in the form of a linear
array. The organizer is clamped to the cutting tool and holds the
fibers securely in place during the cutting process. After the 144 fibers
have been cut, the organizer is removed from the cutting tool and is
ready for insertion into the cable-repair splicing fixture.

A.2 Cutting experience

To date 52 cable ends have been prepared using the cutting tool.
The nominal cable consisted of 12 ribbons each containing 12 fibers.
Planar ends have been made on 99.67 percent of all the fibers that
have been cut, 7328 out of 7352 (a few of the ribbons had less than
12 fibers within them). Typical fiber ends that were prepared using
the tool are shown in Fig. 10. The total cutting efficiency of the tool
was determined by the number of fibers surviving the entire process
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(a)

(b)
Fig. 10(a)—Optical ribbon with prepared fiber ends. (b) Typical fiber end.

of elamping, scoring, and tensioning. A total of 7283 fibers success-
fully survived the entire process, yielding a cutting -efficiency of
99.06 percent.
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Digital Coding of Speech in Sub-bands

By R. E. CROCHIERE, S. A. WEBBER, and J. L. FLANAGAN
{Manuscript recsived March 26, 1976}

A rationale is advanced for digitally coding speech signals in terms aof
sub-bands of the tolal spectrum. The approach provides a means for
controlling and reducing quaniizing noise in the coding. Each sub-band
is quantized with an accuracy (bil allocation) based upon perceptual
criteria. As a result, the quality of the coded signal is improved over thal
obtained from a single full-band coding of the total spectrum. In omne
implementation, the tndividual sub-bands are low-pass iranslated before
coding. In another, ‘“‘integer-band” sampling 15 employed to alias the
signal in an advantageous way before coding. Other possibilities extend
to complex demodulation of the sub-bands, and to representing the sub-band
signals in terms of envelopes and phase-derivatives. In all techniques,
adaptive quantization is used for the coding, and a parstmonious allocation
of bits is made across the bands. Computer simulations are made to
demonsirale the signal qualities obiained for codings at 16 and 9.6 kb/s.

1. DIVISION OF SPEECH SPECTRUM INTO SUB-BANDS

For digital transmission a signal must be sampled and quantized.
Quantization is a nonlinear operation and produces distortion products
that are typically broad in spectrum. Because of the characteristics of
the speech spectrum, quantizing distortion is not equally detectable
at all frequencies. Coding the signal in narrower sub-bands offers one
possibility for controlling the distribution of quantizing noise across
the signal spectrum and, hence, for realizing an improvement in
signal quality. In earlier work, splitting of the spectrum by high-pass
and low-pass filtering has been used advantageously for video and
speech transmission.!?

A question, then, is what design of sub-bands makes sense for
speech coding? A choice based upon perceptual criteria is suggested,
namely, band-partitioning such that each sub-band contributes
equally to the so-called articulation index (ar).! The AI concept is
based upon a nonuniform division of the frequency scale for the speech
spectrum. Twenty nonuniform contiguous bands are derived in which
each elemental band contributes 5 percent to the total AL
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Appealing to this notion, one partitioning of the frequency range
200 to 3200 Hz into four ‘“‘equal-contribution’’ bands is given below
and shown in Fig. 1.

Sub-band Frequency Range
Number (Hz)

1 200-700

2 700-1310

3 1310-2020

4 2020-3200

Each sub-band in its original analog form contributes 20 percent to A1
The total a1, therefore, is 80 percent, which corresponds to a word
intelligibility of approximately 93 percent.*

Il. LOW-PASS TRANSLATION OF SUB-BANDS

A straightforward approach to processing the sub-bands is to make
8 low-pass translation before coding. This facilitates sampling-rate
reduction and realizes any benefits which might accrue from coding
the low-pase signal.

The low-pass translation can be accomplished in a variety of ways.
One method is shown in Fig. 2. The input speech signal is filtered with
a bandpass filter of width W, for the nth band. W, is the lower edge
of the band and W,, is the upper edge of the band. The resulting
signal s.(f) i8 modulated by a cosine wave, cos (Wi.t), and filtered

o ﬂrﬁmr—-‘a——.—_—a\
-10}—
@
o
=
]
E —20f— 1 2 3 4
]
a
=
<
=30 p=—
—40 1 | ] i | l
0 1 2 3 4

FREQUENCY IN kHz

Fig. 1—Partitioning of the speech spectrum inte four contiguous bands that con-
tribute equally to articulation index. The frequency range is 200 to 3200 Haz.
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Fig. 2—Sequence of operations for low-pass translation of speech sub-bands,
adaptive pcM encoding, transmission, decoding, and band restoration.

by a low-pass filter ha(f) with bandwidth (0 — W,). This filter is
necessary to remove the unwanted signal images above 2Wi., as
shown in Fig. 2. The resulting signal r.(f) corresponds to the low-pass
translated version of s,(f) and can be expressed in the form:

ra(l) = [8a(t) cos (Wiat) J*ha(2). 1)

Notice, in this instance, that a constraint is implied by the convolution,
namely, that the passband width W, < 2Wi,, or that Was = 3Wia
Practically this poses no problem.®

The signal 7,(¢) is sampled at rate 2W.. If it is already in digital
form, the sampling rate is decimated (reduced) to the rate 2W,. This
signal is digitally encoded and multiplexed with encoded signals from
other channels as shown in Fig. 3. At the receiver the data is demulti-

* For example, this constraint requires that W be increased slightly, from 200 to
233 Hz, forn = 1in Fig. 1.
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plexed into separate channels, decoded, and interpolated to give the
estimate F,{¢) for the mth channel, Reeonstruction of the detected
signal is simply done by the reverse band translation. That is, it is
modulated by cos (Wi.t) and bandpass filtered to the original pass-
band, as shown in Fig. 2. The sub-band signal 5.(f) is then summed
with the other bands to give the full-band signal 3(¢).

An alternate implementation of the low-pass translation- method,
which avoids the above-mentioned restriction on W, follows from a
modification of the complex demodulation process. In this approach,
8(t) is complex modulated by eni{w, = (Win + Wis)/2 = center
frequency of band n] and filtered by a low-pass filter A,(f) with band-
width (0 — W,/2). The resulting complex signal a,(f) + jba(2),

an(t) = [8(t) cos wat J*An(t) (2a)
ba(t) = [s(t) sin watT*h,(2) (2b)

corresponds exactly to the output of the phase vocoder.® The conjugate
of this signal a.(t) — 7ba(t) corresponds to a modulation of s(t) by
e~dant, If the complex signal a,(t) + jb,(t) is complex modulated by
e~ Wait and its conjugate complex modulated by e/ #»/2¢ the two
resulting complex signals correspond to the negative and positive
frequency components of the low-pass translated signal 7.(t), as shown
in Fig. 4. The sum of these two signals gives a real signal corfesponding
to the desired low-pass translated signal r, (%) ; ie.,

ra(®) = [an(®) + jba (Tt + [aa(t) — Bu(®) I 705, (3)
or

ralt) = 2 [a,.‘(t) oo (%‘t) + bo(1) sin (%t)] @)

For reconstruction, it can be shown that a.(t) and &,(¢) can be re-
covered from the low-pass translated signal r.(t) by the following
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relations

an(t) = [ra(t) cos (Wat/2) *ha{t) (ha)
ba(t) = [ra(t) sin (Wat/2)T*ha(2). (5b)

Equations (4) and (5) suggest a method of implementation of the
low-pass translation and reconstruction with a phase vocoder. For a
digital implementation of the low-pass translation, this approach is
particularly appealing. For example, at the sampling rate f, = 2W . /2,
the sequences corresponding to cos (Wt/2) and sin (Wit/2) are 1, 0,
—1,0,1, ---,and 0, 1,0, —1, 0, -- -, respectively. Therefore, an effi-
cient way to generate r.(t) is to sample an and b, (or decimate if they
are in digital form) to one half of this sampling rate (i.e., W./2x) and
form r({) by interleaving samples of a. and b, (with appropriate
sign changes). A similar approach can be used in the reconstruetion
process by recognizing that alternate samples of ra(f) cos (W,i/2) and

—— B

5 s
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Fig. 4—Frequency-domain interpretation of complex demodulation method for
low-pass translation.
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ro(t) sin (W,t/2) (at sampling rate 2W,/2x) are zero valued. Thus,
the two input sequences to the interpolators (which can be sampled
at half of this rate or W,/2x) can be generated by selecting alternate
samples of r,(¢) (with appropriate sign changes).

A further modification on this approach can be made by noting
that, since adaptive coding is used to encode r.(t), the sign changes
in the construction and separation of r,(¢) are not neeessary. That is,
an alternate sequence r,(t) can be generated by interleaving samples
of @y, and b, without sign changes. This sequence can be encoded and
decoded and inputs to the interpolators can be formed from alternate
samples of #,() (without sign changes), Figure 5 shows an implemen-
tation of this method. The signal s(f) is modulated by cos wat and
sin wnl, where wy is the center frequency of band n. These signals are
filtered with low-pass filters A,(f) with bandwidth (0 — W,/2). The
outputs are decimated (if they are in digital form} or sampled (if
analog) at a sampling rate W.. The low-pass translated signal r,(¢)
iz obtained (at sampling rate 2W,) by interleaving samples of . and
bn. 7,(t) is encoded, transmitted, and decoded as in Fig. 3. On recon-
struction e, and b, are recovered by selecting alternate samples of
#4(f). These signals are then interpolated, filtered, modulated, and

COS w,t
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hyft) MATE __j
\c*o—i—o
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Fig. 5—Implementation of complex demodulstion for low-pass translation with
interleaving of samples of @, and by.
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summed as shown in Fig. 5 to give the reconstructed sub-band signal
a(0).

For digital implementation &, can be realized with a digital filter.
Decimation, or sampling-rate reduction by an integer factor M, can be
achieved by retaining only one out of every M samples of the output
of the filter. The filter is necessary to avoid aliasing. Interpolation by
an integer factor M is accomplished by increasing the sampling rate
by filling in M — 1 zero-valued samples between each pair of input
samples. The filter 4, then removes the unwanted harmonic images of
the base-band signal and smooths (i.e., interpolates) these samples to
appropriate values of the base-band waveform. Efficient methods for
implementing digital decimators and interpolators are discussed in
Ref. (6).

lll. ENCODING OF THE SUB-BAND SIGNALS

Digital encoding of the low-pass translated signal r,(f) 1s best
accomplished using adaptive-rcm (apcu).”® Apcu encoding is preferred
over adaptive-differential pcm (apPeM) methods in this case due to the
low sample-to-sample correlation of the low-pass-translated, Nyquist-
rated, sampled signals.

For computer simulations, apcm coders based on a one-word step-
size memory were used according to methods proposed by Jayant,
Flanagan, and Cummiskey.”"® Step-size adaption is achieved accord-
ing to the relation

Ar = Ay X M, (6)

where A, is the quantizer step-size used for the rth sample and A,_, is
the step-size of the (r — 1)th sample. M is a multiplication factor
whose value depends on the quantizer level at the (r — 1)th sample.
For example, in a two-bit quantizer, two magnitude levels and the
sign can be represented. If the smaller magnitude level is used at
time r — 1, M is chosen to have a value M = M, < 1, and if the larger
magnitude level is chosen, M = M; > 1 is used. For a three-bit
quantizer, four magnitude levels and the sign can be represented. In
this case, there are four choices for M. Through simulations, appro-
priate values of 3 for a two-bit quantizer were found to be My = 0.845
and M, = 1.96. For a three-bit quantizer, they are M; = 0.845,
M, =10, M; = 1.0, and M, = 1.4. Note that the three-bit quantizer
does not change its step-size at time r unless the largest or smallest
quantizer level is encountered at time r — 1. The above values of M
are in approximate agreement with values proposed by Jayant? for
full-band arcm encoding.
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Fig. 6—Partitioning of the speech spectrum into four noncontiguous bands to
achieve reduced bit-rate coding.

IV. SUB-BAND CODING FOR TRANSMISSION AT DATA RATES

The transmission bit rate of the sub-band coder can be reduced into
the range of conventional data speeds by further limiting the sub-
bands in width and tolerating some spectral gaps ag shown in Fig. 6.
Carried to excess, the noncontiguous bands produce a reverberant
quality in the signal, such as one gets from comb filtering. In moder-
ation, however, some highly useful compromises can be achieved
between transmission bit rate and quality. The coded bands still
cover a respectable range of the speech spectrum, and provide a
quality considerably better than coding a single full-band signal.

V. INTEGER-BAND SAMPLING AND HARDWARE CONSIDERATIONS

Another attractive alternate implementation of these ideas is to.use
“integer-band’’ sampling to code a signal that is aliased in an advan-
tageous way. The technique is illustrated in Fig. 7.

The signal sub-bands s,(f) are chosen to have a lower cutoff fre-
queney of mf, and an upper cutofi frequency of (m + 1)f., where m
is an integer and f, is the bandwidth of the nth band. This bandpassed
signal is sampled at 2f, to produce the sampled spectrum shown in
Fig. 7 (for m = 2). The received signal is recovered by decoding and
bandpassing to the original signal band. Typieally, values of m from
1 to 3 are most useful for coder applications with lower bands using
values of m = 1 and upper bands using m = 2 or m = 3. This integer-

1076 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1976



band sampling technique achieves the theoretical maximum efficiency
in sampling.'®

A very attractive advantage of the integer-band sampling approach
is that it does not require the use of modulators. A slight disadvantage
is that the above restrictions prevent the choice of bands strictly on
the basis of equal eontribution to A1. However, little loss in performance
is observed if this equal contribution to A1 condition is only approxi-
mate (within a factor of 2). This implementation was used for per-
ceptual comparisons, which will be discussed later,

This approach is especially attractive for implementing the bandpass
filters as charge-coupled-device (ccp) transversal filters. The analog
to discrete-time conversion is inherently accomplished by the ccp
filter with little or no analog prefiltering or post filtering required for
the prevention of aliasing. The initial signal sampling can be con-
veniently high, say 15 kHz, to realize the ccp filter, and the filter
output ean be decimated to the 2f, rate for ecoding. After transmission
and decoding, the 2f, rate can be interpolated to the 15-kHz rate for
the final bandpass filtering, again by the analog ccp filter.

Ancther advantage of ccp filters (and also digital filters) is that
the filter cutoff frequencies are inherently normalized to the initial
sampling frequeney. Therefore, the sampling frequency and, conse-
quently, the bit rate of the coder, can be varied over a limited range by

5,{t) rplt)

i) DIGITAL | CHANNEL | pygipay [ Taltl 5,
e TR ENCODER [ — | DECODER U

mf TQ {m + 1f mf TO (m+ 1if
SAMPLE
AT 2f

AMPLITUDE SPECTRA

| .,M I %fm | 8P mi TO tm+ 1if

—ar 3t -2t —1 o 1 2f 3 af tm = 2)
SAMPLE AT 2
—af 2 0 2f af
L\MW SAMPLED SIGNAL
—af —2f 0 2f 4f
\m i E’% DESAMPLED SIGNAL
—3f —2f a 2f 3t

Fig. 7—Integer-band sampling technique for digital encoding of speech sub-bands,
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Table |— Frequencies and sampling rates for the 16-kb/s coder

Sub-bard wn (8 Decimation || Quanizmticn
Center Freq Sampling i
Ne (Hz) Rompiing | (From 10klls) | (Bits)
1 448 1250 16 3
2 967 1429 14 3
3 1591 1667 12 2
4 2482 2500 8 3

varying the master clock frequency. This cannot be achieved with
analog filters.

Present technology is able to provide four 100-tap ccp transversal
filters on a single integrated-circuit chip or one 200<tap filter on a
chip with all necessary drivers and control logic.

VI. COMPUTER SIMULATIONS OF SUB-BAND ENCODERS

The sub-band coder has been implemented by computer simulation
for transmission bit rates of approximately 16 kb/s and 9.6 kb/s. The
complex demodulation approach in Fig. 5 was used for low-pass
translation of the bands. An initial sampling rate of 10 kHz was
employed in both cases.

The 16-kb /s coder was implemented with the band center frequencies
and sub-band sampling rates shown in Table I. Bandwidths are equal
to one half of the sampling rates and correspond to those shown in
Fig. 1. Three-bit coders were used in the two lower bands, and two-bit
coders were used for the upper bands. The filters were 125-tap FIR
filters. As can be observed in Fig. 1, the filters overlap in their transi-
tion bands and give an overall flat frequency response from 200 Hz
to 3100 Haz.

The 9.6-kh /s coder was implemented with the bands given in Table
IT and illustrated in Fig. 6. In this case gaps were allowed between
bands. Larger filter orders, 175-tap (FIR), were used to reduce transition
bands and conserve bandwidth. Only the lower band used a three-bit
coder. Upper bands used 2-bit coders.

Table Il — Frequencies and sampling rates for the 9.6-kb/s coder
Sub-band c ent;-n Fre Sﬂ:é (tl)in Decimation Quantization
No. (Ha) 1 Ratep(sﬂg) (From 10 kHz) (Bits)
1 448 800 25 3
2 967 952 21 2
3 1591 1111 18 2-
4 2482 1538 13 2
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Illustrations of the signal eoded for 16 kb/s and 9.6 kb/s by the
above-band-translation technique are given by the spectrograms of
Figs. 8 and 9, respectively. In each figure, the upper spectrogram
corresponds to the original sentence. The middle spectrogram corre-
sponds to the signal played through the filters, decimators, and interpo-
lators—but without coders. The bottom spectrogram illustrates the
sub-band encoded speech at the designated bit rate,

Other simulations have also been made for encoding the signals
an(t) and b,(f) directly and also for encoding the magnitude and phase
derivative (as in the phase vocoder). Similar quality results were found
in these simulations.

VIl. SUBJECTIVE COMPARISONS WITH OTHER ENCODING METHODS

Informal listening tests were made to compare the quality of the
sub-band coder simulations with that of full-band encoding. For the
16-kb/s coder, comparisons were made with 2- and 3-bit appcM. For
the 9.6-kb/s coder, comparisons were made with adaptive delta
modulation (apm) (ie., 1-bit appcm). Results for the 16-kb/s coder
comparisons are given in Table II1.

Twelve listeners were asked to compare pairs of sentences for signal
quality and indicate which was better. Two speakers were used in the
experiments and sentence pairs were played in a randomly selected
order. Each listener made a total of 16 comparisons in each of the
experiments.

In comparing 16-kb/s sub-band encoding to 16-kb/s (2 bits/sample)
ADPCM, listeners rated the sub-band encoded sentence as having higher
quality in 94 percent of the sentence pairs. When the bit rate of the
ApPem coder was increased to 24 kb/s (3 bits/sample), they rated the
sub-band encoded sentence as having higher quality in 34 percent
of the sentence pairs. Experiment I demonstrates that the guality of
the 16-kb/s sub-band coder is clearly preferred over that of ApPcM
at the same bit rate. In Experiment II listeners exhibited much
greater indecision, indicating that the quality of the 16-kb/s sub-band
coder is close to that of 24-kb/s appca, but that preference leans
slightly in favor of the ApPon.

Also included in Table III are signal-to-quantizing-noise ratios
(s/n) measured on the specch signals, averaged for the two speakers
for each of the coding methods. s/n data is not found to be u reliable
indicator of listener preference. This observation is not su