
Only Riker makes them all.

SMPTE VTR Test Signal
SMPTE Recommended Practice RP10 Tape Test Signal Generator. Select combined waveform patterns or individual Multi-burst—Stairstep—Sin?—Window.

VerticaL INTERVAL Test SIGNaLs
VITEAC (Video Transmission Engineering Advisory Committee) Recommended Vertical Interval Test Signals—4 simultaneous signals, two in Field 1, lines 18 and 19; changing to two others in Field 2, lines 18 and 19; or automatic 2½ minute signal sequencing.

Www.americanradiohistory.com
LET'S LOOK UNDER THE HOOD AT RUST'S NEW 1 KW FM STEREO BROADCAST TRANSMITTER

Here's the new 1 KW FM stereo transmitter from Rust. Notice the elbow room? Space galore! (Once, we even found an employee cat-napping there.)

The main channel SWING OUT FME Exciter, plus both subchannel generators are crystal controlled for reliability. As for a stable signal — it looks on like a tiger — never drifts — never lets go. And no more burned knuckles checking tubes. The New Rust power supply is completely solid state and unshirkingly reliable. Incidentally, check the space-saver cabinet — only 24" wide x 28" deep — not to mention the new low price.

The Rust 1 KW, with built-in components, comes ready for remote control.

A very desirable optional feature is our AutoLOG automatic transmitter logging system. Simply turn it on — and forget it! It frees station personnel for other duties.

For further information, prices, specifications and/or a brochure of the complete Rust line, address your inquiry to:

Rust Corporation of America

Eastern Division
195 Mass. Avenue
Cambridge, Mass.

Washington, D.C.

Western Division
2213 South 104th St.
Omaha, Nebraska

Rust FM Stereo Transmitters * AutoLOG * Rust Remote Control

Circle item 2 on Tech Data Card

December, 1964

3
Quality Sound Starts with Fairchild Quality!

FAIRCHILD Model 750 — the only quality 3-speed, 16" turntable with -65 db rumble, +03% wow and flutter, 3 speeds easily selected, whisper soft operation, cue pad provided, and minimal moving parts for long trouble-free performance.

FAIRCHILD Model 755 — a quality 2-speed belt drive turntable which incorporates extremely low rumble and imperceptible wow and flutter, fast cueing, attractive packaging and easy installation. Far superior to any other turntable at this or even higher price.

Write to FAIRCHILD — the pace-setter in professional audio products — for complete details.

the technical journal of the broadcast-communications industry

Broadcast Engineering

Volume 6, No. 12 December, 1964

CONTENTS

FEATURES

Locating Television Translator Antennas 12
by George M. Frese — Points to consider in selecting the location and design of translator antennas.

An Improved Fault Alarm for Automated Stations 14
by James L. Tonne — Station-built equipment that detects interruptions at the station's audio signal.

Push-Button Audio Switching System 16
by Harold Schaef — A simplified switching unit for program routing in an AM-FM station.

The Lighting Man's Guide 18
by Elmer F. Friman — How to do more with TV lighting than merely stimulate the camera tube.

The 20th Annual National Electronics Conference 24
A review of Conference activities from the viewpoint of the broadcast engineer.

Audio Tape Equipment 30
by Thomas R. Haskett — Part I. The first of three parts which analyze present-day tape recorders used in broadcasting.

Norsk Riksringkasting 38
from Hans Richter — A look at the broadcasting system in Norway.

Modulation and Frequency Monitor Operating Procedures 40
by Lawrence L. Prado, Jr.—Some useful suggestions to help the operator make more effective use of station monitors.

1964 Subject Reference Index 55
A complete listing giving the issue and page number for all subjects contained in 1964 issues.

DEPARTMENTS

Letters to the Editor 6 New Products 50
Bulletin from Washington 27 Engineers' Tech Data 54
Engineers' Exchange 44 Book Review 46 Advertisers' Index 58
News of the Industry 48 Classified Ads 58

PUBLISHER: Howard W. Sams.
EDITORIAL: Editor, Forrest H. Belt; Associate Editors, Alton B. Smith, George F. Corra, Jr., and James M. Moore; Washington Correspondent, Howard T. Head.
CIRCULATION: Manager, Pat Tiedt; Assistants, Katherine Krise and Cora LaVon Willard.
PRODUCTION: Manager, Robert N. Rippy; Art, Robert W. Pool; Photograph, Paul A. Cornelius, Jr.
ADVERTISING: Sales Manager, David L. Milling; EAST—Gregory C. Massefield; Howard W. Sams & Company, Incorporated, 3 West 57th Street, New York, N. Y.; Phone MU 8-4952; MIDWEST—Hugh Wallace, Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis 6, Ind.; Phone AX 1-3300; SOUTHWEST—C. M. Stockwell Co., 4916 West 64th Street, Mission, Kansas, Phone RA 2-4417; LOS ANGELES 37, CALIF., Maurice A. Kimball Co., Inc., 2550 Beverly Blvd., Phone DU 8-4770; SAN FRANCISCO, Maurice A. Kimball Co., Inc., 580 Market Street, Phone EX 2-3325; PARIS 5, FRANCE, John Ashcroft, 9 Rue Leclaire, Phone QDeo 90-87; LONDON W. 2 E. ENG-LAND, John Ashcroft, 12 Bear Street, Leicster Square, Phone Whitehall 0525; TOKYO, JAPAN, International Media Representatives, Inc., 14, Hibiya, Marunouchi, Phone 1203 6666.
SUBSCRIPTION PRICE: U.S. $5.00, one year; $10.00, two years; $13.00, three years. Outside U.S.A. add $3.00 per year for postage. Single copies, 50 cents. Back issues, $1.00.

A HOWARD W. SAMS PUBLICATION

BROADCAST ENGINEERING

Circle Item 3 on Tech Data Card

www.americanradiohistory.com
A well informed individual usually makes the wiser decision

INFORMATION:

Shown below is the rear of the rack mounting frame used with our video and pulse distribution amplifiers and other plug-in units. You will appreciate the easy accessibility afforded by the connector configuration. Note that no connector is closely surrounded by several other connectors, as is the case with many other frames. As a result, cables may be plugged or unplugged with greater ease and speed.

The pulse distribution amplifier, model VI-20, pictured above, offers superior performance with many desirable features. A few of these features are:

- Self-contained, regulated power supply in each amplifier.
- Four plug-in amplifiers mount in a 1 1/4" rack frame providing a total of 16 outputs.
- High isolation between outputs during and between pulses.
- Maintains constant output levels.
- Indicator lamp shows presence or absence of output pulses.

Price: One complete frame with 4 pulse amplifiers .. $1100.00

Write for complete information and specifications

VITAL INDUSTRIES
3614 SOUTH WEST ARCHE ROAD
GAINESVILLE, FLORIDA—PHONE 373-7254

Circle Item 4 on Tech Data Card

December, 1964

www.americanradiohistory.com
MORE ON-THE-AIR HOURS
WITH THESE PENTA TUBES

PL-6775 unilaterally inter-
changeable with the 4-400A, re-
duces the problem of interelec-
trode shorts and weak plate seals.
Because of an exclusive Penta
filament-supporting insulator, the
PL-6775 can be mounted in any
position and will withstand ex-
tremes in shock and vibration.
The rugged one-piece plate cap
and seal won't easily break off, can't
fall off. Ratings of this rugged
tetrode, now widely used by broad-
casters, are the same as for the
4-400A.

PL-4D21A is directly inter-
changeable with the 4D21
(4.125A) and offers a plate dissipa-
tion of 175 watts — 50 watts
more than the 4D21 (4.125A).
Broadcasters have reported up to
three times the life of the con-
ventional 4D21, thanks to the ex-
clusive Penta ribbed anode and
the one-piece plate cap and seal.

Write today for full details on both of these rugged, reliable
Penta tubes.

Rugged plate cap and seal used
on PL-6775 and PL-4D21A. One-
piece, low-loss seal has no screws
or pieces to come loose. Won't
break off.

THE PENTA LABORATORIES, INC.
A SUBSIDIARY OF BAYTHEON COMPANY
312 N. NOPIAL ST. — SANTA BARBARA, CALIF. 93102

Circle Item 5 on Tech Data Card

LETTERS

to the editor

DEAR EDITOR:
I would like to offer two suggestions
in addition to those mentioned in the
article, "Maintenance of Cartridge Tape
Units," in your November issue.

First, before replacing heads with any
other than original-equipment heads, the
user should consult the manufacturer of
the equipment. I will not attempt to
speak for other manufacturers, but as
far as SPOTMASTER is concerned, there
is no such thing as a universal replace-
ment head—that is, unless you change
a few parts in the recording and play-
back amplifiers. A material adjustment
in recording bias as well as a change in
the VU-meter multiplier is also required
unless an exact replacement is used.

Second, the new NAB magnetic-tape
 cartridge system standards have been
approved and are now in effect. All users
of cartridge equipment should read these
standards and be governed accordingly.
Special attention should be given to the
specifications for the NAB standard
cartridge. I know of no cartridge, as of
this moment, that meets these specifica-
tions 100%. But a couple are pretty close
(and they are being redesigned to con-
form). These are cartridges that deviate
considerably from the standards, and
some broadcasters using these cartridges
are running into trouble.

Cartridges conforming to the NAB
specifications are even more necessary
on the new NAB-type machines using
separate record and reproduce heads.

ROSS BEVILLE
Broadcast Electronics, Inc.,
Silver Spring, Maryland

The NAB Magnetic Tape Cartridge
Recording and Reproducing Standards,
which Mr. Beville refers to, are avail-
able from the Engineering Departmen,
National Association of Broadcasters,
1771 N Street, N.W., Washington, D.C.
—Ed.

DEAR EDITOR:
We at KDPS-TV have completed con-
struction and installation of the solid-
state video chopper described in the June
1964 issue of BROADCAST ENGI-
NEERING. We changed the mechanical
configuration from that shown in the
article and made slight changes in the
power supply to utilize locally available
components. We used 2N404's for Q1,
Q2, and Q3, and 2N414's were used for
Q4, Q5, and Q6. We are well satisfied with the
performance of this chopper and are most
happy to bid adieu to the mechanical
unit used up to this time.

WALTER G. ALLISS, JR.
Chief Engineer, KDPS-TV.
Des Moines, Iowa

Other readers who may be interested
in building this chopper will want to
note the alternate transistor types—and
the fact that the unit turned out so well
for KDPS-TV. —Ed.
FOR TELSTAR/COMSAT PROGRAMS...

Type NT 15 Vidicon Standard Converter translates all recorded standards (665 lines, 25 frames; 525 lines, 30 frames; 625 lines, 25 frames; and 819 lines, 25 frames) to any other standard desired. Unique advantages: large signal-to-noise ratio due to use of Vidicon camera; Very short warm-up time—requires no continual readjustment; Interference bars eliminated by means of spot-wobbling; and automatic control of signal level variations. Built-in temperature stabilization, unusual strength, and quality components produce minimum maintenance and virtually no loss of air time. Now in use by major network. Price $75,000 F.O.B. New York.

FOR STUDIO/FIELD BLACK AND WHITE PROGRAMS...

The New FERNSEH 3" ORTHICON CAMERA K075D

First temperature stabilized camera with total maintenance accessibility. Opens from sides, top, rear... inside decks slide out, too. Superior performance and maximum stability maintained regardless of temperature change. Features: Novel automatic temperature control for the entire tube. Noiseless fan virtually eliminates pickup by studio microphones. Heater equipment for rapid camera warmup. Iris control driven by noiseless servo motor—remote control and remote indicator at control position. Five-way lens turret with rapid change lens mounts and an illuminated test pattern projector. Lens indicator and camera signal lamp directly below viewfinder screen. Dynamic focus correction gives optimum focus and deep picture background. Automatically operating stabilizer keeps temperature of camera-tube constant within a few degrees independent of the ambient temperature—corrects for ambient temperatures from 0° to 95° F. The temperature of target of the image orthicon is held on the meter at the camera control position and is fully adjustable. Request quotation.

FOR STUDIO OR REMOTE PICKUP PROGRAMS...

FERNSEH CENTRAL SYNC. SYSTEM

Synchronizes any number of remote picture sources from central control point by telephone line so that horizontal and vertical phases at all locations are in exact phase and can be cross faded or phased or common effects bus. Sync. information transmitted via 7.15 or 1.85 KC for use on 12 or 8 KC phone lines: Departure from vertical sync. can only occur due to phone line break—never by IF feed distortion. Lack of vertical lock with any remote position flashed by indicator and reset by push button. High quality of sync. system results from extremely good rise suppression in sync. receiver. Solid state, rack mounting, 300 V. Transmitte YQ018A $1,300. Sync. Receiver YE 22A $1,250 (117 Volt, 60 cycle operation). Request quotation on 185 KC converter.

Write today on your company letterhead for complete details.

VIDEO-MEDICAL ELECTRONICS CORP.

Exclusive distributors for:
Fernese Wireless (26 lbs.) Monochrome Camera with Remote Sync. Used by networks at political conventions.
Circle item 6 on Tech Data Card
THE HEADSETS YOU SAW ON THE TV CONVENTION COVERAGE PROGRAMS

TV SPECIAL #106010 Boomman's Headset
List Price $54.00

TV SPECIAL #106010 Boomman's Headset
List Price $48.00

TV SPECIAL #106100 Boomman's Headset
List Price $92.00

TV SPECIAL #106110 Boomman's Headset
List Price $75.00

TV SPECIAL #106020 Cameraman's Headset
List Price $105.00

TV SPECIAL #106030 Cameraman's Headset
List Price $75.00

TV SPECIAL #106080 Cameraman's Headset
List Price $128.00
HERE THEY ARE...ONLY FROM ROANWELL:

11 different TV SPECIALS - A model for every TV/Radio, studio/field use

Choose the headset that fits your specific studio needs. Previously obtainable only by custom order, these TV Specials are now readily available.

These headsets include advanced design characteristics found in the latest type military communication terminal equipment. PLUS these additional custom features:

- Comfortable increased headband tension. Greater mobility without alipage.
- Sliding friction adjustments fit all sizes and head shapes.
- Adjustable boom-mounted microphone. Cone bearing joints provide positive fitted positioning.
- Heavy-duty, neoprene cordage, shielded when necessary.
- Bolt clip to support cordage.
- Integral hand operated switch, 60 ohm dummy load resistor included.
- Momentary or lock-in two way conversation modes, leave both hands free.

Important Component Specs

- Monaural or binaural earphones (magnetic), Part # 102040, 275 ohms impedance.
- Supplied with standard RN-1H carbon microphone, Part # 1058, 25 ohms impedance, except for headsets # 106120, # 106040, and # 106070, which use Dynamic Noise-Cancelling Microphone, Part # 101780, 150 ohms impedance.
- To change standard carbon microphone to noise-cancelling carbon type, use Modification Kit # 53780, 80 ohms impedance.

NO FATIGUE

An outstanding feature—standard in every TV Special—is the circumaural ear cushion. A cavity designed rigid plastic ear cup attenuates ambient noise. Foam-padded cushions act as an acoustic seal gently distributing pressure around the ear. This combination of wearing comfort and noise exclusion reduces fatigue. Permits longer wearing.

Order yours today. Call or write:

ROANWELL CORPORATION
Roanwell Building
180 Varial Street, New York, N. Y. 10014
(212) York 9-1050 • TWX (212) 640-4793

Circle Item 7 on Tech Data Card
Some plain talk from Kodak about tape:

physical testing and tape performance

Magnetic tape is subject—day-in, day-out—to a wide variety of stresses and strains. That's why we are more than casually interested in its tensile properties. Tape is much like a rubber band. Put under tension, it will stretch. When the tension is released, it will snap back to its original shape. It will, that is, unless you've stretched it beyond its yield point. For it over a certain amount of longitudinal stress has been placed on a tape, the tape will lose its ability to recover and will, in fact, remain permanently elongated. Stretch it even farther and, naturally, the tape will break.

Deformed tape will not reproduce sound faithfully. And tape that breaks too easily is just a plain nuisance. So we set our sights high and developed a special triacetate—called Durol base—that's exceptionally tough, yet breaks clean without "necking down." In order to prove its worth and keep it that way, we developed a tight set of specs for our quality-control boys—specs which were a direct outgrowth of the conditions under which a tape is to be used. For example, the shock of going from fast wind to fast rewind. Or the shock generated on a running recorder when the supply spool jams.

We think that tape should be able to take this sort of punishment routinely. So, of course, we double, triple, even quadruple the requirements! And just to make sure that the tape performs we build torture tests that would have delighted Attila the Hun.

Here is one test that is outstanding in its fiendishness. It's called the High Speed Tensile Tester and is designed to break tape under load.

But like any good one-man band, it does a lot more than just one job. It not only breaks tape but gathers scads of very useful data as well—data which completely describes a tape's tensile properties. Here's how it works. It's built like a tape deck with the tape attached to one half of a split-ring electrical strain gauge. We run the deck and then jam on the brakes on the supply reel but keep the take-up reel going. The strain gauge takes the full load and the split ring spreads and deforms. This deformation causes the gauge to change resistance and causes the DC voltage on it to pulse. We monitor the pulse on a scope and measure the duration. This gives us a figure of merit in terms of tensile strength.

Just how good is Durol base? Well, consider this data. Yield strength for Durol base is 47% greater than regular triacetate and 70% greater than diacetate (the two most common plastic support materials). Break strength is 43% greater than triacetate and 80% greater than diacetate. And this is the kind of test that almost duplicates actual use conditions on your tape equipment.

But any torture test one engineer can devise, another engineer can improve upon. Take the Toughness Tester, for example. This is an instrument designed to determine a tape's strength (toughness) by measuring the force required to break a sample. A measured length of tape is held securely between two clamps. Then it is struck and broken by a falling pendulum. Because it has been raised to a fixed height, the
pendulum always delivers a precise and repeatable amount of impact. The energy absorbed by the tape at impact controls the height of the pendulum’s back-swing. Thus, a measurement of backswing height is a direct measurement of toughness. The strain rate that this device imposes is on the order of magnitude of 200,000% per minute—enough to break any acetate-based tape. How does Durol base compare to conventional acetates? Well, it comes through this test, too, like an Olympic star. In test after test, Durol base proves to be about 40% stronger. This toughness test also provides a valuable measure of permanent elongation. Durol base’s unique “shear-pin” action lets it break clean with minimum elongation (less than 1% compared to 10% for other acetates). These are only two of the more interesting physical tests routinely performed on random samples of Kodak tape. There are dozens more, of course. And we haven’t even gotten into electronic testing yet. But we’ll save those for another day.

Choose Kodak Sound Recording Tape, Type 31A, for all general-purpose and low-print applications. Or Type 34A whenever you need high-output or low-noise characteristics. For extended playing times try our extra or double-play tapes . . . or try the new triple-play tape, so thin you get 3600 feet on a 7-inch reel. Kodak Sound Recording Tapes are available at electronic supply stores, camera shops, specialty shops, department stores . . . everywhere.

EASTMAN KODAK COMPANY
Rochester, N.Y.
Circle Item 8 on Tech Data Card
LOCATING TELEVISION TRANSLATOR ANTENNAS

by George M. Frese, Consulting Author, Professional Engineer, East Wenatchee, Wash.—How to select the best spot for constructing antennas for TV-translator service.

Each television translator installation is unique and requires special treatment, but there are some general techniques which should be applied in the selection of a site to avoid costly trial and error. The primary objective is to select a site that will result in the best possible received picture, although there are, of course, other considerations, such as roads, site accessibility, availability of land and right of way, availability of commercial power, weather conditions, etc.

The factors which determine the best location for a television-translator receiving antenna are almost unrelated to the factors which determine where the transmitting antenna should be located, yet the two antenna systems must be reasonably close physically so that electrical interconnections can be made. If the two antennas cannot be economically tied together when they are at their optimum locations, a compromise installation must be made at one site or the other.

The Receiving Antenna

Field-intensity measurements are necessary to find the best receiving-antenna location. Before any measuring can be done, it is necessary to select some sites or areas in which to measure. Several methods can be used. A topographic map or maps will help to find the locations in the local area where the path to the TV-station antenna has a minimum of obstructions. Driving around the local area looking over the general terrain features is usually a necessary part of the planning. In general, a receiving site to the side of the population area is the most desirable, because the receiving antenna is better able to reject noise arriving at right angles to the direction of the desired signals. Receiving areas in front of the population area are next in desirability, and areas where the receiving antenna faces the population area are least desirable. At any given site, the strongest signal is usually found near the highest part of terrain that initially slopes gently toward the broadcast station and then drops away more steeply. Any potential site should be thoroughly tested before the receiving array is constructed; general rules should only be used as guides to where to start testing.

Testing a TV Receiving Site

Over the distances and terrain where translators are usually involved, signals from TV broadcast stations are subject to fading from minute to minute, hour to hour, day to day, and season to season. This condition complicates the procedure for finding the best site. For example, at any given time the field intensity in a poorer location may actually be greater than the intensity in a better location; thus, if care is not taken in probing for the best location to erect a TV-translator receiving antenna, inferior results may be obtained.

All potential sites should be probed for three reasons: (1) to determine whether or not the site is in fact the best, (2) to determine the best location for the antennas, and (3) to determine the space characteristics of the field in order to design the most efficient receiving antenna configuration for the space conditions. The following equipment is helpful in conducting site tests:

1. Two field-strength meters (preferably at least one should be battery-operated for portability, but long cordage back to a power source can be used if necessary.)
2. Several coaxial cables with connecting fittings
3. A TV receiver (a small transistorized set is ideal.)
4. A dipole antenna for each channel to be tested

An example of a wide-spaced, low-band translator receiving antenna installation.
5. A high-gain yagi antenna for each channel to be tested

Since the field strength is constantly varying, it is desirable to use two field-strength meters simultaneously. One meter is used as a reference; the other is used in probing. The reference unit is fixed in location and may be any type of receiving antenna that provides adequate test signals. The antenna should be located in the space where an “educated guess” indicates the maximum field strength can be expected. Then with the other unit, the entire area of interest is probed in a search for the maximum signal strength. For each reading recorded for a particular point in space, recordings are made at the same time of the reference reading (usually in microvolts) and the amount (in db) the probe reading differs from the reference reading. The reference reading is used to compare the site to other tested sites, and the probe readings are used to determine exact requirements for antenna placement and design. Experience has shown that there is not enough diversity reception over a local receiving area to invalidate this technique.

Probing should be done from a few feet above the ground to practical heights of 25 to 50’. (Up to 100’ may be desirable in some cases.) It should cover areas within the confines of the site both toward and away from the signal source and any place where high field strengths may exist. The purpose is to find the space in which the antenna will produce the highest possible terminal voltage.

Although maximum terminal voltage is usually of prime importance, there are other important characteristics to be observed. When a maximum-signal area is found, a simple but high-gain antenna (such as a yagi with 10 db of gain) should be erected at that spot. The picture on the test receiver should then be viewed and carefully examined for noise, interference, and ghosting. Using the two field-intensity meters, one tuned to the picture carrier frequency and the other to the sound carrier frequency, a reasonable observation of the differential fading between sound and picture should be made. It may be necessary to observe all of the above characteristics many times to gain the information that will be needed for the design of the receiving antenna system.

Designing the Antenna System

Much can be done in the design of the antenna system to reduce interference by appropriate placement of the pattern nulls. However, this discussion will be confined to obtaining an antenna system which develops the highest terminal voltage possible. If the strength is consistently over 1000 microvolts with a simple yagi, a more elaborate design is not needed. Assume, however, that the highest possible terminal voltage is needed to overcome preamplifier noise.

The first step in designing the antenna is to analyze the probing data to determine how the field intensity varies throughout the available space. In general, the antenna should be confined to a space in no part of which the intensity is more than about 3 db below maximum (Fig. 1). An antenna element placed in a location where the field is 7 db or more below maximum becomes a liability to the array, it subtracts from the terminal voltage.

Many types of antennas might be used by an experienced receiving-

antenna engineer, but it is usually best to stick to the high-gain yagi as the basic unit from which more elaborate arrays can be built. Each antenna unit in the array is treated as a separate generator.

A cluster of yagis in a small space will not develop as great a terminal voltage as it would if the units were spread out. In order for each yagi to develop the full voltage of which it is capable, the spacings shown in Fig. 2 must be equalled or exceeded. Closer spacings result in reduced output; a 1½ db reduction with the mere presence of a second yagi is not uncommon. With full spacing, two yagis can be connected together to provide an output 3 db greater than the output of either alone, provided they are in positions having the same field intensity. With close spacing, the output of the combination is, of course, reduced. There is still a net

* Please turn to page 51

![Fig. 1. Example of field-intensity distribution in plane perpendicular to path.](image-url)
AN IMPROVED FAULT ALARM FOR AUTOMATED STATIONS

by James L. Tonne, Engineer,
KBIM AM-FM, Roswell, New Mexico—A device for indicating any interruption to the program signal fed to the transmitter.

Fig. 1. Block diagram showing how alarm fits into KBIM system.

Fig. 2. A front-panel view of the automatic fault alarm unit.

A number of stations using automated programming have tied into their system some sort of alarm device to indicate program or equipment failure. This is usually a silence-sensing device, by its very nature level-sensitive; a prolonged low-level passage will sometimes trip the unit. If the equipment or signal source has some degree of noise, the unit may be a bit tricky to adjust to prevent such tripping. If a tape has a level-setting tone at the start, the accidental appearance of such a tone on the program channel will certainly keep a silence-sensing alarm from acting.

The alarm to be described here works on a different principle, in that either silence or a steady signal will trip it. In effect, the device watches the outgoing-line volume level (Fig. 1). As long as the level is varying somewhat, the alarm remains turned off. If the level should cease varying— which is the case for either no signal or a sustained level-setting tone—the alarm will be given.

The unit has three lights to show the status of the program material (Fig. 2). One light (next to the reset button) can be on only if all is normal. A second light (center) comes on and stays on if a fault has been detected. A third light (next to the toggle switch) comes on and locks on if a channel change has been attempted. The reset but-

Fig. 3. This schematic diagram shows the circuits of the amplifier, detector, and power-supply sections of the fault-alarm unit.
The Electronics

The alarm consists of a set of three tubes, several relays, and their associated components. The electronics will be described first, since a good understanding of this portion of the unit will enable the individual engineer to design the remainder to fit a particular situation.

The circuit is shown in Fig. 3. The input transformer and level control (R4) feed audio to the first two stages, which are provided with a large amount of negative feedback. These stages serve to increase the audio level a sufficient amount to operate the following stages.

The signal appearing at the cathode of V2A is detected, and the envelope of the audio appears across C4 and R13. This envelope signal is passed through a low-pass filter consisting of R14 and C5. Then the DC component is removed by C6 and R15. Appearing at the grid of V2B is a voltage having variations similar to the movement of a VU meter needle about an average position on the dial. This signal is amplified by V2B and coupled to V3A by C7 and R18. This tube rectifies the signal and causes C8 to charge. The DC voltage across C8 is approximately proportional to the amount of swing of the needle of a VU meter placed across the audio line. The rise of the signal appearing at the grid of the relay tube, V3B, is slowed by R20 and C9 to prevent short bursts of signal from paralyzing the alarm.

Note that a signal charges C4, which can discharge only through R13. Hence, brief tape dropouts have little effect on the circuit. Signal increases cause an increase in the voltage across C4, but if they are of short enough duration, they will not get through low-pass filter C5-R14. On large signal inputs, the audio may be clipped in the input stage, but this has not been found to degrade alarm operation in the least. A legitimate signal—and as far as this alarm is concerned, that means one that is varying in level to some extent—will develop a negative signal at the grid of V3B. This keeps the plate relay (K1) deenergized.

The “disable” switch opens the cathode lead of V3B and also removes all relay power. When the automation is cueing itself (for example, during a newscast), the alarm must be externally disabled. This is accomplished by means of an external connector which ties into the remote-control panel. If the unit is externally disabled, the situation is considered under control. But if the local (front-panel) “disable” switch is thrown, the “normal” light (P1, Fig. 4) on the front panel is extinguished by a third set of contacts on the “disable” switch.

Up to this point the unit provides a plate relay (K1) which is pulled in on occurrence of an improper signal. The time delay involved is of the order of 10 to 15 seconds. Now one must decide what action the relay is going to initiate.

The Logic Section

The power for the other relays is routed from the 6-volt source through the reset button and one set of contacts on the plate relay (Fig. 4). Thermal time-delay relay K2 closes its contacts 20 seconds after K1 is energized. After both the electronics and this thermal relay are in an alarm condition, the device is considered to have detected a fault. This generally takes about 30 or 35 seconds. If during this period of time the audio is restored to normal, the unit will “forgive and forget” and return to its original state—K1 is deenergized, and K2 does not close. If the fault condition persists, K2 closes, and the next relay in the chain locks in; this is the fault-occurred holding relay (K3). Across its coil is the red front-panel “fault” light (P2). At the same time, K7 is activated and applies power to K9 and K10; these drive the external flasher and alarm bell. Voltage is also applied to a second thermal-delay relay, the change-channel delay (K4). If the fault-occurred situation continues until the channel-change delay pulls in, the charged capacitor (C11) associated with the plate relay will discharge through the coil of the change-channel relay (K5). This relay pulls in briefly and then falls out as soon as the capacitor is discharged. One set of contacts on the

* Please turn to page 50

![Fig. 4. Schematic diagram showing the logic section of the automatic fault-alarm unit.](www.americanradiohistory.com)
PUSH-BUTTON AUDIO SWITCHING SYSTEM

by Harold Schaaf, Chief Engineer,
WRFD AM-FM, Worthington, Ohio—
A system for providing simplified console-transmitter switching
in an AM-FM station.

Fig. 1. Control panel placed in console.

While planning for the addition of an FM facility to the existing AM facility at WRFD, it soon became apparent that a switching system between the consoles and the transmitters would be needed. The proposed operation called for both separate and simultaneous programing of the stations. Program sources consisted of consoles in the AM and FM control rooms and a third console which could be used as a spare. In addition, the consoles were to be useable for making program tapes when not feeding the transmitters. Since the announcers were expected to perform the switching operations, any system devised had to be easy to operate and capable of changing circuits with a minimum of time loss and chance for error.

With these requirements in mind, we designed and built an audio switching system which consists of a rack-mounted relay panel and push-button controls with tally lights mounted in the AM and FM consoles. An announcer at either of the two consoles can perform any needed switching by merely pushing the proper button. Fig. 1 shows one of the control panels; it was made an integral part of the console by mounting the push buttons and tally lights in place of some of the original switches.

Fig. 2 shows the front and back of the relay panel. The panel consists of two groups of three relays which are used to connect the program sources to the proper busses to feed the transmitters. One group of relays is on what is termed the FM side of the system; the other group is on what is termed the AM side. One additional relay operates in conjunction with the FM group to provide dual or separate program feed to the transmitters. Electrical interlocking, source loading, and program-level balancing are also provided within the system. Any one of the three program sources may feed both transmitters, or any one of the sources may feed one transmitter while either of the remaining two sources feeds the other transmitter. Any program source that is not feeding one of the program busses is loaded with a 600-ohm resistor.

The Circuit

Fig. 3 shows a simplified diagram of the connections of the program circuits. Each input is fed to the contacts of a relay in the FM group. The relay contacts can connect to the FM buss to feed the signal through the loss pad and K7 to the FM transmitter line, or they can connect to the contacts of a relay on the AM side of the system. This relay either feeds the signal to the AM buss and the splitting pad, or it connects a 600-ohm load resistor across the input. The splitter pad is used to feed the program signal from the AM buss to both transmitters. It has an insertion loss of about 4 db toward each line. The loss pad in the FM buss also has a 4 db loss to match that of the splitter pad. A 600-ohm resistor load is connected on the FM side of the splitter pad by K7 during separate programing. The splitter pad, the loss pad, and the 600-ohm resistor provide constant level regardless of what mode of operation may be set up. Relay K7 also switches the FM transmitter line onto the FM buss for separate programing, and it supplies voltage to the “dual” and “separate” tally lights. The contacts which operate K7 are on the relays in the FM group.

The basic control-circuit diagram, Fig. 4, shows how the relays are controlled by the push buttons and electrically interlocked. One side of each relay coil is connected to the positive side of the 12-volt DC supply. The negative side of the supply is connected through S6, a momentary push-to-open switch that is used to return all relays to the unenergized position. Relay K1 is shown in the energized position. From S6, the negative end of the supply connects to contact 5 of K1, through contact 6 of K1 to contact 2 of K2, through contact 1 of K2.
If it is desired to energize K2, S2 is depressed momentarily. This applies DC voltage to the coil of K2, and its movable contacts break the circuit that held K1 energized. The negative end of the DC supply now connects to contact 5 of K1 and through contact 4 of K1, contacts 5 and 6 of K2, contacts 2 and 1 of K1, and contacts 2 and 3 of K2 to the negative side of the coil of K2. Relay K2 thus remains energized after S2 is released. In each group, similar connections are made to each of the three relays. Depressing any one of the push buttons momentarily energizes the relay with which it is associated and returns the other relays in the group to the unenergized position. The electrical interlock contacts shown in series with each push-button in Fig. 4 are contacts on the associated relay in the opposite group. The AM interlock contacts are on the FM-group relays, and the FM interlock contacts are on the AM-group relays. If a relay in one group is energized, the push-button circuit of the associated relay in the opposite group is open, and that relay cannot be accidentally energized to transfer the program from one buss to the other. Some simplification of the system can be achieved by omitting the interlock feature. The complete circuit of the system is shown in Fig. 5.

* Please turn to page 49
"Sufficient foot-candles to create a level of reflected light that will adequately stimulate the image orthicon" is not truly a definition of television lighting. Lighting for television is the artistic direction of light upon a scene in a way that creates an appropriate mood for the subject matter. If this be the case, the studio engineer must go beyond mere camera requirements, and strive for more than just "enough" light to dispel shadows and show the eyeballs.

Equipment

We will begin with an introduction to the different lights available and discuss their characteristics and usage in lighting assignments. Then we will show correct placement of lights for various scenes and discuss proper balance among lights.

The **Fresnel-lens** spotlight is the most versatile lighting tool in the television studio. It can provide perfect control of the light beam without any spill light or side glare. It is extremely portable and is adjustable from wide-spread to minimum-spot position easily and quickly. Mounting this unit with an adjustable C-clamp and yoke makes possible a maximum of directional alignment. The use of "barndoors" increases control of the light beam to areas measuring in inches.

The **scoop** (flood) light in its various sizes and shapes is an excellent aid to the spotlight, since it produces a smooth, even illumination of high intensity. A wide range of lamp wattages can be used with scoops, which makes this light helpful in bringing up the overall light level of a scene. The C-clamp and yoke mount used with a scoop are the same as with the spotlight fixture.

There are many variations of the two units available for the television studios — long-range scoops, high-intensity spots, baby spots, etc. However, utilizing the two basic lighting tools — Fresnel spots and scoops — the studio technician can produce set lighting that is both efficient and artistic.

Having decided which lighting units to use, let's next make sure of proper mounting, so the units can be handled with ease. General practice is to mount them on iron pipes — usually referred to as "grids" — spaced about 4' apart all the way across the studio and hung from the ceiling by chains that make their height adjustable. Individual grids can be raised or lowered for specific lighting problems.

Additional flexibility is obtained with pantograph mounting devices — extendable arms joined together in roughly parallelogram form. Pantograph mountings (called lazy-boys) allow raising and lowering individual lights, with the aid of a pole, while standing on the studio floor. In some instances, floor mounts have an advantage over ceiling mounts, but care must be taken so they don't impede studio traffic.

Terminology

Base or fill light is the overall lighting, produced mostly with the scoop light, for illumination of the entire scene.

Key or accent light is a controlled directional light, usually the Fresnel spotlight, which is used to highlight the subject in key areas and pro-
duce shadows that add form and substance.

Back or rim light is a directional spot coming from behind the subject in a way that provides separation from the background, highlighting hair and shoulders or outlining objects.

Backdrop or splash light is the controlled placement of shafts or streaks of light upon backdrops or flats to produce contrast variations that control the eye’s interest.

Eye or twinkle light is a small spotlight used to give the eyes sparkle or highlight in the iris.

High-key lighting means filling a scene with maximum illumination so it contains many bright areas and very little shadow area; care must be used to avoid washing out detail.

Low-key lighting means filling a scene with many shadow areas by using carefully selected illumination. Care must be taken not to produce a murky picture; a low-key scene must have sharp blacks to create proper effect.

Modeling describes the effect of showing form and texture in the subject; this term is almost synonymous with sculpturing, except that modeling is done with light.

The above terms are used mainly to describe the applications of light. Qualities of light also have their own language we should be familiar with, such as the following:

Hot light is a light concentration that is too intense and will cause the subject matter to lose detail (wash out). This type of light can be controlled to produce strong shadows, but should be used cautiously.

Soft light is the moderate application to obtain maximum detail while still retaining modeling. This is best accomplished by spun-glass diffusers over the lamp lens.

Reflected light is used when light cannot be aimed directly on a subject. Reflectors made of aluminum foil are used to redirect light into needed areas. This type of light is used outdoors with sunlight and limited field equipment, as well as in the studio.

Principles

The techniques we’ll discuss are for equipment normally found in local studios, and don’t require elaborate lighting boards or fancy lighting equipment. The tools of the trade are a good light meter, a crescent wrench, and a pole with a hook for adjusting lights from the floor. Also, we must not forget the lightweight ladder that we’ll drag around and climb up and down mounting lights on the studio grids.

The light meter should read incident light on a scale marked in foot-candles, or lumens per square foot. With it, the lighting can be checked for balance in relation to its source, not as it is absorbed in the scene. All lights on the set provide a certain number of lumens, and how many fall on a surface is a measure of the light intensity at that point. The total foot-candles required for the set depends upon the image orthicon being used in the television cameras. The newer 4½" tubes require less light than the older 5620A.

Although the amount of light in foot-candles is important to the video engineer in setting up his cameras, the balancing of the light is equally critical. Properly balanced lighting on a set will eliminate many shading problems that beset the cameraman and control-board operators. Once the lights are placed and the balancing completed with the aid of the light meter, the overall light in foot-candles can be adjusted to satisfy the camera’s demands.

Setting Up

With the camera lens set between f8 and f16, the overall light-meter reading of incident light (as you walk across the front of the set) should be around 100 foot-candles. This will be from the fill lights and modeling lights combined. The next reading should be taken facing downstage, picking up readings from the back light. The ratio between back light and front light, for a normal set where no outstanding effect is desired, should be 2:1. This ratio will change when the subjects are to be more dramatically presented.

When performing this meter test, you’ll find that some highlighted area will produce higher readings than the overall scene; a degree of this will be no problem to the camera tube. Areas that create too much unbalance can be controlled by inserting spun-glass diffusers in front of the spotlight lenses. Sometimes more than one sheet of spun-glass will be needed to reduce the meter reading for a particular light. If too much diffusion affects the modeling, a smaller-wattage lamp should be substituted and the diffusion reduced. Adjustment of the flood-spot setting on the fixture can also regulate intensity to some degree while still keeping the accent desired.

Lighting the Face

The human face is a constant challenge to any lighting director. There are two basic approaches to the task of facial lighting. One is directional light; the other is nicknamed “the butterfly.”

Directional light is recognizable as the type of lighting created by the sun shining through a window or by a table lamp placed near a chair. It can be reproduced on the set by balancing the lighting so it is stronger from one source than from all others. Fill lights are then used to soften hard shadows, while keeping the desired effect.

This type of lighting is produced by first setting a spot high and off to one side of the subject. The light should be directed to the bridge of the nose until a small triangle appears on the opposite cheek (Fig. 1A). Next, a light of equal intensity is created by another spot at about a 45° angle on the same side and behind the subject, also serving as a rim light. You’ve now created a pleasing directional source (Fig. 1B). To balance the source light, set a spot low and to the opposite side of the source. The angle is more to the front of the subject and fills the face planes just enough to soften the triangle shadow and light the eyes (Fig. 1C). A scoop is set to shine in from the latter side, softly rounding out the features of the head and offsetting the sharp outline on the source side. The result (Fig. 1D) is sometimes referred to as “Rembrandt” lighting.

The second basic facial-light technique—the “butterfly”—is an elaboration of the first. The directional source light is repeated on both cheeks. The patterns in fact appear as butterfly wings on the face. This method eliminates all shadows from the eyes and gives a twinkle to the iris (Fig. 2A). The patterns on the cheeks can be used to set the angles from each side so they match. Then the patterns can be removed or softened by filling in with a scoop or
diffused spot from directly in front and close to head height (Fig. 2B). This type lighting serves well where the head will turn from side to side, and therefore is excellent for panel or group assignments.

Eyeglasses! This word puts terror in the hearts of lighting directors. There are large lenses, round, square, and bifocal lenses. The frames can be in reflective black or sparkling gold with metallic decoration. In any case, they are a headache and interfere with good face lighting.

The best solution is to attempt to phase out eyeglass reflection, first by camera height or angle, or by tilting the glasses on the subject’s nose. If you’re lucky, that will do it, but chances are it won’t. The next step is to reset lights along the grids until changing the throw distance finally phases out the reflections, while the same lighting is retained. Moving the lights to another grid may sometimes help in reducing hot-spots on eyeglasses. More often, all these methods are necessary.

News or Weather Set

Equipment required is: five Fresnel adjustable spotlight — three 1000-watt, two 750-watt; two scoops — 500 watts each; spun-glass diffusers; barndoors for the spotlights.

This set requires care to keep the rear-projection screen in a minimum of light. The subject may be standing next to the screen and spots must be set to illuminate this confined area without spillover onto the screen.

Use the two 1000-watt spots as front-modeling lights about 5’ off the floor to light the face and eyes. Put them slightly off to each side, where they will throw a cross-light into the troublesome area of the face where the eye sockets meet the top of the nose. Directly in front is the other 1000-watt lamp, on full flood to act as a fill light. Use the barndoors only to block out the screen area, allowing spill from the scoops to mix with the semi-spot setting of the model lights. This brings up the overall intensity reading on the front lights.

The back lights are on full spot, and produce a rim light for the subject’s head and shoulders. Care must be taken not to overaccent this area as it could become distracting to viewers. Spun-glass diffusers may be used over the spots to create a softer appearance in the facial planes. This is especially a must when televising female talent.

Panel Show

Equipment needed is: six Fresnel spots — 1000-watt; four scoops — 500-watt; two background spots — 750-watt; barndoors for those spots used on the background.

The main problem of lighting a table group is the shadow caused by one subject’s head getting in the path of light directed toward his neighbor. This is overcome by using the cross-light method and a strong front fill light.

With a group of four, as shown in Fig. 3, the front grid will have a lineup as follows, from left to right: One 1000-watt spot, full flood, directed in on the first two heads, producing an accent light from the front left. Next is a scoop (500-watt) in front and as low as possible. Then, two 1000-watt spots, full flood, crossed so the first is picking up the next two heads and the second is aimed left to complete the cross-light of the first two heads. Next is another 500-watt scoop, in front, low, followed by a 1000-watt spot on full flood, completing the
You said it!

Superior
Cell-o-Air® Coaxial Cable
with "Coppergard"
is the star performer in CATV

Through superior design and highest possible quality of manufacture, Superior's Cell-O-Air Coaxial Cable with Coppergard offers you these advantages:

- Up to 20% lower attenuation.
- Solid tubular Coppergard corrugated 5-mil copper shield for positive protection against radiation leak.
- Far better long-term transmission stability.
- Corrugations permit hand bending to an acceptable limit of 20 times the cable diameter, for maximum flexibility without fracturing shield.

"We . . . like the Superior Cable we have used so far which was 4920 feeder and 4930 trunk."

"Superior Cable #4920 has been in the air five months . . . there's a great amount of salt in the air and high annual rainfall. Loss measurements showed .906 dB/100' on Ch. 8 and 1.54 dB/100' on Ch. 13. Additional attenuation due to aging, both channels, is approximately 3/10 of 1% over published specs . . . and, over the five month period, the additional attenuation is linear. Superior 4920 cable is far superior."

"During the past 12 months we have installed more than 1,600,000 feet of Superior 4920 Coppergard Coaxial. Of the total footage you supplied, no reels were rejected because of electrical integrity or cable quality or workmanship. You will be interested to learn that 4920 delivers far more in performance than you ever claimed for it."
right-side cross-light for the second pair of heads. A grid just a little above the front of the table will have a scoop on either end as a side light and as an aid to any fall-off of the front lights at the corners of the set.

Back lights will be semi-spot to serve as a head highlight for each pair. On that same back grid will hang two spots of 750 watts each with barn doors creating a light slash on the backdrop. This will make a more pleasing pattern on the backdrop by keeping other areas subdued and by confining the eye on wide camera shots.

The Elaborate Set

There are times when you'll have to produce dramatic lighting for shows of an elaborate nature. Of course, each show has its own problems, and it would be difficult to set ground rules. Utilizing the basic lighting techniques we've just discussed will help achieve success in whatever assignment is undertaken. However, certain generalities can be mentioned as a further guide.

A conference with the producer and director will inform you of action areas. As camera blocking is worked out, the lighting requirements become apparent. You cannot begin to light until you know the direction the scene will be viewed from (camera angles). Then you need to know movements of the talent so you can put correct and adequate light in all areas of the set they may move to.

With these two important facts in mind, you can plan how to create the most pleasing light direction. While it would help to see the shows in dress rehearsal before attempting any lighting, this is not always possible. The limited time allowed for preshow work in the technical divisions is always a handicap to artistic endeavors. But you can overcome this with some early information and some imagination. Keep in mind that the setting and the props deserve good lighting as well as the talent. Accent-light the props that are significant to the theme or mood of the show. Treat each action area as a separate lighting assignment, then weave them all together with well placed fill lights. This technique will cut down resetting time after dress rehearsals.

Patterns for Effect

Patterns projected on wall areas or on limbo curtains can produce unusual effects in lighting. By the use of a projector with interchangeable patterns, flats can be painted with light and shadow.

The patterns can be used for artistic effect to break up a plain flat behind the performers. Directing the beam in from the side will not interfere with set action or lighting. Since it is an abstract pattern in most cases, there are no keystone effects to be concerned with. This system can also simulate light coming through windows, bars, gates, etc. Projecting these patterns on walls of a set will give the viewer a visual reference to the source of the light.

The fixture comes equipped with framing shutters so the pattern can be limited to desired areas without spillover. The beam-spread per foot of throw is approximately 6° for a 6 3/4" lens or 4° for an 8" lens. There are special snoots and lenses that can produce a 3" beam spread per foot of throw.

Conclusion

The artistic approach to television lighting is not beyond the means and ability of the small television station. With the learning of basic lighting skills usually comes the desire to create more artistic productions. Mastering the technical requirements of the television camera leads to concentration on the aesthetic aspects of studio lighting. A well lighted set will entice and hold the eye of the viewer, and after all, isn't that what television is for?

About the Cover

The fact that television lighting is both an art and a science is illustrated in this month's cover. The view shows one of the color sets in the studios of WFBM - TV, Indianapolis, Indiana. Many of the types of lights and supports discussed in the above article are in evidence, along with the "shepherd stick" author Friman will use to make further adjustments.
For those who demand the finest in...

VIDEO EQUIPMENT

Solid State Amplifiers
- Video Distribution Amplifiers
- Self-Clamping Amplifiers
- Sync Separating Amplifiers
- Sync Mixing Amplifiers
- Pulse Regenerative Amplifiers

Digital Display Systems
Used for instant, legible display of such up-to-the-second numerical information as athletic scores, election returns, weather information. Sold as individual digits or as complete systems.

AUDIO EQUIPMENT

AUDIMAX®, the automatic level control that "rides" gain to quadruple average modulation and market coverage.

VOLUMAX™, the automatic peak controller that can double radiated program power by providing maximum control of peaks without any side effects. When used in combination with the AUDIMAX, an 8-to-1 increase in effective program power may be achieved.

TEST RECORDS to provide accurate input signals for audio system tests, in most cases eliminating the need for expensive test equipment. Available for test and adjustment of every necessary parameter of professional audio systems. Material specially selected by CBS Laboratories' scientists and recorded to precision laboratory standards.

For complete information on these

...Quality Products for Professional Broadcasters

write to:

CBS LABORATORIES
Stamford, Connecticut

A Division of Columbia Broadcasting System, Inc.

Outside the U.S.A. and Canada:
CBS International Division
46 East 52nd Street
New York 2, New York
Cable: COLUMBINE, New York

In Canada:
Caldwell A/V Equipment Co., Ltd.
444 Jarvis Street
Toronto 5, Ontario

December, 1964

Circle Item 11 on Tech Data Card
The 20th anniversary National Electronics Conference was held October 19, 20, and 21; activities were centered at McCormick Place, Chicago’s lakefront exhibit hall.

The list of sponsoring organizations is most impressive. Industry sponsors were the Electronic Representatives Association and the Scientific Apparatus Makers Association. The sponsoring engineering societies were the Institute of Electrical and Electronics Engineers and the Society of Motion Picture & Television Engineers. Educational institutions were well represented; sponsors in this category were: Illinois Institute of Technology, Iowa State University, Marquette University, Michigan State University, Northwestern University, Purdue University, University of Illinois, University of Michigan, University of Notre Dame, University of Wisconsin, and Wayne State University.

More than 450 exhibitors were present, and 57 technical sessions on a number of topics were held; over 300 papers were presented collectively in these “industry seminars.”

Three all-day intensive refresher seminars were held. The first of these was concerned with “Topics in Modern Antenna Theory.” The topics included frequency-independent antennas, recent advances in the theory of unequally spaced arrays, application of some numerical-analysis techniques to the theory of nonuniform arrays, and discussions concerning data-processing antennas. Some idea of the level of presentation can be obtained from the nature of the subjects covered. The other intensive seminars were titled “Engineering Applications of Linear and Nonlinear Programming” and “Electronic Thin-Film Technology.”

In addition to the refresher and industry sessions, new-products seminars were held. New products covered included precision laboratory instrumentation, components and interconnections, computers and data-logging, and electronic and infrared instruments.

Highlights of the Conference included luncheon speeches by James E. Webb, Administrator, National Aeronautics and Space Administration; Dr. Henry K. Puharich, President and Director, Medical Research Intelextron Corporation; and Dr. Albert V. Crewe, Director, Argonne National Laboratory.

Guided tours were conducted through the 755th Radar Squadron facilities, the Communication Center and Crime Detection Laboratory of the Chicago Police Department, and selected areas of the Argonne National Laboratory.

As can be seen from the foregoing summary, almost the full spectrum of the science of electronics was covered at the Conference. In this sense, practically everything at the show could be related, at least indirectly, to broadcasting. There was, however, little of direct, immediate importance to the working broadcast engineer. Even so, a few topics of peripheral or possible future importance were included. One of these was a paper on “FM Broadcasting from Satellites: Preliminary Consideration of Standards and Sharing.” Several papers dealt with theory and development in broadcast receiving equipment. One industry seminar dealt with modern microwave techniques. A paper was presented on “AM Transmitter Audio Performance Without Power Supply Filter Reactors.”

All in all, the NEC was an interesting and useful meeting for the engineer or scientist in industry—at whom it was primarily directed. It was not basically a show for the broadcast engineer, nor was it intended as such.

NASA Administrator James E. Webb, the Convention Monday luncheon speaker.

Dr. Henry K. Puharich was luncheon speaker at the Tuesday session of the NEC.

Dr. Albert V. Crewe, director of Argonne National Laboratory, spoke on Wednesday.
Ten Good Reasons Why Leading Audio Engineers (Who'll Stop at Nothing to Improve Quality) Choose E-V Professional Microphones!

1. High FIDELITY is your stock in trade. And the peak-free 40-20,000 cps response of the E-V 655C provides it simply and directly, with no complex added equipment to burden you.

2. It's quite easy to maintain complete COMPATIBILITY between the sound of lavaliere microphones and stand units. Simply use the tiny E-V 649B with your larger E-V microphone. Voice quality mixes perfectly.

3. The reputation for RELIABILITY enjoyed by the E-V 666 comes from its ability to deliver superb cardioid response even after accidental abuse that would destroy many a lesser microphone.

4. The ready AVAILABILITY of E-V professional microphones at leading radio parts distributors everywhere is an E-V pioneered policy begun back when the "workhorse of the industry", the E-V 635, was introduced.

5. Outstanding in its FLEXIBILITY is the new E-V 654A. This versatile microphone slips easily into floor or desk stands, or can be hand held or used as a lavaliere.

6. Ten E-V professional models give you unusual VARIETY. For instance, if you require close-up sound pickup, yet mustn't hide the performer, the ultra-thin E-V 652 solves both problems handsomely.

7. The CREATIVITY of E-V engineers comes from intimate knowledge of field problems. It earned them an Academy Award for their unique solution to film and TV sound problems with the E-V 642 microphone.

8. ECONOMY is vital in every studio operation, yet quality must be upheld. And the E-V 665 is ideal where superb cardioid performance is needed, but the utmost in mounting flexibility is not required.

9. Even the 7-foot long E-V 643 ultradirectional microphone is protected by this unique E-V GUARANTEE: except for refinishing, all repairs are free no matter what happens to the unit during the first two years!

10. The VITALITY of E-V design comes from constant improvement of existing models, plus fresh new ideas that solve your problems. Newest is the E-V 668, specifically created for boom microphone applications.

Put all ten good reasons to work for you in your studio or in the field by choosing the E-V Professional microphone that's right for your sound pickup requirements. Your E-V distributor can offer up to 15 years of experience in assisting studios to better sound. See him today, or write for a complete distributor list and free microphone catalog.

ELECTRO-VOICE, INC.
Dept. 124IV, Buchanan, Michigan

Circle Item 12 on Tech Data Card
NEW FROM JAMPRO DIRECTIONAL FM ANTENNAS

The FCC's 4th Order and Report now permits the use of directional FM transmitting antennas, to provide protection of short spaced stations. If you are now short spaced, you can, in most cases, increase your ERP in all directions except towards the short spaced station. Contact your consulting engineer for full details on how the new FCC Rules may help you increase your station's coverage.

JAMPRO directionalized FM antennas are excellent for FM stereo, VSWR bandwidth is not affected. JAMPRO dual polarized antennas may also be directionized. The antenna peak gain is nearly always increased.

The JAMPRO FM antenna may be easily directionized, by means of parasitic reflectors behind each bay, most patterns may be achieved. Tight or multiple null patterns may require phasing and spacing of dual bays stacked side by side. JAMPRO design engineers will be pleased to work up antenna designs meeting specific pattern requirements. Antennas are pattern tested prior to shipping.

JAMPRO's complete antenna test range is used to insure pattern conformity. The supporting tower or pole affects the radiated pattern, and therefore must be included in pattern measurements.

ANTENNA COMPANY

6939 POWER INN ROAD
SACRAMENTO 28, CALIFORNIA

Circle item 53 on Tech Data Card
December 1964

We interrupt this magazine to bring you...

Late Bulletin from Washington

by Howard T. Head

Power Increases For FM

The Commission has adopted new Rules governing power increases for existing FM broadcast stations operating at mileage separations less than the minimum values established by the new FM Technical Standards (see April Bulletin). Under these new Rules, which apply only to short-spaced stations authorized prior to the adoption of the new separations, the maximum permitted power is governed by the closest separation between short-spaced stations on the same channel and the first adjacent channels.

In most instances, the new Rules will permit worthwhile power increases for existing short-spaced stations, which had been frozen at their present power levels while the new proposals were under consideration. In many instances, where the spacings are not critical, existing stations will be permitted to increase power to the maximum levels permitted for their class.

In cases where spacings are too close to permit maximum-power operation, the new Rules provide for lesser power or the use of directional transmitting antennas to protect other stations. However, directional antennas will not be allowed for the purpose of permitting new short-spaced operations.

At the same time, the Commission also adopted new technical standards governing FM stations in Puerto Rico, and adopted a Table of FM Channel Assignments for Alaska, Hawai'i, Puerto Rico, the Virgin Islands, and Guam.

Microwave Authorizations For CATV

Recent studies submitted to the Commission have revealed that, of the more than 1300 CATV systems in operation in the United States, over 250 employ microwave systems, both single- and multiple-hop.

The Commission has unquestioned authority to regulate microwave services, and has employed this authority to regulate the use of microwave systems by CATV operators. Several proposals are outstanding under which new or renewal microwave authorizations would be granted only if the CATV system agrees to protect television stations serving the same area. This protection might extend to carrying local stations on CATV systems, as well as to technical regulations governing the quality of CATV signals. Also being considered are prohibitions against carrying programs of out-of-town stations which duplicate those provided locally.
While these proposals are being considered, microwave authorizations continue to be granted, but many are on condition that CATV operators accept technical conditions included in any final Rules established by the Commission.

Sharing TV Microwave Relay Band

The Commission has proposed to make frequencies in the band 1990-2110 mc available for the use of government space-research stations in support of the National Aeronautics and Space Administration's Project Apollo. This is the project in which U.S. astronauts will be landed on the moon and returned to earth. This frequency band is within that (2093-2110 mc) presently assigned for exclusive use by television auxiliary broadcast stations, including remote pickup, studio-transmitter link, and intercity relay service.

Although use of this frequency band for space research is expected to be infrequent, the research program may continue up to 10 years. Present plans contemplate establishing high-power transmitters, operating principally on 2106.4 and 2101.8 mc, for space service near Goldstone, Calif.; Cape Kennedy, Fla.; Kauai, Hawaii; and Corpus Christi, Tex. Potential interference to earth stations is expected to extend little more than 175 miles from these locations, although individual technical factors in each case will influence the actual potential range of interference.

Loudness of Commercials

The Commission and the Commission's staff continue to grapple with the problem of formulating technical regulations intended to eliminate what many persons believe are excessively loud commercial announcements broadcast by radio and television stations (see April Bulletin). Recent demonstrations in New York City to the Commissioners and key staff members emphasized the highly subjective nature of the loudness phenomenon, and made clear the difficulty of defining loudness in terms of simple meter indications.

In the meantime, the Commission is considering referring the problem to the International Radio Consultative Committee (C.C.I.R.). Recommendations are needed for techniques suitable to measure the subjective loudness of program material, together with estimates as to their accuracy and as to correlation with present methods of measuring modulation levels.

New AM Allocation Standards

As reported in the October Bulletin, the Commission is now processing applications for new or improved AM facilities on the basis of revised Technical Standards. Key feature of the new Standards is a requirement prohibiting the overlap of specified field-strength contours between stations on the same and on adjacent channels.

Under a strict interpretation of the new Rules, new AM grants may not be made in the presence of any overlap of the forbidden contours. This, however, would lead to absurd situations where contour overlap in uninhabited areas, or even over bodies of water, would be a basis for denying applications. Several cases of this nature are now under study, and an interpretation by the Commission is expected in the near future.

Howard T. Head... in Washington
Fidelipac is already used by over 2,860 stations as the standard tape cartridge for the continuous and repeated playback of recorded messages. But Fidelipac does more than repeat messages. It stores recorded information on one compact reel that never requires rewinding and is always ready to play the correct message at the correct time.

Now, about the coffee pot. Fidelipac accepts two kinds of cues: the first stops and starts the tape at the proper spot, so that it is never necessary to cue-up a commercial by hand; the second type of cue will activate turntables, slide and film projectors, other tape machines — and your coffee pot. With Fidelipac's automated assistance a whole day's programming can be set up and controlled with a minimum of supervision.

Your benefits? All material that has to be programmed can be contained in compact Fidelipac cartridges, saving the time usually spent cueing up discs and other tape machines. All of the material can be recorded at one speed selected by the engineer and played back at that speed without any chance of error. As a result of this efficiency, fewer engineering hours are needed to control a day's programming, and this means savings to your personnel in valuable time. To sum up: Fidelipac saves engineering man hours, and you save money! What's more, you get better sound in the bargain.

TELEPRO INDUSTRIES, INC. A subsidiary of Deliance Industries
Cherry Hill Industrial Center • Cherry Hill, N.J. 08034

Write to TelePro Industries for free literature and the name of your nearest Fidelipac distributor. Then polish up the coffee pot!
Remote Unit Operates with Portable Recorder

by John P. Hart, Chief Engineer, WHIL, Medford, Mass.

We recently made some modifications to one of our remote amplifiers to permit its use with a portable tape recorder. After installing a matching transformer and making some circuit changes, the speaker output of the recorder can be connected to the line terminals of the remote unit; the outgoing level can then be monitored on the remote-unit VU meter. Although similar modifications can be made to many remote amplifiers, the following procedure is that which we used with our Gates CB 66 "Dynanote."

First the connections for the talk position of the cue switch (S1) were made permanent. A four-lug terminal strip was mounted adjacent to the switch. The leads from the cathode of the output tube and the high end of the line transformer were removed from terminals 4 and 8, respectively, of the switch and tied together on one lug of the terminal strip. The leads from line terminal 2 and the outer contact of jack J1 (originally connected to switch terminals 6 and 7, respectively) were treated similarly. The same procedure was also followed for the leads from line terminal 1 and the inner contact of J1 (originally connected to terminals 9 and 10, respectively, of S1). The jumper between switch terminals 3 and 8 (which formerly served to join the tube cathode to the transformer) was removed. The remaining leads from the switch to other points in the amplifier served to establish the listen mode; they were removed completely. The switch was then available to serve a new function when the appropriate connections were made.

The two leads coming from the line and meter circuit (by way of tie strip 3) were disconnected from terminals 1 and 2 of tie strip 2 and reconnected to terminals 4 and 7, respectively, of S1. New leads were run from terminal 1 of tie strip 2 to terminal 3 of S1 and from terminal 2 of tie strip 2 to terminal 6 of S1. The leads which connected J1 and J2 in parallel were removed.

A 500-ohm to 4-ohm transformer (we used a Triad S-65X) was installed on the panel close to the jacks. The 500-ohm winding was connected to terminals 5 and 8 of S1, and the 4-ohm portion of the
EIMAC TUBES POWER 4 OUT OF 5 TRANSMITTERS AT NAB SHOW

Of 27 transmitters exhibited at the 1964 National Association of Broadcasters Show in Chicago, 22 (81.5%) use one or more Eimac tube types. Both high power klystrons and power grid tubes were represented in this comprehensive display of broadcasting equipment. The transmitter manufacturers who exhibited and employ Eimac tubes in various equipments are illustrated below by their logotypes. The chart identifies the Eimac tube types in the corresponding transmitters. The predominance of Eitel-McCullough products in broadcasting equipment manufactured by these industrial leaders proves Eimac’s wide acceptance in this important area of communications. For details on a tube to meet your needs, write for Eimac’s new catalog describing power tubes for the broadcasting industry.

<table>
<thead>
<tr>
<th>MANUFACTURERS</th>
<th>TRANSmitter</th>
<th>EIMAC TUBE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauer Electronics Corporation</td>
<td>1 kW FM</td>
<td>3-400Z (2)</td>
</tr>
<tr>
<td>Collins Radio Company</td>
<td>1 kW AM</td>
<td>4-400A (4)</td>
</tr>
<tr>
<td>CCA Electronics Corporation</td>
<td>1 kW AM</td>
<td>4-400A (4)</td>
</tr>
<tr>
<td>CCA Electronics Corporation</td>
<td>10 kW FM</td>
<td>4CX5000A</td>
</tr>
<tr>
<td>Continental Electronics Mfg. Co.</td>
<td>5 kW FM</td>
<td>3X3000A</td>
</tr>
<tr>
<td>Dynair Electronics, Inc.</td>
<td>50 kW AM</td>
<td>4CX3500 (2)</td>
</tr>
<tr>
<td>Gates Radio Company</td>
<td>20 kW FM</td>
<td>4CX10,000D (2)</td>
</tr>
<tr>
<td>Gates Radio Company</td>
<td>10 kW FM</td>
<td>4CX10,000D</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>5 kW AM</td>
<td>3X2500F3 (4)</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>1 kW AM</td>
<td>4CX3000A</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>50 kW UHF-TV</td>
<td>4K150Wlytron</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>5 kW VHF-TV</td>
<td>4CX5000A</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>1 kW VHF-Aural</td>
<td>4CX1000A</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>100 W UHF-TV</td>
<td>3CX100A5</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>10 kW FM</td>
<td>4CX10,000D</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>100 W UHF-TV</td>
<td>3CX100A5</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>10 kW FM</td>
<td>4CX10,000D</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>30 kW UHF-TV</td>
<td>3CX100A5</td>
</tr>
<tr>
<td>Standard Electronics Corp.</td>
<td>2 kW VHF-TV</td>
<td>4-125A</td>
</tr>
<tr>
<td>Standard Electronics Corp.</td>
<td>250 W FM</td>
<td>4CX250B</td>
</tr>
</tbody>
</table>

EITEL-McCULLOUGH, INC., San Carlos, Calif.
In Europe, contact Eitel-McCullough, S.A.,
15 rue du Jeu-de-l'Arc, Geneva, Switzerland

December, 1964

Circle Item 14 on Tech Data Card
A SURVEY OF RECORDING AND BROADCAST ENGINEERS IS THE SECRET BEHIND THE NEW ALTEC 470A AMPLIFIER & 550A POWER SUPPLY

Before we did anything else, we surveyed hundreds of recording and broadcast engineers. Guided by the results, we built the 470A Amplifier and the 550A Power Supply. They provide both the size and capabilities you asked for. And the versatile 470A can serve as a preamp or line, booster, and program amp with no internal changes needed!

NO SACRIFICES FOR THE SAKE OF MINIATURIZATION

Most of you felt that miniaturization had gone too far. So the Altec 470A Amplifier is slightly larger than some "subminiature" models. But you'll still get eight in a 19" rack and occupy only 3" height. That size difference you requested will help with the age-old heat problem with all the attendant damage. Another thing, the modern, all-silicon solid state design is rugged, compact and fully enclosed. Inputs and outputs are completely isolated. And larger "plug-in" connectors simplify wiring and circuit tracing; easier to connect and solder. Its sensible size makes it easier to maintain and service, too. On top of that, the Altec 470A Amplifier has a lower noise level than any tube amplifier designed for this function. And, it excels in patching applications because it is unaffected by length of transmission lines (over 100 feet fore and aft)!

CHECK THESE SPECS—YOU'LL LIKE THEM:

GAIN: 45 db (input terminated); FREQUENCY RESPONSE: +0.5 db, 20-20,000 cps; POWER OUTPUT: +27 dbm max., 20-20,000 cps; DISTORTION: Less than 1% THD, 20-20,000 cps, with +27 dbm output; NOISE LEVEL (unweighted, 10 cycles to 25 kc band-pass): Equiv. input noise, -127 dbm (input terminated); OVERLOAD RECOVERY TIME: 5 microseconds for 100% overload.

ALTEC 550A POWER SUPPLY ASSURES TROUBLE-FREE OPERATION

An all solid state device, the Altec 550A can power up to fifteen 470A amplifiers at full output. The design includes an external sensing circuit to insure that the output voltage will remain constant regardless of line voltage fluctuations. Output ripple and noise is only 200 microvolts under the full 2 amp load.

ACCESSORIES:

ALTEC 850A AND 852A TRAYS—Needed for mounting 470A and 550A whether in rack, console or bench use. Gold-plated receptacle permits instant plug-in of amp or power supply.

ALTEC 800A MOUNTING FRAME—Accommodates up to eight 470A Amplifiers in 850A Mounting Trays or a combination of amplifiers and power supplies.

Now in production! Altec new 61A and 63A Program Equalizers and three variable filters: 67A high and low pass, 68A low pass, 69A high pass will be ready for delivery soon. Write for complete specifications.

For Technical Literature or Ordering Information, Write to: AUDIO CONTROLS DIV.

ALTEC LANSING CORPORATION

Circle Item 103 on Tech Data Card

low-impedance winding was connected to J2.

Inspection of the diagram shows that S1 now serves to connect either T or T1 to the VU meter and the line and PA output circuits. With the switch in what formerly was the talk position, the remote unit operates normally. With the switch in the former listen position, a high-level, low-impedance output (for example, the speaker output of a portable tape recorder) can be fed to the line and the level monitored with the VU meter; the speaker output is simply fed into J2. (This modification also works for the Gates Model CB65.)

POWER CUT-BACK MODIFICATION

by Charles M. Sparks, Chief Engineer, WCRS, Greenwood, S. C.

By making this simple modification to the power cut-back arrangement in our RCA BTA-1R transmitter, we have eliminated the eight large, heat-producing dropping resistors and two high-voltage relays. The transmitter now runs much cooler, efficiency is increased, and power-change failures have all but been eliminated, since only one relay does the job that formerly required ten component parts.

As shown in the diagram, the modification causes power to be reduced by changing the AC voltage applied to the primary of the high-voltage supply transformer (T502) from 230 volts for 1000 watts output to 115 volts for 250 watts output. This is done by installing an SPDT relay at any convenient location in the space formerly occupied by the large power-change unit. The relay we used at WCRS is a Potter & Brumfield type PR11AY.

BROADCAST ENGINEERING
A new breed of solid state, mobile, relay equipment is now fully operational at major TV networks. This unique equipment brings live TV field coverage within range of every broadcaster. • A rugged, weatherproof transmitter the size of a lunchbox transmits audio and video 12 miles without boosters. The receiver is smaller than a home portable TV set. • Instant reception without warmup on any of 7 channels, total relay power consumption less than 50 watts, lightweight TWT boosters for extended range — all facilitate news wagon, helicopter — yes, even foot coverage. Full accessories, including highly portable camera, available. • 2 Gc and 7 Gc now. 13 Gc soon.

WE INTERRUPT THIS PROGRAM TO BRING YOU...LIVE....

December, 1964
The world’s first magnetic recorder was called the **Telegraphone.** It used wire, and was built in 1898 by Valdemar Poulsen in Copenhagen.

The first tape recorder seems to have been the British Blattnerphone, developed in the 1920’s. However, it used steel tape, as did the first U.S. tape machine — the Brush Soundmirror of the 1930’s. Both had poor frequency response and were chiefly novelties.

In the 30’s the Germans developed the **Magnetophone,** but the most significant development came later. By the close of World War II, the Germans had developed a relatively sophisticated version of the Magnetophone, utilizing oxide-coated, plastic-backed tape; they obtained response to 10 kc using a speed of 30 ips. This speed became the first standard, and all speeds since then have been multiples or submultiples of it. Shortly thereafter, Ampex, Magneon, and Rangertone produced limited quantities of the first professional recorders in this country. Today, nearly a hundred firms manufacture commercial audio machines of great versatility and technical quality. These modern machines fall into several groups by use and function.

Standard Studio Recorders

Historically the first machines developed, studio recorders remain today the best available for audio work. Also called **reel-to-reel** recorders (by contrast with cartridge recorders), they are employed for original recording and dubbing where quality of finished product must be high and the work load is great.

They are more likely to be found in recording studios, but broadcasters use them, too. Although some stations use the same control room for both air and recording, because of studio recorders’ high cost and continuous use, they are usually installed in a separate recording control room. Remote controls permit their takeover by master control.

While designed for permanent installation and for operation from AC lines, studio recorders are usually rugged enough to be made portable and taken to locations where excellent fidelity is important. Also, they are often mounted in consoles with wheels, so they can be moved easily from one control room to another.

Characteristics

Generally, conventional transport mechanisms and electronic layouts are used. In addition to high reliability and stringent electronic and mechanical standards, certain features are common to all — they meet NAB standards and provide: 10½” reel capacity; both 15 and 7½ ips speeds (some also have 30, 3¾, or 1⅞ ips); 3 motors, including a hysteresis-synchronous type driving the capstan; VU meter(s); 1/4” tape width (a few also accept 1/2”, 3/4”, or 1” tapes); tape motion controlled by push buttons, relays, and solenoids; separate control of tape tension for 10½” and 7” reels; separate heads for erase, record, and playback; separate amplifiers for recording and playback, allowing source or tape monitoring; recording-function indicator lamp; automatic motor shutoff when tape breaks or runs out.

In addition, most models include: record-function interlock; tape lifters, which remove tape from heads during high-speed shuttling (fast forward or rewind); forced-air cooling of the transport; headphone monitor jack; at least two inputs — low-impedance mike and high-impedance bridging; 600-ohm balanced output in range of 0 to +20 VU. Most provide adjustments and metering for bias current and equalization. While all employ the NAB characteristic, which furnishes treble boost in recording and bass boost in playback, NAB standards are for full-track mono, and make no provision for stereo. Hence, most recorders permit the user to optimize equalization according to use.

These machines are generally available in mono and stereo with half track, full track, two quarter tracks, two half tracks, and three and four tracks. One model is available with eight tracks. Frequency response at 15 ips is generally ± 2 db from about 30 to 18,000 cps. Typically, harmonic distortion is approximately 1%, stereo separation (crosstalk) from 40 to 50 db, full-track signal-to-noise ratio is 50 to 60 db, flutter and wow less than 1%, timing accuracy ± 0.2%, and almost all have remote control avail-
Leading the Industry in Transistorization

Our goal is to make available reliable, modern instruments built to last virtually forever. Our design criteria are precision, versatility, flexibility, simplicity, compactness and ease of maintenance in every piece of television equipment bearing the International Nuclear trademark.

Write for complete specifications and details to Department C.

INTERNATIONAL NUCLEAR CORPORATION
608 NORRIS AVENUE
NASHVILLE 4, TENN.

December, 1964

Circle Item 15 on Tech Data Card
able. Prices vary from $730 through $10,000.

Note: By NAB standards, signal-to-noise ratio is measured from the 2% distortion point of a 400-cps tone. Some machines, however, are rated from the 3% point; this is roughly equivalent to a 3-db increase in S/N over that measured from the 2% point.

Special Features

One new machine uses military-grade nuistors to achieve a high S/N—70 db. Another has provision for switching any record head to temporary playback during recording, thus allowing sound-on-sound and other special effects. At least four manufacturers offer transistors in the electronic sections. Manual cueing and editing are offered on several models. One unit comes with tape-marking and cutting accessories, and a running-time meter. Another uses an instrumentation-type head-wind to obtain minimum flutter. Still another uses plug-in module boards.

A recently-developed accessory permits changing the playback speed of a tape without altering pitch of the recorded signals. Speed range is from 50% to 180% of normal. It uses a multiple-head assembly which rotates in the direction of tape travel; thus reel-to-reel tape speed may be varied while the rotating assembly holds head-to-tape speed constant.

Considerations

Some confusion exists among users as to head mounting and contour in tape recorders. Figs. 1 and 2 will help clarify the various forms. The straight-line mount is illustrated in Fig. 1A. Pressure pads are required to maintain intimate tape-to-head contact. But this system causes rapid head wear, oxide buildup on heads and pads (which affects frequency response), and vertical walking or riding of the tape. At Fig. 1B, the more common method—radial mounting—is shown; the tape's own tension is used to maintain contact, no pads are required, and there is less likelihood of tape misalignment. However, the tension required for proper contact can be critical.

Fig. 2 illustrates the two general types of head contour. It's obvious that the hyperbolic shape permits less head-to-tape contact than the cylindrical one. For this reason, the hyperbolic is preferable, as less tension is required to maintain the necessary contact without pads. This also minimizes wear, of course. There is one problem with the hyperbolic-contour, radial-mount head system—tape lifters must be used to remove the tape from the heads during high-speed shuttling, or extreme wear will result.

One problem often associated with a studio recorder is mechanical: Obviously, speed variations (wow and flutter) must be held to a minimum if the output signal is to be an accurate copy of the input. But a machine with a low flutter figure often applies high stress to tape during shuttling. For precise applications, you might best use such a recorder only for recording or playback, rewinding on a separate device.

Furthermore, low flutter, though desirable, isn't the only criterion in a high-quality tape system. Overall performance is limited as much by electronic circuitry as by any mechanical requirements. Pushing practical limits too far can result in a fussy machine that requires constant attention and adjustment.

Standard AC Portables

Just as some TV stations, for flexibility in operation, begin operations with remote gear, many a radio (and TV) station purchases...
FIRST
LOW COST
AUTOMATED
SOLID-STATE
MASTER CONTROL
SWITCHING PACKAGE
...eliminates switching chaos and possibility of error during station breaks

The VSA-102 Switching Package is a highly sophisticated yet simplified system that switches from event to event by merely pressing the “Take Bar”.

NEW ALL SOLID-STATE MASTER CONTROL SWITCHING PACKAGE FEATURES:

- 18 AUDIO/VIDEO COMPOSITE OR NON-COMPOSITE INPUTS, PLUS 8 AUDIO ONLY INPUTS
- AUDIO MIXING AND AUDIO FADES
- STEPPING SWITCH MEMORY PERMITS STORAGE OF UP TO 12 EVENTS
- SIMPLE LOADING FROM PREVIEW BUS
- 2 ADJUSTABLE PREROLL TIMERS
- READ OUT PANELS FOR NEXT PREVIEW AND ON-AIR AUDIO-VIDEO EVENTS
- EASILY ADAPTED TO VIDEO PROGRAMMER
- SYSTEM COMPLETELY WIRED AND FACTORY TESTED, READY FOR OPERATION

PACKAGE INCLUDES FOLLOWING EQUIPMENT:
- 18 x 2 VIDEO SWITCHER
- 27 x 2 AUDIO SWITCHER
- SIGNAL PROCESSING AMPLIFIER
- 2 AUDIO LINE AMPLIFIERS
- 2 AUDIO MONITOR AMPLIFIERS
- 1 CBS AUDIMAX

- 12 EVENT 18 SOURCE VIDEO MEMORY UNIT
- 12 EVENT 8 SOURCE AUDIO MEMORY UNIT
- CONTROL PANEL COMPLETE WITH TWO MULTIPLEXER CONTROL CABLES & TWO VIDEO TAPE CONTROL CABLES
- 84" MOUNTING RACK

Write for complete information and specifications

WARD ELECTRONIC INDUSTRIES, Inc.
P. O. BOX 1045, MOUNTAINSIDE, N. J. • (201)-232-1167

Circle item 17 on Tech Data Card

December, 1964

37
SCULLY 270
... the Professional Tape Player for Broadcast Pros!

The extra-heavy duty transistorized tape playback unit that was designed for broadcasters... and is setting new endurance and performance records. The 270 is crafted in the traditional Scully manner for long life and truly professional operation.

Write for the name of the nearest distributor... and you will also receive data on the Scully 280 solid state recorder/reproducer.

SCULLY
Recording Instruments Corp.
480 Bunnell Street
Bridgeport, Connecticut

EXPORT DIVISION...
13 E. 40TH STREET
NEW YORK, NEW YORK

an AC-operated portable as its first (or only) audio tape recorder. Portables cost less than studio console models, have many of the same operating conveniences, and frequently come close to the same specifications; some can be rack mounted. The chief disadvantage of a portable is that it generally isn't built to withstand continuous use.

AC portables are often used for on-location taping of church services, band concerts, and variety shows. Frequency and distortion requirements are important in such service, and this class of recorders must be as nearly like studio machines as possible, yet transportable.

Another common service for portables is telephone beeper work in the studio or newsroom. Many stations rack-mount portables for this job, saving their console machines for spots and music and using battery portables for on-the-scene news.

The typical beeper-phone furnishes voice signals ranging around —40 to —20 VU. Although most recorder inputs can easily handle such signals, it's often helpful to go through a compressor or AGC amplifier and then into the recorder. Levels vary in a beeped conversation, depending on phone-line quality, LD or toll-circuit amplifiers, and weather effects. The studio voice is generally louder; if the beeper is fed first to an AGC amplifier, unpleasant level variations can be practically eliminated.

Characteristics
Since these machines are professional portables, they meet NAB standards, some of which are: S/N no less than 55 db; flutter and wow not to exceed .2%. The most critical factor seems to be equalization; obviously, this must be the same on all machines in the studio if tapes are to be compatible. Most professional recorders use NAB equalization; but, as we said earlier, this standard applies only to mono.

Common features: stereo and monaural full, half, or quarter track; 15 and 7½ or 7½ and 3½ ips speeds; ¼" tape; VU meter(s); hysteresis-synchronous motor driving capstan (and some with three motors); recording-function indicator lamp; two inputs—mike and line. Output is approximately +4 VU at 600 ohms balanced, unless a cathode follower is used. In addi-

A portable, AC-operated tape recorder.

tion, most have a front-panel headphone monitoring jack. Frequency response averages ±2 db 40-12,000 cps, timing accuracy is .2%, and reel capacity is usually 7", although a few will handle 10½". Three heads are generally used (sometimes four), and remote-control facilities are often available. Prices range from $525 to $1255.

Some AC-portable recorders have balanced inputs and outputs; others don't. For those in which a low-impedance cathode follower is used, it's best to add a small 600-600 ohm isolating output transformer, as 95% of the time the unit will feed a 600-ohm line. The line input should also be balanced—and preferably padded for bridging, to avoid loading lines. Sometimes it's necessary to use the mike input to make up for loss in the bridging pad. Fig. 3 shows details of input and output pads.

Special Features
Most machines in the AC portable class permit simultaneous monitoring of what's on the tape a split second after it's recorded. This is the simplest, fastest, and surest operational proof of any recording session, and is the major advantage of having the third head. However,
Odds Are—The Choice Will Be Tarzian for Elaborate New Switching Facilities

Why? Start with a proven system capability. In recent years, Sarkes Tarzian, Inc. has developed some of the most sophisticated switching complexes in the exciting world of television. Complicated master switching control systems, multiple studio controls, remote controls, automated control systems, delegation systems—each custom designed to fulfill an individual station’s specific requirements. Each proving an impressive technical competence. Tarzian’s modular concept permits notable flexibility in planning. Solid state design delivers total reliability—dependable, maintenance-free performance.

Why not translate this technical competence into increased programming capability and smoother broadcast operation for your station? Complete system engineering is available if desired.

SARKES TARZIAN
BROADCAST EQUIPMENT DIVISION
BLOOMINGTON, INDIANA

December, 1964

Circle Item 19 on Tech Data Card
there's another desirable feature of a three-head machine—better performance. Instead of a single head having to function for both recording and playback, each head can be designed to do its different job most efficiently. Thus, the playback head has many turns of wire, giving maximum output—it's a voltage-operated device. The record head, on the other hand, has fewer turns—it's a current-operated device. Also, there is a difference in head gaps. The playback head, in order to reproduce high frequencies accurately, should have a very small gap. In a recording head, however, the gap can be larger for the same frequency response.

Early binaural and stereo recorders used two half-tracks and staggered heads. This system is largely obsolete, having been superseded by inline heads. However, both half- and quarter-track tapes are still used in practice. Though professional requirements would seem to demand half-track, the wide marketing of prerecorded quarter-track stereo tapes causes many stations to equip for both systems. Half-track stereo uses all the tape width in one direction, while quarter-track uses only half the width (but split) each way. Other differences are minor. In many cases, recorders in this class can play back quarter-track stereo, though they cannot record the same. All stereo machines can record and play back mono.

Hyperbolic heads and tape lifters are found on many portables, as is an auto-shutoff arm. This latter is a device like the old railroad deadman switch in the locomotive cab—it has to be held on for the mechanism to operate. Tape threaded past the arm applies tension; if the tape breaks or runs out, motor power is killed.

For professional applications, pushbutton-solenoid transport operation is preferable to lever devices, because reliability is greater under continuous and possibly harried use. Solid-state electronics, often on plug-in boards, plug-in heads, and instant-stop pause or edit buttons, are additional features of some recorders in this class.

While any three-head machine can be patched through a console to provide echo/reverb effect, some recorders have integral switching or mixing of the playback signal for this purpose. This feature also permits what is called sound-on-sound—dubbing from one track to another with mike over, a la Les Paul & Mary Ford—that has some application where studio facilities are limited. Sound-with-sound means playback of one track while recording with the other, but with no connection between the two.

Another new feature on some machines is automatic playback reversing at end of reel. Sometimes this is done by a PE cell, sometimes by a metal-foil contact. Direction of tape motion is reversed, and heads are switched (to play opposite tracks).

Yet to Come

The second portion of this series will tell of battery portables and cartridge machines. The former are especially useful to the engineer working outside the studio on radio and TV-film coverages. The latter leads naturally into the third part—tape-machine automation.

...to be continued
peak stereo performance
for FM STATIONS
with the aid of a Tektronix Oscilloscope

At Moseley Associates, Inc., an engineer uses a Tektronix Type 561A Oscilloscope to check performance characteristics of their FM Stereo Generator and Ten Watt FM Transmitter.

Making adjustments and observing the waveform displays, the engineer tests generator/transmitter operation quickly and conveniently, monitors equipment performance simply and reliably, and thus effectively evaluates operational features of the stereo instrumentation. High in performance, moderate in cost, the Type 561A ideally suits test applications of the FM Stereo Broadcaster.

Whatever your broadcast equipment test needs, the Type 561A can very likely meet them.

You can use any of 17 amplifier and time-base plug-in units for many different types of application.
You can display single or multi-trace presentations.
You can observe no-parallax displays and sharp trace photography over the full 8-cm by 10-cm viewing area. For the CRT has an internal grid with controllable edge lighting.
Type 561A Oscilloscope $500
Plug-ins illustrated
Type 3A1 Dual-Trace Unit $450
Type 2B67 Time-Base Unit $210
15 other plug-ins available.

For rack mounting, in 7 inches of standard rack height, order Type RM561A $550
U.S. Sales Price (a/b, Beaverton, Oregon oscilloscope prices without plug-in units

For your best needs, there is a Tektronix Oscilloscope to fit every quality-assurance program —and comprehensive field service to back every instrument.
For information, call your Tektronix Field Engineer or representative now.

Tektronix, Inc.
P.O. BOX 500, BEAVERTON, OREGON 97005
Phone (Area Code 503) 640-2341; TELX 4-2657
TELEX 24152; TELFAX 503-640-5882

Overseas Distributors in 45 Countries
Tektronix Field Offices in principal cities

Circle Item 21 on Tech Data Card

December, 1964
Norsk Rikskringkasting

Norwegian Broadcasting Corp. is an independent institution, formed by the Broadcasting Act of June 24, 1933. The institution has the exclusive right to erect and operate broadcasting stations within Norwegian territory for spreading words, music, pictures, and the like. The institution is governed by a board of five members, appointed by H.M. the King. A Broadcasting Council of 23 members, of whom 12 are chosen by the Parliament and the others appointed by the King, acts as an advisory group. This group represents various parts of the country, enabling people who are well acquainted with the cultural and economic life of the country. The Broadcasting Council meets twice a year. The transmitters and the national distribution network are in the hands of the Administration of Telegraphs, which reports to the Minister of Public Communication. The technical department of NRK is responsible for technical production facilities in the studios or elsewhere, for recordings and the like. This department is administered by NRK itself.

Soundbroadcasting

It is the duty of NRK to furnish programs of educational, cultural, and entertaining character, as well as news bulletins. For this purpose, the program department is subdivided into a number of sections:
1. News bulletins, short talks, or interviews on events of the day.
2. News and commentaries on foreign political and economic affairs—shortwave service intended particularly for Norwegians at sea or abroad.
3. Educational section, lectures, talks, etc., comprising school broadcasting and children’s hours.
4. Dramas, plays, etc.
6. Entertainments (light programs).

A program secretariat collects the various programs prepared by the regular staff of the department. Furthermore, there are regional centers to take care of the program work in various parts of the country, such as Kristiansand, Stavanger, Bergen, Alesund, Trondheim, Bodo, Tromso, and Vadsø, each covering the surrounding districts. These regional centers provide items of local character for the national program and take care of separate local transmissions. Local program councils, each consisting of four members appointed by the Minister of Education, assist the program secretaries in their work to build up programs of local character.

The number of persons engaged daily in soundbroadcasting and television is about 1100. At present, there are in operation 32 sound broadcasting stations in the long- and medium-wave bands, 7 shortwave transmitters, 58 VHF transmitters, and 10 stations transmitting via power lines. Norway offers very unfavorable propagation conditions for a broadcasting service, and the task of providing good reception for all listeners requires considerable expense. The chief revenue of the Norsk Rikskringkasting comes from receiver license fees; the fee is now 40 kroner a year for sound only. License fees are collected and controlled by the broadcasting corporation itself, payments being made by mail, and a license card is issued as proof of payment. A license is valid for one household only, but this household may possess as many receiving sets as it desires for its own use, including car radios. The current number of radio licenses is 1.04 million. Further revenues are collected through a stamp duty on receiving sets and parts at the rate of approximately 10% of the retail price, purchase tax not included.

Television

The first experimental television transmissions in Norway started in 1954 from a small transmitter at Tryvannshøga, a hill near Oslo. The first steps towards Norwegian television were taken in 1950, when the Board of the Norwegian Broadcasting Corporation appointed a Television Committee to examine the technical and economic possibilities for television in Norway. In the autumn of 1951, the Television Committee submitted its recommendation, the conclusion of which contained a proposal to the effect that experimental transmissions ought to be continued for some years to obtain experience. The Board adopted the proposal, and in January 1953 the Storting (Norwegian Parliament) decided that experimental transmissions be performed for two years till the question of permanent Norwegian television be brought up. In February 1953, the Board appointed a Working Party to deal with test transmissions and gather experience. Besides, this Working Party should analyze technical and economic conditions for Norwegian TV and, if the possibilities should prove favorable, submit a national plan for a TV network, TV studios, radio-links, and transmitters. The Working Party worked out a recommendation in August of 1956, and the plan was adopted by both the Board and the Telecommunication Administration. In June 1957, the Storting decided to start a regular television service in Norway and that the development should follow the Working Party’s recommendation. At present, radio-links for program distribution are being operated over the distance from Oslo to Bergen, with Stavanger, Trondheim, and Kristiansand. Oslo, Kongsberg, Kristiansand, Nordhåte, Bergen, Stavanger, and Trondheim have permanent transmitters. Small transmitters (satellites) will fill the "holes" that occur in the coverage areas of the larger transmitters.

Two studios, a storeroom for scenery and properties, room for technical equipment, workshop, make-up room, etc., were put into use in the autumn of 1959. Apart from the outside (mobile) TV broadcasts, most program production has taken place in these studios. The first mobile broadcasting unit (with three cameras) was procured in the spring of 1959. As the radiolink network is finished, it will be possible to transmit live reports on current events from various parts of the country. To take advantage of these facilities, another outside broadcasting unit for TV was purchased in the spring of 1962. This unit, like the first one, consists of two vans, but they are larger and are equipped with four cameras.

The weekly programs now amount to some 22 hours, including Nordvision, Eurovision, and Intervision, which amounts to about 40 hours.

Five TV recording machines are in constant use. Also, quite a lot of film is incorporated in the programs or shown as feature films. Norwegian TV was connected to the Eurovision network in 1959 via a radiolink between Oslo and Karlstad, Sweden. October 1959 has also been marked as the inauguration date for Nordvision, the special Scandinavian television cooperation.

The population in the areas now covered by television is set at 2.4 million, and the number of TV receiver licenses has now passed 300,000. The TV license fee costs 125 kroner a year, in addition to the radio license.

A link between Oslo and Kristiansand was put into operation in 1963, making two different program routes between the eastern and western parts of the country—the inland link which is now in use and the link along the coast. Between Bergen and Trondheim (along the coast), continuous work on another is practically finished. A provisional radiolink along parts of this route feeds transmitters at Kristiansand and Alesund, and the permanent link will soon be ready.

In northern Norway, work is almost done on the Trondheim-Bodo link. The first radiolinkers to the radiolinkers to the north will be fed with programs from this link.

A continuation further from Bodo will be effectuated in the course of the three-year period 1966-69. Plans for a new TV house are not ready, and the foundation work of the TV Center was started last summer.
Designed for studio or mobile applications, the new TELECHROME Solid State Special Effects Generator, Model 3801A1, produces a multitude of visual effects to enhance scene changes, insert keying for commercials and bulletins, etc. The system comprises a power supply, switching amplifier and waveform generator in a 5½" high rack mounting frame and remote control units. The waveform generator contains 7 plug-in cards, 6 for the effects and one for the accessory joystick positioner. A newly designed effects remote control unit provides an illuminated pictorial of the selected effects—plus Thumb-Wheel control for rapid and positive wipe selection.

NEW! FRONT PANEL SWITCH SELECTS EITHER COMPOSITE OR NON-COMPOSITE OPERATING MODE.

FEATURES

- Occupies only 5½" of rack space.
- Fully transistorized for reliable service free operation.
- Color or monochrome operation.
- Plug-in waveform generating cards.
- Inserts camera control and chroma keying.
- Up to 72 effects; including both horizontal and vertical wipes, diagonals, rectangle, diamond, circle, etc.
- Individual plug-in switching amplifier, waveform generator, and power supply.
- New compact remote control units occupy less console space.
- Thumb-wheel wipe selector eliminates parallax.
- Plug-in oscillators in positioner remote control unit for modulation of effects.
MODULATION AND FREQUENCY MONITOR OPERATING PROCEDURES

While the modulation and frequency monitors found in most radio stations are designed for long, trouble-free service, they are never fully understood by some operators and rarely receive proper maintenance. Here are some suggestions that may help remedy the situation.

Modulation Monitors

A typical AM modulation monitor is shown just below the communications receiver in the left-hand rack in Fig. 1. Such a monitor is one of the most important indicating devices in any station, but its full value can be gained only if the operators in the station know how to use it. For instance, how many third-class operators know that merely looking at the carrier-level meter and percentage-of-modulation meter they can promptly ascertain if the transmitter is on the air and if modulation is taking place? True, they might not know the quality of the audio signal without making an additional aural check, but once the station modulation monitor when something goes wrong can often prevent a panic situation.

Properly operating, the carrier-level meter should read 100 with little or no deviation as long as the transmitter remains on the air. Excessive deviation (carrier shift) could indicate neutralization problems. The percentage-of-modulation meter should give a constantly varying reading as long as program modulation is taking place.

The instant there is an interruption to the program, the operator on duty should observe the modulation monitor to determine the status of the transmitter. If the carrier-level meter reads 100 (assuming the monitor is operating in a proper manner), it is apparent that the station is not off the air. If the percentage-of-modulation meter does not indicate modulation is taking place, several things could be wrong. Usually someone has turned on the wrong microphone. Perhaps the microphone has been patched out in a jack field for other usage or even disconnected. Don’t overlook the defective microphone cut-out switch, commonly called the “cough button”; all too often this button has a copy book resting on it. One must learn not to assume or overlook anything during an outage, no matter how basic or foolish it may seem.

How does the operator play it safe and yet determine what is wrong? Turn off all microphones, air a recording, and observe the modulation monitor. If modulation is taking place, the next step is to check out the suspected microphone (on an audition circuit). If the percentage-of-modulation meter gives no indication of modulation, observe the console VU meter. If it indicates the presence of audio, check the meters on the various limiting or compression amplifiers between the console and the transmitter. Be sure to check all front-panel toggle switches to be sure a power switch hasn’t been accidentally turned off (by a heavy arm, replacing earphones or patch cords, horseplay, etc.). Don’t forget the jack field.

The operator has to know his equipment and what the indications for normal operation are.

Some stations operate by remote control within the same building; that is, the transmitter is located in a part of the building away from the studios, and the necessary metering and control functions are extended to the control room. Usually the final-plate-voltage, final-plate-current, and antenna-current meters appear on a panel (lower row in Fig. 2) along with the frequency-deviation and percentage-of-modulation meters (upper row in Fig. 2). The carrier-level meter usually is not extended. (The indicators at the left in Fig. 2 are indoor and outdoor thermometers.)

In such installations any one of three meters can indicate if the transmitter is off the air. If the final-plate-voltage, the plate-current, and antenna-current meters all read zero, it is almost certain the station is off the air. Even the frequency meter can be checked: in most cases, it will read plus or minus 30 cps—against the pin—without a carrier, although this varies in some makes.

Remote-control stations having the transmitter located in another part of town usually set the dialing or selector system to read antenna current constantly (except

Fig. 1. AM monitors are in the left rack.

Fig. 2. A typical panel of remote meters.
when other readings are being made. They too, have provisions for some indication of modulation and frequency deviation.

Many announcer/operators—including some holding first-class licenses—sincerely believe that the percentage of modulation meter should never read below 85%. They are thinking of the FCC regulation that requires the modulation to be not less than 85% on peaks nor more than 100% on negative peaks of frequent recurrence. Some station engineers are guilty of leaving the modulation-monitor peaks switch set in the positive instead of the negative position for normal monitoring use. Obviously, the FCC's requirements make it necessary that negative peaks be monitored.

Frequency Monitors

The purpose of the frequency monitor is to indicate the deviation from the assigned carrier frequency of the station. Construction and circuits vary from make to make; that is why such equipment is provided with instruction manuals.

Many operators have a habit of reading the deviation meter from an angle, thus obtaining a false reading (Fig. 3). One can seldom read a frequency monitor more accurately than within about .2 to .8 cps, yet operating logs sometimes show such readings as “.7 cps low,” or “1.3 cps high.” Read the deviation meter head-on, and don’t record readings that indicate greater accuracy than is really obtainable.

A good frequency-monitor adjustment is to have the transmitter set so that it starts on the low side of the assigned frequency (assuming the transmitter frequency drifts upward during the day). The frequency monitor would then give an indication varying from perhaps 1 or 2

Camera Tube Breakthrough Now Available: ELCON

Long-Life, High Performance 3” Television Camera Tube. An entirely new principle of operation, perfected by English Electric Valve, provides improved performance and increases tube life 3 to 4 times that of previous 3” image orthicons.

LONG-LIFE Achieved Without any Corresponding Disadvantages

- No burn-in or “sticking”
- Improved S/N
- “Crisp” live pictures
- Sensitivity, resolution and gray scale remain constant over the life of tube
- Reduced black compression.

This new ELCON tube can be used with existing image orthicon cameras, as well as in the newer transistorized zoom cameras built specifically to take maximum advantage of its performance. For detailed information on this important technical breakthrough, write for Bulletin 410.

ELCON... stocked, tested and warranted only by VISUAL, the leader.

For the best and most modern broadcast systems and supplies, look to VISUAL — your SOURCE for Superior Equipment from Specialists Manufacturers

Sold Nationally By

VISUAL ELECTRONICS CORPORATION
356 west 40th street • new york, n. y. 10018 • (212) 736-5840

December, 1964
cps low at sign on to 1 or 2 cps high at sign off. This would vary from transmitter to transmitter of course, depending upon stability, length of operation, and amount of cooling provided.

When adjusting the transmitter, one should make sure that the deviation meter tracks properly. That means the monitor should indicate low if the transmitter frequency is adjusted downward, and vice versa. The approximate zero-deviation position should be marked on the transmitter frequency-adjusting control with plus and minus signs on either side to aid in making any minor corrections necessary when the frequency is measured by an external source. Most transmitters have a spare crystal that may be put into service merely by throwing a switch. This should be done, say weekly, so that the condition of both crystals may be observed, not just for a few minutes, but for a full week of actual operation. If your monitor employs a thermometer to measure the temperature of an internal oven, the temperature should be observed at least daily to be sure the internal thermostats are operating properly. In most cases, faulty thermostats produce erratic temperatures and excessive deviation readings. (Of course, defective stages in the monitor can produce the same effects.) Dust covers and bottom plates should be in place on the monitor; some frequency monitors show a difference of two or three cps deviation with the bottom plate removed.

Many engineers mount the frequency monitor in the top section of a rack and run a special AC line to an outlet provided for this unit alone. The special line is wired ahead of the master switch that is usually located at the bottom of the rack. The oven can thus operate even when the rest of the rack is turned off. Some monitors have an extra front-panel toggle switch that removes power from the amplifier sections only, leaving the oven in operation. Opinions vary, but monitors—modulation, frequency, phase, etc.—appear to give less trouble if the AC power is never turned off. In general, the current surge when a unit is first turned on causes greater damage than the constant application of power.

Maintenance

So far, this discussion has been concerned with the usage of the two monitors, and little has been said about maintenance. Two basic requirements apply to these units the same as they do to any other piece of broadcasting equipment—keep them clean and keep them cool. This means removing dust covers at least monthly, dusting with a paint brush, and/or complete vacuum cleaning. Removal of tubes for testing is of some value, but testers rarely duplicate the actual circuit and operating conditions of the unit. Measuring in-circuit currents (if the unit has jacks for this purpose) provides useful information to be compared with the instruction-manual charts. However, removal of the tubes is an excellent way to break down any possible contact resistance in the sockets. All nuts, screws, bolts, cable connectors, etc., that are supposed to be secured should be checked for tightness.

The electrical and mechanical zero settings of the various meters should be checked regularly. In modulation monitors, the flasher

Scala Precision Antennas

* OFF-THE-AIR PICKUP — FM or TV
* LOW POWER UHF, VHF TV TRANSMITTING
* STL AND TELEMETERING ANTENNAS

Engineered to meet rigid FM and TV station specifications, and to endure the tests of weather and time.

Built to your specifications by

SCALA RADIO CORP.

2814 19th STREET
SAN FRANCISCO 10
VA 6-2898

Circle Item 24 on Tech Data Card
circuit must be properly calibrated and accuracy checks made periodically with an oscilloscope. (See "Calibration of AM & FM Modulation Monitors," by Robert A. Jones, in the November 1964 issue.)

Wiring and components should be inspected on a regular basis for signs of overheating or deterioration. Often a serious outage can be prevented merely by taking the time to look thoroughly. If the monitors are more than ten years old, it is prudent to return them to the factory for complete overhaul and general updating.

Other Pointers

Another important monitoring function must not be overlooked. The recent change from Conelrad to the Emergency Broadcast System caused no end of confusion and citations for many stations. Many broadcasters merely turned off their monitoring receivers and uttered a sigh of relief. Monitoring of a key station is still required, and so is the airing of a weekly EBS unscheduled test alert. All operators should know how to reset the monitoring receiver, what to do in case the regular key station goes off the air (regulations require that a station be monitored at all times), and how to air the actual test alert. (One of the most efficient methods of airing the weekly EBS test alert is to have the complete voice tracks, time blanks, and audio tone on tape; if you use cartridge tape units, the entire test becomes as simple as airing a regular commercial.)

All stations should have a current copy of Part 73 of the FCC Rules and Regulations (formerly Part 3), including all changes. Typical meter readings for the monitors and the final stage of the transmitter should be posted along with complete step-by-step procedures for turning the transmitter on or off.

Conclusion

Modulation and frequency monitors are among the most important pieces of equipment in a broadcast station; it is mandatory that these instruments be properly operated and maintained. All operators should be fully instructed on the proper use of them, and a regular preventive maintenance routine should be established.

December, 1964

Lost an equalizing pulse?

Why tie up your expensive line selecting monitors—looking to see if an equalizing pulse fell out between here and Washington? For $425 the S32AR, the only wideband oscilloscope on a 5¼" panel, will monitor any incoming waveform. In the trigger circuits are a differentiator for the H pulses and an integrator for the frame group, ensuring a positive lock on composite video. Call or write today for full specifications.

data instruments
A DIVISION OF INDUSTRIAL ELECTRONIC HARDWARE CORP.
7300 CRESCENT BOULEVARD PENNSAUKEN, NEW JERSEY 609-662-3031
Circle Item 25 on Tech Data Card

47
Let FAIRCHILD put teeth into your sound!

FAIRCHILD DYNALIZER

The newest approach for the creation of "apparent loudness" — the Dynalyzer is an automatic audio spectrum equalizer which redistributes frequency response of the channel to compensate for listening response curves as developed by Fletcher-Munson. Adds fullness and body to program material. Completely automatic with flexible controls. Easily integrated into existing equipment. Two models available: Model 673 — Dynalyzer only (17 db insertion loss) Model 683 — Complete no loss Dynalyzer system (as illustrated).

FAIRCHILD CONAX

The world-acknowledged device that eliminates distortion problems caused by pre-emphasis curves. Allows higher average program levels through inaudible control of high frequencies. Invaluable in FM broadcast and disc recording. Eliminates stereo splatter problems in multiplex channels. Mono or stereo.

FAIRCHILD LIMITER

Fast attack stereo limiter with low distortion and absence of thumps. Sum and difference limiting position eliminates floating stereo image, despite amount of limiting used in one of the two channels. Also includes regular channel A and B limiting. Dual controls and dual meters provided. Now used throughout the world in recording and broadcast studios. (Mono model available).

Introducing the New FAIRCHILD REVERBERTRON

Reverberation now comes in a compact, portable, attractive and rack mountable package 24½" high by 19" wide with the FAIRCHILD REVERBERTRON. The REVERBERTRON, Model 658A, comes complete with mixing system for reverberated to regular signal mixing and contains a unique electronic control of reverberant time. Three time periods available at the flick of a switch — fast (staccato); a moderate time period; and a prolonged time decay for unusual effects.

The compact size of the FAIRCHILD REVERBERTRON and its relatively low cost now allows every studio and broadcaster to have the production-plus of controlled flexible reverberation with the FAIRCHILD REVERBERTRON.

Write to Fairchild — the pacemaker in professional audio products — for complete details.

Engineer’s Exchange

(Continued from page 32)

In the RCA BTA-1R transmitter, the primaries of transformers T502 and T402 are normally connected in parallel. In making the modification, do not disturb the connections to T402; it should be operated with 230 volts AC on its primary at both power levels. On T502, lift one primary lead and connect it to the center arm of the relay. The normally closed contact of the relay is connected to the neutral power-line wire to furnish 115 volts for 250-watt operation. The other relay contact is connected to one side of the line so that 230 volts is applied for normal 1000-watt operation. The relay coil is connected to the same points in the transmitter as were the coils of relays K801 and K804. (K801 and K804 are removed entirely.)

This modification was made in a couple of hours. After the conversion, our transmission efficiency had increased 3%, and the transmitter inside temperature ran about 7° cooler. The entire modification cost less than $10.00.

Speed Variations

In Ampex 350 Recorders

by Larry J. Gardner, Chief Engineer.

WCKY, Cincinnati, Ohio

When Ampex 350 recorders begin to show speed variations and it appears that a motor replacement is required, this tip may provide an economical answer. Frequently, motor trouble in these machines is caused by uneven wearing of the top motor bearing due to the pressure of the driver roller on one side of the capstan. When such wear appears, we remove the motor from the machine and reinstall it in a position rotated 90 or 180° from the original position. The pressure is then placed on an unworn portion of the top bearing, and normal operation is restored.

We have done this to two machines, and both are still operating satisfactorily, one of them after almost two years. Needless to say, management was delighted that the cash outlay for new motors was avoided.
Switching System
(Continued from page 17)

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2, R3</td>
<td>200 ohms, 2 watts</td>
</tr>
<tr>
<td>R4</td>
<td>1000 ohms, 2 watts</td>
</tr>
<tr>
<td>R5, R6</td>
<td>150 ohms, 2 watts</td>
</tr>
<tr>
<td>R7, R8, R9, R10</td>
<td>600 ohms, 2 watts</td>
</tr>
<tr>
<td>All Relays</td>
<td>DPDT, Potter & Brumfield LS 23 D</td>
</tr>
<tr>
<td>(Note: Only 5 poles used on K7)</td>
<td></td>
</tr>
<tr>
<td>Lamps</td>
<td>12V, General Electric 1813</td>
</tr>
<tr>
<td>Push Buttons</td>
<td>6 normally open, 2 normally closed for each control panel</td>
</tr>
</tbody>
</table>

Using the Switches

Our broadcast day starts with separate programming. The announcer at the AM board sets up the mode of operation by pushing the No. 1 AM button, to connect the No. 1 console to the AM bus, and by pushing the No. 2 FM button, to connect the No. 2 console to the FM bus and place K7 in the "separate" mode. Thus, the No. 1 console feeds the AM transmitter, and the No. 2 console feeds the FM transmitter. When it is time to switch to dual operation, the announcer pushes the FM reset button. This takes the No. 2 console off the FM bus and de-energizes relay K7. The No. 1 console now feeds the AM bus and both transmitters. When it is time to return to separate programming, the announcer pushes the No. 2 FM button, and the transmitters are again fed from separate consoles. Any other combination can be easily set up.

The outputs of all three consoles appear on multiple jacks so that any console not being used to feed a transmitter may be used to feed the bridging input of a tape recorder. This does not upset the 600-ohm loading put on the consoles.

If more than one control panel is used, the corresponding reset buttons must be wired in series. All other corresponding buttons must be wired in parallel. Corresponding tally lights are also wired in parallel. Bringing the program sources and the busses out to jacks makes it possible to bypass defective sections until repairs are made. It must be remembered that this is not a failsafe system. If power is lost, all relays are deenergized. The desired mode of operation must be set up again when power is restored.

You'll tell the world how astute you are when you choose a New Magnecorder Model 1021. The Model 1021, designed for broadcasters, features smooth tape handling and braking with the thinnest tapes.

The Model 1021 incorporates standard connectors, impedances and levels. The cue-ing speaker has separate volume control, and the amplifier will drive an external speaker.

The Model 1021 has a cue button that lifts tape to the heads, releases the brakes and puts low, even torque on the reels. American-made components are compartmentalized for endurance and the front panel is removed for easy access.

The Magnecorder 1021 is the best monaural recorder at any price and will broadcast your sound judgement to anyone who'll listen.

Only $659.00

MAGNECORDER SALES DEPARTMENT
MIDWESTERN INSTRUMENTS, INC.
Subsidiary of the TELEX Corporation
P. O. Box 7509 / Tulsa, Oklahoma 74105
Circle Item 26 on Tech Data Card
Improved Fault Alarm
(Continued from page 15)
change-channel relay causes the
correction-attempted holding relay to
lock in; the red correction-attempted
panel light (P3) is connected across
its coil. The other set of contacts
on K5 provides a channel-change
impulse to the logger, which prints
the letters “EF” on the log and
passes the impulse along to the
automation switcher.

Note that should the automation
come to life after a fault has oc-
curred but prior to an attempted
channel change, capacitor C11,
which provides the channel-change
pulse, is immediately disconnected
by the plate relay. This prevents a
needless channel-changing attempt.

At KBIM, we allow our equip-
ment to run during the night to re-
wind at normal speed any program

Mathematics for Electronics and Elec-
tricity: National Radio Institute Staff,
John F. Rider Publisher, Inc., New
York, New York; 250 pages, $3.95.
In its five chapters and 250 pages,
this paperback volume covers the
range of mathematics from counting
in the decimal system to the funda-
amentals of Boolean algebra. The first
chapter, “DC Circuit Calculations,” is
in reality a review of simple arith-
metic—the basic operations of addi-
tion, subtraction, multiplication, and
division as applied to whole numbers,
fractions, and decimals. Simple elec-
trical circuits are used as a basis for
examples—a technique used through-
out the book. The second chapter ex-
plains square roots, ratios, and posi-
tive and negative numbers. Phasors
(vectors) are introduced in this chap-
ter, also; solutions of problems by
graphical means and by means of the
theorem of Pythagoras are explained.
Chapter three explains simple algebra
and the operator j. The fourth chap-
ter introduces elementary trigonom-
etry, exponential numbers, significant
figures, and the use of graphs. The
last chapter is devoted to binary arith-
metic and Boolean algebra. The ex-
planations of the various topics are
brief but adequate for the purpose.
The experienced engineer or tech-
ician may have little need for such a
text, but the beginner or the person
whose knowledge of practical mathe-
matics has grown “rusty” should find
it useful.

Miscellaneous Points

A 10-ohm voltage-dropping resis-
tor (R31) is placed in series with
the “normal” light to prolong bulb
life. Capacitors C12 and C13 are
used to reduce contact arcing of
the flasher and 60-second downfall
relays.

A conservatively rated, silicon-
rectifier power supply is used. No
voltage distribution components
were used across the diodes, and
no deterioration of the diodes has
been noted. Filtering follows the
usual practice for a device of this
type. The bleeder (R26) was added
because a charged 20 mfd capacitor
can give a painful shock to an
unwary operator.

A 5-amp slow-blow fuse is used
in the incoming line, and a 1-amp
slow-blow fuse is used in series with
the power transformer only. (One
of these was added after Fig. 5 was
taken.) Note that if either of these
blows, the “normal” light cannot be
on. No power switch is included
because the unit is to be on contin-
uously. With the sealed relays (im-
portant in dusty climates) and con-
servative design, long-time trouble-
free performance is expected. Two
views of the completed unit are
shown in Fig. 5.

Adjustment of the input level
control, R4, is not critical. Low-
level passages should indicate about
2 ua when a 50 ua meter is con-
nected to the DC test point. Rapidly
varying input levels will generate
about 3 to 5 ua.

Experience has shown that this
alarm does not sound even during
quiet passages of classical music; this
is due in part, of course, to the
30-second “thinking period.” Yet
a tone on a tape will cause the
unit to sound. By changing the
input plug connections, the device
can be made either bridging or
terminating. It may be tied onto
the modulation monitor if the sta-
tion is never run live. Line-level
input is required unless the input-
stage feedback is decreased. (Sen-
sitivity could be increased more than
20 db this way.)

Conclusion
This unit has proved quite valu-
able as a fault alarm for automa-
ted programing, but there are other con-
ceivable uses as well. For instance,
a unit such as this (or a modifica-
tion of it) could be used to free an
announcer from monitoring duties.
We at KBIM have been well pleased
with this alarm. It is hoped that the
information presented here will be
found useful by engineers at other
stations.
Translator Antennas
(Continued from page 13)

gain when the units are properly tied together, however.

The two quantities, then, that determine the maximum developable terminal voltage are the field strength and the area (perpendicular to the direction of propagation) over which that field strength prevails. If the area is large enough, wide spacing of the units may be chosen in order to achieve maximum efficiency per element used. If the area of highest field is quite limited, close-spaced elements (Fig. 3) may be necessary in order to get maximum terminal voltage.

It is important to note that a harness for connecting the yagis can be designed to fit any stacking arrangement, and therefore the antenna configuration should not be influenced by any certain harness design. Rather, antenna design should be decided entirely by where the units should be placed for best signal pickup. It is desirable to use a number of antenna units that is some power of two—1, 2, 4, 8, 16, 32, 64, etc.—although in special cases other numbers can be used. In the latter case, the harness and transformers become more complex, however.

After the antenna is successfully installed to give the desired performance, deterioration inevitably sets in. With the antenna array installed, it is difficult to remeasure the field intensity to determine what the performance at any one time should be. Therefore provisions should be made for a monitor dipole or yagi. Although the monitor element should be removable from the weather, its mount should be such that the antenna can be easily placed in its exact location. This location should be in as good a signal area as possible, but outside the immediate influence of the large array. The monitor-antenna terminal voltage and the array terminal voltage should be read and recorded. This information will help the operator to know when defects have occurred in the master array.

Transmitting Antenna Location

The factors involved in locating a television-translator transmitting antenna are quite different from those involved in locating a receiving antenna. In mountainous areas a site should be chosen only after weighing the following factors: (1) direct vision to the largest possible segment of the population to be covered (This usually requires considerable height), (2) simplest possible connecting system between transmitter and receiver, (3) year-around accessibility of the site, and (4) availability of commercial power. The transmitting antenna system should be located on the edge of a reasonably sharp drop-off, so usually there is only need for a 10 to 25° supporting pole. If there are trees in front of the antenna system, they must be removed, or the antenna array must be elevated above them.

Translators in Flat Country

In flat country, as the distance from the TV broadcast station increases, the signal strength slowly decreases. Finally a point is reached where direct pickup of the signal with an antenna near the ground is no longer possible. In this case a site is usually chosen on the edge of town nearest the broadcast station. A tower as tall as practical (150 to perhaps 600') is erected. The receiving antenna is located at the height that gives the strongest signal. Usually it is made up of quads (close-spaced yagis), since it is necessary to obtain the maximum voltage possible within the limitations of available mounting space.

The transmitting antenna is generally located at the top of the tower. The radiation is directed toward the service area, and the beamwidth, tilt, and null fill-in characteristics are designed to give optimum coverage.

Conclusion

It can be seen that the choice of location for TV-translator antennas is not as simple as might first be supposed. While it has not been possible to give an all-inclusive coverage of the subject, a method has been described for making most efficient use of the available signal.
Mobile ETV Studio
A mobile television studio that can be "plugged in" to a coaxial cable to trans- mit educational programs was demon- strated by Sylvana Electric Products, Inc., and the Darien, Conn., public school officials and students. This studio on wheels is believed to be the first used by a public school system. The studio measures 34 x 8 ft, and was designed for operation by the faculty and students of the Darien schools. Programs may be taped, filmed, or presented live.

FCC At Fall Conferences
A member of the FCC will participate in each of the eight NAB Fall Conferences being held this October and November, addressing the delegates during a joint radio-television session on the sec- ond day of each day-and-a-half meeting. It is the first time in several years that FCC members have been invited to par- ticipate. Conferences will be held at Oklahoma City October 19-20, Salt Lake City October 12-13, Los Angeles October 15-15, Des Moines October 18-25, New Orleans October 26-27, Detroit November 9-10, Albany (N.Y.) November 12-13, and Richmond (Va.) November 16-17.

Broadcasters' Entry Into CATV
In comments filed with the Federal Com- munications Commission, the National Association of Broadcasters said that broadcasters should be encouraged rather than discouraged in owning and operating community antenna television sys- tems. The NAB also felt that the Congress and the FCC should determine the role CATV is to play in the overall scheme of broadcasting before any limita- tions are placed upon ownership. This is necessary because "the problem is too big and too important for the piecemeal approach." Through the broadcaster's knowledge of public acceptance of pro- grams, he can bring program balance to CATV offerings—and encourage a high standard of technical performance com- parable to that of broadcast transmissions.

Division Shift
General Electric's Visual Communi- cations Products Business, which manu- factures and markets color and mono-

chrome television broadcast equipment and closed-circuit systems, has been transferred from the company's Military Communications Dept. to the Radio and Television Div. With the shift, all G-E business components focused on either end of the consumer electronics and home entertainment markets are now part of the same division.

Satellite Paper Wins Award
A technical paper on how glints of sunlight from the Telstar communications satellite were used to determine the spin axis and rate of spin won the 1964 Jour- nal Award of the Society of Motion Pic- ture and Television Engineers. Authors of the paper are Dr. J. S. Courtney- Pratt, Dr. John H. Hett, and J. W. Mc- Laughlin, all of Bell Telephone Laborato- ries. The winning paper describes how glints of sunlight from the satellite were spotted with a computer-aided telescope at distances up to 3700 nautical miles. By timing the flashes from a special ar- ray of mirrors on the satellite, the scientists were able to determine the spin data. Honorable mention went to Dr. William C. Livingstone for his paper. "Resolution, Capability of the Image- Orthicon Camera Tube Under Non- standard Scan Conditions," which de- scribes special modifications that increase the resolving power of image-orthicon TV camera tubes for use in astronomy and other scientific observation.

New Name
All Eastman Kodak Co. magnetic sound tapes marketed through electronic supply houses, audio departments, and similar outlets will hereafter be sold under the name Kodak Sound Recording Tape. The tapes will be identical to those previously sold under the Eastman brand name, except for new type designations and increased information printed on the back of the tape.

Continued Growth In Associations
Membership in the 47 state broadcasters' associations now stands at 3982—an increase of 393 since 1962 and 978 since 1959. The figures were revealed in a recently-completed NAB survey. Associations now represent 72% of radio and 76% of television stations in their respective states.

INTERNATIONAL
Communication TV Broadcasting Station for Erlau and Obernzell
Since October 1, TV stations at Erlau (channel 5, 10 watts) and Obernzell (channel 9, 6 watts) have broadcast Schedule 1 of the German TV Network and the regional broadcasts of the Bayer- ischen Rundfunk (Austrian TV Network). Both TV locations are east of Passau. The station at Erlau is in the vicinity of the German-Austrian border, and the station at Obernzell is beyond the border, in the Austrian municipality of Estern- berg. This is primarily an attempt at ad- vancement; the convenience of the loca- tions is yet to be justified.

TV for Venezuela
A new 5-kw television transmitter re- ceives a final check-out before shipment to Caracas, Venezuela. The General Electric high-channel VHF transmitting, together with G-E studio equipment and directionalized zig-zag antenna, will be used for Caracas' channel 11, the sixth TV station in the Venezuelan capital city. Inspecting equipment during factory test prior to its South American trip are James T. Tillman, Jr. (left) of G-E, and Amable Espina, owner and operator of Channel 11. Mr. Espina is the former general manager of Radio Caracas TV, a privately-owned broadcasting firm and one of the largest networks in Venezuela.

260-Year-Old Tube
The engineering personnel of Radio Liberty's transmitter site at Lamprecht, Germany, have erected a monument hon- oring B18, a transmitter tube that "lived" 39,459 hours instead of its life expec- tancy of 7000 hours. This corresponds to a human life span of 260 years. Radio Liberty handled around-the-clock broadcasts by privately sponsored net- works to the Soviet Union from stations in Spain, Formosa, and at Lamprecht. Radio Liberty was the first American broadcaster to use this type of water- cooled, 50,000-watt tube.
PERSONALITIES

John L. Zimmer, former senior television-radio producer for Cunningham & Walsh and veteran of 14 years in commercial production and program supervision for leading New York agencies, has joined the Broadcast Department of the Griswold-Eshelman Co. His addition to the staff of the Cleveland-based agency is part of a program of major expansion of the company's 20-year-old commercial broadcasting department. Zimmer entered the broadcasting field in 1936 with Time, Inc., and was assistant producer of the March of Time in both radio and newsreel versions. As television opened up after World War II, he combined his wartime experience as an Army Air Corps advanced flight instructor with his background in motion pictures to produce televised flight training programs for the Office of Naval Research.

STANICL-HOFFMAN CORP.
- Minifile Professional Battery
- Portable Recorder, Mono Stereo, Synchronous
- Magnetic Film Recorders, Single and Multi-Channel, 16, 16½, 30 RPM
- Broadcast Logging Recorders, Slow Speed, Single Channel to 32 Channels
- High Speed Tape Duplicator; for Full, Half and Two Track Stereo Duplication
921 N. Highland Ave., Hollywood 38, Calif.

Robert C. Troup has been appointed Vice President-Sales for Acme Film Laboratories' new East Coast offices in New York City. Troup, a graduate of the University of Illinois and former Marine Corps captain, is well known in tennis circles and participates extensively in the activities of Big Brothers, Inc.

PROPERTY TRANSACTIONS

Gene Shumate, president of the Snake River Radio and Television Co., Inc., of Jackson, Wyoming, announces the sale of assets of radio station KSCT, subject to FCC approval, to Max Lindberg and Jack Schroeder of Bettendorf, Iowa, and Mr. Lytton of Davenport, Iowa, for a total consideration of $40,000.

The sale of radio station WIKB, Iron River, Mich., has been announced by Mr. Edwin Phelps, Sr., president of Iron County Broadcasting Corp., sellers. Purchaser is Mr. Eugene A. Halter, who also owns and operates radio stations WATW, Ashland, Wis., and WXMT, Merrill, Wis. WIKB is a full-time station with 1000 watts day and 250 watts night, on 1230 kc. Total consideration was $70,000.

"Buffalo" Bob Smith of Howdy Doody fame enters radio-station ownership through his purchase of Radio Station WQDY, Calais, Maine, from John H. Vondell, Jr., for $110,000.00, subject to the approval of the FCC.
New! LANG PROGRAM EQUALIZER

Surpasses All Others...

In design, performance and versatility! The new LANG PROGRAM EQUALIZER incorporates the finest features found in quality equalizers plus these

Exclusive Features —
Eight low boost shelf frequencies • Three low droop shelf frequencies • Eight high boost peak frequencies • Five high droop shelf frequencies • Frequency select switches and equalization controls for all boost and droop functions • All controls and switches may be used simultaneously • Low frequency peak boost by use of boost and droop controls • Equalization "on" lamp indicates when equalization is taking place and indicates plate power supply is functioning • Engraved stainless steel panel blends harmoniously with other equipment.

For complete details and new Lang Catalog write:

LANG ELECTRONICS INC.
597 FIFTH AVE., N.Y. 17

Circle Item 32 on Tech Data Card

NEW PRODUCTS

Diode Tester

Before any diode or rectifier is finally soldered into a circuit, it should be checked for a short, open, or improperly marked polarity. The Model ID-1017 diode tester, built by Henry Francis Parks Laboratory, is strictly a "go-no-go" testing unit. With very little practice, an operator can test a diode or rectifier every ten seconds. The load placed on the unit being tested is that of the #47 indicator lamp used (150 ma at 6.3 volts, or less than one watt), so any diode rated at one watt or more can be tested with it. Price is $19.95.

Circle Item 38 on Tech Data Card

SPOTMASTER

EQUALIZED TURNTABLE PREAMPLIFIER

The Model TT-20A is a compact, low distortion, transistorized turntable preamplifier for VR cartridges, with built-in NA! equalization. Design ingenuity reduces residual noise level to better than .6 db below rated output. Small current requirements permit 6 volt dry cell battery operation, eliminating AC hum worries. Response, 30,000 cps ± 2 db...output -12 dbm, 600 ohm emitter follower...distortion under 1% at double rated output...size, 5¾ x 2½ x 5¾". Priced from $46.50: transformer output and power supply available. Also available as flat amplifier Model BA-20A. Write or wire for complete details.

SPOTMASTER

BROADCAST ELECTRONICS, INC.
8800 Brookville Road
Silver Spring, Maryland

Circle Item 33 on Tech Data Card

Tape Transport

A three-speed tape transport, designed by Metrotech, Inc., Mountain View, Calif., specifically for the broadcast industry, can be operated manually or from a remote location and is suited for use in program automation systems. The two-direction transport, known as the Model 1050, handles 10½" reels and has a solenoid-operated capstan with tape-cartridge mechanism having fully transistorized electronics. Choice of three cartridge sizes provides playing time from a few minutes to four hours. During playback, a 20-cps control tone automatically changes the slides in precise synchronization. A time-differentiated pulse-length discriminator in the playback control circuit stops the playback unit at the end of the program so that synchronization between sound and slides is always maintained. The entire unit may be started automatically or by remote control. Program material or the slide-change signal may be altered independently without affecting the adjacent channel. The tape cartridge is available in three sizes for 300', 600', or 1200' of standard ½" lubricated tape. The "Carousel" projector is equipped with local and remote (manual) slide-change and focus controls and built-in facilities for setting the change cycle for 5-, 10- or 20-second intervals, and handles up to 80" x 24" and 24½" x 24½" slides. A 500-300 watt blower-cooled lamp is used in conjunction with a 5" f/3.5 lens. The projector has a 3-watt power amplifier and speaker.

Circle Item 39 on Tech Data Card

Automatic Sound-Slide Projector

A new and fully automatic synchronized sound-slide projector is being offered by the Amplifier Corp. of America. This unit combines a 500-300 watt Kodak "Carousel" projector with an automatic

STEP PREVENTS SWITCHING ERRORS AT

WTVR, KNTV, KHOL, CBXT, WAGA, XETV

STEP automates video and audio switching during station breaks. The price? Only $6900. If you are interested in TV automation, get further details on STEP.

CHRONO-LOG CORP.
2581 WEST CHESTER PIKE, BROOMALL, PA.

Circle Item 34 on Tech Data Card

AREA CODE 215
ELgin 6-7771
automatic cycling and recycling. It is equipped with head mounting plates, which provide the customary azimuth and height adjustments and will accept any of the commonly used audio heads.

Projector Speaks Thirteen Tongues

Audiences this past summer in the 500-seat auditorium at the World's Fair Sermon from Science pavilion watched sound movies showing the interrelationship of science and religion and heard a perfectly synchronized commentary in French, Japanese, Norwegian, Swedish, Spanish, Italian, Mandarin, German, Korean, Armenian, Danish, Finnish, and Greek, as well as English. All these languages are spoken by a Stancil-Hoffman S-7 Reproducer which plays back (five at a time) the commentaries pre-recorded on 16-mm magnetic film. It is mechanically linked to a “Graflex 16” sound motion picture projector which shows the picture and picks up the optical main English language, music, and sound-effects sound track, which is played at the screen. A gear box reduces the projector's 1440 rpm to the 900 rpm required by the reproducer. This mechanical link keeps pictures and languages in perfect sync, so the program does not turn into a modern-day Babel.

Low-Impedance Ceramic Microphone

This new line of ceramic microphones from Sonotone Corporation is especially designed to match low-impedance characteristics of communications units now on the market. Sonotone's new microphones cover a range of input impedances (low and high) from 10,000 ohms.

The greatest contribution we've made towards upgrading WKFM

Frank Kovas, President
WKFM, Chicago

![Shure SE-1 Stereo Transcription Preamplifier](image)

I'll have to admit that nothing equals the performance of the Shure SE-1 for stereo multiplexing.

What are the certified specifications? The SE-1 has plenty of gain to feed a 600 ohm line at +4 or +8 dbm from a magnetic stereo phonograph cartridge and still provide for peak power. (1.2 mv input gives at least +4 dbm output.) Balance is provided with separate gain controls for each channel. True RIAA equalization with ±1 db 30 to 15,000 c.p.s. of RIAA curve. Optional flat position for measurement and calibration in the studio. Separate high and low response trimmers for each channel with NO interaction between channels, or between high and low end. Hum and noise level at least 64 db below output level. Channel separation better than 37 db between 50 and 10,000 c.p.s. Distortion is under 1% at +15 dbm 150 or 600 ohms output impedance. Compact size (7" x 3" x 11" deep). Convenient slip-in mounting for easy installation. Separate power supply reduces panel space requirements.

Priced at only $295 net. Write for technical data sheet: Professional Products Division, Shure Brothers, Inc., 222 Hartrey Avenue, Evanston, Illinois.
SAVE TIME
Identifying, Evaluating, Cataloging, Inspecting 16mm Motion Picture Film on the moviola LIBRARY READER
- View at up to five times sound speed.
- View at governed sound speed.
- Twelve sided prism, high quality, projection system.
- Rapid rewind without switching reels.
- Performs all functions forward and reverse.
- Available with or without sound.

5539 Riverton Ave., North Hollywood, Calif.
Telephone: 877-2173
Cable Address: Moviola, North Hollywood, Calif.

Circle Item 29 on Tech Data Card

ELIMINATE DOWN TIME
STAY ON THE AIR WHEN LINES GO DOWN. THE MOSELEY MODEL PCL-28 STUDIO-TRANSMITTER LINK ELIMINATES HIGH MONTHLY WIRE CHARGES AND DOWN TIME DUE TO STORMS OR ACCIDENTS. IT IS MODERN, POSITIVE, AND DEPENDABLE, AVAILABLE THROUGH MOST MAJOR BROADCAST EQUIPMENT MANUFACTURERS, OR WRITE

MOSELEY ASSOCIATES INC.
P. O. Box 3192, Santa Barbara, Calif.
Telephone — Area Code 805
987-0424
Circle Item 31 on Tech Data Card

through 5 megohms, with frequency responses of 200 cps to 9000 cps for speech and 50 cps to 12,000 cps for music now available; open-circuit sensitivity is up to — 49 db.

Circle Item 45 on Tech Data Card

New Line of Connectors
This new line of one-piece TIMATCH connectors with its patented "Coil-Grip" cable clamp can be installed quickly and easily, and the connectors are reusable. Repeated assembly and disassembly operations do not impair either the RF or physical characteristics of the connector or the cable. TIMES Wire & Cable considers the new connectors a major advance in the connector field. TIMATCH connectors fit all metal-tube-sheathed coaxial cables.

Circle Item 41 on Tech Data Card

Control Cables
To their present line of control cables, Belden Mfg. Co. now adds 12 new types as stock items. Specifications range from 4- to 25-conductor, 22 to 14 gauge, and 200 to 600 WVDC. These cables were designed specifically for control and power supply of electrical and electronic equipment, and are IPECA color coded.

Circle Item 42 on Tech Data Card
A new series of fourteen 8" power fans has been announced by the Dynacool Mfg. Co., Inc., West Hurley, New York. The low-cost units, which deliver from 200 to 1000 cfm, are designed for commercial cooling applications requiring high air-moving efficiency coupled with compactness. They can be used for cabinet flushing of business machines, electronic equipment, air conditioners, communications equipment, and power supplies. All fans in the new line have UL listed motors and can be furnished with either shielded ball bearings or sleeve bearings. Ball-bearing versions are permanently lubricated for the life of the fan; sleeve-bearing models are factory-lubricated for the first year, but must be oiled every six months thereafter. Drive motors are available in single- or three-phase, for 50-60 cps, at 115 or 230 volts. The fans mount over a 9/16" diameter opening.

Circle Item 46 on Tech Data Card

Sealed Amplifier Module

A transistorized plug-in amplifier measuring 1 1/16" square by 3 1/4" long, with an 11-pin base, has been placed on the market by Soundcraft Industries, and is called the UA101 unity amplifier. Electrical specifications are: gain—40 db (adjustable by external resistor); input impedance—10K ohms bridging impedance; operates from low-impedance source; operates into 150 ohms or more; output power—3 dbm, .2% distortion; input power—24 volts DC at 10 ma; noise better than 80 db below +4 dbm output; frequency response within .5 db, 20-15,000 cps; weight 6 ozs. Units may be cascaded for increased gain. Cost is $21.95.

Circle Item 47 on Tech Data Card

The Blonder-Tongue Observer 2 is a broadcast quality vidicon viewfinder camera. It's extremely light and portable, making it ideal for remotes. Also, picture quality is so close to that of an image orthicon, you can use it for up to 80% of your studio work.

You can buy the Observer 2 for a fraction of the cost of an image orthicon—$4160. But, the biggest saving is in operating costs. For example, you can buy seven vidicon tubes for the price of a single image orthicon—and each vidicon lasts twice as long.

The B-T Observer 2 has an 8" viewfinder screen, a 4 lens turret, and reliable solid-state circuitry. To arrange for a demonstration by your local Blonder-Tongue representative, write:

BLONDER-TONGUE
9 Alling Street, Newark 2, N. J. • Canadian Division: Beno Television Assoc., Ltd., Toronto, Ontario

Circle Item 37 on Tech Data Card
ENGINEERS' TECH DATA

AUDIO & RECORDING EQUIPMENT
50. AKG—Technical specifications, application notes, and other information on microphones and microphone accessories are provided in brochure.
51. ATLAS—Catalog No. 564 contains illustrations and specifications on PA speakers and microphone stands for commercial and industrial installations, and other products.
52. BROADCAST ELECTRONICS—Packet contains specifications and prices for "Spotmaster" tape cartridge systems.
53. CINE SONIC—Data sheet describes rental service which supplies background music prerecorded on 7", 11 3/4", and 14" reels of tape or in cartridges.
54. CONCERTONE—Four-page brochure gives information on Series 800 "Reverse-O-Matic" stereo tape recorder.
55. EASTMAN KODAK—Folder 814 gives information on high-speed sound-film system. Brochures on recording film and magnetic tape are also available.
56. FAIRCHILD—Information on a compact console Model 803 for recording and broadcast production centers, including compression and equalization.
57. INTERNATIONAL RADIO AND ELECTRONICS—Literature tells about solid-state SS700 Series recorders.
58. MAGNASYNC—Catalog covers motion picture sound equipment, magnetic tape, film transports and degaussers, "Chronovoice," communications recorders, and electronic components.
59. MIDWESTERN—Operating and maintenance manual for Magnecorder Model 1021 magnetic tape recorder.
60. MOSLEY—Literature on Dual Model PCL-2B studio-transmitter link for FM stereo.
61. NORTRONIC—Engineering bulletin CEB No. 2 explains factors which should be considered when designing a 375ips tape system; bulletin CEB No. 9 gives engineering data on silicon-transistor recording amplifier.
62. QUAM-NICHOLS—General catalog No. 84 listing over 30 speakers and transformers for sound system applications.
63. ROANWELL—Four-page brochure describing complete line of headset microphones for TV and radio broadcast-production communications.
64. SAKTON—Sample mailing box for sending 3" tape reels through the mail.
65. SENNHEISER—Bulletin and technical information on Model MD 221 dynamic studio microphone.
66. SPARTA—Literature on broadcast turntables and accessories.
67. UNIVERSITY—"Technology" gives information on selecting speaker systems.
68. VIKING—Specification bulletins describe Model 96 tape transport system, Model 38 cartridge handler, and Model 88 stereo compact.

COMPONENTS & MATERIALS
69. ALLIED—1965 Industrial Catalog No. 650.
70. AMPEREX—Condensed catalog lists receiving and transmitting tubes.
71. BOSTON WIRE—Two brochures list and provide detailed data on television cable assemblies and connectors.
72. EIHE—Latest information on tester and stud-mount diodes.
73. PRECISION RESISTOR—Recently published catalog covering complete line of wirewound resistors.
74. SOLITRON—16-page catalog on silicon rectifiers and data sheet on solid-state tube replacements.
75. SWITCHCRAFT—Product bulletin No. 148 describing new QG audio connector, available with 3 or 4 contacts, brass or stainless-steel finished.

MICROWAVE DEVICES
76. SURFACE CONDUCTION—Bulletin on microwave-by-wire (G-line) for long-distance, broad-band transmission.

MOBILE RADIO & COMMUNICATIONS
77. MOSLEY—Literature describes Citizens-band antennas.
78. ROUND HILL—Booklet on "Page-Mate" RP-50 private paging system.

POWER DEVICES
79. HEVI-DUTY—Bulletin No. T-12 describes line-voltage regulator that uses saturable-core reactor.
80. LECTRONTECH—Separate bulletins detail solid-state modular power supplies and meter-protective devices.

REFERENCE MATERIAL & SCHOOLS
81. CLEVELAND INSTITUTE—Booklet describes courses in electronics, including those for broadcast engineering and FCC license preparation.
82. RIKER—New brochure on how to assemble a custom video processing amplifier with all transistor video modules.

STUDIO & CAMERA EQUIPMENT
83. CBS LABS—Literature on Audionox Automatic Level Controller, Volumax Peak Controller, and complete line of professional test records.
84. CLEVELAND ELECTRONICS—Data concerns deflection yoke and alignment coil for 3" image orthicons.
85. DYNAIR—Product bulletin No. 80A describes Series 3000 solid-state, modular video distribution amplifiers; bulletin No. 81A describes solid-state, modular video switcher-loader.
86. ZOOMAR—Bulletin contains descriptions of zoom lenses and remote-control systems for television cameras.

TELEVISION EQUIPMENT
87. INTERNATIONAL NUCLEAR—Illustrated price list on all-transistorized video equipment.
88. MIRATEL—Information on complete line of tube and transistorized monitors.
89. VITAL INDUSTRIES—Data sheets describing video distribution amplifier Model VI-10A and pulse distribution amplifier Model VI-20.

TEST EQUIPMENT & INSTRUMENTS
90. BALLANTINE—12-page catalog on AC/DC voltmeters, calibrators, and laboratory voltage standards.
91. SECO—Color folder includes data on color-box generators, tube testers, and semiconductor testers.
92. SIMPSON—Bulletin on over 1325 stock sizes and types of panel meters; also information on other types of test equipment.

TRANSMITTER & ANTENNA DEVICES
93. AIR SPACE—Eight-page brochure describes and pictorially illustrates a new safety device to prevent falling when climbing any type of structure.
94. CORNELL-DUBILIER—Offers 20-page TV-FM reception booklet and brochure covering antenna rotors.
95. ELECTRONICS MISSILES & COMMUNICATIONS—Brochure on instructional TV transmitters Model 25-100 Series.
96. GATES—Latest information on dual-polarised FM antennas and new FM-10G 10-kw FM transmitter.
97. MARTI—Brochure and specification sheets on radio remote pickup equipment for operation in the 26-150 and 450 mc bands.
98. MCMARTIN—Information on Model TBM-2500 RF amplifiers for remote operation of frequency and modulation monitors.
99. RUST—Descriptive literature gives details of transmitter automatic logging systems.
100. TELEMET—Latest catalog covering complete line of video products.
101. TELETRONIX—Specification sheets for 250, 1000, 3000, and 5000 watt FM broadcast transmitters.
ACOUSTICS
Recording studio, for .. Feb 12

AIRCRAFT APPLICATIONS
Helicopter news rectangles Aug 34
Portable broadcast system Jan 18

AM
Allocations and assignments Feb 36
Application of "freeze" June 23
Blanket contour Aug 52
Class IV power increase WB Nov 32
Clear channels WB Jul 21
Daytime hours WB Apr 28
Prescriptive operation WB May 21
Rule, "10%" CE Sep 48

ANTENNAS
Bandwidth correction Jan 32
Dec decal Aug 34
Ice removal manual Sep 37
Matching-network design Jan 12
RF arcing Nov 35
Voice-current relationships Jan 13

ANTENNAS, FM
SCA, for Mar 17
Vertical polarization Aug 14
WB Oct 26

ANTENNAS, RECEIVING
SCA, for Mar 17
Vertical polarization WB Oct 26
UHF antennas —characteristics Jan 14

ASSOCIATIONS AND CONFERENCES
AFA 16th Fall Conference, CE preview of Sep 28
BROADCAST ENGINEERING
tours the 1964 NAB Convention Exhibits May 16
CA and Pay TV Oct 66
IEEE Broadcasting Symposium WB Sep 22
ITC Conference, 1964 Jan 22
NAB Broadcasting Engineering Conference, 18th
—agenda Mar 48
National Electronics Conference, 20th Oct 20
SMPE Technical Conference, Fall 95th Mar 55
SMPE Technical Conference, 96th Oct 20

AUDIO EQUIPMENT
Amperage measurements Dec 53
Background-music system Sep 46
Console and switcher Sep 16
Crossbar-type switcher Aug 18
Fader, curved linear Apr 30
Mixers, dual-input Oct 40
SCA, for Mar 16
Signal fault alarm Dec 14
Switcher, push-button Dec 16
Turntable preamplifier Jan 39

AUTOMATION
Customized system for radio Jun 10
Fault alarm Dec 14
Television, for Oct 45

CAMERA EQUIPMENT AND OPERATION
Amplifier, transistorized Jun 20
Cam-operated head Oct 68
Cylindrical, miniature Oct 67
Focus-current meter EE Oct 56
Kinesthescope Oct 70
Mobile platform Aug 13
Movement cues Oct 9
Positioning Oct 11
Selective vision Oct 11
TV cues Oct 58
TV techniques, introduction to Oct 10
Vidicon lenses May 65
Zoom lens Sep 46

CARTRIDGE TAPE EQUIPMENT AND OPERATION
Adjustment of transport Nov 36
Cleaning of transport Nov 36
Clock for tape recording SEp 38
Cue tone for marking spot end EE Sep 38
Equipment, for Apr 24
Head alignment jig EE Nov 48
Installation Apr 26
Irrigation of transport Nov 36
Maintenance Nov 36
Motor driving in transport EE Aug 42
Playback Apr 32
Recording procedure Apr 26
Standards WB Jul 22
Timing, automatic EE Jun 14
Transport hold-in problems EE Oct 57
Winding of tape EE Jul 36

CATV
Distribution amplifier Jul 49
FCC control of WB May 28
WB Aug 21

COAXIAL TRANSMISSION LINE
Flexible coax ratings Jan 36

COLOR TV
Subcarrier frequency measurements Apr 15
World's Fair studio Jul 44

COMPONENTS AND MATERIALS
Cable, coaxial Jul 44
Connector, one-piece Dec 56
Cord, cable Dec 56
Dissipator-retainer, transistor Feb 48
NAB product preview, 1964 Apr 43
Silicon rectifier to replace 816 Jul 46

CONSOLES
Emergency booth, for May 22
Music pick-up, for Feb 42
Semi-automatic, for Apr 20
Standby Jul 28
Tap inputs for EE Jun 34
U-shaped Jul 35

CONSTRUCTION AND MODIFICATION
Adjustable T-pad transmission set Sep 14
Audio switching system Dec 16
Automatic program logger Oct 12
Camera amplifier, transistorized Jun 20
Carrier interruption system EE Jan 29
Console, standby Jul 28
Cuing device for video recording Feb 16
Disc lacquer, for recording microgroove recording Sep 24
Fans, equipment-cooling Dec 57
Fixed T-pad transmission set Sep 15
FM transmitter for remote pickup May 14
Mixers, transistorized dual-input Oct 40
P60 & P75 recorders EE Apr 42
Power corder systems BTA-1R EE Dec 32
Rear-view projection system Oct 14
Signal fault alarm Dec 14
Switcher, remote Sep 16
Tape speed change, 15/16 ips from 1 7/8 Oct 12
Transmitter plate-primary failure alarm Aug 24
Video processor switch panel May 42

CONTROL ROOM
Appearance considerations in design Jul 32
Design of Jul 32
Radio Oct 44
Television Oct 42

DESIGN
Antenna matching networks Jan 12
Console, standby Jul 28
Directional antenna systems May 10
Matching and isolating pads May 12
Motor control rooms Jul 32
Semiautomatic control table Apr 20
Translator antenna system Dec 13
Video microwave systems Oct 30
VTR cuing device Feb 16

DIRECTIONAL ARRAYS
Adjustment Nov 16
Bandwidth corrections Jan 12
Common-point Jan 10
—impedance Nov 17
—susceptivity Jun 12
Correction (minimum power) Jun 6
Current ratios Mar 22
Design May 10
Driving impedance Jun 11
Matching networks May 56
—design of Jan 12
Monitor points May 64
Phased array strength, high CE Jun 12
Operation Jun 10
Phase monitor Jan 39
Phase readings Oct 20
Phase shifters May 7
Phasor and tuning unit Mar 20
Plan layout May 36
Power divider May 7
Sampling loops Mar 20
Tuning Mar 20
Voltage and current Jan 13

DISC RECORDING AND PLAYBACK
Compared to cartridge tape Apr 24
Laten modulation for microgroove Sep 24
Record cleaner Sep 38
Turntable combination Apr 51

EMERGENCY OPERATIONS AND EQUIPMENT
Generators May 20
Light blinker, warning Mar 58
Maintenance May 24
Primary failure alarm system Aug 24
Power distribution May 24
Preparation for Nov 42
Reennuements CE Nov 25
System for AM, FM, TV May 20
Tuning capacitor, antenna EE Jul 36

ENGINEERING THEORY
Antenna Engineering Handbook BR Jun 38
Antenna matching network design Jan 12
Basic Electronics for Engineers BR Aug 51
Design of networks May 12
Directional antenna design May 10

EQUIPMENT AND DEVICES
(STATION-BUILT AIDS)
Audio oscillator, transistorized microwaves Oct 63
Light blinker, warning Mar 58
Temperature gauge, electronic May 59
Transmitter monitor lights EE Feb 38
Tube socket adapters for coax connections EE Feb 38

ETV
Educational television center Jun 45
Satellite installation Oct 64
Video recording in Oct 18

FACILITIES
Air cleaning, electronic Nov 26
Directional antenna, for May 56
Emergency booth May 22

December, 1964

59
FCC
See also SPECIFICATIONS for ALL STE ADAMS.
Aeronautical stations on 108 mc...........WB Oct 35
Allocations and assignments........Feb 36
CATV. WB May 28
--microwave channels......WB Sep 21
Fines and revocations........WB Aug 21
--notices........WB Sep 22
Licensees
--3rd class........Jan 30
--Maintenance logs........Jan 6
Mobile FM/TV enforcement........Apr 13
Multiplc ownership rules........WB Aug 22
Nonbroadcast television........WB Aug 21
--control........WB Aug 21
--Rule, "108%........CE Sep 48
--Nov 6
Subscription television........WB Jul 21
Vertically polarized FM........WB Aug 22
FM
Allocations
--assignments........Feb 36
--changes........WB Nov 31
--Harmonic interference........Jun 23
--Measurement of frequency........Apr 14
Program service........Jan 30
Single operation........WB Aug 21
Tower height and power........WB Apr 27
Vertical polarization........WB Aug 22
FCC rules on........WB Apr 27
FREQUENCY MONITORS
Calibration................Apr 6
Maintenance................E Jan 29
Operation................Nov 11
Dec 43
INDUSTRY FEATURES
Allocations and assignments........Feb 36
BROADCAST ENGINEERING
tours the 1964 NAB Convention Exhibits........May 16
Early Evolution of Television, The........Jul 14
Network Coverage of a Tragic Weekends........Feb 20
Shape of Broadcasting to Come, 1964........Apr 34
INTERNATIONAL BROADCASTING
Early Evolution of Television, The........Jul 14
Frequencies for space services........Jan 28
ITU Conference, 1964........Jan 22
NAB Conference on Broadcasting Corp operatons........Dec 42
LEVEL DEVICES, AUDIO
Accessories........May 40
Compressors, use of........Dec 19
Limitors, use of........May 40
Use of........May 40
Zero-set control adjustment (RCA)........Mar 60
LIGHTING
Elaborate sets........Dec 22
Equipment........Dec 18
Facilities, requirements........Dec 19
Guide........Dec 18
News set........Dec 20
Panel show set........Dec 20
Principles of........Dec 19
Setup........Dec 19
Terminology........Dec 18
LINE VOLTAGE
High correlation for........E Apr 42
Regulation........Jul 10
Regulators
--induction........Jul 11
--step........Dec 10
--variable autotransformer........Jul 11
Transformers for correcting........Jul 6
LOGS AND LOGGING
Automatic logging of AM directional installations........CE Aug 52
Maintenance, of........Jan 6
Program logger, automatic........Sep 12
STL, for in TV........Oct 22
Translation of, of........May 30
LICENSES
AM application "freeze"........Jun 23
Display of........Oct 56
Filing fees........WB May 28
Third class endorsement
--element 1........Mar 30
--element 2........Mar 32
--element 9........Mar 52
--objectives........Mar 30
--radio relations practice........Mar 32
--study material........Jan 30
--Mar 30
MAGNETIC RECORDING
See also audio, video, and tape
Program logger, automatic........Oct 12
Television tape techniques........Apr 18
MAINTENANCE
Alert receivers........Nov 11
Care and feeding tape units........Nov 36
Equalizers........Nov 10
Frequency, of................E Jan 29
--calibration of........Apr 6
Logs........Jan 6
Meters........EE Oct 52
Oscillometric TV test equipment..................Mar 60
Shortwave receiver........E Jul 36
Speed variation in Ampex 350 recorder........EE Dec 48
Television transistors........Mar 30
MATCHING NETWORKS
Bridged-T........Jun 38
Directional antenna, for........May 56
Dip connections, for........May 13
--minimum-loss........Jun 39
Isolating pads, and........May 12
Symmetrical........May 13
Jun 14
MEASUREMENTS
Field strength, for remote control........CE Sep 48
Frequency........Apr 14
Impedance and inductance........EE Nov 48
Line impedance........Aug 26
Modulation........Apr 15
Vertical polarized radiation........Aug 15
Video signal to noise ratio, STL........May 46
METERS
Elapsed-hour........Feb 46
Focus-current........EE Oct 56
Maintenance of................EE Oct 52
Miniature, stackable........Oct 68
Stylus weight........Feb 47
MICROPHONES
Microphones........BR Jul 50
--music pickup on location, for........Feb 30
--usage........Nov 10
MICROVACINE
Antenna alignment........May 44
Bandwidth, video........Oct 30
Broadcast noise........Oct 30
CATV service........WB Sep 21
Cross-channel link........Sep 44
Differential........Oct 30
Fade characteristics........Oct 30
--margin........Jun 42
Ferrite isolators........Jun 18
Hum in................Oct 30
Interference........Nov 22, 22
Klystrons........Jun 16
Low-frequency response........Oct 30
Low-pass filter........Nov 20
Multitap noise........Nov 20
Passive reflector........May 52
Phase distortion........Jan 30
Plane-polarized antenna........Jan 36
Pre-emphasis, video........Nov 24
Solid-state switch........Mar 71
Test equipment........Jun 18
Transmitter and receiver locations........May 44
TV camera antenna........Sep 47
TV system in Egypt........Jan 31
Video bounce........Nov 22
Video system specifications........Oct 30
Waveguide, open........May 52
MISCELLANEOUS
B-E consulting author staff........Jan 31
Copy-tape dispatcher........Nov 54
Electronics at the World's Fair........Jul 12
National defense emergency authorization........May 20
North American Radio-TV
Station Guide........BR Sep 30
Satellite-dealer cooperation........Jun 6
MIXERS
Dual-input, transistorized........Oct 40
Tape inputs, for........EE Jun 34
MOBILE
Custom-designed TV unit........Aug 12
Monitoring unit........Apr 13
Mouse motor of........Mar 18
Video, chopper for checking........Jun 26
MONITORS
Calibration........Nov 12
Frequency, operation of........Dec 44
Maintenance........Dec 46
Modulation, operation of........Dec 44
Stereo FM........Jun 24
Use of........Aug 6
Video pictures........Mar 72
Video, stabilized........Jul 47
MULTIPLYING, Monitoring, remote control........WB Nov 32
Review of principles........Sep 12
SCA subchannel........Sep 13
Subchannel, 58-kc........Sep 13
Trouble sources in........Sep 42
NEWSHLM
Automatic sound-slide projector........Dec 50
Cleaning film ultrasonically........Nov 34
Department at KCRA........Aug 38
Processor for magnetic-striped film........Nov 52
Mixer for camera amplifier........Oct 40
Remote view projection........Oct 14
PADS
Adjustable-T........Sep 14
Bridged-T........Jun 38
Dip connections, for........May 13
--minimum-loss........Jun 39
Fixed-T........Sep 15
Matching and isolating........May 12
Symmetrical........May 13
Jun 14
PHASE
Cancellation of stereo signals........Jun 36
Check with scope........Feb 6
Distortion in video microphone........Oct 30
Monitor, antenna........Jan 39
Shifters for directional antennas........May 57
PORTABLE EQUIPMENT
Remote amplifier used with recorder........EE Dec 48
Tape recorders........Dec 36
Transistorized TV system........Mar 67
Video recorder........Jan 37
Oct 16
POWER SUPPLIES
Emergency generators........May 20
Fuses........Nov 46
Rectifier columns, high-power........Oct 77
Thermoclectric generator........Aug 10
PROOF OF PERFORMANCE
Frequency response........Feb 28
RADIATION AND PROPAGATION
Antenna farm........WB Nov 31
SEMICONDUCTOR APPLICATIONS
Bias supply for camera preamp...Jun 22
Camera amplifier ...Jun 20
Chopper for modulation checks...Jun 26
Microwave switch ...Mar 71
Silicon rectifiers in audio ...Apr 16
power supplies ...Apr 10
Thermoelectric generators ...Aug 10
SPECSIFICATIONS AND STANDARDS
Field-strength curves ...Apr 30
Audio limiting ...WB Apr 28
for TV ...WB Sep 21
Harmonics ...FWK Jun 23
NARBA ...CE Oct 71
National defense emergency authorization ...May 20
Prearranged relay for AM stations ...WB May 27
Remote pickup frequencies ...Sep 21
SIMPL color standards ...Aug 18
Tape cartridge ...WB Jul 22
TV and land-mobile service ...Jun 24
Video microwaves ...Oct 30
VTR cabling ...Feb 26
White areas ...CE Oct 71
STEREO
Monitors ...Jun 24
Phased cancellation of tape signals ...Jun 36
STL Antennas ...Oct 24
alignment ...May 44
Dual-channel ...Oct 26
Equipment installation ...Oct 22
Flooring requirements ...Oct 22
900-mc. ...Oct 23
Passive reflector ...May 52
Receivers, equipment ...Oct 24
Switching equipment ...Oct 26
Video signal-to-noise measurement ...May 46
STUDIO
Acoustics for recording ...Feb 12
Elaborate sets, lighting ...Dec 22
Lighting guide ...Dec 18
Maintenance ...Nov 10
New sets, lighting ...Dec 20
Panel show set, lighting a ...Dec 20
SWITCHING EQUIPMENT
Audio crossbar ...Aug 18
Emergency booth ...May 22
Push-button system ...Dec 16
Reel-relay system ...Sep 16
Automatic, for radio ...Apr 21
Video processing switches ...May 42
TAPE RECORDING
See also audio, video, and magnetic
Antimagnetic tape cases ...Jul 49
Head: ...alignment jig ...EE Nov 48
...cleaner ...Mar 70
...demagnetization ...Nov 36
...three-channel ...Oct 68
...three-channel ...Oct 68
Portables, AC operated ...Dec 36
Stereo signal cancellation ...Jun 36
Studio machines ...Dec 34
Television headphones ...Apr 18
TELEPHONE LINES
Characteristic impedance ...Oct 6
Impedance matching ...Aug 26
TELEVISION
Aural-visual ratios ...WB May 27
Evolution of ...Jul 14
Frequencies, sharing ...Jun 24
Land mobile ...Jun 24
Measurement of frequency ...Apr 14
Moon-shot camera ...Aug 48
Parallel operation of transmitters ...Mar 24
Parametric amplifier ...Jun 48
Remote control of transmitters ...WB Jul 21
Remote truck, WPIX ...Aug 44
Subscription ...WB Jul 21
Waveform analysis ...Apr 47
TEST EQUIPMENT AND INSTRUMENTS
Audio source and attenuator ...Feb 46
Dip oscillator, transistorized RF ...Feb 46
Diode tester ...Dec 54
Distortion analyzer ...Oct 71
Transistorized ...Nov 55
Distortion monitoring, setup for ...Sep 39
Field-strength meter ...Nov 53
Insulation bridge, operating ...Mar 69
Microwave, for ...Jun 18
Noise meter, AM ...Jul 47
Oscilloscope ...monitor calibration with ...Nov 12
...television, in ...Mar 6
Television monitors, for ...May 32
The Oscilloscope ...BR Sep 30
Transmission sets ...Nov 55
...transistorized T-pad ...Sep 14
...fixed T-pad ...Sep 15
Tube tester and cooker, ...Oct 52
VOM, VTVM ...Feb 46
Wattmeter, hall effect ...Aug 51
TOOLS
Desoldering iron ...Apr 50
Label device ...Jan 37
Wire-wrap plier ...Mar 73
TOWERS
Photoelectric control for lights ...Jan 37
Microwave ...Mar 73
Safety in climbing ...Nov 15
TRANSPORTER APPLICATIONS
Audio oscillator, miniature ...Oct 63
Camera amplifier ...Jun 20
Chopper ...Jun 26
Clicker, pulling ...Aug 48
Mixer, dual-input ...Oct 40
Portable TV system ...Mar 67
Remote amplifier ...EE Jun 33
TRANSMITTERS
Air cleaning ...Nov 26
Carrier, interruption during pattern switching ...EE Jan 29
Cross modulation ...Jul 24
Failure alarm, plate ...Aug 24
Fixed, adjustable ...Nov 39
Linear amplifiers ...Mar 19
Maintenance of shortwave ...EE Jul 36
Parallel operation ...Mar 24
Power change ...Sep 46
Power triode ...Sep 46
Plate modulation ...Mar 18
Remote monitor lights ...EE Mar 18
SCA ...Mar 18
Television, remote control ...WB Jul 21
UHF
Allocation table ...WB Sep 21
Assignments ...WB May 28
ETV installation ...Oct 64
KEKO high-power installation ...Apr 49
Klinman for television ...Dec 48
Puerto Rico station ...Sep 44
TV antennas (see also ...Nov 14
Antennas, TV) ...Jan 14
VIDEO EQUIPMENT
Bounce, in microwave ...Nov 22
Chopper for feeding modulation ...Dec 6
Console and switcher ...Sep 16
Microwave systems ...Oct 30
Specifications ...Nov 20
Monitor ...Mar 72
Processor switch panel ...May 42
Pre-emphasis in microwave ...Nov 24
systems ...Nov 24

December, 1964

61

www.americanradiohistory.com
Audio Equipment bought, sold, traded. Ampex, Fairchild, Crown, McIntosh, Viking, P. A. Company, 2409 West Hayes Street, Pensacola, Florida.

Television/Video/communications gear of any type available. We have a tower to a tube. Microwave, transmitters, cameras, studio equipment, micros, etc. Advise your needs—offering Electrocord, Inc., 440 Columbus Ave., NYC. 212-245-6960.

COMMERCIAL CRYSTALS and new or replacement crystals for RCA, Gates, W. E. B. and all leading brands. Repair, retune, etc—RC-604 crystals also service on AM monitors and H-3580 FM monitors. Nationwide unsolicited testimonials promise our professional and service. Edison Electronic Company, Box 96, Temple, Texas.

TV antenna system—RCA 12 layer bat-wing and filterplex gain over channel 10. Can operate as bi-directional antenna with max. power gain and flat response down to 15 db. Cost over $50,000. Made offer. Hammitt & Edson, Box 68, International Airport, San Francisco, California 415-242-5208. 10-6-61

Parabolic antennas, six foot dia., new, solid surface with very low cost, dipole, etc. $125.00 each. S. W. Electric Company, Willow Ave. and Butte St., Oakland, California. 832-3537. 10-6-61

Everything in used broadcast equipment. Write for complete listings. Broadcast Equipment and Supply Co., Box 514, Bristol, Tennessee. 11-6-61

TRANSMITING TUBE SALE: All items new with a data warranty. 4XC250B...$25, 4X150A...$14, 5706...$110, 4K192...$250. C. T. Electronics, 287 Morris Avenue, Elizabeth, N. J. 07207. 10-6-61

A 466-B condenser manufactured by Western Electric Company for their 501 B, 3 kw FM transmitter. Contact Bill Bratton, Chief engineer, WLAP, Lexington, Ky. 606-235-6300. 11-6-61

Laboratory Test Equipment, microwave components all frequency and makes at low retail prices. Write for list or call for information. Jericho Electronic Supplies, Sid Gordon, Electronic and Jericho Turnpike, Sloatsburg, Long Island, N. Y. 11550. 11-6-61

FOTO-VIDEO USERS—Densel Electronics Corp. has acquired extensive stock of equipt., Amberguage parts, Free List. P.O. Box 85, Rockville, Conn. 12-6-61

RCA Patch panel, 4 row, 96 pair $75.00. RCA MI-11080C Disc Recording Head in original boxes, $45.00 each. New Borko M570A speaker with warranty, $50.00. Used motor for Gates CB500 turntable. Has公元, Synchronous motor removed from late production Concentrone 30 series recorder. Like new, $95.00. Boyd Recording, 2924 Lenmore Ave., East Dallas, Texas. 12-6-61

RCA FM106 exitects. 2 ITA FM106BG sub-carrier generators. WAMO, 1811 Blvd., of Allies, Pittsburgh, Pa. 12-6-61

Used Gates modulation monitor model 2539, and Caroll modulation IL-10. These are several years old but are now in regular use. KDUZ, Hutchinson, Minnesota 12-6-61

RCA Electronic Components & Devices. Cover 4

RCA Patch panel, 4 row, 96 pair $75.00. RCA MI-11080C Disc Recording Head in stock, $50.00. Gates recording Amp. $65.00. RCA RT-11B Tape Record—Playback Amps. $20.00. RCA Tube Disc Recorder, Works, $60.00. Input and Output Power transformers in stock. Don Warrock, 117 West 67th, Kansas City, Mo. 12-6-61

RCA-7TA, 5 KW TV transmitter (used) with band pass, water cooled. Complete and in excellent condition, first offer over $10,000. FOB N. Y. Tele-Qup Corp., 2244 No. Ave., N. Y. 12-6-61

SALES MANAGER

Are you an above-average First Class man who really loves broadcast engineering? Are you competent in the field of electronics theory and yet good with a soldering iron in your hand? Would you like to work for a station where everything works to a higher degree than you find out why fast? Can you follow a project through with little or no supervision? If so, contact Chief Engineer, WOC, Costa Mesa, Calif. 12-6-61

TV STUDIO TECHNICIANS—Expanding staff and need men with 1st Phone, and 2nd Fix. Experienced in maintenance, video tape and studio operation. Send resume to WTVX, 3440 Bluff St., Indianapolis, Indiana, c/o Don Morgan. 12-6-61

ADVERTISERS' INDEX

Altec Lansing Corp. 32
Amex Corp. 37
Ampex Corp. 32
Analog Devices, Inc. 22
Baier Electronics Corp. 22
Blonder-Tongue Labs 57
Broadcast Electronics Corp. 40, 54, 56
CBS Labs, Inc. 23
Chrono-Log Corp. 54
Cleveland Electronics 36
Data Instruments, Div. of Industrial Electronics Hardware Corp. 47
Eastman Kodak Co. 10, 11
Eitel-McCullough, Inc. 24
Electro-Vox, Inc. 25
Fairchild Recording Co. 4, 48
International Nuclear Corp. 35
Jampro Antenna Co. 26
Lang Electronics, Inc. 30, 54
Magnecord Div., Midwestern Instruments 49
McMartin Industries, Inc. 33
Mikoch Associates 33
Moseley Associates 56
Moviola Mfg. Co. 54
Nortronics 56
Penta Elect. Mfg. Co. 56
RCA Electronic Components & Devices 4
Riker Industries Cover 7
Roanwell Corp. 8, 9
Rust Corp. 21
Sarkes Tarzian, Inc. 39
Scala Radio Co. 46
Scully Recording Instruments Corp. 38
Shure Brothers 55
Superior Cable Corp. 21
Tektronix, Inc. 11
Telecomm. Co. 43
Telenoid Corp. 43
Video Media Electronics Corp. 11
Vital Electronics Corp. 45
Visual Electronics Corp. 45
Vital Industries 5
Ward Electronic Industries, Inc. 37

CLASSIFIED

Advertisements rates in the Classified Section are ten cents per word. Minimum charge is $2.00. Blind box number is 30 cents extra. Check or money order must be enclosed with ad.

The classified columns are not open to the advertising of any broadcast equipment, or supplies normally produced by manufacturers unless the equipment is used and no longer owned by the manufacturer. Display advertising must be purchased in such cases.

EQUIPMENT FOR SALE

Ampex Head Assemblies for 300 and 400 series recorders reconditioned. Service includes lapping polishing all three head stacks, cleaning entire assembly, readjusting and replacement of guides and realignment of stacks as to azimuth and zenith. Full track assemblies—$40.00. Tabor Manufacturing & Engineering Co., 2619 Lincoln Ave., Alameda, California.

RCA Patch panel, 4 row, 96 pair $75.00. RCA MI-11080C Disc Recording Head in stock, $50.00. Gates recording Amplifier, $65.00. RCA RT-11B Tape Record—Playback Amps. $20.00. RCA Tube Disc Recorder, Works, $60.00. Input and Output Power transformers in stock. Don Warrock, 117 West 67th, Kansas City, Mo. 12-6-61

RCA-7TA, 5 KW TV transmitter (used) with band pass, water cooled. Complete and in excellent condition, first offer over $10,000. FOB N. Y. Tele-Qup Corp., 2244 No. Ave., N. Y. 12-6-61

WANTED TO BUY

TV Equipment—Need Bridge Diplexer for 5KW television transmitter on Channel 10, Cornishville Televis., 9747, and W Sts., Lincoln, Nebraska. 12-6-61

PERSONNEL

Are you an above-average First Class man who really loves broadcast engineering? Are you competent in the field of electronics theory and yet good with a soldering iron in your hand? Would you like to work for a station where everything works to a higher degree than you find out why fast? Can you follow a project through with little or no supervision? If so, contact Chief Engineer, WOC, Costa Mesa, Calif. 12-6-61

SALES MANAGER

Progressive and expanding antenna manufacturer is looking for ambitious and aggressive sales manager. Must have at least 2 years experience with broadcast antenna equipment, and an understanding of antennas, towers, transmission lines (we'll teach you the techniques). College graduate with at least 1 year of administrative experience desired. Applicant must possess military security clearance and be physically able to travel. Send recent photo to: Jampro Antenna Company, 6959 Power Inn Road, Sacramento, California 95829. 12-6-61

BROADCAST ENGINEERING

www.americanradiohistory.com
No other FM MONITORS can do so much!

FM/SCA MULTIPLEX MONITOR
FCC TYPE APPROVED #3-116

This is the most versatile instrument available for monitoring all main channel modulation and SCA Multiplex operating characteristics. Compatible with FM stereo.
Direct meter readings of:
- Total Modulation
- SCA Modulation
- SCA Frequencies
- Crosstalk
- SCA injection

FREQUENCY & MODULATION MONITORS
FCC TYPE APPROVED #3-113, #3-119

- The TBM-3000 is a completely self-contained frequency monitor and the TBM-3500 is a self-contained modulation monitor.
- The 3000 is used in conjunction with either the 3500 or 4000 fulfills the FCC requirement for a station monitor.
- The TBM-35000 is completely compatible with FM stereo.

RF AMPLIFIER FOR
REMOTE MONITOR OPERATION

The TBM-2500 will drive any combination of two monitors including other brands.
- Isolated high and low level outputs.
- Excellent stability and long tube life.
- 2 watt output with 1000 µv input.
- Complete with yagi antenna and coaxial cable.

Originality by
McMartin Industries, Inc.
605 North 13th Street
Omaha, Nebraska
Code 402 — 422-2753

In Canada Sold By: Canadian Marconi Company, Montreal 16, P. Q.
Created by the hand of experience

RCA-7293A FIELD-MESH IMAGE ORTHICON

Clean... Precise... Ghost-Free Pictures

The RCA-7293A maintains the same flexibility and latitude of exposure and lighting that you experienced with the RCA 3" image orthicons while providing all of the benefits of field mesh construction. An additional feature of the RCA-7293A is the anti-ghost design which minimizes the highlight glare encountered in over-the-knee operation, providing a clean, precise picture.

Other design advantages of the 7293A include: anti-port-hole feature—the tube provides a uniform, distortion-free background to the edge and corners of the picture; exceptional sensitivity—equivalent to film rated ASA 8,000...produces broadcast quality pictures with only 5 footcandles of incident light on the faceplate; high signal-to-noise ratio—45:1; high resolution and contrast—field mesh construction assures sharp transition from black to white, minimizes distortion due to beam bending, and improves center focus.

Get the most out of your camera tubes. Pick up a copy of this wall-chart (1G-1160A) on “Do’s and Don’ts for Operating Image Orthicons and Vidicons.” Operating characteristics of all RCA camera tubes are listed on the back. It’s free at your local Authorized Distributor of RCA Broadcast Tubes.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.

The Most Trusted Name in Electronics