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We describe an optical apparatus designed and built to extend con-
ventional light -scattering measurements to the very -small -angle regime.
The present instrument covers the angular range 0.003° < 0 0.15°
with an instrumental resolution (HwHM) of 0.00045° (1.6 arc seconds),
and exhibits an exceptionally low stray -light background. The theoretical
and practical considerations important in achieving this performance are
analyzed in detail. Besides its primary purpose of studying long -wave-
length (0.01 cm to 1 cm) thermally driven fluctuations, the present type of
apparatus should also prove quite useful in other areas where long -wave-
length perturbations must be probed, such as, (i) holographic and optical
memory imaging, (ii) surface roughness testing, and (iii) index of
refraction profiling.

I. INTRODUCTION

Laser light scattering has, over the past decade, been developed' -3
into an extremely powerful tool for probing the long -wavelength
(A1 2 X 10-5 cm to 2 X 10-3 cm) elementary excitations of liquids,
gases, and solids. Combined with diffraction grating, Fabry-Perot, or
optical mixing spectrometers the technique is capable of spanning an
impressive range of more than 13 decades in energy or frequency
measurement. Yet, in contrast to what has happened in the field of
inelastic X-ray scattering,'" very little has been done to utilize
very -small -angle (vsA) light scattering to probe longer -wavelength
(A1 10-3 cm to 1 cm) excitations. With a few notable exceptions,5-"
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most light -scattering experiments have been limited to the scattering -
angle range 0 > 1°.

There have been a number of reasons for this apparent lack of
progress in the very -small -angle scattering regime. On the one hand,
experimentalists in the field, encountering a seemingly divergent stray -
light level at small angles, have assumed that attempts to work in
the VSA region would present insurmountable problems. On the other
hand, there did not appear to be any physical phenomena where the
important elementary excitations were confined to the corresponding
longer -wavelength regime. Or, in cases where they were, it seemed that
the use of more conventional macroscopic experimental techniques
represented a satisfactory experimental approach.

Recently, however, there has been a resurgent interest in problems
involving general hydrodynamic instabilities" both in normal liquids
and liquid crystals.13-26 The "critical wavelengths" involved in the
onset of these instabilities are, in general, controlled by some macro-
scopic dimension of the sample chamber and tend to fall in the range
100 ilm < A, < 1 cm. Light scattering is the only technique offering
the possibility of probing these wavelengths without physically disturb-
ing the sample and with a sensitivity sufficient to detect the thermally
driven critical fluctuations. However, probing the excitation wave-
length region 100µm < A < 1 cm requires the capability of resolving and
detecting the scattered light at very small angles, 0.3° 0 z 0.003°.

This paper describes the experimental progress which has been made
in extending the light -scattering technique to this very -small -angle,
long -wavelength regime.

In Section II, we describe the physical configuration of a light -
scattering apparatus that has been constructed for use in the VSA

region. This section also summarizes the measured performance
characteristics of the instrument in terms of angular resolution and
stray light. Section III is a detailed presentation of the basic diffraction
and aberration considerations that influence the design of a VSA

light -scattering apparatus. Section IV outlines various empirical obser-
vations made during the course of construction of the present instru-
ment, relating to the stray -light behavior of optical components at
small angles.

II. AN APPARATUS FOR VERY -SMALL -ANGLE LIGHT SCATTERING

2.1 Introduction

In this section, we present a general description of the physical
layout and performance of a light -scattering apparatus that has been
constructed for the VSA regime. The theoretical background and
practical considerations necessary to analyze the detailed charac-
teristics of the instrument are deferred to Sections III and IV. Although
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designed specifically for the study of the Benard convective instability,
this apparatus embodies solutions to most of the problems to be
encountered in the general small -angle light -scattering experiment.

2.2 Performance goals

The following performance goals were established for the present
instrument and evaluated at the various stages of construction and
modification :

(i) The ability to make quantitative measurements of both the
scattered intensity and the temporal intensity autocorrelation
function for scattering angles ranging from a few mrad down to
at least 50 Arad. (We will, in general, specify angular deflections
in Arad; Table I lists conversion factors to other common units
of angular measure.)

(ii) A stray -light level per coherence solid angle in the scattered
field (c/(Pat/c/S2c0H) that was less than 10-8 of the incident beam
power.

(iii) An angular instrumental resolution of less than 15 Arad.
(iv) The capability of continuously scanning the instrument over

a reasonable range in scattering angle without the need for
realignment.

(v) The attainment of near -diffraction -limited performance using
customary spherical optics of reasonable cost.

Taken individually, each of the above goals can be met or bettered
by existing optical instruments. To cite just two examples, the 200 -inch
Mount Palomar telescope has a diffraction -limit angular resolution of
about 0.1 /Arad ; and, in a typical B = 90 degrees light -scattering ex-
periment, the desired stray -light level would be considered a straight-
forward achievement. Insofar as the angular range is concerned, we
can easily show that the scattered light observed at these angles is
contributed by plane -wave components of the refractive -index per -

Table I - Conversion factors between various common units
of angu ar measure

Deg Rad mrad /Arad Min. Arc See

1 Deg 1 0.0174 17.45 17,453 60 3600
1 Rad 5.73 1 103 106 3438 2.06 X 105
1 mrad 0.0573 10-3 1 105 3.438 206.3
1 µrad 5.73 X 10-5 10-6 10-5 1 0.0034 0.2063
1 arc min. 1/60 2.91 X 10-4 0.291 291 1 60
1 arc sec. 1/3600 4.85 X 10-6 4.85 X 10-3 4.848 1/60 1
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turbations in the sample whose wavelengths, A, are given by the
small -angle Bragg condition

A = Xo/O, (1)

where X0 is the incident -beam wavelength. Therefore, probing the
scattering -angle range from 50 Arad to 3 mrad gives information about
Fourier components of the refractive index having wavelengths be-
tween 1.0 cm and 0.016 cm, respectively. Here we can point out that
this spatial -frequency region is routinely examined by common inter-
ferometric checking methods and holographic techniques.

The instrument described in this paper is unique in that it meets
all of the performance criteria simultaneously. In being able to probe
perturbations with wavelengths as long as 1.0 cm, it represents a
100 -fold improvement on previous low -stray -light -level scattering in-
strumentation, while its small stray -light background gives it a
1000 -fold sensitivity advantage over conventional interferometric and
holographic equipment. On a per -unit -aperture -size basis, its ability
to resolve closely spaced faint (10-6) and strong (1) features is about
50 times better than the Mount Palomar telescope.

2.3 Optical components and physical configuration of the Instrument
Figure 1 sketches the optical configuration of the most recent

version of the apparatus designed to meet the performance criteria set
out in the preceding paragraphs. For brevity, we refer to this par-
ticular optical system as the MK VI instrument.
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Fig. 1-Optical component layout of the MK VI small -angle -scattering instru-

ment. Component sizes and spacings are shown approximately to scale.
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Before discussing the specific function of the various elements of
the spectrometer, we present below, for reference purposes, a brief
description of each of these elements and their mounting following the
identification scheme used in Fig. 1. Whenever spatial or angular
displacements are specified, they are to be interpreted according to the
conventions illustrated in Fig. 2. The t (or 0) and g (or 9) axes are
taken to be mutually orthogonal cartesian (angular) coordinates
perpendicular to the axial ray at the point in question. The /(0)
direction will always lie in the plane of Fig. 1, the instrument's tan-
gential plane, while g (p) will denote the vertical or sagittal plane.
The direction of beam travel defines the local i axis. The basic hardware
components of the MK VI instrument are the following:

A i-An adjustable circular diaphragm stop with an aperture
diameter dA 1 ft:// 5 mm.

A2 -A fixed, precision -pinhole aperture, dA2 = 100 Am. A2 is
mounted with / and g vernier adjustments relative to L1.

Argon ion laser-The laser is normally adjusted to provide be-
tween 50 mW and 200 mW of output at either Xo = 5145 A or
X o = 5017 A. The laser used has a flat -long radius spherical
resonator, placed at about 1 hemispherical spacing, and oscillates
in TEM00 modes only. The output is a well -collimated beam with
a slight spheroidal distortion. The beam has a gaussian intensity
profile with a diameter of 1.4 mm as measured to the 1/0 points.

Fig. 2-Cartesian coordinate system for (x, y, z) showing the cartesian angular
deflection 0 and v.
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DET-A silicon -diode photodetector. The diode used is a photo-
voltaic device operated without bias as a current source. The
detector has a 1 -cm -diameter active area.

KE-A precision knife-edge custom -fabricated from neutral -density
"black glass" plate. The 40 -mm -long edge is straight to within
1 Am and nick free.

Li-Plano convex achromat with a focal length fLl = 132 mm. L1
and A 2 share a common mount with vernier and g degrees of
freedom.

L2-An anastigmatically mounted pair of piano convex achromats
with an effective focal length fL2 = 94.77 mm. L2 has (t, g, g, 6, 0)
vernier adjustability.

L3 -An achromatic lens having fL3 = 150 mm and a mounted free
aperture diameter of 35 mm.

M1, M2, M3, M9 -Flat mirrors 11 inches in diameter with X/10
surface figure.

M5, M6-Dielectrically coated, concave, spherical mirrors fabricated
of fused quartz. They have a radius of curvature of 2 m and a
surface conformity of X/10. The mounted free aperture is 6.5 cm
in diameter.

M7, M8-Aluminized, first -surface, fused -quartz, flat mirrors. They
have a mounted free aperture of 13 cm and a surface figure of X/20.

S-A bilateral slit with straight jaws that can be used to reduce the
g dimension of the probe

SL-A commercial, precision, bilateral slit. The jaws have a 50 mm
usable height and an accurately adjustable opening range from
3 Am to 3 mm. The slit assembly is mounted on a precision x -z
translational stage positioned by large -barrel micrometer heads
with a maximum conforming error of about 1µm. The x(0) -axis
micrometer can be manually positioned or can be driven by a
digitally controlled stepping motor.

SV-The location of the scattering sample.

These optical components are mounted on a 3 -inch -thick aluminum
slab that forms a stable base for the instrument. Because random
laboratory air currents and temperature gradients can cause angular
beam deflections comparable to the instrumental resolution, the entire
apparatus is covered by an essentially air -tight Plexiglas* enclosure.

2.4 Functional description of the apparatus

We can most easily describe the basic optical characteristics of the
instrument by following the beam path through the system starting
at the laser source.

' Registered trademark of Rohn & Haas Company.
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Mirrors M1, M2, M3, and M4 steer the laser output beam around to
a spatial filter assembly comprised of A1, L1, and A 2. Lens L1 and pin-
hole A 2 form the conventional spatial filter arrangement, while the
pre -aperture A1 serves to block high -angle -beam trash, such as multiple
reflections in the laser resonator output mirror. The long path length
through M1-M4 and aperture A 1 also provides a significant reduction
in laser tube discharge light that would otherwise pass through the
system.

The spherically spreading wave coming from A2 is recollimated off -
axis by Mg. The collimated beam leaving M6 has a diameter* D(1/e)
of approximately 1.65 cm. The wave -front planarity of this beam is
measured and adjusted using a wave -front shearing interferometer
aligned to give a 7 -mm shear in the tangential plane. The tangential
direction wave -front curvature is reduced to less than X/8 over the
beam aperture by translating the spatial filter assembly along the
laser beam (i) axis. It is important to note that the use of this off -axis
collimation scheme produces a large amount of astigmatism and
tangential plane coma. As a result, it is not possible to make the probe -
beam wave fronts straight in both the 1 and g directions simultaneously.t
The alignment procedure just described is intended to give diffraction -
limited angular resolution in the 9 plane with some sacrifice in c3

direction resolution.
The collimated probe beam is now sent to the scattering object at

S V via the flat mirror M7. Flat mirror M8 collects the transmitted
beam and small -angle scattered light and directs them to Mg.

In the tangential focal plane of spherical mirror M6, the directly
transmitted beam is brought to a vertical (g) line focus at a position
we define as XKE ==. 0. Light that has been scattered by some angle 0
is brought to line focus in the same plane, but at a displaced transverse
position

XKE(0) f M6 tan 0 fm60, (2)

where fm6 = 100 cm is the focal length of M6. Therefore, for sufficiently
small values of 0, where tan 0 0, angular deflection maps linearly
into lateral displacement at the focus with a position -angle dispersion
(PAD) constant given by

PAD (KE) = xicE(0)= fm6 = 1 Am/Arad. (3)

The knife-edge KE is located in this tangential focal plane with its
edge vertical and can be set to intercept the transmitted beam at

 See Section 3.1 for the definition of these quantities.
t See Section 3.2.
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0 = 0 to prevent it from entering the remaining portion of the optical
system. In normal practice, KE is adjusted to occult all light for which
0 < 30 to 50 'Arad. The position and orientation of KE relative to M6
is fixed with diffraction -limited accuracy using the standard Foucault
knife-edge test procedure.

Lens pair L2 re -images the focal plane of M6 onto the vertically
oriented main receiving slit SL with a magnification of about (2.54).
Therefore, the dispersion constant in the slit plane has the value

PAD(SL) = 2.54 Am/Arad (4)

or
PAD(SL) = 0.0001 in./,urad. (5)

The magnification by L2 allows the scattering angle 0 to be read directly
on the "english-units" micrometer that positions the slit. More im-
portantly, it relaxes the stability and accuracy requirements that must
be imposed on the slit scan mechanism. Since SL has a minimum
opening setting of roughly 3 sum, the slit -limited angular resolution is
about 1 /Arad.

The proper locations and orientations for the main slit SL and lens
L2 are determined by an iterative procedure in which one of the jaws
of SL and the image of the knife-edge formed by L2 at the slit plane are
positioned to form an apparent two -jawed slit. The absence of distor-
tion in the Fraunhofer diffraction pattern formed when this "slit" is
illuminated by a collimated beam becomes a diffraction -limited test
for correct lens and slit alignment.

The scattered light passed by the main slit is collected by L3 and
sent to the photodiode DET. The focal length and position of L3 are
chosen such that the real image of the limiting aperture of 1116 formed
at the plane 111,; by lens L2 is re -imaged onto the detectors active area.

2.5 Observed angular -resolution performance

We can assess the 0 direction angular resolution of the MK VI
apparatus from measurements of intensity as a function of slit position
(x) in the absence of a scattering object. Two such "instrumental
profiles" are shown in Fig. 3. The ordinate scale is logarithmic in the
detector photocurrent with a rough correspondence of 200 AA/mW of
optical power. Curves A and B were taken under identical conditions
except for the position of the knife-edge KE. For curve A, the knife-
edge was withdrawn to allow the direct probe beam to reach the
scanning slit, while for curve B, it was positioned to occult all light
in the region 0 > 50 Arad. Note that the use of the knife-edge provides
a significant decrease in observed stray -light level, the reduction
amounting to about an order of magnitude improvement for 0 > 600
Arad (see Section IV).
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Fig. 3-Observed instrumental profiles for the MK VI apparatus plotted on a
logarithmic intensity scale. Curve B was obtained with the knife-edge, KE, occulting
the direct beam, while curve A was measured with KE retracted.

An expanded view of the 0 '-'-' 0 region of Fig. 3 is shown in Fig. 4. The
dashed curve represents a best fit of the gaussian exp - [02/b02(1/e)]
to the instrumental line shape, as detailed in Section 3.1. The full
width at half -maximum of the fitted curve is

10-8

10-9

10-10

10-11

10-12

AO(i) = 16 Arad. (6)

For the traces shown in Figs. 3 and 4, the main slit width was set at
5 Am which, from eq. (5), is equivalent to a 2-i.irad acceptance angle.
Under these conditions, the effect of artificial slit broadening on the
line shape may be neglected, as outlined in Appendix A.

Deriving a value for the sagittal, or c direction, resolution is a more
complicated procedure because of the large instrumental astigmatism
(see Section 3.2). However, a pragmatic number can be given using
the following operational definition. If the sagittal resolution were
measured in the tangential focal plane of Mg, the location of the main
slit, the instrumental profile would have a full width at half maximum
given by

co(1) = 93 Arad. (7)

(See Section 3.2, especially Figs. 16 and 17.)
The overall angular resolution characteristics of the instrument are

illustrated in Fig. 5. This sketch shows various fraction -of -maximum -
intensity contours for the instrumental profile as determined at the
main slit plane.
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Fig. 4-Measured instrumental profiles for the MK VI apparatus in the region
around 0 = 0. Curve B was obtained with the knife-edge, KE, occulting the direct
beam, while curve A was measured with KE retracted. Dotted curve is best fit of
the function exp[--02/M2(1/e)] to the transmitted beam profile.

The measured profiles presented in Figs. 3 and 4 and the corre-
sponding contours of Fig. 5 were obtained using the full 2 -axis beam
height of the instrument, that is, in the absence of aperturing of the
probe beam by slit S of Fig. 1. As such, the quoted A co resolution does
not include any diffraction broadening associated with g direction
vignetting of the main beam. At full aperture, the instrument's 0
resolution is essentially diffraction limited, while the cp resolution is
dominated by astigmatic blurring. However, as the beam height is
stopped down, diffraction spreading will eventually override the
astigmatism and the instrument will be solely diffraction limited. For
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the MK VI, this crossover point occurs at a beam height of about
0.5 cm or roughly 11,-, of the full design aperture. Therefore, the most
advantageous use can be made of the present apparatus when the
desired probe -beam geometry consists of a collimated "sheet" or ribbon
illumination.

2.6 Analysis of stray -light performance

A second crucial performance characteristic of any light -scattering
instrument is its stray -light level in relation to the scattering efficiency
of the sample under investigation. For the MK VI instrument, the
ratio of recorded stray -light photocurrent to the photocurrent observed
at the peak of the transmitted beam, say, can be read directly from
Figs. 3b and 4b ; however, this ratio is not of immediate physical

- µRADIANS
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1/e INTENSITY
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I 30

20

10

0
10 0 20 30 µRADIANS

Fig. 5-Contours of constant intensity for the instrumental line shape. Each con-
tour is labelled in terms of a fraction of the peak intensity, / (0 = 0, cP = 0).
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significance because of the effects of residual instrumental astigmatism.
The directly measured i(0)/i(0) ratio requires a certain amount of
mathematical interpretation to provide the stray -light ratio values
that will be relevant in signal-to-noise or observability calculations.' -3,27
In general, the quantities that are most important in this regard are :

(i) The scattered power per unit solid angle divided by the incident
probe -beam power :

1 &M0, (p) _ da,(0, (p)
6'0 ded go - di

The ratio [dea, (0, co) /d is a frequently used measure of the scattering
power of an object ; calculating a value of this ratio appropriate to the
stray light [dal, t(0, cp) /c10] provides a basis for estimating the ob-
servability of a particular scattering feature. This quantity can be
extracted more or less directly from i(0)/i(0) given (1) the effective
solid angle subtended by the main slit and detection optics, and (2)
the instrumental profile contours of Fig. 5.

(ii) The normalized scattered power per scattering normal mode :

6),(1c)
'p0

(8)

(9)

This latter quantity appears in scattered intensity calculations in
which the index -of -refraction perturbations in the illuminated scatter-
ing volume are represented in terms of an orthonormal plane wave
Fourier expansion.3'27 The mean -square amplitude of these modes and
their scattering efficiency are, in general, easily calculated from the
known physical properties of the sample. Characterizing the stray -light
via a ratio (Psi (Iii)/190 provides another convenient way of determining
the observability of the scattering from a particular sample object.

(iii) The normalized scattered power per coherence solid angle in
the scattered field :

1 &MO, (p) da,(0, (p)
= akcoH. (10)

(PO CIDCOH di
This quantity appears in signal-to-noise ratio calculations relevant

to determining the spectrum of the scattered light from measurements
of the temporal autocorrelation function or spectrum of the detected
photocurrent.2,3,27 In this case, it is useful to also characterize the
stray -light level in terms of the quantity [dea, t(0, co)/c/Itcoll]. The
ratio [d618/d icoH] differs from that defined in eq. (8) in that the solid
angle is specified as being the solid angle of spatial coherence in the
scattered field, ICOH. The coherence solid angle is a measure of the
range in 0 and yo about some arbitrary reference direction (0, go) over

which the amplitude and/or phase of the scattered electric field exhibits
statistically correlated behavior. In the typical light -scattering experi-
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ment, the extent of spatial coherence in the scattered field is controlled
by the geometry of the scattering sample and wave diffraction. In a
first approximation," the coherence solid angle is just the diffraction
solid angle of the scattering source ; that is,

OCOH = AOCOH X A (PCOH (be -X , (11)

where be and b, are extremal dimensions of the illuminated sample
volume as viewed from a direction specified by (0, (p). However, for
the MK VI instrument, the extent of the spatial coherence is partly
determined by residual aberration effects, and an evaluation of the
ratio Pa./ (0, (10)/c/S2coH1 requires a specific calculation of the spatial -
coherence properties of the optical field at the main slit plane.

Obtaining expressions for the various stray -light ratios when aber-
rations are present requires a rather lengthy detailed analysis, as is
carried out in Section 3.3. For our purposes here, we merely quote
those results that lead to the numerical ratios appropriate to the
MK VI instrument. In each case, the procedure is to treat the observed
stray -light level as if it originated from a fictitious "sample" placed
at the normal position of the scattering volume. After deriving the
expressions that relate slit -plane intensity to a real sample's scattering
cross section, expressed for example as Peas (0, (p)/c112], we utilize these
results in reverse fashion to calculate the effective cross section of our
fictitious stray -light sample. Of course, these expressions derive from
the main slit -plane imaging characteristics of the instrument ; there-
fore, in succeeding paragraphs, whenever angles or solid angles are
specified, they are to be interpreted as slit -plane coordinates or areas
converted to angular units via eq. (5). Consider first the quantity

da,t(0, (p) 1 cl(P8t(0, (p)

6- '43 dOdso
aLcoH

(P) A0c0HA,pcolf, (12)1 dc.t(0,-
- (Po Mg)

where MCOH and cocoH are the full -width coherence angles in the 0
and (p directions. When the main -slit acceptance angles tiOsL, and 2 cosi,
satisfy the inequalities

AOsL,<< A0coH = 24.1 Arad
A cosi,>> socoH = 140.4 grad,

as they do for the profiles of interest here, the right-hand side of eq.
(12) can be expressed in terms of the measured photocurrent, i (0), as

dast(e , cP = 0) i(e) v2 A(PCOH (14)
c/Stcoll i (0) 0 cosi,

where i(0) is the photocurrent observed at the peak of the direct

(13)
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transmitted beam. In writing eq. (14), we have assumed that A (psi,
is symmetrically placed around c:. = 0. The ratio [A cosL/A cocoH] is
essentially the number of slit -plane coherence areas sampled by the
detection optics. For the instrumental profiles shown in Figs. (3) and
(4), A cosi, was limited solely by the free aperture of lens L3. Using the
proper lens free aperture diameter and the linear dispersion constant
given in eq. (5), we find an effective slit -acceptance angle

46,,psi, ._-"2 1.4 X 104 Arad = 0.79°.

This value of A cosi, corresponds to a slit height that samples approxi-
mately 100 coherence areas. The ratio [A cosL/A cocoH], eq. (14), and
the data of Fig. 3 combine to give the Pa, t(0, 0)/d0c0H1 values listed
in Table II.

The normalized stray -light power per mode can be found from
Eda.t(0, 0)/c/flcold by the methods detailed in Section 3.3. The basic
procedure involves calculating both the scattered power per coherence
area and 638(1(;) from a common starting point to obtain the correction
term that relates them. In the present case, the required relationship
has the form

da.t (0, 0) Wat(Ki) A (POOH TeCOH

ClaCOH (P 0 (X/by) (X/bz) '

where bz and by are the clear aperture width and height of the instru-
ment and X is the optical wavelength. The product of the ratios

A (Peon.
(X/by)

and
AOC OH

(X/ bx)

(15)

is a weighted measure of the number of KJ modes contributing to the
power observed in a single coherence area at the main slit. At the full
aperture of the MK VI instrument, bz = 5 cm and by = 5 cm, the
correction factor has the value

A (Pcox Mew/ =
(X /by) (X/bz)

33.6. (16)

Table II-Numerical values of various stray -light ratios for the
MK VI instrument at selected scattering angles

O -Arad i (0)/i (0) dast(e, 0)/ (mew e? et (KJ)/ (Po

50 1.07 X 10-4 1.5 X 10-6 4.5 X 10-8
100 2.82 X 10-6 4.0 X 10-7 1.2 X 10-8
200 9.55 X 10-6 1.4 X 10-7 4.0 X 10-9
500 2.82 X 10-4 4.0 X 10-8 1.2 X 10-9

1000 1.62 X 10-6 2.3 X 10-8 6.8 X 10-10

asz, = 2 Arad, A soy, = 14,000 Arad, AOcoir = 24.1 Arad, and A iocoir = 140.4 Arad.
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Combining eqs. (15) and (16) with the values of [d6{8,(0, 0)/dgcom]
already calculated gives the stray -light -per -mode ratios to be found
in Table II.

The numerical values of the various stray -light ratios may be put
into perspective by calculating the amplitude of some physical per-
turbations that would generate a scattered intensity equal to the
observed stray -light level. Based on a theoretical analysis of the
scattering problem, it may be shown that, for sufficiently small
scattering angles, the actual three-dimensional scattering volume can
be taken to be equivalent to a two-dimensional phase-object placed
normal to the incoming probe beam." In this two-dimensional phase -

plate equivalent, the scattering disturbances appear in the form of a
spatially varying phase thickness 1,t,(x, y), which is the line integral of
the instantaneous index of refraction encountered by a ray traversing
the actual sample at the lateral position (x, y). If n(x, y, z) is the local
index of refraction in the actual three-dimensional scattering problem
then 0(x, y) is given by

27 Ls
y) =

Ao o

n(x, y, z)dz, (17)

where Lz is the length of the illuminated volume along the direction of
the incident beam. The phase perturbation 0(x, y) may be represented
in terms of a two-dimensional plane -wave Fourier expansion

y) = E E ;&(1(1)e ilcxze uc", (18)
KZ Kv

with the K; = (Ks, Ky) chosen to make the expansion functions
orthonormal over the instrument's full aperture. In this formulation
of the problem, the normalized scattered power per K; mode has the
simple form

(P8
(K;)

= 4(1(.012), (19)
(Po

where the angular brackets denote an appropriate time or ensemble

average.
The expression for the scattered power given in eq. (19) may be

used to interpret the stray -light levels observed in the MK VI instru-
ment in terms of a minimum detectable amplitude for a specific physi-
cal scattering mechanism. In succeeding paragraphs, we consider three
such scattering processes : (i) static index of refraction modulation in
a transparent slab, (ii) surface height modulation on a reflecting
mirror, and (iii) temperature modulation in an otherwisehomogeneous

liquid.

2.6.1 Refractive modulation in a slab

The scattering from a static sinusoidal refractive -index modulation
in a plate is an interesting model problem relevant to holographic
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memories and general phase -grating problems. We take the sample
object to be a nominally homogeneous plate of thickness L. and
refractive index no in which a small sinusoidal index disturbance

On(x, y, z) = Sneiiz" (20)

has been created. The index perturbation is assumed to be uniform in
the direction such that Q lies in the (x, y) plane. The local index in
the plate is

Snn(x, y, z) = no [1 - elQ'r
no

(21)

which, when inserted in eq. (17), gives the phase function 0(x, y) as
2r4'(x,To-y) = EnoLz onLzeicPr]. (22)

The required Fourier amplitude, (IRK5)12), is obtained by inspection
from eq. (22) as

(10(Q)12) = n)(32-l)n n°Lzr. (23)

This result may be used together with eq. (19) to obtain the pertur-
bation amplitude (3n/no) necessary to produce a given scattered power
per mode. For example, taking Lz = 1 cm, no = 1.5, and Xo = 5000 A,
we find that a refractive -index amplitude Sn/no = 1.2 X 10-9 yields a
normalized scattered power per mode equal to the MK VI's observed
stray -light value at 0 = 100 grad. To produce scattering at this angle,
the wavelength of the perturbation A = 27/ Q1 would have to be
A = (X 0/0) = 0.5 cm. Table III lists the "background equivalent"
on/no values corresponding to other values of 0(A).

2.6.2 Height modulation on a reflecting surface

Another interesting example from the viewpoint of stray -light level
comparison is the scattering from a surface height disturbance on an
otherwise perfect reflecting mirror. Clearly, this problem can also
serve as a model for calculating the instrumental background when
mirror surface roughness (see Section IV) is the dominant source of
stray light.

Since the primary effect of a surface height deviation is to produce
a phase perturbation on the reflected wave -front, the phase function
kx, y) can be written down immediately as

(2)(o 2r)
y)

X
h(x, y), (24)

where h(x, y) gives the local physical height displacement from the
nominally perfect geometric surface.
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Table III-Amplitudes of three scattering perturbations
necessary to scatter an amount of light equal to

the instrument's stray -light level

0
(Arad)

A
(cm) 6).(Ki)/ (Po

Refractive
Perturbation

(on/no)

Surface
Corrugation

(81t -A)

Temperature
Perturbation

(ST -°C)

50 1.0 4.5 X 10-8 2.2 X 10-9 0.16 6.8 X 10-6
100 0.5 1.2 X 10-8 1.2 X 10-6 0.084 3.5 X 10-6
200 0.25 4.0 X 10-9 6.7 X 10-4° 0.049 2.0 X 10-6
500 0.1 1.2 X 10-6 3.6 X 10-b0 0.027 1.1 X 10-6

1000 0.05 6.8 X 10-10 2.8 X 10-10 0.021 8.4 X 10-7

We will take h(x, y) to be a small, static, sinusoidal corrugation

h(x, y) = bh eiQ'r

for which the phase function is just

(25)

hra .

0(x, y) = 4
Xo

esQ.r. (26)

The Fourier amplitude ( II,T(Iii)12) follows trivially as

(1kKa)12) = [ 4T7r06q. (27)

Combining eqs. (27) and (19) with the data of Table II gives the
"background equivalent" surface corrugation amplitudes listed in
Table III. Again, these are the surface amplitudes necessary to yield
a normalized scattered power -per -mode equal to the MK VI's stray -
light level. For example, when A = 27r/ I Q I = 0.5 cm, the lackground
equivalent" corrugation has an amplitude of oh = 0.084 A or, in the
usual surface -figure parlance,

Oh X/60,000.

2.6.3 Temperature modulation in a liquid

As a final example, we consider an otherwise homogeneous slab of
liquid of thickness L, on which is impressed a small sinusoidal tem-
perature disturbance,

671(x, y, z) = STem'r, (28)

with Q lying in the (x, y) plane. The calculation of the scattering from
such an object is really just a simple extension of the result obtained
above for refractive index modulation. The temperature perturbation
produces an associated index disturbance that is responsible for the
scattering. If the temperature perturbation in eq. (28) is impressed
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isobarically, the associated index modulation is simply

8n (x, y, z) = (-a-Tan) pbT (x, y, z)

= () poTem*r. (29)

Equations (20) through (23) may now be used to obtain the relevant
mean -square phase amplitude, namely,

(4 [ __271-0(Q)

i2) = ( P, )pL, 67']2. (30)

Taking L. = 1 cm and Xo = 5000 A and using a typical value for
(an/a 71)p in liquids, (an/aT)p = -5 X 10-4/°C, we find the back-
ground -equivalent temperature amplitudes listed in Table III.

2.7 Conclusion

In this section, we described the basic features of an optical instru-
ment capable of extending conventional light -scattering measurements
to an angular range (50 Arad to 3 mrad) not previously accessible. In
addition to a diffraction -limited angular resolution of a few seconds of
arc, the MK VI instrument exhibits an exceptionally low stray -light
background making it an effective tool for probing small -amplitude -
scattering processes. Besides its primary purpose of studying long -
wavelength (0.01 cm to 1 cm) thermal fluctuations, the present type
of apparatus should prove quite useful in other areas where long -wave-
length perturbations must be probed, such as,

(1) Holographic and optical memory imaging.
(ii) Surface roughness testing.

(iii) Index of refraction profiling.

In general, the MK VI offers a sensitivity improvement of a factor
of about 1000 over the instrumentation normally used for such
measurements.

While we have given a rather broad overview of the apparatus in
the present section, we have not attempted to present the fundamental
considerations on which the design is based. We refer the reader who
is interested in these questions to the remaining sections of this paper.

III. THEORETICAL CONSIDERATIONS IN THE DESIGN OF A
VERY -SMALL -ANGLE LIGHT -SCATTERING APPARATUS

3.1 Aperture apodizetlon

In the simplest analysis, the ultimate angular resolution of any
optical instrument is limited solely by diffraction. The expression most
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widely used to estimate the limiting resolution is the so-called Rayleigh
criterion,"

(AO) (Ad) X0. (31)

The quantities AO and Ad can be interpreted in two ways :

(i) If Ad is the diameter of a "collimated" beam, then AO is the
actual angular spread of the beam imposed by diffraction.

(ii) If AO is the collection angle for light emanating from an object,
then Ad is the smallest spatial detail that can be resolved on
that object.

Neglecting for the moment the off -axis features of the actual MK VI
instrument, we can duplicate its basic function with the two -lens
system sketched in Fig. 6. Applying the Rayleigh criterion to this
particular optical arrangement for a collimated beam diameter
b = Ad = 5 cm, and with Xo = 5000 A, predicts an instrumental
angular spread

AORAYLEIGH = 10 Arad. (32)

Unfortunately, taken by itself, this value for AORAYLEIGH contributes
little in the way of a quantitative understanding of the instrument's
small -angle performance. In fact, the Rayleigh criterion can be mis-
leading in a number of ways. First, it does not indicate how much light
an object would have to scatter to be "visible" when the scattering
angle approaches AORAYLEIGH. Second, it implies that the angular
diffraction spread can be decreased to an arbitrarily small value by
simply increasing the beam diameter b = Ad. In reality, the presence
of unavoidable optical aberrations will always limit the attainable
angular resolution. In designing an instrument which is to attain a
resolution approaching the diffraction limit, a quantitative approach
to the problem is mandatory.

SPATIAL
FILTER

b

L,

APERTURE
PLANE

LSCATTERING
OBJECT

SLIT
PLANE

L2

77: 4

Fig. 6-A simplified "lens equivalent" version of the MK VI optical system.
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An exact expression for the diffraction -limit resolution charac-
teristics of an optical system may be obtained as follows. Let us assume
we know the spatial dependence of the incident beam intensity on
some surface in the optical system, say the aperture plane of Fig. 6.
In our case, the electric field on this surface is of the form

Eo(x, y) ei(kozo-coot). (33)

This aperture plane field can be decomposed into a set of infinitely
extended plane waves,

EDO, = Eo,(0, 4,)e-i(Qr-wog), (34)

propagating toward L2 at various angles with respect to the axis.*
The plane -wave amplitudes, EL (0, co), are found from the Fourier
integral

EMO, = -1 I is dxdyEo(x, y)ei(Qxx+Qyy) (35)

together with the relations,

I Q I = ko = 2ir/Xo
Q. = Q  / = ko sin 0 ko0 (36)
Qy = Q  g = ko sin co kop.

Equation (35) is just a slightly modified form of the usual scalar
diffraction theory result which utilizes spherically spreading waves as
basis functions.3°

Assume for the moment that lens L2 in Fig. 6 is infinitely large and
free of aberrations. Then each of the plane waves, E D(0, 9 ) , is brought
to a point focus in the slit plane at a position

= f tan 0 10

n = f tan 9 'L=. .1 hp,

where f is the focal length of L2, and the approximate signs hold for
small angles. Combining (35), (36), and (37) gives the field in the
slit plane as

(37)

Eo(E, ) = Eo(x, Weiortixo)(1.-Fm)dxdy. (38)

As eq. (38) shows, the field at the slit plane and the field at the aperture
plane are related as Fourier transform pairs. It should be evident
that eq. (38) can also be applied "backwards" in Fig. 6 to relate
Eo(x, y) to the field at the spatial filter aperture, Eo(E', n'). We will

The cartesian coordinate and angle notation follows that adopted in Section II.
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refer to the field Eo(x, y) or its intensity

Io(x, y) = y)Mx, y)

as the illumination or aperture function. The slit -plane field Bo(a, n)
or its intensity, /0(, n), is the corresponding instrumental profile.

The procedure of aperture apodizing may be described simply as
follows. The basic problem is to find and implement an instrumental
illumination function, such that both the function itself and its trans-
form have minimum spatial extent. The goal in a loose sense is to
optimize the angular resolution per unit aperture opening. Of course,
one of the general properties of Fourier transform pairs is that the
second moments or "widths" of the pair members have an approximate
inverse relationship. The Rayleigh criterion, in fact, is a simplified
statement of this property. Even within the confines of this inverse
relationship, however, there is still wide latitude for aperture apodizing,
i.e., shaping the instrumental profile to obtain particularly desirable
angular or spatial characteristics. Although the Fourier transform
relationship between the illumination function and the instrumental
profile in coherently illuminated optical systems is well known," -n
aperture apodizing schemes are not often applied in optical instrument
design. Apodizing schemes are, however, extensively employed in
high -frequency and microwave antenna design,34.36 where they are
used to create antenna systems exhibiting an angular directivity
pattern that satisfies a particular objective.

In designing an apparatus for very -small -angle light scattering, the
principal objective is the ability to observe the weak scattered light
in close angular proximity to the unscattered beam. The goal, then, is
an instrumental profile that not only has small angular half -power
points but, more importantly, continues down rapidly to the 10-' to
10-6 level. The proper shaping of the illumination function, Eo(x, y) is
absolutely crucial in obtaining this desired "steep -skirt" behavior.

In treating the question of aperture apodization for the MK VI
instrument, we consider the optical system in the simplified form
shown in Fig. 6. Therefore, the calculated instrumental profiles that
are obtained below represent the instrument's ideal, diffraction -limited
performance in the absence of all aberrations. The ways in which the
residual aberrations of the actual off -axis configuration modify these
results are taken up in detail in Section 3.2.

Given the idealized geometry of Fig. 6, the process of evaluating
various illumination function/instrumental profile combinations can
be further simplified by the following considerations. First, most of
the interesting illumination functions and, therefore, their Fourier
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transforms can be factored to the form
Eo(x, y) = Eo(x)Eo(y)
E0(t, n) = E0(E)E0(71).

Second, in the MK VI apparatus, the open height of the main scanning
slit guarantees that the measured slit -plane profile is the integral over
all n of the slit -plane intensity Io(t, n). Under either of these circum-
stances, we need consider only a one-dimensional form of eq. (38),
namely,

Eo(E) - i(fx-o) fE0(x)ei(2r/1Xo)Erdx,

where t = fO. The corresponding aperture and slit -plane intensities are

/0(x) = -21-mo E0(x)4(x)
10

= -21 e°710 Ix° E0(x)ei(2r//X0)ExdX/0( t)
2

In presenting the results of calculations based on eq. (41), it is
convenient to adopt a concise terminology to describe the spatial and
angular widths of the functions involved. We use the following
notation:

Dx(I)-Full width at half -maximum intensity for /0(x)
dx(i)-Half width at half -maximum intensity for I 0(x)

DE(1)-Full width at half -maximum intensity for /0() or /1)(e)
CD-Half width at half -maximum intensity for /0() or Io(')
0O(1)-Full width at half -maximum intensity for /0(0 or /0(0,

expressed as an angular equivalent via eq. (37), AO(1)

= (1/pDt(i)
8O(1)-Half width at half -maximum intensity for /0() or /0(0,

expressed as an angular equivalent.

For arguments other than (1) these quantities, give the width at the
specified fraction of the peak intensity. Since the absolute normaliza-
tion of the various intensity functions depends only on the total beam
power, we present all results in terms of the ratio quantities:

/o(x)//o(0), /0()//o(0), io(0)//o(0),
where /0(0) describes the slit -plane intensity with position given in
terms of the equivalent angular deflection 0 =

Figure 7 shows the instrumental profiles calculated for two interest-
ing illumination functions. The first is the uniform field

E0(x) = I E6 -b/2 x
b/2

0; otherwise

(39)

1246 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976

(40)

(41)



10°

10-2

10-4

10-6

10-8

10-1°

UNIFORM ILLUMINATION
10 (X) /10 (0)

1.0

' I I I I' I

-4 -2 0 2

X-IN cm

7 GAUSSIAN ILLUMINATION

10-12 I

0 20 40 60 80 100

4

0 IN ARADIANS

Fig. 7-Calculated instrumental profiles for uniform and gaussian illumination
with b = 5.0 cm and cr chosen to give equal values of SOW for both profiles. The
normalized illumination functions for each case are shown inset on a linear intensity
scale.

for which one can easily calculate the following intensity ratios:

/0(x)//0(0) =
1; -b/2
0; otherwise

x b/2

s D1 VW I 0(0) =in'
(k ob / 2(kobt/2D2

/0(0)//0(0) = sin; 0(bkoo/b20 22)

where ko = (27r/X0). The second profile results from a gaussian aperture
illumination,

E o(x) = E 0 e-x212a2

for which the relevant intensity ratios are

/0(x)//0(0) = exp (- x2/01)
/0(E)//o(0) = exp (- 0-21cOV/P)
/0(0)//0(0) = exp (- 0-2k,302).

(42)

(43)
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The numerical parameters used in obtaining the curves plotted in
Fig. 7 were

X0 = 5000 A, b = 5.0 cm, a = 1.496 cm. (44)

The b value is representative of the maximum clear aperture of the
MK VI apparatus; the value of a was arbitrarily chosen to give equal
60(1) for both instrumental profiles. Also shown inset in Fig. 7 are
the two aperture -plane intensity ratios, /0(x)//0(0). Note that the
latter are plotted using a linear ordinate scale.

As is evident from these two calculated instrumental line shapes,
the use of gaussian apodization is vastly superior to uniform illumi-
nation in regard to the observability of weak small -angle features even
though the two /0(0) //0(0) profiles have identical half -widths. For
example, at the 10-6 level we find

80(10-6) = 19.8 Arad GAUSSIAN /(x)
50(10-6) = 3183 Arad UNIFORM 1 (x).

In fact, from a theoretical standpoint, the gaussian is the ideal form
of aperture functional. Among the families of possible illumination
functions, it possesses a unique combination of two properties : (i)
it has an extremely rapid shirt fall -off, and (ii) it goes over into itself
under the Fourier transform operation. In a general situation where the
available aperture illumination has some arbitrary (x, y) behavior,
gaussian apodization would have to be accomplished by interposing a
suitable neutral density mask at the aperture plane. Fortunately, laser
sources with a reasonable cavity configuration and oscillating only on
TEM00 modes have an output beam intensity pattern which is accu-
rately gaussian, except in the extreme tails of the profile. The avail-
ability of such a source represents a crucial factor in the feasibility of
constructing an instrument having the resolution and stray -light per-
formance of the MK VI apparatus.

In the actual MK VI instrument, the ratio of the focal length of
lens L1 to that of mirror M5 was chosen to generate a gaussian illumi-
nation function with an effective width

cr* = clz(l/e) = 0.826 cm (45)

in the collimated beam portion of the apparatus (see Fig. 1). The
instrumental profile calculated via eq. (41) for this value of a is plotted
in Fig. 8. Also shown for comparison purposes is the profile to be
expected if we uniformly illuminated the instrument's maximum
design aperture

b* = 5.0 cm.
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It is clear that for these specific values of a and b, gaussian apodizing
no longer exhibits an absolute superiority over uniform illumination.
Although the "gaussian" profile still reaches the 10-6 level much more
rapidly, it does sacrifice resolving power to the "uniform" profile down
to approximately the 10-2 level. What this means to VSA scattering
performance is the following. The "gaussian" instrument will excel in
its ability to detect small amounts of light at very small scattering
angles ; however, it will not resolve approximately equal intensity
features with as much detail as would the "uniform" instrument. As
we see in the following paragraphs, the tradeoff, roughly speaking,
involves paying for small -angle weak -intensity performance by sacri-
ficing some ability to resolve the angular dependent features of the
scattered light. This comparison can be made more quantitative by
reference to Table IV, which gives various half -width angles for the
profiles of Fig. 8.

10

10-

10

a
0

ci,
10-

10 -8

10-1°

10-12 I I

0 20 40

8 IN µRADIANS

Fig. 8-Calculated instrumental profiles for uniform and gaussian illumination
with b = 5.0 cm and o = 0.826 cm. The b value corresponds to the maximum clear
aperture of the MK VI instrument, while the a value corresponds to the width of the
gaussian illumination actually used in the present apparatus. Normalized illumination
functions for each case are shown inset on a linear intensity scale.

UNIFORM ILLUMINATION
10 (X) /10 (0)

I I L. I \....1 I I

-4 -2 0 2 4

GAUSSIAN ILLUMINATION

1:

\

:
1 1 I
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I
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Table IV-Calculated instrumental profile half -widths at various
fractions of peak intensity for three different

illumination functions

X0 = 5000 A.

Gaussian
Illumination
dz(l/e) = a*

e = 0.826 cm
Grad)

Uniform
Illumination

Truncated Gaussian
Illumination

b = b* a = cr*
b / cr = 6.05

(Arad)

dx(1/e) = b*/2
b* = 5.0 cm

(Arad)

80(1/2) 8.0 4.43 8.09
80(1/e) 9.6 5.23 9.69
,50400.41 14.6

20.7
7.36

31.8
14.62
20.6

60(10-6) 25.3 100.6 25.5
50(10-4) 29.2 318 29.7
se 10-6) 32.7 1006 32.6
80 10-6) 35.8 3183 76.8
se 10-7) 38.7 10,060 243
BO 10-8) 41.3 31,830 768

From the inset plots of /(x)//(0) shown in Fig. 8, it may seem that
the gaussian illumination profile used in the present apparatus was
unnecessarily narrowed relative to the instrumental full aperture. This
is, in fact, not the case. One crucial detail which has been omitted in
obtaining the results presented in Figs. 7 and 8 is the possible vignetting
effect of the instrument's maximum aperture. In calculating E0() for
the gaussian Eo(x), for example, the integral in eq. (40) was taken over
all x, thereby neglecting any apeituring effects that might occur.

For the actual V5A scattering instrument, which has a fixed maximum
aperture, b, E0(), and Eo(x) are related via the finite domain transform

1 [142
EOM = 14.1 " E0(x)ei(27ruxotxdx. (46)

w 'qv - J -b/2

Except for a few special cases, an analytical evaluation of this integral
is not possible, and one must resort to a numerical approach to investi-
gate various apodizing schemes. For the experimentally relevant case
of gaussian illumination, eq. (46) becomes

b/2

EOM=
Eo

e-x2 /202 -1-s(27/./X0)txdx. (47)
(fx0)4 J-b/2

On completing the square in the exponential and a change of variable,
we can rewrite this expression in the form

E 0
E0() -

(fX0)
ATre-(a2K212)

.÷
e-w2c1w, (48)

4 w_
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where K, w, w+, and w_ are defined as follows:
. o-Kw=

112o- 1,12

K = (27/X0)

, b .

w+ =
2V2cr 2'1/2

= - b .aK
w _

2\flo- VI 
The analyticity of exp ( - w2) near w = 0 allows the complex plane

w integral to be split into two terms, each having the form of an error
function of complex argument. Tabulated values of this function are
available in the literature" for a restricted range of the parameters
(b/a) and (0X).

In searching out an optimum configuration for the MK VI instru-
ment, it was decidely more convenient to adopt a fully numerical
approach in evaluating eq. (47). Appendix B outlines the methods
that were used. The modified instrumental profile calculations were
carried out for a range of values of the ratio (b/o-) with the aperture
opening, b, held fixed at b = b* = 5.0 cm.

Figure 9 shows four such profiles plotted in terms of the normalized
intensity ratio Also shown are the corresponding aperture
ratios /0(x)//0(0). The curve for (b/ a) = 0.01 is essentially equivalent
to the result obtained above for uniform aperture illumination. The
most striking feature of the remaining three /0(0)//0(0) curves is the
presence of an effective background or floor contribution to the profile
caused by edge diffraction at the aperture. This "shelf" or wing on the
profile has the slow oscillatory decay of a (sine x)/x2 functional de-
pendence. In each case, however, the 0 ti 0 portion of the curves
closely approximates the gaussian profile expected from unapertured
gaussian illumination.

The results given in Fig. 9 clearly illustrate the tradeoff involved
in selecting a value of cr. In circumstances requiring an instrumental
line shape with a very low background level, we are forced to accept a
moderate increase in 80(1) and, therefore, a loss in angular resolving
power. The curve given in Fig. 9 for (b/ a) = 6.05 corresponds to the
choice that was made for the MK VI apparatus. Various half -width
values for this profile have been included in Table IV for comparison
with the results for unapertured gaussian and uniform illumination.
In the actual instrument, this choice for (b/cr) guarantees that the
calculated edge -diffraction "floor" constitutes less than 10 percent of

the overall stray -light level. This point is illustrated in Fig. 10 which

(49)
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Fig. 9-Calculated instrumental profiles for truncated gaussian illumination and
various values of (b/a). Also shown, on a logarithmic intensity scale, are the cor-
responding normalized illumination functions Uo(x)//0(0)]. The curves labelled
(b/u) = 6.05 are appropriate to the b and a values used in the present apparatus.

shows the theoretical profile for (b / cr) = 6.05 superimposed on the
measured profiles of the MK IV instrument.

At this point, it is crucial to realize that the truncated transform
results apply not only downstream from the aperture plane of Fig. 6
but also upstream toward the spatial filter. There are, in fact, two
other possible sources of beam vignetting in the system. The most
obvious is the spatial filter itself. Since the field at the spatial filter
and the field at the aperture plane are Fourier transform pairs, the
same considerations involved in choosing (b / cr) also apply to the choice
of spatial filter pinhole size. If edge -diffraction effects at the aperture
plane are to dominate the system profile, then the ratio of pinhole
diameter, bpH, to the gaussian focal width at the pinhole, dt,(1/e),
must exceed (b / cr). Specifically, for the present instrument, bpH must
satisfy the inequality

bpH b

9.6 Am
> = 6.05

bpH > 58µm.
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The pinhole diameter actually used is bpir = 100 jam. We note that a
[bpH/c/E,(1/e)] ratio this large is contrary to usual spatial filtering
practices.

A much more subtle source of possible beam aperturing is the internal
cavity configuration of the laser source itself. Clearly, the ratio of
laser tube inside diameter, bLASER, to the mode (l/e) radius, tr- LASER)

must also satisfy the inequality
b LASER

LASER
>0. (51)

The laser used in the MK VI has a gaussian mode diameter given as
DLASER (1 /e2) = 1.4 mm,

10-'

10-2

10-3

10-4

10-5

10-6 Mid111

301110.

Turin"
10-7

!!: I

11 I:I Ill
10 - II:1 :1

lli' III

11 III

10 9I I 1 I 1

-200 -100 0 100 200 300 400

f) IN ,WRADIANS

Fig. 10-Calculated instrumental profile for truncated gaussian illumination
(dashed curve) superimposed on the measured profiles of the MK VI instrument.
Curves A and B correspond to the two measurements described in Fig. 4.

(52)
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which is equivalent to

CrLABER
DLAsER(1/e2) L, 0.5 mm.= 2V2

(53)

The plasma tube ID for the laser is bLASER = 5.0 mm yielding a big
ratio

bLASER ti 10.
0 -LASER

(54)

Therefore, in the MK VI instrument, the maximum design aperture
available to the collimated beam is, in fact, the principal source of
truncation effects.

In situations where it is advantageous to alter this resolution -back-
ground tradeoff by varying (b/a), it soon becomes apparent that the
numerical profile calculations of Appendix B are a rather unwieldy
design tool. Instead, based on an examination of the results shown in
Fig. 9, it seemed tempting to fit the profile tails to the form

/T(8) sin2 (kob0/2)
/(0) 1 (kob0/2)2

and look for an interpolation formula relating the amplitude A1 to
the ratio (b/0). By a trial -and -error procedure, the following relation
was found to reproduce the best -fit A1 values to within 10 -percent error :

2
eAT= (1 -b2/4.2.

8o-2

(55)

(56)

Table V gives the fitted and interpolated values of A1 corresponding
to the four (b / a) ratios of Fig. 9. It is interesting to note that the
exponential factor exp ( - b2/40-2), which dominates the (b / a) de-
pendence, is just the normalized aperture illumination at the aper-
ture edge.

3.2 Optical aberrations

The fundamental diffraction limitations set out in Section 3.1 are
really only a prediction regarding the ideal performance of an optical
system. In the final analysis, the inherent optical aberrations of any
particular apparatus design determine how close one will come to
achieving the ideal of diffraction -limited performance. In this section,
we give a brief summary of those aspects of optical aberration theory37
that are relevant to the design of the MK VI apparatus. From a
qualitative understanding of and analytical expressions for each of the
various aberrations, we then determine the extent to which aberrations
modify the ideal diffraction -limited characteristics of the instrument.
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Table V- Fractional amplitude of the edge diffraction contribu-
tion to the instrumental profile of truncated gaussian illumi-

nation. The first column gives the Al values obtained by
fitting eq. (55) to the tails of the profiles shown in

Fig. 9; the second column gives the Al value
predicted by the interpolation formula

in eq. (56)

(b / (r) A 1 -Fitted Al -Interpolated

0
3.333
6.05
8.333

1.0
1.33 X 10-1
5.823 X 10-i
2.782 X 10-7

1.0
1.49 X 10-1
5.92 X 10-*
2.79 X 10-'

Finally, a number of measurements taken on the MK VI instrument
are compared to the quantitative predictions of the aberration theory.

Because the present instrument is illuminated with monochromatic
light, the various chromatic aberrations are absent, and the lowest -
order non -zero distortions come from the third -order or primary
aberrations. Here we follow the order -naming convention associated
with the Taylor expansion of the function sin 1,G, i.e.,

tfra 4,5sin = - (57)

where V, is the angle of incidence of a ray on a reflecting or refracting
surface. The approximation sin Vi = V, leads to the usual paraxial optics
formulae. The next term in the expansion, proportional to IP, describes
the primary aberrations.

The principle aberration -producing elements of the MK VI ap-
paratus are the off -axis spherical mirrors M5 and M6 (see Fig. 1).

Figure 11 shows the basic optical configuration in which the mirrors
are used. The labelled geometrical parameters are :

up = 'Y-The half -field angle or off -axis angle

a-The semi -aperture
R-The mirror radius of curvature.

(58)

The primary aberrations for an off -axis spherical mirror depend
parametrically on two angles : u,, the half -field angle and (ct/R), the
semi -aperture angle. The aberrations associated with the various

LIGHT SCATTERING 1255



--AXIAL RAY -

Fig. 11-Off-axis mirror configuration used in the MK VI instrument showing the
important geometrical parameters.

third -order products of these angles are :

( d/R)3-Spherical aberration
(a/R)2up-Coma
(a/R)4,-Astigmatism

4-Distortion.

(59)

3.2.1 Spherical aberration

Spherical aberration is a longitudinal focussing defect that is present
even when the off -axis angle goes to zero. Figure. 12 sketches the basic
ray geometry for a spherical mirror exhibiting pure spherical aber-
ration. As illustrated in the enlarged detail of the sketch, the marginal
rays of an incoming parallel bundle are brought to a focus at a point
closer to the mirror's surface than those lying nearer the axial ray.
This constantly changing longitudinal focal position results in a trans-
versely smeared focal spot rather than a focal point.

One common measure of the amount of spherical aberration is the
minimum beam waist size produced in the focal region. For a spherical
reflector, the diameter of this blur spot is given by

2TSC* = a3//i2. (60)

Since transverse displacement at the focus is equivalent to an angular
deviation in the parallel bundle, we can also express the spherical
aberration in terms of a full -width angular blur,

hese =
2TS

fC*
= 2( a/R),, (61)

where f = R/2 is the focal length of the reflector.

3.2.2 Astigmatism

Astigmatism, like spherical aberration, is the result of a longitudinal
focussing defect. In contrast to the spherical aberration defect, how -
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ever, the longitudinal focussing error depends not on aperture diameter,
2 a, but on the off -axis angle, up. Figure 13 illustrates the ray geometry
of pure astigmatism for a spherical reflector.

One of the fundamental characteristics of the up dependent aber-
rations is the loss of rotational symmetry in the focal region. A non-
zero off -axis angle destroys this symmetry and establishes two unique
directions or planes of transverse blurring. The plane defined by the
incident and reflected axial ray is the tangential plane. Cartesian or
angular displacements perpendicular to the axial ray and lying in this
plane are referred to as tangential displacements. The two planes
orthogonal to this tangential surface and containing either the incident
or reflected axial ray are called the sagittal planes. Cartesian or angular
displacements from the axial ray in these planes are sagittal
displacements.

For a spherical reflector exhibiting pure astigmatism, a fan of
parallel tangential plane rays are brought to a focus closer to the mirror
surface than an identical sagittal fan. The focal region pattern found
by decomposing the entire illuminated aperture into such ray fans
consists of the two longitudinally separated focal lines depicted in
Fig. 13a. The longitudinal (i) separation of the S and T foci (2A C*)

PARAXIAL
RAYS

MARGINAL
RAYS

2TSC'

11

SPHERICAL
ABERRATION

jPARAXIAL MARGINAL
FOCUS FOCUS

FIG. 12-Ray diagram for a single spherical mirror exhibiting a pure spherical
aberration defect.
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can be calculated from the relation

?,AC*= Ru
4

(62)

and depends only on the semi -field angle.
In the absence of other aberrations (and the effects of diffraction),

the S and T focal lines are infinitely narrow in their respective planes.
This means that the sagittal height of the tangential focus and the
tangential width of the sagittal focus can be obtained from simple
extremal ray geometry. For example, Fig. 13b shows the extremal rays
seen in a tangential plane projection. Normally 2A C* is small compared
to the reflectors focal length (R/2). It follows that the lengths of the
two focal lines are identical and given by

2TAC* = 2AC*
2a2) = 2 a 2 . (63)

The full -width angular spread equivalent to this spatial blur is

AOTAc = 4 (a/R)4. (64)

3.2.3 Coma

When the off -axis angle is non -zero, the longitudinal focussing error
that produces spherical aberration also gives rise to an asymmetric
transverse blurring called coma. Figure 14a sketches the basic elements
of the focal region pattern for a spherical reflector exhibiting a pure
coma defect. Rays in the paraxial region are brought to a focus at the
axial focus, P, while rays from larger -diameter annular zones on the
mirror's surface form focal circles whose centers are tangentially dis-
placed from P. The radius of a particular focal circle increases as the
square of the radius of the zone producing it.

Figure 14b gives a qualitative representation of the characteristics
of the focal pattern as found by dividing up the illuminated aperture
into these annular zones. Mathematically speaking, the focal circles
are not sharp unless the radial thickness of the corresponding zones
vanish ; however, the sketch does predict quite nicely the overall
exterior outline of the coma blur patch.

The continuum of focal circles nest into a 60° wedge extending out
from the axial focus forming a pattern commonly called comatic flare.
The largest -diameter focal circle, produced by the annular zone at the
edge of the illuminated aperture, has a radius CC* given by

CC* =
a2u

2RP
(65)
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y=2u,

(a)

Fig. 14-Partial ray diagram, (A), of an off -axis spherical mirror exhibiting a
pure coma defect. The details of the focal plane pattern are illustrated in (B).

Its center is tangentially displaced from the axial focus by an amount
2CC*.

Although coma is a highly asymmetric aberration, it is still con-
venient to specify its effect in terms of transverse and/or angular blur
sizes. The numbers ordinarily quoted for coma correspond to the
extremal dimensions of the coma patch in the tangential and sagittal
directions. It follows easily from Fig. 14b that the full -width trans-
verse spatial blurs are

T DIRECTION 2TCC* = 3CC* -3 alup
2R

S DIRECTION M Ct2uCC* = 2CC* = RP

The equivalent full -width blur angles are

T DIRECTION 19*Tcc = 3( a/R)2up
S DIRECTION hescc = 2( 12/R)2Up.
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3.2.4 Distortion

The last of the primary aberrations is a defect of off -axis magnifi-
cation called distortion. This particular aberration is associated princi-
pally with optical systems that form a real image of an extended object
at finite magnification. For example, the image of a rectangular grid
of regularly spaced points will exhibit the classic "barrel" or "pin-
cushion" appearance in an optical system involving pure distortion.
For the situation of interest here, namely a spherical reflector with
the image at infinity or at the focus, the amplitude of the pure distor-
tion aberration vanishes identically.

3.2.5 Application of the aberration results to the MK IV instrument

The third -order aberration theory results for the off -axis spherical
reflector are summarized in Table VI which gives the expressions for
the various transverse and angular blurs. It must be emphasized that
the aberration theory results outlined above are derived from purely
geometric ray tracing. In no sense does this theory predict the actual
intensity distribution in the image plane for a specific aperture illumi-
nation. The transverse and angular blur patterns define the outlines
of a boundary between focal illumination and strict geometric shadow
in the absence of all wave interference and diffraction effects. However,
in certain situations, it is possible to combine the geometric aberration
results with aberration -free diffraction calculations to obtain useful
instrumental profile information. The approach works well when one
or more of the following conditions are satisfied :

(i) Diffraction blurring is large or small compared to spherical
aberration.

(ii) One primary aberration is dominant.
(iii) The ideal diffraction -limited system profile is free of large

interference maxima and minima.

Table VI-Summary of the analytic expressions for the
transverse and angular aberration blurs for a single

off -axis spherical mirror

Aberration Full -Width Transverse Blur

Spherical a3/R2 (2 TSC*)

Coma t -3 sa2u,d2R (3 CC*)
A -2 a2u,d2R (2 CC*)

Astigmatism 2 au/ (2 TAG')

Distortion Bie9R

Full -Width Angular Blur

2( Ct/R)3

-3 ( a/R )2u,
-2( et/R)2up

4 ( a/R )4

2 Bu
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In these cases, one can intuitively construct the aberration -affected
profiles with a fair degree of accuracy using the one-to-one geometric
mapping of regions of the aperture onto the focal plane. For example,
it can be argued from Fig. 13b that for pure astigmatism the tangential
direction intensity profile at the sagittal focus should be a demagnified
replica of the aperture illumination. This type of analysis is essential
in obtaining quantitative results from the aberration expressions.

In the MK VI instrument, the off -axis angle and radii of mirrors
M5 and Mg are

7 = 2Iupl = 0.116 rad
R = 200 cm.

(68)

Assigning a value to be used for the semi -aperture a is a more subtle
question, especially since we are interested in gaussian rather than
uniform aperture illumination. However, in the spirit of the astigma-
tism example given in the preceding paragraph, we take

a = dx(i/e) = cr. = 0.826 cm (69)

and assume that the focal plane profiles will also be gaussian. On the
basis of geometrical imaging, the blur values calculated via Table VI
should then be (with the exception of coma) the full -width to the
(1/e) points of a focal plane gaussian profile. We show in succeeding
paragraphs that these assumptions lead to a self consistent picture
of the experimentally observed aberration effects in the MK VI
instrument.

Table VII gives the transverse and angular blurs for a single spherical
reflector in the MK VI configuration. The table also includes the
longitudinal separation of the S and T focal planes as well as the full
angular width of the focus imposed by diffraction. From the viewpoint
of small -angle -scattering performance, the most serious of the aber-

Table VII -Numerical values of the aberration blurs for a single
spherical mirror used in the MK VI configuration

Aberration Full -Width Transverse
Blur (Am)

Full -Width Angular Blur
(Arad)

Spherical 0.141 0.141

Coma I' 2.96 2.96
:3 1.97 1.97

Astigmatism 55.6 55.6

Distortion 0 0

(S-T)separation = 2 AC* = 0.336 cm. A0(1/e)diffraction = 19.3 Arad.
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Table VIII - Numerical values of the aberration blurs for the
system of two off -axis spherical mirrors used

in the MK VI apparatus

Aberration Full -Width Transverse
Blur (Am)

Full -Width Angular Blur
(Arad)

Spherical 0.282 0.282

Coma T 0 0
S 0 0

Astigmatism 111.2 111.2

Distortion 0 0

(S-T)aeparation = 2(2 AC*) = 0.672 cm. M(1le)/diffraction = 19.3 Arad.

rations is coma. Even though the calculated comatic blurs are numeri-
cally small compared to the diffraction spread, the presence of coma
can result in a distinctly asymmetric instrumental profile. Moreover,
in a coherently illuminated system, the coma flare is criss-crossed by
interference patterns whose tails extend far beyond the calculated
geometric limits. This latter effect can significantly raise the effective
"floor" level of the instrumental profile.

Fortunately, in a symmetric two -mirror system like the MK VI,
the geometry may be chosen such that the total coma vanishes identi-
cally. In fact, all aberrations that depend on an odd power of the half -
field angle u disappear if the field angles at the two elements are
made equal and of opposite sign. By convention, up is defined as the
angle through which the incoming axial ray must be rotated to bring
it into coincidence with the local radius vector of the element's spheri-
cal surface (see Fig. 8). An inspection of Fig. 1 shows that in the MK VI
apparatus the field angle rotations at M6 and M6 are of opposite sense.
In this case, when the two off -axis angles are made equal in magnitude
the coma and distortion aberrations vanish while the spherical aber-
ration and astigmatism double.

The total calculated aberration blurs for the instrument are sum-
marized in Table VIII. Since the spherical aberration is small com-
pared to the diffraction spread, it is reasonable to expect that the
interpretation of these blur values as (1/e) full -widths of a gaussian
blur profile should work quite well. This is in fact the case.

The tangential and sagittal foci of the MK VI instrument were
located using a modified Foucault knife-edge procedure, and T direc-
tion scans of the intensity profiles were taken in each case. The mea-
sured S -T separation was

(S -T) separation = 0.660 ± 0.013 cm. (70)

LIGHT SCATTERING 1263



1 SECOND

50(1/e)
9.6 µRADIANS

I 1 I 1

-80

- 70

-20 -10 0 10 20

60

50

40

30

20

10

0

0 IN µRADIANS

Fig. 15-Observed instrumental profile as measured by a tangential direction
scan in the instrument's tangential focal plane. The heavy dots are a best fit to the
function exp [-02/502(1/e)].

At the T focus, only diffraction and spherical aberration contribute
to the profile width. From the standard gaussian convolution formula,
we can calculate the expected M(1le):

T PLANE A0(1/e) = 4(19.30)2 ± (0.282)2 Arad

= 19.302 Arad. (71)

Clearly the spherical aberration has a negligible effect on the ideal
diffraction -limited broadening. Figure 15 shows a typical high -resolu-
tion T -plane scan for the instrument. The large apparent noise in this

1' SCAN
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trace is produced by residual air currents and vibration in the ap-
paratus and corresponds to a peak -to -peak beam wander of roughly
0.5 Arad (0.7 arc second). The results of fitting the observed profile
with a gaussian shape are indicated by the points in Fig. 15 and give
an experimental full width

AO(1/ e) = 280(1/e) = 19.2 Arad. (72)

In the S focal plane, diffraction, astigmatism, and spherical aberration
all contribute to the instrumental line shape. The full -width calculated
from Table VIII is

S PLANE
l' SCAN

6,0(1/e) = 4(19.3)2 + (0.282)2 + (111.2)2 Arad

= 113 Arad. (73)

The predicted width comes predominately from the astigmatic blur-
ring. Figures 16 and 17 give two experimental S -plane profiles recorded
with logarithmic and linear intensity scales, respectively. A gaussian
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Fig. 16-Observed instrumental profile as measured by a tangential direction scan
in the instrument's sagittal focal plane. The heavy dots and dashed curve a are
best fit to the function exp [ - q)2/5 ,p2 (1 /e)].
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Fig. 17-Observed instrumental profile as measured by a tangential direction scan
in the instrument's sagittal focal plane. The heavy dots are a best fit to the function
exp - so2/5 vA(1/e)].

fit to the logarithmic curve, indicated by the points in Fig. 16, gives
very good agreement with the observed line shape over roughly four
orders of magnitude in intensity. The range and precision of the fit
provide strong support to our assumptions regarding the interpretation
of the aberration blur values. The best -fit half -width values for the
logarithmic and linear scans are B0(1/e) = 57 Arad and 50(1/e) = 55
Arad, respectively. The mean observed full -width

A9(1/e) = 112 Arad

is in excellent agreement with the calculated value given in eq. (73).
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3.2.6 Conclusions

In summarizing the discussion of aberrations, a number of general
points deserve to be made and reiterated regarding the relationship
between aberrations and small -angle -scattering performance.

(i) The cancellation of the asymmetric aberrations, coma especially,
is crucial in obtaining an instrumental profile that has symmetry, the
necessary steep skirt fall -off, and a low background value.

(ii) Spherical aberration, although it has a negligible effect relative
to diffraction in the present instrument, can rapidly grow to serious
proportions with increasing aperture size, a = dx(1/e). The angular
blur of this aberration, AO*sc, increases as the cube of the aperture size
while the diffraction spread varies inversely with dr(l/e). The relative
contribution of spherical aberration to the profile width will, therefore,
increase as a4. Since Aes, depends only on the reduced quantity ( a/R),
however, a constant ratio of spherical blur to diffraction spread can
always be obtained by scaling the mirror radius R to keep a,VR,
constant. For example, an instrument with 10 times better angular
resolution than the MK VI might conceivably utilize 80 -cm -diameter
mirrors with a 21.5 -meter focal length.

(iii) The presence of a large residual astigmatism need not be
detrimental if one is satisfied with an instrumental performance that
is diffraction limited in only a single angular direction. It might appear
from Fig. 13 that simultaneous sagittal and tangential resolution could
be achieved by placing separate slits at the S and T foci of the collecting
mirror. This is true if the wavefronts of the incoming ray bundle are
perfectly parallel. However, in a two -mirror symmetric apparatus, such
a bundle cannot be produced because of the collimating mirror astig-
matism. For example, with reference to Fig. 1, the spatial filter pinhole,
A2, can be placed at either the T or S focus of mirror M5. In the first
case, the wavefronts of the beam travelling toward M7 are tangentially
collimated but sagittally curved ; in the second case, the converse is
true. From the viewpoint of light -scattering kinematics, this "col-
limated" beam will be able to conserve momentum with a relatively
broad range of scattering vectors lying in the plane containing the
wavefront curvature. Thus, even though mirror Mg forms S and T
focal lines of equal sharpness, only a single high -resolution axis actually
exists for either position of pinhole A2.

In the MK VI instrument, the spatial filter pinhole is at the T
focus of the collimating mirror so that the probe beam is tangentially
collimated. The nature of the wavefront curvature in the sagittal plane
may be calculated in a simple fashion from the known (S -T) separation
2A C*. Since the pinhole (at the T focus) is closer to the mirror's surface
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SPATIAL
FILTER
PINHOLE

Fig. 18-Illustration of the wavefront curvature existing in the off -axis mirror
collimating arm of the MK VI instrument.

than the S focus, the sagittal plane wavefronts appear to diverge from
a point source lying behind the mirror. The object distance, q, between
this virtual point source and the mirror, may be calculated via the
usual paraxial formula. Since (S -T) = 2AC* is small compared to the
focal length of M5, we have

R2
q a-1 (74)2AC* = 4(2A C*)

Inserting the appropriate numerical values, R = 200 cm and 2AC*
= 0.336 cm, gives

q '=."-_' 3.98 X 104 cm. (75)

Figure 18 shows a sketch of the probe -beam constant -phase surfaces
with the sagittal curvature greatly exaggerated for clarity. The magni-
tude of the curvature can be specified in terms of the longitudinal
spatial separation between the wavefront and a reference plane which
is tangent to the wavefront at the axial ray. Since the virtual sagittal
source point lies so far behind the mirror, it does not matter exactly
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where in the optical path we calculate this separation. The maximum
deviation between the wavefront surface and the reference plane, Vz,
occurs at the sagittal extremes of the beam and is easily found to be
given by

a2
Vz = 2q (76)

If we take a = b*/2, where b* = 5.0 cm is the maximum clear aperture
diameter in the MK VI instrument, we have

Vz 10.5 X 10-s cm,

or roughly 2X of peak deviation from perfect collimation. In a situation
where the full sagittal (g) aperture height need not be used, it is
possible to reduce this deviation substantially since Vz is propor-
tional to a2. For example, if we aperture the height of the probe beam
to b = 5 mm, the peak wave -front deviation is reduced to Vz X/50,
or essentially perfect collimation. Thus, the most desirable probe -
beam configuration in the MK VI instrument corresponds to a "flat
ribbon" or "sheet" type of illumination.

3.3 Scattered field Intensity, spatial coherence, and scattering kinematics
in the presence of aberrations

In a light -scattering optical system whose angular resolution capa-
bilities are in some respect dominated by aberration effects-for
example, the astigmatic c blurring in the present instance-we find
that other important properties of the observed scattered field are
modified by the aberrations as well. In this section, we examine three
aspects of normal light -scattering theory that are qualitatively altered
by the presence of aberrations :

(i) The form of the spatial coherence function for the scattered
field.

(ii) The application of the normal kinematic restrictions (or wave
vector conservation conditions) in the scattering process.

(iii) The calculation of the amplitude of the perturbations that
give rise to observed levels of scattered or stray light.

The effects of aberrations in all three cases have a straightforward
physical interpretation connected with the fact that light scattered
into a specific direction (0, go) is no longer brought to a diffraction -
limited spot focus at the observation plane.

In typical calculations of the scattered field, in which an incoming
plane wave is assumed to impinge on the sample, the far -field angular
distribution of scattered intensity is shown to be simply the spatial
Fourier transform of the refractive -index perturbations in the illumi-
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nated volume.1,3 The light observed at a particular angular position
(0, co) is contributed by a Fourier component of the refractive index K
given by

K = k. - ko, (77)

where ko is the wave vector of the incident beam and k8 points in the
direction of observation (0, co) and has a magnitude 11{81 = 11101
= 0. For a finite illuminated volume, the refractive -index per-
turbations are most usefully represented in terms of a plane -wave
Fourier expansion

E 3n; exp (iK;  r'), (78)

with the K; chosen to make the expansion functions orthonormal over
the scattering volume.27 The scattering of a collimated incident beam
by this assembly of plane waves consists of a family of diffracted
beams that originate from the Kls satisfying the Bragg condition,
eq. (77). On the surface of a sphere in the far field, these diffracted
beams form a contiguous but essentially nonoverlapping series of
diffraction "spots," each associated with a particular In the usual
situation, where the amplitudes of the individual K; disturbances are
statistically independent, these patterns also delineate areas or solid
angles of statistical field correlation. If the far -field scattered radiation
is focussed onto the observation plane by an ideal lens or mirror, this
contiguous angular distribution of "spots" is imaged one -for -one onto
the focal plane. A ray penetrating the reference sphere at an angular
position (0, (p) is imaged onto the focal plane at a transverse position
(E, n), where, in the small angle limit,

= f0, n = ico (79)

In this ideal situation, the intensity observed at some (t, n) is scattered
essentially by a single K; plane -wave mode. The measured intensity
may, in theory, be used to calculate the mean -square -amplitude of
the mode, or vice -versa. Furthermore, the spatial coherence properties
of the field at the observation plane are determined uniquely by the
angular distribution of intensity within one of the diffracted beams.

Formally speaking, the presence of aberrations in the imaging of
the reference sphere scattered field produces qualitatively the same
effects as any other imperfect focussing of the far -field pattern. The
pattern of diffraction spots will be formed with a degree of spot
broadening and overlap that depends on the nature and extent of the
focussing defect. The scattered light reaching a specific (, n) point
at the observation plane is no longer associated with a single K;
disturbance, but is an appropriately weighted sum of contributions
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from a number of modes. As a result, the Bragg condition, eq. (77),
is not strictly applicable in relating a particular (, n) observation
point to a specific plane -wave disturbance. The aberration or defocus -
sing effect must be understood in detail before the measured intensity,
or its time evolution may be used to infer the physical behavior of

modes responsible for the scattering. Under defocussed conditions the
spatial correlation function is also modified, though its functional form
does retain a close resemblance to the intensity pattern associated
with a single K; diffraction "spot." In the following paragraphs we
consider how the residual astigmatic blurring in the MK VI instrument
affects the three slit -plane field properties enumerated in the opening
paragraph.

3.3.1 Kinematic relations

To understand how the wave vector conservation criterion is to be
applied at the slit plane of the present apparatus, we need to know
(i) the slit -plane intensity pattern formed by scattering from a single
plane -wave disturbance, and (ii) the relative positioning of the spots
from the various allowed K5. In the MK VI instrument, the intensity
pattern associated with a single K; is identical to the diffraction- and
aberration -affected instrumental profile whose properties were treated
in detail in Sections 3.1 and 3.2. At the slit plane, therefore, the single
K; diffraction spots have the elongated gaussian shape depicted in
Fig. 5. Expressed in terms of angular coordinates via eq. (79), the
normalized intensity distribution within a "spot" is simply

I (0, (p) _ (0 - 0,)2 t exp - coa)2 (80)- exp
802(1/e) cp2(1/ e)

The reference point (0i, (pi) specifies the angular position of the spot
center, which, in the present case, is correctly predicted by the Bragg
condition, eq. (77).

Given a correct form for the intensity distribution within a single
K; pattern, we must still determine the slit -plane spacing of the spots
associated with the family of allowed K5. Clearly, this spacing depends
on the reciprocal lattice of the orthonormal expansion functions
exp (iK;e) which, in turn, is fixed by the geometry of the scat-
tering volume. For sufficiently small scattering angles, the actual
three-dimensional scattering sample can be taken to be equivalent to
a two-dimensional phase object placed normal to the incoming probe
beam." The scattering disturbances in this "phase -sheet" may be rep-
resented in terms of a two-dimensional plane -wave Fourier expansion

E E  exp (iKxx) exp
K. Ky
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with the (Ks, Ky) chosen to make the expansion functions orthonormal
over the instrument's full aperture. For a rectangular aperture with
full -width x and y dimensions bs and by, the allowed K; can be obtained
from the cyclic boundary condition relations

Ks (m) =
2irm

bs '
Ky(n) = 27rn

oy
(81)

where m and n are the integers

m, n = 0, ±1, ±2, . (82)

The scattering angles (Os, coi) for the central ray of the diffracted beam
produced by a particular K (ni, n) are then given by the small -angle
Bragg conditions,

irm
Ks(m) = koOm =

2

Ky(n) = ko con =
27rn

(83)

It follows that the family of diffracted beams are brought to a focus
at the slit plane on the vertices of a rectangular mesh whose grid
spacings are given by

sp = Asp = f (84)

nsP = f (Asp = f (0. (85)

For the MK VI instrument at full aperture (bs = 5.0 cm, by = 5.0 cm),
the equivalent angular mesh spacings are

Osp = cOSP = 10 Arad. (86)

If we imagine the instrumental profile contours of Fig. 5 arranged on
such a mesh, there will be little overlap in the B direction but consider-
able overlap along gyp. The light received at some (0, co) point in the
slit plane will contain contributions from roughly 10 distinct K(m, n),
each having the same m (Ks) index but differing n(Ify) components.
Because the MK VI instrument is capable of probing 0 values so close
to the diffraction limit, corresponding to a very small in index,
m = 5-300, these multiple contributions can prove a serious problem.
This point is illustrated in Fig. 19, which shows the (1/e) contour of
a single K(m, n) intensity pattern centered at 0 = 80 Arad, = 0
superimposed on the slit -plane mesh of the (Om, con). The 0 and (,0 axes
of the figure can also be labelled in terms of the wave vector com-
ponents Ks and K,, to which the angles are directly proportional as
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Fig. 19-Resolution function of the MK VI instrument superimposed on the
slit -plane mesh points corresponding to the allowed scattering vectors K1.

mesh points falling within the
contour, the magnitude of the associated K n) varies considerably.
For the point at the center of the contour, we have (in = 8, n = 0) and

K I = 27[(m/bz)2 (n/by)2]1 = 10.0 cm-',

while for the points at the yo extremes (in = 8, n = 5), we find

I K = 11.9 cm'.

When the physical properties of the modes are strongly I K I dependent,
this overlap can lead to a difficult task in the interpretation of the
measured intensity and/or its time dependence.

Clearly, the 1K I smearing effect becomes less significant as 0 in-
creases. Less obvious is the fact that the problem of multiple K;
contributions can be alleviated by stopping down the beam height of
the instrument, by. As was pointed out in the conclusion of Section
3.2, the cylindrical distortion of the probe -beam wave fronts, which is
a manifestation of the collimating mirror's astigmatism, can be made
negligibly small by reducing by. With b 0.5 cm, for example, the
beam incident on the sample can be considered as collimated to within
the diffraction limit. In this case, the usual kinematic conditions apply
in relation to the far -field scattered light; that is, the far -field array of
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"spots" now form a contiguous and nonoverlapping pattern. Of course,
each spot is elongated along by diffraction -spreading because of the
imposed asymmetry of the probe -beam dimensions, i.e, by = 5.0 cm and
by 5 0.5 cm, but the angular spot spacings OSP = (X/b.) and
cosi. = (X/b) are correspondingly asymmetric. Given this particular
situation in the far field, we must still consider the effect of the astig-
matism associated with the light -collecting mirror. As by is decreased,
the 93 direction astigmatic blurring at the slit plane is decreased pro-
portionally, while 43 blurring due to diffraction increases. At some
point, a crossover occurs beyond which diffraction spread dominates
the slit -plane imaging. In this limit, the collecting mirror appears
aberration free and the far -field pattern of K; spots undergoes the
normal one-to-one, no -overlap mapping onto the slit plane. For the
MK VI configuration, the crossover occurs at by 0.5 cm or roughly

of the full design aperture height. Of course, it should be noted that
under fully diffraction -limited conditions (by = 5.0 cm, by < 0.5 cm),
the instrument retains its very asymmetric resolution profile. What we
have done is to make the instrument appear to be in "good focus" by
introducing a sufficient amount of cp direction diffraction spreading to
swamp the aberration defocussing. The price paid for this is that the
instrument becomes incapable of probing scattering disturbances
having as long a p direction wavelength (that is as small a value of Ky)
as can be resolved in the / direction.

3.3.2 Relation between the slit -plane intensity and the scattering
cross-section of the sample

In the absence of aberrations or other defocussing problems, the
far -field or observation plane scattered intensity can be related easily
to the mean -square amplitude of the scattering perturbations using the
standard integral expression for the scattered field.',3,27 In the presence
of imaging aberrations, the total scattered power per plane -wave mode
is unchanged ; however, now the calculation of the slit -plane intensity
is complicated by the overlap of the various K; diffraction spots. For
the MK VI instrument, a relation between the scattered power per
mode and the observed slit -plane intensity may be obtained as follows.

The slit -plane intensity corresponding to a single K; disturbance
can be written down formally as

E,(0, co) 12

= E (p.) 12 exp [ (0 - 8"1)2 exp [ ( 9n)2 (87)
602(1/e) 5,"(1/e)

with slit -plane position specified in angular units. The position of the

 See Figure 13 and the discussion pertaining to this figure.
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central ray of the pattern (0 (p.) is given by eq. (83). The total
scattered power in the single K; pattern is just

P.(K;) = f f dOcLp 1 En.(0, (p)12

= .71-50(1/e)5(p(1/01Enm(ein, (P.)12. (88)

The problem now is to relate the observed total slit -plane intensity
to the peak mode intensities, 1E con) 12. The intensity observed
at the position (0, co) is the sum over all possible mode contributions:

1E8(0, co) 12 -
]= E 1Enn,(0., (P.)12 exp

r (0
(89)

n,m (302

0,702 exp - (c° (Pn)2(1/e)

5 (p2(1/e)

If 1E con) 12 is independent of (n., in) over the range where the
gaussian terms are nonvanishing, eq. (89) can be simplified to give

I E (8 , (p) 12 = 1 Ent?' (eml O'n) 1 2SnSn, (90)

where S. and Sn are the factored sums

Sm = E exp - I E0 - m(Xo/b.)J2/502(1/e)} (91)

Sn = E exp - { - n(xo/by)12/42(1/01
n

(92)

Consider the S. sum expressed in the following dimensionless form

where

sn, = E exp
2

30(1/e) bx 60(1/e)}
0 ( X \ 1

= E exp ( Eu - ma]2), (93)

u = 60(1/e) '
1 X0

a
60(1/e) bz (94)

Although the indicated summation cannot be carried out explicitly,
it can be expressed in a more useful form via the identity

n-
2

E exp [- (u - ma)2] = A- E exp
m

cos (27n7ru/a), (95)
771 a a2,

2

which is an immediate corollary of Poisson's formula." Applying this
identity to the S, summation yields

Sm = ex
Ari50(1/e)

p
7712,2602(1 e) 1

(X /b.) (X /b.)2
cos

(X/b.)
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For the numerical parameters relevant to the MK VI instrument,
50(1/e) = 9.6 Arad, (X/bz) --= 10 Arad, we need retain only the m = 0
term in the right-hand side of eq. (96). With an error less than 10-4,
we may take

Sm
Ar;o0(1/e)- (97)

(X/bx)

A similar result follows easily for S.. We then have for the total slit -
plane intensity

(50(1/e) Sco(l/e)
1E8(0, 40)1' = con)12 (98)

(X/bx) (X/by)

As this result shows, the various elongated gaussian patterns associated
with the individual K; modes overlap in the slit plane to produce an
essentially uniform illumination.

The unknown intensity factors I E.,,,(0 con)12 can now be eliminated
between eqs. (88) and (98) to give the desired relationship between
the overall slit -plane intensity and the scattered power per mode,
namely,

Pe (K1) = coi)12(X/bz)(X/by). (99)

Equation (99) is the basic result which allows the measured intensity
to be related quantitatively to the amplitudes of the individual
scattering perturbations.*

Note that the power actually contained within the angular area of
a single K; pattern

1E8(01, v;)1250(1/e)4(1/e)

is larger than the scattered power per mode by the factor

60(1/e) Bc0(1/e)
(X/bz) (X /by)

This ratio gives a rough gaussian weighted measure of the number of
modes that contribute to the intensity reaching a particular (0, co) .

3.3.3. The spatial coherence function of the slit -plane field

In light -scattering experiments designed to extract spectral infor-
mation from the scattered field using photocurrent correlation tech-
niques, the feasibility of a particular measurement is critically de-
pendent on the range of transverse spatial correlation that characterizes
the observation plane field.23" The extent of the correlation is de -

*See the discussion which follows eq. (113) and leads to eq. (124).
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scribed quantitatively by the normalized mutual coherence function39,40

(Es(t, n; t)  E: -I- At, n ± An; t))T(, n; At, An) = (100)
(I Es(t, ; 01)(1E8U + At, n An; 012) }

where (t, n) and (t At, n + An) are two arbitrary points in the
observation plane. The angular brackets denote an appropriate en-
semble or time average. The function T(  ) reaches its maximum
value, T(  ) = 1, for At = An = 0 and, in general, decreases
smoothly to zero as At and/or An increase. The contour in At and An
around (t, n) on which the coherence function reaches some specified
numerical value may be taken as a measure of the area over which
there is correlated temporal behavior of the two field amplitudes.

When the main probe beam is derived from a source having perfect
transverse spatial coherence, as is the case here, then the presence of
the spatial incoherence in the scattered field is totally attributable to
the scattering processes taking place in the illuminated volume. The
spatial coherence properties of the scattered field are uniquely deter-
mined at the exit face of the sample and are most easily specified
analytically by calculating the mutual coherence function on a far -
field reference sphere, 0, centered on the scattering volume. In purely
formal terms, we can write

(E8(r, t)  E*8(r p, t))To(r, p) (101){ (1E8(r, t)12)(1E,(r p, t) 12) } '

where r and r p both terminate on the surface of the far -field sphere,
0. Generally speaking, To(r, can be calculated in a straightforward
fashion once it is assumed that the scattering perturbations satisfy
certain basic stochastic criteria.

The relationship between the observation plane coherence function
T(t, n; At, An) and the far -field function To(r, p) depends, of course,
on the detailed characteristics of the optical system which collects and
images the scattered light, and must include the effects of aberrations.
There are two alternative procedures that may be used to obtain this
relationship. The first involves the use of the plane wave K expansion
of the scattering perturbations that was introduced in the beginning
of this section. For the AIK VI instrument, we have already calculated
the slit -plane field produced by the scattering from the individual K5.
In the notation of eq. (89), we have

E8(t, K5)

= E nin( nn) exP [ (t - Eni)2 1 exp [
(n '7'2)2 1 , (102)2f2682(1/e) J 2 f26,p2(1/e) J

where f is the effective focal length of the light collection system. In

LIGHT SCATTERING 1277



theory, therefore, we could calculate T(t, n; At, An) directly by ex-
pressing the total slit -plane field as a sum over the E, (E, n; K,) and
then performing the statistical average indicated in eq. (100). In the
absence of aberrations or other imaging defects, this direct method
represents the simplest approach. For perfect imaging, the individual
plane -wave scattered field patterns are essentially nonoverlapping at
the observation plane and the coherence function is effectively domi-
nated by the contribution of a single K; term. However, when imaging
errors produce a significant overlap of the E, (t, n; K,) at the obser-
vation plane, as is the case for the present apparatus, then obtaining
the analytical form of T (t, n; At, An) by the direct method becomes
a difficult mathematical problem.

The second alternative approach involves a direct calculation of
the far -field coherence function To(r, p) from which T n; At, An) is

obtained by using the fundamental laws that govern the "propagation"
of mutual coherence in an optical system. This latter method is
generally the more useful when the light -collection system departs
significantly from ideal imaging.

For the scattering angles relevant to the MK VI instrument, the
two-dimensional "phase sheet" model of the scattering sample may
be used to simplify the calculation of To(r, 0). For this two-dimensional
model object, the reference sphere coherence function is given by the
van Cittert-Zernike theorem" as

Tole, ; 0 - OF ; c - co')

2r f dxdy 1 Eo(x, y) 12 exp iko[(0 - 0')x ( - cp')y] }
, (103)

27r
J

dxdy 1 E 0(x, y) 12

where both r and p have been expressed in the cartesian angular
coordinates 0 and v. In eq. (103), the factor I Eo(x, y) 12 is the illumi-
nation function of the object, in our case the "phase -sheet" sample.
The surface integral is to be taken over the entire (x, y) plane or over
the open aperture of the object, as appropriate. It should be noted
that the van Cittert-Zernike theorem will hold as long as the pertur-
bations in the scattering "phase sheet" have a correlation distance,
which is short compared to the characteristic spatial dimensions of

E o(s , y) 12 . This condition is, in general, well satisfied in the typical
scattering experiment.

At small angles, where eq. (103) is valid, the far -field spatial co-
herence function is independent of the absolute angular position of
either observation point and depends only on the separations (0 -
and (gyp - v'). In terms of these difference variables, To(  ) is just
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the normalized Fourier transform of the source intensity. As such, it
bears an extremely close resemblance to the instrumental profile
calculated in Sections 3.1 and 3.2.

For the MK VI instrument, the illumination function is the gaussian

lEo(x, y)12 = ES exp
x2 + y2

(104)
0-2

and we have from eq. (103)

To(0, ; 0 - 0', - co') =

b. /2

f-bx/ 2

exp x2/0-2) exp [iko(0 - 0')x]clx

bx /2

f-bz/2
exp ( - x2/ cr2)dx

1-
by/2

exp ( - y2/0.2) exp Eik0( - co')Ady
4/2

X , (105)by/2

f-b/2
exp ( - y2/0.2) dy

where bx and by are the aperture dimensions at the scattering sample.
As is evident from eq. (105), the coherence function factors for the
case of gaussian illumination and we can write

T0(0, g; 0 - 0', - (P') = TO(00) T (AV),

where AO = 0 - 0' and A = - cp'. The functions T'0(46,0) and
71,;(A co) are given by the appropriate integrals in eq. (105). Each of
these integrals is a finite domain Fourier transform of a gaussian kernel
of the type considered in detail in Section 3.1 with respect to aper-
ture apodization and vignetting. The only difference is that in eq. (105),
the "intensity," exp ( -x2/0-2), replaces the "field," exp ( -x2/2v2),
which appeared in the diffraction calculations. It is not hard to show
that the factored coherence functions To (AO) and To (AO) are identical
to the normalized intensity profiles of Fig. 9 if one uses the corre-
spondence

TO
/4/2)

/ (0)
(106)

Given the form of the far -field reference sphere function To, we must
now determine the relationship between To and the desired slit -plane
correlation function.

One of the fundamental results of coherence theory is that second -
order mutual coherence functions, such as T (  ), propagate according
to the wave equations as "field" variables. That is, once T(  ) is

specified on any surface in an optical system, its form on any other
surface in the system may be found by treating the coherence function
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as one would any electric field distribution. Therefore, all of the usual
wave -diffraction and/or geometrical -optics approaches used to analyze
wave -front propagation in an optical system are directly applicable to
the coherence function.

For the MK VI apparatus, the coherence "field" described by To
is identical to the far -field electric field that describes the instrument's
directly transmitted probe beam, except for a numerical change in
the beam -width parameter a. The effective beam width which charac-
terizes the mutual coherence "field," 0-T, is related to the actual beam
width of the instrument, o, by the result

2 (e)2= 2
(107)

Except for this numerical change, the diffraction and aberration re-
sults of Sections 3.1 and 3.2 may be used intact to describe the slit -
plane coherence function. In terms of angular coordinates at the slit
and the widths 60(1/e) and 4(1/e), which were used to characterize
the instrumental profile, we have easily

T(0, cp;0 - 0', - co') = T'(A0)T'(Ap)
(0 - 0')2

= exp 4602(1/e)exp{ `PF
46 p2 (lie))2}.

(108)

In the slit plane, as was the case on the surface of the far -field reference
sphere, the slit -plane coherence functions are related to the intensity
profile of the transmitted beam by the transformation

i 71' (CI =
/4/2)
I(0)

Equation (108) is the basic result which may be used to evaluate the
scattered or stray -light power -per -coherence region or estimate the
number of coherence regions encompassed by a particular choice of
main -slit size. For example, given the slit -plane scattered intensity
1E,(0, go)12, we can form the weighted integral

dP8(°, =1 ido'cico' 1E8(0' , co')12[T' (0 - - co'n2, (109)
dfIcoir

which is a useful measure of the power -per -coherence solid angle as
measured at the slit.2,3.27 In general, 1E8(0', cp') 12 is slowly varying
over the angular range where [T' (0 - 0') T' (co - cp')12 is nonvanishing
and can be removed from the integral to give

dP 8(0, (p)

di2C OH
(110)I E.(0, co) 1 2A0C OH (PC OH
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where the mean full -width coherence angles, McoH and O socoH, are
defined by the integrals

2COH = AOCOHAWCOH

= f Er (6,0)12d(A0) f [7" (6, con2d(A co). (111)

Combining eqs. (108) and (109) gives for the MK VI instrument

Maw/ = 41"Tr60(1/e) = 24.1 grad

cocoir = Agr6v(1/e) = 140.4 grad

and eq. (110) becomes

dP. (0, 1E8(0, (p)121260(1/0 -07113(p(1/ e). (113)
dOcolf

Earlier in this section, we obtained an expression for I E.(0,(p)12based
on a plane -wave -mode expansion of the scattering perturbations. That
result may be used in eq. (113) to yield a relationship between the
observed scattered power -per -coherence solid angle and the scattered
power -per -K; mode. From eqs. (99) and (113), we find

dPs(0j, co;) 42;66(1/e) x2,7i6co(1/e)
alcoH (X/bx) (X /bb)

The product of the correction factors

1,12;60(1/e) ArKracp(1/e)
(X/bx) ^ (X/by)

is a rough measure of the number of modes that contribute to the
power observed in a single coherence region at the slit plane, while the
individual terms indicate the extent of the multiple mode contribution
in the B and 0 directions. For the MK VI instrument at full aperture,
the numerical values of the correction factors are

4-27r 60(1/e) 2.4
(X/bx)

-NTT 6(p(1/e)
14.0.

(X/by)

(112)

(114)

(115)

The results given in eqs. (99), (113), and (114) together with the
known form of the instrumental profile may be combined in various
ways to calculate normalized scattering cross sections from measured
slit -plane intensities. One important calculation of this type is to
express the observed stray -light levels in the MK VI apparatus in
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terms of an equivalent scattering cross section. For the experimental
profile curves shown in Fig. 4, we may write down an analytical ex-
pression for the measured stray -light photocurrent, i(0), as

aosLI2 fAcsLi2
i(0) = a 1E8/(0, co)12cled(P, (116)

88/12 csi,/ 2

where 1Eag (0, (p) 1 2 is the stray -light intensity at the slit plane and
LIOsL and cosi, specify the full -width slit dimensions in angular units.
The proportionality factor a relates the photocurrent to the optical
power passed by the slit and includes the detector quantum efficiency,
light -collection losses, etc. If the intensity 1E81(0, co)12 is relatively
constant over the slit aperture, we have simply

i(0) = «1E81(0, 0)12M8LA (117)

where we have assumed that O cosi, is situated symmetrically around
= 0. Combining this result with eq. (110) gives the relation between

the measured photocurrent and the stray -light power -per -coherence
solid angle as

dP8,(0, 0) AOsi, vs r,
i(e) = a cistcoH A0coli (pcoH

To eliminate the unknown proportionality constant a, we make use of
photocurrent observed at 0 = 0, the peak of the directly transmitted
beam. Given the normalized slit -plane intensity profile of the direct
beam, I(0, cp)/1(0, 0), we can calculate the fraction of the total beam
power, Po, passed by the slit at 0 = 0 as

res.02 rosi,12 u0 ()
dedtP

-AosLI2 LaysLI2 ,

= 7,
ILI 01I(°d c` dedco

(118)

(119)

where for the MK VI apparatus we have

I(0, co) 02 iic,2

=I(0, 0) exp
exp

[
502(1/e)] co2(1/ e)

The numerical value of the error function integrals in eq. (119) could
be obtained from tabulated results for particular values of AOsi, and

cosi, ; however, in the present case where the slit dimensions satisfy
the inequalities

AOsi,<<S0(1/e)
AVSL>> Ocp(1/e),
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we have the more useful analytical result

AOsi,
r-
ro0(1/e).

The measured peak photocurrent, 1(0), is then

1(0) = aPo
1hr-60(1 / e)

Dividing eq. (118) by eq. (122) gives the useful result

1(0) 1 dPst(0, 0) 1 (psi,

i(0) Po Mew/ socoH

(121)

(122)

(123)

If desired, the quantity d/38,(0, 0)/c/S/coH can be replaced with the
stray -light power per mode, P (K j), by using eq. (114). This gives the
very useful relationship

1(0) 133,1(Ki) 1F2-.1r 50(1/e) OcpsL
1(0) - (Po (Vbx) (X/by)

(124)

IV. EMPIRICAL OBSERVATIONS ON THE STRAY -LIGHT BEHAVIOR
OF OPTICAL ELEMENTS AT VERY SMALL ANGLES

Very little information of a quantitative nature is available con-
cerning the imperfection scattering of optical elements at very small
angles. As a result, the design and testing process leading to the
present VSA instrument involved a significant amount of trial and error
evaluation of various optical systems in a search for the desired stray -
light performance. During this process, a certain amount of empirical
information was obtained relating to the imperfection -scattering ques-
tion. This section presents a brief discussion of these observations and
their influence on the configuration adopted for the MK VI instrument.

4.1 Reflecting versus refracting optics

It is clear from a comparison of Figs. 1 and 6 that the implementation
of a VSA scattering instrument using lenses would be significantly less
involved than the MK VI off -axis mirror arrangement. The refracting
system also has the advantage of strictly zero off -axis aberrations
(coma, astigmatism, and distortion), although a "best form" single -
element lens does have eight times the spherical aberration of an
equivalent spherical mirror." In fact, the earliest version of the present
apparatus utilized precisely the kind of "straight -through" lens system
illustrated in Fig. 6. This arrangement was abandoned because of
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two problems :

(i) The presence of Newton's interference fringes crossing the
illuminated field.

(ii) An excessive stray -light background.

The first problem arises because of the partial reflectivity of the two
lens surfaces and can be solved to some extent through the use of anti -
reflection (AR) coatings. However, even the best antireflection coated
lens will form far -field Newton fringes with an integrated inten-
sity of about 4 percent of the incident beam power. This fact makes
the refracting components generally unacceptable in a VSA system.
The presence of these extraneous reflections and their associated
interference fringes creates an intense fixed -pattern nuisance back-
ground which can make it impossible to observe the angular de-
pendence of the sample scattered light. The stray -light background
problem is a manifestation of small -angle scattering at the lens which
may originate from three possible sources:

(i) Lens surface "roughness" or nonconformity (at least two
surfaces).

(ii) Index of refraction inhomogeneity in the lens bulk material.
(iii) AR coating thickness nonuniformity (at least two surfaces).

By way of comparison, the possible sources of imperfection scattering
from a first -surface reflector are

(i) Mirror surface "roughness" or nonconformity (one surface).
(ii) Reflective coating (s) thickness nonuniformity.

(iii) Reflective coating reflectivity nonuniformity.

From a theoretical standpoint, one should be able to evaluate the
seriousness of each of these defects a priori by calculating the surface
and/or bulk inhomogeneity scattering. This calculation is straight-
forward if one has available the spatial form of the roughness in terms
of the spatial correlation function and the rms roughness amplitude.
The effect of roughness or inhomogeneity is to impose a spatially
random -phase perturbation in the optical path. The scattering that
takes place as a result of this perturbation can be calculated via the
same "phase -object" approach which is used for the primary scattering
sample (see Section 2.6). The stray -light intensity observed at some
specified scattering angles 0 and co is given by the Fourier transform
of the roughness correlation function at a wave vector I K I = 27/A
satisfying the appropriate small -angle kinematic conditions. Un-
fortunately, the roughness wavelengths corresponding to the angular
range of interest here (10-3 cm Z A Z 1 cm) are determined by a
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spatial region of the roughness correlation function about which very
little is presently known. This wavelength regime presents difficult
measurement problems and is generally not probed by conventional
roughness -testing techniques. The data that is available comes from
two measurement techniques that tend to flank this regime on the
short and long wavelength sides :

(i) The FECO* interferometer and allied methods41,42 that exhibit
good surface deviation resolution, 1 A to 10 A, but are useful
only at short wavelengths (A 1000 A).

(ii) Conventional "surface -conformity" techniques such as the
Foucault knife-edge and Twyman-Green interferometer tests
that are useful primarily at longer roughness wavelengths
(0.1 cm to 100 cm) and which exhibit relatively poor surface
deviation resolution (50 A -> 2000 A).

The stray -light measurements that were made during the course of
the evolution of the present instrument provided the most sensitive
roughness and inhomogeneity test for this awkward wavelength range.
It was found experimentally that, for lenses and mirrors of the same
fraction of the "state-of-the-art," the stray -light level of a refracting
instrument was roughly 20 times that of its reflecting counterpart. In
neither case did the VSA stray -light level correlate well with known
short wavelength roughness and inhomogeneity data. Both types of
components exhibited a spatial roughness spectrum that was strongly
enhanced at long wavelengths. This enhancement did not appear to
depend as strongly on the "surface -figure" of the component as one
might be led to expect by qualitative theoretical arguments.

Comparisons were also made between mirror components having
multilayer dielectric coatings and those with a conventional SiO-
protected aluminized surface. The aluminized coatings can suffer from
a spatially varying reflectivity caused by surface oxidation while high -
reflectivity dielectric films tend to have a significantly smaller reflec-
tivity modulation. However, the stray -light measurements showed no
significant difference between the two types of coatings on similar
"quality" substrates. Apparently the cumulative roughness of the
greater number of dielectric layers offsets the dielectric coating's
potential advantage.

4.2 Main scanning slit

Another major contributor to the stray -light level in earlier versions
of the MK VI apparatus was the main angle -scanning slit. The slit
selected for this application is a commercial Spex unit normally used

Fringes of Equal Chromatic Order.
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as an intermediate or exit slit on a double -grating spectrometer known
for its low stray -light background. This fact not withstanding, severe
stray -light problems were encountered in predecessors of the MK VI
that had this slit located directly at the focal plane of the collecting
mirror (mirror M6 shown in Fig. 1). The origin of this problem was
traced to scattering of the direct beam by the beveled surfaces of the
slit jaws and to quasi-specular reflection from the slightly flattened
and rounded jaw edges. This source of background by itself was of
sufficient intensity to completely swamp the sum total of all other
stray -light sources in the instrument.

This problem was solved in the MK VI apparatus by occulting the
directly transmitted beam, before it reached the main scanning slit,
with a precision knife-edge fabricated of highly attenuating black glass
plate. The use of glass instead of metal permits the edge defining
surfaces to be optically polished without cold flaw and rounding. In
addition, the included angle formed by the edge surfaces is made
obtuse, rather than the acute angle normally used, to avoid the
feathering problems and surface irregularity enhancement associated
with small included angles. The salient geometrical features of the
knife-edge are illustrated in Fig. 20. The actual occulting edge is formed
by a single beveling operation on polished flat stock and is oriented in
use such that an incoming ray strikes the beveled face at the quasi -
Brewster angle. The beveling angle is chosen so that the ray which is
refracted into the plate travels parallel to the plate surfaces and is
totally absorbed.

The improvement in stray -light level obtained by using the knife-edge
to occult the direct beam, rather than relying solely on the main scan-
ning slit, can be seen in Figs. 3 and 4. The improvement amounts to
roughly an order of magnitude over the angular range of interest.

4.3 Aberration corrections and stray light

The reader familiar with optical system design will realize that the
aberrations present in the MK VI instrument could be "corrected"
using well-known techniques. However, the application of these cor-
rection methods has two drawbacks : cost and reduced stray -light
performance. The simplest corrective measures, those which add the
fewest number of optical elements to the basic apparatus, entail the
use of off -axis fabricated, aspheric reflecting and/or refracting elements.
These types of elements are, in general, exceedingly costly to fabricate.
More sophisticated aberration -corrective designs, utilizing only spheri-
cal optics, require a larger number of additional elements. In either
case, of course, the presence of additional optical surfaces means
degraded stray -light performance. Furthermore, any corrective design
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Fig. 20-Geometrical features of the occulting knife-edge used in the MK VI
apparatus.

relying on the use of refracting elements will be further penalized by
the excessive small -angle stray light which these elements generate.

APPENDIX A

Finite Slit -Width Effects in the Scanning of Gaussian Intensity Profiles

When a gaussian focal -plane profile is scanned by a finite -width slit,
the transmitted power is proportional to the integral

to+6,
J(to, A) = exp [- e/Se(1/e)]dt, (125)

to -A

where to gives the position of the center of a slit whose width is 26.
By writing the spatial coordinate t as

= to + (126)

and making a change of variable, we may put eq. (125) into the form

J(to, A) = exp [- tg/St2(1/e)]

X f exp [ - (2Eo t-2)/41(1/e)]dt*. (127)
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Table IX-Angular displacement, 00, at which an unbroadened
gaussian and a slit -broadened gaussian reach specified

fractions of peak intensity

J(eo, A)
00

Unbroadened
A = 0 Arad

(Arad)

00
Slit Broadened

A. = 1 grad
(Arad)

%
IncreaseJ(0, A)

1 0 0
1/2 7.993 8.022 0.36
1/e 9.600 9.635 0.36

10-1 14.567 14.620 0.36
10-2 20.601 20.675 0.36
10-8 25.231 25.322 0.36
10-4 29.135 29.239 0.36
10-5 32.573 32.690 0.36
10-6 35.682 35.810 0.36
10-7 38.541 38.678 0.36
10-8 41.203 41.348 0.36

For reasonably small values of the ratio [A/8t(1/e)], the gaussian term
in the integrand of eq. (127) may be approximated by the leading
term in its Taylor's series expansion

?2
exp [ -r/St2(1/e) ] = 1 sk-2(1/e)

+....
'

with a maximum error exp [ -02/8E2(1/e)]. Within this approximation,
the remaining integral can be calculated in a straightforward manner
to give

1 1
J (so, A) = (2A) exp [ - a/W (1/e)]

sinh [2t0A/St2(1/e)]
[4)6,/6t2(1/0]

(128)

Since the function (sinh x)/x tends to unity as x goes to zero, the
normalized slit -broadened profile is

j(6' sinh [20A/8 e (1/e)]
'6') = exp [ d/n2(1/e)] (129)

J(0, A) [2 toA/6 e (1/e) ]

or its equivalent written in terms of the scattering angle 0 = s/f.
Clearly, in the limit A 0, eq. (129) describes the correct unbroadened
gaussian. For A r 0, the principal effect of the (sinh x)/x correction
term is to push up the tails of the profile while leaving the peak of the
gaussian relatively unaffected. A good quantitative feeling for the
nature of this correction may be obtained by solving for the off -zero
displacements, to, at which the broadened and unbroadened profiles
reach specified fractions of their peak intensity. These to values then
specify the profile half -widths at the corresponding intensity level.
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For the curves presented in Section II, the relevant numerical
parameters, expressed in angular units, are :

(50(11e) = (1/ f)(5E(1/e) = 9.6 Arad
A8 = (1/f)0 = 1.0 Arad.

Table IX gives the calculated half -width values 00 = (so/f) obtained
from eq. (129) for various choices of the ratio J(00, A)/J(0, A). For
comparison, the table also lists the corresponding half -widths of the
uncorrected gaussian, and the percentage of line -width increase caused
by the slit -width correction. As is evident from these results, the
effect of the (1/x) sinh x correction term is to alter the gaussian profile
in such a way that the observed half -widths are an essentially constant
percentage larger than the true values.

APPENDIX B

Numerical Evaluation of the Diffraction Profile of Apertured
Gaussian Illumination

Equation (47) gives the basic integral for the truncated gaussian
diffraction profile as

E fr
E(t)

(f Ao)i 1-bo12
exp (-x2/v2) exp [7:(27r/fX0)tx]clx. (130)

This expression may be put into a form more suited to numerical
computation as follows. We write the exp i(  ) term as

exp Ei(275/fX0) = cos Kx i sin Kx
with

art 27r0
K = (131)

Eta Ao

and note that the sin Kx integral vanishes by symmetry. Next by a
change of variable

we obtain

bu'X = -2
'

(132)

bE 0 I
.=o
w-1

(f)ko)1 ./
E() = cos cw exp ( -a2w2)dw, (133)

where a and c are defined as

Kb I 275E \ b irbe b2
a2 =

8-02
(134)c = 2 - fX0 ) 2 = Xo '

The gaussian in the integrand is now expressed in terms of its Taylor's
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series expansion

exp (-a2x2) =
(-1)

!n(a2x2)n
E
n=0 n

to give E(t) as

bEo (-1)n(a2)n
wen cos (cw) dw.E = (135)

n!E
(fX0)I n0

Equation (135) forms the basis for the numerical computation of the
profiles.

A simple closed -function form for the w integrals in eq. (135) does
not exist; however, recursive relations among these integrals can be
found from the standard integrals

sin c r
xm-1 sin cx dxxm cos cx dx =(136)

c

and

xm-1 sin cx dx =
cos c (m 1) j1

xm-2 cos cx dx. (137)

Defining

Lm(c) = jl xm cos ex dx, (138)

we easily obtain the following recursion formulae from eqs. (136)
and (137) :

(m + 3 ) (m + 3) (in + 2)
cos c(m ± 3)./..4_2(c) = sin c +

c c2

(m -I- 3)(m + 2) [(m+ 1)L,n(c)]
c2

(m - 1)Lin-2(C) = (m) sin c + cos c

c2

(139)

1).L.(c)J. (140)
m (m + 1)

From eq. (136), we also have for m = 0

Lo(c) =
sin c

(141)

In terms of the L,n(c), the expression for the diffracted field takes the
series form

bE0 ( - 1) n (a2) niqn(C)
E() = (fxop. n!
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and the desired normalized intensity profile is

I( t)
I (0)

I

I

(--1)n(a2)nii2n(c) 2

n =0 n!

- 1) n (a2) nL2n (0) 2

n!n =0

(143)

The zero argument L,n's can be written down explicitly from eq.
(138), viz.

L,n(0) =
1

m -I- 1
(144)

For the numerical results reported here, the series in eq. (143) were
truncated at some n = nMAX by testing the value of (1/n!) (a2)nL2n(0)
and terminating when this quantity was smaller than some chosen
convergence criterion, e. In the present case, e was set at e = 10-12.
For the largest (b/a) value, (b/0) = 8.33, where the gaussian kernel
of eq. (133) is

exp ( -a2w2) = exp ( -8.68w2),

49 terms in the series were required for convergence.
For each individual pair of values for c and nMAX, the required string

of Lm's are generated by two subroutine programs.

B.1 Subroutine No. 1, c < 1

When the quantity c = (Kb/2) is less than one, the Lm's are obtained
by the following procedure.

(i) Calculate Lm(c) for m = 2nMAX directly from the defining
equation (138), using the Taylor expansion for cos cx to write

=
(-1) nen

W2n-FindW
n=o (2n) ! o

= ( - 1) nc2"E
n=o (2n) !(m + 2n + 1)

(145)

(ii) Truncate the sum in eq. (145) when c2n/(2n) !(m 2n + 1) is
less than 10-12.

(iii) Use this result for L nmAx(C) to obtain the required Lm's via
the backward recursion formula, eq. (140).

B.2 Subroutine No. 2, c > 1

When the quantity c = (Kb/2) is greater than 1, the Lm's are found
by a two-part procedure that depends on the value of mmAx.

(i) For m = 2n values for which the inequality m = 2n < c is
satisfied, use Li(c) -- (sin c)/c and the forward recursion rela-
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tion, eq. (140). If 2nmAx is less than c this first step gives
all required An's.

(ii) If ZnmAx is greater than c, set

cos c
L.(c) m 1

for some m >> 2nmAx and work backward using recursion relation eq.
(140). The calculated string of L,n's is joined onto the forward recursion
values from step (1) for some in c and then renormalized.

This rather elaborate procedure for calculating the L,n's is made
necessary by the rapid accumulation of numerical round -off errors
which arise in the repetitive application of the basic recursion formulae.

REFERENCES

1. I. L. Fabelinskii, Molecular Scattering of Light, New York : Plenum Press, 1968,
Chapter III, pp. 155-246.

2. H. Z. Cummins and H. L. Swinney, "Light Beating Spectroscopy," in Progress
in Optics, Vol. VIII, Emil Wolf, ed., Amsterdam, Netherlands : North Holland
Publishing, 1970, pp. 135-200.

3. B. Chu, Laser Light Scattering, New York: Academic Press, 1974, Chapters
IV -VII, IX, and X.

4. Small Angle X -Ray Scattering, H. Brumberger, ed., Proc. of Conf. at Syracuse
University, June 24-26, 1965 ; sponsored by American Crystallographic
Society, the Army Research Office, the National Science Foundation, and the
University of Syracuse ; New York : Gordon and Breach, 1967.

5. A. J. Renouprez, "Diffusion des Rayons X aux Petits Angle," International Union
of Crystallography, Commission on Crystallographic Apparatus, Bibliography 4,
1970, pp. 19-24.

6. W. H. Aughey and F. J. Baum, "Angular Dependence Light Scattering-A
High Resolution Recording Instrument for the Angular Range 0.05°-140°,"
J. Opt. Soc. Amer. 44, No. 11 (November 1954), pp. 833-837.

7. C. H. Henry and J. J. Hopfield, "Raman Scattering by Polaritons," Phys. Rev.
Lett. 15, No. 25 (December 1965), pp. 964-966.

8. S. P. S. Porto, B. Tell, and T. C. Damen, "Near Forward Raman Scattering in
Zinc Oxide," Phys. Rev. Lett., 16, No. 11 (March 1966), pp. 450-452.

9. J. B. Lastovka and G. B. Benedek, "Spectrum of Light Scattered Quasielastically
from a Normal Liquid," Phys. Rev. Lett., 17, No. 20 (November 1966),
pp. 1039-1042.

10. J. B. Lastovka and G. B. Benedek, "Light Beating Techniques for the Study of
the Rayleigh-Brillouin Spectrum," in Physics of Quantum Electronics, P. L.
Kelly, B. Lax, and P. E. Tannenwald, eds., Proceedings of the Physics of
Quantum Electronics Conference, San Juan, Puerto Rico, June 28-30,1965,
sponsored by the Office of Naval Research, New York : McGraw-Hill, 1966,
pp. 231-240.

11. D. Eden and H. L. Swinney, "Optical Heterodyne Studies of Brillouin Scattering
in Xenon Near the Critical Point," Opt. Commun., 10, No. 2 (February
1974), pp. 191-194.

12. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, London : Oxford
University Press, 1961.

13. V. M. Zaitsev and M. I. Shliomis, "Hydrodynamic Fluctuations Near the
Convection Threshold," Zh. Eksp. Teor. Fiz., 59, No. 5 (November 1970),
PP. 1583-1592 [Soy. Phys. JEPT, 32, No. 5 (May 1971), pp. 866-870].

14. R. Graham, "Generalized Thermodynamic Potential for the Convection In-
stability," Phys. Rev. Lett., 31, No. 25 (December 1973), pp. 1479-1482.

15. M. G. Velarde, in Hydrodynamics, Proc. of the 1973 session of the Ecole d'ete de
Physique Theorique, Les Houches, R. Balian, ed., New York : Gordon and
Breach, in press.

1292 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976



16. P. Berge and M. Dubois, "Convective Velocity Field in the Rayleigh-Benard
Instability : Experimental Results," Phys. Rev. Lett., 32, No. 19 (May 1974),
pp. 1041-1044.

17. W. A. Smith, "Temporal Correlations Near the Convection Instability Thresh-
old," Phys. Rev. Lett., 82, No. 21 (May 1974), pp. 1164-1167.

18. R. Farhadieh and R. S. Tankin, "Interferometric Study of Two -Dimensional
Benard Convection Cells," J. Fluid Mech., 66, No. 4 (December 1974), pp.
739-752.

19. H. N. W. Lekkerkerker and J. -P. Boon, "Hydrodynamic Modes and Light
Scattering Near the Convective Instability," Phys. Rev., A10, No. 4 (October
1974), pp. 1355-1360.

20. G. Ahlers, "Low Temperature Studies of the Rayleigh-Benard Instability and
Turbulence," Phys. Rev. Lett., 33, No. 20 (November 1974), pp. 1185-1188.

21. J. B. McLaughlin and P. C. Martin, "Transition to Turbulence of a Statically
Stressed Fluid," Phys. Rev. Lett., 33, No. 20 (November 1974), pp. 1189-1192.

22. J. P. Gollub and M. H. Freilich, "Optical Heterodyne Study of the Taylor
Instability in a Rotating Fluid," Phys. Rev. Lett., 33, No. 25 (December
1974), pp. 1465-1468.

23. R.. Graham, "Hydrodynamic Fluctuations Near the Convection Instability,"
Phys. Rev., A10, No. 5 (November 1974), pp. 1762-1784.

24. E. Guyon and P. Pieranski, "Convective Instabilities in Nematic Liquid Crys-
tals," Physica (Utrecht), 73, No. 1 (April 1974), pp. 184-194.

25. H. B. Moller and T. Riste, "Neutron -Scattering Study of Transitions to Con-
vection and Turbulence in Nematic Para-azoxyanisole," Phys. Rev. Lett.,
34, No. 16 (April 1975), pp. 996-999.

26. Fluctuations, Instabilities, and Phase Transitions, T. Riste, ed., Proceedings of
the NATO Advanced Study Institute, Geilo, Norway, April 11-20, 1975,
New York : Plenum Press, 1975.

27. J. B. Lastovka, "Light Mixing Spectroscopy and the Spectrum of Light Scattered
by Thermal Fluctuations in Liquids," Ph.D. Thesis, Massachusetts Institute
of Technology, 1967, Chapter III, pp. 156-357.

28. J. B. Lastovka, unpublished paper.
29. F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed., New York:

McGraw-Hill, 1957, pp. 298ff.
30. J. D. Jackson, Classical Electrodynamics, New York: John Wiley, 1962, pp.

280-282.
31. M. Born and E. Wolf, Principles of Optics, 2nd ed., New York : MacMillan,

1964, pp. 414-418.
32. M. Francon, Diffraction -Coherence in Optics, Oxford : Pergamon Press, 1966,

Chapter VI, Section 6.5.
33. P. Jacquinot and B. Roizen Dossier, "Apodization," in Progress in Optics, Vol.

III, Emil Wolf, ed., Amsterdam, Netherlands: North Holland Publishing,
1964, pp. 30-186.

34. R. C. Hansen, "Aperture Theory," in Microwave Scanning Antennas, Volume I:
Apertures, R. C. Hansen, ed., New York: Academic Press, 1964, pp. 47-101.

35. E. A. Wolff, Antenna Analysis, New York : John Wiley, 1966, pp. 109-135.
36. K. A. Karpov, Tables of the Functions F (Z) = foe ex2dx in the Complex Domain,

New York : MacMillan, 1964.
37. W. J. Smith, Modern Optical Engineering, New York: McGraw-Hill, 1966, pp.

385-387.
38. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford:

Clarendon, 1948, pp. 61-66.
39. Jan Pefina, Coherence of Light, London : Van Nostrand Reinhold, 1972, pp. 32-42.
40. M. J. Beran and G. B. Parrent, Theory of Partial Coherence, Englewood Cliffs,

New Jersey : Prentice -Hall, 1964, pp. 27-44.
41. H. E. Bennett and J. M. Bennett, "Precision Measurements in Thin Film Optics,"

in Physics of Thin Films, Vol. 4, G. Hass, ed., New York: Academic Press,
1967, pp. 1-96.

42. S. Tolansky, Multiple -Beam Interferometry of Surfaces and Films, New York:
Dover Publications, 1970, Chapter IX, pp. 104-108.

LIGHT SCATTERING 1293





Copyright © 1976 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 55, No. 9, November 1976
Printed in U.S.A.

Exact Theory of TE-Wave Scattering From
Blazed Dielectric Gratings

By D. MARCUSE

(Manuscript received April 9, 1976)

We present an exact description of scattering of an incident plane wave
with TE-polarization at an interface between two dielectric media that is
deformed by a grating with triangularly shaped teeth. The theory employs
an expansion in plane waves outside of the grating region and describes
the field in the grating region as a double Fourier series expansion. The
results of this theory are represented graphically. That blazing provides
substantial discrimination of the scattering process in favor of beams
scattered into one or the other of the two media is shown. The exact theory
is used to check an approximation for the effective reflection plane that is
useful for future applications of the theory to scattering by gratings of
guided waves in thin-film waveguides.

I. INTRODUCTION

This study of dielectric sawtooth gratings with deep grooves serves
several purposes. Its principal aim is to investigate a particular analyti-
cal method for describing deep gratings with the view of applying it
(at a later time) to waveguide-grating couplers. However, even without
the added complication of one more dielectric interface that charac-
terizes the waveguide problem, an examination of the response of
dielectric gratings with deep grooves to a plane wave, incident at an
angle that would lead to total internal reflection at the corresponding
smooth surface, can teach us much about the expected behavior of
waveguide-grating couplers.

The literature on the electromagnetic theory of diffraction gratings
is vast. However, most papers are limited to discussions of metallic
gratings,1,2 and only a few papers mention dielectric gratings with
sawtooth-shaped grooves and plane waves incident at angles larger
than the critical angle for total internal reflection.' When it comes to
providing numerical information for a given particular case, each
worker must write a computer program to solve the problem at hand,
since no publication can cover all conceivable cases in graphical form.
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Developing the computer program for the study of deep gratings was
one of the aims of this work.

Our method for treating TE-wave interaction with deep dielectric
sawtooth gratings is basically simple and exact. We express the field
above and below the grating as a series of plane waves using the periodic-
ity imposed by the grating. In the grating region, the field is expressed
as a double Fourier series expansion whose terms are not individually
solutions of the wave equation. The unknown coefficients entering the
various series expansions are determined by the requirement that the
field in the grating region must be a solution of the wave equation and
by enforcing the proper boundary conditions along two mathematical
planes just above and below the grating region. By varying the number
of terms used in the series expansions, it was found that the series
converge very well, and good accuracy is obtained with relatively few
terms. However, the required number of terms increases with increasing
depth of the sawtooth grating.

The simple grating problem described here has the advantage that
only an inhomogeneous equation system needs to be solved. Since the
problem does not contain unknown eigenvalues, no search for suitable
eigenvalue conditions is required. The exact solution of the correspond-
ing waveguide problem would lead to an eigenvalue equation. A very
large determinant with complex coefficients would have to be forced
to vanish by proper choice of the propagation constant of the leaky
wave inside the guide, one of whose interfaces between core and
cladding is formed by the grating. The simple grating furnishes im-
portant information about the phase shift suffered by the reflected
plane waves. This information can be used to estimate the eigenvalues
of the modes inside of the waveguide with a grating on one of its
interfaces. This information is useful for finding approximate solutions
of the waveguide grating problem without the need for solving a
costly and time-consuming eigenvalue problem.

For shallow gratings, our theory is in complete agreement with
perturbation theory. Some of the features of deeper gratings with
groove depth on the order of the wavelength can be explained by
geometrical optics coupled with simple grating conditions. The ray
paths in deep gratings (groove depth larger than the wavelength) are
so complicated that an explanation of maxima or minima in terms of

geometrical optics fails.
The sawtooth-shaped interface deformation is a blazed grating. It

has the advantage that its shape can be adjusted to enhance certain
grating orders. In particular, it is possible to let a high grating order
predominate over lower orders. Furthermore, the grating shape can
be used to favor scattering into the air space above the grating or, cor-
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Fig. 1-Triangularly shaped dielectric grating as an interface between the two
media with index ni and n2. (This figure defines grating parameters and incident and
scattered beams.)

respondingly, to favor scattering down into the higher dielectric region,
the substrate, from which the incident wave impinged on the grating.
This preferential scattering behavior is very useful for the construction
of grating couplers. Additional grating responses, other than those used
for the coupling beam, decrease the overall efficiency of a grating
coupler. If unwanted grating lobes can be suppressed by properly
shaping the grating teeth, higher coupling efficiencies are obtainable.
Gratings that show strong asymmetry in favor of a certain grating
order provide also high -reflection losses for the zero -order grating lobe
(that would correspond to the guided mode field of a waveguide). The
waveguide mode thus would decay rapidly over a few periods of the
zig-zag path of the guided ray. This means that high -efficiency grating
couplers based on this principle would have to be very short.

1.1 Theory of the dielectric sawtooth grating
Figure 1 shows the geometry of our sawtooth grating. A ray labeled

i is incident from the medium with refractive index n1 on the dielectric
interface with the medium n2 whose shape is a sequence of sawteeth.
The specularly reflected beam is labeled 0. Also shown are two scat-
tered beams labeled 1 which escape into the medium with index n2
(subsequently to be called the air space) and into the medium with
index n I (subsequently to be called the substrate). The grating period
is D; D1 is the distance along the base of each sawtooth from its begin-
ning to the point underneath its peak. The grating amplitude is defined
as 2a.

We consider only TE-waves with the electric field component Ev and
the magnetic field components'

Hz = -i aE
az

(1)
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and
aEH= (2)z

wµo ax

(co and iho are, respectively, the angular frequency of the wave and the
magnetic permeability of vacuum.) The grating is infinitely extended
in y direction, so that all y -derivatives vanish. The field components
E., Er, and H do not exist. The periodicity of the infinitely extended
(in z direction) grating forces the electromagnetic field to be of the
following form:

Ev = e-ioiz Are-iffox + E
= -03

Amefrinze (21d D)mz

and

for x <= 0, (3)

EY = E Gime- (2TID)Inz for x 2a. (4)
m= - 00

Since E must satisfy the wave equation
2Ev

Y n2k2Ey = 0
y2

with

k = 2r =W
0

(5)

(6)

(X0 = free space wavelength, 0 = dielectric permittivity of vacuum,
n = ni or n2 refractive index of the dielectric medium), the parameters
appearing in (3) and (4) must have the form,

an, = [4k2 - (fli - --)27 m)2] (7)

and

Pm = [4k2 - t - D-27 ni)2] (8)

Ai is the amplitude of the incident wave with propagation constant

Si = nik cos 0. (9)

The term propagation constant is used here in the same sense as in a
waveguide; it is actually the z component of the plane wave propaga-
tion vector.

Note that the superposition of plane waves (3) and (4) was chosen
so that the traveling parts of the wave move away from the grating
with the exception of the incident wave of amplitude A r [the time
dependence is understood to be exp (icot)]. It is clear that only a small
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number of waves in the field expansions actually propagate in x direc-
tion, because almost all terms of the form (7) and (8) are imaginary.
The signs of the imaginary quantities must be chosen, so that the
evanescent fields decay in the direction away from the grating,

crm = -210m 1, Pm = (10)

Every term in the expansion (3) and (4) is a solution of the wave
equation, but a similar expansion cannot be written down for the field
in the grating region 0 < x < 2a. Instead, we simply use a doubly
infinite Fourier series.

Ey =e-iRiz E Bnmeiorionxei(27r/D)mz 0 < x <= 2a. (11)
n,m=-co

Except for the phase factor exp(- ifiiz), the field solution is periodic
in z with period D. This periodicity is a very important feature of the
field solution and is imposed by the periodicity of the grating. The
function (11) is also periodic in x direction with period length 2b. This
periodicity is quite arbitrary. It would appear natural to let b = a.
However, this choice of b would force the field to have exactly the same
values at x = 0 and x = 2a, which is physically unreasonable. For
this reason, we must allow b to be arbitrary, but use b > a. As a
practical matter b = Nrla has been used for the numerical calculations
in the hope that this choice would facilitate the convergence of the
series. Clearly, b should not be made too large and, of course, it must
not be smaller than a.

It now remains to determine the expansion coefficients Am, Cm,
and Bnm. This is accomplished by substituting (11) into the wave
equation (5), multiplying the resulting equation with exp ( -urn x/b)
exp ( - i2irm z/D) and integrating over z from 0 to D and over x from
0 to 2a. Continuity of the fields at the planes x = 0 and x = 2a re-
quires us to force Ey and its x -derivative to be continuous at these
planes. After elimination of Am and Cm from the equation systems, we
are left with the following three infinite simultaneous equations :

E pn, n Bnmei(2r/b)na = O. (12)
n= -

co

(0-, - n) Bnm = 20-oAr Bmo. (13)
n= - ao

Nn--n ,ini-M [ (mob )2 ± as] /11n, n'bm ,In'} B.,,, = 0. (14)
ni,mi= - co

Bmm, is Kronecker's delta symbol. In (12) and (13) m is allowed to be

WAVE -SCATTERING 1299



any integer, and, similarly, n and m are allowed to be any integer in
(14). The first two equations stem from the boundary conditions,
while (14) expresses the requirement that the field expansion (11)
satisfy the wave equation (5). The three sets of infinite equations (12)
through (14) are used to express B. in terms of Ar. The coefficients
Nn'_n,m,-m and Mn,n, are listed in the Appendix; An is defined as

2r
tint = Si - ff m. (15)

The amplitude coefficients A. and C. are obtained in terms of B. as
follows :

Am = ( te Barn) - Arb.0.
n= -co

Cm = t* Bnmei[Pm-Kir/b)n]2a.
n=-co

(16)

(17)

The power of the incident wave flowing through an element of unit
area parallel to the x direction is given as

Pi = 2a°
o

1A(°i)12- (18)
colh

It is convenient to express the power carried away by the scattered
beams in terms of the power of the incident beam. For the grating
orders carrying power into the air space, we obtain the relative power
from

AP,na pm 1C,n12

Pi a 0 IR) 1 2

Similarly, we obtain the relative power carried into the substrate,

A/3 cr. I A.12

Pi a-olAr 1 2

Let us close this section with a few remarks about the numerical
solution of the equation systems (12) through (14). As mentioned
above, the terms in the series expansions (3) and (4) represent traveling
as well as evanescent waves. It is clear that all terms corresponding to
traveling waves must be included in the truncated series expansions
used for approximate numerical solutions of the problem. According
to (7), propagating grating orders are associated with m values in the
interval

[t(fii - /ilk)] < m < [ NrD (nik + Ni)]
int int

The label "int" is a reminder that the integer, whose absolute value is
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just smaller than the value inside of the bracket, must be taken. Those
terms in the series expansion (3) whose m -values lie outside the interval
(21) belong to evanescent waves that do not carry away power. As
a practical matter, we found that sufficient accuracy is obtained if just
one-or at most a few-evanescent waves on each side of the interval
(21) are included in the series expansions. The terms in the expansion
(11) cannot be interpreted as traveling or evanescent waves. The sum
over m is, of course, intimately related to the m -summations in (3)
and (4), and an equal number of terms must be taken in all m -summa-
tions. We found that the n -summation in (11) converges more slowly,
so that usually more terms are required in this series. In all numerical
calculations whose discussions follow, we never used more than 11
terms in the n -summation, and often as few as 7 terms proved to be
sufficient, if the grating amplitude remained below 2a/X0 = 0.5. The
total number of unknowns B., in the equation system (12) through
(14) is, of course, the product of the number of terms in both series
expansions, n and m. For large values of 2a, for example for 2a/X0 = 2,
we used 66 unknowns B.,, and for 2a/X0 < 0.5, 36 unknowns seemed
to be sufficient.

The fact that the equations stemming from the boundary conditions
(12) and (13) must be included in the equation system to be solved
prevents us from using an equal number of terms in the n', m' summa-
tions of (14) and for the "free" n and m. Obviously, the number
of m -values [the number of equations of the type (14)] that are used
must be two less than the number of terms under the m -summation
sign.

1.2 Geometrical optics considerations
Figure 1 shows the principal function of the diffraction grating. The

incident plane wave breaks up into several components after striking
the dielectric interface. The strongest wave leaving the grating region
is usually the zero -order grating response that leaves in a direction
corresponding to the specularly reflected beam at an ideal, smooth
interface. Throughout this discussion, we assume that the incident

. wave strikes the interface at an angle 00 that remains below the critical
angle for total internal reflection at the unperturbed, smooth boundary.
In addition to the incident and specularly reflected plane waves, a
discrete number of scattered plane waves are generated. These waves
emerge in directions that are defined by the condition that all scattered
waves interfere constructively. The condition for such constructive
interference is expressed by the relation

2/r
= - F m. (22)
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The at and $m are the z -components of the propagation vectors of the
incident and scattered waves ; m is a positive or negative integer. The
angles Om of scattered waves in medium 1 are obtained from (9) and
(22) as follows,

em = arccos 13"1
nik '

and the corresponding scattering angles in medium 2 are

cl)m = arccos S'n )
n2k

(23)

(24)

The integer m defines the grating orders of the scattered beams. The
direction of the specularly scattered plane -wave is obtained by using
m = 0, and m = +1 gives the first grating orders, etc.

The intensities of the scattered beams decrease with increasing
grating order, if the grating amplitude 2a is much smaller than the
wavelength. However, for deep gratings whose amplitude is comparable
to, or larger than, the wavelength, higher grating orders may well
predominate over lower grating orders. In particular, it is possible
to predict maxima of scattered waves based on geometric optics con-
siderations. Such maxima occur when the direction of a grating lobe
defined by (23) or (24) coincides with the condition of specular reflec-
tion of the incident beam on one of the facets of the grating teeth.

Consider the situation shown in Fig. 2. Geometrical optics allow us
to calculate the angle Om of the reflected wave as

em= 2a2 90. (25)

If Om simultaneously satisfies (23), a strong grating response may be

-ol D,H

Fig. 2-Specular reflection from grating faces can be used to explain maxima of
the grating lobes.
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Fig. 3-Grating lobes in air can be enhanced by specular reflection from the grating
teeth as shown.

expected. From (23) and (25), we find the following condition for a2,

27r

a2 = arccos D - arccos
2 nik ) (26)

nik

The grating angle a2 is defined in terms of the other grating parameters
as:

\
a2 = arctan (27)D - Di

Maxima for grating responses into the air space can occur in many
different ways. One possibility is depicted in Fig. 3. The geometric
optics condition for Om is computed in several steps. The refracted
angle 0; follows from Snell's law,

ni0; = arccos ( cos (a2 0.,)) - a2, (28)

and the angle of the n2th grating response in air follows from

9a= 2a1 - = 2 arctan -
Di

(29)

The conditions that must be satisfied by the grating parameters to
achieve equality of (24) and (29) can be found by an iterative
calculation.

Geometric optics conditions leading to maxima of the grating re-
sponse in air can be complicated in many ways. For example, the ray
escaping into the air space shown in Fig. 3 may be intercepted by the
grating tooth through which it just passed and may suffer further
refraction. Another possibility is depicted in Fig. 4. The fact that many
geometric optics conditions exist that may enhance the grating re-
sponse in air makes it difficult to account for the maxima of the air
lobes of deep gratings.
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Fig. 4-The incident ray is bent back into the waveguide by successive refraction
at the grating teeth. Scattering takes place at every tooth and may be enhanced if
the specular reflection condition is satisfied.

Figure 4 not only shows how a ray may escape through the grating
following a complicated path, but it also indicates that the unscattered
portion of the ray is diffracted back into medium 1 following a path
that takes it inside of the grating. This geometric optics picture sug-
gests that the effective penetration depth of the reflected light field
can be estimated by geometric optics methods. For this purpose, we
assume that the grating acts on the refracted ray as a graded -index
medium with an index distribution

n2(x)
2a

2a
- x ni-+ 2Xa n2

2
(30)

We can now use the WKB method6 to determine the phase of the wave
that penetrates into the grating region. It is well-known that the wave
penetrates into the graded -index medium until it reaches the turning
point of ray optics at x = t. The phase of the reflected wave taken at
the reference plane x = 0 is given by5

= 2 f [ft (x)Ic]2 - /31 dx -7= (n,8aoi (31)
1 - n2) k2 2

We define an effective reference plane by assuming that the medium
with index n1 reaches into the grating region to a depth x = da. The
phase of a wave reflected at this reference plane (that is assumed to
consist of the index discontinuity from n1 to n2) is

= 20-43, - 2 arctan
00

with

(32)

= (32, - n3k2)}. (33)

The first term in (32) accounts for the phase shift caused by the round
trip from x = 0 to x = da, and the second term is the additional
phase shift on reflection from the index discontinuity.6 By equating
(31) to (32), we obtain the following expression for the depth of the

1304 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976



effective reference surface inside of the grating :

4aoi 1 ( 7 arctan -) (34)dapp = 3(ni - ni)k2 a° 4 ao

If the tangent of the phase angle 4 of the reflected wave is known, for
example, from the numerical solution of the grating problem, the
effective reference plane can be calculated from the expression

el. =
2 arctan - -4 ± per

ao
2cr 0

(35)

Note that the approximation (34) holds only for gratings that are
sufficiently thick so that the turning point of the rays is located deep
enough inside the grating, so that the evanescent field beyond the
turning point has decayed to insignificant values by the time it reaches
the top of the grating. Furthermore, (34) is certain to represent the
effective reflection plane better as the grating period is short. Numerical
comparisons of the two expressions (34) and (35) will be presented in
the next section.

1.3 Examples and numerical evaluation

The boundary between the two media with index n1
described by the function

2a
Diz

f (z) =

0 z

2a (D - z) Di < z < D,D - D1

and n2 is

which is periodic in z with period D. Its Fourier coefficients are :

Cm =
aD2e- irm(DilD) D1

i72m2D1(D - D1) sin rill
D

(36)

(37)

This Fourier coefficient is important, because for the first order of
perturbation theory4'7 the grating responses are proportional to I c,,,12.

In the remainder of this section we present the results of numerical
evaluations of our theory in graphical form. Figure 5a shows the
relative power that is scattered into the air space above the grating.
The incident plane wave always arrives at an angle that is small enough
(measured with respect to the plane interface) to ensure total internal
reflection at the smooth interface between the two media. In Figs. 5
through 9, we use OiXo = 8.5. The grating period was chosen as
D = 1.3X0 resulting in three grating lobes labeled in = 1, 2, and 3.
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10-2

P,
- 10

10-4

2a IX0 = 0.1 D /X0= 1.3 Pi Xo= 8.5

= 1.5 n2 = 1.0

= 1 .......
-

AIR BEAMS

2a/X0= 0.1 DO1/40= 1.3 pixo= 8.5

n1 = 1.5 n2 = 1.0

m = 1

SUBSTRATE BEAMS

(b)

I I

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1 0

n,tc,

Fig. 5-Relative scattered power for the three rating lobes for D/X0 = 1.3,
PiXo = 8.5, and ni = 1.5, n2 = 1.0, and for a grating amplitude of 2a = 0.1Xo.
(a) Shows the grating responses in air as functions of the grating shape factor D,/D.
(b) Shows the grating lobes in the substrate (index ni).

The refractive index of the medium below the grating (called the
substrate) is n1 = 1.5, and the medium above the grating is assumed
to be vacuum (or air) with n2 = 1.0. The grating amplitude in Fig. 5a
and b is 2a = 0.1k,. This grating amplitude is already too large for
perturbation theory to be accurate, but the zeros (or minima) and
maxima of the grating responses can still be identified with the help
of (37). Consider, for example, the second -order grating lobe with
m = 2. First -order perturbation theory predicts that it has zero power
at D1/D = 0.5. Figure 5a for the grating responses in air shows that
the zero of the second -order grating lobe is indeed very close to this
value. The corresponding minimum (the power does not actually go
to zero) for the substrate beam with m = 2 is, according to Fig. 5b,
located at D1/D = 0.4. Its position is shifted from the value that
perturbation theory would predict, but the reason for the occurence
of this minimum is still clearly discernible. The zeros for the third -
order grating lobe, in = 3, would be located at D1/D = I and

1306 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976



D1/D = s, if perturbation theory would apply. Correspondingly,
Fig. 5a and b show that the zeros of the third -order grating responses
are indeed close to these values.

Another interesting relationship results if we compare the power
carried by the beams at Di/D = 1. According to perturbation theory,
we should find that the power ratio between the grating lobes m = 1
and in = 2 is 4, while the ratio between the lobes with m = 1 and

= 3 should be 9. According to Fig. 5a these power ratios are 4 and
8.8, respectively. The substrate beams shown in Fig. 5b give ratios of
3.8 and 1.8, respectively. The third -order grating response in the
substrate is thus already considerably larger than perturbation theory
would predict.

Figure 6a and b prove that all resemblance to perturbation theory
is lost, if we increase the grating amplitude to 2a = 0.5X0. According
to perturbation theory, an increase of the grating amplitude by a
factor of 5 should increase the scattered power by a factor of 25. No

io°

10-1

PMPi 10-2

10 -3

(a)

m = 1

/
3 //

t

2a/X0= 0.5 OiXo= 8.5 D /X0= 1.3

n1 = 1.5 n2 = 1.0

AIR BEAMS

m = 0

(b)

2a/X°= 0.5 PiXo= 8.5 D/Xo= 1.3

n1 = 1.5 n2= 1.0

SUBSTRATE BEAMS

I I I I

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1 0

DI / ID

Fig. 6-Similar to Fig. 5a and b, except that the grating amplitude is 2a = 0.5X..
(Arrows indicate the position of scattering enhancement by specular reflection from
grating teeth.)
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10-4
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D /X0= 1.3

(a)

Oi AO 8.5

n, = 1.5 n2 = 1.0

AIR BEAMS

-
(b)

2a/A°= 2.0 D /A0= 1.3 PiXo= 8.5

n1=1.5 n2 = 1.0

SUBSTRATE BEAMS

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

D1/0

Fig. 7-Similar to Fig. 5a and b with 2a = 2.0X0.

such increase is apparent for the first -grating order, nor is it indeed
possible since the power in the scattered beams cannot exceed the
input power. However, it is now possible to identify certain features
of the curves by using geometrical optics. The arrows in Fig. 6a indicate
the position where maxima of the grating lobes would be expected
because of a coincidence of the direction of the grating lobes with
specular reflection from the grating faces. The position of the arrows
in Fig. 6a was computed from (24), (27), (28), and (29). Even though
the agreement is not perfect, there is a strong indication that the maxima
of the grating responses are indeed caused by specular reflection at the
grating faces. The position of the arrows in Fig. 6b was computed from
(23), (26), and (27). For the substrate lobes, the condition of specular
reflection from the grating faces agrees very well with the actually
observed grating maxima.

These figures show, furthermore, that very good discrimination be-
tween different grating responses can be obtained by a blazed grating.
Consider a grating with D1/D = 1. The first -order grating lobe in air
carries 0.12 relative power while the corresponding substrate beam
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- SUBSTRATE BEAM

AIR BEAM .0*

m = 0

1

2a /X0 = 0.5 D/ X0=0.5 /.3y 8.5

n, = 1.5 n2 = 1.0

1

0 0.2 0.4

carries only 0.02 relative power. The power of the higher -order grating
lobes is less than one-third of the power in the first -order grating lobes.
This observation has important consequences for grating couplers with
blazed gratings, since loss of power to unwanted grating lobes can
clearly be minimized. We shall see that even better results are obtain-
able with gratings that have only first -order grating lobes.

Finally, we let the grating amplitude grow to 2a = 2X0 and show in
Fig. 7a and b how the third -order grating lobe now dominates the
grating response. The maxima and minima of these curves cannot
easily be identified by ray tracing because of the many possible ray
paths. However, the maximum at D1/D = 1 of the curve with m = 3
in Fig. 7a seems to be caused by the specular reflection indicated in
Fig. 4. The accuracy of the curves in Fig. 7a and. IL, is not as high as that
of the other figures. Whereas 42 simultaneous equations were sufficient
to solve the problem with sufficient accuracy for 2a = 0.5X0, 66 simul-
taneous equations were used to produce Fig. 7a and b. Computing
time increases with the third power of the equation number. The ac-
curacy of the curves in Fig. 6a and b is better than 10 percent, but the
accuracy of the curves in Fig. 7a and b is poorer. However, these
curves are certainly correct to order of magnitude and have the cor-
rect shapes.

10o

10-1

lo -2

10-3
0.6

Di / D

Fig. 8-Grating with only first order lobes. D/X. = 0.5, tfiiX. = 8.5, n1 = 1.5,
n2 = 1.0, and 2a/X0 = 0.5. The dotted line represents the relative scattered power in
air; the solid lines represent the power in the substrate.

0.8 1.0
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To gain insight in the beneficial effects of blazed gratings, a grating
with only first -order lobes, D/X. = 0.5, OiX. = 8.5, and an amplitude
of 2a = 0.5X0 was investigated. The results are plotted in Fig. 8. It is
apparent that power is scattered predominantly into the substrate
(solid line), if D1/D is small and predominantly into air (dotted line)
if D1/D approaches unity. Figure 9 shows the ratio of air -to -substrate
beam power for D1/D = 1 as a function of the grating amplitude 2a.
Also shown in this figure is the power -reflection coefficient of the
specularly reflected component; that is, the zero -order beam in the
substrate. As the grating becomes deeper, the power discrimination
between air and substrate beams becomes better, but the power re-
flection coefficient of the specular-beam component becomes lower. If
we apply this situation to waveguide geometry, the incident plane wave
and the reflected wave with m = 0 would both correspond to the guided

1.00

0.98

0.96

0.92

R 0.90

0.88

0.86

0.84

0.82

0 80
0 0.1 0.2 0.3

2a /A0

0.4 0.5

20

18

16

12

Fig. 9-Ratio of the powers AP./AP, that are scattered into air and substrate and
also the power reflection coefficient R of the zero -order beam in the substrate as
functions of the normalized grating depth 2a/X.. It is D/X0 = 0.5, pix. = 8.5,
Di/D = 1.0, n1 = 1.5, and n2 = 1.0.
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-pr 10-2

10-3

0 0.1 0.2 0.3

2a /A,

0.4 0.5 06

Fig. 10-Normalized scattered power into air (dotted line) and substrate (solid
lines) for a grating with ni = 3.5, n2 = 1.0, D/X0 = 0.26, Di/D = 1.0, and 13iX.
= 19.83. The arrows indicate the position of points where specular reflection from the
grating teeth coincides with the grating condition.

mode. The power loss on reflection expresses the mode attenuation per
"bounce." A grating with good power discrimination between air and
substrate beams suffers very high scattering losses.

Figures 10 and 11 complete our investigation of the scattering
properties of blazed gratings with large -grating amplitudes. These
figures apply to a substrate with high -refractive index, n1 = 3.5. The
gratings have D1/D = 1 in Fig. 10 and D1/D = 0 in Fig. 11. In both
figures we used D/X0 = 0.26 and /3 X0 = 19.83. These figures show the
scattered power as functions of the grating amplitude. It is obvious
that the scattering levels off with increasing grating amplitude, so
that it does not help to increase the grating depth beyond a certain
point. However, the discrimination between air and substrate beams is
affected by the grating depth. The arrows indicate points where specular
reflection from the grating faces should enhance the scattered power.
Except for obvious interference effects by some other ray path, it seems
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Fig. 11-Similar to Fig. 10 with D1/D = 0.
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that the maxima tend to be located where geometrical optics would
predict.

We have extracted information about the effective reflection plane
of the incident and specularly reflected plane waves. The theory of the
effective reflection plane was presented in eqs. (34) and (35). Figure
12 shows the position d (normalized with respect to X0) of the effective
reflection plane measured from the lower edge of the grating at x = 0.
We assume that the phase of the zero -order beam in the substrate can
be accounted for by reflection from an effective plane interface of the
two media with index n1 and n2 located at x = d. The solid lines in
Figs. 12 and 13 are obtained from our exact theory. The dotted curves
represent the results of applying the WKB approximation to a con-
tinuous refractive index distribution as explained in connection with
eq. (34). Figure 12 applies to a long grating period of D/Xo = 1.3 and
ni = 1.5, while Fig. 13 was drawn for D/X0 = 0.26 and n1 = 3.5. For
large grating amplitudes the agreement with the approximate theory
is apparently better for shorter grating periods. It might be expected
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1.2

that the approximation would become very good for D/X 0. Our
use of the WKB approximation becomes inapplicable to 2a 0. In
this limit the effective reflection plane is better approximated by d = a.
However, it is clear that the wics approximation provides a useful
estimate of the position of the effective reflection plane for deep
gratings. This information is very important for an application of our
theory to an approximate description of scattering by gratings on
dielectric film waveguides.

The final figure, Fig. 14, shows a comparison between first -order
perturbation theory and the exact grating theory. This figure repre-
sents the relative scattered powers in the first -order grating lobe (the
only lobe that propagates in this case) as a function of the grating
amplitude 2a for DA° = 0.5, OiX0 = 8.5, n1 = 1.5, and n2 = 1.0. It is
interesting to observe that the air beam is actually stronger than first -
order perturbation theory would predict, while the substrate beam is
considerably weaker. It is furthermore of interest that the relative
strength of air to substrate -scattered power is predicted in reverse
order by perturbation theory for large grating amplitudes. Whereas
perturbation theory predicts that more power is scattered into the
substrate than into air, the exact theory predicts just the opposite. At

0.5

0.4

0.3

d

X0

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1.0

2a / X,

Fig. 12-Position d of the effective reflection plane as a function of grating ampli-
tude 2a for D/Xo = 1.3, PiNo = 8.5, n1 = 1.5, and n2 = 1.0. The effective reflection
plane is practically independent of D,. The solid line is obtained from the exact
theory while the dotted line was computed from the WK.B approximation.

1.4 1.6 1.8 20
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Fig. 13-Similar to Fig. 12 with D/X0 = 0.26, OiX. = 19.83, ni = 3.5, and n2 = 1.0.

0.35 0.40 0.45 0.50

this point our theory is at variance with claims made by Tamie whose
results are in qualitative agreement with perturbation theory but dis-
agree with our theory.

The arrow in Fig. 14 indicates the point at which the specular reflec-
tion condition from the faces of the grating teeth is satisfied for the
substrate beam as shown in Fig. 2. This point is in good agreement with
the maximum predicted by the exact theory. Perfect agreement cannot
be expected for such small grating amplitudes and short grating
periods, because geometrical optics cannot be expected to hold under
these conditions.

Figure 14 shows that for this type of grating first -order perturbation
theory is reasonably accurate for grating amplitudes below 2a = 0.05X0.

II. CONCLUSION

We have found that our exact treatment of deep dielectric gratings
with triangularly shaped teeth provides a satisfactory method for
computing the scattering problem. Our theory has only been applied
to incident plane waves of TE polarization. The field outside of the
grating region was expanded in a series of plane waves, while the field
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in the grating region was expressed as a double Fourier series expansion.
Numerical evaluation of this scattering theory requires a modest
computational effort. The required number of simultaneous equations
that must be solved increases with increasing grating amplitude. The
computer time increases with the third power of the number of equa-
tions used. For gratings with an amplitude of 2a/X0 = 0.1, 28 simul-
taneous equations were used, 42 equations were necessary for 2a/X
= 0.5, and 66 equations were used for 2a/X0 = 2.0 ; however, somewhat
greater accuracy seems desirable for accurate results in this latter case.

We found that blazed dielectric gratings are able to provide good
discrimination of one grating lobe at the expense of other grating re-
sponses. The position of maxima and minima of the grating lobes as
functions of the grating shape can be accounted for by perturbation
theory for small grating amplitudes and by geometrical optics for
larger grating amplitudes. However, multiple ray paths make the
geometrical optics interpretation difficult for very deep gratings.

10°

10-1

A P1

10-2

10 -3

PERTURBATION THEORY
m = 1

SUBSTRATE BEAM ....
...-

\ ...' ......"...... \I/ EXACT THEORY\/ /AIR BEAM ....-

D /A, = 0.5 13i11/40= 8.5 D., /D = 1.0

n = 1.5 n2 = 1 .0

10 -4 I I i I I

0 0.1 0.2 0.3

2a / Xo

Fig. 14-Comparison with first -order perturbation theory. D/X. = 0.5, Di/D = 1,
piXo = 8.5, ni = 1.5, and n2 = 1.

0.4 0.5 0 6
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It is possible to define an effective reflection plane for the zero -order
reflected grating lobe. This concept is useful for an approximate de-
scription of grating scattering of guided modes in thin dielectric films.
Once the effective width of the film is known for the guided modes,
scattering losses can approximately be calculated by accounting for
the scattered power by means of a theory that is essentially no more
complicated than the theory presented here. We have shown that the
position of the effective reflection plane can be estimated by means of
the WKB approximation.
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APPENDIX

We list here the coefficients that enter in the equation system (14).

Nn'-n,m'-m
n?( - 4k2b

= {1 - exp [i27 (in'-in)+b(n'-n)/J }

D1 D - D1
X (m, - m) + (n' - n) D - D1 (m' - m) - (1. (n' - n)

for n' n and m' m;

?(n
' -3 n2

b2
Nni-n,0 =

(n2-n)k2Da
1 exp [i2ir 4 (n' - n)

2D+7('k
-n) n2- exp

]i

2r a (n' - n)

for n' 0 n;

N
aD3(n? - nD expk2 [

D
Di (m' - m)]

2.72(m' - m)2Di(D - D1)

for m' m;

for n' 0 n;

N0,0 = ak2D(921 + 72) ;
2DbeiT(a/b)(n'-n)

Mn,n' = r (n'- n) Sill[ a (n

Mn,n = 2aD.
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Tests have been conducted at Bell Laboratories within the last 10 years
to obtain subjective evaluations of the effects of loss, noise, and talker echo
on telephone transmission quality. We use these subjective test results to
formulate graphical and analytical models of subjective opinion that can
be used in network planning studies to evaluate transmission performance
of the network and to study the effects of network changes on performance.
These models are based on the concept of a generalized transmission -
rating scale. Separate opinion curves for each test take into account differ-
ences caused by factors such as subject group, type of test, and range of
conditions. We also describe the methods of data analysis used in the
formulation of the transmission -rating scale and opinion models, provide
a comparison of the test results with the models, and discuss the models in
sufficient detail to permit their application in transmission planning
studies.

I. INTRODUCTION

In the last 10 years, several tests have been conducted at Bell
Laboratories to determine the subjective evaluation of loss, noise, and
talker echo in telephone connections. The purpose of these tests was
to obtain information for use in network planning studies. Several
hundred volunteers served as subjects and participated in several
thousand test calls with various amounts of loss, noise, and talker
echo. Some of these tests were conducted on normal business calls
made by Bell Laboratories employees; others were conducted in a
laboratory environment. At the end of each call, the subject was asked
to indicate his or her opinion of the transmission quality on a five -
category rating scale : excellent, good, fair, poor, and unsatisfactory.

The results from these tests were used to formulate the graphical
and analytical models of opinion which are presented in this paper.
These models have been used extensively in network planning studies
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to evaluate present network performance and to study the effect of
possible changes in the network. Although many of these studies are
not yet published, a recent paper by Spang' provides an excellent
example of the application of these models in toll transmission planning.

For many years the Bell System has used subjective tests to obtain
information on the effects of transmission quality which could be used
in network planning studies. For example, the present Via Net Loss
design plan, which introduces loss to control talker echo in the Direct
Distance Dialing (DDD) network, is based on the results of subjective
tests for talker echo that are included in a 1953 paper by Huntley.2
Subsequent talker -echo tests were described by Phillips in 1954.8
Coolidge and Reier reported the results of tests of received telephone
speech volume in 1959 and introduced the concept of volume grade -of -
service.* Test results for message circuit noise were used in noise
grade -of -service studies described by Lewinski in 1964.5

Most of the tests mentioned considered the effect of one transmission
parameter at a time. Since transmission parameters appear in com-
binations and there are, in many instances, important interactions, a
new series of conversational tests for the combined effects of connection
loss and circuit noise was initiated in 1965. Subjective evaluations were
obtained on normal business calls within Bell Laboratories. The results
of these tests were reported by Sen in 1971.6 Since then, the use of
combined loss -noise grade -of -service based on these tests has largely
replaced the use of the earlier noise and volume grade -of -service.

Another test to determine subjective reaction to loss and noise was
conducted in 1969 on normal business calls within the Bell Laboratories
location at Holmdel, New Jersey. There were two reasons for the new
test. One was to obtain a larger number of subjects per test condition
and thus reduce the experimental variability. The other reason was to
include both symmetric loss conditions, as was done in the 1965 tests,
and asymmetric loss conditions; i.e., unequal loss in the two directions
of transmission. The test results for the symmetric conditions indicated
a more critical assessment of quality than the 1965 tests, which could
not be explained by known differences in the tests. Therefore, a third
test was planned and conducted in 1972.

During this same period of time, new talker -echo tests were initiated.
These echo tests used the same five -category rating scale as the loss -
noise tests so that possible tradeoffs between loss -noise and echo grade -
of -service could be studied. Some of the echo tests were conducted in
the laboratory. Others were conducted on normal business conversa-
tions between Bell Laboratories employees, where values of loss, noise,
echo -path loss, and echo -path delay could all be controlled.

As the results of the various tests became available, work was con -
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tinued to modify and improve earlier loss -noise opinion models and to
develop similar talker -echo opinion models. Systematic methods were
formulated to analyze the results from individual tests and to combine
the results from different tests into a composite loss -noise -echo opinion
model. In addition, a transmission -rating scale was introduced that
assigned a single numerical value to any specific combination of trans-
mission conditions.

The concept of a generalized transmission -rating scale recognized
that subjective test results can be affected by various factors such as
the subject group, the type of test, and the range of conditions that
are included in the test. These factors were found to cause changes in
both the mean opinion score for a given condition and in the standard
deviation.* Thus, there were difficulties in trying to establish a unique
relationship between a given transmission condition and subjective
opinion in terms of mean opinion score or other subjective measures
of transmission quality. The introduction of a transmission -rating
scale tended to reduce this difficulty by separating the relationship
between transmission characteristics and opinion ratings into two
parts. For the first part, the transmission rating as a function of the
transmission characteristic, was anchored for two specific transmission
conditions and thus tended to be much less dependent on individual
tests. The second part, the relationship between transmission rating
and subjective opinion ratings, could then be displayed for the in-
dividual test.

The essential features of the transmission -rating scale and opinion
models are summarized in Section II of this paper in enough detail
to permit their application in transmission planning studies. The re-
mainder of the paper describes three subjective tests for connection
loudness loss and circuit noise and four tests for talker echo, outlines
the methods of analysis, and describes the formulation of the composite
transmission -rating scale and opinion models. Comparisons of the
individual test results and the final model are also presented.

II. SUMMARY OF TRANSMISSION -RATING AND OPINION MODELS

The models for transmission rating described in this section are
based on the results of seven subjective tests. All of the tests were
conducted with Western Electric 500 -type telephone sets.' Loudness

Results of subjective tests in terms of the number of votes in each of the several
categories of a rating scale can be expressed in a number of ways. One way is to
assign numerical values to each of the categories, e.g., excellent = 5, good = 4,
fair = 3, poor = 2, and unsatisfactory = 1. Each of these numerics is then weighted
by the proportion of votes in the corresponding category for a particular transmission
condition, and the weighted values summed. The result is called the mean opinion
score for that transmission condition.
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Table I-Summary of tests

Loss -Noise Tests Talker Echo Tests

SIBYL
1965 (MH)

SIBYL
1969 (H01)

SIBYL
1972(H02)

Lab
1966

Lab
1968

Lab
1970

SIBYL
1970

Number of subjects 66 78 74 29 30 100 45
Number of conditions 24 15 12 30 93 10 18
Number of ratings
Median ratings/

condition
Connection loudness

loss (dB)

885

29

5-30

1163

60

10-30

1684

60

5-30

870

29

*

2790

30

*

1000

100

18

752

38

10
Circuit noise (dBrnC)
Echo -path loudness

loss (dB)

21-44-
22-45

-
25-42

-
28

10-59

18-38

0-50

33

33-73

30

8-42
Echo -path delay (ms)
Bidetone-path loudness

loss (dB)
Average room noise

[dB (A)]

-
13

45

-
12

42

-
12

42

20-90

9

35

1.5-90

12

35

600,1200

12

38

10-72

12

42

* These tests were not, strictly speaking, two-way conversation testa and, thus, connection loudness -
loss values are not appropriate.

loss values used in the model describe the acoustic -to -acoustic transfer
efficiency of overall telephone connections and are expressed in terms
of the Electro-Acoustic Rating System (EARS) method.8 Noise values
used in the model are expressed at the line terminals of a telephone set
with a reference receiving efficiency of 26 dB based on the EARS
method.'

The major aspects of these tests are summarized in Table I. A more
detailed description of the tests is presented in Sections III and IV.

The results of the subjective tests were used to derive transmission -
rating models for (i) loss and noise, (ii) talker echo, and (iii) the com-
bined effects of loss, noise, and talker echo. In addition, models were
derived for the relationship between transmission rating and subjective
opinion.

The procedures used in the analysis of the subjective -test results
and the derivation of the transmission -rating scale are described in
Sections V and VI. Although the procedures are somewhat complex
for manual calculation, they are easily handled on a digital computer
and have been found to provide a convenient and useful representation
for a large variety of test data.

Mathematical expressions for the models are summarized in Table
II. The derivations of these expressions are also given in Sections V

The several subjective tests, results of which were used in deriving the model,
were conducted with different circuit -noise values and with telephone sets operating
at different EARS receiving efficiencies. To enable combination of results from the
different tests to be made, it was necessary to express all circuit -noise values in terms
of a telephone set with reference receiving sensitivity. The value of 26 dB was chosen
because it is approximately the receiving efficiency of a customer loop consisting of a
Western Electric 500 -type telephone set,7 a short -line facility, and a standard central
office feeding bridge. Noise values are given in dBrnC .9.1°
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and VI. The remainder of the present section provides a general
description and graphical presentation of the models.

2.1 Connection loudness loss and circuit -noise model

Transmission rating as a function of connection loudness loss and
message -circuit noise is shown in Fig. 1. The curves were plotted using

Table II-Models for estimating subjective reaction to loss,
noise, and echo

The models, in terms of a transmission -rating scale, for loss and noise (RLN),
echo (RE), and loss, noise, and echo (RLNR) are:

RLN = 147.76 - 2.257V (L. - 7.2)2 + 1 - 2.009Np + 0.02037(Le)NF (1)

RE = 95.01 - 53.45 logio I (1 + D)/111 + (D/480)21 + 2.277E (2)

RLN BE \i[ RLN B12 + (10)2, (3)&NB =
2 2

where L. = Acoustic -to -acoustic loudness loss (in dB) of an overall telephone connec-
tion, determined using the Electro-Acoustic Rating System (EA*
method,

N = Circuit noise (in dBrnC) at the input to a set with a receiving -loudness
rating of 26 dB, determined using the EARS method,

NF = Total noise in dBrnC resulting from power addition of the circuit noise,
N, and 27.37, both in dBrnC,

D = Round-trip echo -path delay (in milliseconds), and
E = Acoustic -to -acoustic loudness loss (in dB) of the echo path, determined

using the EARS method.

The proportion of comments good or better (GoB) or poor or worse (PoW) are com-
puted from R by :

GoB = 1r4 e-andt
J

PoW = 1 r c82,2,t,

where A and B are given in the table below for the various data bases.

Data Base A

MH (R - 64.07)/17.57 (R - 51.87)/17.57
H01 (R - 77.44)/17.07 (R - 60.70)/17.07
H02 (R - 73.74)/15.68 (R - 58.03)/15.68
Echol (R - 75.05)/14.30 (R - 58.95)/14.30
Echo2 (R - 66.66)/11.84 (R - 53.33)/11.84

The parameters A and B have been derived from opinion distributions, in terms of
fit mean, A, and fit standard deviation, a, and then expressed as a function of R.
Alternatively, the models can be expressed as follows:

/pm = (R - 21.37)/12.20 cr. = 1.44
Atgoi = (ANTI; + 0.206)/1.372 = (R - 18.86)/16.74 cra = 1.02
Aim32 = (Anta + 0.215)/1.288 = (R - 18.75)/15.71 a. = 0.998

AEI = (R - 18.7)/16.1 a. = 0.888
A4E2 = (R - 20)/13.33 cr. = 0.888
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Fig. 1-Transmission rating for loss and noise.

35

eq. (1) below, which is also given in Table II.

RLN = 147.76 - 2.2574(Le - 7.2)2 + 1 - 2.009NF
+ 0.02037 (LONF, (1)

where

Le= Acoustic -to -acoustic loudness loss (in dB) of an overall
telephone connection

N = Circuit noise (in dBrnC) at the input to a set with a receiving
loudness rating of 26 dB

NF = Power addition of the circuit noise, N, and 27.37 dBrnC.

The transmission -rating scale was derived, so that it is anchored at
two points, as shown in Table III. These anchor points were selected
to be well separated in quality, but within the range of conditions
that are likely to be included in a test. Transmission ratings for other
combinations of connection loudness loss and circuit noise are relative
to those for the two anchor points. The rating values are such that
most telephone connections will have positive ratings between 40 and
100, with the higher rating denoting higher quality. For most engineer-
ing applications sufficient accuracy can be achieved by the use of
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Table Ill - Anchor conditions for the transmission -rating scale

Connection Loudness
Loss
(dB)

Circuit Noise
(dBrnC)

Transmission
Rating

15
30

25
40

80
40

whole numbers on the transmission -rating scale. For example, in the
1965 loss and noise tests, conditions with a transmission rating of
approximately 80 were considered good or excellent by 80 percent of
the subjects, while a transmission rating of 40 was considered good or
excellent by only 10 percent.

2.2 Talker -echo model

Transmission rating as a function of talker -echo path loss and delay
is shown in Fig. 2. The curves were plotted using eq. (2) below, which
is also given in Table II. This equation was derived to exclude the
effects of circuit noise and connection loudness loss.

RE = 95.01 - 53.45 login { [1 + D]/'11 + (D/480)2j + 2.277E, (2)

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50
ECHO-PATH LOUDNESS LOSS, E, IN dB

Fig. 2-Transmission rating for talker echo.

60
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where

D = echo -path delay (in ms) and
E = acoustic -to -acoustic loudness loss (in dB) of the echo path.
The curves of Fig. 2 demonstrate the dependence of transmission

quality on the two talker -echo path parameters, loss and delay, for
connections where talker echo is important.

2.3 Connection loudness loss, circuit noise, and talker -echo model

Transmission ratings for the combined effects of connection loudness
loss, circuit noise, echo -path loudness loss and echo -path delay are
obtained from eq. (3) below, which is also given in Table II.

where

RLNE

RLN

RE

RLN + RE V( RLN RE )2
RLNE + (10)2,

2 2 (3)

= transmission rating for the combined effects of connection
loudness loss, circuit noise, and talker echo,

= transmission rating for connection loudness loss and circuit
noise

= transmission rating for echo -path loudness loss and delay.

100

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50

ECHO -PATH LOUDNESS LOSS, E, IN dB

Fig. 3-Transmission rating for loss, noise, and talker echo.

CONNECTION LOUDNESS LOSS, LE = 15 dB
CIRCUIT NOISE, N = 30 dBrnC

60
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Figure 3 illustrates curves generated by means of the above relation-
ship for the transmission rating as a function of echo -path loudness
loss and delay in a connection with a connection loudness loss of 15 dB
and circuit noise of 30 dBrnC. For other values of connection loudness
loss and circuit noise, the curves would become asymptotic to higher or
lower values of R in accordance with the curves of Fig. 1.

2.4 Subjective -opinion models

Subjective opinion in terms of the proportion of ratings in each of
the five categories (E, G, F, P, U) for a condition having a given
transmission rating has been found to depend on various factors, such
as the subject group, the range of conditions presented in a test, the
year in which the test was conducted, and whether the test was con-
ducted on conversations in a laboratory environment or on normal
telephone calls. For the major tests on which the transmission -rating
model is based, the observed relationship between subjective judgments
and transmission rating can be represented as shown in Figs. 4 and 5
which are plotted from the equations for GoB and PoW of Table II.

1- 60
z
Lu

50
w
cc

°- 40

30 40 50 60 70

TRANSMISSION RATING
100

Fig. 4-Subjective opinion as a function of transmission rating for the connection
loudness loss and circuit -noise tests.
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1

20 30 40 50 60 70

TRANSMISSION RATING
80 90 100

Fig. 5-Subjective opinion as a function of transmission rating for the echo tests.

Contours of constant percent good or better and percent poor or
worse are given in Figs. 6 and 7, respectively, for the loss -noise results.
These contours were computed from eq. (1) and the equations for
GoB and PoW of Table II using the MH data base. Similar contours
could be generated based on one of the other tests. However, the
Murray Hill base is being used for current network planning studies
for consistency with earlier studies. In addition, the opinion results
from this test appear to be in close agreement with data obtained from
customer interviews on typical DDD toll connections. Thus, at the time
of publication, the Murray Hill base is recommended for conversion
of the transmission ratings to subjective ratings. Eventually, we hope
to determine other expressions for A and B (see Table II) that will
provide even better agreement with customer interviews on various
types of telephone connections.

2.5 Use of the models

The models summarized in preceding sections can be used to esti-
mate transmission quality for telephone connections. The examples
given below are based on representative 500 -type telephone sets con -
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Fig. 6-Subjective-opinion contours of percent good or better at the MH base for
loss and noise.
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Fig. 7-Subjective-opinion contours of percent poor or worse at the MH base for
loss and noise.
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nected by specified lengths of 26 -gauge nonloaded cable to the local
Class 5 office.' The loss for such an arrangement is expressed in terms of :

TLR = Transmitting loop rating (in dB), which describes the loud-
ness conversion efficiency in terms of an acoustic signal
applied at the telephone set and the resulting electric voltage
at the local Class 5 office.

RLR = Receiving loop rating (in dB), which describes the loudness -
conversion efficiency in terms of an electric circuit voltage
applied at the local Class 5 office and the resulting acoustic
pressure received at the telephone set.8

The connection loudness loss, Le, for a local call is the sum of TLR and
RLR. For calls between customers served by different local Class 5
offices, Le is the sum (TLR RLR) plus the 1000 -Hz loss between the
offices.

The circuit noise, N (in dBrnC), as used in the model is in terms
of a reference telephone set that has an RLR of 26 dB. Noise levels, as
typically expressed at the line terminals of a telephone set, need to
be corrected to the reference set. For the 500 -type telephone set, the
conversion factor is about 4 dB (increase in noise) and is nearly in-
dependent of loop length.

The effect of talker echo depends on the characteristics of the echo
path. Generally, the dominating path is that from the talking customer
to the distant Class 5 office and return, and is referred to as the far -
end echo path." The round-trip delay of this path, D, is taken to be
the time required for a speech signal to go from the originating Class 5
office to the distant Class 5 office and return. (Delay in the customer's
telephone set and loop is neglected as, with present plant, it is usually
insignificant.) The loudness loss of the echo path, E, is the sum of
TLR, RLR, and the echo -path loss from the originating Class 5 office to
the distant Class 5 office and return.

Considerations of the preceding paragraphs provide the basis for
several examples demonstrating use of the models. Details concerning
computation for these examples are given in Appendix A. Results of
these examples are summarized in Table IV. The examples are simpli-
fied representations of connections devised to illustrate application of
the models and, thus, the results only approximately describe the
performance of actual connections. (Methods of obtaining more accu-
rate connection representations are covered in Ref. 1.)

Comparison of the results for Examples 1, 2, and 3 show that about
optimum performance for local connections occurs for medium loops.
The performance is below optimum for short and long loops, the former
because the loss is lower, the latter because the loss is higher (see
Figs. 1, 6, and 7).
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Table IV-Examples of performance estimates obtained
using the models

Example L.
(dB)

N
(dBrnC)

D
(ms)

E
(dB) Rtr., R. Rims GoB

(%)
PoW
(%)

1. Local connection,
short loops

2. Local connection,
2.7 27 - - 78.3 - - 79.2 6.8

medium loops
3. Local connection,

8.4 27 - - 88.7 - - 92 1.8

long loops
4. Long -toll connection,

medium loops, no

16.9 27 - - 75.5 - - 74.2 8.9

talker echo
5. Long -toll connection,

medium loops, with

16.1 32.5 - - 71 - - 65.2 13.9

talker echo 16.1 32.5 37.3 31.7 71 82.6 65.2 52.6 22.4

Comparison of Examples 3 and 4 illustrates the effect of higher loss
and noise typically encountered on toll connections." Finally, compari-
son of Examples 4 and 5 indicates the effect of talker echo, demon-
strating the need for echo control. (See Ref. 1 for detailed discussion
of loss, noise, and talker echo for toll connections.)

III. DESCRIPTION OF LOSS -NOISE SUBJECTIVE TESTS

Three tests have been conducted using a special test facility called
SIBYL to determine subjective reaction to loss and noise on telephone
connections. This facility allowed control of transmission parameters
during normal business calls of cooperating Bell Laboratories
employees."-"

SIBYL was first used at the Murray Hill Bell Laboratories location,
and was moved to the Holmdel location in 1966.

The test subjects for the SIBYL studies were Bell Laboratories em-
ployees. Prior to the beginning of each of the tests, a list of employees
reflecting a preselected makeup of age, sex, etc., was obtained, and the
employees contacted to solicit their participation in the test. Upon
obtaining agreement, their telephone lines were routed through SIBYL
which could handle up to 100 subject lines.

An overall connection with SIBYL inserted is shown on Fig. 8. At
the left is a subject's (participating employee's) telephone set. In
close physical proximity (less than about 1500 feet of two -conductor
cable) is SIBYL which converts the two -wire transmission path into a
four -wire transmission path and separates signals transmitted from
the subject's telephone set and signals received at the same telephone
set. Separation of the signal paths in this manner permits (i) inserting
different impairment values for the two directions of transmission and
(ii) independent measurement of signals transmitted from and received
at the subject's telephone set.

Proceeding from left to right in Fig. 8, the four -wire path is re-
converted to a two -wire path in SIBYL, and connected to the serving
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SUBJECT
P

L

HYBRID

SIBYT_1

HYBRID

CALLED CALLED
PARTY'S PARTY

LOOP \

CENTRAL
OFFICE

I

SUBJECT'S
LOOP

Fig. 8-Diagram of a telephone connection for the SIBYL tests.

central office over a two -wire cable pair which is about 1 mile in length
for Murray Hill and about 3 miles in length for Holmdel. The central
office switching machine connects the subject's line to the called line
dialed by the subject. The called line (approximate lengths as given
above for Murray Hill and Holmdel) is terminated with the telephone
set of the called party, another Bell Laboratories employee at the
same location who is usually not a subject in the experiment.

SIYBL recognized calls internal to the location, and only such calls
were included in the experiments reported here. The major reason for
this was to retain as much control as possible of the transmission
parameters on test calls. Employees' telephone lines at any one location
generally were of about the same physical makeup. Thus, variations
in transmission parameter values between lines were small, and the
values were considered to be identical for all lines. SIBYL then altered
the normal parameter values to achieve the parameter values of interest
in an experiment.

Restricting the calls to within the location had the further advantage
that the subjects physical environment was reasonably uniform, con-
sisting largely of offices with one to four desks and of electronic labora-
tories. Thus, room noise levels, which could affect the transmission
quality of telephone calls, did not vary appreciably.

The subjects were provided with instructions at the beginning of the
test, and thereafter, the procedure during a call was generally as shown
in Fig. 9. (The procedure of Fig. 9 applies specifically to the Murray
Hill test.) The subject initiated the procedure by lifting his handset
from the telephone set cradle and dialing a number. If the call was
not a test call, which was the case for about 85 percent of the calls
from the subject group, the call was completed normally. That is,
(i) the subject received a signal indicating the called line was busy
and returned his handset to the cradle, (ii) the called party did not
answer and the subject returned his handset to the cradle, or (iii)
the called party answered and they conducted their conversation,
after which the subject and called party returned their respective
handsets to the cradles.
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If the call was a test call and the called line was not busy, a test
condition (e.g., a predetermined combination of loss and noise values)
was inserted at the beginning of the call, and the conversation pro-
ceeded. If, during the call, the test condition was unacceptable to the
subject (e.g., the noise was too loud) the subject could dial a digit
(e.g., a five) on his telephone set dial. This signaled SIBYL to remove
the test condition, after which the call completed normally. (This
occurred on only about 1 to 2 percent of all test calls.)

In the more usual case, the subject was either not consciously aware
of the test condition or did not find it unacceptable and completed the
conversation, then returned the handset to the cradle. A short time
thereafter, typically seconds, the subject received ringback-the
telephone set ringer emitted a burst of sound-which alerted the
subject to rate the transmission quality of the call just completed.

3.1 1965 Murray Hill SIBYL test

In 1965, a test to determine subjective reaction to loss and noise
was conducted using the SIBYL facility, which was then located at Bell
Laboratories, Murray Hill, New Jersey. The configuration of a typical
connection incorporating SIBYL is shown on Fig. 8 as discussed earlier.

TEST SUBJECT DIALS CALL

NOT A TEST CALL TEST CALL

CALL COMPLETES
NORMALLY

TEST CONDITION
APPLIED

CALL PROCEEDS
NORMALLY

IF CONDITION
IS UNACCEPTABLE,
SUBJECT DIALS 5

TEST SUBJECT
DOES NOT DIAL 5

TEST CONDITION
REMOVED

CALL COMPLETES
NORMALLY

CALL COMPLETES
NORMALLY

SUBJECT GETS
RINGBACK

SUBJECT RATES
CONDITION

Fig. 9-Procedure for a SIBYL call.
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Table V-1965 Murray Hill SIBYL test of loss and noise:
number of ratings for each test condition

Connection
Loudness Loss

(dB)

Circuit Noise (dBrnC)

21 28 36 44

5 35 12 24 20
10 61 36 34 34
15 33 33 27 28
20 29 43 23 35
25 35 32 29 24
30 12 12 23 11

The 24 combinations of loss and noise values that were tested are
given in Table V together with the number of subjective ratings ob-
tained for each combination. The loss values of Table V represent
acoustic -to -acoustic loudness loss (in dB) of the connections, and are
numerically equivalent to the electrical losses in terms of which results
were published earlier for this test.' Circuit noise levels (in dBrnC)
were originally reported in terms of (i) added noise, and did not include
allowance for noise normally present on the connections, and (ii) the
average receiving sensitivity of Western Electric 500 -type telephone
sets at the Murray Hill location. The noise levels of Table V represent
total noise from all sources and are expressed at the line terminals of a
telephone set with reference receiving sensitivity. The condition with
loudness loss = 5 dB and noise = 21 dBrnC represents average trans-
mission normally experienced by employees on calls within the Murray
Hill location.

The lines connecting employees' telephone sets to the central office
were all of about the same length. Thus, the loudness loss of the
telephone side tone path,"," strongly dependent on line length, was
expected to be about the same for all employees. Side tone path loud-
ness loss was measured on a sample of lines and telephone sets, and
found to be about 13 dB. Circuitry was incorporated into SIBYL to
ensure that the side tone path loudness loss would also be about 13 dB
for subjects' telephone sets when connected to SIBYL.

Room noise was measured at a sample of subject locations using a
sound -level meter with A -weighting.'" The average value was found to
be 45 dB (A) with a range of ±2 dB.

Sixty-six employees (subjects) participated in the test. The pre-
determined combinations of loss and noise were randomly introduced
into about 15 percent of all within -location, normal -business calls
placed by the subject group during the 3 -month test interval. A subject
had no prior information that any particular call was being placed
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over a test connection. The call procedure summarized in Fig. 9 was
followed for each call. At the end of each test call, a subject judged
overall transmission quality by dialing a 9 for excellent, 8 for good, 7
for fair, and 6 for poor. Connections rejected during the call were
considered to be unsatisfactory.

Test results are given in Table VI for each test condition in terms of
the percent of subjects' votes in each of the five rating categories. These
results are used in Sections V and VI in deriving the subjective -opinion
models.

3.2 1969 Holmdel 1 SIBYL test
As discussed earlier, a second test to determine subjective reaction

to loss and noise was conducted in 1969. This test utilized the SIBYL
facility which was moved to the Holmdel location of Bell Laboratories
in 1966. A major reason for these newer tests was to examine the effect
of asymmetric transmission conditions on subjects' ratings. However,
the test included 15 symmetric conditions (out of a total of 47 test
conditions) and these are considered in this paper.

Table VI -1965 Murray Hill SIBYL test of loss and noise:
test results

Circuit
Noise

(dBrnC)

Connection
Loudness Loss

(dB)

Percent of Subjects' Votes in Each Category

Excel. Good Fair Poor Unsat.

21 5 60.0 11.4 14.3 14.3 0
10 63.9 26.2 3.3 6.6 0
15 66.7 21.2 12.1 0 0
20 41.3 27.6 24.1 3.5 3.5
25 34.3 14.3 31.4 8.6 11.4
30 8.3 25 33.3 16.7 16.7

28 5 50.0 33.3 16.7 0 0
10 66.7 30.5 0 2.8 0
15 54.5 30.3 9.1 6.1 0
20 25.6 30.2 18.6 16.3 9.3
25 25.0 15.6 37.5 12.5 9.4
30 8.3 8.3 33.3 16.8 33.3

36 5 54.2 20.8 16.7 8.3 0
10 64.7 23.6 5.9 2.9 2.9
15 33.3 29.6 22.2 14.9 0
20 21.7 8.7 34.8 21.7 13.1
25 13.8 3.5 17.2 34.5 31.0
30 0 13.0 26.1 34.8 26.1

44 5 15.0 30.0 25.0 20.0 10.0
10 17.6 26.5 11.8 20.6 23.5
15 17.8 25.0 28.6 14.3 14.3
20 8.6 5.7 20.0 40.0 25.7
25 0 4.2 25.0 50.0 20.8
30 0 0 0 36.4 63.6
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Table VII -1969 Holmdel 1 SIBYL test of loss and noise:
number of ratings for each test condition

Connection
Loudness Loss

(dB)

10
15
20
25
30

Circuit Noise (dBrnC)

22 35 40 45

335 48 41 38
93 - - -
65 57 77 77
33 34 47 -
76 61 - 81

The symmetric combinations of loss and noise values that were
tested are given in Table VII together with the number of subjective
ratings obtained for each condition. The condition with connection
loudness loss = 10 dB and circuit noise = 25 dBrnC was the reference
condition that was repeated frequently during the test.

Side tone path loudness loss was measured on a sample of lines and
telephone sets, and found to average about 12 dB with a range of
±2 dB both for normal connections and SIBYL connections. Room
noise, measured at 12 subject locations, averaged about 42 dB (A)
with a range of about ±2 dB.

Seventy-eight employees (subjects) participated in this test. Sub-
jects followed the same procedure during the 21 month test interval
as already described for the Murray Hill test. Comparison of the
Holmdel 1 test results of Table VIII with the Murray Hill test results
of Table VI shows that in the former, subjects gave lower ratings
for approximately equivalent combinations of loss and noise than is
the case for the latter. The major differences between the two tests
were (i) the subject groups, (ii) the time difference of about 4 years,
and (iii) the location. While it is not clear how these differences con-
tributed to differences in results, the comparison suggests that sub-
jects' expectations were higher in the later Holmdel tests.

3.3 1972 Holmdel 2 SIBYL test

A third test to determine subjective reaction to loss and noise was
conducted in 1972. This test also utilized the SIBYL facility at the
Holmdel location of Bell Laboratories.

A major purpose of the test was to determine whether or not the
more critical subjective evaluations found in the Holmdel 1 test would
continue to hold. The test included combinations of crosstalk, loss,
and noise as well as combinations of loss and noise. Only the latter are
considered here because only the results for these conditions are used
in the subjective -opinion model for loss and noise.
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Table VIII -1969 Holmdel 1 SIBYL test of loss and noise:
test results

Circuit
Noise

(dBrnC)

Connection
Loudness Loss

(dB)

Percent of Subjects' Votes in Each Category

Excel. Good Fair Poor Unsat.

22 10 37.9 41.2 13.7 4.5 2.7
15 29.0 40.9 21.5 5.4 3.2
20 15.4 26.1 43.1 7.7 7.7
25 3.0 15.1 27.3 27.3 27.3
30 2.6 13.2 34.2 30.3 19.7

35 10 12.5 20.8 39.6 25.0 2.1
20 1.8 10.5 45.6 26.3 15.8
25 0 2.9 20.6 53.0 23.5
30 1.6 3.3 16.4 47.5 31.2

40 10 4.9 34.1 24.4 26.8 9.8
20 0 1.3 14.3 53.2 31.2
25 2.1 0 12.8 51.1 34.0

45 10 0 7.9 21.0 47.4 23.7
20 1.3 0 22.1 39.0 37.6
30 0 0 1.2 33.3 65.5

The 12 symmetric combinations of loss and noise values tested are
given in Table IX together with the number of subjective ratings
obtained for each combination. These conditions covered about the
same range as for the Holmdel 1 (1101) SIBYL test, except that a
condition of lower connection loudness loss of 5 dB was included in
the Holmdel 2 (H02) SIBYL test to match the range of loss in the
Murray Hill (MH) test.

Room -noise levels and side tone path loudness loss values were
assumed to be identical with those for the 1101 test.

Seventy-four employees (subjects) participated in the test. (None
of these employees had been subjects in the 1101 test.) The subjects
followed the same procedure as has already been described for the MH

Table IX -1972 Holmdel 2 SIBYL test of loss and noise:
number of ratings for each test condition

Connection
Loudness Loss

(dB)

Circuit Noise (dBrnC)

25 32 42

5 99 70 53
10 1029 58 97
20 50 64 46
30 62 52 4

TELEPHONE CONNECTION QUALITY 1337



Table X-1972 Holmdel 2 SIBYL test of loss and noise:
test results

Circuit
Noise

(dBrnC)

Connection
Loudness Loss

(dB)

Percent of Subjects' Votes in Each Category

Excel. Good Fair Poor

25

32

42

5
10
20
30

5
10
20
30

5
10
20
30

Unsat.

49.5 35.4 13.1 0 2.0
47.2 40.6 10.2 1.3 0.7
14.0 26.0 40.0 18.0 2.0
3.2 3.2 32.3 35.5 25.8

27.1 35.7 31.4 5.8 0
19.0 39.6 32.8 6.9 1.7
4.7 6.3 48.3 34.4 6.3
1.9 7.7 15.4 51.9 23.1

11.3 11.3 35.8 34.0 7.6
17.5 17.5 33.1 24.7 7.2
4.3 10.9 19.6 41.3 23.9
0 0 25.0 0 75.0

and H01 tests, except that the voting procedure was changed. In
the 1102 test, subjects were instructed that at the end of each experi-
mental call, when they received ringback, they should rate the overall
transmission quality of the call by dialing 9 for excellent, 8 for good,
7 for fair, 6 for poor, and 5 for unsatisfactory. In addition, they could
reject an unacceptable connection during a call by dialing 4. In the
latter case, they still received ringback after the call and were asked
to rate the quality according to the 5 -point scale. (In the MH and H01
tests, a 4 -point scale was used for post -call rating, and the fifth point,
unsatisfactory, was assumed for dialed -out calls.)

Results of the 1102 test are given in Table X. These results are in
close agreement with those of the H01 test. Comparison of the test
results for the three loss -noise tests are dealt with further in later
sections covering derivation of the subjective -opinion models.

IV. DESCRIPTION OF TALKER -ECHO SUBJECTIVE TESTS

Talker echo occurs on a telephone connection when a portion of the
primary speech signal is reflected at an impedance mismatch at some
point in the connection, and returned to the talker delayed in time.
The returned signal, talker echo, is defined in terms of echo -path
delay and echo -path loudness loss. The echo -path delay that occurs
because of the finite propagation velocity of the speech signal over
transmission facilities and equipments is the time it takes the speech
signal to traverse the path from the talker's lips to the point of im-
pedance mismatch, then back to the talker's ear. Echo -path loudness
loss represents the amount by which the talker's speech signal is
attenuated when traversing the same path.
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Four tests were conducted to determine subjective reaction to
talker echo. Three of these tests-identified as the 1966 Laboratory
Echo Test, the 1968 Laboratory Echo Test, and the 1970 Laboratory
Echo Test-were conducted under laboratory conditions where the
experimenter could closely control conditions. The laboratories used
in these tests included rooms that were acoustically designed to muffle
both internal and external noise.15 The fourth test, identified as the
1970 SIBYL Echo Test, was conducted using the SIBYL facility.

The 1966 and 1968 Laboratory Echo Tests and the 1970 SIBYL
Echo Tests were designed to study subjective reaction at short echo
delays ( <100 ms) such as might be encountered on long terrestrial
connections. The 1970 Laboratory Echo Test considered the effects of
long delays that might be encountered on connections using one- and
two -hop synchronous -orbit satellite connections.

4.1 1966 laboratory echo test

The test conducted in 1966 to determine subjective reaction to
talker echo utilized the test system shown in block diagram form on
Fig. 10. This system provided (i) a fixed sidetone path with a loudness
loss of about 9 dB, (ii) an echo path by means of which the subject
heard his own voice delayed in time and attenuated under control of
the experimenter, and (iii) a transmission path from the test adminis-
trator to the subject that had a loudness loss of 14 dB. (Transmission
from the subject to the test administrator was obtained by means of
an intercom system.) The administrator and subject were located in
separate rooms for which the ambient room noise was about 35 dB (A),
presumably sufficiently low so as to not affect subjects' ratings.
Circuit noise was held constant at 28 dBrnC.

The subject was first given four practice conditions to illustrate the
range of transmission quality. Then the actual test conditions were
presented. The test incorporated 30 conditions, five different values of

TRANSMITTER

IN
SUBJECT'S
HANDSET

SIDE ONE
PATH

ECHO PATHr
VARIABLE I I VARIABLE I

I LOSS I I DELAY I

RECEIVER

EXPERIMENTER'S
HANDSET

EXPERIMENTER'S
CIRCUIT

Fig. 10-Test system for the 1966 and 1968 laboratory echo tests.
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echo -path delay each with six different values of echo -path loudness
loss. These conditions were presented in random order and each
subject evaluated each condition once.

At the beginning of each test session, a subject was seated in the
test room and given general instructions for the test by the adminis-
trator speaking over the system of Fig. 10. The administrator's talking
level was held constant. For each of the selected test conditions, the
administrator spoke phonetically balanced sentences with the subject
repeating each sentence immediately afterward. This continued until
the subject arrived at a rating (excellent, good, fair, poor, un-
satisfactory) for the test condition. Then the next condition was
administered.

The test conditions and the results obtained for the 29 -member
subject group are given in Table XI. These results show that for any
given echo -path delay, the transmission quality improves with in-
creasing echo -path loudness loss. Also, the data indicate that for any
given echo -path loudness loss, the transmission quality is degraded
with increasing echo -path delay.

4.2 1968 laboratory echo test

This test, conducted in 1968, was designed on the basis of results
obtained in the 1966 Laboratory Echo Test. The test system was the
same as discussed in the preceding section.

Side tone path loudness loss was constant at 12 dB. Ambient room
noise was about 35 dB (A).

The test incorporated 93 conditions. Three of these were base con-
ditions at three different circuit -noise levels. The remaining 90 condi-
tions represented various combinations of circuit -noise level, echo -path
delay, and echo -path loudness loss. These conditions were arranged in
random order and presented to each test subject in two sessions to
avoid subject fatigue.

The procedure for each subject followed that discussed in Section
4.2 except that only three practice conditions were used.

The test conditions and the results obtained for the 30 -member
subject group are given in Table XII. These test results are reported
in part 1 of Annex 4 to Question 6/XII in Ref. 19.

4.3 1970 laboratory echo test

Tests to determine subjective reaction to echo on circuits with echo -
path delays of 0 ms, 65 ms, 600 ms, and 1200 ms were conducted in
1970. The tests consisted of a total of 25 conditions, many of which
included echo suppressors. One condition at 0 ms, five conditions at
600 ms, and four conditions at 1200 ms did not employ echo sup -
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Table XI -1966 laboratory echo -test results

Echo Path Percent of Subjects' Votes in Each Category

Delay
(ms)

Loudness Loss
(dB) Excel. Good Fair Poor Unsat.

20 10 3.5 3.5 41.3 37.9 13.8
15 0 10.3 48.3 37.9 3.5
20 6.9 27.6 51.7 13.8 0
25 41.4 48.3 10.3 0 0
30 44.8 48.3 6.9 0 0
35 51.6 44.9 0 3.5 0

36 16.5 3.5 3.5 24.0 55.2 13.8
21.5 3.5 20.7 20.7 51.6 3.5
26.5 10.3 58.6 27.6 3.5 0
31.5 20.7 58.6 17.2 3.5 0
36.5 41.3 51.7 3.5 3.5 0
41.5 62.0 31.0 3.5 3.5 0

56 26 3.5 3.5 55.1 34.4 3.5
31 10.3 17.3 51.7 20.7 0
36 10.3 34.5 51.7 3.5 0
41 24.1 48.3 27.6 0 0
46 51.7 41.3 3.5 0 3.5
51 55.2 41.3 0 0 3.5

72 29 3.5 6.9 37.9 51.7 0
34 0 31.0 51.7 17.2 0
39 0 48.3 48.2 3.5 0
44 20.7 51.7 27.6 0 0
49 41.4 37.9 20.7 0 0
54 44.7 48.3 3.5 3.5 0

90 34 0 10.3 48.3 37.9 3.5
39 6.9 31.0 48.3 10.3 3.5
44 10.3 48.3 41.4 0 0
49 24.1 58.7 10.3 6.9 0
54 41.4 44.8 13.8 0 0
59 55.2 41.3 3.5 0 0

pressors. Results for these conditions were used in deriving the echo
model.

The test system, shown on Fig. 11, provided for two-way conversa-
tion between pairs of subjects. The two ends of the test system were
located in separate, acoustically treated rooms for which the ambient
room noise was about 38 dB(A). Each subject was able to hear his
own voice by means of (i) a side tone path with loudness loss of 12 dB
and (ii) an echo path.

One hundred pairs of subjects participated in the tests; 50 of these
evaluated the 600 -ms delay case, the other 50 evaluated the 1200 -ms
delay case. The two members of a pair (they were acquainted) were
located in the two separate test rooms. Prior to a test session, they
were instructed that they should discuss a subject of mutual interest
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Table XII -1968 laboratory echo -test results -30 ratings
(subjects) per condition

Circuit
Noise

(dBrnC)

Echo Path Percent of Subjects' Votes in Each Category

Delay
(ms)

Loudness
Loss
(dB)

Excel. Good Fair Poor Unsat.

18.0 - 100 63.4 30.0 3.3 0 3.3

18.0 1.5 0.4 3.3 33.3 36.7 23.4 3.3
5.4 26.7 43.3 23.3 6.7 0

10.4 33.3 46.7 10.0 10.0 0
15.4 60.0 26.7 13.3 0 0
20.4 33.3 46.7 13.3 6.7 0
25.4 63.3 36.7 0 0 0

18.0 20.0 5.5 0 3.3 3.3 23.4 70.0
10.5 3.3 0 13.3 40.0 43.4
15.5 0 10.0 36.7 23.3 30.0
20.5 33.3 30.0 16.7 13.3 6.7
25.5 36.7 36.7 23.3 3.3 0
30.5 26.7 56.7 6.6 10.0 0

18.0 56.0 15.6 0 0 6.7 33.3 60.0
20.6 0 0 10.0 36.7 53.3
25.6 3.3 6.7 26.7 36.6 26.7
30.6 3.3 20.0 40.0 33.4 3.3
35.6 20.0 43.3 26.7 10.0 0
40.6 33.3 46.7 16.7 0 3.3

18.0 90.0 24.5 0 0 6.7 40.0 53.3
29.5 3.3 10.0 20.0 36.7 30.0
34.5 3.3 13.3 43.3 36.8 3.3
39.5 23.3 26.7 16.7 30.0 3.3
44.5 30.0 40.0 23.4 3.3 3.3
49.5 50.0 40.0 10.0 0 0

28.0 - 100 26.6 60.0 6.7 6.7 0

28.0 1.5 0.4 3.3 26.8 43.3 13.3 13.3
5.4 10.0 43.3 40.0 6.7 0

10.4 16.7 56.7 20.0 6.6 0
15.4 16.7 56.7 16.7 6.6 3.3
20.4 6.7 56.7 30.0 3.3 3.3
25.4 23.3 60.0 13.4 0 3.3

28.0 10.0 3.0 0 3.4 23.3 33.3 40.0
8.0 0 3.3 43.3 36.7 16.7

13.0 3.3 20.0 33.3 26.7 16.7
18.0 20.0 56.7 13.3 3.3 6.7
23.0 3.3 46.7 43.3 6.7 0
28.0 10.0 60.0 26.7 3.3 0

28.0 20.0 5.5 0 0 13.3 33.3 53.4
10.5 3.3 6.7 33.3 26.7 30.0
15.5 10.0 3.3 23.3 43.4 20.0
20.5 3.3 23.4 60.0 10.0 3.3
25.5 13.3 56.7 23.3 0 6.7
30.5 10.0 56.7 23.3 6.7 3.3
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Table XII-Continued

Circuit
Noise

(dBrnC)

Echo Path Percent of Subjects' Votes in Each Category

Delay
(ms)

Loudness
Loss
(dB)

Excel. Good Fair Poor Unsat.

28.0 36.0 11.0 0 0 10.0 16.7 73.3
16.0 0 0 6.7 33.3 60.0
21.0 0 0 26.7 50.0 23.3
26.0 3.3 20.0 60.0 16.7 0
31.0 6.7 50.0 33.3 6.7 3.3
36.0 13.3 60.0 20.0 6.7 0

56.0 15.6 0 3.3 10.0 20.0 66.7
20.6 3.3 0 6.7 36.7 53.3
25.6 0 3.3 40.0 30.0 26.7
30.6 0 13.3 50.0 33.4 3.3
35.6 3.3 46.7 36.7 13.3 0
40.6 16.7 50.0 33.3 0 0

72.0 21.5 3.3 3.3 6.7 33.3 53.4
26.5 0 0 13.3 63.4 23.3
31.5 3.3 3.3 33.4 40.0 20.0
36.5 6.7 36.6 43.3 6.7 6.7
41.5 6.7 36.6 46.7 10.0 0
46.5 23.3 56.7 13.3 6.7 0

90.0 24.5 0 0 3.3 33.3 63.4
29.5 3.3 0 26.7 50.0 20.0
34.5 6.7 23.4 33.3 33.3 3.3
39.5 6.7 30.0 46.6 16.7 0
44.5 3.3 46.7 43.3 6.7 0
49.5 10.0 50.0 36.7 0 3.3

38.0 - 100 0 26.7 53.3 13.3 6.7

38.0 1.5 0.4 3.3 0 26.7 46.7 23.3
5.4 0 3.3 30.0 53.4 13.3

10.4 0 26.7 50.0 13.3 10.0
15.4 3.3 26.7 50.0 20.0 0
20.4 0 13.3 56.7 20.0 10.0
25.4 6.7 10.0 40.0 40.0 3.3

20.0 5.5 0 0 3.3 20.0 76.7
10.5 0 0 3.3 36.7 60.0
15.5 0 3.3 20.0 43.4 33.3
20.5 0 6.7 43.3 43.3 6.7
25.5 6.7 13.3 46.7 23.3 10.0
30.5 0 6.7 60.0 20.0 13.3

56.0 15.6 0 0 3.3 26.7 70.0
20.6 0 0 3.3 46.7 50.0
25.6 0 0 20.0 53.3 26.7
30.6 0 0 53.4 43.3 3.3
35.6 6.7 16.7 40.0 33.3 3.3
40.6 0 13.3 46.7 30.0 10.0

90.0 24.5 0 0 13.3 36.7 50.0
29.5 0 0 16.7 53.3 30.0
34.5 0 13.3 36.7 43.3 6.7
39.5 0 23.3 40.0 36.7 0
44.5 6.7 26.7 40.0 23.3 3.3
49.5 3.3 23.3 56.7 10.0 6.7
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Fig. 11 -Test system for the 1970 laboratory echo test.

over the system and told that each test condition would require about
4 minutes of conversation, at the end of which they should separately
rate the condition on the 5 -point scale : excellent, good, fair, poor, and
bad. (These categories were further subdivided into undesignated
thirds, resulting in a 15 -point scale.)

The test conditions and results are given in Table XIII and are also
reported in Part III of Annex 5 to Question 6/XII in Ref. 19. As with
tests discussed earlier, these results show that (i) at a given echo -path

Table XIII -1970 laboratory echo -test results -Approximately
100 ratings (subjects) per condition
Connection loudness loss = 18 dB

Side tone -path loudness loss = 12 dB
Circuit noise = 33 dBrnC

Echo Path Percent of Subjects' Votes in Each Category

Delay
(ms)

Loudness Loss
(dB) Excel. Good Fair Poor Unsat.

- 33.0 9.0 49.0 34.0 8.0 0.0

600 33.0 1.0 1.0 2.0 17.6 78.4
43.0 2.0 10.8 19.6 39.2 28.4
53.0 3.9 36.3 44.1 11.8 3.9
63.0 6.9 47.1 28.4 16.6 1.0
73.0 6.0 44.0 42.0 6.0 2.0

1200 43.0 1.0 5.0 19.0 38.0 37.0
53.0 6.0 29.0 40.0 19.0 6.0
63.0 4.0 45.0 36.0 14.0 1.0
73.0 7.0 39.0 39.0 13.0 2.0
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delay, transmission quality improves with increasing echo -path loud-
ness loss, and (ii) at a given echo -path loudness loss, transmission
quality is degraded with increasing echo -path delay.

4.4 1970 SIBYL echo test

An echo test was conducted in early 1970 using SIBYL. The purpose
of the test was to enable comparison of results obtained from subjects
conversing on actual telephone calls to results obtained under labora-
tory conditions. The results of tests reported in Section 4.2 were used
to guide selection of the conditions for the 1970 SIBYL echo test.

Forty-five subjects participated in these tests. Procedures followed
by the subjects were the same as those for the loss -noise tests reported
in Section 3.3.

Test variables were echo -path delay (three values) and echo -path
loudness loss (five values for each delay). In addition, a condition
without echo was included as a reference.

Connection loudness loss was 10 dB, the base condition for the
Holmdel SIBYL tests reported in Sections 3.2 and 3.3. Circuit noise
was 30 dBrnC. Side tone path loudness loss was about 12 dB and
average room noise was estimated to be about 42 dB(A).

The test conditions and results are given in Table XIV. As with
results of echo tests discussed in preceding sections, these results show
that transmission quality is strongly dependent on echo -path delay
and echo -path loudness loss.

V. ANALYSIS OF INDIVIDUAL TEST DATA

The raw test results from any individual test provide subjective -
opinion information expressible in the form of percent of ratings in
each of the five rating categories for each test condition. The utilization
of these raw test results in this form for transmission planning is
difficult because it is usually necessary to have ratings available for
transmission parameter values not specifically included in the tests.
Thus, some form of data analysis is frequently applied to obtain
graphical or analytical representations of the data that are more
convenient for use in transmission planning studies. This can involve
simple curve fitting to the raw test data5,6 or more elaborate models of
subject ratings using binomial or other distributions."

For example, Lewinski in Ref. 5 provides separate "smooth" fits
for the percentage of responses in the categories excellent, good or
better, fair or better, and poor or better as a function of circuit noise.
Similarly Sen in Ref. 6 provides mathematical expressions and contours
for the percent good or better and percent poor or worse as a function
of connection loss and noise. A different approach is suggested by
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Table XIV-1970 SIBYL echo test
Connection loudness loss = 10 dB

Circuit Noise = 30 dBrnC

Echo Path

Delay
(ms)

Loudness
Loss
(dB)

10.0

36.0

72.0

00

5.8
10.8
15.8
20.8
25.8

14.4
19.4
24.4
29.4
34.4

22.4
27.4
32.4
37.4
42.4

Number
of

Ratings

183

51
23
38
45
41

38
37
51
31
46

35
20
34
33
46

Percent of Subjects' Votes in Each Category

Excel. Good Fair Poor Unsat.

32.2 36.6 24.6 5.5 1.1

0 15.7 29.4 47.1 7.8
0 8.7 30.4 47.8 13.1

15.8 21.0 39.5 21.0 2.7
8.9 53.3 20.0 13.3 4.5

19.5 51.2 29.3 0 0

0 2.6 18.4 50.0 29.0
2.7 0 29.7 37.9 29.7

11.8 35.3 23.5 23.5 5.9
6.4 35.6 25.8 25.8 6.4

19.6 36.9 28.3 13.0 2.2

0 2.9 2.9 65.7 28.5
10.0 0 15.0 60.0 15.0
5.9 8.8 29.4 38.2 17.7

12.1 24.2 30.4 24.2 9.1
13.1 47.8 30.4 6.5 2.2

Prosser, Allnatt, and Lewis in Ref. 20 where they point out that five
separate mathematical functions can be specified, one for each grade
on the rating scale, but advocate the desirability of a more convenient
and compact representation by means of a single mathematical model
that embraces all five functions. They examined various models based
on the binomial distributions as well as logistic and gaussian curves.
They adopted the second -order binomial as the simplest adequate
model to describe the opinion distribution found in their experiment.

We also recognized the advantages of a single mathematical model
to represent the distribution of opinion in the five rating categories.
The normal density curve was selected as a basis for the model
described in the following sections because it provided somewhat
greater flexibility in accommodating a variety of standard deviations.
Because of the availability of digital computers for the data analysis,
the additional computational complexity associated with the normal
distribution was not judged to be a problem.

5.1 Analysis method

The subjective -test results for each test condition of connection
loudness loss, L,, and circuit noise, N, form a vote histogram containing

1346 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976



the proportion, Pi, of ratings for each of the rating categories, i = 1,
2, 3, 4, 5. Rating category 1 represents the unsatisfactory category, 2
represents poor, 3 represents fair, 4 represents good, and 5 represents
excellent.

The Pi's for each test condition sum to unity.
The values of Pi for each test condition were used to calculate the

mean opinion score (Mos) and sample standard deviation (siumos) as
in eqs. (4) and (5), respectively.

5

MOS = E iPi
isl

SIGMOS = [ E i2Pi - (mos)2]
i=1

The vote histogram was represented by a normal density curve with
mean, At, and standard deviation, CI. The area under this curve was
divided into five regions, each with area Pi. The areas were defined as
follows : from minus infinity to 1.5 as P1, from 1.5 to 2.5 as P2, from
2.5 to 3.5 as P3, from 3.5 to 4.5 as P4, and from 4.5 to infinity as P5;
the Pi's sum to unity. This quantization of the area under the normal
curve into five discrete regions was the basis for using the normal curve

(4)

100

80

A
60

t-
z
w
U
cc
w

40

20

00

1 2 3 4

MEAN, OF A NORMAL-DENSITY CURVE

Fig. 12-MH loss -noise test data percentages as a function of the Step 3 normal -
density means compared with percentages predicted using the MH standard devia-
tion, 1.44.

DATA
 U
O U + P
 U+P+F
O U+P+F+G

(5)
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Fig. 13-1101 loss -noise test data percentages as a function of the Step 3 normal -
density means compared with percentages predicted using the 1101 standard devia-
tion, 1.02.

k

to represent this type of data. These Pi's were used to compute the
pseudo mean opinion scores (MOSQ) and sample standard deviations
(SIGMOSQ) in terms of the mean, p., and standard deviation, a-, of the
normal curve as given in eqs. (6) and (7), respectively.

5 4 1

MOSQ = E iP, = 5 - E
f CI -I -0.5-0k t2

exp( - dt] - (6)
i=1 1 = 1 WT J -Go

SIGMOSQ = [ t i2 P1 - (mosQ)2y
i-1

= I-- 4
25 i 2 j + 1 ri-1-1"-A) Pr

exp 1- .2 ) Cid
L -Nr-Tr I-.i=1

i
- (MOSQ)2 (7)

Step 1 in the four -step analysis was to find a normal density curve
for each test condition such that mos = mosQ and SIGMOS = SIGMOSQ.
These two constraints were used in an iterative computer procedure
to determine the values of the mean, A, and standard deviation, a, of
the normal density curve used to represent the data for each test
condition.
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Three other criteria were considered in the determination of a
normal density curve during the development of this analysis pro-
cedure. One criterion was to determine and o- such that the propor-
tions good or better (P4 + P5) and poor or worse (P1 + P2) were the
same for the data and the normal curve. Another was to determine
and CT to minimize the sum of the squares of the differences between
P1 and Pi, PI + P2 and Pi + P2, PI ± P2 ± P3 and Pi + P2 + P3,
and finally P1 + P2 + P3 + P4 and P1 + P2 + P3 + P4. The third
criterion was to determine ti and a to minimize the sum of the square
of the differences Pi - Pi, i = 1, 2, , 5. The selection of mos = mosc2
and SIGMOS = SIGMOSQ was chosen as the general criterion of fit, since
the other criteria were found to be more sensitive to the experimental
variability inherent in subjective data of this type, particularly when
the number of subjects used is small (less than about 100). This
selection was made after applying the several analysis criteria to several
hundred sets of test data generated by Monte Carlo simulation.

After all the test conditions were represented by a normal density
curve with mean, 12, and standard deviation, a, an average of the stan-
dard deviations for all of the test conditions was computed in Step 2.
In determining this average, the individual a's were weighted in
accordance with the number of votes per condition and by the weight -

100

80

60

z
w

ec
w

40

20

2 3 4

MEAN, A, OF A NORMAL-DENSITY CURVE

Fig. 14-H02 loss -noise test percentage as a function of the Step 3 normal -density
means compared with percentages predicted using 1102 standard deviation, 0.998.

DATA

A U
O U + P

U+P+F
O U+P+F+G
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MEAN, p,, OF A NORMAL -DENSITY CURVE

Fig. 15-1968 laboratory echo data percentages (noise= 18 dBrnC) as a function
of the Step 3 normal -density means compared with percentages predicted using the
echo standard deviation, 0.888.

ing given in eq. (8). This latter weighting was based on the analyses
of the Monte Carlo data mentioned previously by examining the
variations in the standard deviations as a function of the fit mean, /2.

Weighting = [ (8)
1 + (A - 3)2

2

1 3

The weighted average standard deviation, a., was then used in
Step 3 as the standard deviation for all of the normal density curves.
Using ga, a new mean, tia, was computed for each test condition subject
to the constraint, mos = most?. The end result was a family of normal
density curves, all with the same standard deviation and with means
as determined above.

Figures 12 to 19 illustrate the results from the first three steps in
the procedure for several of the tests described in this paper. In these
figures the cumulative percent of ratings in four categories-unsatis-
factory, unsatisfactory plus poor, unsatisfactory plus poor plus fair,
unsatisfactory plus poor plus fair plus good-are plotted against the
fit mean, A., determined in Step 3. The solid curves are plotted using
the weighted average standard deviation, cra, from Step 2. Also shown
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are the raw data plotted against the respective fit mean, A., for each
condition. These figures show that the normal density curves defined
by the values, tia, and an average standard deviation, cr., provide
a convenient and simple representation of the raw data for any
single test.

In Step 4, the means of all the normal curves are fitted by a suitable
analytical function of the test parameters using a least -squares -fit
technique.

In summary, the steps involved in the analysis procedure can be
described as follows :

Step 1. A normal density curve is used to represent the vote histo-
gram for each test condition such that mos = mos..) and
SIGMOS = SIGMOSQ.

Step 2. The standard deviations of the normal curves of Step 1 for
all test conditions under consideration are weighted and
averaged to obtain a single value for the standard devi-
ation, aa.

Step 3. The single value of standard deviation from Step 2 is used
for each test condition as the standard deviation of the

100

70

60

z
w
cc

40

20

0 1 2 3 4

MEAN, µ, OF A NORMAL-DENSITY CURVE

Fig. 16-1968 laboratory echo data percentages (noise=28 dBrnC) as a function
of the Step 3 normal -density means compared with percentages predicted using the
echo standard deviation, 0.888.
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Fig. 17-1968 laboratory echo data percentages (noise= 38 dBrnC) as a function
of the Step 3 normal -density means compared with percentages predicted using the
echo standard deviation, 0.888.
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Fig. 18-SIBYL echo data percentages as a function of the Step 3 normal -density
means compared with percentages predicted using the echo standard deviation, 0.888.
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Fig. 19-1970 laboratory echo data percentages as a function of the Step 3 normal -
density means compared with percentages predicted using the echo standard devia-
tion, 0.888.

corresponding normal curve, and the mean of the normal
curve, µa, is adjusted such that mos = mosci.

Step 4. The means of all normal curves of Step 3 are fitted, on a
least -squares -error basis, to an appropriate function of the
test parameters.

The results at each step of this analysis are summarized in Table
XV for H02 loss/noise data.

In this table, the results presented for Step 4 are based on the
analytical function [eq. (11) in the next section] fitted in Step 4.
Comparison of the entries for Step 4 with the entries for the previous
steps illustrate the extent to which this analytical function provides
a good fit to the test results. For this test, all of the fit means in Step 4
are within approximately 0.2 of the fit means in Step 3. The individual
differences have a mean of 0.035 and a standard deviation of 0.13.
This agreement is considered reasonable in view of the average stan-
dard deviation of 0.998 and about 50 to 70 ratings per condition. Some-
what larger differences were obtained in the MH and 1101 tests where
the number of ratings per test condition was smaller.

5.2 Loss -noise analysis

The results obtained by applying the analysis method to the data
from the three loss/noise tests are given in eqs. (9), (10), and (11),
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Table XV-Summary of results for H02 loss -noise test
at each step in the analysis procedure

FitStep
in

Percentage of Votes Mean
Opinion
Score*

Standard
Deviation*

Fit
Mean

Fit
Sigma

Excel. Good Fair Poor 1
Unsat.

Test Condition 1, Loss = 5 dB, Noise = 25 dBrnC

Raw Data 49.49 35.35 13.13 0.00 2.02 4.303 0.846 - -
Step 1 51.54 30.94 14.15 3.05 0.32 4.303 0.846 4.543 1.117
Step 2 51.71 33.48 12.77 1.92 0.11 4.348 0.782 4.543 0.998
Step 3 49.16 34.51 13.96 2.23 0.14 4.303 0.801 4.479 0.998
Step 4 50.00 34.18 13.56 2.12 0.13 4.318 0.795 4.500 0.998

Test Condition 2, Loss = 10 dB, Noise = 25 dBrnC

Raw Data 47.23 40.62 10.20 1.26 0.68 4.325 0.762 - -
Step 1 48.79 36.59 12.98 1.57 0.06 4.325 0.762 4.472 0.923
Step 2 48.88 34.61 14.10 2.26 0.15 4.298 0.803 4.472 0.998
Step 3 50.40 34.02 13.38 2.07 0.13 4.325 0.792 4.510 0.998
Step 4 50.00 34.18 13.56 2.12 0.13 4.318 0.795 4.500 0.998

Test Condition 3, Loss = 20 dB, Noise = 25 dBmC

Raw Data 14.00 26.00 40.00 18.00 2.00 3.320 0.989 - -
Step 1 11.81 31.46 36.85 16.75 3.14 3.320 0.989 3.333 0.985
Step 2 12.11 31.24 36.45 16.88 3.31 3.320 0.998 3.333 0.998
Step 3 12.11 31.24 36.45 16.88 3.31 3.320 0.998 3.333 0.998
Step 4 12.26 31.38 36.37 16.73 3.26 3.326 0.998 3.340 0.998

Test Condition 4, Loss = 30 dB, Noise = 25 dBrnC

Raw Data 3.23 3.23 32.26 35.48 25.81 2.226 0.974 - -
Step 1 1.26 8.78 27.39 36.40 26.16 2.226 0.974 2.166 1.043
Step 2 0.97 8.10 27.83 37.88 25.23 2.217 0.946 2.166 0.998
Step 3 0.99 8.24 28.04 37.82 24.91 2.226 0.947 2.176 0.998
Step 4 1.03 8.43 28.34 37.73 24.47 2.238 0.949 2.190 0.998

Test condition 5, Loss = 5 dB, Noise = 32 dBrnC

Raw Data 27.14 35.71 31.43 5.71 0.00 3.843 0.889 - -
Step 1 25.24 40.95 27.16 6.17 0.48 3.843 0.889 3.885 0.922
Step 2 26.89 38.13 26.72 7.42 0.84 3.828 0.938 3.885 0.998
Step 3 27.45 38.19 26.35 7.20 0.80 3.843 0.935 3.902 0.998
Step 4 25.42 37.91 27.70 8.02 0.95 3.788 0.945 3.840 0.998

Test condition 6, Loss = 10 dB, Noise = 32 dBrnC

Raw Data 18.97 39.66 32.76 6.90 1.72 3.872 0.917 - -
Step 1 19.46 39.06 31.65 8.93 0.89 3.672 0.917 3.700 0.929
Step 2 21.14 36.80 30.60 10.09 1.37 3.682 0.965 3.700 0.998
Step 3 21.46 36.91 30.38 9.91 1.34 3.672 0.963 3.711 0.998
Step 4 27.72 38.22 26.17 7.10 0.79 3.850 0.933 3.910 0.998

Test condition 7, Loss = 20 dB, Noise = 32 dBrnC

Raw Data 4.69 6.25 48.44 34.38 6.25 2.688 0.884
Step 1 1.40 14.76 42.65 33.60 7.59 2.688 0.864 2.684 0.826
Step 2 3.44 17.24 36.64 30.91 11.77 2.697 0.999 2.684 0.998
Step 3 3.37 17.03 36.53 31.11 11.97 2.687 0.999 2.674 0.998
Step 4 5.44 21.94 38.19 26.39 8.03 2.904 1.007 2.900 0.998
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Table XV - Continued

Step in the
Fit Process

Percentage of Votes

Excel. I Good Fair Poor I Unsat.

Mean
Opinion
Sccre*

Standard
Deviation*

Fit
Mean

Fit
Sigma

Test condition 8, Loss = 30 dB, Noise = 32 dBrnC

Raw Data 1.92 7.69 15.38 51.92 23.08 2.135 0.920 - -
Step 1 0.67 6.66 25.95 38.87 27.85 2.135 0.920 2.076 0.981
Step 2 0.76 6.92 25.87 38.26 28.19 2.138 0.931 2.076 0.998
Step 3 0.75 6.87 25.78 38.27 28.33 2.135 0.930 2.072 0.998
Step 4 0.45 4.89 21.72 38.15 34.80 1.980 0.895 1.890 0.998

Test condition 9, Loss = 5 dB, Noise = 42 dBmC

Raw Data 11.32 11.32 35.85 33.96 7.55 2.849 1.088 - -
Step 1 6.83 20.85 34.25 26.55 11.51 2.849 1.088 2.839 1.116
Step 2 4.80 20.59 37.91 27.72 8.98 2.845 1.005 2.839 0.998
Step 3 4.84 20.67 37.93 27.63 8.92 2.849 1.005 2.843 0.998
Step 4 5.23 21.50 38.11 26.83 8.34 2.884 1.006 2.880 0.998

Test condition 10, Loss = 10 dB, Noise = 42 dBrnC

Raw Data 17.53 17.53 32.99 24.74 7.22 3.134 1.181 - -
Step 1 14.29 24.81 30.53 20.76 9.60 3.134 1.181 3.150 1.265
Step 2 8.81 27.48 37.97 20.83 4.91 3.144 1.005 3.150 0.998
Step 3 8.63 27.24 38.02 21.07 5.03 3.134 1.006 3.139 0.998
Step 4 7.45 25.51 38.30 22.83 5.90 3.058 1.007 3.060 0.998

Test condition 11, Loss = 20 dB, Noise = 42 dBmC

Raw Data 4.35 10.87 19.57 41.30 23.91 2.304 1.081 - -
Step 1 2.92 11.45 26.35 31.67 27.61 2.304 1.081
Step 2 1.11 8.82 28.91 37.54 23.82 2.262 0.953 2.217 0.998
Step 3 1.25 9.51 29.86 37.16 22.23 2.304 0.960 2.263 0.998
Step 4 1.24 9.46 29.79 37.18 22.32 2.301 0.959 2.260 0.998

Test condition 12, Loss = 30 dB, Noise = 42 dBmC

Raw Data 0.00 0.00 25.00 0.00 75.00 1.500 0.866 - -
Step 1 0.98 3.30 9.20 17.76 68.75 1.500 0.866 0.705 1.626
Step 2 0.01 0.25 3.35 17.68 78.71 1.252 0.521 0.705 0.998
Step 3 0.05 1.06 8.84 28.93 61.12 1.500 0.705 1.218 0.998
Step 4 0.12 1.98 13.00 33.70 51.20 1.661 0.786 1.470 0.998

* Mean opinion score and standard deviation are calculated from the percentage of votes given in
each table for the corresponding step in the fit process.

respectively, for the MH, H01, and H02 tests.

Awn = 11.54 - 0.10991Le - 11.71 - 0.168N1 - 0.001059LeNI

0- = 1.44, (9)

= 7 - 0.13651L, - 10.311 - 0.1219N2 0.001577LeN2
0- = 1.02, (10)

AiHo2 = 7.17 - 0.16811Le - 6.71 - 0.1058N3 0.002106L.N3
0- = 0.998, (11)
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where

Le = Acoustic -to -acoustic loudness loss (in dB) of an overall tele-
phone connection, determined using the Electro-Acoustic
Rating System (EARS) method.

N = Circuit noise (in dBrnC) at the input to a set with a receive -
loudness rating of 26 dB, determined using the EARS method.

N1 = Total noise in dBrnC resulting from power addition of the
circuit noise, N, from the MH tests with 34.03 dBrnC.

N2 = Total noise in dBrnC resulting from power addition of the
circuit noise, N, from the 1101 tests with 23.76 dBrnC.

N3 = Noise, N from the 1102 tests.

The values 34.03 and 23.76 were determined as fit parameters. The
particular functional form was selected to provide as simple a model
as possible of the systematic effects observed in the data.

The results represented by eqs. (9), (10), and (11) revealed two
important differences between the MH and HO tests. First, the
standard deviation, o, was considerably larger for the MH tests than
for either 1101 or 1102. Second, the subjective opinions, as represented
by the means, /.1, calculated from eqs. (9), (10), and (11) were con-
siderably higher in the MH test compared with the HO tests. These
differences occurred despite the similarities of the tests. A careful
examination of either the raw data or the smooth results clearly shows
that the subjects' ratings tended to be more critical in the two HO
tests compared with the subjects in the MH test.

A clearer picture of the differences is obtained by selecting a set of
loss (Le) and circuit noise (N) values over a common range of the
tests for MH, 1101, and 1102 and computing the corresponding values
of the means (A) for the three tests from eqs. (9), (10), and (11). If
plots are made of the MH means versus both the 1101 and 1102
means and the appropriate linear regression made for both plots, then
eqs. (12) and (13), respectively, represent the regression line between
the MH and 1101 means and the MH and 1102 means. Such a plot
is shown in Fig. 20 for MH and 1101.

aumn = 1.372AH01 - 0.206. (12)

Arvin = 1.288;4102 - 0.215. (13)

The Pearson product moment coefficient of correlation was found to
be 0.9586 and 0.9693 for MH with 1101 and 1102, respectively. Eqs.
(12) and (13) clearly show the difference between the means for the
MH and the two HO tests. These equations also show the close
agreement between the two Holmdel tests.
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Fig. 20-Comparison of 1965 Murray Hill and 1969 Holmdel 1 loss -noise results.

Equations (12) and (13) are used to adjust for the difference be-
tween the HO results and the MH results in Section VI of this paper.

5.3 Echo analysis

The four echo subjective tests yielded data on the subjective effects
of echo -path loudness loss, E, in dB and echo -path delay, D, in ms.
Circuit noise, N, was not the same for all four tests, and needed to be
considered as a test variable. Loudness loss, L., was a factor in only
two of these tests (the other two were listening only tests) and, as a
first approximation, it was decided to ignore L. and concentrate on E,
D, and N in the analysis.

Preliminary analyses of the individual test data indicated that there
were only relatively small differences in the absolute ratings among the
1968-1970 tests. Thus, it was feasible to combine these data and use
the analysis method described previously. The resulting equation
relating the normal density means to the test variables, as realized
at Step 4 in the analysis, was a function of E, D, and N, where N for
this preliminary analysis was the actual noise at the telephone set
terminals. The effect of noise was asymptotic. That is, the fit mean, A,
was determined largely by the values of E and D when echo was the
predominant impairment, while, for any value of D, increasing the
value of E gradually led to the mean being solely determined by the
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value of N. This asymptotic effect of the noise made it relatively simple
to separate the effects of noise and echo in the function depicting the
mean as a function of the test variables. The resulting functions are
given in eq. (14).

AE1 = 4.74 - 3.32 logic, [(1 D)/41 + (D/480)2] + 0.1414E
= 6.38 - 0.094N

ALE ± I (ALE

2

= 0.888.

,, 2

2
+ (0.627)2 (14)

Although these functions were a useful interim result, subsequent
analysis described in the later sections of this paper indicated that
when the effects of both loss and noise were included and the noise was
referred to the input of a reference set, further modifications were
necessary. These functions are included here because they provided a
basis for the subsequent modifications.

VI. COMBINATION OF MODELS

The results of the three loss -noise tests as given by eqs. (9), (10),
and (11) showed fundamental differences among the tests. Despite
the similarity of the tests and the general character
both the raw data and the smoothed results showed that the subjects'
ratings in the two HO tests tended to be more critical in their evalu-
ations than they were in the MH tests. This could have occurred
because of one or more differences in the tests, such as room noise,
sidetone path loss, year of test, or some fundamental difference in the
attitude of the subject groups. The frequent repetition of high -quality
conditions in the Holmdel tests may also have been a factor.

The exact reasons for the differences in the test results could not
be determined. Because of these differences, direct pooling of results
from the three tests did not appear to be justifiable. However, the
test results were combined by adjusting the H01 and 1102 results to
a MH base using the linear transformation obtained from the linear
regressions introduced previously in eqs. (12) and (13). In this way,
the systematic differences among the test results were preserved, while
achieving the advantages of a larger data base. The transformed means
were then included with the MH means, and a new equation was
obtained by applying Step 4 to this combined set of means. Table XVI
shows the fit means at Step 3 for the MH, 1101, and 1102 test results
and the adjusted fit means for the 1101 and the 1102 test results. Thus,
the final fit was based on a total of 51 conditions. The final result
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is eq. (15).

Amu = 10.36 - 0.1854(L. - 7.2)2 + 1 - 0.1647NF
+ 0.00167LENF, (15)

where

NF = Power addition of noise with 27.37 dBrnC.

6.1 General rating scale

Equation (15) above is calculated in terms of the MH base. This
equation together with eqs. (12) and (13) can be used to express the
representation of the subjective ratings in terms of any one of the
other test bases, H01 or 1102. Each test base has a standard deviation
associated with it that can then be used in conjunction with the
computed means to calculate predicted vote histograms from the
normal density curves. However, if this is done, the fit means and vote
histograms will be different for each test in accordance with the
difference in absolute ratings obtained for each test. To eliminate the
need for three separate equations, one for each test, a general trans-
mission -rating scale was established.

This transmission rating scale, referred to as the R -scale, is simply
a linear transformation of the normal density means, defined by eq.
(15), with the constraints that two preselected transmission conditions
are to be the anchor conditions for the transformation. R -scale values
of 80 and 40, respectively, were selected for the transmission conditions
L. = 15, N = 25, and L. = 30, N = 40. These two transmission con-
ditions were selected to be well separated in quality. The first pair is
typical of a short intertoll connection and the latter represents an
extreme condition of loss and noise that should rarely occur even on
long intertoll connections between long loops.

Using the above transmission conditions as anchors, R -scale values
can be specified in terms of 1.1, for each test through the linear trans-
formation R = a + bi.c, with a and b determined from the anchor
constraints.

6.2 Loss -noise model

From eq. (15), the transmission condition LE = 15, N = 25 yields
Amii = 4.806 and L. = 30, N = 40 yields limii = 1.528. Using these
values of µ, respectively, with R -scale values of 80 and 40 determines
the transformation to the R -scale from the µ scale as given in eq. (16).

R = 21.37 + 12.20AmH. (16)

Substituting eq. (15) for Amg into eq. (16) gives eq. (17), which is
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DATA

 21 dBrnC NOISE
O 28 dBrnC NOISE
O 36 dBrnC NOISE
L1. 44 dBrnC NOISE

CONNECTION LOUDNESS LOSS IN dB

Fig. 21-MIT loss -noise test, Step 3 means from data as a function of loudness loss
and noise compared with means predicted from the loss -noise model at the MH base.

the R -scale representation of the subjective opinion for loss and noise.

RLN = 147.76 - 2.2574(Lo - 7.2)2 + 1 - 2.009NF 0.02037LeNF.
(17)

Equation (17) is plotted in Fig. 1 as transmission rating versus Le for
a selected set of values of N. These curves represent the predicted
transmission rating, in terms of the R -scale, for selected values of
Le and N.

The R -scale result of eq. (17) can also be used in conjunction with
the appropriate standard deviations associated with eqs. (9), (10),
and (11) and the appropriate inverse linear regression lines of eqs.
(12) and (13) to calculate percent good or better, poor or worse, or
other characteristics at the chosen test base.

For the A -scale, the proportion of ratings good or better is the
integral of the standard normal density curve from (3.5 - /.4)/a to
infinity. In the R -scale, this corresponds to the integral of the standard
normal density curve from minus infinity to [R - (a + 3.5b)J/o-b.
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Similar computations can be made for proportion poor or worse, or
for proportions of ratings in any of the five categories. The appropriate
limits of integration to compute the proportion of ratings good or
better and poor or worse are given in Table II for the three loss-noise

test bases (MH, H01, H02).
The above discussion concerning the relationships between the

proportions good or better and poor or worse and the R -scale lead to
the plots of Fig. 4 which show these relationships for the three
test bases.

Finally, the results summarized in Table II were also used to
generate curves showing the tradeoff between L, and N for selected
values of percent good or better and percent poor or worse as shown
in Figs. 6 and 7, respectively. As noted on the figures, these results
correspond to the MH data base.

In Figs. 21 to 23, the third -step fit means for the individual tests
are plotted as a function of loudness loss with circuit noise as a param-
eter. The solid lines in the figure correspond to the values of trans-
mission rating in the final model transformed by the appropriate
relation between A and R for each test. These figures show a generally
good fit to the individual test results for each of the tests.
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DATA
 22 dBrnC NOISE
O 35 dBrnC NOISE
 40 dBrnC NOISE
A 45 dBrnC NOISE

5 10 15 20

CONNECTION LOUDNESS LOSS IN dB
25 30

Fig. 22-H01 loss -noise test, Step 3 means from data as a function of loudness loss
and noise compared with means predicted from the loss -noise model at the H01 base.
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 25 dBrnC NOISE
O 32 dBrnC NOISE

 42 dBrnC NOISE

5 10 15 20

CONNECTION LOUDNESS LOSS IN dB
25 30

Fig. 23-1102 loss -noise test, Step 3 means from data as a function of loudness loss
and noise compared with means predicted from the loss -noise model at the 1102 base.

6.3 Talker -echo model

The R -scale was introduced previously in terms of L. and N. Thus,
it was necessary to use the conversational echo test results which
included both loss and noise as parameters to establish an expression
for the echo results on the R -scale. The 1970 SIBYL test was used as a
basis for this conversion. As indicated in Table XIV, this test included
a base condition with Le = 10 dB and N = 30 dBrnC for which the
fit mean, A, was 4.01. The R -scale value corresponding to this combi-
nation of loss and noise is 83.47. Similarly, the results for the noise
condition in the 1968 lab tests were taken into account but given less
weight because they were obtained in a less realistic test environment.
A further aid in deriving this conversion was the H01 SIBYL test for
loss and noise which preceded the 1970 SIBYL echo test and was
conducted in the same manner with the same subjects. The final
conversion is given in eq. (18) below.

R = 18.7 16.111E1 (18)

This relationship is almost identical to that of the H01 SIBYL tests
at low values of II. However, a slight correction was included for higher
values of A to take account of the base condition in the 1970 SIBYL
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echo test. For the H01 test the value ofµ corresponding to the base
condition (R = 83.47) was 3.86. The relationship in eq. (18) gives a
value of 4.02 and provides good agreement with the actual value of µ
which was 4.01 in the 1970 SIBYL echo tests.

Substituting eq. (14) for PE1 into eq. (18) yields eq. (19) which is
the transmission -rating model for echo.

RE = 95.01 - 53.45 log10 D)/1I1 + (D/480)2] + 2.277E. (19)

Equation (19) is plotted in Fig. 2.
In the analysis above, eq. (19) was derived from eqs. (14) and (18)

to provide excellent agreement for the 1970 SIBYL echo tests. However,
these same relationships did not provide good agreement with the 1970
lab tests which had a higher loss included in all conditions. The base
condition for this test as given in Table XII, with L, = 18 dB and
N = 33 dBrnC (R = 67.36), had a fit mean, µ, of 3.59.

The equation,

R = 20 + 13.33/.1E2, (20)

provided a good match at this point and retained the relationship
between µ and R at low values of p, obtained previously for the SIBYL
echo tests. With the relationship defined by eq. (20), the transmission -
rating model for echo given in eq. (19) provided an excellent repre-
sentation of the results from the 1970 lab test for echo. The extent of
the agreement is illustrated in Section 6.4 where the combined loss -
noise -echo model is discussed.

6.4 Loss -noise -echo model

In the development of the echo results, it was noted that the deg-
radations considered were echo -path -loudness loss (E), echo -path
delay (D), loudness loss (L.), and noise (N). Loss and noise were
eliminated in the final echo result because it was felt that for any
combined result, the loss and noise influence should be based on the
larger data base available from the SIBYL tests.

The original analysis of the echo -loss -noise data showed that the
loss and noise really only affected the circuit performance as an
asymptote. That is, for very large E, the ratings were determined by
L. and N. Use was made of this fact when the echo result of eq. (14)
was developed. The combination of RLN and RE was made such that
this asymptotic behavior was retained in the final model.

The final result for loss, noise, and echo is presented in terms of the
R -scale as RLNE. This final result is shown in eq. (21).

RLN ±
2

RE ( RLN RE )2
RLNE (21)

2
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Fig. 24-1968 laboratory echo test (noise=18 dBrnC, loss=10 dB) Step 3 means
from data as a function of echo -path loss and delay compared with means predicted
from the loss -noise -echo model at the echo 1 base.
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Fig. 25-1968 laboratory echo test (noise= 28 dBrnC, loss=10 dB) Step 3 means
from data as a function of echo -path loss and delay compared with means predicted
from the loss -noise -echo model at the echo 1 base.
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Fig. 26-1968 laboratory echo test (noise= 38 dBrnC, loss=10 dB) Step 3 means
from data as a function of echo -path loss and delay compared with means predicted
from the loss -noise -echo model at the echo 1 base.
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Fig. 27-SIBYL echo test, Step 3 means from data as a function of echo -path loss
and delay compared with means predicted from the loss -noise -echo model at the
echo 1 base.
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Fig. 28-1970 laboratory echo test, Step 3 means from data as a function of echo
path loss and delay compared with means predicted from the loss -noise -echo model
at the echo 2 base.

With C = 0, RLNE is simply the lesser of RLN and RE. The factor C
is selected to represent the additional degradation when RLN and RE
are nearly equal. The value of C = 10 was based on echo tests that
included echo, loss, and noise and was obtained as the product of the
constant, 0.627, in eq. (14) and the slope of the line relating R and IA
given in eq. (18).

The final result in terms of the R -scale is :

RLNE
9 k 2

RLN + RE RLN RE)2 + (10)2. (22)

For high echo -path -loudness loss, the ratio is determined mainly by
connection loudness loss and circuit noise and the result reduces to
the RLN result. Similarly, for connection loudness loss near optimum
and low circuit noise, the rating is determined mainly by the echo, and
the result effectively reduces to the RE result.

Comparison of the final model for loss, noise, and echo with the
third -step -fit means for the individual tests are shown in Figs. 24 to
28. As in the case of the loss -noise model, the final loss -noise -echo model
provides good agreement with the test results from each of the in-
dividual tests.
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APPENDIX A

Examples Demonstrating Use of the Transmission -Rating Models

A.1 Example 1-local connection

500 -type telephone sets on a calling and a called customer loop, each
of which consists of 1 kilofoot of 26 -gauge nonloaded cable :

Loss (L.): TLR = -23.6 dB
RLR = 26.3 dB

L. = (TLR RLR) dB
= 2.7 dB

Noise (N): NT = Total noise at each telephone set from two
loops, each of which meet the 20 dBrnC
loop -noise objective.'

= 23 dBrnC
N = Total noise referred to a telephone set with

RLR of 26 dB
= 27 dBrnC.

Talker Echo (assumed negligible) :

Using Table II with L. = 2.7 dB and N = 27 dBrnC,

RLN = 78.3.

Using Table II for the MH data base,

GoB = 79.2%, PoW = 6.6%.

A.2 Example 2-local connection

500 -type telephone sets and a calling and a called customer loop,
each of which consists of 8 kilofeet of 26 -gauge nonloaded cable :

Loss (L.): TLR = -18.9 dB
RLR = 27.3 dB

L. = 8.4 dB

Noise (N): Assumed to be the same as for Example 1:
N = 27 dBrnC.
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Talker echo (assumed negligible) :

Using Table II with Le = 8.4 dB and N = 27 dBrnC,

RLN = 88.7.

Using Table II for the MH data base,

GoB = 92%, PoW = 1.8%.

A.3 Example 3-local connections

500 -type telephone sets on a calling and a called customer loop,
each of which consists of 15 kilofeet of 26 -gauge nonloaded cable :

Loss (Le): TLR = - 13.2 dB
RLR = 30.1 dB

Le = 16.9 dB

Noise (N): Assumed to be the same as for Example 1.

N = 27 dBrnC.

Talker echo (assumed negligible) :

Using Table II with Le = 16.9 dB and N = 27 dBrnC,

RLN = 75.5.

Using Table II for the MH data base,

GoB = 74.2%, PoW = 8.9%.

A.4 Example 4-toll connection

500 -type telephone sets on a calling and a called customer loop, each
of which consists of 8 kilofeet of 26 -gauge nonloaded cable:

Loss (Le): TLR = -18.9 dB
RLR = 27.3 dB

L = Class 5 office -to -Class 5 office loss
= 7.7 dB (mean for the connection -length cate-

gory, 775 to 2900 miles, Table VI of Ref. 12)
Lc = TLR RLR + 7.7

= 16.1 dB.

Noise (N): Assume no noise from the loops :

NT = Total noise from the Class 5 office -to -Class 5
office connection (33.8 dBrnC for the connec-
tion length category 775 to 2900 miles, Table
III of Ref. 12 referred to the telephone set)

= 28.5 dBrnC
N = 32.5 dBrnC.
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Talker echo (assumed negligible) :

Using Table II with L. = 16.1 dB and N = 32.5 dBrnC,

RLN = 71.

Using Table II for the MH data base,

GoB = 65.2%, PoW = 13.9%.

A.5 Example 5-toll connection

Same as Example 4, Section A.5, except that it takes into account
talker echo :

Echo -path delay (D)
D = Far -end echo -path loss

= 37.3 ms (mean for connection length 1450 to 2900 miles,
Table III of Ref. 11).

Echo -path loudness loss (E)
E' = Loss of echo path from near -end Class 5 office to distant

end and return,
= 23.3 dB (mean for connection length 1450 to 2900 miles,

Table II of Ref. 11).
E = TLR RLR E'

= 31.7 dB.

Using Table II with L, = 16.1 dB, N = 32.5 dBrnC, D = 37.3 ms,
and E = 31.7 dB.

RLN = 71
RE = 82.6

RLNE = 65.2.

Using Table II for the MH data base,

GoB = 52.6%, PoW = 22.4%.
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This paper discusses several manipulations of LPC (linear predictive
coding) parameters for providing speech encryption. Specifically, the
paper considers temporal rearrangement or scrambling of the LPC code
sequence, as well as the alternative of perturbing individual samples in
the sequence by means of pseudo -random additive or multiplicative noise.
The latter approach is believed to have greater encryption potential than
the temporal scrambling technique, in terms of the time needed to "break
the secrecy code." The encryption techniques are assessed on the basis of
perceptual experiments, as well as by means of a quantitative assessment
of speech -spectrum distortion, as given by an appropriate "distance"
measure.

I. INTRODUCTION

Encryption can be an important requirement in speech communica-
tion systems. Conventionally, encryption has largely been accomplished
by signal manipulations in the frequency domain; for example, by
means of spectrum inversion techniques.' With the increased popularity
of digital codes for speech transmission, time -domain encryption tech-
niques have received increased attention. Typically the time -domain
encryption technique consists of temporal rearrangement of samples
within a time block. For the scrambling of PCM bits in speech wave-
form coding, a block -length that is at least a pitch period long is
usually adequate to provide a nonspeech-like output waveform.
Similarly, the scrambling of differential PCM and delta -modulation bits
can also produce a nonspeech-like output waveform provided that the
time -block is sufficiently long. For example, in a 24-kb/s speech code,
this constraint implies approximately a block length of 64 samples for
an adequate scrambling of the coded bits.2

The temporal scrambling of speech samples within millisecond-
length blocks generally provides what may be referred to as casual
encryption. This means that a noncasual 'eavesdropper' can break the
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speech secrecy code by the simple expedient of running through a finite
number of possible rearrangements of the disarranged speech samples
that are received. Greater degrees of encryption or secrecy can be
achieved by employing much longer speech blocks for scrambling or,
alternatively, by subjecting individual speech samples to pseudo-
random additive or multiplicative perturbations whose undoing is
typically more time-consuming than a simple temporal rearrangement
of clean digits or bits.

The purpose of this paper is to point out that casual encryption as
well as more formal secrecy can be achieved by appropriate manipula-
tions of the linear predictive coding (LPc) parameters.3'4 The use of

an LPC code is by no means a necessary requirement for encryption; it
can be achieved in conjunction with any kind of speech digitizers, such
as the waveform codes' discussed above. However, when the channel
capacity of communication systems dictates a low -bit -rate vocoder
instead of a generally higher -bit -rate waveform code, the LPC parameter
manipulations discussed in this paper may provide a naturally ap-
propriate basis for speech encryption and/or secrecy. It shall also be
seen that an efficient encryption of the LPC parameters can be achieved
more readily than similar techniques used to encrypt waveform codes.
For example, an adequate block length for scrambling the LPC parame-
ters can be as short as 6 to 8 samples, while the block length for wave-
form scrambling is typically 16 to 64 samples.

In this paper, Section II provides a brief description of LPC encoding
of speech, while Section III considers the use of temporal scrambling
and pseudo -random sample perturbations for casual and formal
encryption in the LPC domain. Section IV describes attempts to measure
the efficacy of the encryption techniques. These measurements in-
volved informal perceptual experiments (the results are usually un-
ambiguous and one-dimensional enough not to require formal sub-
jective testing), as well as a comparison of alternative techniques in

terms of speech -spectrum distortions that they provide. The spectrum
distortion was assessed by an appropriate distance measurement. This
distance approach has the advantage of being quantitative; however,
as discussed in Section IV, the distance criterion has to be invoked
with caution because spectral distortion, as such, is not a definitive
measure of speech encryption.

II. LINEAR PREDICTION SPEECH MODEL

The method of linear prediction has proved quite popular and suc-
cessful for use in speech -compression systems36,7 In this method,
speech is modeled as the output of an all -pole filter H (z) that is excited
by a sequence of pulses separated by the pitch period for voiced sounds
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Fig. 1-Discrete model of speech production as employed in linear prediction.
(a) Frequency -domain model. (b) Time -domain model.

or pseudo -random noise for unvoiced sounds. These assumptions imply
that within a frame of speech, the output speech sequence is given by

Sn = E aksn-k + Gun,
k1

where p is the number of modeled poles, un is the appropriate input
excitation, G is the gain of the filter, and the ak's are the coefficients
characterizing the filter (linear prediction coefficients). Figure 1 il-
lustrates the frequency -domain as well as the equivalent time -domain
model of linear prediction speech production. To account for the non-
stationary character of the speech waveform, the parameters ak of the
modeled filter are periodically updated during successive speech
frames.* Generation of speech in this method requires a knowledge of
the pitch, the filter parameters, and the gain of the filter (amplitude of
excitation) in each speech frame.

The LPC coefficients model the combined effects of the vocal tract,
glottal source, and radiation load in each frame of speech. Manipula-
tions of the LPC coefficients can seriously perturb the frequency charac-
ter of the speech signal and, hence, destroy the linguistic information
present in the signal. In contrast, the measurements of pitch and gain
represent the prosodic aspects of the speech and some characteristics

A frame is a segment of speech thought adequate to assume stationarity of the
speech process. Typical frame lengths employed range from 10 to 30 ms.
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of the speaker. Manipulations of pitch and gain parameters will affect
the prosody of the speech, but not seriously diminish the linguistic
aspects of the waveform. In Section III, we consider several methods for
efficiently manipulating the LPC coefficients so as to encrypt the speech
signal.

Since the purpose of this paper is the consideration of encryption
techniques for low -bit -rate vocoders (2.4 kb/s or less), the manipula-
tion schemes discussed in Section III were not performed directly on
the LPC coefficients, but rather on more desirable alternate representa-
tions of these coefficients. The stability of the linear -prediction filter,
H (z), is extremely sensitive to small perturbations in the LPC coefficients
and, thus, it is not possible to achieve low -bit -rate coding by trans-
mitting the LPC coefficients.6 However, by transmitting either the log
area coefficients or the parcor coefficients, a 2.4-kb/s vocoder is readily
achieved.' The log area coefficients are nonlinearly related to the LPC
coefficients by

1 k
gi = log 1 - ki '

where the ki's are termed the parcor coefficients.' If we denote a=n as
the ith linear prediction coefficient for a jth-pole linear -prediction
model, then

k, = a=te.

The parcor coefficients have the very important property that if

ikil < 1, i = 1, , p,

then it is guaranteed that the linear prediction filter is stable.4 Thus,
small perturbations in the parcor coefficients or log -area coefficients
will not affect the stability of the modeled filter.

III. ENCRYPTION TECHNIQUES

3.1 Temporal scrambling

The rearrangement of samples within a block of length L is achieved
by assigning to each sample a new address A (A = 1, or 2, or 3,  ,

or L) as determined by the state of a maximal -length shift -register
arrangement. The theory and design of maximal length sequences is

well documented." Here, we simply provide a constructive recapitula-
tion for the purpose of this paper. The idea is to start with a shift
register whose length is D = log2 L (assume that the block length is
a power of 2, and that elements in the register are either 1 or 0). The
next step is to select a so-called primitive polynomial PD (X) of degree
D, and to include stage (D - 8) in the register (S = 0 to D - 1) in
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an exclusive OR (modulo 2 add) feedback arrangement, if the coefficient
of x8 in P (x) is nonzero. The resulting network now generates a suc-
cession of 2D - 1 = L - 1 nonzero states in the shift register at suc-
cessive 'clock' times, after which the cycle repeats, starting once again
with the original initial state of the shift register. The number of
nonzero states in the cycle is identically equal to the repetition period
L - 1 of the cycle. Consequently, the L - 1 states of the shift -
register (specifically, their decimal equivalents) can be utilized as
"pseudo -random" addresses for a block of L - 1 input samples in a
one-to-one mapping of addresses. If the input block has L rather than
L - 1 samples (because of the frequent requirement that L be a power
of 2), the address of the Lth sample is usually left unaltered by the
scrambler. Such simplicity is not, however, inevitable, and appropriate
manipulations that scramble all L samples are quite conceivable.

Figure 2 illustrates the scrambler design for the example of D = 3
and L = 7, as defined by a primitive polynomial P3(X) = X3
+ X2 + 1. It is seen how input samples (1, 2, 3, 4, 5, 6, and 7) get
scrambled into the pseudo -random positions (1, 4, 6, 7, 3, 5, and 2) in
a reversible one-to-one mapping.

Figure 3 illustrates an alternative design, as defined by a second
primitive polynomial of degree 3, P3(X) = X3 + X + 1. In this case,
the output addresses of the input samples are the positions (1, 4, 2, 5,
6, 7, and 3).

It is clear that in each of the arrangements in Figs. 2 and 3, the use
of a different initializing sequence (other than 001) can lead to a
totally different mapping of sample addresses. There would be L - 1
nonzero initializations, corresponding to every given P3(X). Inciden-
tally, the number of primitive polynomials of degree 3 is 2.

PRIMITIVE POLYNOMIAL:

x3 + x2 +1

CORRESPONDING NETWORK

1 2

cp MOD 2
ADDER

3

NUMBER STATE OF SHIFT
REGISTER

DECIMAL
EQUIVALENT

1 001 1

2 100 4

3 110 6

4 111 7

5 011 3

6 101 5

7 010 2

f
001

- - - t

INPUT
ADDRESSES

REPETITION
PERIOD = 7

OUTPUT
ADDRESSES

Fig. 2-Scrambler design with a three -stage shift register.
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_ t
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Fig. 3-Alternate scrambler design with a three -stage shift register.

Table I lists for D = 1 to 12 a typical set of primitive polynomials
and also the number of primitive polynomials for each D. Note, for
example, that a 12 -stage shift register with an exclusive OR feedback
network involving stages 12, 11, 8, and 6 provides one of 144 possible
bases for a scrambler that would operate on an input block of 212 = 4096
samples.

The possibility of alternate scrambler designs (as defined by differ-
ent initializations and/or different primitive polynomials) is an im-
portant consideration from the point of view of the average descram-
bling time needed for an eavesdropping code -breaker.

3.2 LPC parameter scrambling

The effectiveness of any scrambling scheme in perturbing the se-
quence of samples is directly proportional to the lack of similarity or

Table I - List of primitive polynomials

Degree D Typical Primitive Polynomial
Number of Primitive

Polynomials of Degree D

1 X + 1 1

2 2C2 + X +1 1

3 X3 + X + 1 2
4 X4 + X + 1 2

5 X6 + X2 + 1 6
6 + X + 1 6

7 X7 + X + 1 18
8 X3 + X4 + X3 + X2 + 1 16

9 X2 + X4 + 1 48
10 Xi° + X' + 1 60
11 X11 + X2 + 1 176
12 X12 + X6 + X4 + X +1 144
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dynamic ranges of the samples to be scrambled. The greater the range
of values assumed by the samples, the more effective the scrambling
scheme.' For an efficient scrambling of the LPC parameters, let us begin
by ordering the parameters in the following manner : the first sample
in the first block is xii, where xin denotes the ith LPC parameter* in
the nth analysis frame. The second sample is x21 and the third sample
is x31. The arrangement proceeds in this fashion until the (p 1)tht
sample, which is defined as xn. Thus, the ordering of LPC parameters
for purposes of scrambling is simply a concatenation of the p LPC
parameters in each sequential analysis frame.

Using this particular arrangement, it can be seen that within a block
of data there is a wide distribution of values assumed by the various
samples. This observation follows from the fact that the measured
LPC parameters for any given analysis frame will usually vary across
the entire permissible range of values. For example, the p measured
values of the parcor coefficients in any given frame will typically be
somewhat uniformly spread across the permissible range of -1 to 1.4
The particular arrangement of LPC parameters given above will thus
be effective for scrambling purposes due to the large resulting dynamic
range. In Section IV, we show that a block length as small as eight
samples (L = 8) is sufficient to destroy the linguistic information in the
synthetic signal produced by a 12th order analysis (p = 12).

3.3 Pseudo -random perturbations

For a more secure secrecy coding of the speech signal, the LPC pa-
rameters can be modified by a pseudo -random additive or multiplica-
tive perturbation. Since the repetitive period of any typical pseudo-
random number generator is extremely large, the process of undoing
or breaking the encryption is quite difficult and time-consuming.

Since one of the goals of the present study was to perceptually assess
the linguistic information in the synthesized speech generated by the
encrypted LPC parameters, the pseudo -random number perturbation
scheme was designed to retain the stability of the modified LPC filter.
Thus, for the manipulation of the parcor coefficients, the pseudo-
random number technique involved the transmission of the sequence of
parameters

Yin = kin X rin,
where

kin = ith parcor coefficient in nth frame
rin = ith pseudo -random number in nth frame; I rin I 5 1.

The LPC parameters considered in this paper are either the log -area coefficients
or parcor coefficients.

p = order of LPC analysis.
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Since I rin I < 1, I yin I < 1 and the stability of the LPC filter is guaran-
teed. For the modification of the log -area coefficients, the technique
is simply to transmit

Yin = gin ± rim

The stability of the resulting LPC filter is guaranteed regardless of the
range of rin. This result follows from the fact that any real value of
yin will lead to parcor parameters that are less than 1.

In viewing the pseudo -random number manipulation of the LPC
parameters, it should be noted that the spectral characteristics of the
LPC filter are more sensitive to changes in the parcor coefficients than
to changes in the log -area coefficients.1° Thus, manipulation of the
parcor coefficients is a more direct and efficient technique for perturbing
the spectral properties of the LPC filter. For this reason the pseudo-
random techniques discussed in this paper were applied only to the
parcor coefficients. If pseudo -random number manipulation is to be
applied to the log -area coefficients, the manipulation can be made most
effective if the probability distribution of the random number generator
is nonuniform, in order to mimic that of the log -area coefficient.'°

For the experimental examination of the pseudo -random number
perturbation of the parcor coefficients, the following two probability
distributions were used for generating rin :

(1) rin was uniformly distributed between -1 and 1, or
(ii) rin was, with equal probability, set to -1 or 1.

The second distribution was studied because the resulting manipulation
of the parcor coefficients is particularly easy to perform and, as we
shall soon discuss, is effective in destroying the intelligibility of the
encrypted speech. However, the "breaking" of the encryption coding
using the second distribution is not difficult to achieve by using the
available knowledge of the statistical range of the parameters. For
example, it is well known that the first parcor coefficient is almost
always positive.4 Thus, a negative value of the first parcor coefficient
indicates a manipulation of this parameter. If the listener knows that
a +1 or -1 manipulation of the parameters is being employed, then a
simple reversal of sign breaks the encryption.

IV. EXPERIMENTAL STUDY

In this section, we examine the effectiveness of the various encryption
techniques in destroying the intelligibility of the output speech signal.

For this purpose, an informal perceptual evaluation was conducted.
To evaluate objectively the efficacy of the techniques, an LPC distance
measure proposed by Itakura" was used to reinforce and supplement
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the perceptual examination. Before discussing the LPC distance mea-
sure, we emphasize that this measure may not be a definitive or com-
plete description of encryption efficiency; but it is a good measure of
spectral distortion, which in turn turns out to be a useful (if not ideal)
indicator of intelligibility loss.

4.1 Distance measure

The LPC distance measure is defined as

do = In (an Val7bnVb7,;),
where

an = Original LPC coefficient vector (1, al, , ap) measured in
the nth frame of the speech signal.

bn = LPC coefficient vector determined after manipulation of the
original parameters in the nth frame

and
V = DM- Pa = °I 11 P),

where v(i) are the normalized correlation coefficients that are computed
directly from bn.3.10

The measure do has been very effectively applied in problems of
speech recognition," speaker recognition," and variable frame -rate
synthesis."," Gray and Markel" have recently demonstrated that the
measure do is very closely related to the rms spectral distance measure.
Sambur and Jayant" have also studied the significance of the measure,
and a complete discussion of the utility of the measure for assessing
spectral distortions can be found in their paper. For purposes of this
paper, the important facts to appreciate about the measure do are

(i) The greater the value of dn, the more pronounced the spectral
distortions of the original sound.

(ii) A value of dn = 0.9 is a "perceptually" significant boundary for
evaluating spectral distortion."

4.2 Experiment

For the experimental study, four sentences spoken by four different
speakers were analyzed using a 12th order (p = 12) LPC autocorrelation
analysis for each contiguous 20 -ms frame. The sentences analyzed were:

(i) A lathe is a big tool.
(ii) May we all learn a yellow lion roar.

(iii) Few thieves are never sent to the jug.
(iv) It's time we rounded up that herd of Asian cattle.

SPEECH ENCRYPTION 1381



The encryption schemes that were formally evaluated both per-
ceptually and with the distance measure of Section 4.1 were :

a. Scrambling
(1) Block length = 16
(2) Block length = 8

b. Pseudo -random manipulation *
(1) Uniform distribution of rin for i = 1 and Tin = 1 for i > 1.
(2) Uniform distribution of rin for i < 6 and rin = 1 for i > 6.
(3) Uniform distribution of rin for all i (1 i 5 12).
(4) ±1 distribution of rin for i = 1 and rin = 1 for i > 1.
(5) ±1 distribution of Tin for i S 6 and ri,, = 1 for i > 6.
(6) +1 distribution of rin for all i (1 5 i < 12).

Experiment b was performed to determine the number of parcor co-
efficients that must be altered to effectively encrypt the signal. Since
the parcor coefficients are approximately ordered in terms of their
spectral sensitivity,4 these experiments were performed by sequentially
removing from manipulation the less sensitive parameters.

4.3 Results

4.3.1 Distance evaluation

4.3.1.1 Uniform pseudo -random manipulation. Figure 4 illustrates the dis-
tance -evaluation of the sentence "May we all learn a yellow lion roar"
for the uniform pseudo -random number manipulation of the parcor
coefficients. Parts (a), (b), and (c) of Fig. 4 indicate, respectively, the
results of experiments b(1), b(2), and b(3) of Section 4.2. The straight
solid line in each part of the figure depicts the perceptually significant
threshold for assessing spectral distortions (d = 0.9). Any frame with
a distance larger than the threshold is perceptually different from the
nonencrypted speech. To show just how dramatically the perturbation
in the spectral character of the speech can be, Fig. 5 illustrates the
calculated linear prediction spectrum (dotted line) for the nonen-
crypted speech frame and the corresponding linear prediction spectrum
(solid line) for the same frame of encrypted speech. The measured
LPC distance between the illustrated spectra is d7, = 3.0, or approxi-
mately the average value of distance for uniform pseudo -random
manipulation of the first coefficient. From this figure, it can be ex-
pected that the character of the encrypted speech is completely differ-
ent from that of the original speech.

*Remember Tin denotes the pseudo -random number multiplicative factor for the
ith parcor coefficient in the nth frame.
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Fig. 4-LPC distance as a function of time across the utterance, "May we all
learn a yellow lion roar," for uniform pseudo -random perturbation of the parcor
parameters. (a) Manipulation of k,; average distance = 3.4. (b) Manipulation of
k1 to Ice; average distance = 4.4. (c) Manipulation of all k;; average distance = 4.4.

The results depicted in Fig. 4 are typical of the distance evaluation
results for the uniform pseudo -random manipulation of the parcor
coefficients determined for the other sentences examined. It is interest-
ing to note that the average distance for an encryption scheme that
manipulates the first six parameters is not significantly lower than the
average distance obtained for the manipulation of all 12 parameters.
This result can be anticipated from the fact that the higher -ordered
parcor coefficients are much less sensitive than the lower -ordered pa-
rameters, and changes in these higher -ordered parameters do not
significantly change the spectral character of the sound.4 Thus, a less -
expensive and equally effective encryption scheme can be obtained
by manipulating only a few lower -ordered parameters. To determine
the optimum number of parameters necessary for an efficient, uniform,
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Fig. 5-Comparison of the distorted LPC spectra and the original LPC spectrum.
Distance between the spectrum equals 3.0.
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Fig. 6-Average LPC distance as a function of number of parcor coefficients manipu-
lated by pseudo -random number techniques.

pseudo -random encryption, we sequentially increased the number of
parcor parameters perturbed by uniform pseudo -random manipulation
and measured the average LPC distance. Figure 6 illustrates the average
LPC distance as a function of the number of parameters manipulated.
From this figure, it can be seen that a scheme that perturbs only the
first four parcor coefficients is quite efficient.

4.3.1.2 Pseudo -random manipulation of +1 or -1. Figure 7 shows the de-
tailed distance -evaluation scores for the +1 or -1 pseudo -random
perturbation of the sentence "May we all learn a yellow lion roar."
Parts (a), (b), and (c) of the figure correspond to experiments b (4),
b (5), and b (6), respectively. Figure 6 illustrates the average LPC dis-
tances obtained for encryption schemes that sequentially increase the
number of parameters subjected to +1 or -1 pseudo -random manipu-
lations. We note from Figs. 6 and 7 that again the perturbation of
the higher -ordered parcor coefficients does not significantly add to the
effectiveness of the encryption scheme. It can also be seen from these
figures that +1 or -1 pseudo -random manipulation is generally
superior (except for the manipulation of only 1c1) to the uniform
pseudo -random number scheme in distorting the speech signal. How -
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ever, as noted previously, this form of encryption is easier to break
than uniform pseudo -random number coding.

4.3.1.3 Scrambling. Figure 8 shows the frame -by -frame distance scores
for the scrambling of the parcor coefficients for the sentence "May we
all learn a yellow lion roar." The illustrated results are typical of the
results obtained for the other analyzed sentences. A comparison of the
distances results of the pseudo -random schemes (Fig. 6) shows that a
scrambling encryption with a block length of only eight samples (L = 8)

is at least as effective in distorting the spectral properties of the original
signal as a pseudo -random manipulation of the first parcor coefficient.
A scrambling scheme with a block length of 16 (L = 16) or more
samples is superior to any of the pseudo -random schemes studied. It is

interesting to note that the scrambling manipulation saturates in

effectiveness for block length greater than 16. Since the range of the
parcor coefficients is confined to -1 < ki < 1, increasing the block
length beyond 16 does not increase the dynamic range of the sample
within the block and, thus, the effectiveness of the scrambling is not
enhanced for L > p (see Section 3.2).

4.3.2 Perceptual evaluation

To support the results of the distance study, the various encrypted
utterances were presented to a group of listeners for an informal
perceptual evaluation of the manipulation schemes. To avoid any

CT- 7-1- T4 L44
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(b)

PERCEPTUAL
THRESHOLD

r V V
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TIME

(C)
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Fig. 7-LPC distance as a function of time across the utterance "May we all learn
a yellow lion roar" for the +1 or -1 pseudo -random manipulation of the parcor
coefficient. (a) Manipulation of k, ; average distance = 2.8. (b) Manipulation of k1
to ke ; average distance = 6.2. (c) Manipulation of all ki; average distance = 6.3.
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Fig. 8-LPc distance as a function of time across the utterance "May we all learn
a yellow lion roar" for the scrambling of the parcor coefficient. (a) Block length = 8;
average distance = 3.8. (b) Block length = 16; average distance= 7.7; (c) Block
length = 64; average distance = 7.6.

problems posed by the awkward linguistic content of the analyzed
the sen-

tences, and were also informed that the utterances to be heard were
typical sentences used to evaluate vocoder systems.

The listeners in the experiment were asked to determine the intel-
ligibility of the utterance and to rank -order the effectiveness of the
encryption schemes. For all the techniques studied, except for the +1
or -1 manipulation of only k1, the listeners unanimously agreed that
the encrypted utterances were clearly nonspeech-like. However, for
the uniform pseudo -random techniques manipulating only the first
parcor coefficients, the listeners noted that, even though the complete
utterances could not be understood, there were certain instances in the
encrypted utterances that were somewhat speech -like and under-
standable. These instances probably correspond to points in the
encrypted speech for which the LPC distances fall below the perceptual
threshold. In characterizing the nonspeech-like quality of the en-
crypted utterances, the listeners termed the pseudo -random perturbed
utterances as sounding like "one continuous buzz ;" the scrambled
utterances sounded like "water running through a pipe."

In rank -ordering the encryption schemes, the listeners were quite
definite in characterizing the +1 or -1 psuedo-random manipulation
of only the first parcor coefficient as least effective. The scrambling
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with block length of 16 (d = 7.7) was ranked about equal to the +1
or -1 pseudo -random manipulation of all 12 parcor coefficients
(d = 6.3), and also to the same manipulation of only the first six
coefficients (d = 6.2). The uniform pseudo -random scheme that
altered all 12 coefficients (d = 4.4) was ranked equal to the scheme that
perturbed only the first six coefficients (d = 4.4), and both techniques
were ranked slightly less effective than the scrambling with block
length of 16 (d = 7.7) and the equivalent +1 or -1 pseudo -random
schemes. The other techniques were ranked somewhere in the middle.
The perceptual rank -ordering of the various manipulation schemes
corresponded almost exactly to the distance evaluation and, thus,
reinforced the conclusions in that evaluation.

V. CONCLUSIONS

There is great interest in low -bit -rate speech -transmission systems
and in the "securing" of these transmission systems. The purpose of
this paper is to investigate various methods for encrypting a low -bit -
rate LPC transmission system. The methods chosen for investigation
were schemes that either scrambled the string of input parcor coeffi-

cients or multiplied the coefficients by a pseudo -random number. The
schemes were evaluated by an informal perceptual experiment and by
the use of an LPC distance measure. The results of the evaluations
suggest that all the schemes are somewhat successful in distorting the
original signal. The most successful scheme was the scrambling tech-
nique with a block length of 16 samples. The pseudo -random manipula-
tions were almost as effective.

In viewing the results of the evaluations, it is important to note that
the distortion of the speech signal is only one consideration in designing
an encryption system. Another consideration is the difficulty of
"breaking" the security code. Of the codes examined, the uniform
pseudo -random number manipulation is the most difficult to break.
The scrambling scheme is the next most difficult and the +1 or -1
pseudo -random scheme is the easiest. Still another consideration is the
transmitter -end complexity of the encryption scheme. Although this
complexity is somewhat difficult to assess, it appears that the scram-
bling scheme is the least complex and the uniform pseudo -random ma-
nipulation is the most complex. In choosing any of these encryp-
tion schemes, a user would balance the various merits and liabilities of
the techniques.
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In a previous paper, we discussed estimation of the parameters of a
single tone from a finite number of noisy discrete -time observations. In
this paper, we extend the discussion to include several tones. The Cramer -
Rao bounds are derived and their properties examined. Estimation
algorithms are discussed and characterized.

I. INTRODUCTION

In a previous paper,' we reported on the estimation of the parameters
of tones from a finite number of noisy, discrete -time observations and
described the case of a single complex tone. In this report, we discuss
the situation when the signal consists of several, say k, tones, either
real or complex. By real signal we mean

k

S(t) = E bi cos (wit + 02).

The corresponding complex signal is of the form

s(t) + At) = E bi exp[j(wit 001
i-1

where §(t) is the Hilbert transform of s(t).
A computer observes, through the A-D converters, noisy versions

of the signal, X(t), and possibly its Hilbert transform Y(t). That is,
samples are taken of

X(t) = s(t) W(t), (1)

and
Y(t) = '(t) 47(t), (2)

where W(t) and TV (t) are the noise and its Hilbert transform,
respectively.
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The observations are made at times denoted t,,. The computer will
process one or both sample vectors :

X = [Xo, Xi,  , X N -117 and Y = [Yo, Y1, , YN-137,

where T denotes matrix transpose,

X. = X(t.), (3)
and

Y. = Y(tn) (4)

We assume the noise samples, W and Tk, are independent, zero -
mean, gaussian random variables with variance Q2.

Leta be the p -element vector of unknown signal parameters. We
assume all signal parameters are unknown, so that p = 3k, and use the
convention :

a3i-2 = Wi,
a3i-1 = bi,

and

(5)

a3i = Oi, i = 1 to k.

This model describes several situations. The real signal may be
received from a data set during a test or it could be a probe signal used
to characterize a data -transmission channel. The real and imaginary
parts of the complex signal could occur as the result of in -phase and
quadrature modulation processes, as described by Palmer.2 The imagi-
nary part of the complex signal could be the output of a 90 -degree
phase -shift network (Hilbert transformer) through which the real
signal is passed before the sampling is done. This is done in certain
types of data sets that use all -digital means to demodulate received
signals. Samples of the complex signal are easier to process because of
the absence of negative frequency components, as we show below. The
model also applies to certain mathematically equivalent, phased -array
radar problems, such as the one described in Refs. 3, 4, 5, and 6.

There are two main aspects to the problem of estimating the pa-
rameters of the signal: lower bounds to estimation accuracy and
algorithms for doing the estimation. In the next section, the properties
of the Cramer -Rao (c -R) bounds are explored. There are many other
bounds that could be applied but we have only examined the C -R
bounds. Section III describes and evaluates some approximations to
maximum -likelihood (ML) estimation. In Ref. 1, we found that when
the signal consists of a single complex tone (k = 1), then ML estimates
can be obtained with any desired accuracy. When several tones are
present, ML estimation is sufficiently complicated that suboptimum
alternatives are attractive.
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II. CRAME.R-RAO BOUNDS

2.1 General theory

Maximum -likelihood estimates of signal parameters are unbiased at
high signal-to-noise ratio (s/n).4,7 We will develop estimation algo-
rithms that have very little bias, so we have only studied the C -R
bounds to unbiased estimation accuracy. Even when an estimator has
some bias, the unbiased bounds serve as useful goals for estimation
accuracy. Since the accuracy of ML estimates approaches the unbiased
C -R bounds at high s/n, the unbiased bounds also show what could be
done if exact ML estimation algorithms were used.

We found in Ref. 1 that low s/n is that range of s/n where estima-
tion anomalies occur. None of the known bounds seem to be very tight
under these conditions.

The first property of the C -R bounds that we consider is one for which
we need the following general notation.

Let V be a "signal" vector whose typical component is of the form

Vn = E bigi(coi, Oi, n).
i-i

(6)

Notice that each gi() has an associated level, bi, and is a function only
of n and the ith set of unknown parameters. Time does not necessarily
enter into the gi() functions. Let X be a noisy observation of V.
Assume the noise is additive, multivariate normal with zero mean and
correlation matrix R-1. If the noise vector is W, then

X = V W, (7)

and the probability density function of X given V is

IRlif(X/V) - (2.70N/2 exp[ 1 (X - V)TR (X - V) ], (8)

where N is the dimension of V and the T denotes transpose (see Ref. 8,
page 207).

The c -R bounds require certain regularity conditions on V, which
are satisfied by our model.' The bounds are the diagonal elements of
the inverse of the Fisher information matrix, J, whose typical elementm
is:

2a
Job = -E I log fl ,

aabaaa

where E { } denotes expected value of { }. The bounds are :

Var -
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where Jag is the ath diagonal element of and 62a is an unbiased
estimate of aa.

It is easy to show" that

av7 av
Jab = &To, R a-c-7 (11)

We now present a few theorems that characterize the C -R bounds.
We assume J is not singular, for reasons discussed below.

Theorem. 1: The C -R bounds to unbiased estimation of the parameters coi
and Oi of V are functions of bi but are independent of the other levels,

j i. The bound to unbiased estimation of a level, bi, is independent
of all the levels.

Proof: Equation (11) is equivalent to

avnav,Jab= E E
n m aab act°

(12)

where Rnm is an element of R.
The elements of J that are functions of the parameters of gi and gi,

using the convention given by (5) and the notation gi(n) = g 0i, n),
are

-2.3j-2 = bib; E E agi(n) agi(M) (13a)Rnm
awi ow;n m

0

n agi(n) ,
Jai -2.3;-1 = bi E E nn,

,0.4
gikm). (13b)

n m

EJai -2,81 = bib; E agi(n) agi(m) (13c)R.
acoi ae,n m

Jai -1.3j-2 = bi E E R.
agi(M)gi(n)

(13d)
n m

Jai -1.3j-1 = E E R.gi(n)gi(m). (13e)
n m

j(M)
J3i-1,31 = bi E E Rn,ngi(n)

agaoi (13f)
n m

J3i,3j-2 = bibj E E Rnm agaio(in) agajw(7) (13g)
n m

hi,3j-1 = bi E E Rnmagi(n) gi(m). (13h)
n m aoi

J3i,3j = bib; E E Rnm agi(n) agi(M) (13i)
n m aei ae,
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An examination of (13a) through (13i) shows that the submatrix of
J has the form DiQ,;D;, where

bi 0 0
D;= 0 1 0

0 0 bi
(14)

and the matrix Qi; is not a function of any bi. It follows that J has the
form

where

and

J = DQD,

D

Qii
Q=

Qkl

0
D2

Di

QlQkk

0 is a matrix whose elements are all zeros. From (15),
J-1 = D -1Q -1D-1,

from which the theorem follows. For example,

Var 161 - wi)

(17)

(18)

(19)

This theorem is not entirely new. It is alluded to in Ref. 6. However,
this form of the theorem shows that, contrary to Ref. 6 and popular
opinion, precisely known sampling times (or antenna element spacing
in the equivalent radar problem) are not necessary for the theorem to
hold.

The theorem is true whether or not the noise samples are independent
and regardless of the sampling times. Of course, if the sampling times
are not known, then the c -R bounds cannot be accurately calculated,
but that does not obviate the theorem.

It should also be clear that the number of unknown parameters is
unimportant to the theorem. Clearly the theorem holds if, for example,

0i, n) = cos (wit,, 4- 00,
and if

t. = nT.
Theorem 2: The bounds associated with the parameters of the first k tones,
when there are k m tones, are not less than the bounds when there are
only k tones.
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Proof : The matrix J is always positive semidefinite. Thus, if it is not
singular, it is positive definite.

Suppose J is the Fisher information matrix for k m tones and is
partitioned so that Jk is the J matrix associated with k of the tones.
This partitioning is always possible. Then write

J = KTi
Jk I K

Since J is positive definite, so are Jk and Jm.
Write the inverse of J in the form

=
W

(21)
II

WT V

where Jk and II are both 3k by 3k matrices. Theorem 2 is true if

II Jr', (22)

(20)

which means IT - Jr' is positive semidefinite and which we now prove.
Using the fact that

j J-1 =

one can show that

U = CJk -KJm
Observe that KJVICT is positive semidefinite. That is,

KJ,7,1KT > 0.

(23)

(24)

(25)

Since Jk and hence II are positive definite, (24) and (25) imply that
II -1 < Jk, which implies (22).

Another implication of the proof of Theorem 2 is that the bounds
for p of p m. unknown parameters are not less than the bounds
when only the first p parameters are unknown.

This theorem is also not entirely new, although we have not seen it
stated before. A restricted version of the theorem is mentioned in
Ref. 12, (page 33), and Problem 2.4.23 in Ref. 10 hints at this kind of
result.

The theorem depends upon J being nonsingular. It is easy, but
tedious, to show that if the signal vector is composed of samples of the
real or complex signal described in the introduction and only two tones
are involved, then J is singular only if the two tone frequencies are
equal, modulo 27r/T, where T is the intersample time. (Remember that
a real tone has a component at --1-coi and another at -wi.)
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We have not been able to prove this result for an arbitrary number
of tones, but all of our calculations of various J matrices support the
hypothesis that J is singular only if two or more of the tone frequencies
are equal, modulo 27/T (assuming N is large enough).

When two of the tone frequencies are equal, the receiver is receiving
one less tone than expected. In this paper, we assume that the correct
number of tones, k, is known and that all of the frequencies are distinct.

2.2 Equally spaced samples and independent noise

We now concentrate on the problem described in the introduction.
Assume all noise samples are independent with variance a2. That is,

R = -1I

where I is an identity matrix.

(26)

Define
K

= E bi cos (wit. + 00,
i=1

(27)

K
v. = E bi sin (witn

i=1

and
tn = nT ; n = 0,1, , N - 1.

(28)

(29)

As is mentioned in Ref. 1, the time of the first sample, to, has an effect
upon bounds and estimation accuracy. We have ignored that problem
in this paper and taken to to be zero.

The signal vector is

Trn = 1 An
P n-N

or

n = 0 to N - 1
n = N to 2N - 1

V n = Ain; n = 0 to N - 1

Then a typical element of J is
1 N 81., min ap
0.2 n=p L aaa aco,Jab =

The v terms are dropped if the signal is real.
Let M(co, 0) be the matrix defined by

T2 E n2 cos A
M (w, 0) = T n sin An

T E n cos An

-TEnsin An
E cos An

-E sin bor

(complex signal) (30)

(real signal). (31)

(complex signal). (32)

T E n cos A.
E sin An
E cos An

(33)
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where

An = moT + 0; n = 0 to N - 1. (34)

Let Pi; be the matrix defined by

Pi; = M (coi - w2, Oi - 0.) (35)

and let P be the p -by -p matrix defined by

Let

P=
P11

P kl

P lk

Pkk

1 0 0
B= 0 -1 0

0 0 1

Define a matrix Qii by

(36)

(37)

= +CM (wi - wi, ei - ei) - M(c.oi + w,, ei + /MB] (38)

and a matrix Q by

Qii
Q =

Qk1 QlkiQkk

Then it can be shown (13) that J is given by :

or

J = 12 DPDcomplex tones
cr

(39)

(40)

J = 12 DQD real tones. (41)

Theorem 8: When the signal consists of two equal -level complex tones,
the C -R bounds for the same parameters (e.g., the two frequencies) are
equal. In other words, the mutual interference is reciprocal.

Proof : The J matrix is

1 0 irpn p,211 -D1 0
(42)

=
p
L o DdLpr, _pill.' 0 Dd

because P11 = P22 = M(0, 0). Observe that Pr2 = BP12B because
MT (w, 0) = BM (w, OB. Thus, J 1 has the form

J1
11311 0 ir U WirDT1 0 1

(43)
L o Dc' LWT v o
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where

Hence,

V = BUB.

I Uii I = I Vi;

(44)

(45)

and Uii = Vii, which proves the theorem.

Theorem 4: The bounds for two tones, real or complex, are periodic in
01 and 02 with period Ir.

Proof : The theorem follows from the easily checked fact that
M (co, 0 + r) = -M(c o, 0) .

Theorem 6: The bounds for real or complex tones are periodic in each
frequency with period 27/T.

Proof : The theorem follows from the fact that M (co ± 27r/T, 0)
= M(co,0).
Theorem 6: The bounds associated with complex tones depend upon the
difference frequencies and phases but not upon the absolute values.

Proof : The theorem follows from (35), (36), and (40).

It is, in general, tedious to invert J and obtain formulas for the
it is a simple matter to have a computer calculate

the elements of J and its inverse. We have done this to obtain a better
understanding of the bounds.

A number of illustrative curves are given in Ref. 13. In the interest
of brevity, we will present only two of the figures here.

The main thing we learned from the calculations is that there is a
critical frequency separation, 47r/NT, associated with multitone C -R

bounds. In Ref. 1, it is shown that when a single complex tone is
present, the bounds are independent of the frequency of the tone. When
more than one complex tone is present, the bounds approach the single -
complex -tone bounds when the minimum frequency separation (modulo
27r /T) exceeds the critical frequency. The multitone bounds increase
rapidly as the minimum frequency separation goes below this critical
frequency.

This rule applies to a single real tone if it is considered to be two
complex tones, one at a frequency, say, of col, and one at -col. Thus,
if the frequency of a single real tone is less than 27r/NT, modulo r/T,
then its C -R bounds are much larger than the corresponding single -
complex -tone bounds.

In all cases, the multitone bounds depend upon the tone phases, as
might be expected.
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Fig. 1-Frequency estimation bound vs Af for center of three equally spaced
complex tones with worst relative phase and 20 dB s/n. N is 128. 1/T is 4000 Hz.
Corresponding single and double tone bounds also shown.

Figure 1 illustrates the critical frequency for frequency -estimation
bounds. The worst phase, i.e., the phase that gives the largest frequency
estimation bound, was used at each difference frequency. Figure 2
shows the critical frequency effect upon the frequency -estimation
bound for a single real tone.

To facilitate comparisons, in all figures we used a sampling frequency
of 4000 Hz for complex tones and 8000 Hz for real tones. Thus, in both
cases, the unknown tone frequencies are assumed to fall in the range
of 0 to 4000 Hz.

III. ESTIMATION ALGORITHMS

3.1 General

The ML estimation procedure is conceptually simple. Given that a
sample vector, X, is received, the ML estimate of the parameter vector,
Cr, is the value of a that maximizes the p.d.f. of X. That is, & maximizes
f (X/V). & may not be unique. Maximum likelihood estimation of the
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parameters of a single complex tone has been shown to be relatively
easy to implement.' It was shown in Ref. 1 that single complex -tone
ML estimators have variances almost equal to the C-R bounds over a
wide range of s/n. No other unbiased estimators could do significantly
better over that range of s/n.

Maximum likelihood estimation when several tones are present is
much more difficult to implement. However, we show below ways to
approximate ML estimation. We start the discussion with complex
tones and examine a practical approximation to ML estimation, the
resulting bias effects, the use of window functions to reduce bias, and
a time -saving interpolation algorithm. Then we briefly discuss how the
ideas and results apply to real tones.

Recall from Ref. 1 that we seek to maximize the function

2L = (X.I.in YnPn)
1

E (µn+ PD, (46)

where Xn and Yn are as defined in (3) and (4).
After carefully arranging the terms, we obtain the likelihood func-
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Fig. 2-Frequency estimation bounds vs frequency for single real tone at 20 dB
s/n and worst phase.
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tion in a form similar to that used in Ref. 1:
k

L = 12bi Re [6-'BsA (coi)] - bi
s-i

-
iv iE

E bib, E cos (no.NT - mo,T + 0 - B.), (47)
m

where

N-1
=

1
E (xn +117n)e-inuT. (48)

N n=0

L as given by (47) has two main terms and would be difficult to
maximize by a simple program. It can be done, but a lot of work is
involved. We notice, however, that when there is only one tone (k = 1),
the second term of (47) vanishes. Also, when N is large and k > 1, the
magnitude of the second term is still relatively small and does not in-
volve the data. Thus, we are led to drop the second term in L and
maximize the remainder. This, of course, will only give ML estimates
when k = 1 and will give "almost ML" estimates otherwise.

3.2 An almost ML algorithm

Suppose the cross -product terms in (47) are dropped. Then to make
estimates, we need to maximize

k

L1 = E 2bi Re [e-oiA (coi)] - M. (49)

From Ref. 1, each frequency estimate, Qi maximizes I A (w) I . Then the
corresponding level and phase estimates are

= I A (6i) I (50)

Oi = arg [A (on)]. (51)

The function I A (w) I has many maxima and large peaks near the
frequency of each tone. Thus, the frequencies of these large peaks, as
illustrated in Fig. 3, are taken to be the frequency estimates, 6i. Due
to the periodicity of I A (w) I , all the wi should be confined to a range
no wider than w, = 27/T to avoid ambiguous frequency estimates.
Normally the range (0, 2r/ T) is used. When real tones are involved,
the range should not exceed it/T.

and

3.3 Bias

Consider the case of only two tones. An example of I A (w) I when the

noise power is zero is shown on Fig. 3.
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Fig. 3-Shape of IA (w) I from two complex tones of equal phase and level, without
noise. N is 16.

The figure has large peaks near col and w2. The peaks in the example
are actually both displaced away from the average of the two fre-
quencies. Thus, the penalty for neglecting the cross -product term in
(47) is a bias in estimates of frequencies and levels.

The frequency and level bias in the zero -noise case is easily cal-
culated. An example of such calculations is shown on Fig. 4. The figure
shows the dependence of frequency estimation bias on the difference
frequency (AD of the two tones. When two tones have almost the same
frequency, the two large peaks merge into one at a frequency equal to
the average of the two tone frequencies. This accounts for the negative
slope of at low 0 f on Fig. 4. There is also a dependence upon the
difference phase (A0).

Figure 4 shows the bias for one of the two complex tones. The bias
for the other has the same magnitude but opposite sign. In general,
the magnitudes of the biases for two tones are not equal. However,
they are equal when the two tones are equal -level complex tones.

3.4 Window functions

In discrete Fourier transform (DFT) work, window functions (also
called weighting functions) are often used to minimize the effects of
one tone upon another. The modification of the DFT of samples of one
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tone by the presence of samples of another tone is called leakage. See
Rife and Vincent" for a discussion of leakage and how window function
will reduce it.

In the time domain, a window function (or time window), say h(t),
is characterized by its samples, h(nT). In use, each data sample,
X + j Yn = Z,,, is multiplied by hn = h(nT) before A (w) is computed.
Thus, A (w) becomes

1
A (w) = N- E hnZne-,",T, (52)

When a window function is used, the bias in the frequencies of the peaks
of I A (co)1 is modified. If a good window is used, the bias can be greatly
reduced. The penalty, as we see below, is an increase in the variance
of 4; and Si. Palmer also reported this penalty in Ref. 2.

In the context of the DFT, window functions can be written in the
form

M
hn = 1 + E di cos (2irin/N). (53)

i-1

The number M, which can be assumed to be less than N/2, and the di
define particular windows. With hn in this form,

N1N-1
h=
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Table I-Values of di in ascending order of i for
various windows

Hanning Standard Taylor

-1 -1.43596
0.497536

-0.061576

-1.03538
0.0824936

-0.00116197
-0.00188862
-0.00123387
-0.000671595
-0.000275885

A window that is better than many at reducing bias is the one
identified by Rife and Vincent" as g3(t). We call this the standard
window. Another useful window is one of the Taylor windows." These
windows are defined in Table I.

Figure 5 is an attempt to summarize the way window functions
affect bias. The curves on the figure compare upper bounds to the bias
associated with each of the previously defined window functions. The
curves were obtained by computing at each frequency the bias at the
worst phase (the phase that gave the largest bias). The resulting curves
were flattened as indicated for the Taylor curve.

Figure 5 shows the Taylor window does the best job when the tone
frequency separation is small. At large separations, however, the
standard window does much better. The figure also shows how bad
the bias is if no window is used.

Windowing increases the variance of frequency and level estimates.
It can be shown" that the increase in variance is related to the function.

1 N-1n = - E hn2.

It is easy to show that

M

n= di,
i-1

Thus, n is not a function of N.
errors are associated with larger
tabulated below.

Window

None
Hanning
Taylor
Standard

(54)

if N > 2M. (55)

Simulations verify that larger RMS
values of n. Some values of n are

n

1.00
1.50
1.54
2.16
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Durrani et al. call the sum a dispersion factor." They have com-
pared many windows and have tabulated their parameters, including
dispersion factors. Other windows are mentioned in Blackman and
Tukey."

The data on Fig. 6 shows the general effects of windows on RMS
errors when a single complex tone is present. The Hanning window
produces almost the same RMS error as the Taylor window and is not
shown on the figure.

Bias contributes to RMS errors more than variance does at high s/n,

N
CC
w

10

8-

1

0.8

0.6

0.4

0.2

0.1

0.08

0.06

0.04

0.02
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0.008

0.006

0.004
0

NO WINDOW

-HANNING

TAYLOR

I

I, I
I ACTUAL

TAYLOR

11

STANDARD

1

200 300 400 500 600
f IN HERTZ

Fig. 5-Magnitude of frequency estimation bias for two equal -level complex tones
using window functions. Curves are leveled as described in the text. Worst -phase was
used at each frequency. N is 64.
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Fig. 6-Simulation results showing the effect of window functions on estimation
variance with a single complex tone. N is 64.

while estimation variance controls RMS errors at low s/n. Thus, while
a given window may produce lower RMS errors than another at high
s/n, the roles may be reversed at low s/n. The "best" window for a
given application will, therefore, depend upon the tone frequency
spacings, the expected s/n, and possibly other factors. Figure 7 illus-
trates this point. On the figure, the Taylor window is best at 10 dB
s/n, but the standard window is best at 40 dB s/n, where the bias
associated with the Taylor window causes the RMS error curve to level
off.

3.5 Interpolation

Maximization of IA(w) I involves a search routine. A two-step
algorithm that has a coarse search and a fine search was described in
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Fig. 7-Simulation results showing combined effects of bias and variance on
frequency estimation for one of two complex tones. Frequency difference is 380 Hz;
worst -phase was used for each window. N is 64.

Ref. 1. Fine searches are time consuming. This can be serious if com-
puter time is important. One way to trade accuracy for speed is to use
an interpolation algorithm on the DFT of the input data to arrive at
frequency and level estimates.

Rife and Vincent developed several interpolation algorithms.'* The
one we investigate here is the following.

Assume the output of the FFT is the set :
1 N-1

Ak = E ne-11rnkIN, k = 0 to N - 1. (56)
N n=o

Suppose a coarse search is conducted over 0 < k < N. This results in
locating lAil which is the largest I ilk in the interval. Choose a = ±1
such that I A /4.. I z I Ai-.
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Let

al = lAti (57)
and

a2 = I Ai+.1.

Assume the sampling frequency is ws = 27/T.
The formulas from Rife and Vincent are :

and

= N (1 ± a(5)

(58)

(59)

- 2raiX
(60)

sin (rX) [1 + nit1432/ (62 - n2)]

where the do define a window and

Cia2 - C2a16 - (61)
C3a2 + al

The numbers C1, C2, and C3 are given by Rife and Vincent in Table
II for several windows.

The interpolation formulas give estimates that are only a little
worse than the fine search gives. RMS frequency errors are typically
increased by about 30 percent when interpolation is used. RMS level
errors increase less.

When many tones are present, window functions can provide a
satisfactory reduction of leakage as long as the minimum frequency
separation is no less than about 8r/NT. The data on Fig. 8 illustrate
this point. The tone phases were all made random for these simulations.
Thus, the points indicate the RMS errors one might encounter in a
working system. The bound shown on the figure is the (unbiased) C -R
bound maximized over the possible phases of the center tone.

We consider a real -tone estimation system to be equivalent to a
complex -tone system if the two systems have the same useful band-
width and the same frequency resolution. This means (i) the real
sampling frequency is twice the complex sampling frequency and (ii)
the total sampling time, NT, is the same for the real tones as for the

Table II-Constants for computing delta in eq. (61)

Window C1 C2 C,

None 1 0 1

Hanning 2 1 1

Taylor 1.96339 1.01643 0.893534
Standard 3.6020 2.5862 1.0317
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Fig. 8-Simulation results showing effects of Taylor window and interpolation
algorithm upon frequency estimates of center tone of three equally spaced real tones.
Center tone frequency is 2000 Hz. All have random phase. N is 128 and s/n is 20 dB.

complex. For example, a real -tone system using 1/T = 8000 Hz and
N = 32 is equivalent to a complex -tone system using 1/T = 4000 Hz

and N = 16.
The estimation algorithms described above for complex tones can

be applied to real tones whose frequencies, in Hz, are in the range
(1/NT, 1/211 - 1/NT). The resulting accuracies are about the same
as in the equivalent complex case.

IV. CONCLUSIONS

We have studied the problem of estimating the parameters, such as
level and frequency, of several sinusoidal signals from a number of
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noisy observations, taken at discrete -time instants. Gaussian noise and
ideal analog -to -digital conversion were assumed. The nature of the
problem led us to study the generalized Cramer -Rao lower bounds to
estimation accuracy and maximum likelihood estimation. The com-
plexity of maximum likelihood estimation algorithms led us to examine
several algorithms that yield estimates that are almost, but not
exactly, maximum likelihood estimates of the signal parameters.

We were able to obtain estimators that have negligible bias, at least
at high s/n. Thus, we considered in detail only the generalized C -R
bound for unbiased estimators. Even when the resulting numbers are
not, strictly speaking, lower bounds (e.g., when an estimator is biased),
the unbiased estimation bounds can be considered to be desirable
objectives for estimators.

Several properties of the bounds were derived from the properties
of the J matrix. Other properties, such as the existence of critical
frequencies, were revealed from computations.

The J matrix in the real tone cases is more complicated than in the
complex cases and does not have quite the same structural properties.
Thus, for example, the lower bounds for a single complex tone are not
also lower bounds for the equivalent single real tone. On the other
hand, the bounds for the case of many real tones approach the bounds
for the equivalent complex cases when none of the real tones have
frequency differences less than 2/NT, modulo 1/2T (in Hz).

The cases of many complex tones and of real tones present some
difficulties. Maximum likelihood estimation is difficult to implement
because of the presence of cross -product terms. To properly implement
ML estimation, multidimensional search procedures over a nonconvex
function would be necessary. We found that when the tone frequencies
are separated far enough, the cross -product terms could be neglected,
thereby permitting the use of a simple algorithm whose estimates are
almost equal to ML estimates.

The penalty for dropping the cross -product terms is a bias in fre-
quency and level estimates. We found that the use of a suitable window
function will reduce the bias to the point where it can be neglected
when the minimum frequency separation of the tones is 4/NT. Three
window functions were discussed and compared.

We found that the use of a window to reduce bias increased the
variance of the frequency and level estimates. The RMS error of fre-
quency estimates is increased by about 35 percent with Taylor window
and by over 100 percent with standard window. The use of the in-
terpolation formulas increases RMS frequency errors by another 30 per-
cent or so. Level estimates are affected less by windows and interpola-
tion. All of these figures apply when the s/n is above threshold.
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We generalize the concept of rearrangeability to a finer measure of the
connecting power of a network, called the c-rearrangeability function. It
can be interpreted as the proportion of calls a network guarantees to
connect under a given traffic load. We study the c-rearrangeability function
for many well-known rearrangeable networks, including one-sided rear-
rangeable, two-sided rearrangeable, as well as several other kinds. We also
give constructions for some new classes of networks, study their c-rear-
rangeability functions, and describe conditions under which the networks
are rearrangeable. We show that these newly constructed rearrangeable net-
works compare favorably with the well-known ones with respect to the
number of crosspoints.

I. INTRODUCTION

A multistage connecting network can be described by the following
(see Fig. 1 for a three -stage example) :

(i) There are s ordered stages, where s > 1 is arbitrary. The ith
stage, i = 1, , s, consists of ri copies of a switch Pi. The jth
copy of Pi is denoted by yip

(ii) Links can exist only between switches of adjacent stages or
between vi (vi) and input (output) terminals of the network.
The set of links incident to a particular vi is partitioned into
two subsets. Those which are linked to either pi_i or input
terminals are called input links of vi, and those linked to either

or output terminals are called output links.
(iii) The r1 copies of vi are called input switches of the network.

Each vi is connected to n1 input terminals. The r8 copies of
v8 are called output switches of the network. Each v8 is con-
nected to n, output terminals.

The three -stage Clos network is a special case of a multistage con-
necting network, satisfying the additional restrictions that s = 3 and
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STAGE 1 STAGE 2 STAGE 3

Fig. 1-Generalized three -step Clos network.

that there is exactly one link between every pair (vi, v2) and every
pair (v2, v3). When vi, v2, v3 themselves are allowed to be multistage
connecting networks, then a three -stage Clos network is called a
generalized Clos network. For simplicity, we assume n1 = n3 = n
throughout this paper. Then, a generalized Clos network can be
denoted by C(vi, v2, vs, r1, r2, r3, n) (see Fig. 1).

Define a request to be a pair of idle terminals seeking connection.
A request becomes a call once the two terminals are connected in the
network. An assignment is a set of requests and the size of an assign-
ment is the number of requests in it. An assignment is said to be realiz-
able if every request in it can be simultaneously connected in the
network without any link being used more than once. A network is
said to be rearrangeable if it can realize every possible assignment.

Consider a multistage connecting network v. Let g be the set of
input terminals, 0 the set of output terminals of v, and g = T. In
many actual cases, not every possible pair in T will generate a request.
In general, there could be two subsets I, SZ C T such that all requests
are generated in the product space I X a However, the four most
important cases are :

(i) the one-sided case : I = S2 = T.
(ii) the two-sided case : I = g, S2 = 0.

(iii) the input -mixed case : I = g, 1.2 = T.
(iv) the output -mixed case : I = T, St = 0.

The last two are often combined and called the mixed case.
A network is said to be one-sided rearrangeable if it can realize

every one-sided assignment. Similarly, we can define two-sided re-
arrangeable, input -mixed rearrangeable, and output -mixed rearrange -
able. Thus, a one-sided rearrangeable network means that every set
of pairs of terminals can be simultaneously connected, and a two-sided
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rearrangeable network means that every set of (input link-output
link) terminals can be simultaneously connected. It is clear that one-
sided rearrangeability implies mixed rearrangeability, which, in turn,
implies two-sided rearrangeability.

Rearrangeability is a strong condition which is manifested in two
aspects. First, all the requests in an assignment must be simultaneously
connected; i.e., if one request fails, the whole assignment fails. Second,
every assignment must be realizable; i.e., if one assignment fails, the
whole network fails. Even for a nonrearrangeable network, it is still
of interest to know the degree of its nonrearrangeability. We introduce
a new concept of rearrangeability in this direction. First, we score an
assignment by the largest number of requests it can guarantee to
connect simultaneously. Second, we partition the set of all assignments
into classes according to the size of an assignment. We score a class by
the lowest score achieved by any member in this class. Now, a bad
assignment can still bring down the score of its class, but not of the
other classes, and not to a score of zero. Thus, we define R(c), the
c-rearrangeability function, as the largest number of requests the
network v can guarantee to connect given any assignment of size c.
Thus, Rp(c)/c is the proportion of requests p can guarantee to connect
given that the traffic load is approximately c/ (capacity of v). When
R (c) = c, we say v is c-rearrangeable. If v is c-rearrangeable for all c,
then c is rearrangeable in the classical sense.

In this paper, we study the c-rearrangeability functions for some
well-known rearrangeable networks. We also construct some new
classes of networks, study their c-rearrangeability functions, and de-
scribe conditions under which the networks are rearrangeable. We show
that these newly constructed rearrangeable networks can save a sig-
nificant number of crosspoints over the well-known networks.

II. ANALYSES OF SOME WELL-KNOWN REARRANGEABLE NETWORKS

As switches are the basic components of a network, to understand
the rearrangeable property of a network, we have first to know what
the rearrangeable properties of its switches are (the switches mentioned
in this paper are all cross -point grid switches). For a switch, the
definition of rearrangeability is similar to that for networks, except
that input links and output links replace the roles of input terminals
and output terminals in a network.

Two links of a switch have direct access to each other if they inter-
sect at a crosspoint. In many networks, the cost of crosspoints still
dominates the other costs. Therefore, we would like to minimize the
number of crosspoints in a network. A relevant question is, for a given
rearrangeable property, which switch has the minimum number of
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crosspoints? This problem has recently been solved by Chung.' How-
ever, in our networks, we will stick to the more traditional switches
for their engineering feasibility and for ease of comparisons with
existing networks. Consider a switch with n input links and m output
links. It is called a triangular switch if there is a crosspoint between
every pair of links, input or output. Therefore, a triangular switch
has [(n m) (n - 1)]/2 crosspoints and is clearly one-sided
rearrangeable. The switch is called a rectangular switch if there is a
crosspoint between every input link and every output link.

A rectangular switch has n X in crosspoints and is two-sided re-
arrangeable. The switch is called a trapezoidal switch if there is a
crosspoint between every pair of links with at least one of the links be-
longing to a fixed side. A trapezoidal switch either has n(n - 1)/2 + nm
or in (in - 1)/2 + nm crosspoints and is either input -mixed or output -
mixed rearrangeable; depending on which side is the fixed side. Note
that an n X m rectangular switch is in fact input -mixed rearrangeable
if in n - 1. This is because any pair of input links can be connected
through an output link, and there are always enough output links to
do it. While the existing networks always use trapezoidal switches
when mixed-rearrangeable switches are needed, we will use rectangular
switches to save crosspoints when the condition in > n - 1 for input -
mixed and n > in - 1 for output -mixed is met.

In every network we discuss in this paper, vl and v8 are always
assumed to be two-sided rearrangeable (or stronger). Hence, two
terminals from two distinct vi and/or v8 can be connected if and only
if their corresponding switches vi(v8) can be connected. Thus, we can
redefine a request as a pair of vi and/or v8 and an assignment as a
collection of requests where each vii or v.; can appear at most n times.
If a request is (vii, vii) or (v.i, vq), then we have to discuss separately
how they can be connected.

Consider v = C(,vi, v2, v3, 7.1, r2i r3, n) shown in Fig. 2. (In our figures,
LI represents a one-sided rearrangeable vi,  a two-sided rearrangeable

Fig. 2-Ordinary three -stage Clos network.
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vi, /1-1 an input -mixed rearrangeable vi, and TIN an output -mixed
rearrangeable vi. The number of input links and output links will be
shown inside these figures.)

Theorem. 1 : (See Slepian,2 Duguid,3 and Bene§.4) v is two-sided rearrange -
able if and only if r2 >= n.

Theorem 2:

R,(c)/c { r2/ n, 1 } , for c > r2 ;
=1, for c <= r2.

Proof: Actually, we will prove an exact expression for R(c)Ic. We need
only consider the case n > r2 and c > r2 since the other cases are
trivial. Consider any assignment of size c. Let c = pn q where
0 < q < n. We can assume that the r2 real v2 are embedded in a set
of n imaginary v2. Then by Theorem 1, all requests can be simul-
taneously connected by the n v2. Rank the n v2 according to the number
of calls they carry and select the r2 v2 with the highest ranks to be the
r2 real ones. They must carry a total number of calls not less than
min fr2, q} X (p 1) + max {r2 - q, 0} X p. On the other hand,
when all the requests in an assignment involve only a few vi, say as
few as possible, then every v2 carries essentially the same number of
calls, differing at most by one. Hence,

liv(c)/c = (r2p q)/ (np q), if r2 > q;
(r2p r2)/ (np q), if r2 < q.

Theorem 2 gives a good approximation to this when c and r2p are
large relative to q.

To compute the number of crosspoints of a network, we always
make the simplifying assumptions that r1 = r3 = n and all Vi are
nonblocking switches so that we can easily compare the various net-
works. Under these assumptions, then, the current network for r2 = n
has 3n3 crosspoints.

Next consider V2 = C(V1, V22 v3, r1, r2, r3, n) shown in Fig. 3a.

Theorem 8:5-7 v is one-sided rearrangeable if and only if r2 > L3n/2],
where Lxj is, as usual, the integer part of x.

Theorem 4:

min {r2/1_ 3n-2 , 1} , for c > r2;
R,(c)/

= 1, for c < r2.

Proof: Again, we need only consider the case On/ 2 _I > r2 and c > r2.
The proof that Rp(c)/c > r2/ L3n/2_1 uses a similar argument to that
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(a)

(b)

(c)

Fig. 3-Mixed three -stage Clos networks.

in the proof of Theorem 2. To prove the reverse inequality, label all
the v1 and v3 by the numbers 1 to r1 + r3. Consider the L3n/2 j requests,

(Ln/2 j of them),
(Ln/2J of them),
(L(n + 1)/2J of them).

(1, 2), , (1, 2),
(1, 3),  , (1, 3),
(2, 3), , (2, 3),
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No two of them can be carried by the same v2, since otherwise the
two will share a link. Consider an assignment whose requests can be
partitioned into sets of L3n/2] requests of the above type and a re-
mainder set which is a subset of the above type of L3n/2 j requests.
Then the number of calls carried by each v2 can differ at most by one.
Hence, R,(c)/c < r2/L3n/2 j + (a constant)/c r2/L3n/2 j. The proof
is completed.

Under the simplifying assumptions previously stated, the number
of crosspoints for this network for r2 = L3n/2 j is 7n3. Note that this
compares favorably with the one-sided network8 obtained from a two-
sided rearrangeable network where both sides are g -I- 0. Such a
network needs 12n3 crosspoints. It is also better than the one obtained
by joining three two-sided networks together, the first having g in
both sides, the second having 0 in both sides, and the third having g
in one side and 0 the other. Such a network needs 9n3 crosspoints.

We can easily obtain an input -mixed rearrangeable network from
the above one-sided rearrangeable network by changing P2 from one-
sided rearrangeable to input -mixed rearrangeable and v3 from output-
mixed rearrangeable to two-sided rearrangeable (Fig. 3b). Let v be the
network shown in Fig. 3b.

Theorem 6:

c_LJ- min {r2/1_ 3n
-2- , 1 , for c > r2,

R,(c)/
= 1, for c 5 r2.

Proof: The proof is similar to the proofs for Theorems 3 and 4.
For r2 = 3n/2, this network has (23/4)n3 crosspoints. However, we

can also obtain an input -mixed rearrangeable network by joining two
two-sided rearrangeable networks together; one is (g, 0) -two-sided
and the other has g in both sides. Such a network needs 6n3 crosspoints.

III. A NEW INPUT -MIXED REARRANGEABLE NETWORK

Consider v = C(v 1, v2, v3, r1, r2, r3, n) shown in Fig. 3c.

Theorem 6: v is input -mixed rearrangeable if

(i) r2 > n,
(ii) (r2 - 1)r3 nrl.

Proof: We first explain how a request is connected in this network. A
(Ph, v35) request is still connected through some v2 which has an idle
link to vlt and an idle link to v3; just as is done in the networks of
Section II. But a (vii, vu) request cannot be connected in this manner
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since v2 cannot connect two input links. Instead, we will connect both
vii and vii to some v3k and then use the input -mixed rearrangeable
property of P3 to complete the connection. One question is whether
there are enough input links of P3 to accommodate all (vi, vi) requests.
Now each (vi, v3) request takes up one input link of v1 and one of v3,
and each (v1, vi) request takes up two input links of v1 and two of P3.
Hence, regardless of the distribution of (v1, v1) requests relative to the
(vi, P3) requests, the maximum number of vs input links needed is,

except for a minor correction, the maximum number of v1 input links
available, which is nr1. The minor correction is because each (v1, vi)
request takes up a pair of v3 input links from the same v3. Hence,
occasionally, a v3 input link may be wasted since it has no partner.
Discounting one input link from each v3, we obtain condition (ii).

If condition (ii) is satisfied, then each (vii, vu) request can be re-
placed by two requests (vii, v3k) and (vii, yak). Hence, an input assign-
ment is turned into a two-sided assignment. The requirement that each
yak must appear no more than n times is irrelevant here because the
connection of (Pli, v3k) does not involve any output links of v3k. By
Theorem 1, the derived two-sided assignment is rearrangeable if r2 n.

Theorem 6 is proved.

If r1 = r3, then r2 = n 1 satisfies both conditions of Theorem 6.
Furthermore, since the size is right, we can use rectangular switches
for P3 for mixed-rearrangeable property. This network has 3n3 3n2

crosspoints (under the simplifying assumptions) as compared to
(23/4)n3 for the input -mixed rearrangeable network in Section II.

Since a (vii, via) request takes twice as many links to connect as a
(vii, v3;) request, one might suspect that the blocking probability for
the former request is much larger. This is not necessarily true, however,
since there are only r2 distinct connecting paths of two links for a

v3;) request but (2')r3 paths of four links for a (v1i, vii) request.

Theorem 7: Let v be the network in Theorem. 6. Then,

max 2 - 1c , 0} (r2 - 1)r3
Ry(c)/ c min {1, / X min { 1,

2c

Proof: For the time being, suppose r2 = n. Consider any assignment
of size c and let u be the number of (vi, v3) -type requests in it. Then
u > max { 2c - nri, 0 } since u 2(c - u) = 2c -u input links of Pi
are required while only nr1 are available. If there are not enough input
links of v3 to take care of all c requests, then priority should be given
to (vi, P3) type requests to maximize the number of requests connected.
The priority is due to the fact that a (vi, v3) request needs only one
input link of v3 while a (v1, vi) request needs two. For u > r2r3, the
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maximum number of requests connectable is r2r3; for u < r2r3, the
maximum is approximately

(r2 - 1)r3 -u u (r2 - 1)r3
u r2r3.

2 2

The worst case occurs when u is at its minimum, i.e., u = max
X { 2c - nr1, 0}. But still the network guarantees to connect at least

[max (2c - nr1, 0} (r2 - 0/.3] requests. Now look at the dis-
tribution of these calls in the v2. If r2 < 71, select the r2v2 that carry
the most calls. In this way, we obtain Theorem 7.

Corollary: v is input -mixed c-rearrangeable if r2 n and either

(r2 - 1)r3 (r2 - 1)r3 nr1
or c >

2 2 - 2
IV. A NEW ONE-SIDED REARRANGEABLE NETWORK

Consider v = C(vi, P2, v3, r1, r2, r3, n), where v1 and v3 are input -
and output -mixed rearrangeable and v2 is one-sided rearrangeable.
Also assume n and r2 are even. We construct a v' from v by inserting
something between the pair (v2,21-1, P2,21) for each i = 1, , r2/2 (see
Fig. 4) to provide some limited access between links of v2,21_1 and links
of v2,21. One way to do this is to insert two two-sided rearrangeable
networks /2,1 and tii2 between v2,21_i and v2,21. The input links of Ail
are the extensions of the n links of v2,2i_1 and the output links of 1212
are the extensions of the n links of P2,2i- Ail has 3(r1 7'3) output links
that become the input links of 1.112. Thus any link of v2,21_1 can seize
an output link of Ail and then connect to any link of v2,21 in /.112. Of
course, i(ri r3) such connections can be made simultaneously.

L

V 2,2i-1

1 I

2

+r3

_J

2,2i _

Fig. 4-One-sided rearrangeable networks.

2

r 1 4. 'Li

2

r1 r3
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Theorem 8: v is one-sided rearrangeable if and only if r2 > n.

Proof: For a given assignment, define an assignment graph by taking
all V1 and P3 as vertices and every request as an edge. We can augment
the assignment graph to become a regular graph of degree n by adding
suitable edges to it. By a theorem of Petersen (see Refs. 9 or 10), a
regular graph of even degree is 2 -factorable; i.e., the assignment graph
can be decomposed into (n/2) 2 -factors, where a 2-factor is a subgraph
in which every vertex is of degree 2. Hence, a 2 -factor consists of a set
of disjoint circuits. Now any circuit of length 1 represents a request
from two terminals of the same switch. We can connect them within
that switch because of its mixed-rearrangeable property. Aside from
that, we can partition all edges in an odd circuit into three sets such
that edges in the same set are all disjoint; and we can partition all
edges in an even circuit into two such sets. Since all circuits in a 2 -factor
are disjoint, we can combine those sets into three large sets A1, A2, Aa,
such that the edges in each large set are all disjoint. As each edge
represents a request, all the requests in A1 can be connected through,
say, P21, since they are all disjoint (we can ignore those edges which
are augmented to the assignment graph). Similarly, all the requests
in A2 can be connected through V22. For a request in A3, say (x, y), if
(x, y) is disjoint with every request in A (A 2), then we can connect
it through v21(P22). Otherwise, suppose x has appeared in Al and y
in A2. Then we connect x to V22 and y to P21 and then connect them
through An and /112. We do this for every request in A3. Therefore, all
requests in a 2 -factor can be connected by a pair of P2. There are n/2
2 -factors; hence, n/2 pairs of V2 will suffice. If we have less than n/2
pairs of P2, then there is no way to handle the 3n/2 requests given in
the proof of Theorem 4. Hence, Theorem 8 is proved.

Theorem 9:

'-`2 min , 1 , for c > 3r2,

R,(c)/
= 1,

3r2
for c -T

Proof: Omitted.
For r2 = n, this network has (16/3)n3 crosspoints versus the 7n3

for the standard one-sided rearrangeable network.

V. A c-REARRANGEABILITY THEOREM

We have seen that the c-rearrangeability functions of many net-
works discussed in previous sections are such that 14(c)/c a, a
constant, over most of the range of c. Consider v = C(P1, P2, va, r1,
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r2, r3, n) such that R(c)/c ai for two-sided assignment. What can
we say about R, (c) for two-sided assignment? If the blocking in vi,
v2, v3 and the blocking due to the structure of v all act independently,
then we should have

liv(c) aia2a3 min 1,r2
max { al, ad X n

The reason for the last term is because at most max { al, a3} X n
requests from the same switch can get through to the second stage.
However, we show that the blocking in vi and the blocking in P3 can
be coordinated so that the requests blocked in one stage form a subset
of the requests blocked in the other stage. Without loss of generality,
suppose al S a3. Then

Theorem 10:

R(c) > alai min 11, -r2ain

Proof: For any given assignment, consider its bipartite assignment
graph G. Let di be the degree of vertex i. We want to find a subgraph
G' such that the degree of vertex v in G' is d; = aidi (treating it as an
integer). Then G' is the set of requests that will get through both vi
and v3.

Let V1 be the set of vertices corresponding to v1 and V3 the set
corresponding to v3. Let d(X) denote the sum of degrees over all
vertices of X in G, and define d' (X) similarly for X in G'. Finally, let
dy (X) denote the degree sum of X in G when the set Y is deleted from
G. Then a theorem of Gale" on network flows has the following
interpretation.12

Gale's Theorem : G' exists if and only if there do not exist two sets S C V1,
T C V3 such that either

d'(S) > d'(T) dT(S),
or

(T) > d' (S) cls(T).

In our case, (S) = aid(S) and d' (T) = aid(T). Without loss of
generality, suppose d(S) > d(T). Then the second inequality in Gale's
theorem certainly cannot hold. To check the first, note that

dT(S) > d(S) - d(T) > aid(S) - aid(T) = d'(S) - d'(T).
Hence, the first inequality also does not hold. We conclude that G'
exists and Theorem 10 is proved.

When the involved numbers are large, the discrepancy caused by
assuming aidi an integer is certainly negligible.
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A fixed-point algorithm has been used to obtain the parameters (i.e.,
decision and representative levels) of an "optimum" quantizer that mini-
mizes a quite general distortion measure, subject to an entropy constraint
on its output. Construction of the algorithm starts with a point -to -set
mapping whose fixed point satisfies the well-known Karush-Kuhn-Tucker
conditions necessary for a local extremum. A computer program is then
used to determine a fixed point of this mapping. Several examples are
solved, and correspondence with the existing results in the literature is
pointed out. Finally, as conjectured, the growth of the computations as a
function of dimensionality n (n: number of representative levels) is found
to be of the form a  n° where a is a positive constant and 1.5 < b 2.0.

I. INTRODUCTION

Simple quantization' -3 has been and continues to be a popular
method of digitizing analog signals. The relative ease with which
quantizers can be implemented in hardware and their near optimum
performance has made them withstand the challenge from several
new coding schemes.4-6 Universal use of quantizers has naturally
spurred a significant activity in optimizing their performance, some
of which is summarized in the next few paragraphs. Our objective
in this paper is to show how the problem of obtaining the parameters
of an optimum quantizer can be converted to the problem of obtaining
fixed points of a suitably constructed mapping and then to use a
fixed-point algorithm to solve the problem numerically.

Quantizers have been optimized based on several criteria. In order
to discuss these in relation to the problem considered in this paper, we
describe the basic quantizer equations. Given a scalar random variable
T with probability density p (0, a quantizer Q is a map Q (t) = yi
whenever xi < t < xi+i, where xi, i = 1, , N 1 and yi, i = 1,

, N are the decision and representative levels of the quantizer,
respectively. The performance of the quantizer is judged generally in
terms of two quantities :
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the distortion
N

D = E g(t - y1) X f(t)dt, (1)
1=1 xi

and the entropy

N
6 - (logs pi) X pi, (2)

i-1

where g is a nonnegative function and f is a nonnegative weighting
function that weights the quantization noise and

Pi = f p (t)dt.
xi

Optimum quantizers choose their parameters {xi} , i = 2, , N and
{ yi , i = 1, , N (given the end points xl, xN+1) to optimize a certain
combination of D and 8.

Most quantization literature uses the weighting function f to be the
same as the probability function p, although in some applications7-9 a
different weighting function performs better. Most of the earlier work
is concerned with minimizing D for a given number of levels. Panter
and Dite" have used g() = j()Ir(r > 0) and obtained an approxi-
mate optimum quantizer as one in which each of the quantizing in-

[xi, xi+1] makes integral of
(t - yi) I r. This allowed them to choose the quantizer parameters for

large N. Lloyd" and Max" have developed an algorithm for r = 2,
which corresponds to minimizing the mean square error. Bruce" has
used dynamic programming to solve the same problem in slightly more
generality by taking a general function g(). Simpler suboptimal algo-
rithms and bounds on the performance of the quantizers have been
obtained by Roe," Algazi," and Zador."

Representation of the quantizer output by a variable length code
allows reduction of the average bit rate of the quantizer when pi varies
with i. Use of Huffman code" makes the average bit rate approach
the entropy of the quantizer output. Thus, the problem of designing
an optimum"-" quantizer can be reformulated as that of obtaining the
decision and representative levels to minimize D subject to a constraint
on the entropy. Goblick and Holsinger have considered this problem
for uniform quantizers and have concluded that for gaussian density,
for r = 2, and for the same distortion, the entropy of the output of the
uniform quantizer is higher than the theoretical lower bound based on
the rate distortion theory by about 4 bit. Uniform quantizers are also
good in an asymptotic sense, since they are optimum for a large number
of levels.21 Moreover, for Laplacian densities, as shown by Berger,"
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uniform quantizers are optimum for any value of entropy. A different
type of distortion measure has been considered by Elias."

The problem we consider is that of obtaining the parameters of
quantizers such that D is minimized for a given constraint on the
entropy. Although the approach taken here is suitable for a general
distortion measure of eq. (1), we consider only the case of g() = ( )2,
mainly to compare our results to those in the literature. In the next
section, we present the necessary conditions that the optimum quan-
tizer must satisfy for a local extremum. Then, in Section III, we con-
struct a point -to -set mapping such that its fixed point satisfies the
necessary conditions for a local extremum of our problem. A descrip-
tion of the algorithm is then presented for completeness. In Section IV,
we present the results of use of this algorithm for uniform, Laplacian,
and gaussian densities. The distortion -entropy curves are presented for
each case. We also present a surprising observation on the growth of
computations as a function of dimensionality (i.e., the number of
quantizer parameters to be optimized).

II. FORMULATION OF THE PROBLEM AND NECESSARY CONDITIONS

Using g() = ()2, the distortion of eq. (1) becomes
N

D = E (t - y1)2 f(t)dt. (3)
j=1

Then the problem is to obtain {xi} , j = 2, , N, {yi}, j = 1, - , N
such that they minimize D subject to 8 < K, for a given N. The
necessary conditions from the Karush-Kuhn-Tucker theory" are that
there exists a X 0 such that

VD (x) XV 8(x) = 0, (4)

where x is a vector of quantizer parameters and V denotes the gradient.
For the parameters { y; } , since 8 is independent of {yi }, (4) becomes

./4-1
y; = f tf(t)dt f f(t)dt, j = 1, , N. (5)

zi

This implies that the representative levels can be obtained explicitly
by knowing the decision levels and therefore they do not add to the
dimensionality of the problem. Also, the other necessary conditions are

and
8 K

X(6 - K) = O. (6)

III. FIXED-POINT APPROACH

In this section, we formulate the quantization problem as a fixed-
point problem and give a general description of the algorithm that
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solves this problem. This algorithm is based on the theory of com-
plementary pivoting."

Given a point -to -set mapping r [i.e., to each point x in Rn it as-
sociates a subset r (x) of Rn], a fixed point of such a mapping is a point
x such that x E r (x). We show that the problem of finding the pa-
rameters of the optimal quantizer can be formulated as a problem of
finding a fixed point of a certain point -to -set mapping.

3.1 Fixed-point formulation

Let VD and V8 be the gradient vectors of the distortion D and
entropy 8, respectively. Then, consider the following point -to -set
mapping :

{
8(x) < Kx - IV D (x))

r (x) = x - hull { VD (x) , V 8 (x)} 8 (x) = K,
x - { V8(x)} 8(x) > K

where hull {E} is the smallest convex set containing E; i.e., the convex
hull of E, and x -A = {x - y : y E A } for a set A in R.. Note that
the mapping as defined is upper semicontinuous. (u.s.c.) and the set
r (x) is convex for each x. As we subsequently see, these properties are
needed if the algorithm is to find a fixed point of r.

We now show that a fixed point of this mapping satisfies the necessary
conditions of Section 2.

(7)

Theorem: Let x E r(x). Then, if 8(x) < K, x satisfies the necessary
conditions of Section 2. Otherwise, x is a local minimizer of 8(x).

Proof: We construct the required X and show that (6) is satisfied.
Since x E r (x) and 8(x) < K, we have two cases :

Case (i): 8(x) < K. Let X = 0 and, since 0 E { VD (x) } , VD (x)

XV8(x) = 0, satisfying (6). Note that X[8(x) - K] = 0.

Case (ii): 8(x) = K. Then, as 0 E hull { VD (x), V8(x)}, there exist
Xi + X2 = 1) X1 0) X2 0 such that

XIVD(x) X2V8(x) = 0. (8)

Now, in case Al 0, letting A = X2/X1 > 0, (4) is satisfied, and
X[8(x) - K] = 0. In the contrary case, a constraint qualification
would be violated.

In case x E r (x) and 8(x) > K, then, since 0 E V8(x)}, V8(x)
= 0 and we have a local minimizer of 8(x). If 8(x) were a convex
function, our problem has no feasible solution [i.e., an x such that

A mapping r is u.s.c. if, for any two sequences {xk}, {yk} such that Xk -+x,
yk E r(xk), and yk y, we have y E r(x).
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&(x) < K]. In the contrary case, we would conclude the algorithm
has failed.

3.2 Description of the algorithm

In this section we give a brief description of the algorithm that com-
putes fixed points of point -to -set mappings. Before going into the
details of the algorithm, we introduce some notation.

Given a set C in R n, and a point -to -set mapping 11, by r(c) we
represent the set U P (x). Also, given a one-to-one linear mapping r,

x E c
we say a set C is

(i) P-complete if 0 E hull { P (C) } ,

(ii) r-complete if 0 E hull { r (C) } , and
(iii) P U r-complete if 0 E hull { P (C) U r(C)) .

The significance of P -complete sets is the following : in case Pis
u.s.c. and r (x) is convex for each x, a sequence C1, i = 1, 2, of
P -complete sets whose diameter approaches 0 as i approaches 00 , con-
verges to a fixed point of P (see, for example, Refs. 25-27). The fixed-
point algorithms are designed to find such a sequence of r -complete
sets.

These algorithms work with sets C that are simplexes of appropriate
dimension. (An n -dimensional simplex is a convex body obtained by
taking the convex hull of n 1 affinely independent points in n -space.
A two-dimensional simplex is a triangle; a three-dimensional simplex
is a tetrahedron.) They start with a unique r -complete simplex and
generate a sequence of P U r -complete simplexes that terminate with
a P -complete simplex. There are essentially two basic algorithms that
can be used to generate a sequence of P -complete simplexes of decreas-
ing diameters. They are the restart method of Merrill" and the con-
tinuous deformation method of Eaves and Saiga1.26 A study of both these
methods can be found in Saigal."-"

We now discuss an application of the algorithm. A real number
d > 0 is chosen. Then the space Rn X [0, d] is triangulated (i.e., each
point in the space lies in an (n + 1) -dimensional simplex, and these
simplexes overlap only on their boundaries) such that the vertices of
the triangulation are only in the set Rn X fd/29 , k = 0, 1, . In
addition, the diameter of each n -dimensional face of each (n ± 1) -
dimensional simplex that lies in R" X [d/2k+1, d/2k] is at most d/2k.
Now, an arbitrary starting point xo is chosen. We then define

r(x) = -x so, (9)

which is a one-to-one linear mapping.
The sequence of r U r -complete simplexes is then generated as
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follows:

Step 1: Start with an r -complete simplex in the triangulation that
contains (xo, d). The triangulation is arranged in such a way
that there is a unique such simplex, and that this simplex
has exactly one vertex in Rn X d / 2) , and (n 1) vertices
in Rn X fd) . The entering vertex is the one in Rn X { d/21.
Design the labeling function L on the vertices of the triangu-
lation with

L(x, t) = z - x
x° - x

for some z E r (x) if t< d
if t=d (10)

Step 2: Find the label on the entering vertex.
Step 3: Find a new P U r -complete simplex that includes the enter-

ing vertex, in place of some vertex of the older simplex.
This is equivalent to the basic pivot operation of the simplex
method."

Step 4: Find the other (n 1) -dimensional simplex that contains
the new P U r -complete simplex found in Step 3, and de-
termine the entering vertex.

Step 5: If the entering vertex is outside Rn X { d/2K, el), stop. The
earlier 1' U r -complete simplex is actually r -complete.
Otherwise, go to Step 3.

Having found a P -complete simplex T, say, whose vertices are V',
V2,

, V n+i, where V' = (vi, di), i = 1,  , n 1, we have de-
termined points zi E P (vi) and a X = (X1, , 0 such that

n -I-1

E Aizi = 0
i=1

n4-1
E xi = 1

has a solution. In this case, we say that the point x determined by

n-1-1

= E xivs (12)

is an approximate fixed point (for justification, see Ref. 26).
Since the stopping criterion at Step 5 requires that we generate a

vertex in Rn X { d/2K ), we have generated a sequence of 11 -complete
sets Ci, the last one of diameter less than d/2K, and have thus found a
reasonable solution.

The procedure for triangulation Rn X (0, d] generally used is
called J3 in the literature. For a more detailed description of this
algorithm, the reader is referred to Ref. 32.
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IV. EXAMPLES

In this section, we discuss some examples that we solved using the
algorithm described in the previous section. Three of the four examples
had f (  ) = p(  ) corresponding to mean square quantization error as
a measure of distortion. The fourth example, on the other hand, uses
a different weighting of the quantization noise; it is motivated by the
problem of quantizer design for simple element differential coding of
picture signals.' The examples are :

(i) f (x) = p (x) = , -16 < x < +16
= 0 otherwise

(ii) f(x) = p(x) = -1 - < x < 00, a = 0.1

exp (- u2/2a)

(iv) f(x) = -1 e-sixl ; p(x). =
1
-a e-airi -co < x <

a = 0.18, # = 0.1; and a = 0.1, # = 0.065.

Due to symmetry of functions f (  ) and p(  ), the optimum quantizers
are symmetric and, for simplicity therefore, quantizers were con -

(iii) = p(x) -

40

20

10

8

6

4
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0.4

02

, - co < x < + co, a = 1 (13)

1.0 1.5 2.0 2.5

ENTROPY (BITS)
3.0 3.5 4.0

Fig. 1-Quantizer performance for uniform density. Minimum mean square error
(MMSE) is plotted against entropy for a fixed number of levels (N). Only odd -level
quantizers are considered. For each fixed number of levels, MMSE decreases with
entropy up to a certain point, after which there is no further decrease in mean square
error.
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Fig. 2-Quantizer performance for Laplacian density.
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strained to be symmetric. Also, without loss of any generality, only
quantizers having odd numbers of levels were considered. In each case,
several problems were solved by varying the entropy constraint and
the number of levels. The number of levels were varied from 3 to 21,
and the entropy constraint was varied from 1.0 bit to the largest
possible bits using a particular number of levels.

Results of these simulations are given in Figs. 1 through 5. In these
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Fig. 3-Quantizer performance for gaussian density.
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Fig. 4-Quantizer performance for Laplacian density and exponential weighting.
Quantization noise is weighted by 1/113! exp(-/31x1), whereas the probability
density is taken to be 1/ a I exp (-a Ix i ). Such situations arise in quantization of
the prediction errors in predictive coding of the television signals : a = 0.1,0 = 0.065.

figures the distortion is plotted logarithmically on y-axis and the
entropy is plotted linearly on x-axis in bits. Alternate solid and broken
lines are shown for different values of quantizer levels. For a given
number of levels, the minimum distortion decreases approximately
exponentially with respect to the entropy up to a certain point and
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Fig. 5-Quantizer performance for Laplacian density and exponential weighting:
a = 0.18, /3 = 0.1.
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then the entropy constraint is not operative any longer, and conse-
quently the distortion remains a constant. These are indeed Lloyd-
maxii,i2 quantizers that minimize the distortion for a given number of
levels with no constraint on the entropy. The distortion versus entropy
curves are lower bounded by the following functions :

Example (1) D = 85.3 exp ( -1.39E)
Example (2) D = 196.18 exp ( -1.32E)
Example (3) D = 1.40 exp ( -1.39E)

Example (4a) D = 62.50 exp ( -1.31E)
Example (4b) D = 176.71 exp ( -1.24E).

(14)

In the case of uniform densities, the optimum quantizer is non-
uniform whenever the entropy constraint is operative, but when the
entropy constraint is too large and inoperative, the optimum quantizers
are uniform. Laplacian densities, on the other hand, always have uni-
form quantizers as the optimum quantizers. This has been shown by
Berger.2° In the case of gaussian density, the optimum quantizers were
not uniform; however, a comparison of our results with those given by
Goblick and Holsinger" indicates that, although nonuniform quantizers
perform better than uniform quantizers, the differences in the per-
formance of the two are somewhat small. This conclusion has also been
reached by Wood" and Berger.2° The case of an exponential weighting
function falling slower than the probability density function arises in
quantization of the prediction error in a simple element differential
coding of picture signals. In this case, the density of the prediction
error is approximately Laplacian, whereas the perceptual visibility°,"
of the quantization noise may be approximated by an exponential
function decaying somewhat slower than the probability density. The
distortion -entropy curves for this case show larger improvement (that
is, for a given entropy the distortion decreases much more than in the
previous examples) as the number of levels is increased. Also, the
optimum quantizers are nonuniform. Improvement in their perform-
ance over that of the uniform quantizers is more significant than in the
previous examples. It is interesting to note that our algorithm can
solve Lloyd -Max problem trivially by setting the entropy constraint
to a very high value. This algorithm was also used in other applica-
tions related to adaptive quantization" of picture signals. The prob-
lems in this case were such that they had uniform (constant) weighting
functions and two-sided exponentials as the density functions. The
resulting quantizers had interesting structure and were used quite
successfully.
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4.1 Computational effort as a function of n

The increase in computational effort as a function of dimension, n,
of the problem is important in the study of algorithms. In the case of
fixed-point algorithms, Saigal" had speculated that different tri-
angulations would have different effects on this growth and he was the
first to propose a measure to describe it. For the triangulation em-
ployed in our experimentation, his measure predicted the growth rate
of the number of iterations as n2. Subsequently, Todd" refined his
measure to predict an "average" growth rate of the iterations as
The measure of Saigal, in some sense, predicts the "worst case"
behavior.

The computational experiments in Section IV were ideally suited
to test the theoretical predictions of Refs. 28 and 35, since the dimen-
sion of the problem was increased in a regular manner, the starting
points were chosen in a regular way, and the problems of dimensions
varying between 1 and 10 were solved. A number of results for various
entropy values were plotted on the log -log paper. A representative
plot is given in Fig. 6. It is seen that the experimental points lie on a
straight line. The slope of these lines for different cases was a function
of the entropy constraint and the probability density used and varied
from 1.55 to 1.88, which is between 1.5 predicted by Todd" and 2
predicted by Saigal."

with a high degree of certainty, that the
number of iterations of the algorithm to solve a problem of dimension
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Fig. 6-Growth of computations vs dimensionality. Number of representative
levels N is two times the dimensionality n plus 1. Straight line drawn is the minimum
mean square error fit to the observations shown by A.
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n would require anb for some b between 1.5 and 2.0. Since each iteration
requires 0 (70) multiplications and at most one evaluation of the
function, the number of function evaluations is bounded by 0(n2) and
multiplications by 0(n4).

V. CONCLUSIONS

A fixed-point formulation has been developed to minimize the dis-
tortion, using a fairly general distortion measure, with respect to pa-
rameters of a quantizer under an entropy constraint on the quantized
output. A point -to -set mapping is first developed whose fixed point
satisfies the necessary conditions for a local extremum. Then a com-
puter program is developed to compute its fixed points. Several ex-
amples are solved to show the usefulness of the algorithm. Finally, the
rate of growth of the computations used by the algorithm as a function
of the dimensionality of the problem is also discussed.
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