Broadcast Engineering

the technical journal of the broadcast-communications industry

seven years of broadcast technology . . .

7-YEAR SUBJECT-REFERENCE INDEX . . . starts on page 31
COLOR
COLOR
COLOR
COLOR
COLOR
WAIT
TILL YOU SEE
THE NEW
RIKER
SWITCHER
AT THE
SHOW NAB

RIKER INDUSTRIES, INC.
...thinking always of tomorrow

Circle item 1 on Tech Data Card
And under just about any kind of condition. In deep space. In explosive environments. In temperatures ranging from \(-17^\circ\text{C}\) to \(+70^\circ\text{C}\). In water. In pipelines, deep wells, boilers (its 3-inch diameter barrel permits operation in restricted areas).

In addition, KIN TEL's new 2000 series cameras are available with a built-in 4:1 or 10:1 zoom lens; provide the clearest pictures available anywhere—up to 700 lines of horizontal resolution; and—thanks to all solid-state circuits—are as trouble-free as you can buy.

Send us your RFQ. The 2000 series cameras are the newest addition to one of the industry's largest lines of television equipment. With KIN TEL's three basic TV systems and 207 separate in-stock components, KIN TEL can help you custom build a completely checked-out TV system to fit your exact needs. And do it faster and less expensively than you thought possible. Contact us or the KIN TEL representative near you.
the technical journal of the broadcast-communications industry

Broadcast Engineering

Volume 8, No. 1

January, 1966

CONTENTS

Features

Quartz-Iodine Lighting

An examination of the advantages and disadvantages of this new kind of lighting.

Patrick S. Finnegan 14

Broadcasters Meet in Mexico

A report on a convention held by our southern neighbors in broadcasting.

Martin Taylor 17

The Basics of Local Color

What to expect when color comes to the local station.

George C. Sitts 18

Care and Testing of Broadcast Turntables

How to care for this vital first link in the broadcast system.

Larry J. Gardner 20

Highlights of the NAEB Convention

23

7-Year Subject-Reference Index

For the first time, a comprehensive index beginning with the first issue of BROADCAST ENGINEERING.

31

Departments

Letters 6

Washington Bulletin 25

Engineers' Exchange 44

Book Review 50

News of the Industry 52

New Products 60

Engineers' Tech Data 67

Advertisers' Index 69

Classified Ads 70

For almost seven years, BROADCAST ENGINEERING has been the technical journal of the broadcast industry. An index covering all issues from the first through December 1965 begins on page 31 of this issue.
We’ll do a month’s work for you free!

Just send this page to CBS Laboratories. We will send Audimax and Volumax to your station. If you want to send them home after 30 days, we will pay the freight. But if you want to make your station their permanent home, all you do is pay $665 each.

At the end of that period, chances are you will be so sold on Audimax and Volumax you will want to buy them.

And you should. After all, they can increase your program power 8 times. Solid state Audimax is an automatic level control years ahead of the ordinary AGC. By automatically controlling audio levels, it frees engineers, cuts costs and boosts your signal.

Volumax, also solid state, out-modes conventional peak limiters by controlling peaks automatically without side effects. By expanding effective range and improving reception, it brings in extra advertising revenue. We can afford to give Audimax and Volumax away free. Because we know they’re so good, most people can’t afford to give them back.

CBS LABORATORIES
Stamford, Connecticut. A Division of Columbia Broadcasting System, Inc.

Circle Item 3 on Tech Data Card

January, 1966
LETTERS to the editor

DEAR EDITOR:

Your article "Forty-Five Years of Broadcasting" (November 1965 BROADCAST ENGINEERING, page 20) was very interesting. I believe, however, that the chemical rectifiers were made of aluminum and lead in a borax (or it may have been ammonium sulphate) solution. WDAA and my ham station, 9BZK, here in Parsons used this system in the early 1920’s.

Four others and I operated WBA&A, West Lafayette, Indiana, from 1925 to 1929. We used double-button carbon microphones energized by storage batteries. Storage batteries also supplied filament current for the two 204-A oscillators and two 204-A modulators. The transmitter employed Heising modulation. I had a second-class commercial ticket at WBA&A. The only difference from a first-class license was the code-speed requirement. 13 or 15 words per minute instead of 20 words per minute.

PAUL V. TIERNEY

FAIRCHILD DYNALIZER MODEL 673

The newest approach for the creation of “apparent loudness”--the Dynalizer is an automatic dynamic audio spectrum equalizer which redistributes frequency response of the channel to compensate for listening response curves as developed by Fletcher-Munson. Adds fullness and body to program material.

NEW! FAIRCHILD BASS-X

A dynamic low frequency roll-off filter—that can roll off high level low frequency information, starting at 300 cycles, with a maximum obtainable attenuation of 12 db at 30 cycles. Device is automatic, in use only when needed—therefore it does not alter overall apparent low end response to the ear. THE FAIRCHILD BASS-X allows higher levels to be maintained in disc recording, and particularly assists AM stations in increasing their effective signal by automatically controlling the often troublesome low end response.

FAIRCHILD CONAX

The world-accepted way to control high frequency spillovers in FM due to preemphasis. Lets your station maintain real high levels even with brass and crashing cymbals and still avoid FCC citations.

FAIRCHILD LIMITER MODEL 670

Fast attack stereo limiter (50 microseconds) with low distortion and absence of thumps. Sum and difference limiting position eliminates floating stereo image. Includes regular channel A and B limiting. Dual controls, dual meters provided. Used throughout the world. (Mono model available).

Write to FAIRCHILD — the pioneer in professional audio products — for complete details.

FAIRCHILD RECORDING EQUIPMENT CORPORATION

1040 45th Ave., Long Island City 1, N.Y
McMartin TBM-4500 FM \STereo Monitor

What's new?

An FM/Stereo transistorized Monitor that does three things no one else can do:

1. Simultaneously reads right and left channel modulation. This feature meets provisions of the new FCC proposal.

2. A 19 kc pilot indicator light shows that the station is transmitting stereo.

The TBM-4500 is a completely self-contained monitor with distortion of less than 0.375% on stereo from 50-15,000 cycles; has a signal-to-noise ratio better than -60db. Separation or crosstalk of either channel can be measured down to -50db directly on the meters. L plus R, and L minus R can also be measured directly on the meters. The amount of suppressed carrier at 38 kc can be measured.

Notice the new styling. It features "McMartin" blue on the upper panel and brushed aluminum below.

Write broadcast marketing manager for full details.

McMARTIN INDUSTRIES, INC.
605 North 13th Street
Omaha, Nebraska 68102

January, 1966

Circle Item 7 on Tech Data Card
The soundest sound in FM is the new sound of GATES

Two New FM Transmitters from Gates!

The Gates FM-1G and FM-3G are the newest additions to the most complete line of FM transmitters in the industry. From 10 watts through 20,000 watts, all models are quality all the way — featuring a high degree of stability, solid-state power supplies, new ceramic power tubes operating at a leisurely pace, plus a careful selection of quality components. Result: the ultimate in FM performance. And proof that the soundest sound in FM is the new sound of Gates. Ask for complete description and specifications.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Rating</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFE-1OC</td>
<td>10 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>BFE-5OC</td>
<td>50 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>BFR-5OC</td>
<td>50 watts</td>
<td>50-220 mc</td>
</tr>
<tr>
<td>FM-25OC</td>
<td>250 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>FM-250CS</td>
<td>250 watts</td>
<td>50-220 mc</td>
</tr>
<tr>
<td>FM-1G</td>
<td>1,000 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>FM-3G</td>
<td>3,000 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>FM-5G</td>
<td>5,000 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>FM-7.5G</td>
<td>7,500 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>FM-10G</td>
<td>10,000 watts</td>
<td>87.5-108 mc</td>
</tr>
<tr>
<td>FM-20G</td>
<td>20,000 watts</td>
<td>87.5-108 mc</td>
</tr>
</tbody>
</table>
add 3 I's to your Log

and get automatic programming, logging and authenticating (only PROLOG can do it)

PROLOG uses your station log to give you any degree or combination of unattended, automatic, or manual-live operation you desire. PROLOG simply adds 3 squares [■] to the information you normally enter on the log. The entire log can be prepared on any standard typewriter, or you can use any of the auto-typing, Traffaccounting, IBM punch-card, and similar equipment in use today. PROLOG uses your established programming format; nothing changes unless you want to change it. That's PROLOG: simple and flexible!

For a 12-page brochure on PROLOG Systems, write to Commercial Sales Dept./Continental Electronics Mfg. Co./box 17040/Dallas, Texas 75217.

LTV Continental Electronics
A DIVISION OF LING-TEMCO-VOUGHT, INC.

January, 1966

Circle item 9 on Tech Data Card
Get "Big picture" performance from your color films

The 1½-inch vidicon in the luminance channel of RCA's color film camera provides a 50% larger image—50% larger than any used in other cameras. This gives improved signal-to-noise ratio, high resolution capability. Result: Unusually sharp reproduction of color films and slides.

All four of the vidicon pickup tubes are electrostatic-focus, magnetic deflection type. They require no focus coils—eliminating heat problems—and are independent of high voltage variations.

Completely transistorized, the TK-27 employs compact, plug-in circuit modules. They provide top performance and easier maintenance. Circuits are highly stabilized, assuring unvarying picture quality—over extended periods.

The entire "Big Tube" system is made by RCA, including camera, film projectors, slide projector and multiplexer. These are "matched" equipments—all designed to work together in an integrated system to best advantage. It's ideal for turning out top quality color film programs and commercials.

Your RCA Broadcast Representative has the complete story on this "Big Tube" color film system. Or write RCA Broadcast and Television Equipment, Building 15-5, Camden, N. J.

The Most Trusted Name in Television
New work horse of broadcasting from ATC

The all new Criterion tape cartridge system has become the new standard of the broadcasting industry. In broadcast installations all over this country and abroad, the Criterion system is supplying reliable tape information around the clock, day after day, year in year out. The all new solid state Criterion series has been designed to give the broadcaster the After Delivery Economies which mean more profits through superior performance.

- Completely transistorized
- New direct capstan drive, quiet solenoid, plug-in connections and modules
- Choice of one, two, three-tone and stereo operation
- Available in slide-out rack mount or slim-line, slide-out desk console
- Conforms completely with recently adopted NAB standards

For complete details phone Area Code 309-829-1228

AUTOMATIC TAPE CONTROL
1107 E. Croxton Ave.
Bloomington, Illinois

Circle Item 11 on Tech Data Card

Circle Item 12 on Tech Data Card
It's Lenkurt's 76 TV microwave transmission system.

This is the system that's bringing top-quality color and black & white TV into areas where they used to think something was wrong with their picture if it didn't have snow most of the time.

For instance, take the 76 TV Studio Transmitter installation at station KOLO-TV in Reno, Nevada. Since the 76 is transistorized, the new system operates with practically no maintenance, quite a bonus to KOLO-TV because one of their microwave terminals is located on Frog Peak, where 80-foot snows and 100-200 mile winds are not uncommon. Another outstanding feature of the 76 system is its versatility. At the University of Kansas Medical Center, a 76 ETV system makes it possible for students to participate in classes being presented at a sister campus, 45 miles away. This is one of the few two-way ETV systems in existence. This system is significant because of the high resolution it provides for more observation of medical techniques.

And the Columbia Basin Microwave Company is using our microwave to transmit two off-the-air pickups through an extensive 76 network to serve several CATV companies and school districts.

So, whether you're planning a community TV setup, an Educational TV program, or want to join a network, and you want rugged, reliable equipment to help with top-quality color and black & white TV transmission, you'd be doing a smart thing to write us for the resume on our money-saving, solid-state 76 microwave system.

Lenkurt Electric Co., Inc., San Carlos, Calif. Other offices in Atlanta, Chicago, Dallas, and New York City.
QUARTZ-IODINE LIGHTING

by Patrick S. Finnegan, BE Consulting Author, Chief Engineer, WLBC AM-TV, WMUN FM, Muncie, Indiana — A new type of incandescent lamp is now available for studio lighting.

For many years, the majority of television-studio lighting has been supplied by incandescent lamps. Although these lamps generate more heat than other types, the size of fixtures required and the ease of dimming have led to their popularity. Such lamps do have their limitations, however. The filament deteriorates and causes blackening of the glass due to tungsten deposits. The high-wattage lamps require fixtures that contribute to reduced efficiency. Light output drops off as much as 25% over the life of the lamp, and the color temperature can fall as much as 300°K.

Quartz Lamps

The quartz-iodine lamp has undergone rapid development in the past few years, not only for television lighting, but also for general lighting. Basically, this lamp is an incandescent lamp with a tungsten filament, quartz instead of glass for the envelope, and a very small amount of iodine enclosed in the envelope.

The problem of reduced light output and blackening of the envelope in regular incandescent lamps is due to the tungsten filament. While the filament is being operated at its normal temperature, small particles of the tungsten flake off, migrate to the glass envelope, and are deposited there. This process continues until the filament is worn away and fails.

The glass envelope limits the compactness of incandescent lamps, since glass cannot withstand the high temperatures close to the filament. Quartz, however, can withstand much higher temperatures than glass, and with the use of quartz, a compact lamp is possible.

Lamp researchers discovered that iodine, if vaporized, could prevent the tungsten particles from blackening the glass. Its use is not possible in regular incandescent lamps because the temperature required to vaporize the iodine would also melt the glass. The envelope in a quartz lamp, however, operates above 500°F, and the iodine can be vaporized.

During operation of the quartz-iodine lamp (Fig. 1), the tungsten filament is heated to its normal temperature. Small particles of tungsten migrate to the envelope, as is the case in any incandescent lamp. The iodine vapor in the lamp combines with the tungsten particles, and when the lamp is turned off, the combined tungsten particles and iodine vapor return to the

![Diagram](image)

Fig. 1. This cleaning cycle in the quartz-iodine lamp contributes to its increased life and relative uniformity of light output.

14 BROADCAST ENGINEERING
filament. When the lamp is again turned on, the hot filament releases the trapped iodine, it returns to the quartz, and the cycle begins again. This "cleaning cycle" continues until the lamp burns out.

Since the iodine vapor returns the tungsten particles to the filament, blackening does not occur, and the transmission of light through the quartz is not diminished. Also, there is a relatively small reduction of color temperature and light output from the filament, and the lamp life is extended. The deterioration of light output is in the order of 3% over the life of the lamp, compared to about 25% for a regular incandescent lamp.

Whenever a quartz lamp is turned off and begins to cool, a light purple color can be seen within the envelope. This is the vaporized iodine; the color disappears after several minutes, and the inside of the lamp becomes clear as before.

A word of caution about the handling of quartz lamps should be mentioned: They should never be touched with the bare hand. Some of the oils from the skin deposit on the envelope and, when heated, hasten the deterioration of the quartz. All new quartz-iodine lamps are supplied wrapped in a soft paper, and this paper should be left on the lamp until it has been installed in the fixture. Also supplied with the lamp are instructions regarding how the lamp should be cleaned if one does accidentally handle the quartz. It goes without saying that one should never touch the lamp with bare hands while it is operating, since the quartz temperature is well over 500°F.

Advantages

One of the advantages of this type of lamp is its small physical size. A 1000-watt lamp is only 4 3/4" long, including the mounting ends, and 3 1/2" in diameter (Fig. 2). A 300-watt lamp is 3 1/2" long and 2 1/2" in diameter. Besides the tubular lamp, one manufacturer has available a sealed-beam unit rated at 650 watts. This is similar in appearance to an automobile sealed-beam headlight, but is smaller in diameter.

The small size of the quartz lamp makes possible smaller fixtures which can more effectively use and control the available output of the lamp. An economy in power is realized because fewer fixtures of lower wattage rating are needed to light a given set or studio than would be the case with standard incandescent fixtures. Small size also makes possible a high-intensity light source in a small, lightweight fixture.

The longer life span of quartz lamps contributes to economies in the cost of time and labor when making replacements. Also, a man can carry a dozen of these lamps at one time, but very few incandescent lamps. This can save many trips up and down a ladder. And, several dozen quartz lamps can be stored in the same space it takes for one large-wattage incandescent lamp (Fig. 3).

Limitations

As with anything that has many good features, there are also some limitations. The small "compact" lamps may be positioned in any manner, but the large lamps must be positioned not more than 4° from horizontal (Fig. 4) while they are burning. Fixtures designed for quartz lamps take this positioning into account.

Envelope temperatures are important; this could be a problem if dimmers are running the lamp under voltage. The envelope must be maintained at temperatures above 500°F, but the end seals should not exceed 650°F. Since the envelope operates at such a high temperature, cold drafts could cause the lamp to shatter.

When a very high-intensity beam of light is required, such as in a very large auditorium or hall, the quartz light may not be bright enough. The largest lamps currently available are rated at about 2000 watts.

Ratings

Although limited as to the maximum wattage available, quartz lamps are available with color-temperature ratings from 2900°K to 3400°K, which permits their use in color studios. The higher Kelvin ratings permit dimming practices in which the lighting director "lamps up" so that he may dim down while still maintaining a suitable color temperature. Some fixtures are available which permit the use of gelatin filters. With such a filter, the light output from a 3000°K lamp gives the same color response as that from a 3200°K lamp. Because the fixtures are more efficient, the attendant loss of light intensity can sometimes be tolerated. At the same time, lamp life is improved considerably. For example, a 1000-watt lamp rated at 3000°K has a life expectancy of 2000 hours, whereas a 1000-watt lamp rated at 3200°K has a life expectancy of 500 hours.

Fixtures

Because quartz lamps are small, their fixtures are smaller than regular fixtures. The reflectors and lenses for spotlights receive anywhere from two to three times the light that could be obtained in the past from ordinary incandescent sources. The lenses require glass with high heat resistance because they are close to the lamp; the reflectors are usually of aluminum.

Portable lights with reduced size

![Fig. 2. Physical sizes of quartz-iodine and regular incandescent lamps compared.](image-url)
and current requirements simplify remote pickups and news work. As an example, one such portable light uses a single 500-watt lamp that has a 2000-hour rating and draws only 4.2 amperes. This fixture is adjustable with a simple knob adjustment for either spot or flood. As a spot, it provides 100 footcandles at 10' from the lamp; as a flood it provides 60 footcandles. The light pattern in flood position is a rectangle approximately 11' high and 22' wide. The fixture has barndoors and can provide a sharp light cutoff to prevent spillage into another area. It can also be used in the studio when a small lamp is needed. It measures 4" x 4" x 9".

Ordinarily, studio floods provide a wide pattern of even lighting. (The edge of the defined area is the point where the light intensity is 50% of the maximum intensity.) A softer, more diffused light is possible with glass diffusers in front of the light. A still smoother field may be obtained with the use of frosted lamps.

As an example, the area covered by a 1000-watt rectangular flood, using a frosted lamp, is approximately 18' wide and 13' high at 16' from the lamp.

Spotlights using quartz lamps are also available. One such fixture, using a 1000-watt lamp, produces 160 footcandles at the beam center at a distance of 100'.

A variety of fixtures is available: pattern projectors, follow spots, strip lights, and others used for special lighting effects. One such light, using a 1000-watt lamp and barn doors on four sides, will light an area 24' wide 10' from the lamp. The light field can be cut to a narrow, bright strip with well-defined edges.

Only a few types of fixtures have been mentioned here; many more are available.

Existing Fixtures

Most TV stations have a sizable investment in their present incandescent-lighting fixtures. Most will not want to scrap these units immediately to install quartz lighting. Some of these existing fixtures can be converted to quartz by the purchase of kits. Many of the conversion kits are of the small-wattage variety, but there are kits to convert some sizes of spotlights, also.

A few examples will help show the results to be expected from the modification of fresnel spotlights. A kit to modify a 500-watt fresnel spotlight includes a 400-watt quartz lamp and a complete socket assembly with reflector and 6" fresnel lens. It costs about $27. The old base is removed from the fixture, and the new unit is installed in its place. This permits the original mechanism to be used in making the usual spot-to-flood adjustments.

The 400-watt quartz-lamp arrangement gives about twice the light that was available from the 500-watt incandescent lamp. At the same time, the new lamp can be expected to last four times as long.

The same manufacturer has a conversion unit for the 750-watt incandescent lamp. The quartz fixture has a reflector and socket for the new lamp, and the whole arrangement is fitted with posts to plug directly into the old bipost socket. A new fresnel lens is provided. This conversion uses a 650-watt quartz lamp to increase the light output 50% over the old incandescent lamp.

In a 2000-watt 12" fresnel spot conversion, there is a compromise in the hard-spot light intensity. The kit uses two 1000-watt quartz lamps of 150-hour life to replace the single 2000-watt 100-hour lamp. The light output of the converted unit shows a 56% increase in light over the original 2000-watt unit. In the hard-spot position, however, output of the new light is only 83% of the light available from the old lamp. The quartz light, however, maintains its light output with only a slight decrease over its life.

Favorable as these results may seem, remember that these are converted incandescent fixtures. When a fixture is designed specifically around the quartz lamp, it shows even better results. One such fixture, using two 1000-watt lamps, produces more light than a 5000-watt incandescent fresnel lamp, and still weighs only one lb. Still another new 12" fresnel, using a 2000-watt quartz lamp, has double the intensity of the standard fixture modified for quartz and approximately three times as much light as a standard incandescent fresnel of the same wattage.

Conclusion

The miniaturization of studio lighting fixtures is well on its way, due in large part to the introduction of the quartz-iodine lamp. Much progress has been made in overcoming some of the limitations in the use of quartz. Along with this advance in lighting, we can expect many new lighting and production techniques to evolve.
BROADCASTERS MEET IN MEXICO

by Martin Taylor, Editor, Radio y Television

At the mere mention of Mexico, most of us conjure up thoughts of bygone vacations in a sunny land where genial people pass the major part of their workday in the shade of a cactus. Undoubtedly one would not have to search too extensively south of the border to find just such a situation. Juxtaposed to this rapidly disappearing aspect of Mexico, however, waxes a new and affluent economy which is clearly mirrored in the broadcasting industry. Currently, there are over 450 AM radio stations throughout the republic, and Mexico City alone has over 30. Television, likewise, is growing rapidly. There are 27 commercial TV stations in operation presently, and several of the largest cities boast two and three channels.

Since broadcasting is such a big business in Mexico, it is no wonder that the annual convention draws such a large attendance. During October of last year, broadcasters from all over the republic arrived in Mexico City to attend the event which is held annually in conjunction with the celebration of National Broadcasting Week. The four days of the convention were filled with feverish activity. The inaugural ceremonies were carried live by every radio station in the country and were televised by one of Mexico City's leading stations. The thirty-minute inaugural broadcast was considered to be of sufficient import to pre-empt the transmission of Pope Paul's visit to the United Nations.

In the exhibit hall, both U.S. and Mexican firms showed their wares. Ampex, Gates, RCA, and Spotmaster all had prominent displays. The reader will probably be less familiar with the following Mexican firms which also purchased space on the floor of the hall: IMEX, Ingeniería Internacional de México, Compañía Central de Grabaciones, AMSI, Industrias Radiofrecuencias, Compañía de Ingenieros en Comunicaciones Eléctricas, and DEKSA.

The final day of meetings was closed with a speech by Mexican President Gustavo Díaz Ordaz. Although designed to provoke Mexican broadcasters to introspection, his words might well be considered by broadcasters of all lands: "Let your words be always bondsman to your ideas and your ideas slaves to the truth."
THE BASICS OF LOCAL COLOR

by George C. Sitts, Eastern Regional Editor—These are some of the things to consider when adding live color.

NBC has spent more than a dozen years developing its present color operating techniques. This past summer, CBS and ABC found themselves cramming for their fall color exam. Local studio colorcasts are now a way of life for quite a few medium-market stations. Here is a review of the basic considerations in adding studio color to any local outlet, based on the experiences of several of these small stations.

Basically, color is a phenomenon which is added to a monochrome base. Thus, color operation will follow many of the patterns of good b-w operation.

Generally, technical fears in anticipation of color have either failed to materialize or were satisfactorily solved before a major share of stations even considered local colorcasting. Most personnel with aptitude for monochrome become proficient in color with little difficulty.

It is true that more light is required; that lighting must be done with more care and will probably take twice as long as you are accustomed to; that camera setup and maintenance will take longer; and that rehearsals will take longer than with black - and - white. However, these things have a way of working into standard practice, and you will probably find after a few hundred hours that rehearsal time will settle back to normal.

People

An important factor in color productions is the staff. Color requires closer coordination of various segments of studio staff than is necessary in black-and-white. A color clash in black-and-white may be unsightly only to those in the studio; but, in a colorcast, a costume that clashes with colors in scenery or lighting can detract as much from a show as well coordinated color and light could add.

Because color is difficult to measure, it is important that people involved in color production are all seeing the same hue. One help is to have personnel who will be involved in color judgement take a Munsell 100 Hue Color Test. This will point out any color-blind designers or video operators, and will test remaining personnel for superior, average, or poor color discrimination.

The set of tests, which also measures zones of color confusion by simple graphic plots, is available from Munsell Color Co., Inc., 2441 North Calvert Street, Baltimore, Maryland. Cost is about $130. Once you have a competent and cooperative staff, and of course the (presently scarce) color equipment, you can begin operation. Be sure technicians learn how to set up color cameras, and that they have proper equipment. There are stations that have operated in color without a vectorscope, and there are those who just toss their technicians into the mill and let them learn by experience. Such operations have been generally restricted to stations with a single color-film chain. Camera matching problems are so apparent and so difficult to adjust by eye that such ill-equipped stations

Fig. 1. Chart shows color temperatures in degrees Kelvin for several sources.
almost invariably have to add needed test equipment and training as they purchase additional color gear.

Electronic Equipment

Starting point for fine color is fine monochrome. After you have the black-and-white up to snuff, with all differential-phase and differential-gain problems ironed out, you can proceed to tune up color gear. Chances are, if you are adding live color, you already have some color-film experience. Technically, the setup procedure for live color parallels that of film color. Minor differences are associated with setting up image orthicons or Plumbicons® as opposed to simple film vidicons. More attention should be lavished on intercamera phasing and gamma matching. Camera mismatch that would be ignored in a two-camera film operation (because of infrequent switching of cameras) becomes painfully apparent on live cameras that are switched several times a minute.

Lights

Out in the studio, good color requires more light, of better quality, than is necessary for monochrome. Color television has brought into technical vogue the term “color temperature,” which is simply a measure of the color of a lamp’s output (Fig. 1).

So far as the local studio is concerned, actual color temperature is not as important as maintaining an even color temperature after cameras have been set up. A decrease in color temperature will deliver a picture shaded toward red, while a color-temperature increase will cause a bluer picture (referred to as camera setup for white at your studio’s reference color temperature). Shifts in color temperature are caused by excess dimming of lamps and by the lamp changing color as it darkens with age.

Lamp dimming—that is, the reduction of filament voltage to reduce light output—can be used with moderation. A dimming of four stops, or about 250° K (Kelvin), can be used before a color change will be apparent to viewers. The simplest means of not exceeding this range is by marking the dimmers or by using series resistors to limit dimmer range. Care must be taken to insure that lamps darkened by age have not put their dimmers beyond the color range. A regular plan of lamp inspection, with removal of any that have begun to darken, should keep you within the 250° K range.

Light levels of 300 to 400 foot-candles are necessary to obtain good color pictures for present image-orthicon cameras. This does not necessarily mean that a large number of new fixtures are necessary. First, color generally requires more base and fill light (Fig. 2), and a couple of extra scoops can bring the light levels up considerably. Second, as you begin to accustom crews to limited dimming, you will find the average light per fixture has increased noticeably.

It is best to begin by using your present fixtures efficiently, concentrating them over a smaller area until your color lighting techniques develop enough to indicate which additional lights are needed. Such action could have a side benefit. The fixture and lamp industry is currently struggling internally to standardize fixtures and bulb design for the new quartz lamps. Network studios currently buzz with stories of developmental problems in quartz equipment. The stories are based principally on difficulty in getting a good shadowless scoop light because of the point-source nature of quartz lamps, and on recent moves to develop single-ended quartz lamps that will fit present fixtures.

However, present quartz equipment does have the advantage of even color temperature throughout the life of the lamp. Also, the out-

- Please turn to page 44
CARE AND TESTING OF BROADCAST TURNTABLES

At least half the programing of most present-day radio stations originates from records, which of course are played with broadcast turntables. It is on the quality of these units that the overall quality standards of the station are judged by the listener, who is becoming a very critical judge indeed. So, it is in the best interest of a station to keep its turntables in the best possible condition.

Mechanical Considerations

Before any pickup system can reproduce a disc recording properly, the disc must be rotated at a definite and constant speed, and its rotation must be free from as much other mechanical movement as possible. Speed variations cause “wow” when they occur at rates of less than about 10 cps and “flutter” when they occur at higher rates. Mechanical motion other than the rotation of the turntable causes an extraneous signal known as “rumble” to be introduced into the pickup. Rumble is made up predominantly of noise below 100 cps.

Wow and flutter are measured best with flutter meters. However, these generally are not available to the broadcast engineer, so he must depend on a qualitative analysis using his ears. For all tests on turntable systems, a good test record (such as the 1965 NAB Test Record) is absolutely necessary. Using a 3,000-cps tone on the test record, listen for changes in the pitch of the tone. On a turntable with low wow and flutter, speed variations will be so slight that the pitch is almost perfectly constant.

To check the rumble level, play back the standard-level tone (usually 1,000 cps) from the test record, set the console fader to the 12 o’clock position, and adjust the master gain control on the console for a VU meter reading of zero VU, or 100%. Then, without changing the master gain setting, play the silent groove on the test record, turn the turntable fader up all the way, and note the VU-meter reading. Since the 12 o’clock position on practically all faders is 20 db below maximum gain, adding -20 to the VU meter reading will give you the rumble level of the turntable. For example, if the VU meter reads -15 db, the rumble level is 35 db below NAB standard level. Any reading greater than 30 is considered acceptable.

What if you have wow and flutter? And rumble? Here’s what to do about it. Since practically all turntables in use today are of the rim-drive, or idler-drive, type, the discussion will be confined to this type. First, check the drive idler wheel or wheels. With the motor...
running and the turntable removed from its socket bearing, press the drive idler against the motor shaft, holding your finger on the idler shaft. You should feel only a very slight vibration. If you feel a strong vibration, the idler probably has a flat spot on it and should be replaced. Flat spots on the idlers are the most common cause of flutter and a frequent source of rumble. Also, any grease or oil should be removed from the idler, the motor shaft, and the turntable drive surface with denatured alcohol.

The main turntable bearing should be well lubricated according to the manufacturer's instructions. Many turntables use a single large ball bearing in the turntable shaft well, and very frequently this can become lost while the unit is disassembled. Most tables will run without the bearing, but will develop wow, flutter, rumble, or any combination of the three. Be sure the bearing is in place and the shaft well is oiled enough that some pressure is required to reset the turntable on its bearing.

In adjusting the drive-idler pressure, the best setting is usually that point which provides the fastest starting. This not only provides more positive mechanical action, but also is the best compromise between too little pressure, which causes poor drive, and too much pressure, which causes slow motor speed. Check the speed with a stroboscope disc under a fluorescent or neon light. With most professional turntables, there are two common causes of speed variations: poor adjustment of pressure and a defective motor bearing. A bad motor bearing can also cause flutter and rumble, and the best test of the motor is to listen to the sound it makes when it is running. If there is any hint of a rattle, trouble is on the way. A good lubrication job will often keep a marginal motor running well for quite a while. Also, keep the felt or rubber mat on the top of the turntable in good shape, since it is the final link in the drive chain from the motor to the record.

The Arm and Cartridge

Probably the most neglected part of the turntable is the arm, but it is a major factor in determining the overall operation of the system. It should be properly mounted, according to the manufacturer's instructions, so that there is a small overhang as the stylus is brought as near as possible to the turntable spindle. The arm should be adjusted for correct tracking force for the cartridge in use and should have its pivots adjusted for minimal drag on the stylus. Improper stylus tracking force can cause poor frequency response, poor stereo separation, increased distortion, increased stylus wear, incorrect stereo phasing, and increased record wear. Arm pivots which cause excessive drag can cause all of these effects and unbalance between stereo channels. Follow the instructions, and be sure the arm adjustments are right—they are important. Frequent checks with a stylus-pressure gauge are well worth the time.

Almost all cartridges used by broadcasters are in the general "magnetic" category, which includes the variable-reluctance, moving-magnet, and moving-coil types. All three are available in both stereo and monophonic designs. There are only two basic troubles usually experienced with cartridges: stylus trouble and mounting trouble. About the only cure for a worn, broken, bent, chipped, or mutilated stylus is replacement. For mounting, there are several things to keep in mind. First, the cartridge must be mounted correctly in the arm. Second, it must meet the surface of the record at the correct angle.

The stylus angle is very important, especially for stereo work. It may best be checked by placing a small pocket mirror on the turntable, resting the stylus on the mirror, and adjusting the stylus position until the reflection is perpendicular to the stylus in all directions (Fig. 1). (Note: Some of the newer stereo cartridges operate with the stylus at a 15° angle from the vertical in the direction of groove motion. Fig. 2 shows how the angle should look on this type of cartridge. The angle is not extremely critical, but should not be more than 15°.)

The Electronics

There are two common ways of connecting a pickup cartridge into a broadcast console. Most popular
is the use of an equalized turntable preamplifier which delivers sufficient output to drive a high-level console input. Another method is to use a passive equalizer feeding a flat-response microphone preamp. Either method is satisfactory, although the equalized preamp offers the advantage of somewhat lower noise level. In either system, the most common problem is failure to achieve flat frequency response. Equalized preamps and passive equalizers are designed to operate with particular cartridges, which may or may not be electrically the same as the ones with which they are used. Also, cartridges of the same make and type often show individual variations in frequency response. In most cases, the response may be made correct by varying the load resistance into which the cartridge works. As a general rule, increasing the load resistance increases the response at the high end (5,000 to 15,000 cps) and decreases the response at the low end (below about 200 cps). Decreasing the load resistance has the opposite effect. Table 1 shows the response of a typical cartridge with different values of load resistance. Since the magnetic cartridge is essentially a low-impedance device, changing the load resistance over a rather wide range has little effect on the output level. To determine the correct load, connect a 50K carbon potentiometer across the cartridge, and adjust for response that is the same at 1000, 100, and 10,000 cps; then measure the resistance of the control as set for the best possible response, and substitute a fixed resistor for it. With some cartridge-preamp or cartridge-equalizer combinations, it may be necessary to change the value of the load resistor within the preamp or equalizer.

Another common problem with turntable electronics is hum and noise. To track down a hum problem, first disconnect the pickup from the preamp. If the hum disappears or drops greatly, chances are the problem is a ground loop. Ground loops are caused by the presence of more than one return path from the cartridge to the main chassis ground in the preamp. This problem is more critical with stereo than with mono, but it can be avoided simply by avoiding multiple ground paths. With a monophonic system, the cartridge cable shield should be grounded only at the input of the preamp or equalizer. For stereo, the two channels should be kept completely separate from the cartridge to the preamp or equalizer input. Also, it is important that the turntable motor and base be grounded directly with a single wire to the preamp chassis, or, if an equalizer is used, to the main station ground. Of course, the preamp chassis should also be connected to the station ground.

Noise occurring in the preamp may be either hum or "white" noise. Hum may generally be cured by shielding, selecting tubes for lowest hum level, carefully adjusting "hum-balance" controls, and checking for low-value filter capacitors. White noise, or "hiss," may be due to any of the parts indicated in Fig. 3 and Fig. 4. If the noise originates ahead of the equalizer circuits, it will take on a characteristic "roaring" sound due to the high-frequency rolloff of the equalizer. In this case, the noise is generally due to a defective tube, transistor, resistor, or capacitor in the input stage, although a noisy socket or poor connection can produce the same symptoms.

The ideas outlined here should be of help in getting and keeping turntables in shape to deliver a consistently high-quality signal.
HIGHLIGHTS OF THE NAEB CONVENTION

by George C. Sitts, Eastern Regional Editor

The National Association of Educational Broadcasters Convention (held last November 1-3) resembled in many ways the NAB Convention held seven months earlier at the same location—the Sheraton Park Hotel, Washington, D. C. Station managers and engineers engaged in discussions with equipment-sales representatives and strolled through a hall full of equipment displays. Sessions, seminars, and panels were conducted on every subject from curriculum planning to color conversion—with the notable exception of a previous favorite, “Is ETV effective?” Apparently, educators had accepted the effectiveness of ETV as a foregone conclusion and thus used their convention time for learning new ways to improve the use of the medium.

The day the educational broadcaster borrowed equipment from a local commercial station, operated a shoestring station, and divided his time between pleading for funds and keeping ancient equipment on the air appears over. This year, the talk was of replacing old equipment, finding capable engineers and production people, and improving curriculum, teaching methods, and effectiveness.

Equipment manufacturers were among the first to recognize this trend to increased professionalism. The educational broadcasters were treated to large equipment exhibits, working displays, and round-the-clock hospitality suites. Equipment representatives were generally well acquainted with dispersion of new NDEA and Poverty Program funds, whereas many educators appeared uncertain of which moneys were available to them. Sessions pertaining to financial aid were SRO.

- Please turn to page 28
Now!
End "Off-Air" Panic and Eliminate Temperature Worries Forever, with... WILKINSON SILICON RECTIFIERS

No more finicky temperature sensitive mercury vapor rectifiers... Go on cold mornings! Forget heating and air conditioning!... Wilkinson Silicon Replacement Rectifiers produce no filament heat and function below -60° C.

No longer high priced! Wilkinson Silicon Rectifiers cost less than others and can be repaired in seconds with low-cost replacement diodes. No encapsulation used! No more guesswork or costly test time! You know at a glance the exact status of your complete power supply because a "GO, NO GO" indicator warns when the reverse leakage of any diode is in excess of 50 microamps. Wilkinson Rectifiers virtually last forever!

Now it's easy and economical to solid state the power supplies in high power equipment. With Wilkinson Rectifiers no rewiring is necessary. Just plug them into your present mercury vapor tube socket. Filament transformers as well as other components are left in place.

Modernize your equipment today! Consult the Tube Replacement Chart shown here and order now!

FEATURES: Light Indicator on each diode warns of any difficulty or high voltage ON. • Easily replaceable low-cost diodes. • Reduces heat - power cost - hash. • Operates from -65° C to +70° C Free Convection. • Eliminates warm-up time.

FOR COMPLETE DETAILS WRITE:

WILKINSON ELECTRONICS, INC. 1937 MACDADE BLVD. • WOOLY, PA. 19094 TELEPHONE (AREA CODE 215) 874-5236 874-5237

<table>
<thead>
<tr>
<th>TUBE TYPE</th>
<th>REPLACES TUBE TYPE</th>
<th>P.R.V. AMPS</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-3-1</td>
<td>866A 816</td>
<td>3KV 1</td>
<td>10.05</td>
</tr>
<tr>
<td>SR-10-6</td>
<td>872 8000</td>
<td>10KV 6</td>
<td>50.00</td>
</tr>
<tr>
<td>SR-10-12</td>
<td>872 8008 575</td>
<td>10KV 12</td>
<td>60.00</td>
</tr>
<tr>
<td>SR-10-6</td>
<td>872 8008 575</td>
<td>14KV 6</td>
<td>72.00</td>
</tr>
<tr>
<td>SR-14-12</td>
<td>872 8008 575</td>
<td>14KV 12</td>
<td>84.00</td>
</tr>
<tr>
<td>SR-20-6</td>
<td>8894 8095 673</td>
<td>20KV 6</td>
<td>100.00</td>
</tr>
<tr>
<td>SR-20-12</td>
<td>8894 8095 673</td>
<td>20KV 12</td>
<td>120.00</td>
</tr>
<tr>
<td>SR-34-15</td>
<td>859B</td>
<td>24KV 15</td>
<td>225.00</td>
</tr>
<tr>
<td>SR-32-25</td>
<td>857B</td>
<td>32KV 25</td>
<td>475.00</td>
</tr>
</tbody>
</table>

Circle Item 13 on Tech Data Card
January 1966

We interrupt this magazine to bring you...

Late Bulletin from Washington

by Howard T. Head

AM Licensees Have Resiting Problems

Standard broadcast licensees are finding it increasingly difficult to provide coverage of the nation's growing towns and cities. Not only does this growth create problems of covering areas largely vacant when the transmitting facilities were constructed, but populous subdivisions are often built in areas where directional antennas are required to produce deep nulls. This results in poor coverage of the affected areas, as well as distortion of directional radiation patterns beyond acceptable limits.

Transmitter relocation is sometimes resorted to, but these plans may be complicated by increases in real-estate values. Sites low in price a few years ago may now be highly valued, while increases in real-estate values and the additional difficulty of providing adequate signal to the city make selection of new locations difficult.

The Commission is aware of the problem, but existing Technical Standards governing coverage of the city, blanketing, and maintenance of directional antenna patterns are still rigidly enforced. Recognition has recently been given, however, to problems created in some instances by minor interference changes when transmitters must be relocated over short distances. Generally, however, the problem is becoming more acute, and little relief is in sight.

Land-Mobile Base Transmissions by FM Multiplex

A Working Group of the Commission's Advisory Committee on the Land-Mobile Radio Services has proposed a novel means for accommodating a substantial number of transmissions for base stations in the land-mobile radio service. These services, which include police, business, industrial, and many other services, have complained of an increasing shortage of spectrum space for both base and mobile operation. Under the new proposal, land-mobile base transmissions would be provided by multiplexing subcarriers on FM broadcast stations. In successful tests at WRYT (FM), Pittsburgh, Pennsylvania, as many as eight narrow-band subcarriers were multiplexed on the WRYT carrier without experiencing mutual interference, or without causing interference to the main transmissions of WRYT.

Under typical circumstances, these land-mobile base transmissions can be received out to distances on the order of 15 miles. Transmissions from
the mobile unit to the base-station receiver would be accomplished over the regular land-mobile channels. One drawback of the proposal is that stereo FM transmissions must be curtailed; also, regular SCA operations would conflict with the land-mobile transmissions.

Transmitters Must Be Visible From Operating Position

The Commission has called attention to the fact that transmitters not operated under a remote-control authorization must be visible from the operator's position at all times. The visibility may be provided by means of a suitable mirror, or in some instances closed-circuit television systems have been accepted as providing the required visibility. In these instances, however, the Commission has required that the transmitter be reasonably accessible to the operator.

In those instances where the visibility requirement cannot be met, the Commission requires a formal application for remote-control operation (FCC Form 301-A) with all control and metering circuits specified by the remote-control Rules.

More Action on Clear Channels Due Soon

The Commission has once again turned its attention to the problem of the most effective use of the 24 clear channels heretofore reserved for the exclusive use of one 50-kw Class I-A station during nighttime hours. On twelve of these channels, provision has already been made for a single Class II-A full-time station in one of the Western stages; in most instances, these Class II-A stations have either been granted, or conflicting applications have been designated for hearing.

The Commission is now preparing to establish guidelines for the further use of the clear channels. These include: (1) conditions under which clear-channel operation may be permitted with powers up to 750 kw, (2) conditions under which additional unlimited-time Class II stations may be permitted on the clear channels, and (3) the assignment of daytime-only Class II stations to the clear channels.

Short Circuits

New filing fees required for broadcast applications have been established (May 1965 Bulletin), effective January 3, 1966 . . . ZIP-code your return address in writing Federal Agencies; they are required to ZIP-code their replies . . . A Citizens band licensee in the Boston area has been sentenced to a year in prison for transmitting "obscene, indecent, and profane" language over his CB station . . . New Rules governing presunrise operation of daytime-only AM stations are expected soon . . . Most broadcast interests have opposed the Commission's proposal to establish "antenna-farm areas" for tall FM and television towers, largely on the grounds that the proposals give the FAA far too much authority over the height and location of tall broadcast towers . . . NASA has issued invitations to contractors for feasibility studies of direct satellite-to-home broadcasting in the short-wave and FM bands; television wasn't mentioned, but is known to be under study -- the enormous amounts of power required and channel availability appear to present the most serious problems in television space broadcasting.

Howard T. Head . . . in Washington
new power amplifier pentode provides excellent linearity

Now you can have reliable power in a new 1500 watt pentode. Eimac’s 5CX1500A power amplifier tube is designed for use at the popular 1000-2000 watt peak envelope power range. And it’s compact: height, 4½”, diameter 3½”. Physical configuration is similar to Eimac’s well-known 4CX1000A tetrode. The tube carries control and screen grid dissipation ratings of 25 and 75 watts, respectively. The 5CX1500A is ideally suited for Class C operation. In linear service the tube can provide a two-tone signal with third-order products of −39 db at 1000 watts PEP or −35 db at 1700 watts PEP. Write Power Grid Product Manager for information or contact your local EIMAC distributor.

5CX1500A
CLASS C MAXIMUM RATINGS
DC PLATE VOLTAGE 5000 V
DC PLATE CURRENT 1.0 Amp.
DC SCREEN VOLTAGE 750 V
PLATE DISSIPATION 1500 W
SCREEN DISSIPATION 75 W
GRID DISSIPATION 25 W
SUPPRESSOR DISSIPATION 25 W

TYPICAL CLASS AB,
LINEAR AMPLIFIER MEASURED VALUES
IN TWO TONE TEST
DC PLATE VOLTAGE 4000 V
DC PLATE CURRENT (No Signal) 250 mA
DC PLATE CURRENT (Two Tone) 465 mA
DC SCREEN VOLTAGE 500 V
PEAK ENVELOPE POWER OUT 1785 W
THIRD ORDER IN MAXIMUM −35 db

EIMAC
San Carlos, California 94070
A Division of Varian Associates

Circle Item 14 on Tech Data Card
For engineers fortunate enough to attend this convention, there was in addition to the exhibit hall a full-day engineering program, hosted by Jansky & Bailey, on Tuesday. The day began at 8 AM with a continental breakfast where engineers had a chance to get acquainted with each other. A few equipment reps and some federal personnel also attended. Thus the group conversations ranged from quality of various pickup tubes to FCC computer errors in channel allocations to an NDEA man’s attempt to explain who gets money for equipment, why, and how much.

After Oscar Reed, Jr., chairman, started the program promptly at nine, William J. Kessler, consulting engineer and professor of engineering at the University of Florida, discussed engineering problems and developments resulting from establishing ETV in American Samoa. The talk was especially informative to those interested in engineering theory.

For engineers concerned with the nuts-and-bolts, day-to-day operation of ETV facilities, there were several effective speakers, among them William C. Lewis. The technical services director of the Delaware statewide ETV system presented an informative and well illustrated talk on the role hard-nosed business practices, ingenuity, and manual labor played in meeting a tough deadline for completion of that state’s system.

Roger Penn, assistant professor at American University, reported on his research to determine viewer rating of relative picture quality of four common live-camera pickup tubes. Pictures from an average 3” I.O., 4½” I.O., Plumbicon®, and vidicon were evaluated by a group of viewers for such qualities as smear, resolution, and gamma.

Allen B. MacIntyre, director of engineering at the University of North Carolina, probed the planning and actual field problems of building the 500-mile North Carolina ETV microwave system.

In a paper presented by his engineering staff, Charles A. Prohaska, assistant general manager of WETA, Washington, D. C., discussed the design, building, and operating success of the station’s one-vehicle remote van.

Later, an Engineers’ Professional Interest Section of the NAEB was formally organized, with Ronald Stewart, consulting engineer for the Kentucky Educational Television Authority, elected chairman of the group. The Interest Section will represent member engineers within the NAEB and will aid in organizing regional meetings of its members.

With all the discussion today about commercial color television, the subject was inevitable for the educational broadcaster. E. C. Tracy, division vice-president of RCA, spoke Monday on the various costs of color conversion.

As with the NAB, some exhibits were crowded, others not. Among the items that drew the crowds were:

- Ampex’s VR-7000, a new VTR in the $3000 range.
- RCA’s PK-330, an $8500 vidi-con studio camera chain with a zoom lens, yoke, and vidicon assembly that tilts while the viewer remains level.
Sony targets the sound you want

Telemike Exclusive: Built-in Monitor Facility*

Now, with three readily interchangeable sound tele probes, similar in principle to changeable telephoto lenses, you can 'zoom' in from varying distances for the precise sound you're after. The 18-inch probe may be used for 'close-ups,' as far back as 75 feet from the sound source; the 34-inch probe from 150 feet. A 7-foot probe is optional for distances beyond 150 feet.

*The most unique feature, a Sony exclusive, is the built-in, battery powered, solid state monitoring amplifier in the pistol grip handle, which assures the operator that he is transmitting the source with pin-point accuracy.

OTHER FEATURES, OTHER USES: The new Sony F-75 Dynamic Tele-Microphone is highly directional at the point of probe, with exceptional rejection of side and back noises (35 to 40 db sensitivity differential). Recessed switching allows quick selection of impedances (150, 250 and 10K). The uniform frequency response, controlled polar pattern, and unprecedented rejection of background noise eliminates feedback interference in P. A. systems.

The complete Sony F-75 Tele Microphone includes two sound probes, 18 and 34 inch lengths, monitoring pistol grip handle and the Sony dynamic headset, all in a velvet lined compartmentalized carrying case, for less than $395. For specifications and a catalog of the complete line of Sony microphones, visit your nearest Sony/Superscope franchised dealer, or write Superscope, Inc. Dept. 52, Sun Valley, Calif. The best sound is Sony.
Introducing the Super B, today’s truly superior cartridge tape equipment.

New Super B series has models to match every programming need—record-playback and playback-only, compact and rack-mount. Completely solid state, handsome Super B equipment features functional new styling and ease of operation, modular design, choice of 1, 2 or 3 automatic electronic cueing tones, separate record and play heads, A-B monitoring, biased cue recording, triple zener controlled power supply, transformer output... all adding up to pushbutton broadcasting at its finest.

Super B specs and performance equal or exceed NAB standards. Our ironclad one-year guarantee shows you how much we think of these great new machines.

Write, wire or call for complete details on these and other cartridge tape units (stereo, too) and accessories... from industry’s largest, most comprehensive line, already serving more than 1,500 stations on six continents.
Broadcast Engineering

7 YEAR SUBJECT REFERENCE INDEX

Index to Subjects

Acoustics .. 32
Aircraft Applications 32
AM .. 32
Antennas, AM .. 32
Antennas, Directional 32
Antennas, FM ... 32
Antennas, Receiving 32
Antennas, TV .. 32
Associations and Conferences 32
Audio Equipment .. 32
Automation .. 33

Book Reviews .. 33
Building Design and Construction 33

Cartridge Tape Equipment and Operation 33
CATV .. 33
CCTV ... 33
Chief Engineer ... 33
Color TV .. 33
Components and Materials 33
Consoles .. 34
Control Room .. 34

Disc Recording and Playback 34

Emergency Operations and Equipment 34
Engineering Theory 34
Engineers' Exchange 34
Equipment Construction and Modification 35
Equipment Design 35
ETV ... 36

Facilities ... 36
FCC ... 36
FCC Rules and Regulations, Amendments and Proposed Changes 36
Films, TV .. 36
FM ... 36

Indexes .. 37
Industry Features 37
Interference .. 37
International Broadcasting 37

Level Devices, Audio 37
Lighting ... 37
Lines, Remote ... 37
Line Voltage .. 37
Licenses ... 37
Logs and Logging 37

Maintenance ... 37
Matching Networks 38
Measurements .. 38
Meters .. 38
Microphones .. 38
Microwave ... 38
Miscellaneous ... 38
Mixers .. 38
Mobile .. 38
Modulation .. 38
Monitors ... 38
Multiplex ... 38

Newsfilm ... 38

Off-Air Pickups .. 38
Operations ... 39
Outside Broadcast 39
Ownership ... 39
Pads and Attenuators 39
Power Supplies .. 39
Proof of Performance 39
Radiation and Propagation 39
Recording, Video 39
Remote Control .. 39
Remote Pickup .. 39
Safety .. 39
SCA .. 39
Semiconductors .. 39
Specifications and Standards 40
Stereo ... 40
STL ... 40
Studio ... 40
Switching Equipment 40

Tape Recording .. 40
Telephone Lines 40
Television ... 40
Television Cameras 41
Test Equipment and Instruments 41
Towers .. 41
Translators ... 41
Transmitters .. 41
Transmission Lines 41

UHF-TV .. 41

Video Equipment 41
Washington Bulletin 42

LE indicates "Letters to the Editor"; NI indicates "News of the Industry."

January, 1966

31

www.americanradiohistory.com
ACoustics
- Broadcasting, in... 28, Jul 63
- Music-pickup techniques... 14, Feb 64
- Precedence effect... 6, May 60
- Recording studios... 26, May 59
- Airplane, from... 12, Feb 64
- Reverberation, synthetic... 8, Jan 60
- Studio, introduction to... 14, Sep 65

AIRCraft APPLICATIONS
- Broadcast system, heliportable... 18, Jan 64
- Field-intensity measurements... 16, Mar 65
- Helicopter use... 34, Aug 64
- field measurements... 20, Aug 61
- international TV, in... 24, Jan 65
- TV station in helicopter... 20, Dec 61

AM
- Allocation freeze, FCC... 36, Feb 64
- Antennas, directional, planning... 32, Aug 60
- Audio equipment, choice of... 22, Nov 59
- Audio transmission, use for... 10, Dec 65
- Automation... 10, Jun 64
- Clear channels, FCC and... 22, Nov 61
- Cross-modulation... 24, Jul 64
- Daytime stations, proposed change in hours... 29, Aug 59
- Discontinuance of... 14, Jul 60
- Field-intensity measurements... 16, Jan 61
- Grid-modulation theory... 28, Jun 63
- Harmonic suppression... 12, Apr 63
- Modulation... 18, Mar 64
- monitors, calibration... 12, Nov 64
- correction... 10, Jul 65
- Network, off-air pickup... 12, Aug 61
- Power measurements for... 20, Dec 65
- Proof of performance... 20, May 63
- Remote control, CBS... 28, Feb 64
- Single-sideband, compatible... 4, Aug 59
- Spare-parts inventory... 14, Jul 63
- Stereo... 16, May 60
- stations... 40, Feb 60
- STL, 900-mc... 22, Oct 64
- Studio design... 14, Jun 63
- Test-equipment checklist... 10, Jul 63
- Transmitter kit... 2, Jun 60
- Transmitters... 24, Jul 61
- list... 37, Jul 59
- 4000A use in... 18, Mar 65

ANTENNAS, AM
- De-icing control... 34, Sep 64
- Directional, planning... 32, Aug 60
- Impedance, effects of lighting and isolation circuits on... 4, Sep 60
- Maintenance... 17, Nov 62
- matching networks for... 12, Jan 64
- Measurements, RF bridge for... 23, Jun 65
- Meters for, remote-indicating... 14, Aug 65
- Receivers, pickup, correlation... 12, Jan 63
- Series feed... 30, Jan 63
- Shunt feed... 32, Jan 63
- Site test for... 16, Nov 65
- Unipole... 4, Dec 60
- use... 26, Feb 63

ANTENNAS, DIRECTIONAL
- Adjustments, AM stations... 16, Nov 64
- Design... 10, May 64
- Field-intensity... 6, Jan 61
- measurements... 16, Dec 62
- Airplane, from... 16, Mar 65
- Helicopter, from... 20, Aug 61
- Interference... 22, Feb 63
- Form 301... 14, Feb 63
- correction to... LE 6, May 63
- Installation... 14, Nov 62
- Azimuth, bearing... 14, Dec 62
- Azimuth, correction factors... 24, Jan 63
- Polars, use of... 15, Dec 62
- surveying... 22, Jan 63
- pattern distortions by... 13, Dec 62
- time... 24, Jan 63
- checking pattern, for... 20, Jul 65
- field-intensity meter use for... 10, Nov 65
- running radials for... 23, Dec 65
- Operation... 10, Jan 64
- System specifications... 26, Jun 61
- Power dividers... 18, Dec 65
- Primer on... 20, Apr 64
- Proof-of-performance plans, Apr 63
- Soil conductivity, effects of... 12, Jun 64
- chart... LE 6, Nov 64
- Stability of... 48, Apr 65
- Systems planning... 32, Aug 60
- Theory... 24, May 63
- Tuning unit, composite... 22, Sep 62

ANTENNAS, FM
- De-icing control... 34, Sep 64
- Field-intensity, dbu and dbk... 20, Nov 62
- Mounting... 4, Oct 61
- Multiplex, for... 26, May 60
- station, planning... 12, Nov 62
- correction... LE 6, Dec 63
- transmitting... 16, Dec 63
- Vertical polarization for... 14, Aug 64
- VSWR, effects on stereo... 16, Jan 63

ANTENNAS, RECEIVING
- Off-air pickup, TV... 28, Aug 63
- Transistor, location of... 12, Dec 64

IEEE, 1963 International
- Convention... 48, Mar 63
- IRE Symposium... 10, Nov 60
- ITU Conference, 1963... 22, Jan 64
- NAB... 5, May 59
- 1959, report... 10, Apr 60
- 1960, report... 4, May 61
- 1961, preview... 24, Apr 61
- 1962, report... 4, May 61
- 1963, preview... 35, Mar 63
- 1964, preview... 33, Mar 64
- 1965, preview... 16, May 64
- 1965, report... 18, May 65
- Engineering Conference, 1959... 8, May 59
- 1962, report... 8, May 62
- Engineering Department, NEC... 10, Sep 65
- NCTA Convention, 1965... 20, Oct 64
- review of... 24, Dec 64
- S-PTE Technical Conference... 95th... 55, Mar 64
- 96th... 20, Oct 64

AUDIc EQUIPMENT
- AGC action... 4, Jun 62
- Amplifiers... 24, Mar 63
- Design... 5, May 62
- resistance-coupled... 16, Jun 63
- transistor... 6, Sep 62
- miniature... 31, Jun 59
- monitor... 12, Aug 60
- noise-suppression... 14, Apr 62
- Broadening, for... 22, Nov 59
- Chime generator, electronic... 4, Jan 61
- Compressors... 12, Jul 63
- addenda, manufacturers' addresses... LE 6, Oct 63
- Console... 14, Mar 61
- FM station, stereo, planning... 22, Dec 62
- Level control, automatic... 8, Sep 59
- Levels, balanced... 12, Aug 60
- Limiters, peak... 10, Jun 63
- Monitor, paging system... 16, Aug 63
- addenda, manufacturers' addresses... LE 6, Oct 63
- Correction (to Jun)... LE 6, Aug 63
- Limiting action... 4, Jun 62
- Maintenance, studio... 14, Aug 62
- Microphone... 24, Jun 67
- Filter, special-effects... 24, Jun 67
- mixer... 40, Oct 64
- polar response... 6, Feb 66
- Unit, direction of... 6, Apr 68
- wireless... 16, Apr 65
- Monitor, paging system... 10, Nov 62
- Music system, automatic... 17, Feb 63
- Oscillator, solid-state... 63, Oct 64
- Plug, multi-contact, uses for... 30, Jul 59
- Remote amplifier, transistor... 10, Sep 59
- Shielding... 8, Jan 60
- Stereo, phase checks for... 18, Dec 63

BROADCAST ENGINEERING
AUTOMATION
Alarm, for faults 14, Dec 64
Design considerations 16, Oct 59
Logging
-program ... 20, Mar 63
-transmitter 6, Mar 61
-Money, make, not save 16, May 65
-Music system 17, Feb 63
-correction LE 6, Apr 63
-Programmer, simple 30, Mar 61
-Program system 32, Sep 59
-Radio use 10, Jun 64
-Systems, planning for 16, Sep 63
-Tape-cartridge use 30, Apr 63
-Tape equipment, audio, for 18, Feb 65
-Television, system for 16, May 59
-Time injector 12, Oct 62
-corrections LE 6, Jan 63
-Tone generator, 20-cps 22, Aug 65
-Transmitter-site 10, Jun 65
WKRC-TV installation 4, Jul 60

BOOK REVIEWS
ABC's of Mobile Radio 35, Aug 62
ABC's of Ultrascopes 26, Apr 62
Acoustical Test and Measurements 50, Aug 65
Analysis, Transmission, and Filtering of Signals ... 37, Dec 63
Antenna Engineering Handbook 38, Jun 64
Audio and Accoustics 65, Feb 65
Auto Radio Manual 27, Apr 62
Basic Electronics 92, Mar 65
Basic Electronics for Engineers 51, Aug 64
Basic Theory and Application of Transistors ... 50, May 65
Collected Papers on Acoustics 50, Sep 63
Communication Satellites 56, Oct 64
Design and Operation of Regulated Power Supplies 26, Jun 62
Electronic Games and Toys 20, Feb 62
Electronic Musical Instruments Handbook 35, Aug 62
Electroacoustics Math Simplified 36, Jan 62
FM Multiplexing for Stereo 26, Jul 62
Handbook for Electronic Engineers 30, Dec 65
Handbook of Electronic Charts and Nomographs .. 36, Jan 62
Handbook of Electronic Tables and Formulas ... 56, Oct 64
Magnetic Tape Recording 47, Nov 64

January, 1964

Mathematics for Electronics and Electricity .. 50, Dec 64
Microphones 50, Jul 64
Microwave Test and Measurement Techniques 49, Nov 65
NAB Engineering Handbook 34, Jan 63
Oscilloscope, The 30, Sep 64
Planning the Local UHF-TV Station 36, Jun 65
RCA Power System 30, May 62
RCA Receiving Tube Manual 26, Apr 62
Radio Electronic Transmission Fundamentals 26, Jul 62
Radio Handbook 34, Jan 63
Radio Operators License Handbook 64, Oct 65
Sideband Communication Handbook 38, Sep 62
Silicon Controlled Rectifier Manual 30, May 62
Single-Sideband Principles and Circuits 22, Nov 64
Sound in the Theatre 20, Feb 62
Transistorized Voltage Regulators 20, Jun 62
Transistor Substitution Handbook 26, Jul 62
Transistor Substitution Handbook, Revised 20, Feb 62
Troubleshooting With the Oscilloscope 39, May 62
Tube Substitution Handbook 35, Aug 62
Tube Substitution Handbook Volume Two 36, Jan 62
Two-Way Mobile Radio Handbook 46, Jan 65
Understanding Lasers and Masers 58, Apr 65
What You Should Know About Two-Way Radio 26, Jun 62

BUILDING DESIGN AND CONSTRUCTION
Acoustics 30, Jul 63
Control room 32, Jul 64
Interference, internal, prevention 16, Oct 62
Studio
—radio, planning 12, Feb 61
—WFAA 34, Sep 60
—Transmitter 5, Nov 61
TV —WJXT 4, Nov 60
—WTWQ .. 17, Oct 65
TV/Radio center 20, Oct 63

CARTRIDGE TAPE EQUIPMENT AND OPERATION
Adjustments, test cartridges for 31, Nov 65
Automatic
—audio system 26, Sep 59
—cuing for playback 22, Jul 65
—machine 18, Jun 63
Control, automatic test procedure 6, Jun 61
Control, automatic for machine 6, Apr 62
Cue-tone generator, 20-cps 22, Aug 65
Heads, care of 21, Dec 65
Maintenance for 19, Jun 65
—systems 6, Nov 64
Operation, techniques 24, Apr 64
Portable systems 14, Jan 65
Rack, construction 20, Aug 63
—additions 6, Feb 64
Standards, NAB 8, Jan 65
Systems, automatic 30, Apr 63
—cution .. LE 6, Jul 63

CATV
Amplifiers, cascaded 14, Oct 63
—audio equipment, constant 18, Jul 65
Broadcasting, audio, to speakers 18, Jul 65
—FM, adding to systems 10, Aug 65
Maintenance of, 28, Feb 65
NCTA Convention, 1965 10, Sep 65
Pamphlets, bibliography 34, Jan 65
System
—description 12, Jan 65
—featherboard 12, Feb 65
Systems, basic 10, Feb 64

CCTV
ETV, transmission standards 18, Oct 63
System for school 14, Nov 63

CHIEF ENGINEER
Antennas
—auxiliary, FCC permission 48, Jan 65
—base-circuit meter, constant-impedance switch for 58, Jun 65
—bias meter, contour 22, Aug 64
—Dipole, horizontal 25, Nov 64
Directional antenna 35, Apr 65
—base-circuit readings 64, Mar 65
—logging, automatic, for 52, Apr 64
—phase variation, correction 88, Apr 65
Emergency operation 55, Nov 64
FCC 10% Rule 48, Sep 64
—changes in LE 6, Nov 64
Field-strength change 71, Oct 64
Interference, in CATV system 64, Mar 65
Lightning and RF damage damping to tower 55, Nov 64
Monitor point, change of 36, Feb 65
NARBA .. 71, Oct 64
Power-line-voltage regulation 58, Jun 65
Radials, laying 88, Apr 65
Stereo proof of performance 36, Feb 65
STL operations, license requirements 88, Apr 65
White areas 71, Oct 64

COLOR TV
Stereo ... 4, Jul 62
Studio, mobile 14, Oct 60
Tape-recording techniques 18, Apr 64

COMPONENTS AND MATERIALS
Cable, choosing for CATV 18, Jul 65
Coaxial transmission line, uses, 16, Jan 65
Image orthicon 38, Apr 61
—color TV, for 8, Jul 62
—récepteur 4, Feb 60
Mercury rectifiers, care ... 8, Jun 60
Microelectronics modules, 26, Mar 65
Negative-resistance tubes 16, Jul 65
Plug, multicontact, uses for 30, Jul 65
Radiofrequency isolation solid-state 16, Apr 64
—silicon replacements 28, Aug 61
SCR, dimmer use for 22, Jul 59
Sparrows, inventory for 14, Jul 63
Tape, magnetic 4, Jun 60
—storage, effects of 38, Apr 61
—storage tips 28, Jul 61
Tube, manufacturer of 22, Oct 60

www.americanradiohistory.com
CONSOLES

Audio
- Custom-built 14, Mar 61
- production 28, Jul 64
Semiautomatic control table. 20, Apr 64
Stereo, portable 20, Sep 65

CONTROL ROOM

Audio switching, push-button. 16, Dec 60
Design new approach 32, Jul 64
Desk, circular 42, Nov 63
Emergency booth 22, May 64
Improving 10, May 61
Maintenance, preventive 12, Dec 62
Radio, design 14, Jun 63
Semiautomatic control table. 20, Apr 64

DISC RECORDING AND PLAYBACK

Facilities, updating for 14, May 55
Lathe, standard, modification to microgroove 24, Sep 64
Logging system, automatic 20, Mar 63
Logs, program, dictation equipment use for 48, Nov 63
Playback systems, updating 36, Nov 63
Stereo phase relations 24, Aug 62

EMERGENCY OPERATIONS AND EQUIPMENT

Conelrad
- alarm, teletype 10, Aug 62
- attention signal 28, Feb 61
- correction 4, Apr 61
EBS system 15, Dec 65
Emergency booth 22, May 64
Generator 10, Jul 62
Part 73 23, Apr 65
Power system 20, May 64
Safety practices in station 14, Nov 64
Tower collapse, CKAC 28, Apr 65
- corrections 13, Apr 65
- correction LE 6, Sep 65

ENGINEERING THEORY

Acoustics
- music pickup 14, Feb 64
- studios 14, Sep 65
- recording 12, Feb 64
Amplifiers, cascaded
- wideband 14, Oct 63
- AM-transmitter modulation power, increasing 10, Jul 65
Antenna
- directional 32, Aug 60
- feed, series, shunt 50, Jan 63
- helical 20, Oct 65
- impedance, effects of lighting and isolating circuits on AM. 4, Sep 60
- unipole 26, Feb 63
- folded 4, Dec 60
Audio
- amplifiers 16, Jun 63
- resistance-coupled 6, Sep 62
- compressors 12, Jul 63
- peak limiters 10, Jun 63
- correction LE 6, Aug 63

CATV systems 10, Feb 64
Clamp circuits 16, May 60
Class-C amplifier 18, Aug 65
- correction LE 6, Nov 65
Coax, characteristics 40, Feb 65
Cross-talk, multiplex, effects of SWR on 4, Aug 61
Directional mount 24, May 63
- design 18, Dec 65
- operation 20, Mar 64
- correction 10, Jan 64
- correction (to Jan) LE 6, Jun 64
- phasing 26, Oct 65
- soil-conductivity effects 12, Jun 64
- chart 6, Nov 64
- stability 48, Apr 65
Emitter follower 14, Jun 65
Field-intensity calculations 16, Dec 62
- dbu and dbk 20, Nov 64
FM
- multiplex and SCA 12, Sep 64
- practical 6, Feb 62
- correction 12, Feb 62
- pre-emphasis and distortion in 18, Apr 62
- sssos modular 4, Jul 59
- station, planning 20, Jul 60
Frequency vs wavelength calculations 24, Aug 63
IRF. 10,000-ohm in 1000 feet 10, Nov 60
Microphone technique and development 14, Nov 59
Microwave systems, video specifications 30, Oct 64
- correction 20, Nov 64
- correction (to Oct) LE 6, Mar 65
Modulation
- audio 18, Mar 64
- grid 28, Jun 63
Negative resistance 16, Jul 65
Pads, isolating and matching 12, Mar 64
Parametric amplifier 14, Jun 65
Precedence effect 10, Jun 61
Radar, weather, system 16, Jul 59
Recordings, video, time-base error 8, Nov 61
Remote-control systems 36, Oct 65
Stereo broadcasting, new method 16, May 63
Switching matrix, 16, Jun 65
Tower construction, vibration problems 34, Jul 59
Tower, emergency operation 13, Apr 65
Transistor audio-circuit design 18, Aug 62
Transmission lines 25, Mar 63
Vectors, review of 22, Feb 65
Video-tape recording 18, Apr 64
- techniques 20, Nov 63

ENGINEERS’ EXCHANGE

Air-conditioning, records for 50, Apr 61
Antenna, shielded loop 30, Jun 62
Audio gear use 38, Sep 64
“Beeper,” eliminating pulse noise in 39, Jun 60
Blowers, sound replacement 39, Jun 60
Burnishing tool for phone jacks 68, Oct 65
Capstan mechanism 42, Aug 64
- binding 42, Aug 64
- switch 32, Jun 62
Carrier-current repeaters 46, Aug 65
Carrier-failure alarm 42, Jul 65
- correction 6, Oct 65
Cartridge-tape head alignment jig 48, Nov 64
Case, equipment 23, Apr 62
Conelrad bell counter 30, Jul 61
Console
- accessory panel 36, Apr 63
- monitor, auxiliary 34, May 63
- remote lines, modified to monitor 43, Jun 59
- Yard, dual-channel modification for 40, Jul 65
Continuity
- earphone 22, Jul 62
- line, carrier-current 30, Dec 62
- tone, auxiliary 38, Sep 64
Cut button, foolproof 60, Feb 65
Distortion
- amplifier, lowering 30, Sep 60
- diode 34, May 64
Equalizer indicator for 40, Jan 60
Exhibits, engineering report 32, Nov 60
Field-strength-meter calibration 32, Mar 61
FM monitoring, remote, relay switching for 24, Nov 62
- parts for LE 6, Jan 63
Focus-current meter 56, Oct 64
Frequency monitors, care of 29, Jan 64
- instruments or LE 6, Apr 64
Gated compressor, dual recovery time 40, Jul 65
Ghosts, method for diminishing 40, May 65
Guy-wire pattern, eliminating 31, Sep 62
Headsets, level control for low-impedance 42, Jul 65
Heaters, space, transmitter 40, Dec 59
Inducement and inductance, quick measurement 48, Nov 64
Insulators, bow rain shields for 44, Mar 63
Interlock, curing trouble 30, Sep 60
Labels for jacks 22, Dec 63
Licenses, displaying 56, Oct 64
Light blinker, solid-state 58, Mar 64
Limiter
- amplifier, RCA BA-6A 60, Mar 64
- zero-set control for 40, Apr 63
- prereamp 36, Apr 63
Line
- checks 70, Oct 65
- portable radio, with 70, Aug 65
- speeding 77, Apr 65
- remote-control, indication 23, Jul 62
- voltage, excessive 42, Apr 64
- voltmeter 27, Dec 63
Log, maintenance 34, Aug 63
Matching unit, 600-ohm 30, Jun 61
Merry-vapor-fat tube tester 52, Oct 64
Meter maintenance 52, Oct 64
Microphone filter 48, Jul 59
Microwave intercom facilities 30, Oct 63
Modulation
- monitor, check calibration with scope 39, Jun 60
- peaks 26, Jul 63
- transformer, temporary operation with defective 30, Sep 60
Monitor
- on-air 36, Apr 63
- speaker added to level-meter panel 34, Jun 62
- Multiplex specifications 32, Nov 60
- neon alarm 22, Sep 61
- neon lamp, dark 28, Jan 63
- NIC receiver 22, Dec 63
- One of those days 52, Oct 64
- Collator, reflector 51, Sep 65
- crystal-controlled 51, Sep 65
- Party line plus, the 24, Nov 62
- Pattern switching, carrier interruption for 29, Jan 64
- Phase change without pattern change 48, Jun 65
- Pickup heads, rotate to prolong life 43, Jun 59

BROADCAST ENGINEERING
Thermal relays, reducing delay time in 44, Mar 63
Time-delay substitute 76, Apr 64

Tower-construction hints 23, May 64

Light indicator 28, Jan 63
Lighting wiring, economizing on 44, Jul 65

Correction 11, Aug 65

Transformer matching 12, Mar 61
Replacement, emergency 30, Dec 61

Transmitter control, automatic 78, Mar 63
Unsuitable 48, Nov 64

Filament control time switch for 39, Nov 59
Life, prolonging 48, Jul 59

Gates HC 10, modification for 48, Nov 59
Troubleshooting, by odor 24, Apr 62

Tube identification 30, Apr 61
Replacement 26, Aug 62

Tube, Hickok 6000, modification to 29, Sep 62

Tuning capacitor, emergency 36, Jul 64
Tuning units, outside 27, Oct 62

Stabilization 48, Jul 59

Turntable, servicing 43, Jun 59
TV, two-channel, from single control position 27, Oct 62

Vidicon automatic-sensitivity-control improvement 45, Aug 61

VTR cue amplifier for 77, Apr 65
guide-height adjuster 34, Sep 63
tip-projection control, automatic 30, Oct 63

VU meters, using 46, Mar 63
preamplifier 50, Mar 63

Waveform camera 40, May 65

EQUIPMENT CONSTRUCTION AND MODIFICATION

Alarm fault, for automation 24, Dec 64
plate-power failure 24, Aug 64

Antennas, television, for broadcast 13, Jan 63

Audio
console, production 28, Jul 64
distribution system 28, Sep 63
oscillator, solid state 63, Oct 64
playback equipment, updating 36, Nov 63
switcher 18, Aug 64
push-button 16, Dec 64
solid-state 34, Mar 65
transmission sets 14, Sep 64

Camera-tube alignment generator 26, Dec 62
correction 26, Dec 62

Chaser 25, Jun 63
timer 23, May 64

Chime generator, electronic 4, Jan 61

Chopper, video-modulation 26, Jun 64

Coaxial, 3, Nov 64

Correlator 28, Feb 61
correction 4, Apr 61

test procedure 36, Jun 61

Console 14, Mar 61
video-distribution 14, Sep 65

Consoles, portable stereo 20, Sep 65
cue, tape 22, Mar 62
Desk, control-room 42, Nov 63
disc lathe, from standard to microgroove 24, Sep 64

Distribution amplifier

video, transistorized 26, Dec 64

Eduñado with tape 11, Aug 59
film projector, test view 14, Oct 64

Microphone
filter, special effects 24, Jun 65
mister, solid state 40, Oct 64

Modulator
amplifier 12, Aug 65
RF, collinear type 15, Oct 65

Multimeter, built-in 18, Jun 65
Music system, automatic 17, Feb 65
correction 11, Jun 65

Phase-monitoring system

audio monitor 10, Nov 62

Phase-monitoring system, improving sensitivity to 24, May 65

Picture monitor switcher 32, Apr 62
Polaroid, automatic 12, Oct 64
Programmer, automatic 30, Mar 61
Projector, front 32, Jul 61
Pulse generator, 20, millicriclecord 28, Dec 61
Recorder, with portable 30, Dec 62
Remotecontrol
line fault, protection 42, Aug 64

radio lights for 38, Feb 64

SCA muting amplifier 26, Aug 62

Shortwave-transmitter maintenance 36, Jul 64

Socket adapters for amplifier
input modifications 39, Feb 64

Speaker
monitor, control 33, Nov 60
muter, automatic 26, Jul 63
correction 26, Jul 63
partitions 41, Nov 63
Station ID's on film 31, Dec 62

Stereo
carriage, mono playback 68, Oct 65
FM off-air relay 70, Oct 65

Switch
contacts, adding 46, Jun 65

muter, with lighting protection 24, Dec 61

Tape
automatic timing for 34, Jun 64
delay time, using one transport 44, Jun 65

inputs via static mixer 34, Jun 64
rack system 26, Oct 62

recorder modifications 35, Aug 63

Amplex 300 35, Aug 63
Input control 30, Sep 60
Magnecord P60 475, Apr 64
speed, checking 22, Jul 62

transport, automatic remote control 26, Oct 62

Tape-cartridge
boost, high-frequency 40, Nov 63

handling 26, Nov 62
head-elimination jig 48, Nov 64
hold-down 37, Oct 64
speed accuracy 40, Nov 63
starting switch for deck 44, Jan 65
winding 44, Mar 63

turntables 36, Jul 64

Teletype sending device 44, Aug 65

Temperature
gauge, electronic 58, May 64
indicator for Rust remote control equipment 26, Oct 62

sensitive components, locateing 43, Jun 59

January, 1966

www.americanradiohistory.com
Power dividers, directional-antenna 4, Sep 61
Recorder, video, time-base compensation 8, Nov 61
Remote control by radio link 10, Mar 65
Switcher, vertical-interval 24, Oct 61
Transmitters
—AM, 1-kw 24, Jul 61
—FM, 20-kw 4, Aug 62

ETV
American Samoa, system in 42, Apr 65
CCTV system 14, Nov 65
Low-system 32, Feb 63
Milwaukee station 32, Aug 65
Transmitters for 12, Dec 59
Transmission systems, standards 18, Oct 63

FACILITIES
AM transmitter plant, WIBC, 52, Jul 65
FM—engineering 6, Feb 62
—station, planning 20, Jul 60
Studio planning, radio 12, Feb 61
TV—translators 22, Feb 62
—WJXT 4, Nov 60
—WTWO 17, Oct 65

FCC
(See also SPECIFICATIONS AND STANDARDS)
Allocation
—freeze, AM and FM 36, Feb 64
—problems 24, May 59
Antennas, AM, site test for 16, Nov 65
Clear channel 26, Mar 62
Clear channel 36, Mar 63
Clear channels 22, Nov 61
EBS 15, Dec 65
ETV, transmission standards 18, Oct 63
FM—allocation plan 18, Sep 61
—Rules 28, Nov 62
—stereo 28, Nov 62
—approved 28, May 61
—proof of performance 10, Aug 63
—correction LE 6, Nov 63
—Technical Standards 36, Jun 59
FM/TV mobile monitor unit 13, Apr 64
Form 301 14, Feb 63
—correction 13, Mar 63
—correction (to Feb) LE 6, May 63
Harmonic suppression, AM 12, Apr 63
Inspections, renewal 14, Oct 61
Inspector, dealing with 23, May 63
Interference 24, Mar 63
License, Third-Class 30, Mar 64
Logging, transmitter 20, Sep 63
Maintenance-Log Rules 13, Jul 65
Remote control, transmitters 10, Sep 63
—experience with 18, Sep 63
Rules (see also next category) 39, Sep 63
—compliance 18, Feb 62
—operator, amended NI 30, Dec 63
Transmitter rules, VHF 18, Nov 60

FCC RULES AND REGULATIONS, AMENDMENTS AND PROPOSED CHANGES
Allocations, FM 26, Sep 61
AM—presunrise operation 14, Feb 62
—SSB 24, Nov 60
—transmitters 43, Aug 60
Antenna ammeters 32, Dec 59
Applications 37, Sep 60
—AM 31, Dec 59
—FM 14, Feb 62
—processing 39, Oct 61
Assignments 39, Jan 61
—translator, Alaska and Hawaii 26, Jan 61
—TV 28, Jun 60
—VHF 34, Jul 60
—VHF 29, Feb 60
—VHF 35, Apr 60
—VHF 37, Jul 60
—VHF 42, Aug 60
—VHF 27, Oct 60
—VHF 34, Jul 61
Boosters
—UHF, cochannel 27, Jul 60
—VHF 35, Oct 59
Broadcast services 32, Apr 60
Call signs 37, Jul 60
Class IV stations 41, Jun 59
—station 36, Sep 60
—station 36, Jan 61
Clear channels 26, Nov 59
—station 28, Dec 59
—station 34, Jan 60
—station 36, Mar 60
—station 34, May 60
—station 32, Nov 60
Conelrad 35, Feb 60
—station 32, Mar 60
—station 34, Apr 60
—station 30, 34, May 60
—station 34, Feb 60
—station 40, Jun 61
Daytime
—skewyave 30, Jul 59
—station 28, Dec 59
—station 28, Dec 59
—station 29, Aug 59
FM—educational 26, Sep 60
—multiplex 39, Jul 59
—station 24, Nov 60
—station 42, Aug 60
—station 39, Jul 59
—station 39, Jul 59
—station 39, Jul 59
—stations 36, Jan 60
License periods 33, Apr 60
Logs, station 29, Feb 60
Monitors
—frequency 26, Jan 61
—TV frequency and modulation 34, Feb 61
—TV frequency and modulation 39, Jul 59
—TV frequency and modulation 37, Jul 60
—VHF 28, Jun 60
Notice, local 34, Jul 61
Ownership, multiple 39, Jun 61
Part 4 35, May 60
Practice stations 36, Mar 61
Program forms 40, Apr 61
Reallocation of fixed, land mobile, maritime frequencies 34, Jun 60
Remote control 31, Aug 59
Remote control 31, Aug 59
Remote-pickup stations 24, Nov 60
Repeaters, TV 24, Jan 60
—low-power 24, Jan 60
—VHF 41, Jun 59
SSB, standard broadcast 37, Jul 60
Schedule, minimum 33, May 60
Schedule, minimum 44, Aug 60
Standards of Good Engineering Practice 55, Oct 59
Stereo 39, May 60
TV—interim operation 14, Feb 62
—stations 24, Nov 60
Tower marking 32, Mar 60
—booster, UHF 36, Aug 61
TV—Phase 33, Jan 60
—diplexers 28, Dec 59
—UHF-TV test, New York 42, Aug 60
Multiplexing regulation, FCC 22, Jun 60
Phase system 26, Jun 61
Tape, reel-to-reel, NAB 16, Sep 65
Tape systems, video, international 16, Jun 61
Vertical-interval test, FCC 24, Oct 59

FILMS, TV
Chains, maintenance of 12, Oct 65
Cleaning ultrasonically 34, May 59
Documentaries, filming 34, May 59
Equipment, 8-mm 14, Dec 61
News slides, copying system 24, Oct 63
Projector, rear-view system 14, Oct 64
Seminars, standards 6, Jun 59
Tape-recorder use with 14, Jan 65
Tape systems, synchronized for audio 64, Apr 65

FM
Allocations 18, Sep 61
—freeze, FCC 36, Feb 64
Antennas
—mounting 4, Oct 61
—multiplexing, for 26, May 60
—vertical polarization 14, Aug 64
—VSWR, effects 16, Jan 63
Automator system 10, Jun 65
CATV, adding to 10, Aug 65
Crosstalk 18, Sep 60
Engineering, practical 6, Feb 62
FM receivers 12, Mar 62
FM receivers 18, Apr 62
FCC Rules 28, Nov 62
Filter, variable high-frequency 16, Nov 63
Interface, multiplex, frequency 16, Nov 63
Interface, multiplex, FM receivers 14, Sep 59
Line-voltage regulation for 10, Jul 64
Monitor, modulation 12, Nov 64
—calibration of LE 6, Jan 65
—correction LE 6, Jan 65
—multiplex, for 14, Aug 59
Multipath vagaries 7, Jun 60
Multiplex, multiplex, monitor design 22, Feb 60
—muting, selective 12, Nov 60
—reception methods 30, Oct 60
—regulations, FCC 22, Jun 60
—subcarrier —generator 8, Sep 60
—twin-channel, KCMK 8, Sep 60
—VSWR, effects 4, Aug 61
Network, off-air pickup 12, Aug 63
Noise measurement 27, Apr 60
Off-air, pickups, relay use 6, Nov 59
—relay, heterodyne type 34, May 65
Part 73 23, Apr 65
Pre-emphasis and distortion in 10, Nov 59
Power measurements for 21, Apr 65
Proof of performance, stereo 10, Aug 63
—correction to LE 6, Nov 63
Receiver installation, multiplex 14, Dec 60
Remotization, STL 10, Feb 63
SCA—minimizing problems in 16, Mar 64
—muting, silence sensor for 19, Oct 65

BROADCAST ENGINEERING
Serrasoid modulator 4, Jul 59
Spare-parts inventory 14, Jul 63
Station planning 3, Dec 65
Stereo planning 3, Dec 65
Stereo correction (to Nov) LE 6, Jan 63
Stereo ten-watt, installation 30, Mar 65
Stereo amplifiers, phase checks 18, Dec 63
Stereo additions LE 6, Feb 64
Stereo antennas for 16, Dec 63
Stereo converting to 8, Dec 63
Stereo do's and don'ts 18, Sep 63
Stereo era, new 32, Jun 61
Stereo equipment, KISW FM 18, Jan 60
Stereo FCC approved 28, May 61
Stereo method, new 16, Mar 63
Stereo monitoring methods 10, Dec 63
Stereo monitors, developments 10, Aug 64
Stereo PAM/FM system 4, Dec 59
Stereo phase-shift measurement 10, Oct 62
Stereo principles, basic 12, Sep 64
Stereo station installation 8, Dec 63
Stereo summary 20, Dec 63
Stereo system, compatible 27, Aug 69
Stereo tests 2, Feb 61
Stereo WFM equipment 4, Jul 61
STL 900-Mc. 33, Oct 64
Subcarrier deviation 28, Apr 60
Subcarrier frequencies, selection of 10, Aug 59
Subcarrier generation 9, Dec 59
Subcarrier test equipment checklist 10, Jun 63
Transmitter design 18, Aug 60
Transmitter measurements 26, Aug 60
Transmitter 20-kw 4, Aug 62

INDEXES
Article titles, May 1959 through April 1961 14, May 61
Multiplex articles, 1960 18, Jan 65
Subject-reference
1962 32, Dec 62
1963 25, Dec 63
1964 59, Dec 64
1965 26, Dec 65

INDUSTRY FEATURES
AES 16th Convention, preview 28, Sep 64
Authors, BROADCAST ENGINEERING Consulting 38, Jan 65
Broadcast
center, AM/FM/TV 42, Oct 64
station, world's most powerful 10, Jan 63
Broadcasting forty-five years of 20, Nov 65
future 34, Apr 64
CATV, a look at 12, Jan 65
Central-American radio-TV 13, Aug 65
Editorial comments 34, Feb 64
ITU Conference, 1964 22, Jan 64
Microelectronic modules 1965 26, Mar 65
NAB conventions (SAG ASSOCIATIONS AND CONFERENCES)
NCTA chairman's speech 22, May 65
Convention 1965 10, Sep 65
NEC, 20th, review of 24, Dec 64
President, assassination of network coverage 20, Feb 64
Radio pieces great blackouts 20A, Dec 65
Remote-control section 35, Oct 65
TV

January, 1966

Serrasoid modulator 4, Jul 59
Spare-parts inventory 14, Jul 63
Station planning 20, Jul 60
Stereo planning 12, Nov 62
Stereo correction (to Nov) LE 6, Jan 63
ten-watt, installation 14, Mar 65
Stereo amplifiers, phase checks 18, Dec 63
Stereo additions LE 6, Feb 64
Stereo antennas for 16, Dec 63
Stereo converting to 8, Dec 63
Stereo do's and don'ts 18, Sep 63
Stereo era, new 32, Jun 61
Stereo equipment, KISW FM 18, Jan 60
Stereo FCC approved 28, May 61
Stereo method, new 16, Mar 63
Stereo monitoring methods 10, Dec 63
Stereo monitors, developments 10, Aug 64
Stereo PAM/FM system 4, Dec 59
Stereo phase-shift measurement 10, Oct 62
Stereo principles, basic 12, Sep 64
Stereo station installation 8, Dec 63
Stereo summary 20, Dec 63
Stereo system, compatible 27, Aug 69
Stereo tests 2, Feb 61
Stereo WFM equipment 4, Jul 61
STL 900-Mc. 22, Oct 64
Subcarrier deviation 28, Apr 60
Subcarrier frequencies, selection of 10, Aug 59
Subcarrier generation 9, Dec 59
Subcarrier test equipment checklist 10, Jun 63
Transmitter design 18, Aug 60
Transmitter measurements 26, Aug 60
Transmitter 20-kw 4, Aug 62

INTERFERENCE
Broadcast spurious emission, checks for 74, Apr 65
station, internal prevention 16, Oct 62
Cross-modulation, cause and cure of 24, Jul 64
FCC Rules 24, Mar 63
Field-intensity measurements 22, Feb 63
TV, tracing 14, Aug 63

INTERFERENCE
Broadcast spurious emission, checks for 74, Apr 65
station, internal prevention 16, Oct 62
Cross-modulation, cause and cure of 24, Jul 64

INTERNATIONAL BROADCASTING
Broadcasting
Central America, in 13, Aug 65
Norway, in 42, Dec 64
ETV system in American Samoa 42, Apr 65
IEEE, 1964, International Convention 48, Mar 63
ITU Conference, 1963 22, Jan 64
Radio East German 56, Feb 65
European 32, Aug 61
Satellite relays 8, Oct 61
Stereo AM stations 40, Feb 60
TV evolution of, early 14, Jul 64
helicopter use in 24, Jan 65
symposium at Montreal 23, Sep 65
corrections to LE 6, Dec 65
transmitters, parallel operation 24, Mar 64
Tape standards, video 16, Jun 61
Tower, concrete, in South Africa 50, Feb 65
Video tape, mobile, England 10, Dec 62
Voice of America 24, Jan 62

LEVEL DEVICES, AUDIO
AGC devices 4, Jun 62
Automatic 8, Nov 60
Background-noise suppressors 14, Oct 63
Compressors 12, Jul 63
adder, many addresses 16, Aug 63
correction LE 6, Oct 63
Expanders 14, Oct 63
High-frequency variable filter 14, Oct 63
Limiters, peak 10, Jun 63
adder, manufacturer's address 16, Aug 63
correction LE 6, Aug 63
Limiting devices 4, Jun 62
TV loudness, and 14, Aug 60
Use of 40, May 64
corrections LE 6, Jul 64

LICENSES
Third-class, FCC 30, Mar 64

LIGHTING
Dimmers, SCR use 22, Jul 59
Guides for 18, Dec 64
TV studio 14, Apr 63
layouts 20, Oct 59

LINES, REMOTE
Impedance matching for 26, Aug 64
correction LE 6, Oct 64
Multiple-function pair 18, Apr 65

LINE VOLTAGE
Regulation for broadcast stations 10, Jul 64

LOGS AND LOGGING
Automatic, transmitter 6, Mar 61
Maintenance, considerations for 13, Jul 65
Part 73 23, Apr 65
Program automatic 20, Mar 63
automatic system for 12, Oct 64
dictation-equipment use for 48, Nov 63
Programs recorded by CBS 36, Mar 62
Transmitter automatic 20, Sep 63
automatic for 10, Jun 65

MAINTENANCE
Air cleaning, for transmitters 26, Nov 64
Amplifiers, solid-state 18, Nov 63
Audio studio 12, Jul 62
CATV systems 14, Aug 62
Cartridge-tape units 36, Nov 64
Coax transmission line, pressurized 10, Jan 65
Directional antennas 16, Nov 64
Film chains 12, Oct 65
cleaning, ultrasonic, for 34, Nov 64
projector sound systems 23, Mar 60
Information, communicating 24, Sep 61
Log, considerations for 13, Jul 65
Microwave 16, Jun 64
addition to LE 6, Nov 64
Monitors, broadcast 22, Oct 62
Preventive 16, Mar 60
Rectifiers, mercury, care and testing 8, Jun 60
SAC 16, Mar 64
Studio audio 14, Jun 62
equipment, protective 10, Nov 64
preventive 12, Dec 62
TV system frequency response, amplitude linearity 6, Jan 62
power 10, Jul 61
picture-signal standards 6, Apr 61
sync generator 18, May 61
video levels 20, Jun 61
Tape recorder 19, Jun 65
heads 21, Dec 65
transports, reel-to-reel 23, Oct 65
Translators in isolated areas 30, May 64
Transmitter air cleaning for 26, Nov 64
radio 4, Sep 62
safety note 16, Nov 62

UHF-TV 18, Nov 65

www.americanradiohistory.com
MATCHING NETWORKS
Phasing-system specifications .. 26, Jun 61
Power dividers for directional antennas 4, Sep 61
Tuning unit, antenna ... 22, Sep 62

MEASUREMENTS
AM proof of performance .. 20, May 63
- 20, Jun 63
- 16, Oct 63
- 12, Dec 63
- 28, Feb 64
Antenna - AM, RF bridge ... 23, Jun 65
current meters, remote-indicating ... 14, Aug 65
Audio - level .. 4, Jun 62
- construction .. 14, Sep 64
- use for AM ... 12, Feb 65
Directional antenna - checking pattern for 20, Jul 65
- proof of performance ... 26, Apr 63
- radials, running for .. 21, Jun 65
Envelope delay, equipment for ... 30, Oct 64
Field measuring ... 10, Feb 60
FM - subcarrier deviation ... 28, Apr 60
- transmitter ... 26, Apr 60
Field intensity - airplane use ... 16, Mar 65
- AM ... 6, Jan 61
- Form 301 ... 14, Mar 61
- helicopter, from .. 20, Aug 61
- interference .. 22, Feb 63
- meter, use for ... 10, Nov 65
- thermometer, set ... 23, Dec 65
- test ... 19, Jan 63
Frequency - precision ... 14, Jun 60
Impedance, telephone-line .. 26, Aug 64
- meter, use for ... 10, Nov 65
- correction to ... LE 6, Oct 64
Ionization, Cloud ... 18, Jul 62
Multimeter, built-in for .. 18, Jun 65
Proof of transmission .. 26, Jul 65
FM stereo - meter ... 10, Aug 63
- correction .. LE 6, Nov 63
RF - ammeters, calibration .. 14, Sep 63
- power, for ... 20, Apr 65
- loading ... 17, Jun 60
- sine-squared pulses in TV ... 12, Sep 60
- spurious emission .. 74, Apr 65
- standards, frequency .. 17, Jun 60
- WWV ... 17, Jun 60
Stereo, phase-shift ... 10, Oct 62
TV-antenna and transmission-line ... 24, Jul 65

METERS
Antenna-current, remote-indicating .. 14, Aug 65
Field-intensity, use of .. 10, Nov 65
RF ammeters, calibration .. 14, Sep 63

MICROWAVE
Communications by satellite .. 8, Oct 61
ETV, two-hop relay .. 16, Jan 62
Maintenance procedures ... 16, Jun 64
- satellite ... LE 6, Nov 64
State, Empire State .. 6, Oct 60
TV systems, solid-state ... 30, May 65
Video systems, specifications ... 30, Oct 64
- correction .. LE 6, Mar 65

MISCELLANEOUS
Balloons, runway ... 47, Aug 60
BROADCAST ENGINEERING acquisition by Howard W. Sams & Co., Inc. .. 18, May 62
Clock location .. 4, Apr 61
Conelrad - automatic test procedure 6, Jun 61
- equipment requirement, WAB opposes 49, Aug 60
Disaster, WDAF coverage of .. 20, Sep 59
Forensic engineering ... 14, Jan 62
History, Gates Radio ... 17, Jul 62
Ionization research .. 18, Jul 62
Net alert, CBS ... 30, Jan 61
Olympics, radio-TV coverage ... 17, Jun 62
- of ... 17, Apr 60
Paging system, add to .. LE 6, Oct 64
- radio monitor ... 10, Nov 62
- radiograms, radar .. LE 6, May 63
- radar, weather .. 16, Jul 59
- radarome, large ... 14, Nov 61
- satellite ... 8, Oct 61
- TV broadcast from .. 20, Aug 59
Space, broadcasting from .. 29, May 59
- station location, Form 301 ... 14, Feb 63
- correction to ... LE 6, May 63
- tape, recording, storage tips ... 28, Jul 61
Traffic-control system for spots .. 24, Jul 62
den Sklareh, Prof. .. 8, Aug 59
- correction .. 34, Sep 59
- correction .. 33, Oct 59
- correction .. 18, Dec 59
- correction .. 18, Nov 59
- correction .. 18, Feb 60
- correction .. 18, Feb 60
- correction .. 22, Mar 60
- correction .. 24, Apr 60
- correction .. 24, Apr 60
- correction .. 11, Jun 60

MIXERS
FM, phase-shift measurement ... 10, Jul 62

MOBILE
Monitor unit, FCC ... 13, Apr 64
Monitor unit ... 13, Apr 64
- color ... 14, Oct 60
- TV unit, custom designed ... 12, Aug 64
- VTR unit ... 12, Aug 64
- recup, broadcast equipment ... 8, Oct 62
- corrections .. LE 6, Dec 62
- parts for ... LE 6, Jan 63
- video tape, TVW, England ... 10, Dec 62

MODULATION
AM-transmitter power, increasing ... 10, Jul 65
Amplitude, theory ... 18, Mar 64
Cross, cause and cure of ... 24, Jul 64
FM - measurement of ... 26, Apr 60
- serssoid ... 4, Jul 59
- subcarrier measurement .. 28, Apr 60
Grid, theory ... 28, Jun 63
Monitors - AM and FM, calibration 12, Nov 64
- correction to .. LE 6, Jan 65
- operation of .. LE 44, Dec 64
- single-sideband, compatibility .. 4, Aug 59

MONITORS
Alarm, for faults ... 14, Dec 64
Audio amplifier for ... 12, Aug 65
FCC, mobile units .. 13, Apr 64
FM stereo, methods ... 10, Dec 63
Frequency ... 16, Jun 60
Maintenance ... 22, Oct 62
Modulation, calibration .. 12, Nov 64
- of AM and FM .. 12, Nov 64
- correction ... LE 6, Jan 65
Modulation for FM multiplex, design 22, Feb 60
- multiplex ... 12, Mar 60
Multiphase, for FM ... 14, Aug 59
- multiplex, design .. 22, Feb 60
- multiphase .. LE 44, Dec 64
Phase, sensitivity ... 16, Apr 63
RF, oscilloscope use .. 15, Oct 63
Spectrum, for FM .. 16, Mar 63
- radiation ... 16, Apr 63
Stereo developments .. 10, Sep 63
TV, solid-state ... 16, Mar 63
- usage ... 16, Jun 60

MULTIPLEX
Antenna for FM ... 26, May 60
Cross-modulation, effect of VSWR 4, Aug 61
Crossover, elimination ... 18, Sep 60
- eliminating .. 15, May 59
Educational FM, NAB opposes commercials 49, Aug 60
- interference in FM receivers ... 14, Sep 59
Monitor design ... 22, Feb 60
- measurement .. 12, Mar 60
Mutedinaries, FM .. 7, Jun 60
Muting, selective ... 12, Nov 60
Receiver installation .. 14, Dec 60
Reception methods ... 18, Mar 60
- regulation, FCC .. 23, Sep 60
- review ... 18, Jan 61
Subcarrier - frequencies, selection of 10, Aug 59
- generation .. 9, Dec 59
- generator ... 8, Dec 60
- recovery ... 19, Jan 61

NEWSFILM
Cleaning ultrasonically ... 34, Nov 64
Slides, copying system ... 24, Oct 63
System at KCR-A-TV .. 38, Aug 64
Tape systems, synchronized for audio 64, Apr 65

OFF-AIR PICKUPS
FM relay ... 6, Nov 59
- heterodyne type .. 34, May 65
Network, AM/FM ... 12, Aug 63
TV ... 28, Aug 63

BROADCAST ENGINEERING
OPERATIONS

Audio-level devices, use of: .40, May 64 —corrections: LE 6, Jul 64
Audio tape —equipment: 34, Dec 64 —mastering: 66, Mar 65
Automation —make, not save, money: .16, May 65 —planning for: .16, Apr 63
Broadcast center —AM/FM TV: 42, Oct 64
Camera techniques, TV: .10, Oct 64
EBS: .13, Dec 65
Helicopter use: .34, Aug 64
Lighting, guide for: .18, Dec 64
Microphone technique: .14, Nov 59
Monitors, modulation and frequency: .44, Dec 64
Newfilm system: .38, Aug 64
Part 73: .23, Apr 65
Radio pieces great blackout: 20A, Dec 65
Remote control for high-power transmitters: .16, Aug 65
Safety, in station: .14, Nov 64
Studio equipment, protective maintenance for: .10, Nov 64
Telephone-line services: .18, Sep 65
Television recorder: .22, Sep 59
UHF-TV, planning for: .14, Feb 65
UHF-TV, planning for: .12, Mar 65

OUTSIDE BROADCAST

Olympics, 1960 winter: .17, Apr 60

OWNERSHIP

UHF-TV station, planning for: .14, Feb 65 "—of: .12, Mar 65

PADS AND ATTENUATORS

Isolation, use for: .12, May 64 "—of: .14, Jun 64
Matching, use for: .12, May 64 "—of: .14, Jun 64

POWER SUPPLIES

Generator, emergency: .10, Jul 62
Line-voltage regulation for: .10, Jul 64
Rectifiers —high-voltage, solid-state: .16, Apr 64 —mercury, care and testing: .8, Jun 60 —replacement, silicon: .28, Aug 61
Solid-state: .36, Sep 63

PROOF OF PERFORMANCE

AM: .28, Feb 64 —station: .12, Dec 63 —transmission, set for: .12, Feb 65
Carrier shift: 43, May 64
Directional antennas, plan for: .22, Apr 63
FM: .18, Apr 62 —noise measurement: .27, Apr 60 —stereo: .10, Aug 63 —transmission: .26, Apr 60
Field-intensity, interference: .22, Feb 63
Frequency response: .23, May 59

Recording, Video

Color, at networks: .12, Nov 63
Cue —device: .16, Feb 64 —facility: .22, Jun 59
Editing: .10, Sep 62
Erase facility: .22, Jun 59
Frame-lock, Ampex: .22, Nov 62
Amplifiers: .6, Mar 62
System requirements: .8, Apr 62
Testing: .24, May 62
Heads: .20, Jun 62
Mobile units: .14, Jan 61
British: .10, Dec 62
Operating procedures: .22, Sep 59

Remote systems: .16, Oct 65
Preview system: .58, Aug 65
Processor switch panel: .42, May 64
Standardization: .24, Jun 59
Synchronization: .34, Jun 59
 —unit for two VTR's: .37, Mar 60
Tape standards: international: .16, Jun 61
Techniques: .18, Apr 64
Theory: .20, Nov 63
Thermoplastic tape: .22, Jul 60
Time-base compensation: .8, Nov 61
Tip penetration: .14, Jan 61
Uses of: .20, Jun 63

REMOTE CONTROL

AM experience, CBS: .4, Nov 61
FCC experience with transmitter: .18, Sep 59
Multiple-function line pair: .18, Apr 65
Radio link, by: .10, Mar 61
System operation: .36, Oct 65
Transmitters: .10, Sep 63
UHF-TV system: .52, Oct 65

REMOTE PICKUP

Antennas, broadcast: .12, Jan 63
Helicopter use: .34, Aug 64
Olympic games, TV: .18, Oct 60
Telephone-line services for: .18, Sep 65
Transmitter, surplus conversion to: .14, May 64
Van. broadcast equipment: .8, Oct 62
—corrections to: LE 6, Dec 62
—parts for: LE 6, Jan 63

SAFETY

Station, in: .14, Nov 64

SCA

Basic principles of: .12, Sep 64
Crosstalk: .12, Jun 59
Interference, multiplex: .14, Sep 59
Monitor design, multiplex: .22, Feb 60
Multiplexing, two-channel: .12, Mar 60
KCMA: .8, Oct 59
Muting, silence sensor for: .19, Oct 65
Problems, minimizing: .16, Mar 64
Reception methods, multiplex: .18, Mar 60
Remote-control, STL: .10, Feb 63
Subcarrier —frequencies, selection of: .10, Aug 59
—generation: .6, Jan 60

SEMI Conductors

Amplifiers —audio, design: .18, Aug 62
—maintenance: .18, Nov 63
—remote, transistorized: .10, Oct 59
Audio —distribution system: .28, Sep 63

January, 1966

www.americanradiohistory.com
FM stereo, SCA, remote control..10, Feb 66
900 mc link..22, Oct 64
Remote control ..18, Apr 61

STUDIO
Acoustics ..30, Jul 63
Installation ..14, Sep 65
Recording, for ..12, Feb 64
Audio, maintenance ..14, Jun 62
Reel-to-reel ...12, Jul 65
Building, WFAA ..34, Sep 60
Design ..20, Oct 63
Equipment ..16, Feb 65
Protective ...10, Nov 64
Maintenance ...16, Sep 65
Solid-state applications, for ...17, Mar 66
Lighting ...18, Dec 64
Guide for ..18, Dec 64
Layouts ...20, Oct 59
Maintenance ...12, Dec 62
Audio system ..34, Mar 65
Radio ...16, Sep 64
Design ..14, Jun 63
Correction ..12, Feb 61
TV, trends in ...13, Dec 65

SWITCHING EQUIPMENT
Audio ..18, Aug 64
- push-button ...16, Dec 60
- solid-state ...34, Mar 65
- Cartridge-tape unit ...32, Apr 63
- Reed system ..16, Sep 64
- Semantic control ..20, Apr 64
- Solid-state devices for ...16, Jun 65
- TV, preset switcher for ..16, Feb 61
- Vertical interval ..24, Oct 61
- construction ..28, May 63
- correction ...12, Sep 63
- solid-state ...12, Sep 63
- Waveguide, high-power UHF, Aug 61

TAPE RECORDING
(See also Specific Subject)
Audio ..34, Dec 64
- equipment ..66, Mar 65
- mastering ...66, Mar 65
- Automatic cartridge ..26, Sep 59
- Cuer, automatic ...22, Mar 62
- Delay system ..28, Jun 59
- modification for ..34, Nov 63
- Echo effect ..13, Aug 59
- Facilities, updating ...10, May 65
- Film systems ...14, Jan 65
- audio ...64, Apr 65
- Heads, care of ...21, Dec 65
- Maintenance ..64, Apr 65
- reel-to-reel transports ...23, Oct 65
- Program ..12, Oct 64
- system ..12, Oct 64
- Radio, use in ..20, Jan 60
- Reel-to-reel standards, NAB, 16, Sep 65

Spots, tape equipment for ...13, May 59
Stereo, phase cancellation in ..36, Jun 64
Storage, effects on tape ..38, Apr 61
Systems, update ...38, Nov 63
Tape, manufacture of ...4, Jun 60
Variable-speed addition to ..26, Nov 63
RCA TR1 ...22, Nov 62
Video ...22, Nov 62
- frame-lock for Ampex ..22, Nov 62
- portable systems ..16, Oct 64
- VTR cue device ...16, Feb 64

TELEPHONE LINES
Impedance matching for ...26, Aug 64
- correction to ..16, Oct 64
- Services, for broadcasters ..18, Sep 65

TELEVISION
Amplifiers, cascaded ..14, Oct 63
Antennas, helical, theory for ..20, Oct 65
Audio levels, balanced ..12, Aug 60
Aural power, effects of ..14, Jan 60
Banding ...16, May 60
Booster, experimental co-channel20, Sep 60
Building parts ..4, Nov 60
Clamp circuits ...16, May 60
Console, distribution ...9, Sep 61
Distribution amplifier, video, transistORIZED26, Dec 61
Educational, two-hop microwave relay.........................16, Jan 62
Envelope delay, equipment ..10, Feb 60
ETV, low-cost station ..32, Feb 63
Evolution of ..14, Jul 64
Film ...20, Jul 63
-lein maintenance ...12, Oct 65
- equipment, 8-mm ..14, Dec 61
- projector sound systems ...23, Mar 60
- maintenance of ..23, Mar 60
- Image orthicon for color ..9, Jun 52
- Interference, tracing ..18, Aug 63
- correction ...16, Dec 63
- Maintenance ...16, Dec 63
- studio ...20, Jul 63
- system ...16, Dec 63
- frequency response, amplitude linearity10, Jul 61
- orthicon ...10, Jul 61
- picture-signal standards ...6, Apr 61
- sync generator ...18, May 61
- video levels ...20, Jul 61
Microwave ..16, Oct 60
- relay, Empire State ..6, Oct 60
- systems ...6, Oct 60
- Solid-state ...30, May 65
- specification for ...30, Oct 64
- correction (to Oct) ...30, Oct 64
- Mobile unit ..12, Jun 52
- VTR, for ...12, Jun 52
- Modulation checks, chopper26, Jul 64
- Modulation, specification for5, Jun 53
- Mobile unit ...16, Oct 63
- Monaural Symposia ..23, Sep 63
- corrections to ..6, Dec 65
- Newsfilm systems ..38, Aug 64
- Off-air pickup ..28, Aug 63
- Overlay, games, coverage ..18, Oct 60
- Operating a video tape recorder22, Sep 59
Candelabra 24, Dec 60
Collapse at CKAC 28, Apr 65
—corrections to LE 6, Jun 65
Concrete, in South Africa 50, Feb 65
Construction, vibration problems in 34, Jul 59
Emergency operations 13, Apr 65
—correction to LE 6, Sep 65
Installation, directional antennas 14, Nov 62
Maintenance 17, Nov 62
—safety note on 25, Jan 63
Mechanical considerations 18, Mar 63
VOA station, world's most powerful 10, Jan 63

TRANSLATORS
Antenna location for 12, Dec 64
ETV, UHF-TV use for 12, Dec 59
Maintenance in isolated areas 30, May 64
System, 100-watt 10, Jul 59
Television 22, Feb 62
VHF 18, Nov 60
—boosters, vs. 30, Sep 59

TRANSMITTERS
Air cleaning for 26, Nov 64
Alarm, plate-power failure 24, Aug 64
AM 14, Jul 60
—diplexing 2, Jun 60
—kit 37, Jul 59
—in-400A use in 18, Mar 61
Aural power, effects reduced on TV receivers 14, Jan 60
Automation for Class-C amplifier theory 18, Aug 65
—correction to LE 6, Nov 65
FM 6, Mar 61
—design 18, Aug 60
—stereo, planning 12, Nov 62
—correction to LE 6, Jan 63
—20-kw 18, Apr 61
Logging, automatic 6, Mar 61
Maintenance 16, Nov 62
—safety note on 6, Jun 63
—broadcast 22, Oct 62
—UHF-TV 18, Nov 65
Matching networks, antenna 22, Jan 64
Microwave, maintenance 16, Jun 64
—addition to LE 6, Nov 64
Parallel operation for TV 24, Mar 64
Radio, maintenance 4, Sep 62
Remote control 10, Sep 63
—FCC experience with 18, Sep 59
—high power, for 16, Aug 65
—radio, by 18, Apr 61
—systems, theory 36, Oct 65
—UHF-TV, for 52, Oct 65
Remote-pickup, surplus conversion to 14, Apr 64
Solid-state applications for 16, Feb 65
TV—aural-visual power ratio 28, Oct 59
—channel supplementation 20, Sep 60
—proof of performance 12, Nov 65
Translators, VHF 30, Sep 61
UHF, high-power 28, Mar 63

UHF-TV
Antennas for transmitting 14, Jan 64
Remote control, pioneer 52, Oct 65
Station, planning for 14, Feb 65
Switch, waveguide, high-power 8, Aug 61
Translators—ETV, for 12, Dec 59
—vs VHF boosters 28, Sep 59
—100-watt 10, Jul 59
Transmitter—high-power 28, Mar 63
—maintenance 18, Nov 65

VIDEO EQUIPMENT
Automation at WKRC-TV 4, Jul 60
Camera techniques 10, Oct 64
Color distribution 14, Sep 61
Distribution amplifier, transistorized 26, Dec 61
Film
—film 14, Dec 61
—projector sound systems, maintenance of 23, Mar 60
Maintenance, system—frequency response, amplitude linearity 10, Jul 61
—picture-signal standards 6, Apr 61
—sync generator 18, May 61
—video levels 20, Jun 61
Modulation changer 26, Jun 64
—alternate parts LE 6, Dec 64
—modifications LE 6, Aug 65
Monitor, solid-state 16, Mar 63
Plug, multi-contact, uses for 30, Jul 59
Processor switch panel 42, May 64
Projector—continuous-motion 8, May 60
—front 32, Jul 61
—light-value 48, Aug 60
Recording—fundamentals 8, Apr 62
—thermoplastic tape 22, Jul 60
Switcher—construction 28, May 63
—correction LE 6, Aug 63
—preset 6, Feb 61
—solid-state 16, Sep 63
—solid-state 12, Sep 63
—vertical-interval 24, Oct 61
Tape—adding, electronic 10, Sep 62
—fundamentals 14, Jul 62
—introduction 10, Feb 62
—light-value 6, Mar 62
—system requirements 24, May 63
—testing 20, Jun 62
VTR's, portable 16, Oct 64

TELEVISION CAMERAS
Beam-alignment generator 25, Dec 62
—correction to LE 6, Mar 63
Image orthicon 8, Jul 62
—color, for 4, Feb 60
—sensitive 4, Feb 60
Program bias supply 20, Jun 64
Radar, weather, broadcasting 4, Oct 60
Special-effect optics 16, Jun 59
Techniques 10, Oct 64

TEAM EQUIPMENT AND INSTRUMENTS
Cartridge-tape, test tapes 31, Nov 65
Checklist, broadcast use 10, Jul 63
Multimeter, built-ins 18, Jun 65
RF bridge, for AM antennas 23, Jun 65

TOWERS
AM, effects of lighting and isolation circuits on impedance of 4, Sep 60

January, 1966
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC policy statement issued</td>
<td>33, Feb 65</td>
</tr>
<tr>
<td>studied by FCC</td>
<td>28, Apr 64</td>
</tr>
<tr>
<td>Directional antennas</td>
<td>67, Oct 65</td>
</tr>
<tr>
<td>requirements</td>
<td>22, Jan 65</td>
</tr>
<tr>
<td>remote-control, NAB</td>
<td>39, Sep 65</td>
</tr>
<tr>
<td>"Double Billing" officially outlawed</td>
<td>32, Dec 65</td>
</tr>
<tr>
<td>EBS alerting device</td>
<td>41, Aug 65</td>
</tr>
<tr>
<td>FCC, Commissioner, engineer</td>
<td>33, Apr 65</td>
</tr>
<tr>
<td>Rules enforcement</td>
<td>22, Sep 64</td>
</tr>
<tr>
<td>FM</td>
<td>31, Nov 64</td>
</tr>
<tr>
<td>allocations changes</td>
<td>23, Jun 64</td>
</tr>
<tr>
<td>interferer</td>
<td>27, May 65</td>
</tr>
<tr>
<td>FCC, program duplication, AM</td>
<td>42, Aug 65</td>
</tr>
<tr>
<td>deadline postponed</td>
<td>27, May 65</td>
</tr>
<tr>
<td>simplex operation</td>
<td>39, Sep 65</td>
</tr>
<tr>
<td>stations, new rules</td>
<td>21, Aug 64</td>
</tr>
<tr>
<td>proposed</td>
<td>27, Apr 64</td>
</tr>
<tr>
<td>stereo, monitors for</td>
<td>28, May 64</td>
</tr>
<tr>
<td>vertical polarization</td>
<td>24, Jun 64</td>
</tr>
<tr>
<td>vertical polarization</td>
<td>28, Apr 64</td>
</tr>
<tr>
<td>Field-strength/distance curves</td>
<td>36, Oct 64</td>
</tr>
<tr>
<td>antenna farms</td>
<td>35, Jul 65</td>
</tr>
<tr>
<td>Fines and revocations</td>
<td>21, Aug 64</td>
</tr>
<tr>
<td>IEEE Broadcasting Symposium</td>
<td>22, Sep 64</td>
</tr>
<tr>
<td>License fees</td>
<td>28, May 64</td>
</tr>
<tr>
<td>Ownership multiple, Rules</td>
<td>36, Jul 65</td>
</tr>
<tr>
<td>revised</td>
<td>22, Aug 44</td>
</tr>
<tr>
<td>Public-inspection Rules, changes in</td>
<td>31, Dec 65</td>
</tr>
<tr>
<td>FCC</td>
<td>33, Feb 65</td>
</tr>
<tr>
<td>policy statement issued</td>
<td>41, Aug 65</td>
</tr>
<tr>
<td>studied by FCC</td>
<td>28, Apr 64</td>
</tr>
<tr>
<td>Directional antennas</td>
<td>67, Oct 65</td>
</tr>
<tr>
<td>requirements</td>
<td>22, Jan 65</td>
</tr>
<tr>
<td>remote-control, NAB</td>
<td>39, Sep 65</td>
</tr>
<tr>
<td>"Double Billing" officially outlawed</td>
<td>32, Dec 65</td>
</tr>
<tr>
<td>EBS alerting device</td>
<td>41, Aug 65</td>
</tr>
<tr>
<td>FCC, Commissioner, engineer</td>
<td>33, Apr 65</td>
</tr>
<tr>
<td>Rules enforcement</td>
<td>22, Sep 64</td>
</tr>
<tr>
<td>FM</td>
<td>31, Nov 64</td>
</tr>
<tr>
<td>allocations changes</td>
<td>23, Jun 64</td>
</tr>
<tr>
<td>interferer</td>
<td>27, May 65</td>
</tr>
<tr>
<td>FCC, program duplication, AM</td>
<td>42, Aug 65</td>
</tr>
<tr>
<td>deadline postponed</td>
<td>27, May 65</td>
</tr>
<tr>
<td>simplex operation</td>
<td>39, Sep 65</td>
</tr>
<tr>
<td>stations, new rules</td>
<td>21, Aug 64</td>
</tr>
<tr>
<td>proposed</td>
<td>27, Apr 64</td>
</tr>
<tr>
<td>stereo, monitors for</td>
<td>28, May 64</td>
</tr>
<tr>
<td>vertical polarization</td>
<td>24, Jun 64</td>
</tr>
<tr>
<td>vertical polarization</td>
<td>28, Apr 64</td>
</tr>
<tr>
<td>Field-strength/distance curves</td>
<td>36, Oct 64</td>
</tr>
<tr>
<td>antenna farms</td>
<td>35, Jul 65</td>
</tr>
<tr>
<td>Fines and revocations</td>
<td>21, Aug 64</td>
</tr>
<tr>
<td>IEEE Broadcasting Symposium</td>
<td>22, Sep 64</td>
</tr>
<tr>
<td>License fees</td>
<td>28, May 64</td>
</tr>
<tr>
<td>Ownership multiple, Rules</td>
<td>36, Jul 65</td>
</tr>
<tr>
<td>revised</td>
<td>22, Aug 44</td>
</tr>
<tr>
<td>Public-inspection Rules, changes in</td>
<td>31, Dec 65</td>
</tr>
</tbody>
</table>

Broadcast Engineering

7-YEAR SUBJECT-REFERENCE INDEX

This index illustrates the wide scope of BROADCAST ENGINEERING coverage of the technical aspects of broadcasting. To keep abreast of this growing and dynamic industry, just fill out and return the handy subscription form bound in this month's issue. As a bonus, you'll receive the Broadcast Engineers' Maintenance Guide.
Now, Collins photoconductive controls can be custom designed for your studio!

Eliminate pops, clicks and hums by replacing mechanical contacts with Collins' new photoconductive modules.

Arrange cards (solid state modules with integral switching) in any configuration you want.

Concentrate all your sensitive wiring within card cage, away from all interference.

Remote your amplifiers with a simple 4-volt, dc wire (instead of shielded cable).

Eliminate your biggest maintenance problem: worn or dirty mechanical contacts. With photoconductive cells instead of relays and switches, you won't have a mechanical contact in your program circuits.

Simplify troubleshooting. Replace attenuator, input switches, and amplifier output switches with one quick shuffle of cards.

For the finest audio available, let Collins' specialists custom design your studio. Contact your Collins Sales Representative, or send a block diagram of your requirements to Collins Radio Company, Broadcast Communication Division, Dallas, Texas 75207.
Local Color
(Continued from page 19)
put per watt of power is slightly higher than with conventional incandescent lamps.

Whatever lights you choose, color requires careful lighting, and careful lighting demands control of light direction and intensity. Aside from the mentioned four-stop range of dimming, you'll need to use scrims, screens, fixture movement, and spot-lining and flooding of fresnels to get satisfactory color pictures. Aluminum screen (not copper, which shades the light toward the red) can be used to reduce light output, with each layer of screen reducing output about 15%. New lighting-grid designs allow easy repositioning of fixtures. Whatever you use, the care the lighting men take is far more important than the fixtures themselves.

Base light tends to be higher in color temperature. This is due in part to attempts to reduce contrast range to a practical figure. A reasonable contrast range is twenty to one, though thirty to one is still okay. In a local studio, it is often difficult to measure contrast range, but excess contrast can be identified by shadows that are dark and heavy and appear multicolored on the screen. A general rule is not to raise contrast above the level where detail becomes invisible in dark shadow areas.

Conclusion

Because this article is for engineers, many of the problems of scene designers, costume designers, and makeup men aren't mentioned. However, these problems must be allowed ample opportunity to view their work on both color and monochrome monitors until they become confident of their new skills. Color is a naturally expressive medium—a medium that is pleasant to work in once the fundamentals second nature.

you lost your turn by missing our ad in the September issue. Go back and look at page 26 for NEW REMOTE CONTROL from BIONIC INSTRUMENTS, INC.

ENGINEER’S EXCHANGE

Quick Transmitter Neutralizing
By Walter L. Johnson, Jr.,
Chief Engineer,
WELS, Kinston, and WGOL,
Goldboro, North Carolina

Quite often engineers get together and discuss how they do things and the problems encountered in doing certain of those things.

One of the most frequent complaints concerns the neutralizing of transmitters with the old “coil of wire and a bulb” method. The most frequent problems have been: 1. finding a place on the coil “hot enough” to make the bulb glow, and 2. the fact that in most cases, after the bulb goes out, there is a lot of turning of the neutralizing adjustment left to do in order to find the exact null.

For the past year or so, we have tried neutralizing transmitters with a VOM and have had very good results. Not only is it possible to get enough “juice” to obtain a reading, but the null can be pinpointed exactly and easily.

The method is very simple: 1. Disconnect the high voltage going to the final tubes as usual in the neutralizing process. 2. Connect one lead of your VOM to the ground or shield of the RF coax at the transmitter and the other lead to the transmitter “hot” antenna terminal. 3. Set the VOM to “AC volts” and at the highest possible scale. 4. Turn on the transmitter (high voltage to finals disconnected). 5. Turn the voltage switch of the VOM down the scale until you get a good reading. 6. Turn the neutralizing adjustment for minimum meter reading. 7. Go down the voltage scale on the VOM, adjusting the neutralizing control as you go until you get the lowest RF reading at the lowest possible voltage scale. Sometimes you may not be able to go to the lowest voltage scale on the meter; it depends on the transmitter, meter sensitivity, voltage scale, and other factors.

• Please turn to page 48
Quality in a professional tape recorder has got to last. That's why a sturdy, solid die-cast main plate backs up famous Magnecord durability.

Only a solid die-casting can provide rigid support and stable alignment of assembled parts. Mounting holes and bases are molded in for perfect uniformity between each instrument, insuring precise location and smooth operation. This extra strength in a Magnecord reduces wear to a minimum, cuts down-time and lowers maintenance cost.

Casting about for a professional tape instrument that is broadcast-ready and stays that way? Write for our new brochure featuring the complete line of Magnecord recorder/reproducers.

Model 1021 $708 Model 1022 $788 Model 1028 $995 Model 1048 $995

Magnecord SALES DEPARTMENT
MIDWESTERN INSTRUMENTS, INC.
Subsidiary of Telex Corporation / P. O. Box 1526 / Tulsa, Oklahoma 74105

January, 1966
RADIO STATION WFOX LOVES REK-O-KUT

Engineer Edward Willie depends on Rek-O-Kut turntables, as he has for over a decade to deliver the finest in recorded sound for his disc jockey shows. Hundreds of radio stations use Rek-O-Kut turntables. They operate with the same clock-like precision for many years. Owning a Rek-O-Kut is a long-term love affair.

ALMOST EVERYBODY LOVES REK-O-KUT

REK-O-KUT B-12H TURNTABLE $165.00

KOSS REK-O-KUT
2227 N. 31st Street - Milwaukee, Wisconsin 53208
Circle item 24 on Tech Data Card

Letters

(Continued from page 6)
transmitter and observed after the VSBF. The ringing and overshoot at the pulse edges are observed on a scope. The phase equalizers may be adjusted to reduce these effects as much as possible. The equalizer settings rarely need to be changed.

DEAR EDITOR:

My article, "Cartridge Recorder Playback with Automatic Cuing," (July 1965 BE, page 22) contained some diagrammatic errors which have been called to my attention by several readers.

The Viking P660 Preamp used for cue purposes was modified as follows: 1. The input has a .05-mfd 150-volt capacitor across it to bypass bias voltage which causes false cues, 2. A 10K 1/4-watt resistor loads the input to ground between C1 and R2. 3. The V2B plate, pin 1, derives B+ through the cue-relay coil, and has an 8-mfd, 150-volt capacitor to ground. 4. The cathode of V2B, pin 3, is grounded. 5. The grid of V2B, pin 2, is connected to the plate of V2A, pin 6, through a .01-mfd 600-volt capacitor in series with a 1-meg resistor. The point between the capacitor and grid resistor is grounded through a 2.7-meg load resistor and the IN34.

In operation, the bias-free signal is amplified and then coupled to V2B through the .01-mfd capacitor. The signal is rectified, however, before it reaches the grid of V2B, and so develops current across the tube. The change is smoothed by the 8-mfd, 150-volt capacitor and causes the coil to operate the cue relay.

In the original article, I neglected to note the insertion of the bias bypass capacitor, and the schematic was somewhat confused.

JOSEPH D. COONS
President & General Manager,
WOHI AM-FM,
East Liverpool, Ohio

Author Coons also supplied a schematic diagram showing the modifications. The input and output stages are reproduced below.—Ed.

[Diagrams of circuitry]
JAMPRO
Directionalized Dual Polarized
FM Antennas are PATTERN TESTED prior to shipment

The new JAMPRO testing range allows our design engineers to erect, test and adjust every antenna to conform to your specific vertical and horizontal pattern requirements before shipment is made.

Since the mounting pole and tower affect the radiated pattern, our engineers can actually duplicate your mounting specifications when adjusting your new directional antenna. We'll even adjust for phasing and spacing of the dual bays, which is often required in tight or multiple null patterns.

Contact JAMPRO for newly developed technical information regarding Dual Polarized FM Directional Antenna measurements and performance.

ADVANTAGES OF JAMPRO'S NEW DIRECTIONALIZED DUAL POLARIZED FM ANTENNA

Effective radiated power can be increased and will protect neighboring short spaced stations. The VSWR Bandwidth is not affected and the antenna peak gain is nearly always increased.

JAMPRO
ANTENNA COMPANY
6939 POWER INN ROAD SACRAMENTO, CALIFORNIA 442-1177

January, 1964

Circle Item 26 on Tech Data Card
Swabs are for babies; S-200 is for cleaning tape heads (even while tape is running)

If you’ve been cleaning tape heads with a twist of cotton on a toothpick—stop. Save time and do a better job with S-200 Magnetic Tape Head Cleaner. S-200 is a formulation of Freon TF® with other fluorocarbons in convenient aerosol cans. It thoroughly cleans tape heads, guides and helical scan slip rings in seconds, can be applied to running tape without interfering with transmission. And heads stay clean longer. Users report over twice as many passes of tape between cleanings with S-200 than with swabs. S-200 Magnetic Tape Head Cleaner is recommended by leading tape manufacturers. Available in 6 and 16-oz. cans.

Write on letterhead for literature and free sample.

©Du Pont trademark

miller-stephenson chemical co., inc.
Route 7, Danbury, Conn.

Circle Item 26 on Tech Data Card
The revolutionary Plumbicon television camera tube was designed after years of development work supported by original research on "spectroscopically pure" lead compounds at Philips Research Laboratories division of North American Philips Company in Briarcliff, New York.

Color cameras utilizing these amazing tubes are now in production and are manufactured at the Studio Equipment operation in Mount Vernon, New York. Many of these cameras now have more on-air time than any other modern color camera in network operational use. The results of this breakthrough have been quoted as the most spectacular improvement in home color television reception—a significant stimulus to viewer, set maker and advertiser alike.

Out of this research and development depth, constant improvements are being made. Color fidelity has now been greatly improved over the amazing results thousands have already witnessed.

With the magic of these new cameras, you too can Color it Faithful!

Norelco Plumbicon Cameras are manufactured in Mt. Vernon, N.Y.
FOR YOUR STUDIO
GET

Studio 96

QUALITY DESIGNED FOR BROADCASTERS AND SOUND STUDIOS

Two speed tape transport with automatic sequence braking, choice of hyperbolic head configurations, hysteresis capstan drive and heavy duty reel drive motors, remote control jacks and 10½” reel capacity. Superbly smooth tape handling – interlocked “fool-proof” switching – fit for every studio.

Rack mount ready from $585.45

MATCHING SOLID STATE ELECTRONICS

Record and playback amplifiers of modular design with interchangeable plug-in options, mixing controls, A-B monitoring, 600 OHM line output illuminated VU meters, exceed NAB standards.

Rack mount ready

Monoaural RP110-R2 $299.00
Stereo RP120-R2 $399.00

MADE BY SKILLED AMERICAN CRAFTSMEN AT

Viking OF MINNEAPOLIS

9600 Aldrich Ave. S. Minneapolis, Minnesota, 55420

CANADA: Alex L. Clark, Ltd., 3751 Block St. N., Mississauga, Ontario
Electro Tec Industries, Ltd., 1324 W. Third Ave., Vancouver, British Columbia
CENTRAL & SOUTH AMERICA: Market Corp., P.O. Box 499, Miami Beach, Florida, U.S.A.
OVERSEAS EXPORT: International Division Viking of Minneapolis, Inc., 9600 Aldrich Ave. S., Minneapolis, Minn., U.S.A.

Circle Item 28 on Tech Data Card

BOOK REVIEW

Lightning Protection Code 1965 (NFBA No. 78); National Fire Protection Association, Boston, Mass.; 59 pages, 5” x 7¾”, paperback, $75.

This is the latest revision of a code first adopted in 1904. It was prepared by the NFPA Committee on Lightning Protection, the 1965 edition was adopted by the NFPA at its annual meeting last year.

The text of the code is broken down into three major sections: Protection of Persons, Protection of Buildings and Miscellaneous Property, and Protection of Structures Containing Flammable Liquids and Gases. The first section describes what persons should and should not do during a thunderstorm. Basically, it consists of a listing of locations that are dangerous and those that are relatively safe. The second section, consisting of 43 pages, describes methods for affording lightning protection to everything from large buildings to farm animals. The section begins with discussions of factors to consider when planning a structure and factors influencing the decision concerning whether to protect a structure or not. The installation of lightning rods and conductors is covered, and grounding practices are listed. Protective measures for aircraft (while on the ground) and boats are included. The final 10 pages of the code detail methods appropriate for the protection of structures in which flammable gases and liquids are contained.

In addition to enumerating the provisions of the Code, this publication contains a considerable amount of explanatory material. A reading of these sections should impart an understanding of the nature of lightning discharges and can help to clear up any misconceptions the reader may have concerning this subject.

BROADCAST ENGINEERING

www.americanradiohistory.com
International Nuclear’s transistorized TCA3 camera amplifier fits any image orthicon camera. That’s right, this miniaturized (3¼” x 3¼” x 1¼”) camera amplifier will replace vacuum tubes in any image orthicon camera. It’s completely transistorized and is very simply mounted within the camera. Microphonics are eliminated. Operating voltage is obtained from 285 volt source already in camera and is post-regulated. The TCA3 fits any image orthicon camera. A transistor protective device is included in case the high-voltage blocking capacitor at the image orthicon anode should short-circuit. Signal connectors are BNC type as well as solder-terminals. TCA3 circuit uses but three transistors, all proven EIA types. Output stage delivers signals for view-finder as well as camera chain. Peaking and streaking controls are included and are easily adjusted by use of standard RETMA resolution chart. We promise, the TCA3 camera amplifier will fit any image orthicon camera. They are on-the-air proven in TK10/TK30, TK11/TK31, 4PC4A1 and TA124E cameras. Instructions, necessary hardware and pre-cut cables are included.

PRICE, F.O.B. NASHVILLE $295.00 EACH

For more complete information write or phone:

INTERNATIONAL NUCLEAR CORPORATION
608 NORRIS AVENUE • NASHVILLE, TENN. • PHONE 615-254-3366

January, 1966
NEWS OF THE INDUSTRY

NATIONAL

Grant for ETV Station
A Federal grant of $296,220 has been made to the South Carolina Educational Television Commission to activate a noncommercial educational television station on channel 35 in Columbia. Funds will be used to purchase an antenna, tower, transmitter, and other equipment. The total cost of the project is estimated at $592,441.

The station plans 30 hours a week of programs for classroom use, and another 30 hours for teacher instruction, public affairs, and cultural programs. It will become the principal link in the developing South Carolina educational television network because of its proximity to the production facilities and video tape library at the Columbia ETV Center. Other stations in the network are at Charleston and Greenville.

The new station will serve a population of 646,000 persons, including 208,000 students in 400 schools.

Tall Tower in Texas
A new tower built for Fort Worth-Dallas television station KTVT is 1533 feet high compared with 1472 feet for the Empire State Building. The tower was fabricated by Kline Iron & Steel Co. in Columbia, S. C., and then hot-dip galvanized en route to the erection site in Dallas County. By having the steel galvanized in transit, the station saved itself the cost of shipping the required 22 tons of zinc from South Carolina to Texas. Designed to increase KTVT's coverage area by 55%, the tower took six weeks to erect. The top section was set in place by helicopter. Main supporting members of the 310-ton tower are of 6 inch high-tensile steel rod. Holding the unit are 21 steel guy wires anchored in concrete foundations buried 20' in the ground. An elevator can carry two men to the tower top and back to the ground in 30 minutes.

CATV for Alabama
Three CATV systems for use in Alabama are to be financed, engineered, and furnished by Stromberg-Carlson Corp. under a contract awarded by West

From the discontent of man...

the world's best progress springs

Ella Wheeler Wilcox

Challenged by the limitations imposed by the cumbersome device of the turret, Zoomar has given the camera a new dimension—an exciting lifelike versatility approaching that of the human eye—a tool that dramatically helps to translate into being the skill and imagination of the engineer and operator. Zoomar, pioneer in the development of the zoom lens, continues its program of further progress and perfection.

Remote control zoom lenses for TV cameras: Mark III, Mark IV, Mark VI, Mark X, Mark XX.

ZOOMAR, INC. GLEN COVE, N. Y. 11542 X 516 676-1900 HOLLYWOOD, CALIF. 90028 X 213 468-2789

Circle Item 30 on Tech Data Card

52 BROADCAST ENGINEERING
A FEW REASONS WHY YOU CAN'T BUY A FINER TELEVISION CAMERA ... AT ANY PRICE

100% transistorized plug-in electronics for reliability and fast, convenient troubleshooting. Hinge-out yoke assembly allows rapid change of 10 tube.

Built-in remote iris control. Quick-change lens insert system accepts variety of lenses, fixed focus and zoom.

Plug-in, self-contained 8-inch viewfinder assembly, interchangeable with other Tarzian live cameras. All circuits accessible without removing viewfinder.

SPECIFICATIONS

- Scanning rate 525 lines, 30 frames, 60 fields, 2:1 interlaced
- Line repetition rate . . . 15,750 cycles per second
- Resolution (horizontal) . 600 lines picture center
- (horizontal) . 500 lines picture corners
- Signal-noise ratio . . . Limited only by image orthicon
- Remote iris control . . . Time for full range, 3 seconds accuracy of setting ± 0.25 lens stop
- Output signals Horizontal drive, 4 volts ± 0.5 volts; Vertical drive, 4 volts ± 0.5 volts; Sync, 4 volts ± 0.5 volts; Blanking, 4 volts ± 0.5 volts. Viewfinder video (external) 0.7 volts intercom audio.
- Viewfinder size 8" tube
- Intercom Dual transistorized

These are but a few reasons. For all the rest, call, or write, for 8-page brochure, "3000L 3" Image Orthicon Camera System."

SARKES TARZIAN
BROADCAST EQUIPMENT DIVISION
BLOOMINGTON, INDIANA

Circle Hem 31 on Tech Data Card
www.americanradiohistory.com
Mariner IV looked at Mars thru a GEC vidicon . . .

New projects and programs have created more opportunities and challenges at GEC. With excellent lab and support facilities, we are expanding our scope and depth in our four divisions. We seek a professional for the following assignment in our Electronics Division.

ELECTRONIC ENGINEER

Experienced in video circuits, with background in video and deflection amplifiers. Degree or equivalent experience. Salary open. Write: Fred Cason, Mgr Prof Emplymt, Box 798, Garland, Texas 75041

Alabama TV Cable Company, a subsidiary of Alabama Telephone Company. The systems will serve subscribers in Sulligent, Winfield, and Vernon, Ala. The company already operates a CATV system in Hamilton, Ala. Five channels will be available to Sulligent and Winfield, and six to Vernon. Towers 200' high will be erected at the three locations for mounting the antennas to pick up channels from Columbus, Miss.; Birmingham, Ala.; and Tupelo, Miss. Vernon will also receive a channel from Meridian, Miss.

Broadcasters Considering Automation

Approximately two-thirds of the nation's AM and FM broadcasters are considering automation, 27% actively and 38% after further refinement. This conclusion was drawn from the 680 responses to a nationwide survey conducted for International Good Music, Inc. The respondents included 234 network-affiliated stations, 189 AM directional, 423 AM non-directional, 238 FM only, and 25 AM-FM stations. By population of city of license, 26% are located in areas of 100,000 or more, including 11 respondents in areas above 2 1/2 million population; 46% in areas of 10,000 to 100,000; and 28% in areas of less than 10,000.

Six TV Stations to Transmit From Hancock Center

Six Chicago television stations plan to locate their transmitting antennas atop the 100-story John Hancock Center. The stations are: WGN-TV (channel 9), WMAQ-TV (channel 5), WBBM-TV (channel 2), WTTW (channel 11), WXW (channel 20), and WSN (channel 44). The stations are expected to begin transmitting from the top of the $55 million structure on North Michigan Avenue during the summer of 1968. Plans, still subject to approval by the Federal Aviation Agency, call for twin transmission towers 2049' above sea level, or 1449' above ground. Each TV tower would rise 344' above the roof. Also proposed is a 100' common FM radio antenna located between the two TV towers. This antenna is designed to serve 15 stations. Cost of the TV facility is estimated at $5 million.

WGN-TV has transmitted from the top of the Prudential Building since 1955, its present antenna height is 914'. WMAQ-TV has operated from the Kemper Insurance Building since 1948 with an antenna height of 749', and the WBBM-TV antenna (height 683') has been atop the American National Bank Building since 1948. WTTW and WXW, educational stations, transmit from atop the 1000 Lake Shore Drive Building. WSN is a new station which has not begun operation.

300-Mile CATV System

Opening ceremonies for the 300-mile Greater Harrisburg CATV system were scheduled for early December. The system, built by Jerrold Electronics, is to serve Harrisburg and 17 surrounding communities in Dauphin and Cumberland Counties and will have a potential of 55,000 subscribers. CATV is not completely new to the Harrisburg area; Perfect TV has operated a five-channel system in a small section of the city since 1951. This company plans to connect its present 500 subscribers to the new system as soon as it is completed. Initially, the system will provide 11 TV channels, including a locally originated weather-music channel, and six FM radio stations. While five or more UHF channels (including an educational TV channel from Hershey, Pa.) will be carried on the Harrisburg cable, subscribers will need no UHF converters to watch them. All UHF channels are converted to unused VHF channels at the CATV head-end.

National Commission on ETV

A national commission on educational television to be established and financed by the Carnegie Corporation of New York has received approval of President Johnson. It will conduct a broad study of educational television to define its role in America and make recommendations for its future. Dr. James R. Killian, Jr., chairman of the corporation of the Massachusetts Institute of Technology, will be chairman of the Commission. Other members are:

McMartin

What's new?

See page 7 this issue.
even on the windiest corner of the windy city

Shure's remarkable new SM50 omnidirectional dynamic microphone is SELF-WINDSCREENED! It is strikingly immune to wind noises and explosive breath sounds—making it ideal as a dependable "workhorse" microphone for remote interviews, news, sports pick-ups and a variety of field and studio applications. The five-element built-in windscreen makes it virtually pop-proof in close talking situations. And unlike other "built-in" windscreens, this one is "unitized" and self-contained with no bits or pieces to re-assemble after cleaning. In fact, you can actually rinse dirt, saliva, lipstick and other screen-clogging foreign matter out of the windscreen assembly under running water as often as needed—or replace the "unitized" assembly if necessary in a matter of seconds.

Additionally, the SM50 is the cleanest sounding professional microphone at anywhere near its price class. It delivers highly intelligible, natural and pleasing speech and vocal music that is especially full-bodied and rich in the critical mid-range. It is extremely rugged and will require little or no down time as the years go by. Too, when comparing it to other moderately priced omnidirectionals, it is lighter in weight, supremely well-balanced for "handability," has a detachable cable, and a rubber mounted cartridge for minimizing handling noises. The SM50 is worthy of your most serious consideration.

For additional information, write directly to Mr. Robert Carr, Manager of Professional Products Division, Shure Brothers, Inc., 222 Hartrey Avenue, Evanston, Illinois.

SHURE SM50
OMNIDIRECTIONAL DYNAMIC MICROPHONE

SHURE STATION-TESTED AUDIO CIRCUITRY EQUIPMENT

Shure stereo equalizer and preamplifiers are praised as MAJOR contributions to upgrading station quality by broadcasters.

SE-1 Stereo Transcription Preamplifier
Provides precise RIAA equalization from magnetic phonograph recorders at line levels. Separate high and low frequency response trimmers. Lowest distortion, noise level, susceptibility to stray RF fields.

M86 Broadcast Stereo Equalizer
Passive equalizer compensates recorded frequency to three playback characteristics: RIAA, flat, roll-off. Provides precise equalization from magnetic pickup at microphone input level.

Circle item 34 on Tech Data Card

January, 1966

www.americanradiohistory.com
James B. Conant, former president, Harvard University; Lee A. DuBridge, president, California Institute of Technology; Ralph Ellison, author; John Hayes, president, Post-Newsweek Stations; David Henry, president, University of Illinois; Oveta Culp Hobby, president, The Post, Houston, Texas; J. C. Kellam, president, Texas Broadcasting Corporation and president, Board of Regents, State Senior Colleges of Texas; Edwin Land, president, Polaroid Corporation; Joseph McConnell, president, Reynolds Metals Company; Terry Sanford, former Governor of North Carolina; Rudolf Serkin, concert pianist; Leonard Woodcock, vice-president, United Automobile Workers of America.

The commission will recommend lines along which noncommercial television stations might most usefully develop during the years ahead. It will consider their financial problems and make recommendations as to how they might be met. It will focus its attention principally, although not exclusively, on community-owned channels and their services to the general public.

The Commission is expected to take twelve to fifteen months to make its study, after which time it will publish a report and recommendations. The Commission’s headquarters will be located at 26 New Street, Cambridge, Massachusetts.

To Manufacture CATV Equipment

A new company to produce and market Community Antenna Television (CATV) equipment has been organized by Kaiser Industries Corp. and Cox Broadcasting Corp. The new company, to be known as the Kaiser-Cox Corp., will be based in Phoenix, Arizona. It will be owned equally by Cox Broadcasting and the Kaiser Aerospace & Electronics Corp., subsidiary of Kaiser Industries.

The Kaiser-Cox organization will immediately establishes warehouse facilities and district sales offices in St. Louis, Pittsburgh, Atlanta, Oakland, Phoenix, Portland, and additional locations yet to be selected. The company’s line of solid-state equipment will be manufactured in Phoenix.

CATV’s Consolidated

A new interstate Community Antenna Television system has resulted from a consolidation of operating companies in Washington, Oregon, and California. All of the companies were already held in overlapping or associated ownership. The new company, Tele-Vue Systems, Inc., will operate systems in Seattle and Everett, Washington; Roseburg, Medford, and Ashland, and Klamath Falls, Oregon; and Dublin and the San Ramon Valley, Pleasanton, Corte Madera, Larkspur, San Rafael, Marinwood, Terra Linda, Santa Venetia, Petaluma, Antioch, and Livermore, all in the San Francisco Bay area of California.

Officers of the newly-formed company are Homer A. Bergen, Seattle, president; Lindsey Spight of San Francisco, executive vice-president for the southern division; Fred G. Goddard of Aberdeen, Washington, executive vice-president for the northern division; and William Montgomery of Seattle, secretary and treasurer.
Lower attenuation...
new HELIAX®

1/4", 3/8", 1/2" flexible coaxial cables for
- Military
- Broadcast
- CATV
- Mobile Radio
- Data Processing and Instrumentation Systems

These new air and foam cables offer lower attenuation in small physical sizes. Type FH1, 1/4" Foam HELIAX has 30% lower attenuation, 60% smaller size and 50% less weight than RG8/U. The copper inner and outer conductors assure optimum electrical performance with long life reliability. Available in long splice free lengths with or without polyethylene jacket.

For additional information on HELIAX, contact your regional Andrew sales engineer or write P.O. Box 807, Chicago, Illinois 60642.

January, 1966

Circle Item 38 on Tech Data Card
PERSONALITIES

Robert W. Frierson has been named engineering manager of Magnetics, a Division of GJM, Inc. As engineering manager, Mr. Frierson will have total responsibility for all magnetic head and drum design. A graduate of the University of California at Berkeley, he brings some 15 years of magnetic-recording experience to Magnetics. He is a member of the Institute of Electrical and Electronic Engineers and the American Society of Astronautical Engineers.

Greater Cincinnati Radio, Inc. (owned by the Waukegan, Illinois News Sun) to the Zanesville, Ohio Publishing Company. WZIP is a 1000-watt daytimer on 1050 kc. and WZIP-FM is on 92.5 mc with 70 kw. The sale price was $367,500. The purchaser also owns WOMP AM-FM, Baillea, Ohio; WNXT AM-FM, Portsmouth, Ohio; WHIZ AM-TV, Zanesville, Ohio; and WTAP AM-FM TV, Parkersburg, West Virginia. The seller continues to own WKRS, Waukegan, Illinois.

The sale of radio station KTHS, Berryville, Arkansas has been announced by Ernest Howard, president of Ozark Radio and Equipment, Inc., licensee of the station. The purchaser is KTHS, Inc., Maurice F. Dunne, Jr., President. Mr. Dunne is a Lake Forest, Illinois business man and will be associated in this venture with Charles Earls, former manager of KAWA, Waco, Texas. KTHS is a 1000-watt daytimer operating on 1480 kc. The sale price was $50,000.

Radio Station KFFA, Tacoma, Washington has been sold, subject to FCC approval, by Radio Sales Corporation to Lloyd Burlingham for a total consideration of $84,000. Radio Sales Corporation has owned and operated KFFA since June 7, 1961. Mr. Burlingham owns KTOB, Petaluma, California; WIXN, Dixon, Illinois; and KNOG, Nogales, Arizona. KFFA operates with 1000 watts, daytime only, on 1480 kc.

Radio Station KSEE, Santa Maria, California, has been sold, subject to FCC approval, by Cal-Coast Broadcasters, to Frank G. Macomber, White Plains, New York, for a total consideration of $153,750. Edward E. Urner, owner of Cal-Coast, was founder, vice-president, and general manager of KLYD radio and television, and vice-president and general sales manager of KERO, both Bakersfield, California. He is presently employed by Crowell-Collier Broadcasting Corporation as general manager of their San Francisco-Oakland outlet, KEWB. Mr. Macomber has been associated in a program capacity with stations in Virginia, North Carolina, Texas, and Vancouver, B. C.

KSEE operates with 1000 watts, daytime only, on 1460 kc and has been on the air since 1961.

WJUD, a 1000-watt daytimer on 1580 kc. broadcasting from St. Johns, Mich., has been purchased by Mr. Robert D. Ditmer from Clinton County Broadcasting, Inc. Mr. Ditmer is currently general manager of Radio Station WHGR, Houghton Lake, Michigan. Sale price is $82.500.
OVER 300 of these units are in daily use throughout the television industry—and this doesn't include the individual test signal generator modules (3501, 3502, 3503, etc.), of which hundreds have been sold.

This kind of popularity doesn't just happen…it's the combined result of awareness of customer requirements, capable engineering, quality production and continuing service.

If you're not already a member of the Model 3508 club, why not join now? It costs no more to go first class.

TELEMET COMPANY
185 DIXON AVENUE, AMITYVILLE, N.Y. • PHONE (516) 541-3600

January, 1966
NEW PRODUCTS

Vidicon Camera Chain
A vidicon camera chain built around the GE Model TE-14 camera is designated Model TMC-214 by Tele Mation, Inc. The addition of the Model TMV-101 camera-control unit converts the TE-14 to EIA and FCC specifications. A 5" transistor viewfinder, Model RE-575, is available for live applications.

The TMC-214 is intended to provide solid-state circuitry, high resolution, low power consumption, and stable performance for live, remote, or film applications in educational or broadcast installations.

Circle Item 63 on Tech Data Card

Video Waveform Monitor
A cabinet-model version of its RM529 video waveform monitor is being manufactured by Tektronix, Inc. The Type 529 is designed for side-by-side mounting with a picture monitor in standard racks; it requires 83 1/4" of rack space. A field case is offered as an optional accessory. The monitor features extensive use of semiconductors and is engineered to provide stable displays of vertical-interval test signals with adequate brightness even at the fastest sweep speeds. A line selector can be used to choose any line for display; the displayed line as viewed on the associated picture monitor is automatically intensified by a brightening pulse. No modification to the picture monitor is required.

Other features include positive field selection and back-porch DC restoration which is not affected by color burst. Power consumption is 80 watts, and no fan is used.

Four different frequency-response characteristics, required for analyzing VIT signal displays, including sine-

Transistor Trunk Amplifier
The Model 265 trunk amplifier is a high-output transistorized trunk amplifier with full 12-channel response. Its built-in temperature compensation, gain and tilt controls, AC cable-powering, and power regulation adapt it to both new system design and modernization of existing systems. The unit is designed to compensate for all losses in 20 db of cable over the band of 54 to 216 mc from 20°F to +120°F. Low noise output and low cross-modulation permit the cascading of 50 or more amplifiers. The SKL Model 265 is housed in a waterproof cast-aluminum box with a captive cover; it may be mounted on the messenger or, with a bracket, on a pole. The unit is equipped with special sealed Type N connectors.

Circle Item 64 on Tech Data Card

SOUNDS THAT SELL START WITH...

The New Fairchild F-22 Condenser Microphone
By breaking away from traditional condenser microphone design and using the latest in solid state field effect transistor technology and microcircuitry, FAIRCHILD is able to produce this quality condenser microphone at an astonishingly low and sensible price, there by putting the ultimate microphone quality within the reach of every sound engineer.

price $160

Write to FAIRCHILD — the maker of professional audio products — for complete details.

FAIRCHILD
RECORDING EQUIPMENT CORPORATION
1040 45th Ave., Long Island City 1, N.Y.

Circle Item 43 on Tech Data Card

Get 3 Seconds to 1 Hour

TIME DELAY

... with the new SPARTA-MATIC CD-15 TAPE CARTRIDGE UNIT

• Separate record, playback and erase heads allow time delays for "on the air" TELEPHONE CONVERSATIONS!
• Can be used as a "special effects" generator to create ECHO CHAMBER and REVERBERATION effects.

SPARTA ELECTRONIC CORPORATION
6450 Freeport Blvd, Sacramento, Calif

Circle Item 44 on Tech Data Card

BROADCAST ENGINEERING
5 QUESTIONS

most engineers ask before they buy our solid-state transmitter COLOR Phase Equalizer & Low Pass Video Video Filter

1. What is the overall Frequency Response of the Equalizer System including the Video Low Pass Filter?
 Ans. ± 0.5 db 10 cps to 4.0 Mc/s; -1.0 db max.
 at 4.2 Mc/s; -20.0 db min. at 4.75 Mc/s;
 more than 20.0 db down above 4.75 Mc/s.

2. Will it work with my transmitter? What type of variable delay does it have?
 Ans. This new system has 50 delay positions in each of the LF, HF and Notch Equalizers, approaching continuously variable delay — adequate to meet any phase correction requirement of your transmitter.

3. How much rack space does it take?
 Ans. A Complete system for a transmitter occupies only half of a 5¼" rack frame.

4. Does it have by-pass facilities?
 Ans. Yes, automatic by-pass for the entire system, and selectable by-pass for video low pass filter, receiver equalizer, and variable delay modules.

5. How much does it cost, and how long is delivery?
 Ans. The entire system is only $3,450 (including notch equalizer) F.O.B. Linden, and we are currently making delivery from stock.

WARD ELECTRONIC INDUSTRIES
1414 EAST ST. GEORGE AVE., LINDEN, N. J. 07036 • (201) 925-4690

January, 1966
squared testing, can be selected by a front-panel control. A special graticule is provided for transmitter modulation monitoring. The Type 529 can be used in conjunction with color process amplifiers for YRGB displays or RBG displays. Price of the monitor is $1100.

Circle Item 65 on Tech Data Card

50 amplifiers at —37 db cross-modulation is being sold under the name "Star-line" by Jerrold Electronics Corp. A feature of the system is compact, unitized stations. All equipment for each complete main station is contained within a single aluminum housing designed to provide an airtight, waterproof, vapor-proof, and dustproof enclosure. Starline stations are usually messenger-mounted. Changes in gain-control settings cause virtually no deterioration in noise figure or cross-modulation, so amplifier spacing may be varied. The equipment line includes a series of "Feeder Makers," which plug into the bridging-amplifier stations to provide a choice of one, two, three, or four line outputs. Other features include all silicon transistors, seized center conductors, and full-wave power rectification.

Circle Item 67 on Tech Data Card

Headset With Microphone
TV Special No. 106040 Commentator’s Headset was specially designed for broadcast-studio use. Impedance of the noise-canceling dynamic microphone is 150 ohms. The 275-ohm receiver is housed in a hard-shell circumaural earcup fitted with a foam-filled earcushion. Roanwell Corp. supplies the set with 5’ 4-conductor cordage; the microphone circuit is shielded.

Circle Item 66 on Tech Data Card

Solid-State CATV System
An all-transistor CATV system for carrying 12 TV channels through up to

Circle Item 66 on Tech Data Card

Distribution Panel
This crossover distribution panel for television picture signals is designed to provide low crosstalk so that a 6-conductor sound-and-picture matrix of up to 60 input and 60 output channels can be switched. The basic panel, developed by an ITT Swiss subsidiary, accommodates 20 inputs and 20 outputs of 6 wires each. Switching is by insertion of a special plug at the crosspoint of the two desired channels. A lamp in the head of the plug can be provided to signal active channels. A 20-by-20-channel panel measures 20.5” x 19.3”.

Circle Item 64 on Tech Data Card

Compact Console
This console—built for use in crowded control rooms, for remote broadcasts, or in other applications where compact construction is desirable—contains dual turntable, tape, and microphone inputs and program, monitor, and cue outputs. Gain potentiometers are also included in the system for control of all microphones; turntable and tape outputs; and monitor, cue, and master volume. Additional serviceability is provided by "cue-
you can

use your television camera

1. for both remote and studio telecasts
2. in the widest possible range of light levels
3. with zoom or turret-mounted lenses (remote iris optional)
4. with any one of a wide variety of I.O. pickup tubes

if it's General Electric's new PE-26...

the only truly "universal" monochrome I.O. camera on the market today. It weighs only 70 pounds, requires a mere 170-watts of power, takes up less than 2.5 cubic feet, is self contained except for remote control panel and monitoring (the monitoring and control panel for a two-camera system takes only 2' of rack space)... and is completely transistorized (and we mean completely). There's no other camera like it. And like it you will, after you see it in action. You can, simply by contacting your G-E Broadcast Equipment Representative, or: General Electric Company, Visual Communications Products, #7-315, Electronics Park, Syracuse, N.Y. 13201.

Visual Communications Products

GENERAL ELECTRIC

Electronics Park, Syracuse, New York
on-off switches which allow for cueing either tapes or records during broadcasts. A VU meter is included. The unit is of modular construction. The console is supplied with removable legs which are designed to straddle two turntables. It is sold by United Radio Supply, Inc.

Circle Item 69 on Tech Data Card

Transmitter Remote Control

The Model WRC-107 is a 10-channel solid-state transmitter remote-control system that requires only a single DC-pair telephone circuit between the studio and transmitter sites. Raise, lower, control, and fail-safe functions are carried on the same circuit simultaneously with return telemetry information. Temperature-stabilized inductors and capacitors are used for reliable performance. Gold-plated circuits are printed on epoxy/glass-fiber cards. A vertical rack space of 5½” is required for the transmitter and studio control units. A single transistor type is employed in all circuits. Also, a line of accessories kits is available for motor tuning, plate-current measurement, tower-light indication, etc. This remote-control system is a product of Moseley Associates, Inc.

Circle Item 70 on Tech Data Card

Solid-State TV Monitors

Transistorized circuitry and plug-in modular construction are design features of the PBP Series of television monitors. The Miratel Electronics, Inc. series is available in 8” through 17” sizes with custom-chassis, rack-mounting, or standard cabinet configurations.

Circle Item 72 on Tech Data Card

Electronic Tape Editor

An electronic editing accessory is now available as optional equipment with the Ampex VR-660B portable Videotape recorder. The device, called Edicon, permits increased flexibility in production of program material for broadcast or closed-circuit applications. Push-button editing of moving recorded tape is possible without stopping to splice or cut. Long or short insertions in existing programs may be substituted, and scene-by-scene assembly of new programs with no picture disturbance between cuts is possible.

The VR-660B recorder is priced at $11,500, and the editing accessory is priced at $1000. Other accessories available with the VR-660B include continu-

I-O Camera

The Rayscan 150 image-orthicon television camera is a two-piece system with fixed scan rates from 525 to 1023 lines. The camera has been designed so that, by choice of pick-up tubes, pictures may be obtained from scenes illuminated only by starlight, yet with adequate bandwidth to obtain 900 TV lines horizontal resolution with 875 scan lines per frame. The camera weighs 28 lbs and measures

Whether it’s stereo or monaural... when you launch a recording on a QRK Professional Turntable, you can depend on an instant “cue” and the superlative performance that has made QRK famous. QRK Professional Turntables have only 3 rotating parts in their patented design. The exclusive “platter-dapter” adapts to all discs without pop-up gadgets. Every QRK unit is backed by a full year warranty and prompt service.

See your dealer or write for complete illustrated literature.

QRK ELECTRONIC PRODUCTS
2125 N. Barton • Fresno, California

Circle Item 50 on Tech Data Card

all systems* GO...
You’re A-OK with • Monaural or Stereo

BROADCAST ELECTRONICS, INC.
8800 Brookville Road
Silver Spring, Maryland

Circle Item 52 on Tech Data Card

What’s new?

See page 7 this issue.

Circle Item 51 on Tech Data Card

SPOTMASTER

ES-25

Tape

Cartridge

Racks

RM-100

... from industry’s most comprehensive line of cartridge tape equipment.

Enjoy finger-tip convenience with RM-100 wall-mount wood racks. Store 100 cartridges in minimum space (modular construction permits table-top mounting as well); $40.00 per rack. SPOTMASTER Lazy Susan revolving cartridge wire rack holds 200 cartridges. Price $145.50. Extra rack sections available at $12.90.

Write or wire for complete details.

Spotmaster

BROADCAST ELECTRONICS, INC.
8800 Brookville Road
Silver Spring, Maryland

Circle Item 52 on Tech Data Card

64
Stop-Motion Video Recorder
Playback of TV tapes in slow motion, stop motion, reverse motion, and double-speed motion is available in a portable TV recorder produced by Precision Instrument Co. Designated the PI-7100, the 90-lb device allows forward and reverse playback at continuously variable speeds from 0 to 16" per second—nominally twice recorded speed. The instrument features stacked coaxial reels and helical-scan, closed-loop recording. It is fully transistorized, has a 3.5-mc bandwidth, and can record up to 96 minutes on a single 10½" reel of 1" tape. Two auxiliary tracks for audio commentary are individually recordable and erasable.

SCA Receiver
The S/6 SCA multiplex receiver is completely solid-state and of modular design. The four printed-circuit strips (RF, IF, subcarrier detector, and amplifier) can be removed and replaced, since all the interconnections are made with plug-in jumpers. This approach allows repair by inexperienced help using the substitution method. It also allows the receiver to be updated or modified for special application without the purchase of an entire unit. The S/6, manufactured by Dayton Electronic Products Co., Inc., includes a 15-watt amplifier and is priced at $165.

RF COILS
Tube and ribbon types, all amperages. Featuring curved end brackets for easy tuning, accurate adjustment. Switches, contactors. Lowest prices, guaranteed quality.
NO DUTY.

GELECO ELECTRONICS LTD.
61 Curlew Drive, Don Mills, Ont.
416-444-5991

STANCIL-HOFFMAN CORP.
- MINITAPE PROFESSIONAL BATTERY Operated Portable Recorder, Mono Stereo, Synchronous
- MAGNETIC FILM RECORDERS, Single and Multi-Channel, 16, 17½, 35 MM.
- BROADCAST LOGGING RECORDERS, Slow Speed Single Channel to 22 Channels
- HIGH SPEED TAPE DUPLICATORS for Full, Half and Two Track Stereo Duplication.
921 N. Highland Ave., Hollywood 38, Calif.

January, 1966
CAMERA TUBE BREAKTHROUGH
4½" ELCON now available

Long-Life, High Performance Television Camera Tube. An entirely new principle of operation, perfected by English Electric Valve, provides improved performance and increases tube life 3 to 4 times that of previous image orthicons.

LONG-LIFE Achieved Without any Corresponding Disadvantages—
- No burn-in or “sticking” - Improved S/N - “Crisp” live pictures
- Sensitivity, resolution and gray scale remain constant over the life of tube - Reduced black compression.

This new ELCON tube can be used with existing image orthicon cameras, as well as in the newer transistized zoom cameras built specifically to take maximum advantage of its performance.

For detailed information on this important technical breakthrough, write for Bulletin 410.

ELCON ... stocked, tested and warranted only by VISUAL, the leader.

Sold Nationally By

VISUAL ELECTRONICS CORPORATION
356 west 40th street • new york, n. y. 10018 • (212) 736-5840

LOOK TO VISUAL FOR NEW CONCEPTS IN BROADCAST EQUIPMENT

amplifier pictured here offers such characteristics as selectable gain (48 to 70 db by the insertion of a single resistor). Specifications are: total harmonic distortion .05% at any test frequency and measured at +25 dbm; output noise equivalent to an input of -127 db when strapped for 70 db gain and terminated in 150 ohms; frequency response within ½ db from 20 cps to 20,000 cps at +25 dbm. The Alma Engineering amplifier is also available with RIAA equilization.

Circle Item 76 on Tech Data Card

RF Calorimeter

Measurement of RF power to 500 mc is possible with the RF Termaline® coaxial load resistors and their companion calorimetric assemblies made by Bird Electronics. The calorimeter device is placed in series with the coolant flow of the load resistor. The input-to-output temperature differential at a constant flow rate yields power data from a chart; depending on the power level, probable error is as small as 2%.

These calorimetric assemblies are self-checking at DC or 60-cps AC and are not affected by ambient conditions. The coaxial load resistors are designed for a VSWR below 1.1 from DC to 500 mc, with 3½” flanged or unflanged line connectors. Continuous power ratings of 15 kw, 25 kw, and 50 kw are available with matching thermometers and flow indicators.

Circle Item 77 on Tech Data Card

MOVING?

Don't Lose
Touch . .

Receive B-E
as usual at
your new address

Write:
BROADCAST ENGINEERING
Circulation Dept.
4300 West 62nd St.
Indianapolis 6, Ind.
ENGINEERS' TECH DATA

AUDIO & RECORDING EQUIPMENT

80. ATLAS SOUND—Catalog 565 illustrates and describes public-address loudspeakers, microphone stands, and accessories for commercial sound applications.

81. CBS LABS—Literature on the "Volusax" automatic peak controller and the "Audimax III" solid-state automatic level control.

82. QUAH—General catalog No. 55 lists speakers for color-TV replacement, PA systems, high-fidelity, and general replacement.

83. SONY—Full-color catalog describes 1966 line of tape recorders and full recording accessories.

84. SPARTA—Catalog sheet details new tape-cartridge system; new-product brochure is also available.

85. UNIVERSITY SOUND—Cardioid, dynamic, and professional miniature microphones are listed in 1966 catalog.

86. VIXING OF MINNEAPOLIS—Pictorial folder shows plug-in components, mechanism, outside views, and specification chart for Model 230 tape transport.

CATV EQUIPMENT

87. JERROLD—Eight-page brochure features "Starline" solid-state utilized CATV systems.

88. SKL—Folder lists and provides specifications for head-end, trunk, and distribution equipment; accessories; and special products for CATV use.

COMPONENTS & MATERIALS

89. DENSOR—Catalogs 565S-1 and 565S-1 SPECIAL feature new, used, and surplus radio and TV broadcasting equipment. The SPECIAL edition includes schematics and construction features.

90. MULLARD—File sheets provide cross-reference data and price list on tubes for special-purpose, industrial, and broadcast applications.

91. SWITCHCRAFT—New-product bulletin No. 155 describes Series X "Glo-Button," a nonelectrically illuminated switch.

ColorDyne

PORTABLE DIMMING SYSTEMS!

• SOLID STATE
• LIGHTWEIGHT

A thoroughly proven compact dimming system. For location or studio! Plug-in racks contain as many as 12 Power Pack Dimmers with total capacity of 80KW. For 120-volt or 230-volt AC operation. Remote Control Center may be operated up to 1000 feet from dimmer plug-in racks.

Also Available: Individual Portable Dimmers, each with its own control.

ONE YEAR UNCONDITIONAL GUARANTEE!

Write for Detailed Literature

1015 Chestnut St., Burbank, Calif.
Phone (213) 843-1200

Circle Item 57 on Tech Data Card

January, 1966
MICROWAVE DEVICES
92. MICRO-LINK—Planning guide covers 2500-mc ITV systems. Brochures and specification sheets provide data on Model 420A portable link and Model 600 fixed link.
93. MICROWAVE ASSOCIATES—Sixteen-page brochure, bulletins and technical report detail applications and specifications for TV-broadcast solid-state microwave-relay equipment.

MOBILE RADIO & COMMUNICATIONS
94. MOSLEY ELECTRONICS—Catalog lists complete line of 1966 Citizens-band equipment.
95. SPRAGUE—Circular M-653 describes SK-1, SK-10, SK-20, and SK-30 "Suppresasers" for vehicles with alternators or DC generators.

RADIO & CONTROL ROOM EQUIPMENT
99. IG—Full-color eight-page illustrated brochure shows monitor unit, timer module, punch-card reader, automatic network switcher, and other control-system units.

POWER DEVICES
96. HEVIDUTY—Bulletin 7-22 supplies data on line-voltage regulator using saturable-core reactor.
97. PRECISE—Regulated power supply is illustrated and described in technical bulletin.
98. SOLA—Buyers guide VB-200 includes applications, theory of operation, and specifications for line-voltage regulators.

POSITIONS IN COLOR TV ENGINEERING
The sudden industry wide acceptance of PLUMBICON Color Cameras has created many entirely new engineering positions in the areas of systems planning, field engineering, equipment packaging, circuit design. Engineers with live camera TV station experience and who are looking for personal advancement will receive training in this new equipment which is already playing a major role in the present shift to color.

Salary is commensurate with experience and ability. Locale: New York and Los Angeles. Relocation assistance provided. Interviews possible in major cities or interview travel expenses paid.

Send complete resume or call Mr. C. E. Spicer or Mr. G. H. Wagner, Visual Electronics Corporation, 356 West 40th Street, New York, N. Y. 10018. Telephone (212) 736-5840.

VISUAL ELECTRONICS CORPORATION
NEW CONCEPTS IN BROADCAST EQUIPMENT

REFERENCE MATERIAL & SCHOOLS
100. CLEVELAND INSTITUTE—Booklet outlines courses in electronics, including those for broadcast engineering and FCC license preparation.
101. HOWARD W. SAMS—Literature describing popular and informative technical publications; includes latest catalog of technical books.

STUDIO & CAMERA EQUIPMENT
102. CLEVELAND ELECTRONICS—Data concerns modifications using new yoke assembly to update 3" image-orthicon camera.
103. COLORTRAN—General catalog for 1966 includes company line of lighting accessories and dimming systems for motion-picture, TV, and still-photographic applications.
104. MOLE-RICHARDSON—Technical bulletins 102-107 illustrate line of quartz-iodine lights for studio use.
105. TELEFRO—Flier sheets describe twin-douser projection system and prompting system.
106. TV ZOOMAR—New literature features Autocam programmed remote control pan and tilt equipment; literature describes lenses for IO and vidicon use.

TELEVISION EQUIPMENT
108. COLORADO VIDEO—Sheet gives data for the Model 301 video analyzer which displays TV waveforms directly on picture monitors.
109. FAIRCHILD—Photographs and abbreviated specifications for cameras, monitors, and accessories are given in catalog for CCTV equipment.
110. SYLVANIA—Fold-out brochure lists applications, equipment complement, and specifications for mobile TV van.
111. THOMSON-HOUSTON—Brochure features solid-state color flying-spot scanner. Block diagram and specifications list are included.
112. VITAL—Data sheets give specifications of Model VI-500 stabilizing amplifier, Model VI-10A video distribution amplifier, and Model VI-20 pulse-distribution amplifier.

TEST EQUIPMENT & INSTRUMENTS
113. HOLLAND ELECTRONICS—Bulletins describe 75-ohm test terminations for coax: type N, PL 259, and BNC connectors are included.
114. WORKMAN—Catalog sheet No. 92C describes transistor-diode checker.

TOOLS
115. ENTERPRISE DEVELOPMENT—Bulletins feature Models 300 and 100A desoldering-resoldering iron for FC-board use.

TRANSMITTER & ANTENNA DEVICES
116. BAUER—Block diagram and specifications for 7500-watt FM transmitter are given on data sheet.
117. FORT WORTH TOWER—Brochure describes line of factory-built communications buildings.
118. GATES—Brochure depicts transcription turntables and accessories. Flier sheets give specifications for solid-state monitor amplifier and Model FM-IG 1,000-watt FM transmitter.
119. MOSELEY ASSOCIATES—Six-page brochure describes new solid-state 10- and 21-channel remote-control systems.

BROADCAST ENGINEERING
Advertisers’ Index

Andrew Corp. .. 57
Automatic Tape Control, Inc. 12
Belar Electronics Lab. 58
Bionic Instruments, Inc. 28, 44, 56, 58
Boyton Studio ... 44
Broadcast Electronics 30, 62, 64
Bradford Information Center 28
CBS Labs ... 5
Cohi Electronics 3
Collins Radio ... 43
C. L. Gardner Communication Construction Co. 62
Continental Electronics 9
ColorTran ... 67
Crown International 56
Dage TV Co. ... Cover 3
Eitel-McCullough, Inc. 27
Fairchild Recording Co. 6, 60
Gats Radio Co. 8
Geleco Electronics Limited 65
General Electric Co. 63
General Electrodynamics Corp. 54
International Nuclear Corp. 51
Jampiro Antenna Co. 47
JOA Cartridge Service 69
Lang Electronics, Inc. 6, 56
Lenkurt Electric Co. 13
Magnecord, Midwestern Instruments 45
McMartin Industries, Inc. 7, 54, 62, 64, 69
Miller-Stephenson Chemical Co. 48
Moviola Mfg. Co. 65
Norelco Studio Equip. 49
QRK Electronics 64
Rek-O-Kut ... 46
RCA Broadcast and Communications 10, 11
RCA Components and Devices Cover 4
Rohn Mfg. Co. 6
Riker Industries Cover 2
Rusco Electronics Mfg. 69
Sarkes Tarzian, Inc. 30, 53
Shure Brothers, Inc. 55
Sparta Electronics Corp. 58, 60
Sony Superscope 29
Stancil-Hoffmann Corp. 65
Telemer Co. ... 59
Viking of Minneapolis 50
Visual Electronic Corp. 66, 68
Ward Electronic Industries, Inc. 61
Wilkinson Electronics 24
Zoomar ..

Here are three good reasons why you should subscribe to

Broadcast Engineering

1. March pre-NAB Convention Issue
 Complete preview of the 1966 NAB Convention and Engineering Conference, plus an outstanding lineup of feature articles.

2. May post-NAB Convention wrap-up
 A review of the convention with special emphasis on new techniques and new equipment trends.

3. The other ten issues during the year will keep you up-to-date on technical developments in broadcasting.

A handy subscription form is bound inside the cover of this issue for your convenience. Simply fill it out and return it to us, and you’ll receive the Broadcast Engineers’ Maintenance Guide free of charge.

What's new?

See page 7 this issue.

Circle item 61 on Tech Data Card

Circle item 69 on Tech Data Card

January, 1966

Circle item 69 on Tech Data Card
OSCAR LEON CUELLAR
Consulting Radio Engineer
AM-FM-TV
411 Phoenix Title Building
622-1213
Directional Antennas Design
Applications and Field Engineering
Vice President
Member IEEE

Advertising rates in the Classified Section are ten cents per word. Minimum charge is $2.00. Blind box number is 50 cents extra. Check or money order must be enclosed with ad.

The classified columns are not open to the advertising of any broadcast equipment or supplies regularly produced by manufacturers who make the equipment used and no longer owned by the manufacturer. Display advertising must be purchased in such cases.

EQUIPMENT FOR SALE

Audio Equipment bought, sold, traded. Ampex, Fairchild, Crown, McIntosh, Viking Electronic, J-5, J-6, Teltronics, Grundig, etc. BC-604 crystals, also service on AM monitors and RF-235B FM monitors. Nationwide inquisitive testimonials praise our products and fast service. Eddom Electronic Company, Box 96, Temple, Texas.

Television/Radio/communications gear of any type available. From a tower to a cable, microwave, transmitters, cameras, studio equipment, mikes, etc. Advise your needs—offers Electrofide Co., 440 Columbus Ave., NYC, 212-EN-25680.

COMMERCIAL CRYSTALS and new or replacement crystals for RCA, Gates, W. E. Billey, and J-K holders. Repairs, replacing, repair, etc. BC-604 crystals, also service on AM monitors and RF-235B FM monitors. Nationwide inquisitive testimonials praise our products and fast service. Eddom Electronic Company, Box 96, Temple, Texas.

AMPEX 350 SERIES reconditioned capstan drive motors (BODEINE PCH-33 only) $85.00 each, or $20.00 your old one for $35.00. Also, $5.00 or order for $100.00 and get $15.00 back after sending old one in. Ours have new bearings and rewound stator. Package motor well. TABER MANUFACTURING & ENGINEERING CO., 2619 Lincoln Ave., Alameda California.

Everything in used broadcast equipment, complete and incomplete; also Broadcast Equipment and Supply Co., Box 3141, Bristol, Tennessee.

New and Reconditioned Remote Pickup and 2-channel audio, Fire and Police Receivers. All brands and models. Sales Manager, Box 236, Phone 817-594-5171, Weatherford, Texas.

Parabolic Antennas, 6' aluminum solid surface complete with dipole and mounting brackets. Price $110.00 FOB MC for $125 set. Tuned to 950 MC for $175 set. Sierra Western Electric Cable Co. 24th and Willow Streets, Oakland, California. Phone 415 832-3527.

Cleaning out of surplus mica capacitors, all like new at 50% regular trade discount: G-5: two, $0.001, 0.00047, 0.00027, 0.00017, two, 0.00051, four 0.00027, four 0.00028, four 0.00029, Johnson unused 0.00027 222-103 and 145-102-13 coil at big discount. No duty on all except G. Geico Electronics Ltd. 61 Curlew Drive Don Mills, Ontario. Phone 444-5991.

Trim 504 Audio PATCH cords $4.00. Audio jack panel complete 18 jacks, 10 pair $4.00. Repeat coils 500-500 ohm flat to 2000 ohm $4.00—Relay racks and equipment cabinets etc. Write for list. Gulf Electro Sales, Inc., 7031 Burket, Houston, Texas.

We need used 250, 500, 5K & 10K Watts AM Transmitters, No Junk. Broadcast Electronics Corp. 1314 Iturbide St., La., Texas 78864. 1-66-11.

H-5 A 3 Kilowatt GE transmitter w/ 4BT1B-1 Amplifier, converted to amperex finals, spare tubes, GE filter, $3500. RCA BC-5B console w/power supply. KOTG, 9605 East Bluff Ave., Denver Colorado.

Record Cutter Head, Never used since rebuilt by Crampin in England. Send us your recording stylus for reGRINDING. $6.50 each, fully guaranteed. Cook Recorders, 205 Ardsley Place, Vista, California 92083.

EQUIPMENT WANTED

WANTED TO BUY . . . Used, and 1 and 5 KW AM or FM Broadcast transmitters, regardless condition or age. Write or call Continental Electronic Co., 457 West 28th St., Hialeah, Florida 33010. Phone 305-888-3511. 1-66-21

Employment

America's largest Radio and Television Employment Agency has immediate openings with top organizations in all parts of the country for experience Engineers. Send resume today to: Nationwide Broadcast Services, 645 North Michigan Avenue, Chicago, Illinois. 1-66 ff

Broadcast engineers and technicians wanted for operation in Samoa—studios and transmitters operation and maintenance—good living conditions and adequate family housing—write for interview. NAER, R & D Office, 1536 Connecticut Avenue, Washington, D.C. 20036.

PERSONNEL

VIDEO ENGINEER with broadcast experience to learn sales. Must be ambitious, aggressive, nice personality and drive a late model car. Some travel. Dress to impress. Immediate earnings with excellent opportunity for high income. All replies confidential. Write full details to: D-2611 York St., Los Angeles, Calif. 90028.

Business Opportunities

EXCLUSIVE FRANCHISE

Amazing new liquid plastic coating used on all types of surfaces interior or exterior. Eliminates waxing when applied. Equipment $100. Vinyl Asbestos, Hard Wood, and Furniture. Immediate earnings when applied. Description and equipment now available. Apply to Wood, Metal, or Concrete surfaces. This finish is also recommended for boats and automobiles.

NO COMPETITION

As these are exclusive formulas in demand by all businesses, industry and homes. No franchise fee. Minimum Investment—$2500. Equipment Investment—$7,000. Investment is secured by inventory. Factory trained personnel will help set up your business. For complete details and descriptive literature write:

CHEM-PLASTICS & PAINT CORP., 1835 Locust, St. Louis 3, Mo.

DISTRIBUTOR WANTED

No competition. To service and set up new accounts in exclusive territory. Investment secured by fast moving inventory. Plastic coating used on all types of surfaces interior or exterior. Eliminates need for waxing when applied. On floor surfaces. Eliminates all painting when applied to wood, metal or concrete surfaces.

Minimum Investment — $500
Maximum Investment — $12,000

For details write or call: Phone: 314 AX-1-1500
Merchandising Division
P. O. Box 66
St. Ann, Missouri 63074

BROADCAST ENGINEERING
Dage engineering has developed the 520 solid state camera chain which outperforms any other vidicon equipment presently available for commercial or educational broadcasting and video taping. Check feature for feature and see why this is the system for your studio.

RELIABLE SOLID STATE CIRCUITRY • HIGH SIGNAL TO NOISE RATIO • MORE AVAILABLE OPERATOR FEATURES • TREMENDOUS DETAIL RESPONSE AND SENSITIVITY • HIGH RESOLUTION CAPABILITIES WITH NO DISTORTION • PLUMBICON PROVIDES PICTURE WITHOUT LAG

No matter what your equipment needs are, Dage has the BIG answer for you with the new 520 Broadcast Camera Chain for use with PLUMBICON, VIDICON, or SEPARATE FIELD MESH

Dage-Bell Corporation
A SUBSIDIARY OF RAYTHEON COMPANY
455 Sheridan Avenue, Michigan City, Indiana, Dept. 30-8
Circle Item 42 on Tech Data Card
How to climb aboard the color bandwagon easily, economically, with RCA-4415/S,-4416/S image orthicons...

Color TV is really rolling in high gear... And now, you may be facing the question of creating a color facility—with new studios, lighting, air conditioning and other equipment.

Being old timers at color, we anticipated some of these facility problems and developed the RCA-4415/S, -4416/S, a matched-set of three image orthicons. They perform well in cameras for color at lighting levels usually available in black-and-white studios and eliminate the need for extra air conditioning equipment as well.

Another good feature of these tubes is that they behave more like the old faithful 5820A or 7293A's that you have been using in black and white during the past years. In the color camera, they can stand more over-exposure and are a little less finicky on the operating controls. For example, when you have a suntanned actress working in a gleaming white kitchen, you can operate with the highlights fairly far above the image orthicon knee without having the color picture going to pot.

We make up carefully matched sets consisting of two 4415/S Image Orthicons for the red and green channels, and one 4416/S Image Orthicon for the blue channel where a lot of "umph" in blue sensitivity is needed. The three mates of the set are matched to track very well and produce a nice uniform color picture. In addition, the sensitivities are balanced so that each tube is just about working at its maximum sensitivity and you are not throwing away extra light in the optical system to favor one low-sensitivity channel. The result is good color pick-up at black-and-white studio lighting levels.

For further information about RCA Image Orthicons contact your RCA Broadcast Tube Distributor.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.