FILE-BASED WORKFLOW
From ingest to transmit, it's all about files

ALSO INSIDE:
MULTICHANNEL & MULTIDISTRIBUTION
Creating automated solutions
TAMING THOSE DIGITAL ARTIFACTS
What viewers see can hurt you
D-12: Compact Enough for OB
Powerful Enough for Breaking News

- mixing router based topology
- 5.1 surround sound plus 3 stereo masters
- COMPACT – 32 faders – 53” wide/32” deep/9” high
- router based source/destination selection
- paging channel strips – 64 channels on 32 faders
- scalable – up to 64 input faders
- routable mixes
- event storage and recall
- eight stereo subgroup mixes
- eight stereo sends
- eight mix-minus outputs (can be expanded)
- four DCM faders (digitally controlled groups)
- Bus-Minus (w/TB & solo) on every input (direct out)
- pan/bal, blend, mode, EQ/dynamics on every input
- delay inputs or outputs (frames or milliseconds)

- fullscale digital peak and VU metering
- two studios, CR and HDPN/Studio 3 monitors
- talkback communication (programmable)
- mix follows talent / logic follows source
- 12 user-programmable switches (comm, salvos, triggers, etc.)
- automatic failsafe DSP card option
- automatic failsafe CPU card option
- redundant power supply option
- switched meters with system wide access (including all console inputs and outputs)
- dedicated master, group and DCM faders (no fader sharing)
- motorized faders
- pageable fader option
- dedicated LCD display per function (EQ, Pan, Dynamics)
- multiple surfaces can share I/O

With thousands of digital consoles installed, trust Wheatstone for your next project!

The Digital Audio Leader

Copyright © 2006 by Wheatstone Corporation
Specs & features subject to change w/o notice

tel 252-638-7000 / www.wheatstone.com / sales@wheatstone.com
THE NEXIO XS™ HD/SD SERVER: INTEGRATED SOFTWARE CODECS = FORMAT FLEXIBILITY.

When it comes to reliability, our server technology long ago set the standard. Scalability? No competition. Now, NEXIO XS™ is raising the bar in operational and format flexibility.

Using enterprise-class, integrated processing and software codec technology, NEXIO XS™ blows past competing broadcast video servers that depend on hardware for coding, decoding and conversion. Software-driven up-, down- and cross-conversion — along with the most flexible IT connectivity on the market — further propels NEXIO XS™ to the head of the pack. The result is total media format transparency, letting you freely ingest, cut and air all content that enters the system — from SD to HD.

NEXIO XS™ servers are just one piece of a complete, HD-ready portfolio from Harris. From automation and signal processing to master control and transmission, our products work together to seamlessly handle everything you can throw at them. This makes a Harris HD/SD broadcast solution the easiest way to manage content — no matter where it’s from, or where it’s headed.

For more information visit www.broadcast.harris.com/nexio.
Avid Interplay. On one level, it’s a
But we didn’t stop at one level.

Automatic encoding. Desktop logging. Revision control. Background transcoding. Intelligent archiving. Avid® Interplay™ takes real-time collaboration to new levels, so everyone is on the same page, not just editors and producers. Designers, animators, writers, assistants, administrators—even finance and legal departments—can all work simultaneously, with instant
access to any type of file. That means more time to be creative. Less time spent on busywork.
And end-to-end productivity that lets you compete on a higher plane. Don't just manage your
media assets; liberate them with the world's first nonlinear workflow engine: Avid Interplay.
Learn more at: www.avid.com/interplay.
FEATURES
52 The efficient workflow
An in-depth look at the key technologies that interlock acquisition, editing and content exchange in the newsroom.

SPECIAL REPORT
62 Automation for multichannel operations
Learn the key questions to ask before selecting an automation system.

BEYOND THE HEADLINES
DOWNLOAD
14 Who's watching you?
Getting close to your customers is critical for broadcast TV survival.

FCC UPDATE
20 Transmission boost
The FCC permits a distributed transmission system.

DIGITAL HANDBOOK
TRANSITION TO DIGITAL
22 Tame those artifacts
Know the compression acts that create artifacts.

COMPUTERS & NETWORKS
26 The MAC factor
This address is just as important as the IP address to get packets to their destination.

PRODUCTION CLIPS
32 Simulcast support
HD/SD graphics platforms use different processes with varying results.

ON THE COVER:
An editor at TSN HD in Toronto uses a Harris VelocityNX craft editing system linked to a NEXIO XS HD/SD.

THIS MONTH'S FREEZEFRAME QUESTION
Match each of the following audio recording formats to the correct statement. This question is from "Broadcast Engineer's Reference Book" by E.P.J. Tozer, available from Focal Press.

Readers submitting winning entries will be entered into a drawing for Broadcast Engineering T-shirts. Enter by e-mail. Title your entry "Freezeframe-February" in the subject field, and send it to: editor@prismb2b.com. Correct answers received by April 1, 2007, are eligible for the drawing.

FORMAT STATEMENT
DA88 Played both analog and digital cassettes
DCC Used S-VHS cassettes to record multitrack audio
DASH Became DCC with the addition of MPEG layer 1 compression
MiniDisc Used 8mm video cassettes to record multitrack audio
S-DAT Used 2in analog tape
ADAT Uses ATRAC audio data rate reduction
nothing matches the flexibility and reliability of P2 HD.

Bring on your most demanding production challenges! "No-moving-parts" solid-state reliability combines with full 2/3" HD production quality and the IT-based flexibility of P2 HD in a new line of professional-quality HD tools.

P2 HD's dual-codec capability – DVCPRO 25/50/HD as well as advanced AVC-Intra – team to provide full compatibility now and a solid investment for the future. AVC-I offers comparable DVCPRO HD quality at half the bit rate, doubling recording time per P2 card while lowering media storage and distribution costs.

With the debut of our new P2 HD 2/3" HD/SD camcorder and mobile recorder, you have an IT-compatible solution for full HD quality broadcasting and production. Choose your path to HD wisely, and learn more about P2 HD by visiting www.panasonic.com/p2 or call 1-800-528-8601.

AJ-HPX2000
2/3" 3-CCD Shoulder Mount camcorder
• 2/3" Full HD quality 3-CCDs
• 14-bit A/D with DSP
• 17 HD/SD formats including 24p
• High-sensitivity of F11
• Digital Super Gain
• DVCPRO 25/50/HD.
• Optional AVC-I codec support

AJ-HPM100
P2 HD Mobile
• Multi-format recording/conversions
• 6 P2 card slots
• Versatile I/Os
• 6-channel PCM 16-bit audio
• 9" HD LCD monitor and stereo speakers
• DVCPRO 25/50/HD
• Optional AVC-I codec support
SYSTEMS INTEGRATION

SHOWCASE

36 TV Azteca scores a goal with its HD production facility
The broadcaster is the first in Mexico to air World Cup competition in HD.

TRANSMISSION & DISTRIBUTION

46 DTV antennas
Careful planning, design and installation are the keys to an effective radiation pattern.

NEW PRODUCTS & REVIEWS

APPLIED TECHNOLOGY

70 Korg's MR-1 and MR-1000 mobile recorders

FIELD REPORTS

111 Digital Rapids’ DRC-Stream encoding
114 Panasonic’s HD plasma displays

TECHNOLOGY IN TRANSITION

116 Quality-control monitors
Can anything replace the old, reliable CRT? Yes!

NEW PRODUCTS

118 Harris' Inscriber G-Channel and more ...

DEPARTMENTS

10 EDITORIAL
12 FEEDBACK
123 CLASSIFIEDS
125 ADVERTISERS INDEX
126 EOM

OCTOBER’S FREEZEFRAME ANSWER

Q. A 1TB disk drive will provide approximately how much actual storage capacity when installed into a computer?

A. 0.91TB

OCTOBER WINNERS:
Tim Canary, Tim DeWitt, Al Van Dinteren
Utilizing some of the most advanced tape technologies in the world, including Ceramic Armor Metal Particles, innovative binder systems, and Uniform Filler Dispersion, Maxell HD Media offers enhanced magnetic qualities, superior signal-to-noise ratios and perfect head-to-tape conditions. The result: unsurpassed durability and exceptional reliability throughout a full line of professional HD videocassettes (including Maxell D-5, HDCAM, DVCPRO HD and DVPRO HDV). So for today's highly demanding HD broadcast, production/post production and film applications, nothing beats the maximum performance of Maxell HD Media.

For more information, visit www.maxell.com.
Poor driving standards

In early January, Senator John Sununu (R-NH) announced he was writing legislation that would prohibit the FCC from imposing technology mandates on the broadcast and communications industries.

He said, “The FCC seems to be under the belief that it should occasionally impose technology mandates. These misguided requirements distort the marketplace by forcing the industry to adopt agency-blessed solutions rather than allow innovative and competitive approaches to develop. We have seen this happen with the proposed video flag, and interest groups are pushing for an audio flag mandate FCC is all about politics and nothing about expertise. It’s about kissing fannies and political payoffs. It’s never going to be about technical competence.

This rule change sounds great. Technical decisions would be made by experts in the field. SMPTE would be a good group to set technical standards. It’s impartial, right? However, is SMPTE willing to become the official standard setters for all of broadcast? Heck, for the right money, anyone will do anything. And, there would be plenty of free money to pay these standards setters.

But then there’s the consumer side of standards. Who’s the technical expert there? Could a SMPTE-like group set transmission standards and then the consumer guys would develop receivers to match? Or, would the 2000lb Goliath consumer industry tell broadcasters what technology they must implement and to hell with other viewpoints?

Then, there’s the small matter of deadlines. Standards development and approval takes time. Consider Microsoft’s Windows Media 9, which was submitted to SMPTE in September 2003. SMPTE didn’t release an approved standard until April 2006. Did the three-year process negatively impact VC-1’s adoption as a compression standard? You bet it did.

This is not meant as a slam on SMPTE’s work. Standards setting, even with the best experts, requires time. However, the consumer electronics industry is chomping at the bit to build new products to sell. (The CEA predicts sales to exceed $155 billion this year.) Imagine the pressure under which any standards-setting body would have to operate.

So, while it would be great to get the FCC bureaucrats out of the standards-setting business, would viewers and our industry be any better serviced by a confusion of committees, battling egos and even a panel of highly-qualified experts all claiming that their standard is better than someone else’s? I doubt we’d reach our desired destination with the different factions all grasping for the wheel.

Send comments to: editor@prismmb2b.com

EDITORIAL DIRECTOR

Broadcast Engineering
Multi-room, multi-image processor + router

That's right, a multi-room, multi-image display processor and router in a single, expandable chassis. As a multi-image processor, Kaleido-X offers the highest level of signal flexibility. Each chassis can display 96 HD, SD or Analog inputs any number of times, in any size, across 8 displays of any resolution and orientation. As a router, it offers switching of 96 unprocessed inputs to 48 HD/SD outputs for feeding monitors, test equipment and master control or production switchers. So if you're looking for the most flexible, most integrated monitoring and routing solution, call Miranda.

Miranda

Tel.: 514.333.1772 | ussales@miranda.com
www.miranda.com

FOR THE CHANGING FACE OF TELEVISION
Can you see me now?

Editor:

Your October 2006 editorial brought to mind an incident from my days as chief at Channel 3, the ABC affiliate in Corpus Christi, TX. One day the phone rang. It was a little old lady who asked, “Did you know Channel 10 is on your channel?” I stifled my sigh and gave my standard chief engineer response: “Thank you for calling. We’ll look into it.”

My brain got into gear. My guess was that what she thought was Channel 10 was probably Channel 3 in Lafayette, LA, located 200 mi away, across the Gulf of Mexico. My station occasionally received cochannel interference from them (and caused it, too).

Sure enough, the Lafayette signal had wiped us completely out for an area of several miles around the station. I zipped over to the news director’s house to take a look. It was all Lafayette and none of us, which means at least 40 dB relative signal strength difference, and our transmitter was only 17 mi away.

The ducting lasted about 20 minutes before we magically reappeared. The interesting thing was that the little old lady had referred to the signals as “Channel 3” and “Channel 10,” not by call letters or network affiliations. Those poor folks must be really confused by now.

W. Louis Brown, PE
Sales Engineer
FPDI

Connection standards

Aldo Cugnini:

I read with interest your September 2006 article “Get connected” on the Broadcast Engineering Web site. I have several Sony DSR-80 decks that were built before FireWire was an accepted standard for professional video. At the time, I was connecting to my editors via SDI.

They are still in great shape, but this has become an expensive way to move data because most editors now use 1394 as standard, and SDI-to-DV connection boxes add cost to the system. I’d hate to retire these decks. Is there a method to convert Sony’s QSDI (SDTI) to 1394?

Marc M. Myers
Suffolk County Department of Health Services
Hauppauge, NY

TV that’s no good

A note from the editor:

The Broadcast Engineering December 2006 article “The end of television as we know it” generated some interesting comments. Paul Allen, vice president of network operations for No Good TV (NGTV), sent a flier announcing the station’s launch. It carried the theme “The end of television as you know it.”

The December article and the last Broadcast Engineering Summit addressed meeting the needs of the new viewer. David Payne, senior vice president and general manager for CNN.com said, “Younger audiences demand a different experience. Give them what they want on the schedule they want.”

This is an example of a network foregoing the traditional TV model in order to attract those younger viewers. NGTV’s alternative programming begins this month. You can watch the promo at www.ngtv.com.

Test Your Knowledge!

See the Freezeframe question of the month on page 6 and enter to win a Broadcast Engineering T-shirt.

Send answers to editor@prismb2h.com
An IT Bill of Rights

A Guide for Broadcasters
To No-Compromise,
File-based Server/Storage Systems

As the acceptance accelerates for IT-based technologies such as video servers, nonlinear editing systems, centralized storage, and more, broadcasters and video professionals must have options that give them the confidence to commit to moving wholesale to approaches that avoid many obstacles that today block their ability to truly improve their workflows.

Certain, Inalienable Rights.
As a leading provider of premium-quality content, you have certain, inalienable RIGHTS to a server and storage approach that lets you improve quality, reduce costs, increase flexibility, enhance workflows, and deliver better technologies to improve your overall business.

Taken together, these rights enable you to incorporate the latest enterprise server and storage technologies for a powerful yet simple, cost-effective solution that integrates easily into high-performance, networked IP environments—without compromising quality and other issues key to broadcasters and production professionals.

An IT Bill of Rights
1. The right to low-entry pricing and high performance—that remains low for large systems.
2. The right to storage flexibility.
3. The right to easy, reliable, channel scaling and full redundancy.
4. The right to the latest, advanced IT technologies.
5. The right to upgrade without disruption to your current system.
6. The right to robust software applications.
7. The right to boundless format support.

For more information about K2 Media Storage & Delivery Systems visit www.thomsongrassvalley.com/K2
Who's watching you?
Getting close to your customers is critical for broadcast TV survival.

BY CRAIG BIRKMAIER

Do you know who watches the programming delivered by your station? If you are reaching for the latest ratings book so you can cite the number of viewers in specific demographic groups for various shows and day parts, stop!

This column is not about ratings and audience demographics. It is about the relationship your station has with its viewers.

Do you know their names, where they live and what they watch? Do you have the ability to communicate with them to better serve their needs? Are you building the tools and the skills needed to compete with those who have intimate knowledge about your customers and the ability to interact with them?

Chances are good that your answers to these questions are no. Why? Because you're a broadcaster. Your transmitters push analog and digital signals to the anonymous masses, the vast majority of which no longer use antennas to receive your signals.

You don't know them. They rarely communicate with you. And now you expect them to pay to watch your content if it is delivered by the cable, DBS and telco TV systems that serve your market. Some broadcasters may think this knowledge is trivial compared with the ability to leverage customer relationships to pad the bottom line with retransmission consent payments. Maybe it's a good thing you don't know your viewers or talk to them. They might ask you why you should pay for the advertiser-supported content. Here's why you need to worry about the future: Because analog TV could disappear in 2009. Because consumers may tell you and the rest of the TV industry where to stick it. And because they can spend the $50 to $100 a month they now send to a multichannel TV service to download the content they want via a broadband Internet connection.

A fork in the road

Be honest with yourself. Do you really believe that local broadcasting can survive the digital transition without changing the basic business model that has been in place since the middle of the last century? I'm not talking about the DTV transition. That's almost over. I'm talking about the transition to a new digital communications infrastructure — the ability for anyone to access virtually any content at any time on a wide range of devices in the home, the office and on mobiles.

I'm talking about an emerging digital world, where the best coverage of that local news story comes from a viewer's video-enabled cell phone. I'm talking about the reality that a license to broadcast may stop being a license to print money.

We are approaching a fork in the road. One path leads to the digital cliff. The other leads to an intensely competitive digital world, where broadcasters will need to reinvent themselves in order to survive. Your survival

Maybe it's a good thing you don't know your viewers or talk to them. They might ask you why they should pay for the advertiser-supported content.
Broadcasters Rely on Dolby E for Backhaul

For sporting events, live concerts, and other presentations, Dolby E is the most popular backhaul solution for carrying surround sound from the remote truck to the network operation center. It's cost-effective and, unlike other codec options, Dolby E maintains the highest-quality audio— even through multiple encode/decode generations.

- Delivers up to eight channels of superb-sounding digital audio on just two audio channels, saving you money and bandwidth on your delivery.
- Avoids the channel phasing and sync pitfalls encountered in sending discrete audio channels over your delivery path.

Dolby E enables you to deliver the stunning surround sound that today's HDTV viewers expect with their programming. It converts your two-channel facilities to multichannel audio while maintaining the integrity of your program's original sound.

Dolby E — the clear choice for surround sound backhaul.

www.dolby.com/tvaudio

Dolby and the double D symbol are registered trademarks of Dolby Laboratories. 507/17919
Broadcasters have reached a fork in the road. Staying the course leads to the digital cliff. Adapting to a competitive marketplace leads to the future.

Will depend on the ability to leverage multiple infrastructures to get close to customers and the ability to create compelling content to meet their needs. Being a gatekeeper for media conglomerates that won't need your transmitters much longer will take you straight to the digital cliff.

Fortunately, the infrastructure to build relationships with viewers, and to create the new services that will help you survive, already exists. (Hint: It's called the Internet). A station's Web site may be the most important tool for the survival and rebirth of over-the-air TV.

But most stations are more concerned about the return on investment from new technologies they don't understand or control. Too many broadcasters think they do not have a back-channel to support one-to-one customer relationships, even as they rely on the infrastructure of competitors to reach those customers. Worse yet, they think they are in the TV business, not the information business, and that they are in the entertainment business, rather than the business of helping local advertisers connect with local customers.

David Kirkpatrick, a senior editor for Fortune magazine, notes that Web sites are the equalizer. "Regardless of their owners, they can all do the same set of things. In that fact lays the profound crisis facing all aspects of the media industry," Kirkpatrick says. "It doesn't matter whether a Web site's owner once focused on publishing newspapers or magazines, broadcasting television or radio, making music or producing movies, or even selling soft drinks. Any Web site can host text, audio and video, it can facilitate connections and communication between users, and it can enable those users to create and display their own text, audio or video." (See "Web links.")

Case in point: When I need to get some information about a year-old local government story, I can't turn to a local station's Web site because the Gainesville, FL, stations do not maintain an archive of the stories they run in their newscasts. In fact, they do little more than use their sites as a shell to link to the Web sites of their network affiliates. Small wonder I go to the Gainesville Sun's Web site for news and www.wunderground.com to get the local weather forecast.

Radio is even further along. A local talk radio station turned to YouTube for a recent promotion. The station set up a contest for two tickets and an all-expenses-paid trip to Glendale, AZ, for the BCS National Championship game to watch the Florida Gators play (and defeat) the Ohio State Buckeyes. Contestants were asked to create a video stating why they should win and upload it to YouTube to share with fans. (See "Web links.")

Use it or lose it

This year we are going to see an acceleration of the convergence of television and the Internet. It will occur on two fronts:

- **Watch more TV on your computer.** This includes additional content that cannot be seen when the show is broadcast. And let's not forget about the ability to build communities of interest around a program via the program's Web site.
- **Use your TV like a computer.** More devices will connect to new big screen TVs, making them more akin to computer monitors than the old analog TV receivers.

When using a Web browser, you probably do not notice that modern Web sites pull content from multiple servers to create the page you are viewing. The ads may come from a company that specializes in selling and inserting ads in the Web sites of its customers. The search engine is probably

Web links

- The Ultimate Tail-Gator Contest – WSKY Radio www.thesky973.com/videos.htm
- Apple iPhoto overview www.apple.com/iphone
Multibridge Pro is the first bi-directional converter that’s also an editing system. Featuring a built-in PCI Express link, you can connect to Windows or Apple Mac systems for the highest quality editing solution.

Connect to any Deck, Camera or Monitor
Multibridge Pro supports standard and high definition 10 bit SDI and analog YUV, as well as NTSC/PAL video in and out. Multibridge Pro also features 4 channels of sample rate converted AES audio and analog stereo XLR audio in and out, combined with two channel RCA audio outputs, great for low cost HiFi monitoring.

World’s Highest Quality
Multibridge Pro works natively in 10 bit 4:2:2 and features the industry’s only true 14 bit analog conversion with uncompressed video capture/playback. With uncompressed 10 bit capture and playback, you’ll always retain that pristine film look.

Dual Use – Converter and Capture Card
Get the world’s most amazing editing solution for Apple Final Cut Pro and Adobe Premiere Pro. When not connected via the PCI Express link to your computer, Multibridge Pro also works as a bi-directional video and audio converter. Multibridge Pro is really two products in one, always adapting to your needs.

Advanced HDMI Monitoring
Multibridge Pro includes built-in HDMI out. Perfect for connecting to the latest big screen televisions and video projectors for incredible digital cinema style edit monitoring.

Learn more today at www.blackmagic-design.com

Multibridge Pro
US$1,595

The Drawn Together images are courtesy of Comedy Partners.
linked to Google or Yahoo. If you play
a media file, it may come from Google,
YouTube or the hosting services of
Akamai or Digital Island.

The Internet is a network-of-net-
works, and there is no reason that your
TV station cannot become part of the
information superhighway. With your
digital transmitter, you can broadcast
all kinds of bits, not just TV. And with
a set-top box that is connected to the
Internet, you can close the loop with
your customers. The same applies for
PCs and notebook computers that in-
corporate a DTV tuner and a broad-
band connection.

My son got a Nintendo Wii for
Christmas. It has built-in WiFi, and
when connected, it has several infor-
mation services, including a weather
channel that you can watch on the TV.
Microsoft and Sony are trying to go
a step further with the Xbox 360 and
PlayStation 3, adding HD-DVD play-
back capabilities. (See "Lean back me-
dia redefined.")

The time has come for local broad-
casters to connect to modern realities.
You are in the communications busi-
ness and have the unique competency
to create content and connect adver-
tisers and potential customers in your
market in compelling new ways.

Traveling down the fork in the road
that leads to the future won’t be easy,
and it may not be profitable for years.
But for broadcasters who are trying to
eke the most out of their markets, the
time is coming to an end. Wouldn’t
you rather know who’s watching, rath-
er than who’s not?

Lean back media redefined

“We are shifting content experience from a lean-forward PC exercise to the
comfort of the big screen TV in your living room.”

If you think that this is a quote from Steve Jobs’ Macworld announcement
of Apple TV, think again. It was delivered by Randy Waynick, senior vice president
of the home products division for Sony Electronics. He went on to say: “Internet
video will clearly be the next step
in the evolution of high-definition
television, giving users more control
over the content they view.”

Welcome to the world of Internet
video, Sony style. At the 2007 Inter-
national CES show in Las Vegas, Sony
announced the BRAVIA Internet Vid-
eo Link, which will allow most of its
new televisions to access free Internet
video content, even in HD, from pro-
viders including AOL, Grouper and
Yahoo, as well as Sony Pictures Entert-
ainment and Sony BMG Music.

The product is a module that will attach to the rear of Sony Internet video-
ready televisions. It will link the television set directly to a user’s broadband In-
ternet service provider via an Ethernet connection. Viewers will use Sony’s Xross
Media Bar icon-based interface to access content via their remote control.

The notion that the Internet and the big screen TV in the family room are
on a collision course was echoed across the expansive halls of the CES exhibits,
even as the press and analysts kept an eye on Apple’s Macworld announcements.
Microsoft’s Bill Gates took things a step further, announcing the Windows Home
Server, which is intended to store both computer data and media that can be
shared by computers and a Media Center PC attached to the big screen.

Once again, Jobs stole some of the thunder from CES. The expected an-
nouncement of Apple TV, which Jobs previewed last fall, seemed almost
anticlimactic, just a warm-up act for the main event — the announce-
ment of Apple’s iPhone. (See “Web links” on page 16.) The iPhone combines
the functionality of a cellular phone, widescreen video iPod, e-mail and text
messaging center, and a full-functioned Web browser that fits in the palm
of your hand.

Powered by Apple’s OS X and an innovative touch-screen interface, Jobs
claimed that the iPhone is five years ahead of the competition. His optimism is well
founded, and we will likely see many of the core technologies developed for the
iPhone appear in a wide range of con-
sumer electronics products. One can
easily imagine the touch-screen inter-
face being used as a remote control for
TV users to surf the Web and navigate
through the media stored on an Apple
TV, PCs, iPods and other devices with wire-
less interfaces.

Apple TV connects the big screen in the
family room to your in-home computer
network to access your music and
photo libraries and video downloaded
via the Internet.

The iPhone runs Apple’s OS X and uses a touch-screen
interface. Could it also be a remote control for converged TV
and Internet surfing?
"Sony was the only supplier to step up to the plate."
— Jason Taubman and Paul Bonar, Game Creek Video

HDemanding

Jason Taubman, VP of design for mobile production company Game Creek Video, faced contradictory demands. He tells us, “Some clients required the highest quality in 1080i and others demanded the same in 720p. Some venues only had fiber and some strictly triax. Sony was the only supplier to meet all these requirements in a single camera.”

“We committed to the HDC-1500, Sony’s 1080/60p camera before it was even a model number,” says Paul Bonar, VP of engineering. “And Sony committed to us. Their engineers heard our input on the large lens ‘sled,’ which works like a charm. We gave them distressed cable to help design the triax adaptor, which is brilliant. And in service and support, Sony has risen to every challenge and met every need. We’re now on our fifth consecutive truck with the HDC-1500, the best HD camera we’ve ever seen.”

Fiber, triax, 1080i and 720p multi-format support... that’s the new way in HD.

www.sony.com/HDSelect1

THE NEW WAY OF BUSINESS™

© 2006 Sony Electronics Inc. All rights reserved. Features and specifications are subject to change without notice. Reproduction in whole or in part without written permission is prohibited. Sony and HDCAM are trademarks of Sony. The New Way of Business is a service mark of Sony.
Transmission boost

The FCC permits a distributed transmission system.

BY HARRY C. MARTIN

In December 2006, the FCC granted TV station WTVE-DT Channel 25 of Reading, PA, special temporary authority to begin operating a distributed transmission system on its DTV channel. The six-month STA grant is good news for proponents of this new transmission method. The FCC will take the experience of this station into account as it evaluates other STA requests and considers authorizing systems on a permanent, licensed basis.

Transmission technology
Distributed transmission operations use several synchronized transmitters spread around a station's service area — much like on-channel booster stations or cellular transmission sites. But unlike analog booster stations, which can generate a significant amount of self-interference, distributed transmissions rely on adaptive equalizer circuitry in DTV receivers to cancel or combine the multiple signals to produce a single signal.

Proponents say it improves spectrum efficiency by increasing service levels while maintaining or reducing interference. The lower power levels and lower towers allow greater placement flexibility — a particular boon in urban and suburban areas.

The FCC approved in principle the use of distributed transmission system technology in a 2004 report and order. In the order, the commission said that DTV stations wishing to use such systems should apply for STAs, which would be evaluated on a case-by-case basis under a set of interim guidelines. In November 2005, the interim guidelines were clarified, and the FCC began a rulemaking proceeding to establish long-term rules and standards for distributed transmission operations. This proceeding is currently pending.

WTVE-DT will use eight transmitters within the station's maximized construction permit contour.

WTVE-DT will use eight transmitters within the station’s maximized construction permit contour.

An FCC review found that the proposed operation was unlikely to generate impermissible interference. Moreover, the FCC specifically noted that information obtained from the station's STA operations would be valuable in evaluating the future use and deployment of the technology.

The FCC warned, however, that the station's operations would be subject to the rules developed in the distributed transmission system rulemaking proceeding. Thus, it is possible WTVE-DT will have to reconfigure or rebuild its distributed transmission facilities. And while the rulemaking is pending, any service beyond the station's authorized maximized service contour will be considered secondary in nature and will not be protected from interference.

In other FCC news: Ownership studies ahead
The commission will include 10 new economic studies in its ongoing review of the multiple ownership rules. Commissioners Michael Copps and Jonathan Adelstein have indicated that they were not consulted about the scope, content or authorship of the new studies. Nor does the FCC have a timetable for resolving the proceeding, which will affect all agency-regulated media.

Add to this criticism of the 2003 rules being reconsidered that the dissenters' party now controls Congress. It is expected that when the rules emerge from the Republican FCC, both the courts and Congress will weigh in before any new rules become effective.

Harry C. Martin is a past president of the Federal Communications Bar Association and a member of Fletcher, Heald and Hildreth PLC.

Send questions and comments to: harry_martin@prismb2b.com
High Quality HD Encoder/Decoder

MPEG-2 CODEC H3000 Series

“Qualified by CBS field testing”

- HD encoding from 15 up to 160Mbps
- No audio lip sync adjustment required
- The world's smallest size — 1U Half Rack (H3000)
- Light weight — 3kg (6 lbs), DC 12V operation (H3000)
- 1080i, 720p and 480i compatible

*These products have been developed in cooperation with NHK, Japan Broadcasting Corporation

- New products
- Options:
 - BISS-1/E
 - Ethernet interface for IP transmission
 - Dolby E or Dolby Digital encoder module
 - Audio 16 Channels

MPEG-2 HD Encoder / Decoder

- IP Video Interface
- HD Upgradable

MPEG-4 AVC/H.264
HDTV Real-Time Encoder

HD Linkage IP Interface
(HDV to HD-SDI Converter)

IP Interface
(HV34000)

NEL America, Inc.
E-mail: nel@nel-america.com
http://nel-america.com/

NTT Electronics Corporation
E-mail: mm_i@yoko.nel.co.jp
http://www.nel-world.com/
Tame those artifacts

Know the compression acts that create artifacts.

BY ALDO CUGNINI

While we all know that compression causes artifacts, just how much do you know about what causes them and how to reduce them? While the occurrence of artifacts would seem random, it is directly linked to specific parts of the compression process.

(usually 64 in an MPEG block) and applies a mathematical algorithm that transforms the array into one that represents the frequency components of the block. The DCT can be considered an ordered set of weighted basis functions, or elementary functions, which, when taken in combination, can replicate any image. (See Figure 2.)

Video coding

Transform coding is comprised of several cascaded processes. The two critical elements leading to artifacts are the discrete cosine transform (DCT) and quantization. (See Figure 1.)

The DCT takes the amplitude values of the 2-D, spatially ordered pixels These DCT coefficients are quantized, i.e., converted to a lower precision value, and then transmitted in the compressed bit stream. This process lowers the number of bits needed to reproduce the image. It is this same process that causes many compression artifacts.

Block visibility

When the coarsness of the quantization is high enough, the normally invisible edges of the blocks will become noticeable. This is due to an inherent property of the DCT. Each coefficient affects the entire block when it is converted back into spatial pixels.

These DCT coefficients are quantized, i.e., converted to a lower precision value, and then transmitted in the compressed bit stream. This process lowers the number of bits needed to reproduce the image. It is this same process that causes many compression artifacts.
One vendor.
One solution.
No worries.

There's something about going with the industry leader for your end-to-end weather system. You get Baron's renowned storm tracking, sure. But more and more stations across the country are turning to Baron for their daily weather needs—complete solutions featuring vivid, powerful graphics, radar display, BAMS forecasting data and even web integration. Not to mention the industry's most advanced Doppler radar designs.

Baron Services is setting entirely new standards

Headaches caused by juggling multiple vendors? Not anymore. When you’ve got a question, you know who to ask. We also make sure that your equipment will grow and change along with your station, even as the years go by.

Baron Services is setting entirely new standards in flexibility and long-term value. And making your life a little easier while we're at it.

Visit us at NAB 2007!
Booth # C7017
Basis functions
In addition to block-edge visibility, a coarsely quantized block can actually cause the basis functions to appear. A highly detailed part of the image will tend to mask errors in coding. This is a normal part of the psychovisual process. Areas with flat contrast show errors more readily than those with more detail.
However, when the quantization is coarse enough, the array of DCT coefficients will not be reproduced faithfully. Thus, there can be instances where a particular basis function is stronger than that from the image source. In such a case, you can actually see the basis functions. (See Figure 4.)

Bugs in the picture?
Another artifact that is caused by DCT is mosquito noise. Named for its appearance, this effect appears when a complex part of the block may appear normal, due to the busyness of the image, but another, less busy part of the block may have an increased visibility of the basis function. (See Figure 4.)
Because images are inherently complex, encoders cannot always choose the best quantization for every element of a picture. Thus, a block that contains different kinds of detail may include some elements that were reproduced well and some that were not, hence the mosquito effect.
Another consequence of heavy compression is contouring. This is where normally smooth graduations in luminance or chrominance levels take on a step-like appearance.
Finally, MPEG and similar decoders all use predictive coding, where some frames are predicted from less-frequent anchor frames. Any strong
artifacts in the I-frames are usually propagated in time and could change on a GOP-by-GOP basis, causing a noticeable pumping in the video.

Audio compression’s limits

When lossy coding is employed, audio coding results in artifacts. The MPEG, Dolby and other codecs rely on psychoacoustic masking. The production of artifacts is modeled at the encoder, and the amount of quantization is chosen to minimize the likelihood that those artifacts will be heard. This model relies on certain characteristics of the human auditory system, whereby quiet sounds are masked by louder sounds, especially when those sounds are within critical bands.

In order to analyze the audio in these critical bands, audio codecs use either the modified discrete cosine transform (MDCT) or sub-band filters. Quantization of the compressed audio samples will then give rise to various artifacts.

However, because of the complementary synthesis transform (or sub-band filter) used in the decoder, artifacts tend to remain within the critical bands. Both systems also must rely on sliding time windows in which to perform the various compression functions. These windows can be responsible for a certain amount of artifact production, as transient phenomena get smeared in time.

Among the various artifacts that have been ascribed to audio compression are ringing or pre-echo, warbling, metallic or underwater sounds, transient dropouts, and smearing or sizzling. Perhaps most notable are sounds with percussive attacks and decays, such as those produced by castanets. Two examples include when onset of the sound loses its sharp attack and the atonal sounds produced by cymbals, where the harmonics take on a swishy sound. Simple sounds approximating pure tones are also useful as critical listening material.

Quality is key

So how can you minimize these artifacts? There are two fundamental rules. First, use the best encoder you can afford. Second, use the highest practical bit rate. Some characteristics of the encoder may be adjustable, too.

Always base your analysis using both typical and critical video — the latter is available quite readily on test disks. Now that you know what to look (or listen) for, comparisons should be easier to make.

Aldo Cugnini is a consultant in the digital television industry.
The MAC factor

This address is just as important as the IP address to get packets to their destination.

BY BRAD GILMER

Last month we talked about domain name resolution — the process of resolving a host name to an IP address. This month, we will discuss core network routing protocols and Media Access Control (MAC) addresses.

The ISO model

You may recall the ISO seven-layer network model. For this tutorial, we will use a simplified version of the ISO model. (See Figure 1.)

The first layer is the physical layer. It consists of the wires, connectors and the specifications for the electrical signals sent over a network. While Layer 1 is a necessary component of the network, it is not responsible for routing packets.

The second layer is the data link layer, in which networking transport technologies are differentiated. Examples of Layer 2 protocols include Ethernet and token ring. Clearly, the dominant Layer 2 protocol today is Ethernet.

The third layer is the IP layer. We discussed Layer 3 in depth in last month’s article.

The fourth layer is the transport layer. Layer 4 transports application data from one place to the other over a network. In the case of nn:nn:nn:nn:nn:nn, the first three numbers designate the manufacturer. The last three numbers uniquely identify the particular NIC card or network device. For example, a MAC address of 00:03:47:d6:bb:52 indicates that the card is made by Intel because 00:03:47 is Intel’s registered number. Intel assigned the number d6:bb:52 to uniquely identify this card.

In last month’s article, we discussed Dynamic Name System (DNS). As you probably know, you can manually assign an IP address to a machine, or you can use Dynamic Host Configuration Protocol (DHCP) to assign the address automatically. Your computer may be assigned many different IP addresses over its useful lifetime. But the manufacturer assigns Ethernet MAC

MAC addresses are Layer 2 addresses assigned by the manufacturer of the network card.

TCP, this means requesting the retransmission of lost packets and correcting for other errors on the network.

MAC addresses

MAC addresses are Layer 2 addresses assigned by the manufacturer of the network card. A MAC device might be a network interface card (NIC), or more commonly, the device is built into the motherboard of the computer.

MAC addresses take the form nn:nn:nn:nn:nn:nn. The first three numbers designate the manufacturer. The last three numbers uniquely identify the particular NIC card or network device. For example, a MAC address of 00:03:47:d6:bb:52 indicates that the card is made by Intel because 00:03:47 is Intel’s registered number. Intel assigned the number d6:bb:52 to uniquely identify this card.

In last month’s article, we discussed Dynamic Name System (DNS). As you probably know, you can manually assign an IP address to a machine, or you can use Dynamic Host Configuration Protocol (DHCP) to assign the address automatically. Your computer may be assigned many different IP addresses over its useful lifetime. But the manufacturer assigns Ethernet MAC

User applications

- Act on user commands; provide user interface
 e.g., Netscape Navigator, Outlook Express, Windows Media Player

Application protocols

- Provide services to user applications
 e.g., HTTP, SMTP

Layer 4

TCP

- Format data into datagrams; handle data transmission errors

UDP

Layer 3

IP

- Supply network addresses; move datagrams between devices

RTP

Layer 2

Data link services

- Send packets over physical networks
 e.g., Ethernet, token ring, packet over ATM/SONET

Layer 1

Physical networks

- Transmit and receive data
 e.g., wires, optical fibers, 10BASE-T UTP, Wi-Fi, SONET

Figure 1. A simplified ISO layer model for broadcast applications with Layers 1 through 4 of the ISO model
New Euphonix DSP SuperCore Featuring...
- DSP Processing - Up to 300 full featured channels per Core
- MADI I/O - Up to 24x24 MADI ins & outs (1,344x1,344 paths)
- Broadcast Router - Controlled from PatchNet software
- 100% Total Redundancy Option of DSP, MADI I/O & router
- Optional SNMP System Management Controller

For 100% seamless failover, a backup DSP SuperCore works in parallel with the primary unit, and is the only total redundancy system available on the market - another Euphonix first.

This ensures complete redundancy of the MADI I/O, Router and DSP Processing!

System 5-B

Max Air
addresses. These addresses cannot be changed. So why would a computer have two types of addresses, and why do they have different properties?

It is important to have both types of identifiers on a network. The Layer 2 MAC address ensures that there is one globally unique identifier for each computer on the system. The Layer 3 address allows computers to be organized into groups or networks. This permits the efficient routing of traffic across network boundaries, thus keeping local network traffic local and reducing the amount of traffic on the Internet at large.

Why would a system need a MAC address if it knows the IP address of a target computer? A Layer 2 switch sends packets to various outputs based on where the target resides. By associating the IP address with the hardware MAC address, the switch knows where to send the IP packets.

Also, remember that IP runs over a multitude of hardware, including Ethernet, SONET and token ring. If you know the IP address of a particular computer, you still do not know what sort of network the target is on, or what packetizing system it uses. The way a switch or router determines this is by sending out an Address Resolution Protocol (ARP) request.

ARP in action

Let us look at a simple example with two computers on a network. A person at one computer wants to use the ping command to see if a second computer is available on the network. At the outset, the first computer does not know the MAC address of the second computer, but it does know its IP address (10.0.0.15). The person types the ping command and sees the response below:

C:\> ping 10.0.0.15
Pinging 10.0.0.15 with 32 bytes of data:

Reply from 10.0.0.1:
bytes=32 time <1ms TTL=127

To the person at the first computer, it looks as if all that has happened is that their computer sent a ping to the second computer and received a reply. But an Ethernet packet sniffer reveals a conversation. (See Figure 2.)

The first computer generates a broadcast ARP request. This request says, “Who has 10.0.0.15? Tell 10.0.0.14.” The initial message contains the source IP address (in this case 10.0.0.14) and the source MAC address. It includes the target IP address, but the target destination MAC address is all zeros “Broadcast.”

The ARP request is broadcast to everyone on the network. The computer known as 10.0.0.15 receives this ARP request, recognizes that it is the target of the request and responds with an ARP reply, which is directed to the source of the request. The reply is identical to the request, with the exception that the target computer fills in its own MAC address. Now the first computer knows where to send the ping request. The ping is sent, and the target generates a reply.

The first computer is not finished though. It makes a note of the MAC address of the second computer in its ARP table. The ARP table contains the IP and MAC addresses of computers on its network. By storing the information locally, it will not have to issue another ARP request when it receives more packets for the same target. Figure 3 shows what the ARP table looks like for the first computer. The ARP entries are dynamic — they expire over time. Otherwise the first computer would remember this association forever.

Let us look at two interesting cases. First, what happens if the target fails to respond? The ARP request is sent,
Affordable CHANNEL

Supporting HD & SD Video Servers

MCS Multi-Channel Server

- Broadcast Time Delay
- Sports Slow-Motion
- VTR Replacement
- Commercial Insertion

Doremi's MCS Multi-Channel Video Server
Features up to 4 independent video channels, plus simple playlist creation with selectable video transitions (fade, wipe, cut & dissolve)

Reliable and Upgradeable Design
- Upgradeable from two video channels to four
- External RAID5 storage or internal removable drives
- System runs on a dedicated video hardware platform
- Redundant power supply option

System Compatibility
- HD-SDI, SD video input and output (HD Version)
- SDI, YUV, S-Video and Composite video (SD Version)
- Sony 9Pin, VDCP, or Odetics remote control

Multi-Channel HD Video Servers start at $30,500
Multi-Channel SD Video Servers start at $9,800

Doremi Labs, Inc. | tel. 818 562-1101 | info@doremilabs.com | www.doremilabs.com
Multiple lens choices
Fujinon and Canon provide a wide range of professional HD lenses and adapters to choose from. In addition, JVC offers the exclusive HZ-CA13U PL mount lens adapter specifically designed for 16mm film lenses.

High-end image quality
An improved wideband front end produces sharper images with less noise than competing models. Low-light performance has been significantly improved, and a new 14-bit DSP provides better highlight, shadow and color gradations.
The New 200 Series

HD/SD-SDI with embedded audio (GY-HD250)
The uncompressed full-resolution 4:2:2 signal can be output via the built-in HD-SDI and analog terminals, providing an ideal feed to a video server, HD switcher or microwave link. A built-in cross converter lets you choose to output either 720p (native) or 1080i. The GY-HD200U can provide a live component output.

Compact, lightweight, professional design
JVC's ergonomic form factor makes shooting more comfortable than ever. Controls and switches are laid out right where you expect them. Even fully loaded with battery, HDD or microwave transmitter, the camera is lightweight and balanced enough to be used on your shoulder for long periods.

JVC's new 200 series.
JVC's new 200 series is the result of television networks, news organizations and top cinematographers telling us precisely what they wanted in a production camera. Now you can experience high-end performance in a compact, easy-to-use camcorder that's comparable in cost to the SD equipment you've been using. With 720/60P capture and recording capabilities, JVC's new GY-HD200U and GY-HD250U deliver full-resolution HD images needed for demanding ENG, EFP and studio use. In short, they're the most valuable tools you can have when you're shooting the next generation of HD news, documentaries, multi-camera shows and indies. And it's only from JVC.

More of the features you asked for:
- Native 1280x720p CCDs
- Multiple frame rate recording: 24, 25, 30, 50, & 60p
- Record on tape and/or HDD
- Studio option with CCU (250 only)

JVC's ProHD 200 Series. Discover the new world of HD production.

For a FREE application brochure and details, call 1-800-582-5825 or visit us at www.jvc.com/pro

Compact, lightweight, professional design
JVC's ergonomic form factor makes shooting more comfortable than ever. Controls and switches are laid out right where you expect them. Even fully loaded with battery, HDD or microwave transmitter, the camera is lightweight and balanced enough to be used on your shoulder for long periods.

Studio-capable
The highly versatile GY-HD250 can easily be converted to a cost-effective studio camera with an adapter that incorporates industry-standard 26-pin multi-core cabling for power, genlock, R/B gain, black level and intercom.

GY-HD250
Optional Studio Configuration
Simulcast support
HD/SD graphics platforms use different processes to simulcast operations with varying results.

BY EUGENE PLAWUTSKY

Many stations have found that optimizing graphics for HD/SD simulcasting can be pretty challenging. For instance, a facility that downconverts HD content to create an SD channel will face many compromises with graphics presentation. Other stations with dedicated graphics devices for HD and SD channels have experienced different problems related to more complex system integration and automation during installation. Using separate HD and SD graphics processors for branding can also contribute to more complex graphics workflows on a day-to-day basis. Before we look at possible solutions, let’s discuss these issues in more detail.

Simple downconversion
A typical HD/SD simulcasting system, based on downconversion of an HD feed, will involve adding channel branding graphics ahead of the conversion process. This means that the positioning of the 16:9 HD graphics must accommodate the 4:3 SD format. This often results in an awkward appearance for the HD output.

The HD graphics are simplified to work effectively in SD, and this prevents the broadcaster from using the full breadth of graphics effects possible with HD. This is a real pity, as HD opens up new branding opportunities, both in terms of the sophistication of the graphics and the use of text on the bigger, higher resolution screen area.

With downconversion, it’s common to find fairly simple HD graphics positioned toward the middle of the screen, rather than in the classic position toward the edges. (See Figure 1.) Also, crawls will often have rather ungainly bookends, which reduce the amount of visible text. (See Figure 2.) Another issue inherent with downconversion is a lack of differentiation of the HD and SD channels, as they are based on the same branding graphics.

Stations have found that optimizing graphics for HD/SD simulcasting can be pretty challenging.
Multi-Format:
- 720p @ 24, 25, 30, 50, and 60 Hz
- 1080i @ 50 & 60 Hz
- 1080p @ 24, 25, 30, 50, 60 Hz

ICONIX Video, Inc.
Separate graphics devices

The use of separate branding graphics devices for HD/SD simulcasting is a partial solution to this. It overcomes the need to compromise graphics positioning, and it also allows the use of more elaborate and text rich graphics on the HD channel, making the most of the format’s potential. However, using separate graphics devices for HD and SD tends to create a more complex installation, typically demanding two automation interfaces and two playlists to drive the playout. This is more costly with respect to capital expenditure and more demanding for engineering to install and manage on an ongoing basis.

Importantly, separate branding devices for HD and SD also significantly increase the graphics requirements, as there is often a need for dual systems for graphics preparation, data interfacing and media management. Naturally, this adds to the complexity of the graphics workflow, and increases costs for training and maintenance.

Single processor, dual graphics engines

What is needed is a single processor with dual graphics engines for HD and SD. (See Figure 3.) This type of processor features two independent graphics engines for HD and SD outputs.

When using an HD feed, simulcasting may be performed effectively by branding the HD channel using a dedicated HD graphics engine. The SD output is derived from a downconverted clean feed, with channel branding inserted by a separate SD graphics engine.

This device can also perform simulcasting with an SD feed, with the SD channel upconverted to 1080i or 720p to create the HD output. In both cases, the HD and the SD channels will have graphics optimized for the format in terms of positioning and style.

A single HD/SD processor simplifies system integration, automation and maintenance. Just one automation interface and one playlist can drive both HD and SD simulcasting channels, and this can significantly reduce system complexity.

Perhaps even more important, the development of dual-format, template-based graphics workflow software has simplified graphics workflows in simulcasting and multi-channel HD/SD environments. A multiformat graphics automation application makes it faster for designers to create graphics templates for HD and SD, and it simplifies interfacing for data-driven graphics.

With this type of environment, television-ready graphics can be created easily from a user’s desktop, dropped into predefined templates, linked to live data sources and quickly inserted into playlists. Live data can be accessed once, mapped to the appropriate HD and SD templates and then sent to the delivery channels, without burdening the production process.

This advanced operation increases productivity, allowing the output of detailed and complex graphics without all the complexity of resizing and reformatting in both HD and SD. Media management is also simplified by using a single archiving and distribution system for both formats.

A multiformat graphics automation application makes it faster for designers to create graphics templates for HD and SD, and it simplifies interfacing for data-driven graphics.
These multiformat graphics workflow tools can also radically simplify rebranding activities for mobile TV and other new media formats.

HD/SD graphics workflows can be simplified further if the graphics system can go beyond channel branding and promotional graphics to support production graphics for news, live sports and elections. There are natural efficiencies from using a common system for newsroom graphics and channel branding when it comes to asset management, graphics creation, content editing and real-time data management, as well as work-order management and playout control. Again, obvious benefits include fewer applications to learn and support, as well as less duplication of effort, which further enhances productivity.

Under control

Other important issues in creating an effective HD/SD graphics workflow in multichannel facilities are scalability and control. Effective scalability demands an open, modular architecture that can operate well with a single user or with hundreds of users across multiple locations.

For driving multiple HD and SD channels with complex graphics, there is typically a requirement for fully automated operation and highly versatile manual control. Rapid and intuitive manual control of multilevel graphics across multiple channels demands a combined hard/soft panel or a pure soft panel solution.

Soft panels are rapidly gaining popularity because they offer effective and independent control of all the various on-screen elements. They can be readily configured to suit an operator’s particular style, or accommodate changes in the channel or programming lineup. They can also offer effective previewing of graphical elements, such as idents, clips, data streams and transitions.

By considering all of these factors before selecting an HD/SD graphics system, television engineers or operators can ensure that they optimize the efficiency of the hardware and software installation, while also saving time and money, and offering the highest level of on-air presentation.

Eugene Plawutsky is product manager - graphics products for Miranda Technologies.

As a partner to the world’s leading broadcasters and production companies, EVS has redefined the way events are produced.

EVS’ Instant Tapeless Production is a combination of hardware and software solutions dedicated to live and near live production. Based on the EVS engineered XT2 Series Server and its renowned software applications – MulticamLSM, IPDirector, XFile – EVS Instant Production Solutions offer an extensive range of advantages for sports and live program production such as entertainment shows, reality TV and talk shows.

Rely on the most reactive and reliable technology available on the market, rely on EVS Instant Tapeless technology.

EVS Instant Tapeless Production. Puts Time on your Side.
n Mexico, as in much of the rest of the world, football of the soccer variety attracts huge television audiences. In light of this, it is not surprising that TV Azteca, one of the largest producers of Spanish-language television programming in the world and broadcaster of Mexico's national team matches, wanted to be the first in Mexico to broadcast the upcoming 2006 FIFA World Cup competition in HD. In addition to its near-term goal, the network wanted to create a platform robust enough to support all of its HDTV requirements for the next 15 years.

A two-phase approach was necessary to accomplish both goals. The first phase was to launch a fully functioning HD production facility in time for the start of the 2006 World Cup competition. The second phase was to develop and implement multiple HDTV master control facilities to provide the long-term capabilities the TV Azteca needed.

The broadcaster was already producing in SDI. Even so, developing and executing a plan to accomplish the HD upgrade in the desired time-frame took a major cooperative effort on the part of the network and the U.S.-based design-build integrator for the project, TI Broadcast Solutions Group.

The project began at the end of April 2005 with meetings between TV Azteca and the systems integrator. During these meetings, engineers from both organizations reviewed objectives and began the process of identifying functional area requirements,
The UTAH-400 High-Density Digital Routing Switcher, already the world’s most advanced switcher, now offers even more:

Automatic crosspoint redundancy in all matrix sizes

The UTAH-400 allows you to protect your critical signal paths against interruption with AUTOMATIC internal redundancy.

Three Frame Sizes -- 64x64, 144x144, and 288x288

You can use the UTAH-400 for any digital router application from the smallest utility router to the largest central matrix.

In any size, all UTAH-400 systems offer the same set of world-class features — and the industry’s lowest prices:

- Full time Input / Output Signal Monitoring
- Reduced Power Consumption and Rack Space Requirements
- SD/HD Compatibility
- Fiber Optic I/O Option
selecting the best products to meet those requirements, assigning tasks, and establishing costs and schedules.

Initial planning

TV Azteca’s comprehensive pre-planning made it possible for the systems integrator’s engineers, who would be designing the system, to identify and begin planning the major functional areas within the broadcast center. The network also provided conceptual information for workflow between the functional areas. The information was key to effective overall planning and design, as well as for proper placement of QC functionality within the broadcast center.

From this, TI Broadcast Solutions Group identified four functional areas for the new broadcast center: two master control areas, an HD production control area and a new central routing facility.

Master control

Among requirements for the master controls were virtual monitoring capabilities and remote operation of all heat- and noise-generating devices. It was also important that the areas make an immediate, positive statement about the network’s brand image and worth. The key considerations were in selecting the display technologies, multi-image processing systems, KVM switching and extension, ergonomic consoles and seating, overall visual appeal, channel branding solutions, play-to-air interface, traffic log reconciliation, and synchronization of closed caption files. And sophisticated audio mixing capabilities for heavily music-oriented content. Other capabilities needed in HD production control included monitoring and tally systems, via a virtual monitor wall system. And lighting changes were made to accommodate the newly created high-definition facility.

HD production control

TV Azteca’s plans called for repurposing an existing facility to create the HD production control area. This space needed to be connected to the central routing facility across the broadcaster’s campus, a requirement that the systems integrator met with fiber tie lines for inputs and outputs.

The plan for this area included six cameras supported by a large switcher and sophisticated audio mixing capabilities for heavily music-oriented content. Other capabilities needed in HD production control included monitoring and tally systems, via a virtual monitor wall system. And lighting changes were made to accommodate the newly created high-definition facility.

The new HD production control area includes an NEC virtual monitor wall and a Sony MVS-8000 series switcher that supports six cameras.
Barco provides innovative visualization and display solutions for broadcast applications such as outdoor marquee, indoor lobby, TV show studio, news studio, broadcast and distribution monitoring room, screening or training room and post production. Barco’s commitment to this exciting market, its continuous high-quality R&D effort and proven flexibility towards customers’ needs offer the best guarantee for your future-proof investments.

Barco Visual Solutions LLC, USA
3059 Premiere Parkway
Duluth, Georgia 30097-4905
Phone: +1 678 475 8000
Fax: +1 678 475 8100
Email: sales.controlrooms@barco.com

Total visual provider for broadcast applications

Come and see Barco’s products at
NAB, Las Vegas, Nevada, United States,
Convention Center, Booth# SL4320,
16 - 19 April 2007

www.barcontrolrooms.com
Central routing

The central nerve system of the facility is the location for routing, patching, distribution and conversion gear. For this facility in particular, it was imperative that the broadcaster and systems integrator work closely together to evaluate key components. An important consideration for this room was the selection of racks that was critical for completion before the start of the World Cup competition.

The only deviation from this original design schedule was near the end, when the broadcaster and systems integrator brought vendors to Atlanta for in-person product presentations. These presentations took place prior to final design approval, which was originally scheduled for week five in be in the same city.

To facilitate the week’s activities, the work was divided between two teams. The first team, made up of engineers from both the broadcaster and systems integrator, developed the major goals for the systems. This team defined the best approach to meet workflow requirements and the correct tools to achieve the desired look and feel.

The second team also was composed of representatives from both TV Azteca and the systems integrator. The team worked with key equipment manufacturers to select major system components, such as switching equipment, cameras, routers and automation, servers. As part of this critical initial planning, two representatives from TI Broadcast Solutions Group traveled to the broadcaster’s campus in Mexico City and conducted a
ADC’s Pro Patch™ video panels
have long been recognized as the leader in video patching. Panels are available in a wide variety of configurations for rack sizes, jack types, and color options. The PPI series panels are the ideal choice for demanding professional environments:

- Durable welded-steel frames prevent bent, cracked and broken ears
- Widest variety of jack types available including standard, midsize, and MUSA standard
- Exclusive snap-over designations keep cards and windows in place and make changes easier
- Durable molded ABS inserts prevent stripped screws and cracked inserts

Whether it's copper or fiber, ADC's audio, video and data products are built to provide unmatched performance and reliability, and all ADC products are backed by outstanding pre/post-sale engineering support as well as the industry's best warranty.

Contact us today and find out why ADC means “performance by design.”

2x32 Midsize PPI Series Super Video Jack Panel
Call today for fast delivery!

For a free copy of ADC's 13th edition broadcast product catalog, call 1.800.366.3891 ext. 20000. Or visit adc.com/broadcast.
comprehensive site survey, during which they identified potential issues and mapped the existing facility and its equipment.

Week 2: Conceptual design

The design engineers used this information to develop conceptual drawings of key systems. During this week, the broadcaster’s personnel returned to their regular jobs and to business as usual.

The systems integrator sent an electronic version of the conceptual plan to the broadcaster at the end of week two. This allowed TV Azteca to immediately begin reviewing the plan.

During a telephone conference, the network and TI Broadcast Solutions Group addressed and resolved issues. The broadcaster agreed that the conceptual plan was on target, and the stage was set for the third week of the design phase.

Week 3: Detailed design and integration planning

This week’s focus was on two major initiatives. The first was completing the detailed design documentation for various systems, including routers, patching, conversion and I/O for demarcation points. At the end of this week, the design engineers provided completed portions of the design to the broadcaster for review and acceptance.

The second initiative was engagement of the field operations team for planning and budgeting later project phases. This resulted in delivery of the project’s bill of materials with pricing and budgets for cable, connectors and other installation materials. It also yielded a detailed timeline for completion of the project and a final labor budget for subsequent project logistics, systems prefabrication, site mobilization, installation, test and checkout, training and as-built documentation.

Weeks 4 through 7: Final design and vendors

The systems integrator completed the detailed drawing set for the project, addressing issues such as patch panel layout planning, mnemonics, wire numbering, pin-outs, edit bay panels and IT network details. During weeks five and six, representatives from TV Azteca and TI Broadcast Solutions Group met with vendors to evaluate products and make final equipment selections.

Following these meetings, both groups met for final design review. Each drawing was accepted as-is or with changes. With this step completed, the systems integrator prepared final documentation and delivered it to the broadcaster in both electronic and printed versions.

Building the future

Once the design phase was complete and system components were determined and orders placed, the systems integrator and broadcaster agreed to a division of responsibility for completion of various system components. Decisions regarding which organization would handle each aspect of the project were made based on each organization’s areas of expertise. The objective was to ensure the best technological and economic value to the broadcaster and to maximize resources and efficiency.

TV Azteca assumed responsibility for the completion of:
- system power;
- HVAC/mechanical;
- lighting;
- satellite encoding;
- RF/teleport equipment;
- fire suppression monitoring;
- local ad insertion and cue tones;
- acoustics;
- nonbroadcast LAN;

Design team

TV Azteca
Roman Gomez, director of engineering
Jorge Pickering, director of production services
Omar Olivera, technology development
Felipe Ceballos, master control operations manager

TI Broadcast Solutions Group
Michael Wright, president
Jay Gonzalez, vice president of media technology services and chief technologist
Pat Matthews, senior project manager
Terry Long, lead technician

Technology at work

360 Systems DigiCart
DNF Slo-Mo controllers
Dolby E encode and decode
Euphonix Max Air audio console
Forecast Consoles technical furniture
Image Video TSI-1000 Tally Control Leader LV5700 HD scopes
Harris Leitch
- Integrator Gold router
- LogoMotion branding
- NEO SuiteView for monitoring
- NEXIO HD servers
- OPUS HD master control switches
- Platinum router
Sony
- HDW-M2000 VTR
- MAV-555A video disk recorder
- MVS-8000A HD switcher
- NDC-1500L cameras
TC Electronics System 6000 Reverb
BROADCAST HD OVER FIBER.

Just one of the many options available with the Optiva™ Platform.

Optiva™ offers the most comprehensive optical communication solution for broadcast control rooms, studios and OB stations. With its integrated patent-pending Daisy Chain technology, Optiva™ provides a truly configurable and upgradeable solution.

By using the Product Configurator at opticomm.com, you can easily plan your fiber network. Choose any of our video, audio or data signals to design the perfect system tailored to your needs. Manage your projects and test configurations, all at the touch of a button.

Come see us at NAB April 16-19 Las Vegas, NV Booth N2931
TI Broadcast Solutions Group was responsible for:

- integrated workflow solutions;
- broadcast automation;
- ingest, storage and playout servers;
- multiformat routing and master control;
- seismic racks;
- ergonomic consoles;
- quality-control solutions;
- in-plant audio, SDI and HD cabling; and
- ingest bay installation.

Throughout the project, the door was open for changes in responsibility if it appeared that shifting a task would be beneficial. This flexibility and cooperative approach resulted in fewer stumbling blocks to meeting the sometimes-rushed schedules.

Among the challenging aspects of this project were the long runs needed to connect the central router room and the new Studio 5. The only way to get HD signals from one to the other was fiber, which TV Azteca personnel ran under the street through a previously installed ladder tray.

Another challenge was the location of the area being converted for HD production control. This area was across the campus from the building where equipment was stored and staged. In addition, it was on the third floor of a building with elevators that were not large enough to accommodate the equipment. As a result, the equipment for HD production control was hand-carried piece-by-piece up the stairs to the third floor, where it was staged and then built, integrated and tested.

Innovative features

Several innovative features of TV Azteca’s new systems have resulted in a more intuitive workflow and improved productivity. Notable features in the new HD facility include:

- Dolby 5.1 audio with remote control in each control room enables listening to program streams on- and off-air with the touch of a button.
- Program feeds are received via the latest Harris transmitter technology.
- Display of all predistribution, post-on-air and off-air program signals on a large-screen LCD display enables technicians to quickly identify issues such as poor signal quality and take immediate corrective action.
- Connections from both master control rooms to both the central router room and existing standard-definition systems enable seamless switching between systems.
- Forty transmit and receive fiber paths facilitate performing instant on-air tasks and live cuts. These paths are currently used to connect Studio 5 to the master control rooms. Eventually, they will be used to connect all six studios on the network’s campus.

Live in HD

The culmination of the first part of this project was TV Azteca’s ability to broadcast the entire 2006 FIFA World Cup live and in high definition. From the network’s perspective, that meant larger audiences and an enviable position among Mexico’s networks. The network broadcast the World Cup in both HD and SD and continues to support dual broadcasts at this time.

The master control rooms and router room were completed before the start of World Cup competition. Installation of the studio, which was 90 percent complete prior to the World Cup competition, was completed in July 2006.

Tom Larrison is vice president of the Broadcast Integration Group, part of TI Broadcast Solutions Group.
#1 in routers and master control.

NVISION's NV5128-MC Master Control offers the ultimate in precision routing and master control. Error-free video and audio signal processing and distribution means faster installations, lower operations cost, and a nonstop viewing experience.

SAVE A BUNDLE: The NV5128-MC is the first to combine digital master control and multi-format routing switchers in the same frame. Less hardware means less cost -- a savings of 50% or more over separate control and routing switchers.

ANALOG AND DIGITAL: Multi-format input capability protects legacy analog signals and saves the cost of external converters.

MULTIPLE PROGRAM STREAMS: Up to four channels of master control or 8 channels of branding in a single frame.

HD ENABLED: Built-in HD capability is ready to go when you are.

FUTURE PROOF: Expand your capacity or upgrade capabilities quickly and cost effectively with easy, front-plane module replacement.

- 128 system inputs -- digital, analog, or mixed
- Multi-level keying, logostore, & squeezeback
- Optional built-in Dolby E decoders
- HD and SD branding engines
- Mix & match master control, branding, and routing in the same 8RU
- Choice of three different control panel options

www.nvision.tv
+1 800-860-HDTV
DTV antennas

Careful planning, design and installation are the keys to an effective radiation pattern.

BY DON MARKLEY

In the November 2006 column about the use of antenna ranges to measure patterns, I stated that Jampro had the only full-size range in use. I have since found out that ERI also has a range. That range has existed for several years, and many FM antennas have been tested there. Following the acquisition of the TV transmitting antenna and rigid transmission line departments from Andrew, the company expanded the range to permit television measurements.

The inner-workings of an antenna range

For engineers under the age of 50, an explanation of antenna ranges might be in order. For that purpose, I'll refer to the range shown in the photo at right. While this particular range belongs to ERI, the general functions of the various on-site facilities are similar to most ranges.

The purpose of an antenna range is to measure the antenna's pattern on the structure where it will ultimately be mounted. To that end, ERI uses several tower sections for measurements. When an actual section of the proposed mounting structure cannot be delivered to a site, it is necessary to fabricate an equivalent tower. The buildings near the top of the photo are used for that purpose. Those and other manufactured tower sections can be seen stacked near the access road.

Two test sites with towers make up the heart of the range to test the antennas. The towers are erected on large turntables so they can be rotated. The antennas are mounted on the tower sections in what will be the final configuration along with any other conduit, transmission lines, ladders...

FRAME GRAB

Distribution of HDTVs in broadband households

Sixty-one percent of broadband HDTVs are in living/family rooms

16% Den/game room
13% Master bedroom
10% Other rooms
61% Living/family room

Source: The Diffusion Group

ERI's 70-acre antenna test range in Chandler, IN, features low RF interference.
HE4000 - HD and SD Encoder

HD and SD Encoding Simultaneously

Front Panel Monitor

Advanced “PUREPEG” Technology

Satellite and Terrestrial Interfaces

1 MB/s to 160 MB/s
ERI’s anechoic chamber includes an overhead crane arrangement, which completely retracts from the chamber interior so as not to compromise performance. The large 16,000-cubic-ft chamber allows the use of deeper absorber material, thereby lowering the usable frequency range to high-band VHF channels.

and other hardware that might be in the aperture.

Again, the antennas receive the signals from the source. The source antennas are located off the photo on the left side. The buildings at the test locations contain the necessary instrumentation to measure the received signal and to plot that signal versus azimuth as the antennas are rotated.

Some engineers prefer to see the measured patterns on a range using full-scale components. On older ranges, the antennas could also be rotated on a large stand to measure the vertical pattern. This method has mostly disappeared, with the vertical patterns either simply calculated or measured on a model.

The photo at left shows an anechoic chamber with an antenna being tested. In this system, a model of the antenna is constructed and placed...
The World's Best Transmitters

Proven Transmitter Technology For Today’s Digital World.
You can depend on DMT USA to provide solutions tailored to your needs. Whether it is a transmitter, translator, antenna or complete RF system, our broad range of proven products and customer care give you the options to make educated decisions. Discover the advantages of DMT.

DMT USA
ONE COMPANY • ONE MISSION • QUANTUM RESULTS
888-912-8326 • sales@dmtonline.us • www.dmtonline.us
Confused about buzzwords like "workflow" and "integration"?
We make it simple.

autoXe™

autoXe, from VCI Solutions, provides a reliable, modern, and cost-effective automation system that streamlines operations, improves resource management, and increases return on investment.

We can show you how a Chicago-based broadcaster increased productivity and saved money with autoXe. Visit www.vcisolutions.com/autoxe.html.

Several manufacturers offer DTV products with questionable claims of performance. The mechanical characteristics of such antennas vary considerably as well.

Types of DTV antennas

DTV antennas vary in size, configuration and operation. For low-power, low-band VHF use, many operators use Yagi or log-periodic antennas. Such antennas make more sense for ERP values up to a couple of kilowatts rather than erecting a five- or six-bay batwing antenna. When the power starts increasing, the most common antenna to use is a batwing with a few bays. Thanks to the commission, most low-band VHF DTV stations will not have a high ERP, and the simpler antennas will work fine.

For high-band VHF, the ERP values are somewhat higher. In this situation, analog stations commonly use the standard antenna types. There are some low-cost alternatives but the majority of DTV antennas in that band are batwings and dipole arrays. Those antennas have stood the test of time and are of moderate weight. Size will continue to be based on frequency and gain until someone finds a way to bypass the laws of physics.

At UHF frequencies, antennas workable solution. When properly mounted, they should provide successful operation for a long time. The antennas themselves work well, but users should plan on more maintenance than for a slot antenna, for example, because the line will need periodic mechanical service or replacement. These antennas are highly flexible for directional use, and electrical performance is really not a consideration. The power-handling capability and life expectancy are the real criteria to consider.

For high-power UHF DTV, a good choice is a slot antenna protected by radomes. It is a proven antenna design that will produce excellent performance with a long life expectancy. There are still slots in service that are more than 30 years old, although the newer antennas offer improved performance.

Going cheap may cost you

The big issue in buying an antenna is that it could be totally transparent for the station operation. That is, other than checking the gas pressure in the line, the transmission line and antenna systems should provide excellent performance without more than the occasional mechanical mount checkup.
When buying an antenna system, spending the least amount of money may not be wise. The antenna and line are not located where repair work is convenient or inexpensive. Therefore, stations should select a system that is built solidly enough to stand the harsh environment of its location and electrically sound enough to perform for years without trouble.

Granted, any antenna system may develop a problem. Such problems are usually caused by exterior forces such as lightning, frustrated hunters or the failure of other components on the tower. That type of problem, while irritating, cannot be anticipated and is simply a risk of operating a system. Poorly built antennas or lines with cheap hardware and materials cause unacceptable problems.

When an antenna can't handle power and causes the station to go off the air, the managers or ownership of a station won't care how much money you saved them by choosing a cheaper antenna. Then, the only consideration is that the antenna or line failed. This isn't to say that there aren't savings that can be realized by checking with different vendors before making a purchase. Sacrificing quality to save a few bucks can be a real disaster when trying to keep the station operating.

Don Markley is president of D.L. Markley and Associates.

Send questions and comments to: don_markley@prismb2b.com

RFONESTOP at www.broadcastengineering.com
For more news and articles on RF, visit our Web site and click on the RF link at the top of the page

THE AZDEN 1000
BROADCAST PERFORMANCE,
UNIQUE INTEGRATED
UHF RECEIVERS

Whether you use the Anton-Bauer Gold Mount®, a v-mount battery, or have a Panasonic or Ikegami camera which takes a "slot-in" receiver, there's an Azden 1000 designed specifically for your use, giving you broadcast performance with no additional batteries needed.

Features include:
- 121 UHF channels (723-735MHz) user-selectable, with LCD readout
- True diversity system with 2 complete front-ends and high-gain antennas
- Proprietary DLC (Diversity Logic Control) circuitry for reduced dropouts
- State-of-the-art dielectric filters throughout, for improved image rejection and superior diversity isolation
- High 5th order filters for improved S/N ratio
- Multi-function LCD shows channel number and frequency, battery info, AF level, and diversity operation
- Ultra small, lightweight, switchable, Earphone-out w/level control

Gold Mount 1000URX/AB
ICX "V" Mount 1000URX/VM
1000URX-SI "Slot-In"

Bodypack transmitter (1000BT) with reduced current-drain for improved battery life, is available with Azden EX-503H, Sony ECM-44H.

Plug-in XLR transmitter (1000XT) works with dynamic mics.

AZDEN

P.O. Box 10, Franklin Square, NY 11010 • (516) 328-7500 • FAX: (516) 328-7506
E-Mail: azdenus@azdencorp.com Web site: www.azdencorp.com

February 2007 | broadcastengineering.com 51
An editor at TSN HD in Toronto uses a Harris VelocityNX craft editing system linked to a NEKIO XS HD/SD.
Take an in-depth look at the key technologies that interlock acquisition, editing and content exchange in the newsroom.

BY FRED SCHULTZ

After half a century of refining itself as a medium-based presentation business, broadcast news now finds itself under pressure to accommodate new technologies for file-based sourcing and content management, as well as real-time, streaming and file-based delivery systems.

Despite changes in nomenclature and hardware, the front end of every broadcast news business continues to be the acquisition, editing, storage and exchange of content. File-based technologies bring substantial economies, flexibility and improved technical quality to these operations. The middle step for all news operations is creation of the actual on-air product. It is here that each news operation generates its unique value.

On-air is universally done in real time, intermixing live video and audio of the anchors and journalists with playout of file-based content and supporting graphics. The finished feeds then move to the third operational step of the business — distribution — through any combination of real-time (e.g., broadcast), file-based (e.g., archiving, redistribution) or streaming (e.g., Web, handhelds) media channels.

Startup

The primary impetus for upgrading news technology is the resounding success of proprietary video servers in transmission applications. Not long after video servers established their value as replacements for videotape recorders, substantial improvements in the power and cost advantages of digital content storage
technology introduced an IT-centric rethinking about operations for all of broadcasting. This paradigm shift, plus a tightening business climate, re-framed the business question of how to better use technology as a means for operating individual newsrooms more efficiently, and of coupling multiple news operations together.

During that period, the term file-based began to gain common use to define the transition of broadcasters away from tape-based operations. While the phrase references important distinctions that bring undisputed advantages, taking it to literally describe all broadcast news operations risks obscuring a clear understanding of two key aspects of newscasting that are not file-based.

First, files of necessity reside at a specific location, and each encloses contents that must be finite with a beginning and an end (though the end point may not necessarily be known at the time of creation). As noted above, the news program itself is an aggregated product composited in real time from live studio and remote video, along with video played from files and graphic devices. While the output feed of a live news show is usually recorded (which returns it to the file domain), its primary revenue value is as a live, nonfile feed to broadcasting and cable distribution.

Second, digital news operations diverge from file-based underpinnings when the news program (or portions of it) is supplied to secondary markets, such as the Web and handheld mobile devices. These operations use streaming rather than actual file transfers to provide the viewer with content.

While streaming technology requires the use of source files, the recipient's device does not receive a copy of the file itself, but rather a stream of time-stamped data that the client application displays on arrival. This allows the viewer to see the requested content without jeopardizing control of ownership rights.

Aside from these two aspects of real-time production and frame-streaming to applications, all other parts of the news business are immersed in a comprehensive file-based makeover. While the legacy backbone of shoot-process-cut-stack-air continues to remain recognizable, all the tools and workflow processes are in active flux.

Starting with images

From the outset, the most compelling aspect of television news has always been its unique moving images. For commercial insertion. Today, server technology includes the high-performance, high-reliability, highly integrated offerings of major industry vendors, such as Avid, Grass Valley, Harris and Omneon, as well as custom-built systems assembled from available IT components. The purchase decision of each customer is driven by the particular importance placed on cost, reliability, shared storage operations, expansion of channels, bandwidth, storage capacity and linked operations, such as editing and browsing, archiving and system management.

From the outset, the most compelling aspect of television news has always been its unique moving images.

Figure 1. File-based integration of a newsroom computer system and video/graphics servers accelerates news production with tools that work directly from the client desktop.
Our new entry-level automation may leave you with some time to kill...

...and some money to spare

Pro-Bel’s Morpheus automation system drives some of the world’s largest and most complex playout operations. Major companies like Turner Broadcasting choose Morpheus because it provides them with the tools they need to deliver their content in winning and totally reliable ways.

Now, Morpheus Foundation offers all of Pro-Bel’s automation expertise in a single, entry-level system which delivers best-of-breed capabilities at an entry-level price. Morpheus Foundation is an out-of-the-box solution which provides no-compromise channel automation. It comes pre-configured to drive your choice of video server, logo generator and closed-captioning system. Interfaces for Store and Forward solutions and EAS are supported as well as a wide variety of scheduling systems. Morpheus Foundation is flexible and scalable and offers a variety of options for advanced redundancy and media management as well as a choice of ingest tools. And the price will certainly give you something to smile about!

To find out more visit www.pro-bel.com
For news, the most valuable development in servers is the ability to offer true shared storage as an alternative to copying and moving files across a network. Content had been thought of as a resident that lived within its media. Shared storage revealed it to be a forefront entity, capable of simultaneously serving in multiple locations, residing on multiple types of media and possessing potential value in lines of business not traditionally associated with television news. The unrestricted, shared, simultaneous availability to file material has resulted in a dramatic shift in the industry’s expectations about interoperability and universal access to content.

Going low

Some pathways to the universalization of content have proven faster and easier to implement than others. Because the relationship between network capacities and file size was so widely understood, an obvious next step was to generate low-resolution proxies for viewing and editing. Low-resolution operations increased costs by adding complexity to a station’s infrastructure and workflow, but three key benefits paid off from the beginning and are still important today:

- **Pervasive.** Offers multiple people simultaneous access.
- **Immediate.** Allows rapid access to any clip or point in a clip.
- **Abstract.** Virtual clips can be created by referencing other clips.
- **Independent.** Clips in a sequence can be deleted without destroying others in the sequence.
- **Self-describing.** Rich metadata can be embedded.
- **Extensible.** New types of metadata can be added.
- **Portable.** A file doesn’t change regardless of the type of physical media it’s stored on.
- **Gnostic.** Multiple file types can exist on the same media.
- **Secure.** IT controls can manage who sees what.

Leverage your file-based workflow

BY MARK TURNER, DIRECTOR OF IT AT MEDIA GENERAL BROADCASTING

To get the most out of your workflow, your file-based system needs to be:

- **Pervasive.** Offers multiple people simultaneous access.
- **Immediate.** Allows rapid access to any clip or point in a clip.
- **Abstract.** Virtual clips can be created by referencing other clips.
- **Independent.** Clips in a sequence can be deleted without destroying others in the sequence.
- **Self-describing.** Rich metadata can be embedded.
- **Extensible.** New types of metadata can be added.
- **Portable.** A file doesn’t change regardless of the type of physical media it’s stored on.
- **Gnostic.** Multiple file types can exist on the same media.
- **Secure.** IT controls can manage who sees what.

large geographical distances; and
- editing on more seats than would be possible using full-resolution video.

Initially, the only means available for creating files of differing resolution was to use real-time baseband video as a source. Although low-resolution files could theoretically be stored in the same servers as the high-resolution originals, most successful offerings used less expensive standalone servers and storage devices for this procedure.

This creation of dual inventories raised the need for content management tools. The most pressing requirement was for a scavenge tool that could create low-resolution copies of the high-resolution files that arrived in the server without passing through baseband ingest, such as finished edits from attached nonlinear editors. This task required databasing the inventory of both low- and high-resolution domains, along with rules-driven software for tracking discrepancies, managing high-resolution playout and coordinating low-resolution recording.

A related need was to manage deletion of low-resolution proxy files when their high-resolution masters were removed from the server. While operators have consistently expressed the desire to have low-resolution viewing access to any content that has ever resided on the server, the high cost of an archive system that automatically returned archived high-resolution content back into the server has restricted this feature primarily to large installations.

News operations would probably not add much more archive content into their shows even if it were readily available. But the ongoing desire for easy viewing and editing access to all their content continues to drive vendors toward better solutions.

Content sharing

In addition to fueling the development of low-resolution functionality, the need to gain access to content across proprietary hardware platforms drove development in two directions. One was toward standards-based wrapping and unwrapping of files across manufacturers. The second was toward math-based transcoding of files across codec families and bit rates.

The post-production community initially began articulating a vision for the free exchange of works in progress across platforms and channeled this into the development of AAF. The broadcast community recognized a parallel need for exchanging finished media products and supported similar developments with MXF.

Today the MXF is codified as SMPTE 377M and provides a standards-based way of exchanging material across devices. MXF applications range from linking P2 and XDCAMs with today’s major news editors, to a broadcast group that uses a single archive linking Grass Valley K2 servers and Harris NEXIO servers to serve as the translation engine for sharing files across their operations.

The MXF and AAF standards have
THE DIFFERENCE BETWEEN TOLERANCE AND ZERO TOLERANCE

DESKTOP SOLUTIONS

KONA 3
- SD, HD, Dual-Link HD, 2K I/O
- For Apple Final Cut Studio and Mac OSX

KONA LHe
- SD/HD Analog and Digital I/O
- For Apple Final Cut Studio and Mac OSX

XENA 2K
- SD, HD, Dual-Link HD, 2K I/O
- For Adobe Premiere Pro 2 and Windows XP

XENA LHe
- SD/HD Analog and Digital I/C
- For Adobe Premiere Pro 2 and Windows XP

MINI-CONVERTERS

HD10AVA
- SD/HD analog composite/component video and 4-channel analog audio to SD/HD-SDI with embedded audio

HDP
- HD-SD/SDI to DVI-D and audio converter

ADA4
- 4-channel bi-directional audio A/D and D/A converter

HD10AMA
- HD/SD 4-channel analog audio embedder/disembedder

www.aja.com

800.251.4224
FEATURE

THE EFFICIENT WORKFLOW

resulted in intellectual contributions, which have improved the way files and their content are understood. The standards identified that a file of content is in fact composed of three elements:
1. its wrapper;
2. the essence of the content (the audio and the video itself); and
3. metadata that describes the content.

This distinction brought new clarity and inspiration to the thinking of operations management, technology developers and business opportunity planners.

As needs arose to convert files from one bit rate and/or codec family to another (e.g., creating low-resolution browse files, compacting DV-based edited fi GOP MP from the space-saving long playout through fallback solution coding. Although real-time fully used, this is regarded as awkward and re-en-

The new workflow

By implementing a file-based workflow, your team could the final product while saving. Below are some of the specific benefits:

Improved product
- Video content can be simultaneously used without restriction.
- Allows fast re-editing, which eases repurposing of stories.
- Pointer lists can be played to air faster than waiting for rendered files.
- Producer can automatically re-sequence media elements while on-air, without staff.
- Searching can return viewable content instead of a reference to shelf/tape/time code.

Improved economies
- Commodity IT storage replaces VTR design/manufacturing/maintenance/expendables.
- Commodity IT connectivity replaces costs and restrictions of baseband transfers.
- Editing skills are increasingly prelearned by the new-hire pool.

New benefits
- Content is accessible without geographical restrictions.
- Editors receive preselected source material in bin simply by clicking story.
- Transfers can be faster without lock to baseband clock.
- Searches can examine multiple databases simultaneously.
When computational-based transcoding arrived, it not surprisingly proved to be computationally intensive. Many particular conversions required substantial processing time, and the per-channel cost was not trivial. As a consequence, legacy baseband ingest remained a viable way of creating browse video. Competitive computational transcoding products have now somewhat broadened the marketplace, and the new generation of architectures for HD/SD servers are beginning to promise internal co-generation of different formats and resolutions.

File-based delivery systems

The ability to transfer content as files rather than as baseband has eased and sped up news operations at almost every step in the workflow. The freedom from the cost, scheduling and technological complexity of baseband linkages has improved the quality of the news product substantially.

Archiving

Archiving is an example of how thinking about file-based workflow for news was initially defined by solutions created for large transmission facilities. Those solutions have three requirements:

1. The archiving is nonlossy.
2. Both archiving and retrieval are automatic.
3. Retrieval is triggered by a customer's use of a reference to an archived piece (e.g. dropping its ID into a playlist) without requiring the customer to perform additional steps to implement that request.

A direct parallel for file-based news is obvious and attractive. When a browse edit includes shots that have been moved off to archive, the system would restore the necessary high-resolution content automatically and transparently.

The technology for implementing archiving with this level of automation is readily available, but its current cost cannot be justified by many (if any) call letter news operations. Creative thinking remains to be done about the assumptions and appropriate workflow to provide affordable archiving for file-based news operations.

High definition

By far, the largest set of changes for broadcasters as the result of implementing file-based workflows will surround the (usually) simultaneous arrival of 16:9 and high definition. From the moment a facility introduces its first frame of production in HD, all material — both SD and HD — needs identifying metadata to assure proper handling by the file-managing devices. These devices...
include captioning engines, storage and playout servers, editors, browse encoders and transcoders, browse editors, and browse conform engines. But for this content identification to be meaningfully used, virtually every step of the production workflow requires human decision making, because every option will have branching consequences that require informed evaluation by engineering, production and management.

An example is editing 16:9 HD and 4:3 SD source content together in the same story for simultaneous transmission in SD and HD. As long as SD content must be integrated and substantial viewing takes place in 4:3, then the HD content must be shot with 4:3 framing. The most expedient news workflow would then be to cut and produce an HD output, using black side pillars on the 4:3 content.

Some NLEs accept mixed SD and HD source content and perform up-and downconversion and aspect ratio conversion (ARC) on output. Others require external conversions prior to editing. In either case, the resulting edit will be saved to the server for HD playout. (Browse editing adds some initial complexity, largely setting the encoder/transcoders to accommodate HD, and setting auto-conform engines to output in HD.) To play that same edited piece in SD, some servers will automatically downconvert and correct the aspect ratio with a 4:3 center crop. Other servers will require downconversion and ARC as an external real-time process. In either case, the SD viewer sees a full screen of 4:3 content that is unstretched and unboxed.

While this process gives traditional 4:3 viewers the best-looking product and is currently the most expeditious in terms of workflow, it locks out the creative potential from using the full width of the HD frame. Its value will therefore diminish as 16:9 penetration rises among consumers. Yet the vital importance of news in each station’s profit picture and the rising importance of third- and fourth-screen markets, which are primarily 4:3, argue for favoring 4:3 as the preferred distribution aspect ratio for news.

Business impact

File-based operations have revised the economics of news production at virtually every step and in the process have affected the costs of hardware and processes. With commodity IT hardware replacing baseband hardware, new economies have improved both connectivity and storage.

Connectivity, which had relied on baseband piping, now flows across vastly greater distances through networking, which has grown from 10BASE-T to Gigabit Ethernet. Commercial and technical services have finally been worked out for interconnecting multiple locations. Now that exchange speeds are no longer locked to real time, operations and management have substantial flexibility for controlling the speed, resolution and cost of connectivity at every step.

VTR technology, which had been hugely expensive to manufacture and support, has been replaced by piggybacking IT storage technology. Not only is IT storage far more powerful and robust, but its costs of development and scale are distributed across a vastly larger customer base. The savings from using field cameras with IT storage instead of tape allows stations to put cameras into the hands of many more shooters in their communities.

With the content of file-based assets now clearly exposed, management is engaged in finding additional ways of extracting value. The Web, mobile phones, public facilities like elevators, airports and trains, and a burgeoning variety of video-enabled handhelds, such as the Video iPod, are platforms where news can be repurposed with value for both owners and customers. The fact that rights to much news content is in the hands of large companies with other types of media to distribute (like music, movies and sports) brings both deeper pockets and a longer view to the search for opportunities. Increasingly, the success of applications in which customers pull content of interest will depend on attaching and exposing the metadata in an economical and meaningful way. And some markets, such as with handhelds, are proving to be so new and unknown that innovative offerings will necessarily be high risk.

The real product of the news business remains the news program itself. Holders of broadcast licenses realize that news is their brand identity — the key differentiator they have against their competitors. With the market in flux from changes in demographics, lifestyles and technology options, news operations certainly expect emerging technologies that will reduce costs and improve the quality of their product. Even more crucially, they will also expect their vendors to help anticipate new market opportunities available from the upcoming technology and work cooperatively to develop them.

Fred Schultz is senior marketing manager, news solutions, for Harris. He has written for the SMPTE Journal, is the author of a series of white papers on server technology, has won a prime time Emmy Award, and holds a Ph.D. from Vanderbilt University.

Holders of broadcast licenses realize that news is ... the key differentiator they have against their competitors.
Leaders in TV Automation

Automation DELIVERING over $3 BILLION DOLLARS of ADVERTISING REVENUE* YEAR after YEAR after YEAR after

AirBoss

Florical's AirBoss Automation system is the most advanced and battle hardened auto-mation system in the TV industry. With over 20 years of development behind AirBoss and billions of dollars in station revenue delivered each year, AirBoss is the logical choice for stations and groups.

FLORICAL SYSTEMS
4581 NW 6th Street
Gainesville, Florida
32609-0708

PH: 352.372.8326
www.florical.com

*Based on published revenue figures of Florical customers in 2005.
Almost every area of broadcasting has been transformed by new technology in recent years, and none more so than automation. This progress is not only changing the way people think about automation, but also how they think about broadcasting and the delivery of electronic content.

Old vs. new

In the past, automation systems had a simple task: to implement a schedule by managing an array of supported devices, including character generators, mixers, routers, still stores and VTRs. The video elements of such a system were largely centered on containers.

A vital factor in achieving accuracy was the cassette label, and the precision with which it was created and its information transferred (usually manually) into the schedule. The automation system and its operators had little or no contact with actual content, and the operation was entirely linear in nature. Automation was the last in a line of largely separate production processes linked by hand-carried cassettes, after which the media was stored in a library or recycled.

Today’s automation process features significant differences. After a period of what might be called parallel progress, during which individual elements of the production chain (ingest, editing, storage and playout) were digitized without much reference to each other, there is now an accelerating trend to connect these elements.

The archive is now a multilayered repository where everything lives. Rather than being at the end of the chain, it is at the heart of the whole process. Material is ingested into it and is subsequently produced, post produced, scheduled, played out and then stored according to a set of rules, without ever leaving the central repository for a great length of time.

Defining tapeless

So are we now in the era of tapeless...
As surround sound becomes more widely used, especially in sports, viewers can enjoy all the excitement of being there.

But additional audio signal paths demand more console capacity – and with the increased complexity of today’s productions, that could be a problem.

Fortunately now there’s a solution. Our revolutionary Bluefin technology more than doubles the signal processing capacity of conventional systems – all on a single card, occupying just a fraction of the space. Even better – it cuts the cost per channel by half.

It’s the sort of innovation you’d expect from a company exclusively dedicated to live production and on-air broadcast audio mixing.

If you share our passion, find out more at calrec.com
production? In all too many examples, there seems to be a largely tapeless infrastructure, but an absence of what one might call truly tapeless thinking. One reason: People are still concentrating on the linear passage of individual items through a series of processes, rather than on the management of content, infrastructure and resources as a closely integrated continuum.

In its old-school, strictly broadcast interpretation, automation occupied a limited role in a connected infrastructure. It was little more than the front end of an increasingly significant media management operation.

Today's automation systems are already well ahead of such a narrow interpretation. They are the traffic cops for the digital environment and deliver creativity, flexibility, competitive advantage and enhanced revenue opportunities to their users.

The traffic cop aspect is provided in several ways. Sophisticated internal media management capabilities, which can be integrated with external asset management systems, handle the media lifecycle from both tape and file transfer ingest all the way through to playout and archiving.

In addition, advanced control, monitoring and reporting applications are now being closely tied in to the automation function. This takes the management of devices and infrastructures to new levels.

Flexibility is also important. Automation is sometimes seen as a "rich man's game," with only the largest broadcasters being able to afford the more sophisticated systems. This is no longer true. Today, broadcasters can purchase small, single-channel systems with little or no compromise in functionality, with the best of them being upwardly scalable.

New tools

In the more advanced automation systems on the market, a range of playout workstation tools provide creativity and competitive advantage. These tools are used to visualize and, if necessary, directly amend or enhance the media objects that are being managed through the production and delivery process.

Also, sophisticated tools are now available to build complex sequences of secondary and tertiary events. For example, these tools can create special commercial breaks or interstitials, hold them in reserve and then deploy them in reaction to emerging events, such as when an on-field event causes a time-out in a live sports broadcast. This can greatly enhance a channel's brand awareness.

Future systems

Broadcast automation systems are
Baron Services knows radar.
We've installed more radars over the last three years—in more broadcast markets—than all other vendors combined. And more stations than ever are maximizing Baron radars with a Complete Weather Solution like only we can provide.

From Guardian, the dual-pol megawatt powerhouse, to stellar designs like the new Pulsar, our versatile Doppler fleet delivers incredibly detailed radar imagery with market-changing swiftness.

But speed matters most during severe weather. Equipped with an advanced 6rpm pedestal, a Baron radar system can perform a full 360° scan every 10 seconds, providing new storm updates six times each minute.

Our commitment to your success doesn't stop once the installation is complete. Baron's staff of experienced engineers are always on-hand to help ensure the continued high performance of your system.

Don't wait; it's time to be proactive. The first Guardian radar has already been unveiled, and more are coming on-line soon.

Call us today and find out what Baron's radar team can build for you.
already evolving into sophisticated content and infrastructure control and management systems. But what else is in store for future systems?

Tapeless thinking is, as we have already noted, about the elimination of the container and all of the preconceived ideas about the container that have dominated the process for models, at the same time.

The parallels between broadcasting and the manufacturing and retail delivery of consumer products are becoming more noticeable. In such an environment, the overarching management system must address more than just the individual devices. To do a complete job, it must consider:

- the relationship between the media environment and the systems that drive the business, such as CRM, DRM and ERP; and
- the underlying business logic that drives the entire process.

This is not as daunting as it might seem. Many of the elements already exist. The biggest challenge is creating the business logic layer.

This is not just a manufacturer issue. Many broadcasters and content creators have trouble identifying what drives their businesses and translating that into a clear set of requirements for the manufacturing sector.

Fully implemented, a business logic layer will not only drive the workflow, it will also allow the broadcast infrastructure to become more self-aware. (See Figure 1.) It will do a better job of resolving issues according to a set of rules, without involving an operator unless a judgment call is required.

Another area of development is in

![Figure 1. Future extended automation systems should include a business logic layer, which can drive the workflow.](image-url)
Talk about intelligent design...

360 Systems is delivering a new class of Image Servers.

Take a close look and you'll find new features that enhance workflow speed and content quality. New Remote Workstation software lets you create work areas for ingest, trimming, playlisting or review—and place them anywhere you need them. New network transfer tools move content fast, to and from popular NLEs. And now, Image Servers import and export more forms of video and audio than ever before.

Whether you're running a network, mid-market station or cable access channel, the new Image Servers with Advanced Playlisting, accurate As-Run logs, and easy editing functions may be everything you'll need to get to air.

Today's intelligently-designed Image Servers deliver a new generation of capabilities, yet are incredibly affordable—which may explain why they've become today's best-selling broadcast servers.
the nature of the human-machine interface and the advent of a cockpit philosophy to combine all of the necessary status information and control surfaces in a more logical and ergonomic way than most playout facilities or master controls now offer. These developments are in the future, but don’t count on that future being very far away.

Adrian Scott is the chief marketing officer for Pro-Bel.

Questions for broadcasters

Are you absolutely sure what your business is, both now and in the foreseeable future?
This is about far more than just the number of channels. It really matters what kind of programming you wish to deliver, to what audience, through what channels, in what style and how the revenue is generated. This will drive all kinds of choices about such things as channel branding, reactivity, interactive content delivery and content-to-mobile. Your automation vendor needs to understand your business in order to put together the right system to meet your needs, and that means you have to understand it.

Do you have processes in place to achieve not just procurement but change and business transformation?
Installing the latest automation system inevitably raises complex personnel issues as people have to adapt to new workflows and processes. With any complex technology implementation, a broadcaster must analyze the current state, determine the optimum future state and then work with suppliers to figure out how to get from one to the other.

Is the automation system scalable? Can I start small and expand? Can I add new functions?
There is a popular myth that all automation systems fall into two categories: high-level, expensive and complex, catering only to the top end of the market; or small, cheap, channel-in-a-box alternatives that offer little, if any, expansion possibilities. Look for systems that provide no-compromise security and functionality, but that can be enhanced and upgraded smoothly as requirements evolve.

Is it capable of being fully integrated with a variety of other manufacturers’ products? Does it observe industry standards?
However large or small an automation system is, a modern system lives and dies by the ease with which it can be integrated with other systems and devices. We live in a world that is rapidly moving to file-based playout, but we are still, by and large, applying the same methodologies to file-based workflows as we did to tape. That has to change if the real cost and flexibility advantages of file-based systems are to be realized.

How can the automation system be monitored and controlled alongside other elements in the infrastructure?
The control and monitoring of all the devices in a network is vital to its operation. Broadcast is somewhat behind the IT and telecom worlds in this respect. Automation systems must be part of an umbrella environment in which all of the elements can be controlled and monitored, not just as individual components but together.
TV Broadcast and Satellite

Engineers: How to Avoid Going Off Air Unexpectedly

You can easily protect your on-air feed and be sure to be on-air at all times with an Avenue Protection Switch. Simply feed your primary on-air feed and your secondary, backup signal into the Avenue protection switch. If the primary should fail, the secondary signal will take over.

Superior circuitry detects black levels, TRS, audio presence, freeze and EDH for HD or SD signals. For ASI signals PIDs are evaluated. You set the parameters for when a switch occurs. You might decide 10 seconds of signal below 12 IRE or 14 seconds of no embedded audio should cause a switch to the secondary feed.

You can use the sophisticated detection system to your advantage by adjusting the switch's parameters for your facility's needs. For example, the black detection system allows you to set both the threshold and the percentage of non-black pixels. But that's not all, you can also determine the portion of the picture to be considered. This allows a corner bug to be either included or excluded in the detection process.

This is the smartest, most reliable protection switch on the market today. And relay bypass makes it even more reliable.

So consider spending $3000 to save $300,000. Using the Avenue Protection Switch can save you from unexpectedly going off air, which can cost thousands. This kind of insurance is well worth the investment.

Try it 10 days for free. Satisfaction guaranteed.

ENSEMBLE DESIGNS
Tel +1 530.478.1830 • www.ensembledesigns.com
PO Box 993 • Grass Valley, CA 95945 • USA

Signal Processing and Infrastructure – That's All We Do
Korg's mobile recorders
The MR-1 and MR-1000 offer a portable audio solution.

BY MALCOLM DOAK

ENG, EFP and Foley work demands high-quality mobile recording. In addition, the same recording may need to be provided in different formats for various clients or applications. Despite the digital revolution, many studio engineers still make a safety archive master with analog tape because of its superior sound quality and because it creates an archive they can reuse to create a new digital master as formats change. However, even in a controlled climate, analog tapes continue to decay over time, and each time one is played, the quality can be compromised.

Recording mobility
Korg has developed two new one-bit mobile recorders: the pocket-sized MR-1 and the studio-compatible MR-1000. Both units can record in various one-bit formats, including DSF, WSD and DSDIFF, as well as such traditional PCM formats as BWF with resolutions up to 24-bit/192kHz.

These recorders forgo removable media and record to an internal hard drive (20GB for the MR-1, 40GB for the MR-1000). A USB 2.0 connection allows recordings to be transferred to a computer and vice versa. The included AudioGate software converts files to any one-bit or PCM multi-bit format and allows file splitting or joining, gain adjustment and DC offset correction. It also creates smooth fade-ins and fade-outs.

Preserving fidelity
One-bit recording is not new. Sony and Philips have used the technology as part of the Super Audio CD (SACD) format since 1999. More to the point, one-bit conversion is at the heart of most digital formats. Even in today’s state-of-the-art 24-bit converters, the output of a one-bit A/D is subjected to real-time sigma-delta modulation, decimation and filtering in order to shape the data into multibit words that can be recorded and saved in the chosen PCM format. To play back the PCM recording, further interpolation filters are needed to recreate the analog audio signal. All of this processing and interpolation can affect the audio quality of the recording.

One-bit recording bypasses much of this processing. But there is a catch: The one-bit data stream must be recorded at a high sample rate in order to preserve the highest fidelity and dynamic range. Both of the portable audio systems record at the SACD standard of 2.8MHz. The MR-1000 doubles this sampling rate to 5.6MHz.

One-bit recording is not new. More to the point, conversion is at the heart of most digital formats.

At such high sampling frequencies, both recorders can capture anything from a DC voltage up to 100kHz and can maintain a dynamic range of up to 120dB. This super-high sampling rate allows the noise floor to be frequency shifted into the audio range well above
You have the best equipment
Protect it with the best enclosures...
Emcor Enclosures!

ESQ Enclosure
for the broadcast market

- Robust, welded construction
- Configure - to - Order
- Ships in 5 or 10 business days

With the ESQ series you get Emcor's most cost effective enclosure system without sacrificing quality or style. ESQ enclosures provide a clean, stylish appearance, substantial load capacity, and the same proven quality design and construction as all Emcor products.

You can have your enclosure configured to meet your exact needs. Our exclusive Free 30 day Test Drive program guarantees your satisfaction so you have nothing to lose! Call us today...your equipment deserves it.

Ask about our
FREE Test Drive program*
call today 507-287-3535
or visit us on the web www.emcorenclosures.com/broadcast

Emcor Enclosures offer the absolute best combination of value and benefits. Unsurpassed quality plus build to order configuration assures a perfect match for your project.

Best Value

507-287-3517 sales@emcorenclosures.com www.emcorenclosures.com

* Offer pertains to Emcor vertical enclosures only, and is subject to change without notice.
human hearing. Another benefit is the elimination of any steep Nyquist filtering that may have affected the audio or the encoding process.

Under the same conditions, one-bit recording can compete with and even exceed current multibit formats in terms of frequency response and dynamic range. However, one of the biggest advantages of one-bit recording is in mastering and archiving. Analog tape can accurately capture frequencies up to 50kHz. One-bit can double this. And unlike analog masters, one-bit masters can be safely stored without degradation.

Analog tape can accurately capture frequencies up to 50kHz. One-bit can double this. And ... one-bit masters can be safely stored without degradation.

Audio master, a 24-bit/192kHz track to import into a ProTools session, or a master in new formats when are developed and adopted.

One chance

When you have only one chance to capture a great performance, Foley effect or interview, the MR Series will reliably yield the high-quality audio with the versatility of both one-bit and multibit PCM formats in a single unit. The AudioGate software can also translate the one-bit recordings to match your computer's audio hardware, so you can listen in real time.

Both recorders include an AC adapter and can run on battery power. (The MR-1 uses a rechargeable lithium battery. The MR-1000 uses eight AA batteries.) Both include a soft carry case for protection in the field.

Malcolm Doak is a product manager at Korg USA.
Broadcast the best results.

Introducing the all new Scan Do® HD.

DVI Computer Video to HD/SD-SDI Scan Converter with Genlock Input and Fiber Optic Output.

When it comes to HD Scan Conversion, there is only one brand to turn to. The brand that continues to set the benchmark that all others are measured.

The award-winning Scan Do®, of course!

The all new Scan Do® HD converts your high-resolution DVI computer sources into a SMPTE standard HD or SD-SDI signal for broadcasting on air or integrating into a professional video production system. Best of all, Scan Do® HD does not require that you install any special software or hardware on your computer. Simply plug it in, set your resolution and your broadcasting the best results... in HD or SD!

What else would you expect from a Scan Do?

Tune in to Scan Do® HD today at scandohd.tv or call 631-273-0404 for more information.

Features at a glance:

Converts DVI-D (up to 1920x1200) to HD/SD SDI. Advanced scaling algorithms and 10 bit processing provide exceptionally clean and accurate broadcast quality output.

Supports HD SDI resolutions up to 1080i per SMPTE 292 and SD SDI resolutions per SMPTE 259.

Genlock with full phasing control locks HD/SD SDI output to tri-level sync or black burst.

Ethernet port enables control via your facilities LAN or via the Internet.

Includes fiber optic output (SMPTE 292 and 297) and two coaxial outputs (SMPTE 292 and 259).

Complete set of Image processing controls. Built-in variable flicker reduction.

Zoom & Shrink horizontally and vertically while maintaining the aspect ratio or set each independently!

Precisely position your image horizontally and vertically.

Quickly store and recall your favorite configurations through the remote control ports!

Learn more at scandohd.tv
Is technology moving faster than your staff’s skills? Do you have engineers and operators that aren’t up-to-date on your latest equipment and systems? Have the demands of HD and handling multi-formats created workflow problems or caused on-air mistakes? These failures can cost you money.

Broadcast Engineering is excited to offer you an introductory series of training workshops targeted specifically to broadcast operations and engineering staffs.

These courses are designed to:

- introduce new technology, solutions and operations to younger staff members,
- provide a structured and thorough review for your more experienced staff.

All this is contained in a self-paced, complete program accessible from any computer.

Log on to www.broadcastengineering.com/webcast/best to learn more about the training classes available, or to enroll.

Leave the teaching to the experts, the consultants at Broadcast Engineering.
Digital Rapids’ encoding
Format-flexible tools enable online local news.

BY TJ KUDALIS

Internet Broadcasting publishes local news online for 79 TV stations of several major U.S. broadcasters, including Cox Television, Hearst-Argyle, Meredith Broadcasting, NBC, Post-Newsweek, Scripps Howard and The McGraw Hill Companies. Effectively bringing local news content to today’s expanding range of new distribution platforms represents branding and commercial opportunities for TV stations. The challenge is integrating these new technologies with existing infrastructures.

We selected Digital Rapids’ DRC-Stream hardware and StreamPro software to take our company and its partner TV stations to the next level of quality and reliability in both VOD and live streaming video. The hardware and software are flexible enough to work with the wide range of technology and infrastructure available at all of our partners’ stations. Speed, efficiency and ease of use were also extremely important, as the systems must be usable by non-technical editorial staff in a high-pressure, breaking news environment.

Integration and workflow
Internet Broadcasting has deployed approximately 40 systems with DRC-1500 cards. The cards’ inputs include:
- SDI and IEEE-1394;
- analog composite, component and Y/C video;
- balanced and unbalanced analog audio; and
- AES/EBU digital audio.

One of the biggest challenges was dealing with the radically different technologies and resources available at all the TV stations we support. The DRC-Stream workstations allow us to integrate into virtually every environment. Some of the workstations have a single SDI feed with embedded audio; others are attached to an analog router feed (composite video and balanced audio), a DVCAM deck (via the DV input), a PVR (component video and unbalanced audio) and a VCR (S-Video and unbalanced audio) all at once. We have employed virtually every possible combination of inputs across our network to meet the requirements at each station.

On the software side, we have integrated the systems into NLE environments by dropping files directly from editing booths over the network onto the workstations, where the Stream-Pro software transcodes them into multiple formats for a variety of target devices. The software’s automated FTP features allow us to name and transport the resulting encoded files for hands-free importation into our content management system. Installation, configuration and integration have been seamless.

Reaping the benefits
We chose the cards and software because of the quality of the video, the reliability of the card, the wide and ongoing format support, and the flexibility of both the hardware and the software. The onboard processing makes the cards stand out in terms of quality. The hardware-based preprocessing and deinterlacing are phenomenal, and the ability to capture several different streams simultaneously with almost no CPU overhead is incredibly useful.

The systems’ extensible codec flexibility allows us to expand those workstations as new video format requirements (such as podcasting and Flash video) arise, letting the company leverage its existing investments as the field progresses. We can make use of a broad range of input and output formats, including AVI, Flash, MPEG-1, MPEG-2 and MPEG-4, QuickTime and Windows Media 9 (Microsoft’s implementation of SMPTE VC-1). Most recently, Internet Broadcasting added the On2 VP6 (Flash 8) plug-in to its format lineup.

Operationally, we have benefited both in ease of use and turnaround time. Largely non-technical editorial staff perform video capture and transcoding, and the software makes the often-tricky transitions between inputs, capturing and transcoding easy. The simplicity and speed of the multiple-format transcoding process is essential for the workflow; the company operates in a breaking news environment where speed and ease of use are paramount.
The DRC-Stream cards and StreamPro software have enabled Internet Broadcasting to expand the reach of its partner TV stations into new distribution avenues, including the Web and podcasts. In addition, they have provided the company with the ability to create high-quality streaming media quickly and easily with existing editorial staff. The parallel transcoding saves critical time during breaking news, and the quality of the video matches the high expectations of our broadcasting partners.

TJ Kudalis is the senior multimedia engineer for Internet Broadcasting.

It's 9:00 PM. Do you know where your physical assets are?

Zeus does.

Zeus™, the web-based Centralized Technology Management System (CTMS) provides a single corporate-wide solution to manage assets, inventory, help desk, and much more. With Zeus, you can track and manage equipment, determine equipment lifespan, analyze costs, and manage equipment maintenance all while keeping your legacy data.

Zeus creates efficiencies. Zeus saves your company lots of money.

Get Zeus and you'll sleep better at night.

For a free online demo, call Obor Digital at 407-352-6501 or visit www.obordigital.com

Visit us at NRB in Orlando—Booth #1067
When the world of electronic media embarks on a quest for the latest tools, techniques, standards and knowledge, there's only one true destination: NAB2007. Whether you're making the transition to HD, preparing to broadcast the 2008 Olympic Games, looking to invest in hot technologies like IPTV and mobile video, seeking tools to help create and refine content, exploring new revenue streams, or simply trying to remain ahead of your competition, the most direct route to success can be found at NAB2007.

Uniting the creative process with the converging technologies that are delivering electronic media's future, NAB2007 is undeniably the world's marketplace for new product introduction and the single greatest gathering of the industry—more than twice the size of any other event. If you are an audio or video production professional, broadcaster, content owner or distribution channel provider, NAB2007 is your passport to opportunity. Get ready to form strategic partnerships, take advantage of advanced training and education and discover the innovations driving the future of entertainment, information and enterprise communications.
Panasonic’s plasmas

The 103in HD plasma displays and “Football Night in America” form a winning team.

BY RANDY RADDATZ

The special chemistry between the NFL and high-definition television has been cited since the origins of the video format. NBC Universal capitalized on that synergy with the integration of two 103in Panasonic TH-103PF9UK professional plasma displays into the set of the network’s “Football Night in America” studio show. NBC Universal was the first commercial customer for the 103in display. As the largest plasma television available, it was the dream display option for “Football Night,” which premiered last fall and served as the lead-in to “NBC Sunday Night Football.”

The stakes couldn’t have been higher for “Football Night.” The country’s weekly marquee football game was shifting from Monday night to Sunday night, the most-watched night on TV, and to a new network — ours. From the top down, there was concern that this not be just another pre-game briefing, but rather the essential destination show for football fans, providing the first complete look at all of the NFL highlights and stories of the day.

The roster

Following the completion of our six-year NFL deal (including Super Bowls in 2009 and 2012), we assembled a broadcast team consisting of Al Michaels and John Madden in the game booth; Bob Costas and Cris Collinsworth as “Football Night” hosts; and analysts Sterling Sharpe and Jerome Bettis, along with reporter Peter King. Both “Football Night in America” and “NBC Sunday Night Football” would be broadcast in high definition, and the visuals had to be stunning.

Last April, “Football Night’s” director, Bucky Gunts, and production designer, Jeremy Conway, saw the 103in plasma firsthand at NAB2006. It was clear that this was a viable commercial display product that offered a picture quality and size to handle all of “Football Night’s” story lines and segments. The stumbling block, however, was availability. Panasonic was talking about fourth-quarter deliveries, which would be too late for our September kickoff.

It was at this juncture that Panasonic North America’s chairman, Yoshi Yamada, became intimately involved in our discussions. He secured a commitment to meet our install and production schedules. That passion extended down to a great team that Panasonic assembled to support our project timeline. The result was that when “Football Night in America” debuted on Sept. 10, 2006, two 103in plasma displays were located on each side of the on-air talent desk on the newly constructed set at 30 Rockefeller Plaza.

Not incidentally, the set also features five Panasonic 50in TH-50PH9UK HD plasma displays for bumper shots, graphics and game look-ins. Two sit atop each 103in display, and one hangs high in the center from the ceiling.

Possession

Perhaps the most daunting aspect of being the proud owner of 103in 1080p displays is the actual installation process. The imposing plasmas weigh 475lbs each, so exceptional forethought and care were given to delivery. In Japan, Panasonic handled packaging and shipping. Once received in

NBC's “Football Night in America” studio show employs two Panasonic TH-103PF9UK HD plasma displays, which provide a key visual element to the game action and story line breakdowns brought to viewers each week.

the United States, the displays were tested for signal and picture quality by company engineers in Secaucus, NJ. Panasonic provided specs and handling suggestions to our freight company and set construction firm. Brackets were fabricated to support the weight of the plasmas. And the walls
where the displays are hung were specially reinforced. We brought in the plasmas on rollers, removed packaging in our basement, and then used a special forklift to situate the 103in displays in our freight elevator. The final portions of the studio, such as the glass windows, were built around the plasmas after their installation. All this took place a full month before the show’s debut, allowing ample time for final rehearsals, camera placements and adjusting the look.

Game on

During football season coverage, the plasmas added a stunning visual element to the game action and storyline breakdowns that we brought to our viewers each week. Beyond the inevitable “wow” factor, the 103in plasmas, which are equivalent in size to four 50in Panasonic plasma displays, are easy to use. They also were easily integrated with NBC’s video production equipment with optional TY-FB9HD HD SDI terminal boards.

The plasmas also proved to be highly flexible, as we used the displays quite diversely. For instance, Costas did live tie-ins to Michaels and Madden on the 103in plasma. In addition, Costas and Collinsworth analyzed game plays using the 103in in a telestrator application. And finally, we played out previously recorded profiles. Whether the application was graphics, telestration, live commentary or playout, the displays excelled and were an integral part of the studio show’s success.

Studio 8G, where “Football Night” is produced, is prime NBC real estate. Therefore, the studio will be used for future broadcasts in the football off-season. While specifics regarding upcoming sports or news coverage aren’t immediately available, the studio has been used for such big events as 2006 election night coverage last November. This coverage originated from studio 8G with Brian Williams, Tim Russert and Campbell Brown commenting on breaking news and polling data displayed on the 103in plasmas.

Winning season

We partnered successfully with Panasonic this season. The 103in plasmas afforded the audience of NBC Sunday night football broadcasts a big window onto the NFL’s fast-paced and dramatic game action.
Quality-control monitors
Can anything replace the old, reliable CRT? Yes!

BY JOHN LUFT

W e sometimes forget that the television medium is inherently analog. That is true for both picture and sound. Broadcasters are deeply caught up in the technology that has transitioned to digital over the last two decades, with transmission being the most recent advance.

High-power RF transmission is, however, an analog medium, with analog representations of digits modulated onto an essentially analog medium and transmitted so they can be decoded at the point of reception. Picture and sound also start and end as analog signals (light and sound pressure waves), with today's digital technology most often doing the light representing the original scene, with artistic intent included for rendering the desired images.

Factoring in color
For a long time, display technology consisted of electron beams scanning cathode ray picture tubes. During the development of the first high-quality monochrome television, then color and most recently HDTV, the picture tube remained remarkably unchanged in physics and manufacturing, other than the introduction of color picture tubes after World War II.

Color put many new constraints on display designs. In the early days of color production, professional Phosphor Solid-state emitter

processing and carrying the content.

Cameras must have lenses to capture the analog phenomenon of light reflected off of scenes. After television is processed in acquisition, emission and transmission, broadcasters provide consumers with a signal that they can turn back into displays seldom matched, and any comparison between consumer and professional CRTs made it clear there was much room for improvement. In time, improvements were made, and today it is practical to render a scene and have it show up at home remarkably close to the intent of the producer. This is facilitated by closely matched standards worldwide, principally promulgated by SMPTE and the EBU. Broadcasters are fortunate to have SMPTE-C Phosphors and great methods for calibrating all aspects of a display. Modern digital measurement technology allows contrast, brightness and white set point to be calibrated accurately, and all parameters are stable in modern CRT displays.

The problem with CRTs

Broadcasters face a growing dilemma. CRTs are built using rare earth elements in the phosphors, which are deemed toxic. Millions of CRTs from computer displays, consumer televisions and professional displays end up in landfills every year. As a result, there is a lot of regulatory pressure to eliminate CRTs from the marketplace. In 2003, California passed a law imposing a fee on the purchase of all CRTs to pay for disposal. Predictably, much of the recovered material that is restricted in U.S. landfills ends up overseas. But simply moving the problem to a location with less stringent legal constraints doesn't eliminate pollution.

Another reason why manufacturers are keen on eliminating CRTs is because of the movement to larger displays with wide aspect ratio screens. CRTs are too heavy to be practical in large sizes useful for HDTV. This presents no insurmountable technical problem, except for the fact that most other new display technologies do not produce the high quality and consistent results needed for professional monitoring applications.

This is because of several factors affecting the physics of the display in ways that were overcome with emissive CRT technology. For example, LCDs are transmissive devices and...
must contain a backlight to be useful for monitoring pictures. They would be a good solution provided the backlight provides a smooth response across a broad slice of the visual spectrum, and the color filters in the LCD closely match the color primaries standardized for television in ITU-R.BT709.

LCDs also do not have sufficiently deep blacks because they must cut off all light from the backlight source to achieve black. Lastly, LCDs take time to react to new data applied, creating significant lag in the response time to new content. This appears as smear on fast motion.

There are ways to minimize all of these effects. For example, LEDs can be used for the backlight and shut off when black is needed. Modern LCD materials can also largely eliminate the lag. However, for professional use, more engineering must be done to overcome resistance to implementation of LCD in QC applications.

Alternative display technologies

Plasma displays are a widely available type of new emissive display technology and can be extremely bright. They generate light in essentially the same physical process of stimulation as a phosphor with high-speed electrons used by CRTs. This allows them to be built with excellent color fidelity. Plasma displays larger than 50in can be more cost-effective than LCDs. This is not much of an advantage in a control room environment where more modest monitors are often preferred for camera matching and QC applications. The size of control rooms often precludes using single, large displays for each source, though monitoring processors can deliver multiple images to a single display in geometry more efficient than single monitors permit.

Other new emerging display technologies offer promise as well. Front projection using Texas Instruments’ Digital Micromirror Device (DMD), also called Digital Light Processing (DLP), reflective technology works well when the light levels in the room are constrained. Because the light source can be full spectrum, colorimetry can be excellent, and an electron beam produces the light, so the possibility of maintaining the colorimetry, dynamic range and temporal response capabilities of a CRT appears good. Power consumption should be low, making professional use possible.

In any event, until a display offers the characteristics of a CRT without significant drawbacks, professional applications will be challenged when trying to adopt technologies developed for consumer applications.

John Luff is a broadcast technology consultant.

Send questions and comments to: john_luff@prismb2b.com
NEW PRODUCTS & REVIEWS

GLOBALSAN X-4
Created for multiroom audio production studios that use Digidesign’s ProTools digital audio workstations; includes 2TB of SATA storage in 1RU; contains a single RAID controller and two client licenses of SAN software; is based on the iSCSI protocol.
314-481-6965; www.studionetworksolutions.com

STAGETEC
Digital Compact Mixer
Compact digital mixing console; features a modular design, offering eight to 24 faders; presents a fixed layout comprising 32 input channels, eight groups, eight sums, eight aux paths and eight mix-minus sums; can be deployed immediately without setting up a configuration; can easily route to the mix-minus buses directly from the channel strip.
+49 9545 4400; www.stagetec.com

POWERWARE BLADEUPS
Power system expands power protection from 12kW to 60kW in a single 19in rack; can be deployed in several configurations, from a distributed architecture (one in every rack) to end of rack (up to six units in a rack) to a central system (not on the IT floor but in the electrical closet); grows with expanding IT applications using scalable architecture.
216-523-5000
www.powerware.com/bladeups

HSI6000
A headset interface for use with the DX series wireless intercom systems; allows users to connect a standard 2.5mm cordless or cell phone headset to an HME BP200 beltpac; this adapter makes it more cost-effective for users of the HME DX series systems to replace headsets or add new users.
800-848-4468; www.hme.com

XRC-S2
Quantegy
Desktop RAID controller features a FireWire workstation connection and SATA external drive connections; allows seamless connection of any two SATA external drives in a RAID 1 (mirrored) configuration; offers instant data and drive redundancy, providing an instant safety copy; can also perform disk-to-disk copies with no computer; features a small footprint and simple cable connections, an easy-to-use front-panel LCD readout and pushbutton controls.
800-752-0732; www.quantegy.com

INSCRIBER G-CHANNEL
HARRIS
Allows users to create, manage and deliver 24-hour automated information channels; combines high-quality graphics, animations, audio, video and real-time external data feeds with easy drag-and-drop functionality; is SD/HD switchable.
513-459-3400
www.broadcast.harris.com

DVE5000
Advent Communications
Digital video exciter offers MPEG-2 4:2:2 encoding for SD and HD; unit is DSNG2 ready and upgradable to MPEG-4; includes an L-band modulator and an HPA controller; supports either four or eight analog or embedded SDI audio channels; features options for both DVB-S2 and DVB-T.
www.adventcomms.com

X-RACK
Solid State Logic
An analog mix bus system; includes two new modules: the Four Channel Input, a four mono line input module, and the Master Bus, a summing, metering and control room module; the new modules allow users to build a multi-input, dual stereo bus mini SSL with Total Recall.
212-315-1111
www.solid-state-logic.com

VCC-8000 SERIES
Avitech
The multiviewer is a multiformat data module for critical video applications; features an integrated on-screen display with Asian character support, tally functionality, alarm reporting and a variety of text label options; offers image processing and tools for flexible monitoring environments, including in TV and production studios as well as OB van applications; can be integrated with major providers of tally management systems, production switchers and routing switchers.
425-885-3863
www.avitechvideo.com

C2-2000 SERIES
TV One
Consists of 10 units, including four downconverters, four video switcher/scalers and two universal switcher/scalers; features DVI and analog inputs and outputs; five are equipped with SDI; all units have an LCD on the front for setup; offers automatic incoming resolution detection and support of multiple TV standards; can handle a maximum input PC resolution of 2048 x 2048 and all HD TV resolutions up to 1080p.
859-282-7303; www.tvone.com

Viper
Sierra Video Systems
Ultra-wideband video routing switcher features 500MHz bandwidth and hot-swappable video boards, control processors and power supply; offers configurations up to 64 x 64 in eight input and/or output increments, housed in a 4RU frame per video channel; includes a passive backplane with no external components.
530-478-1000; www.sierravideo.com

FS-8000
Fujitsu Components America
A Cat 5, multiuser KVM switch; part of the company’s SERVIS system product line; reduces equipment costs and provides space-efficient, centralized server management by allowing multiple users independent or simultaneous shared access to any attached computer’s keyboard, video and mouse, regardless of platform; consists of a KVM Main Unit, a User Console Unit and a Server Unit.
800-380-0059; http://us.fujitsu.com/components
H4 SuperMINI Holophone

Camera-mountable 5.1-channel surround microphone features an integrated multi-channel preamplifier, monitor and encoder; offers six microphone elements with a bandwidth of 20Hz to 20KHz, a matrix-encoded stereo analog output and six line-level analog outputs; includes an audio zoom button, virtual surround headphone output with gain control, auxiliary center channel microphone input and LED monitor.

416-362-7790; www.holophone.com

RFX-CMT-HD RF Central

High-definition camera mount transmitter offers low delay and extremely low power consumption in a lightweight unit; features high-quality linear RF amplification technologies; accommodates various frequency bands, including 2GHz; ideal for sporting events and live news coverage.

717-249-4900 ext 288
www.rfcentral.com

H5100 NTT Electronics

The all-in-one HDTV encoder/decoder comes equipped with built-in audio processing functionality, including up to 16 PCM channels of audio input and Dolby E or Dolby Digital processing; a BISS-1/E scrambling function protects data on satellite links from unauthorized viewing; adopts HTTP menus for browser-based operations; SNMP functions are designed to make the unit easy to maintain.

415-318-4108; www.nel-world.com

Axion Analog Way

Controller for multiroom, large-screen events; controls up to six single or multiple screen configurations with soft-edge blending; includes 7in TFT color touch-panel screen; features USE connection, customizable and user-configurable presets and joystick with direct effects access; complements existing Analog Way systems.

212-269-1902; www.analogway.com

SDI Fidelity Bluefish444

Video card for uncompressed post-production workflow; is designed to allow video professionals to migrate from low-cost consumer analog equipment to professional SDI and digital audio devices by changing the connections on the video card; offers an internal keyer for logo insertion, embedded audio and six channels of AES/EBU XLR digital audio I/O connections with built-in sample rate converters for 5.1 surround sound monitoring.

866-314-7785
www.bluefish444.com

Analog Way

Controller for multiroom, large-screen events; controls up to six single or multiple screen configurations with soft-edge blending; includes 7in TFT color touch-panel screen; features USE connection, customizable and user-configurable presets and joystick with direct effects access; complements existing Analog Way systems.

212-269-1902; www.analogway.com

Room treatment system for professional or home application dampens first reflections and low-frequency anomalies; Pro system features four 16in x 48in x 2in thick back-beveled panels for corner trapping and eight 16in x 48in x 1in rectangular back-beveled panels, totaling 64sq ft; HT system features four 16in x 48in x 2in thick back-beveled panels and eight 16in x 48in x 1in trapezoidal square-edge panels, totaling 54sq ft.

800-959-3343
www.auralexelite.com

One touch provides 12-channel video and 24-channel audio confidence monitoring and switching.

The Touch-It Plus combines a variety of features in a 3RU package, enabling confidence monitoring and switching for up to 12 channels of composite video and 24 channels of analog audio, while providing the ultimate multi-channel or action shot monitoring solution for space critical environments.

800-959-3343
www.auralexelite.com
NEW PRODUCTS
NEW PRODUCTS & REVIEWS

Time Tailor
Prime Image
Added functionality for video time compression system preserves closed captioning of HD video content; features a time-reduction process that occurs in real time without prerecording or preprocessing and doesn’t compromise the integrity of the program master copy.

408-867-6519; www.primeimageinc.com

4K Resolution Image Mastering/Playback System
Doremi Labs
System provides 4096 x 2160 lines of resolution; requires only one Doremi server and an image processor for playback; provides four DVI or four dual-link HD-SDI video streams for connection to the 4K projector and uses 4RU of space; works with JPEG2000-compliant 4K image files.

818-562-1101; www.doremilabs.com

2K Plus v4.1.2
da Vinci
Newest version of color enhancement system includes support for digital projection standards, specifically resolutions of 2048 x 1080 10-bit RGB at 23.98sF and 24sF; supports advanced features of Grass Valley Spirit 2K/4K telecine, including six-sector secondary color correction, auto focus, automatic calibration and focus aid, which eases manual adjustment.

954-688-5600; www.davsyst.com

ClearVue Teranex
Monitoring system includes ClearVue processor matched to a 16:10 WUXGA 24in TFT LCD panel; features HQV technology for full-resolution display of 480i, 1080i and SD/HD analog and digital video I/O; offers interlaced and progressive SD/HD-SDI input and DVI/HD11/RBG 1080p60/50 output; supports SP/DIF (AES) and embedded audio with perfect lip sync, available on HDMI and SP/DIF (AES) outputs.

407-856-6000; www.teranex.com

Protus Ph.C Snell & Wilcox
Video image conditioning system allows mobile TV service providers to increase picture quality and/or reduce bandwidth requirements; works with almost any video compression encoder and all compression formats; features image conditioning tools, including noise reduction and motion compensated deinterlacing and scaling.

818-556-2616
www.snellwilcox.com

Log on to subscribe to any of our award-winning e-newsletters:

- Beyond the Headlines
- RF Update
- News Technology Update
- Sports Technology Update
- Automation Technology Update
- Digital Signage Update
- Audio Technology Update
- HD Technology Update
- ENG Technology Update
- Strategic Content Management
- Transition to Digital
- IPTV Update
- Systems Integration
- Show Updates

Get the updates you want delivered right to your inbox.
Now that’s service.

broadcastengineering.com

A Prism Business Media Publication

Broadcast Engineering
THE JOURNAL OF DIGITAL TELEVISION
Broadcast Engineering presents:
Track 5 at Spring VON!
Building IPTV Facilities

Broadcast Engineering will explore & present the technologies critical to building an effective IPTV Video Facility including:
- IPTV content storage platforms
- Routing and switching video
- Encoding IPTV video and data
- Building IPTV control rooms
- Troubleshooting and monitoring an IPTV network
- Handling HD

Sponsors:
- WE DELIVER:
 - Vision from IP Communications and IPTV's top thought leaders
 - Video & IPTV Products & Solutions
 - IPTV Content Storage Platforms
 - Video Routing and Switching
 - Encoders
 - IPTV Control Rooms
 - IPTV Test solutions
 - HD video transmission
 - Access to a Community of hundreds of service providers, IPTV equipment manufacturers and technologists

Interested in exhibiting?
Contact Chris Erb at 631.961.8987 or christopher.erb@pulvermedia.com
Brilliance Low Cap Speaker Cable

Belden

OFHC speaker cable uses high-conductivity, oxygen-free copper conductors, as well as low-capacitance polyolefin dielectric; features brightly colored, satin-finished PVC jackets with ascending/descending sequential markings at 2ft intervals and print legends that incorporate location information; is available with 10, 12, 14 or 16 AWG bare copper conductors.

800-235-3361; www.beldencom.com

F23 CineAlta

Sony

Digital camera system supports 4:4:4 1920 x 1080 RGB imaging, as well as 1080/23.98P, 24P, 25P, 29.97P, 50P, 59.94P, 50i and 59.94i formats; uses three 2.2Mb 2/3in progressive CCD imagers and a 14-bit A/D converter; captures and records variable speed images from 1P to 60P, allowing for quick- or slow-motion functionality.

800-686-7669
www.sony.com/professional

Task HDMI

TV One

Three new switchers include the two-input 1T-HDMI-821, the four-input 1T-HDMI-841 and the eight-input 1T-HDMI-881 certified compliant by the HDMI Authorized Test Center, as well as HDCP and RoHS compliant; support HDTV resolutions of 480p, 720p, 1080i and 1080p, and SD 480i; includes IR remote-control unit, but can also be controlled via front-panel push buttons, IR or RS-232 interface.

859-282-7303; www.tvone.com

Buddy Dolly

Panther

Basic dolly displays the base of the Evo-Plus — can crank and steer, but does not come with the electromechanical, computerized column; adapts to be used with the turnstile attachment or any riser or outrigger via the Euro port.

818-841-3110; www.panther.tv
Capture & Analyze MPEG-2 TS From Your Digital Cable Network

ENENSYS DIVICATCH™ RF-C
USB 2.0 Self Powered Pocket-Size Analyzer and Recorder

- Measures RF reception quality
- Compatible with QAM Annexes A, B, and C
- Forwards captured TS over IP – UDP, Unicast or Multicast
- Capture & view cable TV streams on your laptop

For more information on Enensys products, please call 858-613-1818 or visit www.dveo.com.

TALLY MAPPER™
- Tally Routing & Mapping
- One Button Operation
- Store Maps Internally
- Edit From a PC/Laptop

A Compact Solution, Ideal for Mobile Units and Multiple Production Setups.

SALE PRICE
$149 plus DXH
17-Outlet Power Strip w/LCD Display
SHOWS: Volts, Amps, Watt, VA, Frequency, Power Factor & KWH

A-Neutronics Inc.
purchase directly
www.a-neutronics.com or
toll-free:1-877-263-8876

*20 Amp Model Also Available!

Register for your chance to WIN a FREE Power Strip!
www.a-neutronics.com + Promotion Code BE

For Sale

AcousticsFirst
Toll-Free Number: 888-765-2900
Full product line for sound control and noise elimination.
Web: http://www.acousticsfirst.com

Help Wanted

DIRECTOR OF SALES – NORTH AMERICA
T-VIPS AS, a technology leader in realtime low latency IP contribution and distribution links for the TV industry, has an immediate opening for a dynamic and accomplished sales professional for its new US subsidiary T-VIPS America, based in the greater NYC area. The position requires a minimum of 5 years of recent successful selling of professional video-related products to the US "V" industry, preferably both direct to end-users and through sales partners. Responsibilities include all sales activities in North America, reporting to European-based sales executive. Exceptional growth opportunity with attractive compensation package. Please submit your resume in full confidence by email attachment sent to tore@nordahl.tv for prompt consideration, or call Tore Nordahl at 818-366-0448 for additional information. Get company details at www.T-VIPS.com. An equal opportunity employer. No agencies please.
Help Wanted

CHIEF ENGINEER
UNIVERSITY OF NEBRASKA-LINCOLN

Responsible for HuskerVision's technical infrastructure and system operation in the Athletic department. Duties include design, installation, maintenance, and sports production. Responsible for the technical quality of television shows, highlight packages, network feeds, internet programming, and big screen events produced by HuskerVision. The job duties include travel, bending, lifting, carrying up to 50 pounds, and climbing ladders, stools, and other structures. There is some outdoor work. Bachelor's degree in Broadcast related field and 4 years work experience in broadcasting required; equivalency considered. Must be skilled with CAD systems. Strong broadcast equipment maintenance background essential. IT and communication/training skills necessary. FCC or SBE certification, sports production experience, internet streaming knowledge, and experience in budgeting and project management preferred. Criminal history background check will be conducted. Excellent benefits including staff/independent scholarship program. Review of resumes will begin Jan. 19. Apply at http://employment.unl.edu. UNL is committed to AA/EEO and ADA504. If you require an accommodation, please call (402) 472-4645.

Help Wanted

MAINTENANCE ENGINEER

QUALIFICATIONS: Immediate opening for Maintenance Engineer at WPRI/WNAC FOX affiliate stations in North East. Applicants should have a minimum of 5 years experience in broadcast television maintenance. The candidate must be well trained and experienced with computers and computer networks. Knowledgeable in Broadcast systems: ATSC and NTSC. Transmitter experience preferred. Must be able to troubleshoot to the component level and have a basic understanding of the FCC rules. Excellent communication and people skills necessary.

JOB DESCRIPTION: Responsible for the repair and maintenance of all broadcast equipment for the station including automation equipment, video servers, digital switchers, network and fiber paths, cameras, and satellite equipment, digital and analog. Send resume to: WPRI/WNAC TV Engineering Dept., 25 Catamore Blvd., East Providence, R.I. 02914 or Email to: resume@wpri.com.

We are an Equal Opportunity Employer. No Phone Calls Please.

Help Wanted

PROJECT ENGINEER

Ascent Media, a leader in the Broadcast industry, is seeking Broadcast Engineers of various levels to be based out of Northvale NJ, Washington DC, or San Jose, CA. As part of a team, this role will manage medium and large-scale systems contracts, performing the professional design and management tasks necessary to take a project from inception to completion and client acceptance. Qualified candidates will have a minimum of 3 years experience in the design and management of state-of-the-art television broadcast facilities, with a minimum of 3 years experience in broadcast automation and IT systems. Demonstrated technical skills and strong understanding of CAD, Computer Aided repair skills is a must. Position requires IT and communication/training skills as necessary. FCC or SBE certification, digital switchers, network and fiber paths, cameras, and satellite equipment, digital and analog.

Send resume@crosscreektv.com. Please send resume and salary history to resumes@crosscreektv.com.

Help Wanted

VIDEO SPECIALIST

AVW-TELAV Audio Visual Solutions is a Freeman Company that offers audio visual and presentation technology services and solutions to help you create successful meetings, corporate events, trade shows and exhibitions. In addition, we provide system design and integration for permanent audio visual application. We are looking for a qualified VIDEO SPECIALIST for our Las Vegas and Chicago office locations. If you are interested, please visit our website at www.freemanco.com for a full description and apply online.

Help Wanted

MAINTENANCE ENGINEER

The Univision Network has an immediate opening for a Maintenance Engineer for its Network Operations Center in Miami, Florida. Candidates must have a minimum of three years experience in the repair and maintenance, down to the component level, of all types of TV broadcast equipment. Candidates should also have a Bachelor of Science degree with a major in Electrical Engineering or equivalent. Additionally, they must be well trained in computer systems, networks, and associated applications and operating systems. SBE certification a plus. Qualified candidates may send their resumes and credentials to Jose Boveda, VP of Engineering at 5405 NW 41st Street Miami, Florida 33178 or e-mail all documents to jboveda@univision.net. No phone calls will be accepted. Univision is an Equal Opportunity Employer.

Help Wanted

NEP Broadcasting is seeking Mobile Unit Engineers of all experience levels to manage and monitor mobile unit broadcast operations at remote sites, perform preventative maintenance, troubleshoot, execute changes and engineering updates on the mobile unit. Degree, training, 3+ years experience in broadcast technology, equipment, facilities, and production or any combination considered. Maintenance engineering background a plus. Please send resume and salary history to NEP Broadcasting LLC, hr@nepinc.com, Fax: 412-820-6045, 2 Beta Drive, Pittsburgh, PA 15238.

Help Wanted

EIC

Crosscreek Television/ Birmingham, AL is seeking a HD Mobile unit EIC. Applicant must have a strong history and working knowledge of all facets of HD equipment found on a HD mobile unit. IT training, customer communication, and personal management skills are a must. Position requires irregular hours and extensive travel. Candidates relocating to Birmingham, AL would be a strong plus. Please send resume and salary history to resumes@crosscreektv.com.
TV news vs. technology
“Film at 11:00” is long gone.

BY GEORGE MAIER

News organizations have been partners with technology since the days of the Speed Graphic camera. The Speed Graphic may not have been developed with newspaper photographers in mind, but it became the standard press camera and remained so for decades.

In this situation, the news industry found a solution by adopting existing technology. Along the way, camera manufacturers and news operations began working together to develop products with features and options that were more news-centric.

This relationship kicked into high gear in the 1970s, when lightweight ENG video cameras and VTRs were introduced as film replacements for local news and remote production. The benefits of video capture versus film were quickly realized when an ENG camera was combined with a transportable microwave system to provide live coverage of breaking local news. The advent of live news created an opportunity for a diverse group of manufacturers, who rushed to provide smaller and more sophisticated recording, switching and microwave transmission equipment, as well as specialized vehicles for ENG.

In ENG, technology was the catalyst, but the new tools were quickly mastered, and crews began pushing the equipment to its limits. Soon, compact mobile satellite systems were developed to get the story in places that were not accessible via microwave.

With a host of new ENG tools in place, the pace of news coverage sped up considerably. Adapting to the new technology was not too difficult, as the workflow involved in videotape capture and editing was in many ways similar to film, only much quicker and with a steadily increasing array of graphics and other video tools.

Today, TV news has made the leap to digital and is rapidly going tapeless, resulting in different workflow requirements because of its nonlinear nature. Storage media and transmission methods are multiplying as fast as the ways in which they can be used. At times, it’s hard to tell if news is driving technology, or vice versa. The answer depends on whom you ask.

Next-generation crews

Seasoned ENG crews have already been through the digital conversion, but are somewhat suspicious of the increasing rate of change. New recruits were raised on cell phones, digital snapshots, the Internet, iPods and video games. To them, rapidly changing technology is just a way of life. But what do the new recruits bring to table, and how will they fit into the changing paradigm?

Experienced crews know their ENG vans inside out. If something breaks at a critical moment, they know how to create an emergency work-around and get the story on the air.

The new crop of operators can master digital capture, graphic interfaces, microprocessor-controlled equipment and PC editing stations quickly and with an intuitive grasp. However, they are primarily appliance operators and may not know how it all works. When the inevitable equipment malfunction or breakdown occurs, some of the newbies will have problems devising work-arounds.

When the inevitable equipment malfunction or breakdown occurs, some newbies will have problems devising work-arounds.

The key to success will be adapting current crews to new IT-based tools, as well as teaching newcomers how to deal with real-time issues and how to react to emergency situations. When future ENG crews are in trouble, it’s likely someone at the studio will be able to help. ENG van equipment will include Ethernet control ports that can be accessed remotely. An engineer at the studio will be able to control the van’s on-board equipment using a GUI on a PC via wireless hookup.

With so many tools and technologies to choose from, making the right choices will be difficult, but history has shown that value, speed and ease of use will be the winning combinations that move the news from the good old days of “Film at 11:00” to wherever the future takes us.

George Maier is president of Orion Broadcast Solutions, a consulting firm.
3 Gb/s Routing
HD/SD Multi-Format Routers - from 32x32 up to 576x576

Xenon

- Quartz offers powerful and highly flexible 'Signal Processing' routers essential to your broadcast, production or AV facility.
- The Xenon is available in 4RU or 8RU with matrix sizes ranging from 32x32 to 128x128.
- The EQX routing platform can handle up to 576x576 in a single frame.

Find out how Quartz's Xenon routers can power your operation - call now for a demonstration!

The Leaders in HDTV and now the Leaders in Routing & Master Control

Visit us at NAB - Booth #1713

Quartz offers powerful and highly flexible 'Signal Processing' routers essential to your broadcast, production or AV facility.
- The Xenon is available in 4RU or 8RU with matrix sizes ranging from 32x32 to 128x128.
- The EQX routing platform can handle up to 576x576 in a single frame.

Find out how Quartz's Xenon routers can power your operation - call now for a demonstration!

The Leaders in HDTV and now the Leaders in Routing & Master Control

Visit us at NAB - Booth #1713

Quartz offers powerful and highly flexible 'Signal Processing' routers essential to your broadcast, production or AV facility.
- The Xenon is available in 4RU or 8RU with matrix sizes ranging from 32x32 to 128x128.
- The EQX routing platform can handle up to 576x576 in a single frame.

Find out how Quartz's Xenon routers can power your operation - call now for a demonstration!

The Leaders in HDTV and now the Leaders in Routing & Master Control

Visit us at NAB - Booth #1713
Master control evolves into channel release

Finally, master control that takes channel branding as seriously as you do.

HD/SD configurable master control with embedded multi-layer branding — IconMaster

The IconMaster™ channel release system is traditional master control and so much more.

- Functionality of a traditional master control without the hefty price tag
- Mini-master without the tradeoff in performance
- Superior, embedded, multi-layer branding technology with IconStation/iconLogo
- Tight integration with other NEO™ advanced applications — multi-viewers, conversion products, D VRs — in the same frame
- Modularity for choice of configuration and the options you need

So advanced and innovative, it’s almost unfair to call it a master control — IconMaster.

www.broadcast.harris.com/iconmaster

Canada +1 800 382 0233 | USA East +1 800 231 9673 | USA West +1 888 843 7004 | Latin America +1 786 377 1960

HARRIS® assuredcommunications™
Broadcast • Microwave • RF Comm • Government Systems