IT HAS ALL THE FUNCTIONS, BELLS, WHISTLES & KNOBS YOU'LL FIND ON OTHER TOP OF THE LINE AUDIO CONSOLES.

BUT IT’S GOT ONE VITAL FEATURE THEY LACK...

Go Ahead. Turn It Down.

Introducing The Wheatstone D-8 Television Surround Sound Audio Console

Wheatstone is known for television audio consoles that are powerful enough for the most exacting mix engineer, yet simple enough for general staff to operate without the need for intensive training.

Our new D-8 is no exception. It has everything you need for live audio mixing in medium and smaller market stations, remote trucks, or secondary on-air/production rooms in larger facilities.

24 motorized input faders, four submasters, two main buses and two aux buses. True surround mixing. Extensive on-board processing. And it’s got it all for noticeably less.

Like all Wheatstone television consoles, the D-8 is a control surface – audio I/O both analog and digital is housed in the Wheatstone Bridge rack-mount router/mixer.

Whether or not watching costs is a part of your fall lineup,
Wheatstone has the perfect audio console for you.
Large multiviewer design made easy.

Up to 64 displays from one chassis.

Up to 5/12 inputs.

One chassis available in 5, 9, 15, 28 RU sizes.

Unprecedented graphics capabilities.

Easy to install and maintain.

Available as a standalone multiviewer or integrated with router.

Display any source, in any size, on any monitor, in any room.

CENTRIO™ — THE WAY YOU PICTURED IT.

The simplified, flexible CENTRIO™ system design reduces the cost and complexity of large system monitoring — with no compromise in features or performance.

Combining superior graphics, an industry-proven architecture and integrated test and measurement tools, CENTRIO™ is a breakthrough in multiviewer design and value.

To learn more, visit www.broadcast.harris.com/centrio.

Come see us at the NAB Show 2009 — booth #N2502

North America +1 800 231 9673 | Caribbean and Latin America +1 786 437 1960

HARRIS® assuredcommunications®
Broadcast Communications • RF Communications • Government Communications Systems • Harris Stratex Networks

www.harris.com
TABLE OF CONTENTS

FEATURES

42 The fundamental elements of media workflows
Use this guide to create a file-based media workflow.

58 HD monitors
Eliminate flat-panel monitor 2:3 pulldown judder.

62 Cure for concatenation
Preserve 4:2:0 chroma integrity in concatenated operations.

SPECIAL REPORT

66 The TV camera: Past, present and future
Understanding the history of this technology may provide a glimpse of the future.

NAB COVERAGE

88 NAB Preview

90 Engineering Excellence Awards
This year’s winning facilities are state-of-the-art.

99 Exhibit Hall Map
Don’t get lost at NAB; use our massive map.

124 DTV Marketplace
Here’s an advanced look at the new products you’ll see at NAB.

BEYOND THE HEADLINES

DOWNLOAD

14 Mobile DTV
Where are we, and what’s next?

FCC UPDATE

16 Captions going digital
In addition to providing closed captions in digital, stations must still offer them in analog.

DIGITAL HANDBOOK

TRANSITION TO DIGITAL

18 Managing lip sync
Solving this problem requires knowledge on how analog video becomes digital.

COMPUTERS & NETWORKS

22 Networking video
Understand these five issues related to moving video over packetized networks.

PRODUCTION CLIPS

26 What’s in your bag?
With these tools in your run-bag, you’ll always get the shot.
The new DeckLink Studio has SD/HD-SDI, loads of analog connections, down converter and more for only $695!

Turbocharge your creativity with DeckLink Studio, the SD/HD broadcast video card that costs hundreds of dollars less than SD solutions! With SD/HD-SDI and enhanced analog connections, DeckLink Studio connects to a massive range of equipment such as HDCAM, HD-DS, Digital Betacam, Betacam SP and more!

More Video Connections!
DeckLink Studio includes 10 bit SD/HD-SDI, component, composite, S-Video, 4 ch balanced analog audio, 2 ch AES/EBU, reference, RS-422 deck control and a built in hardware down converter. High speed 1 lane PCI Express gives you more HD real time effects and supports advanced video formats such as ProRes(Mac), DVCPRO HD, JPEG, DV, HDV playback and even 10 bit uncompressed capture and playback!

Hardware Down Conversion
For monitoring, you’ll love the built in HD down converter that’s always active on the SD-SDI, S-Video and composite video output connections. The built in hardware down converter lets all video outputs remain active in both capture and playback mode, and in all HD video formats! Instantly switch between letterbox, anamorphic 16:9 and center cut 4:3 down conversion styles.

Built in SD Keyer
DeckLink Studio includes a built in internal SD keyer that lets you layer RGBA images over the live video input. You can also use the included Photoshop plug-ins for broadcast graphics! DeckLink Studio also supports external SD keying with key and fill SDI out.

Windows” or Mac OS X”
DeckLink Studio is fully compatible with Apple Final Cut Pro”, Adobe Premiere Pro”, Adobe After Effects”, Adobe Photoshop”, Fusion” and any DirectShow” or QuickTime” based software. DeckLink Studio instantly switches between, 1080HD, 720HD, NTSC and PAL for full worldwide compatibility.

Learn more today at www.blackmagic-design.com
MARCH FREEZEFRAME QUESTION

How good is your understanding of basic digital networks? Answer the following questions:

1) A _____ is used to interconnect two LANs while separating network segments.

2) A _____ is an improved network technology that resolves the issue of providing direct data connections and maximizes the use of a LAN's bandwidth.

3) The _____ command is used to verify that a network connection exists between computers.

4) A _____ uses layer 3 addressing to make routing decisions regarding forwarding data packets.

5) A network address is also called the _____.

6) The two transport protocols within the TCP/IP transport layer are _____ and _____.

MARCH FREEZEFRAME ANSWER

1) Bridge
2) Layer 2 switch
3) Ping
4) Router
5) Logical
6) TCP and UDP
With more than 300,000 Osprey® video capture cards deployed globally, ViewCast® sets the standard in the streaming media industry.

Building on the legendary quality of our Osprey technology, we continue to develop industry-leading solutions that the top broadcasters, network service providers, and CDNs like RealNetworks® rely on every day to meet their most critical video content delivery needs.

Our award-winning Niagara® encoding solutions re-purpose and stream video quickly and easily—in multiple formats—for any audience, with professional-grade performance. And our SCX® software provides simultaneous remote management of multiple Niagara encoders over the network through a single, easy-to-use interface.

Claiming your stake in the global digital market place requires solutions you can count on. And, when it comes to innovative, next generation streaming solutions, one name says it all.

ViewCast®

Visit us at NAB booth #SL6020

Learn more at www.viewcast.com/be
USA 800.540.4119 | Europe, Middle East, Africa +44 1256 345610

©2009 ViewCast, Inc. All rights reserved. Osprey®, Niagara®, and Niagara SCX® (and design)™ are registered trademarks of ViewCast, Inc. 3701 W. Plano Parkway, Suite 300 Plano, TX 75075. RealNetworks® (and design)™ is a registered trademark of Real Networks, Inc.
Two market leading, innovative companies, Pro-Bel and Snell & Wilcox, are coming together to create a new company to better serve your needs.

See us at NAB, booth: SU1917
The combination of Pro-Bel and Snell & Wilcox brings together a strong history of innovation and groundbreaking technical achievements including a significant portfolio of intellectual property in image processing and content management. This includes routing, switching, conversion, media management, modular infrastructure, control & monitoring, automation and file-based workflows.
Four years ago, I purchased a new home, which came equipped with Energy Star-compliant appliances. From day one, the dishwasher refused to fully dry the dishes. I put up with that idiosyncrasy until a week ago, when I finally decided to see what the heck was wrong.

At first, I suspected the drying element in the bottom of the washer wasn’t working. So, a few minutes of running the dishwasher and then a touch of the finger ... Ouch! That’s hot! Okay, the heating element is working.

A second check was incoming water temperature. Dishwashers need at least 120-degree water if the dishes are going to be clean and dry. My digital thermometer said that the incoming water temperature was 129-degrees, so the water temperature was okay.

While hating to admit I was unable to solve the problem, clearly it was time to contact the manufacturer. I posed my question to the General Electric (GE) Web site, and within 24 hours I received an answer. The company representative said that in order for the dishwasher to meet EPA Energy Star requirements, the designers were forced to reduce the size (and hence, heat output) of the heating element. In addition, the engineers had to shorten the dry cycle time.

The nice lady at GE said that if I’d just be sure the incoming water temperature was at least 120 degrees and that I used a “proper wetting agent,” the dishes should be “almost dry” when the wash cycle is completed. The result is that while my dishwasher is fully Energy Star-compliant, it doesn’t dry the dishes!

I was reminded of my situation while reading an article about the difficulties TV manufacturers are having meeting the new, and even more restrictive, Energy Star 3 requirements. The article claimed that none of today’s 37-in TVs meet the new Energy Star 3 power-on standard. However, seven out of 10 50-in plasma TV sets do meet the power consumption standard. If you’re looking for justification to buy a larger TV set, that should be all the excuse you need.

However, the EPA wasn’t satisfied with just requiring lower power consumption when a TV is turned on. The agency also is demanding that TV sets consume less than 1W when they are off! Set makers claim that meeting this portion of the Energy Star 3 requirements will be extremely difficult because of the requirement to support instant-on HDMI interface capability.

Could the EPA impose even stricter limitations on electronics? Yes. Your next television set might contain a “feature” that allows the power company to downgrade your set’s display quality to “almost HD” to save power. Perhaps the set will shut down heavy CPU image processing or reduce the contrast ratio, which lowers LCD back lighting power requirements.

The bottom line is that government-mandated power limitations, while they may seem worthy, can also limit features and performance and result in a higher-cost product. They are an unwelcome intrusion into one’s home.

I can deal with my wet dishes. The solution just requires a towel and time. But when it comes to my home electronics, I’d like to tell EPA where they can stick that Energy Star.
Now that NVISION Inc. is part of Miranda, we can offer NVISION enterprise class routers. Simply put, they provide absolute dependability, with power supply, controller, and crosspoint redundancy. They’re fully scalable to 1152 x 1152, using 3Gbps (1080p/3D) and HD/SD/ASI. More importantly, they offer rich integration with our interfacing, master control and monitoring systems. It’s time to rethink what’s possible.
Mobile DTV
Where are we, and what's next?

BY JAY C. ADRICK

The development of ATSC-compatible in-band mobile DTV began more than three years ago with two companies (Samsung and LG Electronics/Zenith) leading the way—each with a different approach. Each company took on transmission partners, and over-the-air demonstrations began in the spring of 2007. The broadcast industry's interest in mobile DTV ignited rapidly and culminated with the formation of the Open Mobile Video Coalition (OMVC), representing more than 20 major broadcast groups.

At the same time, the ATSC moved the standardization of a compatible ATSC mobile DTV system into high gear. When a request for proposals was issued by the ATSC, many companies responded, and various tests were conducted to evaluate systems. This activity concluded with a recommendation to the ATSC's Technology and Standards Group subcommittee on mobile DTV, S-4, to develop a system based on the physical layer of the LG/Zenith/Harris MPH technology.

The road to ATSC Mobile DTV
The ATSC S-4 activity began in May 2007. By August 2008, the four working groups within S-4 had defined the pieces necessary to put together a working mobile DTV system that met the required criteria as defined by the industry. By late November 2008, the ATSC S-4 mobile DTV system was elevated to ATSC Candidate Standard status and assigned the A153 designation. To many, this might sound like a long development process until you compare it with the more than 10 years of activity that led up to the ATSC DTV standard. The ATSC TSG S-4 Working Group, under the leadership of Mark Aitken and the four subgroups, maintained a constant stream of working sessions via telephone conference calls, e-mail and in-person meetings to move the technology forward and get to the Candidate Standard status in just under 18 months.

Two key annual events drive broadcast industry development. For receiver and consumer products, it's the Consumer Electronics Show in early January. For broadcast equipment, it's the NAB convention in April. In order to show working prototype ATSC Mobile DTV receivers at CES 2009, both receive and transmission technology had to be "reduced to practice" (demonstrate its workability) by mid-November 2008. There was no time to wait for the outcome of balloting with the ATSC TSG if successful demonstrations were to be conducted at CES in January.

LG/Zenith and Harris, along with several partner companies, began product development just after NAB2008. Specifications for the receiver chip sets and the transmission equipment were based on the committee work that was conducted in TSG S-4 with the hope that no major changes would take place. The receive technology is the most sensitive to change as it is reduced to a single ASIC chip. Most of the transmission technology is implemented on software-defined platforms, thus allowing most changes to be made in software code rather than hardware. By mid-October 2008, a plan was in place for a mobile DTV demo that included nine television program streams, two audio-only streams, a data service and a complete electronic program guide service. The mobile DTV service was to be broadcast by two Las Vegas UHF DTV stations.

Receiver chip sets were ready by late October and were integrated into prototype receiving devices. By mid-November, all of the transmission equipment was ready for testing. The CES demonstration system was staged at the Harris facility in Mason, OH. Receiver engineers with prototype receivers and engineers from our ESG partner, Roundbox, converged
Introducing the Next Generation of Broadcast

Ready or not, the future of broadcast is here. That means delivering high-quality multichannel content to TVs, computers, mobile phones, and more. This demands a flexible, highly efficient codec, one that also promises exceptional reliability and compatibility. Enter Dolby® Pulse, the ideal HE AAC solution for bandwidth-critical services like next-generation HDTV, IPTV, cable, and satellite. It combines the advanced bit-rate efficiencies of HE AAC with support for Dolby metadata. Look for its implementation throughout the broadcast chain, from hardware and OEM products to licensed encoder and decoder solutions. When every bit counts, Dolby Pulse delivers.

Visit us at NAB 2009
LVCC North Hall, Booth N1815

dolby.com/pulse
on the facility to fine-tune and conduct system integration tests for the first implementation of the ATSC A153 Mobile DTV system.

CES 2009 marked the formal introduction of ATSC Mobile DTV. The OMVC conducted a press event and announced that more than 60 U.S. DTV stations committed to launch mobile DTV during 2009. These stations include items and others being considered in TSG S13 covering data services will keep the ATSC team members busy with mobile DTV for some time to come.

Issues to resolve

A successful commercial launch of ATSC Mobile DTV will require resolutions to several issues. First, broadcasters need to develop and select business models that will attract consumers while also becoming economically viable. Is this service free-to-air, subscription-based, pay-per-view or a combination of those? Will broadcasters in a market develop a unified service offering? If service is based on subscription, will it travel from market to market? What is the mix of content offered — local, national or both?

Second is the need for broadcasters to build relationships with the partners. If the mobile DTV service is based on subscription or pay-per-view, what type of partner is needed to manage this activity? It could be a wireless carrier, a local cable operator or a service management provider.

There are several major wireless carriers that already have wireless video services, while others are partnering with broadcasters.

Offering service on a platform with a return channel, such as a mobile phone, enables enhanced interactive services, audience measurement and a much wider consumer base. ATSC Mobile DTV was designed to reach both one- and two-way devices. While the largest platform opportunity is the mobile phone, broadcasters must not overlook personal computers, in-car reception, portable media players and navigation devices as viable reception options.

A third issue is identical to that of DTV in the early days. It is the chicken-and-egg problem of signals on the air versus receiver availability. Most receiver manufacturers and sales channels will want the assurances of broadcasters that service will be available before they commit to ordering, building and stocking receivers. While the OMVC announcement of stations committed to launch in 2009 is a start, much more will be needed to make the market interesting to manufacturers.

The next few months, beginning with NAB2009 in April, will be an interesting time in the development of broadcaster-based mobile DTV. There will be many parallel activities at both the ATSC and within the broadcast community as the ATSC Mobile DTV system moves toward full standard status and commercial deployment.

Jay C. Adrick is vice president, broadcast technology, for Harris Broadcast Communications.

Figure 1. System architecture with full ATSC M/H
However you dress it up, the question's the same: "How are you going to save my newsroom time and money?"

Avid HD News. Learn how our all-new XDCAM HD-based newsroom makes you more productive at Avid.com/HDNewsSolutions.

Announcing XDCAM HD-based news production
Get end to end XDCAM HD production* with our new AirSpeed® Multi Stream server and supporting NewsCutter®, iNEWS® Instinct®, Interplay® and Media Composer® software releases.

Get more done, more quickly
Proven Avid® solutions increase newsroom productivity with workflows, tools, and services that maximize your staff's skills, and help you lower the cost of creating and distributing compelling content.

You decide what to integrate
Avid works constantly with other suppliers and developers to address a wide range of common integration needs. The result: flexible solutions that help streamline processes and protect your existing investments.

Experience you can trust
Wondering whether your workflow will deliver is not an option. Our experienced digital newsroom experts and professional services and support teams collaborate for your success from planning, to installation and beyond.

*Please see Avid's website for application details and relevant limitations.

Images courtesy of France 24.
Captions going digital
In addition to providing closed captions in digital, stations must still offer them in analog.

BY HARRY C. MARTIN

The FCC has imposed a number of new closed-captioning obligations on TV licensees and other video programming distributors, and the commission is soliciting comments on even more changes to the closed-captioning rules as TV makes its transition to all-digital.

In November, the commission released a declaratory ruling, order and notice of proposed rulemaking (DRONPRM) in which it announced rule changes and proposals, but the effective dates of the changes and the deadlines for comments and reply comments did not appear in the Federal Register until mid-January.

Dateline
- April 1 is the deadline for TV stations in the following states to file their biennial ownership reports: Delaware, Indiana, Kentucky, Pennsylvania and Tennessee.
- April 1 is the deadline for TV stations and Class A stations in the following states and territories to place their 2009 EEO public file reports in their public files and post them on their Web sites: Delaware, Indiana, Kentucky, Pennsylvania, Tennessee and Texas. LPTV stations originating programming in these states, which are not required to have public files, must post these reports on their Web sites and keep them in their station records.
- Also on April 1, all TV stations (but not Class A stations) in Indiana, Kentucky and Tennessee, regardless of the number of persons employed at the station, must electronically file an EEO mid-term report using FCC Form 397.

Rules effective in February
In the new rules section of the DRONPRM, the FCC has made it clear that there is no exemption for DTV programming just because it is digital. Likewise, the transition to all-digital broadcasting in June does not relieve stations of the obligation to continue captioning programming in a manner that can be decoded by analog TV sets. Finally, the transition does not create the opportunity for stations to claim the self-implementing exemption for channels with less than $3 million in revenue or the new network exemption just because of a change from primarily analog to all-digital operation. All captioning obligations remain in place and apply to DTV operations.

Requirements temporarily suspended
The new contact information requirements and complaint process were adopted, but they are not yet in effect. Those items require review and approval by the Office of Management and Budget (OMB) and were subject to comment through March 16. Also under review are the newly-adopted FCC complaint process and the new rules requiring that stations both provide and keep updated contact information for complaints and inquiries. These requirements will be effective 30 days after OMB approval.

Proposed rulemaking
The subject matter at issue in the proposed rulemaking portion of the DRONPRM is how Section 79.1(d) (12) of the commission's rules should apply to DTV broadcasting. That section provides that no video programming provider will have to pay to caption "any channel of video programming producing annual gross revenues of less than $3,000,000 during the previous calendar year." But it is not clear how that exemption would or should be applied to multichannel DTV broadcasting. For example, should each digital stream be deemed a separate and independent channel for these purposes, or should the term channel be deemed to mean the entire 6MHz of spectrum used by the licensee?

Also, the commission has questioned whether $3 million is an appropriate threshold and whether a single threshold, as opposed to some sliding scale, might be a better fit. Notwithstanding the exemption, all video providers will still be required to pass through any captioning that has already been included by program producers.

Comments on the FCC's rulemaking proposals were due in February.

Harry C. Martin is a member of Fletcher, Heald and Hildreth, PLC.

Send questions and comments to: harry.martin@penton.com

For more news, visit our Web site and click on the News link at the top of the page.
What else would you expect from the #1 router company in the business?

Utah Scientific has been bringing you breakthrough innovations for more than 30 years. Here are just a few of our most recent milestones:

2003 – The industry's first 10-year no-fee warranty – Still an industry best
2004 – The first digital router with 3Gbps architecture – The UTAH-400
2006 – The first IP router for broadcast applications – The UTAH-400 IP
2008 – The first 1k X 1k router in a single equipment rack – The UTAH-400/XL
2009 – Wait till you see what's coming next!

Our passion for innovation is just one more reason that Utah Scientific is your first choice for routing and master control systems.
Managing lip sync
Solving this problem requires knowledge on how analog video becomes digital.

This is not the first time that the subject of A/V sync, or lip sync, has been covered in this column, nor will it be the last. While some industry organizations continue to study the issue, and a handful of products exist that either measure or control A/V sync, progress is slow in combating the problem. This month, we’ll look at some of the lesser-understood technical factors contributing to the problem.

To recap the issue, correct A/V sync is necessary for program delivery so that the presentation retains a natural appearance. Studies have shown that a mismatch is detectable when the sound leads the video by more than 45ms or lags the video by more than 125ms. Various recommendations exist that put tighter bounds on acceptable performance. The ATSC, for example, recommends that the sound program should never lead the video program by more than 15ms and should never lag the video program by more than 45ms (±15). But state-of-the-art systems and products are not yet at the point where this recommendation is always met.

Compression complicates the problem

Audio and video will be differentially delayed when passing through different equipment (or improperly designed equipment). These differences in routing audio and video signals can create an A/V sync problem, especially when the delays change over time.

In addition to the problem of independent signal paths and processing, compression adds another variable to A/V sync mismatch. Not only are video and audio signals compressed using different algorithms, but more importantly, the differential delay between the compression paths is not constant in parts of the system. This is illustrated in Figure 1, together with...
When it comes to your digital content workflow, one company gives you the Power of Choice.

Accelerate and customize your digital workflow with the platform that enables best-of-breed solutions. The power of choice is yours with Omneon.

Only Omneon delivers a complete content platform optimized for your digital content workflows. Our comprehensive portfolio of media servers, active storage and applications accelerate your workflow – eliminating bottlenecks and improving efficiencies. And Omneon’s heritage of innovation and commitment to service is unmatched across the industry. If you’re looking for a scalable, flexible and reliable digital content platform, the choice is clear: Trust Omneon.

For more information, go to www.omneon.com or call us at 1-866-861-5690

©2008 Omneon, Inc. All rights reserved. Omneon and the Omneon logo are trademarks of Omneon, Inc.
the program clock reference (PCR) synchronizing element.

MPEG video compression, like most compression systems, uses different types of frames, resulting in different amounts of data for each frame in the coded bit stream. While the overall bit rate for such a system is constant (when using constant bit rate encoding), the number of

With a fixed decoding time for each process, this then establishes the correct presentation time of video and audio to the viewer/listener.

However, there exists the possibility that receivers (decoders) do not process these time stamps correctly, depending on how the video decoder buffer is managed. As we saw previously, the bit stream data rate varies from frame to frame. This requires a buffer in order to properly decode the video, and an appropriate algorithm to manage the buffer. In MPEG, this is known as the video buffer verifier (VBV), a model that is used in the encoder to ensure that there is never an

from frame to frame. This model assumes that all bits from each frame are removed instantaneously. This is valid for the sake of buffer management, given actual hardware architectures and the fact that any practical delay is inconsequential to the action of the buffer.) If the buffer should overflow or underflow, the video would either freeze or jump ahead, causing a noticeable disruption.

The parameter VBV delay specifies the duration of time that the first byte of coded video data remains in the video buffer (to the left of zero in this example), to start the filling process. While this parameter can be specified in the bit stream, most decoders ignore it, and regenerate the buffer timing from the PCR and PTS data — and herein comes the potential for problems.

Decoders vary in how often they recheck the PCR and PTS elements for synchronization, which can cause a problem if data is corrupted or missing. For instance, a simple decoder could be constructed that fills the buffer to some arbitrary point, and then proceeds to decode pictures without referring back to the PTS on an ongoing basis. Assuming all other data is correctly received, and the decoding frame rate is

overflow or underflow condition. This is shown in Figure 2 for a fictitious seven-frame stream, with the fullness of the decoding video buffer as a function of time. Bits enter the buffer and then are removed (decoded) starting at frame #0 in the graph. From that point forward, bits must be removed at the correct frame rate to ensure proper video display. (The correct, the decoder could run indefinitely and appear to produce correct pictures and sound. But if there was an error in the timing algorithm, or if some data is lost in transmission, the playback timing could be sufficiently in error so as to produce an A/V sync error that persists indefinitely.

The problem with any such product is that there is no formal requirement

Any viewer encountering lip sync issues will almost certainly blame it on the program provider and not on the product.
that the decoding should work properly 100 percent of the time, other than that of product quality control. (And receiver manufacturers are loath to accept imposed requirements, as well.) In reality, any viewer encountering lip sync issues will almost certainly blame it on the program provider and not on the product. Any activity aimed at improving the situation would have to be from a cross-industry collaboration between broadcasters and consumer electronics manufacturers.

Few solutions at this time

In an earlier column, we took a look at some of the technologies that measure or control A/V sync at the broadcast plant. Part of the problem with their effectiveness is that the simplest test equipment requires the interruption of normal programming. Automatic online measurement and compensation could alternately provide a precise and self-correcting system. Technical committees are continuing to work on the problem, but the work is difficult.

IEC is working on standards relating to assessment, measurements and methods for A/V synchronization, but the results may not provide specifics for the broadcaster. The HDMI v1.3 and IEEE-1394 standards have features that help consumer equipment, but not in systems already installed.

CEA is working on a recommended practice, to be known as CEB-20, for DTV receiver implementers and developers, that relates to DTV receiver/decoder processing affecting a/v sync. Expected completion is mid-2009, after which ATSC will continue its own efforts.

More visibility needed

Unfortunately, A/V sync is the kind of problem that everyone knows about, but not all broadcasters and program distributors are willing or able to spend sufficient time or money in its solution, perhaps in part due to the difficulty of determining the actual effect on revenue. Perhaps therein lies an opportunity for manufacturers to develop solutions that are inexpensive and straightforward to implement.

Aldo Cugnini is a consultant in the digital television industry.

"You can never bet too much on a winning horse."

20 year track record of success

Dedication • Commitment • Performance

ScheduALL's core tenets of **Collaboration**, **Interoperability** and **Workflow** are embodied in its highly flexible and modular tool sets that specifically address the operational and profitability goals of the broadcast, transmission, production and post-production environments.

ScheduALL

Enterprise Resource Management

+1 954.334.5406

www.scheduall.com/NAB

Miami | London | Los Angeles

NAB booth SL1606
When moving professional video over networks, consider these defining characteristics: large amounts of data; sensitivity to errors and loss; sensitivity to delay; the efficiency multicast issue; and maintenance personnel mindset.

Large amounts of data

One of the defining issues concerning the use of networking technology for professional video is that it involves moving huge amounts of data. How much data? (See Table 1.)

Of course, these are uncompressed rates; modern compression techniques can dramatically reduce the required bandwidth. But even at 100:1 compression, a two-hour movie at 525/29 represents a file size of about 2.4GB. If you transfer this file over a single 100Base-T network that has a policy to use only 70 percent of network capacity, it will take more than 30 seconds to transfer one file. And this one transfer takes up virtually all of the available space on the network for that entire time.

There are ways to reduce the impact of video on the network, but they all amount to the same thing -- an increase in network capacity. Gigabit Ethernet (GigE) is becoming ubiquitous, so the transfer that took more than 30 seconds on your old 100Base-T network will only take three seconds on a GigE network; and 10GigE is on the horizon. Also, it is possible to bond multiple Ethernet connections into a single virtual connection. This allows you to combine several GigE connections together, which is not practical for workstation connections, but it is a reasonable option for connections between backbone switches or between a switch and a large server.

Sensitivity to errors and loss

Professional video users are sensitive to errors and loss during file transfer. If you use conventional FTP to move video files and the transfer fails somewhere in the middle, you will have to start over. Some FTP clients can resume a file transfer at the point where the transfer failed. But if you are moving files larger than 2GB, or if you move large files on a regular basis, investigate special software packages and protocols that will accelerate these transfers far beyond what conventional FTP can deliver.

Table 1. Data rates and file sizes for typical TV standards

<table>
<thead>
<tr>
<th>TV standard</th>
<th>MB per frame</th>
<th>MB/s</th>
<th>Size of 30-second file</th>
</tr>
</thead>
<tbody>
<tr>
<td>525/29</td>
<td>1.126MB</td>
<td>33.75MB/s</td>
<td>1.0GB</td>
</tr>
<tr>
<td>720p60</td>
<td>3.093MB</td>
<td>105.58MB/s</td>
<td>5.6GB</td>
</tr>
<tr>
<td>1080p60</td>
<td>6.187MB</td>
<td>371.22MB/s</td>
<td>22.3GB</td>
</tr>
</tbody>
</table>

Broadcasters are sensitive to problems during the file transfer, but go ballistic when errors are incurred during live transmission. There are several reasons for this.

First, assuming that the transmission is going out on the air, errors are visible to end viewers, and there is no opportunity to fix the problem in post. Second, depending on where the error hits and on the technology to only moving video traffic. When working with wide area networks (WANs), make sure quality of service (QoS) agreements are in place so video arrives intact.

To protect against errors after the fact, add forward error correction (FEC), which allows users (up to a limit) to reconstruct missing information using extra bits sent as part of the transmission. Of course, nothing
mobile solutions.

Whatever the need, wherever the gig, Le Studio Mobile is on the job and ready to go. Based out of Montreal, Quebec, Le Studio Mobile has easily become one of Canada's most trusted resources for remote recording. Their latest truck, outfitted with dual DM2000's, provides 24-bit, 96 kHz performance at 96 channels, surround sound panning, a full mixdown automation system and sophisticated DAW control. Supporting major acts such as Celine Dion and Sting and shows at the magnitude of the Montreal Jazz Festival, Le Studio Mobile delivers solid performance every time every place.

When you need help, time zones shouldn't matter. Yamaha provides coast-to-coast 24/7 technical support across the United States. With dedicated staff and regional service centers, assistance is around the corner. If we can't fix it over the phone, we'll put a part or a person on the next plane out. It's that simple.
is free, and FEC will deduct from the total bandwidth available for video transmission. Furthermore, typically, the more FEC introduced in a circuit, the longer the latency — the time between when video enters one end of the link and when it exits the transmission system at the far end. In live interview situations, large amounts of latency are unacceptable.

Sensitivity to delay

In some cases, such as a live interview, delay can be a bad thing.

Percent efficiency = Video payload/Total Ethernet packet size

- **Percent efficiency** = (IP payload - IP header - UDP header)/Total Ethernet packet size
- **Percent efficiency** = (1500-28)/1538
- **Percent efficiency** = 95.7 percent

![Figure 1. Illustrates how to calculate the theoretical efficiency of video transport over Ethernet using UDP/IP](image)

Fortunately, most on-air talent and home viewers are used to dealing with satellite delay. As long as broadcasters stay within the limits of what someone would normally encounter in this environment, it’s okay.

But long-distance IP networks have another interesting characteristic that could prove extremely disturbing. Unless a large IP network has been engineered to control this problem, the delay can change from one moment to the next depending on which route packets take from a sender to a receiver. If the route is constantly changing over the network, a problem known as route flap, the delay experienced over the network will constantly change. Proper engineering of the network will help avoid this situation, but note that human beings hate nonconstant delay when trying to communicate.

Efficiency

As you may know, standard Ethernet frames are a little more than 1500 bytes long (1538 to be exact). The Ethernet payload is 1500 bytes, with the rest taken up by Ethernet headers. Typically, video over Ethernet uses UDP over IP. UDP/IP headers consume 28 bytes of the 1500-byte Ethernet payload. So typical video transport, ignoring collisions, other network traffic and a host of other factors is around 96 percent efficient. (See Figure 1.)

While this may appear to be a small amount of overhead, when you are sending hundreds of thousands or millions of packets, decreasing the overhead seems like a good idea. And of course, engineers cannot resist making things better. Many years ago, the idea of Ethernet jumbo frames was introduced. The idea was simple — to allow Ethernet payload sizes to be increased for large payload types, which would make networks more efficient.

Bill Fink, the author of nuttcp — a networking test tool — has calculated that the throughput of GigE with jumbo frames set to 9000 bytes instead of 1500 bytes is about 99 percent efficient. On the surface, using jumbo frames seems like a great idea, especially for video applications moving a huge amount of data.

There is no denying the math. Jumbo frame networks are more efficient. The problem is that they may not be supported by the switches and routers in your network. And while most equipment supports jumbo frames, it only takes one switch somewhere in the network to disrupt the jumbo frame transmission. If you decide to use jumbo frames, test the network before relying on it.

Other issues to consider

There are several other issues related to moving video over networks that bear special attention. One issue is that when streaming video, everyone watching the video requires a separate connection back to the originating server. To tackle this, people have built content delivery networks (CDNs), which deploy many servers throughout the world, capable of replicating streams in the network themselves. This reduces the overall load on the originating server. CDNs coupled with multicast technology allow the delivery of a large number of streams in a role similar to over-the-air broadcasting.

Another issue that relates to the transmission of video over networks is the mind-set of the people who maintain the networks. For people who deal with packetized networks, minor service interruptions are the norm as they go about their maintenance tasks. But video users are extremely sensitive to outages, so it takes a partnership between the maintenance people and those using the networks to keep interruptions to a minimum.

Moving video over IP networks is done successfully every day. But having an understanding of the issues and potential solutions concerning networked video will help you do a better job as a broadcast engineer.

Having an understanding of the issues and potential solutions concerning networked video will help you do a better job as a broadcast engineer.

Brad Gilmer is president of Gilmer & Associates, executive director of the Video Services Forum and executive director of the Advanced Media Workflow Association.
Many Affordable HD Camcorders.

Only One Lens Standard: Canon HDgc.

Canon's HDgc lenses are fast becoming the standard for today's affordable HD camcorders. The HDgc line features a complete range of lenses for major brand tapeless and tape-based affordable HD camcorders using 2/3, 1/2, and 1/3-inch image formats. These HD camcorders, which are being used for news-gathering and economical production, including documentaries and industrial applications, perform at their optical best when outfitted with a Canon HDgc lens. Maximize your affordable HD camcorder with Canon's HDgc lenses.

See Us At
NAB Booth #C4325

Find out more at canonbroadcast.com

Canon
imageANYWARE

©2009 Canon U.S.A., Inc. All rights reserved. Canon is a registered trademark of Canon Inc. in the United States and may also be a registered trademark or trademark in other countries. IMAGEANYWARE is a trademark of Canon. All logos trademarked by their respective companies.
What's in your bag?
With these tools in your run-bag, you'll always get the shot.

BY KEVIN JOHNSON

A cameraman without a camera is just a man.” Stephen Press, a freelance cameraman from New Zealand, displays this signature on all of his posts on the b-roll.net forum (http://b-roll.net/forum). His quote makes a good point. No matter how much we may try to avoid it, professionals and craftsmen are defined by the tools they carry.

The varied and random situations faced by the average TV cameraman require us to be ready for anything. At the bare minimum, a television photographer needs a camera. Many will argue that the list of essentials should also include a microphone, tripod, lights and a run-bag. While heavy tools and gear may be left behind in the truck, the run-bag goes everywhere the shooter goes and is filled with small quick-fixers and supplies — elements that can make or break a video shoot. Neatly organized or haphazard, fully equipped or sparsely loaded, the run-bag can reveal a photographer’s true character.

What is your favorite “indispensable” tool in your run-bag? I posed the question to the members of b-roll.net, a Web site forum for television photographers. My unscientific survey yielded a number of trusted accompaniments, from precise electronic testers to granola bar snacks.

Andy Grossman, a photographer with WVEC-TV in Norfolk, VA, compared photographers to paramedics responding to an emergency. Much like paramedics, TV news photographers need to be prepared for just about anything. Having the right tools in a run-bag can guarantee you’ll be ready.

The following list is a compilation of important support gear we all should have on hand.

Multipurpose tool
Often referred to by the brand names Leatherman or Gerber, these indispensable devices combine a Swiss-Army knife collection of tools along with a pair of pliers and wire cutters. Almost any field repair, from retuning a wireless to tweaking your tripod, can be accomplished with the blades, files and screwdrivers found in the multitool. Sometimes this is the only apparatus that can keep your shoot rolling.

Be warned that even though these multitools should never leave your run-bag, they will not make it through airport security. A quick stash in your checked luggage is recommended.

Gaffer’s tape
Never mind all of the duct-tape jokes. It’s gaffer's tape that can be used for just about anything. The cloth tape sticks to almost everything but doesn’t leave any residue. I’ve used gaffer's tape to keep power cords on the floor, lavalier mics on guests and collars down on jackets.

One of my favorite uses is to cover highlights on shiny metal objects. The black tape covers the sharp reflected light but disappears into the shot. To avoid carrying a full roll of gaffer’s tape, many shooters pull a small section of tape off and wrap it around a pen or marker.

Reflector
A foldable circular reflector can be a lifesaver for interviews in harsh sunlight situations. Most reflectors have a white side and a shiny gold or silver side. Positioned just right, the soft reflected sunlight fills in shadows on your subject’s face.

The wider the radius of the reflector, the more intense the reflected light, but a small 24in reflector gives just enough light. This smaller size allows it to be held with one hand by a multitasking photographer.

Warming cards
The act of setting color balance on a camera by shooting a white piece of paper is a time-honored...
Finally, a **Tapeless HD Flash Memory System** that understands the pace of newsgathering.
Ikegami and Toshiba’s GF series optimizes HD workflow for news, sports, and entertainment.

Ikegami and Toshiba have teamed up to deliver unprecedented levels of workflow innovation in the new GF series tapeless HD ENG system. From digital capture to fast, efficient non-linear editing, to instant IT networking, this revolutionary system features an open-codec HD/SD architecture, proxy video and meta data convenience. System components include the GFCAM™ HDS-V10 tapeless camcorder, the GFSTATION™ GFS-V10 Central Video Management/Player/Recorder studio deck (and a field version for added production versatility), and GFPAK™ high-capacity Flash media to record more than two hours of HD video.

Meta Data and Proxy Data Solutions

As the GFCAM™ records the full-resolution image and sound data, it can also simultaneously record proxy video and meta data. Proxy video, a low-resolution MPEG4 mirror of the full-resolution image and sound, has the same time code as the original and can be quickly delivered over a network or accessed on location for initial viewing and to support scripting and editing. Meta data recorded during acquisition supports workflow efficiency by logging key facts on the shoot, including the date, location, program name, and equipment used.
Multitasking with **GFSTATION**

GFSTATION™ GFS-V10 is a multi-task platform built around high-capacity internal Flash memory. Using a GFPAK™ and the built-in memory simultaneously, the GFSTATION™ can work in multi-task mode performing such actions as recoding, playing, copying and file transferring.

These features enable the GFSTATION™ to perform “Time-shifted play” and to play and transfer the same data clips to an external device while at the same time copying the contents of GFPAK™ to the built-in memory, providing excellent work-efficiency. In addition, GFSTATION™ can operate as a video server capable of IN/OUT editing, and PLAYLIST editing.

The Flash Memory Solution **GFPAK**

The GF series’ tapeless GFPAK™ storage medium uses semiconductor-based Flash memory, which offers distinct advantages over optical-disc-based storage. GFPAK™ has no moving parts, is rugged, highly impact- and vibration-resistant, and provides problem-free operation under long periods of high G-force. The GFPAK™ is a long-life media, supporting tens of thousands of rewrite cycles, another significant factor in reducing running costs.

A single GFPAK™ can store around 120 minutes of HD images, affording ample field recording time. And GFCAM™ includes internal flash to permit uninterrupted recording when changing the GFPAK™.
GF CAM
Flash Memory Tapeless Camera
- 2/3-inch, 3 image sensors
- HD 1080i/720p format support
- SD 480i/576i format support
- MPEG2 Long GOP/I-Frame Only Multi-codec
- 4:2:2 digital component recording
- MXF file recording
- Retro Loop function, Time-lapse function
- Free Mix function
- Thumbnail display

GF PAK Removable Media
- 16GB/32GB/64GB Flash Memory Pack
- High speed S-ATA interface, used when in camera or recorder
- Mini-USB connector for external interface for editing, copying, etc.
- Remaining capacity gauge
- Manufactured by Toshiba

GF STATION Flash Memory Recorder
- 128GB (4hour/HD 50Mbps) internal memory
- HD 1080i/720p format support
- MPEG2 Long GOP/I-Frame Only Multi-codec
- Up-/Down-/Cross-converter for playback
- Color LCD monitor installed
- Thumbnail display
- JOG & SHUTTLE dial provided
- MXF file transfer
- IN/OUT editing
- Playlist editing

GF STATION PORTABLE
Flash Memory Recorder
- Low-priced Flash Memory Recorder
- HD 1080i/720P format support
- MPEG2 Long GOP/I-Frame Only Multi-codec
- Up-converter/Down-converter for playback
- Color LCD monitor installed
- Thumbnail display
- JOG & SHUTTLE dial provided
- MXF file transfer(optional)
- IN/OUT and Playlist editing
- Compact 1/2 rack width size

Learn more about GF series at www.ikegami.com/gf/
tradition. Many shooters use light blue-colored warming cards to cheat the color balance. The camera’s sensor over-corrects for the blue and gives your image a warmer, yellow-orange tone.

New camera models come with color monitors and the ability to manually adjust the color temperature, but the warming card can still be helpful in balancing multiple cameras to the same look.

Rain gear

The blue nylon camera cover is an icon of the television photographer. These covers help protect the camera from minor bumps and scrapes, but more important is the quick access to a rain cover in the side pocket. A more substantial rain cover should be within quick reach in your bag for a longer stay in bad elements.

Lens cloth/chamois

The absorbent cloth keeps lenses clean and stops rain drops from ruining your shot. One method is to purchase a large sheet of chamois, and cut it into small portable pieces. Hiding these cloths in various locations means they’re always within reach.

Adapters/cables

The right audio and video adapter can save a live shot or tape feed. It may be the only thing that helps you get media in or out of your camera. The alphabet soup of cable acronyms isn’t always interchangeable — a BNC video cable to an RCA jack or an XLR to a phono jack. A BNC barrel and an XLR gender changer can help make cables work for you instead of against you.

The digital nature of today’s cameras demands a spare firewire or USB cable. Bring as many variations as you can carry. Murphy’s Law guarantees that the adapter or cable you need is just the one you failed to pack.

Mini camera

A camera may seem like a strange example of support gear, but small, affordable cameras are perfect for cramped or dangerous situations. The tiny cameras may go where your high-dollar primary camera can’t or won’t — underwater or at high altitude, on a police dashboard or hanging off of a motorcycle. The little camera won’t out-perform your main camera, but the unique angle will be worth the lesser image quality.

Summary

Early in my career, a reporter friend taunted me with the phrase, “A poor carpenter blames his tools.” In the run-and-gun world of TV news, there is no excuse for not being prepared. The story happens whether you’re rolling or not. What tools you carry in a run-bag often determines how your story turns out. Always run with the most useful gear you can.

Kevin Johnson is the founder of b-roll.net, an online industry resource for television photographers. He has been in the video field for 16 years, and currently shoots for Cox Television News Bureau in Washington, D.C.
Deciding on a file format

Optimize workflow by selecting a file format for archiving and content exchange.

BY PETER THOMAS

As TV broadcasters migrate to file-based workflows, selecting the right file format is becoming important. A file format should support all core processes in television without the need for time-consuming transformations, have a minimum number of transcodings outside of core processes and have a credible future.

Core processes include file import and signal ingest, post production, playout and delivery, and archiving. (See Figure 1 on page 34.) File import typically requires transcoding to the house format. File-based delivery, such as file exchange or distribution via Web, IPTV, VOD or mobile, usually involves at least a transcoding step for delivery format creation.

A standard archive format optimizes those core processes. The selection of such a format is a holistic approach that should not be dominated by one department or group but be considered as a cross-enterprise business decision.

Archiving

File formats have two facets — the encoding format and the wrapper format. For use in archiving, an encoding format must:

- have a standard encoding scheme;
- be widely supported in the industry;
- be compatible with the products used for in-house core processes; and
- be supported by transcoders.

For SD, popular encoding formats are D10 and DV-DIF. For HD, no common denominator has yet emerged. Organizations may have to use different encoding formats for different business processes, but should strive to avoid transcoding wherever possible in order to avoid generation losses and latencies.

The wrapper format must:

- be open and well-documented;
- be widely supported in the industry;
- support partial restore;
- support play while record;
- have little overhead compared to the payload;
- include well-documented maps for the selected encoding formats; and
- support embedded technical metadata.

Suitable wrapper formats for TV archiving are MXF OP1a and QuickTime.

File exchange

For file exchange with external partners, the file format has to meet the specifications as agreed upon in the respective service contract. The wrapper format should also allow embedding descriptive metadata, as you may want to embed subsets of the available metadata as contractually required. Hence, external file delivery typically includes transcoding to the required file format and embedding of metadata.

For file exchanges within your organization, try to avoid any encoding format changes, as they are time-consuming and introduce generation losses. Wrapper changes are less critical.

Selecting the right wrapper format

Until recently, the obvious choice for the wrapper format was MXF OP1a. There are MXF-enabled products available to support all core processes, and sufficient interoperability

FRAME GRAB

A look at the consumer side of DTV

Mobile video growth in the United States

In Q3 2008, 10.3 million people consumed video on their phone.

- Total number of mobile video viewers per quarter
- Total number of mobile video subscribers per quarter
- Average monthly mobile video viewers with subscriptions
- Mobile video subscriber penetration per quarter (as a proportion of all mobile subscribers)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Millions</td>
<td>11.8</td>
<td>13.2</td>
<td>13.8</td>
<td>13.9</td>
<td>14.6</td>
<td>16.4</td>
</tr>
<tr>
<td>Percent</td>
<td>8%</td>
<td>6%</td>
<td>6%</td>
<td>7%</td>
<td>6%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Source: The Nielsen Company

We’ve done it again — in High Definition!

Five years ago, 360 Systems’ Image Servers set a new standard for price and performance, and became the all-time best-seller. Now, we’ve done it again with our new family of MAXX High Definition servers.

MAXX-1200 HD provides three simultaneous video channels, 24 audio channels, and over 70 hours of storage—plus slow-motion, 3-channel key-and-fill, and even remote workstation software.

MAXX-2400 HD provides the power of four video outputs, two inputs, more than 200 hours of storage, and all the features you expect in a broadcast quality server. Better image quality, multiple audio formats, and smart economics clearly position the MAXX-HD servers as Best of Class. Priced from just $16,000, they also make very good business sense.

Visit our web site to learn more about MAXX high-definition servers. Or e-mail us at HDservers@360systems.com and request color brochures on the new MAXX-HD family.

+1 (818) 991-0360 HDservers@360Systems.com www.360Systems.com
between those products has been achieved. Some products use MXF OP Atom, but the re-wrap can be performed easily during file transfer.

However, one product has successfully entered the market that changes this picture — Apple Final Cut Pro (FCP). FCP does not natively support MXF. Instead, it uses QuickTime — a wrapper format developed by Apple and widely accepted in the IT industry. That means that MXF-wrapped material has to either be rewrapped before being delivered to FCP, or a separate QuickTime reference file has to be created. Content created on FCP requires rewrap from QuickTime to MXF before it can be used in an MXF environment.

Hence, facilities that are using FCP as the predominant editing platform may want to consider QuickTime as house wrapper archiving format. A prerequisite is that QuickTime can be used across ingest, production, playout and archiving, thus avoiding rewrapping entirely. If this is not possible, MXF continues to be the best choice.

Embedded metadata

The fact that wrapper formats allow embedding of metadata can be an enabler for certain file-based workflows. However, there are caveats with descriptive metadata. Specifically, there is a lack of recommendations that allow tying down the full metadata semantics. SMPTE's metadata dictionary helps to define the semantics of attributes. However, a fully specified standard reference data model and a specification about how to map that model to the file embedded metadata are required to tie the attributes to specific entities in such a model.

If such a data model was available, an organization could map its own data model to this reference model, thus ensuring that the semantics of the embedded metadata is clearly articulated. If an organization maps its proprietary data model to the embedded metadata, the result is just as proprietary; no other organization has knowledge of the semantics and hence cannot reliably interpret the data when receiving the file. Embedded descriptive metadata only is useful for file exchange between two systems or two organizations if the semantics is unambiguously agreed upon.

Embedded metadata in archives

In general, the usefulness of embedded descriptive metadata in archived files is questionable. At first, there seems to be an advantage in embedded descriptive metadata when archiving because:

- The file can be identified even without a database referencing it;
- In case of a loss of the database, basic information can be restored from the file.

In order to qualify the first point, it's important to understand that, in
Now there's no need for multiple cards for video and audio processing. Our new XVP-3901 delivers all the essential functions on a single module. It offers up/down/cross conversion, with simultaneous 3Gbps/HD and SD outputs. There's also integral fiber I/O, full AFD support, and background keying. Multi-channel audio performance is equally impressive, with advanced processing of 16 embedded and 8 discrete (AES) channels. It's time to rethink what's possible.
a digital archive, hundreds of thousands of files reside on IT storage systems, primarily data tape storage vaults. There is no way that a user could find a file via exploration of file level metadata, as this metadata is not searchable. Only when maintaining metadata in a database, or as an index in a search engine, can users search and find content. As the full metadata is available in the MAM database, using the MAM search functions is the only sensible way to search for a file.

For the second point, the IT industry agrees that the right way to protect a database is using standard IT database backup. Restoring a failed database typically takes a matter of hours. In the case of an archive of 100,000 hours of content in DV50 with eight audio tracks, it would take close to 260 days of restore time using a single LTO-4 drive. Even if the process used 10 drives in parallel, it would still take almost four weeks to retrieve and analyze the files. It is more sensible to invest in standard IT protection mechanisms and apply related best practices.

There is also the issue of updating embedded metadata. Unfortunately, metadata changes are quite common. Even basic metadata, such as titles, may change throughout the content lifecycle. Hence, there is a high probability that, if not updated, embedded metadata is outdated rapidly.

However, the primary long-term storage technology used in TV archives today is digital data tape, and it is difficult to apply changes to files hosted on data tape. You have to restore the file from tape to disk, apply the change, write the updated file to tape, mark the former version as invalid, and remove it via defragmentation. Defragmentation means copying all valid files to a new tape and releasing the old tape for reuse. In real-world archives, this is not feasible.

A file may even reside in multiple, and potentially remote, locations. Here, metadata updates would require distributed transactions on all copies. Otherwise the database and the primary archived file go out of sync, and the files in the various locations would have different metadata.

Metadata in file exchange

Being able to embed metadata in files that will be exchanged with external business partners is useful, as it allows you to tightly couple metadata and essence. Within a business, metadata exchange can also be accomplished in alternative ways. Examples are partial database synchronization and exchange of metadata via API or XML files.

Due to the lack of recommendations and standards, partners that want to exchange content with embedded metadata have to agree upon the extent and the semantics of the metadata. The extent may differ depending on the type of transaction and the partner relationship.

Whether the embedded metadata you receive remains in the file after importing it to the MAM database or is deleted is of little importance, even though it is a good idea to retain it. It is important to remember, though, that it will have to be updated when the file is retrieved from the archive and delivered to another partner, as it may have been modified in the database. Or the exchange may require a different set of metadata and semantics.

Peter Thomas is CTO for Blue Order Solutions.
More buyers choose Ikegami's CMOS Cameras for multi-format HD performance.

- Native Multi-format HDTV video capture/output.
- High speed imaging capabilities for creating slow-motion video.
- Reduced power consumption with cooler operating temp.

HDL-50
HDK-79EC
(with System Expander and LCD Viewfinder)
HDN-X10 (EditcamHD)

See Us At NAB Booth #C5108

Ikegami Electronics (U.S.A.), Inc. 37 Brook Avenue, Maywood, NJ 07607
East Coast: (201) 368-9171 West Coast: (310) 297-1900 Southeast: (954) 735-2203
Southwest: (972) 869-2363 Midwest: (630) 834-9774 www.ikegami.com
Personalized television
Addressable ads require asset-based video processing.

BY CHRIS GORDON

It goes without saying that personalized television is "in." Subscribers increasingly demand content they selected, while advertisers are moving toward interactive, personalized advertising. The power of the Internet to customize ad delivery per user has set a new bar for advertising ROI. Few are feeling the impact of this change more acutely than the old guard of news and information, the newspapers. The Internet started as a text-based medium and now offers much of the same content found in the paper. Users have taken notice and are changing their behavior, with advertisers following their every move. As the Internet evolves from text to rich multimedia, savvy video service providers are adjusting their businesses to deliver the personalization demanded by the user while providing the audience segmentation and customization increasingly demanded by the advertiser.

Addressable advertising

Addressable programming and advertising represents a large opportunity for today's video service providers. While local advertising revenue continues to be a growing business for cable operators, it is being outpaced by the rapid growth for the advertising-supported Internet giants. Furthermore, the percentage of paid-click, or click-through, advertising continues to increase, representing a new category of high-value advertising not currently tapped by today's video service providers. Growth in ad spending has been slowly migrating from traditional broadcast outlets to interactive or personalized outlets. As the economy continues to evolve over the next several quarters, many anticipate that the pace of ad migration will accelerate. At the same time, the recipients of this shift in ad spending have announced plans to move in the direction of "display," which is Internet-speak for television.

The demand for personalized advertising is an enormous opportunity for today's video service provider. Addressable advertising in the context of the home TV environment is the Holy Grail for today's ad buyers. Viewers are receptive and engaged, and personalized messages have high value. Video service providers therefore have a unique opportunity to dramatically increase the advertising CPM by providing advertising messages that deliver on that promise. They can also tap the relatively new category of high-value paid-click or click-through TV advertising while providing the advertiser with unparalleled metrics about the viewing audience. Video service providers also have an important advantage over the Internet service providers when it comes to the subscriber. For Google to compete with the video service providers, it needs to make us change our lean-back TV behavior, our home network and our love affair with the remote control. Video service providers can extend their offerings to meet the 21st century demands of users and advertisers without asking much of the consumer. All they really need to change is the back-end technical infrastructure.

There are four high-level types of technology required to provide addressable advertising: the subscriber database, the personalization algorithm, the ad splicing technology and the required bandwidth. Service providers have excellent subscriber databases that support billing and marketing efforts, while personalization algorithms are readily available from a variety of vendors. This discussion will focus on the latter two types.

Ad splicing technology

Ad splicing, while relatively new to local operations teams, is a relatively mature technology. Standards for signaling ad availabilities and transferring files are well understood by a broad array of technology vendors. In short, splicing is easy. (See Figure 1.)

However, splicing ads into programs on a scale of granularity to match the number of televisions in the network is an entirely new challenge. Video processing and quality control must be separated from the ad splicing function such that video processors are allocated per asset (ad
HVS-300HS: The New Standard in Small HD/SD Switchers!
Unrivalled Features, Unequalled Cost Performance

- 1U very compact main unit
- Operate with operation unit, front/remote panel or GUI software control via LAN
- HD/SD-SDI 4 input/4 output standard, Max. 12 input/8 output
- Frame Sync, up-scaler, and Proc Amp on each input
- Variety of I/O options such as HD/SD-SDI inputs, DVI-D, VGA, HD/SD analog component, and analog composite
- Built-in 16-split multiviewer, supporting 4, 10 or 16-split view with tally and title display
- Dual Picture-in-Picture function
- Up-stream Keyer (with Chroma Key) and DSK both with 2D DVE
- Various 2D and 3D DVE transitions
- Over 100 wipe patterns
- Two channels of still stores
- Optional Aux remote panels

Now FOR-A offers a complete line of switchers from our affordable 1M/E up to our new 3Gbps ready 4M/E model
or program) and not per stream. Today's stream-based ad splicer is a fully equipped piece of video processing hardware, capable of changing the video pixels and macroblock quantization to create the correctly sized and shaped space for the inserted advertisement. While this stream-based approach has worked well for regional ad placement, it has two fundamental limitations for addressable advertising: quality and cost. By enabling these platforms to modify the video to insert the advertisement, operators lose control over the quality of the program and advertisement. The highly distributed architecture required to support personalized ad insertion makes the QC issue exponentially larger.

The costs of stream-based systems scale up with the number of streams. To enable ad splicing, every stream requires its own video processing unit. While this cost model works when shared across thousands of subscribers, it falls apart when each television requires a unique stream and a dedicated processor. To solve the quality and cost problems, there must be a fundamental shift from the legacy approach of stream-based video processing to a new approach of asset-based video processing. Ad or program assets can be preprocessed and stored, once and only once, as a constant-quality variable bit rate stream. They can then be combined by a scalable splicing multiplexer at the network edge in a cost-effective manner without compromising quality.

Required bandwidth

Addressable ads require addressable bandwidth, and bandwidth in a cable or satellite system, while extensible through incremental capital investment, is finite and in high demand. The introduction and expansion of HD programming is critical to the success of the enterprise, but HDTV demands four to five times the bandwidth of SD. HD VOD is a valuable revenue generator and competitive tool, but the bandwidth required to support it further reduces the available pool of bits. While it may be possible to store the advertisements locally on the associated set-top box/digital video recorder, the vast majority of deployed set-top boxes don’t have the storage capability and could not participate. Therefore, to deploy an addressable advertising solution in the near term, the unique and personalized ads have to be delivered centrally, much like VOD assets. And while neighborhood segmentation will get us part of the way there, to match and exceed the value of Internet ad placement, video service providers need to provide customization at the household, and even TV room, level.

There are several bandwidth management tools available today. Satellite operators and some content providers have adopted MPEG-4 for HD programming. Cable operators are transitioning to digital and deploying switched video technology, but more is required. MPEG-4 is not practical for cable in the near term due to the large deployed base of MPEG-2 set-top boxes. Switched digital video will not work for satellite due to the inherent one-to-many design of the satellite transmission system.

It is clear that providing the personalization users and advertisers demand will require a holistic approach. For cable operators deploying switched digital video, much of the bandwidth gain is realized on the long-tail content, or content that is not highly viewed (not where advertisers typically want to buy time). So while switched video is a critical first step to addressable programming, the operator will need to first create the bandwidth/space for the new tier of switched services in addition to optimizing the switched programming for the most efficient bandwidth use.

First, video service providers need to take a careful look at how to optimize the broadcast spectrum, the largest part of spectrum use today. By applying advanced compression techniques, up to 50 percent of the broadcast spectrum can be reclaimed to support addressable programming and advertising.

Second, service providers must find methods to deploy the known and proven technology of VBR statistical multiplexing on the personalized programming that viewers and advertisers demand. By enabling VBR for these streams, another 50 percent gain of the switched/on-demand bandwidth can be realized and applied to addressable programming. The critical event is a shift from stream processing to asset processing and a separated, cost-effective edge multiplexing and splicing capability.

Finally, and perhaps most importantly, quality cannot be sacrificed. Today’s premium consumers, those most coveted by advertisers, are increasingly aware of quality differences and are being aggressively marketed to on the basis of quality claims. Sacrificing quality to achieve addressability would be a strategic mistake, and the consequences would become quickly apparent.

Embracing a new approach

The opportunity to provide addressable programming and advertising is enormous. It is the lifeblood of the new media giants and a critical component of the 21st century media and entertainment landscape. The potential is great, and the enabling technology is within reach.

To provide an architecture and cost model that will enable addressable ad splicing, service providers must embrace a new approach to asset-based video processing. To provide the required bandwidth, they must optimize their systems holistically, squeezing every last bit from all segments of the spectrum. And to maintain a strong competitive position against up-and-coming service providers, they must continue to provide the highest-quality programming on the most important display — the television.

Chris Gordon is director of product management for Imagine Communications.
You want it all?

No problem.

Meet the FS1—a 1RU Universal HD/SD Audio/Video Frame Synchronizer and Converter.

It's a multiformat world, and the new FS1 brings it all together...at a breakthrough price.

Turn SD into HD, HD into SD, or HD 1080 into 720 (and vice versa), with FS1's hardware-based 10-bit up/down/cross-conversion.

Embed and disembed audio.

FS1 not only interfaces to all of your equipment, but also with your facility via its LAN-based web-server and SNMP monitoring. Push a button, or talk to it from across the web.

Put FS1 in the middle of your facility, and see how it makes nice with your gear, your multiformat needs, your engineers...and your budget.

Check out our website, or give us a call to find an Authorized AJA Converter Dealer near you.

www.aja.com

800.251.4224
Exception handling is one operational aspect of an effective media workflow. Here, an engineer uses an A/V solution, Snell & Wilcox's RollCall.

BY AL KOVALICK

Since the advent of file-based technologies, innovative and powerful implementation strategies are being used for broadcast, news, post and digital intermediate (DI) workflows. This article covers four key features of these workflows: system design considerations, process orchestration, operational aspects and workflow agility factors. Several fundamental flow models have been developed that are components in other more elaborate systems. These include high availability concepts, documenting workflow using unified modeling language (UML) diagrams, file transfer advantages, loosely coupled design ideas, service-oriented architecture (SOA) integration and more.

Key elements of media workflows

Workflows are found everywhere in life. Basically, workflow is defined as "a set of sequential steps needed to complete a job." Some workflows are easy to implement, needing only a few tools, whereas others demand mountains of infrastructure and human capital.

Figure 1 on page 44 shows the five precincts of interest for media workflows. The central box represents the actual workflow steps. The other four domains help define the "what and how" of workflow functionality. Some of these are common to all workflows, such as operational elements, whereas others, such as audiovisual streams and file-related processes, are specific to media systems.

For the media enterprise, almost agnostic to size, A/V processes are often implemented using a combination of traditional A/V plus IT gear and processes. (See Figure 2 on page 44.) These hybrid systems support various workflows. Ideally, the implementation is malleable and can morph to meet the needs of future workflow changes. Also, built-in reconfigurability is vital.

Throughout this article, the constituent elements of Figure 1 will be explored with examples. The end goal is to provide a simple, high-level checklist to refer to when building a new workflow or modifying an existing one. This coverage is not exhaustive; not every aspect will be examined. However, you will be versed in the language and concepts of media flows and their design.

The design element

Any viable workflow needs a design stage. The key elements of interest are:

- **Architecture.** What solution space do you need?
- **Reliability/Scale.** There are 14 methods for building...
Broadcasters who need the best, turn to Florical

Look what’s NEW! at Florical systems

Featuring at NAB09

Visit us at NAB09 booth SU1802

S.M.A.R.T. Central is a smart client based gateway into our television broadcast automation system. This unique product was introduced at NAB09 and improves three main areas of workflow: 1) reduces redundant tasks, 2) makes systems accessible over a closed network to improve workflow while maintaining a completely secure system and 3) automatically emails critical reports to key personnel to improve communication and response times.

RemoteEditor - NEW! - a module within S.M.A.R.T. Central that allows access to current and future schedules for viewing or editing. As with all of S.M.A.R.T Central products, RemoteEditor can be accessed from any networked machine so that last minute changes can be made from almost anywhere ... potentially eliminating make-goods.

InventoryBrowser - NEW! - a module within S.M.A.R.T. Central to browse the database and view low resolution copies of server inventory. With the power of smart client technology, the user can log in from any networked machine, whether from a Sales laptop in the field or Traffic desktop, and view content that has been dubbed into the broadcast servers. The tool is perfect for Traffic or Sales to view spots from the convenience of their desktop.

AssetDispatcher - NEW! - streamlines central ingest systems. AssetDispatcher is a transfer agent that uses regional dub-lists and programming settings to push commercial and long-form from a centralized ingest location to regional sites after material has been approved. Timing and all metadata can be entered once and shared by all.

RemoteAirBoss - NEW! - a module within S.M.A.R.T. Central for master control automation that allows access to monitor or control on-air from any workstation within the Florical Network. RemoteAirBoss can be used to control a single channel or can simplify centralization of master control, allowing dynamic selection of "hub" location based on your unique workflow needs or as your workload changes.

AirBoss has a new look! Florical has enhanced the look and user interface, including a new on-screen video feed. Come to our booth at NAB09 to see the look (SU1802).

352.372.8326 www.florical.com
reliable systems.

- **Standards and interoperability.** For example, SMPTE, IETF, IEEE, ITU-T, W3C and AMWA.
- **Implementation.** This includes choice of vendors, systems integrator divide and conquer rule, each process is implemented with the end goals in mind of one unified infrastructure, not islands of operations. Any given process may connect to central storage, application servers, a LAN/WAN, and support.

- **Documentation.** Workflow design is not just wiring and layout.

The famed Chicago skyscraper architect Louis Sullivan said, "form follows function." This simple yet powerful axiom applies to media workflows as well as skyscraper design. In essence, define your work space, and design it. Allow for growth, support agility and high availability as budget permits, and document not only layout and wiring but flows too. Figure 3 on page 51 shows a typical generic flow for program production. This could be modified for broadcast, live event production, news, DI, or any number of flows.

Figure 3 may be the first step in defining the work space for a new project. The level of detail is intentionally high. The design architecture will support these functions at a minimum. As the designer applies the all 14 could be applied at once. This is hardly practical, but some real-world, mission-critical systems come close. Normally, a few methods are applied, as determined by business needs.

Every design should have a service availability goal as a percentage of uptime. For example, 99.9999 percent uptime or ~32 seconds per year of downtime could be a goal. This value is achievable and allows for one or more serious failures with 32 seconds available, or less, to route around the failed element. Another approach is to decide what length of time a system can afford to be down and design from that value. Given the acceptable downtime, a designer can select options from Figure 4 to meet this goal.

Important concepts in HA designs are a single point of failure (SPOF) and no single point of failure (NSPOF). An SPOF device is not designed with redundant components. If any critical component fails — such as power supply, controller or storage — then the unit often fails. SPOF devices are used when NSPOF is not necessary or affordable. NSPOF, on the other hand, is used when the element is a critical link in a workflow. For example, most large video server storage arrays are designed with NSPOF thinking. In this case, any single element can fail, and the unit keeps plugging along with no apparent downtime. NSPOF devices have dual power supplies, multiple fans, duplicate network I/O, dual controllers, passive backplanes.
Sync | Delay | Convert | Clean & more with

one single solution.

When you purchase one Algogear™ card at one very affordable price, you have the flexibility to repurpose your card at any time with any one of our many Algogear solutions—at no additional cost. Our cards are reconfigurable and FPGA-based—adapting to your production pipeline as your needs change—giving you more flexibility and more choices.

- Reduced support costs
- Minimal spares inventory
- Increased operational life expectancy
- Multi-channel, lower deployment footprint
- Multi-function per channel, higher level of integration
- Updates and upgrades at no additional cost

Call Algolith today to learn more about our One card, One price, More choices program.

www.algolith.com | 1-877-ALGOLITH | sales@algolith.com
and more.

Some themes in Figure 4 are dual elements and I/O, dual pathing, NSPOF, mirrors, self-healing, caching, and failover to a spare. Each of these helps to resolve a particular device, link, I/O port, store or control point failure. Auto failover is vital when coupled with other methods. When a standalone element fails, such as a link, it is necessary to reroute the data traffic to an alternate link automatically. So, early fault detection is also paramount in an auto failover scenario. The total time it takes to detect and correct, or bypass, a fault is important.

Standards ubiquity

No practical system should be constructed without applying standards from a broad range of sources. Gone are the days when SMPTE standards were the only glue needed to create a video system. Today, in addition, we need the standards from the Internet Engineering Task Force (IETF), W3C and the Institute of Electrical and Electronics Engineers (IEEE) among others. User groups such as the Advanced Media Workflow Association have a mission to create best practices and recommended technologies for implementing workflows in networked media environments. They are currently developing specifications for the Advanced Authoring Format (AAF) and Material eXchange Format (MXF) component inventory method (AS-02) and a constrained MXF version for program delivery (AS-03) to broadcasters and other specifications.

Workflow documentation methods

Finally, under the design banner, consider documentation. For many years, facility documentation was a collection of diagrams showing equipment layout and racking with detailed wiring and inventory diagrams. This level of documentation is still necessary but not sufficient to describe the workflow component of an installation. While not every installation will require a workflow diagram, many will. If the workflow is complex, with disparate processes and time-related dependencies, the following methods should be of value.

Workflow stakeholders include the analysts who create and refine the processes, the technical developers responsible for implementing the processes, and the technical managers who monitor and manage the processes. Two diagramming methods are gaining acceptance to define process flow. One is based on Unified Modeling Language (UML) and another on Business Process Modeling Notation (BPMN).

UML offers activity, sequence, communication and timing diagrams.
Take the lead in Mobile DTV

ATSC Mobile DTV Networks
product family

Register for free
ATSC Mobile DTV
poster

www.rs-us.net/dtv003
Visit us at NAB Booth C1933
workflow using networked media. Videotape flows are limited in many ways, and networked media allows for many dimensions not permitted using only tape.

Comparing flow types

Next, let's compare three flow types

![Diagram showing three flow types](image)

Figure 5. Fundamental media transfer modes — one using pure streaming and two using file transfer. (See Figure 6 on page 56.) The general idea is to process an incoming video signal program as follows: ingest/record, apply an aspect ratio convert and add side panels, add a lower-third graphic and finally output the result. The top flow is most commonly seen using SDI (or AES/EBU links for audio-related applications) connectivity. Of course, a process may be any transform or human-assisted means. For live events demanding a minimal in/out latency (few video frames), SDI streaming connectivity is often used.

The middle flow uses the bucket brigade method. First, the entire program is ingested and saved to storage. Then, either by a file transfer between processes or via an intermediate “parking place” storage device, the program file is moved to the aspect ratio converter (ARC) process then to the graphic composite overlay process, and finally is output. In each step, the entire file is imported to a process and then exported to the next process in the chain. Hence, the bucket brigade nickname.

The delay from in to out can be quite large, on the order of 10 minutes to 20 minutes (total ARC and composite process delay) for a 60-minute program, not counting the time to ingest the incoming program (60 minutes). The faster each individual process, the shorter the total in/out delay. A designer would choose this method when completion delay time is not a critical metric. For example, if the completed program is needed the following day, then by all means, use this flow method. When timing is not critical, low-speed transfers and slow processes may be used. Note, too, that individual processes do not need to work in real time, and this relaxes their design. In fact, most A/V processes can work faster than real-time video.

The third flow is useful when the in/out delay needs to be low delay, but not as short as the fully streamed flow. Basically, the target file is continuously streamed between processes. This style may be called “process-while-record,” with “edit-while-record” being a common version. So, as process 1 finishes say the first 30 seconds of its task, process 2 can start its task and so on. There’s no need to wait for an entire process to complete before another process in the chain can start, as with the bucket brigade. As long as the next process does not work ahead of the succeeding process, then all is well. Process timing is critical. Edit-while-record is used with some
If your production is this critical, chances are, you’re already using Ross.

Martha can’t hear as well as she used to. But, after all these years, the one thing that hasn’t changed is JJ’s sparkle.
4 robotic cameras, a Vision switcher panel, a loaded 4 ME QMD/X chassis, and built-in UltraChrome™ advanced chroma keying
From headlines to lotto numbers. Ross - Give ‘em what they came for.

Vision QMD/X
The Vision QMD/X is the most powerful production switcher we make. It combines our modular control panel with the powerful QMD or QMD/X live production engine, providing up to 4 full MLEs with up to 6 downstream keyers. The Vision QMD/X is a great choice for the most demanding newscasts, sports and special events with either HD or SD requirements or a mix of both. With a Vision QMD/X you’ll know that whatever the production challenge, you’ve got it covered.

NAB ’09 Booth SU1807

Ross Video designs, markets, manufactures, and supports a wide range of innovative products for use in broadcast, distribution, live event and production applications. Ross products are found in over 100 countries and are used 24 hours a day, 365 days a year to produce and distribute video and audio signals. www.rossvideo.com
breaking news story production. The editor can start the task even while the program material is being recorded, with consequent faster time to air.

These flow methods may be combined in hybrid means to form serial/parallel versions. Decision steps are also needed, so a process branch may occur. A rules engine may be useful to automatic process tasks. Look for opportunities to automate common process chains. This does not only save manpower and speed up a process chain, but also it yields metrics to improve the flow.

The metric of money

One common metric of interest to all facility managers is daily operational cost of a given process flow. If file transfer is involved between site locations, the cost of bandwidth may be a large factor in workflow cost. We all know the proverb time equals money. In the spirit of the analogy, there is a corollary to this: \(\frac{1}{T} = \text{Money} \). This is also true because \(\frac{1}{T} \) is rate (such as Mb/s), and we pay for transfer date rates. A 1Mb/s WAN link costs substantially less than a 100Mb/s link.

The operational element

When defining a workflow process step, it is good practice to define each of the following five characteristics for each step. For this example, let’s use the create proxy step in Figure 3.

- What are the specs for the create proxy step (encoder type, data rates, speed, file format, invoke means, input/output means, etc.)?
- How will create proxy be implemented? Use Vendor X’s encoder, running on Vendor Y’s server connected to storage main (reliability means, failover means, scale means, monitor means, Web services means, API means, etc.).
- When will create proxy be invoked, (workload, duty cycle, peak/average jobs, etc.)?
- Where will create proxy be located (local instantiation, remote service, contracted service, etc.)?

Figure 6. Three common media flow models

Can It Be This Easy?

Quality Mobile Broadcasting

Yes! GuideBuilder Mobile allows broadcasters to introduce mobile ATSC services as an extension of their current operations. Integrated mobile DTV metadata management and generation enable transmission of required programming information to mobile ATSC receivers, allowing viewers to select and view channels.

1. Integrates smoothly with existing multiplexers, listing services, traffic systems, and automation
2. Supports centralized metadata generation for terrestrial and mobile broadcasting
3. Enables delivery and display of parental control data
4. Allows GuideBuilder users to repurpose existing investment in information and metadata management systems

For a product demo visit us at booth SU3402
To schedule a demo contact: sales@TriveniDigital.com

www.TriveniDigital.com
We've always had an eye on the future – a strong vision for where the TV business is going and the technologies it needs to succeed. With our Emmy® award-winning video compression and on-demand solutions, and the latest in content management systems, we've built a strong reputation for keeping our customers firmly on track.

Now as part of the Ericsson group, our vision is deeper and broader as we enable all television service providers to deliver the Individual TV Experience and generate subscriber and revenue growth with next-generation DTH, IPTV, VOD and personalized advertising solutions.

Our new collection of visionary papers will give you all the information you need to build your individual journey into the future of TV. Share our vision, visit www.tandberrgtv.com/vision.

See us at NAB 2009, Booth #SU5108
Move to the LIGHT Side

THE FUNDAMENTAL ELEMENTS OF MEDIA WORKFLOWS

- Who will own and manage the create proxy service (A/V operations, IT operations, contracted operations, etc.); and who will use it (number of invokers, department, etc.)?

The process of answering each question forces a designer to think deeply about each process. This way, hidden efficiencies may be uncovered, such as we can share server Y with other processes, because the create proxy workload is small even with two times more loading. Or, we can locate server Y in room M, because there is ample power and cooling available.

Performance QoS, reservations, exceptions

Related to the five questions discussed previously, it is valuable to define the performance quality of service (QoS), reservation methods and error handling as separate aspects. Documenting application QoS is useful when scaling or changing a service in the future. When a service is shared (edit suite), then a reservation system with time, billing and resource usage may be required. Providing a system-wide reservation board (similar to a flight departure/arrival schedule display) available for all to see is often good practice at a large facility.

Exception handling deals with hardware and software warnings, faults, errors and status messaging. When something is out of order, it should be registered and personnel notified to repair it. Exceptions may range from warnings of intermittent errors, to out-of-spec signals (audio peaks), to resource status (90 percent full), to a complete device failure. High-end infrastructure monitoring systems are available from traditional IT vendors. A/V specific solutions are available from several vendors.

Investing in monitoring and diagnostics products is a matter of return on investment for the most part. If you are offering services, such as creative tools by-the-hour or commercial program playout, then money spent on keeping the facility up and running is worth the investment.

Workflow agility

Agility is defined as the ability to move in a quick and easy fashion, or change directions quickly. Typically, media workflows are purpose-built — broadcast, post, animation, news, live events, DI and so on. It is prudent, as discussed, for form to follow function. Nonetheless, within the bounds of scale, future changes and reconfigurations, a workflow should be agile.

Loosely coupled designs

One key aspect of flexibility is the concept of loose versus tight coupled processes. This industry is built on tightly coupled designs — hard-wired, rigid, A/V systems with little flexibility for reordering, or quick reuse of components. Sure, SDI and AES/EBU audio links are routable, but this does not constitute a loosely coupled system.

Loosely coupled designs rely on the aggregation of distributed services. A service is a networked application function available for use by others. Examples are video transcoders, media encoders, transfer engines, 3-D render engines, a media asset management (MAM) searching engine and technical QA evaluation. Each function is available over a networked IP connection, is instantiated on an application server, provides a standardized access API and defines a performance QoS for each client user.

Given a collection of relevant services, a designer can configure them to perform useful operations. These services are scalable, reliable (based on methods explained above), reusable (the mantra of services design), and well-defined in terms of API interfacing, data structures and performance QoS.

One outstanding example of a services specification is defined by the W3C.org group. It has defined what is called Web services, and this includes specifications for all aspects of interfacing to services, securing, naming, addressing, finding, monitoring and so on. Despite the name Web services,
these are not bound to the Web. They may be implement-
ed across the Web or inside a secure enterprise environ-
ment. Google, Yahoo, Salesforce.com, Amazon, MySpace,
and many others offer Web services (or similar RESTful
services) for public and private use. Some enterprise me-
dia facilities use Web services for select applications. They
are not a panacea for all aspects of a media workflow. Real-
time A/V operations often require dedicated devices to
meet their QoS specification, and Web services fall short
today. Still, when real time is not an issue, workflows using
Web services are practical and will see more light of day as
the industry builds confidence in their practical value.

Thinking SOA

The SOA is broadly defined as an architecture of loosely
coupled, wrapped services communicating via published
interfaces over a common middleware layer. This defini-
tion is not universal; there are others, but this will suit our
needs and scope. SOA is strongly linked to Web services
and other related networked service concepts. It provides
the discipline to create scalable, reliable, managed business
and media workflows. Using the technology principles of
service reuse, granularity, modularity and interoperability,
an SOA provides a firm infrastructure for efficient appli-
cations deployment.

SOA is not a technology, but rather an approach — a
framework for creating solutions. Its acceptance is grow-
ing in medium- to large-scale enterprise organizations.
According to the analysis firm Forrester Research, at least
63 percent will have one or more SOA implementations by
the end of 2008. Looking forward, many media organiza-
tions will be using SOA principles. This affects equipment
design because vendors will begin to provide service inter-
faces on their products to better interface into SOA envi-
norments. In the end, this creates more flexible workflows
and efficient facilities.

Conclusion

The definition of workflow as “a set of sequential steps
needed to complete a job” is deceptively trivial. Yet, behind
these few words lies a world of sophistication in terms of
design, planning, documentation, implementation and
operational aspects. By using these concepts and maxims
as a guide or checklist, architects, designers and engineers
will have additional confidence in the merits their work-
flow solutions.

Al Kovalick is a strategist and fellow with Avid Technology and
author of “Video Systems in an IT Environment — The Basics
of Networked Media and File-Based Workflows (second edition

Editor’s note: This article was previously published in the
November/December, SMPTE Motion Imaging Journal,
copyright, 2008, SMPTE.
In last month's article, "24p judder," we explored solutions for the 24p judder issue that results from using low-cost cameras. This article will be a continuation of that discussion.

Deinterlacers used by flat-panel monitors must correctly process 720p60, 24p carried within 720p60, 1080i60 and 24p carried within 1080i60. In the first case, frames are simply passed through the deinterlacer and, if necessary, upsampled to 1920 x 1080.

Interlaced video must, of course, be deinterlaced. When not carrying 24p, deinterlacing is a relatively simple process. When carrying 24p, a more complex process is used that requires a deinterlacer to correctly detect the presence of 2:3 pulldown.
WE'RE TRANSITION READY.
ARE YOU?

Since 1951, TV professionals and broadcasters have relied on SENCORE to support them at every technology transition in the video industry.
Deinterlacing 24p video

When 2:3 pulldown cadence is detected, a deinterlacer must switch from video mode to film mode. (See Figures 1 and 2.) In film mode, 540-line Fields 1 and 2 are combined to make one 1080-line progressive frame, which is displayed twice (green). Next, 540-line Fields 3 and 4 are combined to make another 1080-line progressive frame, which is displayed three times (blue). Four fields have now been converted to five progressive frames.

Next, Field 5 (red) is skipped, and Fields 6 through 10 (except Field 8) are converted to another progressive five frames. Through this process, eight fields (four film frames) are converted to 10 progressive frames.

Unfortunately, more than 80 percent of 125 monitors tested by Home Theater magazine failed a 2:3 pull-down detection test. The high rate of pull-down detection failure raises a red flag to those editing 24p material on flat-panel monitors.

When unable to detect 2:3 pull-down, a flat-panel monitor falls back to video mode deinterlacing. The result, as shown in Figure 2, is the display of three frames — within a stream of 10 frames — that contain pictures from two different film frames (gold). The outcome is 18 frames every second with degraded quality.

Many flat-panel monitors, however, offer a way to bypass the deinterlacer — a 1080p24 input connector. This connection accepts 24 progressive frames each second. (See top row in Figure 3.) To use a 24p connection, your computer's graphics card, or hardware connected to your computer, must be able to output 24p via an analog or digital connection.

LCD monitors

No matter whether a 1080p24 input is used or pull-down detection is perfect, LCD technology has a liability — perceived motion blur. The top row in Figure 3 shows four progressive frames. As shown in the second row, each presentation is visible for 1/60th of a second. Our eyes use the presentation of every new frame (top row) to determine the motion vector of a moving object. Following this vector, our eyes track the object.

An LCD monitor presents a continuous image until it is replaced by another picture. Each picture leaves a trail on the moving retinas we experience as monitor motion blur.

By using electronics and LCD panels that operate at 120Hz, motion blur can be reduced using several techniques. The third row of Figure 3 shows the 1/120th of a second presentation of a black frame every other presentation time. Each presentation erases the previous image from the retina, thereby decreasing motion blur. Because display brightness is significantly reduced, this technique is typically employed only by professional LCD monitors where low display brightness is not an issue.

The fourth row in Figure 3 shows every other frame (green) generated by electronics that interpolate these frames from adjoining frames. This technique has two advantages. First, when there is motion, each interpreted picture is different from the preceding one; therefore, each picture replaces the image on the retina, thereby reducing motion blur. (Next-generation panels will operate at 240Hz.) Second, several 120Hz LCD monitors are able to display a full 1080 lines of vertical resolution even when objects are in motion. (Most 120Hz displays offer about 580 lines of verti-
cral resolution when there is motion, and 60Hz LCD monitors measure at only 330 lines.)

The interpolation technique, however, has two disadvantages. First, there is a possibility the interpolator will generate image artifacts. Second, the interpolator essentially temporally upsamples the video, thereby eliminating the desirable low temporal sampling judder in 24fps media. This loss shifts the viewing experience from film-via-video looking similar to film to film-via-video looking like video.

Figure 4 shows an alternate technique supported by some 120Hz LCD monitors. It uses what is called 5:5 pulldown. Each frame is repeated five times, generating a 120Hz refresh rate without 2:3 pulldown artifacts. While this technique eliminates visible 2:3 pulldown judder, it has a downside.

As the display refresh rate increases, the image sampling rate input by our eyes also increases. The higher the sampling rate, the smoother the motion appears. Even though 5:5 pulldown presents only 24 new pictures per second, the repeated four pictures push the overall sampling rate high enough to shift our experience from that of film to that of video.

Plasma monitors

Plasma monitors refresh at 60Hz, although one brand (Pioneer) offers the option of 72Hz when displaying 24p. When running at 72Hz, as shown in Figure 5, each frame is repeated three times — 3:3 pulldown. (Pioneer monitors can obtain 24p via a 1080p24 input or from a 1080i60 signal using its film-mode deinterlacer.)

Pixels that are illuminated follow a cycle of charge, activation and discharge (erase). During each pixel’s brief activation period, its brightness is determined by pulse-code modulation. Motion blur is low because from the time of discharge through the display of all other rows, and including the pixel’s next charge, the pixel is dark.

When operating at 72Hz, a plasma monitor replicates the viewing experience created by a film projector that employs triple-bladed shutter.

Eliminating 2:3 pulldown judder

It has long been a goal to view 24fps media on a video monitor without the contamination of 2:3 pulldown. Although 120Hz LCD displays that offer 5:5 pulldown are marketed as meeting this goal, their very high refresh rate detracts from the film experience.

A plasma display operating at 72Hz, or potentially an LCD monitor that can switch to a 144Hz refresh rate for 24p media, correctly replaces 2:3 pulldown judder with filmic motion judder. (See Figure 6.)

Equally important, the inherent temporal sampling judder of 24fps media is preserved.

Pulldown is also employed with 720p60 video. To move 24p video over a 60p connection, 36 extra frames are added each second. Figure 7 shows four progressive video frames in the top row. In the second row, frames are transferred (↑) or repeated (↓). Deinterlacing is not required as each 720-line frame can be sent directly to a flat-panel. The 2:3 cadence creates visible pulldown judder on 60Hz displays.

To eliminate pulldown judder, the monitor’s deinterlacer can generate

Figure 4. 120Hz 5:5 pulldown

<table>
<thead>
<tr>
<th>Video frame A</th>
<th>Video frame B</th>
<th>Video frame C</th>
<th>Video frame D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Figure 5. 72Hz 3:3 pulldown

<table>
<thead>
<tr>
<th>Video frame A</th>
<th>Video frame B</th>
<th>Video frame C</th>
<th>Video frame D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Figure 6. 3:3 pulldown with alternating black frames

<table>
<thead>
<tr>
<th>Frame A</th>
<th>Frame B</th>
<th>Frame C</th>
<th>Frame D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film</td>
<td>Film</td>
<td>Film</td>
<td>Film</td>
</tr>
<tr>
<td>Frame 1</td>
<td>Frame 2</td>
<td>Frame 3</td>
<td>Frame 4</td>
</tr>
<tr>
<td>Film</td>
<td>Film</td>
<td>Film</td>
<td>Film</td>
</tr>
<tr>
<td>Frame 5</td>
<td>Frame 6</td>
<td>Frame 7</td>
<td>Frame 8</td>
</tr>
<tr>
<td>Film</td>
<td>Film</td>
<td>Film</td>
<td>Film</td>
</tr>
<tr>
<td>Frame 9</td>
<td>Frame 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: 60p progressive 2:3 pulldown

<table>
<thead>
<tr>
<th>Frame 1</th>
<th>Frame 2</th>
<th>Frame 3</th>
<th>Frame 4</th>
<th>Frame 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film A</td>
<td>Film A</td>
<td>Film B</td>
<td>Film B</td>
<td>Film B</td>
</tr>
<tr>
<td>Frame 6</td>
<td>Frame 7</td>
<td>Frame 8</td>
<td>Frame 9</td>
<td>Frame 10</td>
</tr>
</tbody>
</table>

Steve Mollen is owner of Digital Video Consulting, which provides consulting and conducts seminars on digital video technology.
Since the early days of transcontinental and intercontinental networking of TV content, several intermediate communication links have generally been required to complete end-to-end delivery. This is referred to as “concatenation” and has been an area of significant attention regarding the maintenance of video and audio quality and integrity. In earlier analog systems, demodulation and remodulation of the TV signal at each en route microwave or satellite terminal contributed to signal degradation (particularly video signal-to-noise), which, in many instances, reduced the image at the point of delivery to less than that normally acceptable for broadcast.

The transition to video compression and digital networking has created new challenges in mitigating the effects of degradation caused by concatenation in the multiple encode-decode process associated with digital turnaround over satellite, wireless and terrestrial links. One particular problem is maintaining integrity of the 4:2:0 chroma component where an HD-SDI interconnect is used between concatenated decoders and encoders. This relates equally to both the widely used MPEG-2 and newer MPEG-4 (H.264/AVC) codec standards. (See Figure 1.)

HD-SDI is inherently a 4:2:2 interconnect, which requires that a 4:2:0 stream be upsampled and then downsampled at each digital turnaround. This can, within as little as four to five concatenated links, result in visual blurring of the color image to the point where the quality and integrity of HD content can be severely compromised.

This is of particular importance in applications such as HD digital electronic newsgathering, where the use...
Screen Service

END-TO-END SOLUTIONS

now featuring ATSC-MH

DVB-T/H
PAL
NTSC
ATSC
FLO
QPSK
QAM
ISDB-T

HEAD END
DISTRIBUTION
BROADCASTING
IPTV and MMDS

SCREEN SERVICE BROADCASTING TECHNOLOGIES S.p.A.
Via G. Di Vittorio, 17, 25125, BRESCIA, ITALY
Tel. +39 030 358 2225 - Fax +39 030 358 2226
info@screen.it | www.screen.it

SCREEN SERVICE AMERICA LLC
6095 NW 167th Street, Suite D-10 - Miami, FL 33015
info@screenservice.net | Phone: +1 305 826-2212
Fax: +1 305 826-2290 | USA Toll Free: 1-888-522-0012

SCREEN SERVICE DO BRASIL
Rua Tapajós, 90 | Boa Vista | CEP: 37.540-000
Santa Rita de Sapucaí - MG | BRASIL | Tel: +55 35 3473-3915

RRD USA, Inc.
350 5th Avenue,
Suite 3600
New York, NY 10118 - USA
Phone: +1 (212) 695 8378
FEATURE
CURE FOR CONCATENATION

Original 4:2:2
1st stage
2nd stage
Nth stage

Figure 1. Degradation of the 4:2:0 chroma component in concatenated operations

In a 4:2:2 format, the two chroma components are therefore downsampled by a factor of two from the horizontal luminance component, resulting in a pixel ratio of 960 x 1080; whereas in the 4:2:0 format, the U and V chroma components are downsampled by a factor of two in both the horizontal and vertical, resulting in a pixel ratio of 960 x 540.

Chroma sampling and MPEG-4
The recent introduction of the MPEG-4 (H.264/AVC) compression standard has delivered yet another improvement in digital network use. Most MPEG-4 content can be carried in less than 50 percent of the bandwidth required for similar MPEG-2-encoded content. MPEG-4 HD video performance at encoded data (bit) rates below 10Mb/s is generally accepted as sufficient to meet many broadcast TV operations, including HD-DENG.

For lower encoded video data rates, those at or below 10Mb/s in MPEG-4 (H.264), 4:2:2 chroma sampling may not produce any significant improvement in performance compared to that of 4:2:0. It also requires more bandwidth for a specific encoded data rate. Content encoded at 10Mb/s 4:2:0 requires approximately 20 percent less bandwidth than 4:2:2-encoded content.

This presents both an opportunity and a challenge: whether to use 4:2:2 chroma sampling and accept about a 20 percent increase in bandwidth cost, or to use the more efficient 4:2:0 format with potential chroma degradation in concatenated links.

Precision filter technology
One solution now available uses a precise set of filters that process the 4:2:2 chroma component and down-
To maintain non-degraded 4:2:0 chroma resolution throughout the concatenated chain, it is necessary for all encoders and decoders in the transmission link to use identical filter sets. However, the 4:2:0 stream may be decoded with degradation, but without undue errors or color displacement by decoders not fitted with the precision filter technology. (See Figure 5.)

The precision filter technology has been proven in tests demonstrating its ability to protect the integrity of the 4:2:0 chroma component in up to 16 concatenated encode and decode operations. Now, let’s examine the protection that such precision filter design provides.

In a series of tests, a comparison between the original chroma PSNR was made with that at the output of the second, fourth, eighth and 16th concatenation of the 4:2:2/4:2:0 conversions. Test results shown in Figure 6 demonstrate chroma degradation in conventional concatenated operations and the level of protection provided by the non-degraded 4:2:0 precise filter solution that maintained PSNR close to that of the original 4:2:2 source.

It is generally recognized that downsampling and upsampling is more difficult for interlace than for progressive video largely because of nonlinear phase characteristics. The generation of unwanted artifacts is also more pervasive. Even so, the precise filtering discussed here properly handles both video formats.

It appears that such a solution can enable longer-distance encoded video communications links with less degradation. As such, many of the problems of multiple concatenations could become a thing of the past.

Author’s note: The original research and material of Akira Nakagawa of Fujitsu Laboratories contributed to this article.

Keith Dunford is currently a consultant for the video solutions group of Fujitsu Computer Products of America as well as managing partner of The Exam Group.

Figure 5. 4:2:2 downsampling/4:2:0 upsampling process

Figure 4. Interoperability with conventional MPEG-4 decoders

Figure 6. Chroma PSNR of conventional and non-degraded technology

samples it with a low-pass filter and 2:1 vertical sampler to create a 4:2:0 output. At the receive end, the 4:2:0 chroma component is accurately upsampled to recreate a 4:2:2 signal, as shown in Figure 4, that can be passed to the next concatenated link over an HD/SD-SDI interconnect.

This process allows an encoded 4:2:0 stream to be carried efficiently over any digital communications link.
One key to predicting the future of a technology is being able to analyze its past. Over the past 50 years, Broadcast Engineering has followed technology trends. This article takes a look at the history of the television camera and predicts where the technology is headed.

The early days

Early cameras from the 1940s and 1950s may be dinosaurs now, but they’re still relevant in that they’ve captured the curiosity of collectors like Chuck Pharis. He currently own 130 cameras, primarily made between the 1930s and 1960s.

Pharis was bitten by the camera bug at the age of seven when he watched the PGA Golf Tournament on ABC’s “Wide World of Sports.” As an adult, he became a cameraman for that same program. He began collecting and restoring cameras after finding an old camera in a dumpster outside of a TV station. He took the camera home and rebuilt it into working condition.

Pharis’ collection includes an RCA TK-30, which was the first camera he ever used. Not surprisingly, it’s one of his favorites. The focus of his collection is on RCA and DuMont cameras from the late 1940s.

“They’re black and white, and some of them are crudely made,” he says. “To be able to go back and take a piece of ’40s television equipment — and some of this stuff has been sitting for 30 or 40 years in peoples’ basements — and take it apart, rebuild it, and actually make an image on it is just fascinating to me.”

One challenge to his endeavor of bringing these cameras back to life is that the proper parts are difficult to
Transforming the Video Experience with Medianet

INSIDE
See how the buildout of medianets—media-optimized IP networks—unleashes new capabilities and cost savings through every aspect of rich media production, contribution, distribution, and consumption, from the point of ingest all the way to the customer screens.
Yesterday, if you wanted to watch a show or broadcast event, that meant arranging your schedule to be in front of the TV at a certain time. Today, rich media services can come to you—wherever you are, through whatever device you’re using at the moment. To make this “Connected Life” a reality, broadcasters and content providers are radically altering their operational and business models behind the scenes. They are evolving from basic TV service providers to multi-platform “experience providers,” delivering entertainment and news in a more fluid and immersive environment than ever before. They can now provide:

- Greater mobility by delivering content to multiple screens—TV, PC, and mobile device
- Superior quality including high-definition video
- Unprecedented interactivity with new ways to access, control, and share media experiences

Already, broadcasters worldwide are delivering these new capabilities and services using Cisco® solutions, which encompass the IP network platform as well as advanced video encoder, decoder, and transcoder solutions. In this supplement, you will read how:

- During its Olympics coverage, NBC used a Cisco IP network for transcontinental IP contribution from sports venues in Beijing to studios in New York
- Spain’s Abertis Telecom reduced costs with a Cisco architecture combining satellite and terrestrial IP content delivery
- Denmark’s DR adopted an all-digital workflow that helped to double the number of programming hours—with the same budget

As the worldwide leader in networking, Cisco is transforming how people connect, communicate, and collaborate. Our IP video network solutions address the growing technical and business challenges that broadcasters and content providers face in the new media marketplace, and enable powerful new capabilities and efficiencies. For example, highly efficient encoding technology enables broadcasters to deliver high-quality standard-definition and high-definition video. Video assurance tools allow rapid identification and remediation of issues before they affect the quality of the subscribers’ experience. And Cisco Wide Area Application Services (WAAS) enable long-distance IP video contribution, avoiding travel time and expense.

Read on to learn how Cisco technology is helping broadcasters to move beyond digital video and IPTV to develop and deliver the integrated media services that are part of the Connected Life.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Changes Everything</td>
<td>2</td>
</tr>
<tr>
<td>“Any Time, Anywhere, Any Platform”</td>
<td>3</td>
</tr>
<tr>
<td>End-to-End Medianet for MSB</td>
<td>4–5</td>
</tr>
<tr>
<td>IP Video Contribution</td>
<td>6–7</td>
</tr>
<tr>
<td>Case Study: NBC Olympics</td>
<td>8</td>
</tr>
<tr>
<td>Interview with Bob McIntyre</td>
<td>9</td>
</tr>
<tr>
<td>Media Workflow Platform</td>
<td>10–11</td>
</tr>
<tr>
<td>Case Study: DR</td>
<td>12</td>
</tr>
<tr>
<td>Primary Distribution</td>
<td>13</td>
</tr>
<tr>
<td>Case Study: Abertis Telecom</td>
<td>14</td>
</tr>
<tr>
<td>End-to-End Platform for Video Transformation</td>
<td>15</td>
</tr>
</tbody>
</table>
Cisco Navigates the “Any Time, Anywhere, Any Platform” Landscape

With increased competition and the erosion of network TV viewership due to audience fragmentation, it’s become clear that traditional program and advertising distribution business models have to change.

However, as the demand for high-definition content and new types of interactive services continues to grow across all distribution platforms, content distributors face a number of challenges to ensure a satisfying end-user experience. What they have found is that the distribution platform as well as the way content is presented and consumed have become key differentiators.

That’s because as digital video recording and file streaming technology has advanced, the consumer has become empowered to watch content when and where they want. For all types of Content Distribution Systems (CDS), being successful in today’s highly competitive marketplace means supporting not only traditional television, but also the Internet and portable devices, provided as part of some type of video-on-demand (VOD) or real time streaming service.

The opportunity for CDSs and other media companies is to combine time-shifted live programming and live chat supplied by broadband connection to make the experience richer, while also being able to carry video, voice, and data on the same network. Studies show that video services are still the most compelling way to attract advertising dollars.

Cisco is currently developing solutions to meet these and other emerging needs at a time when customers need them most. The company’s Media Satellite and Broadcast division offers a variety of end-to-end solutions—from ingest to media management and on to consumption—and is deeply involved in working with both CDSs and advertisers to develop the most effective advertising models that target multiple sectors of the audience simultaneously.

Video transport is key to this strategy and Cisco’s CDS product portfolio is now at the heart of a number of different targeted advertising platforms that leverage Cisco’s vast experience in media asset management and content repurposing.

Scalable, End-to-End Solutions

Cisco’s product line is broken down into four main segments of the market: Production, Contribution, Distribution and Consumption. These products are highly scalable, so that unique customization to fit individual needs is fully supported.

For Production and Contribution, Cisco solutions are applicable for IP/terrestrial as well satellite networks. They include the D9094 HD/SD encoders that provide very high quality (4:2:0 and 4:2:2), low latency (as low as 300 milliseconds) and high compression encoding using H.264 for real-time performance. The Cisco D9900 DCM (Digital Content Manager) MPEG video-processing platform provides ASI to IP conversion, transrating, PROMPEG COP3 Forward Error Correction, bandwidth clipping, and ad insertion features. Cisco also offers a professional HD/SD decoder (D9894) and an IP infrastructure and network and service management platform called ROSA.

The main company focus in the areas of Distribution and Consumption is ensuring that video quality remains as high as possible to meet the growing demand for HD content in all forms. Using the latest H.264 MPEG-4 HD encoders (model D9054), Cisco’s engineers have achieved data rates as low as 5 Mbps, while still maintaining superior quality video results. (The current industry standard is about 8 Mbps before the artifacts become noticeable.) Meanwhile, the bandwidth savings are significant, allowing distributors to send multiple video streams over existing IP infrastructures (e.g. VDSL2 and ADSL2); delivering twice the channel capacity compared to MPEG-2 technology for comparable video quality.

Even after multiple passes of compression and last-mile packet wrapping, the “video quality experience” at the set top box does not suffer. In fact, several third-party field tests have confirmed that consumers preferred images compressed and distributed with Cisco products to competitive technology.

This quality and real-time performance are also critical to live broadcasts, where events are captured and presented live via remote transmission. Events like the Olympic Games and international coverage of the U.S. presidential inauguration in HD are good examples. Both events leveraged Cisco technology.

The Sky News coverage of the Obama inauguration represented the first time MPEG-4 compression technology had been used over the transatlantic Easynet Global IP network.

Based on its experience working with all types of broadcasters, which all have unique requirements, Cisco recognizes the common goal of production quality and distribution efficiency. If your goal is to get content where it needs to go, whether for HDTV or two-way interactivity, taking advantage of proven solutions and an experienced team of experts that understand the value of “any time, anywhere,” Cisco has the end-to-end technology and people to make it possible at reduced costs.

—Michael Grotticelli regularly reports on the professional video and broadcast technology industries.
The media and broadcast industry is undergoing profound transformation, but one change stands above all others: the rise of the consumer. In the past, video entertainment was effectively a one-way street, with programmers and broadcasters determining which content would air and when. Today, the consumer is king, demanding a richer, higher-quality media experience and more kinds of content than ever before. Consumers want the same interactivity, personalization, and mobility from their media entertainment that they have come to expect from the Internet. And they want the ability to access any type of content, whenever and wherever they choose, over a variety of devices and screens.

These changes present significant challenges for media companies, who must fundamentally change the way they create and distribute media content. However, they also present exciting opportunities to capitalize on a new generation of consumer media experiences and revenue models. Broadcasters and content providers that embrace creative new approaches to delivering media will be able to:

- Drive down costs throughout content production and distribution processes
- Accelerate the delivery of new content to more consumers over more platforms
- Increase revenues through new advertising and business models
- Strengthen their brand among consumers

Mediernet is the Key

The best way to unleash a new generation of media experiences and revenue models is to embrace the "medienet": an intelligent network that is optimized end-to-end for the delivery of rich media experiences. In the traditional media model, most aspects of content production and distribution are independent applications with fragmented infrastructures, content formants, and processes. A mediernet provides a single, scalable IP architecture that extends from the point of content ingest through every aspect of editing and production, across video contribution and distribution networks, all the way to the customer screen.

By taking this mediernet approach, media companies can:

- Transform the customer experience by delivering more content, mobility, personalization, and control
- Take advantage of an IP Next-Generation Network (NGN) to assure a high-quality customer experience end-to-end
- Virtualize content and applications through every phase of the media value chain to reduce capital and operational expenses
- Monetize content and advertising in new ways, across more platforms

Content Production

When studios, programmers, and broadcasters move from tape-based production environments to IP networks and digital workflows, they unleash unprecedented collaboration and cost efficiencies. The mediernet model allows content providers to:

- Easily extend content to any business unit, partner, or customer device, anywhere in the world
- Reduce costs by consolidating and virtualizing media applications and infrastructures
- Accelerate the delivery of new content by breaking down application silos and linking production processes directly with distribution platforms and partners
- Increase revenues by repurposing content for multiple platforms and advertising models

Content Contribution

Media companies worldwide are turning to IP-based video contribution networks that offer more flexibility and control than conventional contribution systems at a much lower cost. With IP contribution networks, media companies can:

- Get new content on air and online more quickly
- Reliably deliver content to studios and distribution partners for a fraction of the cost of satellite contribution systems
- Deliver content anywhere with a single network that supports all services, video formats, and quality levels

IP contribution networks also boost agility by allowing broadcasters to decouple the point of video ingest from physical editing and production facilities. During the 2008 Olympics, for example, NBC editors used an IP contribution network to work on events being recorded in Beijing from their home studios in the United States.

Content Distribution

A media-aware IP NGN is robust and resilient, and scales easily to enable the cost-effective delivery of content and services worldwide. IP distribution technologies help media companies:

- Rapidly scale new content and services to national and global audiences
- Drive down costs by distributing content once for all affiliates and formats
- Preserve quality of the customer experience by retaining tight control over the way signals are received and manipulated
- Unlock new revenue streams by extending content and brand identity across multiple platforms
Content Consumption—the End-User Experience

A medianet lets media companies boost the value of their content by enabling non-linear (on-demand) content consumption, targeted niche content, and delivery of rich media experiences across the TV, PC, and mobile device. Moving to digital content delivery also provides potentially lucrative opportunities for Web 2.0-type social networking and personalization capabilities. By linking consumers with content in new ways over more platforms, a medianet also supports new transaction-based and revenue-sharing business models. And, by delivering ads based on subscribers' unique demographics, profiles, and interests, content providers can benefit from much more targeted and lucrative advertising.

For More Information
Cisco and its industry-leading partners offer deep expertise in IP networking, digital media technologies, video transport, and solutions for the customer home. Cisco can converge all of these solutions into a single, harmonious IP architecture that extends media-aware intelligence from end to end, helping content providers create and capitalize on a new generation of media experiences. To learn more, visit www.cisco.com/go/medianet

Building Blocks of the Media Value Chain
The Time Is Right for IP Video Contribution

Broadcasters know that a "video" signal is much more than just video. Delivering content in multiple video formats, with all of the auxiliary audio and data services needed to present the seamless experience of broadcast TV, is a complex task, especially in real-time TV environments. When video quality, network performance, and nonstop availability are critical, broadcasters and content producers need an extremely robust, resilient video contribution infrastructure.

Today, more media companies are turning to IP-based video contribution to take advantage of the inherent flexibility, control, and operational cost reductions of IP networks. As the worldwide leader in IP network technologies, Cisco can provide state-of-the-art video contribution solutions that deliver all of the advantages of IP with the quality, performance, and resiliency that real-time media services demand.

An Industry Evolution
Until recently, contribution networks were dominated by satellite and terrestrial ATM networks. Despite the compelling flexibility and cost efficiencies of IP, many media companies simply did not consider the technology ready to transport real-time video. As IP networks have evolved, however, IP has emerged as the video transport technology of choice. Today, major broadcasters worldwide are deploying IP-based transport networks, video encoder/decoders, and gateway technologies in real-time video environments.

The key reasons for this shift are:

Growth of HD Video
The accelerating introduction of HDTV in media markets places extraordinary new capacity demands on contribution infrastructures, as well as a need to deliver excellent video quality at higher resolutions. IP networks can provide the bandwidth, flexibility, and service control to support these and future services.

Demand for More Flexibility
Instead of employing rigid conventional contribution links tailored to the needs of a specific application, media companies are seeking more versatile infrastructures that can support a variety of services, formats, quality levels, and broadcast applications.

Need to Reduce Operational Expenses
By using affordable, widely available IP network equipment, broadcasters and content producers are delivering multiple services over a single network and reducing the cost of contribution links. In fact, many broadcasters moving from satellite-based contribution to IP have realized a return on investment (ROI) in two to three months.

Opportunity for Convergence
Instead of using dedicated contribution networks for each stage in the production process, IP provides a common platform to support all applications. This convergence (and its associated cost savings) occurs both in the network, which can now carry all types of services, and at network endpoints, where a single IP platform can often replace several dedicated switching technologies. Since broadcasters and content producers often already have IP infrastructures in place, upgrading these networks to support real-time TV services is also often less expensive than building or leasing new higher-capacity contribution links.

Opportunity to Enhance Competitiveness
IP contribution networks can have a profound impact on a media company’s agility. After all, once content is within the IP domain, it can be delivered to anyone, anywhere, as needed. IP contribution networks allow broadcasters to decouple the point of video ingest from the physical editing and production facilities, and offer opportunities for new production workflows and radical operational efficiencies. During the 2008 Beijing Olympics, for example, NBC editors used an IP contribution network from Cisco to create broadcast highlights of events in China from their home studios in the United States, even as events were being recorded.
Cisco IP Contribution Leadership

While IP offers compelling advantages, broadcasters need contribution networks they can trust. They need proven IP solutions that deliver the performance, reliability, and end-to-end quality control intelligence that demanding real-time media services require. As the worldwide leader in IP networking, Cisco can create the ideal IP contribution solution.

Cisco IP contribution technologies include:

- Robust IP routing and switching platforms that deliver up to 40 Gigabits per second
- Widely deployed multiservice optical transport platform in the world
- High-performance audio/video encoder, decoder, and IP gateway solutions to support major video formats and compression technologies, and virtually any combination of quality, latency, and bit rate
- Sophisticated management and control solutions
- Expert system integration services from partners with extensive experience implementing complex media infrastructures

With a proven IP expertise and broad portfolio of IP, optical, and video technology solutions, Cisco can provide a complete IP contribution solution for media customers.

Cisco IP Contribution Solution—An End-to-End Architecture
Cisco Enables NBC Coverage of Beijing Olympics

NBC Olympics’ coverage of the 2008 Olympic Games set new records, with 3600 broadcast hours, or 212 hours a day. What’s more, viewers could use their PCs and laptops to access 2200 hours of on-demand video, as well as 3000 hours of highlights, renews, and encores. And people on the go could watch video and view results on their smartphones.

Behind it all was an innovative long-distance, file-based workflow, based on a Cisco network solution.

High-Performance Transocean Link
To transfer video between Beijing and New York, NBC deployed three 150-Mbps OC-3 connections. A Cisco 12004 Router combined all three into one gigantic virtual pipe with 450-Mbps bandwidth. Cisco Quality of Service (QoS) technology enabled NBC to dedicate 400 Mbps to video content, giving it priority over other types of traffic sharing the same pipe.

Thanks to the high-performance network, shot selectors and editors could work from New York as if they were in China, saving NBC the time, costs, and carbon emissions of sending 300 to 400 employees to China.

Faster Shot Selection for an Excellent Viewer Experience
The file-based workflow worked as follows:
An application server in China digitized and ingested high-definition (HD) and standard-definition (SD) feeds and simultaneously created full-resolution HD files and low-resolution proxy files of all recordings. While still being recorded, the files were actively transferred to a storage system in Beijing. From there, a file transport engine transmitted only the low-resolution proxy files over the Cisco network to another active storage system in New York. With Cisco Wide Area Application Services (WAAS), files were available to editors and shot selectors in the United States as fast as if these personnel had been in China.

Shot selectors in New York edited the low-resolution files, and then sent the Edit Decision Lists (EDLs) to Beijing to request the desired SD and HD high-resolution footage for final production editing.

"With the Cisco network solution, we’ve achieved the Holy Grail of digital video, which is the ability to perform shot selections on low-resolution files and extract high-resolution material from those files even as they are being recorded," says Craig Lau, vice president of IT, NBC Olympics. In fact, employees could select shots and distribute them to affiliates even before the athletes finished their events.

Lau concludes, "Cisco is a trusted partner, and in the demanding IT environment for the Olympic Games, we depend on trusted relationships. We have absolute deadlines for when Olympics coverage begins and ends. Cisco technologies help us exceed expectations and meet our timetables in an unforgiving environment."

NBC Built a High-Performance Transocean Link to Transfer Video Between Beijing and New York

![Diagram showing the network setup between Beijing and New York.]
Interview with Bob McIntyre

Broadcast Engineering Supplement/Cisco

A former chief technical officer (CTO) for Scientific Atlanta, a Cisco Company, Bob McIntyre designs systems based on the integrated end-to-end technology portfolio of Cisco’s Service Provider Group that help service providers accelerate the launch of new revenue-generating applications on their networks.

McIntyre began his career at Scientific Atlanta in 1991 and has held significant leadership roles in the company’s Transmission and Subscriber businesses. While leading the Subscriber business in 1996, his team designed the first real-time digital TV systems (using US $150,000 prototype encoders) and held the first digital TV field trials over a Hybrid Fiber Coax (HFC) infrastructure in 1997. He was named CTO at Scientific Atlanta in 1999.

Under his leadership, Cisco has remained focused on the transition to more and more HD content, and the evolution to alternative business models that support the consumption of non-real-time video services on a variety of viewing devices.

What’s the biggest challenge facing content distribution networks today and how will that change in the future?

Content owners are faced today with many challenges including the operating cost of the distribution networks, sometimes globally, the desired transition from satellite/cable-based distribution to hybrid satellite/IP based distribution, legacy issues with existing set-top deployments, and the transition to more and more HD content.

Customers are also challenged with the evolution to alternative business models that support the consumption of video in non real-time and on a multitude of viewing devices, from TVs, to PCs, to mobile devices.

Compression schemes continue to get better, enabling more HD content over ever-smaller bandwidth. How will this affect the industry going forward?

There are two things in play here. First, compression techniques continue to get better and better in both efficiency and video quality. Today’s H.264 compression tools are light years more powerful then the MPEG-2 standards and will continue to see further enhancements.

Secondly, as more and more video is utilized for entertainment, communication, and collaboration on a global scale, we believe that people will continue to build infrastructures that support the utilization of video for these purposes.

How does a provider ensure quality to the end user while simultaneously conserving bandwidth?

Content owners and providers have a few sacred cows when it comes to competitive advantage: video quality and quality of service are two of those. As such, content owners, who place a lot of value in the image quality of their content and their brand, must select best-in-class distribution technologies to support error-free distribution.

Ultimately, however, they must make the trade-off decisions between video quality and bandwidth utilization while weighing the associated costs.

Is IP delivery the most efficient way to distribute content?

We at Cisco believe that IP is an extremely cost-effective means of distributing content, but we continue to offer a complete portfolio of products that provide hybrid IP/Satellite distribution capabilities. This proven technology helps content owners and services providers with the complex requirements of distributing their content on a global basis.

The key to our solutions is that we give the providers the tools to develop hybrid distribution models based upon quality, cost, and quality of service. Only hybrid systems can successfully optimize these issues on a global basis.

Cisco has been involved in a number of live events, such as last summer’s Olympic Games for NBC. **What value does Cisco bring to the production of events like these?**

Cisco’s comprehensive IP Contribution solution enabled the “first IP Olympics,” according to NBC, and consisted of IP video networking that took advantage of both MPEG-2 and MPEG-4 compression. This helped bring content to air (and online) much faster than ever by separating the content ingest process in Beijing from the physical editing, which occurred in New York. This saved the network a significant amount of money by not having to send editors to China.

It also resulted in a very satisfying end-user experience because content was available from all of the venues on demand, compared to past Olympics when only the most popular events were shown during prime time hours. Leveraging the metadata used by the editors also facilitated a variety of advanced search functions and interactive features that were used by online consumers.

—Michael Grotticelli regularly reports on the professional video and broadcast technology industries.
Media outlets and platforms continue to proliferate, driving demand for more content than ever before. Broadcasters and programmers that can meet this demand and extend their content and brand across multiple platforms will reap the rewards of this industry transition. To get there, however, media companies need to operate in very different ways than they do now. They need to enable a more collaborative business model, with the ability to extend content to people and functional areas across the company, and to a widening ecosystem of external production companies, outsourcers, and business partners. They need a new kind of media production workflow, delivered by a new generation of digital workflow tools.

The Cisco Media Workflow Platform is the foundation for a more collaborative and cost-effective digital workflow model. It provides a flexible and interoperable infrastructure for efficiently pooling applications and file-based video, and allows applications at all stages in the production process to communicate with each other and dynamically move media to the right people at precisely the right time.

A Better Workflow

Traditional media workflows are based on self-contained production systems, using video content that is transported and managed via physical tapes. Even when media companies adopt digital file-based media for some segments of the workflow (such as post-production or newsroom processes), these systems are usually managed as independent applications, supported by proprietary technologies with dedicated servers and infrastructures. The result: a production workflow that is fragmented, fraught with delays and costly replication of processes, and poorly equipped to meet the growing demands of multi-platform distribution.

The Cisco Media Workflow Platform provides the foundation for an end-to-end digital workflow that dynamically moves media through the production and distribution process, and supports company-wide collaboration. It breaks down application silos, eliminates unnecessary duplication of processes, and provides the flexibility and performance that production environments demand.

The Cisco Media Workflow Platform encompasses:

A Service-Oriented Architecture (SOA)

An SOA provides the framework for integrating applications and processes across large, diverse broadcast and production environments. It decouples workflow processes from dedicated applications and infrastructures, and allows content to be easily shared across business units and among ecosystem partners. An SOA model helps broadcasters and programmers to:

- Effectively manage tape-less production environments
- Integrate media production with non-production business processes (such as marketing, legal, and resource management)
- Accelerate the introduction of content across new platforms
- Reduce costs by aligning production and IT functions within a single, converged infrastructure

Cisco Data Center 3.0

Underlying the SOA that powers a digital workflow is a highly flexible, high-performance data center. Cisco Data Center 3.0 technologies transform media infrastructure silos into pools of resources that can be dynamically aligned to meet diverse application and business needs. These technologies support a centralized media data center that is more responsive, efficient, and resilient, and that can cost-effectively serve stakeholders throughout the media value chain.

IP Next-Generation Network

Content producers must provide real-time access to media applications and content for stakeholders both within and outside the company campus. They need a next-generation network that enables high performance and rock-solid availability regardless of where users are located. As the worldwide leader in IP network technologies, Cisco provides innovative LAN and WAN solutions that optimize the delivery of content and resources throughout the media ecosystem.
Complete Media Solutions

Production environments demand highly specialized applications. That's why broadcasters and programmers have traditionally chosen to work with proven media production systems, even at the cost of having to operate them as isolated infrastructures. With the Cisco Media Workflow Platform, broadcasters and programmers don't have to give up the production tools they trust to enable a company-wide digital workflow. Cisco is partnering with some of the largest, most respected media technology vendors in the world to deliver a solution that supports the most demanding production environments.

Together, Cisco and its industry-leading partners can deliver an end-to-end media workflow platform that:

- Breaks down application silos to increase collaboration and responsiveness
- Reduces capital and operational expenses by consolidating and virtualizing media content and applications
- Provides exceptional availability and performance to meet demanding broadcast requirements
- Accelerates innovation by linking content production directly with media distribution platforms and partners

Connecting all Production Processes with the Cisco Media Workflow Platform
DR Increases Programming without Increasing Cost

DR, Denmark's national television and radio broadcaster, has doubled the number of programs it broadcasts without increasing costs. Its solution: an all-digital workflow for recording, editing, producing, and broadcasting all types of content, using a Cisco IP multiservice network.

Digital Workflow: A Way to do More with Less
To compete successfully with global media companies, DR urgently needed a way to do more with less. The broadcaster has a fixed budget based on the yearly US $400 license fee paid by each citizen who has a television or radio.

Adopting a digital workflow would solve the business challenge in two ways:

- Reduce capital and operating expense by replacing multiple specialized networks with a single, reliable IP network
- Enable DR to repurpose the same content for different media. Rather than assigning separate TV, radio, and web journalists to cover the same story, DR could assign one journalist, store the content in digital format, and then customize the content as appropriate for the delivery channel.

Consolidate Networks, Consolidate Buildings
The opportunity to adopt an all-digital workflow came when DR built a new 132,000-square-meter broadcasting house in Copenhagen. The building, known as DR Byen (Media City), consolidates the 12 facilities previously used for radio, television, and web broadcasting and a concert hall.

DR outfitted the new building with a three-tier Cisco network (access, distribution, and core) that performs the work of previously separate networks for radio and television recording studios, telephony, intercom, mixing consoles, and lighting control.

“Platform for Storytelling”
The new Cisco network, which DR calls a "platform for storytelling," is used for content production, content editing, broadcast, telephony, and wireless access.

DR’s video editors now have unprecedented flexibility in how and where they work. They can work on high-resolution files from any wired desktop in the building, all of which provide a 1-Gbps connection. If they want to work wirelessly, they can edit low-resolution files, which require less bandwidth to access. The resulting Edit Decision Lists (EDLs), which contain text only, not the actual video, provide the instructions applied to the high-resolution video.

A server-based workflow enables multiple people to work on the same file simultaneously, increasing productivity.

Measurable Return on Investment
Since deploying its IP network, DR has doubled the numbers of hours of programming that it produces without increasing the budget, an accomplishment that the company attributes partly to technology. The broadcaster plans to further capitalize on its network investment by offering high-definition video.

DR uses a Multiservice Cisco Network as the Platform for Digital Editing, Telephony, Intercom, and Studio Lighting

![Diagram of a Multiservice Cisco Network](image-url)
As the media landscape has evolved, primary distribution has become more complex and costly for content creators. To bring finished content into viewer homes, broadcasters and programmers must distribute to cable, satellite/direct-to-home (DTH), and IPTV head-ends, as well as conventional over-the-air (OTA) broadcast systems in hundreds of markets. In the United States alone, a programmer may need to reach several thousand affiliate locations, and deliver content that will be consumed in a variety of video formats ranging from standard definition (SD) to high definition (HD), and from analog to MPEG-2 and MPEG-4.

Cisco provides a comprehensive suite of primary distribution solutions to help content providers meet these unique challenges. Using scalable Cisco technologies, broadcasters and programmers can lower costs, control quality, and meet an ever-changing array of technical and business requirements.

The Changing Face of Video Distribution

Satellite has long been the most practical mechanism to distribute content to large numbers of affiliates. But, as the number of video formats and compression technologies has grown, it has become difficult to cost-effectively distribute content in all the required formats. The biggest culprit: high-definition video.

To compete for customers and advertising dollars, content providers are rushing to offer more HD content, but the quality and bandwidth demands of HD signals are substantial. New technologies such as MPEG-4 and DVB-S2 modulation are helping to make it less expensive to transmit higher-bandwidth signals. However, these innovations also create new complexity. Whereas a single SD signal might have sufficed a few years ago, today meeting the needs of all affiliates means delivering SD, HD, and analog versions, and often MPEG-2 and MPEG-4 as well. With satellite transponder costs as high as US $200,000 per month, primary distribution has become a significant cost burden.

Broadcasters and programmers need distribution technologies with the flexibility to meet the needs of a broad spectrum of affiliates. They need solutions that deliver the highest-quality video for the lowest cost, and that assure strong content protection and control throughout the distribution process.

Cisco Primary Distribution Solutions

Cisco provides a comprehensive primary distribution solution that gives broadcasters and programmers the ability to deliver any format required by affiliates and consumers, while minimizing transmission and operational costs. The centerpiece of this strategy is the ground-breaking Cisco D9858 Advanced Receiver Transcoder.

As demand for HD services grows each year, content owners need a solution that allows them to distribute content over the satellite once, with the highest quality and the lowest transmission bandwidth, and then enables satellite receives at affiliate locations to reformat that content to any resolution and compression standard required. The Cisco D9858 Advanced Receiver Transcoder provides this capability today. It can receive MPEG-4 HD compressed transport streams and output analog and MPEG-2 SD and HD versions of the incoming programming, and simultaneously pass through the original MPEG-4 content. This innovative technology lets programmers simplify their networks and reduce costs by providing content to their affiliates in all required formats with a single satellite transmission signal.

In addition to the D9858 Advanced Receiver Transcoder, Cisco offers a broad portfolio of MPEG-4 encoders, gateways, multiplexers, and integrated receiver/decoders (IRDs). In fact, more major HD MPEG-4 distribution systems worldwide use Cisco technology than any other provider. Cisco distribution technologies include:

- Industry-leading encoders and IRDs to address all major video formats and compression technologies
- DVB-S2 modulation
- Robust content security with the PowerVu conditional access system
- Integrated and deployed systems using third-party conditional access systems
- Advanced uplink system control and decoder management with the PowerVu Network Management Center

Cisco is also leading the way in other ground-breaking video distribution innovations, including:

Hybrid Satellite/IP Distribution

Cisco solutions support hybrid distribution networks via DVB-S/DVB-S2-enabled IRDs and can also deliver the signal via IP networks to some targeted markets. This gives programmers and broadcasters the flexibility to mass-distribute via satellite, while meeting requests for special quality or bit rates in specific markets.

Advanced Multiplexing and Splicing Capabilities

The Cisco Digital Content Manager (DCM) Model D9900 unlocks powerful new switching and splicing capabilities in distribution systems. The system allows content providers to retain much tighter control over the way signals are received and manipulated, and assure the highest-quality experience for their viewers.

Building on a tradition of leadership in video distribution, Cisco is helping content providers create versatile distribution systems that deliver the highest video quality and control, at the lowest cost, to all markets.
Spain's leading telecommunications infrastructure and services provider, Abertis Telecom operates 3200 broadcasting and distribution sites serving more than 12 million homes, as well as a fleet of 24 satellites. The company earns a large portion of its revenue from national and regional broadcasting for television and radio and is also expanding into international markets.

Digital Switch-over: Converting Mandate to Opportunity

Abertis Telecom needed to comply with Spain's mandate to convert from analogue to digital broadcasting for terrestrial television by April 2010. The operator seized the opportunity to reduce the costs of both its satellite and ATM terrestrial networks. Passing on the savings to its broadcast customers would position Abertis Telecom to increase market share.

Nationwide Digital Video Broadcasting Transport Solution

In 2008, Abertis Telecom rolled out a nationwide Digital Video Broadcasting (DVB) transport solution, based on Cisco technology and services. "We like to work with vendors that have a global view and the capacity to advance the market," says Sergio Tortola, Technology Director, Abertis Telecom. "In addition, we like Cisco's approach and commitment to service."

The new architecture combines satellite and terrestrial IP to distribute signals to broadcast transmitter sites and content production centers throughout Spain. To increase bandwidth efficiency on its satellite network, Abertis Telecom deployed Cisco D9804 Multiple Transport Receivers, which support the DVB-S2 satellite modulation scheme. "Instead of using three transponders and six reception devices per site, we now need only two transponders and can receive all streams within a single unit," says Tortola. "As a result, we need fewer spare parts, have greater redundancy, and can offer better service-level agreements."

At the same time, Abertis upgraded its terrestrial distribution network from ATM to IP, using Cisco Asynchronous Serial Interface-to-IP (ASI-to-IP) gateways.

Lower Costs and Increased Market Share

Capital costs have decreased because a single Cisco multiple transport receiver can accept up to six multiplex transmissions, and content that previously required three transponders now requires just two. Operating expenses for the satellite network have decreased by 33 percent, from bandwidth optimization and in-band control. "We have transferred our cost savings to our customers in the form of lower prices, which helped us increase market share by 20 percent," says Tortola. What's more, global service-level agreements are better than ever.

Abertis Telecom is currently developing new services to be delivered over the Cisco network. Tortola concludes, "Being early to market with new solutions gives us a competitive advantage. A high degree of collaboration with Cisco has helped make this project a success."

Abertis Telecom Distributes Multiple Transport Streams over Satellite
Today's media landscape is undergoing massive disruption. The traditional linear broadcast value chain—in which content is created for a single channel and aggregated, packaged, and broadcast to millions of viewers—is changing before our eyes. These changes are being driven by:

- The advent of the Internet as a distribution platform, which has rewritten the rules for accessing and interacting with video content
- Explosive growth in video channels, outlets, and content—including user-generated content
- Expansion of media to new platforms, including mobile phones and personal media devices

Advertisers have been quick to recognize these changes and are investing more resources in non-linear and Internet-based platforms, and less in traditional linear broadcasters and content producers. Broadcasters and programmers that can adapt their business models to respond to these changes—that can transform from basic TV channels into true “cross-platform” brands—will emerge as the leaders in the evolving media landscape.

Navigating this transition will require new content production and distribution tools, and a new approach to consumers and partners throughout the media ecosystem. It's a daunting journey, but one that media companies don't have to undertake alone. With the broadest video portfolio in the industry and global leadership in IP technology, Cisco can provide solutions and expertise through every phase of the media broadcast chain.

Cisco's end-to-end portfolio of media and broadcast solutions encompass:

Production
Currently, most media companies rely on production systems that are managed as independent applications, supported by dedicated infrastructures and physical tapes. The result is a production workflow that is fragmented, fraught with delays and duplicated efforts, and poorly equipped to meet the demands of multi-platform distribution. Cisco provides the foundation for an end-to-end digital workflow that dynamically moves media through the production process, breaks down operational silos, and supports company-wide collaboration.

Contribution
The same innovative approaches that are transforming media production can also be applied to the delivery of video between studio locations and media partners. Cisco video contribution solutions deliver the performance and availability that real-time broadcast environments demand, while providing the flexibility, granular control, and substantial cost savings of IP networks.

Distribution and Consumption
To bring finished content into viewer homes, content providers must distribute to hundreds of operator head-ends and affiliate locations, and meet demands for diverse video formats, quality levels, and compression standards. They also need to be able to deliver content to consumers over multiple platforms and multiple screens (TV, PC, and mobile device), both in the home and on the go. Media companies need solutions that can meet these stringent demands and deliver the highest quality for the lowest cost. Cisco provides a comprehensive suite of distribution and content consumption solutions to help broadcasters and programmers lower costs, tightly control quality, and meet an ever-changing array of technical and business requirements.

Combining decades of Scientific Atlanta's expertise in video technology with Cisco's worldwide leadership in IP networking, Cisco can deliver the full spectrum of solutions to help broadcasters respond to the challenges of a changing media environment.
Cisco's Intelligent Video Network Solutions—Ready Today, Prepared for Tomorrow

Visit us at www.cisco.com/go/sp
The elusive camera that has yet to make it into Pharis’ collection is the Iconoscope. “It was the first decent, working camera tube,” he says. “It didn’t look very good, but it made an image.” It took a lot of light to make an image that wasn’t that good. However, once the basic circuit was made, people used it as a foundation to make better cameras. In the early days, Pharis says that there were a lot of experimental cameras homemade by TV stations. They were often strange looking and difficult to move around.

“And those got junked really fast,” he says.

In the late 1940s, the image orthicon was invented, and that was when TV as we know it today really got its start. It was on two GE image orthicon cameras that industry consultant John Luff started his career working at a college TV station. Color was just breaking onto the scene. And that’s when camera technology really took off.

Color and mobility

“The move from black and white to color, from a technical standpoint, was a quantum leap,” Luff says. “It became one of the reasons TV studios grew such large engineering staffs.”

And while it’s still a technical job, back then, Luff says, operating a camera was something of an art with position, temperature, alignment and location. A good video operator was highly prized. Then, with solid-state cameras, it became quite a different job, according to Luff. Cameras became more stable, and registration was set at the factory.

The monumental move from black and white to color came with an equally monumental camera. The RCA TK-40, which was soon followed by the TK-41, was enormous. It had three image orthicon cameras sandwiched into one case. These cameras weighed several hundred pounds, and it took four people to carry them up to the top of a stadium.

“RCA tried to make these cameras a little lighter and easier to move,” Pharis says. “So, they came out with the TK-42. It was a miserable camera to operate because they put the zoom and focus controls right on the back of the camera instead of on the handles. And you couldn’t tilt the camera down. You couldn’t pan it properly. RCA improved it with the TK-43, which is the same camera body, but with the zoom and focus handles back on the camera.”

These first steps toward making cameras more portable were still far cries from the camcorders we use today.

“A camcorder was a physical impossibility 30 years ago,” Luff says. A camera rig required two or three people to operate. One problem was that lighter weight camera cables were needed. The Hawkeye was developed as a portable camera with a portable recorder. The TK-76 offered the first practical CCD camera.

That mobility is important. Pharis remembers working on a 1970s disco show with a PCP-70 strapped to him. He could only carry it for one hour at a time. Two-shoulder camera rigs are not very portable. And now, all cameras are portable, as most manufacturers no longer make large studio cameras. Instead, portable cameras are placed into a sled to be used as a studio camera.

The prosumer shift

“Broadcasters need equipment that’s extremely rugged, extremely versatile, can shoot in very low light and can handle wide temperature swings, day in and day out,” says veteran cameraman Barry Braverman.

The focus is now on equipment that does everything at a low price. Enter the prosumer camera.

“The technology makes it possible; the economics makes it necessary,” Luff says.

To continue downward on price and performance, manufacturers need to increase the number of pieces they sell. However, Luff says we’ve...
The first 60 units of RCA’s TK-42 camera were delivered in 1965. The camera featured a 4 1/2in image orthicon tube and three 1in Videocon tubes. Photo courtesy Bobby Ellerbee.

hit the long tail. The economics will require the broadcast market to be part of a bigger market. Manufacturers now design products for the consumer and professional markets with some of the same parts. The DVC Pro, for example, started out in the consumer market and evolved to the professional market.

The DX1000, a consumer/prosumer DV camera, marked a shift in camera production, Braverman says.

“The Sony DSR150 and the Panasonic DVX100 were a huge step forward from a production perspective,” he says.

And he adds that the Sony EX1 and the HDX200 are a continuation of low-cost cameras that do everything, just sometimes not as past professional cameras. For example, he says, a big factor for many shooters is the optics in the cameras. However, as the price of the cameras decreases, the optics get worse and worse.

“Manufacturers can’t give you a $25,000 lens on a camera that costs $8000,” Braverman says. “The way they do it is pretty clever. The camera compensates for the relatively modest lenses that come with the camera. So, they provide $8000 industrial lenses, but they have a lookup table in the camera that recognizes that lens and its defects and applies a digital chromatic aberration compensation.”

Every manufacturer does this in cameras that have integrated, permanently mounted lenses. Panasonic was one of the first to do it with interchangeable lenses, starting with its PX5000.

“What that means for the industry is that broadcasters can get nearly — but not quite — the performance out of an $8000 or $10,000 lens that they used to get out of a $20,000 lens,” Braverman says.

The move toward HD has put a lot of pressure on lenses and optics.

“While they see greater amount of picture detail, they also see, unfortunately, a lot more lens defects,” Braverman says.

Standard-definition lenses on high-definition cameras can be problematic because we suddenly see all the problems that before were hidden by standard definition’s rougher edge.

Evolution of the craft
Changes in camera technology also reflect a change in production values, Luff says.

Braverman agrees, saying, “We’re seeing the convergence of field reporters into one person — shooting, writing, directing, editing, going for coffee. That one person’s attention is now spread across multiple disciplines. So, the tools required then also have to be spread across multiple disciplines.”

The introduction of the MXF format used in the P2 camera lends itself to this multidisciplinary approach. With the P2 system, files are arranged in folders, so the user can easily produce proxies that can be uploaded by satellite and sent back to the station. Now there are cameras with built-in MPEG-4 encoders, which enable reporters to relay the proxy to the station, so the station can start working on the show before they get back with the physical media.

“Camera people used to be an elite group. Now there’s a sense that anyone can pick up a camera and produce remarkable pictures,” Braverman says. “It used to be a question of who owned the tools, because the tools were expensive, they took some expertise to run.”

For example, Braverman says with film cameras, the operator had to know how to load it and understand F-stop, depth of field, and all kind of issues. Then, as time went by, the tools became available to everyone.

“Today, it’s not a matter of who owns the tools,” Braverman says. “It’s a question of who owns the craft.”

Today’s cameras are infinitely more capable and rugged, and cost one-third to half of the price. Manufacturers are responding to the economic necessity.

“But from a shooter’s perspective, going out on a job, we’re asked to do the same level of work, except we’re handed a $6000 or $7000 camera instead of a $50,000 camera,” Braverman says. “And the capabilities of the two are just not comparable. From a shooter’s perspective, it’s a challenging time.”

The move away from full-sized professional cameras with broadcast optics has made it much more difficult to produce clean, professional looking images, according to Braverman.

“On the other hand, from a broadcaster’s perspective, the lower cost means the ability to buy 10 cameras instead of one camera,” he says. “And the fact that they’re less sophisticated means that you don’t need a camera-man with 20 years of experience.”

This proposition is attractive to broadcasters, especially in these economic times.

Where does that leave the craft? With this new economic reality, Braverman says that the apprenticeships and the opportunity for a young
INTRODUCING the SK-HD1000 series ...

An HDTV production camera system that truly is the definition of "Technological Advancement".

- A new, sleek, modern, dockable camera chassis design expands your options for Studio/OB, wired and wireless HDTV production configurations.
- The world’s first TRULY DIGITAL High-Definition triax cable transmission system. Also available with digital hybrid fiber-optic cable system.
- High F11-sensitivity is achieved by its 3-CCD Super-IT 2/3-inch sensors.
- Hitachi’s Latest Digital advances that include 14-bit ADCs and powerful 38-bit Digital Signal Processors.
- An outstanding HDTV Signal to Noise ratio specification of 60dB.
- Multi-format video outputs for TV program production. Digital HDTV interlaced and progressive, SDTV analog and digital.

If you appreciate how the above could improve your HDTV programs’ picture quality; you’ll need to “Compromise NO MORE” when it comes to your next choice of HDTV Production Cameras.

Ask your local Hitachi representative for a quote and demonstration today. The SK-HD1000 camera system is more affordable than you think!
shooter to learn from a master have vanished.

"And this has led to a lowering of standards in many ways because the reference isn't there," he says.

Stewart Pittman, a cameraman for Greensboro, NC, FOX affiliate WGHP-DT agrees.

"I was lucky to start in '89 at an old station with old equipment and old veterans to train me," he says.

He found that carrying a TV logo was a powerful tool. With a TV camera in hand, he could go anywhere. He says that that power has faded a bit in recent years, in part due to cameras no longer being a tool exclusively held by the cameramen elite.

"I hate to say it, but we're reaching the limits of what is possible to diminish the size of the lens. Luff calls this the long tail. But, then, he admits that if you had asked the same question 30 years ago, he probably would have says the same thing.

"Changes are incremental now rather than revolutionary," he says. "A camcorder was a physical impossibility 30 years ago."

Pharis takes a step even further back looking at the strides the industry has taken.

"You go back to the 1930s and 1940s with this big huge technology, and now you can take hundreds of components and put them in a space the size of your thumb," Pharis says. "You still need a camera that someone can hold onto and operate stably. It needs to be big enough for stability."

We tend to think HD is new to our industry. But we've been working on this idea for 30 years. People have been playing around with 3-D for decades. And while the 3-D equipment will be bigger and more complex than what we've become accustomed to, the size will come down, following the same path as HD.

In fact, Luff predicts that we'll have 3-D before 1080p. He says that there's a bigger push for 3-D because it will require consumers to buy new displays.

"New technology introductions, to some degree, are forced on us because manufacturers have to find something else to sell," Luff says.

The important element in looking toward the future is seeing the past. The first Iconoscope cameras produced unimpressive images, but they inspired people to improve on the technology. Obviously, today we're in the microprocessor age, with surface-mount components and CCD cameras, and of course there's HD, and next is 3-D. Who knows what will happen after that."

What these smaller cameras offer, according to Pittman, is a far more intimate approach. The small DV cameras are less intrusive. He sees this change as a small part of the overall changes happening to local news, yet he's reluctant to give up his full-sized XD camera. Having to go into the menus to tweak one little thing on the DV camera bothers him.

"I know my job's not going to get any easier," Pittman says.

But he's also looking forward to a more organic approach to news. A more organic approach is a friendly way of saying one-man-band journalism, something Pittman knows about. He currently works as a solo photographer, creating his own packages for someone else to voice, and he's grooming other photographers to be able to do the same.

"We're operating in an environment where one person is doing it all," Braverman says. "That's changed the demand in the industry for that equipment. The demand is now for equipment that can do it all without a lot of expertise."

Today, the skills required have changed.

"We will never go back to an era of specialization," Braverman says. "It's just the economics and the fact that..."
Engineers: How To Have An Easy Transition To Digital

Use these proven and reliable upconverters, audio embedders, and test signal generators.

20 + New Products for NAB
Come by for a hands-on demo, try these for yourself:
- Closed Caption Compliance/Detection
- Audio Automatic Gain Control Simplified
- Analog Video & Audio to Digital Converter
- 3G Test Signal Generator
- 3G/HD/SD Frame and more...

Purveyors of Fine Video Gear - Loved by Engineers Worldwide

ENSEMBLE
DESIGNS

NAB N4023
TABLE OF CONTENTS

Excellence Awards .. 90
This year's winning facilities are state-of-the-art.
Exhibit Hall Map .. 99
Navigate the four halls with our detailed map.
DTV Marketplace .. 124
Here’s an advanced look at this year’s hottest new products.

IT’S SHOWTIME!

Lights! Cameras! Action! It’s show time again!
The NAB Show always serves as a place for broadcasters worldwide to gather and learn more about their industry, and Broadcast Engineering is here to help you make the most of this event.

First, we announce the winners of our 8th annual Engineering Excellence Awards competition. We’ll recognize these facilities at the NAB Show for their achievement in each of eight categories.

Next, our Exhibit Hall Map will help you find your way through the maze of booths and new products. For four days, from April 20-23, vendors will be displaying new solutions and updated favorites, giving broadcasters the chance to shop for a wide range of new technologies. You’ll save time — and your feet — if you use our map to navigate the four halls.

And finally, our DTV Marketplace showcases this year’s hottest products. Browse more than 25 pages of product descriptions and photos to build your ultimate shopping list. Whatever you’re looking for at this year’s NAB, we’ll help you find it.

We’ll see you at the show!
MEDIORNET

Product Launch
Date: Tuesday, April 21, 2009
Time: 11:00 a.m.
Location: NAB, Las Vegas, USA
Stand: C7637

www.mediornet.com
This year there were 45 entries in Broadcast Engineering’s Excellence Awards contest. The winning entries were selected based on thousands of votes we received from our readers on the Web site.

Congratulations to all the entrants in this year’s contest. You represent the highest quality in television, production and network technology.

To see firsthand the equipment and solutions used by these leading facilities, visit the NAB booths of the vendors described in the stories. For directions to each vendor’s booth, check out our extensive NAB map, which begins on page 99.

Brad Dick
Editorial Director

New studio or RF technology — station
WINNER: ESPN Teleport
Submitted by: ESPN
Runner-up: WFYI
Submitted by: WFYI Public Broadcasting

New studio technology — network
WINNER: Global TV
Submitted by: Orad Hi-Tec Systems
Runner-up: Scripps
Submitted by: XOrbit

New studio technology — HD
WINNER: The Weather Channel
Submitted by: Snell & Wilcox
Runner-up: ET & the Insider
Submitted by: Avid

New studio technology — non-broadcast
WINNER: Carolina Panthers
Submitted by: Ross Video
Runner-up: Newseum
Submitted by: Front Porch Digital

Station automation
WINNER: DIRECTV
Submitted by: OmniBus Systems
Runner-up: ESPN Star Sports
Submitted by: Television Systems Limited (TSL)

Network automation
WINNER: Rainbow Network
Submitted by: Communications Engineering, Inc.

Newsroom technology
WINNER: Sky News
Submitted by: BSkyB (Sky News)
Runner-up: The AP
Submitted by: Professional Products

Post & network production facilities
WINNER: NBC Olympics
Submitted by: NBC Universal
Runner-up: Turner
Submitted by: AmberFin

broadcastengineering.com | March 2009
Broadcasters are finding DTS the most effective DTV transmission solution especially when terrain shielding creates gaps in coverage. DTS is also the ATSC M/H transmission solution to improve in-building coverage to mobile handheld receivers.

Axcera is the industry leader in DTS technology and the only company to commercially deploy DTS, some for over five years. To learn more about DTS and how to upgrade your existing transmitter to function in a Distributed Transmission network visit www.axcera.com/dts-solutions

See a live demonstration of DTS at NAB 2009 at Axcera booth #C1319!
Register for your Free NAB 2009 VIP Exhibits Pass at: www.axcera.com/nabfreepass

Call Us Today at 1-800-215-2614 or Email info@axcera.com to Learn More! www.axcera.com
Seven years ago, the initial discussions took place regarding the feasibility of developing a parcel of land near the ESPN campus for transplanting its antenna resources to one common area. By the end of December 2008, the project was completed. The teleport is comprised of five terraces, each lower than the preceding by 10ft. This allows for a clear line of sight to domestic and international satellites by all 22 antennas on the teleport. Eighteen antennas, ranging from 4.5m to 11m, were relocated to the teleport, along with four additional antennas, three of which are 9m antennas and one 7m Torus antenna. The Torus measures 24.4m in length and 7m in height, and it has the functionality of 35 7m C/Ku-band antennas with feed assemblies fully populated. The antenna was positioned to give it optimum reception along the domestic arc. With 30 feed assemblies aligned, the network no longer has to reject feed requests because of the lack of antenna resources. The addition of the Torus for domestic reception frees up 10 4.5m agile antennas for international reception.

The majority of ESPN networks are distributed by seven C-band transmit antennas powered by 1kW solid-state power amplifiers. They were chosen for their wideband characteristics, built-in redundancy and ease of maintenance. ESPN selected 1:2 phase combined traveling-wave tube amplifiers to power three Ku-band antennas for distribution of its international networks to targeted areas not reached by C-band distribution. Fiber optics are used to transport signals between the teleport and the transmission control room; loose tube conduits and air-blown fiber were chosen for their flexibility in meeting future needs. The completion of this teleport, and the expansion capabilities it provides, will allow ESPN to expand upon the 53,000 feeds it currently receives each year, enhancing distribution to the 196 countries and territories currently receiving ESPN content.

Canada's Global Television Network has a viewership spread across five time zones — with regional broadcast centers in Vancouver, Toronto, Edmonton and Calgary as well as stations in 10 other communities. Global TV recently brought online seven new virtual production studios to pave the way for a cost-effective HDTV transition. Based on Orad's ProSet virtual studio solution, it implemented virtual studio production facilities at its broadcast centers in Vancouver, Calgary and Edmonton. The fourth and final virtual production facility, located in Toronto, will be completed by spring 2009.

Each regionalized newscast uses local talent, while production of the news show is centralized at the virtual studio. Local news items are transmitted to the centers via FTP prior to each broadcast. At airtime, remote-control cameras transmit the image of the local anchor, sitting in front of a green screen, via fiber. The smaller stations rely on a two-camera studio setup, while the larger stations use three cameras; all use Telemetrics robotics and an H-Frame rig.

At the production facility, ProSet provides virtual studio backgrounds and produces images appropriate to the program's location. It then transmits the broadcast back to viewers in the local market. Global TV uses the Orad HDVG (high-definition video graphics) rendering platform to ensure that its virtual sets run in real time without a hitch. Global TV built the foundation for its conversion to HD with a one-time investment in equipment, which can be leveraged across multiple newscasts and time zones. This represents an estimated one-fifth of the capital expenditures that would have been required to upgrade each regional control room. With the virtual studios, local news directors and producers remain in complete control of their programs, but ProSet gives each show a unique look and allows common content to be repurposed across multiple broadcasts and time zones. The best resources of the network can now be brought to bear for any regional news production.
If you don’t know us... you should.
Take part in the H.264 advantage.
Visit us at NAB: booth 6326

Because Content Deploys Everywhere

www.ateme.com
For more information: sales@ateme.com
In 2008, The Weather Channel completed the migration of its Atlanta broadcast plant to native HD and launched production from a new HD studio. To ensure uninterrupted production, The Weather Channel alternately deployed Snell & Wilcox Kahuna SD/HD multiformat production switchers in its main production control rooms. Equipped with FormatFusion technology, the Kahuna systems enable simultaneous SD and HD operations in the same mainframe and the same control panel. The network thus was able to continue producing a high-quality SD feed while preparing HD-capable control rooms for the HD studio launch. The Kahuna's internal conversion capability allows staff to merge a broad range of SD and HD material provided by external sources, taken from archive or acquired by the network, seamlessly into live broadcasts.

The primary objective across the HD upgrade was to create a highly flexible and dynamic production environment. The HD studio, a 5000sq-ft LEED-certified facility, reflects this goal, featuring a 360-degree set that can be shot from any angle. A 35ft x 8ft video wall, comprising three Christie 8K rear projection systems linked by a Vista Spyder, displays video and weather graphics from a WSI HD Titan and a Vizrt VizWeather system, as well as monitor fills from a Ross Video SoftMetal server. An Ultimatte HD chroma keyer feeds a backlit display that rotates to serve as a key-over map in one position and a wall in another. An Avocent KVM allows anchors to control and modify five 20in on-set screens.

The Weather Channel uses Ikegami HDK-75EX cameras with Canon HD lenses in the studio and Panasonic 2000 cameras for live and P2 field record. Switching of video to the set and to the Evertz MVP multiviewer within the control rooms is handled by a Thomson Grass Valley Trinix routing switcher and Encore control. Wheatstone audio consoles support 5.1 channel surround sound audio.

The Carolina Panthers' goal was to rebuild the control room with new equipment to make it HD-compliant before the fall football season. The biggest challenge was to select the right technology to meet future equipment needs by the new football season. Everything had to be seamless, from audio to video, interfacing the equipment and the construction of the control room. It was a large undertaking, especially making the transition to computer-based technology. A new experience in the design was the increased awareness regarding how to process all signals. Special acoustical considerations included raising the solid floor to install cabling underneath. A simple change that has made a big impact on the Carolina Panthers' live game productions has been the Riedel intercom system. The increased communication added to an improved overall production environment. Ross Video's Vision production switcher is complex yet simplifies productions. Vision is modular, so it's easy to switch things out. The Panthers found that Ross is a people-oriented company that puts a lot of thought into the design of its products, and it has great understanding of the live sports production industry.

The key to improving workflow was increasing the efficiency of the space. The ergonomics posed a challenge, as a typical game day requires 16 people to be in the control room. The ability to control everything remotely was important, as all the servers and equipment were moved into their own separate climate-controlled engineering room. Every detail was taken care of to ensure that the design was customized for all production needs, and to ensure increased communication and flexibility. Creating a separate climate-controlled engineering room drastically changed and improved workflow. The control room also has better communication with the team's Avid edit suites. The entire rebuild has given the Carolina Panthers the framework to move toward HD sports production. The plan is to produce in HD for the 2009 football season.
Two market leading, innovative companies, Pro-Bel and Snell & Wilcox, are coming together to create a new company to better serve your needs.

The combination of Pro-Bel and Snell & Wilcox brings together a strong history of innovation and groundbreaking technical achievements including a significant portfolio of intellectual property in image processing and content management. This includes routing, switching, conversion, media management, modular infrastructure, control & monitoring, automation and file-based workflows.

See us at NAB, booth: SU1917
DIRECTV began construction of its new HD playout area in May 2007 with a tight deadline: nine months to deploy up to 80 fully redundant new HD channels based on a flexible system architecture that could rapidly accommodate future services.

OmniBus iTX was chosen for its versatile features and performance, space efficiency and because, as an integrated system, it can be installed and commissioned in a comparatively short time. Integration needed with DIRECTV’s proprietary business and engineering management systems required custom development from OmniBus. Web services and high-level interfaces were used to develop further solutions for specific requirements such as real-time connectivity for schedule updates, real-time alerts to provide feedback to the engineering monitoring system and interfaces to DIRECTV’s conditional-access systems to automate the insertion of access information into playlists.

A major requirement was the flexible handling of Dolby surround sound. The solution was OmniBus’ audio engine with native Dolby surround encoding and input/output remapping, which gives staff control over the integration of encoded material into the schedule. The iTX software runs on HP ProLiant servers with Isilon storage. Using these industry-standard hardware components helped the project stay on time and on budget. The installation of 80 channels was increased to 120 to coincide with the launch of a new satellite and provide capacity for future channels. iTX provides significant workflow benefits and serves DIRECTV in three key areas: pay-per-view HD channels; automated commercial insertion, whereby live signals are passed through iTX and commercials are automatically inserted at specific times using SCTE104 triggers (this is the first use of SCTE104 carried in the VANC and was developed specifically for this system architecture); and playout of highly crafted channels requiring a significant degree of flexibility.

Rainbow Network Communications made a significant investment in 2007-2008 in the HD upgrade of the master control facilities that originate the air playout of Rainbow’s flagship network channels in Bethpage, NY. The upgrade, which was designed, integrated and installed by Communications Engineering, Inc. (CEI), of Newington, VA, had a twofold purpose. First, the AMC, IFC, and WE tv channels were augmented with HD air channels. Second, all long-form playback for all channels was moved from tape-based to an all-server based system driven from an HD and SD digital archive.

The HD channels were mandated to air all program content in full screen 16:9 with no letterbox or pillared segments. This was a challenge because some interstitial and long format elements were provided in either SD or in non-full screen HD formats. Special upconversion circuits were devised with automation-enabled format selection. 5.1 surround sound, along with a separate audio program and a stereo PCM down-mix channel, were required for all HD channels. Special audio up-mix and down-mix circuits were implemented for situations where SD signals were upconverted for HD playout or where HD signals did not have the proper audio formats. Downstream processing of the program channel included the insertion of bugs, logos, animated snipes, local commercial avail signals, closed captioning and ratings signals in preparation for air release. All downstream devices were put under automation control for schedule based playout.

The master control rooms accommodate up to six channels of simultaneous playout. Signal confidence monitoring was converted from an all-SD glass monitor wall to a mixed SD and HD array of LCD displays driven by an integrated multiviewer system. Distributed operational workstations allow for individual channel playout control and monitoring. A central master control platform allows for live programming for special events.
12-bit Full-HD Processing?

It's Possible.

The new IP00C705 from i-Chips Technology features complete internal front-to-back 12-bit deep processing. This enables you to design in a solution that will suit tomorrow's applications, and at the same time that will give you increased accuracy for today's need for performance. Combined with its expanded scaling filter featuring more taps than on previous devices, the IP00C705 brings you unprecedented quality for format conversion. And this is available in a compact low-power package operating with off-the-shelf DDR memory.

- Motion-adaptive de-interlacer with 1-field delay
- 90 degree image rotation
- Detection of all cadences

Learn more at: www.i-chipstech.com

i-Chips
Represented in North America and Europe by: Daltron

NAB 2009 Booth SL8827
Sky News
Winner of newsroom technology
Submitted by BSkyB (Sky News)
Runner-up: The AP
Submitted by: Professional Products

NBC Olympics
Winner of post & network production facilities
Submitted by NBC Universal
Runner-up: Turner
Submitted by: AmberFin

The Sky News NOC is at the very heart of the channel’s newsgathering infrastructure. This hub has been devised and built to ensure the channel stays ahead of the competition in the fast-paced world of delivery in any format, from any platform. Using the NOC, it can seamlessly contribute the majority of its media, including live video streams and packages, from anywhere in the field and from its bureaus around the world via a variety of IP networks.

Like other media organizations, Sky News has become increasingly reliant on content fed via the Internet or through its private data networks. The NOC, coupled with the aforementioned infrastructure, allows the channel to be live and submit packages in higher quality, more quickly and in a more cost-effective manner than before. It uses a variety of IP providers, enabling Sky News to acquire content from multiple sources. Using the latest streaming technology, the channel has the flexibility to receive material across the whole spectrum, from a low bit-rate, lower quality, highly portable kit to full broadcast-quality, full-bandwidth deployments in our major or fixed locations. A specialist team of dedicated NOC staff has hybrid skills, adapted for this emerging technology. It has IT and broadcast experience to respond and adapt quickly to technical change, as well as for fault finding. Field crews recently underwent fundamental changes in training and use of equipment, but the NOC specialist team ensures the whole IP-based operation runs smoothly. Use of the NOC within Sky News has allowed the channel to cover breaking news in a way not possible before, both logistically and financially. The NOC opens up a additional possibilities for instant deployment worldwide. The organization believes the high availability of reliable Internet connectivity in numerous locations around the world enables its crews to be far more effective than it would have been prior to the investment in the NOC.

During the 2008 Beijing Olympics, NBC Universal set a precedent for successfully delivering content across platforms. An ambitious infrastructure allowed content to be recorded and ingested in China to a digital media storage array. It instantly became available to the many systems and users requiring media files and finally delivered in the correct formats to various new media outlets.

Omneon MediaDecks ingested feeds at the IBC, while the MediaGrid provided 180TB of storage in China and 120TB of storage in New York. Blue Order Media, along with Cyradis, OPIS and IDS, used the schedules created in ScheduALL to manage the media files, generate statistic metadata and create the EDLs read by MOG Solutions, which auto composited the high-quality essence based on instruction. Stats metadata was merged with the streaming files created by Digital Rapids for unified display on NBCOlympics.com by CMS provider Deltatre.

During the ingest process in China, shot pickers in NY screened, logged and produced the content for digital distribution using low-res proxy files created by the MediaDecks. Conformed SD and HD video, images and EDLs were sent to Avid using Cisco WAAS for more finished edits and/or to the Anystream system for transcoding for new media outlets. Anystream’s Velocity, located at Englewood Cliffs, NJ, auto-ingested production metadata entered by producers at 30 Rock via a customized MS application. Based on the metadata, Velocity instructed Agility to transcodes the correct format. After each transcodes passed quality assurance, distribution packages, which included thumbnails, various resolutions of Windows Media, MPEG-2 video and XMLs, were auto published by Velocity based on an outlet’s requirement to MCDS. MCDS, an in-house application powered by Signiant, sent out packages to the appropriate outlets, such as NBC Direct. For VOD packages, all 50Hz content was standards-converted through a Snell & Wilcox Mach 1, controlled by Agility and re-encoded as 60Hz with ad-stitching for delivery to the appropriate cable VOD outlets.
HD Should Not Mean “Harshly Defined”

Don’t accentuate wrinkles and flaws! Our fluorescent lighting fixtures produce a much softer, flattering, more diffuse light. Not only will your “talent” look better, but because of the low heat emitted, they’ll feel better.

Call or visit us online for more information:
(626) 579-0943
www.videssence.tv
Videssence™
NAB 2009 – Booth #C8428
Las Vegas Convention Center, Las Vegas

EXHIBIT HALL HOURS

Monday, April 20 - Wednesday, April 22
9:00 a.m. - 6:00 p.m.

Thursday, April 23
9:00 a.m. - 4:00 p.m.

MAP INFORMATION

The following is a brief description of what you will find in this year’s NAB map from Broadcast Engineering.

To the right, you will see a listing of the NAB categories and what products can be found in each. Next to each listing you will find a color square that indicates the convention hall each category is located in. On the overview map above you will see each hall with its product categories.

Our table of contents lists each hall and the pages they are found on. On each of these pages you will notice some booths are highlighted with different colors. The highlighted booths are our magazine advertisers, while the highlighted booths are our map advertisers.

We thank all of our advertisers for their support of our NAB coverage and exhibit hall map.

TABLE OF CONTENTS

- North Hall.. 4-5
- Central Hall..................................... 6-7
- South Hall, upper level 8-10
- South Hall, lower level 11-13
- Outside Media & Equipment 14
- Meeting Rooms............................... 14
- Map Index..................................... 15-22

PRODUCT CATEGORIES

- **Acquisition & Production** — Cameras, lenses, lighting and grip and ingest technologies.
- **Post-Production** — Video editing, graphics, animation, special effects software and hardware, audio editing, and music/sound libraries.
- **Management & Systems** — Video servers, systems integration, database technologies and digital asset management.
- **Distribution & Delivery** — Transmitters and towers for television, radio broadcasting, satellite technologies, cable, fiber, IPTV, mobile video and streaming products.
- **Display Systems** — Projection equipment, LCD and plasma displays and digital signage.
- **Pro Audio** — Audio recording and mixing equipment, encoding and compression technologies.
- **Radio** — The entire spectrum of products and services for analog, digital and streaming radio.
- **Outdoor Media & Equipment** — ENG vehicles, outdoor signage, satellite services, power products and production equipment.
- **Content** — Owners, aggregators and producers showcase their digital content to align with broadcasters, distributors and delivery technologies.
- **Technologies for Worship** — Video and audio capture, mixing and presentation technologies and services geared toward the religious marketplace.
SOUTH HALL, upper level

Add SU to beginning of all booth numbers

See Sencore at booth #C8546E on page 7

We’re Transition Ready. Are You?

DTV, IPTV, 3G, ATSC-M/H, DVB-S2, DOCSIS 3.0
Since 1951, TV professionals and broadcasters have relied on SENCORE to support them at every technology transition in the video industry.

Receiver Decoders
Digital Media Gateways
MPEG Streamers and Players
Transcoders

ATSC-M/H Signal Generators
Modulators
MPEG Analyzers and Monitors
Video I/O Cards and Adapters

IPTV Monitoring and Analysis
RF Analysis Equipment
Baseband Monitoring and Analysis
HD/SD SDI Monitoring and Analysis

Booths N2530 & SU4412

www.sencore.com
Tune into Brad on Broadcast for an inside take on the industry's hottest topics

Broadcast Engineering has launched an exciting new weekly dialog called Brad on Broadcast. Editorial Director, Brad Dick, hosts the blog and offers his viewpoints on key industry issues and those most affecting the magazine's readers. From technology to budgets, from competition to industry cutbacks, Brad tackles them all—and invites your feedback.

Armed with 18 years as a broadcast engineer and more than 20 years as a Broadcast Engineering editor, Brad Dick understands the challenges and needs that technical managers and engineers face. He's been on the front line, solved problems and learned from the experiences. Now he's sharing those thoughts in a weekly blog.

Tune in to become a part of this critical industry conversation.
http://blog.broadcastengineering.com/brad
SOUTH HALL, lower level

MAP #	COMPANY	BOOTH
1 | ScheduALL | SL1606

NAB Exhibit Hours, April 20 - 23, 2009
Mon. - Wed........... 9 a.m. - 6 p.m.
Thurs................ 9 a.m. - 4 p.m.

See Thomson/GV at booths #SL106 on this page

MediaFUSE™
AUTOMATED CONTENT REPURPOSING

CONTENT ONLY PAYS WHEN IT'S DISTRIBUTED QUICKLY.

In today’s marketplace, people decide when, where and how they consume content. For forward-thinkers who see this as a revenue opportunity, we offer the Thomson Grass Valley™ MediaFUSE solution—an extension of the Ignite™ system that is revolutionizing automated production.

MediaFUSE is a streamlined software and hardware platform that allows broadcasters to:
- Automate the re-purposing of content within minutes, including alternate stories that did not make it to air.
- Insert alternate content and ads into live streams, tag content for syndication and specify delivery options for restricted content.
- Communicate to select third-party advertising traffic management systems and reconcile between over-the-air ad traffic management and Internet advertising systems.

MediaFUSE—Create Once, Publish Everywhere.

For more information, visit us at NAB 2009, Booth SL106 or on the web at:
www.thomsongrassvalley.com/mediafuse
NAB Exhibit Hours, April 20 - 23, 2009
Mon. - Wed. 9 a.m. - 6 p.m.
Thurs. 9 a.m. - 4 p.m.

Broadcast Engineering

MAP # COMPANY BOOTH
2 Analog Way SL7423
MAP INDEX

COMPANY	BOOTH

KEY
Here is a key to help you understand the NAB's hall lettering and numbering system:

C = Central Hall
N = North Hall
OE = Outside Exhibits
SL = South Hall, Lower Level
SU = South Hall, Upper Level

360 Systems | N4120
1 Beyond | SL8625
16x9 | C1124
25-Seven Systems | N7332
2s2/DIT | SL10222
3ality Digital | SL9220C
3D @ Home Consortium | SL9220
3D Pavilion | SL9220
3DTV | SL9220E
3M | SL13905
3ware/AMCC | SL13007
48 Hour Film Project | C135C
5 Alarm Music | SL9105
615 Music | R303, SL9111

A

Aangstrom | C11840
Aaton | C6042
Abacast | C1174
ABE Elettronica | C2336
Abeas | SL1616
Abel Cine Tech | C6537
Aberdeen | SL10225
Aberdeen Captioning | SL10309
ABX Engineering | N9023
Academy Technology | SL17705
Accenture | SL7620
Accordent Technologies | SL3929
Accuweather | C8318
Acetel | SU14713
Acme Lighting and Grip | C8044
Acme Portable Machines | SL12814
Acoustical Solutions | C5722
Acrodyne Industries | C1335
Acronova | SL6527
Action Products | C9647
Active Power | C844
ADC | N3400
Adobe Systems | SL3200
Adriere Electronic | SL7717
Adtech Digital | SU8220
Advanced Designs | C6042
Advanced Media Technologies (AMT) | C2456
Advantech | C6342

March 2009 | broadcastengineering.com

15
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barix Technology</td>
<td>N8036</td>
</tr>
<tr>
<td>Baron Services</td>
<td>SL3805</td>
</tr>
<tr>
<td>Bavarian Pavilion</td>
<td>SU9924A</td>
</tr>
<tr>
<td>Beat The Traffic</td>
<td>SU10002</td>
</tr>
<tr>
<td>Beck Associates</td>
<td>N1415</td>
</tr>
<tr>
<td>Beijing Scenno</td>
<td>C11531</td>
</tr>
<tr>
<td>Belar Electronics Lab</td>
<td>N7629</td>
</tr>
<tr>
<td>Belden</td>
<td>C6508</td>
</tr>
<tr>
<td>Bell Helicopter/Helicopters</td>
<td>C3646</td>
</tr>
<tr>
<td>Bella</td>
<td>SL10816</td>
</tr>
<tr>
<td>Bexel Broadcast Services</td>
<td>C6512</td>
</tr>
<tr>
<td>Bex</td>
<td>N4521</td>
</tr>
<tr>
<td>Beyerdynamic</td>
<td>N6129</td>
</tr>
<tr>
<td>Bias</td>
<td>SL5628</td>
</tr>
<tr>
<td>Bird Technologies Group</td>
<td>N8517</td>
</tr>
<tr>
<td>Birns & Sawyer</td>
<td>C3447</td>
</tr>
<tr>
<td>BIRTV</td>
<td>C9906</td>
</tr>
<tr>
<td>Bitcentral</td>
<td>SU913</td>
</tr>
<tr>
<td>Bitmax</td>
<td>SU8899</td>
</tr>
<tr>
<td>Bitmicro Networks</td>
<td>SL13706</td>
</tr>
<tr>
<td>Bittree</td>
<td>C4648</td>
</tr>
<tr>
<td>Blackmagic Design</td>
<td>SL10820</td>
</tr>
<tr>
<td>Blastwave FX</td>
<td>SL9908</td>
</tr>
<tr>
<td>Blonder Tongue Laboratories</td>
<td>C4439</td>
</tr>
<tr>
<td>Blue Arc</td>
<td>SL12405</td>
</tr>
<tr>
<td>Blue Fish 444</td>
<td>SL7626</td>
</tr>
<tr>
<td>Blue Order Solutions</td>
<td>SU7506</td>
</tr>
<tr>
<td>Blueshape</td>
<td>SU3125B</td>
</tr>
<tr>
<td>Bogen Imaging</td>
<td>C6012</td>
</tr>
<tr>
<td>Boinx Software</td>
<td>SU10224C</td>
</tr>
<tr>
<td>Bolan Communications</td>
<td>SL5210</td>
</tr>
<tr>
<td>Bomar Interconnect Products</td>
<td>C1239</td>
</tr>
<tr>
<td>Bon Electro-Telecom</td>
<td>SL11712</td>
</tr>
<tr>
<td>Box TV</td>
<td>C3109</td>
</tr>
<tr>
<td>Brainstorm Multimedia</td>
<td>SU3507A</td>
</tr>
<tr>
<td>Bright Systems</td>
<td>SL13010</td>
</tr>
<tr>
<td>Brightcove</td>
<td>C155R</td>
</tr>
<tr>
<td>Brightline</td>
<td>SU6004</td>
</tr>
<tr>
<td>Broadcast Asia 2009</td>
<td>C7706</td>
</tr>
<tr>
<td>Broadcast Bionics</td>
<td>N8723</td>
</tr>
<tr>
<td>Broadcast Electronics</td>
<td>N6732</td>
</tr>
<tr>
<td>Broadcast Engineering</td>
<td>SL7689</td>
</tr>
<tr>
<td>Broadcast India 2009</td>
<td>C7406</td>
</tr>
<tr>
<td>Broadcast Interactive Media</td>
<td>C1462</td>
</tr>
<tr>
<td>Broadcast International</td>
<td>SU4326</td>
</tr>
<tr>
<td>Broadcast Microwave Services</td>
<td>C2318</td>
</tr>
<tr>
<td>Broadcast Pix</td>
<td>SU2517</td>
</tr>
<tr>
<td>Broadcast Software International</td>
<td>N8720</td>
</tr>
<tr>
<td>Broadcasters General Store</td>
<td>N8120</td>
</tr>
<tr>
<td>Broadview Software</td>
<td>SU1222</td>
</tr>
<tr>
<td>Broadway Systems</td>
<td>N4117</td>
</tr>
<tr>
<td>Bron Kobold</td>
<td>C9541</td>
</tr>
<tr>
<td>Brother International</td>
<td>SU4810</td>
</tr>
<tr>
<td>BT Media and Broadcast</td>
<td>SL11515</td>
</tr>
<tr>
<td>BTX Technologies</td>
<td>C3448</td>
</tr>
<tr>
<td>BUF Technology</td>
<td>SL1612</td>
</tr>
<tr>
<td>Building4Media - Primstream</td>
<td>SU5620</td>
</tr>
<tr>
<td>Burk Technology</td>
<td>N6920</td>
</tr>
<tr>
<td>Burli Software</td>
<td>N5131</td>
</tr>
<tr>
<td>Burst</td>
<td>N1425</td>
</tr>
<tr>
<td>Burst Electronics</td>
<td>C9213</td>
</tr>
<tr>
<td>Bycast</td>
<td>SU6925</td>
</tr>
<tr>
<td>Cablecam</td>
<td>C11528</td>
</tr>
<tr>
<td>Cache-A</td>
<td>SL9605</td>
</tr>
<tr>
<td>Caldig</td>
<td>SL13610</td>
</tr>
<tr>
<td>Calrec Audio</td>
<td>N8207</td>
</tr>
<tr>
<td>Calumet Photographic</td>
<td>C7042</td>
</tr>
<tr>
<td>Calutec Mobile Solutions</td>
<td>OE434</td>
</tr>
<tr>
<td>Cambotics</td>
<td>C11337</td>
</tr>
<tr>
<td>Camera Dynamics</td>
<td>C6025</td>
</tr>
<tr>
<td>Camera Motion Research</td>
<td>C12037</td>
</tr>
<tr>
<td>Camera Turret</td>
<td>C8832</td>
</tr>
<tr>
<td>Cammatte Systems</td>
<td>C6733</td>
</tr>
<tr>
<td>Complex</td>
<td>C3446</td>
</tr>
<tr>
<td>Campus Lan Software</td>
<td>SU9920D</td>
</tr>
<tr>
<td>Camrade</td>
<td>C8638</td>
</tr>
<tr>
<td>Canare</td>
<td>C9118</td>
</tr>
<tr>
<td>Canarus Trading</td>
<td>C7944</td>
</tr>
<tr>
<td>Canon</td>
<td>C4325</td>
</tr>
<tr>
<td>Caption Colorado</td>
<td>SU4808</td>
</tr>
<tr>
<td>Carl Zeiss</td>
<td>C10408</td>
</tr>
<tr>
<td>Cartoni</td>
<td>C8720</td>
</tr>
<tr>
<td>Case Cruiser</td>
<td>C12130</td>
</tr>
<tr>
<td>Cavena Image Products</td>
<td>SU8513</td>
</tr>
<tr>
<td>Cavisis Enterprises</td>
<td>C12129</td>
</tr>
<tr>
<td>CCBN2010 Expo</td>
<td>C6706</td>
</tr>
<tr>
<td>CDNetworks</td>
<td>C1357</td>
</tr>
<tr>
<td>Citon Technologies</td>
<td>SU13304</td>
</tr>
<tr>
<td>Centaur Delivery</td>
<td>SU7022</td>
</tr>
<tr>
<td>Centuary Optics</td>
<td>C5528</td>
</tr>
<tr>
<td>Ceronica Networks</td>
<td>C2654</td>
</tr>
<tr>
<td>Checkers Industrial Products</td>
<td>C9523</td>
</tr>
<tr>
<td>Chembro Micom</td>
<td>SL13465</td>
</tr>
<tr>
<td>Chimera</td>
<td>C8731</td>
</tr>
<tr>
<td>China Infomedia</td>
<td>SL10609</td>
</tr>
<tr>
<td>Christie Digital Systems</td>
<td>SL7912</td>
</tr>
<tr>
<td>Chyron</td>
<td>SL1420</td>
</tr>
<tr>
<td>Cine 60</td>
<td>SU9924D</td>
</tr>
<tr>
<td>Cinebags</td>
<td>C3841</td>
</tr>
<tr>
<td>Cineform</td>
<td>SL11605</td>
</tr>
<tr>
<td>Cinergy</td>
<td>SU3121</td>
</tr>
<tr>
<td>Cinefilms</td>
<td>C8949</td>
</tr>
<tr>
<td>Cine-tal Systems</td>
<td>SL6024</td>
</tr>
<tr>
<td>Cinevate</td>
<td>C8742</td>
</tr>
<tr>
<td>Cintel</td>
<td>SL2216</td>
</tr>
<tr>
<td>CIS Technology</td>
<td>SU9108</td>
</tr>
<tr>
<td>Cisco</td>
<td>S213MR</td>
</tr>
<tr>
<td>Evolution</td>
<td>SU2512</td>
</tr>
<tr>
<td>Clark Wire & Cable</td>
<td>C10108</td>
</tr>
<tr>
<td>Clear Channel Satellite</td>
<td>OE418</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear-Com Communication Systems</td>
<td>C6521</td>
</tr>
<tr>
<td>Click Effects</td>
<td>SL10950</td>
</tr>
<tr>
<td>Clonwerk</td>
<td>SL4129</td>
</tr>
<tr>
<td>Cluster Media Labs</td>
<td>SU13912</td>
</tr>
<tr>
<td>Coast to Coast Tower Service</td>
<td>C1431</td>
</tr>
<tr>
<td>Coastal Media Group</td>
<td>C4742</td>
</tr>
<tr>
<td>Coaxial Dynamics</td>
<td>N4831</td>
</tr>
<tr>
<td>Cobalt Digital</td>
<td>N3718</td>
</tr>
<tr>
<td>Cobham Satcom</td>
<td>C7339</td>
</tr>
<tr>
<td>Coffey Sound</td>
<td>N4919</td>
</tr>
<tr>
<td>Comlabs</td>
<td>C7443</td>
</tr>
<tr>
<td>Communications Specialties</td>
<td>SL8820</td>
</tr>
<tr>
<td>Compix Media</td>
<td>SL4805</td>
</tr>
<tr>
<td>Comprehensive</td>
<td>SL2157</td>
</tr>
<tr>
<td>Comunicate Technologies</td>
<td>SU13307</td>
</tr>
<tr>
<td>Comrex</td>
<td>N9729</td>
</tr>
<tr>
<td>Com-Tech High Freq and Broadcast</td>
<td>C3324</td>
</tr>
<tr>
<td>Comtech Telecommunications</td>
<td>SU6909</td>
</tr>
<tr>
<td>Conax USA</td>
<td>SU11318</td>
</tr>
<tr>
<td>Contemporary Research</td>
<td>SL12807</td>
</tr>
<tr>
<td>Convergent Design</td>
<td>SL10805</td>
</tr>
<tr>
<td>Cool-Lux</td>
<td>C8834</td>
</tr>
<tr>
<td>Cooltouch Monitors</td>
<td>C3063</td>
</tr>
<tr>
<td>Coolux International</td>
<td>SL12409</td>
</tr>
<tr>
<td>Copy Timer</td>
<td>C155N</td>
</tr>
<tr>
<td>Core Melt</td>
<td>SL2529C</td>
</tr>
<tr>
<td>Corel Technologies</td>
<td>N3238</td>
</tr>
<tr>
<td>Corplex</td>
<td>OE425</td>
</tr>
<tr>
<td>Coship Electronics</td>
<td>SU10808</td>
</tr>
<tr>
<td>Countryman Associates</td>
<td>N5525</td>
</tr>
<tr>
<td>CP Cases</td>
<td>C10147</td>
</tr>
<tr>
<td>CPC - Computer Prompting & Captioning</td>
<td>SL7615</td>
</tr>
<tr>
<td>CPI</td>
<td>C2807</td>
</tr>
<tr>
<td>Crawford Communications</td>
<td>C6148</td>
</tr>
<tr>
<td>Createca</td>
<td>SU11704</td>
</tr>
<tr>
<td>Creative Handbook</td>
<td>C11830</td>
</tr>
<tr>
<td>Crews Control/Team People</td>
<td>C4051</td>
</tr>
<tr>
<td>Crispin</td>
<td>SU7826</td>
</tr>
<tr>
<td>Crown Broadcast</td>
<td>N7907</td>
</tr>
<tr>
<td>Crystal Vision</td>
<td>SU3102</td>
</tr>
<tr>
<td>CTE Digital Broadcast</td>
<td>C3307</td>
</tr>
<tr>
<td>CTV Archive Sales</td>
<td>SL5728</td>
</tr>
<tr>
<td>Cummins Power Generation</td>
<td>C3804</td>
</tr>
<tr>
<td>C.0. Co. Marketing</td>
<td>SU7265</td>
</tr>
<tr>
<td>da Vinci Systems</td>
<td>SL3314</td>
</tr>
<tr>
<td>Bektronics</td>
<td>C12419</td>
</tr>
<tr>
<td>Dalet Digital Media Systems</td>
<td>SU3702</td>
</tr>
<tr>
<td>Da-Lite Screen</td>
<td>SL3244</td>
</tr>
<tr>
<td>Dan Dugan Sound Design</td>
<td>N2515</td>
</tr>
<tr>
<td>Darim</td>
<td>SL5025</td>
</tr>
<tr>
<td>Basto</td>
<td>N7220</td>
</tr>
<tr>
<td>Data Direct Networks</td>
<td>SL3310</td>
</tr>
<tr>
<td>DataPath</td>
<td>SU5102</td>
</tr>
</tbody>
</table>

16 broadcastengineering.com | March 2009
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datavideo</td>
<td>SL6520</td>
</tr>
<tr>
<td>Davicom</td>
<td>N5233</td>
</tr>
<tr>
<td>Dawncs</td>
<td>C6345</td>
</tr>
<tr>
<td>Dax Solutions</td>
<td>SL6714</td>
</tr>
<tr>
<td>Day Sequerra</td>
<td>N5129</td>
</tr>
<tr>
<td>Dayang Technology Development</td>
<td>SU9606</td>
</tr>
<tr>
<td>DB Elettronica Telecommunications</td>
<td>C3018</td>
</tr>
<tr>
<td>DCA</td>
<td>SU8026</td>
</tr>
<tr>
<td>Dedotec</td>
<td>C9818</td>
</tr>
<tr>
<td>DekTec Digital Video</td>
<td>SU11108</td>
</tr>
<tr>
<td>Delta Digital Video</td>
<td>SL12717</td>
</tr>
<tr>
<td>Delta Meccanica</td>
<td>N4824</td>
</tr>
<tr>
<td>Delta RF Technology</td>
<td>C1929</td>
</tr>
<tr>
<td>Deltacast</td>
<td>SL10608</td>
</tr>
<tr>
<td>Denon & Marantz Professional</td>
<td>N7636</td>
</tr>
<tr>
<td>DeSisti Lighting</td>
<td>C9031</td>
</tr>
<tr>
<td>Devin Design Group</td>
<td>R301</td>
</tr>
<tr>
<td>DFT Digital Film Technology GmbH</td>
<td>SL13313</td>
</tr>
<tr>
<td>DG Fast Channel/Pathfire</td>
<td>SU4302</td>
</tr>
<tr>
<td>DH Satellite</td>
<td>C4437</td>
</tr>
<tr>
<td>Dialight</td>
<td>N2237</td>
</tr>
<tr>
<td>Di-electric Communications</td>
<td>C1324</td>
</tr>
<tr>
<td>Dipico Soundtracks</td>
<td>N8630</td>
</tr>
<tr>
<td>Digidia</td>
<td>N1737F</td>
</tr>
<tr>
<td>Digilffections</td>
<td>SL2529D</td>
</tr>
<tr>
<td>Digigram</td>
<td>N9024</td>
</tr>
<tr>
<td>Digital Alert Systems</td>
<td>N2135</td>
</tr>
<tr>
<td>Digital Broadcast</td>
<td>SU6302</td>
</tr>
<tr>
<td>Digital Horizon</td>
<td>C3244</td>
</tr>
<tr>
<td>Digital Nirvana</td>
<td>SU8808</td>
</tr>
<tr>
<td>Digital Rapids</td>
<td>SL5213</td>
</tr>
<tr>
<td>Digital Streams America</td>
<td>SL9208</td>
</tr>
<tr>
<td>Digital Vision</td>
<td>SL514</td>
</tr>
<tr>
<td>Digtronics</td>
<td>SU7004</td>
</tr>
<tr>
<td>Dimetis</td>
<td>SU9920A</td>
</tr>
<tr>
<td>Discovery sysko</td>
<td>SU9620D</td>
</tr>
<tr>
<td>Diversified Marketing</td>
<td>C1127</td>
</tr>
<tr>
<td>DK Technologies</td>
<td>N2325</td>
</tr>
<tr>
<td>DMT System</td>
<td>C2622</td>
</tr>
<tr>
<td>DNF Controls</td>
<td>N1721</td>
</tr>
<tr>
<td>Dolby Laboratories</td>
<td>N1815</td>
</tr>
<tr>
<td>Doremi Labs</td>
<td>SU5021</td>
</tr>
<tr>
<td>Dorrack Electronics</td>
<td>N6429</td>
</tr>
<tr>
<td>Dow-Key Microwave</td>
<td>C1734</td>
</tr>
<tr>
<td>DPA Microphones</td>
<td>N4819</td>
</tr>
<tr>
<td>Draper</td>
<td>SL4208</td>
</tr>
<tr>
<td>DSC Laboratories</td>
<td>C10218</td>
</tr>
<tr>
<td>DSI RF Systems</td>
<td>C1328</td>
</tr>
<tr>
<td>DTV Exchange</td>
<td>N3100</td>
</tr>
<tr>
<td>Dulce Systems</td>
<td>SL4428</td>
</tr>
<tr>
<td>Duma Video</td>
<td>SU6924</td>
</tr>
<tr>
<td>DVB</td>
<td>C2239</td>
</tr>
<tr>
<td>DVEO/Computer Modules</td>
<td>SU4988</td>
</tr>
<tr>
<td>DVS Digital Video Systems</td>
<td>SL6920</td>
</tr>
<tr>
<td>Dynacore Technology</td>
<td>C3844</td>
</tr>
<tr>
<td>Dynascan Technology</td>
<td>SL6724</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E L Marsden Wireless</td>
<td>C1122</td>
</tr>
<tr>
<td>EZV</td>
<td>C1331</td>
</tr>
<tr>
<td>El</td>
<td>SU9620C</td>
</tr>
<tr>
<td>Ebenezer Technology</td>
<td>SL8326</td>
</tr>
<tr>
<td>Echolab</td>
<td>SU2302</td>
</tr>
<tr>
<td>Echostar</td>
<td>C6045</td>
</tr>
<tr>
<td>Eckel Noise Control Technology</td>
<td>N8823</td>
</tr>
<tr>
<td>Edgeware</td>
<td>C1657</td>
</tr>
<tr>
<td>Edilo</td>
<td>SL10420</td>
</tr>
<tr>
<td>EditShare</td>
<td>SL6420</td>
</tr>
<tr>
<td>Editware</td>
<td>C12124</td>
</tr>
<tr>
<td>EEE Enterprises</td>
<td>SL2805</td>
</tr>
<tr>
<td>Egate</td>
<td>C2739</td>
</tr>
<tr>
<td>Equipment</td>
<td>C7030</td>
</tr>
<tr>
<td>EKI International</td>
<td>SL11609</td>
</tr>
<tr>
<td>Eizo Nano</td>
<td>SL8027</td>
</tr>
<tr>
<td>Elber</td>
<td>C2626</td>
</tr>
<tr>
<td>ElecTag</td>
<td>C2751</td>
</tr>
<tr>
<td>Electronic Arts</td>
<td>C155A</td>
</tr>
<tr>
<td>Electronic Theatre Controls</td>
<td>C6828</td>
</tr>
<tr>
<td>Electrophysics</td>
<td>C12024</td>
</tr>
<tr>
<td>Electrocard</td>
<td>C3315</td>
</tr>
<tr>
<td>Electrosonic</td>
<td>SL9720</td>
</tr>
<tr>
<td>Electrolysis</td>
<td>C3027</td>
</tr>
<tr>
<td>Electro-Voice</td>
<td>C7025</td>
</tr>
<tr>
<td>Element Labs</td>
<td>SL12816</td>
</tr>
<tr>
<td>Element Technica</td>
<td>C9549</td>
</tr>
<tr>
<td>Elemental Technologies</td>
<td>SL10212</td>
</tr>
<tr>
<td>Elenas</td>
<td>N7917</td>
</tr>
<tr>
<td>Elektrokoinka</td>
<td>C1719</td>
</tr>
<tr>
<td>Elma Electronic</td>
<td>N5500</td>
</tr>
<tr>
<td>Eltron</td>
<td>SL7926</td>
</tr>
<tr>
<td>Encees Communications</td>
<td>C1415</td>
</tr>
<tr>
<td>e-mediavision.com</td>
<td>SU10224</td>
</tr>
<tr>
<td>Emerson Connectivity Solutions</td>
<td>C12431</td>
</tr>
<tr>
<td>Emerson Network Power Surge Protection</td>
<td>C1732</td>
</tr>
<tr>
<td>eMotion Engines</td>
<td>SU8705</td>
</tr>
<tr>
<td>Empire State Filter</td>
<td>C4442</td>
</tr>
<tr>
<td>Empower RF Systems</td>
<td>C1515</td>
</tr>
<tr>
<td>EMR</td>
<td>C155</td>
</tr>
<tr>
<td>Enco Systems</td>
<td>N7607</td>
</tr>
<tr>
<td>Endavo Media</td>
<td>C155Q</td>
</tr>
<tr>
<td>Enensys Technologies</td>
<td>SU10805</td>
</tr>
<tr>
<td>Energy-Onix</td>
<td>N5823</td>
</tr>
<tr>
<td>E-N-G Mobile Systems</td>
<td>C7033</td>
</tr>
<tr>
<td>Enhance Technology</td>
<td>SL1610</td>
</tr>
<tr>
<td>Enigma Systems</td>
<td>SU13303</td>
</tr>
<tr>
<td>ENPS/Associated Press</td>
<td>C161</td>
</tr>
<tr>
<td>EnSeal</td>
<td>SL7407</td>
</tr>
<tr>
<td>Ensemble Designs</td>
<td>N4023</td>
</tr>
<tr>
<td>Enticent</td>
<td>C1555</td>
</tr>
<tr>
<td>Envivo</td>
<td>SU2424</td>
</tr>
<tr>
<td>EPS-Doublet</td>
<td>N9113</td>
</tr>
<tr>
<td>Erector Sets</td>
<td>R403</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERI-Electronics Research</td>
<td>C1307</td>
</tr>
<tr>
<td>ESE</td>
<td>N3124</td>
</tr>
<tr>
<td>Etere</td>
<td>SU3125F</td>
</tr>
<tr>
<td>EtiLux</td>
<td>SU7253C</td>
</tr>
<tr>
<td>ETL Systems</td>
<td>C4443</td>
</tr>
<tr>
<td>ETRI</td>
<td>C8546B</td>
</tr>
<tr>
<td>Euphonix</td>
<td>N6812</td>
</tr>
<tr>
<td>Eurek Alert</td>
<td>R214</td>
</tr>
<tr>
<td>Eurotect</td>
<td>SU3125C</td>
</tr>
<tr>
<td>Eurotel</td>
<td>C2635</td>
</tr>
<tr>
<td>Euetsis America</td>
<td>C4846</td>
</tr>
<tr>
<td>Eventide</td>
<td>N6016</td>
</tr>
<tr>
<td>Everton</td>
<td>N1602</td>
</tr>
<tr>
<td>EVS</td>
<td>C9508</td>
</tr>
<tr>
<td>Exir Broadcasting & Telecom</td>
<td>C1735</td>
</tr>
<tr>
<td>Extron Electronics</td>
<td>SL1201</td>
</tr>
<tr>
<td>Eyeheight</td>
<td>SL7409</td>
</tr>
<tr>
<td>Eyeon Software</td>
<td>SL1915</td>
</tr>
<tr>
<td>EZ FX</td>
<td>C7137</td>
</tr>
<tr>
<td>E-Z Up International</td>
<td>N9130</td>
</tr>
<tr>
<td>EZNews</td>
<td>SU10602</td>
</tr>
<tr>
<td>EZQuest</td>
<td>SL4308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilis Technology</td>
<td>SL9505</td>
</tr>
<tr>
<td>Fairlight</td>
<td>SL1910</td>
</tr>
<tr>
<td>Falcon Eyes Limited</td>
<td>C11837</td>
</tr>
<tr>
<td>Farmers WIFE</td>
<td>SL13310</td>
</tr>
<tr>
<td>Fast Forward Video</td>
<td>N2819</td>
</tr>
<tr>
<td>Fast VDO</td>
<td>SL11804</td>
</tr>
<tr>
<td>FH Video</td>
<td>C9387</td>
</tr>
<tr>
<td>FiberPlex</td>
<td>N6432</td>
</tr>
<tr>
<td>File Catalyst</td>
<td>SL13406</td>
</tr>
<tr>
<td>Film Systems</td>
<td>SL5327</td>
</tr>
<tr>
<td>Filmlight</td>
<td>SL4508</td>
</tr>
<tr>
<td>FingerWorks Telescators</td>
<td>SL6616</td>
</tr>
<tr>
<td>Firefly LED Cable Protectors</td>
<td>C8325</td>
</tr>
<tr>
<td>FirmTek</td>
<td>SL9207</td>
</tr>
<tr>
<td>Firstcom Music</td>
<td>SL9815</td>
</tr>
<tr>
<td>Fischer Connectors</td>
<td>C9114</td>
</tr>
<tr>
<td>Fission Software</td>
<td>SU817</td>
</tr>
<tr>
<td>Flash Technology</td>
<td>N6225</td>
</tr>
<tr>
<td>FLIR Systems</td>
<td>C9215</td>
</tr>
<tr>
<td>Floridic Systems</td>
<td>SU1802</td>
</tr>
<tr>
<td>Flying-Cam</td>
<td>SU723B</td>
</tr>
<tr>
<td>Focus Enhancements</td>
<td>SL1905</td>
</tr>
<tr>
<td>Focus Optics</td>
<td>C8381</td>
</tr>
<tr>
<td>FOR-A</td>
<td>SU1507</td>
</tr>
<tr>
<td>Forecast Consoles</td>
<td>C11724</td>
</tr>
<tr>
<td>Format</td>
<td>C007</td>
</tr>
<tr>
<td>Fraunhofer Allianz Digital Cinema</td>
<td>SU9624A</td>
</tr>
<tr>
<td>Fraunhofer IS</td>
<td>SU6023</td>
</tr>
<tr>
<td>Frezzi Energy Systems</td>
<td>C9037</td>
</tr>
<tr>
<td>Front Porch Digital</td>
<td>SU6117</td>
</tr>
<tr>
<td>Frontline Communications</td>
<td>C8308</td>
</tr>
<tr>
<td>FSI (Flanders Scientific)</td>
<td>SU7025</td>
</tr>
<tr>
<td>COMPANY</td>
<td>Booth</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Fujifilm</td>
<td>C7116A</td>
</tr>
<tr>
<td>Fujinon</td>
<td>C7118</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>SU10821</td>
</tr>
<tr>
<td>Furukawa</td>
<td>C4339</td>
</tr>
<tr>
<td>Fusion-io</td>
<td>SU1820</td>
</tr>
<tr>
<td>Future Media Concepts</td>
<td>SL8323</td>
</tr>
<tr>
<td>Fuzhou F&V Photographic Equipment</td>
<td>CI71743</td>
</tr>
<tr>
<td>FX Group</td>
<td>R300</td>
</tr>
<tr>
<td>Galaxy 1 Communications</td>
<td>OE413</td>
</tr>
<tr>
<td>GC Protonics</td>
<td>C1946</td>
</tr>
<tr>
<td>Galaxy 1 Communications</td>
<td>OE413</td>
</tr>
<tr>
<td>GCS</td>
<td>C4343</td>
</tr>
<tr>
<td>Gefen</td>
<td>SL4205</td>
</tr>
<tr>
<td>GenArts</td>
<td>SL2209</td>
</tr>
<tr>
<td>Gencom Technology</td>
<td>SU7307</td>
</tr>
<tr>
<td>Genelec</td>
<td>N3414</td>
</tr>
<tr>
<td>General Dynamics Satcom Technologies</td>
<td>OE405</td>
</tr>
<tr>
<td>Gennum</td>
<td>SU9111</td>
</tr>
<tr>
<td>Gepco International</td>
<td>C7430</td>
</tr>
<tr>
<td>Gerling & Associates</td>
<td>OE100</td>
</tr>
<tr>
<td>Gitzo</td>
<td>C6015</td>
</tr>
<tr>
<td>Glidecam Industries</td>
<td>C7112</td>
</tr>
<tr>
<td>Global Microwave Systems</td>
<td>C3013</td>
</tr>
<tr>
<td>GlobeCast</td>
<td>C5357</td>
</tr>
<tr>
<td>Globecom Systems</td>
<td>C6642</td>
</tr>
<tr>
<td>Glue Tools</td>
<td>SL1716</td>
</tr>
<tr>
<td>GMPCS Personal Communications</td>
<td>C4348</td>
</tr>
<tr>
<td>Google</td>
<td>NU507</td>
</tr>
<tr>
<td>Gosseen</td>
<td>C6019</td>
</tr>
<tr>
<td>Grab Networks</td>
<td>SU2724</td>
</tr>
<tr>
<td>Graphics Outfitters</td>
<td>SL6716</td>
</tr>
<tr>
<td>Grass Valley</td>
<td>SL106</td>
</tr>
<tr>
<td>Greatway Technology</td>
<td>C850</td>
</tr>
<tr>
<td>Green-Box Technology</td>
<td>SL10508</td>
</tr>
<tr>
<td>Grid-TV</td>
<td>SU9920E</td>
</tr>
<tr>
<td>Groove Addicts</td>
<td>SL9505</td>
</tr>
<tr>
<td>Grupo Editorial Bolina</td>
<td>L18</td>
</tr>
<tr>
<td>G-Technology</td>
<td>SLB511</td>
</tr>
<tr>
<td>GVS - Grande Vitesse Systems</td>
<td>SL12412</td>
</tr>
<tr>
<td>H.C. Jeffries Tower</td>
<td>C2630</td>
</tr>
<tr>
<td>HaiVision Systems</td>
<td>SL4126</td>
</tr>
<tr>
<td>Hamilton Metalcraft</td>
<td>C2117</td>
</tr>
<tr>
<td>Hamlet</td>
<td>N1312</td>
</tr>
<tr>
<td>Hannay Reels</td>
<td>C8329</td>
</tr>
<tr>
<td>Hardata</td>
<td>SU13814</td>
</tr>
<tr>
<td>Hardigg Cases</td>
<td>SU7077</td>
</tr>
<tr>
<td>Harmonic</td>
<td>SU7209</td>
</tr>
<tr>
<td>Harris</td>
<td>N2592</td>
</tr>
<tr>
<td>HD Solutions</td>
<td>SL10917</td>
</tr>
<tr>
<td>Henry Engineering</td>
<td>N6215</td>
</tr>
<tr>
<td>Hensley Technologies</td>
<td>C1121</td>
</tr>
<tr>
<td>Hewlett Packard</td>
<td>SL4420</td>
</tr>
<tr>
<td>Hi Tech Systems</td>
<td>SL4213</td>
</tr>
<tr>
<td>Highly Reliable Systems</td>
<td>N9032</td>
</tr>
<tr>
<td>Highpoint Technologies</td>
<td>SL10127</td>
</tr>
<tr>
<td>Hilomast</td>
<td>C3828</td>
</tr>
<tr>
<td>Hispasat</td>
<td>C6459</td>
</tr>
<tr>
<td>Hitachi Kokusui Electric America</td>
<td>C4310</td>
</tr>
<tr>
<td>Hi-Tech Enterprises</td>
<td>C11524</td>
</tr>
<tr>
<td>HME</td>
<td>C7834</td>
</tr>
<tr>
<td>Hollywood Edge</td>
<td>SL9809</td>
</tr>
<tr>
<td>Hoodman</td>
<td>C1233</td>
</tr>
<tr>
<td>Hosa Technology</td>
<td>SL1710</td>
</tr>
<tr>
<td>Hotronic</td>
<td>C11025</td>
</tr>
<tr>
<td>IABM</td>
<td>SL1242</td>
</tr>
<tr>
<td>IBC</td>
<td>SL1242</td>
</tr>
<tr>
<td>IBIS</td>
<td>SU8602</td>
</tr>
<tr>
<td>IBM</td>
<td>SU3717</td>
</tr>
<tr>
<td>ICE</td>
<td>SU3125E</td>
</tr>
<tr>
<td>ICG Local 600</td>
<td>SL1046</td>
</tr>
<tr>
<td>i-Chips Technology</td>
<td>SL8827</td>
</tr>
<tr>
<td>ICM</td>
<td>C950</td>
</tr>
<tr>
<td>Iconix Video</td>
<td>SL8827</td>
</tr>
<tr>
<td>IDX System Technology</td>
<td>C8715</td>
</tr>
<tr>
<td>Ikan</td>
<td>C12133</td>
</tr>
<tr>
<td>Ikekami Electronics</td>
<td>C5108</td>
</tr>
<tr>
<td>ILY Enterprise</td>
<td>SL8223</td>
</tr>
<tr>
<td>Image Video</td>
<td>SL8223</td>
</tr>
<tr>
<td>Imaginics</td>
<td>SL8223</td>
</tr>
<tr>
<td>Imagica</td>
<td>SL4725</td>
</tr>
<tr>
<td>Immersive Media</td>
<td>SU11702</td>
</tr>
<tr>
<td>i-Movix</td>
<td>SU7823A</td>
</tr>
<tr>
<td>INA</td>
<td>SU13906</td>
</tr>
<tr>
<td>Independent Audio</td>
<td>N3218</td>
</tr>
<tr>
<td>Indie Stack Media</td>
<td>C7140</td>
</tr>
<tr>
<td>Industrial Acoustics</td>
<td>N4626</td>
</tr>
<tr>
<td>Ineoquest</td>
<td>SU6523</td>
</tr>
<tr>
<td>Inlet Technologies</td>
<td>SL7029</td>
</tr>
<tr>
<td>Imarsat</td>
<td>OE435</td>
</tr>
<tr>
<td>Innovation Optics</td>
<td>C5915</td>
</tr>
<tr>
<td>Inovonics</td>
<td>N5829</td>
</tr>
<tr>
<td>Integral Devices</td>
<td>C7849</td>
</tr>
<tr>
<td>Integrated Design Tools</td>
<td>C10149</td>
</tr>
<tr>
<td>Intek Digital</td>
<td>SU7327</td>
</tr>
<tr>
<td>Intel-a-Jib</td>
<td>C6325</td>
</tr>
<tr>
<td>Intelsat</td>
<td>C4937</td>
</tr>
<tr>
<td>Intelsat</td>
<td>OE404</td>
</tr>
<tr>
<td>Inter BEE</td>
<td>C6806</td>
</tr>
<tr>
<td>Internap</td>
<td>SL11109</td>
</tr>
<tr>
<td>International Datacasting</td>
<td>C5542</td>
</tr>
<tr>
<td>International Supplies</td>
<td>C11741</td>
</tr>
<tr>
<td>Internet Jock</td>
<td>C155M</td>
</tr>
<tr>
<td>Interra Systems</td>
<td>SU11105</td>
</tr>
<tr>
<td>Intopix</td>
<td>SU7523A</td>
</tr>
<tr>
<td>Ioko</td>
<td>C1057</td>
</tr>
<tr>
<td>iPharco Media</td>
<td>SU7024</td>
</tr>
<tr>
<td>IPTV Pavilion</td>
<td>C1051</td>
</tr>
<tr>
<td>IPV Limited</td>
<td>SU8510</td>
</tr>
<tr>
<td>iDstar Networks</td>
<td>SL10810</td>
</tr>
<tr>
<td>Irdeto</td>
<td>SU9117</td>
</tr>
<tr>
<td>Iridas</td>
<td>SL4728</td>
</tr>
<tr>
<td>IRTE</td>
<td>C2325</td>
</tr>
<tr>
<td>Ison Systems</td>
<td>SL8610</td>
</tr>
<tr>
<td>iStar</td>
<td>SL5329</td>
</tr>
<tr>
<td>I-Star Computer</td>
<td>SL5632</td>
</tr>
<tr>
<td>ITS Electronics</td>
<td>C4438</td>
</tr>
<tr>
<td>Izotope</td>
<td>N9108</td>
</tr>
<tr>
<td>JAB Media</td>
<td>N9108</td>
</tr>
<tr>
<td>J-A Taylor & Associates</td>
<td>OE414</td>
</tr>
<tr>
<td>J.L. Fisher</td>
<td>C9043</td>
</tr>
<tr>
<td>J7</td>
<td>SL7427</td>
</tr>
<tr>
<td>Jampo Antennas</td>
<td>C2611</td>
</tr>
<tr>
<td>JBL Professional</td>
<td>N6724</td>
</tr>
<tr>
<td>JDSU</td>
<td>SU4809</td>
</tr>
<tr>
<td>Jetcast</td>
<td>N8214</td>
</tr>
<tr>
<td>Jietu Lighting</td>
<td>C9341</td>
</tr>
<tr>
<td>JKI Audio</td>
<td>N2125</td>
</tr>
<tr>
<td>JL Cooper Electronics</td>
<td>N2816</td>
</tr>
<tr>
<td>J-Lab</td>
<td>C4040</td>
</tr>
<tr>
<td>JMR Electronics</td>
<td>SU7227</td>
</tr>
<tr>
<td>Joseph Electronics</td>
<td>C1633</td>
</tr>
<tr>
<td>Jumbo Bright Promters</td>
<td>C10444</td>
</tr>
<tr>
<td>Junger Audio Studiotechnik</td>
<td>N4937</td>
</tr>
<tr>
<td>JVC Professional Products</td>
<td>C4315</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K5600</td>
<td>C9128</td>
</tr>
<tr>
<td>KAE</td>
<td>C9116</td>
</tr>
<tr>
<td>KATA</td>
<td>C6014</td>
</tr>
<tr>
<td>Kathrein, Scala Division</td>
<td>C1334</td>
</tr>
<tr>
<td>Kathrein-Werke</td>
<td>C1348</td>
</tr>
<tr>
<td>Kay Industries</td>
<td>N4828</td>
</tr>
<tr>
<td>KB Covers</td>
<td>SL6360</td>
</tr>
<tr>
<td>KD Kanopy</td>
<td>N8033</td>
</tr>
<tr>
<td>KDDI R&D Laboratories</td>
<td>SL7909</td>
</tr>
<tr>
<td>Keisoku Giken</td>
<td>SU13913</td>
</tr>
<tr>
<td>Keith Austin</td>
<td>C12229</td>
</tr>
<tr>
<td>KenCast</td>
<td>SU 7907</td>
</tr>
<tr>
<td>Kern Electronic</td>
<td>SU9924E</td>
</tr>
<tr>
<td>KGS Development</td>
<td>SU7523D</td>
</tr>
<tr>
<td>Killer Tracks</td>
<td>SL9115</td>
</tr>
<tr>
<td>Kings-Winchester Electronics</td>
<td>C9518</td>
</tr>
<tr>
<td>Kino Flo Lighting Systems</td>
<td>C8242</td>
</tr>
<tr>
<td>Kinston</td>
<td>SU9624D</td>
</tr>
<tr>
<td>Knintron Labs</td>
<td>N5217</td>
</tr>
<tr>
<td>KLZ Innovations</td>
<td>N8824</td>
</tr>
<tr>
<td>KOBA 2008</td>
<td>C7008</td>
</tr>
<tr>
<td>COMPANY</td>
<td>BOOTH</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Konka Group</td>
<td>SU11406</td>
</tr>
<tr>
<td>Korea Pavilion</td>
<td>SL8408</td>
</tr>
<tr>
<td>Kowa Opted</td>
<td>N7936</td>
</tr>
<tr>
<td>KPPF Consulting Engineers</td>
<td>C1111</td>
</tr>
<tr>
<td>Kramer Electronics</td>
<td>SL6205A</td>
</tr>
<tr>
<td>Kroma Telecom</td>
<td>SU7305</td>
</tr>
<tr>
<td>K-Tek</td>
<td>C12137</td>
</tr>
<tr>
<td>KUK Filmproduktion</td>
<td>SU9624C</td>
</tr>
<tr>
<td>L.T.M.</td>
<td>C6237</td>
</tr>
<tr>
<td>L-3 Electron Devices</td>
<td>C1120</td>
</tr>
<tr>
<td>L-3 Esso</td>
<td>C7925</td>
</tr>
<tr>
<td>LaCie</td>
<td>SL2711</td>
</tr>
<tr>
<td>Lanjian Electronics</td>
<td>C1432</td>
</tr>
<tr>
<td>Laican</td>
<td>C2616</td>
</tr>
<tr>
<td>Lasergraphics</td>
<td>SL9805</td>
</tr>
<tr>
<td>Lawo</td>
<td>N5433</td>
</tr>
<tr>
<td>Lawson & Assoc./Architects</td>
<td>C3318</td>
</tr>
<tr>
<td>LBA Technology</td>
<td>N9115</td>
</tr>
<tr>
<td>LEA International</td>
<td>N4619</td>
</tr>
<tr>
<td>Leader Instruments</td>
<td>C5351</td>
</tr>
<tr>
<td>Lectrosonics</td>
<td>N5223</td>
</tr>
<tr>
<td>Lefttronix</td>
<td>C10111</td>
</tr>
<tr>
<td>Lemo</td>
<td>C7433</td>
</tr>
<tr>
<td>Lenexpo</td>
<td>SL3097</td>
</tr>
<tr>
<td>Lensbaby</td>
<td>C9947</td>
</tr>
<tr>
<td>Level 3 Communications</td>
<td>C2351</td>
</tr>
<tr>
<td>Libec</td>
<td>C9528</td>
</tr>
<tr>
<td>Lighttech Group</td>
<td>SU6902</td>
</tr>
<tr>
<td>Linear</td>
<td>N3118</td>
</tr>
<tr>
<td>Linear - TV Broadcast</td>
<td>C2646</td>
</tr>
<tr>
<td>Linear Acoustic</td>
<td>N1725</td>
</tr>
<tr>
<td>Link Electronics</td>
<td>SU9617</td>
</tr>
<tr>
<td>Link Research</td>
<td>C2107</td>
</tr>
<tr>
<td>Liquid Compass Streaming Media</td>
<td>N8330</td>
</tr>
<tr>
<td>Listec Video</td>
<td>C7831</td>
</tr>
<tr>
<td>Litelabes</td>
<td>C6817</td>
</tr>
<tr>
<td>Live Design</td>
<td>L15, SL7609</td>
</tr>
<tr>
<td>Live Edge TV</td>
<td>SU12702</td>
</tr>
<tr>
<td>LivelU</td>
<td>C6437</td>
</tr>
<tr>
<td>Livewire Digital</td>
<td>C10250</td>
</tr>
<tr>
<td>Location Sound</td>
<td>N5220</td>
</tr>
<tr>
<td>Logic Innovations</td>
<td>C5242</td>
</tr>
<tr>
<td>Logic Keyboard/BSP</td>
<td>SL7411</td>
</tr>
<tr>
<td>Logitek Electronic Systems</td>
<td>N7124</td>
</tr>
<tr>
<td>Love-Light</td>
<td>C10121</td>
</tr>
<tr>
<td>LP Technologies</td>
<td>C1125</td>
</tr>
<tr>
<td>Luoyang Ruiguang</td>
<td>C12422</td>
</tr>
<tr>
<td>Lynn Products</td>
<td>SL8029</td>
</tr>
<tr>
<td>Lynx Technik</td>
<td>C1628</td>
</tr>
<tr>
<td>M Soft</td>
<td>SL10512</td>
</tr>
<tr>
<td>Maestro Vision</td>
<td>SU10523</td>
</tr>
<tr>
<td>Magnum Semiconductor</td>
<td>SL13608</td>
</tr>
<tr>
<td>Magnum Towers</td>
<td>N5229</td>
</tr>
<tr>
<td>Main Concept</td>
<td>SU14102</td>
</tr>
<tr>
<td>Mainstream Network</td>
<td>C2354</td>
</tr>
<tr>
<td>MAM-A</td>
<td>C12247</td>
</tr>
<tr>
<td>Manfrotto</td>
<td>C6013</td>
</tr>
<tr>
<td>Manzanita Systems</td>
<td>SU4911</td>
</tr>
<tr>
<td>Mark Roberts Motion Control</td>
<td>C10847</td>
</tr>
<tr>
<td>Marktek</td>
<td>OE103</td>
</tr>
<tr>
<td>Marshall Electronics</td>
<td>C9806</td>
</tr>
<tr>
<td>Masstech Group</td>
<td>SU13310</td>
</tr>
<tr>
<td>Master Source Music Catalog</td>
<td>SL9510</td>
</tr>
<tr>
<td>Masterclock</td>
<td>N3418</td>
</tr>
<tr>
<td>Matrox Electronic Systems</td>
<td>SL3814</td>
</tr>
<tr>
<td>Matthews Studio Equipment</td>
<td>C8331</td>
</tr>
<tr>
<td>Maxell</td>
<td>C9121</td>
</tr>
<tr>
<td>Maxon Computer</td>
<td>SL1827</td>
</tr>
<tr>
<td>MaxT Systems</td>
<td>SL11206</td>
</tr>
<tr>
<td>Maxvision</td>
<td>SL4505</td>
</tr>
<tr>
<td>Mayah Communications</td>
<td>N8514</td>
</tr>
<tr>
<td>MBB</td>
<td>N1373</td>
</tr>
<tr>
<td>Media Concepts</td>
<td>C5720</td>
</tr>
<tr>
<td>Media Distributors</td>
<td>C10408</td>
</tr>
<tr>
<td>Media Excel</td>
<td>SU4726</td>
</tr>
<tr>
<td>Media Genix</td>
<td>N2233</td>
</tr>
<tr>
<td>Media Links</td>
<td>SU19220</td>
</tr>
<tr>
<td>Media100/Boris FX</td>
<td>SL320</td>
</tr>
<tr>
<td>Mediamax Online</td>
<td>C150</td>
</tr>
<tr>
<td>Mediaprodux</td>
<td>SU1419</td>
</tr>
<tr>
<td>Mediasilo</td>
<td>SL9512</td>
</tr>
<tr>
<td>Medical Coaches</td>
<td>OE407</td>
</tr>
<tr>
<td>Merging Technologies</td>
<td>SL6808</td>
</tr>
<tr>
<td>Merlin One</td>
<td>SU13805</td>
</tr>
<tr>
<td>Micro Communications (MCI)</td>
<td>C1312</td>
</tr>
<tr>
<td>Microboards Technology</td>
<td>SL7606</td>
</tr>
<tr>
<td>Microsoft</td>
<td>SL720</td>
</tr>
<tr>
<td>Microspace Communications</td>
<td>C6645</td>
</tr>
<tr>
<td>Middle Atlantic Products</td>
<td>SU4408</td>
</tr>
<tr>
<td>MikeoM</td>
<td>SU9620A</td>
</tr>
<tr>
<td>Miller Camera Support</td>
<td>C5525</td>
</tr>
<tr>
<td>Mindsped Tech</td>
<td>SU3404</td>
</tr>
<tr>
<td>Minnetoika Audio Software</td>
<td>N8531</td>
</tr>
<tr>
<td>Miranda Technologies</td>
<td>SU2507</td>
</tr>
<tr>
<td>Miravid</td>
<td>SU9226</td>
</tr>
<tr>
<td>Mirror Image Teleprompters</td>
<td>C9837</td>
</tr>
<tr>
<td>Mitel/MCL</td>
<td>C4337</td>
</tr>
<tr>
<td>Mitsubishi Electric</td>
<td>SL9510</td>
</tr>
<tr>
<td>Mobile Electric Power Solutions</td>
<td>OE417</td>
</tr>
<tr>
<td>Mode-AL</td>
<td>C7914</td>
</tr>
<tr>
<td>MGE Solutions</td>
<td>SU5722</td>
</tr>
<tr>
<td>Moogula</td>
<td>SL6528</td>
</tr>
<tr>
<td>Mohawk</td>
<td>C1822</td>
</tr>
<tr>
<td>Mole-Richardson</td>
<td>C6825</td>
</tr>
<tr>
<td>Monarch Innovative Technologies</td>
<td>SL10424</td>
</tr>
<tr>
<td>Moog-Quickset</td>
<td>C8733</td>
</tr>
<tr>
<td>Moseley Associates</td>
<td>N7112</td>
</tr>
<tr>
<td>Motion Analysis</td>
<td>SL2505</td>
</tr>
<tr>
<td>Motion Picture Enterprises</td>
<td>SL8062</td>
</tr>
<tr>
<td>Motoro</td>
<td>SU4417</td>
</tr>
<tr>
<td>Motosat</td>
<td>OE430</td>
</tr>
<tr>
<td>Motu</td>
<td>SL1427</td>
</tr>
<tr>
<td>MSE Media Solutions</td>
<td>C3113</td>
</tr>
<tr>
<td>MSR</td>
<td>N2537</td>
</tr>
<tr>
<td>MTD Systems</td>
<td>C4151</td>
</tr>
<tr>
<td>MTI Film</td>
<td>SL11116</td>
</tr>
<tr>
<td>MultiDyne</td>
<td>SU6917</td>
</tr>
<tr>
<td>Music Master</td>
<td>N8312</td>
</tr>
<tr>
<td>Musicman USA</td>
<td>N4925</td>
</tr>
<tr>
<td>Myat</td>
<td>C2022</td>
</tr>
<tr>
<td>Myers Information Systems</td>
<td>SU6102</td>
</tr>
<tr>
<td>N Systems</td>
<td>C1715</td>
</tr>
<tr>
<td>NAB Member Benefit Programs</td>
<td>N3333</td>
</tr>
<tr>
<td>NAB Public Service Initiatives</td>
<td>N5838</td>
</tr>
<tr>
<td>Nagra</td>
<td>N2914</td>
</tr>
<tr>
<td>Nagravision Kudelski Group</td>
<td>SU5017</td>
</tr>
<tr>
<td>Namsung Industrial</td>
<td>SL8711</td>
</tr>
<tr>
<td>Narda</td>
<td>C5139</td>
</tr>
<tr>
<td>National Captioning Institute (NCI)</td>
<td>SL1024</td>
</tr>
<tr>
<td>National Ministry of Design</td>
<td>SL4211</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>SU2804</td>
</tr>
<tr>
<td>National Weather Service</td>
<td>N5925</td>
</tr>
<tr>
<td>Nautel</td>
<td>N7016</td>
</tr>
<tr>
<td>ND SatCom</td>
<td>OE402</td>
</tr>
<tr>
<td>Nebtek</td>
<td>C4041</td>
</tr>
<tr>
<td>Nemal Electronics Intl.</td>
<td>C2542</td>
</tr>
<tr>
<td>Nection</td>
<td>SU13609</td>
</tr>
<tr>
<td>NEP</td>
<td>OE408</td>
</tr>
<tr>
<td>Ness Global Services</td>
<td>SU8805</td>
</tr>
<tr>
<td>Net Insight</td>
<td>SU10005</td>
</tr>
<tr>
<td>Netia</td>
<td>SU822</td>
</tr>
<tr>
<td>Network Electronics/VPG</td>
<td>SU10811</td>
</tr>
<tr>
<td>Neural Audio/DTIS</td>
<td>N5130</td>
</tr>
<tr>
<td>Neutrik</td>
<td>N7929</td>
</tr>
<tr>
<td>Never.no</td>
<td>N1830</td>
</tr>
<tr>
<td>Nevision</td>
<td>SU10811</td>
</tr>
<tr>
<td>Newcom International</td>
<td>C6150</td>
</tr>
<tr>
<td>Newpoint Technologies</td>
<td>SL7789</td>
</tr>
<tr>
<td>Newsroom Solutions/News Ticker</td>
<td>C13341</td>
</tr>
<tr>
<td>Newtec</td>
<td>C6037</td>
</tr>
<tr>
<td>Nexstar</td>
<td>C6450, SL12707</td>
</tr>
<tr>
<td>Next Computing</td>
<td>SL6427</td>
</tr>
<tr>
<td>NHK</td>
<td>N637</td>
</tr>
<tr>
<td>Ningbo Eimage Studio Equipment</td>
<td>C4044, C4146</td>
</tr>
<tr>
<td>Ninsight</td>
<td>N1737</td>
</tr>
<tr>
<td>NIXUS</td>
<td>SL11113</td>
</tr>
<tr>
<td>NKK Switches</td>
<td>N2816</td>
</tr>
<tr>
<td>COMPANY</td>
<td>BOOTH</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Nvidia</td>
<td>SU9208</td>
</tr>
<tr>
<td>Nucomm</td>
<td>SU7820</td>
</tr>
<tr>
<td>NuVion</td>
<td>SU6337</td>
</tr>
<tr>
<td>NPR Satellite Services</td>
<td>SU12023</td>
</tr>
<tr>
<td>NTT Advanced Technology</td>
<td>SU11617, SU11723</td>
</tr>
<tr>
<td>NTT Electronics</td>
<td>SU11617, SU11723</td>
</tr>
<tr>
<td>NuVerion</td>
<td>SU7820</td>
</tr>
<tr>
<td>Nvision</td>
<td>SU2807</td>
</tr>
<tr>
<td>OCTOPUS Newsroom Trading</td>
<td>SU8523</td>
</tr>
<tr>
<td>Octoshape</td>
<td>C1947</td>
</tr>
<tr>
<td>Oldcastle</td>
<td>N4832</td>
</tr>
<tr>
<td>OMB Sistemas Electronicos</td>
<td>SU2109</td>
</tr>
<tr>
<td>Omneon</td>
<td>SU7217</td>
</tr>
<tr>
<td>Omnia Audio</td>
<td>N7620</td>
</tr>
<tr>
<td>OmniBus Systems</td>
<td>SU5417</td>
</tr>
<tr>
<td>Omninsure</td>
<td>SL10312</td>
</tr>
<tr>
<td>Omnimix</td>
<td>SL5929</td>
</tr>
<tr>
<td>Omnitex</td>
<td>N4517</td>
</tr>
<tr>
<td>On Call Communications</td>
<td>E0431</td>
</tr>
<tr>
<td>One Stop Systems</td>
<td>SL1107</td>
</tr>
<tr>
<td>Open Cube Technologies</td>
<td>SU1923</td>
</tr>
<tr>
<td>Operation Interdependence</td>
<td>E0500</td>
</tr>
<tr>
<td>Optibase</td>
<td>SU6906</td>
</tr>
<tr>
<td>Optical Cable</td>
<td>C3107</td>
</tr>
<tr>
<td>Opticom</td>
<td>SU8920C</td>
</tr>
<tr>
<td>Opticomm - Encore</td>
<td>N3714</td>
</tr>
<tr>
<td>Optocore North America</td>
<td>N6535</td>
</tr>
<tr>
<td>Optvision Technology</td>
<td>SU13604</td>
</tr>
<tr>
<td>Orad Hi-Tech Systems</td>
<td>SU10517</td>
</tr>
<tr>
<td>Orban/CRL</td>
<td>N2238</td>
</tr>
<tr>
<td>Orion Systems</td>
<td>C7748</td>
</tr>
<tr>
<td>Ortery Technologies</td>
<td>C11050</td>
</tr>
<tr>
<td>OSEE Technology International</td>
<td>SU11408</td>
</tr>
<tr>
<td>Otarri</td>
<td>C10820</td>
</tr>
<tr>
<td>Overly Door</td>
<td>N9129</td>
</tr>
<tr>
<td>PL Engineering</td>
<td>SL8026</td>
</tr>
<tr>
<td>P+S Technik</td>
<td>SU9294G</td>
</tr>
<tr>
<td>Paccat</td>
<td>C5342</td>
</tr>
<tr>
<td>PAG</td>
<td>C8720</td>
</tr>
<tr>
<td>Panasonic Broadcast</td>
<td>C3327, C3712</td>
</tr>
<tr>
<td>Pandora International</td>
<td>SL3809</td>
</tr>
<tr>
<td>Paragon Towers</td>
<td>N8010</td>
</tr>
<tr>
<td>Park Place Studio</td>
<td>R401</td>
</tr>
<tr>
<td>Patchamp</td>
<td>N3221</td>
</tr>
<tr>
<td>Path 1 - IPVN</td>
<td>SU11707</td>
</tr>
<tr>
<td>Peak Communications</td>
<td>C4644</td>
</tr>
<tr>
<td>Pebble Beach Systems</td>
<td>SU11402</td>
</tr>
<tr>
<td>Pelican Products</td>
<td>C11737</td>
</tr>
<tr>
<td>Penta Studiotechnik</td>
<td>C7342</td>
</tr>
<tr>
<td>Penton Media</td>
<td>L15, SL7609</td>
</tr>
<tr>
<td>Perdue Acoustics</td>
<td>C12547</td>
</tr>
<tr>
<td>Petroel</td>
<td>C6031</td>
</tr>
<tr>
<td>Phabrix</td>
<td>N3117</td>
</tr>
<tr>
<td>Philar</td>
<td>SU8902</td>
</tr>
<tr>
<td>Phaseset</td>
<td>N8229</td>
</tr>
<tr>
<td>Phasor</td>
<td>SL9202A</td>
</tr>
<tr>
<td>Philips 3D Solutions</td>
<td>SL9202A</td>
</tr>
<tr>
<td>Philips 3D Wow Zone</td>
<td>L22</td>
</tr>
<tr>
<td>Philips Color Kinetics</td>
<td>C9847</td>
</tr>
<tr>
<td>Phillyran</td>
<td>N6735</td>
</tr>
<tr>
<td>Phoenix TV</td>
<td>C1550</td>
</tr>
<tr>
<td>Phonak Communications</td>
<td>C7749</td>
</tr>
<tr>
<td>Photo Research</td>
<td>SL6807</td>
</tr>
<tr>
<td>Photoflex</td>
<td>N8420</td>
</tr>
<tr>
<td>Photron</td>
<td>SL4725A</td>
</tr>
<tr>
<td>Piano for Film</td>
<td>SL9905</td>
</tr>
<tr>
<td>Pictron</td>
<td>SU7021</td>
</tr>
<tr>
<td>Pilat Media North America</td>
<td>SU10405</td>
</tr>
<tr>
<td>Pilot Ware</td>
<td>SL12811</td>
</tr>
<tr>
<td>Pineapple Technology</td>
<td>C1113</td>
</tr>
<tr>
<td>Pixel Instruments</td>
<td>C5619</td>
</tr>
<tr>
<td>Pixel Power</td>
<td>SU10012</td>
</tr>
<tr>
<td>Pixel Tools</td>
<td>SL1715</td>
</tr>
<tr>
<td>Pixellexis</td>
<td>SL8228</td>
</tr>
<tr>
<td>Pixelmetrix</td>
<td>SU6007</td>
</tr>
<tr>
<td>Planar Systems</td>
<td>SL12016</td>
</tr>
<tr>
<td>Plasticase</td>
<td>C12040</td>
</tr>
<tr>
<td>Playbox Technology</td>
<td>SU10410</td>
</tr>
<tr>
<td>Plazamedia & TV Skyline</td>
<td>SU9924F</td>
</tr>
<tr>
<td>Pleora Technologies</td>
<td>C1124</td>
</tr>
<tr>
<td>Plisch Broadcast Asia Pacific</td>
<td>SU3228</td>
</tr>
<tr>
<td>Plug-in Pavilion</td>
<td>SL2529</td>
</tr>
<tr>
<td>Plura Broadcast</td>
<td>SU2507</td>
</tr>
<tr>
<td>Polecam</td>
<td>C7642</td>
</tr>
<tr>
<td>Pond5.com</td>
<td>SL1713</td>
</tr>
<tr>
<td>Porta Brice</td>
<td>N9040</td>
</tr>
<tr>
<td>Portec</td>
<td>SU8909</td>
</tr>
<tr>
<td>Potomac Instruments</td>
<td>N4526</td>
</tr>
<tr>
<td>Power Module Technology</td>
<td>N9107</td>
</tr>
<tr>
<td>Praeziensions-Entwicklung Denz</td>
<td>SU10223B</td>
</tr>
<tr>
<td>Precision Communications</td>
<td>C3015</td>
</tr>
<tr>
<td>PRG</td>
<td>C10744</td>
</tr>
<tr>
<td>Prime Image</td>
<td>C10720</td>
</tr>
<tr>
<td>Primera Technology</td>
<td>SL500</td>
</tr>
<tr>
<td>Prism Media Products</td>
<td>N4624</td>
</tr>
<tr>
<td>Pristine Systems/Summit Traffic</td>
<td>N8007</td>
</tr>
<tr>
<td>Pro Consultant Informatique</td>
<td>SU9602</td>
</tr>
<tr>
<td>Pro Clic</td>
<td>SL1615</td>
</tr>
<tr>
<td>Pro Prompter</td>
<td>C2651</td>
</tr>
<tr>
<td>Pro Television Technologies</td>
<td>C2222</td>
</tr>
<tr>
<td>Pro-Bel</td>
<td>SU12710</td>
</tr>
<tr>
<td>ProductionHUB.com</td>
<td>C7206</td>
</tr>
<tr>
<td>Professional Sound</td>
<td>N4820</td>
</tr>
<tr>
<td>Professional Sound Services</td>
<td>N6855</td>
</tr>
<tr>
<td>Promax Electronica</td>
<td>C1846</td>
</tr>
<tr>
<td>Promise Technology</td>
<td>SU12008</td>
</tr>
<tr>
<td>Prompter People</td>
<td>C10141</td>
</tr>
<tr>
<td>Prompting.com</td>
<td>C9933</td>
</tr>
<tr>
<td>Propagation Systems (PSI)</td>
<td>C2329</td>
</tr>
<tr>
<td>Prosonic</td>
<td>SU9294B</td>
</tr>
<tr>
<td>Provalys</td>
<td>SU13507</td>
</tr>
<tr>
<td>Proxim</td>
<td>C6448</td>
</tr>
<tr>
<td>PTEK</td>
<td>N5825</td>
</tr>
<tr>
<td>QTV/Auotcue</td>
<td>C6033</td>
</tr>
<tr>
<td>QuStream (PESA & Fortel DTV)</td>
<td>N3421</td>
</tr>
<tr>
<td>Qualcomm/Mediaflo</td>
<td>C2146, E0429</td>
</tr>
<tr>
<td>Qualis Audio</td>
<td>N4825</td>
</tr>
<tr>
<td>Qualstar</td>
<td>SU13206</td>
</tr>
<tr>
<td>Quantum</td>
<td>SU2509</td>
</tr>
<tr>
<td>Cube Cinema</td>
<td>SU9220D</td>
</tr>
<tr>
<td>Quest R&D</td>
<td>N2516</td>
</tr>
<tr>
<td>Quintech</td>
<td>C7749</td>
</tr>
<tr>
<td>QVS</td>
<td>C7746</td>
</tr>
<tr>
<td>Radial</td>
<td>C1134</td>
</tr>
<tr>
<td>Radian Comm. Services</td>
<td>C3009</td>
</tr>
<tr>
<td>Radio Frequency Systems</td>
<td>C2315</td>
</tr>
<tr>
<td>Raidon Technology</td>
<td>SU13206</td>
</tr>
<tr>
<td>RCS</td>
<td>N5917</td>
</tr>
<tr>
<td>RDL Radio Design Labs</td>
<td>N8125</td>
</tr>
<tr>
<td>Re:Vision Effects</td>
<td>SU2529E</td>
</tr>
<tr>
<td>Red Giant Software</td>
<td>SU2529H</td>
</tr>
<tr>
<td>Redbyte Design</td>
<td>SU9220</td>
</tr>
<tr>
<td>Redding Audio</td>
<td>N6217</td>
</tr>
<tr>
<td>Redrock Micro</td>
<td>C9544</td>
</tr>
<tr>
<td>Rees Associates</td>
<td>SU1617</td>
</tr>
<tr>
<td>Reflecmedia</td>
<td>C6018</td>
</tr>
<tr>
<td>Renegade Labs</td>
<td>SU1506</td>
</tr>
<tr>
<td>Renewed Vision</td>
<td>C12647</td>
</tr>
<tr>
<td>Rescue Tape/Harbor Products</td>
<td>C10750</td>
</tr>
<tr>
<td>Research Concepts</td>
<td>C6750</td>
</tr>
<tr>
<td>RF Technologies</td>
<td>C3021</td>
</tr>
<tr>
<td>RGB Spectrum</td>
<td>SL4215</td>
</tr>
<tr>
<td>RGI</td>
<td>N9599</td>
</tr>
<tr>
<td>Rhzet</td>
<td>SL9728</td>
</tr>
<tr>
<td>Rias Berlin Commission</td>
<td>R508</td>
</tr>
<tr>
<td>Richardson Electronics</td>
<td>C1736</td>
</tr>
<tr>
<td>Richland Towers</td>
<td>C1807</td>
</tr>
<tr>
<td>Riedel Communications</td>
<td>C7637</td>
</tr>
<tr>
<td>Rimage</td>
<td>SL9229</td>
</tr>
<tr>
<td>RJS Electronics</td>
<td>SU9302</td>
</tr>
<tr>
<td>Rocket</td>
<td>C9539</td>
</tr>
<tr>
<td>Rohde & Schwarz</td>
<td>C1933, C8546P</td>
</tr>
<tr>
<td>COMPANY</td>
<td>BOOTH</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Roland</td>
<td>SL10420</td>
</tr>
<tr>
<td>Rololight</td>
<td>C6133</td>
</tr>
<tr>
<td>Root & Technology</td>
<td>SL12805</td>
</tr>
<tr>
<td>Rosco Labs</td>
<td>C6034</td>
</tr>
<tr>
<td>Rose Electronics</td>
<td>SL7425</td>
</tr>
<tr>
<td>Ross Video</td>
<td>SU1807</td>
</tr>
<tr>
<td>Rover Broadcast</td>
<td>SU3125A</td>
</tr>
<tr>
<td>R-Quest Technologies</td>
<td>SL8228</td>
</tr>
<tr>
<td>RR Sat-Global Communications Network</td>
<td>C6339</td>
</tr>
<tr>
<td>RTom</td>
<td>SL6424</td>
</tr>
<tr>
<td>RTI-Research Technology Int'l</td>
<td>C3151</td>
</tr>
<tr>
<td>RTS</td>
<td>C7025</td>
</tr>
<tr>
<td>RITT News</td>
<td>C461</td>
</tr>
<tr>
<td>RTW</td>
<td>N3123</td>
</tr>
<tr>
<td>Rushworks</td>
<td>SU11102</td>
</tr>
<tr>
<td>RVR Electronica</td>
<td>N3231</td>
</tr>
<tr>
<td>Rymsa</td>
<td>C1312A</td>
</tr>
<tr>
<td>S & T (Strategy & Technology)</td>
<td>SU8606</td>
</tr>
<tr>
<td>S.Two</td>
<td>SL12005</td>
</tr>
<tr>
<td>S.W.R</td>
<td>C1930</td>
</tr>
<tr>
<td>SAM - Solutions for Media</td>
<td>SU10224F</td>
</tr>
<tr>
<td>Sabre Towers & Poles</td>
<td>N4518</td>
</tr>
<tr>
<td>Sacchi</td>
<td>C6037</td>
</tr>
<tr>
<td>Sam Woo Electronics</td>
<td>C6427</td>
</tr>
<tr>
<td>Sam Woo Electronics</td>
<td>N8239</td>
</tr>
<tr>
<td>Sample Digital</td>
<td>SL6713</td>
</tr>
<tr>
<td>Samson Technologies</td>
<td>SL10125</td>
</tr>
<tr>
<td>SAN Solutions</td>
<td>SL10105</td>
</tr>
<tr>
<td>Sankey Microphones/plus24</td>
<td>N2914</td>
</tr>
<tr>
<td>Sans Digital</td>
<td>SL12706</td>
</tr>
<tr>
<td>Sapec</td>
<td>SU7323</td>
</tr>
<tr>
<td>Samoff</td>
<td>C6546A</td>
</tr>
<tr>
<td>Sat Corp</td>
<td>C7449</td>
</tr>
<tr>
<td>Satellite Engineering Group</td>
<td>C6650</td>
</tr>
<tr>
<td>Satellite Technology Systems</td>
<td>DE419</td>
</tr>
<tr>
<td>SAT-GE</td>
<td>C6440</td>
</tr>
<tr>
<td>Sat-Lite Technologies</td>
<td>DE203</td>
</tr>
<tr>
<td>Satmax</td>
<td>C6648</td>
</tr>
<tr>
<td>Satvision Technology Int'l</td>
<td>C7442</td>
</tr>
<tr>
<td>ScheduALL Software</td>
<td>SL1606</td>
</tr>
<tr>
<td>Schill</td>
<td>C1639</td>
</tr>
<tr>
<td>Schneider Optics</td>
<td>C5528</td>
</tr>
<tr>
<td>Schulz Camera Support</td>
<td>SU10224D</td>
</tr>
<tr>
<td>Scopovo Video Networks</td>
<td>SU10917</td>
</tr>
<tr>
<td>Screen Keys</td>
<td>N4618</td>
</tr>
<tr>
<td>Screen Service Broadcasting Technologies</td>
<td>C1925</td>
</tr>
<tr>
<td>Screen Subtitling Systems</td>
<td>SU10009</td>
</tr>
<tr>
<td>Sea Change International</td>
<td>SU12009</td>
</tr>
<tr>
<td>Sea Changer</td>
<td>C12548</td>
</tr>
<tr>
<td>Seine Saint-Denis Economic Development Agency</td>
<td>N17370</td>
</tr>
<tr>
<td>Seicane</td>
<td>C6546E, N2530, SU4412</td>
</tr>
<tr>
<td>Sennheiser Electronic</td>
<td>N6520</td>
</tr>
<tr>
<td>Sequoia Technologies</td>
<td>C2039</td>
</tr>
<tr>
<td>Seratel Technology</td>
<td>N8425</td>
</tr>
<tr>
<td>Server Technology</td>
<td>SU11808</td>
</tr>
<tr>
<td>Service Vision</td>
<td>C11041</td>
</tr>
<tr>
<td>SES Americom</td>
<td>C5346</td>
</tr>
<tr>
<td>SGL</td>
<td>SU8506</td>
</tr>
<tr>
<td>SGTV</td>
<td>SU1773G, SU12902</td>
</tr>
<tr>
<td>Shadowstone</td>
<td>C3838</td>
</tr>
<tr>
<td>Shanghai TV Festival</td>
<td>C752</td>
</tr>
<tr>
<td>Shining Technology</td>
<td>C11739</td>
</tr>
<tr>
<td>Shively Labs</td>
<td>N6424</td>
</tr>
<tr>
<td>Shotoku Broadcast Systems</td>
<td>C8314</td>
</tr>
<tr>
<td>Shure</td>
<td>N4529</td>
</tr>
<tr>
<td>Sichuan Jiuzhou Electric Group</td>
<td>C861</td>
</tr>
<tr>
<td>Sideas</td>
<td>C1548</td>
</tr>
<tr>
<td>Siemens Automated Systems & Engineering</td>
<td>N8511</td>
</tr>
<tr>
<td>Siemens VDO</td>
<td>SL6205</td>
</tr>
<tr>
<td>Signiant</td>
<td>SL4508</td>
</tr>
<tr>
<td>Signum Bildtechnik</td>
<td>SU9208</td>
</tr>
<tr>
<td>Silicon Graphics</td>
<td>SL220</td>
</tr>
<tr>
<td>Silicon Imaging</td>
<td>SL7529</td>
</tr>
<tr>
<td>Singular Logic</td>
<td>C3054A</td>
</tr>
<tr>
<td>Singular Software</td>
<td>SL2529F</td>
</tr>
<tr>
<td>Sintec Media</td>
<td>SU3826</td>
</tr>
<tr>
<td>Sir</td>
<td>C3031</td>
</tr>
<tr>
<td>Skyline Communications</td>
<td>SU12005</td>
</tr>
<tr>
<td>Skymicro</td>
<td>SL10310</td>
</tr>
<tr>
<td>Silk Broadcast</td>
<td>C10737</td>
</tr>
<tr>
<td>Small Tree Communications</td>
<td>SL10201</td>
</tr>
<tr>
<td>SmartJog</td>
<td>SL10812</td>
</tr>
<tr>
<td>SmartSound Software</td>
<td>SL7613</td>
</tr>
<tr>
<td>SMPTE</td>
<td>C861</td>
</tr>
<tr>
<td>Snap Stream Media</td>
<td>SU6105</td>
</tr>
<tr>
<td>Snel & Wilcox</td>
<td>SU1717, SU1917</td>
</tr>
<tr>
<td>Softel</td>
<td>SL7602</td>
</tr>
<tr>
<td>SoftN</td>
<td>SU7910</td>
</tr>
<tr>
<td>Softon Media Services</td>
<td>SL928</td>
</tr>
<tr>
<td>Solid State Logic</td>
<td>N4031</td>
</tr>
<tr>
<td>Sonic Solutions</td>
<td>SL4920</td>
</tr>
<tr>
<td>Sonifex</td>
<td>N3217</td>
</tr>
<tr>
<td>Sonnet Technologies</td>
<td>SL13307</td>
</tr>
<tr>
<td>Sony Creative Software</td>
<td>C10515</td>
</tr>
<tr>
<td>Sony Electronics</td>
<td>C11001</td>
</tr>
<tr>
<td>Sorenson Media</td>
<td>SL3528</td>
</tr>
<tr>
<td>SOS Global Express</td>
<td>C12231</td>
</tr>
<tr>
<td>Sound Devices</td>
<td>N5832</td>
</tr>
<tr>
<td>Sound Ideas</td>
<td>SL9516</td>
</tr>
<tr>
<td>Soundcraft</td>
<td>N6724</td>
</tr>
<tr>
<td>Soundminer</td>
<td>SL9089</td>
</tr>
<tr>
<td>Soundproof Windows</td>
<td>N8629</td>
</tr>
<tr>
<td>Spectra Logic</td>
<td>SU6323</td>
</tr>
<tr>
<td>Spectracom</td>
<td>N3037</td>
</tr>
<tr>
<td>Speedsix Software</td>
<td>SL4316</td>
</tr>
<tr>
<td>Spider Support Systems</td>
<td>C11231</td>
</tr>
<tr>
<td>Spinelli</td>
<td>C1244</td>
</tr>
<tr>
<td>Square Box Media Solutions</td>
<td>SL9307</td>
</tr>
<tr>
<td>ST Video Film Equipment</td>
<td>C17144</td>
</tr>
<tr>
<td>Staco Energy Products</td>
<td>N2814</td>
</tr>
<tr>
<td>Stagetect</td>
<td>C1115</td>
</tr>
<tr>
<td>Stainless/Doyle-Moore Tower Services</td>
<td>C2115</td>
</tr>
<tr>
<td>Stanley Supply & Services</td>
<td>C12140</td>
</tr>
<tr>
<td>Stanton</td>
<td>SU6913</td>
</tr>
<tr>
<td>Statmon Technologies</td>
<td>N2537</td>
</tr>
<tr>
<td>Stats</td>
<td>SL5011</td>
</tr>
<tr>
<td>STE-MAN</td>
<td>C6720</td>
</tr>
<tr>
<td>Step2</td>
<td>SU9624B</td>
</tr>
<tr>
<td>Storage DNA</td>
<td>SL6928</td>
</tr>
<tr>
<td>StorerTV</td>
<td>N2130</td>
</tr>
<tr>
<td>Stradie</td>
<td>SU6903</td>
</tr>
<tr>
<td>Strand Lighting</td>
<td>C5848</td>
</tr>
<tr>
<td>Stratacache</td>
<td>C1546</td>
</tr>
<tr>
<td>Stratos</td>
<td>OE411</td>
</tr>
<tr>
<td>Stream Labs</td>
<td>SU13812</td>
</tr>
<tr>
<td>Stream On</td>
<td>N8529</td>
</tr>
<tr>
<td>StreamTheWorld</td>
<td>C755</td>
</tr>
<tr>
<td>Streambox</td>
<td>SU14413</td>
</tr>
<tr>
<td>Studer Soundcraft</td>
<td>N6724</td>
</tr>
<tr>
<td>Studio Plus</td>
<td>C12230</td>
</tr>
<tr>
<td>Studio Systems</td>
<td>C11930</td>
</tr>
<tr>
<td>Studio Technologies</td>
<td>C11930</td>
</tr>
<tr>
<td>Sumavision Technologies</td>
<td>SU1350</td>
</tr>
<tr>
<td>Sun Microsystems</td>
<td>SL118MR</td>
</tr>
<tr>
<td>Sunnwield Broadband</td>
<td>SL118MR</td>
</tr>
<tr>
<td>Digital Science & Technology</td>
<td>C851</td>
</tr>
<tr>
<td>Supacam</td>
<td>C4143, N4837, SU12107</td>
</tr>
<tr>
<td>Superior Broadcast Products</td>
<td>C1405</td>
</tr>
<tr>
<td>Superior Electric</td>
<td>N8212</td>
</tr>
<tr>
<td>Sure Shot Transmissions</td>
<td>C7037</td>
</tr>
<tr>
<td>Swise-Dish Satellite Systems</td>
<td>DE409</td>
</tr>
<tr>
<td>Swit Electronics</td>
<td>C12433</td>
</tr>
<tr>
<td>Switchcraft</td>
<td>C1126</td>
</tr>
<tr>
<td>Syllax</td>
<td>C1634</td>
</tr>
<tr>
<td>Symmetrix</td>
<td>N4538</td>
</tr>
<tr>
<td>Synthax</td>
<td>N4838</td>
</tr>
<tr>
<td>SysMaster</td>
<td>C3346</td>
</tr>
<tr>
<td>Systems Wireless</td>
<td>C6514</td>
</tr>
</tbody>
</table>

Color listing indicates advertiser

March 2009 | broadcastengineering.com 21
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>BOOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tec Nec Distributing</td>
<td>C1942</td>
</tr>
<tr>
<td>Tech Edge</td>
<td>SU6919</td>
</tr>
<tr>
<td>Techflex</td>
<td>C10722</td>
</tr>
<tr>
<td>Techni-Tool</td>
<td>C10115</td>
</tr>
<tr>
<td>Technocrane</td>
<td>C10437</td>
</tr>
<tr>
<td>Technology Exchange & Tech-ex.com</td>
<td>SU7019</td>
</tr>
<tr>
<td>Tecnovision</td>
<td>SL13016</td>
</tr>
<tr>
<td>Tedial</td>
<td>SU6921</td>
</tr>
<tr>
<td>Tektronix</td>
<td>N2522</td>
</tr>
<tr>
<td>Telcast Telericity Systems</td>
<td>SU10202</td>
</tr>
<tr>
<td>Telecast Fiber Systems</td>
<td>SU8517</td>
</tr>
<tr>
<td>Telemeics</td>
<td>C9525</td>
</tr>
<tr>
<td>Telecast</td>
<td>C4646</td>
</tr>
<tr>
<td>Telescopic</td>
<td>C5844</td>
</tr>
<tr>
<td>Telescript</td>
<td>C5616</td>
</tr>
<tr>
<td>Telestream</td>
<td>SL3305</td>
</tr>
<tr>
<td>Television Engineering</td>
<td>C7008</td>
</tr>
<tr>
<td>Telex Communications</td>
<td>C7025</td>
</tr>
<tr>
<td>Telikou China</td>
<td>SL12709</td>
</tr>
<tr>
<td>Telmec Broadcasting</td>
<td>C1132</td>
</tr>
<tr>
<td>Telos Systems</td>
<td>N7820</td>
</tr>
<tr>
<td>Telvue</td>
<td>SU13607</td>
</tr>
<tr>
<td>Tempest Fireco Towers</td>
<td>C7847</td>
</tr>
<tr>
<td>Tempest/Coach Comm</td>
<td>C3331</td>
</tr>
<tr>
<td>Teranex</td>
<td>SU5025</td>
</tr>
<tr>
<td>TFT</td>
<td>N5620</td>
</tr>
<tr>
<td>Thales Components</td>
<td>C6048</td>
</tr>
<tr>
<td>Thales-Angenieux</td>
<td>C7525</td>
</tr>
<tr>
<td>The Foundry</td>
<td>SL1028</td>
</tr>
<tr>
<td>The Platform</td>
<td>SU5402</td>
</tr>
<tr>
<td>The Tiffen</td>
<td>C7808</td>
</tr>
<tr>
<td>Thermo Bond Buildings</td>
<td>N8515</td>
</tr>
<tr>
<td>Thermodyne Cases</td>
<td>C6025</td>
</tr>
<tr>
<td>Think Analytics</td>
<td>SU6927</td>
</tr>
<tr>
<td>Thinklogical</td>
<td>SL5505</td>
</tr>
<tr>
<td>Tieline Technology</td>
<td>N8123</td>
</tr>
<tr>
<td>Tiger Technology</td>
<td>SL5829</td>
</tr>
<tr>
<td>Tightrope Media System</td>
<td>SU6026</td>
</tr>
<tr>
<td>Titan TV</td>
<td>SU4802</td>
</tr>
<tr>
<td>T-Jib</td>
<td>C11838</td>
</tr>
<tr>
<td>TM Forum</td>
<td>C2056</td>
</tr>
<tr>
<td>TMD</td>
<td>SU9205</td>
</tr>
<tr>
<td>Todocast</td>
<td>C2951</td>
</tr>
<tr>
<td>Tokina</td>
<td>C7845</td>
</tr>
<tr>
<td>Toner Cable Equipment</td>
<td>C4642</td>
</tr>
<tr>
<td>Tools on Air</td>
<td>SU9624E</td>
</tr>
<tr>
<td>Toshiba</td>
<td>C5119</td>
</tr>
<tr>
<td>Toshiba International</td>
<td>C10741</td>
</tr>
<tr>
<td>Tower Consultants</td>
<td>C3007</td>
</tr>
<tr>
<td>Tower Innovations</td>
<td>C1118</td>
</tr>
<tr>
<td>Translantech Sound</td>
<td>N8724</td>
</tr>
<tr>
<td>Transvideo</td>
<td>C5316</td>
</tr>
<tr>
<td>Tremor Media</td>
<td>C1457</td>
</tr>
<tr>
<td>Trilithic</td>
<td>C10548</td>
</tr>
<tr>
<td>Trilogy Comm.</td>
<td>C6039</td>
</tr>
<tr>
<td>Triveni Digital</td>
<td>C85460, SU3402</td>
</tr>
<tr>
<td>Troll Systems</td>
<td>C3024</td>
</tr>
<tr>
<td>Tron-Tek</td>
<td>C2539</td>
</tr>
<tr>
<td>TRT</td>
<td>C1059</td>
</tr>
<tr>
<td>TSL (Television Systems Ltd)</td>
<td>SU7917</td>
</tr>
<tr>
<td>TV Logic</td>
<td>SL220</td>
</tr>
<tr>
<td>TV Magic</td>
<td>SU4723</td>
</tr>
<tr>
<td>TV One</td>
<td>C7408</td>
</tr>
<tr>
<td>TV Telco Latam</td>
<td>C1363</td>
</tr>
<tr>
<td>T-VIPS</td>
<td>SU1219</td>
</tr>
<tr>
<td>TVU Networks</td>
<td>C1248</td>
</tr>
<tr>
<td>Twist</td>
<td>SU7823E</td>
</tr>
<tr>
<td>TWR Lighting</td>
<td>N4930</td>
</tr>
<tr>
<td>UK/US Partners Pavilion</td>
<td>SU8904</td>
</tr>
<tr>
<td>Ultimatte</td>
<td>SL3920</td>
</tr>
<tr>
<td>Unimar</td>
<td>N4524</td>
</tr>
<tr>
<td>Unique Broadband Systems</td>
<td>C1712</td>
</tr>
<tr>
<td>Utah Scientific</td>
<td>N5351</td>
</tr>
<tr>
<td>Utam</td>
<td>N1737D</td>
</tr>
<tr>
<td>U-Turn Media Group</td>
<td>C1949</td>
</tr>
<tr>
<td>Vaddio</td>
<td>C12427</td>
</tr>
<tr>
<td>Varizoom</td>
<td>C6008</td>
</tr>
<tr>
<td>VASST</td>
<td>C10006</td>
</tr>
<tr>
<td>VBrick Systems</td>
<td>SL4513</td>
</tr>
<tr>
<td>VCS Engineering</td>
<td>SU10413</td>
</tr>
<tr>
<td>VDS</td>
<td>SL4528</td>
</tr>
<tr>
<td>Vector</td>
<td>SU3125D</td>
</tr>
<tr>
<td>Veetronix</td>
<td>SU6002</td>
</tr>
<tr>
<td>Venue Services Group</td>
<td>C5116</td>
</tr>
<tr>
<td>Verimatrix</td>
<td>C2051</td>
</tr>
<tr>
<td>Verizon Wireless</td>
<td>C6946</td>
</tr>
<tr>
<td>Viaccess</td>
<td>SU3822</td>
</tr>
<tr>
<td>Viscad</td>
<td>SU7202</td>
</tr>
<tr>
<td>Videaudi-Synchronos</td>
<td>N737N</td>
</tr>
<tr>
<td>VideoBank</td>
<td>SU826</td>
</tr>
<tr>
<td>Video Caption</td>
<td>SL10808</td>
</tr>
<tr>
<td>VideoHelper</td>
<td>SL10215</td>
</tr>
<tr>
<td>Video Technologies</td>
<td>SU10802</td>
</tr>
<tr>
<td>Videoframe</td>
<td>SU5422</td>
</tr>
<tr>
<td>Videomagnetics</td>
<td>C5622</td>
</tr>
<tr>
<td>Videosense</td>
<td>C8428</td>
</tr>
<tr>
<td>Vidimator</td>
<td>C1459</td>
</tr>
<tr>
<td>ViewCast</td>
<td>SL8020</td>
</tr>
<tr>
<td>Vismsoft</td>
<td>SL13005</td>
</tr>
<tr>
<td>Vnpower Digital</td>
<td>SL7428</td>
</tr>
<tr>
<td>Vinten</td>
<td>C6028</td>
</tr>
<tr>
<td>Vinten Radamec</td>
<td>C6029</td>
</tr>
<tr>
<td>Vision Light</td>
<td>C7833</td>
</tr>
<tr>
<td>Vision Research</td>
<td>C10441</td>
</tr>
<tr>
<td>Visionary Solutions</td>
<td>C1848</td>
</tr>
<tr>
<td>Visual Solutions</td>
<td>C2107</td>
</tr>
<tr>
<td>Visual Research</td>
<td>SL9429</td>
</tr>
<tr>
<td>Vitec Multimedia/Stradis</td>
<td>SL6705</td>
</tr>
<tr>
<td>Vizrt</td>
<td>SL5608</td>
</tr>
<tr>
<td>Vocas</td>
<td>C6357</td>
</tr>
<tr>
<td>Vocolon</td>
<td>SU8623</td>
</tr>
<tr>
<td>Vorsis</td>
<td>N7612</td>
</tr>
<tr>
<td>V-Shine</td>
<td>SU11708</td>
</tr>
<tr>
<td>VSM Control</td>
<td>N3225</td>
</tr>
<tr>
<td>VSN (Video Stream Networks)</td>
<td>SU5425</td>
</tr>
<tr>
<td>V-Soft Communications</td>
<td>N4617</td>
</tr>
<tr>
<td>Wacom Technology</td>
<td>SL9228</td>
</tr>
<tr>
<td>Wagner Media</td>
<td>SL8209</td>
</tr>
<tr>
<td>Walde</td>
<td>SL9108</td>
</tr>
<tr>
<td>Ward-Beck Systems</td>
<td>SU4813</td>
</tr>
<tr>
<td>Wasp3D</td>
<td>SL8233</td>
</tr>
<tr>
<td>Weather Central</td>
<td>SL6310</td>
</tr>
<tr>
<td>Weather Metrics</td>
<td>SU6507</td>
</tr>
<tr>
<td>Weather Nation</td>
<td>C3054</td>
</tr>
<tr>
<td>WebCheckout</td>
<td>SL6429</td>
</tr>
<tr>
<td>Wegener</td>
<td>SU7913</td>
</tr>
<tr>
<td>Well AV Technologies</td>
<td>SU11802</td>
</tr>
<tr>
<td>Westcott (F.J. Westcott)</td>
<td>C7337</td>
</tr>
<tr>
<td>Wheathstone</td>
<td>N7162</td>
</tr>
<tr>
<td>Whirlwind</td>
<td>C6533</td>
</tr>
<tr>
<td>Whisper Room</td>
<td>SL10120</td>
</tr>
<tr>
<td>White Sands Engineering/TVC</td>
<td>C1389</td>
</tr>
<tr>
<td>Widesorbt</td>
<td>N7029, N7033</td>
</tr>
<tr>
<td>Will-Burt</td>
<td>C8031</td>
</tr>
<tr>
<td>WinMedia</td>
<td>N4924</td>
</tr>
<tr>
<td>Winsted</td>
<td>C9621</td>
</tr>
<tr>
<td>WireCAD</td>
<td>N4932</td>
</tr>
<tr>
<td>Wireworks</td>
<td>C1447</td>
</tr>
<tr>
<td>Wohler Technologies</td>
<td>N1102</td>
</tr>
<tr>
<td>WSI</td>
<td>SL5340</td>
</tr>
<tr>
<td>Wysong Enterprises</td>
<td>C1119</td>
</tr>
<tr>
<td>XDT</td>
<td>SU1420</td>
</tr>
<tr>
<td>XenData</td>
<td>SU13202</td>
</tr>
<tr>
<td>Xicom Technology</td>
<td>C4942</td>
</tr>
<tr>
<td>XORbit</td>
<td>SU3417</td>
</tr>
<tr>
<td>Xytech Systems</td>
<td>SL2809</td>
</tr>
<tr>
<td>Yamaha</td>
<td>N3838</td>
</tr>
<tr>
<td>Yang Ming International</td>
<td>SL8205</td>
</tr>
<tr>
<td>Yellow Jacket</td>
<td>C8239</td>
</tr>
<tr>
<td>Youreka</td>
<td>C155P</td>
</tr>
<tr>
<td>Z -Soft Technology</td>
<td>SL4929</td>
</tr>
<tr>
<td>Z Technology</td>
<td>C2939</td>
</tr>
<tr>
<td>Zacuto</td>
<td>C8348</td>
</tr>
<tr>
<td>Zaxcom</td>
<td>N3114</td>
</tr>
<tr>
<td>Zylight</td>
<td>C3841</td>
</tr>
</tbody>
</table>
Engineers: How To Have An Easy Transition To Digital

Use these proven and reliable upconverters, audio embedders, and test signal generators.

20 + New Products for NAB
Come by for a hands-on demo, try these for yourself:

- Closed Caption Compliance/Detection
- Audio Automatic Gain Control Simplified
- Analog Video & Audio to Digital Converter
- 3G Test Signal Generator
- 3G/HD/SD Frame and more...

Purveyors of Fine Video Gear - Loved by Engineers Worldwide

ENSEMBLE
DESIGNS

NAB N4023
RETURN OF THE KING.

For years, our LVS Live Controller reigned as the ultimate in replay control. Today we're proud to announce the next-generation of replay controllers, the Grass Valley™ K2 Dyno from Thomson. This replay controller, coupled with the new K2 Summit production client, allows producers to capture live events in crystal-clear HD and instantly replay them at variable speeds for critical analysis during fast-paced events.

For more information, visit us at NAB 2009, Booth SL106 or on the web at: http://www.thomsongrassvalley.com/K2
IMMERSE YOURSELF in sports media solutions for a global playing field

Dive in to the NAB Show and discover how next-generation sports content will be cast from big screen to small screen to no screen — and beyond. This is the ultimate training ground for anyone involved in broader-casting™ with a focus on local, national or international competition.

Regardless of your role in the world of sports content, the NAB Show delivers state-of-the-art tools and techniques to give life to your next action-packed production so fans keep coming back for more. With forward-focused areas dedicated to IPTV, Mobile Television, HD, 3D, commerce and cross-platform distribution, the NAB Show is a total immersion into the range, ability and power of tomorrow's sports broadcasting.

Exchange strategies, uncover solutions and form profitable partnerships with the worldwide community of content creators, producers, managers and distributors who share your professional passion for entertainment excellence. For more information, visit www.nabshow.com.

NABSHOW™
Where Content Comes to Life™

Conferences: April 18–23, 2009 / Exhibits: April 20–23
Las Vegas Convention Center / Las Vegas, Nevada USA
www.nabshow.com
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio accessories</td>
<td>126</td>
</tr>
<tr>
<td>Audio mixers, on-air, portable, studio, playback</td>
<td>126</td>
</tr>
<tr>
<td>Audio recording, storage, playback</td>
<td>126</td>
</tr>
<tr>
<td>Automation, including news and master control</td>
<td>126</td>
</tr>
<tr>
<td>Cameras, lenses, accessories</td>
<td>129</td>
</tr>
<tr>
<td>Camera support, robotics, virtual sets, batteries</td>
<td>131</td>
</tr>
<tr>
<td>CGs, prompters, captioning</td>
<td>132</td>
</tr>
<tr>
<td>Consulting services, technical engineering</td>
<td>133</td>
</tr>
<tr>
<td>Intercom, IFB products</td>
<td>133</td>
</tr>
<tr>
<td>Lighting equipment</td>
<td>134</td>
</tr>
<tr>
<td>Media storage, archive systems, asset management</td>
<td>135</td>
</tr>
<tr>
<td>Microphones, accessories</td>
<td>138</td>
</tr>
<tr>
<td>New media, streaming products, multimedia/Internet</td>
<td>138</td>
</tr>
<tr>
<td>Production switchers, video effects, keyers</td>
<td>141</td>
</tr>
<tr>
<td>Recording media</td>
<td>143</td>
</tr>
<tr>
<td>Satellite equipment, services</td>
<td>144</td>
</tr>
<tr>
<td>Studio and support products, multi-image displays</td>
<td>144</td>
</tr>
<tr>
<td>TBCs, frame syncs, conversion equipment</td>
<td>146</td>
</tr>
<tr>
<td>Telco, IPTV and mobile video equipment</td>
<td>173</td>
</tr>
<tr>
<td>Test & measurement equipment</td>
<td>174</td>
</tr>
<tr>
<td>TV transmitters, feedline, antennas, towers, services</td>
<td>175</td>
</tr>
<tr>
<td>Video editing systems</td>
<td>177</td>
</tr>
<tr>
<td>Video routing</td>
<td>178</td>
</tr>
<tr>
<td>Wire, cable, connectors</td>
<td>179</td>
</tr>
</tbody>
</table>
Deliver Full HD Content in an SD Channel

Fujitsu IP-9500 High Performance MPEG-4 AVC HD/SD Encoder

- 4:2:2 and 4:2:0 Simulcast
- Non-degrading Concatenation Protection
- DVB-S/S2 - IF and L-Band
- DVB-ASI and IP Transport
- HD and SD Simulcast
- Data Stream Protection - Advanced FEC/ARQ
- VoIP Full Duplex Communication

http://us.fujitsu.com/video
1.800.626.4686
video@fcpa.fujitsu.com
MULTICHANNEL LEVEL CONTROL
Ward-Beck Systems MLC8
Handles AES, Dolby E, Dolby AC3, analog audio or HD/SD embedded signals; equipped with eight LED bar graph level displays, individual channel and master level control with mute function, level status LED indicators, presets and toggling between 5.1 and stereo listening, and 7.1 and 5.1 to stereo mix-down capability.
416-335-5999; www.ward-beck.com
Booth: SU4813

LOUDNESS MONITORING DEVICES
RTW Loudness Family
Includes SurroundControl, Surround-Monitor, DigitalMonitor, and an integrated loudness display conforming to the ITU BS.1771 guideline as a standard feature; monitor the loudness of stereo, multichannel and surround signals in a wide range of applications, as a complement or an alternative to conventional peak meters; users can select integrated loudness measurement, as per ITU BS.1771 for stereo signals, as an alternative to the usual peak meter bar graphs.
+49 221 709130; www.rtw.de
Booth: N3123

PROGRAM OPTIMIZER
Dolby DP600
Program optimizer provides automatic analysis and intelligent correction of audio loudness and metadata (if applicable) for common broadcast media file and audio formats in use today; offers the option of faster-than-real-time file-based encoding and decoding of Dolby Digital, Dolby Digital Plus, and Dolby E content, as well as efficient transcoding between the formats.
415-558-0200; www.dolby.com
Booth: N1815

DIGITAL MIXING ENGINES
Yamaha Commercial Audio Systems DME64N/DME24N
DME24N features up to 24 channels of I/O (including eight built-in analog I/O); inputs will accept mic/line level signal; additional digital and analog I/O is also available via a single MY (mini-YGDAI) card slot; DME64N features four times the processing power of the DME32, and includes up to 64 channels of I/O.
714-522-9011
www.yamahaca.com
Booth: N7612

SDI INSERTER CARD
Jünger Audio C8486
Controls loudness with Level Magic functionality; features four-channel audio processing and SD-SDI interface as well as HD-SDI interfacing and eight-channel Level Magic Surround as an option or upgrade.
+49 30 677 7210
www.junger-audio.com
Booth: N4937

CAMERA RF AUDIO SYSTEM
Zaxcom QRX100
A four-channel RF audio receiver; receives four channels of audio from up to two stereo or mono digital transmitters, then outputs these received audio channels as both analog and AES digital formats; a unique interface allows broadcasters to record all channels from four-channel ENG cameras quickly and easily.
973-835-5000; www.zaxcom.com
Booth: N3114

DSM-CC OBJECT CAROUSEL SYSTEM
Strategy & Technology (S&T) TSBROADCASTER 2
Software that allows an operator of interactive services to set up the automated generation of transport streams containing object carousel file systems for interactive TV; the second version of the company’s DSM-CC Object Carousel product for DVB (MHEG-5 and MHP), OCAP/tru2way and ETV platforms provides a new and enhanced user interface as well as improved performance; the OCAP/tru2way version now includes out-of-band playout, common download and DTA support.
303-926-4933; www.s-and-t.com
Booth: SU8606

MANAGEMENT SYSTEM
VCI Solutions Velocity
Automates back-office from sales to traffic to operations; designed to eliminate costs and go beyond BXF to provide ultimate control over your operation.
413-272-7200; www.vcisolutions.com
Booth: TBD

Audio accessories

Audio mixers, on-air, portable, studio, playback

Audio recording, storage, playback

Automation, including news and master control
Connectors Matter, choose wisely. Contact Emerson Network Power for your Connectivity Solutions. Today, our products enable high definition digital video transport and extend signal range from feet to miles. Video coax patch-jacks and patch panels for HDTV help cable management; HD-SDI and DVI fiber optic converters extend distance of uncompressed video; Expanded beam optical connectors offer repeatability in harsh environments. And for tomorrow, Johnson sub and microminiature 75-Ohm connector series make higher frequencies possible in even the smallest of form factors.

Visit us at the Booth C12431 at the NAB show to find your digital video transport solution. For more information please visit www.stratosoptical.com/video or contact us at ConnectivityInfo@Emerson.com

Wireline, Wireless and Optical Connectivity Solutions.
Just another reason why Emerson Network Power is the global leader in enabling Business-Critical Continuity™.

Connectivity Solutions
AUTOMATION SYSTEM
Pro-Bel Morpheus ICE

Combines automation, master control, media playout and storage; can be scaled up simply by adding more of the compact 3RU modules as the operation expands; could even be used to add capability to larger automation systems.
631-549-5159; www.pro-bel.com
Booth: SU12710

TRANSCODING SOFTWARE
AmberFin iCR Version 4.5

Content mastering and transcoding software; now offers native support for Avid DNxHD and Final Cut Pro, offering instant interoperability with Avid and Apple editing systems; strengthens the link between content creation and distribution to expedite editing and versioning; extended MXF support of native Panasonic P2, Sony XDCAM and Avid Op Atom MXF further increases interoperability with a wide range of tapeless cameras, VTRs, editing and server systems.
866-939-3167; www.amberfin.com
Booth: SU4323

TRANSMISSION SYSTEM
OmniBus iTX On-Demand

Allows broadcasters to transmit conventional channels and sue VOD-ready content from the same iTX workflow and hardware, without having to reingest or reformat material explicitly for VOD use; can be used to create everything from low-resolution files for Web download or mobile phones to HD MPEG-4 files with Dolby surround sound for broadband IPTV applications.
303-237-4868; www.omnibus.tv
Booth: SU5417

CONTROL PANELS
Videoframe LCD24PL/24PR

Machine control and router-master control panels feature 24 programmable LCD switches; the four menu buttons are located either to the left of the LCD switches (24PL) or to the right of the LCD switches (24PR); use Power over Ethernet technology, eliminating the need for an external power supply.
530-477-2000
www.videoframesystems.com
Booth: SU5422

KinoFlo ParaBeam
HD Studio Light

ParaBeams make HD images look their best. Soft light quality is so important we designed TrueMatch® lamps calibrated to match the spectral response curves of HD. Parabolic reflectors intensify the light, while honeycomb louvers spot the light to 90°, 60° or 45°. Cool soft light keeps the talent happy, while advanced electronics deliver DMX dimming on a small energy footprint.

www.kinoflo.com 2840 North Hollywood Way, Burbank, CA USA voice +1 818 767 6328
NEWS PRODUCTION SYSTEM
vsnsnews
Allows text/video editing in the same application; covers all issues in a uniform environment, including rundown planning and creation, resource management, word processing, video feed recording, and archive storage, organization and cataloging.
305-629-3201; www.vsn-tv.com
Booth: SU5425

TRANSFER AGENT
Florical AssetDispatcher
Option in S.M.A.R.T. Central; streamlines central ingest systems; uses spoke dub lists and programming settings to push commercial and program from a centralized ingest location to spoke sites after material has been approved; timing and metadata can be entered once and shared by all.
352-372-8326; www.florical.com
Booth: SU1802

HDV CAMCORDER
Sony HVR-Z5U
Offers native 24P recording as well as tapeless recording capability through an optional CompactFlash adapter; uses three ClearVid 1/3in CMOS sensor chips, which are designed to provide high sensitivity, deep resolution, high-speed reading, low noise and a wider dynamic range; the CMOS sensors capture full HD 1920 x 1080 resolution, resulting in better picture quality when recorded onto miniDV tape in the HDV format. (1440 pixels x 1080 lines)
201-930-7330
www.sony.com/professional
Booth: C11001

HDTV LENS
Canon HJ14ex4.3B
Wide-angle portable HDTV lens; combines an extended 14 times zoom range and 4.3mm wide angle while also improving on the optical performance of its predecessor; newly developed Digital Drive unit provides improved operability and ergonomic advances for user comfort and convenient control of lens functions.
800-321-4388
www.canonbroadcast.com
Booth: C4325

TAPELESS ENG SYSTEM
Ikegami GF series
Developed in cooperation with Toshiba; includes the GFCAM HDS-V10 tapeless camcorder, the GFSATION GFS-V10 studio deck and the GFPAK high-capacity flash media to record more than two hours of HD video; features an open-codec HD/SD architecture, proxy video and metadata convenience.
201-368-9717; www.ikegami.com
Booth: C5108

WOHLER2009
AMP2-16 Series
Routing Control
Loudness Configuration
Preset Management
Metering Configuration
What good is the most powerful audio processor in the world, if you can’t use it? What good are the best features if you can’t find them?
It’s better, and it’s easier. That’s right, it’s easier. When’s the last time anyone’s ever said that about something as complicated as a Dolby® capable multi-format modular HD-SDI audio monitoring and management system?
With the AMP2-16SDI access every one of your 16 channels of SDI audio — or AES/EBU with the AMP2-16AES — and send them anywhere you need, hear them however you like, label them whatever you want. If you need help, there’s a help button. It’s that simple.

WOHLER
Come see us at
NAB2009 #N1102
CONFIDENCE IS EVERYTHING:
+1 888 5 WOHLER www.wohler.com

March 2009 | broadcastengineering.com 129
COLOR VIEWFINDER
Panasonic AJ-CVF100G
Designed for operation with the company’s P2 VariCam series (AJ-HPX3700 and AJ-HPX2700), the AJ-HPX3000 and AJ-HPX2000 P2 HD camcorders, and the AJ-HDC27H VariCam and AJ-HDX900 DVCPro HD camcorder; using a 1/3-inch diameter imager system, affords color accurate viewing, which minimizes the possibility of misdirected shots; delivers low maintenance costs and can accommodate larger cine-like lenses.

201-392-4127; www.panasonic.com/broadcast
Booth: C3712, C3327

HDTV STUDIO/FIELD PRODUCTION CAMERA
Hitachi Kokusai Electric SK-HD1000
Offered with hybrid fiber-optic cable or digital triax cable transmission; converts into a solid-state field recorder and wireless configuration; features two-piece body design, F10 sensitivity with 60dB signal-to-noise ratio, 14-bit analog-to-digital conversion and CCU outputs of 1080i, 720p or switchable between the two.

516-921-7200
www.hitachikokusai.us
Booth: C4310

HD CAMCORDER
Panasonic AG-HPX300

P2 HD camcorder with 10-bit, 4:2:2, individual frame recording and native 2.2-megapixel imagers; offers the flexibility of interchangeable lens but comes standard with a 17x HD Fujinon lens; incorporates advanced 1/3-inch 2.2-megapixel 3-MOS technology to acquire full native resolution HD images.

201-392-4127
www.panasonic.com/broadcast
Booth: C3712, C3327

PORTABLE FIELD/CAMERA-TOP MONITOR
Marshall Electronics V-LCD70P-HDA
Features digital TFT-megapixel high-res LCD screen with 1.2 million pixels, four-pin XLR power jack and optical-grade polycarbonate screen protection; digitizes analog signals using 10-bit processing with 4X oversampling and adaptive five-line comb filter; available in 3G SDI and HDMI configurations.

310-333-0606; www.lcdracks.com
Booth: C8908

Spot the difference!
Companies which display this mark are members of the IABM and strive to meet high standards in all aspects of their business.
For details of the IABM Business Standard go to www.theiabm.org/businessstandard

130 broadcastengineering.com | March 2009
PROHD CAMCORDER
JVC GY-HM700

Shoulder-supported camcorder records directly to SDHC memory card in the QuickTime format for Final Cut Pro, and optionally to SxS media compatible with Sony’s XDCAM EX format; includes several key technology innovations that result in improved resolution in the camera’s CCD/optional block, lens and viewfinder.

973-317-5000; www.jvc.com/pro
Booth: C4315

Camera support, robotics, virtual sets, batteries

ELEVATOR PEDESTALS
Remotely controlled, motorized telescoping tripods are designed to add pedestal height control to the Telemetrics Robotic Pan/Tilt product line; available in two versions: 1-stage (EP-PT-S2) and 2-stage (EP-PT-S2-2) for additional height.
201-848-9818; www.telemetricsinc.com
Booth: C9525

ROBOTIC STUDIO PEDESTAL
Shotoku Broadcast Systems TRP-100

Designed for all studio applications, including news, sports and current affairs; features 220lb payload and full manual override; supports advanced virtual studio tracking applications; allows full X, Y and height camera movement in conjunction with conventional pan and tilt motion.

310-782-8491; www.shotoku.tv
Booth: C8314

Mulligan?
Not in our business.

In the field, you never get a second chance to get it right.

That is where you need the dependability of Telecast Fiber Systems. We pioneered the fiber optic industry, and we have been by your side for over fifteen years providing the products you need every day.

We owe our success to you, your feedback and your ideas. The result is excellent products that help you "get the shot", no matter what.

And that is why we are outstanding in our field, and yours.

508.754.4858 • www.telecast-fiber.com

© 2008 Telecast Fiber Systems. All rights reserved.
All trademarks are the property of Telecast Fiber Systems.

March 2009 | broadcastengineering.com 131
CAMERA-MOUNTED FIBER-OPTIC TRANSCEIVER
Telecast Fiber Systems
CopperHead INF

ROBOTIC AND MANUAL PEDESTAL
Vinten Radamec Fusion FP188

You Can Count on CEI For Award-Winning Systems Integration —
Plus Sales and Service For the Industry’s Best Products!

You've relied on CEI for 22 years to deliver world-class systems design, integration and service. Now, we're also applying that award-winning dedication to excellence and reliability to providing superior broadcast and multimedia solutions, such as the new Grass Valley™ K2 Dyno™ replay controller.

This compact, cost-effective controller is designed to help sports producers and other professionals capture live events in SD and HD resolutions and instantly play them out at variable speeds for critical analysis during fast-paced events.

Until June 1, 2009, CEI is offering a 10% discount on in-shop equipment repairs -- and free estimates! Bring by or ship your equipment to us for fast turnaround times. We also offer training and customized maintenance contracts to fit your specific needs.

For more information, visit our Web site at www.commeng.com, email sales@commeng.com or call 703-550-5800.

Communications Engineering, Inc.
703 550 5800 • WWW.COMMENG.COM • SALES@COMMENG.COM
PROMPTER MONITORS
Autoscript LED TFT-Plus monitors
High brightness LED flat screens for all Autoscript prompter systems; include 8-, 12-, 15-, and 17in versions, all of which will feature an illuminated control panel for easy visibility in dark studio conditions; feature improved operational performance, environmentally friendly construction, and a two-year warranty.
203-338 8356; www.autoscript.tv
Booth: C6026

LIGHTING DESIGN
FX Group Lighting Optimization Program
Provides consultation, design and installation in a station’s studio by a professional lighting designer; lighting solutions specifically for HD broadcasting; consultations with talent to optimize lighting for skin tones and hair colors; and return maintenance visits on a regular basis.
407-573-0499; www.fxgroup.tv
Booth: R300

Consulting services, technical engineering

ENGINEERING SERVICES AND DESIGN
TV Magic
Offers complete design, renovation and build-out of facilities, including television stations, post-production studios, houses of worship, city council chambers, college and university A/V rooms, and production studios; follows a rigorous five-phase system, which is a complete, extensive process consisting of initial design, system drawings, and line-item equipment lists that follow on to system installation, proof of performance, and end-user system training.
858-650-3155; www.tvmagic.tv
Booth: SU4723

DIGITAL WIRELESS INTERCOM
Riedel Acrobat
License-free, full-duplex, wireless communications intercom; allows the operation of an unlimited number of wireless belt packs; features both partyline and point-to-point communications, digital audio quality and no interference with radio microphones or in-ear monitoring.
914-819-0495; www.riedel.net
Booth: C7637

EXPERIENCE THE POWER OF CONVERGENCE
A new era of intercom innovation has dawned, where traditional and next-generation technologies form a flexible hybrid network, making impossible production workflows possible.

Party-line, digital matrix and wireless: traditional technologies you have come to trust for mission-critical communication, are now able to interoperate with a new mode of IP server communications, known as I.V. Core, to bring you endless capabilities.
Unlimit Your Choice with Clear-Com

www.clearcom.com
INTERCOM SYSTEM
Clear-Com Concert 2.0
Connects to the Eclipse matrix system via the IVC-32 high-density card, establishing a single communication environment for traditional and IP intercom users; customizable user interface is now available in a soft panel that emulates a traditional intercom station, offering functionalities such as push-to-talk, monitor and latch-to-talk keys for communication with other Concert users, as well as connection to predefined conferences.
510-337-6600; www.clearcom.com
Booth: C6521

LIGHTING SYSTEM
Kino Flo BarFly 400
Uses True Match 55W QFL daylight and tungsten lamps; draws 4A of power on 120VAC; features four-lamp remote fixture and removable center mount; mounts to stand; includes 90-degree honeycomb louver, gel frame and built-in harness; runs up to 75ft from ballast.
818-767-6528; www.kinoflo.com
Booth: C8242

"COFDM SYSTEMS Couldn't Get Any Simpler"

That's what customers are saying about Broadcast Microwave Services' newest family of COFDM transmitters and receivers.

Take the CT2430LD-S transmitter: This compact unit develops 1W of output power with a power consumption of only 12W. And it can transmit in 16:9 format!

Or the DR2524LD-S receiver: This unit has two antenna inputs and uses our proven FFT-Maximum Ratio Combining (FFT-MRC) diversity technology to improve multi-path propagations. Even under the most difficult conditions, this product combination offers the highest possible link reliability.

CT2430LD-S Transmitter Specs
- Low System Delay (~40 ms typ.)
- COFDM 2k Transmission
- Transmit in 16:9 Format Option
- Camera Dockable with Brackets
- SDI Input
- Anton-Bauer/IDX/PAG Battery Mount
- Rugged and Lightweight Design
- Frequency Range: 2.0-2.5 GHz
- AES Encryption Option

DR2524LD-S Receiver Specs
- Low System Delay (~40 ms typ.)
- COFDM 2k Standard
- High Performance FFT-MRC Diversity
- RF Input with Integrated Downconverters
- SDI Output
- ASI Input and Output
- CVBS Output
- IP Streaming Option
- AES Decryption Option

Broadcast Microwave Services, Inc.
(858) 391-3050 | www.bms-inc.com | sales@bms-inc.com
Broadcast Engineering.com March 2009
is your broadcast operation costing the earth?

iTX - saving you money, saving energy

When did you last think about the environmental impact of your broadcast facility ... or what it costs you in power consumption alone?

Making the move to IT-based technologies delivers lower CAPEX, lower energy consumption, lower OPEX.

It’s time to join the iTX revolution.

the future starts here...
MEDIA SERVER SYSTEM
Omneon Spectrum
Enables broadcasters to migrate from analog to digital, tape to disk, SD to HD and from single- to multichannel operations; incorporates open, advanced architecture; includes MediaController, MediaDirector, MediaPort I/O modules, MediaStore storage arrays and SystemManager.
408-585-5000; www.omneon.com
Booth: SU7217

SERVER
360 Systems MAXX-2400 HD
Plays up to four HD video streams at once, or can record two streams, while playing two others; also can be used as a graphics store, with linked key-and-fill capability; standard features include HD-SDI video I/O with frame synchronization for recording wild sources like tape and satellite feeds; audio formats include embedded audio, and your choice of AES/EBU digital or balanced plus four analog.
818-991-0360; www.360systems.com
Booth: N4120

PRODUCTION SERVER
EVS XS Studio
A four-channel video production server specifically designed for studio applications; part of the new Silverline brand; optimized for the recording of multiple audio and video feeds, as well as instant control and multichannel playback operations; offers multiple SD and HD codec configurations with native support, such as IMX, Avid DNxHD and Apple ProRes 422 for faster and easier media exchange with post production.
973-575-7811; www.evs.tv
Booth: C9508

STORAGE
Bycast StorageGRID 8
Virtualizes information retention and access over a range of storage devices from high-performance disk to archival media, distributed over multiple sites; features the new Distributed File System Gateway (DFSG), a high-performance clustered file system front-end; provides a unified solution to manage the storage of digital data and images from primary storage to deep archive.
866-217-6813; www.bycast.com
Booth: SU6925

HD/SD-SWITCHABLE GRAPHICS SERVER
Chyron MicroClyps
Provides instantaneous clip recall and playout; can be configured as either HD or SD with synchronized audio, video and key outputs as well as a built-in keyer for compositing clips on program video; features local and remote browse, media management and playback control.
631-845-2000; www.chyron.com
Booth: SL1420

VISLINK
News and Entertainment
New applications and solutions for the demanding and changing Broadcast world – fixed and mobile microwave links, wireless camera systems, cellular receive city centre networks, satellite uplinks and IP data transfer.
Professional broadcast equipment and support services for news, sports and Outside Broadcast. Quick set up, effective operations and superb performance for 24 hour live news, sensational sports and creative camera work.
Secure Communications from Vislink.
UK: +44 1923 474060 Middle East: +971 4886 5226 Singapore: +65 6248 4676 USA: +1 978 671 5700 www.vislink.co.uk
ARCHIVE SYSTEM
SGL FlashBox

Based on SGL's FlashNet content archive and storage management software and hardware; provides scalable disk and tape storage, whilst providing from 1000 to 5250 hours of DV25 storage in a single appliance; when combined with FlashBrowse II, can serve as entry-level storage and content management.

+44 1489 88 99 30; www.sgluk.com
Booth: SU8508

HD WORKFLOW
Avid HD News

An end-to-end HD News system that enables broadcasters to cost-effectively produce HD programming; broadcasters can easily acquire, edit, network, manage assets, playback and control functionality of XDCAM HD (long GOP HD MPEG-2) content with a workflow designed to deliver significant time, storage and bandwidth savings; consists of the new AirSpeed Multi Stream production server version 1.0, NewsCutter software version 7.5, as well as the Interplay Production Asset Management and Unity shared storage systems.

978-640-6789; www.avid.com
Booth: SU902

TRANSMISSION SERVER
SeaChange BMLxt

Adds features and performance capabilities to Broadcast MediaLibrary system; features SAS drive-based design that improves reliability; scales from a single 3.6TB node to a nine-node cluster providing almost 100TB, which can be combined with MediaClient software codecs for broadcast-quality HD and SD channels.

978-897-0100; www.schange.com
Booth: SU12009

ESE introduces a new world of flexibility and features for time code with the HD-488/SD Time Code Reader, Generator and Inserter for HD and SD Serial Digital Interface video.

- Generates/Inserts Time Code
- USB Setup Interface
- User Friendly Control
- Universal Power Supply (90-264 VAC)
- Accepts Multiple HD Formats
- Time Zone Offset
- LCD Setup/Status Display
- Dual LTC Output

ESE
142 Sierra Street
El Segundo, CA 90245 USA
Tel: (310) 322-2136
www.ese-web.com

Visit us at NAB Booth #N3124

March 2009 | broadcastengineering.com 137
RESOURCE MANAGEMENT APPLIANCE

ScheduALL Enterprise Resource Management

Delivers resource sharing across facilities; enables resources to be shared on a one-to-one basis with dedicated business units or made available to the entire corporate network; consolidates financials, resource planning and reporting across the enterprise.

954-334-5406; www.scheduall.com
Booth: SL1606

3 New Essential tools for Broadcast Studios and Post Production Facilities

Tetra VIO™
All in One Solution for Signal Conversion with Universal Inputs and Outputs

> Universal Converter (SD, HD, PC or customized formats)
> Analog / Digital In/Outs
> High performance scaling with HD de-interlacing
> Audio de/embedder
> Large range of connectors (BNC, HD15, DVI, mini DIN4, Cinch, RCA)
> Genlock output for SD/HD analog signal
> HDCP Compatible NEW

Broad Scan™ Family
State of the art Computer to Video and HDTV converters

> True Broadcast analog or digital genlock (ITU, SMPTE)
> Real time conversion and high performance image processing
> Zoom up to 1000% and easy to use new zoom finder
> Audio embedder
> Computer Input format memory (up to 16 presets)
> SDI connections, HD format delivery or standard conversion

Optimizer HD™
Innovative SDTV/HDTV Scaler based on Let It Wave’s bandlet transform technology

> Converts any TV, HDTV or PC signal into a digital TV, HDTV or hi-res PC format
> Genlock in SDTV or HDTV (model OHD888-AG)
> Real time motion adaptive de-interlacing, correction of compression artefacts
> Audio embedder

NEW

ENG RECEIVER
Lectrosonics Digital Hybrid Wireless

Features two independent channels that can feed separate inputs or be mixed internally to feed a single input; offers two diversity modes - SmartDiversity reception is employed by independently combining antenna phase for each receiver channel, while the two channels can be used together in True Diversity Ratio mode as a single receiver.

505-892-4501
www.lectrosonics.com
Booth: N5223

WIRELESS MICROPHONE SYSTEM
Azden 325ULT series

Dual-channel UHF camera-mount wireless systems; feature 188 user-selectable frequencies displayed on an LCD screen so users can always find a free channel; consists of the 325UPR dual-channel on-camera receiver, the 35BT belt-pack transmitter, the 35HT handheld microphone/transmitter and the 35XT plug-in transmitter; the 325ULT comes with 2 35BT/EX-50L body-pack mics along with the 325UPR receiver, packed in a carry case.

516-328-7500; www.azdencorp.com
Booth: N2614

New media, streaming products, multimedia/Internet

MULTISCREEN TRANSCODER
Harmonic ProStream 4000

Offers real-time transcoding of MPEG-2 and MPEG-4 AVC content for Internet, 3G/4G mobile and broadcast mobile TV services; can transcode up to 16 channels simultaneously; features an all-IP infrastructure and flexible software.

408-542-2500
www.harmonicinc.com
Booth: SU7209
VIDEO OVER IP ENCODER/DECODER
Electrosonic ES7100

Enables 3G-SDI, HD-SDI, and SDI video transmission over IP networks at bit rates of 10Mb/s to 150Mb/s; features PURE3 codec designed specifically for network transmission; provides resilience to network errors with real-time error concealment and constant latency of 70ms; can encode or decode.

818-333-3602
www.electrosonic.com
Booth: SL9720

AVC SD/HD ENCODER
Fujitsu IP-9500

Supports HD satellite newsgathering applications that require high picture quality at SD bit rates with low delay; features advanced H.264 compression technology; produces high-quality bit rates of 4Mb/s to 27Mb/s; other features include 300ms low latency, low bit rates, DVB-ASI or IP transports for network flexibility, and full compatibility with industry-standard decoders.

800-626-4686; http://us.fujitsu.com
Booth: SU10921

IP-BASED VIDEO SERVER
Streambox Store and Forward Server

Supports hundreds of simultaneous video file uploads from field crews, stringers and citizen reporters; provides searchable metadata via a Web-based interface; can be customized to facilitate rule-based transcoding to and from a variety of file formats.

206-956-0570; www.streambox.com
Booth: SU14413

GOOD THINGS COME IN ALL SIZES

A new series of durable 7” Portable Field / Camera-Top Monitors

Three different models to choose from:
- Component (V-LCD70P-HDA)
- HDMI (V-LCD70P-HDMI)
- 3G / SD / HD with 1080p (V-LCD70P-3GSDI)

9 different battery configurations available

All three new models provide a number of features including a wide variety of screen formats and markers, 4 user-configurable front panel function buttons, RGB Check Field / Field Detect, and RGB gain and bias control. Two other major features include Marshall’s new FALSE COLOR and PEAKING Filters:

Marshall Electronics / LCDracks.com

- Quality - Innovation - Experience - Customer Service - Designed, Engineered, and Assembled in the USA

March 2009 | broadcastengineering.com 139
ONLINE COMMUNITY PLATFORM
Cisco Eos
A hosted software platform that enables media and entertainment companies to deliver community-driven Web sites, creating more personalized experiences around their content and brands while increasing overall end-user engagement and retention; unlocks unrealized value in media company Web sites by integrating social networking, content targeting, asset management, and site administration features into a robust backend system.
800-553-6387; www.cisco.com
Booth: S214LMR, S213LMR

ENCODER
ATEME Kyrion 2101
An HD MPEG-4/AVC encoder targeting a broad range of DTV applications; features a large operating scale, from 0.5Mb/s to 25Mb/s, with advanced Main and High Profile encoding, allowing bouquet aggregators, broadcasters and IPTV service operators to reach their audience with a high picture quality; offers a complete set of MPEG-4/AVC tools including full support of interlaced video (MBAFF).
+33 1 69 35 89 89; www.ateme.com
Booth: SU6326

DTV IFB RECEIVER
Nucomm ProQ
An IFB solution for ENG users during DTV transmission, monitoring of DTV signals through a DVB-ASI output, and streaming video over an IP connection to a laptop or other IP-enabled device; measures 5in x 1.75in x 8.5in; features dual UHF/VHF antennas, two advanced silicon tuners and sixth-generation VSB demodulators; contains an MPEG Layer 1/Layer 2 audio decoder that is capable of decoding two independent sound programs, providing up to four audio channels and using bit rates as low as 32kb/s for each.
908-852-3700; www.nucomm.com
Booth: C3707

HDTV ENCODER
NTT Electronics
Encodes 4:2:2 chroma AVC/H.264 HDTV/SDTV real-time, ultra-high quality video; supports MPEG-2 format to enable smooth migration from current MPEG-2 technology to future AVC/H2.64.
+81 42 796 2496; www.nel-world.com
Booth: SU11617, SU11723

STREAMING SOLUTION
Bitcentral AirNow!
Streams a live shot from the field without a laptop, software or special training; connects to a camera and streams content directly in real time, uses EvDO to deliver broadcast-quality video; provides a portable wireless hotspot that converts the broadband cellular network to standard WiFi.
949-253-9000; www.bitcentral.com
Booth: SU913

Curious? See you at NAB 2008, Booth C7637

Riedel Communications Inc. • 1721 Victory Blvd • Glendale, CA 91201 • USA • www.riedel.net

Riedel
The Communications People

ARTIST DIGITAL MATRIX INTERCOM
The Solution for World Class Events.
ENCODER
ViewCast Niagara 2100

Media appliance allows even nontechnical personnel to stream high-quality live video; built-in Web interface simplifies system set-up and operation, allowing complete system control from anywhere on the network; users can simply set streaming parameters from the intuitive interface and then begin streaming in multiple resolutions and bit rates with a single push of the front panel stream button.

800-540-4119; www.viewcast.com
Booth: SL12415

DIGITAL PRODUCTION SWITCHERS
Ross Video CrossOver series

HD TIME CODE READER/GENERATOR/INSERTER
ESE HD-488

Accepts multiple HD formats; generates/inserts time code; features dual LTC output, USB setup interface, time zone offset, LCD setup/status display and a universal power supply; enables as many as 30 characters to text to be superimposed onto the video.

310-322-2136; www.ese-web.com
Booth: N3124

Award Winning Multiviewers ...by Avitech

NEW!
Rainier Series Goes HD

- Accepts HD/SD SDI and Composite with automatic detection
- Low latency for production applications – one frame maximum
- Compact – Eight video plus one computer inputs in one RU
- Affordable with a comprehensive feature set

Come and visit us at:
SU10217
1(877) AVITECH (284-8324)
MD SWITCHER
Echolab Overture1, Overture2

Available with 1 or 2 M/E; now features 3Gb/s (1080p60) format support to its existing range of SD, 720p, and 1080i over a single SDI or HDMI input; offers internal conversion and synchronization with powerful key layering and special effects to put creative control at the user's fingertips; uses internal frame synchronization to help ensure the quality of effects.

978-715-1020; www.echolab.com
Booth: SU2302

SD/HD PRODUCTION SWITCHER
Snell & Wilcox Kahuna

New features include the K-Watch software application, which allows file content and graphics to be converted and uploaded to one or multiple networked Kahuna systems, and the K-Mirror software application, which facilitates the rapid backup and sharing of Kahuna projects; also features 3-D stereoscopic functionality.

212-481-2416; www.snellwilcox.com
Booth: SU1917, SU1717

SD/HD PRODUCTION SWITCHERS
Ross Video Vision
QMD/X v9.0

Enhancements include up to eight channels of DVE in a single MLE, WhiteFlash transition type, expanded still-store functionality with thumbnails, animation trimming, new warps, MLE auto follow and memory attributes; also offers an expanded complement of device controls, including serial or Ethernet control of VTRs, video services, audio servers and audio mixers.

613-652-4886; www.rossvideo.com
Booth: SU1807

COST-SAVING SOLUTIONS FROM FX GROUP

NEW!
Free ROI Lighting Evaluation
Let us show you how green lighting techniques (fluorescent/LED) can pay for themselves by reducing energy, HVAC, and lamp replacement costs.

VISIT FX GROUP @ NAB - BOOTH #R300 @ THE HILTON

cschane@fxgrouponline.com
www.fxgrouplighting.com
407.877.9600
SWITCHER
Analog Way Di-VentiX LE

A multilayer mixer, scaler and seamless switcher with universal analog and digital input/output and full high-resolution digital processing, offers numerous live effects including picture in picture, downstream keying and chroma key as well as a multilayer mixer operation mode; can display up to four layers: two live sources, one frame and one logo.

212-269-1902; www.analogway.com
Booth: SL7423

Recording media

FIELD RECORDER
Sony PDW-HR1

Part of the XDCAM HD422 Professional Disc system; the HD mobile unit is designed as an ENG/EFP complement for XDCAM HD422 optical camcorders, while also supporting legacy formats including MPEG IMX, DVCAM and 4:2:0 HD 24P content; features a built-in up/downconverter; provides multiformat (1080i/720P) recording flexibility, as well as HD/SD conversion and crossconversion during playback between 1080i and 720P.

201-930-7330
www.sony.com/professional
Booth: C11001

HD RECORDER AND CAMERA HEAD
Panasonic
AG-HMR10/AG-HCK10

Recorder is equipped with an HD-SDI input and output; provides the flexibility of low-cost, SD memory card-based recording and full 1080 and 720 resolution capture in a small, portable unit; utilizing AVCHD, an MPEG-4 /AVC Hi Profile-based format, provides a near doubling of bandwidth efficiency with improved video performance over the older MPEG-2 compression used in HDV formats; camera head features three 1/4in native HD resolution MOS imagers; iris, focus, zoom control and power are supplied from the HMR10 recorder; cables connecting the camera to recorder available in lengths up to 10m.

201-392-4127
www.panasonic.com/broadcast
Booth: C3712, C3327

GET THE STORY.
OR WATCH SOMEONE ELSE REPORT IT.

SEE US AT NAB, BOOTH #SU14413.

NOTE TO SELF: VIDEO OVER IP.

Competition fuels the news business. It’s get or get out. So give your team an unfair advantage: Streambox. Instead of rolling ENG/SNG trucks, broadcasters can deploy a scalable IP-based solution that helps you get more news faster and at a lower cost. Go live-to-air, edit the story for later broadcast, or feed video to websites and affiliates. Call us to schedule a demo.

Learn more at www.streambox.com
or call +1.206.956.0544 ext 222.
Satellite equipment, services

TRANSCODER

TANDBERG Television RX8250

Part of an end-to-end cable HD distribution system that allows content providers to carry six to eight MPEG-4 AVC HDTV channels on a satellite transponder; helps operators with networks that have a large installed base of MPEG-2 HDTV set-top boxes by enabling efficient transcoding of MPEG-4 AVC/DVB-S2 distributed content into high-quality MPEG-2 HD.

678-812-6300; www.tandbergtv.com

Booth: SU5108

SATELLITE NEWSGATHERING

Stratos BGAN

Provides an SNG solution in a small, portable satellite terminal; offers broadcast-quality IP streaming and store-and-forward capabilities; simultaneous voice and data lines allow field reporters to maintain voice contact with the studio for cueing without compromising data.

709-748-4226

www.stratosglobal.com

Booth: OE411

IMAGE PROCESSING SOLUTIONS

Algolith Algogear

A flexible, future-proof, modular solution that can maximize bandwidth, clean, synchronize and scale media; comprised of image processing and enhancement solutions that harness the technology of the company’s core Intellectual Property (IP); series includes noise reduction (VNR-1000-SD and VNR-1000-HD), upconversion (XVC-1001-UC), downconversion (XVC-1001-DC), frame synchronization (FRS-1002-MD), and line delay (VLD-1002-MD).

514-335-9867; www.algolith.com

Booth: SU3117

LCD VIDEO MONITOR

Wohler RM-2443W-2HD

Monitor is 2RU in height; incorporates four widescreen LCDs that measure 4.3in in size; features 480 x 270 resolution with 16.7 million colors.

510-870-0810; www.wohler.com

Booth: N1102

SYSTEM DESIGN SOFTWARE

WireCAD

WireCAD standalone system design and documentation software aids engineers in creating 2-D CAD drawings and functional block diagrams, and rack layouts; automatically assigns cable numbers, prints cable labels, bills of materials and other reports.

661-253-4370; www.wirecad.com

Booth: N4932

LCD HD MONITOR

Panasonic BT-LH2550

A high-resolution LCD HD production monitor with a full 1920 x 1200-pixel in-plane switching panel; the 25.5in monitor features an expanded color gamut, exceeding the NTSC standard, to ensure vivid, true-to-life color for critical monitoring; offers six color space settings — SMPTE, EBU, ITU-R BT.709, Adobe 2.2, Adobe 1.8 and D-Cinema.

201-392-4127

www.panasonic.com/broadcast

Booth: C3712, C3327

CANARE

Cou-Unit Panel

Features

- SMPTE 311 Standard
- Integrated splice enclosure
- Easy maintenance & installation
- Patent Design
- Modular system
- Available in 2RU, 3RU and a variety of Configurations

canare.com | lcano@canare.com | 973.837.0070 | hybrid fiber-optics & EO/OE | snake systems, connectors | cable reels | patchbays | cables
LCD MONITOR
Sony BVM-L170

The 17in LCD monitor incorporates a 10-bit 120Hz LCD panel, nonlinear cubic conversion imaging technologies, 12-bit signal processing engine, optical feedback stability systems and automatic calibration operation; delivers high levels of color accuracy and color reproduction, imaging quality and picture consistency; features full 1920 x 1080 HD resolution, a wide viewing angle, 10-bit driver and LED backlight system.

MULTIVIEWERS
Avitech MCC-8004
Can display up to 120 inputs in a single display group; combine digital or analog video, audio and computer signals on one display; video can be composite, SD-SDI, HD-SDI, or component; audio can be balanced or unbalanced; computer signals can be DVI or VGA; offer an integrated on-screen display, which includes on-screen labels, borders, alarms, optional audio meters as well as support for Asian and European symbols.

MULTIVIEWERS
Apantac Tahoma
Series is 3G ready and auto-detects four to 32 video inputs (HD/SD-SDI/composite); support DVI, HDMI and VGA outputs up to 2048 x 1080; include built-in video and audio alarm detection as well as 16 channels of embedded audio per input with four channels of discrete analog or digital audio; feature built-in Cat X extender.

Getting ahead means changing the dynamics

Immediately eliminate costs to positively impact your bottom line. Velocity, an advanced real-time SINGLE management system that automates your back office, from Sales to Traffic to Operations.

See Velocity at NAB Visit www.vcisolutions.com/2009nabshow
TECHNICAL FURNITURE

TBC Consoles Trac Series

Series includes the IntelliTrac, TracWall and SmartTrac consoles, provides modular designs for control room consoles, edit desks and flat-panel monitor walls; integrate perfectly with each other; offers highly adaptable furniture solutions.

888-266-7653
www.tbcconsoles.com
Booth: C12126

LCD VIDEO MONITOR

Wohler RM-4290W-2HD

Measures 4RU in height; incorporates two 9in widescreen LCDs with 800 x 480 resolution and 16.2 million colors.

510-870-0810; www.wohler.com
Booth: N1102

STANDARDS CONVERTER

Snell & Wilcox Alchemist Ph.C - HD

Offers simultaneous SD and HD conversion; new features include a FilmTools option, which delivers results with film-like quality quickly and affordably, and a new option for integrated Dolby E audio handling, which simplifies broadcast and post-production workflows and eliminates the need for outboard Dolby decoders and encoders; provides SNMP support.

212-481-2416; www.snellwilcox.com
Booth: SU1917, SU1717

The Daily Times

BROADCAST FACILITY OPENS ON THE MOON!

Experience broadcast challenges in an exciting outer space environment in Broadcast Engineer on the Moon!

Put your engineering skills to the test in this interactive adventure. Download your copy at zeusbroadcast.com or visit us at booth SU12002 at NAB to pick up a copy.

Broadcast Engineer on the Moon is brought to you by

zeus

BROADCAST
COMPETITIVE TELEVISION SUMMIT
Through Technology For Station Groups & Networks

MARCH 4-5, 2009 ORLANDO

TAKING BOLD STEPS
- Triumphant with new services
- Creating new revenue with technology
- Streamlining the back office
- Using HD to stand out in your market

Presented by Broadcast Engineering and PRO

A SPONSORED SUPPLEMENT TO BROADCAST ENGINEERING AND BROADCASTING & CABLE
A state of mind: winning or losing

The plan was to be all digital by now. Unfortunately, politics being what it is, many broadcasters are being forced to endure another four months of unplanned transmitter power bills. What does this mean to general managers and engineers? It means even greater economic pressure to reduce OPEX and find new ways to create capital.

Fortunately, there are ways to reduce costs and make more money. Modern technology enables a wide variety of operational efficiencies, many never before possible. Automated workflows, integrated production systems and the feasibility of creating new delivery channels are all readily available. The decision for a progressive manager then becomes which to implement and when.

Perhaps a predictor of a winning philosophy might be seen in the stations that planned and then executed the switch to all digital back on Feb. 17. These broadcasters now are enjoying the freedom of supporting only one OTA format, using one less transmitter and benefiting from a greatly reduced power bill. These stations took a leap of faith that digital OTA was the future and said, “Let’s get on with it.”

The same winning attitude holds true when implementing other new technologies. Whether it’s adding studio automation, file-based workflows or digital archival systems, launching multichannel DTV and soon, or delivering content directly to personal handsets, the winners are typically the first willing to try new things.

Certainly these are trying times, but let’s add a historical fact: New businesses and services launched during lousy economic times have a 20 percent greater chance of being successful than if those same companies and products were started during good times. Those companies and leaders that take risks in tough times are more likely to succeed than those who keep waiting for a better day.

Which are you?

Wayne Madden
Group Publisher,
Broadcast Engineering
and Radio Magazine

Larry Dunn
Publisher,
Broadcasting & Cable
and Multichannel News

Contents
Maximizing ‘three screen’ revenue S3
Changing models S11
Let’s get competitive S14
HD realities S16
Content company first S22
How important are alternative distribution platforms, often called the three screens, to maximizing revenue in today’s television business? If being where the eyeballs gaze is necessary, the latest figures from Nielsen suggest they are quite important.

The figures released in late February reveal that viewing of video on television, Internet and mobile devices continues to grow in popularity among viewers. In the fourth quarter of 2008, the average American watched more than 151 hours of television per month — an all-time high, according to Nielsen. Viewing was strong on mobile devices and the Internet as well. Among Internet video viewers, the average was three hours per month, and mobile video viewers reported watching almost four hours per month on their cell phones and other mobile devices.

“The American fascination with television and other video content is not easing up, as consumers keep turning to TV, Internet and mobile at record levels,” says Susan Whiting, Nielsen’s vice chair.

It’s one thing to identify where the viewers are; it’s another entirely to cash in. While the Web and mobile devices aren’t new, most local broadcasters are still in the early stages of determining what works and what doesn’t. Until those kinks are worked out, maximizing revenue will remain a worthy, yet unattained goal.

According to Pete Conti, senior VP of Borrell Associates, a research and consulting company in Williamsburg, VA, the first step for local broadcasters is to recognize that video advertising will experience dramatic growth on the
Momentum builds for ATSC Mobile DTV

All eyes in the broadcast industry later this year will likely be trained on 69 full-power TV stations that will launch a trial mobile TV service using the Open Mobile Video Coalition-backed ATSC Mobile DTV standard.

Up from the 63 stations announced in January at the 2009 International CES, these stations not only represent a vanguard in the competition to claim a stake for broadcasters in mobile TV, but also a conspicuous bellwether that CE manufacturers can point to for reassurance as they evaluate whether or not to build receivers. Early this summer, two broadcasters also will begin running model ATSC Mobile DTV stations where device manufacturers can test their receivers, OMVC says. Launching ATSC Mobile DTV service is attractive to many broadcasters because of the potential for new revenue as well as ease of setup and relatively minimal financial commitment — about $100,000 to add a single non-redundant simulcast channel.

Modifications to existing DTV transmission infrastructure require the addition of a mobile TV MPEG-4 H.264 encoder, a special multiplexer that integrates the mobile encoded stream into the main 19.4Mb/s DTV stream and a mobile TV exciter, says Brett Jenkins, director of technology, strategy and development at ION Media, which has taken a leadership role in the OMVC. According to Jenkins, who has been involved in the setup for several trials to date, making the modifications will take a broadcast engineer about a half day.

While there's been a good deal of discussion in some engineering circles about the need to modify DTV antenna polarization for ATSC Mobile DTV, no such changes have been required for successful transmission and reception in any of the tests so far, Jenkins says. An OMVC subgroup is analyzing whether or not to recommend circular or elliptical polarization, but nothing conclusive has come out of the group's work so far, he adds.

"Video is huge for broadcasters," he says. "We predict that in the next five years, of all the ad categories we track in online advertising, video will grow to be the largest."

However, cashing in on the increasing importance of online video as an ad medium won't come from cannibalizing the existing TV market. Rather, given the much lower costs associated with the Web, stations seeking to exploit online video advertising as an important source of revenue will develop new categories of advertisers, who couldn't afford air time.

"Here is the opportunity," Conti says. "Build out video directories and leverage them."

Conti advises broadcasters to leverage their knowledge of video and the tools they have to build business directories and help wanted ads using video rather than text. "Leverage your local television strength and go out and do one- or two-minute videos for the different businesses," he says. "Build out a video directory and promote it on TV with a 15- or 30-minute show on Sunday to drive demand."

"The only way you can get that started is by using traditional media to drive traffic to your site," Conti says.

Video-centric, hyperlocal

News12, seven regional news channels covering different New York metro areas on Cablevision, recently has completed a major overhaul of its Web site to — among other things — take advantage of the revenue-generating potential of online video presents.

"The upgrade gave us a way to..."
It's Time For Everyone To Contribute.

The Grass Valley™ Aurora Tapeless HD Production Suite from Thomson gives your entire staff the management capabilities to work and collaborate like never before.

Log metadata notes on the spot while another user picks up the information in real-time. Record and edit directly to the timeline without pre-digitizing. Search, archive, and restore data with tools built directly into Aurora. From ingest to playout Aurora allows everyone to move as one.

Find out more at: http://hdnews.grassvalley.com/
add new revenue opportunities to more of what consumers are doing on the Web," says David Kirschner, News12 general manager.

According to Kirschner, those opportunities include looking at video pre-roll, adding classified advertising and opening up additional sponsorship areas for business and entertainment.

"We also are giving people the opportunity to go hyperlocal on their ad buys," he says. "If someone wants to buy a certain section of Long Island, instead of running a banner across all of Long Island, they can segment the audience and buy what they need to reach their specific audience."

The new site, which Kirschner describes as "thematical different" from News12's original site, is one component of a larger effort at News12 to make it easier for consumers to do transactions. Another critical component is Channel 612 iO, an interactive channel that gives viewers a Web-like experience on their TVs. Viewers can browse to a section called iO Extra, where they can use their remote control to access video material that normally does not make it to News12's linear broadcast, such as extended press conferences, and weather and traffic coverage. Recently, News12 has added a new revenue component to Channel 612 iO, which lets viewers request more information about what they are watching.

"A consumer watching a video about Disney on Channel 612 wanting more information about a tour package can just press a button on the remote control, and the control knows who they are and what their street address is," Kirschner says. "That's sent directly to Disney as a qualified lead."

Brand strength

Achieving financial success with new distribution platforms, however, is not a certainty, says Elliott Wise, corporate VP, news and local programming, Bright House Networks.

"The key to success, whether it's Web or mobile, is do you have a strong enough brand to extend over multiple platforms," Wise says.

"What I am seeing are stations that have a weak local brand looking at the Web and mobile and digital multichannels as panaceas, and they are not. They're going to be a brain and cash drain."

Since 1999, Bright House Networks has done weather on a digital subchannel and soon after began offering Spanish-language programming on another. From that experience, Wise has a bit of advice: Don't expect to make a lot of money.

"The returns are going to be very small," he says, "not only because of the current sales environment, but also because it takes years to ramp up sales."

Success with any of these platforms demands controlling costs, reining in expectations, realizing that the revenue from these alternate platforms won't approach that from the core linear channel and having a strong core brand, Wise says.

"A lot of people say, 'I can't make any money in Web,'" Wise says. "Well you can't make any money in Web because your original brand isn't strong enough. If you think you have competition on linear, look at the competition you have on the Web."

However, in the view of Sam Matheny, general manager of News Over Wireless, news delivered to one alternate platform, mobile devices, can help to build the core brand of TV stations largely because cell phones are becoming the first touch point viewers have with a station when news breaks.

"If TV stations want to remain the No. 1 option and they want to remain at the front end of the chain, the mobile phone is the key," he says.

Owned by Capitol Broadcasting — the same company that owns WRAL-TV in Raleigh-Durham, NC — News Over Wireless has grown since December 2004 from offering one station on one wireless carrier to 111 stations and three non-TV content companies on AT&T, Sprint and Verizon.

News Over Wireless offers stations a simple business proposition. Stations that sign up with the company can sell as much of their ad inventory on mobile as possible. The rest is aggregated with the mobile avails of other clients and sold via four different national mobile ad networks. A News Over Wireless ad router automatically sends
CONTENT ONLY PAYS WHEN IT'S DISTRIBUTED QUICKLY.

In today's marketplace, people decide when, where and how they consume content. For forward-thinkers who see this as a revenue opportunity, we offer the Thomson Grass Valley™ MediaFUSE solution—an extension of the Ignite™ system that is revolutionizing automated production.

MediaFUSE is a streamlined software and hardware platform that allows broadcasters to:

- Automate the re-purposing of content within minutes, including alternate stories that did not make it to air.
- Insert alternate content and ads into live streams, tag content for syndication and specify delivery options for restricted content.
- Communicate to select third-party advertising traffic-management systems and reconcile between over-the-air ad traffic management and Internet advertising systems.

MediaFUSE—Create Once, Publish Everywhere.

For more information, visit us on the web at: www.thomsongrassvalley.com/mediafuse
So many formats, one solution.
The world’s first Gigabit Ethernet HD AV/IT recorder.

Solve infrastructure headaches with Sony’s innovative PDW-HD1500. It’s a Gigabit Ethernet data drive that can write any flash memory file format from any codec onto affordable, exchangeable Professional Disc™ media. Once your files are on optical disc, the possibilities are endless. Preview from a web browser. Transfer over data networks. Exchange content using the affordable PDW-U1 PC drive. And archive with powerful digital asset management.

It doesn’t stop there. The HD1500 is also an XDCAM® HD recorder that delivers spectacular 1920 x 1080 resolution, rich 4:2:2 color, and complete surround sound with eight channels of uncompressed audio. Need to archive and exchange files from the latest flash memory and optical disc camcorders? Sony’s PDW-HD1500. Problem solved.

◇ click: sony.com/xdcam for an interactive video on the ultimate AV/IT workflow solution.
the advertisements to the mobile devices without any further involvement needed from the station. Stations share ad and mobile video channel subscription revenue with News Over Wireless.

Workflow

From a workflow perspective, News Over Wireless has taken steps to be as unobtrusive in the editorial process as possible.

“We designed our system as a broadcaster,” Matheny explains. “We did it so none of our stations have to add head count or additional hardware.”

The News Over Wireless content management system automatically accepts a wide variety of feeds, including text, Doppler radar images and traffic camera video. Editorial involvement is required up front to identify what is published. After that, the system is “plug-and-play to work with a station’s natural workflow,” Matheny says.

For stations in the process of designing and upgrading their facilities to accommodate mobile and Web content creation and distribution, workflow and involving new media producers in workflow design are paramount, says John Demshock, director of engineering for WFTV/WRDQ, which serves Orlando, FL, and central Florida.

According to Demshock, using watch folders to collect multiple edited stories on the same topic is becoming popular. One story placed into the folder may be destined for air, requiring it to be transferred to playout server, but another will only be available on the Web.

“That watch folder ingests and transcodes the second story and does whatever it needs to do to make it ready for the Web,” Demshock says.

Stations need to ensure that content in the folder can get through their switched system as well as meets the needs of the Web.

“During design, you have to make sure the IP process is involved to ensure connectivity on the IP goes to the switched system properly,” Demshock says.

He likened the process to the traditional way a video router is laid out to ensure it connects all sources and destinations. “You have to make sure everything flows through there,” Demshock says, “and the IT person has to get involved in the plant design.”

Demshock cautions, however, that sometimes traditional broadcasters and their new media colleagues speak a different language, which can lead to confusion on the part of both.

“When dealing with new media people, such as those in the Web area, remember they may not understand what a television video router is, or they may not understand what unity gain means,” he says. “There are also a lot of terms when talking with people who are Web-centric that mean something different in the Web world compared to the TV world. You almost need a little glossary of terms for things like headers, storylines, bylines and packages.”

Fade to black

As the time spent watching video on cell phones and computer screens increases, broadcasters must grapple with how to maximize their revenue potential from these emerging platforms. Doing so demands new ways of thinking about far more than technology and content.

To truly tap the potential, local broadcasters will have to rethink their sales apparatus, too. In the view of Conti, existing station sales personnel may be so locked into their sales groove and so fearful of cannibalizing their existing market to sell Web or mobile that they may not be equipped to get the job done.

“In the early ’50s, most newspapers owned TV stations,” Conti says. “They sent out TV salespeople from the newspaper. What did they sell? A poster of a car lot with a camera trained on it. That’s not television. Sometimes it’s better to take the whole thing, put it in a different building, give it its own name and let it go so it can build itself up. What it needs is a lot of marketing, promotion and money for technology.”

Regardless of the specifics of how stations organize their Web and mobile sales efforts, what’s needed is an entrepreneurial spirit to lead the effort. And when it comes to sales, look for someone who understands promotions, coupons, samples and contests because that’s where a lot of the spend will be.

“Hire a radio person because they are quicker to react and better with promotions,” said Conti. “They understand the mix of media a little better, and we find there is a high success rate with radio salespeople selling online.”
Changing models

Raycom Media president and CEO Paul McTear says a new approach is necessary if it is to remake itself into a true 24-hour-a-day local news business serving three screens.

In the 34 years Raycom Media president and CEO Paul McTear has been in the business, the fundamental broadcast model hasn't changed all that much, he says. Signals come in, and they get passed around the station. Production is essentially handled the same way as is master control.

However, that model must change if Raycom is to get where McTear wants it to go: a true 24-hour-a-day local news business serving television, Web and mobile TV audiences.

For McTear, a keynote at the Competitive Television Summit co-produced by Broadcast Engineering and Broadcasting & Cable magazines in Orlando, FL, March 4-5, arriving at that destination is requiring a rethink of just about everything.

"Almost every aspect of the local broadcast business model, the way that we have conducted business over the last decade, we are in the process of dismantling, examining and putting back together again," McTear says.

The reassembled pieces will be leaner, more efficient and able to draw on the resources of other broadcasters — both within and outside of Raycom — to produce a compelling product for the three screens, he says.

"We are examining all of those challenges of how we can cross-train and get the human element to be able to work in multiple ways throughout their shift," he says.

Another important component, leveraging news resources, will take two forms, one from within and the other from without.

"We are working to aggregate all of our newsrooms and all of our news producers into one seamless system so that the smallest of our television stations — maybe in Lake Charles, LA, or Jonesboro, AK — has the ability to look at the work product of some 30 news stations across the group and be able to click, drag and drop a story into their "unlist," McTear says.

"They can rebrand it, recut it and put their own logo face on it. They have the opportunity to draw from a greater pool of content than they otherwise would simply being the news provider in Lake Charles or Jonesboro."

To squeeze even more productivity out of individual newsrooms, Raycom has also begun discussing pooling news gathering resources with competitors to cover stories such as the obligatory press conference.

"Instead of sending four news crews to cover a particular event, if it is just a routine news event, one station could do it and share it on a pool basis," McTear says. "The same thing is true with helicopters and possibly news vans and other things in the future."
open solutions = open opportunities

Avid is delivering more value with open solutions that solve your toughest challenges. Read our Open Solutions Whitepaper and find out how – www.avid.com/opennewsroom

Open Standards = Future Proof Solutions
Many of Avid’s open solutions are achieved through the use of industry standard open formats and protocols. Occasionally, however, close integration calls for solutions that interface directly with Avid software applications through the use of APIs (Application Programming Interfaces). Prospective implementers are invited to enter into a license agreement with Avid and participate in the appropriate development partner program. These agreements and programs help ensure sustainability of third party development efforts because licensed users are notified of updates, and may also be entitled to access technical support from Avid to assist in development.

Open Storage Solutions = Open Workflow
What is not always recognized is that Avid storage is not restricted to supporting Avid applications and workflows. Other applications you may use to support your workflow – 3D animation or modeling packages for example – can also access and store their data in the Avid environment, thus extending to them the same level of security and controlled access as that enjoyed by the Avid media itself. When storage is combined with an Avid workgroup solution, any non-Avid assets can be tracked, as well as Avid native ones, greatly enhancing the overall total system integration.

Open to Third Party Innovation = Maximizing Your Media
Avid® Media Toolkit is designed to make it as easy as possible for third party partners to generate or access media in the same OP-Atom format used by the Avid editing applications. The toolkit, which is supplied in the form of an SDK (Software Development Kit), greatly simplifies the task of constructing and decoding OP-Atom files. Routines are provided to create files, add tracks to those files, and populate the tracks with media. Complementary routines are available to retrieve media essence from existing files.

Open Asset Management = Seamless Integration
Avid Interplay® Web Services are based on industry standard open platform SOAP technologies and expose many of the functions that were previously only accessible through the Interplay Access application. Through the use of Web services, third parties can now integrate Interplay seamlessly into their customized automated workflows.

Open Archive Solutions = Protecting Your Content
Media assets probably represent the single biggest investment of enterprises involved with content creation. And users of these assets will almost certainly want to preserve them in as secure an environment as possible. Avid offers a number of archiving solutions, including support for third party archive management and robotic library systems.

Open Automation = Innovative Solutions
Avid also provides solutions for Transmission automation through its Sundance Digital range of products. By their very nature, automation systems must interface with a wide range of third party systems and applications. Sundance engineers are actively participating in the SMPTE committee that has developed a format for the exchange of – particularly traffic related – broadcast data. Once adopted by traffic and automation vendors, it promises to deliver very close integration between delivery systems, scheduling departments and automation control.
Let's get competitive

Maribeth Papuga, senior VP, director local broadcast, at StarCom/MediaVest Advertising, offers concrete ways local stations can tap into new ad dollars and get more competitive.

While many local TV broadcasters face significant economic challenges, opportunities exist to become far more competitive and successful, says Maribeth Papuga, senior VP, director local broadcast, at StarCom/MediaVest Advertising.

Papuga, a keynote speaker at the Competitive Television Summit, co-produced by Broadcast Engineering and Broadcasting & Cable magazines March 4-5 in Orlando, FL, says there are steps local broadcasters can take to attract more advertising revenue.

At the top of her list is taking steps to compete for national advertising dollars. The key here is re-examining how certain dayparts are sold. If stations in a broadcast group or across multiple groups could partner on this effort, they could be competitive in attracting revenue from national advertisers—an advertising pie to date they've been denied, she says.

"Maybe a few (broadcast) groups will have a 50 to 60 percent footprint in the United States," Papuga says. "They could aggregate and come up with a new measurement capability where they could actually compete on an NTI (National Television Index) panel."

For this to happen, broadcast groups need to invest in acquiring audience metrics that will let them compete on an apples-to-apples basis when advertisers are evaluating national buys.

"Stations already have a relationship with Nielsen," she explains. "There are two different currencies Nielsen offers—one on a national level and the other on a local level. Now might be the time for groups to combine some of their units across markets without having to pay huge fees to Nielsen to aggregate that back up."

Another area in which stations can improve their competitiveness is the commercial length options they offer advertisers.

"Fifteen seconds has been utilized in pretty hefty volume at a national level for a pretty long time," Papuga says. "They're natural."

But stations make it difficult for advertisers to place 15-second spots locally.

"The 15-second spots have always been automatically preemptable by a :30," she explains. "Local stations also charge a premium if you want to isolate them; otherwise, you have to pre-pair them even before you can offer it to the station."

So, if an agency's client wants to run a 15-second spot, the agency must first find another client willing to buy a 15-second commercial. Local broadcasters also can make it easier for advertisers and agencies to do business with them, Papuga says. While the industry is making headway on efforts to implement e-business efficiencies, more is needed.

"There are still so many legacy systems that aren't talking to each other that it becomes difficult to do things on a retail basis or things that need to get done quickly," she says.

Perhaps Papuga's most far-reaching suggestion to get competitive zeros is on the unique gatekeeping function local stations play in the television market. As more alternative delivery systems come to a given market, local TV stations are uniquely positioned to offer advertisers custom placement on different distribution platforms.

"Cable, satellite, FiOS and AT&T...I may not want to run the same copy across all those systems," she says. "Stations could offer a spit signal opportunity where I could pick out and target audiences. The local broadcaster is kind of the lighthouse in the middle because he is able to offer his signal across various channels."
Unlock your potential

Chyron is targeting the centralization process of the broadcast environment by providing the ultimate, flexible and content-rich workflow solution for all operations.

www.chyron.com
The steady march of HDTV sets into the living rooms and dens across America continued apace last year, reaching 39 million U.S. households by year-end, according to research firm In-Stat. While the economy may be dampening demand for new HDTVs somewhat these days, interest among consumers in high definition and HD spin-offs, such as 3-D TV, remains strong. For example, a recent survey jointly produced by the Consumer Electronics Association and the Entertainment and Technology Center at the University of Southern California found that 16 percent of consumers are interested in watching 3-D movies and TV shows in their homes. To be sure, 3-D television is barely on the distant horizon for most local broadcasters, but the survey demonstrates continued willingness on the part of many consumers to seek out novel, lifelike television viewing experiences in the home.

Large and mid-market stations and television networks have been doing a remarkable job of feeding this appetite for true-to-life — albeit 2-D — television imagery and sound. Nearly all major sporting events are produced in high definition, and most everything from network morning news shows to late-night entertainment is done in high def. Hundreds of high-definition channels also occupy HD tiers on satellite, cable and IPTV systems.

On the local level, too, the list of larger and mid-sized stations originating local content — mostly local news — in high definition continues to grow. Even smaller market stations, with far fewer resources, have begun originating HD.

HD economy

Despite such progress, high-definition local origination is nowhere close to ubiquitous, and many larger stations that already have put HD studios and control rooms in place continue to postpone or limit HD field acquisition. Many acquire footage in the field in widescreen SD and upconvert for insertion into their newscasts. Others have fielded HD cameras but have chosen at this...
When you’re responsible for the transition to HD news at one of the country's largest TV station groups, you need to ensure seamless integration of SD and HD material. That's why Sinclair’s Mark Nadeau put Kahuna™ at the heart of his HD transition strategy.

Kahuna combines unmatched switcher and DVE power with FormatFusion™, a revolutionary Snell & Wilcox technology that enables the seamless integration of SD material, such as graphics, camera feeds and archives into HD productions. All without the video delay and cost associated with external converters.

MARK NADEAU, SENIOR DIRECTOR
SINCLAIR BROADCAST GROUP

"THIS SWITCHER IS LOADED...
IT'S AMAZING."

When you’re responsible for the transition to HD news at one of the country's largest TV station groups, you need to ensure seamless integration of SD and HD material. That's why Sinclair’s Mark Nadeau put Kahuna™ at the heart of his HD transition strategy.

Kahuna combines unmatched switcher and DVE power with FormatFusion™, a revolutionary Snell & Wilcox technology that enables the seamless integration of SD material, such as graphics, camera feeds and archives into HD productions. All without the video delay and cost associated with external converters.

SINCLAIR BROADCAST GROUP STANDARDIZES ON KAHUNA FOR MOVE TO HD NEWS PRODUCTION
time not to incur the expense of the HD encoders and decoders necessary for high-definition live shots and backhaul.

In today's existing economic climate, many stations are satisfied with their HD progress or are looking for innovative ways to initiate HD local origination with less capital outlay. For example, Raycom Media last year rolled out HD local origination at about a dozen of its TV stations but is looking for a way to do HD locally at its smaller market stations for far less money.

"When you look at the small markets, these stations are under increasing stress with the economy," says Paul McTear, Raycom Media president and CEO. "Is there a way in the future that may be market-specific in which small- and medium-sized market broadcasters get together and instead of doing the HD conversion in each and every television station, they fund a broadcast operating center?"

Taking this approach would allow multiple stations in the market to share HD acquisition and preparation costs, and by so doing jointly fund the HD infrastructure necessary for such a broadcast operating center.

"That may help to keep us all from spending hundreds and hundreds of thousands of dollars in each and every television station," he says. "I think there could be some interest in creating a broadcast operating center for such markets in the future."

In the view of Sterling Davis, Cox Broadcasting VP of engineering, his station group has arrived at a satisfactory level of HD origination.

"We put a lot of stations on the air (in HD) pretty early and spent a lot of money," Davis says. "It's not like we are against HD or lukewarm about it. We think it is great. But from a Cox perspective, we have arrived."

For Davis, that means being satisfied in some markets to shoot widescreen SD in the field that is upconverted at the station and in others not adding the components needed to do live HD shots from the field even though HD cameras are in use.

"Adding field acquisition is just a matter of the economy, meaning if the economy doesn't straighten up, it will be longer," he says. "Normally, it would be a year or two or three."

HD conversions

Beyond the capital expense needed to convert an existing SD station for local HD origination, another significant financial piece of the puzzle centers on protecting the technical integrity of existing SD newscasts — and the commercial revenue they generate — while work proceeds on the high-def upgrade.

Many times, stations will set up their new HD infrastructure in parallel to existing SD technology, insulating the SD technology and workflow from the demands of the upgrade. For example, director of engineering Jeff Halapin at WBAL-TV, the Hearst-Argyle Television station in Baltimore, set up a temporary studio in the newsroom to keep WBAL's SD newscast on the air uninterrupted as work progressed on the HD conversion.

"We chose to do one big bang at the end with the control room, cameras, studio, new audio board, new graphics and the whole works," Halapin recounts. "I'll tell you it was really, really challenging technically to make all of that come together while doing a Nextel project (2GHz BAS relocation) and a building renovation."

On Jan. 3, 2009, WBAL went live with its first HD newscast from what Halapin describes as a "network-quality control room and studio." While the project stretched Halapin and his team to their limits, it went off without disrupting the station's SD newscast throughout the entire six-month ordeal.

Like Halapin, Dan Carpenter, chief engineer at WSYX-TV and WTTE-TV, the Sinclair Broadcast Group-owned stations in Columbus, OH, relied on temporary facilities to minimize disruption to ongoing SD news operations as Carpenter and his team put in place their new HD control room and studio.

"We're very lucky," Carpenter says. "We have two production
How to Evaluate Your Television Station’s HD Acquisition Needs:

"Why Good Enough Is Not Necessarily Good Enough."

Considering:

1) That consumer HD screens are now topping 60-inches and continue to advance in size, contrast ratio, and overall sharpness

2) That Blu-ray discs are dramatically raising the bar for HD image quality in living rooms

3) That the competition between alternative HD delivery media is escalating and image quality is acquiring increasing importance

4) That television station competition within each market will rise in the ensuing years

Then, the HD acquisition needs of television stations must take into account the following:

a) There exists a broad hierarchy of HD cameras and camcorders – in terms of HD image performance and associated pricing – that loosely separate into three “production platforms”

b) Within this hierarchy the 2/3-inch HD lens offers the maximum optical sharpness

c) That the codec in an ENG camcorder will be followed by consecutive codecs (editing, contribution, ATSC transmission to the home etc) within a broadcast infrastructure that will progressively erode image quality ultimately delivered to the home

d) That the 2/3-inch image format and the higher production platform in cameras and camcorders will produce the very best HD imagery – assuring maximum competitiveness under all circumstances

e) That the 1/2-inch image format associated with high performance production platforms represents an optimized balance between high levels of image quality and cost of ownership

f) That the 1/3-inch image format coupled to cost-effective production platforms are intended for HD professional applications demanding greater mobility, portability and flexibility in matching lower station budgets

For more technical information on the issue of HD image quality, please see relevant White Papers on our website: www.canonbroadcast.com
control rooms and two studios. We moved our existing set into our small studio overnight after the 11 p.m. show, and we put our smaller control room on the air. We were fortunate to have the opportunity to gut the main studio and control room and start over."

In May 2008, the stations went live from the facility's new HD production control room and studio.

Full circle

The same In-Stat study showing that 39 million U.S. households owned HDTVs as of the end of 2008 also echoed the findings of previous studies indentifying a sizable gap between the number of households owning HDTVs and those actually receiving HD programming. Of the 39 million households, In-Stat found 17 million do not view HDTV shows on those sets. That begs the question: Why not?

Lack of understanding and lack of the financial resources to subscribe to pay TV are often cited as reasons. But there may be a more troublesome, yet unavoidable answer: Perhaps, millions can’t tell the difference. Even raising such a heretical suggestion is sure to invite criticism and derision from some quarters. But first, consider carefully the viewpoint of Davis.

"The viewers can't tell the difference (between widescreen SD and HD)," Davis says. "We have seven stations that are high-def from the studio. All the rest of the stations that do news — Johnstown (PA), Steubenville (OH) and El Paso (TX) — are doing widescreen news, but not in HD. I'm not sure the viewer knows the difference."

This is not to say that Davis regrets Cox Broadcasting transitioning its seven stations that are doing HD origination from their studios. "The money didn't go anywhere," he says. "It just got us new cameras, new sets and stuff like that, but you know we didn't change the ratings any or did HD change the ratings of our competitors who might have done it before or after us in a given market. Nothing changed. Now widescreen makes a difference, but not a ratings difference. People don't choose to watch a newscast because it is widescreen or narrow-screen. They choose to watch it because of the content or anchor or whatever. I don't know all the reasons people choose newscasts, but it's certainly not because of the screen shape."

As broadcasters continue to weather the financial storm gripping the nation’s economy and consider how best to allocate their 19.4Mb/s bit budgets, Davis’ insights may be particularly important as they ponder things like mobile TV.

However, Patti Dennis, VP and news director of Gannett-owned KUSA-TV in Denver, doesn’t agree with Davis’ perception. In her view, television viewers certainly can tell the difference between SD and HD, especially when there are competitors in the market on-air in HD.

KUSA, solely on-air with HD local news for four years, has faced HD competition for Denver news viewers for about a year. The stations’ ongoing competition came into sharp focus during local coverage of the Democratic National Convention (DNC) last summer.

"When we were all on location doing hours of DNC coverage," Dennis says, "if we didn't produce something in HD, and someone else did, viewers noticed and complained."

Kirk Black, senior VP and general manager of Meredith-owned KCTV serving the Kansas City, MO, and KS, metropolitan area, expressed a similar sentiment. In October 2008, the station went live with its local news in HD.

"There are now three stations in the market in HD, and I'm happy for a level playing field," Black says. "There are so many people out there watching TV that are already HD-ready and expect high definition that I haven't personally gotten a lot of compliments for being on in HD. We got more complaints when things were not in HD. So, I take the lack of those complaints as a reverse compliment."
Now that NVISION Inc. is part of Miranda, we can offer NVISION enterprise class routers. Simply put, they provide absolute dependability, with power supply, controller, and crosspoint redundancy. They’re fully scalable to 1152 x 1152, using 3Gbps (1080p/3D) and HD/SD/ASI. More importantly, they offer rich integration with our interfacing, master control and monitoring systems. It’s time to rethink what’s possible.

www.miranda.com/nvision
Content company first

David Barrett, Hearst-Argyle Television president and CEO, looks at the ongoing evolution of distribution platforms as an opportunity to better serve the company’s viewers and advertisers.

Hearst-Argyle Television, like many station groups these days, is grappling with the onslaught of new distribution platforms and the evolving media consumption habits of its audience.

Still, while the screen sizes and shapes may be changing and the places viewers choose to consume content evolving, at its core, Hearst-Argyle Television is a content company that is reliant on technology — ceaselessly ever-changing technology — to deliver that content, says David Barrett, company president and CEO.

“We’re not in the technology business but ultimately have to adapt the local content we produce and the national content we exhibit on a local basis to different technology platforms,” says Barrett, who is a keynoter at the Broadcast Engineering and Broadcasting & Cable co-produced Competitive Television Summit March 4-5 in Orlando, FL. “We’ve been a company that has tried to pursue a strategy of on-air, online and on-demand and really be responsive to the different media consumption behaviors that are relevant.”

That strategy appears to be paying off. In the past year, Hearst-Argyle Television’s investment in TV station Web site developer Internet Broadcasting and has generated more than 1 billion page views across all of its stations’ Web sites.

“We’ve grown that to be a very significant and strategic part of our business, and we are making strides in monetizing that,” Barrett says. “But we have a long way to go as well.”

The other new component in the evolving distribution technology mix is mobile television, and there too Barrett is positioning Hearst-Argyle to establish a significant presence.

“I am struck by how pervasive these (mobile TV) devices are in Korea,” Barrett says. “I am struck by how a younger generation is so reliant on these devices for all manner of information.”

Looking down the road in the United States, Barrett expects to see similar mobile TV devices in wide use as people on the go increasingly turn to them to consume media.

“I am struck by how advanced the iPhone is, for instance,” he says, “and the content applications there are very intriguing.”

These sorts of changes in the distribution mechanism of video serve only to advance the prospects of Hearst-Argyle and other broadcasters that adapt their content to these devices.

“This all links back to our business. At our core, we are all local media companies that have a real beachhead in each of our local markets,” Barrett explains. “We have real relationships with our viewers, and our relationships with our advertisers are second to none. To the extent that we can leverage those kinds of relationships to extend to new platforms and new ways to deliver local media to people, that holds business promise.”

The mother of all distribution platform evolution has been the DTV transition. Originally scheduled for Feb. 17, President Barack Obama signed into law days before the scheduled switch a bill delaying the DTV transition until June 12.

While Barrett appreciates the concern of those in government over viewers who remained unprepared, he says he was quite concerned about the confusion a delay might cause viewers.

“Given my druthers, we would have moved forward early,” Barrett says, “but I think the only practical thing for us to do was to accommodate those who thought a June date was preferable and do everything we can to respond to any concerns that are out there.”
SAVE THE DATE

NEWS TECHNOLOGY SUMMIT 2009

Oct. 6-7, Atlanta Airport Marriott Hotel

Be our guest at the sixth annual exclusive gathering of industry executives to discuss advances in News Technology.

News Technology Summit is a networking event designed to explore key issues with detailed case studies, high-level keynotes and in-depth analysis.

This private summit will focus on efficiencies and opportunities in news coverage, presentation, workflow and what's ahead for this critical profit center. How to produce compelling news broadcasts at lower cost will figure prominently in the discussions.

Network and Station Owners, Presidents, CEO's, VP's of News Management, VP's of Technology and News Directors for Stations, Groups and Networks are encouraged to attend.

Attendance is limited. Register today! This is an exclusive event, with 80-100 of the top broadcast industry executives expected to attend.

To RSVP, please contact Sandy Friedman at 646.746.6740 or safriedman@reedbusiness.com

For sponsorship opportunities contact Louis Hillelson at 646.746.6910 or louis.hillelson@reedbusiness.com
We would like to thank the following sponsors for their support of our Competitive Television Summit and supplement:

GOLD
- Avid
- SUNDANCE DIGITAL
- SONY
- THOMSON

SILVER
- Canon
- CHYRON
- HARRIS
- Miranda
- SNELL & WILCOX

Broadcast Engineering and Broadcasting & Cable
Broadcast Engineering's not just in your mailbox. It's online. It's in your inbox. It's on your mp-3 player. It's delivering all of the industry's latest news, technology, and updates in the format you choose, and providing the solutions, training, and answers you need to help you get the job done right.

Visit us online at http://broadcastengineering.com to sign up for the FREE coverage you need to keep on top of the latest developments.

US/Canada Edition E-newsletter Suite
World Edition Webcasts
Podcasts NAB Special Report
Essential Guides IBC Product Source
broadcastengineering.com Digital Reference Guide
Broadcast Engineering E-zine

It's Your 360-degree Connection to the World of Broadcasting.
LEGALIZER
Eyeheight LE-2MD

A small, powerful legalizer that is compatible with all commonly-used signal standards from 525 and 625-line SD up to 720p and 1080i HD; structured as two internal independent legalizers in series; can be configured to operate in composite and RGB domains simultaneously, including conformity to the 75 percent chroma settings commonly used in the United States, Japan and Australia.

+44 20 82 552 015
www.eyeheight.com
Booth: SL7409

STANDARDS CONVERTER
Snell & Wilcox MachHD

Offers cost-effective, high-quality motion-compensated HD and SD standards and format conversion with synchronization capability; features multirate HD/SD inputs and outputs; provides up/down/crossconversion, along with aspect ratio conversion and colorspace conversion; supports embedded AES and analog audio.

212-481-2416; www.snellwilcox.com
Booth: SU1917, SU1717

SIX-WAY COFDM DIVERSITY RECEIVER
RF Central RFX-RMR-X6-II-D

Features an internal SD/HD decoder, on-screen display of stream data, Ethernet monitoring for remote-control access and IP encapsulation for Internet broadcast; available as a standalone COFDM receiver with ASI output or with an integral SD/HD encoder.

717-249-4900; www.rfcentral.com
Booth: C3707

VIDEO CONVERTER/FRAME SYNCHRONIZER
Evertz HD2020 Video PassPort

Integrates four independent up/down/crossconversion paths, each with a full frame synchronizer, with a wide range of AV I/O; can generate a multi-image display from eight select video clean switch I/O; features embedded Web server and dual 10/100 Ethernet ports.

905-335-3700; www.evertz.com
Booth: N1602

SIGNAL PROCESSING
LYNX Technik YelloBrik

Modular interface products offer an array of cost-effective SD/HD standalone solutions for signal processing; provide straightforward user controls and instructions directly on the unit; available modules include an SD/HD sync pulse generator, SD/HD sync pulse generator with genlock, 3GHz SDI distribution amplifier, 3GHz SDI to fiber optic transmitter, 3GHz fiber optic to SDI receiver, and 3GHz fiber optic/SDI transceiver.

661-251-8600 ext. 301
www.lynx-usa.com
Booth: C1628

openGear SOLUTIONS FROM WARD-BECK

+ Analog Audio / Video Distribution
+ AES/EBU Distribution
+ Analog to Digital Audio Converter
+ Digital to Analog Audio Converter
+ Muxing / Demuxing
+ DOLBY E/AC3 Decoding
+ Embedded Audio Processing
+ 3 Gb/s HD Distribution

HDMI UPCONVERTERS
TV One 1T-VS-622/1T-VS-624

Feature HDCP compliancy, DVI compatibility, comprehensive OSD menu and locking DC power connector; externally available audio can be embedded into the output HDMI signal via separate TOSLINK and analog stereo inputs; 622 converts composite or S-video SD analog signals to HDMI output at PC, SD or HD resolutions; 624 converts variety of RGB signals between VGA and WUXGA to standard HDMI output at PC, SD or HD resolutions.

859-282-7303; www.tvone.com
Booth: C7408

MODULAR RECEIVER/DECODER
Sencore Atlas MRD 3187B
Combines dual-channel processing with MPEG-2, MPEG-4, 4:2:0, 4:2:2, SD and HD video decoding; adapts to virtually any contribution, distribution or backhaul environment while allowing upgrade paths to future technologies; features DVB-Cl and SCTE35/104 messaging support.
605-339-0100; www.sencore.com
Booth: SU4412, C8546E, N2530

MULTIPLEXER
Rohde & Schwarz
R&S AEM100
Enables network operators to completely upgrade their ATSC networks to ATSC Mobile DTV standard; can be integrated in the existing infrastructure. 410-910-7800
www.rohde-schwarz.com
Booth: C1933

ATSC MOBILE DTV SOLUTION
Harris MPH
Includes the company's NetVX video networking systems and the software-definable Apex M2X exciter to encode and deliver multimedia services; the suite of products supports over-the-air transmission to a variety of consumer mobile devices.
800-231-9673; www.harris.com
Booth: N2502

Broadband Distribution Amplifier

• DC to 100 MHz bandwidth
• Input protection
• Flat frequency response
• High current compliance
• Large dynamic range
• $1150 (US list)

The new FS730 series of distribution amplifiers from SRS provide state-of-the-art solutions for distributing 10 MHz, Broadband (50Ω and 75Ω), CMOS Logic and SDI digital video. Both bench-top and rack-mount configurations are available.

The FS730/4 Broadband distribution amplifier is used to distribute broadband (DC – 100 MHz) analog signals over 50 Ω coax. Each amplifier has one input and seven outputs, all on BNC connectors. The input and outputs are DC coupled with a 50 Ω impedance. Applications include the distribution of frequency references, IRIG timing signals, composite video and audio.

Stanford Research Systems • www.thinkSRS.com • 408-744-9040
TEST & MEASUREMENT EQUIPMENT

TS MONITOR AND ANALYZER
Triveni Digital
StreamScope MT-40

Provides real-time analysis and verification of DTV transport streams; facilitates end-to-end MPEG-2/MPEG-4 transport stream monitoring and analysis for DTV signals carried by broadcast, cable, satellite, IPTV, or mobile networks; features two PCI card slots; supports RF (VSB), SMPTE310, ASI, QPSK, 64/256 QAM GigE, and file inputs; broadcasters can select the two inputs best suited for their operations.

609-716-3500
www.trivenidigital.com
Booth: SU3402

AUDIO AND VIDEO MONITOR
TSL AVMU2-3G

3G audio and video monitoring unit with integral loudspeakers and a 4.5in. 16:9 high-resolution LCD TFT display, combined with four 53-segment bar graphs for simultaneous monitoring of four audio channels and comprehensive loudspeaker monitoring.

+44 1628 676 200; www.tsl.co.uk
Booth: SU7917

RECEIVER
ANT Group DTMR-A850

Monitors ATSC signals at the transmitter output and/or at the antenna, to have a real performance measurement of an 8VSB transmission system; reaches quality measurement performances (>38dB MER, +/-0.5dB); automatic alarms on user preset thresholds on level, MER, S/N and eye aperture ensure that the digital signal will cover all the planned reception area; can be used in the field to check signal coverage and quality.

+39 346 8836776; www.antgroup.it
Booth: C3321

MPEG PROBE
JDSU MVP-200

A video monitoring tool offered in rack-mount form with an added rapid channel scan capability; enables operators to validate the performance of video across IP, ASI and QAM signals; helps to manage edge processes by performing tests for: Digital Program Insertion (DPI), ad splicing, rate shaping, grooming, MPEG remuxing, encryption, as well as modulation.

408-546-5000; www.jdsu.com
Booth: SU4809

TEST SIGNAL AND SYNC PULSE GENERATOR
Ensemble Designs
BrightEye 57

A 3Gbs, HD, SD and analog test signal and sync pulse generator; memory card allows users to create custom test patterns and audio clips; analog audio, AES, LTC, VTC and tri-level sync outputs are also provided; can be used as either a slave or master reference generator; can lock to house reference or to its own internal precision standard; suited for remote trucks, post, helicopters and flypacks.

530-478-1830
www.ensembledesigns.com
Booth: N4023

Introducing the 1.0/2.3FPB 75 Ohm
One-Piece Plug for Broadcast Applications

Our newest connector has upgraded performance to meet future needs with a return loss of >10dB out to 4.5 GHz. The 1.0/2.3FPB is designed to mate securely with a broad range of jacks used on video router panels, and is compatible with 23 AWG precision video cables. Like our AirBNC™ connector, the 1.0/2.3FPB features a fixed pin, one-piece design which can be installed quickly and reliably in the field while supporting high-performance broadcast applications.

FOR MORE INFORMATION, CONTACT US AT 800.586.7377 OR VISIT WWW.WHITESANDSENGINEERING.COM

White Sands Engineering

Launch Successful!
MONITORING SYSTEM
Genelec SE DSP
Small Environment DSP monitoring system is designed to solve acoustic problems associated with small recording and mixing environments; combines the SE7261A 10in DSP subwoofer with 8130A digital input active monitors, configurable as a subassisted stereo or multichannel reference system.
508-652-0900; www.genelecusa.com
Booth: N3414

MULTIFORMAT VIDEO SIGNAL GENERATOR
Tektronix TG700
Upgrades include the addition of the 1080p SDI signal generation on a single link; this capability is added through the new 3Gb/s HD3G7 module that supports both Level A and Level B 1080p SMPTE formats; GPS7 module allows the unit to act as a master clock and synchronization system, including video reference and time code.
800-835-9433; www.tektronix.com
Booth: N2522

TV ANALYZER
Rohde & Schwarz R&S ETL
Performs 8-VSB testing and optional MPEG-2 monitoring; analyzes and generates analog and digital test signals in a single box; allows new TV standards to be implemented on a software and hardware basis; uses real-time demodulation throughout.
410-910-7800
www.rohde-schwarz.com
Booth: C1933

TV transmitters, feedline, antennas, towers, services
DIGITAL TV TRANSMITTERS
Screen Service Broadcasting MAGNUM Series
Digital TV transmitters for SFN and MFN networks; feature a built-in SFN adapter and advanced technology, which allows implementation of all modulation patterns for either digital or analog in the same hardware; firmware allows zero error signal processing thanks to an internal 32-bit architecture; the SDT ARK-1 is an all-in-one transposer and transmitter for all modulation, including the ISDB-Tb.
+39 030 358 2225; www.screen.it
Booth: C1925

Realize the Cost Benefits of IP Transmission
HD-SDI and 3G-SDI Video Over Standard IP Networks

The ES7100 Encoder / Decoder offers an unmatched combination of bit rate efficiency, low latency and high image quality at bit rates from 6 to 150Mbs.

The ES7100 utilizes PURE3 compression for exceptional resistance to network errors without the need for forward error correction and surpasses JPEG2000 image quality at significantly lower bit rates.

ELECbROSONIC PRODUCTS
At the Leading Edge of Image Technology Since 1964
1.888.343.3602 | www.electrosonic.com
Visit us at NAB Booth SL9720
TRANSMITTER
Axcera 6X series
Liquid-cooled transmitter uses the company's frequency agile exciter and the latest LDMOS devices for broadband operation across the entire UHF band; power amplifier systems operate at the highest power density available, reducing floor space requirements; uses parallel amplifier and power supply modules, which can be removed and replaced while the transmitter is on the air.

800-215-2614; www.axcera.com
Booth: C8546D, C1319

DISTRIBUTION AMPLIFIERS
Harris 3Gb/s Distribution Amplifiers
3Gb/s/HD/SD/ASI fiber distribution amplifiers; provide broadcasters with a unique combination of configurations, including single-channel transceiver, dual-channel fiber transmitter, dual-channel fiber receiver, and dual-channel fiber receiver with dual fiber transmitters per channel; the DA-HR06803+D is a single-channel 1x8 DA with O-to-E or E-to-O conversion; the DA-DHROE6803+D is a dual-channel 1x4 DA with E-to-O conversion; the DA-DHR0E6803+D is a dual-channel 1x4 DA with O-to-E conversion; the DA-DHROOE6803+D is a dual-channel 1x4 DA with O-to-E conversion.

800-231-9673; www.harris.com
Booth: N2502

SMART ANTENNA SYSTEM
NSI NuPod
A low profile, lightweight system that incorporates a directional antenna and continuous rotation positioner encapsulated within a nonconductive radome; specifically designed for mobile applications; features embedded control, which provides automatic alignment of the directional antenna and greatly simplifies operation; can be remotely controlled by the NSI MCS; ideal for transmit as well as receive applications.

410-964-8400; www.nsystmes.com
Booth: C1715

TOWER ERECTION, ANTENNA INSTALLATION
Radian Communications Services
Produces broadcast towers up to 2000ft; performs tower erection and antenna installations with in-house full-time field crews; provides inspections and engineering structural analyses; installs combiners, filters and transmitters for AM, FM and HDTV as well as LPTV/FM translators.

905-339-4059
www.radianbroadcast.com
Booth: C3009

ANTENNA
Broadcast Microwave Services (BMS)
DiversaTracker
Directional/diversity receive antenna with built-in controller; when combined with the DR6000 receiver, creates a system that combines the benefits of six-way diversity reception with the extended range that a dedicated tracking antenna affords.

800-669-9667; www.bms-inc.com
Booth: C2318

BROADCAST LOUDNESS CONTROL
With the LEVEL MAGIC™ series designed for TV, IP, Sat, Radio, OB and Studios, Jünger Audio allows every day thousands of broadcasters to consistently control Peak and Loudness, regardless of input levels, unattended, 100% sure...and ITU BS1770 compliant!

New! Integrated 5.1 Suite incl. Dolby® Processing!

See us at NAB, booth N4937!
TRANSMITTERS
EmceeTitanium series
Medium power UHF transmitters and translators; available in power output options of 250W to 2KW of average power; using high efficiency amplifiers and a unique high density air cooling system, it produces a large amount of power while consuming low amounts of electrical power.

480-315-1666; www.emcee.com
Booth: C1415

SURGE PROTECTION
Emerson Network Islatrol BC series
Active Tracking Filters designed to protect broadcast equipment from component degradation, malfunction and shortened life associated with AC power line spikes, transients and noise; feature 15-80 kA surge protection and 47Hz-63Hz line frequency; offers < .5 ns response time; available in units noted from 15-1200 amps; RMS voltage input ranges from 105V to more than 480V.

800-288-6169; www.emersonnetworkpower.com
Booth: C1732

HD WIRELESS CAMERA TRANSMITTER
Link Research L1500
Supports a wide selection of RF modules that can be swapped over to operate in bands of 1.4GHz to 7.5GHz; uses the company’s encoding and modulation methods to cut transmission delays to about one frame, making the transmitter suitable for live sports productions; includes options for camera control for Sony and Thomson Grass Valley cameras.

+44 1923 474060; www.linkres.co.uk
Booth: C2107

Video editing systems

FINAL CUT PRO PLUG-IN
AJA Video Io HD

A transportable plug-in solution that works with HD and SD in Final Cut Studio 2; with a single FireWire 800 connection, it supports the new Apple ProRes 422 Codec natively, in hardware, to bring production-quality HD editing to the Mac Pro desktop and the MacBook Pro laptop.

530-274-2048; www.aja.com
Booth: SL2513
COLOR CORRECTOR
FOR-A UFM-30DCC
Offers balanced, differential and sepia modes as well as red, green and blue controls over white, black and gamma levels; available in single- or dual-channel configurations; upgradeable to 3Gb/s capability.

714-894-3311; www.for-a.com
Booth: SU3507

EDITING SOFTWARE
Avid Media Composer v3.5
Now includes native support of the Sony XDCAM format, allowing users to playback and edit directly from the disc, ren...

Avid Media Composer v3.5
Available in single- or dual-channel controls over white, black and gamma levels; as well as red, green and blue color correction modes as well as red, green and blue controls over white, black and gamma levels; available in single- or dual-channel configurations; upgradeable to 3Gb/s capability.

714-894-3311; www.avid.com
Booth: SU902

VIDEO SIGNAL TRANSMITTER
Otari LWB-08HD
Uses industry-standard fiber-optic camera cables for long-distance signal transmission; supports up to eight video transmission signals as well as one-to-one connection and cascade connection; accepts HD-SDI and SD-SDI signals, and optionally AES3id.

408-226-9800; www.aheadtek.com
Booth: C10820

NETWORK MANAGEMENT SYSTEM
Scopus Video Networks Eldorado NMS
Manages services and devices across networks, scaling from small headends to large and distributed networks; features IP and ASI routing solutions, a variety of redundancy schemes, drag-and-drop operations for topology and views, and easy integration of third-party devices.

609-987-8090; www.scopus.net
Booth: SU10917

SD/HD/3GB/S ROUTERS
Miranda NVISION 8288
Available in sizes up to 576 x 576; half the size and weight of comparable routers and consume half the power normally required; ideal for flypack and truck applications.

514-333-1772; www.miranda.com
Booth: SU2807

ROUTER CONTROL SOFTWARE
Sierra Video TyLinx Pro
Designed for the company’s entire line of video and audio routing switchers; provides unique profiles for each user; adds additional security features for the control system; has a Windows-based GUI that allows users to virtually recreate their routing system on their computer desktops, defining sources and destinations, signal formats and cabling.

530-478-1000; www.sierravideo.com
Booth: SL6205

MULTIFORMAT FACILITY ROUTER
Miranda NVISION 5128
Designed to offer easy mixing and matching of up to eight different formats in the same frame, including 3Gb/s, HD, SD and analog video, as well as digital and analog audio; can be used for time code, sample rate conversion and machine control signals.

514-333-1772; www.miranda.com
Booth: SU12710

MULTIPLATFORM ROUTER AND DA SERIES
Utah Scientific ProProducts
Series includes fixed frame and modular routers, as well as distribution amplifiers, for all signal types, including the 3G format; also includes a full-featured sync and test signal generator with options designed for all professional video applications.

801-575-8801
www.utahscientific.com
Booth: N3531

SERIAL DIGITAL VIDEO FIBER-OPTIC TRANSPORT LINK
MultiDyne HD-3000
Supports 1080p progressive 3Gb/s HD-SDI SMPTE424M format; provides fiber-optic transport and distribution of virtually any digital signal from 5Mb/s to 3Gb/s.

516-671-7278; www.multidyne.com
Booth: SU6917

VIDEO ROUTING LINK
Sierra Video TyLinx Pro
Designed for the company’s entire line of video and audio routing switchers; provides unique profiles for each user; adds additional security features for the control system; has a Windows-based GUI that allows users to virtually recreate their routing system on their computer desktops, defining sources and destinations, signal formats and cabling.

530-478-1000; www.sierravideo.com
Booth: SL6205

CROSSPOINT ROUTING SWITCH
Crystal Vision SW803 3G
An 8 x 3 crosspoint routing switch that works with 3G HD, HD and SDI; ideal as a small or secondary matrix for multistandard environments; fits in the standard frames, with up to six routing switches in 2RU; the double-decker 100mm x 266mm module saves valuable rack space; can send the eight inputs to any of the three outputs; timing information is provided by either black burst or tri-level syncs references, allowing the unit to switch in the vertical blanking interval to avoid picture disturbance.

+44 1223 497049
www.crystalvision.tv
Booth: SU3102

EDITING SOFTWARE
Avid Media Composer v3.5
Now includes native support of the Sony XDCAM format, allowing users to playback and edit directly from the disc, render, mixdown, export sequences and clips with eight audio tracks, and write back with sequence time code; supports stereoscopic workflows, enabling users to acquire, edit and display stereoscopic 3-D material; eliminates the need for a dongle key to activate new software purchases and upgrades; all new software sales and single seat upgrades will be licensed by a system activation key.

978-640-6789; www.avid.com
Booth: SU902

VIDEO SIGNAL TRANSMITTER
Otari LWB-08HD
Uses industry-standard fiber-optic camera cables for long-distance signal transmission; supports up to eight video transmission signals as well as one-to-one connection and cascade connection; accepts HD-SDI and SD-SDI signals, and optionally AES3id.

408-226-9800; www.aheadtek.com
Booth: C10820

NETWORK MANAGEMENT SYSTEM
Scopus Video Networks Eldorado NMS
Manages services and devices across networks, scaling from small headends to large and distributed networks; features IP and ASI routing solutions, a variety of redundancy schemes, drag-and-drop operations for topology and views, and easy integration of third-party devices.

609-987-8090; www.scopus.net
Booth: SU10917

SD/HD/3GB/S ROUTERS
Miranda NVISION 8288
Available in sizes up to 576 x 576; half the size and weight of comparable routers and consume half the power normally required; ideal for flypack and truck applications.

514-333-1772; www.miranda.com
Booth: SU2807

COLOR CORRECTOR
FOR-A UFM-30DCC
Offers balanced, differential and sepia modes as well as red, green and blue controls over white, black and gamma levels; available in single- or dual-channel configurations; upgradeable to 3Gb/s capability.

714-894-3311; www.for-a.com
Booth: SU3507

VIDEO ROUTING
MULTIPLATFORM ROUTER AND DA SERIES
Utah Scientific ProProducts
Series includes fixed frame and modular routers, as well as distribution amplifiers, for all signal types, including the 3G format; also includes a full-featured sync and test signal generator with options designed for all professional video applications.

801-575-8801
www.utahscientific.com
Booth: N3531

SERIAL DIGITAL VIDEO FIBER-OPTIC TRANSPORT LINK
MultiDyne HD-3000
Supports 1080p progressive 3Gb/s HD-SDI SMPTE424M format; provides fiber-optic transport and distribution of virtually any digital signal from 5Mb/s to 3Gb/s.

516-671-7278; www.multidyne.com
Booth: SU6917
CONNECTOR
White Sands Engineering
1.0/2.3 FPB
Features a return loss of >10dB out to 4.5GHz; designed to mate securely with a broad range of jacks used on router panels; compatible with 23 AWG Precision Video cables.

623-581-0331
www.whitesandsengineering.com
Booth: C1839

VIDEO JACKS
Canare DVJ.B series
75ohm digital video jacks; feature a 3.0Ghz bandwidth; come in normal and straight-through design; feature a new rotary switch design for better performance; can also be used as a digital audio patchbay.

973-837-0070; www.canare.com
Booth: C9118

TAHOMA MULTIVIEWERS
- Tahoma LE Series
3G ready
Built-in CATx extenders (1080P @ 115 feet)
Supports VGA/DVI/HDMI 1.2/3 output, up to 2048x1080
4 to 32 auto-detect video inputs (HD/SD-SDI/Composite)
16 channels of embedded audio per video input
4 channels of discrete audio per video input
Multiple outputs
Cost-effective solution

..HD Solutions
..Feature Rich
..Cost-Effective
..Upgradable
..CATx Extension

www.apantac.com
Phone: +1 503 616 3711 Fax: +1 503 389 7921 info@apantac.com

March 2009 | broadcastengineering.com 179
Tape machines

Advances in consumer videotape recording technology keep the professional use alive — for now.

BY JOHN LUFF

Tape machines were one of the most influential inventions in our business, it was just in 2005 that the National Academy of Television Arts and Sciences awarded a lifetime achievement award to the engineering team that paved the way for this important development.

Though the importance of video recording on moving media has diminished, it is clear that there is a long way to go before videotape is dead. The demise of videotape has been predicted for many years, however, based in no small measure on the increasing importance of new methods of recording to static memory, optical media and disk drives. These alternative media have found niches in the industry, including in consumer recorders.

Volumetrically, videotape is still incredibly efficient. A standard equipment rack might hold a few tens or perhaps a hundred terabytes. In terms of storing complete television programs, only recently could a rack of spinning disks hold as much content as the same volume of readily available DV videotapes.

While not exactly shocking, it points out that videotape on shelves, which is a green method of storing content, competes well with arguably more modern methods that consume kilowatts of power.

Identifying a professional video recorder

Increasingly, our industry relies on advances in recording technology from consumer electronics research. I don't think it is in dispute that the DVC PRO format, which clearly had a large impact on news acquisition, would not have been introduced if most of the development cost had not been shared with consumer products. Over time, many of the DV-based camcorders that found their way into news departments worldwide were modified consumer products.

To me that begs the question: What constitutes a professional video recorder these days? Though a definitive answer to such a broad question is impossible, the answer is partly features and partly performance. In considering performance, I choose to speak only of digital recorders, as analog recording is both hard to find and not appropriate given the state of the art today.

High-end modern video recorders can record 880Mb/s. Such high bit rates are obviously suited to high-quality mastering for digital cinema and high-end production. Other common bit rates used today are based on the DV 25Mb/s standard, for both HD and SD content. Advances in compression technology have increased the quality of recorded content to such an extent that you can't simply look at the bit rate and extrapolate relative quality.

For example, it's impossible to compare MPEG-2 at 25Mb/s (long GOP) and AVC coding at 25Mb/s (AVC Intra); they are not equal. The improvements in codecs are such that 25Mb/s AVC content compares favorably with a considerably higher data rate for long GOP MPEG-2.

Other formats abound. JPEG 2000 is in use for digital cinema and broadcast. At high bit rates, suitable for mezzanine...
recording formats for high-quality use in studio production and backhaul, JPEG 2000 offers excellent results in multigeneration performance. Recorders in commercial use for JPEG 2000 are not videotape at this time, but rather IT standard recording media.

Size-wise

It is interesting to look at the evolution of videotape in a second dimension, or more correctly in several more dimensions: weight, thickness, width and length (of tape). A 90-minute reel of quad tape weighs about 30lb. In contrast, an 83-minute DV tape weighs only a few percent of that. Not surprisingly, it is also only a few percent of the volume. While quad tape is fully 2in across, DV tape is only 6.35mm across (12 percent of quad tape’s dimension). No one who has seen pictures from both eras would disagree that for a fraction of the cost, weight and volume, DV produces a vastly superior picture. I’m not surprised because I remember changing tubes in Ampex VR-1000A recorders from the late 1950s. Refurbishing recording heads on a quad recorder cost more 20 years ago (even in uninflated dollars) than a new professional DV recorder that produces superior quality.

Unvideotape

I have not yet discussed “unvideotape,” which is my favorite name for data tapes used to archive video content. I think I can make the argument that LTO and other data formats are lossless videotapes. In the future, we will certainly find a huge uptake in data tape storage of video content. Robotic libraries can hold thousands of hours of content in the same volume the VR-1000A of my previous life represented. Ironically, I enjoy robotic video transports of the 1970s. They are more reliable and eat tapes less often. They also facilitate the long-term preservation of content that video recorders cannot be relied upon to do.

Signs point to an end

No one can predict when videotape will disappear. But the signs pointing to the elimination of tape are everywhere. Recently, the last plant duplicating VHS went offline. Fortunately for all of the news operations that depend on DVC PRO and DVCAM, the same media is used in ubiquitous consumer recorders, which provides a bit of insurance. When it ceases to be profitable for manufacturers to supply consumers, I bet that all professional uses of videotape will feel the threat.

John Luff is a broadcast technology consultant.

Send questions and comments to: john.luff@penton.com
TALLY MAPPER™

- Tally Routing & Mapping
- One Button Operation
- Store Maps Internally
- Edit From a PC/Laptop

A Compact Solution, Ideal for Mobile Units and Multiple Production Setups.

Videoframe™

Control System Solutions
Tel: 530-477-2000
www.videoframesystems.com

Broadcast Engineering

Broadcast Engineering is aimed at the market that includes corporate management, engineers/technicians and other management personnel at commercial and public TV stations, post-production and recording studios, broadcast networks, cable, telephone and satellite production centers and networks.

To reach industry professionals, place your ad today!

JULIE DAHLSTROM
P 312.840.8436 F 913.514.3684
JULIE.DAHLSTROM@PENTON.COM

Test Equipment

StreamSleuth-GT

Mobile Transport Stream Analyzer

Only $579

Maintain FCC Compliance
LG 5th Generation tuner/demodulator
ATSC / Analog / QAM Receiver & DVR
Transform your PC into a DTV Broadcast Stream Analyzer

www.autumnwave.us

Business Services

LAWSON

architects for the broadcast industry t 301 664 1600
www.lawsonarch.com
For Sale

Acoustics First®

Tel-Free Number: 888-765-2900
Materials to Control Sound and Eliminate Noise™
http://www.acousticsfirst.com

See cost-effective Rackmount Monitor Kits at
http://www.flatmonitors.com
Call toll-free: 1-866-484-2454

Help Wanted

Innovative Technologies, Chantilly, VA seeking **MANAGING ENGINEER** with 10 years television broadcast technical systems/ design, proficient AutoCAD and VidCAD to manage team of engineers, budgets and timelines. Also seeking Mid-level engineer to design AV facilities in CAD. Email resume to Jennifer Lightburn at jlightburn@iti-corp.com or call 703.322.9400, ext 127. www.iti-corp.com

ENGINEERING OPPORTUNITY in beautiful Rocky Mountains: Director of Engineering. KECI-TV, Missoula, MT. Management of eng staff at 3 stations, plus strong hands on capability. Experience w/VHF transmitters, microwave equipment, IT knowledge a must. Responsibilities include managing & involvement in daily maintenance/ repair of broadcast equipment, maintaining operating budget, capital project implementation, insure FCC compliance. Qualifications: degree in electronics or related technical training, management exp, minimum of 5 yrs broadcast exp. Resume & cover letter to: Station Mgr, KECI-TV, Box 5268, Missoula, MT 59806. EOE

VEGAS PBS seeks an experienced Engineering, Information Technology, and Emergency Response Systems Director III. Successful candidate must have prior exp managing broadcast TV, EBS, CABLE, LAN, & WAN systems; successful record of PTPF/NTIA grant submissions; and exp bidding & installing digital TV, broadcast, production, and IT systems. MIN QUALS: Bachelor’s degree; 5 yrs exp including supervisory, project, personnel management, and financial/budget exp; prof cert including SBE Certified Broadcast TV Engineer and/or SBE Certified Broadcast Network Technologist, & knowledge of FCC rules and regulations. STARTING SALARY $81,528-$89,748 + benefit package. Persons interested in the position who meet the minimum quals will be considered upon receipt of resume; complete, signed application; and a complete set of college transcripts. Applicants MUST submit detailed resume to Bernie Goodemote, 4210 Channel 10 Dr, Las Vegas, NV 89119 or fax to 702-799-5586 AND submit required application at www.ccsd.net/jobs. Position open until filled. College transcripts must be submitted to Admin Personnel, 2832 E. Flamingo, Las Vegas, NV 89121. Internet applications may be accessed at the Clark County School District Education Center, 2832 E. Flamingo, Las Vegas, NV 89121. Internet applications may also contact their local public libraries for information regarding Internet access in their area. EOE

Broadcast Engineering

Let Broadcast Engineering keep you up-to-date on the latest industry news, technology developments, new products and services...and more.

Apply for your free subscription today.
Log on to broadcastengineering.com and click on "subscribe."

And...you can also sign up for any of the industry’s leading e-newsletters from Broadcast Engineering.

broadcastengineering.com

March 2009 | broadcastengineering.com 183
<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Website</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kino Flo</td>
<td>kinoflo.com</td>
<td>818-767-6528</td>
</tr>
<tr>
<td>Lectrosonics</td>
<td>lectrosonics.com</td>
<td>800-800-6608</td>
</tr>
<tr>
<td>Marshall Electronics</td>
<td>lcocracks.com</td>
<td>514-333-1772</td>
</tr>
<tr>
<td>Miranda Technologies</td>
<td>miranda.com/visorion</td>
<td>514-333-1772</td>
</tr>
<tr>
<td>Miranda Technologies</td>
<td>miranda.com/xvp</td>
<td>514-333-1995</td>
</tr>
<tr>
<td>Multidyne Electronics</td>
<td>multidyne.com</td>
<td>877-MULTIDYNE</td>
</tr>
<tr>
<td>Nab Show 2009</td>
<td>nabshow.com</td>
<td>nel-world.com/products/</td>
</tr>
<tr>
<td>NTT Electronics Corp.</td>
<td>senci.com</td>
<td></td>
</tr>
<tr>
<td>Omneon</td>
<td>omeon.com</td>
<td>866-861-5990</td>
</tr>
<tr>
<td>Omnibus Systems Inc.</td>
<td>omnibus.tv</td>
<td>818-734-1785</td>
</tr>
<tr>
<td>Otari Inc.</td>
<td>otari.com</td>
<td>631-549-5159</td>
</tr>
<tr>
<td>Pro-Bel</td>
<td>pro-bel.com</td>
<td>914-592-0223</td>
</tr>
<tr>
<td>Riedel Communications</td>
<td>medionet.com</td>
<td>914-592-0202</td>
</tr>
<tr>
<td>Rohde & Schwarz</td>
<td>rohde-schwarz.com</td>
<td>888-837-8772</td>
</tr>
<tr>
<td>Ross Video Ltd.</td>
<td>rossvideo.com</td>
<td>613-652-4886</td>
</tr>
<tr>
<td>ScheduAll</td>
<td>scheduall.com/nab</td>
<td>888-522-0012</td>
</tr>
<tr>
<td>Screen Service</td>
<td>screen.it</td>
<td>800-SENCORE</td>
</tr>
<tr>
<td>Sencore</td>
<td>senci.com</td>
<td>408-744-5040</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>sierravideo.com</td>
<td>800-563-2255</td>
</tr>
<tr>
<td>Snell & Wilcox</td>
<td>snellwilcox.com</td>
<td>206-956-0544</td>
</tr>
<tr>
<td>Telemetrics</td>
<td>trivienidigital.com</td>
<td>508-754-4858</td>
</tr>
<tr>
<td>Telecast Fiber Systems</td>
<td>utahscientific.com</td>
<td>800-453-8782</td>
</tr>
<tr>
<td>Teletext</td>
<td>vcsolutions.com/2009nabshow</td>
<td></td>
</tr>
<tr>
<td>Triveni Digital</td>
<td>viscosolutions.com/2009nabshow</td>
<td></td>
</tr>
<tr>
<td>Utah Scientific</td>
<td>videocaster.com</td>
<td>628-579-9943</td>
</tr>
<tr>
<td>VCI</td>
<td>viewcast.com/television</td>
<td>800-540-4119</td>
</tr>
<tr>
<td>Videocaster</td>
<td>viewcast.com/be</td>
<td>978-671-5000</td>
</tr>
<tr>
<td>Vislink News</td>
<td>vislink.co.uk</td>
<td>900-771-2556</td>
</tr>
<tr>
<td>Ward-Beck Systems Ltd.</td>
<td>ward-beck.com</td>
<td>252-638-7000</td>
</tr>
<tr>
<td>Wheatstone</td>
<td>wheatstone.com</td>
<td>800-586-7377</td>
</tr>
<tr>
<td>White Sands Engineering</td>
<td>whitesandsengineering.com</td>
<td></td>
</tr>
<tr>
<td>Wohler Technologies</td>
<td>wohler.com</td>
<td>512-837-3737</td>
</tr>
<tr>
<td>Yamaha</td>
<td>yamaha.com</td>
<td>628-579-9943</td>
</tr>
<tr>
<td>Zeus Broadcast</td>
<td>zeusbroadcast.com</td>
<td>800-540-4119</td>
</tr>
<tr>
<td>360 Systems</td>
<td>360systems.com</td>
<td>978-671-5000</td>
</tr>
</tbody>
</table>

*Denotes ad placement in only selected editions of this month’s magazine.

SALES OFFICES

US/Canada West
- **George Watts III**
 - Phone: (360) 546-3379
 - Fax: (360) 546-0388
 - georgew3@aol.com

East
- **Josh Gordon**
 - Phone: (718) 522-4751
 - Fax: (718) 288-0488
 - jgordon15@verizon.net

Midwest
- **Emily Kalmus**
 - Phone: (312) 840-8473
 - Fax: (913) 514-6301
 - emily.kalmus@penton.com

International Europe
- **Richard Woolley**
 - Phone: +44-1295-278-407
 - Fax: +44-1295-278-408
 - richardwoolley@btclick.com

Israel
- **Asa Talbar**
 - Phone: +972-3-3239-5861
 - Fax: +972-3-3239-5861
 - mashy@1a2-so.net.ne.jp

Classified Advertising
- **Julie Dahlstrom**
 - Phone: (312) 840-8436
 - Fax: (913) 514-3684
 - julie.dahlstrom@penton.com

Reprints
- **Penton Reprints**
 - Phone: 888-856-8851
 - Fax: 800-441-0294
 - www.pentonreprints.com

List Rental Services
- **Marie Braganti, Walter Karl**
 - Phone: (845) 620-0700
 - Fax: (845) 620-1868
 - marie.braganti@walterkarl.infousa.com

Customer Service:
- **913-967-1707 or 800-441-0294**
Livestation goes mobile
Watch out for this ATSC-M/H competitor.

By Anthony R. Gargano

Last year I wrote about my experience as a beta tester for Livestation, a streaming client that delivers a variety of live, on-demand news channels to your laptop or desktop. (Check out my June 2008 column at http://broadcastengineering.com/news/internet-television-0601). This free service has taken off with tremendous popularity. Originally delivering a selection of world news channels, the client app, which is now available in both PC and Mac versions, has included the capability for users to add their own favorite channels to the streaming player.

For the past two months, I have been part of an alpha test group for a new Livestation product — a streaming client that can reside on either an Apple iPhone or iPod Touch. Chosen for purposes of the alpha test, the variety of channel offerings include Al Jazeera, BBC World News, Bloomberg Television, Euronews, France 24 English and Russia Today. For a news junkie, this level of portability in live TV news services, i.e., news on-demand anytime you want it, anywhere you are, can be quite addictive. The sheer convenience can result in tuning in at the oddest of times and in the strangest of places.

Mobile news on its way

At the recent CES in January, the Open Mobile Video Coalition (OMVC) announced plans by a contingent of U.S. broadcasters for the rollout of a mobile DTV service later this year. Presumably, this would be sometime after the adoption of ATSC’s Mobile DTV M/H standard, which is expected to occur sometime around midyear. That, along with currently available wireless TV services and Livestation’s planned entry into this market, sets up an interesting battle for mobile viewers’ eyeballs.

The Livestation folks, with their focus on news, seem to have gotten it right. News channels are ideal content for portable viewing. By its nature, portable viewing does not readily lend itself to scheduled programming nor does it seem appropriate for long-form or episodic content, unless you find it tolerable to watch such program content intermittently, as time permits, and on a small screen.

But the other clear advantage that Livestation has is Apple’s sheer popularity. In its most recent SEC filing, for the quarter ending in December 2008, the company reportedly sold 4.4 million iPhones and more than 23 million iPods. The numbers, and remember these sales figures represent just three months (albeit the holiday buying season), were not broken down by country or model. But an AT&T Wireless report for the same period indicating it had activated 1.9 million iPhones and negotiations are underway with both Apple and broadcasters to offer single-channel client apps via Apple’s iTunes Store. So, rather than offer a multichannel broadcast service, the viewer will have the option of a personalized service by downloading only the specific broadcast channel apps of interest, thus using his iPhone or iPod as the content aggregator. Livestation, in addition to having developed the client app, will offer the broadcaster an end-to-end solution for the streaming of content to user devices.

For the ATSC-M/H camp, look out: You’ve got a potential new competitor. For the broadcaster, it’s another way to get your content out there. And for the viewer, life is good.

Anthony R. Gargano is a consultant and former industry executive.

Send questions and comments to: anthony.gargano@penton.com
The only routing solution for mission critical applications.

The EQX is Evertz® flagship routing and distribution solution for high availability, by adopting extensive redundancy for all critical system elements. With this, and the ability to route up to 576x576 signals in a single chassis, the EQX is ideal for mission critical & demanding 24/7 environments.

Featuring:
- Independently tested world class 3G performance
- Path-by-path crosspoint redundancy
- Onboard HD/SD ASI decoding
- X-LINK multiviewer integration WITHOUT using up outputs
- Shuffle/Swap embedded audio
- Fiber optic I/O

Advanced Routing
Routing Control
- Unlimited number of inputs
- Unlimited number of outputs
- Unlimited number of protocols for a source
- Unlimited number of protocols for a destination
- Unlimited number of crosspoint matrices
- Advanced routing
- Direct control of ALL EQX's
- Real-time control of all EQX's

High Density Routing Platforms

3G Routing up to 1152x1152
1152 Inputs and 288 Display Outputs

Any Input, Any Output, Any Display, Any Size...
VIP-X continues Evertz® tradition of truly flexible multi-image display systems. Each input can be displayed any number of times at any size - without compromise.

The Highest Quality Image Reproduction
VIP-X modules use the latest scaling technology, which is Evertz® proprietary and borrowed from our industry renowned up/down conversion products.

The Largest System in the Industry
VIP-X offers the largest system footprint in the industry. With inputs in the thousands and display outputs in the hundreds, it will meet the largest facility requirements without compromise or blocking restrictions.

The Complete Facility Solution
VIP-X is the complete solution for your next control room or facility, offering a complete facility routing platform and industry-leading multi-image display technology in a single modular package. No control room is too small. With the VIP-X, none of the router outputs are wasted.

3Gb/s Support
VIP-X is a true 3Gb/s platform, with end-to-end support of SMPTE 424M HD-SDI content. The router is capable of passing 3Gb/s, and the multi-image display system can display 3Gb/s images as well.

Industry Standard User-Interface
VIP-X multi-image display outputs are controlled using Maestro™ - Evertz® industry standard graphic interface, now installed in over 1000 locations world-wide.

Monitoring: On-Screen and Using SNMP
VIP-X offers real-time monitoring with visual on-screen alarms and via SNMP, offering all of the extensive alarming the industry has come to value, including monitoring for video loss, active picture level, audio loss, over, under etc...
The Complete Control Room Solution

With 1152 3G/HD/SD inputs and 288 multi-image display outputs, the VIP-X is the most expandable and economical routing and multi-image display system available!

VIP-X eliminates system complexity, saves space, and is more economical compared to traditional autonomous solutions. It can be tailored for all control room signals and budget requirements.

It is available in several package sizes, from a 32 input system with up to 32 router outputs and as many as 24 multi-image displays, up to larger systems that accommodate up to 288 inputs and 288 router outputs and as many as 72 multi-image displays.

VIP-X addresses two common challenges by combining a functional and highly reliable routing platform with a modular multi-image display system in one integrated package. Building your next control room will be simple using VIP-X, as it enables two complex items in the control room to function as a single system.

The biggest difference between the VIP-X and other multi-image display systems is that the foundation is a purpose-built routing platform. It can be used to satisfy the routing and multi-viewer components for any project, without compromise to the router or multi-viewer size or functionality. The solution is perfect for anywhere that needs high quality image display.

Monitoring & Multi-Viewers
Loudness and Lipsync

Resolving the Industry's 2 Biggest Problems with “Sound Advice” by Evertz

IntelliGain™ Audio Loudness Processor (patent pending)

IntelliGain™ is an award-winning audio processing technology developed by Evertz® to control loudness of audio programs on the fly. More specifically, it calculates the perceived loudness of the input audio and modifies the audio to ensure that the long-term average loudness level is at the target level. IntelliGain™ works with mono, stereo and multi-channel audio per program and can handle up to 8 audio programs simultaneously. Over 1000 channels on-air today with IntelliGain!

Featuring:
- Loudness calculations based on ITU-R BS.1770 algorithm
- Artifact-free transitions between program and commercial
- Consistent audio loudness levels within a channel/program
- Automatic gain control within a program interval to preserve audio dynamic range
- Elimination of drastic volume changes during commercials and interstitials
- Ideal for aggregator applications and multi-channel playout facilities (DTH, Cables, IPTV, etc)
- VistaLINK® controlled and monitored!

Before IntelliGain™

After IntelliGain™

IntelliTrak™ Real-Time Non-Intrusive Lipsync Analyzer

IntelliTrak™ is a lipsync analysis technology designed by Evertz® to accurately measure the lip sync error between the audio and video by analyzing the content in real-time. IntelliTrak™ does not introduce any type of watermarking or flag insertion into the stream, and therefore operates in a completely non-intrusive manner. IntelliTrak™ is designed for on-air use, when it counts!

Featuring:
- Non-intrusive in-service lipsync error measurement
- Accurate reporting with +/-1ms
- Works with all types of audio and video signals
- Supports multi-channel audio (such as 5.1)
- Designed to report lip sync error through all sorts of processing
- For use within plant or external with outdoor broadcasting units

Professional Audio Upmixing & Downmixing with Evertz®

Evertz® has also paid close attention to the need for professional upmixing and downmixing of audio programs. Both in-house developed technology cores are offered as ordering options to a wide range of the Evertz® portfolio. This flexible approach makes the surround sound transition manageable and affordable. Look for the +UMX and +DMX options.
The Single Card Universal Processor

Evertz® 7812UDX Series Audio and Video Processing Modules

The 7812UDX series modules are broadcast quality Up/Down/Cross Converters offering a wide variety of video and audio processing options, including 3G/HD/SD video inputs & outputs, 16 channel embedded audio processing, 8x AES in and 8x AES out (-AES8 version), and IntelliGain™ audio processing (+IG option)...and they are fully AFD-enabled and VistaLINK®-capable.

Video Processing:
- 3G/HD/SD video inputs & outputs
- Frame synchronization
- Per pixel motion processing
- 3D noise reduction
- 3D video de-interfacing
- Advanced film mode processing
- Up/Down/Cross conversion
- Aspect ratio conversion
- Fully AFD-enabled
- Video proc amp controls
- Color correction and legalization
- Fill input option (+F)
- Static or animated side panel playout from embedded compact flash (+CF2G)

Audio Processing:
- 16 channel embedded audio processing
- Audio/Delay/Gain/Invert/Channel swapping
- 5.1 to stereo down-mix
- 8x AES in and 8x AES out (-AES8)
- Dolby encoding (+DEE)
- Dolby decoding (+DD)
- Stereo to 5.1 up-mix (+UMX)
- IntelliGain™ audio processing (+IG)

Features:
- intelliGain
- AFD READY
- VistaLINK

7812UDX Series Modules
Bringing advanced capabilities to the world of routing switchers, with a new generation design starting with a solid multi-format router core.

In today's broadcast environment, a router must be reliable, resilient and cost effective. Evertz® Xenon routers excel in all of these areas while offering the flexibility of multi-format operation, as well as the ability to add Signal Processing Technology. Great care has been taken in the design of Xenon to avoid single points of failure. Active assemblies are all hot swappable from the front of the frame. Power, control, cooling and reference generation are available in redundant configurations.

Featuring:
- Distributed architecture for greater reliability
- Mixed format (HD, SD, AES, Analog Audio, 3G)
- X-LINK multiviewer integration WITHOUT using up outputs
- Shuffle/Swap embedded audio
- Video proc on selectable destinations
- Fiber Optic I/O

Multi-Format Routing Systems

Systems from 32x32 to 128x128
Multi-Image Display and Monitoring

The Largest and Most Flexible Multi-Image Display Platforms

The most expandable, versatile and robust multi-image display processor the industry has ever seen.

Multi-Image Display Processor

The Largest and Most Flexible Multi-Image Display Platform

The MVP revolutionizes the multi-display marketplace with a highly flexible, intuitive yet comprehensive approach to virtual wall monitor applications. The possibility of displaying any input signal to any output monitor can now be realized without the need for DAs or upstream monitor routers.

A single MVP® system can expand from 8 inputs with a single output, to as large as 1000+ inputs to more than 50 displays.

Featuring:

- The best image quality in the industry
- Nielsen rating displays
- Dynamic clock displays
- Remote SNMP monitoring and thumbnailing (VistaLINK® PRO)
- ASI display
- Over 120 images per display
- On-screen mouse & keyboard control

VistaLINK ThumbLINK AFDI

Monitoring & Multi-Viewers
The VIP-A and the VIP-A DUO are the most advanced compact multi-image display processors available.

The VIP-A has been developed to meet the demands of the broadcast control room with the features and reliability expected in Production Control, Outside Broadcast and Master Control environments.

The VIP-A DUO supports up to 3Gb/s SDI inputs and up to 2 unique display outputs. It takes compact multi-image display to the next level.

Ensure your Nielsen codes are being inserted correctly in your broadcast content with the 7760ND-HD Nielsen Universal Reader.

Evertz 7760ND-HD provides a solution for monitoring the presence of Nielsen codes from the broadcast path. It monitors both the video AMOL1/AMOL2 data as well as the audio NAES data. The 7760ND-HD accepts a baseband video input transported on SD-SDI or HD-SDI with embedded audio.
Advanced Optical Transport Platform

Evertz® 3700ATP

The 3700ATP is the most advanced, scalable and highly flexible media transport platform for professional video, audio and datacom signal transport applications.

At its heart, sophisticated non-blocking Switch Fabric technology allows for unicast, multicast and broadcast signal distribution over existing SONET/SDH or IP networks. The ATP platform itself may also comprise the network elements by direct connection over dedicated fiber or WDM systems. Integration with Evertz® full 7700/7800 series product line provides comprehensive signal processing & conversion capabilities, in one extremely versatile and scalable platform.

In its chassis, ATP allows the use of any Evertz® 7700/7800 series module, providing nearly unlimited additional Signal Processing & Conversion functions for outgoing or incoming signals, all in one platform.

Signal Interfaces provide input and output connections for user video, audio, datacom and telecom signals.

The Switch Fabric lies between the Signal and the Trunk Interfaces and forms the heart of an ATP node.

Trunk Interfaces connect to the switch fabric and encapsulate signals for transport on SONET/SDH, IP or dedicated fiber/WDM networks.
Finally, everything you need to transition to DTV & HDTV...in a single 1RU platform!

The HD2020 Video PassPort™ is a high performance 1RU video converter and frame synchronizer platform designed for high availability 24/7 operations. It integrates four fully independent and unique up/down/cross conversion paths (including frame synchronization) and a wide range of video/audio inputs/outputs.

The Video Passport™ is equally suited for analog, digital, HDTV and hybrid facilities, representing the ideal choice for broadcasters making the transition to DTV and HDTV. The HD2020's processing capabilities and simple-to-use front panel interface also make it perfect for ENG and DSGN truck applications.
New H.264 Compression!

Encoders

Complete Encoding Solutions
- MPEG-2
- H.264
- JPEG-2000

For All Applications
- Contribution
- Distribution
- Remote Monitoring

Decoders

Complete Demod Solutions
- QPSK, DVB-S2 for Satellite
- 8VSB for Off Air
- QAM for Cable TV

Conditional Access Modules
- DVB-CI Modules
- BISS & BISS-E

Complete Decode Solutions
- Modular & Bulk Decoders
- MPEG-2 & H.264
- SD & HD
- ASI & IP Inputs
- AC3, Dolby E, AAC
- Musicam Audio Decoder

Complete Solutions for Satellite • IPTV • Cable Headends

www.evertz.com • 1.877.995.3700
THE COMPLETE SOLUTION PROVIDER

FREE GIFT to the first 50 people each day who bring this booklet to our booth!

Our Biggest Booth Ever!
With 8400 square feet of Evertz products, demos and solutions.

See us at Booth N1602

April 20th - 23rd, 2009
With 1152 3G/HD/SD inputs, 288 multi-image display outputs, the VIP-X is the most expandable & economical routing and multi-image display system available.

The VIP-X simultaneously addresses two common challenges by combining a functional and highly reliable routing platform with a modular multi-image display system in one integrated package. It eliminates system complexity, saves rack space and is more economical compared to the other solutions on the market. The VIP-X can be tailored for all control room sizes and budget requirements.

ROUTING & MULTI-IMAGE DISPLAY JUST GOT EASIER.
IntelliGain™ Loudness & Dynamic Range Processor
Inter-Program and Intra-Program Loudness Control

Broadcasters are always challenged to provide audio content to their target audience while minimizing complaints about variations in loudness between programs and commercials, and from channel to channel.

Evertz provides the solution with the award-winning IntelliGain™ 'Sound Advice' product suite.

IntelliGain™ Features:
- Consistent audio loudness levels within a channel and/or program
- Automatic detection and level adjust for loud commercials
- Gain control within a program interval to preserve audio dynamic range
- Artifact-free transitions between program and commercials
- Elimination of drastic volume changes during commercials & interstitials
- Ideal for aggregator applications and multi-channel playout facilities
- VistaLINK® controlled and monitored

IntelliGain™ can be applied to a number of Evertz® products including:
- Frame Synchronizers
- Protection Switches
- Audio Embedders
- Audio De-Embedders
- Dolby Encoders
- Dolby Decoders
- Routers
- Intelligent Distribution Amplifiers
- MPEG Decoders
- Up/Down/Cross Converters

Over 1000 Channels Served with IntelliGain™ ...and Counting!

1-877-995-3700 • www.evertz.com
The industry’s fastest HD/SD news platform

“Anytime we can manipulate the rundown on the fly, slam in a little breaking news and get it to air before the competition... we love that. NewsForce™ just works great for us.”

Randall Smith, Senior Director, KVOA News Tucson

NewsForce™

FAST. FORMAT TRANSPARENT. INTEROPERABLE.

NewsForce™ is the comprehensive suite of lightning-quick newsroom tools from Harris, including a new generation of MOS-enabled Velocity™ editors and full integration of Apple® Final Cut Pro®.

NewsForce™ makes all content available to all users instantly — even during ingest — by harnessing the speed and reliability of the NEXIO™ SAN. Nothing is faster than having every element you need the moment you need it.

To learn more, visit www.broadcast.harris.com/newsforce
Come see us at the NAB Show 2009 — booth #N2502

North America +1 800 231 9673 • Caribbean and Latin America +1 786 437 1960