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A low -noise amplifier for 4 GHz radio has been designed and is in
manufacture. The noise figure is dB and the gain is typically 10 dB.
Input and output return losses are >25 dB. The insertion loss with
failure of either the power supply or the low -noise transistor is typically
5 to 8 dB. The amplifier uses a single gallium arsenide field effect
transistor in conjunction with a passive failsafe by-pass network uti-
lizing circulators. This approach permits the noise figure and the gain
flatness to be optimized for each amplifier without compromising the
input and output matches. It is concluded that this single -transistor
amplifier design has significant advantages both in performance and
in simplicity over the balanced amplifier design.

I. INTRODUCTION

Gallium arsenide Field Effect Transistors (GaAs FETs) are effecting
a revolution in both the design philosophy and the performance capa-
bility of new microwave systems. In addition, these devices can often
provide an economical means for significantly upgrading the perfor-
mance of existing systems. Such is the case with the 4 GHz radio system,
where an RF preamplifier with a maximum noise figure of 2 dB is
achieved with GaAs FETs. In this application, each common multi-
channel amplifier permits the output power of typically five transmitters
to be dropped 4 dB, from 5 watts to 2 watts, while still maintaining the
system thermal noise objective for 1500 channels. This significantly
increases the life of the transmitter amplifier triodes, thus improving
the overall system reliability.
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Fig. 1-Single-ended amplifier with provision for unpowered transmission.

II. GENERAL DESIGN CONSIDERATIONS

The use of the GaAs FET amplifier as an RF preamplifier for FM sys-
tems requires low intermodulation as well as a low noise figure. In ad-
dition, since the amplifier is common to several channels (including the
protection channel), reliability is of utmost importance. The two most
serious failure mechanisms envisioned are: (i) transistor failure and (ii)
power supply failure. With either type of failure, the GaAs FET amplifier
inherently exhibits an unacceptable transmission loss (>20 dB) for radio
applications. Use of a balanced amplifier with two transistors coupled
with input and output 3 dB hybrid couplers would reduce the gain by
only 6 dB for failure of a single transistor. But this redundancy and extra
cost gives no relief for loss of the dc supply voltage for the transistors.

Schemes, without active devices, for reducing the loss to <10 dB for
either type of failure and which apply to the balanced as well as the
single -ended amplifier are shown schematically in Fig. 1 and 2. The signal
reflected from the unpowered FETs is fed to the output by intercon-
necting the normally terminated arms of the coupler (Fig. 2) or isolator
(Fig. 1). We have designed, constructed, and evaluated both balanced
and single -ended amplifiers.

The requirements for this application are shown in Table I. The choice
of the design approach to meet these requirements was based on a de -
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Fig. 2-Balanced amplifier with provision for unpowered transmission.
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Table I - Electrical requirements for 3.7 GHz to 4.2 GHz amplifier

Max. Min. Units

Input return loss
Output return loss
Noise figure
Gain
Gain flatness
Intermodulation (2A -B intercept)
Unpowered insertion loss

25 dB- 25 dB
2.0 - dB

11.0 8.0 dB
±0.5 - dB- 23 dBm
10 - dB

Table II - Single -ended versus balanced amplifier

Single Balanced

Gain
Unpowered loss
Output return loss
Input return loss
Transistor failure
Intermodulation (2A -B intercept)
Noise figure
Transistors required
Couplers required
Circulators required

Same (8-11
Same

?-25 dB
?-25 dB

6-8 dB loss

0.3 dB advantage
1

0
3

dB)

20 dB
?...17 dB

2-5 dB gain
3 dB advantage

2
2
1

tailed comparison of the capabilities of the two amplifiers. Based on our
laboratory experience, Table II compares the performances that we
consider practical in manufacture. We realized that meeting the inter -
modulation and failsafe requirements with a single transistor would allow
significant cost savings. The single -ended GaAs FET amplifier reported
here not only meets these requirements but also has match and noise
figure advantages. This results from the low loss input circulator which
allows us to independently optimize the input circuit match and the
transistor source impedance for minimum noise.

III. AMPLIFIER MODULE

The GaAs FET is mounted in a microstrip circuit (Fig. 3). This
transmission line permits easy mounting of the transistor and MOS
dc -blocking capacitors. The amplifier module per se has no adjustments.
Tuning screws near the input and output of the module and in the cir-
culator arms are used to adjust the amplifier for optimum noise figure
and gain flatness. This feature compensates for variations in transistor
parameters as well as for manufacturing tolerances of the piece parts.

3.1 The GaAs FET output circuit design

In a first order approximation the output circuit elements were de-
termined using BAMP.* Supplying the S -parameters and the input re-

* Basic Analysis and Mapping Program.
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flection coefficient (rmNF) that results in a minimum noise figure, circles
of constant gain are drawn (Fig. 4). If the output circuit reflection coef-
ficient equals rmL, optimum gain is obtained. Any deviation from rmi,
results in a loss of gain corresponding to the values indicated on the
circles of Fig. 4. Strictly speaking, the set of circles is only valid for one
frequency (in our specific case 4 GHz), and a corresponding setwould
have to be drawn for each frequency under consideration. Since the
S -parameter variation over the 12.5 percent frequency band of interest
is smooth and relatively small, one set of circles suffices to demonstrate
that the output impedance, shown in a dashed line, is reasonably close
to match. The actual circuit which produced the impedance was trimmed
empirically for bandwidth and flatness of gain.

3.2 The Input circuit

The theory of noisy four poles has been treated extensively in the
literature.1-5 It essentially says that the noise figure of the four pole
depends solely on the impedance of the input circuit. The noisy four pole
is completely characterized by the S-, Y-, or Z -parameters, the source
reflection coefficient (rMNF) at which the noise figure is minimum
(NFMIN), and the equivalent noise resistance (R,). The measurement
of R is somewhat cumbersome and is described in Ref. 1. Once the pa-
rameters are known, circles of constant noise figure4'5 can be drawn (Fig.

482 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978
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Fig. 4-Circles of constant gain with input tuned for minimum noise figure.

5, solid circles). This set of circles is very insensitive to frequency and
independent of the load impedance. The spread of the circles increases
with increasing R0. In our specific case R, = 14 O. FML, the maximum
gain load impedance, has been explained in the output circuit design.
The reflection coefficient, Ems, in Fig. 5 represents the reflection coef-
ficient of the source that would yield maximum gain, which in our case
is about 15.5 dB. It is quite obvious that the points for optimum noise
figure and optimum gain are significantly apart. A set of circles similar
to the ones in Fig. 4 can be constructed around Ums, assuming that the
load reflection coefficient is IlmL. To keep Fig. 5 from becoming over -
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VDS = 5V; ID = 10 mA
NF: 1.4 dB (3.7 GHz)

1.5 dB (4.0 GHz)
1.5 dB (4.2 GHz)

2A-B INTERCEPT: 24 dBm

3.3 Final circuit

37
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Fig. 6-Performance of amplifier module.

For the amplifier to be manufacturable, some adjustability is required
to compensate for variations in transistor parameters as well as me-
chanical tolerances on all components. This adjustability is not readily
provided in the microstrip circuit, but can be economically introduced
in the air dielectric stripline circuit. Pairs of tuning screws are thus lo-
cated in the air line just in front and just after the microstrip module (Fig.
7). These permit tuning of the amplifier for optimum noise figure and
gain flatness.

IV. FAILSAFE BYPASS CIRCUIT

When the GaAs FET is unpowered, both the gate and drain circuits
appear approximately as open circuits. The transmission loss typically
exceeds 20 dB. If the transistor fails, we expect a short circuit. In either
case, the input and output return losses at 4 GHz are typically 2 to 4
decibels.

The provision of three circulators, as shown in Fig. 1, provides an ef-
fective passive by-pass circuit. In the normal state, the relatively small
reflected input signal is recombined with the amplifier signal at the
output of the transistor. This appears as a small ripple on the gain
characteristic which can be compensated by output tuning. In the un-
powered or failed state, both the gate and drain circuits are "switched"
to open or short circuits. The input signal, with relatively small loss, is
then directed to the drain circuit of the GaAs FET where it is reflected
to the output circulator and directed to the load. The total insertion loss
is typically 5 to 8 dB.

LOW -NOISE GaAs FET AMPLIFIER 485



TUNING SCREWS

Fig. 7-4 GHz MIC amplifier.

The circulators for the bypass circuit and the waveguide-to-stripline
transitions were developed in air dielectric stripline (Fig. 8). This simple
technology assures minimum circuit losses, low cost parts and assembly,
and very high yields. The intermediate circulator is terminated with 50
ohms to provide >25 dB isolation. Since this isolation is only maintained
over the 3.7-4.2 GHz band, positive feedback can cause the amplifier
to oscillate at lower frequencies. The "low-pass filter" on the output
substrate (Fig. 9) eliminated this oscillation which, for our particular
by-pass loop, occurred at about 800 MHz.

V. POWER REGULATOR AND ALARM CIRCUIT

The dc operating point for the GaAs FET is a compromise between
minimum noise and acceptable linearity. A regulator automatically sets
the gate voltage so that ID = 15 mA and VDS = 4.8 volts. All GaAs FETS

are thus powered identically and require no bias adjustment in manu-
facture. The amplifier (Fig. 10) operates from a -24 volt supply at 60
milliamperes.
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In case of transistor or power supply failure (ID < 5 mA or ID > 25
mA), a contact to ground is provided which energizes a remote alarm.

VI. THE LOW -NOISE TRANSISTOR

The GaAs FET was developed at the Murray Hill, New Jersey Labo-
ratory.? The gate length and width are 0.8 Am and 2 X 250 Am. The
typical noise figure is about 1.2 to 1.4 dB at 4 GHz.

ENCAPSULATE
DC BLOCKING
CAPACITOR

BONDING
PAD

INPUT SUBSTRATE OUTPUT SUBSTRATE

Fig. 9-Amplifier module without transistor.
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Fig. 10-Amplifier module (schematic).

VII. PHYSICAL DESIGN

The completed amplifier is shown in Figs. 3 and 7. The aluminum
housing is die cast in two parts. The stripline center conductor is stamped
in a single piece from sheet brass. Interlocking molded plastic locating
rings are used to locate both the circulator ferrites and the center con-
ductor in the lower housing channel. The printed circuit board with
power regulator and alarm circuits (Fig. 11) is mounted on the bottom
side of the lower housing.

VIII. AMPLIFIER PERFORMANCE AND TESTS

8.1 Tests

In order to meet the requirements in Table I, the amplifier was
subjected to several tests, most of which used straightforward test pro-
cedures. Special test sets were constructed for noise figure and inter -

RE FILTER-FEEDTHRUS

Fig. 11-Power regulator and alarm circuit of 4 GHz MIC amplifier.
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ISOLATOR 2

modulation measurements. The noise figure can be accurately and
rapidly measured at three frequencies in the test set shown in Fig. 12.
Intermodulation (IM) tests were done using a three -tone measurement
set. Since not all stations are air-conditioned, a humidity test was
started. The amplifier was placed in an 85°C (185°F)-85% humidity
environment for two months with DC bias applied. No change in per-
formance was detected. Six field trial models were cycled over the tem-
perature range of 4°C (40°F) to 60°C (140°F) with no significant change
in performance.

8.2 Performance

The amplifier is in manufacture at Western Electric Company and
meets the requirements summarized in Table I. Typical performance
values obtained are:

NF: 1.6-1.8 dB
Input and output return loss: 28 dB
2A -B intercept: 26 dBm
Unpowered transmission loss: 5-8 dB
Gain: 10 dB.

We find that the amplifier tuning arrangement permits the present
spread in transistor parameters to be accommodated easily.
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IX. CONCLUSION

We have demonstrated a simple 4 GHz microwave amplifier design
which achieves a noise figure of 2 dB in manufacture. This has been
achieved with a single low noise GaAs field effect transistor in con-
junction with a passive failsafe by-pass circuit. It is concluded that the
single -ended amplifier with input and output isolator has significant
advantages both in performance and in simplicity over the balanced
amplifier design for this application. The housing and major piece parts
are die replicated so, as to fit together with minimal assembly effort.
Tuning screws are provided to accommodate variations in transistor
characteristics and to allow relaxed piece part tolerances.
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Theory of Analytic Modulation Systems

By B. F. LOGAN, JR.

(Manuscript received March 18, 1977)

A general theory of analytic modulation systems is developed where
the transmitted signal is of the form a(t) = Re leiwctf (z(t))}. Here f(z)
is an analytic function (modulation law), and z(t) = x(t) + iy(t) is the
analytic baseband signal whose real part x(t) is a bounded bandlimited
signal of spectral support [-S1, S1] which is assumed to have a bounded
Hilbert transform y(t). It is shown for a large class of tz MI and modu-
lation laws that z(t) may be recovered using a receiver incorporating
the inverse function off as a detector with appropriate pre- and post -
detection filtering. The theory also shows that in the procedure for
factoring certain positive bandlimited signals, an approximate Hilbert
transform operator (bandlimited) may be used. A related result is that
signals subjected to logarithmic companding (one-sided) and filtering
may be recovered by a non -iterative method.

I. INTRODUCTION

In 1962, Bedrosian proposed a modulation system called single side -
band phase (or frequency) modulation.* (See Ref. 5.) The modulated
signal is of the form

Re lei(wet+x(04-iY(t))1 = e-y(t) cos (wet + x(t))

where x(t) is the "baseband" signal, y(t) is the Hilbert transform of x(t),
and co, is the carrier frequency. The special relation between the am-
plitude modulation e-Y(t) and the phase modulation x (t) results in the
modulated signal having no spectrum in the interval (--(,),,co, ); i.e., the
amplitude modulation removes the lower sideband. However, the
spectrum is still infinite in extent. We adopt the terminology "single
sideband exponential modulation" (SSBEM) for this system.

Bedrosian pointed out that SSBEM was compatible with conventional
FM receivers, and suggested that the single-sideband system might offer

* K. H. Powers received a U. S. Patent (No. 3,054,073) on such a system shortly before the
appearance of Bedrosian's paper. See Voelcker.21

491



some savings in transmission bandwidth over the conventional system.
However, since filtering operations could radically alter the zero crossings
of the modulated signal, it was not clear to what degree one could
maintain compatibility and at the same time realize some saving in
bandwidth.

Others2,1°,17 have compared the spectral distribution of single side -
band and conventional frequency modulated signals for the cases of si-
nusoidal and Gaussian noise modulation. They have shown that the
"effective" bandwidths, as measured by central second moments, of the
single-sideband signals may be greater or less than that of the conven-
tional FM signal depending on the nature of the modulation. At any rate,
it is not clear how one would translate these results into relative band-
width requirements of the two systems, each employing a conventional
FM receiver.

Aside from the compatibility question, Barnard4 has shown that the
transmission bandwidth requirements of single-sideband exponential
modulation are, in a strict sense, minimal. He showed that if the mod-
ulation x (t) belonged to a certain subclass of bandlimited signals with
spectral support [-SO], that the modulation could be recovered, within
an additive constant, from a knowledge of the spectral distribution of
the single-sideband signal in the interval [we, w, + SZ + ], provided E >
0. This was proved by demonstrating the convergence of an iterative
recovery scheme.

Here we consider a class of single-sideband systems wherein the
modulated signal is of the form

s(t) = Re If(z(t))etwet}

where f(z), the "modulation law", is an analytic function and z (t) = x(t)
+ iy(t) is the "analytic signal" of which, say, the real part x(t) is the in-
formation to be transmitted. We suppose that x(t) is bounded and
bandlimited with spectral support [-Q,C2] and that s(t) is transmitted
over a channel whose transmission function is the Fourier transform of
an absolutely integrable function (impulse response) and is equal to unity
over (wc,co, + a). It is shown under fairly weak conditions on f(z) and
z (t) that x (t) may be recovered (by a relatively simple non -iterative
method) from the received signal, provided a >

The gist of the method can be grasped by considering periodic signals;
e.g.,

n
X(t) = E xketkt

2 -n

Z(t) E Xkeikt.

(X0 = 0, say)
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We suppose that sup I z (t)I = m, and f(z), the modulation law, is an-
alytic for lz I m,(f(0) = 0, say)

f(z) = E akzk, IzI m.
1

Then setting w(t) = flz WI we have
CO

w(t) = E wkeikt
1

where Wk depends only on those Xj and aj for which 1 < j .15. k. This sort
of dependence allows us to determine x(t) from a bandlimited version
of w(t), say,

nw n(t) = E wkeikt,
i.

by what amounts to reversion of power series, provided f'(0) X 0. We
have

z = 4)(w) = E bkwk, for I w I sufficiently small.
1

(b1 = (ai)-' = If(0)1-1)

Assuming that the series converges when w is replaced by Iv, (t) we
set

zn(t) = 01w,i(t)1 = E bkiwn(t)lk
1

and then by formal composition of the power series find that
n .

z,,,(t) = E X keik' + E ckeikt.
1 n +1

So the first n Fourier coefficients of z(t) and zn (t) agree; i.e., under the
stated assumptions, x(t) can be recovered by bandlimiting cblw,(01,
where ca is the inverse function, z = 4)(w), and wn (t) is the partial sum
of the Fourier series of w(t).

The simplicity of this procedure owes to the fact that z(t) has a one-
sided spectrum and the analytic modulation law f(z) then gives a
function w(t) = flz (t )1 which also has a one-sided spectrum. Since z(t)
contains no negative -frequency components, the usual difference terms
do not appear; i.e., the spectrum of w(t) in the frequency interval 10,a1
depends only on the spectrum of z (t) in the same interval.

The recovery procedure is not so transparent for more general band -
limited signals x(t). First of all, filtering w(t) with a filter whose trans-
mission function is unity over [0,(y] and zero for frequencies greater than

ANALYTIC MODULATION SYSTEMS 493



> a) will give a function wa,0(t), analogous to wn (t), which may
differ considerably from w(t). It may be that 01w,11(t) does not have
a one-sided spectrum; i.e., (t{w,i3(T)}, T = t is not analytic in the
upper half -plane u > 0. Indeed w,0(t), < t < c ), may not even be
in the domain of definition of 0; i.e., 4 may have a natural boundary
beyond which it cannot be extended. Even if O{w,/.3(t)} does have a
one-sided spectrum, the function need not have a power series repre-
sentation over the range of wa,s(t) so that one cannot use convolution
arguments to show that the Fourier transforms of 4){w(t)} and O{wax(t)}
agree over [0,a]. This particular problem is met by using generalizations
of the Paley -Wiener theorem.

The problem arising when O{w,0(t)} does not have a one-sided spec-
trum (wco(t) not in the range of the inverse function) is met by imposing
restrictions on z(t), namely that for sufficiently large u, the range of z(t
+ iu) is sufficiently small that w(t + iu) will be in the range of the inverse
function. This implies that w,0(t) may be filtered (with a Poisson filter)
to obtain w,i3(t + ib), which for sufficiently large b will be in the range
of the inverse function. One can then obtain z(t + ib) and then use in-
verse Poisson filtering to recover z (t).

Although one could conceivably recover z(t) from wa,0(t) by other
procedures when Olwadi (7)1 is not analytic for u b, the method here
avoids any decision process and gives a simple receiver model incorpo-
rating the inverse function and (possibly) a Poisson filter with its
(bandlimited) inverse and appropriate low-pass filter.

Generally speaking, given f(z) and the channel transmission function,
one can design a receiver which will work for a certain subclass {z(t)} of
signals. Or given f(z) and a fixed receiver design, one may ask for the
minimum bandwidth channel required for transmitting a given subclass
of signals. In this connection, some estimates are given for the bandwidth
requirements of "compatible" single-sideband exponential modulation
with lz WI all functions of spectral support [0,1] satisfying sup I z (t)
m. In a recent work, Werner23 has considered the same problem for z(t)
in L2 and gives upperbounds in terms of the L2 -norm of z.

There are rather dramatic mathematical simplifications in the de-
tection theory when the signals Ix (t)1 are restricted to be of the band-pass
type, allowing radical changes in the system design.

The theory also shows that the factorization of certain positive band -
limited signals can be effected with an approximate Hilbert transform
operator acting on the logarithm of the signal. A related result pertains
to the signal recovery problem considered by Landau and Miranker11'12;
viz., there is one companding function ("log") for which the signal can
be recovered by a non -iterative method.

Another interesting consequence of the general theory is the fact that
for n arbitrary numbers ak, k = 1,2, . . . , n, there exists an integer v
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n and corresponding numbers ah, k = n + 1, . . . , v, such that the poly-
nomial

13,,(z) = 1 + E akzk

is zero -free for I z I < 1.
Although the general theory is interesting from a mathematical

viewpoint, it would appear that the practical interest in analytic mod-
ulation systems, other than the linear system, is limited to SSBEM, i.e.,
to the case f(z) = ez (or eiz). In this case one can trade bandwidth for
simplicity of detection. However, the trade-off is attractive only for
moderate amplitudes of z (t) where SSBEM offers an interesting alter-
native to other systems employing envelope detection.

It should be noted that the method here is naturally confined to
bounded bandlimited signals z (t), since otherwise we would require both
f(z) and its inverse cb(w) to be entire functions, i.e., w = f(z) = a + bz.
The exception would be the band-pass case where f could be an entire
function and q replaced by an equivalent polynomial (see Section 5).

Of course, the theory here has to be extrapolated to practice with the
appropriate "epsilons"; i.e., an analytic modulation law f(z) can only be
approximated within El over the disk I z m, and an analytic signal z(t)
having one-sided spectrum can be realized in practice within E2, and the
impulse response of an ideal filter can be approximated (in L1) within
(3, etc. Then the continuity of the overall transformation may be used
to bound the errors.

In order to deal rigorously with "communication type" signals which
do not have ordinary Fourier transforms a considerable amount of pre-
liminary mathematics is required. However, one can follow the theory
assuming that the signals are either periodic or have ordinary Fourier
transforms, with one cautionary note in mind. Abrupt bandlimiting
operations (spectral projections) such as convolution with sin t/7rt are
not permissible (not defined) for the general signals of interest.

II. PRELIMINARIES

A measurable function g(t) is said to belong to Lp(-00,...) abbreviated
hereafter as Lp, (1 p < co) if

Ig(t)IPdt <

The Lp- norm of g is defined by

lig p= Ig(t)1Pdt}l/P

ANALYTIC MODULATION SYSTEMS 495



and if a is a scalar

II ag Ilp = a I Ilg Ilp

If Ig(t)I is uniformly bounded, with the possible exclusion of a set of
measure zero, g is said to belong to Lc., and the norm of g is

IIgIIW = essup Ig(t)I

where "essup" over t is the essential supremum of Ig(t)1 , which is the
infimum of numbers M such that

Ig(t) 15 M for almost all t.

We will be mainly concerned with continuous bounded functions g(t)
in which case

11g11- = sup Ig(t)1.

For 1 5 p 5 co, the Lp norm satisfies the triangle inequality

Ilgi + g211p s Ilgillp + 11g21Ip (1)

which for any sequence of numbers ak satisfying I I ak I < co. and se-
quences of functions gk such that Ilgkil M, leads to

II EakgkIlp s E lak I lIgk Ilp (2)

There are functions which belong to Lp for only one value of p.
However, it is easy to see by considering the set where Ig(t)I 1 and the
set where Ig(t)I > 1, that if g belongs to L,. and Ls where 1 5 r < s, then
g belongs to Lp for every p satisfying r < p s. For example, the func-
tion sin t/t belongs to Lp for every p > 1.

Associated with the space Lp is the conjugate or complementary space
Lq where

-1 + -1 = 1 .
P q

For functions in complementary spaces we have Holder's inequality

f: g(t)h(t)dt1 < llg lip Ilh III, 1 < p < co, (3)

which for the case p = q = 2 is the familiar Schwarz's inequality.
In connection with Holder's inequality we note that the norm of a

function may be equivalently defined as

Ilp = sup h(t)g(t)dt, MIL/ = 1, q = pl(p - 1).
-
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A convolution kernel K in L1 carries Lp into Lp. We have

g in LK ® g(t) = f - g(s)K(t - s)ds P

K in L1

and

liK 0 Op <1110100p (4)

which amounts to a generalization of (2) to weighted sums of translates
of g. The convolution integral is not in general defined for each t unless
K belongs to the conjugate space of g. In general the convolution is de-
fined as the limit in Lp of

-gm(t) = ..11 g(s)Km(t - s)ds

where Km is a sequence of bounded functions of L1 (hence Km belongs
to Lq) satisfying

-
lim I K (t ) - Km 4)1 dt = 0.
-m. C. CO

2.1 The Fourier transform on ii,

A function g in Lp has an ordinary Fourier transform, provided 1
p 5. 2, (a theorem of M. Riesz, cf. Ref. 20) in the sense that

T
RAW) = f g(t)e-iwtdt

-T

converges in norm as T -> °D to a function g(w) belonging to the com-
plementary space Lq, i.e., there exist a function g in Lq such that

lim Ilg - RTII, = 0.
T -.-e.

However the Fourier transform on Lp, 1 -< p 5 2, does not carry Lp into
all of Lq except in the case p = 2. In particular, the Fourier transform
of a function g of L1 is a continuous function. Furthermore, (the Rie-
mann-Lebesgue Lemma)

CO

lim g(t)e-iwtdt = 0

for g in L1. Unfortunately, there is no simple description of functions
g(w) which are the Fourier transforms of functions g(t) of L1. A useful
sufficient cordition is that g(w) belong to L2 and have a "derivative in
L2" (meaning only that g(w) is the integral of a function of L2 denoted
by c/g/dw). The sufficiency of this condition may be seen by writing
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Ig(t)Idt =  1(t + ia)g(t)Idt (a > 0)
-
- 1

- It + ial
and then applying Schwarz's inequality and Parseval's theorem. The
result is (choosing the best value of a )

ig(t)idt12 < ligh 
2.

(5)

In obtaining this result we use the fact that g in L2 and dgldw in L2 imply
that g(co) tends to zero at ± co. (By Schwarz's inequality, gdgldw belongs
to Li, so fg(co) 12 is absolutely continuous and tends to limits at ± co. The
limits must be zero in order for g to belong to L2.)

2.2 Bounded functions whose Fourier transforms vanish over certain sets

It is not necessary to attempt to define the Fourier transform of a
bounded function g(t) in order to give precise meaning to the statement
that the Fourier transform of g(t) vanishes over some open set E. This
can be done in a way which is consistent with the ordinary Fourier
transform, should it exist, of g(t) vanishing over E. Here we restrict E
to be the union of a finite number of disjoint open intervals.

Definition: The Fourier transform of a bounded function g is said to
vanish over E if and only if

(i) -g(t)ii(t)dt = 0

for all h in L1 whose Fourier transforms satisfy

(ii) h(co) = f h(t)e-i.tclt = 0, w E E.

This definition has its logical basis in Parseval's formula for functions
of L2. The bar over h in (i) denotes the complex conjugate of h. It is
readily verified that (i) may be replaced by

(iii) g(t)h(-t)dt = 0

which is more directly applicable to convolutions. That is, if the Fourier
transform of g vanishes over E we have

(g 0 h)(t) = s_- g(s)h(t - s)ds = 0 (6)

for all h in L1 whose Fourier transforms vanish outside E.
We also note that in case the set E is symmetric with respect to the

origin, h(t) in (i) may be replaced by h(t). [See Ex. 4 below.]
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We say that the Fourier transforms of two bounded functions gland
g2 agree over E if and only if the Fourier transform of (g1- g2) vanishes
over E. We also say that g has spectral support E, (a closed set), or the
spectrum of g is confined to E,, meaning that the Fourier transform of
g vanishes over the complement of Ec.

The following are some elementary consequences of the definition.
The proofs are left as simple exercises. It is understood throughout that
g, g1, and g2 are bounded functions.

Example 1. Suppose all the intervals composing E are finite and K(t)
is any function of L1 whose Fourier transform k(w) satisfies

R(w) = 1 for w E E. (7)

Let

g2(t) = g1(s)K(t - s)ds. (8)

Then the Fourier transforms of g1 and g2 agree over E.

Example 2. If the Fourier transform of g(t) vanishes over (a,0), then
the Fourier transform of eiAtg(t) vanishes over (a + XJ3 + A).

Example 3. If the Fourier transform of g1 vanishes over E1 and the
Fourier transform of g2 vanishes over E2, then the Fourier transform
of (g1 + g2) vanishes over E1 11 E2.

Example 4. If the Fourier transform of g vanishes over E, then the
Fourier transform of the complex conjugate g vanishes over E", where
E" denotes the reflection of E with respect to the origin.

Example 5. If the Fourier transform of g vanishes over E, then the
Fourier transform of Re (or I,, Igl) vanishes over E E".
Note: E 11 E" may be the null set. However, if E is symmetric with
respect to the origin, E = E". Hence a class of functions whose Fourier
transforms vanish over a set E which is symmetric with respect to the
origin is essentially a class of real -valued functions, since the real and
imaginary parts of the functions separately belong to the class.

Example 6. (Reproducing Kernels) Suppose the spectrum of g is con-
fined to a set E, consisting of n finite disjoint closed intervals. Let K(t)
be any function of Li whose Fourier transform K(w) satisfies

IZ(co) = 1, w E Ec. (9)

Then for almost all t we have

g(t) = f g(s)K(t - s)ds. (10)
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(Set gi = K g and show that (g1 - g) is orthogonal to all of L1.)

Note: The qualification "almost all t" arises because the definition of
a function g on a set of measure zero is irrelevant to the condition for its
Fourier transform to vanish outside Ec. However, (K 0 g)(t) is a con-
tinuous function of t and so we will adopt the convention that a function
such as g in Ex. 6 is continuous.

We note further that the condition that K in Ex. 6 belong to L1 can
be relaxed in case g belongs to Lp for some p satisfying 1 < p < co. In this
case we can take K(w) = 0 for w E Ec. It is sufficient to prove this when
Ec is a single interval [-0,52] and this has been done (Ref. 14).

2.3 The Paley -Wiener Theorems for L.

There is an important connection between functions whose Fourier
transforms vanish over a half-line and functions analytic and of expo-
nential type in a half -plane. The following theorems are extensions to
L., of the classical "one-sided" and "two-sided" Paley -Wiener Theo-
rems18 for L2.

Theorem 1. The Fourier transform of a bounded function g vanishes
over (-03,a) if and only if g(t) is the boundary value of a function g(r),
T = t iu, analytic in the upper half -plane u > 0 and satisfying

sup Ig(t + iu)I e -nu sup Ig(t)1 for u 0. (11)
t t

There is the analogous theorem connecting functions g(t) whose Fourier
transforms vanish over (13,c.) and functions g(r) analytic in the lower half
plane. The specialization of Theorem 1 to functions whose Fourier
transforms vanish over (-.0,a) and ((,«,) is the following. (We assume
that -co <a<0<co and according to the convention above qualify g
to be continuous.)

Theorem 2. The Fourier transform of a continuous bounded function
g vanishes outside [a,13] if and only if g(t) is the restriction to the real
line of an entire function g(r), r = t iu, satisfying

sup Ig(t + e -"u sup Ig(t)l, u 0
t t

e-I3u sup Ig(t)1, u 5 0.

(12)

These theorems are essential to the theory of single-sideband systems
for bounded signals which do not have ordinary Fourier transforms.

Actually we do not need a uniform bound on the rate of growth (decay)
of g(t + iu) to infer that the Fourier transform of g(t) vanishes over
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(- ,a) . In fact, an asymptotic bound implies a uniform bound.

Theorem 3. If g(r) is analytic in the upper half -plane and satisfies

sup Ig(t + iu)I < co for u > 0

then the asymptotic estimate

sup Ig(t + iu)I = Ole -"u} as u

implies

-1 Op

sup Ig(t + iu)I 5 e -au sup Ig(t)1 for u 0.

Proofs of Theorems 1, 2, and 3 are given in Appendix A.
We note the following corollaries of Theorems 1 and 2, concerning the

Fourier transforms of products.

Corollary 1. If the Fourier transform of g1 vanishes over (-03,a) and
the Fourier transform of g2 vanishes over (-00,13), then the Fourier
transform of gig2 vanishes over (-00,a + (3).
Corollary 2. If the Fourier transform of g1 vanishes outside [a1,[31] and
the Fourier transform of g2 vanishes outside [a2,1321, then the Fourier
transform of gig2 vanishes outside [c -vi + a2,131 +

2.4 Terminology

Functions whose Fourier transforms vanish outside a finite interval
are called bandlimited functions. Generally, we think of the interval
centered at the origin and refer to bandlimited functions also as low-pass
functions.

Functions whose Fourier transforms vanish over an interval centered
at the origin are called high-pass functions, and functions which are both
high-pass and low-pass are called band-pass functions.

Functions (signals) whose Fourier transforms vanish over a half-line,
usually (-00,0), are generally called analytic signals.

2.5 The Hilbert transform and the analytic signal

We would like to map the space of real -valued bounded signals x(t)
of spectral support [-S1,12] into the space of complex -valued bounded
signals z(t) of spectral support [0,52]. We would like the mapping to be
linear and also have the property that translates of x map into translates
of z, so that no "time stretching" is involved. The usual way of doing this
is to take

z(t) = x(t) + iy(t) (13)

where y = 2, the Hilbert transform of x.
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The Hilbert transform is defined by

1 - x(s)
ds (14)7r J-- t -s

where the cut in the integral sign indicates a Cauchy principal value at
s = t. The difficulty we encounter is that an arbitrary bounded band -
limited function does not have a Hilbert transform so we have to restrict
x somehow.

We may regard the Hilbert transform as the limit as a -- 0 of convo-
lution transforms

ia(t) =
_m

x(s)Ka(t - s)ds (15)

with regular kernels Ka given by

Ka(t) =
1 t

, a > 0. (16)
r t2 + a 2

Now Ka (t) belongs to Lp for every p > 1 and has a Fourier transform
IZ. (w) given by

ka ((.0) = -i(sgn co)e-al.l. (17)

Thus if x (t) has a Fourier transform is (w), the Hilbert transform i(t) has
a Fourier transform given by

.1- i(t)e-iwtdt = -i(sgn 412(0 (18)

and consequently the Fourier transform of z (t) as defined in (13) van-
ishes over (-«,,0). Now z (t) is the boundary value of the function z (r),
T = t + ill, defined by

,
=

i -
z(T)

x(s)- ds, u > 0.
'7i" - cc, T - S

(19)

In case x does not have an ordinary Fourier transform, but has a bounded
Hilbert transform i, the function z (T) is bounded and analytic in the
upper half -plane and according to our definition and Theorem 1, the
Fourier transform of z(t) vanishes over (-c0,0). Also if the Fourier
transform of x(t) vanishes outside [-Q,12] then the Fourier transform
of z(t) vanishes outside [0,0].

The subclass of bounded functions which have bounded Hilbert
transforms does not have a simple alternate description. In order for x(t)
to have a bounded Hilbert transform it is sufficient that x(t) have a
bounded derivative and a bounded integral (Ref. 15). If the Fourier
transform of x vanishes outside [-O,S2] then x (t) has a bounded deriv-
ative ("Bernstein's Theorem," cf. Theorem 11.12, Ref. 6) satisfying
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sup Ix'(t)I :5 S2 sup Ix(t)I,
t t

(20)

and there are various ways to restict x (t) to have a bounded integral. For
example, we may assume that g(t) is an arbitrary bandlimited signal and
set

x(t) = g'(t). (21)

(Also any high-pass function has a bounded integral (Ref. 14).) Then we
can determine g(t) within an additive constant from the real part of z(t).
Assuming that the Fourier transform of g vanishes outside [-lig we
have the inequality (Theorem 11.4.3, Ref. 6) implied by (21),

sup 11(t)1 Cl sup I g(t)I. (22)
t t

An interesting subclass of bandlimited functions which have bounded
Hilbert transforms are the band-pass functions. For these functions,
there are equivalent Hilbert transform kernels which belong to L1. If the
Fourier transform of x(t) vanishes outside the intervals [-S2,-,11] and
[rS2,S2] where 0 < r < 1, then x has a bounded Hilbert transform satisfying
(Ref. 7)

sup IVO! 5 {A + log --11 sup lx(t)I
t r

where A < 417r and 2/7r cannot be replaced by a smaller number (i.e., as
r approaches zero).

Other subclasses worthy of mentioning may be generated by convo-
lution transforms on L Thus if Ig M and k is a kernel in L1 which
has a Hilbert transform also in L1 then the class of functions of the
form

(23)

x(t) = Eg(s)k(t - s)ds (24)

have bounded Hilbert transforms given by

i(t) = g(s)ii(t - s)ds. (25)

For example, x(t) may be the output of some crude sort of band-pass
filter (like an a -c amplifier) as would be the case for

k(t) = ae-at be-bt, t > 0
= 0, t < 0 (26)

where a > b > 0. Then

a b (a - b)iw
k(t)e-iwtdt =

a + iw b + iw (a + iw)(b + iw)
(27)
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and
CO (a - b)lcolli(t)e-""dt -

(a A- ico)(b A- iw).

It follows from (28) and (5) that k belongs to L1.
Another sufficient condition for a bandlimited function x(t) to have

a bounded Hilbert transform is the requirement that x belong to Lp
where 1 p < co. Then if the Fourier transform of x vanishes outside
[-42,0 we have (Ref. 14)

sin S2(t - s)x(t) = f x(s) ds.r(t - s)
Then x has a Hilbert transform given by

- 1 - cos 5.2(t - s)i(t) = .1 x(s) dsr(t - s)

(28)

(29)

(30)

and thus by Holder's inequality

1'1(01 Ilx Ilp
i c- I 1 - q dtillq
J I t

where
I

+ -1 = 1. (31)
P q

However, the condition that x belong to Lp (1 < p < co) is not a sat-
isfactory condition signals.

Hereafter we will suppose that x (t) is so restricted that z (t) = x (t) +
iy(t) is a bounded function whose Fourier transform vanishes outside
[0,0. We should note that this assumption does not imply that y is the
Hilbert transform of x (even within an additive constant). That is, the
assumption does not imply that the integral

T X (t) -X (0)fr t

tends to a limit as T co, so in effect we are allowing some functions that
are not of the form z (t) = x (t) + il(t). In case we further restrict z (t)
to be a bounded function whose Fourier transform vanishes outside
[rU,S2] where 0 < r < 1, then we can assert that z (t) is of the form x (t) +
il(t) where the Fourier transforms of x and I vanish outside [-S2,-r0
and [r 9,S2]. Conversely if x is a real -valued (band-pass) function whose
Fourier transform vanishes outside these two intervals, then x(t) has
a bounded Hilbert transform g(t) and Ix (t) + iI(t)lis a bounded function
whose Fourier transform vanishes outside [rSt,S2]. In other words, we can
always regard any real -valued band-pass signal x(t) as the real part of
an analytic signal z(t). This is a special case of a representation theorem
for high-pass signals (Ref. 13).
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III. MODULATION AND EQUIVALENT BASEBAND TRANSMISSION

We suppose that z(t) is a bounded bandlimited signal with spectrum
confined to [0,Q]. Now let f(z) be a function which is analytic over a re-
gion which includes the disk lz I S m, where m = sup lz(t)1. We take f(z)
as a modulation law and generate

w(t) = f{z(t)} (32)

which is the boundary value of a function w(r) bounded and analytic in
the uhp. Hence the Fourier transform of w(t) vanishes over (-03,0).
Generally, the modulation process also includes translation of the
spectrum of w(t) leading to a transmitter output

a(t) = Re {w(t)eiwct}. (33)

where we > 0 is the carrier frequency. The Fourier transform of o -(t) then
vanishes over (-coococ) and hence o -(t) is called a single-sideband signal,
although the upper side -band may be infinite in extent.

In conventional single-sideband amplitude modulation (SSBAM) the
modulation law is the linear law, f(z) = z, in which case the Fourier
transform of o -(t) vanishes outside the intervals [coc,wc + Q] and [-we -

-wc], so that the bandwidth required for transmitting o(t) is (counting
positive and negative frequencies) 252 + E where E is an arbitrarily small
positive number. In other words, a (t) has a reproducing kernel in L1 of
bandwidth slightly larger than 2Q. (Recall that the Fourier transform
of a function of L1 is continuous.) We will see that the spectral economy
of SSBAM carries over to more general modulation laws f(z). So we as-
sume that v(t) is transmitted over a channel (characterized by an L1
impulse response) which has unity transmission over the frequency
bands [coc,coc + a] and [-we - a, -we] where a > 9. The transmission
may be zero outside slightly larger intervals.

We denote the received signal by o-R(t) and since its Fourier transform
vanishes over (-wc,coc) it has a Hilbert transform 5-R (t). We assume that
the carrier frequency and phase are known at the receiver so that we can
form

wa(t) = e-iwctto-R(t) + iaR(t)1. (34)

In engineering parlance the real part of wa(t) is obtained by in -phase
synchronous demodulation of 0.R (t), while the imaginary part of w(t)
is obtained by quadrature synchronous demodulation of o -R (t). The
Fourier transform of wa(t) vanishes over (-..,0) and we have

wa(t) = w(s)Ka(t - s)ds (35)

where Ka(t) is the impulse of an equivalent baseband channel satisfying
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for some a >

Ka(t)e-iwtdt = 1, for 0< w S a (36)

1./fa(t)Idt < (37)

Hereafter we will be concerned with recovering z(t), and hence x(t), from
waft) in the equivalent baseband transmission of w(t) as given by
(35).

IV. THE INVERSE FUNCTION AS A DETECTOR

We would like to solve (35) for z(t) where w(t) = (t)}. This is (su-
perficially) similar to the problem of Landau and Miranker11,12 where
w(t) = /{x (t)} and f is a real function of a real variable, x (t) is a real -
valued bandlimited function of L2 whose Fourier transform vanishes
outside [-S2,0, and Ka(t) = (sin Ot)hrt. In order for x(t) to be recovered
(by an iterative process) they require that f have an inverse over the
range of x and that is essentially what we require. The inverse of an an-
alytic f is more complicated, but the fact that the Fourier transforms of
z (t) and flz(t)1 vanish over (- co ,0) simplifies the recovery problem.

Let us write

and

w= f(z)

z = co(w)

(38)

(39)

for the inverse and think first of the problem of recovering z(t) from w(t).
In case f maps I z I <m one -one onto some region D*, there is no problem
since co is single valued over D*. In general co is not single valued and we
have to know something about z (r) in order to decide what element of
(p is "the" inverse. For example, suppose f(z) = 2z + z 2. Then given

w(t) = 2aeit a2ei2t

we do not know whether z(t) = aeit or z(t) = -2 - aeit without some
additional knowledge, such as for example, lim, z(t + iu) = 0, or I z (t) I

1. In this example the inverse function,

z = co(w) = -1 + (1 + 10112

is not a single -valued function of the complex variable w and one gen-
erally speaks of two branches of the inverse function. The branches have
singularities at w = -1, the image of z = -1 where f (z) = 0. Clearly in
this case, if we require I z (t)I < 1 then we know

z(t) = -1 + -V1 + w(t)
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where VI = 1. Then colw(t + iu)} is bounded for u 0 and analytic for
u > 0. If we relax the requirement to I z (t + iu) 15 1 for u > b then (plw(t
+ iu)1 will be analytic for u > b, but not necessarily for u > 0.

In general, we require that z(r) and f(z) are so constrained that
(plw(r)1 is analytic for u uo.

4.1 Received signal in the range of the inverse function

Now we are not given w(t) but instead we have a filtered version wa(t).
Suppose (plw(r)1 is analytic in the upper half -plane u 0 and wa(t) is
sufficiently close to w(t) that colw a(r)1 is also analytic in the uhp u 0.

We say then that wa(t) is in the range of the inverse function. A simple
sufficient condition for this is that go be an entire function. Also the
channel could have sufficiently large bandwidth for wa(t) to be close
enough to w(t).

We assume then that

wa(t + iu) E D*, u 0 (40)

where

(p(w) is analytic for w E D* (41)

I (pi (w)I M for w E D* (42)

Then we may take the inverse of waft) to obtain

za(t) = v a(t)}. (43)

Now we will see that the Fourier transforms of z a (t) and z (t) agree over
(-00,a)

First, it follows from (35)-(37) and Ex. 1 of Sec. 2.2 that the Fourier
transforms of w(t) and wa(t) agree over (-00,«), i.e., the Fourier trans-
form of {w(t) - wa(t)} vanishes over (-o,a). Then from Theorem 1 we
have

Iw(t wa(t + 1:01 e-au sup Iw(t) - wa(t)i-
t

From (42) we have

1,00(w) - ,p(war)1 < MI w wai for w E D*

wa E D*

(44)

(45)

Thus lz(t) - za(t)1 is the boundary value of a function bounded and
analytic in the uhp satisfying

Iz(t + iu) - za(t + iu)I :5 Me -au sup Iw(t) - wa(t)I. (46)
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Hence from Theorem 1,

z(t) - za(t) = ha(t) (47)

where the Fourier transform of ha(t) vanishes over (-00,a). Since the
Fourier transform of z (t) vanishes outside [0,S2] and a > S2, (47) implies
that we can bandlimit za(t) with an appropriate low-pass filter to obtain
z(t). Thus if Ko,a(t) is any kernel of Li satisfying

J Kii a(t)e-iwtdt = 1, 0 co Si

0, cs.) a (48)

we have from Ex. 6, Sec. 2.2, with the convention that z(t) is continu-
ous,

-z(t) = f z(s)Kii,a(t - s)ds (49)--
and since the Fourier transform of ha vanishes over (-00,a) we have (Iffi,a
0 ha)(t) E 0; i.e.,

z(t) = if mza(s)Kti,a(t - s)ds. (50)

4.2 Pre -detection filtering

In case the received signal waft) is not in the range of the inverse
function, we may under suitable conditions recover z(t) by appropriate
filtering before (and after) detection. Here then we replace (40) with the
condition

w(t + iu) E D* for u uo (?_. 0). (51)

It follows from (44) and (42) that for sufficiently large b we have

waft + iu) e D; for u b (52)

where D; is slightly larger than D* and

co(w) is analytic for w E Di (53)

k i(w) I < Mi for w E Di. (54)

Then we have waft + ib) in the range of the inverse function.
Now the Poisson kernel with parameter u

1 u
u > 0 (55)

r t2 + u 2'

reproduces functions bounded and analytic in the uhp from their
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boundary values. (See the proof of Theorem 1 in Appendix A.) We
have

:w((t + ib) = fwa(s)Pb(t - s)ds. (56)

That is, we may determine wa(T) along a line u = b parallel to the real
axis by convolving wa(t) with the Poisson kernel (parameter u = b). This
operation we term Poisson filtering. Since, by assumption, wa(t + ib)
is in the range of the inverse we may take the inverse of wa(t + ib) to
obtain

za(t + ib) = (plwa(t + ib)} (57)

which is analytic in the uhp and then as argued before

lz(t + iu + ib) - za(t + iu + ib)I M2e-au. (58)

So the Fourier transforms of z(t + ib) and z(t + ib) agree over
(-0,,a)

Thus if the conditions (51), (41), and (42) are met we may by suitable
pre -detection filtering (Poisson filtering) obtain a function za(t + ib)
which corresponds to replacing z(t) at the transmitter by z(t + ib); i.e.,
from the reproducing property of the Poisson kernel

w(t + iu) = 5: w(s)Pu(t - s)ds

= flz(t + iu)} = 5: flz(s)1Pu(t - s)ds. (59)

Then interchanging the order of convolutions with Pb(t) and KAY (t) in
(35) we have

w(t + ib) = flz(s + ib)1Ka(t - s)ds. (60)

This relation has been noted by Foschini.8
The Poisson kernel is a contraction operator; i.e., it averages the values

of a function so that the range of the resultant is no larger than the range
of the function. Also as a filter it has the frequency response

:Pu(t)e-'wtdt = e-ulwl, (u > 0). (61)

We have

z(t + ib) = 5: z(s)Pb(t - s)ds (62)

and therefore for large b we would expect the range of z(t + ib) to be
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appreciably less than the range of z(t) for a wide class of z(t) since for
very large b it is only the low -frequency content of z(t) that contributes
appreciably to z(t + ib). It is possible, though, for the low -frequency
content to be such that, for every u 0

z(t + iu) - cos Vi + i sin N/t as t CO.

If we require z(t + iu) to tend uniformly to a limit zo as u --.. C°; i.e.,

I z(t + iu) - zol .. E(u), -co < t < co, (63)

where E(u) -> 0 as u co and in addition

f' (zo) 0, (64)

then co(w) will be analytic in the neighborhood of wo = f(zo) and so (51)
will be satisfied for sufficiently large uo with (41) and (42) holding.

The condition (63) is not a severe constraint. In fact, all the simple
sufficient conditions, given in (21)-(29), for x(t) to have a Hilbert
transform imply (63) with zo = 0. However, x(t) may have a Hilbert
transform without (63) holding.

In connection with pre -detection filtering, we note that equivalent
Poisson filtering can be effected at the carrier frequency (or an inter-
mediate frequency) in the receiver before the synchronous demodulation
of the received signal o - R (t) indicated in (34). That is, if the signal a R (t)
is passed through a filter whose frequency response F b (w) satisfies

Fb (w) = e-b(w-wc), w > co, (65)

Fb(-w) = Pb())

a signal o-R(t;b) is obtained which we may identify as

(TR (t,b) = Re leiwctwa(t + ib)}. (66)

Then synchronous in -phase and quadrature detection of oR(t;b) yields
the real and imaginary parts of waft + ib). Thus the Poisson filtering
may be accomplished with a single equivalent frequency-translated filter,
whereas the direct Poisson filtering of the complex signal waft) requires
two Poisson filters acting separately on the real and imaginary parts.

4.3 Post -detection filtering

When Poisson filtering is required to bring the received analytic signal
within the range of the inverse function the low pass filtering after de-
tection must be modified. The output of the detector is za(t + ib) and
we need z(t). Now the Fourier transforms of z(t + ib) and za(t + ib)
agree over (- co,a) and

z(t + ib) = 5: z(s)Pb(t - s)ds. (67)
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The Poisson filtering operation has an inverse for bandlimited func-
tions; i.e.,

z(t) = f: z(s + ib)Qb(t - s)ds (68)

where Qb(t) is any function of Li satisfying

ef- Qb(t)e-i.tdt = ebw, 0 co Q. (69)

Since the Fourier transforms of z(t + ib) and za(t + ib) agree over
(-co,a), the Fourier transform of

:z(t) -fza(s + ib)Qb(t - s)ds (70)

vanishes over (-00,cr), and since the Fourier transform of z(t) vanishes
outside [0,[2], we have [cf. (47)-(50)]

z(t) = 5: za(s + ib)k(t - s)ds (71)

where k (t) E k (t;b,S1,a) is any kernel in Li satisfying

5 k(t)e-iwtdt = ewb, 0 co 12 (72)

=0, co a.

That is, the post -detection filtering must invert the pre -detection fil-
tering over the band [0,0] and remove frequencies greater than a. (Of
course, in a practical system we are interested in recovering only x(t) so
that only one post -detection filter is required, acting on the real part of
za(t + ib).)

V. SPECIALIZATION TO BAND-PASS SIGNALS

In case the base -band signal x (t) is of the band-pass type, i.e., a signal
whose Fourier transform vanishes outside [rQ,St] and [-0,- rCi] where
0 < r < 1, the detection theory may be modified so that no Poisson fil-
tering is required. In this case the inverse function may be replaced by
an entire function, in particular, a polynomial. All we require for the
recovery of band-pass signals is that flz (T)1 be analytic in the uhp and

Then

r (0) 0.

CD

(73)

w = f(z) = > akz k for I z I sufficiently small (74)
k=0
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z = so(w) = E bk(w - ao)k for 1w - aol sufficiently small. (75)
k=1

Here b1 = (a1)-1 = [f(0)]-1.
Now for band-pass signals x(t), the Fourier transform of the analytic

signal z(t) vanishes over (-00,,12) where S2 > 0 and 0 < r < 1. Thus by the
Paley -Wiener Theorem for L.,

Then we have

lz(t iu)l e -r" sup lz(t)l, u 0. (76)

CO

w(t + iu) - ao = E a klz (t + iu)) k for sufficiently large u. (77)
k=1

It follows that the Fourier transform of 1w(t) - aol also vanishes over
(-0:,,riZ). Hence the Fourier transform of fwa(t) - aol vanishes over
(-0.,r1Z).

Now let (p*(w) be any entire function of the form

gyp* (w)= 2 ck(w - ao)k
k=1

where

(78)

ck = bk, for k = 1,2, . . ,n (79)

and n is an integer such that

nr 1. (80)

Defining

z:(t) = yo*Iw a(t)1 (81)

we have z:(7-) analytic in the uhp and for sufficiently large u

z(t + iu) - z:(t + iu)
= (pit v(t + iu)} - co* a(t + iu)}

n= E bk [Mt + aolk lwa(t + iu) - ace]
k=1

CO

+ E bklw(t + iu) -
k=n+1

CO

- E cklwa(t + iu) - aolk. (82)
k=n+1

Since the Fourier transforms of 1w(t) - aol and lwa(t) - aol vanish over
(-co,r0), the last two sums in (82) are of the order of exp f-(n + 1)/124
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Also, for k .?.. 1

I lw (t + iu) - ao 1k - lw a (t + iu) - aolk I

= Oflw(t + iu) - wa(t + iu)Il (83)

= 0(e-au).

So it follows from the Paley -Wiener Theorem (with Theorem 3) that
the Fourier transforms of z(t) and z*a(t) agree over ( -0.,B) where

B = min la,(n + 1)r01> a (84)

Therefore

z(t) = sr z:,(s)K fi,R(t - s)ds

where K (LB is any function of L 1 satisfying

(85)

K I-0(t)e-i.tdt = 1, 0 5_ w ..5 SI (86)

=0, co > B.

Thus for band-pass signals we have the option of replacing the inverse
function cp(w) by an equivalent entire function co* (w) so that it does not
matter whether or not the received analytic signal waft) is in the range
of the inverse function (p(w). In particular, ,e (w) may be a polynomial
of degree n where n is roughly the ratio of the upper and lower cut-off
frequencies of the base -band signal.

VI. DETECTION OF EXPONENTIAL MODULATION

The exponential modulation law f (z) = ez offers the unique advantage
of eliminating the need for preliminary in -phase and quadrature de-
tection of the received single-sideband signal crR (t). In this case we
have

z = ,p(w) = log w (87)

or using Log to denote the real part of the logarithm,

x(t) = Log lw(t)I (88)

y(t) = argiw(t)}. (89)

We may regard either x(t) or y(t) as the signal to be recovered.
The transmitted signal is

a(t) = Re exp licoet + z(t)1 (90)

and

a(t) + Jaw = exp licoet + z(t)1 (91)
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where a(t) denotes the Hilbert transform of a(t). The envelope of a(t)
is

Ela(t)1= I a(t) + iF r MI = ex(t)

The instantaneous phase of 5(t) is

Ala(t)1= arg WO + i&(t)} = coct + y(t) (93)

For perfect transmission; i.e., aR (t) = a(t), we have

x(t) = Log E{a(t)} (94)

and using an ideal discriminator (FM detector) we obtain

dy'(t) = -dtAla WI - we. (95)

Replacing a(t) by aR (t) we have

xa(t) = Log EfaR(t)1 = Log lwa(t)I (96)

d
y«(t) = -dt Alo-R(t)1 - co, = -dt Arg {w a(t)}. (97)

Now if wa(r) is zero -free in the uhp, then

za(r) = log wa(r) (98)

(92)

is analytic in the uhp and by the previous theory the Fourier transforms
of z(t) and za (t) agree over (-co,a). In this case the Fourier transforms
of xa(t) and x(t) agree over (-a,a). Also the Fourier transforms of y a' (t)
and y'(t) agree over (-a,a). So if the received analytic signal waft) is
zero -free in the uhp, x (t) may be recovered by taking the Log of the en-
velope of the received signal and then filtering with an ideal low-pass
filter having unity transmission in the band [-Q,S2] and zero transmission
outside the band [-a,a]. Similarly y'(t) may be recovered by filtering
the output of an ideal discriminator acting on the received signal.

Later, in examining the bandwidth requirements of single-sideband
exponential modulation we give sufficient conditions for waft) to be
zero -free in the uhp so that the simple detectors described above may
be used.

The simple detectors can always be used with appropriate pre -de-
tection and post -detection filters, since for sufficiently large b, wa(r +
ib) will be zero -free in the uhp. We can give an estimate for b under the
condition

We have

sup kW, 5_ m. (99)
t

e-m < lw(t)1 .. em (100)
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and consequently

e -m 5- Iw(t + iu)I S em, u 0.

Also, w(-') is zero -free in the uhp and hence [cf. (219)] if

Iw(t + ib) - wa(t + ib)I < e -in

then wa(r + ib) will be zero -free in the uhp. From (44) we have

(101)

(102)

Iw(t + ib) - waft + ib)I e-ab sup Iw(t) - wa(t)I (103)
t

and since

wa(t) = f :w(s)Ka(t - s)ds (104)

we have

sup lwa(t)I suP lw(t)I liK,,Iii emIIKaIIi (105)
t t

and hence

sup Iw(t) - wa(t)I 11 + iiKaii dem. (106)

Thus if

+ IlKalld < e -2m (107)

then (102) will be satisfied. That is, wa(T + ib) will be zero -free in the
uhp for

b> 2m + log11 + Ilichi
a

(108)

Thus if (99) is satisfied we may use a frequency -translated Poisson filter
with parameter b satisfying (108) to obtain 6R (t;b) [cf. (66)] and then
operate on the envelope and phase of oR(t;b) as before. Then the ap-
propriate post -detection filtering may be employed to recover x(t) and
y'(t).

VII. NOTE ON THE FACTORIZATION OF CERTAIN POSITIVE FUNCTIONS

The detection theory for SSBEM has important application to the
problem of factoring certain positive functions of exponential type, i.e.,
certain positive bandlimited functions.

Voelcker22 has proposed a scheme for demodulating conventional
single-sideband signals via envelope detection. Conventional SSBAM is
characterized by linear modulation; i.e., f(z) = z. There is no bandwidth
expansion so we assume that the Fourier transform of z(t) vanishes

ANALYTIC MODULATION SYSTEMS 515



outside [0,0] and the channel is such that the received signal is simply
the transmitted signal; i.e.,

(t) = a(t) = Re eiwctz(t). (109)

The envelope of the received signal is lz Voelcker's scheme requires
first that z(r) be zero -free in the uhp in order that z(t) may be recovered
from lz . This is insured by requiring Re z(t) = x(t) > 0. We have

z(t + iu) = z(s)Pu(t - s)ds (110)

and since the Poisson kernel is positive,

Re z(t + iu) = x(s)13u(t - s)ds > O. (111)

Therefore z(r) is zero -free in the uhp. The function log z (r) is analytic
in the uhp and with some additional conditions on z(r), e.g.,

lim z(t + iu) = 1, (112)
u --

the imaginary part of log z(t) can be determined from Log lz WI and
hence z(t) can be recovered from lz(t)1. In particular, if

x(t) = 1 + g(t), (113)

where

g(t) > -1 and g(t) belongs to Lp (1 S p < (114)

then Log 1 z(t)1 will belong to Lp and will therefore have a Hilbert
transform. A more attractive condition for recovering x (t) is the condi-
tion

g(t) > -1 and g(t) of band-pass type. (115)

Then if (115) is satisfied, the Fourier transform of lz (t) - 11 vanishes
outside [ril,ft], where 0 < r < 1, and hence

w(r) = log z(T) (116)

is analytic in the uhp and satisfies

w(t + iu) = log [1 + fz(t + iu) - 11]
= Oflz(t + iu) -111= 0(e -r"), u co.

(117)

Therefore, if (115) is satisfied, the Fourier transform of w(t) vanishes
over (-00,0) and hence the Fourier transforms of Log lz (t) 1 and
arg [z(t)) vanish over (-rti,rft). That is, if (115) is satisfied, then the log
of the envelope of z(t) and the phase (arg) of z(t) are high-pass func-
tions.
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we have

and then

If either (114) or (115) are satisifed we have

arglz(t)1 E (p( t ) =
- Log lz(s)Ids

,-co r(t - s)

z(t) = lz(t)leic°(t).

(118)

(119)

The practical problem encountered here is in approximating the
Hilbert transform in (118). The function Log I z (t)I is not band-limitedt
and the implementation of (118) requires a filter whose frequency
characteristic is, formally,

H(co) =
.

e-iwt dt = -i °° sin cot
dt = -i sgn w. (120)

.11.7rt -- ... 711

(-cc < co < co)

These stringent filter requirements can be avoided, for we can, by proper
application of the previous theory, ignore the frequency content of
Log I z (t)I outside the band (-a,a) where a > SI Actually if (114) is
satisfied we may take a = O.

The Hilbert transform problem is simplified if we begin with a filtered
version of Log I z (t) I ; viz.,

Xa(t) = f w Log lz(s)lha(t - s)ds (121)

where ha(t) is an even real -valued function whose Fourier transform
satisfies

-ha(w) = ha(t)e-iwtdt = 1 for -a < co < a. (122)

We suppose further that ha(t) is sufficiently smooth to have a Hilbert
transform ha(t). Then the Hilbert transform of Xa(t) is given by

c:
Xa(t) F- (p(t) = 5 Log lz(s)Ifia(t - s)ds (123)

= s: co(s)h(t - s)ds.

Then defining

waft) = Xa(t) + iyoa(t) (124)

w(t) = il log lz(s)lha(t -s)ds. (125)

t Unless z(t) = constant. See Theorem 6 in Section IX for a stronger statement.

ca
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Then according to the previous theory

z(t) = k(t - s) exp {Iva(s)}ds (126)

where k(t) is any function of L1 satisfying

k(t)e-iwtdt = 1, 0 w (127)

=0, > a.

In case (115) is satisfied the function 100 need satisfy (122) only over
the intervals (r12,a) and (-a,-rQ), since the Fourier transform of
Log I z WI vanishes over (-rfl,r0). That is, h,y(t) can then be chosen so
that the equivalent Hilbert transform kernel h (t) has a Fourier trans-
form that is more easily approximated (within a linear phase factor
e-iwT) by practical filters.

VIII. NOTE ON LOGARITHMIC COMPANDING

Suppose g(t) is a function belonging to Lp for some p satisfying 1
p < co and suppose the Fourier transform of g(t) vanishes outside [-S2,0].
Companding functions f are sometimes used to compress the range of
g(t) for transmission; i.e. flg (t)1 is transmitted rather than g(t). Landau
and Miranker11,12 showed that g(t) (in L2) can be recovered from the

fig(t)1 with suitable conditions on f. The recovery
is accomplished by an iterative scheme. Here we use the detection theory
to give an explicit solution to the problem of Landau and Miranker for
the case

1
f(x) =

2
-Log (1 + x), x > -1. (128)

Accordingly, we further require g(t) to satisfy

g(t) > -1. (129)

The function f(x) given by (128) is not an odd function, as one might
desire for companding purposes, but is interesting because the recovery
problem is simple.

The fact that g(t) is a bandlimited function belonging to Lp for some
p satisfying 1 5 p< 00 implies [cf. (29)]

g(t) = g(s)
sin S2 (t - s)

ds (130)
r(t - s)

from which one can conclude with the aid of Holder's inequality that

lim g(t) = 0.
t-±-
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It follows from (129) and (131) and (128) that

fig (t)I belongs to Lp. (132)

Since g(t) is bounded and belongs to Lp it follows that g(t) belongs to
Lp, for every p' satisfying p ._. p' < co. Hence fig(t)1 also belongs to Lp,
for such p'.

Now we suppose we are given

sin Sgt - 1
Xat) = f ifes)1 s s ' ds- s) (133)

where the integral is absolutely convergent by Holder's inequality. In
fact (Ref. 16) X1(t) belongs to Lp, and therefore has a Hilbert transform.
Furthermore, since WO is bandlimited, its Hilbert transform is given
by

Defining

we have

where

- 1 - cos 0(t - s)
Xu(t) = (pat) = s Xas) - s)

ds (134)

-
= f .f{g(s)} 1 - cos 52(

ds.mot -
t

s)

- s)

wat) = Xat) + icoat) (135)

wat) = f :f{g(s)}.1fat - s)ds (136)

e./t - 1
Ka(t) - irt (137)

So war) is an entire function which is bounded in the uhp.
Now $1 + g(t)} is a positive bandlimited function which can be repre-

sented as (Theorem 7.5.1 with Theorem 6.4.5, Ref. 6)

1 + g(t) = -y(t)-Y(t) (138)

where the Fourier transform of y(t) vanishes outside [-S2/2,12/2] and -y(r)
is zero -free in the uhp. Then z(t) defined by

z(t) = y(t)eiw2 (139)

is a function whose Fourier transform vanishes outside [0,52] and z(r)
is zero -free in the uhp. Thus we have

1 +g(t) = Iz(t)12. (140)
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We may assume that [cf. (131)]

lim z(t) = 1. (141)
t -±co

Then z(t) is given by

z(t) = exp w(t) (142)

where

and

w(r) = f.: Log {1 + g(s)}
ds

(143)
2 'er - s)

lira w(t + iu) = X(t) + i(p(t) (144)
u -o+

1
A(t) =

2
- Log {1 + g(t)} (145)

co(t) = X(t), the Hilbert transform of X(t). (146)

We see from (136) and (143) that

-wat) = f w(s)Kat - s)ds (147)

log {z(s)}1fat - s)ds.

Then the Fourier transform of zu(t) defined by

zo(t) = exp fwn(t)1 (148)

agrees over (-co,C1) with the Fourier transform of z(t). Since {z(t) - 1}

belongs to Lp and its Fourier transform vanishes outside [0,S2] we
have

z(t) - 1 = Se' fru(s) - sin S2(t - s)
r(t - s)

(149)

Writing z(t) = x(t) + iy(t) we have

x(t) = 1 + 57.1exococosPli(s)- 11
sin SZ(t - s)

ds (150)r(t - s)

y(t) = Se: e Ws) sin (pas)
sin 04 - s)

- s)
ds (151)

Then we have

g(t) = x2(t) + y2(t) - 1. (152)
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Thus the recovery problem is solved by means of the Hilbert transform
in (134) and the formulas (150)-(152).

Expressing the solution in terms of the bandlimiting operator 2311,
defined for h in Lp, 1 5 p < co, byt

.7311h(t) = h(s)
sin SZ(t - s)

ds,r(t - s)
the resulting class of functions denoted by Bp (S2), we have

g(t) = 1.311 exp {a11(t) + iXn(t)112 -1

where WO is the given function

1
Xo(t) =

2
- 3112 Log {1 + g(t)1

(153)

(154)

(155)

g in Bp (0), g > -1,

and XII is the Hilbert transform of X11.
The solution (154) is deceptive in that it suggests that WO may be

any function of Bp (g), 1 S p < co, since g(t) given by (154) is a function
of Bp (0) satisfying g > -1. However the solution was obtained on the
premise that WO is a given function of the form (155). All functions in
Bp (SI) do not have the representation (155). The crucial point is that the
function

Z(t) = 311 exp {X11(t) + iX11(t)1, {z(t) - 11 in Bp(0), (156)

whose Fourier transform vanishes outside [0,9] should extend as a
function zero -free in the upper half -plane. Then, and only then, ac-
cording to the general theory, will we have

.732 loglz(t)1 = a11(t) + iXfi(t) (157)

and hence

.73R Log I z (t)I = 5311 Log 11 + g(t)) = Xo(t), g in Bp (0), (158)

g > -1.

On the other hand, if (158) is known to hold, implying (157), then z(t)
must necessarily extend as a function zero -free in the upper half -
plane.

We state this important result as

Theorem 4. Given a function an(t) in Bp (S2), for some p satisfying 1

t The operator 20 can be extended to certain other classes of functions. For example, J311
is an identity for the constant function, which fact is used in (154).

ANALYTIC MODULATION SYSTEMS 521



p < 00, the equation (155) has a solution g(t) in the same class Bp (I2)
satisfying

g(t) > -1

if and only if the function

z(t) = .Y3f2 exp {A0(t) + 041(t)1

where Xs1(t) is the Hilbert transform of WO, extends as a function
zero -free in the upper half -plane. Then the solution of (155) is given
by (154).

IX. BANDWIDTH REQUIREMENTS FOR EXPONENTIAL MODULATION

We have seen that for a wide class of analytic signals z(t) and modu-
lation laws f(z) the bandwidth requirement for transmitting &WI and
recovering z(t) is Sl + E (for any E > 0) where St is the bandwidth of z(t),
provided we allow the use of Poisson filtering at the receiver. In case the
inverse function z = co(w) is an entire function there is no need for
Poisson filtering. If we look at the overall system design, as contrasted
to a detection problem, it is reasonable to ask for the bandwidth re-
quirements for a given f(z) and a fixed receiver, namely the inverse
function co(w) followed by a low-pass filter, such that we recover all z(t)
whose Fourier transforms vanish outside [0,0 and satisfy some sort of
norm constraint, say I z m. The problem then is to specify a channel
of finite bandwidth, i.e., a function Kad3(t) in L1, with Sl < a < is, satis-
fying

ka,ft(co) = Ka,a(t)e-iwtdt = 1, 0 < w < a (159)

= 0, w > fi

such that the received (bandlimited) analytic signal wa,s(t), given by

wa,o(t) = ffz(s)11faAt - s)ds,

satisfies

(160)

(plwa,5(r)1 analytic in the uhp (161)

for all z(t) whose Fourier transforms vanish outside [0,S1] and which
satisfy

Iz(t)I m, -03 < t < (162)

We assume of course that f(z) is analytic for I zl < m. We would like to
make the channel bandwidth f3 as small as possible consistent with (161)
and (162). Clearly, we may take fl =1 with no loss in generality. We de -
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fine the minimum bandwidth ,30(m) as

00(m) = inf Mtn) (163)

where the infimum is over all functions Ka,tj(t) subject to (159), (161),
and (162) with Q = 1. In taking the infimum we may allow a = 1.

The determination of /30(m) is in general a very difficult problem. We
give some estimates here for /30(m) for the case f(z) = ez, co(w)= log w.
In this case, (161) is satisfied if and only if

wax(r) is zero -free in the uhp. (164)

We have

w(t) = expiz(t)1 (165)

and with (162)

e -m < lw(t)I 5 em. (166)

If wa,fi(t) is sufficiently close to w(t), (164) will be satisfied; i.e., a
sufficient condition for (164) is

lw(t) - wa,s(t)I < e -m. (167)

It is intuitively obvious, with the freedom we have in defining Rad%
that for sufficiently large 0 we can find a function Ka,fl(t) such that
wa,o(t) given by (160), with f(z) = ez, will satisfy (167). It is important
to note in this connection that, although the definition of ka,ft (w) for w
< 0 does not affect wax(t), we are free to define Rax(w) for w < 0 (as well
as for a < co < 13) in the most favorable way to obtain the estimate
(167).

First we obtain lower bounds for 30(m).

9.1 Lower bounds for tio(m)

We can obtain a lower bound for flo(m) by taking

z(t) = meit. (168)

We have
mk

W(t) = expimeitl = eckt . (169)E -
k=0 n:

Now assume the channel cutoff frequency /3 satisfies

n<i3.n+ 1 (170)

where n 1 is an integer. Then
n

Wa,fl(t) = 1 + meit + E akeikt (171)
k=2
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where the ak depend on m and the definition of R",,3(.0) for 1 < w 5 n.
We have

Woo(t) = II (1 - )
k=1

where = eit and

nE = -m.
k=1

We require wa,/3(t) to be zero -free in the uhp; i.e.,

1.

Thus

(172)

1 1171 = E E - n. (175)
k=1 k=1

Therefore, we must have 13 > n m in order for wa,s(t) to be zero -free
in the uhp. Then

00(m) > [m]+ (176)

where [m]+ is the smallest integer which is not less than m.

9.2 Lower bound for small m

We know that /30(m) > 1 for any m > 0 but (176) does not say how
much 130(m) must exceed 1 for 0 < m < 1. For sufficiently small E and
correspondingly small m we can show that fio(m) > 1 + E.

For small m, we have

t)(
w(t) = 1 + z(t) +

z2

2
+ 0(m3). (177)

Now by Corollary 2 of Theorem 2 the Fourier transform of z2(t) vanishes
outside [0,2] and we would like to find a z(t) such that a channel filter
with a sharp cut-off, i.e., /3 = 1 + c, acting on a small z2(t) gives a large
(negative) output at t = 0. For sufficiently small E and fixed m we can
accomplish this by taking

meat/2Z(t) = - {1 + iSn (Et)}

where Sn(t) is a sine polynomial,

(178)

Sn(t) = ak sin kt (179)
k=1
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with real coefficients ak and

max ISn WI = 1. (180)

Also we require

nE = -1
2

(181)

so that the Fourier transform of z(t) given by (178) vanishes outside [0,1].
Also we have

max lz(t)I = m (182)

and
meit/2

W(t) = 1 - {1 + iSn(et)I
.N/

2+-m e"11- SR(et) + 2iSn(ft)}
4

+ R3(t),

where

R3(t) = E zk(t),

k=3 Pt!

IR3(01 _
m3 1

3!
(1

We have

m)4

(183)

(184)

(m < 4). (185)

melt/2wad3(t) = 5 w(E)Ka,fl(t - E)dE = 1- 11+ Sn(et)1

m2
+ --4 .1. eiEll - Sti(EE) + 2iSn(fe)}Ka,s(t - E)dE (186)

+ Li- R3(E)Ka,,(t - E)dE

and wa,o(t) is a polynomial of degree 2n in exp (id) where E = 1/2n. We
have

2ieitSn(d)= -eit i ake-ik(t
k=1

+ eit i akeikft
k=1

2n
eitSn2(Et) = eit E bkeilut.

k= -2n

(187)

(188)
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So

where

me it/2
wco i(t) = 1 - 11 + Sn(Et)1

m2- {1 -eit E bkeika _ eit ake -Hut)
4 k= -2n k=1

+ r3(t)

(189)

r3(t) = - E)dE. (190)

Since R3(t) is a periodic function of the form /;* cke-ikEt we may take
for K ,ft(t) any function of L1 whose Fourier transform satisfies

k«,,3 (co)= 1,
= 0,

0 < co < 1
co (3 = 1 -I-

(191)

It is shown in Appendix B that there exists a function K«,3(t) whose
Fourier transform satisfies (191) with

Ilfa ,fl(t)idt < 1 + 1 log (1 + 13E) (192)

Thus

Ir3(t)I 5 max IR3(t)I Ilfa,s(t)Idt (193)

3

+1Iog (1 +:-4---)1

3! (1
\ 3E/ j-

4

We have from (189)

m m2 0

Wad3(0) = 1 - -v2 4 k= -2n k=1

+ r3(0).

Now S,i(t) is an even function and Sn (0) = 0. Thus

(194)

2n
E bk = 0, b-k = bk (195)

k= -2n
-1 -E bk =

2n b o
bk = (196)

k --2n k=1 2

0 bobk = - (197)
k= -2n 2
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and

by
1 1= - SW)dt = - E ak< 1. (198)

271- ir 2 k=1

Now we may take Sn(t) to be an approximation to sgn{sin t}. In particular
we may take Sn(t) to be the function found by Szegs519 which maximizes
ri, ak subject to (180). He gives the inequality

iak .' Mn 2 E cot kr
r d -2log n, n -. co. (199)

1 n -t- 1 1<k<n (2(n + 1) r
k odd

Here we should not identify ak with the terms in the second sum. For
equality in (199) we must have

Sy, (nk:1) =1,
1<k n, k odd. (200)

Equality in (199) is attained for

Sn(t) = E In (t
n

k+
1r

) - in (t +
n

k+
1ir

) (201)
1. 1e4.n
k odd

where
n + 1 2

In(t) -
sin

2
t

(n + 1) sinI
2

It is easy to show that

ik-n
in

\
(t

n + 1k

7r
= 1 for n odd

=
(k odd)

(202)

(203)

11 In (t - kr {InIn 701 (204)
k=-(n-1) \ n + 1 2

(k odd)

1 for n even

It follows from (203), (204), and (201) that Sn(t) given by (201) satis-
fies

-1 Sn(t) 5 1. (205)
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From (201) and (202) we find that

k r2 -sin
4 / k \ 2 n oddak -n
+ 1 k n + 1/ kir k = 1,2, . .. ,n (206)

sin
n + 1

4
ak =

n + 1 (1 n

k+

1)

I. nkir \
k 2(n + 1)/

sin n+1s.n
k

n + 1

2

n even
' k = 1,2, . . . ,n

It is shown in Appendix C that Mn given by (199) satisfies

Mn > -2log n + -?-. (log 1 + -y)
7 7

where

(207)

(208)

-y = 0.5772... (Euler's constant). (209)

So with Sn(t) given by (201) and z(t) given by (178) we have from
(193), (194), (197), and (208)

m m2 bo

2

o 2 2 4

7r

wco
N/2

(0) < 1 - -+ -
4
- 1 - - - - log n - - (log -+ 7)1

7r 7r

3

+ In 1 1 + lOg (1 + 1.)1 (210)r 3
3! (1 - 71-14 )

where 1 < a < 13,

Now if we set

it is clear that

Since

# = 1 + -1 = 1 + -1
2n

1)0 = - ,V,(t)dt - 1 as n->2r -r

m2
- log n = 1
2r

CO

wa,s(0) < 0 for sufficiently large n.

wa,,(t) = cke
n

ikt/2n
k=0
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where the ck are real and co > 0, we have wa,o(iu) real and

Hill wa,o(iu) = C0 > 0. (214)

So (212) and (214) imply that wa,/3(t) has at least one zero on the positive
imaginary axis; i.e. for sufficiently large n, and m given by (211), we must
have 0 > 1 + 1/2n (to pick up at least another harmonic) in order for
wa,s(t) to be zero free in the uhp. Thus

127r1
flo (log ni > 1 + -1 for sufficiently large n.

2n
(215)

In connection with obtaining lower bounds for (30 the idea comes to
mind that we might be able to find a z(t) satisfying I z (t) 15 m (for suf-
ficiently large m) such that the Fourier transform of w(t) would vanish
over a large interval (1,f3). Then if w,o(t) were not zero free in the uhp
we would have 130 > i3(m). The idea is to obtain a wa,fl(t) which would
be independent of the choice of Ka,o(t). However, we cannot make the
Fourier transform of w(t) vanish over large intervals unless z(t) m con-
stant.

Theorem 5. Suppose z(t) is a bounded continuous function whose
Fourier transform vanishes outside [0,S2], and suppose that the Fourier
transform of w(t), where

w(t) = exp (z(t)),

vanishes over (a,b) where

a ?_. 0 and b -a > S-1.

Then

z (t) -7- constant.

A similar result holds for the logarithmic function.

Theorem 6. Suppose z(t) is a bounded continuous function whose
Fourier transform vanishes outside [0,12] and suppose its analytic
continuation z (T) satisfies

lz(t + iu)I E > 0 for u 0

-co < t < co

Suppose further that the Fourier transform of w(t), where

w(t) = log {z(t)}

vanishes over (a,b) where

a>_0, b -a > O.
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Then

z(t) ---- constant.

As an application of the last theorem, we may take Sl = n and

z(t) = fl (1 - Xkeikt)
k=1

Then, assuming I Xk I < 1, we have

where

co pineimt
log z(t) = - E

m=1 M

Am = i (kk)m
k=1

Then the following is true.

Corollary. If 1 Xk 1, k = 1,2, . . . ,n, is any set of n complex numbers and

i (Xk)n =Oform= p, p + 1,p+ 2,...p+n- 1
k=1

where p is a positive integer, then Xk = 0, k = 1,2, . . . ,n.

Proofs of Theorems 5 and 6 are given in Appendices D and E.

9.3 Upper bound for I30(m)

We have
w(t) = ez(t) and Iz(t)I < m (216)

so $w (t)}-1 is bounded and analytic in the uhp. Thus the quotient

wa '0(t) - 1 +
wa's(t) - w(t)

(217)
w(t) w(t)

is bounded and analytic in the uhp, and is reproduced by the Poisson
kernel from its values on the real line. Then if

(
lw(t) -wa'fl(t)1 < 1 for -co <t < CID

Wt)
(218)

the function wco(t) is necessarily zero -free in the uhp. Thus a sufficient
condition for wa,o(t) to be zero -free in the uhp is

Iw(t) - wa,fl(t)I < e -m. (219)

For lack of something better we will use this condition to obtain an upper
bound for 130(m). To meet this condition for large m will require con -
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siderably more bandwidth than the lower bound for 00(m). In fact for
the case z(t) = meit we have

and

mkw(0 = E - eikt
k=0 k!

IA
wa,fl(t) = 1+ meit + E akeikt

2

where the ak depend on the definition of ka,s(co) for co > 1. Since

mk 1 rir

we have

(220)

(221)

{w(t) - wco(t)le-iktdt, k (3 (222)
k! 2r -.7r

Mk
max I w(t) - wa,o(t)1 where k (3. (223)

k!

Hence in order to satisfy (219) for the case z(t) = meit we must have

kM
max {--- 1 < e -m. (224)
k>1 k!

For large m we must have 0 large since

k! < N/27rk k ke-ke 1/12k. (225)
We find for large m that

(3 > pm + o(m) (226)

where p is the root of
= e 1 + I. 113 .-- 3.591121477.

Thus for large m the upper bound we obtain for (30(m) from the condition
(219) must be something like 3.6 times as large as the lower bound (-m)
we obtained previously. We can in fact obtain an upper bound for 00(m)
that is close to pm for large m and, as it turns out, is close to the lower
bound for 00(m) as m -k 0.

To do this we suppose that

a = n < (3 (227)

where n is a positive integer. We take

ito (co) = 1, 0 < co < n

0 -co
'

n < co -. (3 (228)
0 -n

=0, co > (3.
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A- a,o(co) is defined for w < 0 in such a way (see Appendix B) that

S: IKa,o(t)Idt < !log {1 + 3(:_n n)} + 1. (229)

Now we write

w(t) = ez(t)=Pn{z(t)}+ E
{z(t)lkLI

k=n+1 f c 

where

(230)

)
PnIZ(0

{Z(t lk
1 = E (231)

k=0 k!

Since by Corollary 2 the Fourier transform of Pniz(t)Ivanishes outside
[0,n], we have

:wco(t) = w(s)Ka,o(t - s)ds (232)

= Pn{z(t)}+ Rni-i(t)

where

Rn-Fi(t) = re I i zk

k(s

Ty)1

-- lk=n+i !

I ..«,fi(t - s)ds (233)

lien+imi<1 i 7721 r-,
k=n+i k! j j_. IK«,s(t)Idt.

Thus

(234)

co mk
IW(t) -W 00(01 < ik=En+1 VI 11 + f IKad3(t)Idt1 (235)

Therefore if

1+ f IK,ft(t)Idt <
coe-rn

"... Qn(m) (236)

E
mk

k=n+i k!

wa,ft(t) will be zero -free in the uhp. Then from (229) and (236) we can
get an upper bound on # for each choice of n. Since

it follows that

s...ce

Kaji(t)e-iwtdt = 1 for 0 < co < a

s-miKa,fiwidt>1.
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So the inequality (236) can hold only if m and n are such that the
right-hand member of (236) is greater than 2. Then setting

An (m) = max 10,[Qn (in ) - 2]) (239)

we see from (229) and (236) that

1
; log {1 +

n _ An (m)(240)
3[fin (m) - n]

defines for each positive integer n an upper bound for flo(m), viz.,

4-n
3

fin(m) = n + erAn(m) - 1 (241)

We take i3n (m) = cc, for An (m) = 0. For fixed m, we have An (m) > 0 for
sufficiently large n. Then

flo(m) < BOO E min On (M) n = 1,2,3, . . . (242)
n

Since fin (m) > n, it is clear that the minimum in (242) will be fli(m)
for sufficiently small m. We have

A1(m) = 2m-2 + 0(m-1), m -> 0. (243)

So the upper bound f31(m) for small m compares favorably with the lower
bound (215). At least we have the dominant exponential behavior pinned
down as m -- 0; i.e.,

lim m2 log {e30(m) - 1) = -2r. (244)
171-.0

The function An (m) defined in (239) behaves like (n + 1)!/mn-F1 as m
-. 0 and decreases to zero at m = mn where

mn --
(n+ 1)

+
1 1

2
log 2ir + log

p - 11
--

p 2(1 + p)
log (n + 1) +

1 + p 2p j

and p = 3.591121477 is defined in (226),

1
-.4-- .278464543
P

1
.1089058525

2(1 + p)

1 1
log 2r + log

p -
.0219080253.

1 + p {2 2p

(245)
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Fig. 1-Upper bound for transmission bandwidth required inESSB for simple detection
of signals z(t) whose Fourier transforms vanish outside [0,1] and satisfy ] z (t) 15 m.

The behavior of An (m) is such that fin (m) defined in (241) for 0 5 m
m, is very close to n over most of this range and increases suddenly as
m -.- mn. Consequently, the upper bound B(m) defined in (242) is
roughly a staircase function as shown in Figure 1. For 0 < m S .62 we
have B(m) = fli(m). In Figure 2 a graph of login {B(m) - 1} is plotted for
.48 m _. .62. It is seen that only .1% increase in transmission bandwidth
is required for m S .48, and 10% increase suffices for m ....57. We know
that )30(m) > 2 for m > 1, so without Poisson filtering SSBEM is inter-
esting perhaps only for I z I < .6.

X. A POLYNOMIAL PROBLEM

To each polynomial
n

Pn(0 = 1 + E a/A"k (246)
k=1

we can assign a positive integer v which is the smallest integer n such
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Fig. 2-Logarithmic expansion of Fig. 1 for small m.

0.60 0.62

that for some choice of ak for k = n + 1, n + 2, . . . , v, the polynomial

n
P,(0 = 1 + E ad -k + E ad.k

k =1 n+1
(247)

is zero free for I 1 < 1. The integer v is some complicated function of the
coefficients ak, k = 1,2, . . . n. The fact that v is finite is a rather re-
markable fact that follows from the previous theory. To see this we
set

= reit, r > 0. (248)

For sufficiently small r we have Pn(reit) zero -free in the uhp. Then
taking

Q(reit) = log Pn(reit) (249)

CO

= E bkrkeikt
1
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and

Qn(reit) = i bkrkeikt
1

we have
CO

(250)

exp Kin(eit)1 = 1 + E ckeikt (251)
1

where

Ck = ak, k = 1,2, . . . ,n. (252)

Now we identify Qn (eit/n) with z(t) in the previous section where we
obtained upper bounds on /30(m). We know we can bandlimit exp
i Qn(e it)} to obtain a function of the form

n N
1+ E ckeikt + E dkeikt

1 n+1

which for sufficiently large N is zero free in the uhp. In particular, we
have shown that this is possible for

N nB(m) (253)

where B(m) is defined in (242) and

Thus

m= maxlQn(eit) I . (254)
t

V S N < nB(m). (255)

Given the ak, or equivalently the bk, for k = 1,2, . . . , n, we are inter-
ested in obtaining a lower bound for v.

Writing

we have

where

Pn,v(0 = ft (1- Xk0

where I Xkl s 1

CO

(256)

log Pn,(J) = E bk -1' , I ?.I < 1 (257)
k=1

1 .
bk = --, E (Xj)k.

ni=i
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Since I Xk I < 1 we have I bk 15 v/k and hence

v .. max I kbk I, k = 1,2, ... ,n. (259)
k

Consider, for example, the case

Pn(0 = 1 + /720, m 0 (260)

Pn,v(0 = 1 + 771-71 + an+1+1 + - aiSi'. (261)

We have

log Pn,. ( 0 = in 0 + bn-1-124.1 + - (262)

So for the case (260) we have

v nm. (263)

This inequality is clearly best possible in case m is a positive integer. Now
suppose m = 1 + E, where 0 < E < 1/n. Since v is an integer we conclude
from (263) that v n + 1. However, we can show (see Appendix F) by
another method that m > 1 in (260) implies v 2n. Then it is apparent
from the example

Pn,2n(0 = 1 + m?"1 + a2n i-2n

(with appropriate choice of a2n ) that v = 2n for 1 < m < 2. It is conject-
ured that this large jump in v at m = 1 also occurs at all integer values
of m, but we have not been able to show, for example, that m > 2 implies
v 3n.

In order to improve the lower bounds obtained for 130(m) we are in-
terested in maximizing the ratio v/n subject to the constraint

n
max bo + E bkeikt < m. (264)

t rfl

For any choice of bk, k = 1,2, . . . n, we are free to choose bo so as to
minimize the maximum modulus of the sum. That is, in the bandwidth
problem of the previous section we take 12 = n and

n
Z(t) = E bkeikt (265)

k=o

with the constraint (257). Then assuming n < a -5_ n + 1, and v < 13 v

+ 1, we have

n p

Wa,9(t) = ebo {1 + E akeikt + E akeikt
k=1 k=n+1

= eb. A (1 - Xkeit), I Xk I < 1.
k=1

(266)
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Now we want lower bounds on v implied by (258), subject to (264), giving
us 130(m) > v/n. For a given n (large) we would like to choose the bk so
as to maximize v. For a particular choice of bk we can in principle de-
termine the minimum value of v required to satisfy (258). In order to do
this we may assign values to the (n - v) coefficients ak, k = n + 1, . . . ,

v, in (264) and see if it is possible to make I Xk 15 1 for k = 1,2, ,v.

Recall that the first n coefficients are determined by

exp
{i bkeikt} = 1 + aieit + . . . + aneint + . . . (267)

k=1

Perhaps a computer study could shed some light on this very difficult
and challenging problem.

APPENDIX A

Proofs of Theorems 1, 2, and 3

In view of Ex. 2 in Sec. 2.2 it is sufficient to prove Theorem 1 for the
interval (-00,0). So we assume first that g(t) is a bounded function whose
Fourier transform vanishes over (-00,0) and we wish to show that g(t)
is the boundary value of a function bounded and analytic in the upper
half -plane. For this purpose we define

where

We have

Hence

Also

:gu(t) = g(s)Pu(t - s)ds, u > 0 (268)

Pu(t)
u 1

ir t 2 4_ u2

Igu(t)1 fc: les)i iPu(t - s)Ids.

sup Igu(t)I sup ig(t)l.
t t

lim gu(t) = g(t) for almost all t.
u-i-C1

(269)

(270)

(271)

Now all we have to show is that gu(t) is an analytic function of T = t +
ill. Since the Fourier transform of g(t) vanishes over (-00,0) we may
replace Pu(t) in (268) by any function of L1 whose Fourier transform
agrees (for each u > 0) over (0,00) with that of Pu(t). In particular, we
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may replace Pu(t) by the analytic kernel,

K(t + iu) = 5- F(w)eiu'u+iodo.), u > 0 (272)
271- -..

where F(w) = 1 for w 0

= co + 1 for -1 co < 0

=0 for co < -1.

The definition of F(w) for w < 0 is important only to the extent that the
integral in (272) converges for u > 0 and implies

if- IK(t + iu)Idt < co for u > 0. (273)

It is sufficient for (273) that e-u'uF(co) belong to L2 and have a derivative
in L2 [see (5)].

Thus we have

gu(t) = --1- s -
27

g(s)K(t + iu - s)ds = G(t + iu) (274)
--

where G(T) is analytic in the uhp and from (270) and (271)

IG(T)I 5 sip Ig(t)i (275)
t

lim G(t + iu) = g(t) for almost all t. (276)
u -o

This proves the first half of the theorem and we may as well write

G(t + iu) = g(t + iu) = gu(t). (277)

Now for the second half of the theorem we wish to establish that if g(r)
is bounded and analytic in the uhp, then

f: g(t)h(-t)dt = 0 (278)

for all functions h of L1 whose Fourier transforms vanish over (0,co), or
equivalently

J : g(t)h(t)dt = 0 (279)

for all functions h of L1 whose Fourier transforms vanish over (-0.,0).
To do this we need some lemmas concerning analytic functions belonging
to L1 on lines parallel to the real axis.

Lemma 1. If h(t) belongs to L1 and its Fourier transform vanishes over
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(-03,0) then h(t) has an analytic continuation h(t + iu) in the upper
half -plane u > 0 satisfying

Ih(t + iu)Idt 1h(t)Idt. (280)

Proof. We have

h(t) = h(co)eiwtdco

with the Fourier integral providing the analytic continuation

(281)

h(t + iu) = h(co)eiw(t÷iodco, u > 0. (282)

Since ft (w) = 0 for w 5 0 we may write

h(t + iu) = r:h(w)e-ulwleiwtdce, u > 0 (283)

and hence conclude that

cph(t + iu) = fcoh(s)Pu(t - s)ds (284)

where Pu(t) is the Poisson kernel defined in (269). Then (280) follows
from (284), since the L1 norm of the Poisson kernel is 1 for every u >
0.

Lemma 2. Suppose h(r), r = t + iu, is analytic in the strip 0 < u < b
and satisfies

Then

where

lit(t + iu)Idt <.3 for 0_<u <b. (285)

h(t + iu) = 1 r- hmei.,(t+iocico,
2r J--. 0 < u < b (286)

h(w) = f h(t)e-iwtdt. (287)

Proof: Defining

h(co,u) = h(t + iu)e-j'adt, 0 5 u < b (288)

we wish to show that

h(co;u) = e-wuh(co). (289)
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We have

h(t + iu) = lim -1 f {1 - M) I h((.0;u)eiwtdco. (290)ft- 27r -s2 Sl

Also, from the analyticity of her), we have

at
(h(t+iu)=-±h t +iu), 0 < u <b. (291)

1 au

We would like to establish (289) from (291) by differentiating inside the
integral of (290) but at this point we do not know enough about h (unu)
to justify the differentiation. Therefore, we will define

g(t + iu) = r k(s)h(t + iu - s)ds (292)

where k (t) is a function of L1 whose Fourier transform k (w) does not
vanish for any argument and such that A (w) belongs to L1. We would
also like k'(t) to belong to L1. We may take

k (t ) =
1

.N171-
e -t2/2. (293)

Then g(r) is analytic in the strip and

ji- (g(t + iu)Idt 5 5 - Ih(t + iu)Idt. (294)

We have

g(t + iu) = 1 s - k
2

(w)h (t.o,u)e iwt c he, 0 u < b, (295)
7r -.

and since A (co) is in L1,

at
g(t + iu) =

2-
1-_ iwk(oh(co;u)eiwtd., 0 _<u < b. (296)--

Now

a a
g'u

(t)
E at

g(t + iu) F-
tau

g(t + iu)

belongs to L1 for 0< u< b since

(297)

-eu (t) = 5 h(s + iu)k'(t - s)ds (298)

and k' belongs to L1. Hence the function of t

-a
au

g(t + iu)
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has a Fourier transform for 0 < u < b. Thus from (295)

ag(t
+ iu) = I s cc k(co) i

auau 2r - .0
- h(w;u)eiwtclw, 0 < u < b. (299)

Since k (w) 0 for -a, < CO < a,, we conclude from (296), (297), and (299)
that

1 a
7 - h. (w;u) = Loh (w;u) .
t au

(300)

Then (289) follows from (300).

A corollary of Lemma 2 is the following

Corollary. If g(r), T = t + iu, is analytic in the strip a < u < b and
satisfies

ro,
then

Ig(t + iu)idt < co for a <u <b, (301)

j_.g(t + iu)dt = constant, for a < u < b. (302)

The corollary follows by applying Lemma 2 to the function g(t + is +
if) for arbitrarily small positive E.

Lemma 3. If g(r), T = t + iu, is analytic in the upper half plane u > 0
and satisfies

.11:
Ig(t + iu)Idt < co for u>_0

then the asymptotic estimate

implies

and

where

fco let +Jo* = Ofe'l as u -. co (303)

s-co Ig(t + iu)Idt 5_ e -au f ' Ig(t)idt for u > 0 (304)

g(t + iu) = g(w)eiw(t+iu)cico for u > 0 (305)

.0.0) = r e-iwtg(t)dt. 0 for w a. (306)
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Proof: From Lemma 2 we have the representation (305) so that

g(w)e-w" = f g(t + iu)e-i4'tdt. (307)

Thus

le(co)e-wul 5: Ig(t + iu)Idt. (308)

Then (303) and (308) imply

g(w) = 0 for w < a (309)

and since g(w) is continuous, (309) implies

g(w) = 0 for w a. (310)

Thus we may write
e -au

g(t + iu) - 2r J-- e -u 1w -a INCO)eiwtdt. (311)
Then since

1 s- e-ulw-aleiwtdt = e iatpu (0 (312)
27r --

where Pu(t) is the Poisson kernel of (269), we have

g(t + iu) = e -au s g(s)eia(t-s) Pu(t - s)ds (313)

and (304) follows from (313), and Lemma 3 is proved.

Now we are prepared to prove the second half of the Paley -Wiener
Theorem for L.. We have g(r) analytic for u > 0 and

sup I g(t + iu) 15 M for u ?-_. 0. (314)
t

Now suppose h(t) is any function of L1 whose Fourier transform vanishes
over (-03,0). We have from Lemma 1 that h(t) is the boundary value of
a function h(r) analytic in the upper half -plane u > 0, satisfying

f I h(t + iu)dt <s ih(t)Idt, u 0. (315)

Now we consider the function

f(r) = g(r)h(r) (316)

which is analytic in the uhp and satisfies

5: JIf(t + iu) M .: ih(t)Idt. (317)
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Then from Lemma 3

In particular

f(t)e-iwtdt = 0 for w < 0. (318)

f(t)dt = r g(t)h(t)dt = 0 (319)

which completes the proof of the first (one-sided) Paley -Wiener Theo-
rem.

Theorem 2. It is sufficient to prove the two-sided Paley -Wiener Theorem
for functions g(t) whose Fourier transforms vanish outside [-a,a]. We
show that g(t) is the boundary value of an entire function of exponential
type by defining

ue-ia(t-s)
G1(t = f g(S)eau 2714

ds, u > 0 (320)

iuleia(t-s)
G2(t + iu) = g(s)e-au ds, u < 0. (321)

rf(t - s)2

We have

I Gi(t + iu)I < eau sup I g(t)I , u > 0

I G2(t + iu)I s e -au sup Ig(t)1, u< 0

and since g(t) is continuous

Now we define

where

lira G i(t + iu) = g(t) for all t

lira G2(t + iu) = g(t) for all t.
u -o

(322)

(323)

(324)

(325)

G 3(T) = K(T - s)g(s)ds (326)

K (T) =
271-

k(co)eiwTdco

544 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



and

k(w)= 1, -a S (.,, <a

= 2 (1 -`'),
2a

a<co< 2a

=0, co .. 2a

k(-0)) = k(w). (327)

Then K( -r) is an entire function belonging to L1 along each line parallel
to the real axis. So G3(7) is an entire function bounded on each line
parallel to the real axis. Since the Fourier transform of g(t) vanishes
outside [-a,a] we may replace the convolution kernels in (320) and (321)
by K(t + iu) since in each case their Fourier transforms agree over
[-a,a].

Thus

G1(t + iu) = G3(t + iu), u > 0 (328)

G2(t + iu) = G3(t + iu), u < 0. (329)

Hence g(t) is the restriction to the real line of an entire function G3(t +
iu) s g(t + iu) satisfying

Ig(t + iu)I 5 ea lul sup I g(t)I.
t

(330)

Now for the second half of the theorem we suppose that g( -r) is an entire
function satisfying

sup Ig(t + iu)I < ealul sup Ig(t)1 (331)
t t

and wish to conclude that

J g(t)h(t)dt = 0 (332)

for all functions h in L1 whose Fourier transforms vanish over (-a,a)
(and hence over [-a,a]). From the one-sided Paley -Wiener Theorem
we have

5: g(t)hi(t)dt = 0 (333)

for all functions h1 in L1 whose Fourier transforms are supported on
(-03,-a) and

f:g(t)h2(t)dt = 0 (334)
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for all function h2 in L1 whose Fourier transforms are supported on (a,a).
The difficulty we encounter in establishing (332) is that an arbitrary
function h in L1 whose Fourier transform vanishes over [-a,a] cannot
be decomposed as

h(t) = h_(t) + h+(t) (335)

where h_ and h+ belong to L1, and the Fourier transform of h_ is sup-
ported on (-=,--a), and the Fourier transform of h+ is supported on
(a,°). In order to deduce (332) from (333) and (334) we have to ap-
proximate the test function h in (332) with bandlimited functions hb.
We may take

hb(t) = 5 -co bK(bs)h(t - s)ds, b > 0 (336)

where

sine -t
2

K(t) = r t2

2

Since

(337)

al
:

K(t)dt = .1 - IK(t)Idt = b f - IK(bt)Idt = 1,

jic: ihmidt < s- Ih(t)Idt. (338)

Also we may write

h(t) - hb(t) = f bK(bs)fh(t) - h(t - Olds (339)

which gives

f'I' Ih(t) - hb(t)Idt f 7bK(bs)ii1(s;h)ds (340)

we have

where

-Al(s;h) = .1 Ih(t) - h(t - s)Ids. (341)

The function µi(s) is called the modulus of continuity of h. It is an even,
continuous, bounded function of s (see Ref. 3) and

tt1(0;h) = 0

11,1(s;h) 5. 2 f Ih(t)Idt = 211h111.
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Then writing

so that

- -s eobK(bs)Ati(s;h)ds = 1 K(t)121 (-t ; h) dt (343)
b

f-Vb

.Vb b
I

KW Ati (-t
'
h) dt + 211h111 f

t >N/b
K(t)dt-I

it is clear that given e> 0 we can choose b so large (a < b < co) that

.1
co

Ih(t) - hb(t)Idt < E. (344)

Now the Fourier transform of hb is supported on the intervals (-b,-a)
and (a,b), so hb does have the decomposition

hb(t) = h_(t) + h+(t) (345)

desired in (335). This follows from the existencet of a function Ka,b(t)
in L1 whose Fourier transform satisfies

ka,b (co) = 1, a 5 co < b

= 0, co 5. -a (346)

h+(t) = hb(s)Ka,b(t - s)ds (347)r
and

Ilh+ 11 1 < Ilhb 111  IIKa,b 111.

We have

(348)

h_(t) = hb(t) - h+(t). (349)

So h_ also belongs to L1.
Returning to (332) we have

rg(t)h(t)dt = r g(t)hb(t)dt + 5 :g(t){h(t) - hb(t){dt.

(350)

Since

Eg(t)hb(t)dt = r g(t)h_(t)dt + r g(t)h+(t)dt (351)

= 0 + 0

t See Appendix B for a good choice of Ka,b(t).
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we have

:g(t)h(t)dt1 sup Ig(t), f:lh(t) - hb(t)Idt

E sup Ig(t)1. (352)

Since we may choose b sufficiently large to make E arbitrarily small we
conclude that

:g(t)h(t)dt = 0 (353)

for all h in L1 whose Fourier transforms vanish over (-a,a). This com-
pletes the proof of the two-sided Paley -Wiener Theorem.

Theorem 3. Here we wish to show that if g(T) is analytic in the uhp and
bounded on the real line as well as every line parallel to the real axis in
the uhp, then the asymptotic estimate

implies

sup Ig(t + iu)I = Ofe-au} as u (354)

sup Ig(t + iu)I < e -au sup Ig(t)1, u 0. (355)

Now if x is any real number and y is any positive number, the func-
tion

h(T) -
Y Ig(r)e-iar - g(x + iy)e-ja(x+il
7r (7. _ x)2 + y2

where we think of x and y fixed, is analytic in the upper half -plane u >
0 and satisfies

and

(356)

Ih(t + iu)Idt < 0., u > 0 (357)

Ih(t + iu)Idt = 0(1) as u (358)

It follows from Lemma 3 that

h(t)dt = 0. (359)
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Hence

r- gme-iatdt
_g(x + iy)e-ja(x÷iY). (360)

ir J-. (t - x)2 + y2
Thus

lex + iY)I<e-ay sup Ig(t)I. (361)
t

This inequality holds for any -co < x < a, and any y > 0. Then (355)

follows from (361), if we note that (355) holds trivially for u = 0.

APPENDIX B

Reproducing Kernels of Small L1 Norm

We would like to find a kernel Ka,s(t) of minimum L1 norm whose
Fourier transform satisfies

Ra,fl(w) = 1, 0 < co < a

=0, w > 13 (362)

where 0 < a < [3.
Replacing Ka,o(t) by 1ialf,,,o(t1a) we see that the minimum norm

is a function of 13/a, or if we like, a function of a/(13 - a). It is sufficient
to consider functions Ifx(t) whose Fourier transforms satisfy

RAM = 0, w < 0 (363)

=1, 1 _.t.o 1+X
where we make the identification

X -
a

a
(364)0 -

We will not treat the minimization problem here. Instead we give a
construction for a particular function RA(w) which can be shownt to be
the solution for the case X = n, n = 1,2,3, . . .. The construction provides
an interpolation between the minimal norm values in case n < X < n +
1.

We write

X = n + 0 (365)

where n = [A] is the largest integer contained in X and 0 < 0 < 1. Then
we set

Kx(t) = 271Fx(t)12 (366)

* The details will be given in a future paper.
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where the Fourier transform of Fx(t) vanishes for negative argument,
and otherwise is defined by

Px(co) = ak, k_co<k+1.r1+1
= an+1, n+1 .c.o<n+ 1 +0

=0, o.).n.+1 +0=X+ 1 (367)

where the ak are defined by

ak

We then have

1 CO

= E akzk (368)
z o

/1\ /1+
/

/1
+ 2

2

1
. + k - 1)

(112)k k2i \ 2

k! k!

r C2+

r (-2) + k)

(369)

Px(x)Px(co - x)dx (370)

which is a piecewise linear function satisfying

1x(m) = E akam-i-k = 1 (371)
k = 0

for m = 1,2, . . . ,n + 1. Thus

kx (co) = 1 for 1 n + 1
=w for 0 < 1. (372)

For n + 1 S. w n + 1 + 0 the convolution in (370) is independent of the
definition of Px) for x > n + 1 + 0; i.e.

kx(co) = kn+1(w) for 0 5 w 5 n + 1 + 0. (373)

Ra(w)= 1, n+lco.n+ 1 +0. (374)

L1/4(co) = 1 for 1 co n + 1 + 0
=w for 0 ce < 1. (375)
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We have

AL(X) E 1 a' IKA(t)idt = 27r r IFx(t)12dt

= f- IPx(w)I2dw

= i cd + 0a,22+1 (376)
o

which is a piecewise linear function of X, i.e.,

µ(X) = (n + 1 - X)µ(n) + (X - n)µ(n + 1), n X 5 n + 1. (377)

We have

89
µ(0) = 1, µ(1) =

5
- , µ(2) = - (378)
4 4

The remainder of this appendix is devoted to estimating µ(n) for large
n. We need an upper bound.

For convenience we set

r (+ x\
2 l

y(x) -
F (1 + x)

and then

(379)

A(n) = -1 i 72(k). (380)
7r k=0

First we estimate -y(x). We have the representation for the Beta
function

r(X)r(y)
= tY 1(1 - t)x-ldt (Re x > 0, Re y > 0). (381)

r(x + y) o

Then

1 ri (1- t)x
-y(x) =

Jo
dt.

-V7r -v to.- t)

Setting 1 - t = e -s we obtain

7(x) = ds
-V77r o -V1 - es

=
1 cc.. e-s(x+1/4)

N/Tr Jo -V2 sinh s/2

(382)

ds. (383)
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Since

1 -e -s < s

and 2 sinh s/2 > s we obtain from (383)

1 1
< y(x) <

Vx +1 Vx + 1
2 4

(384)

We can obtain a simple upper bound for µ(n) from (384). We have

µ(n) = 1 +
1- E -y2(k)
r k=1

1 n 1< 1 + - E
7 le=i

k + -1
4

Since t-1 is convex, we have

T+1 dt
>

1
, T > 0 (386)

(385)

Jr t 1
T + -

2

and thus

µ(n) <1 + -1 5 n+3/4
-dt = 1+

7r
-1 log (1 + 1r 4 ), (n ?_ 1). (387)

3/4 t 3

Since log (1 + 4A/3) is a concave function of A and since µ(X) is piecewise
linear between integers, we conclude from (387) that

µ(A) < 1 + 1 log (1 + -4A), X > O. (388)
3

A sharper estimate of µ(X) for large A is obtained as follows. We are
interested in the constant term in the asymptotic expansion.

From (383) we have

_1\ 1 r- e-sxds
2/ -V7r: Jo .V1 -e -s

(389)

Then from the convolution theorem for Laplace transforms,

where

72(x -12` = fo- e-sx(p(s)ds

yo(s) = -1 f8 1
dt

r ao -V1- e -t -V1 -e -(s -t)
.
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Setting e-t = u in (391) we obtain

where

du
(p(s) = -1r

v
51

v,l-u1 r...Vii

v = e-s.
Then with the substitution

1 -u = (1 - v)t
(392) becomes

(392)

=
Jo

1 dt
(393)r o VI - N/1 - (1 - v)t

Identifying (p(s) with the hypergeometric function which has the
representation,

r(c) 1

0)2Fi(a,b;c;z) - r(b)r(c - b) S -1(1 - t)c-b-1(1 - tz)-adt
o

we see that

Thus

(Re c > Re b > 0) (394)

1 1co(s) = 2F1 (;1;1-e).2 (395)

1 r2(x) co

,y2 (x _....
2
--) =

r2 (x +ii)
- e-sx2F1 -1(, -1 1; 1 - e-s) ds

0 2 2
2

and

1 n
µ(n) = - E 72(k) =

7 k=0

1 rec,i_ e-s(n+i)
e-snco(s)ds

ir Jo 1 - e-s
1

1 -e -
0,

le -8/2 - e-s(n-1-3/21 { cO(S) ds
7r 0 s s

+1 re. e-s/2 - e-s(n+3/2)
ds

7r Jo s

= log (2n + 3) + -1 5 - e -s/2 { `p(s) -1
ds

7 71- 0 1 - e-s s}
1 .0

e-s(n+312) 1 (P(s) li
1- e-s S J

(396)

ds. (397)
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From (395) and the series

(a)k(b)k zk
(398)

(399)

(400)

2F1(a,b;c;z) = E
k=0 (C)k

it is clear that

ca(s) v(0) = 1, s >

and hence that

go(s) 1

k!

0

- 0.
1 - e -s s

Thus from (397) we have

1
1.1(n) < - log (2n + 3) + e -s/2 cc(s)_8 -11 ds (401)

7 7 0 1 1

and in fact

lira Itt(n) -
1
; log (2n + 3) 1 =

1- -
e

sco() 1
1- ds. (402)

1- e -s7r o S

Now we can evaluate the integral in (402) by an indirect route.
We have

1 n 1 n (1/2)k (1/2)k 1 112(n) - E -Er k + 1 0 k!k! 7r(k + 1)1

1

r o
f72(k) (403)

From the estimate (384) we see that the sum on the right converges
as n co; i.e.

lira
1 1- Eit o

1{µ(n) irok+1 172(k) 1.
k + 1

Now we can write

(404)

G° 1

7

.

!

(1124(1124 xk - k
A -= -E 172(k) - - E

0 k + 1 k=o k!k r(k 1)1

= lira 12F1 /1; 1
2

; 1; x - 1 log (405)
x-i k2 rx 1

1

- x}
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Then using (394) we have

1 1
7rA = lim 1 1 dt

x-1 So {V 01 - t)(1 - xt) 1 - xt

= lim 1
dt f V1 - xt 1

x-1 Jo 1 - xt 1-vt(i - t)
1 dt f 1 dt f. v'1 -xt xt11 + lim f 1 -11

x-i Jo 1 - xt tv t 1 x-i Jo (1 - xt)Vi 1 - 1/

1 dt
+ lim

1 dt f V1 - xt
11= ,_

So (1 + -VD V t x-1 So (1 -xt) Vi 1 - V1 - t

= 2 log 2 + 2 log 2. (406)

Some care is required in evaluating the last limit. An alternative way
of obtaining the result is worth noting, as it makes use of an interesting
series obtained from (396). A change of variables gives

r2(x) 1

- f (1 - ox -12F1

r2 (x +1\
2)

' 2
-1 ;1; t) dt

501
lie (1/2)k (1/2)k tk} dt

o k!k!

1 3

2! {2 212
=1-+ 1

+ + . . . (407)
x x(x + 1) 2 x(x + 1)(x + 2) 2

Then setting

we have

r2 (x + 1)
2F(x) -

r2(x + 1)

r (+ 9
[(1/2)k2= 2 2 1

i
{ k! f 1 7r

r (2) r(k + 1)

F (x) 1 - k
F(k)- = - E 

z r k=o kx!ik+i
(408)

which is an interesting formula. In particular (F(0),F(1),F(2), . . . ) is

ANALYTIC MODULATION SYSTEMS 555



an eigenvector of a certain infinite matrix. Also an interesting series for
7r is obtained by setting x = n + 1/2 (large n) in (408). Returning to (407)
and recalling ak = (1/2)k/k! we have

xr2(x) r2(x + 1) 2al- 1 + 2

2

x + 1+
2!

a2
(x + 1)(x + 2)

r2 (x +1--) xr2 (x +
2)

Then using the series

1-=
x so

1

(1 t)x-ldt = (1 ,- t)x (1 + t + t2 + .)dt
0

(409),

1 1 2!
+ . (x > 0)

x + 1
+

(x + 1)(x + 2)
+

(x+1)(x + 2)(x + 3)

we may write

1 r2(x + 1) r2(1)

x r2 (x +.1) r2 (1)
\ 2/ \ 2/

= 1 +
1 fai 1

x + 1 1

Since

2! 2 1-+
(x + 1)(x + 2) a2 -

27r

k! 1
+ . . . - +... (410)

(x + 1)k { kir

1 1<ak<
it +) r k )

2 \ 4/

we may let x 0 with the result

l'2(x + 1)
= -4log 2 (411)=

R 7 17rr2 x + 2) x=o

and since ag = 1, this sum is the same as the sum on the right in (404).
Hence the limit in (404) is

lim {µ(n) -Ir 1 I-1 log 2 (412)
0 k + 1 ir
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and since

n
lira I E - - log n1 = C = 0.577215... (Euler's constant) (413)

n ---co 1 k

we have from (412), (413), and (402),

1 1
lira 1 ti(n) - - log (2n + 3)1 = -5 e -s12 {

s 1- -I ds
n-m 7r 7T C, 1- e -s s

= -3 log 2 + -cr r
Then from (401) and (414) we have

1 3 c
µ(n) < - log (2n + 3) + -log 2 + -

ir r 7r

and by the same argument used in establishing (388),

(414)

(415)

µ(X) < -1 log (2X + 3) +3 log 2 +
C- , X > 0. (416)r r r

We find from (397) and (414) that

7rA(n) ,--, log (2n + 3) + 3 log 2 + C

3 43 7

2(2n + 3) 48(2n + 3)2 16(2n + 3)3

+ 0(n-4). (417)

For comparing the estimates (389) and (415) we have

1 + -1 log -4 -2,- 1.0915720476r 3

- 14 log 2 + C} = 1.066275853
7r

and for use in (415) and (417)

1 2.656657207
- 13 log 2 + C1
7r 7r

(418)

(419)

.8456402533 (420)
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In the following tabulations the estimates (388) and (415) and the as-
ymptotic formula (417) are compared with the true value of µ(n).

n µ(n) Asymptotic formula Error
1 1.25 1.249927097 7.29 (-5)
2 1.390625 1.390607982 1.70 (-5)
3 1.48828125 1.488275479 5.77 (-6)
4 1.563049316 1.563046870 2.45 (-6)
5 1.623611450 1.623610248 1.20 (-6)
6 1.674500465 1.674499809 6.56 (-7)
7 1.718379259 1.718378872 3.87 (-7)
8 1.756944605 1.756944363 2.42 (-7)
9 1.791343941 1.791343782 1.59 (-7)
10 1.822389342 1.822389234 1.08 (-7)

n Upper bound (388) Upper bound (415)
1 ' 1.269703286 1.357940252
2 1.413574619 1.465042692
3 1.512299999 1.545038559
4 1.587544884 1.608914025
5 1.648359655 1.662088992
6 1.699398305 1.707639405
7 1.743372924 1.747480071
8 1.782003284 1.782884290
9 1.816448738 1.814741844
10 1.847528028 1.843699061

APPENDIX C

Estimates for Mn

In order

k2 r
(421)Mn - > cot

n + 1 1<k.sn 2(n + 1)
k odd

to express the sum as an integral we note first that

7 cot r
d

x = - log sin irx
dx

= (-1-- log
dx

r
T(x)r(1 - x)

= 01 - x) - 1,G(x) (422)

where

1 tx-1-
dt

'
x > 0. (423)(x)-1v(x) - S1

T(x) l log t 1 - ti
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So

_f
7r cot rx = so

1 dt$tx-1 _ t-xl
1 - t

e -ute-ox-i) _ euxi du, 0 < x < 1.
1 - e -u

Then for 0 < 0 < 1/v, where v is an odd integer,

v
. (e-uo _ e-(v+2)uo)

7r0 E cot kir0 = 0 j. leu
k=1 0 1 - e-2"

k odd
(eta _ e -u

1 _ e2u0 1 - e-u

or

r0 i cot kr0
k=1
k odd

(424)

du (425)

= eat (e -t _
e-(v+2)t)

+(e
-t _ evt)

C
Jo 1- e -2t 1_ e -2t

e-at
1 e_atdt

.11 _ e-(v+1)t}2 e(v-ot

= So c . '

e-t1-_ee--(v2t4-2>t dt -1 1- e -2t 1_ eat (426)

where a = 1/0. For n odd we take v = n, a = 2(n + 1). Then

4 co e-t _ e-(n+2)t 4 . 11 _ e-(n+1)92 e-(n+2)t

Mn=- dt dt
7 0 1 -e -2t r o 1 - e -2t 1 _ e-2(n+l)t

4 co e-t _ e-(n+2)t 2 r- 1- e -t dt
= - dt -

7r Jo 1 -e -2 t r(n + 1) Jo
sink

t 1+ et
n + 1

n odd (427)

The first integral is just the sum of the reciprocals of the odd integers

from 1 through n. We have

So

2
SO

e -t - e-(n+2)t
dt = log (n + 2).

t
(428)

. e -t _ e-(n+2>t .
-1

1 - e -2t t
dtdt = log (n + 2) + 5 e -t 1 2

1 - e -2t 0

So

03

e -(n+2)t
1

-2e-2t
- -t1 dt. (429)
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We have

1fo- e -t { 2 f1 - e -2t- t1 dt =
01 ii 214.2 + logl u 1du

ri r 1
= + 1 1 du

gJo 11
1

-u+ 1 + u lo u
1 du el 1r 1

1 duJo 1 + u Jo 11 -u log u

= log 2 - ik(1)

= log 2 + 7

where

(430)

-y = .577215. . . (Euler's constant). (431)

Thus

Mn =
2
- log (n + 2) +

2
- (log 2 + -y)

7 r
_ _2 - e-(n+2)t 1 2 - 11 dtrfo 1 -e -2t t

_ 2 r- 1- e -t dt
r(n + 1) Jo t 1+ et

sink
n + 1

We may write

(n odd) (432)

S- e -(n -1-2)t {
2

1 - e -2t
- lti dt = fow e_oz+nt { 1 -e-tI dt

sinh t t

= E e-(n+l)t { 1 - 11 dt + f tte- (n+l)ta _ e -t) d
sinh t t o

-
n + 1 So e -t 1sinh

1

t

n + 11

t
dt + log

n + 1
n + 2. (433)-

n + 1

Also

1 r - 1 - e -t dt
n + 1 Jo 1 + et t

sinh
n + 1
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to obtain

1 °° 1- e -t 1 n +11
dt= n +1 Jo 1+ et . t

sink
n + 1

c° 1 - e -t dt
(434)+So 1+et t

and (Ref. 9, p. 327)

r-i- e -t dt IT

Jo 1 + et t -log 2
Thus we find from (432)-(435),

Mn = -2log (n + 1) +7 (log 7+ 7)

4 (-n+ 1 1 dt
7(n + 1) Jo

sink
t 1 + et

n + 1

(435)

n odd. (436)

Clearly the integral in (436) is positive. In order to obtain the asymptotic
series for Mn, n odd, we use the generating function for the Bernoulli
polynomials (Ref. 1, formula 23.1.1)

-text - tk

et - 1 k=
Bk(x)- iti < 27 (437)E

0 k!

Iti <2wt 11\ tk

kip=0'-'11 k!
2 sinh -

2

where (Ref. 1, formula 23.1.21)

Thus

(438)

Bk (2) = -(1 - 21-k)Bk, Bk Bk (0). (439)

tkt _ - (2k - 2)Bk -
sinh k=0

E
k!

We have (Ref. 1, formula 23.1.19)

B2k+1 = 0, k = 1,2, . . .

Iti < (440)

(441)
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and (Ref. 1, Table 23.2)

1 1 1
Bo = 1, B1 = --2, B2 = 6- , B4 = -

1 5 691
B6 =1 ,

42
B8 = -

30, Blo =
66 '

B12 - 2730'

B14 = -6 -

So

1 1 B,,,,t2k-i
_ E (22k _ 2)

t sinh t k =1 (2k)!

=-t-t3+ t5+... Iti <r.31

6 360 15120

From Ref. 9, p. 325, we have
x 2k-1

dx = (22k - 2)1 B2k I
4k
72kJo e + 1 , k = 1,2, . . . (444)

x

Also, (Ref. 1, formula 23.1.18)

(442)

B2n = B2n(0) = (-1)n+1
(2

E ,
(27)2n) k.1 k 2n

SO

B2k = (-1) k+11B2ki I.

Thus we obtain the asymptotic series

1 °° n+1 1 dt
n +1 Jo t t 1 1 + et

sinh
n + 1

and hence

(443)

n = 1,2, . . . (445)

(446)

(_i)k-4-1(22k - 2)2B2k 2k-E
k=1 4k(2k)! kn + 1/

1 / r N2 49 / 7
+ . . (447)

72 kn + 1/ 43200 kn + 1

7r 49 r3
itfn ,,,

2
- log (n + 1) + -2 -4 + 7) +
7, r r 18(n + 1)2 10800(n + 1)4

+ . . . +
(_i)k+i (22k - 2)2B2k

(
7

+ . . . (n odd). (448)
7 k(2k)! n +1
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Now we would like to show that

Mn >
2
- log (n + 1) + -2 (log -4 + -y)
7 7 k 7

<
2
- log (n + 1) + -2 (log -4 + -y) +

2r r 18(n + 1)
7

>
2
- log (n + 1) + -2- (log -4 + -y) +

7r349

r r 18(n + 1)2 10800(n + 1)4

etc., (n odd) (449)

i.e., that the error in truncating the asymptotic series has the same sign
as the next term of the series. To do this, we show that for t > 0

1 1

t sinh t

< 6-f

t 7> - - - t3
6 360

t 7 31
5< - 3

6 360t +151201

>0

We have (Ref. 9,

etc.

p. 23)

t 1

(450)

(451)- 1 + 2t2 E (-1)k
sinh t k=1 t2 + k271.2

Or

1

t2{1
(452)

sinh tl
- 2 E ( i)k+1

k=1 t2 k272

Now consider the polynomial

t 2n+2

P2n(t;k) (453)= 2
t2 + k2r2

We have
CO

P2n(t)E E (-1)k±1P2n(t;k) (454)
k=1

n+lt2n1-2_1 f1
2(-1) E

t2 1 sinh t} k=1 (kr)2n+242 k272)
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or

t2 1 1 sinth t 1 - P2n(t)

= 2(-1)n+1t2n+2
k=1 (kr )2n+2(t1)2 + k 272) . (455)

It follows that P2n(t) is a polynomial of degree 2n which agrees with the
first (2n + 1) terms of the Taylor series of t-91 - t/sinh ti. The sign of
the difference in (455) is (-1)n+1, as the sum is clearly positive. Then
(450), and hence (449), follows from (455).

For n an even integer, the asymptotic expansion of Mn is not so readily
obtained. In this case we set v = (n - 1) in (426) and keep a = 2(n + 1).
Thus

4 e -t _ e-(n+i)t
M dtn=

7r 0 i _ e -2t
4 . (1 - e-nt)2 e -(n4 -3)t

(456)-;
o 1- e -2t 1_ e-2(n+1)t dt, n even.

We have
e -t _ e-(n+i)t

2 dt = log (n + 1)
so 1 -e -2t

CO

+ le-t _ e-(n+l)ti
0

r 2
dt. (457)li _ e -2t til

Now we would like to express the second integral in (456) as an asymp-
totic series in (n + 1)-1. For convenience we set e -t = x. Then

(1 - e-nt)2 (1 _ xn)2 $1 _ xn+1_ xn(i _ x)12
1 - e-2(n+l)t - -1 _ x2n+2 (1 _ xn+1)(1 + xn+1)

= - xn(1 - x)I - Xn+1 Xn(1 - X)I
1 _ xn+1 1 + xn+1 1 + xn+1

1 - xn+1 xn(1 - x) xn(1 - x) x2n(1 - x)2

Therefore

r- (1- e-nt)2
Jo 1- e -2t

1 + Xn+1 1 + Xn+1 1 + Xn+1 1 _ x2n+2 '

e-(n+3)t . 1 _ e-(n+l)t
1 - e-2(n+1)t dt =

0 1 + e-(n+l)t

' e-nt(1 - e -t) e-(n+3)t- 2
0 1 + e- (n+l)t 1 _ e-2tdt
. e-2nta _ e -t)2 e--(n+3)t

+ dt
0 1 _ e-2(n+l)t 1 -e -2t

e -(n+3)t

1 - e -2t
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co 1 _ e-(n+ot dt
So 1 + e(n+l)t e2t _ 1

... e-2(n+l)t dt
So 1 + e-(n+l)t et + 1

+

f. e-3(n+1)t 1 - e-i
o 1- e-2(n+l)t 1+ e-t dt. (458)

We can combine a part of the second integral with the last by noting
that

Then

-2

1 1 1 t
= .- -

et + 1 2 2
tanh -

2

co e-2(n+l)t dt co e-3(n+l)t t
-25et + 1 131+ e-(n+i)t

+
1 - e-2(n+1)t

tanh
2
- dt

1 e -2t 1 e2t t-
(n + 1) Jo 1 + e-tdt + (n + 1)io 1_ tanh

2(n + 1)
dt.

By making use of (430) and (435) we obtain

Mn = 2 log(n + 1) + I (log 1 + -y)

2 1- -2 f e--(n+ot dt
ir o 1 - e -2t t1

2 r°°1 -e -t n + 1 2
+ +(+1)SJo 1 + et t 2t

exp (
n + 1)- 1

4 e -2t
dt+

71-(n + 1) Jo 1+ e -t

2t4 5- e- t-tanh dt, n even. (459)
71-(n + 1) Jo 1 - e -2t 2(n + 1)

From (437), (441), and (442) we have

2 1 a' Bbtk-1 co B2kt 2k-1
2t _ 1 - f = E 2k -kl - -1 + E 22k iti <7e t k = 1 k = 1 (2k)! '

(460)

2 1 oz, B2kt 2k-1
- = 1 + E 22k

1 - e -2t t
Iti < r (461)

k=1 (2k)!
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2 - 1 - 1 =
1 + 1 = 22k B2kt2k-1

1 -e -2t t e2t2 1 t k=1 (2k)!
(462)

Thus

2 r°°1-e-t In + 1 2
dt

r(n + 1) Jo 1+ et
exp (2n+t 1) -1

2

focc
dt

{1 -e -2t t

2 - 1 -e -t n + 1 2

r(n + 1) So 1 + et 2t
exp

kn + 1/
1

11 dt

2 2 n + 1e- -1 I dtt
r(n + 1) So

1 - exp
n + 1

2 r- ji- e -t
e -t} dt+

r(n + 1) Jo 1 1 + et

=
2 r- f

r ..h, 1(n + 1)
1 -e -t

t
n + 1

2
dt+ e-

1 + et }I t 2t
1 i

exp -1n + 1/
4 e -t

r(n + 1) o 1 + et

Then from the above and (459) we have

Mn = -2 log (n + 1) + -2 (1og4+yl
7 71-

r(n + 1) Jo
4 r- n+1 2 1} dt

1 + et
exp \n + l/ - 1

dt.

t2 r- e-
tanh t dt, n even (463)

r(n + 1) Jo 1- e -t 4(n + 1)
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which is a form suitable for asymptotic expansion. We have

1)B2k
x2k-1

tanh x = E 22k(22k -
k=1 (2k)!

tk
1

- dt = 5' tk(e-t _ e -2t + e -3t + . . .) dt
So +et o

1 1 1

= k! (1-1 - 2k+1 + 3k+1 - 4k+1 + ' ' ')

= k! (1
1- -2k) "(k + 1)

where

(464)

(465)

- 1On) = E -, n > 1. (466)
k=1 kn

Also

C - e -t
tk dt = -t k (e-t + e -2t + e -3t .) dt

JoJo 1 - e -t o

1
= k! (1 +12k+1 + 3k+1' ' ')

= k! ?-(k + 1). (467)

From (460) and (465) we have

ir(rt + 1) Jo t
_ 11

dt4 r- n + 1 2

exp
2t 1 + e

- 1

4 - B2k22k(2k - 1)! /1 1

r k=i (2k)! (n + 1)2k V - 22k-1) i-(2k)

*(2k)::.. - - E (22k _ 2)
r k=1 k (n + 1)2k

t

(468)

and from (467) and (464)

2 r- e -t t
tanh dt

ir(n + 1) Jo 1 -e -t 4(n + 1)

2 - B2k- E 22k(22k - 1) (2k - 1)! 02k)(2k)!42k-i(n + 1)2kr k=1

2 - (,,,, _ _ E (2 _ 21-2k) B2k 2k)

7 k=i k (n + 1)2k
(469)
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From (445) we have

(2k)!
B2k = (_1)k+1 2 (27)2k ?"(2k).

Adding (468) and (469), using (470), we obtain

(470)

Mn '-'
2
- log (n + 1) + (log 1 + le)r 7 7

7 7 127 73

36 (n + 1)2
+

21600 (n + 1)4
+

1 (_i)k(24k _ 2)
Bik .7r2k

+ _ + . .. , n even. (471)
7 k(2k)! (n + 1)2k

In the same manner as before, we can establish that

Mn <-7r log (n + 1) + (logl + 7)
7 7

7 7
>

2
- log (n + 1) + !- (logl + 7)
7 7 7 36 (n + 1)2

< -2log (n + 1) +2 ( 4 7 r 127 7r3- log -+ -y -r 7 7 36 (n + 1)2
+

21600 (n + 1)4

etc., for n even. (472)

In this case we have two functions to consider in the polynomial ap-
proximation problem. First we note that

2

e2x _ 1+ 1 = coth x (473)

and

d d - 2 \ 1
coth x = dx log sinh x = d-x log ix kill (1 +

ir2k )1

1= + 2x E-
x k=i X2 + k272

. (474)

Clearly, for x > 0,

and

2 1

- 1 -
x-

< 0
e

(475)

2 1 1 - 1- + 1 - coth x = 2x E >0. (476)-2x _e 1 x x k=1 x2 + k27r2
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Now we have

Defining as before

and then

1coth x -;
- 1- 2

x x2 + k27.2 (477)

x 12n+2
i.k7r.)

P2n(X;k) = , k = 1,2,3, . .. (478)
x 2 + k 27.2

CO

Q2n(x) m- 2 E -P2n(x;k)
k=1

coth x -
1
-x

tx 2n+2 co 2

k 7r/ k 2n+ 2(x 2 + k 27r2) (479)+1
x -

(....ir

we have

coth x -
1-
x /x)2n+2 c., 2

- Q2n(x) = (-1)n±1.
x r k k 2n+2(x 2 + k 272) 

(480)

So Q2n(x) is a polynomial of degree 2n which agrees with the first (2n
+ 1) terms of the Taylor series of x-lcoth x - x-9 and the sign of the
difference is (-1)n+1.

For the second function we have

d " 1
tanh x = -

dx
log cosh x = 2x E . (481)

k =1
3C2 + (2k - 1)2 L2

4

Now we define

1 - ( 2x \ 2n+2

i(2k - 1)7r)
P2n(x;k) -

7.2

x2 + (2k - 1)2
4

k = 1,2, . .. (482)
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and
CO

q2n(x) = 2 E P2n(X;k)
k=1

- ( 1)n+1tanh x (a) 2n+2
X 7

03

E
k=1

1

(2k - 1)2n+2 1X2 + (2k - 1)2 '
4
2}

(483)

Then the alternating sign of the error

f tanh x - q2n(x)I
1 x

follows; i.e.,

tanh x <x

X3>x --
3

3 2<x -x + - x5
3 15

etc., for x > 0. (484)

The inequalities (472) then follow from (463), (476), (480), and
(484).

Then for n even or odd we certainly have

Mn > -2 log (n + 1) + 1 (logl + 7) -
7 r 7 36 (n + 1)2

or, giving away a little,

(485)

Mn > -log n + -2 (log -4 + 7), n ?..- 1. (486)
7 7 7

Obviously (486) is true for n odd since for n odd we may replace n in
(486) by (n + 1), and for n even we consider

7 72 r2
log (n + 1) - log n + log (

n
1 + 1) 7

72 (n + 1)2 72 (n + 1)2

Now

x
log (1 + x) = fxldt > (1 - t)dt = x - 22-, x > 0.

0 +t 0
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So

1 1 12

log (1 +1) > > 0 for n > 2.\ n/ 72 (n + 1)2 n 2n2 n2

Thus (486) is valid for n 1.

We note that the actual computation of Mn is simplified, particularly
for n odd, by making use of the identity

1 + cos 20
cot 0 =

sin 20

Then for 0 = it/2(n + 1),

Mn = cot la -2 2 1 + cos 2k0

n+ 1 i<k<n
, En +1 i<k<n sin 2k0

(487)

k odd k odd

For n odd, k = 1,3,5, .. . ,n,

2k 7T 2(n + 1 - k)r
cos - -cos2(n + 1) 2(n + 1)

2k7r 2(n + 1 - k)r
sin - sin

2(n + 1) 2(n + 1)

So

We find

2 1
Mn - E , n odd. (488)

n + 1 ii?n kr
k odd sin

n + 1

M1 = 1

2 2-Vd
=M2 = - 1.1547005.. .

M3 = = 1.4142135. ..

2 1 2 4
[1 + cos 7r/5]

5 r 27r 27r
sin - sin - 5 sin -

5 5 5

= 1.5216904. ..

M5 =
5

= 1.6666666...
3
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For use in the asymptotic formulas we have

-2 = 0.636619772367 . . .r
log -4 = 0.241564475270 . . .r

-y = 0.577215664901 ...

log -4 + y = 0.818780140172 ...
7r

-2 -4 + -y) = 0.521251626 . . .r 7

r
= 0.174532925 ...

18

77r
= 0.610865238 ...

36

49r3
- 0.140676625 ...

10800

12770

21600
- 0.182305423 ...

The inequalities (449) and (472) give

M1 > 0.96252282 ...
< 1.00615605 ...
> 0.99736376 ...

M2 < 1.2206499 ...
> 1.1527760 ...

< 1.15502669 ...

M3 > 1.40379402 ...
< 1.41470233 ...
> 1.41415281 ...

M4 < 1.54585162 ...
> 1.52141701 ...

< 1.52170870

M5 > 1.66192113 . ..
< 1.66676926 . . .

> 1.66666071.. .
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APPENDIX D

Proof of Theorem 5

We are given
w(t) = ez (t) (489)

where the Fourier transform of z(t) vanishes outside [0,5-2]. Also the
Fourier transform of w(t) vanishes over (a,b) where 0 5 a < b and

b -a > S2 (490)

and we wish to show that w(t) = constant.
We may write

w(t) = g(t) + h(t) (491)

where the Fourier transform of g(t) vanishes outside [0,a] and the
Fourier transform of h(t) vanishes over (-=,b). We have

w'(t) = z'(t)ez(t) = z' (t)1g(t) + h(t)) (492)

= g' (t) + h' (t).

Now the Fourier transform of e(t) vanishes outside [0,S2] and the Fourier
transform of g'(t) vanishes outside [0,a]. By Corollary 2 of Theorem 2
the Fourier transform of z'(t)g(t) vanishes outside [0,a + 1]. The Fourier
transform of h' (t) vanishes over (-=,b) and by Corollary 1 of Theorem
1 the Fourier transform of z'(t)h(t) also vanishes over (-=,b). Thus if
Kci,b is any kernel of L1 satisfying

we have

j.) Ka,b(t)e -iwtdt = 1, 0 < w < a

=0, co b

(493)

f: w' (s)Ka,b(t - s)ds = z'(t)g(t) = g'(t). (494)

Now z(t) and g(t) are the restrictions to the real line of entire functions
of exponential type; so

g' (T)
- z'(T).

g(r)
(495)

Hence g(T) is zero free in the entire plane and is, therefore, of the form
(Theorem 2.7.1, Ref. 6)

g(T) = Aeixr . (496)

Hence from (495) and (496), z' (T) = iX, and since z(r) is bounded on the
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real axis it follows that A = 0; i.e., z(t) = constant and hence

w (t) = constant. (497)

APPENDIX E

Proof of Theorem 6

We are given

w(t) = log [z(t)] (498)

where the Fourier transform of z(t) vanishes outside [0,0 and for some
positive c

lz(t + iu)I e for u ?_ 0

-co < t < 0, (499)

Thus w(T) is bounded and analytic in the uhp; so by Theorem 1, the
Fourier transform of w(t) vanishes over (-c0,0). Also we are given that
the Fourier transform of w(t) vanishes over (a,b) where 0 5 a < b
and

b -a > SI (500)

and wish to show that z(t) = constant.
We proceed as in the proof of Theorem 5 and write

w(t) = g(t) + h(t) (501)

where the Fourier transform of g(t) vanishes outside [0,a] and the
Fourier transform of h(t) vanishes over (-co,b). We have

w/(t) = -e(t) - g' (t) + h'(t) (502)
z (t)

Or

z'(t) = z(t)g'(t) + z(t)h'(t). (503)

Now the Fourier transform of h'(t) vanishes over (-x,b) so by Corollary
1 of Theorem 1 the Fourier transform of z(t)h'(t) also vanishes over
(- co ,b). By Corollary 2 of Theorem 2, the Fourier transform of z(t)g'(t)
vanishes outside [0,« + S2]. Since a + St < b we conclude as in the proof
of Theorem 5 that

z'(t) = z(t)g'(t), or g'(t) =
z'(t)

(504)
z(t)

and hence that z(t) = Aeixt and since g(t) is bounded, A = 0. There-
fore

z(t) = constant. (505)
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APPENDIX F

Lower Bound on the Degree of Certain Polynomials

Suppose a polynomial of degree v is of the form

Pv(z) = 1 + anzn + an+izn+1 + . . . apzv (506)

where I an I > 1, and P, (z) is zero free for lz I < 1. Then

P 2n. (507)

To prove this assertion we assume

P < 2n. (508)

Then assuming that P, (z) is zero free for lz I < 1, the function

rz, + Zii-iz + . . . EinZ v -n + Z v

1 + anzn + an+izn+1 + ... + apzv
- f(z) (509)

is analytic for I z I .. 1 and

If(ei°)I = 1, -r 0 7. (510)

Then

f(z) = E bkzk, (z I 5 1 (511)
0

where

bk ,_ I fir gei0)e-ikOdO. (512)
2r -r

Thus from (510) and (512),

I bk I ._. 1. (513)

However, with the assumption v < 2n we see from (509) that

bk = riv-k for 0 _- k < v -n < n. (514)

In particular

by -n = an. (515)

But Ian I > 1, so (515) contradicts (513) and therefore (508) is false.
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Inductive Post Arrays in Rectangular Waveguide
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Previous attempts, based on mode -matching techniques, to obtain
precise data for the equivalent circuit of inductive post arrays in rec-
tangular waveguide have consistently failed due to convergence
problems. A different formulation is presented for symmetrical post
arrays, which is shown to be free from this defect.

I. INTRODUCTION

Waveguide band-pass structures employing cascades of inductive
posts have been built for many years. They usually contain a symmetrical
arrangement of posts in each cross-section, mostly one, two or three
posts. The latter arrangement, for instance, is a favorite for X/4 -coupled
filters, since it strongly reduces higher order mode interaction. This al-
lows X/4 spacings to be used instead of the 3A/4 spacings required for
single post filters, thus leading to shorter filters.

In the past all of these structures had to be designed on the basis of
measured data for the equivalent circuit of the cross-sectional post ar-
rangement, because the available theoretical calculations1,2,8,9 are not
sufficiently accurate. The obvious problem with measured data is, of
course, that two errors are introduced, whose magnitudes are only poorly
known: dimensional tolerances of the sample to be measured and errors
in the measurement itself.

Previous attempts to obtain theoretical data based on mode -matching
techniques have consistently failed due to the convergence problem
typically associated with taking a finite number of unknowns out of two
sets of infinitely many unknowns. This paper presents a formulation
which leads to only one set of infinitely many unknowns in the case of
single or double posts. It may thus be expected that, when a finite
number of these is taken, no convergence problem will be encountered.
One may also speculate that this will continue to be true for arrays in-
volving three or more posts, although in these cases more than one set
of infinitely many unknowns is encountered again.
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b

Fig. 1-Post array.

II. CONFIGURATION

We wish to determine the equivalent circuit of the array in Fig. 1 in
the plane z = 0.

The posts are circular. They are numbered consecutively from µ = -M
to µ = M with µ = 0 designating the center post. The array is symmetrical
with respect to the plane z = 0 and the plane x = 0. The center post may
or may not be present. Each postµ has a diameter dp and a coordinate
x = p, of its axis. Only dominant (TE10) mode propagation is assumed.
The surfaces shall be perfectly conducting.

The electric field will be calculated as the superposition of two fields;
the field which exists without the posts, the unperturbed field, and the
field generated by the surface currents on the posts, the perturbation
field. The surface currents, or rather the coefficients of their Fourier
series, are treated as unknowns, which are subsequently determined in
such a way that the tangential electric field vanishes on the surface of
the posts. As usual, only two special cases of excitation are studied, even
and odd, since this suffices to determine the equivalent circuit.

III. UNPERTURBED FIELD

We set

with

Ey even = (eii3gz e-ifigz) cos -71-X
a

Ey odd = (ejogz - e-ifigz) cos --1rx
a

fig = 1.0
7.2

all
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Fig. 2-Post surface.

where (dominant mode assumption)

7 r
=

2
(3)

is the wavelength in our medium. Obviously the fields in Eqs. (1) fulfill
the boundary conditions everywhere except on the post surfaces.

For later use we wish to develop these fields into Fourier series on the
surface of a post v located at p, and of diameter dv.

From Fig. 2 we see that the post surface has the coordinates

1
x = p, -2- cl cos

z = d sin

(4a)

(4b)

Introduction of these expressions into Eqs. (1) and use of the well-known
expansion of eiz sine (Ref. 5, p. 22), results in

1
Ey even = n_E_. eln (-2 pa) 0'10

X[cos (5- - n0o) + (-1)n cos er: p + n00) (5a)a a

Ey odd E eln (21 #dv) ej"

5-

n=-=

7

a \
X [cos (-p - n00 (a pi, + rufio)) - (-1)n cos (5b)

where

eioo = 1- (fig + .71)

a (6)
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IV. PERTURBATION FIELD

To determine the field generated by the current distributions on the
posts we observe first that all of these currents are independent of y and
in the direction of y. Secondly, the effect of the broad waveguide walls
can be replaced, making use of the common imaging technique, by as-
suming that all posts are infinitely long in both y directions, and, again,
have current distributions which are independent of y and in the di-
rection of y. Thirdly, by employing the same imaging technique once
more, we can replace the effect of the narrow walls by periodically re-
peating the array of infinitely long posts in both x directions with post
locations and current distributions, which are consecutive mirror images
of each other. To determine the perturbation field, we can then simply
sum up the fields generated by these infinitely many and infinitely long
posts, without having to worry about the boundary conditions on the
waveguide walls, since they are automatically fulfilled.

From basic electromagnetic theory we get for the electric field gen-
erated by a current filament stretching in y direction from to lo-
cated at x0, z0, and of strength Iy, only the following component in y -
direction

= - (DA i e i(x-xo)2+y02+(z-z0)21
Ey y

ihr f- -I V(x - x0)2 + y02 + (z - zo)21 dY°

/1.= -
4

-/yHo(2)(01V(x - xo)2 + (z - zo)2 ) (7)

The latter transformation may be found in Ref. 3, p. 27. it is the perme-
ability of the medium.

Making use of the symmetry of our structure and summing over all
currents on all post surfaces we obtain

(s)
2 r

Ey = E .1,4) (-1)q-10(2)
4 0 k=

( - -2 d sin 1,9 2+ (x - +ka+ -2 d cos 0)2 1) (8)

Figure 3 explains the quantities I(0), d, p and the coordinates
used.

With this expression for the perturbation field we will do two things.
First we will determine its value at a large distance to obtain expressions
for the elements of the dominant -mode equivalent circuit. Secondly, we
will evaluate it on the post surfaces in order to be able to come up with
an expression for the boundary condition for the tangential electric field
there.
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Fig. 3-Post.

V. PERTURBATION FIELD AT A LARGE DISTANCE

If we write

B =a
21

lz -clusind

1cl
C = a1 - (x - pm +

2-
, cos 1)

A =(3a

in Eq. (8), we can apply Eq. (34) from Appendix A to Eq. (8), which re-
sults in

M
Ey = -WA E /m(0)

m.-Nr

2/r

o

1 V/32 -(2k - 1"
I I

k=1

a2
z --2d, sin 0 1

a 1 V/32 -
(2k -a21)272

I

X cos [
(2k 1)7r (x

- p, + -2d , cos 0)]1

a

.
+j E

k=1+1

with

exp - 1 V
(2k -1)22

13211z --1d sin
a 2 2 P

01

/(2k
a

1
X cos

r (2k - 1)7r
- p, + -2 el ,, cos 11/)]i dpi (9)

L a

1 (2/ - 1)r (2/ + 1)rIzi -24, < 13 <
a a
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The second of the two sums over y obviously represents the evanescent
modes in the rectangular waveguide and, therefore, vanishes for large

I z I . In accordance with our assumptions we have

7r 3r-<)3 < (10)
a a

which means that 1 = 1 in Eq. (9). We therefore find from Eq. (9) for

7Z
-a >>1

wµ M 27r (,- 1

Ey = - /Ai1G)ejOg(z-74 sin 0)
fga A=-M C

X cos [-Ir (x - pil + -1 d" cos 101 dtk
a - 2

COAL ii f 271ocim sin (0+00)
--

= - 2flgµ=-Mo
+ e -ii3gz-ircx-poiaei120, sin (0-00)1 dtk (11)

where 00 is again defined by Eq. (6). Using once more the expansion al-
ready used in Eqs. (5) we obtain

M 03

E = --(.1.-4-'- e-it3gz elm (1 MA)
Y

f3ga A----ftim-o, 2

X cos E-7 (x - pA) + m.001 527 I A(11/)eimOdik (12)
a o

The inversion of the order of integration and summation employed here
presents no difficulty.

Physical considerations tell us that the currents 4(4) can be developed
into a Fourier series. We write in the usual manner

where, of course,

CO

.4(10 = E c,,,neimo (13a)
ln= -..

1 27r

CA,rn
2r 0

= -
IAt

(0)e -i in'I'dtk (13b)

Eq. (13b), when combined with Eq. (12), results in

27cop. M - 1
Ey = e-iflgz E E (-1)mcAmelm (20A)

Mg A=EM m=--
,

X cos
a

V -p A) - mkoi
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Fig. 4-Equivalent circuit.

For x = 0 (center of the guide) this results in

27rwil M- 1Ey = - e-ogz E E (-1)nic,,meim (-2 04)
Pga A= -M M= -,..

X cos (-ir pu + m (Po) (15)
a

Combining this result with Eqs. (1) for x = 0 we find for the total
(unperturbed plus perturbation) field for rzla >> 1

27rcop.
Eyed" = ejOgz ± e-jfigz e-jogz

Oga

M - 1 7rx E E (-1) inc,,,,,z34,2 (- odA) cos (;,- p A + Inch)
,A= -Al m=-- 2

(16)

cm,modevri is written here to distinguish between the values of c,,, for even
and odd excitation. For the equivalent circuit of Fig. 4, which is valid for
the plane z = 0, we obtain from Eq. (16) the reflection coefficient

27rcop.
Poch= ± 1

with

f3ga

M - 1 rx E E (-1) rnc,,,,neverth, (-fld ) cos (-a p A + mc60)=_m m. ' 2 A_ or,

Peven -

jX + -2B-1j
2jX + -+ 1

jB
jX - 1

Podd - jX + 1
These equations permit the calculation of X and B once the values of
c,,,,nzr are known.

(17)

(18a)

(18b)
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We note, that because of the structural symmetry with respect to

x = 0
m

for 1.1 = 0, ±1, f2 . . . Also, since we have

/43.(1,14 = flan (27r -

it follows that

(19)

(20)

(21)

Eqs. (19) and (21) permit reduction of cp,,, for negative values of p. and/or

m to those with positive values.

VI. PERTURBATION FIELD ON POST SURFACES

Referring once more to Fig. 2 we get for the perturbation field on the
surface of a post v from Eqs. (8) and (4)

Ey = - - E
Jo

IA(0) E (-1)kwp.

4 ,=-Af 0

X H0(2) (01(12
24

sin - sin 4,)2

CO

1 1

+ - + ka --2dcos + -2d cos clik (22)

We wish to write for this a double Fourier series with and 4' as inde-
pendent variables. This can be done with the aid of the so-called "ad-
dition" theorem (Ref. 5, p. 361) if we impose the condition that the posts
do not penetrate or touch each other or the narrow walls of the wave -

guide. We obtain

cop. Lf r 2w
/AM

4
x[co co coE E E (-1)m-Ekein, (21 04) Jn (2- )34)

k=0 n=-0.
ka+p,-pp>0

X Inim 113(/), - Pµ + ka)lei(no+m4')

(2
1

Jn

/1 tidy\

O m=-. k2 k 2 /
ka-p,+pm>0

X 11(n2LIMPA - + ka)1ei(no+m0) (-1)n+k

1 1
+ lim Jn (- 13d) I -A2) (- Ki3d) ein(0-01 ch,l/ (23)

n=-0. 2 2
= 1, only
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Based on physical reasoning (summing contributions of current fila-
ments in different order, integrating around each post before summing)
we now exchange the order of summations and integration in Eq. (23)
and carry out the integration. This leads to

Ey = -cor2 E Jn (--113d)einoE E E (-104) c,,mn== 2 m-mm=-0) 2
ao

X E (-1)kHgln(01P, - Pv + kal)[sgn (Thi- pi, + ka)]n+m
k=-=

pw-p + ka

+ lim
1Ki3d)c

(24)
2

With the abbreviation

(IA + km) [sgn + r
k=-00
A+ kB 0

= fm(A,B) = (-1)'n f_m(A,B) = (-1)mfm(-A,B) (25)
we can write this as

Ey =
coi.or 1

(-- eino
2 n=-. 2

X

[m 1E E Jm (-ads)c,,mfm-n 113(P# -130,flal
µ=-M m=-0,

+ lim 1-1;i2) (-1 Ki3d)cv ni
2 '

(26)

If we take this result for the perturbation field, add it to the incident
field Eqs. (5) and impose the condition Ey = 0 on the surface of the post,
we get (letting 1)

E Jn /1
(3d,,)d(3d,,)eini cos (-a p - n00) ± (-1)n cos (app + n0o)]

cotor E (0) eini Jm (04)= -
2 n.0. 2 2

X c,,,,ngq,./m-n ifi(PA P,), + (1.2 Od) c,nrid (27)

Because of the uniqueness of Fourier series (Ref. 4, p. 186), this results
in

cos app- ncbo) ± (-1)n cos (--a pv + n(I)o)

(,34\= -
2 m=-M m=-0, 2

cp,,nzr fm-nlfi(PA, - P, -),13a}

+ (3d) cingd (28)
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This equation holds for n = 0, 1, 2 . . . . It expresses the boundary con-
dition on the surface of post v for even and odd excitation. If applied to
all posts v = 0, ±1, ±2 . . . ±M, it expresses the boundary condition on
all posts. However, because of the symmetry involved, only v = 0, 1,
2. . .M are needed. As before, Eqs. (19) and (21) permit reduction of c,,
for negative values ofµ and/or m to those with positive values. In sum-
mary we can say that Eq. (28), if applied for n = 0, 1, 2, . . . and v = 0, 1,

2. . .M, will allow us to compute all of the unknown coefficients c,,. In
turn, Eq. (17) will then allow us to compute the elements of the equiva-
lent circuit, which means that our problem is solved.

Appendix A and Appendix B provide expressions suitable for the
computation of fm(A,B) in Eq. (28). These alternate expressions are
essential, because the defining series Eq. (25) converges very slowly, as
the magnitude of HT (z) decreases only with 1z-1/21 for large z. The
derivation of these expressions constitutes the most difficult and labo-
rious part of this analysis. For convenience the results are repeated below

in the form most appropriate for Eq. (28). From Eqs. (40) and Eq.
(41),

fni(i3P, fla) = -tan 00 cos (ITa
2

- ILE) einz(oo,/2)
7r \

a
-a cos (n -2-r13- - mr)

+ j -1 E
a 2 /

rn=35...1V(2)2-11 [11+2a 2aIV (7712
<_2

1 (M - n - 1)!+ j - E
ir n=0 n!(m - 2n - 1)!

m -2n

X

hm-2n-1
a sin -a

f2n,i(i3Na, fla) = 0

f2m(I3Na, fla) = -4 tan 00(-1)N+mei2n2(00,/2)

(cos gyp) (29a)
a/

(-1)N+rn

+ E
a

n=3'5 V (1.2a X)2 -11

yinx\2_1112m
I 2a I k2a

(29b)

.1 in 2(-1)N+n(m + n - 1)!(22n-1 - 1)B2n
+

(A
2n

(29c)
n=0 (m - n)!(2n)!

586 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



From Eq. (34e) and Eq. (34f)

cos
4

fo(OP, f3a) - eicoo-7.12) + j 1- in (COO 712)
r cos

a

00 r 2a

nrp
4 cos

+ j -1 E
a

(29d)

7n="... IV(n2 -11 [1)i + 1VC2-2) 2 -111 n2a a

irp

N (-1)N
4 (-1) 6,1(0°,12) _ (_1)N + j1 (C + ln ...-1')

X
fo(I3Na, Oa) -

r cOS orPo r
.1

E
4(-1)N

+ J - (29e)rn=3,5...kiiny_ii pa+ ii/iny
I v k 2a i I L 2a I v k2a)

These expressions are valid if

2a > X >2a-
3

p 0, ±a, ±2a . . .

m = 1, 2, 3, . . .

N = 0,11,12 ...
The polynomials hm (x) are defined in Appendix B, Eq. (42). Bn is the

nth Bernoullian number and C is Euler's constant.

VII. NUMERICAL RESULTS

A series of calculations was made to investigate the question of con-
vergence and to ascertain that the rather involved analysis is error -free.
To this end the reactances X - 2/B and -X [Eqs. (18)] were calculated
for the cases of single, double, and triple posts with A/a = 1.2, pi/a = 0.25
and (ado = f3d1= 0.2 and 0.4, employing increasing numbers of variables
and equations. Furthermore, the computed results were compared with
measured data where such data were available. Lacking a full-fledged
computer program the calculations were carried out with the aid of a
programmable desk calculator, except for the matrix inversion, for which
a general-purpose computer program was used.

Table I summarizes the results of this work. The first observation that
can be made is that, as expected, the convergence obtained for single and
double posts is excellent. Three terms in the Fourier series for the post
currents is all that is needed to obtain six place accuracy for the reac-

INDUCTIVE POST ARRAYS 587



Table I

Number of posts P1
a

fldo Odi n max X - 73- -x
1 0.2 0 1.121835970 -

1 - .009450748398
2 1.121835438 -
3 - .009450749381
4 1.121835438 -

Meas. 1.12 .010
0.4 0 .6546985053 -

1 - .03659710000
2 .6546719818 -
3 - .03659716655
4 .6546719813 -

Meas. .655 .037

2 0.25 0.2 0 1.121835969 -
1 1.100680471 .009467748389
2 1.100679708 .009467748828
3 1.100679707 .009467799814
4 1.100679707 .009467799806

0.4 0 .6546985046 -
1 .6071886432 .03659710003
2 .6071426563 .03685942441
3 .6071423836 .03685949132
4 .6071423830 .03685949138

3 0.25 0.2 0.2 0 .2599117670 -
1 .2578995041 .01871192452
2 .2578489230 .01872800993
3 .2578488656 .01872801335
4 .2578488652 .01872801340

Meas. .255 .020
0.4 0.4 0 .02634303527

1 .02329626388 .07043107151
2 .02238859942 .07063929772
3 .02238444183 .07063993488
4 .02238437265 .07063993658

Meas. .0265 .074

tances, which is more than enough for any technical application. The
second observation is that, as was hoped, excellent convergence continues
to exist for triple posts, even though in that case two sets of infinitely
many unknowns are encountered instead of just one. Even for posts with
susceptance values as high as B = 20 no more than four terms in the
Fourier series are needed to obtain five -place accuracy. Presumably the
analysis will converge even for four or more posts, but these arrange-
ments are of little technical interest and thus probably not worth in-
vestigating. Finally, when comparing the computed values with mea-
sured data obtained with the aid of a very precise, computer -operated
transmission measurement set,1° sufficient agreement is found to as-
certain that the analysis is free from any fundamental error.

APPENDIX A
We study the following series

e-B-JR2n-i).-+02+z2
J cos 1[(2n - 1)r + t]C}

f(z, B, C, t) = E (30)
V[(2n - 1)r+ t]2 + z2
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with t as a real variable, B 0 and real, C real, Retzl > 0, Re
1V[(2n - + t]2 z2)> 0. This function is even in t and also periodic
in t with the period 2r. For reasons which will become apparent later
we wish to develop it into a Fourier series in t

-7,o + E ak cos kt
2 k=1

Without going into the fairly laborious detail the result is

(31)

1
f(z, B, C, t) = - E (-1)k Ko(zIVB2 + (C+ k)21 cos kt (32)

k=-=
for the conditions stated for Eq. (30) plus either B > 0 or B = 0 and C

0, ± 1, ±. 2 . . . . Setting t = 0 leads to
e-B02n_1)27,2+,2 cos [(2n - 1)C]2 E

n=1 V(2n - 1)27r2 z2

1

= E (-1)k Ko(z I VB2 + (C + k)2I) (33)
Tr k=-=

provided Relzi > 0, Rei V(2n - 1)272 + z21> 0 and either B > 0 and real,
C real or B = 0, C 0, ±1, ±2 . . . and real. The validity of Eq. (43) can
be extended to include Relzi = 0 by analytic continuation. In doing this
the points z = 0 and z = ±j (2n - 1)r obviously have to be excluded, since
at these points individual terms of the sums involved are not analytic.
The result of the analytic continuation is for z j A

C 0

E (-1)k HS2)(AIVB2 + (C + 021)

E
e-B.A2n-1)27r2-A2

= 4j cos [(2n - 1)7X] (34a)
n=1 V(2n - 1)27,2 - A2

with

and either

Or

A > 0, real

A r, 3r, 57r . . .

arg-02n - 1)27r2 A2 = 0 or 5
2

B > 0, real

C real

B = 0

C 0, ±1, ±2 , real

(34b)

(34c)

(34d)
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For the latter situation [Eq. (34d)] Eq. (34a) may be rewritten in the more
rapidly converging form

.
E (-1)kHS2)(A1C+kl)-= k-: In (cote rA) + 4j i

2 n=1

A2cos [(2n - 1)7rC]
(2n - 1)7r -V(2n - 1)272 - li '2 [(2n - 1)7r + V(2n - 1)2r2 - Al

(34e)
We also need a result corresponding to Eq. (34e) for C = N = 0, ±1,
±2 . . . . We observe first that in the left hand sum the term k = -N has
to be excluded for obvious reasons. Furthermore it is

-E (-1)kHr(AlN+KI). (-1)N E (--nkHr(Alkl)
koe-n k0

a,

= 2(-1)N E (-1)ki-A2)(Ak) (35)
k=1

An alternate expression for the last sum is known (Ref. 6, p. 333). We
get

Em (-1rHS2)(AIN+ k I ) = (-1)N {-1 + 2j 1
47r

(C + In 41)
7r

k * -N
11+4j E 1 1

n=1 [027/ - 1)272 - A2 2n7r j j
cc,

= (-1)N { -1 + 2j 1(C + ln -A) +4j E
Ir r n=1

A2

(2n - 1)7r.V(2n - 1)27x2 - A2[(2n - 1)7r + V(2n - 1)27r2 - Al 1

(34f)

with N = 0, ±1, ±2 . . . and Eqs. (34b) in force. Note that C in this last
formula is Euler's constant.

APPENDIX B

We study for m = 1, 2 . . . the series

f,,,,(z, C, t) =

en cos { [ (2n - 1)r + t] C -m 111
2

En=1-V[(2n - Or + t]2+ z2 [(2n - 1)7r + t + V[(2n - 1)7r + t]2 + z2i m

(36)
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with t as a real variable with the range -ir t C real Relz1 > 0,
Rek/[(2n - 1)7r + t]2 + z21 > 0. Analogous to the situation in Appendix
A we wish to develop f m (z, C, t) + f m (z, C, -t) into a Fourier series

ao + E ak cos kt
2 k=1

over the range -ir t 5 ir, thereby continuing it periodically beyond that
range. Again omitting the fairly laborious detail we get for C 0, ±1,
±2

fm (z, C, t) + fm(z, C, -t)

1
=

8-
(-1)m+1[4,Sm(jCz)ejn"r12 - 8Km(I C I z )(sgn C)m]

7

co+-(-1),n+1 E (-1)k (jCz + jkz)eimir/2
47 k=1

+ 2Sm(jCz - jkz)ein"r/2 - 4KM((C + k lz)lsgn (C + k)1m

- 4Km (IC - klz)lsgn (C - k)im] cos kt = (-1)m

CO

X E (-1)k[2K,n(IC + k lz)fsgn (C + k)Vn
k=-.0

- ejmr/zsm(jCz + jkz)] cos kt (37a)

and for C = N = 0, ±1, ±2

f m(z, N, + im(z, N, -t)

= 1 ) E (-1)42K,n(IN+klz)Isgn (N+
k N

1
-ejrnirl2Sm(jNz + jkz)] cos kt + - (-1)N cos

mr
cos Nt (37b)

M7r 2

In these equations Sm(z) denotes Schlaefli's polynomial (Ref. 5, p. 313).
For t = 0 this results in

z m cos [ (2n - 1)7C -m 5-1
2

1
(2n _1)2,2+ z2 [(2n - 1)7 + -V(2n - 1)2,2 + z21 mn=

= (-1)m E (-1)k[2K,n(lc+IelzAsgn (C + kWn
k=-0.

- ejrnwl2Sm(jCz + jkz)] (38a)
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provided C # 0, ±1, ±2 . . . , and in

zm cos [ (2n - 1)rN -m 1
2

n=1 V(2n - 1)27r2 + z2[(2n - 1)7r + V(2n - 1)2r2 + z21 m

1 -=-(-1)'n E (-1)k[2Km(IN+ klz) isgn (N + 01"1
4r k=-0.

ko-N
1 mr
r 2

-ein1712 Sm
2m(jNz

+ jkz)] + - (-1)N cos (38b)

for N = 0, ±1, ±2 . . . . By working on the two series with Schlaefli's
polynomials the following alternative expressions are obtained

zm cos [ (2n - 1)rC -m 2]

n=1V(2n - 1)2r2 + z2[(2n - 1)7r + V(2n- 1)22 + z2im

=-1 (-1)m E (-1)kKm(IC + klzgsgn (C + k)lin
2r k=-=

1 .
<m/2 (m - n - 1)! /27\ m -2n+ _ ejmr/2 E

47r n=0 n!(m - 2n - 1)! k jz

X

CO

-2n-1 1

]dxm-211-1 sin x x=c.-

E (-1)kK2x-1(IN+ klz) sgn (N + k) = 0
k=-..
ko-N

co z2x(-1)N-Fx

n=1 V(2n - 1)2r2 + z2[(2n - 1)7r + V(2n - 1)2r2 + z2]2X
1 - 1

r=
Z
-,,

7T k
E= (-1)kx2),(IN+kiz)+-

4X
(_1)N+X

=-
ko-N

1 (_1)N+A IX -I- k - 1)!(22k-1 - 1)B2k (27r
2k

_ _____ ," +
2r k=1 (A - k)!(2k)! k z /

(39a)

(39b)

(39c)

where, again, C # 0, ±1, ±2 . . . , real, N = 0, ±1, ±2 . . . , m = 1, 2 .. . ,

A = 1, 2 . . . , Relz1 > 0, RelV(2n - 1)2,r2 + z21 > 0. Following the same
argumentation as in Appendix A the validity of Eqs. (39) can, by analytic
continuation, be extended to include Relz1 = 0 with the exception of z
= 0 and z = ±j(2n - 1)7r. The result is for z -b jA with A > 0 and after
some rearrangement
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E (-1)kHnIC + kIA)[sgn (C + 12)]m
k= -m

Am cos [ (2n - 1)rC -
2

= 4J E
V(2n - 1)27r2 - A2[(2n - 1)r + V'(2n - 1)272 -n=1

m

rni(-1)
1 < (m -n - 1)! /27r\ nz-2n

r n=0 n!(n - 2n - 1)! k A

dm -2n-1 1 1
X (40a)

dxm-2n-1 sin x_lx=cir

E (-1)kHgl--1 (IN + k IA) sgn (N + k) = 0 (40b)

ko-N
CO

E (-1)kligl (IN + kIA) = 4j(-1)n+m
k=-=
k -N

A 2m
X

n=1 V'(2n - 1)27r2 - A2[(2n - 1)7r + s/(2n - 1)27r2 - A2]2m

j( -1)N
2

m

(m n - 1)!(22n-1 1)B2n(-1.)n /271-)2n- E (40c)
71- n=o (m - n)!(2n)! k A

valid form = 1, 2 ... , N = 0, ±1, ±2 ,C X 0, ±1, ±2 and real, A >
0, real and A X r, 37r, 57r , and with arg 1V(2n - 1)27r2 -A21 = 0 or
7r/2. Eq. (40a) can be written in the following more convenient form

CO

E (-0kHniC + klAnsgn (C + k)Pn
k=-=

Am cos[ (2n - 1)7rC -m
2

= 4J
n=1 .V(2n - 1)27r2 - A2[(2n - 1)7r + s/(2n - 1)2r2 - A21m

J
1 (m -n - 1)! / 27r 2nh.

-2n-i(cos Cr
47r n=0 n!(m - 2n - 1)! kA sinCr) (41)

subject to the same restrictions as those enumerated for Eqs. (40). The
polynomials hn(u) appearing in this equation are defined by

do 1
hn(u) = (-1)72 [sin n+1.1C (42)

dxn sin xlcos x =u

and can be shown to satisfy the following recursion formula

which begins with

hn(u) = nuhn_i(u) + (1 - u2)
dhn-1(u)

du
ho(u) =1 (43b)

(43a)
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It appears impossible to give a closed form expression for these poly-
nomials, but their coefficients can easily be calculated by the following
scheme which is a consequence of the recursion formula

n u' u3 us ub

0

1

2

3

4

5

1

1

61 586 6179 179/
i.e., it is

ho(u) = 1
hi(u) = u
h2(u) = 1 + u2
h3(u) = 5u + u3
h4(u) = 5 + 18u2 + u4

It can be shown, incidentally, that the sum of all
is equal to n! and that the coefficients of u° and ul
It furthermore appears, but has not been proven,
are equal to those in Table 7.2.2 of Ref. 7, p. 260,
mutations of the first N natural numbers with to
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Measurements of Loss Due to Offset, End
Separation, and Angular Misalignment in Graded

Index Fibers Excited by an Incoherent Source

By T. C. CHU and A. R. McCORMICK
(Manuscript received July 20, 1977)

Transmission losses versus fiber end offset separation, and angular
misalignment of graded index fibers excited by an incoherent source,
have been measured in two independent experiments. The measure-
ment setup, fiber diameter, and length were different in the two ex-
periments, yet the measurement results are strikingly similar. The loss
measurements clearly show that transverse offset is much more critical
in connector and splice design than angular misalignment and end
separation. Two -tenths of the fiber core radius in transverse offset alone
may cause 0.5 dB loss while one fiber core radius in axial separation
combined with 1° in angular misalignment may cause 0.5 dB loss.

I. INTRODUCTION

It is essential to know the transmission loss caused by misalignment
of the fiber ends in designing fiber connectors and splices. Graded index
fibers are important to fiberguide transmission applications that require
low dispersion characteristics. The study of the transmission loss caused
by misalignment of fibers having graded index profiles is thus necessary.
Theoretical investigations of the loss versus offset at zero axial separation
have recently been published.1-4 Further studies of the problem-i.e.,
loss versus offset, end separation, and angular misalignment of graded
index fibers-have been done experimentally.5-7 This paper presents
the results of two separate experiments.

II. EXPERIMENTS

The experiments were conducted independently in different labora-
tory locations. The first experiment (Fig. la) yielded the loss versus offset
and end separation only. The second experiment (Fig. ib) included
angular misalignment along with end separation and offset. In both
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Fig. 1-(a) Coupling loss vs. fiber end misalignment measurement setup in the first
experiment. (b) Coupling loss vs. fiber end misalignment measurement setup in the second
experiment.

experiments, a Burrus-type LED having a 50 Am diameter emitting
surface was used. The LED in the second experiment was internally
modulated whereas the first was not modulated. Microscope objectives
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Fig. 2-(a) Coupling efficiency vs. normalized offset dIR at various separations s/R from
the first experiment. (b) Coupling efficiency vs. normalized offset dIR at various separa-
tions from the second experiment.

were used to collect and focus the light into the launching fiber. Align-
ment was achieved by using micropositioners. In both experiments the
output of the receiving fiber was detected by a power meter and moni-
tored by a digital multimeter.

Graded index fibers were used in both experiments. The first exper-
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Fig. 3-Loss in dB vs. normalized offset dIR, separation sIR, and angular misalignment
a°/sin-1 NA0.

iment used a 50µm diameter core/100 gm diameter cladding fiber while
the second used a 55 gm diameter core/110 Am diameter cladding fiber.
The indices of refraction of the core center and cladding. of both fibers
were 1.472 and 1.458 respectively. A 1.83 m fiber was used in the
first experiment and a 20 m length in the second.

In both cases the experiments began by optimizing the power output
from the fibers. The fibers were then cut in the center and aligned using

s/R = 0
1

2
3-

3

4

5

2-

jj

--------____
1- -------- -

I I

0.1 0.2 0.3 0.4 0.5
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0.6 0.7 08

Fig. 4-Loss vs. normalized offset dIR at various normalized separations sIR from the
first experiment.
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Fig. 5-Loss vs. angular misalignment a in degrees at various normalized separations
sIR.

the micropositioners, and index matching fluid (glycerol) was applied
to the joints. The power output in the first experiment was measured
to be 0.01 dB less than the maximum power obtained before the fiber
was cut. This figure was 0.07 dB in the second experiment.

The loss versus offset measurement (in both experiments) at zero
separation was done by offsetting one fiber end (at the butt joint) to the

0 i 2

ANGULAR MISALIGNMENT a IN DEGREES

3

Fig. 6-Loss vs. angular misalignment a in degrees and various normalized offsets dIR
at constant separation sIR = 1.
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3

Fig. 7-Loss vs. angular misalignment a in degrees and various normalized offsets d/R
at constant separation s/R = 2.

other by known amounts and the power output of the receiving fiber was
recorded. This was repeated at normalized axial separations of 1, 2, 3, 4
and 5. The normalized separation and offset are defined as s/R and dIR,
where s is the axial separation in Am, d is the offset in Am, and R is the
fiber core radius in pm. The loss -versus -angular misalignment mea-
surement (in the second experiment) began with aligning the receiving
fiber with the center of rotation of the table so that the angular alignment
could be changed while the axial separation and offset remained con-
stant. The angular alignment was varied from -3° to +3° in increments
of 0.2° at normalized axial separations of 1, 2, 3, 4 and 5.

III. RESULTS

The coupling efficiencies in percentage -versus -normalized offset at
six normalized axial separation are shown in Fig. 2a and b (first and
second experiment, respectively). The facts that the results of two ex-
periments are very similar and the transverse offset is by far the more
important parameter can be seen in Fig. 3, in which the loss -versus -
normalized offset dIR at zero separation, the loss -versus -various nor-
malized separations s/R at zero offset, and the loss -versus -normalized
angular misalignment ot°/sin-1NA0 at constant separation SIR = 1 are
plotted. Here NA0 = -Vn? - n2 and n1 and n2 are the index of refraction
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Fig. 8-Constant loss lines as the results of fiber end offset dIR, separation s/R, and
angular misalignment a°/sin-1 NAo.

of the fiber core center and cladding, respectively. The difference be-
tween the two experiments at zero offset and zero separation is due to
the different amount of initial misalignment of the fiber ends after it was
broken and butt -jointed. In the first experiment, the power output from
the receiving fiber was 0.01 dB below the maximum power obtained
before the fiber was ex-
periment. The designers of fiber connector or splice will be interested
in the region where loss is low. Figure 4 shows the loss in dB versus small
ofset (d/R ...5_0.8) at various separations. Figure 5 shows the loss due to
angular misalignment at normalized separations of 1 through 5. Figures
6 and 7 show the loss due to angular misalignment and offsets at nor-
malized separations of 1 and 2, respectively. Figure 8 shows constant loss
curves as caused by various kinds of misalignment. As an example,
consider various kinds of misalignment that all produce 0.5 dB loss: a
normalized offset of 0.2 alone; a normalized separation of 2 alone; a
normalized angular misalignment of 0.087 and normalized separation
of 1; a normalized offset of 0.1 and normalized separation of 1. Designers
of connectors will have to pay very close attention to offset, then angular
misalignment and separation, respectively.

IV. CONCLUSION

Loss versus various kinds of misalignment of two ends of the same
fiber has been measured in two independent experiments. The mea-
surement setup, fiber diameter, and length were different in the two
experiments, yet the measurement results are strikingly similar.
Transverse offset is shown to be the most critical parameter in the design
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of fiber connectors and splices. The present results provide only the
minimum loss that would arise in actual fiber connectors and splices,
since additional losses might be caused by other factors such as fiber
diameter and index profile mismatch.
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The design and experimental optimization of a canister antenna
for operation in the 17.7 to 19.7 GHz frequency band are described. The
canister is specifically designed to accommodate the antenna, trans-
mitter and receiver units, and to be aesthetically innocuous in its en-
vironment. The basic antenna configuration, that of a shielded inverted
periscope, is reviewed. Details of the constituent parts of the antenna,
including dual mode feed, paraboloidal reflector, mirror, radome, and
microwave absorber are presented. The influence that each of these
items plays in determining net electrical performance is identified,
including (where appropriate) steps taken to achieve electrical opti-
mization. The antenna is shown to afford excellent sidelobe suppres-
sion, azimuthal plane cross polarization discrimination in the mid to
upper 30 dB range, and a return loss of better than 23 dB. The gain
efficiency is approximately 62 percent and is essentially polarization
independent.

I. INTRODUCTION

The design and experimental optimization of a canister antenna for
point-to-point operation in the 17.7 to 19.7 GHz frequency band are
described in this paper. The antenna, which has been briefly described
earlier,1 was designed for a digital radio system (DR 18A).2 The system
will use a 274-Mb/s quaternary phase shift keying (QPsK) modulation
to provide eight radio channels (seven working, one protection). Each
channel provides 4032 voice circuits. Anticipated typical repeater
spacings will be 2.4 to 7.2 kilometers.3 The canister is specifically de-
signed to accommodate the antenna, transmitter and receiver units, and
to be aesthetically innocuous in its environment.

The initial antenna concept was first proposed by Crawford and
Turrin4 in 1969. Subsequently, the authors, drawing in part upon the -
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Fig. 1-DR 18A repeater site located in Methuen, Massachusetts.

oretical and experimental work of colleagues at Bell Laboratories, de-
signed an antenna for incorporation into a mast -supported, integrated
canister antenna concept. A photograph of an existing repeater site in
Methuen, Massachusetts, which may be characterized as "typical" in
appearance, is presented in Fig. 1.

As depicted in the cut -away view in Fig. 2, the antenna is basically a
shielded inverted periscope consisting of a paraboloidal reflector, feed
assembly, mirror and inclined radome. The feed, the end of which is lo-
cated at the focal point of the parabolic dish, illuminates the paraboloid
with a spherical wave. Upon reflection, the energy is converted to a plane
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Fig. 2-Schematic depiction of canister antenna showing salient features.

wave which is subsequently incident upon a mirror nominally inclined
at 45° to the paraboloidal axis. The energy is then reflected from the
mirror (which is tiltable to deflect the beam up or down slightly) and exits
through the circular aperture. Low wide-angle sidelobes are achieved
by relying upon the absorber -lined canister to afford electromagnetic
shielding and reduce edge diffraction at the aperture. It may also be
noted from this figure that the canister serves as housing for the mi-
crowave networks as well as transmitter and receiver modules. This
paper deals specifically with the influence of the various components
of the antenna on its electrical performance and (where appropriate)
steps taken to achieve electrical optimization.

Electrical objectives to be attained in the antenna design are dictated
by the radio system. After a study into the regional variation of rainfall
and its role in setting repeater spacings, the gain objective was estab-
lished as approximately 42 dB above isotropic at the low edge of the
frequency band since gain increases with frequency. This gain objective
included transmission loss through the radome. The radiation pattern
determines the maximum number of radio paths which may converge
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at a point. With a goal of eight such paths and a desired discrimination
of 60 dB, the pattern was to drop to -60 dB at 45° in azimuth. Finally,
the return loss of the dish and window was to exceed 26 dB, i.e., voltage
reflection 0.050.

Considerations involved in the selection of a suitable feed are reviewed.
Since the influence of the feed pattern on gain cannot be divorced from
the selection of a paraboloid, the inter -relationship of feed taper and dish
f ID ratio is delineated by computing both illumination and spillover
efficiencies to obtain net antenna efficiency. The optimum position of
the feed with respect to the mirror is also explored, and the influence of
the hole around the feed on antenna radiation patterns is elucidated.
The wide-angle radiation suppression of the antenna is shown to be
acutely dependent upon the use of broadband microwave absorber. Since
antenna directivity is also affected by the presence of a radome, the tilt
of the mirror, and the correct positioning of the feed, the role which these
items play in influencing radiation suppression is assessed. Measured
return loss and the sources which give rise to reflected power are also
discussed. The paper is concluded with a summary of the electrical
characteristics of the antenna design.

IL ANTENNA FEED

2.1 Properties of dual mode feeds

An objective in the design of this antenna was the
cularly symmetric feed patterns for the illumination of the paraboloid.
It may readily be shown that such a feed, with an illumination function
characterized by

1E 1 =

where 0, 4) are the conventional spherical coordinates, results in a com-
pletely linearly polarized field distribution after reflection from a full
paraboloid. As a consequence, there are no cross polarized fields in the
aperture. In addition, this feed illumination readily permits one to design

for optimum polarization -independent gain.
Fields like those given in eqs. (1) and (2) are achieved by using dual

mode and hybrid mode feeds. For this antenna, a dual mode feed was
found to be effective, as well as simpler and less costly to produce than
the hybrid mode feed. Chu5 has noted that the observed radiation pat-
tern of a dual mode feed is approximated closely by the H -plane pattern
of an open-ended circular waveguide excited by the dominant TER
mode:

E 0 = AF (0) sin (I) (1)

E = AF (0) cos 0 (2)

(E02 E02)112 = AF(0) (3)
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F(0) = V1-(1.8411u)2 + cos 0]
eri(u sin 0)

1-
[u sin 012

1.841

(4)

where u = rd/X, d is the diameter of the feed waveguide, X is the wave-
length of the applied signal, and 0 is the angle measured from the axis
of the feed. The region of validity for eq. (4) is u 5_ 2r, or equiva-
lently, the waveguide diameter is limited to one to two wavelengths.

The field intensity at the edge of a paraboloidal reflector may be
computed as a function of u by using eqs. (3) and (4) and including
spherical attenuation to the paraboloidal surface, cos2(0/2). The latter
comes from the fact that the equation of a paraboloid in spherical.
coordinates is r = 2f/(1 + cog). The results of such a computation are
presented in Fig. 3 for various values of 00, the subtended half -angle of
the paraboloid. The use of 00 instead of /ID is preferred by the authors
because of its simpler physical interpretation. It is noted that f/D =
1/(4tan 00/2), where f and D are the focal length and reflector diameter,
respectively. From Fig. 3, selection of any two of the following three
variables uniquely specifies the third: edge taper in decibels, feed di-
ameter in wavelengths, and subtended half -angle in degrees. The utility
of this figure arises in optimizing the gain efficiency of the antenna, the
subject of the next section.
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2.2 Relationship of feed taper to efficiency

The gain efficiency of a center -fed full paraboloid may be broken down
into an illumination efficiency and spillover efficiency (as in Ref. 6). The
concept of an illumination efficiency is well known; spillover efficiency
specifies that fraction of the total power radiated by the feed which is
intercepted by the paraboloidal dish. Denoting these terms by ni and
ns, respectively, they are mathematically evaluated from the feed illu-
mination function. Namely,

r
I J27

r 0. 0 2

F(0) cost (-)
0=0 J 0=0 \2/

= (5)

Ap
fo=o

2w

J o=oIF (0) cos2 C)12d
2

In eq. (5), the projected aperture area is

1 - cos 00
Ap = 47f2

1 + cos 00

and the integration is performed over the projected aperture of the re-
flector with differential area element

f2 sin 0dI - dOdO
e4

(cos - 2)4

The spillover efficiency is given by

r 0.
[F(0)]2 sin Od0

77N --

[F(0)]2 sin Ode

(6)

The total antenna gain efficiency is expressed by the product, viz. na =

runs. The evaluation of ns given by eq. (6) is approximate insofar as it
neglects back radiation from the feed. Radiation into the hemisphere
7r/2 0 5 7r, 0 S S 27r is not accurately described by eq. (4), and is so
low as to contribute virtually nothing to the evaluation of /h.

The terms na and ns have been computed as a function of dish edge
illumination (spherical attenuation and feed taper at an angle 00) for
a variety of subtended half -angles. (Selection of a dish edge illumination
and half -angle implicitly determines a feed diameter as shown in Fig.
3). Typical aperture efficiencies, expressed in decibels down from full
area gain, are presented in Fig. 4. The figure shows that for a specified
angle 00, the optimum efficiency occurs for edge tapers of -11.5 to -12.5
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dB. Additionally, for optimum taper, the least loss in gain occurs for a
half -angle of approximately 35°.

While it would appear from the above analysis that a half -angle of 35°
should be selected, two additional considerations are germane. First,
from an electrical standpoint, edge tapers of -11.5 to -12.5 dB for small
values of O necessitate relatively large feed diameters (See Fig. 3). Large
feed diameters are deleterious because they can support higher order
modes, the effect of which will be demonstrated subsequently. They also
increase feed blockage in the antenna, thus deteriorating sidelobe sup-
pression in the radiation pattern. In regard to this latter point, theoretical
analyses of this antenna by Anderson7 indicate that the sidelobe levels
in that angular region where the imaged paraboloid would be visible to
an observer are insensitive to field illumination at the edge of the dish,
an observation that has been experimentally substantiated elsewhere.
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within Bell Laboratories. He concluded that the level of radiation sup-
pression is principally influenced by feed blockage. This conclusion is

validated by an experimental study discussed later in the paper. The
second point arguing against a 35° half -angle is aesthetic, in that such
a paraboloid would require a canister more slender and tall than con-
sidered appropriate. Feed blockage is estimated to have a negligible ef-

fect on the gain of this antenna.
There is also a reason why angles greater than 45° are not especially

desirable. The geometry of the antenna dictates that for angles greater
than 45°, the feed must protrude above the mirror. Yet experimental
evidence indicates that this, too, manifests itself as feed blockage, and
can deteriorate sidelobe suppression. For these reasons, a subtended
half -angle of 40° appeared reasonable.

As stated in the Introduction, the gain objective of this antenna was
approximately 42 dBi at 17.7 GHz. Experience indicates that it is diffi-
cult to realize gain within 0.5 dB of theoretical, so the antenna was de-
signed to theoretically provide a gain of 42.5 dBi. Using Fig. 4 with 00
= 40° implies that this gain is achieved by selecting a reflector diameter
of 0.813 meters and f = 0.559 meters. Because of limitations in available
tools for spinning the dish, a focal length of 0.536 meters was actually
used. For a dish of 0.813 -meter diameter, this corresponds to 00 = 41.4°
or f/D = 0.66. Tolerances of the spun aluminum paraboloid were 0.0254
centimeters rms and a peak deviation of less than 0.0305 centimeters
from the design surface. At 19.7 GHz, the highest anticipated operating
frequency, these correspond to X/60 and X/50, respectively.

2.3 Feed designs and performance
Two dual mode configurations (as depicted in Fig. 5) of square and

circular cross section with a variety of aperture sizes were considered.
The principle of operation of these dual mode configurations is that of
achieving a two -mode mixture of fields at the feed aperture such that
the edge currents are nearly zero.8 In Fig. 5, we may consider a TER mode
(for the case of circular cross section) propagating upward from the
uniform waveguide at plane a. This wave encounters an abrupt change
in cross section at plane b such that the electric field is bent to maintain
a vanishing tangential component at the conducting walls. An axial
component of the total electric field (Es) is thereby generated and by
plane c conversion of some of the energy to the TMR mode has been
accomplished. The distance from c to d provides the proper phasing of

the two modes at the feed aperture since the two modes propagate at
different phase velocities. Since the two modes do travel with different
phase velocities, the feed does have a bandwidth limitation. Nevertheless,
the feed provides proper performance across the 17.7 to 19.7 GHz

band.
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Fig. 5-Dual mode feed cross section.

Two sizes of dual mode feed were built and tested in both the round
and square cross section geometries. The feeds of square cross section
were found to have higher cross polarized fields in the ±45° planes than
the circular feeds, and were therefore no longer considered.

Two sizes of feed were built because the aperture diameter -to-wave-
length ratio determines the illumination taper of the feed. As noted
above, the canister antenna was designed with a subtended half -angle
of approximately 41.4° between the feed and rim of the paraboloid. To
attain optimum gain efficiency for this 0.66-f/D paraboloid fed by a dual
mode feed requires an edge illumination (including spherical attenuation
to the paraboloidal surface of just over 1.1 dB at 41.4°) of -12.1 dB (from
Fig. 4). Using Fig. 3, such a feed requires u = 5.4 and hence has a diameter
of 2.92 centimeters at 17.7 GHz. This diameter, however, allows four
higher -order modes to propagate between planes c and d (Fig. 5).
Therefore, a smaller version with a 2.44 -centimeter diameter which just
cuts off beyond the Tmg mode was also built. Both of these models had
cone angles of a = 30°.

It was found that due to higher order modes crmg, TEz, TEs, and
TWO which could propagate, the larger diameter feed produced H -plane
radiation patterns which fell off much too rapidly over a large part of the
frequency range of interest. This effect is depicted in Fig. 6a.

The 2.44 -centimeter diameter dual mode feed was extensively tested
and was subsequently chosen as the feed for this antenna. The length
of the drift section was adjusted empirically to 3.81 centimeters to obtain
the best match of E -plane and H -plane taper at mid -band. The feed il-
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lumination tapers (no spherical attenuation) as a function of frequency
for the H -plane and E -plane are shown in Figs. 6b and 6c, respectively.*
Each point represents the power average of the edge taper at 41° on both
sides of the feed radiation pattern like those shown for the E- and H -

planes at 17.7 GHz, 18.7 GHz, and 19.7 GHz in Figs. 7a, 7b, and 7c, re-
spectively. The patterns in Figs. 7a, 7b and 7c were measured on a small
indoor range. Note from Figures 6b and 6c that E -plane and H -plane
tapers are the same only near the design frequency, implying best illu-
mination symmetry at that point. As the signal frequency departs from
the design frequency, the illumination in the aperture of the paraboloid
becomes increasingly asymmetric, an assessment of which may be ob-
tained from these figures. For example, note from Figures 6b, 6c, and
7a that at 17.7 GHz, the H -plane taper at the edge of the dish is measured
to be approximately -9.8 dB, while at this same frequency the E -plane

* As Figs. 6b and 6c show, the final antenna feed was tested at more frequencies in the
H -plane than in the E -plane. This was done to assure that difficulties which were manifest
in the over-moded feed (see Fig. 6a) did not occur in the smaller feed.
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taper is approximately -7.6 dB. Figure 6b also contains theoretical
H -plane tapers computed from eq. (4). As the data reveals, at 41° mea-
sured tapers exceed the theoretical values by approximately 1 dB. This
observation is also valid for other dual mode feeds with which theauthors
are familiar. Note that the measured taper at 18.7 GHz is very close to
the optimum (see Fig. 4).

614 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



0

-2

-4

03

):
5 -8

w
cc

o -10

5, -12
cc

-6

-14

-16

-18

E PLANE
- - - - H PLANE, 19.7 GHz

-48° -36° -24° -12° 0

ANGLE

(0)

Fig. 7 (continued)

12° 24° 36° 48°

Cross polarized patterns were also measured in both the E and H
principal planes and the ±45° planes. The patterns were generally
room -reflection limited to better than a 40 -dB dynamic range, thereby
inferring the capability of measuring cross polarized fields to that level.
Measurements made at more than ten frequencies within the 17.7 to
19.7-GHz band indicate that near boresight the cross polarized response
approaches the upper 30 dB range in the 145° planes. Because the an-
tenna is circularly symmetric from a geometrical optics viewpoint, the
reflector system itself adds little to cross polarization conversion except
for small contributions from surface roughness and feed scattering. The
antenna polarization properties are essentially set by the feed itself.

The theoretical gain efficiency of the antenna has been calculated for
41.4° and is plotted in Fig. 8 as a function of field taper at the rim of the
paraboloid. Also indicated on this curve is the taper achieved with the
2.44 -centimeter diameter feed at 17.7 GHz, 18.7 GHz, and 19.7 GHz
(obtained from a robust linear regression of data in Figs. 6b and 6c). As
this figure indicates, the feed should afford near optimum performance
since the highest efficiency is predicted for the upper portion of the band
where rain attenuation can be expected to be most severe.

The gain of this antenna without the radome was measured on an
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outdoor range using the comparison method and a standard gain horn
as a reference calibration. The measured gain, relative to an isotropic
radiator, and aperture efficiency are stated in Table I. Observe that
higher gain for the upper portion of the frequency band has been
achieved.

Experience obtained during an earlier cw experiment using this an-
tenna concept has indicated the necessity to avoid insects and other
foreign matter getting into the feed and altering electrical performance.
Precipitation, on the other hand, is not expected to enter the canister
since the antenna body and window are effective in this regard. In its

Table I-Measured gain (over isotropic) for 18-GHz antenna
without radome

Frequency, (GHz) Gain, (dBi) Aperture efficiency, %

17.7 41.5 62.2
18.7 42.1 64.0
19.7 42.4 61.8
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customary orientation, the feed is pointing up (see Fig. 2). A variety of
feed plug configurations designed to inhibit foreign matter from falling
into the feed or accumulating at the opening were fabricated and tested.
Each of the plugs considered was formed of commercially -available,
expanded, closed -cell, polystyrene with a relative dielectric constant Er

1.03 and loss tangent 0.002. Each plug was tapered on the outside and
inside to inhibit the accumulation of foreign matter and minimize re-
flected power, respectively. The plugs were cemented in place with an
electrically transparent silicone rubber adhesive and then tested for their
influence on feed patterns, return loss, and antenna gain across the band.
The plug configuration shown in Fig. 9 influenced the feed pattern least,
was invisible in return loss and gain measurements, was simplest in de-
sign, and was therefore selected.

III. RELATIONSHIP OF FEED TO MIRROR

The topics considered in this and later sections deal primarily with
effects which influence the antenna radiation characteristics. It is
therefore appropriate to comment briefly on the antenna range facilities
for 18-GHz measurements. Pattern and gain measurements are made
on a ground reflection range. The source antenna is located close to the
ground so that the field illumination across the aperture under test is
uniform within one decibel (field uniformity is frequently verified by
probing the field in front of the antenna). Use of a pulse transmitter (with
a pulse duration of 200 nsec) and gated receiver (which samples the peak
amplitude during a 50 nsec interval on the leading edge of the trans-
mitted pulse) assures a measured response free of spurious reflections.
The dynamic measurement range at 18 GHz is 70 dB.

3.1 Axial movement of feed relative to mirror

The canister antenna was designed with the flexibility of allowing
feed -paraboloid translation with respect to the mirror. As shown in Figs.
10a and 10b, the feed and paraboloid may be moved in unison (providing,
of course, that the feed is always kept at the focal point of the dish) with
the electrical aperture of the antenna remaining fixed. Salient antenna
dimensions are shown in Fig. 10c.

Moving the feed with respect to the mirror has a pronounced effect
upon the antenna radiation pattern. That angular portion of the radia-
tion pattern for which the imaged paraboloid is visible, is influenced more
by feed blockage than dish edge illumination (hence the effort to set feed
taper for high efficiency). Minimum feed blockage is achieved by se-
lecting a feed with small diameter, and keeping the feed from protruding
well above the mirror where it would act as a scattering obstacle. On the
other hand, a feed close to the mirror offers the potential for two dele-
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terious effects. First, a feed too low will allow grazing illumination of the
mirror near the hole around the feed, and concomitant pattern degra-
dation. Second, experiments reveal that if the feed directly illuminates
the mirror with excessive energy, then the illumination on the dish will
be vertically asymmetric in amplitude.9 This latter effect would also
cause pattern degradation, possibly accompanied by deteriorated cross
polarization discrimination.

Optimum feed location was selected by an experimental study of the
influence of feed location on antenna radiation patterns. Measurements
were made at three frequencies (corresponding to the center and ex-
tremities of the 17.7 to 19.7 GHz band) for all polarization states* and
differing feed locations. The results, a typical example of which is de-
picted in Fig. 11 as a smoothed radiation pattern,t clearly suggest that
a low -profile feed affords the best performance. Therefore, the feed is
placed low enough so as not to mask the horizontally directed plane wave,
and yet not so low as to allow its spherical wavefront to illuminate the
mirror too strongly. At its centerline, the feed axially protrudes above
the top surface of the mirror approximately 2.08 centimeters.

3.2 Influence of hole surrounding feed

As shown in Fig. 2, the dual mode feed protrudes up through a hole
in the mirror. The mirror itself is constructed of commercially available
aluminum plate 0.953 ± 0.013 centimeter thick. The surface is flat within
0.038 centimeter peak over a 1.22 -meter span. An aluminum frame is
epoxied to the underside to inhibit the plate from sagging under its own
weight. The hole in this mirror manifests itself as "feed blockage" and
influences the antenna radiation pattern.

A typical set of radiation patterns which exhibit the influence of this
hole on radiation suppression is shown in Fig. 12. The three patterns
correspond to a mirror with 4.06- and 5.08 -centimeter projected diameter
holes, and the hole around the feed carefully closed with conducting tape.
As these patterns indicate, the presence of the open annulus caused
raised sidelobes in the vicinity of 24° to 36°. Data acquired from ex-
tensive experimental measurements generally suggests the benefit of
making the annulus as small as possible. It is appropriate to add that the
annulus cannot be made arbitrarily small since provision must be made
for allowing tilt in the mirror. Therefore the hole is designed to have an
elliptically shaped projection with a minor diameter no larger than

* Horizontal polarization transmitted-Horizontal polarization received (HH), Hori-
zontal polarization transmitted -Vertical polarization received (HV), Vertical polarization
transmitted-Vertical polarization received (VV), and Vertical polarization transmit-
ted-Horizontal polarization received (VH).

t Smoothed radiation patterns are prepared by the commonly accepted practice of
drawing a smooth line across the peaks in the detailed pattern, thereby forming an envelope
of peaks.

620 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



-20

-30

-60

-70

/
r

//./
1

r --I
/

/

1

I

X
VV

17.99 GHz

FEED AXIALLY ELEVATED 2.1 cm
ABOVE MIRROR

FEED AXIALLY ELEVATED 14.0 cm
ABOVE MIRROR

1

I

1

1

-60° -48° -36° -24° -12° 0

ANGLE

12° 24° 36° 48° 60°

Fig. 11-Influence of feed position relative to mirror on azimuthal radiation pattern
envelopes.

necessary for feed placement and orientation, and a major diameter large
enough to allow reasonable tilting of the mirror.

IV. MICROWAVE ABSORBER AND ANTENNA RADOME

4.1 Absorber

The inside of the canister antenna is fully lined with microwave ab-
sorber. Experimental measurements indicate that absorber is necessary
for the suppression of wide-angle sidelobe radiation.

In optimizing antenna performance, a variety of absorbers were con -
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Fig. 12-Influence of feed -mirror annulus on azimuthal radiation pattern envelopes.

sidered, including 1.91 -centimeter thick convoluted foam, and 5.08 -cen-
timeter thick "hair" absorber. Not only must a suitable absorber provide
radiation suppression, but it must be resistant to environmental dete-
rioration. The antenna considered in this paper will provide no absorber
protection aside from inhibiting direct exposure to the outdoor elements
(sunlight, rain, ice, etc.). Consequently, absorbers for this application
should be heat resistant, not inclined to rapid organic decomposition,
and impervious to water. Relative to this last point, while the antenna
interior will not be exposed directly to rain, it is expected that condensate
can form on the inside as the antenna "breathes".

It is useful to list here the respective advantages and disadvantages
of the absorbers considered. Since much of the absorber inside the an-
tenna will be subject to grazing incidence of electromagnetic fields rather
than normal incidence, the convoluted surface would appear to be de -
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sirable since experimentation has confirmed its excellent absorption
qualities for varying angles of incidence. In contrast, "hair" has a rela-
tively planar surface and might be expected to yield poorer performance
for grazing angles. The convoluted absorber is made of an open -cell foam
material while the "hair" is an open mat. Normally the "hair" absorber
would have no tendency to hold water, while the convoluted foam could
pick up water in a manner analogous to a sponge. To remedy this effect,
the foam was covered with a sprayed Hypalon* coating approximately
0.076 millimeters thick. Hypalon in itself is an excellent coating because
of its electromagnetic transparency and proven resistance to weathering.
However, the coating was easily perforated by fingers during installation.
Finally, "hair" was significantly less expensive than the convoluted
material, or even flat foam absorbers of comparable thickness.

As a first step in assessing absorber performance, radiation patterns
were made with no absorber, partial absorber, and a complete absorber
lining of the antenna interior. The resulting radiation patterns using
"hair" absorber are depicted in Fig. 13a. As this figure indicates, the
addition of absorber dramatically reduces the wide-angle radiation of
the antenna. The next step in the evaluation was to run separate patterns
with the convoluted and hair absorber at three frequencies within the
band for a variety of linear polarizations. The results, an example of
which is shown in Fig. 13b, suggest that convoluted absorber generally
affords slightly better performance. However, the differences are minor
and because of the cost and weatherability advantages of the "hair," it
is preferred in this application.

4.2 Radome

Radomes have been traditionally used on high performance line -of -
sight antennas used in the 4-, 6-, and 11-GHz common carrier bands.
These radomes are called "thin" because the 0.762- to 1.016 -millimeter
fiber glass membranes are only X/30 thick at the highest frequency. At
frequencies near 20 GHz, preliminary tests on the canister antenna in-
dicate that from a pattern standpoint, a satisfactory thin radome would
have to be less than approximately 0.305 millimeters in thickness. Such
a thin radome would prove structurally inadequate. For that reason,
attention was focused on half -wavelength radomes.

A radome used in the tests to be described was a solid laminate con-
structed of epoxy resin and a low -loss fiber glass called E -glass. The di-
electric constant of the laminate was thought to be 4.0 so the radomewas
made 0.399 centimeters thick for electrical tuning at 18.7 GHz. Subse-
quent measurements indicated that the radome was actually tuned at
approximately 18.3 GHz, inferring a dielectric constant of 4.3 (this latter

* Registered trademark of E. I. duPont de Nemours & Co., Inc.

CANISTER ANTENNA FOR 18-GHz OPERATION 623



- 30

-40

-50

-so

-70
-72° -60° -48° -36° -24° -12° 0 12°

ANGLE

(a)

Fig. 13-Influence of microwave absorber on azimuthal radiation pattern envelopes:
(a) presence or lack of absorber; (b) type of absorber.

ti

HH

18.0 GHz

I'

IC\ A .1\
../.." \

I

\,1
 -0- NO ABSORBER

- - -ABSORBER ON INTERIOR, BUT
NOT ON APERTURE SHROUD

COMPLETE HAIR ABSORBER

24° 36° 48° 60° 72°

value is in accord with the commonly accepted value for this composite
material). The loss tangent is 0.016.

Figures 14a and b depict representative results obtained with and
without the radome on the antenna. Figure 14a indicates that mea-
surements made near the tuned point show the radome to have little
influence on the antenna radiation patterns. This is also true of the cross
polarized response. Figure 14b presents measured results near the edge
of the band. For this case the radome does perturb the principal polar-
ization wide-angle radiation characteristics, though the sidelobe sup-
pression still meets the design objectives. The common explanation of
this effect is that energy is reflected back into the antenna and subse-
quently reradiated. Indeed, measurements made on this radome indicate
that specularly reflected power is 35 dB down at 18.3 GHz, but only 13
dB to 14 dB down at 19.7 GHz.

V. MIRROR TILT AND FEED POSITION SENSITIVITY

5.1 Mirror tilt

Pairs of antennas used for point-to-point transmission are carefully
oriented in elevation and azimuth to electrically point exactly at each
other. For the canister antenna with relatively narrow beam width (3
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dB beam width of 1.33°), this orientation is performed by peaking the
received signal while adjusting the azimuthal and elevation angle. The
azimuthal orientation is accomplished by rotating the entire antenna
in its supporting cross -arm (see Fig. 1). The elevation angle is adjusted
by rotating the mirror about the horizontal axis so as to tilt the beam up
or down. It is readily shown that as the mirror is tilted through the angle
0m, the beam moves Ob = 20m. The overall influence of reflector tilt on
gain and pattern is covered in this section.

Reference radiation patterns were first measured with the mirror in
the "nominal" 45° position (beam horizontal). Patterns were then
measured with the mirror in a "tilt up" and "tilt down" position of ap-
proximately Om = 11.5°. In both cases the entire antennawas tilted 3.0°
in the opposite direction to compensate for the beam tilt. This is done
to maintain bore -sight beam orientation between the source and an-
tenna. These measurements then establish the effect of the internal
interaction of the plane reflector with other antenna parts. It should also
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be noted that by tilting the antenna canister to compensate for reflector
tilt, the patterns so obtained do not quite lie in the azimuthal plane,
though the difference is slight.

As expected, it was observed that tilting the mirror causes a decrease
in received signal level, but this signal is completely restored by corn-
pensatory'antenna tilt. Therefore, gain changes do not occur with modest
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-60° 0
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Fig. 14-Influence of half -wavelength solid laminate radome on azimuthal radiation
patterns: (a) 18.0 GHz; (b) 19.7 GHz.

-48° -36° -24° -12° 12° 24° 36° 48° 60°

beam tilt. The tilt experiments were done with and without a radome
on the antenna, and for both polarization states of the antenna. Tilting
the mirror is found to have almost no influence on the antenna sidelobe
response. At most, 3 or 4 dB changes are noted at -55 dB levels near 30°.
These small changes in sidelobe level are felt to be of little consequence
because they are so far down from the main beam and do not change the
angle at which the patterns drop beneath -60 dB.
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5.2 Feed position sensitivity

Feeds with diameters commensurate to a wavelength have phase
centers located approximately in the plane of their aperture. Therefore
the dual mode feed used in this antenna is positioned to have its aperture
coincident with the focal point of the paraboloidal reflector. Neverthe-
less, it is of interest to determine the sensitivity of feed position to deg-
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-70
-60° -48° -36° -24° -12° 0

ANGLE

(b)

12°

Fig. 14-(continued)

24° 36° 48° 60°

radation in antenna performance. Three conditions were examined: feed
skew (feed axis inclined to paraboloidal axis of symmetry), feed linear
displacement (feed and paraboloidal axis parallel, but feed axially or
laterally displaced), and feed-polarizer twist. Briefly the tests show that
up to 1° of feed skew, axial movement of up to 0.25 centimeter, and lat-
eral displacement of up to 0.25 centimeter have little or no discernible
influence. Feed-polarizer twist of up to 3° has no effect on gain, a mini-
mal effect on pattern (first sidelobe increased 1 dB), but as expected,
does deteriorate cross polarization discrimination.
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These tests indicate that antenna performance is not overly sensitive
to feed position, and allow for rather lenient support bracket tolerances
which are easily maintained at minimal expense.

VI. ANTENNA RETURN LOSS

Transmitted power which is reflected back to the feed manifests itself
as antenna return loss. The sources of reflected power in this antenna
are: (i) feed mismatch including insect seal, (ii) parabolic dish, and (iii)
radome. These items are individually treated below.

Since the dual mode feed has a circular cross section and the polar-
ization diplexer which will be used with this antenna was designed in
square waveguide, a suitable transition was designed to connect the two.
Such a transition requires the conversion of two dominant, orthogonal,
TETO modes in ws-42 to two dominant, orthogonal, TER modes in we -50.
For this purpose, a four -inch linear tapered transition with no measur-
able transmission loss and a return loss of better than 40 dB (reflection
coefficient <0.01) was electroformed. Swept frequency return loss
measurements on the feed with insect seal and linear transition were
made, and are depicted in Fig. 15a. The return loss across the entire
frequency range is better than 29 dB, corresponding to a VSWR
or reflection coefficient .0.035.

Return loss of the complete antenna was measured across the band
of interest. Figure 15b shows this performance as a solid line for the
antenna radiating into free space. The poorest return loss within the
band is approximately 23 dB. A simple vector separation analysis, based
on the assumption that the only contributions to the total returned power
are the feed and paraboloid with radome, produced the dashed line as
the contribution of the paraboloid and radome alone. Measurements
indicate that with the mirror in its normal position, the contribution of
the radome to total return loss is negligible since energy reflected back
into the canister by the radome is not focused at the feed. This is still true
with the antenna beam tilted down 3° since the reflected energy from
the radome is 3° off boresight.

The resulting dish contribution of approximately 28 dB agrees well
with a computed value of 26.8 dB obtained from the equation

Return loss = 20 log
47rf

XG/
(7)

In this equation, f is the focal length of the paraboloid (0.536 meters),
and Gf is the feed gain. Feed gain has been computed as 12.9 dB at 18.7
GHz by direct integration of the normalized feed radiation pattern. The
equation above is derived by determining what fraction of power radiated
by the feed, Wf, is recaptured by the feed. The power density in the axial
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region of the dish is Pd = W fG 1l4742. This power density is reflected
back toward the feed as a plane wave and captured with effective area
Aeff = X2G//4/r. The power captured by the feed, 14/,, is We = AeffPd =
W f(XG fi4rf)2, and eq. (7) follows directly.

VII. CONCLUSION AND SUMMARY OF ANTENNA CHARACTERISTICS

The design and experimental optimization of a canister antenna are
reviewed in this paper. The influence of antenna feed, parabolic reflector,
radome, absorber and mirror on gain, radiation pattern, and return loss
is considered.

The measured gain of the antenna, virtually independent of polar-
ization, is stated in Table I. These values of gain, measured without a
radome in place, correspond to an approximate aperture efficiency of
62 percent. The loss of the solid, half -wavelength -thick radome is
0.4 dB.

The principal and cross polarized response of the antenna is illustrated
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Fig. 16-Principal (HH) and cross polarized (Hv) smoothed azimuthal radiation pattern
envelopes measured with radome installed: (a) 17.7 GHz; (b) 18.7 GHz; (c) 19.7 GHz.

by the smoothed radiation patterns presented in Fig. 16. This figure
presents the 17.7 GHz, 18.7 GHz and 19.7 GHz horizontally polarized
response (HH) and the vertically polarized antenna response to a hori-
zontally polarized transmitted signal (Hv) with the half -wavelength
radome on the antenna. Similar radiation patterns are obtained for the
vv and VH polarizations. This is to be expected since the antenna design
is essentially polarization independent provided the dual mode feed
affords a balanced E and H plane illumination of the paraboloid. As
noted earlier, such a balanced illumination is reasonably achieved. The
principal polarization patterns include perturbation introduced by the
radome. A comparison of these patterns with corresponding patterns
measured without a radome reveals that sidelobe levels beneath -40 dB
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are primarily affected, with the largest pattern deterioration occurring
at the lowest radiation levels, and being most pronounced the further
the frequency departs from 18.3 GHz (the "tuned frequency for this
radome). From Fig. 16, we also note that the on -axis cross polarization
discrimination is in the mid to upper 30 dB range, confirming an estimate
offered in an earlier paper dealing with this antenna concept.4 The in-
fluence of mirror tilt and feed positioning is also assessed. It is shown
that modest amounts of mirror tilt (e.g., ±1.5°) and inaccurate feed
positioning have minimal effect upon the antenna pattern and gain.
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Return loss measurements have been made on the complete antenna
and individual components. The major contributors to reflected power
are feed mismatch and the parabolic dish. The worst -case return loss
of the feed with transition is approximately 29 dB. The return loss of the
paraboloid is estimated to be 28 dB. With the mirror in its nominal po-
sition, the radome contribution is negligible. The poorest total return
loss measured (which occurs at a different frequency than the worst -case
feed contribution) within the band is approximately 23 dB.

As mentioned earlier, the antenna described in this paper was designed
for an 18 GHz digital radio system. The particular antenna described
herein was specifically designed to afford certain degrees of flexibility
which would not be required after identification of those parameters
which influence antenna performance. For example, the canister was
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oversized to permit installation of a variety of absorbing materials and
so the paraboloid could be translated up and down relative to the mirror.
With completion of the performance characterization, certain changes
were made in the final antenna design. The final design will allow beam
pointing of 18°. To accomplish this and assure adequate return loss, the
radome will be fastened to the antenna in such a manner that the beam
will not point within 1.5° of the normal to the radome surface. Perhaps
the most significant change to be implemented in the final design is a
larger paraboloidal reflector with a 0.864 -meter diameter. This reflector
(which necessitates a somewhat larger mirror) will afford approximately
0.5 dB more gain. This increased gain is just slightly more than the 0.4

dB loss introduced by the radome. It is expected that the antenna with
a 0.864 meter dish will have a radiation pattern quite similar to that
measured on the developmental model, and a total return loss of ap-
proximately 23 dB.
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Polarization Effects in Short Length,
Single Mode Fibers
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The ability to maintain linearly polarized output in single mode
fibers is essential for utilization of polarization dependent receiver
circuitry. Our measurements with long lengths of fiber (200 m) indicate
that we can find input polarization angles which yield essentially
linearly polarized output. However, we found that these polarization
effects are greatly influenced by the presence of physical stress on the
fiber such as stress due to bending, twisting, mounting, and other
variations in ambient conditions. We conducted several experiments
on short length fibers where special precautions were adopted to assure
repeatability of the measurements. Our results indicate the existence
of a general theoretical model that predicts the output polarization
characteristics as a function of input polarization and fiber length. The
model assumes the presence of two asynchronous, orthogonal modes,
uniformly coupled over the entire fiber length. The model, however,
cannot distinguish between uniformly coupled and uncoupled mode
cases based on the output radiation measurements.

I. INTRODUCTION

The polarization characteristics of "single" mode optical fibers have
been the subject of several previous publications.1,2 An understanding
of the polarization sensitivity of such fibers is important in assessing the
applicability of polarization dependent optical circuitry.3 An additional
implication of polarization sensitivity is the introduction of delay dis-
tortion in "single" mode fibers.

In this paper, we present a theoretical model based on the propagation
of two orthogonal modes; it is shown that based on the measurement of
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the ellipticity of the output radiation alone, we cannot distinguish be-
tween the following cases:

(i) The existence of two orthogonal modes, uncoupled with different
propagation constrants.

(ii) The existence of two orthogonal modes, with identical propagation
constants and uniformly coupled by some means of periodic perturba-
tion

(iii) The most general case-two orthogonal modes, uniformly cou-
pled, but with nonidentical propagation constants.

The organization of the paper is as follows. In Section II, we summarize
the theory, leaving the details to the Appendices. Section III describes
the detailed experimental procedure utilized to measure the radiation
ellipse as well as details of each of the measurements. In Section IV the
experimental data is compared with simple theoretical results developed
in Section II.

It should be noted that the assumption of synchronous uncoupled
modes will not verify our data. An additional finding of importance is
that the most general case indicates that for a fiber of any given length,
excitation conditions exist at the input that result in linearly polarized
output.

II. THEORETICAL MODEL

For completeness, we state the obvious: for synchronous uncoupled
modes, the output radiation would be linearly polarized independent
of the orientation of linear input polarization and fiber length. Experi-
mentally, this is not observed and, hence, this model is ruled inappro-
priate.

As detailed in Appendices B and C, we assume spatially orthogonal
modes whose propagation constants differ by Afl; we further assume that
the modes are uniformly coupled with a constant coupling K. The fiber
output radiation ellipse,4 as described in Appendix A, would possess the
following characteristics. If a and b are the amplitudes of the semi -major
and minor axis components of the radiation ellipse, then their ratio is

R = -a 1 ± [1 - sin2 20' sin2 2a11/2
±

b sin 20' sin 2a

and the orientation 4/ of the major axis of the ellipse is

= 1/2 tan -1 (tan 20' cos 2a) - 77/2

where 0' =0 + 77/2
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Fig. 1-Photomicrograph of single mode fibers, core diameter = 4.7 A, outside diameter
= 133 A.

0 =input orientation of polarization with respect to x axis

n =tan -1 2K/N3
a =1/2V A/32 + 4K2 z
z =fiber length

When R = 0 or 03, the output is linearly polarized. From eq. (1), we see
that this happens at 0' = ±m 7r/2, independent of fiber length. Thus, this
model predicts that even in the presence of either phase asynchronism
or mode coupling (or both), there are specific orientations of input po-
larization,

0 = -77/2 ± mir/2 (3)

for which linear polarization is observed for all lengths. The measured
relative phase shift 2a = VM2 + 4K2 z, can be thought of as due to an
effective A13, that includes the effect of coupling such that

AO, = -N./ z102 + 4K2 (4)

In our measurements, the reference angle 0' = 0 was always selected at
first by rotating the input polarization to that angle for which the output
was linearly polarized; then based on the observations of the radiation
ellipse at the output, we cannot distinguish between the following cases:

(i) asynchronous, uncoupled modes, (ii) synchronous, coupled modes,
and (iii) asynchronous, coupled modes. These cases are summarized in

Table I.

III. EXPERIMENTAL PROCEDURE

Figure 1 shows a photomicrograph of the fiber when illuminated with
white light. The fibers used had a core of pure Si02 and a cladding of
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Fig. 2-Electron micrograph of etched single mode fiber.
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B203.6Si02. The core and the outer diameters were 4.7 Am and 133µm,
respectively. Due to diffusion of B203 in the MCVD fabrication process,
the fiber core was unintentionally graded in refractive index and the An
was lower than expected for these compositions.5 Figure 2 shows an
electron micrograph of the etched fiber.6 The effective core -cladding
index difference was An -,-- 2 X 10-3. Fibers of lengths usually less than
3 meters were used in our short fiber length measurements.

The experimental arrangement is shown in Fig. 3. Light from a po-
larized He-Ne laser is passed through a polarization rotator to facilitate
rotation of the input polarization at the input of the fiber. The light was
chopped to provide a reference signal at the receiver and then focused
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on the fiber by means of a lens. A small section of the fiber near the input
end was immersed in glycerol to remove any undesired cladding mode
that might have been excited. The output light was collimated by a lens
and passed through a Glan-Thomson analyzer before being detected and
displayed in a PAR receiver. A Babinet-Soleil compensator could be in-
serted and removed, as needed, between the collimating lens and the
analyzer.

Experimentally, we found the polarization effects on long and short
length fibers were greatly influenced by the presence of any stress on the
fiber and other changes in ambient conditions. To ensure repeatability
of the measurement, it was necessary to take many precautions. The
fibers were held as straight as possible by gently taping them on to a flat
surface, at regular but not necessarily identical intervals to minimize
inducing any stress in the fiber. The input end of the fiber was held by
using a vacuum chuck except in one experiment where it was held by a
mechanical holder. In that case, it was clamped first using as little
pressure as possible and then taped. In all our measurements, the input
polarization angle, which resulted in linearly polarized output, served
as the input reference angle, i.e., 0' = 0. The analyzer position oriented
to measure the cross polarized component served as the reference axis
for the orientation of the output ellipse. If we alter the angle 0', the output
in general will become elliptically polarized. In order to obtain the phase
difference (5 between components parallel and perpendicular to the
reference angle 0' = 0, we have to orient the Babinet-Soleil compensator
parallel or perpendicular to the original reference axis of the analyzer.
With the plunger of the compensator adjusted to obtain linear polar-
ization at the output, from the plunger position and the calibration of
the compensator, the phase shift 2a can then be calculated. In each
measurement, where input polarization is rotated with a given fixed
length of the fiber, or where the length of the fiber is varied keeping the
input excitation angle 0' fixed, the output analyzer was oriented parallel
to the major and minor axis of the output ellipse to obtain the power ratio
of these components. Orientation of the minor axis was also determined
from the angular position of the analyzer.

IV. EXPERIMENTAL RESULTS

4.1 Fixed fiber length, input polarization varied

In this experiment, an input reference angle was found such that the
output polarization was linearly polarized; we then measured the ellip-
ticity of the output radiation as a function of input polarization rotation
about this reference. Figures 4 and 5 compare the experimental data with
the theoretical results obtained by computing 20 logioR from eq. (1) and
evaluating the orientation of eq. (2). The best fit was for 2a = 59°, which
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length L = 2.39 meters.

was also verified from the compensator measurement. However, this
experiment cannot give a specified value for the phase retardation per
unit length, i.e., 6/L(=0(3e), since we can not determine explicitly the
integral number of 712 phase shifts included in the entire length of the
fiber.

4.2 Fixed input polarization, variable length

4.2.1 On axis excitation (0' = 0)

In this experiment, after finding the reference axis, orientation and
power ratio R of the output ellipse was measured; the fiber was shortened
at the input end repeatedly by a small amount (c 5 mm) and the ex-
periment was repeated by reorienting the input polarization to obtain
a linearly polarized output. From Fig. 6, we infer, as the theory predicts,
essentially a linearly polarized output independent of the fiber length.
The experimental limit of 38 dB indicated in the figure is the limitation
imposed by the degree of polarization of the laser source. Our mea-
surements on long lengths (200 m) indicate the cross polarized com-
ponent was down 32 dB. However, the output polarization was subject
to severe variations due to physical stress and other changes in ambient
conditions.

The data (not shown) indicate the input polarizer angle and the output
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Fig. 5-Measured and estimated relative orientation of the ellipse IP as a function of
input polarization angle 0' for L = 2.39 meters.

analyzer angle remained essentially unchanged with deviations, within
experimental errors, indicating negligible angular rotation of the fiber
with length.

4.2.2 Slightly off -axis excitation (0' :;--, 6° )

This experiment was conducted by offsetting the input polarization
by an angle 0' (6°). The input fiber end was held mechanically; the
output end was successively cut and the measurements were repeated.
As expected the output was elliptically polarized; as a function of length,
the polarization changes from elliptical to linear and then back to el-
liptical. From eq. (3) for a small angular offset, i.e., for small 0'

1

and from (4)

IR I - sin 2«

1
Iii =

2
- tan -1 [20' cos 2a]

(5)

r---- 0' cos 2a (6)
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Figure 7 shows the excellent agreement between theory and experiment.
In fitting the 1p data, it was necessary to include a "twist" term of the
order of 0.16°/mm. This implied a periodicity of the twist to be about
2.25 m, which is very close to the length of the fiber and was traced later
to the holding and mounting arrangement at the input end of the fiber.
When the fiber was allowed to lie flat and straight, and the input end was
held using a vacuum chuck, the twist disappeared.

From the compensator measurements after each cut, the average Afle
was evaluated to be ,---0.0581 radians per mm. As seen from Fig. 7, linear
polarization occurs at about every 54 mm and from eq. (5), it is obvious
that this occurs when 2« = 0, r, . . . etc. Therefore 2a = 413L = r with the
result Me = 0.0582 radians per mm, in agreement with the compensator
measurements. This leads to an estimated value of effective index dif-
ference

One
2

= -1(6' X = It- = 5.86 X 10-6
7r 2L

between the modes. Thus, it seems reasonable to state that the fibers
cannot be easily fabricated to such tolerances and, hence, the polarization
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problems observed with these experimental fibers will qualitatively be
observed for all nominally circular, single mode fibers.

4.2.3 Excitation at O' = 214

If the fiber was excited at 45° from the reference angle 0' = 0, two
modes of equal amplitudes would be excited; at the fiber output they
would be out of phase by 2a = AfieL. Therefore in this case, the polar-
ization will change, as a function of length, from circular to linear and
then back to circular with elliptical polarization in between. For 0' = 7/4,
from eq. (1) and (2),

1
IR!

tan a,
and

(9)

= ±7/4 (10)

In eq. (4), when cos 2a goes through zero, i.e., at a = 7/4 and IR I = 1
(circular polarization), 4/ changes sign. Experimental results compare
very well with the analysis as shown in Fig. 8.

V. CONCLUSIONS

The fibers used in these experiments were nominally circularly sym-
metric; however, the data on the elliptically polarized output radiation
indicates that very small deviations from circular symmetry possibly
exist and that these irregularities cause serious polarization effects. It
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appears unlikely that the fiber fabrication process can be improved to
the extent that such effects can be completely eliminated.

The results indicate that input excitation condition0o exist for which
linearly polarized output will be observed for a fiber of any length.
However, the output polarization is subject to severe variations due to
physical stress and other changes in ambient conditions. Our experi-
ments can not determine whether any mode coupling exists. However,

' if any mode coupling exists, it must be uniform, at least over the few
meter lengths of the fiber measured.

Polarization behavior of single mode fibers may hopefully be im-
proved, by making the cores purposely elliptical, provided that any pe-
riodic perturbation such as "twisting" of the core is sufficiently small
and does not result in strong mode coupling. Large ellipticity, however,
will increase the modal dispersion. Further study is necessary to char-
acterize the polarization behavior of elliptical core fibers and, if they hold
polarization, to arrive at an optimum degree of ellipticity that would
provide a balance between polarization control and dispersion effects.
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APPENDIX A

Orientation and Ratio of Major to Minor Axis of Vibrational Ellipse of
Elliptically Polarized Waves

Consider two time -varying (S.H.) orthogonal electric field compo-
nents

Ex = aiej(wt+51)

Ey = a2ei(t+h)

(11)

(12)

such that a? + a = 1. The resulting electric vector, as seen from Fig. 9,
traces, in general, an ellipse. The difference in the effective propagation
constants between the two waves is

60. = $1

L
- /32 _ (5

(13)
L

where L is the fiber length. Whenever al or a2 is zero or when .5 = mir,
where m is an integer, the output wave is linearly polarized. Furthermore,
when al = a2, and (5 = (2m + 1)r/2, the output is circularly polarized.
The ratio R of the semi -major to semi -minor axis of the ellipse can be
defined as4

R =
b
-a = tan x (14)

where x is an auxiliary angle (-7/4 ,_. x 7/4). By choosing an angle 4)(0
4) 5.. 42) such that

tan 4) = -a2
al

(15)

the angle Ili of the orientation of the resultant ellipse, with respect to a
reference axis ox, and the parameters 4) and x are related by4

sin 2x = sin 24) sin 5 (16)

tan 2'= tan 24) cos 5 (17)

In addition,
a? + d = a2 + b2 (18)

By eliminating x from equations (14) and (16), and with the use of eq.
(15), we find

R= ± -a 1 ± V1 - 4a?ai sin2 (5
b 2a 1a2 sin (5

and from eqs. (17) and (15),

1
= -tan-1 [ 2a1a2

1
2 n2 n2 cos S

-.1- ..2
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APPENDIX B

Relations Between Input Polarization Angle, Fiber Parameters, and Output
Ellipse

We assume a cartesian co-ordinate system, as shown in Fig. 10, with
ox and oy coincident with the axes of slightly elliptical core or with that
of the birefringent axes of the core of a single mode fiber as the case may
be. Let us also assume that a linearly polarized plane wave is incident
upon the fiber at an angle 0 with respect to ox; therefore the amplitudes
of the excited modes with orthogonal polarization are cos 0 and sin 0 and
represent the x and y component respectively.

Assuming a uniformly distributed coupling characterized by a coupling
constant K between the modes whose propagation constant differ by AO,
the complex field amplitudes are given by7'8

Ex = cos 0 cos a -j cos (n + 0) sin a (21)

Ey = sin 0 cos a + j sin (n -I- 0) sin a

where the parameter a, proportional to the length of the fiber, is

a = 1/(64312)2 -I- K2 z

(22)

(23)

and the parameter n which relate the degree of coupling and the asyn-
chronism between modes is given by

tan n = 2K/6.13 (24)
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Fig. 10-Input excitation conditions and the behavior of the resulting output polar-
ization.

For reasons indicated in the text, we exclude the case when both K'and
013 are equal to zero. For the case x = 0 and 43 finite, n equals zero. If OMB
= 0 and K is finite, n equals 7r/2. When both K and 063 are finite, 0 .5_ n 5_
r/2.

By rewriting eqs. (21) and (22) similar to eqs. (11) and (12), we see
that

a? = cos2 0 cos2 a + cos2 (77 + 0) sin2 a (25)

4 = sin2 0 cos2 a + sin2 (77 + 0) sin2 a (26)

and

a? -4 = cos 20 cos2 a + cos 2(n + 0) sin2 a (27)

The phase constant 6 is determined by

2 sin(2 0 + 77) tan a
tan 6 -

sin 20 - sin 2(0 + n) tang a
(28)

Substituting (25) through (28) in (19) and (20) we find, after considerable
trigonometric manipulation, that the ratio of the major to minor axis
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of the resultant output ellipse is

R -
1 ± [1 - sin2 (20 + ,) sin2 2a]"2

sin (20 + ri) sin 2a

and its orientation

(29)

1
=

2
- tan -1 [tan (20 + n

2
) cos 2a] - - (30)

By appropriate choice of the sign, we see that IR I in eq. (29) is bounded
by 1 and co or 0 and 1. Whenever I R I goes to 0 or we have linear po-
larization. For a given length of the fiber z, therefore a, this occurs
when

0 =
2

± m
2,

m = 0, 1, 2, . . . (31)

As n varies from 0 to r/2, the input angle 0 at which the output is linearly
polarized varies from 0 to -7r/4. In the most general case, at this specific
angle, phase difference 6, as seen from equation (28), equals either zero
or multiples of r and is independent of a indicating that the two modes
are either in or out of phase with each other at the output for all lengths.
This clearly shows for a given fiber with a finite K and Afl, there is always
an orientation of input polarization that would result in a linear polar-
ization at the output.

Note that in the special case n = 0, b = 2a and therefore, 6 is dependent
on length; however, at 0 = ±mir/2, as seen from (25) and (26), one of the
components goes to zero. Thus the condition for input excitation angle
0 to achieve linear polarization at the output, for all values of a, is given
by (31) and holds good for all values of n in the range 0 5 I n1 5 r/2.

APPENDIX C

General Theoretical Model Used for Observation of Output Ellipticity

In this Appendix, we consider the general case illustrated in the pre-
vious Appendix and show that two orthogonal uniformly coupled
asynchronous modes can be resolved into a new set of orthogonal modes,
but completely uncoupled. This implies, even if any coupling exists, as
long as it is uniformly distributed, our results can be explained by as-
suming uncoupled, asynchronous modes. Obviously, the measured AO
will now include the effects of coupling.

If no mode coupling exists between the modes, i.e., K = 0, then from
(23) and (24)

AOa= z
2

(32)
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and

n = tan -1 (-2K) = 0 (33)
Ai3

Under these conditions, from (21) and (22),

Ex = cos 0e-ja (34)

Ey = sin Oe+ja (35)

We have shown in the previous Appendix that in the most general case
0 < n/2 < ±7r/2, there exists an input polarization angle such that 0 =
-77/2, for which the output polarization remains linear for all lengths.
As shown in Fig. 10, if we rotate the coordinate system by -n/2, then the
angle 0' in the new coordinate system is

0' = 0 + n/2 (36)

But substituting (36) in (21) and (22), and writing the amplitudes along
Ox' and Oy' as

Ex = Ex cos 77/2 - Ey sin 77/2

and

(37)

E; = Ex sin 77/2 + Ey cos 77/2 (38)

Using eqs. (34) through (38) we can easily show that

Ex = cos 0'e-ja (39)

E; = sin 0'e+ja (40)

Eqs. (39) and (40) are identical to (34) and (35) with 0 being replaced by
0'. Thus the coupled orthogonal modes can be easily resolved in terms
of uncoupled orthogonal modes. Obviously, although a remains the same
as in (23), it can be defined as in (32) to include the effects of the nonzero
coupling as

a= A2flez = V(12 +K2z
2

(41)

By substituting (36) in (29) we find the ratio of major to minor axis of
output ellipse is now given by

1 ± (1 - sin2 20' sin2 2a)1/2R - (42)
sin 20' sin 2a

Therefore excitation at the input polarization reference angle (0' = 0)
for which R --> 0 or co, the output remains linearly polarized for all
lengths. Then if we vary 0' at the input, eq. (42) represents the ratio of
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axes of output ellipse. The orientation of the output ellipse is now given

by

Ili = -1 tan -1 [tan 20' cos 2a] - n/2
2
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Pair to Distributed Interference
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We show that the longitudinal circuit defined by a well-balanced
wire pair in a cable can be studied independently of the metallic circuit.
The metallic circuit is then excited by the longitudinal voltage and
current acting through the wire pair and terminal unbalances. Discrete
parameter longitudinal circuits are defined which have the same ter-
minal response as the distributed -parameter longitudinal circuit. These
equivalent circuits are studied under an electrically short assumption,
yielding simple expressions for their terminal response. The electrically
short assumption enables the distributed impressed voltage which
excites the longitudinal circuit to be represented by only two param-
eters, the "total impressed voltage" and the "center of impressed
voltage." These parameters are analogous to the total mass and center
of mass of a thin filament or wire. Finally, an analysis of a longitudinal
circuit defined by a subscriber loop excited by a nearby power distri-
bution system is used to derive a relationship between the short-circuit
longitudinal current at the central office and the open -circuit longi-
tudinal voltage at the telephone set. This relationship is used to esti-
mate the distribution of short-circuit longitudinal current at the central
office from a known distribution of open -circuit longitudinal voltage
at the telephone set.

I. INTRODUCTION

The problem of computing the steady-state response of a multicon-
ductor system has received considerable attention in the literature.
Carson and Hoyt1 developed the classical transmission line equations
and S. 0. Rice2 developed the mathematical techniques necessary for
their solution. Even so, the complexities introduced by a large number
of conductors tend to limit the amount of basic understanding of fun-
damental problems, such as the effects of longitudinal induction and
longitudinal -to -metallic conversion, that can be obtained by pursuing
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the multiconductor problem. Moreover, a large number of conductors
are necessarily described by a large number of parameters upon which
there is often a paucity of data.

We present an in-depth analysis of the steady-state response of a
well-balanced wire pair to distributed interference. This simplification
of the general problem enables the analysis to continue beyond the for-
mal solution to develop both an intuitive feel for the problem and a
simple model for use in engineering applications. The effect of other pairs
can be approximated in the one -pair model by a judicious choice of model

parameters.
Historically, the primary emphasis has been on characterizing the

longitudinal and metallic voltage at the subscriber's telephone set be-
cause of the impact of these voltages on the quality of the communica-
tion's path.6,7 More recently, the use of electronic loop terminating
equipment has generated interest in the longitudinal current at the
central office. This study was motivated by the need to characterize the
longitudinal current at the central office and to better understand the
roles that the terminal and wire pair imbalances play in longitudinal -
to -metallic conversion.

II. SUMMARY OF RESULTS

We begin with the classical transmission line equations which define
the steady-state response of the wire pair when excited by a distributed
impressed voltage. A transformation to the longitudinal and metallic
voltages and currents is employed to study, the longitudinal and metallic
circuits defined by the wire pair. We show that if the wire pair and its
terminations are "well-balanced," then the longitudinal circuit (Lc) can
be studied independently of the metallic circuit (mc). The MC is then
excited by the longitudinal voltage and current acting through the wire
pair and terminal unbalances. The unbalances admit the following in-
terpretations: (i) longitudinal current flowing through the distributed
impedance unbalance of the wire pair can be represented as a distributed
series voltage generator in the MC, (ii) longitudinal voltage across the
distributed admittance unbalance of the wire pair can be represented
as a distributed shunt current generator in the MC, and (iii) longitudinal
current through a discrete impedance unbalance in a termination can
be represented as a discrete voltage generator in the termination for the
MC.

The response of the LC is studied in some detail. Discrete parameter
circuits are defined which have the same terminal response as the dis-
tributed parameter LC. These equivalent circuits are studied under an
electrically short assumption, yielding simple expressions for their ter-
minal response. The electrically short assumption enables the distributed
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02

impressed voltage to be represented by only two parameters, the total
impressed voltage and the center of impressed voltage. These parameters
are analogous to the total mass and center of mass of thin filament or
wire. Finally, an analysis of the LC defined by a subscriber loop excited
by a nearby power distribution system is used to derive a relationship
between the short-circuit longitudinal current at the central office and
the open -circuit longitudinal voltage at the telephone set. This rela-
tionship is used to estimate the distribution of short-circuit longitudinal
current at the central office from the known distribution of open -circuit
longitudinal voltage at the telephone set.

III. BASIC EQUATIONS

3.1 Transmission line equations

The transmission line equations for a wire pair in a cable excited by
a distributed impressed voltage acting as a fixed radian frequency are

v1(x) = -z1(x)ii(x) z12i2(x) + E1(x)

ii(x) = -[Yi(x) + Yidvi(x) Y12v2(x) (1)

v'2(x) = -z2(x)i2(x) - z12i1(x) + E2(x)

i2(X) = -[Y2(X) Y12]V2(X) Y12v1(x). (2)

Boundary conditions, discussed in Section 3.2, are determined from
terminations at the ends (x = 0 and £) of the wire pair. The above
equations are essentially Rice's2 eqs. (1.1) and (1.2) except for our
notation which is motivated by the incremental circuit model of Fig. 1.
Notice that three types of unbalances are possible at x; an impedance
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unbalance [zi(x) # z2(x)J, an admittance unbalance [y 1(x) y(x)] and
an unbalance in the impressed voltage [(1(x) E2(x)].

The metallic and longitudinal voltages and currents are defined as
follows:

v(x) = vi(x) - v2(x) = metallic voltage

i(x) = -1 [ii(x) - i2(x)] = metallic current
2

1
vg(x) = -2 [vi(x) + v2(x)] = longitudinal voltage

(3)

ig(x) = ii(x) + i2(x) = longitudinal current. (4)

Transforming the transmission line equations [eqs. (1) and (2)] to the
metallic and longitudinal voltages and currents yields

v'(x) = -zi(x) + oz(x)ig(x) + 6,(x)

i'(x) = -yv(x) + by(x)vg(x) (5)

vig(x) = -zgig(x) + Sz(x)i(x) + fg(X)

11(X) -yeg(X) Sy(x)v(x). (6)

The parameters of eqs. (5) and (6) are defined in terms of the parameters
of eqs. (1) and (2) and Fig. 1 as follows: The impedances in ohms per unit
length are

Z = z1(x) z2(x) 2z12

1
Zg =

4-
[zi(x) + z2(x) + 2z12]

Oz = -1 [z2(x) - zi(x)]. (7)
2

The admittances in mhos per unit length are

1

Y = -4 iYi(x) +312(x)] +Y12

Yg =311(x) 312(x)

Sy(x) = -2 [312(x) - Yi(x)].

The impressed voltages in volts per unit length are

cg(x) =
2
-1 [E1(x) + E2(x)]

6,(x) = E1(x) E2(x).
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V2

i2

x = 0, Q

Fig. 2-Termination circuit model.

i

2

Only the unbalances, which now appear explicitly, and the impressed
voltages remain x -dependent; all other parameters are assumed uni-
form.

3.2 Boundary conditions

The boundary conditions necessary to determine a particular solution
to eqs. (1) and (2), or equivalently eqs. (5) and (6), are determined from
the terminations at the ends of the wire pair. Consider the canonical
passive -symmetric termination of Fig. 2. The boundary conditions for
the voltages and currents relative to ground are

vi = -"iii. - '12i2

V2 = --2i2 - .1.2ii (10)

Transforming to the metallic and longitudinal voltages and currents [eqs.
(3) and (4)] yields

V = -0: + A iig

Vg = - .,g.ig + ,6qi.

(11)

(12)

The parameters of eqs. (11) and (12) are defined in terms of the pa-
rameters of eq. (10) and Fig. 2 as follows:

= 1+ +212
1

=
4-

(-1 + -2'12)

6q = -2 G2 - -1.). (13)
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Fig. 3-Longitudinal circuit model.
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3.3 Longitudinal and metallic circuits

The metallic and longitudinal voltages and currents supported by a
wire pair are determined by eqs. (5) and (6) together with boundary
conditions of the type given in eqs. (11) and (12) at the ends of the wire
pair. Notice that if the wire pair and its terminations are perfectly bal-
anced, then the metallic voltage and current are identically zero. Hence
it follows by continuity3 that if the wire pair and its terminations are
well-balanced (i.e., the unbalances are small relative to their associated
longitudinal parameters*), then the metallicvoltage and current are
small relative to the longitudinal voltage and current.

Under a well-balanced assumption, the second -order terms in eqs. (6)
and (12) can be neglected, leaving

vg(x) = -zgig(x) + fg(x)

ig(x) = -ygvg(x) (14)

with boundary conditions of the form

vg (15)

Notice that the longitudinal voltage and current can be assumed inde-
pendent of both the metallic voltage and current and the system unba-
lances. Moreover, the circuit models of Fig. 3 which represent the above
equations define the LC.

Now assume that vg (x) and ig(x) are known in eqs. (5) and (11). Then
the metallic voltage and current satisfy

v'(x) = -zi(x) + E(x)

i'(x) = -yv(x) + E(x)

with boundary conditions of the form

(16)

* Cable pairs have an average resistance unbalance of 2 percent and an average capac-
itance unbalance to ground of 0.5 percent.
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where

x4), 2

Fig. 4-Metallic circuit model.

v = - - + A iig (17)

E(x) = oz(x)ig(x) + 6,(x)

E(x) = by(x)vg(x). (18)

are all known. The circuit models in Fig. 4 represent the above equations
and define the MC. Note that the x -dependence of the wire pair unba-
lances pose no analytical problems since they appear in the forcing
functions E(x) and E(x). Moreover, superposition can be applied to yield
a decomposition of the metallic voltage and current as a sum of terms
due to each unbalance acting separately.

Let us summarize our results. A well-balanced wire pair with well-
balanced terminations defines a longitudinal and a metallic circuit. The
LC can be assumed independent of the MC. The MC is excited by the
longitudinal voltage and current acting through the wire pair and ter-
minal unbalances which can be interpreted as follows: longitudinal
current ig (x) following through the distributed impedance unbalance
of the wire pair Sz (x) can be represented as a distributed series voltage
generator bz (x )ig (x) in the Mc, longitudinal voltage vg (x) across the
distributed admittance unbalance of the wire pair by (x) can be repre-
sented as a distributed shunt current generator Sy (x) vg(X) in the MC,
and longitudinal current ig flowing through the discrete impedance
unbalance Si- in a termination can be represented as a discrete voltage
generator 46qig in the termination for the MC. Finally, superposition can
be applied to yield a decomposition of the metallic voltage and current
as a sum of terms due to each unbalance acting separately. The equations
describing the LC and MC, since they have constant coefficients, are
amenable to standard techniques3 which are applied to analyze the LC
in the next section.
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IV. LONGITUDINAL CIRCUIT ANALYSIS

4.1 Discrete -parameter equivalent circuits

Equation (14) describing the response of the LC defined by a well-
balanced wire pair is conveniently represented as a forced linear sys-
tem,

vg (x )1, r 0 zgi vg (. )] r Eg (X ) 1

L ig(x) Ly, o L ig (x) L o

The boundary conditions defined by the longitudinal impedances d and
of the well-balanced terminations at the ends (x = 0 and i) of the wire

pair are, from eq. (15),

vg (0) = -dig(0)

vg (.e) =

The solution of eq. (19) is of the form

EvIg(i(1=4)g(e)[vig((0°))14-5: Dg(i [EgO(E)l]

(19)

(20)

(21)

Since the LC is assumed uniform (i.e., zg and yg are independent of x),
the transition matrix of the LC, 4g (E), can be expressed in terms of the
characteristic impedance kg = -Vzglyg and propagation constant yg =
Vzgyg of the LC,

-ygE
cl3g(E) =

1-
k

sinh
g

-kg sinh ygE
cosh ygE

(22)

Substituting the boundary conditions [eq. (20)] and the above expression
for (NW in eq. (21) yields after some manipulation

[d
cosh ygi + kg sinh -ygi -t; 1 i ig (o) i

g° sinh yge + kg cosh -ygi -kg i Lig(i)]

Eg ( ) cosh lig (i - OcIE
. (23)

Eg ( ) sinh -yg(.e - E)dE

The formal solution of eq. (23) for ig (0) and i g &) is of the form

ig - Eg
+ Zg
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il

x=0 x=Q

Fig. 5-Discrete-parameter longitudinal circuit models.

vg(12)

where Eg is the longitudinal source and Zg is the longitudinal impedance
seen looking into the LC from one end, terminated in at the other end.
These quantities define two discrete parameter circuits (see Fig. 5) which
have the same terminal response as the distributed parameter circuit
of Fig. 3.

General expressions for Eg and Zg at each end of the LC are given
below:

.i'

SO e
Eg (E) [ Cosh 'yg (i - E) + -8- sinh -yg(i - Ed d

E(,)- g

L)cosh -ygi + T1 sinh 7g i
Ng

(25)

e
E (k) [ cosh 'yg + --g- sinh -ygE] A

Pe

Egt - (26)e,
g

cosh yg.e + sinh -ygi
kg

''' + kg tank yg.eZ = g (27)g
I'1 + -g- tanh 7 i

kg g

Li

',_,,, °8_+ kg tanh 7gi
(28)

1+ -g-L. tanh 7ge
Hg

These expressions simplify if the LC is terminated in its characteristic
impedance, kg. For example, setting = kg in eqs. (25) and (27)
yields

e
E? = f Eg(E)e-"YgEdE

Z: = kg. (29)
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Note that the voltage impressed furthest from x = 0 suffers the most
attenuation as one would intuitively expect.

4.2 The electrically short longitudinal circuit

An LC is electrically short if its electrical length, I y1, is small. This
is typically the case when the source of impressed voltage is a nearby
power distribution system. If I -ygi I is small, then the hyperbolic func-
tions can be approximated by the first terms of their power series ex-
pansions; sinh -ygi z -yge, cosh -ygi P.-- 1, and tanh -=- -yge. These
approximations when substituted into eqs. (25)-(28) yield approxima-
tions of the longitudinal source and longitudinal impedance,

E° -El + 717)

1 +

+
g= 1 + dyge

2o zgi
g 1 + egygi

d + zgi
+ vi)ygi, 

The quantities E and . are defined as the total impressed voltage,

E = Eg (E)dt

and the center of impressed voltage,

= E J tEg (t)dt.

(30)

(31)

(32)

(33)

(34)

(35)

These definitions have a physical intrepretation if the impressed
voltage is a real valued and nonnegative function. In this case, E 0 and
0  5-e and the center of impressed voltage can be interpreted as that
point along the LC where the impressed voltage may be concentrated
without changing the terminal response of the LC. Hence a particular
E and  define a class of equivalent impressed voltages whose canonical
representative is a point source of strength E based at £. These concepts
have their mechanical analogs in the total mass and the center of mass
of a thin filament or wire. Recall that the center of mass is that point
along the wire where the total mass may be concentrated while preserving
moments about the ends of the wire. In our case, the center of impressed
voltage is that point along the LC where the impressed voltage may be
concentrated while preserving the response at the ends of the LC.
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V. ENGINEERING APPLICATION

5.1 The longitudinal response of an electrically short subscriber loop

The most common LC is a subscriber loop excited by a nearby power
distribution system. This circuit is typically electrically short at the
fundamental frequency of the impressed voltage (60 Hz). Longitudinally,
a subscriber loop has a low impedance termination at the central office
by virtue of the battery supply circuit, and essentially an open -circuit
termination at the telephone set, assuming single -party or isolated ringer
service. Consequently, the longitudinal quantities of primary interest
are the short-circuit current at the central office, Ig, and the open -circuit
voltage at the telephone set, Vg.

We now derive a simple relationship between these two fundamental
quantities. To begin, Ig can be expressed as

po
/g 2o= --g- (36)

g

where E: and 2g are given for an arbitrary d in eqs. (30) and (32). Letting
---.. a, in these equations yields

4 _
E(i - .e)

e

2 1o =
g iYg

Substitution of these results into eq. (36) yields

.ig = Eyg(e --E).

Similarly, Vg can be expressed as

Vg = Pg'

(37)

(38)

(39)

(40)

where E: is given in eq. (31) for an arbitrary ''':). Setting ?4) = 0 yields

Vg = E. (41)

Hence Ig and Vg satisfy

Ig = vgyg(e - i).

The link between Vg and Ig is the center of exposure, .i.

(42)

5.2 Estimating Vg

Historically, emphasis has been placed on characterizing the open -
circuit longitudinal voltage at the telephone set because it can be con-
verted to an interfering metallic voltage ( V) across the telephone set if
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unbalances are present in the loop.? The historical measure of loop
balances is

BAL = 20 log 1

V
-11 dB.
V

(43)

The balance of the loop determines the amount of longitudinal voltage
that will be converted to metallic voltage by the loop unbalances. This
can be expressed mathematically as

N = Ng - BAL. (44)

The metallic circuit noise (N) and the longitudinal circuit noise (Ng,
usually called noise to ground) are defined as

N = 20 log 1-V
V

dBrn (45)
R

Ng = 20 log 11177:1 dBrn. (46)

The reference noise (dBrn) voltage is 24.5µV which corresponds to 1 pW
across a 600 1 resistor. The commonly used 3 -type noise measuring set
attenuates a longitudinal noise measurement by 40 dB. Hence 40 dB
must be added to a measured value to obtain Ng in dBrn.

The distributions of noise and loop balance for Bell System loops were
determined in 1964 as part of the General Loop Survey of physical and
transmission characteristics of the loop plant.4 Noise measurements were
made on 1100 randomly selected loops during normal working hours at
the subscriber's telephone set using both 3 -kHz flat and C -message
frequency weighting. C -message weighting approximates the frequency
response of the telephone set and the human ear, and 3 -kHz flat -
weighting assigns equal weight to all frequencies in the 0 to 3 kHz band.
Since the primary interferer on subscriber loops is a nearby power dis-
tribution system with a fundamental frequency of 60 Hz, a 3 -kHz flat
measurement is dominated by the 60 -Hz component. Hence the rms
voltage corresponding to Ng measured with 3 -kHz flat weighting is es-
sentially 60 Hz. The distribution of this voltage over the 1100 loops is
shown in Fig. 6. The maximum voltage was 18 V. Ninety-nine percent
of the loops had a measured voltage of less than 11 V. The average voltage
was 1.5 V with a standard deviation of 2.1 V.

5.3 Estimating 19

The range of longitudinal current at the central office affects both the
operation of existing loop terminating equipment and the design of new
equipment. In this section, we estimate the distribution of longitudinal
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Fig. 6-Distribution of open -circuit rms longitudinal voltage at the telephone set (1964
General Loop Survey).

current using the distribution of longitudinal voltages and loop lengths
determined as part of the 1964 General Loop Survey.

The basic equation [eq. (42)] relating 1g and Vg can be expressed in
the form

lig I = I vgiIYg- ite). (47)

The ratio is a measure of where the exposure is centered along the
loop. If the exposure is centered at the subscriber (.e/.e = 1), then the
short-circuit current at the central office is zero. Conversely, the current
is maximum if the exposure is centered over the central office (ele = 0).
In this case,

max 141 = I vg I lYgli

Equation (47) can be used to estimate the distribution of 11g I from
the distributions of I Vg I (see Fig. 6) and e (see Fig. 2 of Ref. 4) and an
assumed value of £/. The admittance of the longitudinal circuit is pri-
marily capacitive at 0.17 µF per mi. Distributions of lig I at 60 Hz for
= 0, 0.5, and 0.9 are shown in Fig. 7. In the worst -case condition of /
= 0, the maximum current is 12 mA. Ninety-nine percent of all loops had
a current of less than 4 mA. The average current was 0.3 mA with a
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Fig. 7-Estimated distributions of short-circuit 60 -Hz longitudinal current at the central
office (1964 General Loop Survey).

standard deviation of 0.9 mA. If the exposures are centered at the mid-
points of the loops = 0.5), then the above currents are reduced by
a factor of 2. If the exposures are centered near the subscriber (i/i = 0.9),
then the above currents are reduced by a factor of 10, i.e., the maximum
current reduces to 1.2 mA and the average current reduces to 0.03
mA.

5.4 Estimating ite

The estimated distribution of the short-circuit longitudinal current
at the central office is very sensitive to where the exposures are centered
along the loops. An estimate of ite can be made from simultaneous
measurements of 11g I and I Vg I using another form of eq. (47),

= 1 - ig . (48)
iYgii

A limited number of near -simultaneous measurements were made as
part of the co Strata Survey described in Ref. 5. Single near -simulta-
neous measurements of I/g I and I Vg I at 60 Hz were made during normal
working hours for each of the 47 test loops. These data were not discussed
in Ref. 5 but were made available to us by. D. N. Heirman. The ratio ete
was calculated for each test loop using eq. (48). The distribution of the
calculated values over the 47 loops is shown in Fig. 8. All exposures were
centered beyond the midpoints of the loops. The average value of
was 0.88. Hence the exposure of the average loop was centered at almost
90 percent of the loop length. These results are intuitively pleasing since
the worst exposures (long aerial parallels with single-phase) are indeed
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Fig. 8-Distribution of ile at 60 Hz (Central Office Strata Survey).

over the far ends of the loops. If this distribution of i'te is representative,
then the worst case condition is not Vi = 0 but .L/.L = 0.5. In this case
(see Fig. 7), the maximum current at 60 Hz. is 6 mA, 99 percent of all
loops had a current of less than 2 mA and the average current was 0.15
mA.

5.5 Use of the data

The data presented in this section are based on one-time measure-
ments made during normal working hours as part of the 1964 General
Loop Survey. The demand for commercial power has doubled since 1964,
and one would expect the induced voltages to have increased as a result.
In addition, recent surveys5 have shown that time -of -day variation in
60 -Hz induction is likely to be 2 to 1. In residential areas in particular,
the induction is likely to be higher in the evening than during the day
when the 1964 measurements were made. For these reasons, the reader
is cautioned to use the data presented in this section with care.
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An Inversion Technique for the Laplace
Transform with Application to Approximation

By D. L. JAGERMAN

(Manuscript received July 26, 1977)

Properties of a sequence of positive operators defined by the Widder
Laplace inversion formula are studied in order to obtain practical
methods for the inversion of the Laplace transform, practical error
formulae, and useful approximations to given functions. The approx-
imation procedure retains essential structural characteristics of the
original function, e.g., nonnegativity, monotonicity, and convexity.
Thus a distribution function is approximated by distribution functions.
Enhancement techniques are provided for the improvement of accuracy
for a given order of approximation. The methods are illustrated by
applications to renewal theory and to the covariance and recovery
functions of telephone traffic theory.

I. INTRODUCTION

The Laplace transform occurs frequently in investigations of queueing
theory and telephone traffic models in which it usually represents a
probability distribution function. Although the mean and variance of
the distribution can be readily obtained from the transform, there are
many investigations in which the distribution itself is needed; in par-
ticular, good analytic and numerical approximations for the comple-
mentary distribution when the argument is large. This is the case, for
example, when studying waiting times of queues, time delays of work
through a computer system, and delays ofmessage progress through data
networks.

Numerical methods which have been made thus far16-18 concentrate
on accurate numerical approximation on some interval [0, T], the diffi-
culty of accurate inversion increasing with increasing T. Methods de-
pending on Gauss-Legendre quadrature applied to the defining Laplace
integral with subsequent interpolation are discussed in Ref. 19. These
methods require the solution of large order linear systems whose matrices
are severely ill -conditioned; thus they can bog down in meaningless
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calculations. Much ingenuity has been used in specific cases to circum-
vent this problem. Asymptotic formulae may sometimes be used to ap-
proximate the complementary distribution for large argument; however,
in many practical cases, good accuracy was obtained only when the
argument was so large that the corresponding probabilities were toosmall
to be of practical significance. One of the methods of this paper, namely,
the a enhancement procedure, specifically attacks this problem by im-
itating the exponential decay of the original in [T, co] while simulta-
neously providing accurate approximation in [0, T]. The transition region
is sufficiently well approximated for most practical uses.

The well-known Laplace inversion formula of Widder"3 has not been
actively used in practical work. It has been the experience of the author
that an investigation of the Widder formula qua functional transfor-
mation can provide useful practical techniques for inversion and also
inequalities and limit relations between the approximations and the
original function. Accordingly, it is the object of this paper to study the
properties of a sequence of positive operators defined by the Widder
formula in order to obtain practical methods for Laplace inversion,
practical error formulae, and useful approximations to given functions.

In II the Widder inversion formula is obtained and a sequence of
positive operators, L, which form the subject of the paper, are intro-
duced. The L,, map a function f(t)(t 0) to a sequence of functions fn(t)
= Lf which converge uniformly on [0, co] to f(t). This viewpoint enables
one to study the approximation characteristics of the sequence f,,(t), thus
providing a means of approximating a given At) besides effecting the
inversion of its Laplace transform,f(s). Several representations are given
for fn(t) in terms of f(t).

In III properties of the sequence [fn WI are developed whichshow that
it possesses many desirable characteristics. In many applications it is
preferable that the approximating functions globally imitate the original
function in qualitative structural features rather than to the attainment
of very high numerical accuracy. Thus if the original function lies be-
tween zero and one, is monotone decreasing, and is convex, then these
same properties would be desired in the approximation. It is shown that
the approximating sequence, Vn (Oh does retain those properties. A re-
cursion relation for fn+i(t) in terms of fn (t), and a generating function
for the sequence are also given, thus making the computation of higher
approximations possibly more convenient than the direct application
of the representation formulae themselves. A useful feature of the fn (t)
is that, when f(t) is convex, they satisfy fn (t) f(t).

Part IV develops error bounds and pointwise error estimates. The
results in terms of f(t) reflect the use of the technique for approximation;
on the other hand, the pointwise estimate of error in terms of fn (t) is
especially useful for the inversion problem since then f(t) is not available.
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It is also shown that the successive approximations f 0(t), fi(t), f 2(t), .

are uniformly better for each t if f(t) 0.

In practical use the initial member of the sequence, fo(t), is not an
accurate approximation to f (t) for t not in the neighborhoods of zero and
infinity. Additionally the sequence If n(t)1 does not converge rapidly in
n. Consequently one must go far out in the sequence to obtain adequate
accuracy. Part V treats this problem. A modification, fn,a(t), of fn (t) is
introduced depending on a parameter a for which, by appropriate choice
of a, f o,a(t) is a much improved approximation to f (t) than fo(t); the
rapidity of convergence of the sequence Vn,a WI is not improved over that
of the unmodified sequence. However, it has been found that good ac-
curacy is obtained by use of fo,a(t) or fi,a (t) as is demonstrated in the
examples on covariance and recovery functions given in this paper.

In many applications, especially to complementary distribution
functions, the behavior of f (t) for large t must be accurately reproduced.
The approximations fn,a (t) accomplish this especially when a is related
to the decrement of an exponential majorant. For functions which are
exponentially small at infinity, the fn (t) do not adequately reproduce
the decay of f (t).

Many of the desirable features of the original method are still retained
by this modification. The concept of convexity with exponent a is in-
troduced which allows the transference of the inequality fn (t) f (t) to
fn,a(t) f (t). A criterion is given for deciding convexity with exponent
a in terms of the transform, 1(s).

The degree of precision concept is applied to the approximation se-
quence in order to obtain a modified sequence, sn (t), which converges
more rapidly. For sufficiently smooth functions this method is successful.
The approximation sn (t) consists of a linear combination of fo(t), . . ,

f n(t) or of fo,,(t), . , f n,a(t) and hence is easily applied. Its efficacy is
demonstrated in the examples of this paper. Unfortunately the im-
provement in rapidity of convergence is so strong that the map from f (t)
to sn (t) is no longer positive, consequently many of the desirable struc-
tural preservation properties of the Ln are lost in favor of greater nu-
merical accuracy.

An attempt is made to enhance the rapidity of convergence of Ifn (t)1
while simultaneously retaining the positivity of the map. This is ac-
complished by the construction of a new sequence, hn (t), which is also
a linear combination of fo(t), fn (t). As is to be expected, however,
the improvement is not as great as is realized with the sequence sn (t).

The pointwise error estimate developed in Part IV may be used as a
correction device on In (t) or fn,(t) to improve further the accuracy of
computation. This, however, in the absence of an error estimate for the
modification, must rely on one's understanding of the specific problem
for ascertaining the reasonableness of the result.
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An application of the methods of this paper to the renewal functions
in the theory of renewal processes is made in Part VI. The remarkable
accuracy of the simplest of the approximations fo(t), fi(t) is notewor-
thy.

Part VII presents applications of the techniques to the covariance and
recovery functions of Erlang blocking models used in telephone traffic
theory.11 For the covariance function, the initial approximation, fo,« (t),
is excellent; however, in the case of the recovery function it was found
that fo,a(t), fi,a(t) might not be considered sufficiently accurate, ac-
cordingly the linear combination, si(t), was used. This provided suffi-
cient enhancement of accuracy.

The generating function, G(z,t), for the fn(t) can sometimes be used
to obtain an explicit construction of the sequence. Some examples of this
nature are treated in Part VIII.

Applications of the methods herein have been made to the comple-
mentary distributions of waiting time in M/G/1 queues. Also B. W. Stuck
and E. Arthurs have successfully applied these techniques to the study
of models of computer systems.

There are questions of an exclusively mathematical character which
have not been touched upon, e.g., a semigroup interpretation and satu-
ration phenomena. It is felt that these would be outside the essentially
practical thrust of the paper. For some theorems which are applicable
to the operators of this paper see Ref. 5.

A short table of operations on f(t) and their corresponding maps under
Ln is included to facilitate application of these methods to the con-
struction of approximations.

II. WIDDER INVERSION-REPRESENTATIONS

Let the transform 7(s),

-f(s) = 5 e-suf(u)du (1)

exist for s > 0, then

(-1)n
Sn+11(n)(S) -

sn-1-1 .
e-suunf(u)du

n! n! Jo

in which

i(n)(s)= cci ,zi(s)-

(2)

(3)

The function (sn+1/n!)e-suun is a probability density function on (0,
c) for s > 0, n __ 0 whose mean is (n + 1)/s and variance (n + 1)/s2. When
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s = (n + 1)/t, the mean and variance are t and t2/(n + 1) respectively.
One has:'

Theorem 1 (Widder). Let the transform, 1(s), of f(t) exist fors > 0, let
f(t) be continuous at t and bounded on [0, co], then

(-1)n
liM sn+11(n)

n

(s) 1 = f(t).
-.... n! s=(n+1)1t

The convergence is uniform in every finite closed interval throughout
which f(t) is continuous.

Proof. Korovkin's theorem on sequences of positive functionals.2

The inversion theorem, in the above form, had already been stated
by Feller3 who used the law of large numbers to effect the proof. It is the
purpose of this paper to study the transformation

(-1)n- s n+11(n)(s)
1

n! s=(n+1)/t
(4)

so that fn may be effectively used as an approximation to f. The repre-
sentation of fn directly in terms of f is obtainable from (2); thus,

-in(t) = fogn(t, u)f(u)du (5)

(n + 1)n+le-[(n+1)/tjuun
gna, u) - n > 0. (6)n!ta+1

Alternative forms which will be found useful are:

fn (t) = n -Ft 5: t//(n, (n + 1)7) f(u)du (7)

in(t) = (n + 1) fc,- 1,1/(n, (n + 1)u)f(tu)du (8)

ax
Igx, a) = e -a (9)I' (x + 1)

in which 4/(x, a) is the Poisson probability distribution,

fn(t) Mn
(ut) el:

(n + 1)n+1
Mn (X) = e-(n+1)/xx -n-1

n
in which the representation is by means of convolution on the half line

(10)
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(Mellin convolution), and

gn (n) = Kn (Oen -

(n) =
(n + 1)"+1. e-(n+1)71.--(n+1)e-q

n!

t = en, u = et, f(t) = g(77), fn(t) = gn (77)

in which the representation is by means of convolution on thewhole real
line (Fourier convolution).

The conditions of Theorem 1 are relaxed below.

Theorem 2. Let the transform, 1(s), of f(t) exist for s > c, let f(t) be
continuous at t and let f(t) = 0(ect)(t cc.); then,

lim fn(t) = fit).

The convergence is uniform in every finite closed interval throughout
which At) is continuous.

Proof. The representation (5) may be written as follows:

(n + 1)n+1 r- e-Rn-m+1)/tiuune-mitu
n!tn+1

f(u)du. (15)

For all t in some finite closed interval, m may be chosen so that

e-cm/ouf(u) = 13(1)(u co)

hence Korovkin's theorem is again applicable and the conclusions fol-
low.

III. PROPERTIES OF I (t)

Jensen's theorem applied to (5) proves.
Theorem 3. f(t) is convex on (0, 03)

fit) fn(t), t > 0, n > 0.

The value of an approximation method is greatly enhanced when the
approximating function preserves the shape of the original and coincides
closely with its behavior in the neighborhoods of zero and infinity.
Theorems 4, 5, 6 establish the desired properties.

Theorem 4. a < At) b = a fn(t) b; a, b arbitrary real.

Proof. Direct evaluation shows that
Lnf = f, f = a + f3t. (16)
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The positivity of Ln implies

f Sb=Lnf ._ Lb = bLn1 = b. (17)

Similarly for the lower bound.

The derivatives of fn(t) may be related to those of f(t) through use of
(8); thus

Theorem 5. Let f(r)(t) be continuous and 0(ect)(t -.- co), then there is
an m so that Ail (t) exists and is continuous for n m and

CO

fir) (t) = (n + 1) 5 4/(n, (n + 1)u)urf(r)(tu)du.
o

One may set m = 0 if f(r)(t) = 0(1)(t -÷ co).

Proof. For m sufficiently large, the integral of the theorem converges
uniformly in t; hence the representation (8) may be differentiated under
the integral sign r times. If f (NO is bounded then m = 0 is a permissible
choice since one still has uniform convergence.

Corollary 1. Pr) 0 Ar) > 0, n > m.

Proof. This follows from the positivity of the kernel.

The above corollary implies that if f has a continuous derivative and
is monotone then fn is monotone, and if f has a continuous second de-
rivative and is convex then fn is convex. A stronger structural result will
be obtained in Theorem 6. One also has that if f is completely or abso-
lutely monotonic then fn is completely or absolutely monotonic re-
spectively.

Corollary 2. f;,r)(0+) = Xn,rf(r)(0+ ), n > m,

I' (n + r + 1)
Xn,r - .

On + 1)r
In particular

fn(0+) = f(0+)

1n(0+) = 1(0+)

n m

n > m.

Proof. Define Xn,r by

Xn,r = (n + 1) 50 -Ili ( n , (n + 1)u)urdu

then evaluation of the integral yields the formula stated. Since the op-
erator is bounded, the limit statements follow. Also one has Xn,0 = Xn,1
= 1.
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Corollary 3. Let f(r)(co) < co; then

fn°3) = Xn,ri(r)(c°) n > 0

In particular

fn(-) = f())
in(-) = I(-)

n>_0,

n>_0.

Proof. Dominated convergence allows the interchange of limit and in-
tegral.

The following concepts will be needed to establish further structural
properties.

For an arbitrary sequence in (- (30, 0.), < t1, t2, , te < co, the
number of changes of sign is called the variation of the sequence and will
be indicated by v(ti, t2, . . . , te); thus

v(3, -1, 0, 2, -2) = 3

v(1, 2, 4, 6) = 0.

(18)

(19)

One sets v(0, 0, . . . , 0) = -1. Let f(t) be defined on (0, 0.), and let 0 < t1
< t2 < . . . < te < co be an arbitrary, ordered sequence in (0, 03), the
quantity sup v(f(ti), f(t2), . . , f(te)), in which the supremum is taken
over all sequences, i.e., for all choices of (t1, t2, . . . , te) and for all 1,

is called the variation of f and will be indicated by v (f). A transformation
L on a given class of f will be called variation diminishing if and only if
v(Lf) S v(f) for every fin its domain. The definition used here is adopted
from Hirschman and Widder.4

Let 4)(n) be a frequency function on (-co, 0.), that is,

o(n) 0, f 4)(n)dn = 1 (20)

and let

iks) = e-snO(n)dn. (21)

Define E(s) by

E(s) = (22)

Then a theorem of Schoenberg4 states that the transformation

Tg = 0(E)g(n - EWE gEBC(-03, 0.) (23)
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is variation diminishing if and only if

E(s) = e-cs2+bs rj (1 _ _s ) es/ak
k ak

C 0, b, ak real, E 1/4 < co.
k

(24)

The designation gEBC (-cc , co) means that g(n) is bounded and contin-
uous on (-co, co). It may be observed that the mean of 4) is b and the
variance

is

2C + E 1/4
k

The Laplace transform of Kn (n) (13),

kn(s) = _m
e-sq<",,(n)dn

r (n + s + 1)
kn(s) n! (n + 1)s

(25)

(26)

This may be written in the following forms

F(1 + s) fit /1
k

(27)
(n + 1)s k=i k /

gn(s)-1 = es,, fl 0 + Ile) e-s/k (28)
k=n+1

1
Vn = ln (n + 1) + 7 - E 7 (29)

i=1 j

in which -y = 0.5772157 is Euler's constant. Thus by Schoenberg's the-
orem, the transformation Trig = gn, gEBC(-co, co ), defined in (12) is
variation diminishing. The mean and variance of Kn are respectively tin
as given above, and al, given by

2 n 1
2 70-n = - - E (30)

6 j=1 j2

Since the map t = ell is monotone, the following theorem has been es-
tablished.

Theorem 6. The transformation Ln defined on fEBC(0, cc) is variation
diminishing, i.e.,

v(fn) < v(f).

Corollary. fn does not cross any straight line more often than f. In par -
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ticular, if f is monotone then fn is monotone, and if f or -f is convex then
fn or - f n is convex.

Proof. From (16) and Theorem 6,

v(Ln (f -a - flt)) = v(Lnf -a - fit) v(f -a - fit). (31)

Clearly f is monotone ,:=> v(f - a) S 1 for arbitrary a, and for -f is convex
a v(f -a - 13t) S 2 for arbitrary a, 13.

It is clear from (8) that the approximating sequence to f(at)(a > 0)
is fn (at); this may be expressed in a more illuminating way as follows.
Define the operator A by

Af(t) = f(at) a > 0 (32)

then A and Ln commute; thus

LnAf = ALnf (33)

Hence the eigenfunctions of A, which are tr, are also the eigenfunctions
of Ln. In fact one easily obtains

Lntr = Xnxtr, r 0, n > 0. (34)

It may be observed that if Ln is defined by (8) instead of by (4) then (34)
remains valid even for r < 0 provided n is large enough.

Other operations with the same eigenfunctions will also commute with
Ln. Of importance in discussing the convergence of fl,r)(t) is the opera-
tor

0 t -d
dt

(35)

One has

Theorem 7. The operators Ln (n ?_ 0), 0 commute; thus

Ln(Orf) = Orin.

It is assumed that the rth derivative of f exists and is continuous on (0,
co.

Proof. It is observed that the eigenfunctions of 0 are tr; alternatively the
result follows directly from (8).

Corollary. Proceeding inductively, one can now establish that if Pr) is
continuous and 0(e ct)(t co) then

lim Ar) = Pr)
nom

In addition to shape preserving properties, another way of assessing
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the adequacy of an approximation process is by comparison of moments;
the rth moment of f (t) is here taken to be f (7 trf (t)dt . The Mellin
transform, f (s), given by

-1(s) = fo is-lf(t)dt (36)

is the appropriate tool. Since the transform of Mn(s), eq. (11), is

Mn( s)
(n + 1)sF(n - s + 1)

one has from (10)

n!

(n + 1)sF(n -s + 1)
f n(s) - f (s).

n!

(37)

(38)

For the following, it is convenient to use the factorial symbol

n(°) = 1, n (r) = n(n - 1) . . . (n - r + 1), r > 0 (integral). (39)

The following theorem may now be stated.

Theorem 8. Let the rth moment of f(t) exist (r ?._ 0, integral); then the
rth moment of fn (0 exists for n > r and one has

S-
f r (t)dt - trf (t)dt .

O

t
n

(n + 1)r+1
n (r+1) o

Special cases arer + 1
f (t)dt n > 1 (40)f n (t)dt =

n

n o

.10- tfn(t)dt = (n + 1)2
n(n - 1) 5 - tf(t)dt n > 2. (41)

When f (7t-lf(t)dt exists, an interesting special case of (38) occurs for
s = 0; thus

so
CO 03

t-lfn(t)dt = 50 t-lf(t)dt. (42)

Formulae (40), (41) may be used to ensure equality of moments. Thus
if it is required that the zeroth order moments agree, then, according to
(40), one may use as the approximating sequence nfn(t)1(n + 1). If the
zeroth and first moments are to agree simultaneously, one may use a
linear combination of f (t) and fin (t), for example, 3/2f3(t) - 2/3/2(t).

Another set of moment relations may be obtained from (7) involving
sums of fn((n + 1)t). These are given in
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Theorem 9. Let the rth absolute moment of f(t) exist; then
. .
E nolfn((n + 1)t) = t-r-1 f urf(u)du.

n=0 0

Proof. One has
CO

E n(r)0(n, a) = ar
n=0

and, from (7),

(43)

-f n ((n + 1)t) = t-1 So11/ (n, -ut) f(u)du. (44)

Multiplication of both sides of (44) by n(r) and summing, the result
follows on interchanging summation and integration. Dominated con-
vergence justifies the interchange.

Another property of fn (t) as a function of n is given in:

Theorem 10. Let f(t) 0 on (0, co), 0(ect)(t -> 0, ), then there is an m so
that

in+i(t) lc e-1 (n + 2\ n+2

n + if in(t), t ?.: 0, n > m.

Proof. Since

(n + 2)0(n + 1, (n + 2)u) = ue-u (n + 1)0(n, (n + 1)u)
in + 2 n+2
kn + 1

(45)

one may write

fni-i(t) = (n + 1) 10- 1,1/(n, (n + 1)u)ue-u C
+
+ 2) n+2f(tu)du.

n 1

(46)

Observing that ue-u 5 e-1, the inequality follows.

Corollary. f(t) 0
f n (t)

1
is monotone decreasing in n for all t 0, n

n
> m.

Proof. One has

fn-F1(t) fn(t) tn + 2r+1.
n + 2 n + 1 kn + 1/
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The result follows since

e-1
(n + 2\ n+1
n + 1/

A stronger monotonicity property of fn (t) is stated in Theorem 21.
A useful recurrence relation allowing one to compute the members

of the sequence fn (t) successively starting with fo(t) is given in the fol-
lowing theorem.

Theorem 11.

2n

+ 1 t
2n

+ 1
t +n

+ 2I
t ) , n ?.: 0, t O.

k

Proof. Define in (s) by

in (s) = (-1)n sn+11(n)(s)
n!

then, by (4),

fn(t) = in (s)
s= (n -1-1)/t

One has

(49)

(50)

ds -1n(s) = (n + 1)/n(s) - (n + 1)/n+i(s) (51)
ds

pp
1 d

in+i(s) = in(s) s i (s).
n + 1 ds

in

Thus

(52)

ds
)s

s=(n+2)/t
(n

1
-d ifrt+i(t) = [ /n(s)

n + 1
s

]
(53)

The recurrence relation is now obtained on performing the substitution
for s.

A useful alternative method of presenting the structure of the entire
sequence ifnr, in terms of fo is by means of a generating function. This
is given in the theorem below.

Theorem 12. f(t) is bounded on (0, op)

-
znfn((n + 1)t) =

1 -1 z fo (1 t Z)no
The series is convergent for I z I <1 and analytically continuable in the
half plane Re z < 1.
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Proof. The formula follows from (7) after interchange of summation and
integration. The series is clearly convergent for I z f < 1 while dominated
convergence justifies the interchange for Re z < 1.

The case r = 0 of Theorem 9 provides the following corollary.

Corollary.

1
f(t)(L(0, 03) = lim f = t-1 f(u)du.

z-i- 1 -z 1-z/
The Mellin transform, 1(s), of f(t) may be directly obtained from its

Laplace transform, 7(s), by use, for example, of (38) for n = 0; thus

j(s) fo(s)
F(1 - s)

Accordingly one may now write (38) in the form

(n + 1)sF(n + 1 - s) -
in (s) - fo(s) (55)

n!F(1 - s)

or, equivalently,

(54)

fn(s) = (n + 1)s (n 5) fo(s). (56)

At times (55) or (56) provides a convenient alternative to Theorems 11
and 12 when fn(t) is required as a function of n.

The range of applicability of the Jensen inequality of Theorem 3 may
be extended by use of Mellin or Fourier convolution. A sequenceffn(t) n0
will be called an approximation sequence if there is an f(t) so that fn (t)
= Lnf(t). Let * designate Mellin convolution; then

Theorem 13. fn *g is the approximation sequence for f *g.

Proof. One has

Ln(f*g) = Mnfg = Lnfg (57)

thus,

Ln(f*g) = (Lnf).g = fn*g.

The converse of Theorem 3 is also true.

(58)

Theorem 14. fn(t) f(t) for all n 0, t 0, f(t) is bounded on (0, co)
f(t) is convex on (0, co).

Proof. The result follows from Theorem 8 of Karlin and Ziegler.5

Corollary. f convex on (0, 03), g 0 on (0, co) f *g convex on (0, co).
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Proof. One has from Theorem 3

fn f (59)

and, since g 0,

fn *g f *g. (60)

Since, by Theorem 13, In *g is the approximation sequence to f*g, ap-
plication of Theorem 14 proves the corollary.

It may be observed that the inequality of (60) remains valid when *
is interpreted as Fourier convolution although, in this case, f n *g is not
the approximation sequence for f *g.

Another set of convexity results may be obtained from (8) by consid-
ering logarithmic convexity.

Theorem 15. If f(t) is log -convex on t 0, then fn(t) is log -convex for
n > 0, t > 0.

Proof. Equation (8) and the additivity of log -convex functions.6

Further one may state the following inequalities.

Theorem 16. If f(t) is log -convex on t 0 then

f(t) eLnenf(t) < fn(t).

Proof. The inequality on the left follows from Theorem 3 applied to
enf(t); the one on the right is a consequence of the geometric mean -
arithmetic mean inequality.

IV. ERROR ESTIMATION

Error estimates take different forms depending on the class of func-
tions for which they are intended and whether or not they are bounds
or pointwise estimates. From a practical point of view the pointwise es-
timate is the most useful provided it may be easily evaluated in terms
of the approximation itself. The next three theorems provide error
bounds for different function classes; the fourth theorem provides an
approximate formula for the pointwise evaluation of error, while (112)
does the same but in terms of fn(t). The error of approximation, En (t in)
is defined by

En(tO -fn(t) -f(t)
Theorem 17. Let f(t) be continuous on (0, co); then

I En 401 < -Vrit+ 1stu>Po
If(t)l.

(61)
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Proof. One has

-En(q) = So gn(t, u)If(u) - f(t)friu (62)

I En(t;fli 5- fogn(t, u)li(u) - f(t)Idu (63)

iErz(t01 <suP If(t)I gn(t, u)Iu - tldu (64)
t>o

1E71401 5- sup If(t)I gn(t, u)(u - t)2du (65)
t>o

1E/2401 < suPlf(t)1.
-Vn + 1 t>o

(66)

The last inequality follows because the mean and variance of gn (t, u)
are t and t2/(n + 1) respectively.

Theorem 18. Let 1(t) be continuous on (0, co); then

2

I fn(t;f) I 5.
t

p 11(t) I.2n + 2
sup

Proof. The Taylor expansion of f(u) about t has the form

f(u) = f(t) + (t - u)1(t) + (t - u)21(E) (67)

in which E lies between t and u. Thus

1 t2
En(tO -

2 n + 1
f(E), 00,03). (68)

The inequality of the theorem now follows.
The next theorem provides an error bound which is uniform for t([0,

co]. For this purpose the absolute first moment of Kn(n) (13), an, is
needed; thus

an = f Kn(n)kldn. (69)

Theorem 19. Let t(t) be continuous on (0, co), then

I En(4)1 <an sup I ti(t)l.
t>0

Proof. One has from (12)

En (en;f) = Kn (n - t)(g(t) - g(n)frIE (70)
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I En (en;f)1 < sup 1001  5 .Kn(77 - E)In - EIdE (71)
-co <n<o)

I En (t ,f) I < an sup I ti(t)1.
t>o

Corollary. The convergence of f n(t) to f(t) (n -- co) is uniform for tc[0,
co].

Proof. It is necessary to show that

lira an = 0.
n-.....

The expression for an (69) is rewritten as follows

an = Pn EK(On+11711(171 (72)

1 in + 1\ n+1 l -n -e -nPn = ,K(n) = e.
n! \ e i

Use of the power series expansion for e -n yields

(73)

r

an '''' Pn e-t(n+1)121,72inidn
2 in + 1\n.

(74)s-- = en! e 1

Stirling's formula now shows that

_ 2

anti rn (75)

Some numerical values of an are ao = 1.0160, a1 = 0.6388, a2 = 0.5006,
a3 = 0.4247, a4 = 0.3751, a5 = 0.3396, as = 0.3126, a7 = 0.2911; the as-
ymptotic formula (75) is sufficiently accurate for n > 7.

To continue the study of fn (t;/), it is useful to obtain an explicit for-
mula of Peano type, that is an integral transform of f .

Let

x÷ = x x ?_ 0 (76)

= 0 x < 0 (77)

then the Taylor expansion of f(t) with remainder is

f(t) = f(0) + "(0)t + 5: (t - v)+I(v)dv. (78)

From (5) and (16), one has

f n(t) = f(0) + 1(0)t + 50- l(v)dv 5- gn(t, u)(u - v)du. (79)
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Thus

En(t,f) = En(t, v)f(v)dv (80)

En(t, v) = gn(t, v)(u - v)du - (t - v)+. (81)

The kernel En(t, v) (the Peano kernel for error representation) is,
clearly,

En(t, v) = Ln(t - v)+ - (t - v) -E. (82)

The explicit evaluation of the kernel may be most simply carried out by
means of (24) since the Laplace transform of (t - v)+ is e -s v Is 2. Let

n xi
Sn(x) = E (83)

i=o

and

then
4(a) = e-(n+l)a[Sn((n + 1)a) - aSn-i((n + 1)a)] (84)

Ln(t - v) -F = n(a) a = vlt

En(t, v) = t[in(a) - (1 - a) -d

In particular, one has

Eo(t, v) = to-ot - (t - v)+

E1(t, v) = (t + v)e- 2vit (t - v)±.

(85)

(86)

(87)

(88)

Since (t - v)+ is a convex function oft for each v, (82) and Theorem
3 establish

En(t, v) 0 for all t 0, v 0. (89)

The moments of the kernel, En(t, v), may be obtained by substituting
the functions f(t) = tr (r 2) into (80), and using (34) and (61) for
evaluation of En (t;t r), the following is obtained:

vrE (t v)dvXn,r+2 - 1
n = (r + 1)(r + 2)

In particular

tri- 2 r O. (90)

r
(t

t 2 1JE v)dv -o - 2 n + 1
r - t3 3n + 5

nJ vE (t' -v)dv
o - 6 (n + 1)2

One may now obtain an approximate evaluation of En (t;f).
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Theorem 20. Let f(t) be continuous on (0, co) and 0(ect)(t -> co ); then
there is an m so that

t2 - ( 3n + 5
fn(t,f) t--

2n + 2
f t

3n +3 ) '
n m;

also if 1(t) is convex, then the approximation is a lower bound.

Proof. The one point Gaussian quadrature formula for f(TEn(t, v)f(v)dv
is of the form Af (a) in which the constants, A, a, are determined by re-
quiring the quadrature to be exact for all linear functions. Use of (91),
(92) now yields the formula of the theorem. The inequality follows from
the nonnegativity of En(t, v) (89) and Jensen's inequality.

Since by the Corollary to Theorem 7, In (t) approximates At), in
practice the required value of f(t) is approximated either from the an-
alytic form of fn (t) or numerically from a table or curve already com-
puted for fn(t).

At this point another property of the sequence ffn(t)V, can be
proved.

Theorem 21. Let At) ?_ 0, continuous on (0, co), and 0(ect)(t -> co); then
there is an m so that

f n+i(t) < fn(t) for all t L- 0, n L- m.

Proof. Clearly the monotonic decreasing character of fn(t) as a function
of n will hold if En (t; f) has the same property. The nonnegativity of f (t)
and (80) shows that the result is implied if En(t, v) is monotonically
decreasing in n; in turn, by (86), this will follow if in (a) is monotonically
decreasing in n for each a _>_. 0. From (84), by direct calculation,

Let

then, from (94),

da
4(a) = _e-(n+i).sn ((n + 1)a)

d2 (n + 1)n+1
dal fl' - n!

hn(a) = in -1(a) - in(a) n 1

(93)

(94)

(95)

d2

dal
d2

hula)
= rn (a) dal in-1(a)(96)

rn(a) = 1 - \(1 + lriae-a. (97)
n
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It is clear from (94) that the sign of

d2
hn(a)

dal
is the same as that of rn (a). There exist two points 0 < ao(n) < a1(n) with
the following properties:

rn (a) ?_ 0 0_<a ao(n) (98)

rn(a) < 0 ao(n) < a < ai(n) (99)

rn(a) 0 a ai(n). (100)

Since

it follows that

4(0) = 1' dancl- i (0) = -1, n>_0

hn(0) = 0, --
da

hn (0) = 0, n 1.

(101)

(102)

One has the following integral representations for hn (a):

hn(a) = .1
a db f

b d
rn(c) -do en-1(c)dc, (103)

Jo o

d
hn (a) = fa - db l:cc' rn (c) -dc2 4n-1(c)dc. (104)

Thus (98) and (103) imply

hn (a) 0 0 a :5 ao(n); (105)

similarly (100) and (104) imply

hn(a) 0 a al(n). (106)

The function hn (a) cannot be negative in (ao(n), ai(n)) since then it
would have at least one local minimum; however, (99) shows that in
(ao(n), ai(n))

d2
hn(a) < 0

da 2
which is a contradiction. Thus

hn (a) 0, a 0, n L- 1 (107)

and the theorem is proved.

It is possible to estimate conveniently En(tO directly from fn (t) ifin (t)
and fn (t) are readily obtainable, at least possibly numerically from values
of fn (t). From (38) one has
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f(s) = Mn(s)-1fn(s). (108)

Expansion of r (n + 1 - s) into a power series ins and substitution into
(37) provides the following series

Q2 + iln2
ri

Mn(S) = 1+ PnS +
2

S2 + ... (109)

Fin (S)-1 = 1 - PO + li'i
2
-4 s2 + (110)

Thus

cr - Pn
in (4) = [ vnS + n S2 + -in (111)

En (t;f) ''''' -VnOfn (0
is,,,i p2

+ n 02fn(t). (112)
2

To facilitate the use of (112) some values of the coefficients are given
in Table I.

The following readily obtained asymptotic formulas may be used for
values of n beyond the table:

1 1
on

s*--
+

2(n + 1) 12(n + 1)2

1 12an ' '''' n + 1
+

2(n + 1)2

an - vn2

.,:-

1 1
--

2 2(n + 1')
+

8(n + 1)2

(113)

V. ENHANCEMENT OF ACCURACY

The excellent behavior of the operator Ln in constructing approxi-
mations to a given f(t) which preserve its structural properties and its
limiting values and which provide inequalities exacts a penalty in the
form of slow convergence. A high value of n is required to attain high

Table I - Coefficients
it Pri cr, (an - 4)/2
0 0.5772 1.6449 0.6559
1 0.2704 0.6449 0.2859
2 0.1758 0.3949 0.1820
3 0.1302 0.2838 0.1334
4 0.1033 0.2213 0.1053
5 0.0856 0.1813 0.0870
6 0.0731 0.1535 0.0741
7 0.0638 0.1331 0.0645
8 0.0566 0.1175 0.0572
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numerical accuracy. In many practical problems, fortunately, very high
accuracy is not needed; notwithstanding, the value of n required may
still be inconveniently high. Considering that one starts with the Laplace
transform, 7(s), of f(t) and uses (4), or constructs fo(t) and uses the re-
cursion of Theorem 11, a high value of n implies obtaining a corre-
spondingly high order of derivative of 7(s) or of fo(t) which can be a
time-consuming operation. Thus it would be useful to modify the basic
approximation, 14 while still preserving many of its original charac-
teristics so that the accuracy for a given value of n may be increased.

In many cases the transform, 7(s), has the property that for some a
> 0,7(s - a) converges for s > 0. This property is used to construct a new
approximation, fn,a(t), defined by

fn,a(t) = e'Ln(eatf(t)) (114)

and, correspondingly, a new operator

Ln,at. = fn,a (115)

The following theorem permits the construction of fn,a(t) directly from
fn(t).

Theorem 22.

fn,a(t) -
1 at \n+1 fn(

1

e -at

\ n + 1i n + 1

Proof. From (5) and (6), one has

-
(n + 1)n+1 c° e -Rni-1)104.- nil-

n!tn+1 0
u iku)du (116)

Thus

Lnfl

t

L (eatf) -
(n + 1)n+1 '3 e_Rn+1)/t]u+auuni(u)du. (117)

n
n!tn+1-

1

1-atArt+1)

at \n+1 (n + 1)n+1 r- -[(n-Fivt].+..unf(u)du. (118)
n + 1/ n!tn+1- Jo

Comparison of (118) with (117) shows that

Ln(eatf) -
1

fn
at \ n+1

n + 1)

hence, the result follows from (114).

t

1
n + 1

at

690 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978

(119)



The approximations fn,(t) satisfy theorems similar to those proved
for f(t); however, modifications are required. Only Theorem 3 will be
discussed. A function f(t) will be said to be convex over an interval with
exponent a if and only if eat f(t) is convex over the same interval.

Theorem 23. If f(t) is convex on (0, co) with exponent a then

f(t) < fn,a(t).

Proof. One has from Theorem 3,
eat f(t)ik ) Ln(ecaf(t)). (120)

The result now follows from the nonvanishing of eat and (114).
The error of approximation by fn,a(t) will be designated En,a(t;f) and

defined by

En,a(tI) = fn,a(t) - f(t). (121)

Clearly

En,a(t;f) = e-atn(t;eatn (122)

also, if the condition of Theorem 21 is satisfied, one has

En,a(t,f) 0. (123)

One of the useful aspects of the approximation, fn,a(t), is that it more
accurately reflects the asymptotic behavior of f(t)(t -> co) than fn(t) does
for a given value of n. In the later applications this will be an important
characteristic.

Clearly, ordinary convexity corresponds to convexity with exponent
zero; however, the following theorem relates convexity with exponent
a to log -convexity.

Theorem 24. Let 1(0 be continuous on some interval I; then f(t) is log -

convex on I if and only if it is convex with exponent a on I for all a.

Proof. One has

en (eatf(t)) = at + enf(t) (124)

hence eatf(t) is convex with exponent a on I for all a if f(t) is log -convex
on I. The derivative condition for convexity with exponent a on I is

1(t) + 24(t) + a2f(t) ?_- 0 on I

and the derivative condition for log -convexity on I is

f(t)f(t) - f(t)2 _>_ 0 on I.

The choice

(125)

(126)
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a = -f(t)If (t) (127)

which is always possible since f(t) > 0 on I, in (125) verifies (126).

Convexity with exponent a and, hence, by Theorem 24, log -convexity
may be decided by means of the Laplace transform and the use of the
Hausdorff-Bernstein theorem.?

Theorem 25. Let f(t) be continuous on (0, co), then f(t) is convex with
exponent a on (0, co) if and only if

(s a)2 (S) - (s 2a)f(0+) - /(0-F)

is completely monotonic in s on (0, co) and is absolutely convergent on
s > 0.

Proof. The expression cited is the Laplace transform of

2e -at
dt 2

(eatf (0)

whose nonnegativity is the necessary and sufficient condition for con-
vexity of f(t) with exponent a. The Hausdorff-Bernstein theorem now
completes the proof.

It may be observed that the quantities f(0+), f(0+) are obtainable
from

lim sl(s) = f(0+)
s -co

lim isq(s) - sf (0-01 = /(0+).
st

(128)

(129)

Another method of enhancement is related to the concept of "degree
of precision." An approximation operator T, i.e., Tf f, in which the
functions tr, suitably restricted to an appropriate interval (r 0, inte-
gral), are in its domain, is said to have degree of precision k if Ttr = tr
for 0 r < k and Ttr tr for r = k + 1. Thus the singular operators Lr,
studied here have degree of precision one.

The enhancement method consists of the following: coefficients bi (0
j < k - 1) are determined by the moment conditions

k -1
E oiLj(tr) = tr 0 < r < k (130)

j=o

and, accordingly, the linear combination
k -1

S k -i(t) = E SAW (131)
j=o

is now taken to approximate f(t). Clearly the map from f to sk_i has
degree of precision k, however, unfortunately, it is not positive. If f is
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sufficiently smooth there will result a significant improvement in ac-
curacy over the use of fk_ I alone. The system (130) may be expressed
in terms of An, as follows

k-1
E bixj,r =1 1 < r < k. (132)

j=0

Accordingly special cases of (131) are

Si= -10 + 2f1 (133)

1
s2 =2 fo 4fi + -2f2- (134)

A method of enhancement consisting of a linear combination of the
fn(t) similar to (131) which, however, retains the positivity of the map
will now be constructed. The accuracy attained will usually not be as
great as that of (131) for a given set of values Ifj(t)}8. The new sequence
will be designated hn(t) and is defined by

Define Wn (u) by

hn(t) = PAM.
j=0

(135)

Wn(u) = pi(j + 1)tji(j, (j + 1)u) (136)
j=0

then the coefficients, pi, are constrained by

Theorem 26.

E j = 1, Wn(u) 0 for all u O. (137)
j=0

n f)

i
Ihn(t) ROI t sup lic(t)1 E

1/2

t>0 J--oi +1

Proof. From (8), one has

hn(t) = Wn(u)f(tu)du. (138)

Also, from (137),

hence

g n(u)du = 1 (139)

hn(t) - f(t) = Wn(u)[f(tu) -f (t)Jdu. (140)
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The nonnegativity of W (u) now permits the following inequality

Ihn(t) - f foce 14 n(u)lf (tu) - f (t)idu, (141)

hence,

Ihn(t) -f(t)1 < t sup ii(t)1 Wn(u)lu - 1 Idu. (142)
t>o o

The Cauchy -Schwartz inequality applied to (142) yields

ihn(t) - f(t)I < t sup VW I { Wn(u)(u - 1)2du1112. (143)
t>o

Evaluation of the integral in (143) provides the inequality of the theo-
rem.

Consider the sum, S, defined by

S (144)

the pi must be chosen
of (137). One has

=
j=oj + 1

then, in order to obtain the best approximation,
to minimize S besides satisfying the conditions

ni+1
(145)euWn(U) = E pie-juuj.

j=0 j !

Let

z = el-uu

then the constraint of (137) may be written
n (j + 1)j+1

0 z < 1.

(146)

(147)e-jpizj 0
j=0 j!

Define the polynomials P(x) by (147) with z = (x + 1)/2; then one
has

and

P(x) = En xi
nE (k + 1)k+1 k

[ ) (2e)-Nrik] (148)
j=o k=j k!

P(x) >_0 -1 < x < 1. (149)

The cosine polynomial P(cos 0) is now obtained and written in the
Fourier form

P(cos 61) =-1 + ai cos j0
2 j=-1
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in which the aj are obtained from

1 r
a .1  = - P(cos 0) cos Oa. (151)

7 cf-7r

The nonnegativity of P(cos 0) implies the following representation8

P(cos 0) = th(0)12

h(0) = xo + xiei° + . . . + xnein°

in which the coefficients x0, . . . , ocn are real; thus

(152)

(153)

n -j
ai = 2 E xvx,+1 0 j -. n. (154)

v= o

When (154) is solved for the pi in terms of xo, . . . , xn, the problem of
minimizing S subject to p0+ . . . + pn = 1 becomes that of minimizing
a quadratic form relative to another quadratic form.

The optimum pi have been obtained for the case n = 2; the result is

h2(t) = 0.146993f0(t) - 0.944260f1(t) + 1.797267f2(t) (155)

with S = 0.273952. Thus, from Theorem 26,

Ih2(t) - f(t)I 0.523404t sup 1/(t)1.
t>o

(156)

The estimate of (n(t;f) in (112) may be effectively used to reduce error.
One may take as an approximation to f(t) the following

0.2 v2
f(t) -'z--,' fn(t) + vnOfn(t) n

2
n 02fn(t). (157)

In order to improve fn,. (t), the approximate calculation of En,a(tO
proceeds by use of (122). The practical use of (112), (157) uses difference
quotients to evaluate Ofn(t), 02fn(t) from the values already obtained
for fn(t). Thus, let h > 0 be the distance between consecutive values of
t for which fn (t) is calculated; then

Ofn(t) t
fn(t + h)

2h
fn(t - h)

(158)

02fn(t) ofn(t) + t2frz(t + h) - 2f n(t) + fn(t - h)
(159)

h2

The following comment should prove useful in reduction of error. If
a function g(t) is known which approximates f(t), for example, the
leading term of an asymptotic expansion for f(t), then one may use

At) ,-, g(t) + Ln(f - g). (160)
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Evidently an appropriate g(t) should always be sought before con-
structing practical approximations to f (t).

VI. THE RENEWAL FUNCTION

In this section some of the preceding theory will be applied to ob-
taining approximations for the renewal function, M(t), of a renewal
stream.9 Let A (t), with A (0+) = 0, be the interarrival time distribution
and A (s), given by

A(s).re-stdA(t) (161)
o

its Laplace-Stieltjes transform, then

M(s) -1
A(s)

(162)
s 1 - A(s)

The sequence of approximations, WO, may now be constructed
from

1

(1/t)Mo(t) =1 -A- - 1. (163)

In particular one has

in which

is,

...1

1
2 A (21t)

(164)
1 - A(2/t) t [1 - A(2/0[2

A' (s) = -dsA(s). (165)

Let X be the arrival rate, and a2 the variance of interarrival time, that

X-1 = 5 tdA(t)
0

a2= t2dA(o_x-2
0

(166)

(167)

then evaluation of the contribution of la (s) at s = 0 provides the
term

At ±0.2x2
_ 1

2

Thus one may introduce a new function, f (t), by

M(t) = At +
0.2x2 _ 1

+ f(t)
2
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with
M1/t) a2x2 ___ 1

f0(t) = 1 - A(1/t) 2
- Xt (170)

Since linear functions are invariants of the operators Ln, there is no re-
duction of error when approximating f(t) by fn(t) over approximating
M(t) by Mn (t); however, often f(t) is exponentially dominated and the
enhancement technique of Theorem 22 is applicable.

The following example will be considered:

Thus,

A(t) = erf 02 A(s) =

R(s) - 1
1

s .V1 + 2s - 1

1

Molt) =
V 1 + 2/t - 1

1

V1 + 2s
(171)

(172)

(173)

1 2 1
MAO . . (174)

V1 + 4/t - 1
+

t V1 + 4/t(V1 + 4/t - 1)2
Since X = 1, a2 = 2, one has

M(t) = t + -1+ fit)
2

1 2 1

fi(t). t - -1
Vi + 4It -1+ t v,1+ 4It(Vi + 4It - 1)2 2.

(175)

The a transformation of Theorem 22 may be applied to /1(0. As-
suming fi(t) to be ultimately of one sign, the singularity farthest to the
right of 7(s), namely -1/2, coincides with the abscissa of convergence;
hence, a = 1/2. Table II compares the approximations for M(t) given by
Mi(t), the enhancement procedure of (133), and t + 1/2 + fi,i/2(t) with
more accurate values obtained from the exact solution

co 1 rt/2
Imo= E

1 Jo
e -uu n-1/2du. (176)

=0 ...

2)1

Since M(t) r -z-- t + 1/2(t -a- co), the accuracy increases with increasing
t. This is characteristic of the applications to the renewal function.

An example will now be considered in which the interarrival time
distribution is a mixture of exponentials since this is of frequent practical
use. Accordingly let
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Table II - Comparison of approximations

t Milt) silt) t + -
1
- + fu(t) M(t)

0 0 0 0 0
0.5 0.83333 0.85764 0.84297 0.86007
1 1.39443 1.42283 1.41014 1.42466
2 2.44338 2.47255 2.46303 2.47161
5 5.48142 5.50480 5.49568 5.49718

10 10.49350 10.50977 10.49980 10.49989

Then,

Also one has

A(t) = 1- 7-e -t - -3 e -2t
10 10

(177)

7 1 6 1
(178)A(s)=

10 s+ 1+10s + 2
1 20 + 13sR(s) - (179)

S2 17 + 10s

M(t) = -20t + -21+ f(t) (180)17 289

210 1
(181)f°(t)

289 17t + 10
=

Application of Theorem 12 provides

840 1
(182)

2890 2(17t + 20)
fl(t) _

=
5.67 X

105

1

289 (17t + 30)3
(183)

The exact solution for this simple example is

20 21M(t) = -t +
289

(1 - e-(17/1o)t)
17

(184)

Table III compares calculations from M2(t) and the enhancement pro-
cedures of (134) and (155) with the exact value. The a enhancement
procedure with a = 1.7 was not used because it produces the exact re-
sult.

This example shows the operation of the enhancement procedures (134)
and (155); clearly, s2(t) is very accurate since the constraint of positivity
of the approximation operators is discarded in its construction.
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Table Ill - Comparison of calculations
M2(t) s2(t ) h2(t) M(t).

0 0 0 0 0
0.5 0.62652 0.62967 0.62712 0.62984
1 1.23024 1.23559 1.23127 1.23586
2 2.41812 2.42353 2.41913 2.42318
5 5.95373 5.95595 5.95407 5.95500

10 11.83713 11.83747 11.83710 11.83737

VII. THE COVARIANCE AND RECOVERY FUNCTIONS

The study of errors in switch count and continuous scan observational
methods in telephone traffic engineering is facilitated by use of the co-
variance function of the number of busy trunks in the Erlang blocking
system." Specifically let xt be the number of trunks busy at time t in
an equilibrium MIMIC blocking system with unit mean holding time
and offered load of a erlangs, then the covariance function, R(t), is

R(t) = E(xoxt) - (Ex0)2. (185)

In order to express the Laplace transform, ti(s), it is necessary to in-
troduce the Poisson-Charlier polynomialsilm3 which may be obtained
from

Gi(x, a) = E (-1)J-P (i) Accv (x) 
v=0

They satisfy the following recurrence

Gi+i(x, a) =x
- -a

Gj(x, a) - Gi_1(x, a)
a a

G0(x, a) = 1 Gi(x, a) = -x - 1.
a

Also needed is the function ai(x, a) given by

Gi_1(x, a)
oti(x, a) =

Gj(x, a)

which satisfies the first order recurrence

a)-1 =x -a - -j aj(x, a)
a a

(186)

(187)

(188)

(189)

1

ai(x, a) = (-x - 1)
a

The zeros of G; (x, a) are all positive and simple; in particular, the zeros
of Gj(-s - 1, a) as a function of s are designated ri and ordered by
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rj < < . . . <ri <0. (190)

In the approximation to be developed, r1 will be the dominant root.
The Erlang loss function,1° B(c, a), given by

ac/ E ai
B(c, a) = - -

c! J.0 j!

gives the probability that all servers are busy. In the formulae below it
will be designated simply by B. The mean number of servers busy,
is

µ = all - B) (191)

and the variance, o-2, of the number of busy servers is

(72 = A - a (c - OB. (192)

The Laplace transform, ii(s), and the covariance, R(t), arell
a2 + 112 ail acB

R(s) = +
1 + s s(1 + s) (1 + s)2

;12

s+ sa + s
acB

2
ac( -s -1, a) (193)

)

c a 2B 1kR(t) = E e kit = - H (1 - (194)
j=1 rjk1 + rj) ii \ rj - ri)

The approximation R0(t) is
+0.2 122 a Att n

R04) = + Pt`
1 + t 1 + t

acBt acBt 2 1

(1 + t)2
+

+ t)2
ac -t - 1, a) (195a)

Since the dominant root is r1 one may choose a satisfying 0 S a < - r1
to obtain

Ro,a(t) = 62e-atg(t)
1 + A21,2

g(t) -
1 + (1 - a)t

+
(1 - at)(1 + (1 - a)t)

m210.2 acBt/Q2
1 - at (1 + (1 - a)t)2

acBt2I o-2 1
ac (- + a- 1, a) (195b)

(1 - at)(1 + (1 - a)t)2 t

It is known that the zeros rj are separated by at least one so that 1 - 1/(rj
- ri) > 0, and hence Aj is positive for each j; thus R(t) is log -convex.
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Accordingly, the following inequality is valid (Theorem 23):

R(t) 5_ Ro,a(t). (196)

In order to facilitate the use of ROO an accurate upper bound for
r1 is needed to provide a suitable choice for a. Such a bound is available
in Ref. 12. Thus let

E
Cl1

-c(oct-v
v=1 P

c 1 v-11
In = £2 -2 E -c(v)a-. E -.

v=2 V j=1 J

then

(197)

(198)

c
r11(- 1. (199)

i + - /(c - 1)(cm -i 2)
To illustrate the practical performance of (195b) and (199), calcula-

tions were made for the cases a = 4, 8, 12 and c = 8 corresponding to
medium, heavy, and very heavy loads respectively. The corresponding
equilibrium blocking probabilities are B(8, 4) = 0.030420, B(8, 8) =
0.235570, B(8, 12) = 0.422655. Table IV compares the exact and ap-
proximate values. Figures 1(a), 1(b), and 1(c) compare the corresponding
curves.

Table IV - Comparison of

t
a = 4 a = 8 a = 12

R(t) Ro,a(t) R(t) Ro,a(t) T(t) Ro,a(t)

0 3.377 3.377 2.564 2.564 1.492 1.492
0.4 2.143 2.145 1.075 1.091 0.312 0.331
0.8 1.365 1.367 0.474 0.483 0.075 0.079
1.2 0.870 0.872 0.212 0.216 0.019 0.020
1.6 0.555 0.556 0.095 0.097 0.005 0.005
2.0 0.354 0.355 0.043 0.043 0.001 0.001
2.4 0.226 0.227 0.019 0.019
2.8 0.144 0.145 0.009 0.009
3.2 0.092 0.092 0.004 0.004
3.6 0.059 0.059 0.002 0.002
4.0 0.038 0.038 0.001 0.001

The quality of approximation of (199) may be seen from the following
values of a used in (195b) compared to the exact r1 values.

a -r1 a
4 1.1218 1.1215
8 2.0000 1.9730

12 3.4778 3.3415

The transition probabilities Pii(t)-the probability j trunks are busy
at time t given i trunks are busy at time zero -may all be obtained from

INVERSION TECHNIQUE FOR LAPLACE TRANSFORM 701



the transition probability P(t)11; this probability as a function of time
is called the recovery function. It may be used in a similar manner to the
covariance function, R(t), for the study of errors in scan measurement
techniques14; additionally it is especially important in the analysis of
telephone retrial models.

The Laplace transform, P(s), and the recovery function, P(t),
area

Pcc(s) = 1 + S-- ae (-s - 1, a)
s as

Pec(t) = B - i Bjerit
j=1

)
Bi = 1 1-1 (1

1

Ir -Ii.i r - rJ '

(200)

(201)

(202)

As for the covariance function, B = B(c, a), and rj(1 5. j S c) are the roots
of Ge (-s - 1, a) as a function of s.

In order to apply the a enhancement procedure, the function

f(t) = Pcc (t) - B (203)

is considered whose Laplace transform is

1(s) =
s
1 [ 1 +

a
c cxc(-s - 1, a)l (204)

It may be observed from (201) and (203) that f(t) is log -convex, hence
the approximations obtained will constitute upper bounds. In order to
demonstrate the operation of the approximations, the functions f0,(t),
f 1,a(t), and

si(t) = 2f LAO -f o,a(t) (205)

were constructed; they are

fo,a(t) = le -at
at a t

[1 -B + ac (- + a - 1, a)], (206)-
e -at

ii,a(t) = y a
1 -B + -c- ac (- - t2 + a - 1, a )]

a
2 i

e -at 2c ,

+ ac -t + a - 1, a) (207)

_ at

The prime on ae (x, a) indicates differentiation with respect to x. The

702 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1978



3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

O

=
 E

X
A

C
T

 S
O

LU
T

IO
N

O
 =

 Z
E

R
O

T
H

 O
R

D
E

R
 A

P
P

R
O

X
W

IT
H

 A
LP

H
A

N
U

M
B

E
R

 O
F

 T
R

U
N

K
S

 c
 =

 8
O

F
F

E
R

E
D

 L
O

A
D

 a
 =

 4
 E

R
LA

N
G

S

(a
)

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

2.
6

2.
4

2.
2

2.
0

1.
8

1.
6

1.
4

1.
2

1.
0

0.
8

0.
6

0.
4

0.
2 0

0

=
 E

X
A

C
T

 S
O

LU
T

IO
N

O
 =

 Z
E

R
O

T
H

 O
R

D
E

R
 A

P
P

R
O

X
W

IT
H

 A
LP

H
A

N
U

M
B

E
R

 O
F

 T
R

U
N

K
S

 c
 =

 8
O

F
F

E
R

E
D

 L
O

A
D

 a
 =

 8
 E

R
LA

N
G

S

(
b
)

1.
5

1.
4

D
 =

 E
X

A
C

T
 S

O
LU

T
IO

N
0 

=
 Z

E
R

O
T

H
 O

R
D

E
R

 A
P

P
R

O
X

1.
3

W
IT

H
 A

LP
H

A

N
U

M
B

E
R

 O
F

 T
R

U
N

K
S

 c
 =

 8
1.

2
O

F
F

E
R

E
D

 L
O

A
D

 a
 =

 1
2

E
R

LA
N

G
S

1.
1

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

f.

i
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4 
0

0

(c
)

Fi
g.

 1
 -

C
ov

ar
ia

nc
e 

fu
nc

tio
n.

0.
5

1.
0

1.
5

2.
0

2.
5

3 
0



following recurrence relation is obtained from (189);

aj+i(x, a) = -1 [jai' (x, a) - a)2
a

ai(x, a) = -
1
- ai(x, a)2.
a

(208)

Since si(t) does not correspond to a positive operator, it does not provide
a bound for P(t); one has, however,

Pcc(t) 5 B + fi,a(t) 5 B + fo,a(t). (209)

The first inequality follows from Theorem 23 and the second inequality
from Theorem 21.

The same cases as for the covariance function were treated. Tables
V, VI, and VII compare the exact and approximate values. Figures 2(a),
2(b), and 2(c) compare the corresponding curves.

Table V -a = 4
t Pcc(t) B fo,a(t) B fi,a(t) si(t)

0 1.0000 1.0000 1.0000 1.0000
0.1 0.5178 0.5907 0.5597 0.5287
0.2 0.3304 0.4280 0.3856 0.3432
0.3 0.2380 0.3335 0.2901 0.2468
0.4 0.1844 0.2703 0.2296 0.1889
0.5 0.1497 0.2249 0.1880 0.1511
0.6 0.1256 0.1907 0.1578 0.1248
0.7 0.1080 0.1641 0.1350 0.1059
0.8 0.0947 0.1429 0.1174 0.0918
0.9 0.0844 0.1258 0.1034 0.0810

1.0 0.0762 0.1118 0.0922 0.0726

Table VI -a = 8
Pcc(t) B + fo,a(t) B + ha(t) si(t)

0 1.0000 1.0000 1.0000 1.0000
0.1 0.5756 0.6335 0.6088 0.5842
0.2 0.4379 0.5005 0.4725 0.4445
0.3 0.3727 0.4256 0.4006 0.3756
0.4 0.3347 0.3770 0.3561 0.3352
0.5 0.3099 0.3432 0.3262 0.3092
0.6 0.2927 0.3187 0.3050 0.2913
0.7 0.2802 0.3005 0.2895 0.2786
0.8 0.2708 0.2866 0.2779 0.2692
0.9 0.2637 0.2760 0.2690 0.2621
1.0 0.2581 0.2677 0.2622 0.2567

This example will be used to show the operation of the error estimate
(112). Using the increment h = 0.1, (158) and (159) were used to obtain
o[eatfo,a(t)], 02[eatio,a,kt)] and O[eath,a(t)], 02[eatfi,a(t)] at t = 0.5.
Equation (122) was used to estimate co,a(t), fi,a(t). The error in si(t) was
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Table VII -a = 12
t Pc(t) B + fo,a(t) B + fi,a(t) silt)

o 1.0000 1.0000 1.0000 1.0000
0.1 0.6245 0.6679 0.6493 0.6307

0.2 0.5255 0.5629 0.5458 0.5286
0.3 0.4834 0.5097 0.4969 0.4840

0.4 0.4611 0.4789 0.4698 0.4607
0.5 0.4479 0.4598 0.4535 0.4472
0.6 0.4396 0.4476 0.4427 0.4378
0.7 0.4342 0.4396 0.4366 0.4336
0.8 0.4306 0.4342 0.4322 0.4301
0.9 0.4282 0.4306 0.4292 0.4278
1.0 0.4265 0.4281 0.4272 0.4262

estimated by 2ci,n(t) - eo,a(t) in which the estimates for co,a(t), el,(t)
were used. The results obtained are given in Table VIII.

Table VIII - Error estimates at t = 0.5
a (0,a Estimate El,a Estimate si -f Estimate

4 0.0752 0.0714 0.0383 0.0372 0.0014 0.0030
8 0.0333 0.0317 0.0163 0.0160 -0.0008 0.0002

12 0.0120 0.0113 0.0056 0.0001 -0.0007 -0.0111

VIII. SOME APPLICATIONS OF THEOREM 12

The generating function, which will be designated G(z, t), of Theorem
12, namely,

G(z, t) -
1

1

z kl
t

zi
\

(210)

may sometimes be used to obtain explicitly the form of fn(t). The fol-
lowing are some examples.

For f(t) = cos t, one has fat) = 1/(1 + t2), hence

G(z, t) =
1 -z (211)

(1 - z)2 + t2

The generating function for the Chebyshev polynomials, Tn(t), of first
kind isth

hence

1 - tz CO

- E Tn(t)zn (212)
1 - 2tz + z2 n.c.

0,

G(z, t) = E ell + t 2)-(n+ 1)/271n
1

n=0 IN/7-i-tli
One now obtains
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fn(t) = Ln cos t = [1 +
+ Tn[

J
1

+

For fit) = sin t, one has fo(t) = t/(1 + t2), hence

G(z, t) = (215)(1 - z)2 + t2
The generating function for the Chebyshev polynomials, Un (t), of second
kind is

1 CO

= E Un(t)zn (216)1 - 2tz + z2 n=o

hence

G(z, t) = E zn(1 + t2)-(n+1)/2tUn ( 1
n=0 -Vi + t2

Thus

fn(t) = Ln sin t
[1 t 21-(n+1)/2

n + 1 \n+1/ J

1

1+ t )2
n + 1

(217a)

(217b)

The Bessel functions provide additional interesting relations with
orthogonal polynomials. For f(t) = Jo(t), one has fo(t) = + t2 ,
and

1
G(z, t) =

-V(1 - z)2 + t2

The Legendre polynomials, Pn(t), are generated by

1

E Pn(t)zn,N/1 - 2tz + z2 n=o

hence

(218)

(219)

t \21--(n+1)/2 1
fn(t) = LnJo(t) = + 1/ j Pn

V 1 + (n 1)21
(220)
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By the substitution of it for t, one derives immediately
t

fn(t) = Ln10(t) = [ 1 -
n + 1

Pn [
t 2]

(221)
1

+1

Since .10(t) is convex, one also has

10(t) ..-5 Lnio(t) (222)

for sufficiently large n.
As another example relating to Bessel functions, consider f(t) =

Jo(2Vi), then fo(t) = e -t and

G(z, t) -
1e -t/(1 -z).

1 - z

The generating function for the Laguerre polynomials, Ln (t), is

hence

1 e-tz/(1-0 . E Ln(ozn1-z. n=0

(223)

(224)

fn (0 = Lne10(2-Vt) = e-t/(n+1)Ln ( tn

+ 11
(225)

IX. SUMMARY

The methods of this paper have been found particularly useful in
analyzing complex queueing phenomena whose Laplace transform
representations are quite often implicitly defined. The error estimate
of (112) has been found especially useful. Its computation is numerically
effected by use of (158) and (159).

It would be desirable to have an effective method of estimating the
a parameter of (114) directly from fn (t). In fact a method of this type
which yields a rough evaluation has been devised and will be reported
in a later paper. Of interest also would be further elaboration of the way
structural properties of f(t) are reflected in fn, (t).

The investigation of linear combinations of iterates, Ln, of the oper-
ators Ln may prove useful in providing additional enhancement methods.
Especially, further investigation is needed concerning enhancement
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methods which preserve the positivity of the approximation process.
The isolated result of Theorem 16, which shows that exp(Lninf (t))

is a better approximation to f(t) than fn (t) when f(t) is log-convex,
should be examined with the purpose of the possible construction of
nonlinear approximation methods exploiting this structural charac-
teristic.
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APPENDIX

Operations

f(t) fo(t) or f n(t)

f(t)

f(at), a > 0

eat f(t)

f (x)dx

f(t)

tf(t)
ti (t)

1 t

t
f(x)dx

f(t)*h(t)(Mellin)

rt dx
fo(x) -

t 0 x

fn(at)

(1 n + 1)

-n-1fn

t n j + 1\E fi tn+li.0 n+1)

t
1 - at/(n + 1))

fo(t) -
t t

f(0) n + 1
fn(t) fn_i (n n+ t)] (n 1)

fo(t) - 1(0) - ti (0)
, 4

f i(t) - 21. 0(t 12) + 1(0)
t2 t2

i n \ in - 1 t\
r." + 1 I + 1 I(n + 1)2

fn(t) - 2fn-i

tfo(t) + t2to(t)
tin (t)

-1
t
fn (x)dx

0

fn (t)*h(t)

t2
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Observations of Errors and Error Rates on T1
Digital Repeatered Lines
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Measurements of errors on T1 repeatered lines were made at five
Bell System offices during 1973 and 1974. They included an informal
survey of error rates and error -free seconds on lines in service, and
detailed recordings, normally of 24 hours duration on selected lines.
The detailed recordings show the existence of at least two distinct error
mechanisms, differing significantly in diurnal variation of error rate,
distribution of intervals between errors, and dependence on the
transmitted bit pattern. It was found that certain T1 lines made errors
when in service, driven by D1 channel banks, but not when driven by
a pseudorandom test signal.

I. INTRODUCTION

The T1 repeatered line is a short -haul digital transmission system
using cable pairs to transmit binary information at a rate of 1.544 X 106
bits per second.' T1 lines have been in use since 1962, primarily in con-
junction with D1 channel banks to provide a carrier system for voice
channels. In the design of the Ti line, the distribution of error rates was
an essential design parameter.2 However, since the field trial of an ex-
perimental prototype system, in which the error performance of one
worst -case repeatered line was briefly reported,* it has become clear that
more knowledge is needed on the subject of the error performance of
working T1 lines.

Measurements of timing jitter and errors on T1 lines were made at five
Bell System offices during 1973-74. The error measurements were of two
types: a survey of error rates and error -free seconds; and detailed re-
cordings of the error process, normally for 24 hours duration, on selected
T1 lines. The jitter measurements will be reported elsewhere.4

The survey consisted of error rate measurements (determined by

* See pp. 95-96, Ref. 3.
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counting bipolar violations on lines in service) on 2594 T1 lines, and
error -free seconds measurements on 1640 of these lines. The primary
purpose of the survey was to select particular lines, known to be making
errors, for detailed recordings of the error process. Such recordings were
made on 89 lines. However, many of these recordings showed few or no
errors. Recordings of 37 of these lines were analyzed to characterize the
following properties: diurnal variation of error rate, distribution of the
intervals between successive errors, and sensitivity to the pattern of bits
transmitted on the T1 line. Not all these properties could be analyzed
for every line; there are 22 lines for which all three properties have been
characterized.

Most of the lines in the survey were terminated with D1 channel banks;
some had D2 banks. All of the detailed recordings were made on lines
with D1 banks. Since the pulse stream format generated by a D1 channel
bank is different from that generated by other equipment (for example,
in regard to density of ones), some specific results of these measurements
are valid only for the D1 environment.

II. ERRORS AND THEIR MEASUREMENT

The digital format on the T1 line is bipolar: that is, the absence of a
pulse in any position represents a binary "zero," while a pulse of either
polarity represents a binary "one," and consecutive pulses, regardless
of the number of intervening zeros, have opposite polarity. The pulses
become attenuated and distorted in transmission along the cable pair
and are reconstructed by repeaters located at intervals of nominally 6000
feet along the line. An "error" is an incorrect reconstruction in any one
pulse position: a pulse where originally no pulse was sent, or a blank
where a pulse should be.

If one looks only at the presence or absence of pulses-the binary ones
and zeros-errors cannot be detected unless one knows what was sent.
But by looking at pulse polarity, one can detect violations of the bipolar
format: the occurrence of two consecutive pulses (with or without in-
tervening blank spaces) having the same polarity. Any single isolated
error-either the omission or insertion of one pulse-always results in
exactly one "bipolar violation" (BPV). On the other hand, multiple errors
can combine so that a bipolar violation does not occur, while the reversal
of the polarity of a pulse would create two bipolar violations without any
errors, and, in any case, the occurrence of a bipolar violation does not
define precisely where an error occurred or whether it was an insertion
or deletion. In practice, however, the rate of occurrence of bipolar vio-
lations is generally close to the error rate. Both are quoted as numbers
representing the ratio of the number of events (errors or bipolar viola-
tions) to the number of bits transmitted.
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Another measure of performance, "percent error -free seconds," is used
to specify objectives for the Digital Data System.5 To define percent
error -free seconds, the measurement period is divided into 1 -second
intervals from an arbitrary starting point, and the 1 -second intervals in
which errors occur-"error seconds"-are counted. In practice, this
count is estimated by counting the intervals in which bipolar violations
occur. The remaining intervals are "error -free seconds."

The surveys reported here were based on measurement of lines in
service, carrying pulse streams that were unknown to us (except that they
obeyed the constraints imposed by the D1 channel bank format).
Therefore, although the terms "error rate" and "error -free seconds" are
loosely used in referring to the results of the survey, all the survey results
and measurements are actually in terms of bipolar violations rather than
errors.

On the other hand, the detailed recordings of selected lines were
originally planned to record true errors on T1 lines removed from service
and carrying a known pseudorandom bit stream. As the program de-
veloped we also included recordings of bipolar violations on T1 lines
carrying unknown pulse streams from D1 channel banks. Therefore, in
referring to the detailed recordings, "errors" and "bipolar violations"
are not the same; these terms will be used more strictly in that context
than in referring to the survey results.

III. THE SURVEY OF ERROR RATE AND ERROR -FREE SECONDS

3.1 Survey procedure

The scope of the survey is summarized in Table I. The activity at the
first office visited was a pilot run for the rest of the program. The survey
activity at this office consisted of 1 -minute error counts using simple
bipolar violation counters. After the pilot project a device was built to
count bipolar violations for 54 -minute intervals on 16 lines at a time, in
conjunction with a PDP-11/20 computer (which was used primarily for
the jitter measurements and the detailed error recordings). This device
was used in the remaining four offices. After the survey at the second
office, the software was modified to obtain counts of error seconds con-
currently with the error counts. Error -second counts were thus made
at the last three offices surveyed.

Since the original purpose of the survey at each office was to select T1
lines for extended error tests, general information about the population
of lines surveyed was not recorded. Some information, however, is
available about each office as a whole. Thus, for example, it is known that
the lines were all two -cable at office 3, all one -cable at office 5, and mixed
at the other offices. (A two -cable T1 system is one in which opposite
directions of transmission are segregated in separate cables.)
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Table I - Scope of the survey

Office
Survey
dates

Number
of lines Data recorded

1 3/1/73 to 461 1 -min BPV
4/1/73

2 9/20/73 to 493 54 -min BPV
9/27/73

3 10/31/73 to 561 54 -min BPV and
11/9/73 error -seconds

4 11/29/73 to 792 54 -min BPV and
1/9/74 error -seconds

5 1/21/74 to 287 54 -min BPV and
1/24/74 error -seconds

Total 2594

The survey was not based on random sampling. Measurements began
at one end of the office repeater bay lineup and continued either until
the other end of the lineup was reached (at offices 3, 4, and 5) or until
the expiration of the time allotted for activity at that office (at offices
1 and 2). Lines that were out of service for any reason were skipped over
and excluded from the survey. Measurements for the survey were made
only on business days between the hours of 8:00 a.m. and 6:00 p.m.

At each office repeater included in the survey, a bipolar violation de-
tector was plugged into the receive monitor jack to detect errors in the
pulse stream from the distant office. Each office repeater was counted
as a separate Ti line. A through system from one distant office to another
via the office surveyed was thus effectively split into two parts and
measured as though it consisted of two systems, each connecting the
survey office with one of the distant offices. One consequence is that
there are more short T1 lines (especially single -span lines) in the survey
than in the plant.

Error rate measurements at office 1 were made for 1 -minute intervals
on one line at a time using one of two different instruments. One was a
Philco-Sierra 314A T1 error detecting set, which has a built-in counter
with a maximum counting rate of 10 per second. The other was a Western
Electric J98710G-2 L3 error detecting set connected to a General Radio
1192 counter, which counted bipolar violations as fast as they could occur
on the T1 line.

At the other offices, errors were counted by a 16 -line bipolar violation
detector using a PDP-11/20 computer. The counting program had two
versions, as indicated previously. Version 1, used only at office 2, counted
only errors. Version 2, used at the last three offices surveyed, counted
error seconds as well as errors. The counting rate of this equipment was
subject to the following limitations.

(i) (Version 2 only)-If the count in any one second exceeded 1544
errors on all 16 lines combined (corresponding to 10-3 error rate on any
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one line) the counting program was terminated, so that its use of com-
puter time would not interfere with concurrent detailed recording or
jitter measurement on another line.

(ii) Maximum short-term (fractional -second) counting rate on all
lines combined was about 10,000 per second, because the computer took
about 95 i.is to process each error counted (about 60 pts in Version 1).

(iii) Resolution varied from normally about 30 As to several hundred
microseconds depending on error activity. Errors closer together than
this on the same T1 line would be counted as a single error.

3.2 Survey data processing

The survey data was recorded manually at the test site and later
transcribed to punched cards. The survey data consisted of groups of
up to 16 lines, monitored for 54 minutes per group, except at office 1
where each line was monitored for 1 minute. Twenty lines that lost signal
at some time during the 54 -minute test were eliminated. Error counts
were converted directly to error rates by dividing by the number of T1
line bits expected in the monitoring interval at the nominal line rate.
Computer programs were used to obtain statistical summaries of three
quantities for each line (where available): the percent of seconds with
error, the error rate, and a clustering factor. These are all represented
graphically by cumulative distribution functions in Figs. 1 to 6.

The clustering factor is not simply the ratio of the number of errors
to the number of error seconds. This would give large overestimates of
clustering at high error rates (above about 10-6) because the number of
error seconds in 54 minutes is bounded. The calculated clustering factor
therefore compares the actual count of error seconds with the number
of error seconds that would be expected if the errors counted had oc-
curred randomly (Poisson process model). This factor gives the same
result at low error rates, but approaches unity at high error rates.

For a 54 -minute test, the error rate (strictly, the bipolar violation rate)
is

ER =
bipolar violation count
1.544 x 106 X 60 X 54

The fraction of seconds that contain errors is

error second count
ESF -

60 x 54

The percent error -free seconds is simply

PEFS = 100 X (1 - ESF)

Given an error rate ER, a Poisson process model could be used to predict
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an error second fraction

ESF' = 1 - exp(-1.544 X 106 X ER)

The clustering factor is defined as

ESF'
CF -ESF

The graphs were arranged so that the horizontal axis consisted of a
logarithmic scale and the vertical axis consisted of a normal probability
scale; thus, a lognormal distribution would be plotted as a straight line.
Percent of seconds with error and BPV rate graphs were based on total
population, i.e., lines with and without errors. The lowest point plotted
corresponds to the percent of lines that had either no errors or one error.
Clustering factor graphs were based solely on T1 lines with errors. To
avoid step functions appearing on the graphs, a continuous curve was
created by plotting only the upper "corners" of the step function.

3.3 Results of the survey

Figure 1 shows the distribution of error rate at each office. Each point
on a given distribution can be interpreted as a statement that some
percent of the lines had error rates equal to or less than (better than) a
certain error rate. For example, about 98.8 percent of lines at office 2 had
error rates equal to or better than 10-6. Because of the counting rate
limitations described previously, the true error rate may be somewhat
higher than the measured error rate for some lines. On the average, it
is probably not more than twice the measured error rate, based on esti-
mates of clustering from an earlier survey6 as well as results from our
detailed error recordings. Thus, for the same example, we would estimate
that at office 2 less than 98.8 percent of lines had better than 10-6 error
rate, but probably more than 98.8 percent had better than 2 X 10-6 error
rate. That is, the true error rate curve might be farther to the right, by
less than a factor of 2 in error rate.

Figure 2 shows the aggregate distributions of error rate compared with
previous surveys. All the surveys refer to lines terminated predominantly
or entirely at Di channel banks. Two curves are shown for our survey
because measurements of error rates below 10-8 are not available for
office 1. However, the two curves are very close together.

The previous surveys had suggested a possibility that T1 error per-
formance was changing. The latter of these surveys,6 in 1971, showed
error rates about 10 times as high as the earlier survey,? in 1966. A survey
at one site in 1968 showed a distribution (not shown in Fig. 2) lying be-
tween the other two.8 However, the results of our survey show such large
differences between offices that the difference between the 1966 and 1971
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surveys cannot be said to show a significant trend over time. Qualitative
observations suggest that the important difference between offices is
in maintenance organization and effort, which tends for practical reasons
to be correlated with (although not fully determined by) both office size
and T -carrier network size.

Offices 2, 3, and 4 in our survey had error rate distributions very close
to the 1966 survey. Even allowing for a possible underestimate of a factor
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Fig. 2-Aggregate error rate distributions. Results of previous surveys are shown for
comparison.
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Fig. 3-Distributions of percent seconds with error, compared with the aggregate of
the previous survey.

of 2, they are still much better than the 1971 error rate distribution, and
much closer to the 1966 curve than to the 1971 curve. These three offices
are all large offices in large metropolitan networks, as were the offices
in the 1966 survey. In the 1971 survey, on the other hand, two of the three
offices were suburban offices.

The office showing the poorest distribution in our survey was also the
smallest. This building housed two step-by-step switching machines,
and a combined maintenance force was responsible for both switches
and T -carrier equipment. This distribution was noticeably affected by
the existence of high error rates (between 10-6 and 10-4) on 12 lines in
the same cable (4 percent of the sample), apparently due to a single cause;
omitting these lines would have moved the curve closer to the others.

Error -free seconds results are plotted in Fig. 3 in terms of percent
seconds with error (which is 100 minus percent error -free seconds), so
that the distribution curves are similar to the error rate distributions.
These results are not affected by the counting -rate limitations of the
measurement apparatus. The best error -seconds distribution in our
survey (office 3) is better than the aggregate of the 1971 survey for about
a factor of 4 in percent seconds with error (see Fig. 3); our aggregate is
better by a factor of 2. The scatter plot in Fig. 4 indicates that most lines
had about the same number of errors as seconds with error (except at
high error rates, where the number of seconds with error approaches the
number of seconds in 54 minutes). However, clustering can occur at all
levels. Figs. 5 and 6 show the distribution of clustering factor (calculated
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so as to avoid false indications of clustering at high error rates, as de-
scribed in the preceding section). Table II shows the mean and standard
deviation of the clustering factor for each office and for the aggregate.
In general the standard deviation is much larger than the mean, except
at office 3. Overall, the mean is about two events per second -with -

error.
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Table II - Statistics of clustering factor

1000

Office Mean
Standard
deviation

3 1.20 0.98
4 3.13 22.9
5 1.70 4.93

Aggregate 2.26 16.5

The difference between clustering factors at different offices should
probably not be regarded as significant. The unusual statistics for office
4 are due to just four lines with unusually high clustering factors (1
percent of the lines with errors). At office 5, the sample was small, and
it is known that several lines could be disturbed by the same condition
(although the 12 lines with high error rate in the same cable, mentioned
earlier, did not have high clustering factors).

IV. DETAILED RECORDINGS OF ERRORS AND BIPOLAR VIOLATIONS

4.1 Experimental procedure

This phase of the measurement program was designed to obtain
complete and continuous recordings of errors on T1 lines for periods of
24 hours (or over a weekend), recording at what time, and on which bit,
each individual error occurred. We made no effort to find or fix the cause
of the errors.

As originally conceived, the basic procedure was to remove a line from
service and apply a test signal with the line looped back to the test site,
so that the received signal could be directly compared with the trans-
mitted signal. The test apparatus is shown schematically in Fig. 7. The
test signal was a pseudorandom linear shift -register sequence9 with a
period of 1,048,575 bits, generated by a 20 -bit shift register, as shown
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Fig. 7-Error measurement system block diagram.

in Fig. 8. The bit stream returned via the looped T1 line was compared,
bit by bit, with the output of a similar sequence generator to detect errors
on the line. The occurrence of each error was recorded on magnetic tape.
A Digital Equipment Corporation PDP-11 computer controlled test se-
quencing and formatted the output to the tape.

In most cases the entire T1 line was not removed from service. A T1
line from one office to another generally passes through several inter-
mediate offices, which divide it into spans of the order of 5 miles long.
Spare spans are normally provided. The least troublesome procedure

2

11

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 0 0 1 0 0 1 0 0 i 0 0 i 0 0 1

f t i

20

1 0

... 1 1 01 001 1 01 00 1 00 1 00 1 001 001 001 0000000000000000000100000 ...

Fig. 8-Pseudorandom sequence generator. The digits in the shift register move from
left to right, and hence appear in the output as read from right to left. Generation of the
first of the string of 19 zeros is illustrated.
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to obtain a length of T1 line for testing is to patch service on one span
onto a spare. This procedure requires patching only at the test site and
one adjacent office, and does not involve any other offices.

In the earliest measurements at office 1, lines were chosen at random
to record both jitter and errors. Since most of the lines so chosen did not
make any errors, the bipolar violation survey was introduced as a means
of selecting lines for error test that were known to make errors, con-
tinuing to use random selection for the jitter measurements. We reasoned
that if bipolar violations were observed in the pulse stream coming from
the D1 channel bank at the distant terminal office, errors must have been
occurring somewhere on the line, and there was a reasonable probability
that these errors would be in the span adjacent to the test site.

This procedure resulted in a reasonable yield of error observations
at office 1 and office 2. However, it was not successful at office 3. In an
effort to improve the yield at this office, lines were chosen that termi-
nated at the next office, so that looping one span would necessarily in-
clude the part of the line where the bipolar violations originated. But
when these lines were looped and the pseudorandom test signal was
applied, errors either did not occur at all, or occurred only occasionally,
at rates far lower than the BPV rates observed in service in the survey.
Such cases had been observed occasionally at offices 1 and 2. In addition,
at office 4, we were able to loop T1 lines back to the test site at distant
terminal offices, and again we observed that most lines that showed bi-
polar violations when in service did not make errors when carrying the
pseudorandom test stream. In most cases we verified that the bipolar
violations did not originate in the channel bank.

The error recording equipment was therefore modified, late in the
measurement program, so as to be able to record bipolar violations in

the same manner as errors. The procedure was modified to include
pretests that would indicate systematically whether the line should be
tested using bit generators and the error detector to record errors ("error
run"), as shown in Fig. 9a, or restored to service and tested as in Fig. 9b,

to record bipolar violations in service ("BPv run").
The modified procedure included two pretests designed to investigate

the effect of the signal on the error performance, using the configuration
shown in Fig. 9c. The T1 span was out of service and looped at the next
office as in Fig. 9a, but use was made of the signal from the D1 channel
bank, which was now routed to its destination via the spare. The dashed
lines show alternative connections. One pretest recorded BPVs on the,
spare. In the next pretest, a signal tapped from the spare was fed into
the looped span, and BPVs were recorded on the signal coming back from
the looped span. The significant result was that in many cases, BPVs were
not seen on the spare, but were seen on the signal that came from the
spare via the looped span, although errors did not occur when the signal
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Fig. 9-Error and BPV test configurations: (a) error run, (b) BPV run, (c) BPV pre-

test.

from the bit generator was transmitted on the looped span (as in Fig. 9a).
That is, errors would, or would not, occur on the looped span, depending
on the signal fed into it.

Each continuous recording of errors or bipolar violations on a par-
ticular line or span is referred to as a "run." Normally the duration of
a run is about 24 hours. Longer runs occurred when a run was successfully
started on a Friday, since in that case the run was allowed to continue
over the weekend. Shorter runs occurred when a line under test turned
out to have few or no errors in a period of a few hours, or had an abnor-
mally high error rate; the operator would then terminate the run and
select another line for test. Each run was recorded as a distinct file on
magnetic tape.

A plot of error rate versus time was derived for each run as a whole.
For further analysis, "samples" of up to 1600 consecutive errors were
extracted. At low error rates, a "sample" could include a whole 24 -hour
run. Where possible, separate samples were taken when the plot of error
rate versus time showed different conditions occurring at different times.
These samples were analyzed to study the "error -free interval" distri-
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Fig. 10-Normal diurnal variation of error rate, recorded over a weekend, in an error
run.

butions (distributions of intervals between successive errors) and the
dependence of error probability on the content of the bit stream.

4.2 Diurnal variation of error rate

Since most of the error and BPV runs lasted about 24 hours, diurnal
variation of error rate could be observed, but could not be entirely sep-
arated from long-term and short-term variation. Even when a run lasted
over a weekend, diurnal components cannot be fully separated because
a weekend does not consist of identical diurnal cycles. However, some
distinct types of diurnal variation were identified.

In roughly one-third of the error and BPV runs of 1 day or longer, the
error rate had a broad maximum during the working day (with short-
term variations superimposed), falling off gradually during the evening
to a minimum error rate at about 4:00 a.m., and rising again to its
workday level about 8:00 a.m. Figure 10 shows such a pattern observed
over a weekend. We refer to this pattern as "normal" diurnal varia-
tion.

Most of the remaining error runs, and a few of the BPV runs, showed
essentially steady error rates over the day, as in Fig. 11. Irregular vari-
ations, on the other hand, were observed in most of the remaining BPV
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Fig. 11-Steady error rate, recorded over a weekend, in a BPV run. Each plotted point
is computed from the number of errors in a cell about 5 minutes long, containing an average
of about 5 errors; hence the point-to-point variation is entirely accounted for by assuming
errors occurring independently at random (Poisson process), except at the very end of the
run.

runs, and a few error runs. Fig. 12 shows distinctly irregular variation,
with large nonperiodic changes. However, any variation that did not fit
a recognizable pattern was classified as irregular.

The predominance of irregular variation in the BPV runs (as contrasted
with steady error rates predominantly in the error runs) may be due to
the variability in the content of the bit stream from the channel bank.
As described in a later section, the lines with steady or irregularly varying
error rates tended to be sensitive to the bit pattern on the lines. The
invariably repeating pseudorandom sequence in the error runs would
tend in such cases to give error rates that were constant with time; a pulse
stream with variable content, such as the channel bank output, would
result in varying error rates.

Two T1 lines (one BPV run, one error run) showed two distinct error
rates during the diurnal cycle, with abrupt transitions from one error
rate to the other, as in Fig. 13. This pattern has been classified as "ex-
aggerated" diurnal variation.

Table III lists the total number of error and BPV runs with each type
of diurnal variation. Only runs that actually extended overnight are
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Table III - Frequency of occurrence of different types of diurnal
variation

Variation
type

Error -run
lines

BPV-run
lines

Total
lines

Normal 6 4 10
Steady 6 1 7
Irregular 3 5 8
Exaggerated 1 1 2

Total 16 11 27

shown; shorter runs are excluded because the error rate minimum near
4:00 a.m. was an essential feature for identification of the "normal"
type.

In the diurnal variation curves in Figs. 10 through 13, each point
plotted represents the average error rate in a 5 -minute cell. Since the
cell boundaries were defined by the starting times of the data records
on the tape, which occurred irregularly, the cells are not exactly 5 minutes
long. However, the error rate for each cell is correct, being determined
by dividing the number of errors by the actual number of bits in the
cell.

4.3 Distribution of Intervals between errors

Distributions of "error -free intervals" (the intervals between suc-
cessive errors, in time units equal to the reciprocal of the bit rate) were
plotted for every error sample. Three principal types were observed,
identified as unimodal, bimodal, and trimodal. The same types were
observed in both BPV runs and error runs. Table IV shows the number
of lines observed with each type of distribution.

A typical unimodal distribution is shown in Fig. 14. This curve may
be interpreted (except for the numbers on the vertical axis) as the
probability density function of the logarithm of the interval, considering
the interval as a continuous random variable. The curve was actually
derived by setting up a logarithmic interval axis, dividing it uniformly
into 40 cells per decade, and plotting the number of intervals that fell

Table IV - Frequency of occurrence of different types of
distribution of the intervals between successive errors or BPVS

Distribution
type

Error -run
lines

BPV-run
lines

Total
lines

Unimodal 2 4 6
Nearly unimodal 6 5 11
Bimodal 5 2 7
Trimodal 6 3 9

Total 19 14 33
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Fig. 14-Unimodal distribution of "error -free intervals," observed in a BPV run.

in each cell. The presence of only one mode indicates the absence of
clustering. The asterisk just above the horizontal axis, in the vicinity of
the mode, is plotted at the reciprocal of the mean error rate, that is, at
the mean interval between errors.

Also shown in Fig. 14, as a dashed curve, is the probability density
function of an exponential distribution with the same mean, scaled to
fit the same logarithmic horizontal axis and to represent the same total
number of errors on the vertical axis. The apparent fit suggests that the
errors occurred independently (that is, as a Poisson process). As will be
shown later, errors on this line were not independent, but depended
strongly on the immediate pattern of bits on the line. However, there
is a clear indication of large-scale independence: error -sensitive patterns
occurred regularly, but the occurrence of an actual error in each pattern
was independent of previous occurrences.

Fig. 15 shows a phenomenon that (fortunately for service) did not
happen very often, or last very long: a very high error rate. The distri-
bution shows a very low mean interval between errors. For the shortest
intervals, the number of occurrences of each discrete interval are resolved
in the plot. Clearly the errors are not completely independent (as in
Bernoulli trials), because the count would then be highest at 1 and would
decrease with increasing interval length. But the independent -error
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model is conceptually useful as a point of departure. These distributions
are not included in Table IV.

The bimodal distribution shown in Fig. 16 indicates error clustering.
The mode at the right represents the intervals between clusters, and its
shape again suggests large-scale independence (Poisson process) as in
Fig. 14, but in this case also the occurrence of errors actually depended
on local bit patterns. (The small amplitude of this mode may be decep-
tive; it actually includes about one -fifth of the total number of intervals.)
The mode at the left represents the intervals between errors within a
cluster, and, as in Fig. 15, errors are not quite independent within clus-
ters. However, the general appearance is not very different from what
one would expect from a combination of two exponential waiting -time
distributions.

A substantial number of lines had interval distributions intermediate
between the unimodal and bimodal types. In these lines, most of the
intervals were grouped around a single mode at the right, with less than
10 percent of the intervals (sometimes only one) defining another mode
at the left. These distributions are referred to as "nearly unimodal."

The trimodal distribution in Fig. 17 indicates two levels of clustering,
that is, clusters within superclusters. The mode at the right represents
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Fig. 16-Bimodal distribution of "error -free intervals," observed in an error run.

intervals between superclusters, the mode in the middle represents in-
tervals between clusters within superclusters, and the mode on the left
represents intervals between errors in a cluster. Actually, in this termi-
nology, a "cluster" or "supercluster" could consist of a single error, since
the average clustering factor was not large (usually about two to three
errors per supercluster) and errors often occurred in isolation. On the
other hand, it was not uncommon to find superclusters containing as
many as 30 errors, occurring both alone and in clusters within the same
supercluster.

Whenever a trimodal distribution was observed in an overnight run
(permitting identification of the diurnal variation type), the line showed
"normal" diurnal variation. Conversely, most of the "normal" diurnal
variation runs showed trimodal interval distributions. In these cases,
the interval distribution remained trimodal throughout the diurnal cycle.
The middle mode, which indicates structure within the supercluster,
remained usually in the same place, extending from about 100 to 500 bits,
while the right mode, which described the occurrence of superclusters,
moved left or right as the error rate on the line went up or down (re-
spectively) with time of day.

A number of distributions classed as bimodal (or nearly unimodal)
differed in appearance from Fig. 16 because of other features. In two
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Fig. 17-Trimodal distribution of "error -free intervals," observed in a BPV run.

runs, discussed in Section 4.5, only certain values of short interval oc-
curred. In a BPV pretest for an error run, multiples of about 193 (the D1
frame duration) predominated in the long intervals. In another sample,
representing a burst of relatively high error rate in a BPV run, the long
intervals are almost all multiples of about 20,000 bits (1/75 second). In
most of these cases, longer and shorter intervals are interspersed, indi-
cating error clustering. On the other hand, we obtained a sample from
one error run that looks much like Fig. 11, but actually represents a
transition from a low error rate, as in Fig. 14, to a very high error rate,
as in Fig. 15; all the long intervals came first, followed by the short
ones.

4.4 Effects of local bit patterns

On most lines, the probability of error depended on the local bit pat-
tern being transmitted. The probability of error on any given line was
usually not the same for ones as for zeros (bias effect), and also depended
on the values of preceding and following bits (intersymbol interference
effect). The pattern sensitivity varied greatly from line to line in both
error and BPV runs. Pattern sensitivity was categorized as high, medium,
or low for each line; Table V shows the number of lines observed in each
category.
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Table V - Frequency of occurrence of different levels of pattern
sensitivity of probability of error or BPV

Pattern Error -run BPV-run Total
sensitivity lines lines lines

High (n0.0) 7 3 10
Medium 0 8 8

Low (4.0) 7 3 10
Totals 14 14 28

Pattern sensitivity was directly observable in the error runs (except
at office 2) because the bit stream on the line was a known pseudorandom
sequence. (At office 2, a broken wire forced the second bit of every 16 -bit
data word on every tape to zero; the evaluation of error rate, diurnal
variation, and the interval distribution was not seriously affected by the
consequent loss of data, but pattern dependence could not be determined
because identification of bit positions in the sequence was ambiguous.)
In the error runs, pattern sensitivity fell clearly into two groups: very
high and very low (except for short periods of very high error rate, which
showed no discernible pattern sensitivity at all). In the BPV runs, evi-
dence of pattern sensitivity appeared as a consequence of the periodic
structure of the D1 channel bank frame. The bit stream is organized into
frames of 193 bits at 8000 frames per second, in which one bit (the
framing bit) is alternately one and zero in successive frames to enable
the receiving channel bank to determine the frame phase. The remaining
192 bits consist of 24 words of 8 bits each, one word for each channel, in
which one bit carries signaling and the other seven represent the voice
by pulse code modulation (Pcm). Pattern dependence could be inferred
by relating the occurrence of bipolar violations to the periodicities of the
D1 channel bank frame, and indications of pattern dependence pre-
sumably depended on the content of the channel bank output.

In the error runs, bias effects were characterized by identifying each
error as an insertion (error in a zero) or a deletion (error in a one) and
computing the percent of errors that were deletions. The percent dele-
tions observed on 14 T1 lines varied from 0 to 100 percent, in a manner
consistent with a uniform distribution.

Preliminary analysis suggested that intersymbol interference effects
were usually confined to the bit following the error and the 6 bits pre-
ceding it. These bits, together with the bit in error, comprise an 8 -bit
string with the error in the seventh bit. For each error sample, a tally was
then made of the number of times each of the 256 possible 8 -bit strings
occurred with an error in the seventh bit. Figs. 18 and 19 show the results
of two such tallies, representing examples of low and high sensitivity
respectively. (In these figures, the seventh bit is shown as transmitted;
the slash through it indicates that this was not the value received.)
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As a numerical measure of pattern sensitivity, the parameter

D =
256 2 5_,iv, , - 255 -
N2 N

was computed for each error sample, where Ni is the number of times
the ith 8 -bit pattern occurred with an error in its seventh bit, and N is
the total number of errors. This parameter is related to chi-square as it
would be evaluated to test the null hypothesis of equal probabilities for
all 256 patterns. However, while chi-square is useful primarily as a
measure of statistical significance, D is designed to be nearly unaffected
by the sample size for strongly pattern dependent errors, so that it
measures pattern sensitivity as a property of the T1 line. The largest
possible value of D, which would be attained if all errors occurred in the
same pattern, is nearly 255 (actually, 255 - 255/N). If errors were in-
dependent of pattern, so that all 256 patterns were equally likely, D
would have zero mean (based on a binomial distribution, p = N/256, for
Ni) and a standard deviation of approximately 22.6/N (based on the
related chi-square distribution, valid for large N, and verified by enu-
meration as roughly correct for N = 2 and N = 3).

The values of D fell into two groups: high (50 or above) and low (2.2
or below). The only exception is one sample that has an intermediate
value because it spans a transition from one type to the other. However,
in almost all cases the value of D is much larger than 22.6/N, and hence
significantly different from zero. The exceptions are of two types: small
samples, and very high error rates (above 10-3). Pattern sensitivity
showed no consistent relation to percent deletions.

In the BPV runs, the bit patterns on the line were unknown. However,
it could be presumed that some bit patterns might tend to recur peri-
odically either at the 193 -bit frame period or at the 8 -bit word period
within the frame. Accordingly, in each BPV sample each bit was assigned
a frame position from 1 to 193, starting arbitrarily at the beginning of
the sample, and a tally was made of the number of bipolar violations
found in each of the 193 positions. These tallies were analyzed both
numerically and graphically.

As a general numerical measure of pattern sensitivity for BPV runs,
the parameter

193 193 192
D, = -N2 ,EINT --N -I

was computed for each BPV sample, where Ni is the number of BPVs that
occurred in the ith position in the 193 -bit frame. This parameter has
similar properties to the parameter D computed for the error samples.
Specifically, its largest possible value is 192(1 - 1/N), and its standard
deviation, for random errors, is 19.6/N.
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27 011010E1 11 11010101 8 01010000 6 00010011 5 011000E1 4 01100110 3 110000E1 2 11010111

26 10101000 11 11100000 a 01010001 6 001000E1 5 01100010 4 011110E1 3 11000040 2 11011101

25 01101000 10 000001E1 8 01011181 6 00100110 5 01111020 4 10000000 3 110010/0
2 11110

25 101010E1 10 00110001 8 01100100 6 001001E1 5 10001110 4 100101/0 3 11001011 11101011

24 11101000 10 01101110 8 01110081 6 00110100 5 10010081 4 10100001 3 11010011 2 11110111

22 01001001 10 100101/1 8 01110100 6 00111120 5 10010010 4 10110111 3 110111/1 1 00000141

20 11001001 10 10101100 8 01111101 6 01000001 5 10011001 4 10111001 3 11100010 1 00100110

20 11101001 10 10110021 8 10100010 6 01010121 5 10100000 4 11000011 3 111000/1 1 01001010

19 00001041 10 10110100 8 10101131 6 01010110 5 10110000 4 11000120 3 111001/0 1 011010/3

19 00101000 10 10111000 8 101011/0 6 01011001 5 10111111 4 11000141 2 00000000 1 01101011

19 00101001 10 11001110 8 10111101 6 01110000 5 11000000 4 11010000 2 000010.10 1 01110010

19 10001001 10 11110080 8 11100001 6 10000001 5 11000140 4 11011100 2 00001071 1 10000011

18 00001110 9 00000001 8 11101100 6 10001121 5 11001100 4 110111/0 2 00010010 1 10000110

17
17

00001000
10000101

9

9

00011001
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00001101
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2

00100111
00101010 11 11g001011C401

15 10001000 9 00101100 7 00010020 6 10111110 5 11010010 3 00010111 2 00110010 1 100100.11

15 10001111 9 00110020 7 00010100 6 11010100 5 11011010 3 00100000 2 00110121 1 101010.!0

14 01011001 9 00111080 7 000101/0 6 11100180 5 11111141 3 001100/1 2 00110110 1 10111010

14

13

11101141
11011000

9

9

01001111
01011120

7

7

00111110
01000100

6
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11101101
11110011

4

4
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00010011

3

3

01000011
01000111

2

2

001110/0
01001011 1 1(1(0)311111)1

13 11111081 9 01100101 7 01000110 6 11111101 4 00011011 3 010100./0 2 01010041 1 11110100

12 00101110 9 01101180 7 01110121 5 000000/0 4 00011101 3 01011011 2 010110/0 1 11111180

12 00101111 9 10011020 7 01111100 5 00001120 4 00011110 3 01011111 2 01101101

12 011011/1 9 10011101 7 01111171 5 00010101 4 00100011 3 01100111 2 01110011

12 10011111 9 10101100 7 10001100 5 00011000 4 00110111 3 011101/0 2 01110111

12 11001000 9 10100181 7 10011110 5 001110/1 4 00111001 3 10000180 2 01111070
12 11101170 9 10110101 7 10100011 5 00111111 4 00111101 3 10010000 2 01111071

11 000011./1 9 11011001 7 11100101 5 01000000 4 01000010 3 10011100 2 10000010

11 01001000 8 00011100 7 11110001 5 01001121 4 01001100 3 10110011 2 100001/1

11 10101171 8 00011111 7 11110110 5 01001110 4 01010100 3 10110110 2 10010111

11 11000101 8 00101121 7 11111000 5 01010111 4 01100000 3 101110/1 2 10101011

11 11001111 8 01000101 6 00000100 5 01011140 4 01100011 3 10111100 2 110101/0

Fig. 18-Computer printout of occurrences of errors within 8 -bit patterns showing low pattern sensitivity in an error run (D = 0.5) .
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Fig. 19-Like Fig. 18, but showing high pattern sensitivity (D = 107.5).

The values of D' are significantly different from zero in most cases,
and vary as widely as the values of D for the error samples. However, they
do not fall clearly into two distinct groups; about half fell into the "me-
dium" range, between 2.2 and 50, in which D never fell. This may be
explained by the fact that dependence of BPV rate on frame position
depends not only on the error mechanism on the T1 line but also on the
properties of the transmitted bit stream. The presence of frame peri-
odicity in the bipolar violations actually depends on two factors: the
probability of a bipolar violation must depend on the bit pattern, and
recurrent patterns must exist in the D1 bank frame.

It should be noted that bipolar violations are necessarily pattern-

dependent, even if the errors causing them are not, because a bipolar
violation can be detected only when a one is received. In the D1 channel
bank format, some frame positions are more likely to contain ones than
others; hence, bipolar violations will always be frame -position dependent
to some extent. This factor may account for some of the observed
frame -position dependence where this dependence is weak. However,
it cannot account for the observed cases of strong frame -position de-
pendence, because there are constraints in the channel bank that prevent
long strings of zeros (as described in Section 4.5).

Figures 20 through 22 respectively show examples of weak (D' = 0.4),
medium (D' = 11.7), and strong (D' = 108.5) dependence of bipolar
violations on bit position in the frame. These figures represent 3 -di-
mensional bar graphs, the height of each bar representing the number
of bipolar violations at each frame position. The lower left corner rep-
resents the first bit in the frame, the first 8 bits are laid out from left to

T1 LINE ERRORS 735



30

25

20

15

10

5

o

BIT POSITION IN WORD

L.0 NP

Fig. 20-Three-dimensional bar graph showing weak dependence of bipolar violation
probability on position in the DI bank frame in a BPV run (D' = 0.4). Frame alignment
is hypothetical.

right, successive 8 -bit words are laid out behind the first, and the 193rd
bit is in the far left corner of the base of the diagram. Each row running
from front to back thus represents a given bit position in each word. In
these figures, the hypothetical starting point of the frame was shifted
to the position that gave the figure the most regular appearance (by
maximizing a parameter similar to D', but based on the number of bi-
polar violations in each position in the word), on the presumption that
such a choice probably approximated alignment with the actual channel
bank frame being transmitted.

Figure 20 shows an example of relatively weak position dependence;
bipolar violations occur in all positions, but their probability clearly
depends on the position of the bit in the word. An example of medium
position dependence is shown in Fig. 21. Fig. 22, where most of the bi-
polar violations occurred in one position in the frame, shows strong po-
sition dependence. Fig. 22 is an extreme case; the same line at another
time of day showed an intermediate pattern in which no single bit po-
sition had a majority of the BPVs. Figure 22 necessarily indicates high
sensitivity to some recurrent pattern. Figures 20 and 21, however, could
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Fig. 22-Like Fig. 20, but showing strong position dependence (D' = 108.5).
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be explained either by lower pattern sensitivity (possibly none at all),
or by high sensitivity to patterns that occur less regularly. Correlation
with other properties of the error process, discussed in Section 4.6,
suggests that the former explanation is applicable to cases such as Fig.
20, and the latter to cases such as Fig. 21; but such conjectures are
speculative.

4.5 Effects of density of ones in the bit stream

The pseudorandom sequence does not meet the constraints on mini-
mum ones density for bit streams transmitted on T1 lines. These con-
straints are intended to ensure that there is always sufficient energy in
the timing tank circuit in each T1 line repeater. This tank circuit gets
an input pulse whenever a one is received, and if the density of ones is
too low the repeater timing becomes inaccurate and errors are more likely

to occur.
It was, therefore, expected that any given T1 line, driven by the

pseudorandom sequence generator, would be more prone to make errors
than when driven by a D1 channel bank, which does meet these con-
straints. This expectation was not fulfilled. On different lines, the error
rate for the pseudorandom sequence might be greater than, equal to, or
less than the error rate for the D1 bank output. In most cases, errors
occurred only when the signal source was a channel bank; sometimes,
however, errors occurred only when the signal was supplied by the
pseudorandom generator. This does not necessarily mean that T1 lines
in general have higher error probability when driven by a D1 channel
bank, because lines were usually selected for test on the basis of errors
observed with a channel bank as the signal source, so that the sample
of lines is biased.

In addition, it was expected that errors would be more likely to occur
in those parts of the pseudorandom sequence where the constraints were
most severely violated. As described below, two of the lines tested showed
this tendency to a remarkable degree, but the rest showed no such ten-
dency at all.

The pseudorandom sequence differs from the output of a channel
bank both in maximum length of strings of zeros and in average ones
density. The D1 channel bank must have a one in each word; the longest
string of zeros that it can generate is 15. The pseudorandom sequence,
on the other hand, contains eight strings of more than 15 zeros, including
one of 19 zeros, in each repeated frame of a million bits (actually
1,048,575 bits, about 0.68 seconds).

The average ones density is nominally one-half for both, but in the
channel bank output it varies from one bank to another, while in the
pseudorandom sequence it varies over the million -bit frame. In the D1
channel bank, the ones density depends on how the analog -to -digital
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Fig. 23-Effective ones density for a timing tank with Q = 60, as a function of bit position
in the pseudorandom sequence, in the vicinity of the string of 19 zeros, showing the location
of the lowest effective density of ones in the sequence.

encoders (of which there are two in each bank) are adjusted to encode
the zero level. The intended zero code is 1000000, which leads to a low
ones density. However, with a slight misadjustment, zero might be en-
coded as the next lower code level, 0111111, which leads to a high ones
density. The ones density is also affected by the signaling bit (a one for
the on -hook condition) and by the encoding of noise and speech. One -

second measurements on D1 channel banks in service have shown ones
densities ranging from about one-fourth to three -fourths, with little
variation over the day for any given bank.1° Other observations have
shown ones densities as low as about one -eighth on T1 lines in ser-
vice."

In the pseudorandom sequence, the average ones density over the
million -bit frame is almost exactly one-half (actually 524,288/1,048,575).
The variation of ones density within the frame can be evaluated as a
weighted average of the past bits, using exponential weighting with a
time constant of Q/ir bits (about 32 bits for the typical timing -tank Q
of 100). This average is theoretically proportional to the amplitude of
ringing in a repeater timing tank circuit having the specified Q.

Figures 23 through 25 show, for three values of Q, the variations of ones
density following the string of 19 zeros. (Since the ones density increases
at each one and decreases at each zero, the strings of zeros can be iden-
tified by their downward slope. The string of 19 zeros starts at the
211,993rd bit after the framing bit. The framing bit itself was the last
in the string of 20 consecutive ones.) The ones density has an absolute
minimum of about one-fourth in this segment, but the exact value and
location of the minimum depends on the timing tank Q.

Only two of the T1 lines that were tested had a noticeable tendency
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Fig. 24-Like Fig. 23, but for timing tank Q = 100. Note the change in the position of
the minimum effective ones density as well as the change in minimum value.

to make errors in this part of the frame. One of these lines had an error
rate of about 4 X 10-8 for the channel bank pulse stream (55 -minute
test), but had a steady error rate of only 3 X 10-9 for the pseudorandom
sequence. On this line, errors occurred most often on the sixth one after
the run of 19 zeros, on the first or second zero after that, or the eleventh
one after the 19 -zero sequence. These would be the locations of the lowest
timing tank amplitudes assuming a Q of about 100, as in Fig. 24.

The other line, recorded at office 1, was a maintenance spare modified
(as a stress test) by changing the line buildout (LBO: a circuit installed
to equalize the loss of repeater sections of different lengths) in the office
repeater. As installed, with an 836A LBO, the line made no errors. Sub-
stitutions of 836B through 836E had no apparent effect, an 836F resulted
in an error rate of 2.5 X 10-6 (several errors per frame), and with an 936G
the errors occurred too fast to be recorded. With the 836F LBO, errors
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Fig. 25-Like Fig. 23, but for timing tank Q = 140.
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Table VI - Frequency of occurrence of combinations of
characteristics of errors of BPVS on 22 T1 lines*

Distribution Diurnal variation type
type Normal Steady Irregular Exaggerated

Unimodal m Hh m
Nearly unimodal m HH Lmmm
Bimodal H m
Trimodal LLLLL11

h

L

* The letter indicates run type and pattern sensitivity: capital = error run, lower case
= BPV run; pattern sensitivity is high (H/h ), medium (m), or low (L//).

occurred most often on the fourth and sixth ones after the string of 19
zeros, and sometimes on the two zeros after the seventh one. The fourth
and sixth ones would just follow the two lowest values of effective ones
density if the timing tank Q were about 60, as in Fig. 23.

4.6 Association between properties of the error process

Table VI suggests that the different characteristics of the error process
tended to occur in certain typical combinations. The Appendix describes
how the statistical significance of the apparent tendencies was verified.
The most consistent combination was normal diurnal variation with a
trimodal interval distribution (remaining trimodal as the error rate
varied) and weak pattern dependence. Every line with a trimodal interval
distribution had normal diurnal variation. Conversely, nearly every line
with normal diurnal variation had a trimodal interval distribution. Every
line with a trimodal interval distribution also had weak pattern depen-
dence. This combination occurred in both error and BPV runs.

Another frequent combination was steady error rate with strong
pattern dependence and a unimodal or nearly unimodal interval dis-
tribution. Every line with a steady error rate had strong pattern de-
pendence. Every line with strong pattern dependence (except the two
lines that made errors only at the minimum of ones density in the
pseudorandom sequence) had a unimodal or nearly unimodal interval
distribution.

Other combinations were less consistent. A substantial number of lines
had irregular variation of error rate, most of them in BPV runs; these lines
had either unimodal or bimodal interval distributions and usually
showed an intermediate degree of pattern dependence. Both the irregular
variation and the ambiguous indication of pattern dependence might
be explained by the variability of the channel bank output bit stream.

These observations indicate that at least two different error mecha-
nisms can be observed. In one, the error rate varies with traffic, but de-
pends very little on the bit pattern on the line, and two levels of error
clustering occur as indicated by the trimodal interval distribution. In
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the other, the probability of error is very much dependent on the pattern
of bits on the line, the error rate remains steady as long as the same bit
stream is repetitively transmitted, and there is little or no error clus-
tering. It might be conjectured that errors are related to switching noise
in the former type, and to intersymbol interference in the latter.

Occasional short intervals of very high error rate occurred in several
lines. Samples during these intervals usually showed measured error
rates above 10-3, and sometimes above 0.1, with little or no pattern de-
pendence, and about 50 percent deletions in the error runs. It is clear that
in these events the errors were quite unaffected by the pattern of bits
on the line, but the cause is unknown.

The great difference between the error rate in the pseudorandom se-
quence and the error rate in the channel bank bit stream is unexplained.
It probably is not due to short term effects of ones density (on the time
scale of variations in the timing tank output), as discussed in Section 4.5.
On lines that show strong pattern dependence, BPV runs and error runs
might be expected to give different results. But it is not clear why a line
can show BPVs in service with very little pattern dependence (evidenced
both directly by the distribution of errors over the frame, and indirectly
by normal diurnal variation), and yet transmit the pseudo -random se-
quence without error.

4.7 Practical implications of the detailed recording results

The clearest general implication that can be drawn from the detailed
error recordings is that error rate measurements on digital facilities
should be interpreted with caution. For many possible reasons, the error
rate measured on a T1 line may be quite different from the error rate
experienced when the line is used for communication.

An error rate measurement made at night, especially in the early
morning hours, can be misleading because many lines consistently have
much lower error rates at that time than during the business day. Fur-
thermore, since some lines have irregularly varying error rates, a single
measurement during the business day would not necessarily show the
typical performance of a line. It would seem that continuous monitoring,
or at least frequent sampling, would be required to evaluate the error
rate performance of an individual line.

It may also be misleading to test a line with a special test signal, or with
any signal that is different from the communication signal that it nor-
mally carries. The measurement program showed conclusively that on
many lines the error rate for a pseudorandom test sequence is quite
different from the error rate for the D1 channel bank output carried by
the line in service. Hence the error rates for a digital data signal, or for
another channel bank output (either a different type, or a different unit
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of the same type), might be different from the error rates measured either
with the line in service, or driven by a "quasirandom signal source" (a
single generator used in telephone central offices, which generates a
sequence similar to our pseudorandom sequence, except that ones are
inserted to avoid long runs of zeros). However, the properties of the signal
that affect the error rate remain unidentified.

Other implications are less clear. The relationships observed among
diurnal variation, pattern sensitivity, and error -free internal distribution,
suggest the existence of at least two clearly distinct causes of errors on
T1 lines. It has been suggested that these are the same as the two major
sources of error considered theoretically by Cravis and Crater:2 The
errors characterized by normal diurnal variation and low pattern de-
pendence would be attributed to impulse noise originating in switching
machines, which can be strong enough, when it occurs, to cause errors
regardless of the bit pattern; the errors characterized by high pattern
dependence would be attributed to crosstalk, which would cause errors
mainly in those patterns in which intersymbol interference was most
severe. This appears plausible as a tentative hypothesis. However, no
attempt was made during the measurement program to identify the
causes of the errors on individual lines, because of the extensive effort
that would have been involved.

V. CONCLUSIONS

The T1 error measurement program of 1973-74 has resulted in both
a survey of the population of T1 lines and some detailed observations
of the error process.

The survey is in some ways less detailed, less systematic, and less ac-
curate than previous (unpublished) surveys, but is probably overall the
best overview we have of the error performance of T1 lines (when ter-
minated predominantly with D1 channel banks). The large differences
between offices show that a trend in the distribution of error rates on
T1 lines, as a function of either time, or growth over time, cannot be in-
ferred from comparison of surveys taken at different offices at different
times. In other respects our results are consistent with previous surveys.
Detailed conclusions were discussed in Section 3.3.

The detailed error recordings have shown a few remarkable results.
The fact that many T1 lines can make errors in service without making
any errors on a pseudorandom signal is both unexpected and unex-
plained. Another notable result is the observable existence of at least
two different patterns of errors: one with a seemingly traffic -related
diurnal variation, two levels of error clustering, and less sensitivity to
the bit patterns on the line; the other with simpler patterns of variation
and clustering, but more sensitivity to bit patterns. Another result is the
fact that errors are always dependent to some extent on the bit patterns
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on the line, except at very high error rates. Detailed results of the in-
tensive error measurements were discussed in Section 4.6.
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APPENDIX

Statistical Significance of Apparent Association of Error Characteristics

The statistical significance of the frequencies of particular combina-
Table VI was verified by a test based on the chi-square

independence in contingency tables. In order to conclude that Table VI
shows an actual tendency toward certain combinations we had to de-
termine that such an apparent tendency could not easily have occurred
by chance. Two problems were met in the testing procedure. First, the
null hypothesis to be tested must not be the hypothesis that all four di-
mensions in Table VI are independent, because the apparent tendency
for certain characteristics to be associated with BPV runs is explainable
as a property of the measurement technique; the test must allow for this
and determine whether any further interdependence can be deduced
from the data. Second, the sample size is so small, and the number of cells
so large, that the chi-square distribution is not applicable.

The first problem was not to be solved by simply combining the error
runs with the BPV runs, because this would leave medium pattern sen-
sitivity apparently associated with irregular diurnal variation, actually
because both are associated with BPV runs. Instead, the dependence of
pattern sensitivity on run type was allowed for by considering the five
observed combinations of these variables as a single variable. The de-
pendence of diurnal variation on run type was then removed from the
table by combining the steady and irregular types into one. The resulting
3 -way contingency table is shown in Table VII.
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Table VII - Three-way contingency table derived from Table VI
and used in statistical testing of the significance of the results*

Run type
and pat-

tern
sensiti-

Distribution type

Estimated
Nearly

uni-
vity Unimodal modal Bimodal Trimodal Total probability

error, high 1V 2V 1V 0 4 0.182
error, low 0 1V 1X 5N 7 0.318
BPV, high 1X, 1V 0 0 0 2 0.091
BPV, medium 1N, 1V 1N, 3V 1V 0 7 0.318
BPV, low 0 0 0 2N 2 0.091
Total 5 7 3 7 22
Estimated
probability 0.227 0.318 0.136 0.318 1.0

Total of N = 9, V = 11, X = 2
Estimated probability of N = .409, V = .500, X = .091

* N = normal diurnal variation, V = variable (steady or irregular), X = exaggerated.

The estimated probabilities for each type in Table VII were set equal
to the relative frequencies. As in an ordinary chi-square test for inde-
pendence, the probability of each of the 60 possible combinations of types
was derived (by a computer program) by multiplying the corresponding
type probabilities. For example, the probability that a line would com-
bine unimodal distribution type (P = 0.2), normal diurnal variation (P
= 0.45), and "error high" run type and pattern sensitivity (P = 0.2), is
0.2 X 0.2 X 0.45 = 0.018. The expected number of occurrences of each
combination, in 22 lines, is 22 times the corresponding probability. The
statistic called chi-square, measuring the deviation of the observed
numbers, oi, from the expected numbers, ei, is derived as

60

x2 = - (ei - oi)21ei
i = 1

For the actual observed numbers, chi-square was 88.04.
In a large sample this value would be compared with critical values

based on a chi-square distribution with 50 degrees of freedom (the
number of combinations of types, minus one, minus the number of in-
dependent probability values-not counting the ones determined by
the constraint that probabilities must add up to 1-that were estimated
from the observed data). If we did this we would conclude that a value
of chi-square as large as 88.04 would occur by chance, if the three prop-
erties were independent, with a probability of about 0.01 percent, and
that the deviation was therefore certainly significant. However, this
reasoning is not valid, because with a sample as small as 22 the chi-square
statistic does not have, even approximately, a chi-square distribution.

A Monte Carlo method was therefore used to estimate the relevant
distribution. The model that was simulated on a computer considered
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three independent properties (diurnal variation, waiting time distri-
bution, and run -type combined with pattern sensitivity), each property
having 22 perdetermined outcomes distributed according to the type
totals shown in Table VII. To implement each trial, a random -number
generator assigned one of the 22 outcomes for each property (by drawing
without replacement) to each of 22 lines. In 10,000 trials, 62 trials had
values of the chi-square statistic greater than 88.04.

We could thus estimate that, under the null hypothesis, the probability
that the chi-square statistic would exceed 88.04 is 0.0062, but this esti-
mate has some uncertainty that we cannot easily estimate or allow for.
The result, therefore, was interpreted by the following reasoning. If the
null hypothesis is true-that is, if the three properties examined are
independent-the single field experiment and the 10,000 Monte Carlo
trials are replications of the same experiment, and the value of chi-square
for the field experiment was among the 63 highest values in 10,001 trials.
This would be an event with probability 0.0063, or 0.63 percent. This is
small enough to consider that the deviation from independence is sta-
tistically significant.

A similar procedure was followed with another statistic, max I of ei
This had a value of 4.09 for the field trial, which was equaled in 3 out of
10,000 computer trials (and never exceeded). Under the null hypothesis
this would be an event with probability 0.0004, or 0.04 percent, showing
even more clearly a significant deviation from independence.

Having concluded that independence of the properties does not ac-
count satisfactorily for the observations, we are then justified (by Oc-
cam's razor) in adopting the simplest hypothesis that does account for
them, which is that we have observed two different types of error process,
each having different probabilities for the properties.
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The device of using "saturation arithmetic" to cope with adder over-
flow in recursive digital filters has, for a number of years now, been
known to yield stable operation when the filter is of second order and
is linearly stable. Mitra has recently given examples to show that this
happy situation does not prevail for higher order filters. Here we in-
vestigate conditions on the filter coefficients which would guarantee
stability for higher order filters using saturation arithmetic. We are
only able to give sufficient conditions for stability. These conditions
in their simplest form can be written as linear inequalities involving
the coefficients of the filter.

I. INTRODUCTION AND SUMMARY

We shall be concerned with real nth order nonlinear difference
equations of the form

y(k + n) = f [ aiy(k + n - k = 0, 1, 2, ... (1)
i=i

The variables y(  ) and the coefficients ai are real. The initial conditions
y(j), j = 0, 1, . . . , (n - 1) are arbitrary, subject only to the important
condition ly (j)I 1. The function f (.) will be assumed here to have the
form given in eq. (2):

f(x) = x, Ix' < 1

f(x) = sgn x, Ix I> 1 (2)

This function models a method of handling overflow in the practical
implementation of digital filters and in that literature is referred to as
"saturation arithmetic." An important unsolved problem is the as-
ymptotic stability of this undriven system. Specifically we would like
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to describe the region in "a -space" (i.e. fai i = 1, . . . , n) for which

lim yn = 0
n-.0)

for any initial conditions. We always assume that the ai's are already
restricted so that linear stability holds. That is, if f(.) were replaced by
the identity function the system would be stable. This is equivalent to
all roots Ai of the characteristic equation

c(z) = zn ->2 aizn-i = 0 (3)
i =1

satisfying I Ai I < 1.* Since fail are real, the complex Ai occur in conjugate
pairs.

The case n = 2 has special importance to a certain strategy for
implementing digital filters and has been considered earlier.1-3 It was
shown for this case that eq. (1) is stable for saturation arithmetic
whenever the system is linearly stable. Recently Mitra4 has shown by
example that a result of this generality does not hold for any n > 2. This
surprising development has regenerated the author's interest in the
problem in its own right. In addition, direct implementation of digital
filters of the form [eq. (1)] for n > 2 is now of interest, so questions of
stability must be answered. Saturation arithmetic seems to be an ex-
perimentally favored procedure at the moment.

Our main results, Theorems I and II, provide sufficient conditions that
a given set of coefficients 1'12 yield a stable filter with saturation
arithmetic. Both theorems require one to test if a pair of linear ine-
qualities in a set of variables can be satisfied when the latter lie in a hy-
percube of (at most) dimension n. A finite algorithm which is sufficient
to decide this question is given in Section IV. While we feel that Theorem
II will give more powerful results (i.e., determine a larger stability region),
Theorem I allows one to list a set of linear inequalities in the ai, which,
if any one is satisfied, would guarantee stability. This result is given as
Corollary I.

II. SOME LINEAR AND NONLINEAR THEORY

If one were concerned with the linear version of eq. (1) [f(-) equal to
the identity function], the solutions would be

y(k) = >2 k1Ak k = 0, 1, . . . (4)
i =1

* Under this condition, stability of eq. (1) with I yi I 1 and

lad <1

is trivial, since the system is then linear.
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where the Xi are the characteristic roots of eq. (3), assumed to be distinct
in writing the solution eq. (4). The constants k1 are determined by initial
conditions, or equivalently, the values initially stored in the registers.
Suppose we wish to solve for the ki in terms of y(0), . . . , y (n - 1). This
clearly requires the inversion of the matrix

1 - 1

Al An

V(A) = X?
x2n

An- xr1

called a Vandermonde matrix. A brief discussion of these matrices is
given in the Appendix, as well as some notation we shall use related to
them.

The linear difference equation can also be written in matrix form if
we introduce the n-vectort

y(k)

Y(k) =
(y(k + 1) )

, k = 0, 1, 2, ... (5)

y(k + n - 1)

or, in component form yi(k) = y(k + i - 1), i = 1, . . . , n. The "time"
argument is indicated by the discrete index k. The equation -of
is then

Y(k + 1) = AY(k) (6)

-0 1 0 0

0 0 1 0

A= 0 0 0 0 (7)

0 0 0 1

_an an --1 a2 a1

Expanding the determinant of the matrix A - Al (I being the identity
matrix) by the last row, we obtain (except for a sign) the polynomial eq.
(3), and, not surprisingly, the eigenvalues of A are the roots Ai mentioned
earlier.

If these eigenvalues are distinct, a well-known theorem of algebra
guarantees that there exists a nonsingular matrix P such that

P-1AP = A (8)

where A is simply the diagonal matrix of eigenvalues of A.

t Vectors and matrices will be denoted by capital letters.
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Theorem: If the eigenvalues of A are distinct, then

V -1A V = A (9)

where V is the Vandermonde matrix formed from the roots of the
characteristic eq. (3).
The choice P = V is not claimed to be unique.

Proof:

i'

n
' 1 _ Xik i n - 1

(Lipp? = E aijXi -
i=1 1=1 n

11E an+1-jX.i-1 = 4 for i = n
j=1

The second line in the last member makes explicit use of the fact that
Xk is a root of the characteristic equation. Thus

n n n

E vii1(E cv.v.k) = E vii1 (xkvik) = X126ikJ.1 .1

i=1 j=1 i=1

as was to be shown.

One reason for wishing to diagonalize A in the linear case is the simple
form that the equation of motion takes. If we multiply eq. (6) by V-1 and
perform the standard trick of inserting I = VV -1 after the A in eq. (6),
we obtain

Z(k + 1) = AZ(k) (10)

where

Z(k) = V-1-Y(k) (11)

Since A is diagonal, the solution for the ith component of Z is simply

zi(k) = 4zi(0) (12)

Turning now to nonlinear problems, we wish to summarize some re-
sults from Liapunov stability theory,7 without proofs, and without
complete generality.*

We are concerned with an autonomous (time independent) nonlinear
difference equation

Y(k + 1) = F[Y(k)] (13)

where F is a nonlinear (or linear) vector function of the vector Y(k).

* A. N. Willson was the first to explicitly apply Liapunov theory to the present problem
for n = 2.3 He has also attacked other stability questions for n = 2 with these methods in
Ref. 8.
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If

lira Y(k) = 0

then the system is called asymptotically stable.

Theorem (Liapunov): If there exists a (strictly) positive definite qua-
dratic form w[Y], such that, for any allowed n -vector Y, w[F( Y)] - w[Y]
< 0 (strict inequality) then the system is asymptotically stable.t

In other words, if we can find a positive definite quadratic form (of
the state variables of the system) which is always decreasing as the mo-
tion proceeds, then the motion must proceed to the origin. The function
w [-] is called a Liapunov function.

In terms of f(-) and A the function F() is determined by

[F(Y)]i = [AY]i i = 1, . . . , (n - 1)

[A Y]n, if I [A Yin I 1

[F(Y)in = I
sgn [A Y] n, otherwise

As a simple example of a Liapunov function consider the linear case
with nondegenerate eigenvalues, and again set Z = V -1Y. Choose

nW = E I Zi 12
i=1

(14)

(15)

the zi being regarded as functions of the y(j), j = 0, . . . , n - 1. We know
that when Y AY we have Z AZ and so

w En IXi121Zi12
i=1

Since we assume I Xil < 1, strict decrease of w is assured.

III. A SPECIAL LIAPUNOV FUNCTION

For the nonlinear problem eq. (1), we shall, for a first pass, choose a
w [-] whose form is inspired by the one just described. Noting from the
Appendix

(-1)iv(i)(X) n

[VT Y], = E (-1)ip(nili(x)y;
V(X) y=1

(-1)i+n1)(i)(X) n-i
E (-1)fp(P(X)y(n -Q - 1)

v(X) e=o

we shall single out the functionals

(16)

t For our problem any vector Y is allowed that has components I yi I < 1. We identify
Y with Y(0) and soy; = y(i - 1), i = 1, . . . , n.

HIGHER ORDER DIGITAL FILTERS 751



E1
n-1

xi = E (-1)ep(i)(x)yn- = E (-1)p(i)(A)An -i - 1) (17)
e=o e=o

for special attention. Clearly the equation of motion for the Z variables
(10) implies that under the substitution Y -.. A Y we have xi --.. Xixi. We
choose

W[Y] = i 'Xi'2 (18)
i=i

where the xi, via eq. (17), are regarded as functions of yi, i = 1, . . . , n,

the components of Y. Of course we always have I Yi 15 1.
In order to investigate the consequences of the (sufficient) stability

condition

w[F(Y)] - w[Y] < 0 (19)

we note that under Y --. AY we have xi -.- 4') (L stands for linear)
where

X1L) = En
-1

(-1)epr(X)y(n - )
---o

and

(20)

y(n) = i aey(n - ) (21)
e=1

Finally the nonlinear (NL) "version" of eq. (20) is

1

x(NI, ) = x IL ) if ly(n)I < 1

n-1
sgn y(n) + E (-1)ep(i)(X)y(n - e)

1
if IY(n)I > 1

(22)

where we made use of the definition of F(-), and the fact that po(e)(  )
= 1. Then

n

w[F(Y)] : 14NL)12

1=1
(23)

We have already noted that if ly(n)1 . 1 we have a linear iteration
[F( Y) = A Y] and

w[F(Y)] - w[Y] = w[AY] - w[Y]

= Ptil2lxil2 -ii lxil2 < 0 (24)
i=i i=i

Hence we will only be concerned with xl%11') when I y(n) I > 1. In this case,
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w[F( Y)] is a function of y(1), y(2), . . . , y(n - 1), while the condition y(n)
> 1 involves y(0) as well.*

We shall not use the stability condition in the form of eq. (19), but
instead note that since

1=1

the condition

(25)

E 14'41 2 < 0 when y(n) > 1 (26)
i=1 i=1

is sufficient for stability. At the price of losing some power in the method
we shall see momentarily that we have gained considerably in analytic
simplicity. For convenience define

n-1
ci = E (-1)ey(n - i)1911)(X)

e=i

so that [when y(n) > 1]

xi(L) = y(n) - ci
xra.) = - ci

Then

E 149 2 -E IxNLl2= E (y(n) - 1)(y(n) + 1 -ci -c7)
1 1 i=1

(27)

(28)

= (y(n) - 1) [n(y(n) + 1) -2 ci] (29)

We have used the fact that complex Ai occur in conjugate pairs and so

E 0)(x) = E PY)*(x)

Thus if the inequalities

2 ci - n(1 + y(n)) > 0

y(n) > 1 (30)

have no solution in the n -cube I y(i) I < 1, i = 0,1, . . . , n -1 the nonlinear
equation (1) is stable. More explicitly by using the definition of the ci
[eq. (27)] Lemma I in the Appendix coupled with (67) to express rit=1 ci
in terms of the ai, and using finally eq. (21), we have:

* By symmetry of the problem, I y(n)I >1 is here and henceforth replaced with y(n) >1.
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Theorem I: If the two inequalities

nE (n - 2)aey(n - .e) n
e=i

(31)

aey(n - i) > 1, (32)
1=1

cannot be simultaneously satisfied by some set of y(i) in the cube I Y (i) I
1, i = 0, 1, . . . , n - 1, then the system (1) is stable for saturation

arithmetic.

We note that if the inequalities are satisfied, no conclusion is
drawn.

A systematic algorithm for checking the above inequalities is given
in the next section. Here we deduce the simple:

Corollary I: If the coefficients ae satisfy

ictei in - Zel <n (33)
e=1

then eq. (1) is stable. If the coefficients al satisfy

lad ik < k (34)
e=i

for at least one k, [n/2] < k n, eq. (1) is stable.*
The first inequality follows immediately from the first inequality in

Theorem I plus the fact that I y(01 < 1, all i. The remaining inequalities
follow from the observation that in eq. (31), the coefficients of ae have
the same sign for e [n/2], whereas for . > [n/2] they have opposite
signs. Thus if eqs. (31-32) have a simultaneous solution, so do

E lael (n - 2i) + nE (n - 2)a.ey(n - .e) n (35)
[n/2] e> [n/2]

E + E aey(n - e) > 1 (36)
e..5 [n/2] e> [n/2]

where the above is obtained by setting y(n - .e) = sgn ae, 1 [n/2].
If, for k > [n/2], we multiply the second inequality by (2k - n) > 0 and
add the result to the first we obtain

E 'ail (k - i) + > (k - .e)asy(n - .e) k (37)
es In/2] e> [n/2]

which, if ly(i) I < 1, cannot possibly be satisfied when

* The notation [x] denotes the integer part of x.
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laellk <k (38)
e=

There is one important point to be noted here. Our results have only
been proven for the case of nondegenerate eigenvalues. For degenerate
eigenvalues, the Liapunov function that we have chosen in this section
is not strictly positive definite. We have in fact constructed Liapunov
functions which are specifically designed to handle the degenerate case.
Using them, we have proven that the conclusions are still true for de-
generate eigenvalues. We believe that the form of the results, being
simple conditions on the al's, will allow the reader to readily accept that
they are true in general. Since our proof of the extension is long and out
of proportion to its importance, we have chosen to omit it.

IV. HYPERPLANE ALGORITHM

Let $bilk.1 and lei k and n denote fixed constants. We wish to de-
termine when it is possible to simultaneously satisfy the inequalities

k

E zibi > E
1=1

k

E zici 77

j=1

Izil 51 i = 1, 2, . . . , k (39)

The dimensionality of the problem is immediately reduced if sgn =
sgn ci for some j since we may immediately take zi = sgn bj. It is im-
portant to note that we assume this to have been done and therefore
assume bici < 0, 1 5 i k.

Lemma: If the simultaneous inequalities eq. (39) are satisfied then there
exists zi, and a j, 1 5 j k, such that

k
E
i=1

k

E fici
i=1

12i1 12e1 = 1 all X j (40)

In other words all but possibly one of the coordinates may be given values
±1.

This is geometrically evident if k = 2. If k> 2 one need only consider
the zi variables two at a time, always applying the Lemma for k = 2.
Eventually all but perhaps one of the zi will have value ±1.

Continuing with the description of the algorithm, let E be any k -vector
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having components Ee = 11; there are 2k such E vectors. Choose a j and
let's test if indeed it is the j of the Lemma. Let 2" = ce, j. Then if eq.
(40) has this solution we have

- Xibece n - EeCe
< if bi > 0 (41a)

b./ c 

or

n- I/fee< fi < E- z'beft
if b  < 0 (41b)

b C 

If these inequalities are consistent (i.e., the upper bound is at least as
big as the lower bound) and if they can be satisfied by some Eh I zi I
1 we are done-the simultaneous inequalities are satisfied. If not, try
another E vector, or another j. For a given j there are 2k-1 E vectors to
try. Hence after at most k -2k-1 such attempts we have exhausted all
things that need to be checked, and checking the inequalities is, it has
turned out, a finite procedure.

This procedure is not only applicable to Theorem I, but also to The-
orem II occurring in Section V.

V. ANOTHER LIAPUNOV FUNCTION

We have already noted that the entire sequence {yi}; is determined
by the first n elements. For our second choice of the Liapunov function
we chose the expression for the energy in the remainder of the sequence
for the linear problem:

CC

w Y] = E y12, (linear case) (42)

The right member is regarded as a positive definite quadratic form in
Y(0). In the linear case we also have, numerically,

w [AY] = E yk (43)
n+1

which is smaller than w [ Y] by y2(n). Thus this w[] doesn't necessarily
decrease after every iteration and thus it is not strictly a Liapunov
function. However after at most n iterations it must decrease (unless all
yi = 0) and the effect will be the same. We shall have stability if we can
show whenever y(n) > 1, that

w [F( Y)] -w Y] < 0 (44)

or, equivalently

w[F(Y)] - w[All < A (45)
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We begin by writing down the generating function for the sequence
y(n), y(n + 1), . . . , when linear theory holds. By definition

H(z) E E y(n + k)zk (46)
k=0

Using standard linear techniques we calculate from eq. (1) and its initial
conditions

n n-j
E y(n - j) E ai+szs

H(z) = j=1 s=o

n- aszs
s=0

(47)

where we have arbitrarily defined a() = -1. We note the characteristic
polynomial

C(Z) = - E aiz
i=0

has the same modulus as the denominator of H(z) when I z I = 1 (since
the ai are real).

We next note that

=
1

j -,11-1(z = ei°)I2d0 (48)
2irk=n

To express this as a quadratic form introduce, for 0 S Is - tl (n - 1)
the integrals (z = ei°)

dO = - COS (s t)0 dozs-r 1 T

Lta---Lfr
E aszsl 2 E asz

2-n n 271- n

sls=0 s=0

Also, as a contour integral around the unit circle, we have

1 zn+s-t-1
1st

27r1 f (Easzs)(Matzn-t)
= dz (50)

The first form of the integrals shows they are real and 'St = its. Also in-
troduce the real symmetric matrix

(49)

n-j n-k
Hjk = E E aji-sak-Ftist, j, k = 1, . . . , n (51)

s=o t=o

Note for j = k, Hij > 0 since the right side of eq. (51) is then a Teoplitz
form with positive spectral function. Then with these notations simply
using eq. (47) to expand the integral in eq. (48) yields

= E yk = - DY(n - k)Hik (52)
k=n j,k=1
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Or

w[AY] = E y/2, = y(n + 1 - Dy(n + 1 - k)Hik (53)
k=n+1 j,k=1

When yn > 1, w [F( Y)] has the same form as eq. (53) except that yn is
replaced by unity. Thus in evaluating w [F( Y)] -w [AY] [by using eq.
(53)] most of the quadratic terms will cancel. Doing this and a few minor
manipulations, the criterion for stability will read that we must have

[y(n) + 1]H11 + 2 + 1 - j) Y2(n) (54)
j=2 y(n) -1

whenever

y(n) = ajy(n - j) > 1 (55)
j=1

If we define H1,n+1 = 0, we may write this as:

Theorem II: If there are no simultaneous solutions to the inequalities

- 21-11,i+11Y(n -i)2(n)H11+ y(n) - 1
(56)

i=1

y(n) = nE ajy(n - j) > 1 (57)
j=1

IY(01 1 i = 0, 1, . , n - 1 (58)

then the difference eq. (1) is stable with saturation arithmetic.

To convert this into a hyperplane problem (discussed in Section IV)
the nonlinear term y2(n)/(y(n) - 1) may be dropped or replaced by the
value four (since

x2
> 4

x - 1
when x 1). If we drop this term, the resulting stability has the physical
interpretation that at any time the energy in the remaining tail of the
nonlinear response is less than or equal to the corresponding energy for
the linear problem, regardless of the previous state. That is, if measured
by energy, the nonlinear undriven response dies off at least as fast as the
linear response for any initial conditions.

We also note that whenever the Liapunov function w = YtHY [eq.
(52)] drops to the value unity the system behaves as a linear one from
there on (no future yk will exceed unity). Several bounds for this quantity
may be given. Since

aszsl
2

= 11 - zxil 2 fl -n

I Xi I )
s=o i=1 i=1

2
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we have

1
W =

2r 5-11^
dO1H(z)12 < max IH(z)I

z=eio
2

n n-j 2I E y(n - j) E ai+szs
= max j=1

s=o

z=ei° - aszs
0

n 2 n 2 n-1 2

E 13/(n -DI E laj+si
1E Ej=1 s=o j= 1 i=o

11 (1 - lAil)2 fl (1- IXil)2
i=1 i=i

(59)

VI. EXAMPLES

The few simple examples of this section will shed light on the two
methods we have given. When n = 2 the two inequalities of Corollary
I are simply 1a21 < 1, lad < 2. Since linear stability implies 1 a 11 = I Al
+ X21 < 2, 1a21 = I XiX2I < 1, we see that for n = 2 linear stability implies
stability with saturation arithmetic. We have already mentioned this
is not true for n > 2. Mitra has constructed a counter example using the
degenerate case Al = A2 = . . . = An = y. For n = 3 he finds oscillations
if 171 0.858, although if 171 is smaller than this stability is not implied.
If we consider the second inequality of Corollary I for n = 3, k = 2, al =
3y, a2 = -372, a3 = 73 we have stability if

3171 + 1713 < 2

or 171 < 0.596. No better result is obtained for this case by a complete
use of Theorem I.

On the other hand if we apply the criterion of Theorem II (neglecting
the nonlinear term) with the algorithm of Section IV, we find stability
if 171 < 0.71. Insignificant improvement would be obtained here if we
had also included the nonlinear term. The application of Theorem II to
the present case was sufficiently simple so that the calculation could be
done by hand. The integrals were done exactly to give

A2

H11 = [9 ..._ 9A2 mkt 5A6 A8]
(1 - A2)5

H12 - -3A3

5
(3 + X2)

(1 - X2)
43A

(1 + X2)
(1 - X2)5

(60)
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Clearly in general the integrals would have to be done numerically. The
fact that the nonlinear term did not contribute significantly is due to the
combination of facts that at the critical value for X, y(n = 3) is not ex-
tremely close to one and also H11 is large, due to its denominator.

It should be pointed out that

E Yii
n

can be expressed using the solution eq. (4) for the linear problem as

E A = Yi-w-irry-1y
n

where

rte -
11-' - 1- 777;

However this explicit form is only true for the nondegenerate case and,
although all limits exist as A1--> A2, etc., the expression would probably
not be suitable for numerical computation when eigenvalues are close
to being degenerate.

Another example of limiting misbehavior being only apparent is that
in a similar manner one could compute that

R

H(z) = E (V-1Y)i (63)
i=1 1 - zXi

Individual terms in this expression are badly behaved as, for example,
if Al =, A2, but the alternate form eq. (47) shows everything is well be-
haved in the limit.

If we return to Corollary I applied to n = 3 when (A1, X2, A3) = P(i, -i,
1), 0 < p < 1, we see that the inequality

lad + 1a31 < 2

is sufficient to guarantee that for filter poles in these relative position
saturation arithmetic will give a stable filter for any p, all the way out
to the boundary of linear stability.

Based on these examples we feel that Theorem II is the more powerful
method although the simpler Corollary I can yield considerable infor-
mation for particular cases.

Finally, we note that an important investigation on the present
problem has just been completed by Mitra,9 resulting in different sta-
bility criteria from those presented here. Mitra's results will give a
polynomial type criterion for absence of periodic oscillations. These
results in themselves do not prove stability in that Ref. 9 does not pre-
clude unending periodic outputs with no input. However, we take the

(61)
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liberty of mentioning that Mitra has extended the proof to include sta-
bility and thus the results of Ref. 9 may be taken as proving the same
type of stability as discussed here. Another comparison with Ref. 9 in-
volves the size of the stability region in "tap -space" which the two
methods give. Neither Mitra's criterion nor ours can claim to describe
the largest stability region. Also it does not even seem possible at this
stage to give theoretical arguments to decide if one of the methods is
always superior in this respect. However, several examples indicate that
the region determined by Mitra's criterion is larger. Assuming this to
be the case in general, an effective practical procedure would be to first
test for stability using our simple Corollary I, and if this fails, apply
Mitra's polynomial test.

APPENDIX

The Vandermonde Matrix and Symmetric Polynomials

The a denote an ordered set of n complex members ai, al, a2, ,

an. By the Vandermonde matrix V(a), we shall mean the matrix

1 1 1 1 -
al a2 a3 an

V(a) = 2al 2
a2

an -1

,2
L.,3 a2

n

nn -1

(64)

This can be written [V(a)]ij = j = 1, . , n. We let v(a) = det
V(a), and it is known5 that

v(a) = II(aj - ai) (65)

where the product extends over all i, j satisfying

1 _i<jn
If ai ai for i j then the inverse of V(a) exists, and is known. Before
giving its structure, we wish to list some facts concerning some special
symmetric polynomials.6

Definition: The £th elementary symmetric function of n -variables (i)
= 1, 2, . . . , n) is the sum of all formally distinct products of the variables
taken e at a time. We also define po E 1.

For example if n = 3 we have
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PO(a) = 1

Pi(a) = ai + a2 + a3

P2(a) = aia2 + a1a3 + a2a3

P3(a) = aia2a3 (66)

A well known theorem of algebra states that any symmetric polynomial
in all the a's can be uniquely written as a polynomial in the quantities
pi(a), i = 0, . . . , n.

Note that in the characteristic polynomial eq. (3) we have

ai = (-1)i+lpi(X) (67)

where the Xi, i = 1, . . . , n, are the roots of eq. (3). Thus the theorem just
stated says that any symmetric polynomial in the roots of a polynomial
can be expressed as a polynomial in the coefficients of the equation
(rather than a complicated function as would be required to express an
individual root).

We shall use the notation pY)(a), .e = 0, . . . , n - 1, to denote the eth
elementary symmetric function formed from the (n - 1) ordered vari-
ables al, . . . , ai_i, ai+i, . . . , an. Likewise v(i)(a) denotes the determi-
nant of the corresponding (n - 1) X (n - 1) Vandermonde matrix.

Theorem:

[V -1(a)],) =
(-1)1+jv(i)(a)

Pn--
(0

j (a)v(a)

i, j = 1, . . . , n

Proof: We have

qkj A Pi [17(a)hi [If -1(a)]u = i. ai'-1 (-1)i-fiv(i)(a)/3)j(a)
i=1 i=1 ' v(a)

From eq. (65) and the definition of v(i)(a) we see that

v(i)(a) 1

v(a) (-1)n-1 fl (ai - ae)

and hence eq. (69) is

n airipgli(a)(-1)n-j
qkj = E

i=1 n (ai -a f)
e oi

Form
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and note that*

Thus

n
q(x) = E qkixi

j=1

n
E pg) j(a)(-1)n-ixi = E (x - ae)

j=1 Poi

11 (x - e)

E = E ak-1
j=1 i=1 H (ai- ae)

Poi

(72)

(73)

has value 4-1 when x = am, m = 1, , n. From this it follows that q(x)
= xk-1, so that qki = bkj, which we were to prove.

We leave it to the reader to convince himself of the following:

Lemma I:

Lemma II:

PV±j(a) = ./Pn-j(a) j > 0 (74)
e=1

pi(X) - (X) = XipPi(X) j = 1, 2, ... , n - 1 (75)
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Clock -Rate Speech Codec Applications
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The expansion of the step size of a speech codec may be arranged
to change as the number of identical consecutive bits starts to increase.
This technique causes the codec to respond partially to a fewer number
of identical consecutive bits and more dramatically to larger numbers.
In contrast to a typical exponential expansion of the step size, the
proposed technique, in addition, expands the exponent. For speech,
two distinct advantages have been observed: (i) the improvement of
higher frequency audio frequency response at the same clock rate and
(ii) the reduction of idle channel noise. In practice we have found that
three- and four -bit companding will suffice for a typical 24 kHz, ADM
codec. The proposed companding appears to be an acceptable choice
between two-, three-, and four -bit companding which leads to better
frequency response but worse noise, and four -bit companding which
leads to both worse frequency and noise responses.

I. INTRODUCTION

The many distinct advantages of companding to encompass the dy-
namic range of speech signals are well documented. In most cases, a
simple law is used repeatedly to arrive at the companded step size. For
instance, in the 37.7 kHz, ADM SLC-40 codec,1- a nonlinear function of
the frequency of occurrence of four identical consecutive bits forces an
expansion of the step size. In the two-bit companding described in Ref.
2, the expansion of step size follows a geometric progression. Three bit
companding described in Ref. 3, again depends on a base -two geometric
series for increasing the step size, when two consecutive bits are the same,
and again on the same series with a base -half for decreasing the step size
when the bits are of opposite polarity. Most of these systems perform
adequately at higher (typically above 32 kHz) clock rates. However, when
the clock rate is decreased, the simple fixed rules of companding either
offer an unacceptable quantization noise at lower step sizes, or make the
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Fig. 1-Block diagram of encoder (see Ref. 4, Fig. 7).

message so choppy at larger step sizes that it becomes unintelligible. A
happy compromise between the two is simply impossible. For this reason,
we have investigated the problem by having a series of weightings at-
tached to identical consecutive bit patterns of two, three, and four bits.
When the bit pattern reverses, the decay of the step size is effected by
an RC circuit with a time constant of about 9 msec.

Sequential companding proposes to utilize the binary sequence of data
for companding the step size in a multiplicity of modes at different in-.
stants of time in a gradual way, whereas conventional encoding translates
the companding information more drastically after a critical threshold
has been reached. The multiple use of bit stream to convey companding
information enhances the effective usage of bits at the same bit rate, or
achieves the same quality of speech at a lower bit rate.

II. PERIPHERAL CIRCUIT FOR TESTING SEQUENTIAL COMPANDING

An existing ADM codecl has been used to test the principle of se-
quential companding. The encoder has a double integration feedback
loop with the main pole at 235 Hz and the secondary pole at 2870 Hz.
Figure 1 is a block diagram of the encoder. Four bit companding is ef-
fected by a logic circuit which forces an incremental charge on a 1µF
capacitor through a 3 IESZ resistance. The duration for which the charging
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takes place equals the time during which the logic circuitry senses four
consecutive ones or zeros at the output of the comparator, which in turn
senses the difference between the incoming speech signal and the voltage
across the feedback loop. When the four bits sensed are not all identical,
the 1 AF capacitor is allowed to discharge to a 9 kf resistance. This
combination yields two time constants; one for charging (attack) of about
3 msec, and one for a discharging (decay) of about 9 msec. The voltage
across the 1µF capacitor dictates the step size. A nonlinear circuit gen-
erates a step current whose magnitude depends upon the voltage across

-7
3mA

1mA

0.3mA

0.1mA

30tLA

10µA

3,(AA

1/2A

CAPACITOR VOLTAGE (ACTUAL VOLTAGE -4-)
-6 -5 -4 -3 -2 -1

2 3 4 5 6 7

CAPACITOR VOLTAGE (-VOLTAGE DIFFERENCE)

Fig. 2-Compander capacitor voltage and step current relationship.

0

8

the 1µF capacitor. Figure 2 depicts the 1µF capacitor voltage and the
compander current. When there is no companding at all, the voltage
across the capacitor becomes quite low (about 1.6 V) and the minimum
step size of the 10 µA is reached. As the voltage reaches about 6.5 volts,
the current step size reaches about 2 mA yielding about 46 dB range for
the step size. The compander current is used to accumulate or deplete
a charge on a final 0.33 ALF integrator capacitor and it is the voltage across
this capacitor which yields the original voice frequency signal after a low
pass filter with a 3 dB loss at about 2000 Hz. The final capacitor has
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about 1.2 kit in its discharge path. When the current step size is about
10 1.1, A, the voltage swings between ±0.58 mV across the integrator ca-
pacitor at a clock frequency of 24 kHz.

III. ESSENTIAL DIFFERENCES BETWEEN CONVENTIONALLY
COMPANDED AND SEQUENTIALLY COMPANDED CODECS

3.1 The Idle channel noise

The character of the idle channel noise is totally different in the se-
quentially companded codecs. Whereas in the conventionally corn-
panded encoder, the bit pattern generated by the encoder during a silent
period is nondeterministic and depends on the comparator character-
istics, the sequentially companded encoder generates a sort of restless
limit cycle in which the climax occurs when the three consecutive ones
are produced, and the step size increases very slightly followed by pairs
of zeros and pairs of ones for a few cycles. Meanwhile, the step size starts
to decay due to lack of any companding, the paired zero -ones gradually
vanish to a single zero and one combination and then the whole cycle
repeats. This constitutes a semistable limit cycle and has been photo-
graphed in Figure 3a. The top trace shows the audio output from the
decoder. The central trace is the integrator voltage in the decoder. The
last trace is the clock at 24 kHz which also triggers the oscilloscopic
sweep. In contrast a similar oscillogram (Fig. 3b) for a conventionally
companded codec shows a total absence of any pattern during the si-
lence.

These two pictures also forecast the difference in character of the two
idle channel noises. The sequentially companded decoder presents a
component of frequency at about 190-200 Hz which is considerably
quieter than random noise generated by the conventionally companded
ADM. But the higher frequency channel noises are less than those in the
conventionally companded ADM coded. Psychologically the effect of such
a low -frequency steady low-level signal appears to be more tolerable than
the randomly varying noise produced by the latter.

Sequentially companded codecs also have one additional feature to
enhance the signal to idle channel noise ratio. The frequency of corn-
panding in the three and four bit compander is higher than that in the
four bit compander alone. Hence, the signal strength at the input to
encoder can be higher at the same input frequency. The study of the four
bit conventional codec suggests a 60 mV occasional peak at the input
level to the codec. This value is appropriate and is consistent with an
average voltage across to the integrator capacitor with the compander
switch being functional (Ref. 4) for about 10 percent of the time. How-
ever, for a sequentially companded codec, the compander switch would
be functional almost twice as frequently. However, the charging rate of
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Fig. 3-Idle channel noise characteristics of (a) sequentially companded ADM codec
and (b) conventionally companded ADM codecs.

the three bit compander is less than the charging rate of the four bit
compander. Further, the switch for the four bit works in unison with the
three bit switch. Hence, the average signal level for the sequentially
companded codec tends to be on the order of 160-220 mV. At this level
the sequentially companded codec at 24 kHz "sees" a frequency of 4 kHz
the same way as a conventionally companded codec at 37.7 kHz would
see a frequency of 4.7 kHz. But since the resistances in the charging paths
are different, the responses would also be slightly different. Further, the
response to the lower frequency from the sequentially companded codec
should become nominally better* since both three- and four -bit com-
panding can take place simultaneously.

The signal to noise implication of this difference of behavior between
the two codecs is that whereas the noise remains about the same for the
sequentially companded codec, the signal level increases about two to
three times bringing down the signal to idle channel noise ratio consid-
erably. This result has to be observed consistently during normal func-
tioning of the codec.

* Experimentally we have seen very little difference at low audio frequencies which tend
to pass through the telephone network.
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Fig. 4-Unit function response of (a) conventionally companded codec and (b) se-
quentially companded codec for a 50 mV step function.

3.2 Unit function response

This response indicates the rapidity with which the codec can respond
to changes in the input level. It also brings about the high frequency
response of the codec. During the normal operation the capacity of the
sequentially companded codec to respond rapidly is reflected by lower
slope overload noise. When a 50 mV step is imposed on the encoder, the
decoder responses for the conventionally and sequentially companded
codecs are presented in Figures 4a and b and output voltages are also
tabulated in Table 1A. Similar response to a 360 mV surge is shodvn in
Figs. 5a and b and the output voltages are presented in Table IB.

3.3 Higher audio frequency response

An audio frequency of 3149 Hz (nonsynchronous with the 24 kHz
clock) is chosen for the comparison of performance of the two codecs.
Figures 6a and b represent two spectrograms generated at the output.
In the response from the conventionally companded codec (Fig. 6a), the
peak at the input frequency is surrounded by a large number of cluttered
peaks with rapidly changing (indicated by the density of broken patterns
and smears in the figure) tones. Each smear is an audible change in tone
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Table IA - Differences in responses to 50 mV step function at
encoder

Elapsed
time,
psec

Conventionally
companded
codec, mV

Sequentially
companded
codec, mV

200 2.5 3.0
300 10.0 15.0
400 20.0 29.0
500 32.0 47.0
600 43.5 55.5
800 44.0 48.0

1000 44.0 50.0

Table IB - Differences in responses to 360 mV step function at
encoder

160 19 35
320 50 80
480 110 180
640 205 300
800 320 370
960 320 370

liMICE=1=an
1111111111111111111141

1111111Platalli
11111111112

11111110E1411111111
11111111111111P0111.

Fig. 5-Unit function responses of (a) conventionally companded and (b) sequentially
companded codecs for a 360 mV input surge.

SEQUENTIALLY COMPANDED MODULATION 771



O A

FREQUENCY IN kHz

5

Fig. 6-Typical responses at about 3000 Hz from (a) conventionally companded and
(b) sequentially companded ADM codes.

which cannot be missed by a listener. In contrast the response from the
sequentially companded codec is cleaner and better formed with a fewer
number of breaks and smears. Listening to the output tones from the
two codecs also confirms this result.

IV. COMPUTED SIGNAL-TO-NOISE RATIOS

4.1 Validation of the computer model

Computerized models of the conventionally and sequentially com-
panded codecs have been developed to compute the SIN ratios. The
model of the codec programmed for a Nova 800 minicomputer is a gen-
eral purpose version of a typical ADM codec whose companding can be
changed by input variables. The same model serves to compute the bi-
nary sequence, the output wave shapes, the signal to noise ratios, etc.,
by altering the data to the minicomputer in a conversational mode of
communication between the operator and the machine. For the encoder
model an ideal comparator is used. Hence, the additional noise generated
by the imperfection of the comparator is absent from the computed re -
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Table II - Computed and measured S/N ratios

Frequency

Measured*
(Ref. 4), Computed,*

dB dB

300 38.5 40.0
800 32.5 32.5

1600 22.5 22.0

* The clock rate is 37.7 kHz.

Table Ill - 24 kHz steady-state S/N ratios

Audio
frequency,

Hz*

Conventional
companding

Sequential
companding

Bits S/N Bits SIN

2900 3 7.9
4t 5.7 3, 4 8.35

2490 3 3.7
4t 2.1 3, 4 3.9

1660 3 16.0
4t 13.0 3, 4 15.3

830 3 25.1
4f 23.2 3, 4 29.4

415 3 31.6
4t 31.0 3, 4 31.8

* These numbers are chosen to be irrational fractions of to clock rate at 24 kHz to avoid
a limit cycle condition.

t Presently used charging resistance = 3.01 kit.

sults. This leads S/N ratios would
be the upper bound for the measured S/N ratio. These values (published
in Ref. 4) have been used to validate the model at different sine wave
inputs and have been presented in Table II.

From the computational models it also becomes evident that the S/N
ratio is by no means a constant but a time varying quantity. Whereas the
S/N ratio is measured as a time -average over a period (typically between
0.5 to 3 seconds), the computed S/N ratios are averaged over much
shorter intervals and, hence, one would expect some difference between
the computed and the measured values. Nonetheless, since the time
constant is the same for all computations, the cross comparison of the
computed values would still be a valid relative measure of their perfor-
mances. To reduce the effect of transient variations of the S/N ratios,
the computed value is the average of 60 such ratios at 60 consecutive
clock cycles, each ratio being calculated as the moving average of twenty
adjoining ratios around each clock cycle. Further, a series of such com-
putations are made over numerous input frequency cycles and an average
number is derived.
4.2 Effect of sequential companding on steady-state sinusoidal inputs

Table III lists the values of computed signal-to-noise ratios for con-
ventionally companded and sequentially companded codecs at 24 kHz.
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The input parameters have been held substantially the same for all the
cases presented. However, the values of the charging resistances* for
three -bit companding has been computationally optimized as 5.2 kg,
whereas its corresponding value for four -bit companding has been re-
tained as 3.01 kg as it exists in current applications. In case of the se-
quential companding their valuest have been optimized as 5.2 kg for
three bits and 4.36 kg for four bits, even though any other resistance
values in their proximities will perform adequately.

4.3 Effects of sequential companding on frequency modulated sine wave
Inputs

Steady tones are rarely encountered in telephone conversations.
Rapidly varying frequencies are, however, typical and for this reason we
have studied the responses of conventional and sequential coding at 24
kHz clock rate when the input signal has a frequency which changes
gradually from 250 Hz to 2900 Hz and back to 250 Hz within 30-50
milliseconds. Such changes are well perceived by the listener and the
average signal to noise ratios indicate the relative faithfulness with which

* This charging resistance controls the voltage on the step size capacitor, which in turn
controls the current step for charging or depleting the final integrator.

t Experimental determination (Section III) for best subjective listening seems to indicate
that 5.2 fat and 3.01 fat are the desirable values for three- and four -bit companding.
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Fig. 8-Square-wave response to 1660 Hz signal.

the codecs can follow the change in frequencies and thus retain the
original message characteristics.

The response to such a frequency characteristic is presented in Fig.
7. The average SIN ratio during the entire cycle is 10.18 dB for the se-
quential and 8.29 dB for the conventional encoding. The averages of
positive S/N ratios are 17.95 dB for sequential and 14.91 dB for con-
ventional encoding.

To signify the uneven behavior of the conventional encoding further,
square wave at 1660 Hz was presented at the encoder. The results are
shown in Fig. 8. The effectiveness of the sequential companding in fol-
lowing rapidly changing input is also illustrated in Fig. 9. Computed S/N
ratios are plotted when a tone burst signal at 1660 Hz is presented to the
two types of the encoders. To meet the rapidity of response of the three -
and four -bit companding, the charging resistance (see Sec. 4.2) of the

30
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0
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Fig. 9-1660 Hz tone burst response.
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three -bit conventional companding is adjusted from 5.2 kit to 4.5 kit.
However, the steady-state S/N ratio attained by the three- and four -bit
sequential companding is about 18.7 dB as against 16.3 dB for the con-
ventional companding. We have not been successful in achieving a rapid
response and also a consistently high steady state S/N ratio from con-
ventional companding to match the performance of the sequential
companding. To quantify this assertion we have roughly the same ra-
pidity of response from both codings at 830 Hz. However, the steady-
state S/N ratio of sequential coding is 4.3 (29.4 vs. 25.1) dB higher than
conventional coding. Complementarily, when the steady-state S/N ratios
are approximately the same at 250 Hz, the sequential companding S/N
ratio is roughly 9.5 (37.0 vs. 27.5) dB better than conventional com-
panding S/N ratio 2.3 msec after the tone burst.

V. DISCUSSION OF THE DIFFERENCES

5.1 Experimental results

Consider an ideal case where a series of ones is presented at the input
data of the ADM decoder. The integrator voltage responds to an in-
creasing step current. If the discharge of this integrator capacitor is ig-
nored for the present, then the voltage across the integrator is directly
proportional to the increasing current step. Qualitatively this voltage
may be represented by curves A-E of Fig. 10. At 48 kHz the change in
step size after the eighth "one" is h'i', whereas the step size after the
fourth "one"at 24 kHz (corresponding to the same lapsed interval of
time) is only hj. If the codec had three- and four -bit companding, the
change in integrator voltage would have been h"j" which is greater than
hj due to two reasons: (i) the additional companding step at d and (ii)
the simultaneous action of both the three- and four -bit companding at
f". A simple three -bit companding would have had a slower response as
depicted by the curve D.

Again consider the influence of the resistances in charging paths of
the step size capacitor if there are two resistances R1 and R' in the
charging paths energized by the three -bit and four -bit companding, then
the slope of the curve B can be adjusted to any desired value. Different
values of these resistances yield different ranges of these curves with one
essential, vital difference. When the resistance is too low, the step size
becomes too coarse leading to crackle within the word every time the
polarity of a bit changes after a series of ones or zeros, and it is this di-
rection in which a real compromise must be sought while adjusting the
value of the resistances to minimize the slope overload noise.

In essence, the sequentially companded ADM codec behavior differs
from that of a conventionally companded codec to the extent that an
additional factor of nonlinearity is imposed in its response. The con -
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Fig. 10-Idealized responses of ADM codecs.
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ventionally companded ADM codec responds by the inherent nonlinearity
between the step size capacitor voltage and the current step, whereas
the sequentially companded codec expands the step size capacitor
voltage itself with a nonlinear character, and this nonlinearity rides along
the nonlinear relation of Fig. 2 at all sizes of the current steps making
the codec more responsive and more sensitive especially at lower clock
rates. The validity of this assertion is demonstrated in experimental
results in Figs. 4, 5, and 6.

5.2 Computational results

The steady-state sinusoidal response of a sequentially companded
codec can be matched by a conventionally companded codec operating
at a lower number of bits of the sequentially companded codec. However,
the rapidity of such a response cannot be achieved by conventional
companding which can also yield a consistently higher steady state SIN
ratio. The computational verification of this assertion is indicated in Fig.
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9 due to consistantly lower S/N ratio from the conventionally com-
panded codec during the cycle of frequency variation. This characteristic
is reflected by crisper sounding words from sequentially companded
codecs.

Sequentially companded codecs seem to reach and hold a steady state
more quickly and more effectively as shown in Fig. 8. The large swing
of the S/N ratio when reaching the steady state by the conventionally
companded codec indicates its inadequacy to yield steady tones essential
for MFKP system and TOUCH-TONE® signals.

VI. CONCLUSIONS

Both experimental and computational results confirm that sequential
companding reduces the response time from the codec even though
conventionally companded codecs can compete well in the steady state
response for sine wave excitations. Further, the tones generated from
sequentially companded codecs tend to have fewer breaks and thus are
steadier and yield higher S/N ratios at higher audio frequencies.

Experimental results indicate that the idle channel noise from se-
quentially companded codecs is considerably lower than the idle channel
noise from conventionally companded codecs during actual message
transmission. The intelligibility of the message is also better due to
crisply formed words and lower background noise.

Computational results indicate that when the frequency centers
around 800 Hz and when a small frequency modulation is embedded,
then the S/N ratio from the sequentially companded codecs is about 2-3
dB better than an optimally designed conventional codec.
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In stored speech applications, the waveform of the message is com-
pletely specified and can be effectively used to reduce the bit rate at
which the message may be synthesized. In gradient encoding, we
propose to match the gradient of the output wave of the differential
decoder with the required gradient between discrete clock cycles. When
the required gradient is very steep the bit pattern selected maximizes
the rate of change of the decoder voltage, otherwise appropriate bits
of opposite polarity are inserted to match the amplitude of the decoder
voltage with the required voltage at the discrete clock -cycles. The
performances of gradient encoding and conventional encoding are
presented as corresponding signal-to-noise ratios under different in-
puts and circuit conditions. Further, our preliminary results indicate
that gradient encoding can lead to comparable quality of speech at
about half the bit rate of the conventional encoding between 32 to 24
kbaud.

I. INTRODUCTION

For stored speech application, one of the ways of generating efficient
binary data is tree encoding, which examines and verifies the sequences
of a prespecified number of bits by varying the data in every possible
combination and selecting the one that yields the best signal-to-noise
ratio. This way of exhaustive searching for the best bit pattern demands
a large number of computations, and the number of computations ex-
pands geometrically as the number of bits in the tree (i.e., the number
of sequential bits chosen to explore the range of variation of the decoder
voltage) increases. This leads to a further uncertainty about whether the
number of bits chosen is satisfactory or not for any given section of
speech.
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To circumvent this problem we have chosen to seek an alternative
algorithm and proceed on a variable length of speech waveform deter-
mined by the gradient around the section under investigation. This is
accomplished by realizing that all speech wave shapes consist of peaks
and valleys, and the duration between these successive extrema should
guide the duration of the computation, and that the gradient between
them should guide the fragmentation of the compute -and -match pro-
cedure attempted during the relaxation* of bits for the intervals between
the peaks and valleys or valleys and peaks.

II. THE BASIC APPROACH

When the locations of the peaks and valleys contained in any segment
of speech have been determined, the synthesis of the optimal bit se-
quences may be routinely and systematically determined as follows:

(i) Determine the change in amplitude required from the differential
decoder and the interval for the change.

(ii) Determine the best the decoder can accomplish by forcing a se-
quence of zeros (for peak to valley fit) or ones (for a valley to peak
fit).

(iii) If the decoder can exceed the required change, halve the interval
for the computation and evaluate the decoder performance by stuffing
zeros or ones during half the interval.

(iv) Proceed to repeat (ii) and (iii) until one of the following occurs:
(a) The decoder performance comes to within a very tight tolerance level
of what the original speech wave called for. (b) The interval for com-
putation has collapsed to one clock cycle of the decoder and if so choose
a (0) or (1) that minimizes the error at the end of that particular clock
cycle.

(v) When iv (a ) or iv (b) are completed, update the new peak as the
last point processed under iv (a) or iv (b) if the search pattern is pro-
gressing from a peak to a valley and retain the same valley or update the
new valley as the last point processed under iv (a) or iv)b) if the search
pattern is progressing from valley to peak and retain the same peak.

(vi) When the binary bits during the interval have been synthesized,
proceed to the next section of the speech wave shape-i.e., to the next
peak -valley or valley -peak pair.

III. DIFFERENCE BETWEEN CONVENTIONAL ENCODING AND
GRADIENT ENCODING

Conventional encoding ignores the a priori information about the
location of the next extreme point and can make large errors in achieving
the best performance from a decoder. Gradient encoding ignores the

* In this context relaxation implies a systematic iterative selection.
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basic premise of conventional encoding by forcing the next bit to be of
opposite polarity if the present decoder voltage has exceeded the input
signal, and retains a slight error at the present position in an overall at-
tempt to do its best to reach the target extremity of the wave shape.
When targets become very far apart, then the intermediate ranges of fit
start to shrink and minimize the error at the intermediate points. In an
extreme case of absolute silence, gradient encoding and conventional
encoding converge in the bit selection of alternate zeros and ones.

The anticipatory characteristics of gradient encoding also prepare the
decoder for sudden peaks in wave shapes by sending a series of identical
bits before arriving at the peak, so that the extreme point is within a
predetermined range of error. This is totally absent in conventional
encoding. .

IV. PERFORMANCE OF GRADIENT ENCODING-ALGEBRAIC WAVES

4.1 Summed sine waves

Figure la indicates the performance of the conventional ADM en-
coding technique when a sampling frequency of 12 kHz has been used
to excite the encoder which is following an input wave generated as the
sum of two sine waves, one at 400 Hz with an amplitude of 80 mV, and
the other at 1200 Hz with an amplitude of 100 mV. In contrast, Fig. lb
indicates the performance of the gradient encoder technique under the
same conditions. In Fig. la it can be seen that the point 3 on the dotted

very close to 3 on the full line can materially change the next
bit polarity and thus change the ensuing bit pattern; whereas in Fig. lb
the gradient encoding tolerates errors at 3,4,5 and 6 in order to match
the segment 2-6 on the decoder curve (dotted line) as closely with the
section 2-6 of the input, (solid line) and concentrates the transition of
010 near the peak where it should logically be placed. Other such vari-
ations are also noticeable by comparing la and lb.

4.2 Interrupted sine wave

The anticipatory character of gradient encoding is evident by com-
paring Figs. 2a and 2b. The input to the two types of encoders is a sine
wave at 1200 Hz at 100 mV interrupted at a frequency of 400 Hz. In Fig
2a it can be noted that the encoder starts to respond by a series of fixed
values only after the input wave has actually been presented at the en-
coder, whereas the gradient encoder in Fig 2b starts to process the bits
prior to actual impact of the wave, and adjust its bits accordingly.

V. SIGNAL-TO-NOISE RATIO ANALYSIS

5.1 Program description

The performances of conventional and gradient encoders have been
modeled on a Nova 800 minicomputer by a sequence of machine language
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Fig. 1-(a) Conventional encoding.

and Fortran programs. The numerical computations are confined to a
block of replaceable Fortran programs and the data handling from disc
is performed by a set of machine language subroutines. Both commun-
icate with the operator in a conversational mode and the circuit pa-
rameters are input controlled. It is thus possible to compare the relative
performance of the two types of coding schemes under any set of con-
ditions. The results are presented in the following sections.
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Fig. 1-(b) Gradient encoding.
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5.2 Cross comparison of performance at the same clock rate

Four clock rates (32, 24, 16, and 12 kHz) are chosen to compare the
performance with the ADM codec described in Ref. 1. The charging time
constants of the step size capacitor and the levels have been optimized
to achieve the best SIN ratios with different number of bits for corn-
panding (see Section II, Ref. 1). However, in the case of the 4 bit com-
panding the charging time constant has been retained as 3 msecs as it
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currently exists. Table I contains the computed SIN ratios for 32 and
24 kbit per second clock rates and Table II contains the result from 16
and 12 kbits per second simulations.

5.3 Half -rate gradient encoding performance

Tables III and IV compare the performances of the 16 and 12 kbit per
second gradient encoding against 32 and 24 kbits per second conventional
encoding respectively. The time constants and levels have again been
optimized to yield the best performance from the codec.
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VI. PERFORMANCE WITH SPEECH

Gradient encoding outperforms conventional encoding at the same
bit rate. As the bit rate is reduced for gradient encoding a region of in-
difference is encountered between 50 to 60 percent of the rate of con-
ventional encoding. The attack time constant (i.e., the product of the
resistance for charging the step size capacitor and its value) starts to
influence the higher frequency response but enhances the signal to noise
ratio at the lower end of the audio frequency response and vice versa.
A compromise is necessary to achieve the best response over the range
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Table I - Computed S/N ratios at 32 and 24 kHz

Clock: 32 KHz 24 KHz

Coding: Conventional Gradient Conventional Gradient

Audio
frequency,

Hz
(sine waves)

No.
of

bits
S/N,
dB

S/N,
dB

S/N,
dB

S/N,
dB

5700 3 -* 10.2
4 0.8

4700 3 12.8
4 - 13.5

3950 3 9.0 8.0 13.8
4 7.2 10.3 - 2.5

3150 3 12.0 14.7 12.3
4 1.4 13.3 - 12.4

2900 3 9.7 15.8 7.9 10.0
4 6.4 15.6 5.7 9.2

2490 3 11.9 20.3 3.7 16.6
4 12.3 15.6 2.1 12.0

1660 3 19.6 24.5 16.0 19.3
4 16.0 21.4 13.0 17.0

830 3 29.7 35.2 25.1 30.0
4 26.0 32.3 23.2 26.6

415 3 38.5 40.7 31.6 33.0
4 34.0 39.1 31.0 34.1

* - indicates near -zero values

of importance for telephone conversation. However, since the quanti-
zation noise in gradient encoding is scarcely present due to the optimi-
zation of the selected bit pattern, the region of indifference between
gradient encoding and conventional encoding tends to be biased in favor
of the former at a slight expense of the higher audio frequency response.
Informal subjective testing has indicated that the 12 kbit per sec, 2 bit
companded, gradient -encoded speech is comparable with the 24 kbit per
sec, 4 bit companded, conventionally encoded speech.* However, the
24 kbit per sec sequentially companded speechl shows a favorable margin
of performance over the 12 kbit per sec gradient -encoded speech.

The computation time depends on the bit rate and concentration of
peaks and valleys. Lower frequency wave forms demand more compu-
tations in order to perform intermediate compute -and -match attempts.
Higher frequencies on the other hand are adequately fitted by fewer
overall gradient matching trials. When long telephone announcements

* This improvement has been made possible because gradient encoding does not attempt
to maximize the signal to noise ratio but instead, matches the extremities of the wave shape.
When the incoming wave shape offers a large cyclic change in the transition (due to change
in pitch) of the gradient between and peak -valley or valley -peak pair together with a steep
gradient between the points, gradient encoding ignores the cyclic variation in the gradient
whereas an attempt to maximize the S/N (as it is done in tree encoding) tries to accom-
modate the cyclic change and can lead to a perceptually poorer quality of speech. To this
extent gradient encoding outperforms tree encoding.
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Table II - Computed S/N ratios at 16 kbits and 12 kbits/sec

Bit rate: 16 kbits/sec 12 kbits/sec

Coding: Conventional Gradient Conventional Gradient

Audio
frequency,

Hz

Companding
No. of
bits

S/N,
dB

S/N,
dB

S/N,
dB

S/N,
dB

3150 2 -* 7.2 3.4
3 2.8 -

2900 2 9.2 5.3
3 4.0 0.3

2490 2 - 13.9 5.9
3 - 7.3 - 1.0

1660 2 2.1 18.0 1.6 11.7
3 0.92 19.0 7.5

830 2 19.5 28.5 18.4 26.0
3 21.2 28.4 17.8 27.3

415 2 30.4 30.6 19.9 30.0
3 32.2 30.2 27.5 29.3

*- indicates near -zero values

Table Ill - Comparison of 12 kbits/sec gradient and 24 kbits/sec
conventional coding

Bit rate: 12 kbits/sec 24 kbits/sec

Coding: Gradient Conventional

Audio
frequency,

Hz

Companding
No. of
bits

S/N,
dBt

Companding
No. of
bits*

S/N,
dB

3150 2 3.4 3 -
3 _t 4

2900 2 5.3 3 7.9
3 .32 4 5.7

2490 2 5.9 3 3.7
3 1.0 4 2.1

1660 2 11.7 3 16.0
3 7.5 4 13.0

830 2 26.0 3 25.1
3 27.6 4 23.2

415 2 30.0 3 31.6
3 29.3 4 31.0

* 2 -bit companding at 24 kbits/sec leads to extremely noisy silence periods.
t Changing the time constants of the attack circuit (see Section II, Ref. 1) changes the

distribution of S/N ratios between the low and high audio frequencies. For instance with
a 66 percent time constant the values of the S/N ratios are 4.8, 9.4, 9.6,13.4, 21.6, 23.5 dB
from 3150 to 415 Hz respectively with 2 -bit companding.

t - indicates near -zero values

are synthesized we have noticed a one-third second (corresponding to
256 sixteen -bit words at 12 kbaud) of speech occasionally demanding
as long as 20 minutes of Nova -800 minicomputer CPU time. This par-
ticular machine has an 800-nsec cycle time and hardware floating point
multiply -divide facility. Conversely other one-third second speech
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Table IV - Comparison of 16 kbits/sec gradient and 32 kbits/sec
conventional coding

Bit rate: 16 kbits/sec 32 kbits/sec

Coding: Gradient Conventional

Audio
frequency,

Hz

Companding
No. of
bits

S/N,
db

Companding
No. of
bits

S/N,
dB

3950 2 6:1 3 9.0
3 1.0 4 7.2

3150 2 4.7 3 12.0
3 2.8 4 1.4

2900 2 6.5 3 9.7
3 4.0 4 6.4

2490 2 8.5 3 11.9
3 7.3 4 12.3

1660 2 15.3 3 19.6
3 19.0 4 16.0

830 2 27.7 3 29.7
3 28.4 4 26.0

415 2 36.8 3 38.5
3 30.2 4 34.0

segments are synthesized in as little as four minutes. Averaged over three
and a half minutes of speech synthesis, the computational time is roughly
half an hour per second of real time speech signifying two thirds billion
arithmetic operationst for every second of message. Stated alternatively
one may expect one third million numerical functions between a typical
peak and valley of the speech waveshape.

The computations during the silence periods are not trivial since
gradient encoding is always alert to the incidence of the next peak (or
valley). During the interval the dispersion of zeros and ones alternately
is limited to that period which is too long to prepare the decoder for the
next peak (or valley).

VII. REAL TIME IMPLEMENTATION

The real time implementation of gradient encoding is feasible in two
distinct ways: (i) by a multiplicity of decoder circuits with feedback
paths, each one being excited by a bit pattern of zeros or ones over a finite
intervals and then selecting the pattern of the decoder which yields the
waveform closest* to the waveform of the original speech or (ii) by one
decoder circuit whose internal timing has been hastened dramatically
by decreasing all the time constants in the circuit accordingly, and then

t This includes the modeling of all nonlinearities as they exist in the codec, the algebraic
representation of most circuit elements, all the address computations, changing the syn-
chronization rates between the scanning A/D converter and the codec clock rate, etc.

* Such as to maximize the S/N.
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choosing that bit pattern which yields the waveform closest to that of
the incoming speech. The former technique proposes that the data from
the encoder transmitted to the final real time decoder is selected as the
data of that particular real time decoder whose output came closest to
that of the incoming speech. The latter technique proposes that the data
of the encoder transmitted to the final real time decoder is selected as
that binary combination of bits which had brought the waveform of the
faster non -real-time decoder closest to that of the original speech.

Both of these techniques explore every branch of tree encoding to
determine which one of the binary sequences yields the best perfor-
mance. Our preliminary estimations show that eight decoder circuit for
implementing technique (i) and an accelerated clock rate at about 100
kHz for a 12 kbaud data rate would be a reasonable compromise between
complexity of the encoder design and optimality of bit configuration
from the encoder design and optimality of bit configuration from the
encoder. Such an arrangement is expected to enhance overall signal to
noise ratio by 2 to 4 dB during the transmission of speech and the ac-
celerated decoder circuits are completely capable of responding at about
100 kHz. Further tree encoding with 3 -bit look -ahead option achieves
most of the advantages obtained by these encoding schemes.

VIII. CONCLUSION

The success of the gradient encoding lies in the complete knowledge
of the incoming speech waveshape. This prior information has been
employed to optimize the bit pattern and thus reduce the bit rate. At-
tempts to reduce the storage requirement by one-half appear to have
achieved an encouraging degree of success. The combined effects of se-
quential companding and gradient encoding are being investigated for
bit rate reductions ranging between 60 and 66 percent for the same
quality of speech.
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