Planning the processor Installation page 24
Equalizing phone lines
Noise in cable systems
South Carolina ETV
COMPANY
WARD CONSOLIDATES WITH RIKER VIDEO

YEAR WARRANTY POLICY ON ALL
WARD ELECTRONIC INDUSTRIES' AND RIKER VIDEO EQUIPMENT

REGIONAL SALES OFFICES

Van Nuys, California
7811 Lemona Avenue
(213) 785-1005

Denver, Colorado
451 East 58th Street
(303) 534-3995

Deltona, Florida
1153 East Page Drive
(305) 574-1186

St. Paul, Minnesota
368 Clifton Street
(612) 227-2612

Clark, New Jersey
142 Central Avenue
(201) 382-3700

Dallas, Texas
528 Continental Bldg.
(214) 747-3994

AND MORE PRODUCTS

The Riker-Maxson Corporation has consolidated the sales and marketing activities of its Riker Video Division with its Ward Electronic Industries division . . . to bring you all the benefits of their combined broadcast equipment know-how and extensive product lines. New engineering laboratories and production facilities in Ward's Clark plant . . . new East and West Coast service centers . . . new regional sales offices . . . all are designed to bring you the finest products and services. What else is happening at Ward . . . ? write or call, or watch these pages for all the news.

WARD ELECTRONIC INDUSTRIES
142 CENTRAL AVE., CLARK, N. J. 07066 • (201) 382-3700

A Subsidiary of RIKER-MAXSON

Circle Number 1 on Reader Reply Card

www.americanradiohistory.com
Cohu's new 9300 Series solid-state video switcher was designed with the operator in mind. All controls on the natural-flow panel are engineered for maximum ease and efficiency of operation. All performance specifications lead the state of the art. Quality-proven components have been selected for reliability under continuous duty.

No single failure can disable the system because of redundant power supplies and sectional fusing. Test points are accessible from the front. Cards are interchangeable plug-ins. Adjustable, preprogrammed delay sections provide interchangeable output amplifiers.

Designed especially for broadcasting, the 9300 Series Video Switcher features integrated circuits and modular design with a convenient form factor for typical studio requirements and expansion capabilities.

For more details, contact your nearest Cohu representative, or call Bob Boulio direct at 714-277-6700 in San Diego. Box 623. San Diego, California. TWX 910-335-1244.

- accepts composite or noncomposite signals
- cut is standard on Mix, Effects, and Preset/Program Buses
- automatic inhibit of non-synchronous dissolve
- no mid-fade color drop when fading to monochrome
- fade to black with automatic cut
- automatic sync insertion
- input over-voltage protection to 300 volts
in this issue...

24 Installation Considerations For Color Film Processors. Part 1 of a two-part series on the considerations you must make when planning to install a new film processor. D. Khalil Jones.

30 A Survey of IC Application Ideas. Part 2 of a 3-part series. This part covers the use of IC’s in oscillators, waveform generators, and waveform shapers. Walter Jung.

39 South Carolina ETV Center. A description of the great programming demands made on an educational TV center and how they met the challenge. Lloyd Brown, Jr.

52 Noise In Cable Systems. A discussion of how noise gets into a cable system. The author details how to keep noise out and improve efficiency of the system. E. Trompeter.

59 Equalizing Phone Lines For Remotes. Noted communications authority talks about the problem that so often plagues engineers at AM and FM stations in Part 1 of a 2-part series. David Talley.

ABOUT THE COVER
Installing a color film processor is not an easy task. But more than anything else, it calls for in-depth planning on the part of the technical staff. The article on page 24 describes some of what KID-TV learned in solving their installation problems.

DEPARTMENTS
Direct Current 4
Letters to the Editor 8
Industry News 12
CATV Scope 19
Educational Broadcasting 22
Engineer’s Exchange 56
Tech Data 64
New Products 67
People In The News 72
Ad Index 77
Classified Ads 77

Copyright, 1969, Howard W. Sams & Co., Inc. All Rights Reserved. Material may not be reproduced or photocopied in any form without written permission of publisher.
STUDER A 62

A solid state and professional tape recorder of the highest studio quality, easily transportable. Modern design concept: compact modular construction, electronic tape tension control, simple straight tape path. Clear layout and easy operation, electric push buttons, all tape transport functions can be remote controlled. Suitable for vertical mounting.

EMT WILHELM FRANZ GMBH
5430 Wettingen (AG), Switzerland

October, 1969

Circle Number 5 on Reader Reply Card
DIRECT CURRENT FROM D.C.

October, 1969

By Howard T. Head

Land Mobile Pot Boiling

The Standard Research Institute has completed its studies under an FCC research contract and has reported its findings concerning frequency congestion and possible relief for the land mobile radio services. Land mobile radio users complain of increasing congestion and have asked that the Commission reallocate television frequency bands.

SRI conducted actual off-the-air monitoring in New York, Detroit and Los Angeles. This monitoring indicated that although some land mobile channels were heavily used and undoubtedly congested, many others were very lightly used. The conclusion from these findings is that any primary relief should come from a better utilization of land mobile channels already available rather than allocation of additional frequencies.

There will shortly be forwarded to the Commission the work of an Industry-Government Committee set up to establish the feasibility of sharing VHF television channels with the land mobile radio services. Field tests conducted by this Committee found interference to adjacent channel VHF television stations to be generally as predicted. Co-channel interference, however, for reasons not satisfactorily explained, was considerably less than expected.

In the meantime, the Commission has expanded land mobile use of the 72-76 MHz guard band between channels 4 and 5. Grants have been made in several cities for the use of one-way signaling for fire and highway call boxes in this frequency band without regard to interference to television reception and the Commission has proposed to authorize future such grants on a regular basis.

Additional Pre-Sunrise Authorizations a Step Closer

As reported in last month's Direct Current, action by the Mexican Legislature in the near future is expected to clear the way for pre-sunrise operation by some 200 daytime-only stations in the U.S. operating on Mexican clear channels. Pending ratification of the new treaty by the Mexican Legislature, however, the Commission is not yet accepting applications for pre-sunrise service authority.

When such applications are accepted they will be required to conform with the requirements of the treaty, which require protection of the Mexican Class I-A clear channel stations. A little-noticed provision of the treaty, however, eases these protection requirements in many instances where the Mexican station's skywave service area (0.5 mv/m 50% skywave)

(Continued on page 6)
Collins FM transmitters have the best record for uninterrupted service.

Meet our newest: the 20-kw 831G-1

Collins' new 831G-1 FM Transmitter gives the quality- and economy-minded broadcaster uninterrupted, dependable performance.

The 831G-1 uses solid-state on-off switching and is equipped with automatic power output control. It offers front panel tuning, with complete metering and control facilities on the extended control panel. The direct FM all-solid-state exciter offers such options as stereo multiplex and an SCA generator.

For more information, contact your Collins representative or write to Broadcast Sales, Collins Radio Company, Dallas, Texas 75207.
extends into the U.S. or into water areas. In those cases, the U.S.
daytime-only station will be permitted sufficient power to lay down a 10%skywave of 50 uv/m at the Mexican border compared with the usual require-
ment of only 25 uv/m.

In a case involving a Canadian clear channel, the Commission has declined
to authorize pre-sunrise operation, pointing out that our pre-sunrise
agreement with Canada specifically prohibits any pre-sunrise operation
on the Canadian Class I-A clear channels.

CATV Retransmission Consent Test Authorized

The Commission has authorized a CATV system in Owensboro, Kentucky, to
test the feasibility of the Commission's new Rules which would require
the consent of "distant" television stations for the carriage of their
programs on CATV systems. Although the Commission recognized that Owens-
boro is not an ideal market in which to conduct such tests, the Commission
hopes to obtain some insight into the problems presented.

Even in its original proposal, the CATV system ran into substantial
difficulties. One television station involved indicated that 16 separate
syndicators would have to give their own consent to the carriage of their
programs and in the case of another television station, 17 syndicators were
involved. Other than these syndicated programs, the stations had right
to only a few local programs.

Short Circuits

The Commission is reported to be ready to adopt Technical Standards for
Pay-TV . . . An educational FM station in Michigan is experimenting with
the transmission of still pictures on a multiplex subcarrier (whatever
happened to facsimile?) . . . The Commission has cancelled seven long-
dormant UHF television construction permits . . . Regular authorization
for the remote control of VHF television transmitters is expected shortly
. . . Comments generally supported the Commissions proposal to require
the type approval of AM phase monitors; most persons commenting generally
 favored relaxed phase and current ratio tolerances on directional antennas
. . . The Commission has authorized a new common carrier microwave system
between Chicago and St. Louis to compete with the Bell System and other
common carriers over this route . . . The Commission has proposed to permit
CB licensees to communicate with broadcast stations in order to report
highway conditions; on-air rebroadcasting of these transmissions is
still forbidden by the rules, however.

Howard T. Head
The VI-750 Video Tamer

PROCESSing AMPLifier

Front Panel Knobs Readily Set at Unity Gain

Real Panel — 2 Inputs, 4 Outputs

- Digital Sync Generator with extensive use of IC’s re-generates all pulses to EIA Standards.
- Phase-locked color burst regenerated with correct breezeway and constant amplitude.
- Dependable AGC action maintains constant peak level without clipping. Uses no LDR’s.
- White stretch with differential phase compensation for transmitter use.
- Noise immune clamping removes low frequency disturbances.
- Applications: Input to transmitters, VTR’s, microwave, output of switches, off-air pickups, remotes, network and helical scan recorders.
- Thirty-day free trial with no obligation.

Color VI-750 with burst regen and white stretch $2,400.00
VI-750 Monochrome .. 1,990.00
AGC — Additional .. 400.00

GOOD ENGINEERING IS VITAL

VITAL INDUSTRIES, INC.

MAIN OFFICE: 3614 S. W. Archer Road
Gainesville, Fla 32601 904—378-1581

3620 Ridgewood Rd., N. W.
Atlanta, Ga 30327 404—233-9459

2644 N. Seventh Street
Terre Haute, Ind. 47804 812—466-3212

Circle Number 7 on Reader Reply Card

October, 1969

www.americanradiohistory.com
SELECTING EMERGENCY POWER GENERATORS

Dear Editor,

Please allow me to comment on Loren Mages' interesting article, "Selecting Standby Generators" in your August, 1969 issue.

Based on our experience with various gasoline and diesel generator sets up to 250 KW, we find the modern diesel will start consistently quicker than gasoline-fueled engines. One reason is that the diesel engine, if installed correctly, will have fuel in its fuel system at all times. Fuel is immediately injected to the combustion chambers as the engine is cranked.

The gasoline-fueled engine is normally equipped with a float-type carburetor. Gasoline in the float chamber evaporates when the engine is not in use. Unless some means is provided to keep this float chamber filled during periods of non-use, the first few seconds of cranking will elapse while the carburetor is being filled with fuel.

A good electric fuel pump can insure quicker starts on a gasoline engine. The electric fuel pump can be timed to operate for one minute each day to keep the float chamber topped off.

Gasoline engines designed for "regular" grade gasoline will operate better on 80/87 aviation gasoline. This will result in less spark plug deposits and no varnish buildup in the fuel system. The fuel mixture control should be readjusted with a load on the engine if the change is made to aviation fuel.

Standby generator engines should be kept warm (90° to 100° F) to ensure fast starts and to minimize wear.

When the generator is to be used for television, careful attention must be paid to the frequency. There are available, excellent hydraulic-type governors. The governor should be equipped with a remote vernier control, or better yet, automatic means should be provided to keep the frequency in step with the vertical sync.

Here at the KVOS transmitter plant, where we have come to expect power outages, the standby diesel delivers power to the load five to six seconds after a power failure has occurred.

We enjoy your magazine.

Erling Manley
Transmitter Supervisor
KVOS-TV
Eastsound, Wash.

Dear Editor,

Please accept the thanks of my colleagues and I in the broadcast engineering field for the many excellent articles you print. In your August '69 issue, you have a very good example in “Selecting Standby Generators” by Loren Mages.

Mr. Mages states in the article that most radio engineers have a tendency to go overboard when it comes to voltage and frequency regulation and also states that most commercial units have a regulation of 5% or better and three Hz or better from no load to full load.

While the above may be adequate for a radio station, I do not believe it is adequate for television, especially a maximum power, high band, VHF transmitter which may vary its load as much as 40 KW from a white to a black picture or fadeout. Also, frequency requirements must be very stringent, otherwise hum bars will be very noticeable. Generator frequency in this case is usually either auto or manual controlled to match vertical sync.

I realize that this article is more slanted towards a small radio station, but basically the same general principles apply to the 200 KVA, 480 volt units necessary to run a high power television transmitter.

Robert E. L’Roy
Transmitter Supervisor
KLKN-TV

Editor's Note: Robert L’Roy has a good point when he underscores the author's comment that engineers go overboard when it comes to voltage.

(Continued on page 10)
Stereo on location: Only 24 lbs. 11 oz.

Better-than-Studio Specs.
Frequency response: 20 Hz to 22 KHz, 40 Hz to 18 KHz ±2 dB @ 7½ ips.
S-N ratio at peak level to unweighted noise: (Model 770-2) 58 dB
or better; (Model 770-4) 56 dB or better. Wow and flutter: less than 0.09% @ 7½, less than 0.12% @ 3½, less than 0.2% @ 1½.

Exclusive Sony Noise-Reduction System. Sony “SNR” automatically reduces gain of playback amplifier by 6 dB during very low passages, when background noise is most predominant. Noise level is greatly reduced, dynamic range expanded 100%. Also incorporated is a built-in limiter to automatically control overload distortion. Both “SNR” and limiter are switch defeatable.

Lightweight. A full 7-inch reel capacity studio professional tape deck. Pick it up and take it anywhere or use it in your studio. Operates on a self-enclosed rechargeable nickel-cadmium battery pack—or plugged into AC.

Four Heads. The 770-2 has two-track erase, record, and playback heads plus a four-track playback head. The 770-4 has four-track erase, record, and playback heads plus a two-track playback head.

ServoControl Motor with VariSpeed Tuning. Automatically maintains exact speed during mechanical load changes and voltage variations. Built-in VariSpeed tuning permits vernier adjustment of plus or minus 7% of any of the three speeds. Ideal for critical timing of program material.

Three Speeds. 7½, 3½, 1½ ips. Other features include two professionally-calibrated VU meters, built-in line-and-mike mixing, push-button operation, scrape flutter filter, low-impedance Cannon plug mike inputs, tape/source monitoring.

Sony Model 770. Priced at $750. For a free copy of our latest tape recorder catalog, write to Mr. Phillips, Sony/SuperScope, Inc., 8211 Vineyard Avenue, Sun Valley, California 91352.

You never heard it so good.
and frequency regulation. Hum bars can appear. The frequency must be aligned with vertical sync. And he also is correct in that 5% load regulation leaves something to be desired when the generator is in a high power station. In a television transmitter room, the panel meters may look like those of an MCW transmitter. Obviously, the picture would suffer.

Selecting a standby generator can have more than economic implications. You must consider what is available and superimpose this on individual needs. One station in the path of hurricane Camille used an underground gas storage tank. Induced by water, the tank took on water and pumped it into the cylinder where the mixture cracked a piston.

What's available during a disaster? Natural gas? Could be, unless the underground pipes break. High octane gasoline? For extended periods of operation this could be a problem because disaster areas report that gasoline becomes hard to find. Then too, local ordinances may prohibit above and underground storage.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Value</th>
<th>Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>2.7 K</td>
<td>R-14</td>
<td>680 Ohms</td>
<td>R-26</td>
<td>2.2 K</td>
</tr>
<tr>
<td>R-2</td>
<td>2.7 K</td>
<td>R-15</td>
<td>680 Ohms</td>
<td>R-27</td>
<td>4.7 K</td>
</tr>
<tr>
<td>R-3</td>
<td>39 Ohms</td>
<td>R-16</td>
<td>680 Ohms</td>
<td>R-28</td>
<td>1 K</td>
</tr>
<tr>
<td>R-4</td>
<td>3.3 K</td>
<td>R-17</td>
<td>500 Ohm POT</td>
<td>R-29</td>
<td>680 Ohms</td>
</tr>
<tr>
<td>R-5</td>
<td>3.3 K</td>
<td>R-18</td>
<td>680 Ohms</td>
<td>*R-30</td>
<td>2.5 K Miniature POT</td>
</tr>
<tr>
<td>R-6</td>
<td>1 K</td>
<td>R-19</td>
<td>4.7 K</td>
<td>R-31</td>
<td>75 Ohms</td>
</tr>
<tr>
<td>R-7</td>
<td>1 K</td>
<td>R-20</td>
<td>5 K POT</td>
<td>R-32</td>
<td>75 Ohms</td>
</tr>
<tr>
<td>R-8</td>
<td>250 Ohms</td>
<td>R-21</td>
<td>120 K</td>
<td>*R-33</td>
<td>2.5 K Miniature POT</td>
</tr>
<tr>
<td>R-9</td>
<td>680 Ohms</td>
<td>R-22</td>
<td>120 K</td>
<td>R-34</td>
<td>2.8 K</td>
</tr>
<tr>
<td>R-10</td>
<td>250 Ohms</td>
<td>R-23</td>
<td>10 K</td>
<td>R-35</td>
<td>1 K</td>
</tr>
<tr>
<td>R-11</td>
<td>680 Ohms</td>
<td>R-24</td>
<td>39 Ohms</td>
<td>R-36</td>
<td>3 K</td>
</tr>
<tr>
<td>R-12</td>
<td>5 K POT</td>
<td>R-25</td>
<td>30 Ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2W-AB type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-13</td>
<td>2.7 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued on page 71)

NOW.....the digital master clock you asked for.

MASTER CLOCK DTI-701

Accuracy of 50 PPM. Readout of day, hour, minute, second. Internal or external sync. Fail-safe power supply. External reset, 1 second pip outputs at 4 audio frequencies.

ACCESSORY INSTRUMENTS SYNCHRONIZED TO DTI-701

RACK-MOUNTED SLAVE DTI-702

Cabinet and bracket available for wall mounting.

EXECUTIVE DESK MODEL DTI-703

Walnut cabinet. Attractive blue read-outs.

STUDIO MODEL DTI-704

Large read-outs for camera pick-up.

ELECTRONIC STOP-WATCH DTI-705

Reads out in hours, minutes, seconds, tenths of second. Pause control. Zero Reset. Walnut cabinet or custom panel for installation into studio production control panel. Audio pipe cue output.

RACK-MOUNTED SLAVE WITH STOP-WATCH DTI-706

Combines features of DTI-702 and DTI-705. Remote control stop-watch.

ELAPSED TIME CLOCK DTI-707

Presto to any time up to 9 hours in minutes, seconds. Internal or external preset input. Manual or external start. Pulse output in 1 second intervals, 10 seconds to zero, with synchronized audio pipe.

For more details write or call:

TELCOMP MANUFACTURING

A DIVISION OF TELEVISION AND COMPUTER CORPORATION

2056 U. S. HIGHWAY 22, SCOTCH PLANKS, NEW JERSEY 07016 • (201) 733-6200

Circle Number 9 on Reader Reply Card
First in its class...
a vapor-cooled, high-efficiency
50,000-watt AM transmitter
by Gates

Inside and out – the VP-50 is the first really new 50,000-watt transmitter in years... a breakthrough in engineering design utilizing vapor cooling. Superb fidelity is combined with operating economy in the VP-50 transmitter. Lowest power consumption with only 80 kW at 0% modulation. Lowest tube cost of any 50 kW model. Newest solid-state design with all-transistor circuits up to RF driver. Quietest operating transmitter in its class with no large blowers. FCC-type accepted.

Want more information and complete specifications? Write or call (217) 222-8200 for complete information.

Gates Radio Company
Quincy, Illinois 62301, U.S.A.
A division of Harris-Intertype Corporation
Circle Number 10 on Reader Reply Card

October, 1969
INDUSTRY NEWS

A Special Report
On Hurricane Camille

Broadcasters across the nation shudder at the sight of inundated station facilities and twisted transmitting towers dotting the gulf port area after hurricane Camille died.

Storms of this nature are nothing new to the area, but there was something special about Camille. It pointed out once and for all that operating at ground level increases the potential for a broadcast station disaster.

The following information on Camille and its effects on radio and television in the disaster area was sent to Broadcast Engineering by Sam Schmid, chief engineer at WSHO in New Orleans, La.

"Camille, a killer hurricane, slashing first at the Southeastern edge of Louisiana, shrieked into the Mississippi Gulf Coast the night of August 17. What was able to survive the 200 mile per hour winds was enveloped by the 20 foot tidal wave which followed.

"At Biloxi the WLOX radio and TV studio was one of the wave’s casualties. The station was able to get back on the air with a mobile van sent over by WWL-TV in New Orleans. Between Gulfport and Biloxi, WVMI suffered the loss of all utilities at its Edgewater Gulf Hotel studios. WVMI general manager George Egeditch mobilized his staff to get back on the air.

"Through the cooperation of the Broadwater Beach Hotel and its manager W. T. Dorsett, the station was able to set up an emergency broadcast studio. WVMI was able to get back on the air from the Broadwater Beach with a remote pickup unit sending the program to its main transmitter. At the transmitter site, all but 80 feet of the 340-foot tower was clipped away by the fury of Camille. The station operated on emergency power for five days. WVMI transmitted the first live radio broadcasts out of the disaster area to WSHO in New Orleans.

"Here in New Orleans our advance preparations included natural gas and gasoline generators, studio to transmitter radio link, battery operated studio equipment, two VHF equipped mobile units and radio monitors for weather bureau, police, amateur radio and CB. Our Civil Defense staffed a complete communications center with radio links to police, amateur, CB and all utilities.

"In the early morning hours following Camille, Civil Defense and police began assessment of damages. From the eastern edge of New Orleans to Biloxi, Mississippi the picture was the same: Thousands of homes destroyed, tens of thousands damaged, power and telephone lines down, roadways washed out or clogged with debris and the additional hazard of ruptured gas and water lines.

"As daylight approached the grim task of counting the dead would begin. The first weak radio signals from the disaster area started to come in from those dedicated amateur radio operators who risked their lives with their life-saving radios. Many amateurs and Gulf Coast broadcasters lost all possessions to the storm: homes, furnishings, clothing and cars. Those we spoke to..."
were thankful for their lives and those of their loved ones. WVMJ's Ron Manning was especially thankful—his Mother flew him in a new pair of shoes (Ron and his family survived the storm with only the clothing on their backs).

“Our first communications out of the isolated areas advised of the urgent needs; doctors, nurses and technicians, medical supplies, drinking water, canned foods, generators and fuel. First supplies to the disaster area moved with New Orleans police and firemen. With the firemen went a WSHO generator to the Bay St. Louis Hospital. Listener response to our broadcast appeals was immediate.

“Through the cooperation of Pontchartrain Beach Amusement Park we were able to use their facilities as a collection point for food. Five truckloads of food departed for the stricken areas in one afternoon. A few days later the amusement park's manager, Harry Batt Jr., turned over a day's receipts to the Hurricane Disaster Fund. New Orleans mayor Victor H. Schiro organized an airlift to Biloxi and dispatched the police communications van to Gulfport.

The broadcasters, amateur radio and Citizens Band operators met the challenge of a major disaster. Every broadcaster is a potential victim of a natural or man-made disaster, Schmid concluded. Are you ready to meet the challenge?”

Little can be done to save the transmitting towers, even if the stations use remote transmitter sites. Nevertheless, something can be done about emergency power generating plants and studio facilities. And what can be done to save a station from a hurricane might also help save inland stations from tornados, heavy storms and other natural disasters. “It can't happen here” is a dangerous assumption.

Generator Location

The best generator money can buy won't provide one minute of public service if it is so located that it can be covered by water along with groundfloor studios. Even if the generator is placed on a slab of concrete a few feet above the ground, the margin of emergency operation is still slight.

Generators located in basements are of dubious value, even if sump pumps are carefully deployed. Second floor generator locations, if they are in buildings of adequate construction, do offer a distinct advantage. This is especially true if the generator is mounted on a raised platform.

Obviously, many stations may not be able to find buildings where they could install a generator on the second floor for many stations use a one-floor facility at ground level. This should be a consideration for those planning a new station building program and for those contemplating a move to improved facilities.

Location of the generator fuel supply is just as important. One station was back on the air shortly after the hurricane hit, but not for long. An underground fuel storage system had been installed. When the high water came, water seeped into the storage tank. When the diluted gas was pumped into the generator engine, the mixture cracked a piston. Moments later they were off the air.

There are no easy ways out. Lo-
Varian klystrons hold back the cost of doing business.

You might say that UHF TV klystrons from Varian cost about a buck an hour. Although Varian warrants its UHF TV klystrons for 5,000 hours video, their average operating life is 8 - 9,000 hours... at an average cost of about $9,000 per tube. If that's not a bargain, think of the UHF stations that get 20,000 hours per tube, or the one in Texas that's logged over 30,000 operating hours on one tube.

It's a fact that since the first commercial UHF TV station went on the air back in the '50's, Varian has more than doubled the operating life of UHF TV klystrons. And the price hasn't changed much since then. No wonder over 90% of the stations use Varian tubes.

You can get all the figures on Varian klystrons from any one of the more than 30 Electron Tube and Device Group Sales Offices around the world. Or write the Palo Alto Tube Division, 611 Hansen Way, Palo Alto, California 94303.
FE149 SENIOR FET METER
The only true Senior FET meter available today with outstanding accuracy and unbelievable ease of operation.

- **Unmatched Accuracy.** 1.5% on DC, 3% on AC, plus large 7-in. meter and mirrored scale, assure the most accurate tests possible.
- **Eight AC and DC ranges.** .5V to 1500V full scale.
- **Zero center scale.** With .25 v. either side assures measurements to less than .1 v. for transistor bias measurements.
- **AC peak to peak readings.** 4500V maximum with freq. response of 10HZ to 10MHZ ± 3DB.
- **Eight resistance ranges.** To R x 10 megohms with 6 OHMS center scale.
- **Nine DC and nine AC current ranges.** 150μA to 5 amps.
- **Eight decibel ranges.** For audio measurements.
- **Three Hi-Voltage ranges.** 5 KV, 15 KV, 50KV with 39A21 high voltage probe. $14.95
- **Absolute meter and circuit protection.** Against circuit overload.
- **Non-breakable, scuff-proof, vinyl-clad steel case.
- Three-way power. Operates on AC, on self-contained rechargeable batteries, or on AC with batteries plugged in. Same readings all three ways.

$149.50

Exclusive push-button design. Just push two buttons for any test — top row selects function, bottom row selects range. Action is instant and automatic.

FE14 and FE16 popular
4 1/2 inch FET Meters

- **Hi Accuracy.** For unsurpassed measurements. Mirrored scales prevent parallax errors.
- **Minimum circuit loading.** 15 megohm input resistance on DC; 10 megohm on AC.
- **Zero center scale ± 0.5 v. readings for transistor bias measurement.
- **Full meter & circuit protection against possible circuit overload.
- **7 DC & AC voltage ranges.** 1 to 1000 volts full scale.
- **AC peak to peak readings.** 2800 v. maximum with freq. response of 10HZ to 10MHZ ± 3DB.
- **5 resistance ranges.** To 1000 megohms.
- **5 DC current ranges.** 100μA to 1 amp.
- **3 Hi-Voltage ranges.** 3 KV, 10 KV, 30 KV, extended with 39A19 ($9.95) high voltage probe.

See your Sencore distributor today or write factory for complete line catalog.

SENCORE
STANDARD OF THE ELECTRONIC INDUSTRY
426 SOUTH WESTGATE DRIVE,
ADDISON, ILLINOIS 60101
Circle Number 11 on Reader Reply Card

October, 1969
cal ordinances may restrict the storage tank location to ground level slab mounted tanks. Or the tanks may rest on raised platforms. The best hope might be an inside raised tank; but, again, some ordinance may prohibit such an installation on any floor of a building. Waivers or special permits may be able to overcome ordinances if the station presents its public service during emergencies argument to local government officials.

Outside Communications

When power and telephone lines go down, as they all did during Camille, how do you communicate with the public to inform them and with the local and federal agencies to relay information?

Without some remote transmitting equipment at their disposal, all the reporters and other station personnel pressed into field service will be of little use to a station that does manage to stay on the air or to make it back on the air after putting up a long wire antenna.

During a disaster, the public service function of a broadcast station becomes paramount. With the entertainment aspect deleted, the station should function as a central information communications media. For although amateur radio, CB, and agency communications have served meritoriously during disasters, they do not operate on frequencies available to the general public. A standard broadcast station off the air during a disaster represents a missing link in the vital local emergency broadcast plan.

This magazine does not propose to answer all the questions that work their way to the top during a disaster. However, it does seem fair to call for a plan of action that possibly will help circumvent a communications blackout.

The city plan for coordinated station operations will be covered in the following issue, with the hope that the IEEE, NAB, NAFMB, NAEB and state associations will in the near future place on their programs at meetings and conventions the two basic problems washed up by Camille: (1) the need for a coordinated total communications plan for metropolitan and smaller city areas and; (2) a review of station emergency gear combined with generator installations designed to withstand natural disasters.

MOBILE BROADCAST VAN HEATER

- 201 Heater is built to Military specs.
- 201 Heater used aboard fixed & Mobile radio stations, mobile T.V. Vans, remote AM/FM stations, Pick-up Vehicles, Transmitter sites, etc.
- Broadcast stations will find heating equipment ideal for outdoor & indoor coverage. Built for rugged field performance; can be portable or attached to floor.
- Also available is our Lightweight & Mobile Food Warming equipment available for remote sites.
- Write for full catalog on our electric space heaters & food warming equipment.

VALAD ELECTRIC HEATING CO.

71 Courtlandt St. Tarrytown, N.Y.

Circle Number 12 on Reader Reply Card
NCTA Asks FCC To Curb Telco System Practices

The NCTA has urged the FCC to develop measures for effectively curbing Telco practices. It recommended that any telephone company refusing to grant pole attachments be barred from CATV operations. This would include most general system companies and practically all United System companies.

NCTA further suggested that this policy be made retroactive; systems constructed prior to the Commission's warning issued during its Section 214 proceedings should be dismantled and systems built after the warning should be torn down and sold for scrap unless a competing independent CATV operator is willing to purchase the system.

Telco's CATV systems were built, leased or operated without obtaining a CATV permit or franchise from the local municipal authorities. Many independent telephone companies have a policy of refusing to grant pole-line attachments and therefore, CATV systems have to reach their subscribers through lease-back arrangements. The Telcos buy the cable, string it, and lease it to the CATV operator. After about ten years the cable operator has paid for the cost of the wire system but he keeps right on paying the lease-back fees. The telephone company usually gets a free wire system paid for by the CATV operator.

CATV operators have complained to the FCC that Telco CATV systems have presented unfair competition, violated the antitrust laws and bypassed the local franchising authorities. The FCC specifies that since telephone companies are listed as common carriers they are not required to obtain FCC authority to construct CATV systems.

Section 214 of the Communications Act has been interpreted by the FCC in such a way that telephone companies shall not undertake the construction of, lease, own or operate CATV systems unless and until there shall first have been obtained from the Commission a Certificate of Public Convenience and Necessity.

The basic question before the FCC is whether or not it should prohibit telephone companies from engaging in CATV activity and if it should adopt a policy prohibiting 214 certificates to be granted in any case where the customer is a wholly-owned subsidiary or Telco-related company.

CATV System Assists Neil Armstrong Family

Shardoco Cablevision of Wapakoneta, Ohio, assisted the NBC-TV production crew which was originating coverage from the home of Apollo 11 Commander, Neil Armstrong's parents. NBC had arranged to originate live from the Armstrong family home and established a microwave setup at the residence. Since the Armstrong's were not cable subscribers, NBC technicians were unable to get quality signals off the air from the area NBC affiliates to properly monitor the origination pickup.

By an emergency request the Shardoco Cablevision, on the eve of the Apollo 11 blast-off, wired the home for cable and supplied the network crew and the Armstrong family with quality picture reception.

Electronic Mail Service Through Cable TV?

A new service which may emerge in the near future and benefit the post office department is the electronic mail service used in conjunction with cable television. With the many services which CATV now provides the subscriber, and additional future application to record or message communications would be an outstanding achievement.

RCA has already developed an inexpensive printer. When installed, it decodes information transmitted during the vertical synchronizing period of a TV signal and then prints such information as news, advertisements and stock market reports. When CATV is used to bring the TV signal into the home, the multiplexed system is not required since a separate frequency can be used for the additional data service. Instead of the printer, an inexpensive facsimile unit offered by Xerox could be used to print text and pictures.

These communication features combined into a future system could make possible the mailing of a letter into the subscriber's home. The application of this innovation could mark the end of the present method of human mail sorting, mail carrier and mail delivery which has not changed in 30 years.

Cablecasting Meet Set For November 6-8

NCTA's next Cablecasting Seminar will be held on November 6-8, at Pennsylvania State University, University Park, Pennsylvania. Because of the success of last April's seminar in Salt Lake City, Utah, NCTA plans to have two such events a year. One in the West, the other in the East.

CATV Allocation

The National Education Association's Department of AudioVisual Instruction has cited the educational potentials of cable television in a resolution recently sent to the FCC. It recommends that CATV systems allocate a percentage of total available channels to serve community educational needs.
Testing Cable Drops Requires Newer Sets

Has the small screen b-w television receiver become the final judge of cable TV quality? In far too many cases, yes.

Such a test will show that the signal is not too weak, will give some idea of b-w picture quality, but is nearly useless in estimating color quality. Is the color moved to the right of b-w? Is the color smeared or the fine tuning too critical to even obtain color?

Only a color TV receiver will help answer these questions. But even a color set has limitations when used as a cable test instrument. Suppose the colorcast quality on some channels is questionable. Is the picture problem due to a poor video tape recording? Is it a result of something else malfunctioning at the broadcast station? Or could the cable system be the source of the problem?

A quick check is to put a color test slide on an unused channel and use an 18-inch color set with automatic fine tuning (AFT) at the home installation. If the AFT tunes in all channels as well as (or better than) manual fine tuning, it’s a cinch the CATV system is perfect in every stage. However, if the AFT works normally on some channels but not on others, there could be a defect in the cable system. Of course, the color set must be checked on other antennas before it is used in the field. Incorrect antenna and alignment in the tuner will cause poor AFT action. The use of a color channel does offer some hope for color reference, but should not be the sole test for color on cable drops.

Solve Another CATV Problem
Noise In Cable Systems
See Page 52

COLOR ME EXACT.

MODEL 411 ENCODED COLOR BAR GENERATOR

Also compact, stable, reliable and economical. American Data Corporation Model 411 Encoded Color Bar Generator is an all-silicon, solid-state unit with RGB outputs individually adjustable in amplitude. Specifications and pricing available on request.

AMERICAN DATA CORPORATION
4306 GOVERNORS DRIVE, S. W., HUNTSVILLE, ALABAMA 35805

Circle Number 47 on Reader Reply Card

SCALA RADIO CORPORATION
1970 Republic Ave.,
San Leandro, California 94577
(415) 351-3792

Circle Number 13 on Reader Reply Card
the end of the pregnant pause

The Rapid-Q cartridge tape unit: It has done away with the corpulent chunk of time that lays there between the end of one recorded message and the beginning of the next. Rapid-Q, in fact, gets there better than 100% faster. Automatically. Without relays, mechanical engagements, switching, or fat packages. And it always stays very cool.
The quick and the slim also has a few more firsts going for you: Like doing all of this for the price of most inexpensive tape units . . . while sacrificing nothing in playback quality, versatility, and reliability. And it comes ready for rack mounting or desk-top operation. It can even be remoted.
To find out how Rapid-Q can keep the pregnant pause off your station's signal, write Visual Electronics Corporation, 356 West 40th Street, New York, N.Y. 10018. Or call your local Visual representative today.

October, 1969
EDUCATIONAL
BROADCASTING

Looking Inside Non-commercialBroadcasting
By Mike Smith

NERD Directors Propose Establishment
Of National Public Radio, Tape Library

A recommendation that the Corporation for Public Broadcasting establish National Public Radio, an independent radio program and production center to be located in Washington, D.C., has been made by the board of directors of the National Educational Radio Division of the National Association of Educational Broadcasters.

Richard Estell, NER board chairman, said that NPR will be governed by a 12-member board made up of nine public radio station managers and three members representing the public at large. The nine broadcasters will be elected at the regional level by public radio station managers in each region. The nine broadcasters will elect the public board members. Estell added that the NER board has urged that NPR, which will handle interconnection for public radio stations, be formed as soon as possible and no later than January, 1970.

The NER board also proposed that the National Educational Radio Network become a taped library service and a depository for audio taped program materials to be distributed to instructional, educational and public radio stations. This new service, which will retain its NER-NAEB identity, will maintain a close relationship with NPR, Estell said. NER board members agreed that criteria should be established to identify a public radio station so that a proper funding procedure can be established at CPB. The criteria, he said, will include such information as station power, minimum operational schedule, staff composition and program schedule allowing adequate hours for public radio broadcasts.

In other actions, the NER board endorsed a proposed plan for the long-range financing of CPB; approved further discussions on a satellite experiment that would provide a relay system for public radio stations; re-affirmed its support for all-channel radio receiver legislation, and urged the FCC to complete action on Docket #14185 relating to a table of allocations for non-commercial radio stations.

FCC Acts On ITFS

The Board of Education of Long Beach, California, licensee of ITFS station KZH-31 at Long Beach has been authorized to accompany the visual transmissions of slides, films and other visual images with aural transmissions of music during scheduled breaks in its in-school programming schedule. The grant is for one year, and the operation is not to exceed ten hours per channel in any one week.

The Commission waived Section 74.931(a) of the Rules governing ITFS, which it considered to be the proper rule requiring waiver in this instance to permit the authorization.

South Carolina
ETV Center
Article On Page 39
In This Issue

Free ETV Via CATV
For New York System

Inter-County TV, a CATV subsidiary of Sterling Communications Inc., will provide unlimited use of one CATV channel for use by the schools and libraries of Islip and Babylon, New York. Included in the agreement are free equipment and facilities for playback of prerecorded ITV materials; free installation and maintenance of one receiving installation in each school and library in the county; free conversion of signals from an ITFS system to VHF for cable distribution and additional channels in future years. This service will be extended to more than 340 schools in Suffolk County, and will mean savings of several thousand dollars to the schools.

Educational FM

An educational FM radio plan which contains a request for channel approval for 53 non-commercial FM radio stations has been filed with the FCC by the Pennsylvanii Department of Public Instruction. This is the first detailed state-wide engineering plan presented to the Commission, according to Ocko Associates, consulting engineers, Bryn Mawr, Pa.

Cow Scratching
Rub's Out ETV

A cow scratched her back the other day and educational television was without service from the mountains to the coast in North Carolina Channels WUNC in Chapel Hill WUND in Columbia, WUNE in Linville, WUNF in Asheville and WUNG in Concord had only intermittent service between 11 a.m. and 1 p.m. that day.

Power for all stations reaches its origination site on Terrell Mountain from Chapel Hill some eight miles away. A secondary power line was brought in contact with ETV main line when the cow scratched her back on a guy wire in the pasture. The power company searched for more than two hours before pinpointing the cause of transmission interference.

The power line was rerouted. The cows weren't disturbed.
NAEB Accepting Technical Papers For Convention

Technical papers to be presented at the 1969 NAEB convention, November 9-15, should be submitted to William C. Lewis, Delaware ETV Network, P.O. Box 898, Dover, Delaware, 19901. If it is not practical to submit a completed paper, simply submit the topic, the expected length, and a list of the needed audio-visual equipment.

Many of you have solved problems around the shop which are common to a number of shops around the country. Such experiences should be shared through a technical paper. Experiences with a new kind of gear or a new concept in use of common gears make interesting and informative papers.

Papers should run about 30 minutes in length, and can be illustrated with 35mm slides, motion picture film or video tape. Since the convention is so near at hand, haste is in order so that preparations can be made, and the proper scheduling can be done.

Central Info Source

The National Association of Educational Broadcasters has formed Management and Membership Information Systems. When it becomes operational, the information system will provide current data projections, statistics, technical advice and other information about all aspects of educational broadcasting to government, industry, professional and instructional groups.

Stereo Telecast

WLVT-TV, Allentown-Bethlehem, Pa., and a local stereo FM station joined forces to present a three audio channel stereo telecast. A performance of the Creation by the Mahlenberg and Cedarcrest Colleges, local high school students and a 45 piece orchestra was recorded by the two stations, with the FM station taping right and left channels and WLVT taping the center channel and the video. The program was then played back simultaneously on each station for a 3 channel effect.
Installation considerations for color film processors
Part 1

By D. Khalil Jones

There are many small, color film processors on the market today that are well suited for small volume installations. A growing number of TV stations are taking advantage of this situation by installing their own processors. But the processor is only part of the required equipment. The support equipment required for such an installation and some of the problems involved in the actual installation will be covered in this article.

KID-TV recently installed a color film processor for 16mm and Super 8 Ektachrome film. After the processor arrived, we found the installation was going to be a larger job than anticipated. This was due to the space considerations, hot water availability and the heating and ventilation needed to make the processor operational.

Processor Selection

The first consideration is the size and type of film to be processed. Like most stations, we use 16mm film. The processor we chose can handle 16mm or Super 8 by changing leader and film magazines. Selection of a film type is not simple. The two common brands of film used in small processors are Kodak Ektachrome and Anscochrome. The process is different for each, and once you set up for one type you cannot change to the other easily. There are also factors of economics and quality which enter into the choice of film type. We chose Kodak Ektachrome.

Processing Speed

The time involved in processing is approximately the same regardless of the foot/min. rating of the processor. To put one foot of dry exposed film into the processor, process it, and receive the same one foot of dry processed film, will require approximately the same time regardless of the foot-per-minute rating of the processor.

The difference is noticed once the film starts coming out of the processor. A 15 foot/min. processor will deliver processed film at a rate of 15 fpm where a 45 foot-per-minute machine will deliver at 45 fpm. The faster machine has larger tanks which will hold more film for a shorter time thus maintaining the same film immersion time in each chemical regardless of the foot/min. rating.

Because of the larger tank size in the faster machine, it will require more chemicals, hot water and power to run and therefore, the operating costs go up. There is one adage in film processing—the smaller and slower the processor, the better, as long as it will deliver the quantity of film you need, when you need it. Of course, you should keep an eye to future demand in making this decision.

The materials used in construction of the processor are also important. Nearly all processors are constructed of stainless steel. The bleach tank should be of a suitable alloy or red brass due to the reaction between the bleach and stainless steel and the plumbing should be of PVC pipe or other non-corrosive materials. Chemical tanks should have accurate temperature control, preferably electric heaters with individual thermostats. Nearly all color processors on the market are of this design, but the buyer should keep these things in mind when shopping. The more covers and cabinet parts that are stainless steel, the easier the processor will be to keep clean and less maintenance will lower operating costs.

Site Selection

After you have chosen a processor, determine the dimensions of the cabinet with all covers open and the height with the film carriage rods fully raised. If you are unable to find these dimensions, take the cabinet size and add four feet to the length, four feet to the width and double the height. This will allow sufficient room around the machine to open any covers and work comfortably and provide enough head room to remove the film carriage rods. These dimensions should be used as the minimum space required.

Our problems began when we found the ceiling-to-floor space in the darkroom too small to accommodate removal of the lower film rollers due to the depth of the processor tanks. Then, because our hot water supply was inadequate for sustained processing, installation of another electric water heater was necessary. This required running a heavier electric service to the darkroom.

The processor's chemical holding tanks required more space than we had anticipated, so a room had to be built for them. Then the room had to be vented and heated due to the toxic nature and high freezing point of some of the chemicals. The list of small problems goes on, but all of them could have been prevented by our being aware of all the requirements of the color processor we had chosen and by using more advanced planning.

The processing room must have drainage facilities and a water supply capable of providing water at the temperature and flow rate required for the processor you choose. Requirements will vary with the foot/min. processing rate. In our case we needed 100°F water at one gallon per minute. To supply this for long processing runs, we installed two 50 gallon electric water
heaters in series. In this way we have 100 gallons of hot water. As it is used, the first water heater pre-warms the water feeding the second heater, which increases the temperature so that we can always maintain 100°F water through our mixing valves.

The processor should be installed where the chemical replenishment tanks can be located above it. In our installation we put the processor in the basement and the replenishment tanks on the main floor directly overhead, thus providing the necessary gravity flow.

Facilities are also required for mixing chemicals. Mixing can be done in the chemical storage room, if 100°F water and suitable drainage facilities are available, or the chemicals may be mixed in the processor room. This may present a problem because a means of getting the mixed chemicals back up to the storage room is then necessary.

The mixer is generally of the recirculating type with a pump used to pump the fluid through a jet which causes turbulence in the tank thus mixing the solution. Once the chemical is mixed an output valve on the pump selects either the mixing tank jet or a discharge line for emptying the tank. This pump normally has sufficient pressure to pump to an overhead storage room if the chemicals are mixed in the processor room.

Several methods can be used to get the proper chemical into the proper holding tank. One would be to employ valves and couplers in the replenishing lines and pump the new chemical back up the same lines. This method has several drawbacks. First, the non-corrosive valves and quick couplings needed on each line are expensive and secondly the chemicals may be spilled as the lines are disconnected after each refilling. Another method would be to run separate lines up to each tank for filling. This method has the same disadvantages as the first plus the expense of an extra line for each tank.

Due to the expense and mess involved in each of the methods, we decided to run one line from the mixer to the storage room and connect a hose to the line so it could reach each storage tank for filling. We also provided drainage facilities on this line for cleaning the line between the different chemical mixes. Then by adding remote control of the mixer power from the storage room, we gained the advantage of mixing from the processor room and filling from the storage room. This has worked very well for us and was inexpensive to install.

Ventilation and Temperature

Due to the toxic nature of some of the chemicals, it is necessary to provide forced ventilation of the mixing and storage areas during the mixing and refilling of the storage tanks. Normally the storage tanks are sealed so ventilating would not be required except for refilling op-

Fig. 1 KID-TV color processor installation with operator preparing to mix chemicals. Note cutout in ceiling to accommodate film transport rods. Replenishing lines and exhaust duct also run through the cutout.
In addition to ventilation in the chemical mixing and storage area, the processor will require ventilation whenever it is operating. This system should be separate from the mixing and storage system to avoid the chance of contaminating the chemicals in the processor with residue from the different chemicals handled in the mixing ventilation system. The same considerations should apply to the processor-vent system as in the mixing system. Although both systems would normally follow the same ducting route, the processor-vent system would normally be much smaller than the mixing system, as all the processor would require is approximately 50 to 100 cubic foot-per-minute air flow.

The temperature of the processor and chemical storage rooms should be kept at least 75°F because in the Kodak ME4 process, the pre-hardener crystallizes at 68°F and becomes unusable. Because of the high temperature, humidity in these rooms becomes a problem. This is especially true in the processor room due to the agitation of the chemicals. Therefore, some means of controlling humidity is needed, especially if the processor room is very small.

A humidity problem can be avoided in several ways. The simplest way, if you mix chemicals in the processor room, is to run your mixer ventilating system while processing, providing you can draw dry air into the processing room from an outside source. A better way would be to install a dehumidifier.

Power Source

An adequate AC power source should be available to operate water heaters and the processor. The processor will require a large amount of power to operate tank heaters and the film dryer. Our processing equipment requires 110 amperes for efficient operation: the processor pulls 35 amperes and the water heaters require 40 amperes; electric room heaters to maintain the ambient temperature pull 15 amperes and 20 amperes are used for ventilating blowers, chemical mixing and lights.

Another consideration in locating the processor is noise. Due to the air compressors employed for agitation of some chemicals, there is a high noise level around the processor which could be a problem if it is installed next to a recording studio or any other place where a live mike is used.

Part II of this series will deal with the actual installation of the color processor at KID-TV for processing Kodak Ektachrome film using Kodak's ME4 process.
When Stanton engineers get together, they draw the line.

The frequency response curve of the new Stanton 681 Calibration Standard is virtually a straight line from 10-20,000 Hz.

That's a guarantee.

In addition, channel separation must be 35 dB or greater at 1,000 Hz. Output must be 0.8 mv/cm/sec minimum.

If a 681 doesn't match these specifications when first tested, it's meticulously adjusted until it does.

Each 681 includes hand-entered specifications that verify that your 681 matches the original laboratory standard in every respect.

Nothing less would meet the needs of the professional studio engineers who use Staxton cartridges as their reference to approve test pressings. They must hear exactly what has been cut into the grooves. No more. No less.

But you don't have to be a professional to hear the difference a Stanton 681 Calibration Standard will make, especially with the “Longhair” brush which provides the clean grooves so essential for clear reproduction. The improvement in performance is immediately audible, even to the unpracticed ear.

The 681 is completely new, from its slim-line configuration to the incredibly low-mass moving system. The 681A with conical stylus is $55.00, the 681EE with elliptical stylus, $60.00.

For free literature, write to Stanton Magnetics, Inc., Plainview, L. I., N. Y.
THE PHILIPS PC-70 ... the prime time king of color cameras ... serves on more live and taped studio color shows, by far, than any other camera.

And it's a fantastic switch-hitter. If the PC-70 is a winner in studio work, in the field it's no contest. For major outdoor news and sports events, the PC-70 consistently takes the most valuable player award.

When a better camera is built, Philips will build it.* In the meantime, the PC-70 is the ticket.

*The Philips PC-100, announced at NAB '69, will be available early in 1970.
THE PHILIPS PCP-90 digitally controlled "Minicam" takes the field alongside the PC-70 as the most mobile and versatile of portables. Operating wireless or on small, cost-reducing triax, the 3-Plumbicon Minicam brings total flexibility to broadcast-quality telecasting.

The PCP-90 is designed basically as a field camera. Controls may be beamed from as far away as 30 miles. Signal processing is done in the backpack. The Minicam produces a real-time color-composite signal for direct broadcast. Or it can go into the field with a portable recorder to tape interviews or other action—totally unencumbered.

And here again, you have a star switch-hitter. Three new one-inch Philips Plumbicon tubes perform to broadcast standards, bringing the Minicam right into the studio.

Training camps for Minicam prototypes included crowded conventions, major sports, the inauguration and other events. Now it's ready to sign with you.
A Survey of application ideas for IC's
Part 2 of a 3-part series

By Walter Jung*

Going further into television applications of IC differential amplifiers, this article will deal with oscillators, waveform generators and waveform shapers. Several different varieties of oscillator circuits will be illustrated and their applications discussed. Considerations involved in driving ramp and triangle waveform generators will be described and examples of TV camera and monitor usage will be given for circuits.

Oscillators

The function of an oscillator is quite basic to both television cameras and monitors (or receivers). Stable, repetitive frequencies must be generated at both horizontal and vertical rates in the monitor. In the camera, the situation can take many forms depending upon the camera’s complexity. Usually the sweeps are triggered by external interlaced horizontal and vertical rate drive signals. But in many industrial grade cameras the signals are internally generated and may or may not be interlaced.

The first oscillator (Figure 1) is an LC type, connected in Colpitts fashion. Due to the inherently good stability of the Colpitts configuration, which in this case is augmented by a symmetrically arranged amplifier circuit, this oscillator can be highly suitable as a free-running time base at either H or 2H rate.

In the circuit, the positive feedback necessary for oscillation is taken from Q2 and fed back to Q1 via the capacitive tap of C1-C2. Although the LC tank generates a sine wave due to its natural flywheel action, both a sine and a square wave are available from this circuit due to the limiting action of the Q1-Q2 differential pair. Since the total current available to Q1-Q2 is held constant by Q3—and Q2’s base held at ground potential, the sine wave at Q1’s base will switch the current alternately back and forth between Q1-Q2 and thus the two collector loads, RL1 and RL2. The inherently high voltage sensitivity of the differential pair (6) results in this current being essentially a square pulse, and consequently, it is developed into a square wave at pin 10. The shunt effect of C1-C2 at pin 8 produces a pseudo sine wave at this point and of course, a clean sine wave is available at pin 1. It should be noted that the loading effect on pin 10 influences oscillator stability very little, because the collector of Q1 is not part of the feedback path.

The features of good stability and square wave output are natural requirements for a time base oscillator. The sharp wavefront of the square wave allows easy triggering of subsequent stages without additional buffering. This can either be a binary countdown chain (in the case of interlaced systems) or a horizontal sweep stage. A block diagram (Figure 2) shows that a voltage controlled oscillator (VCO) is required as a master clock if the system is to be referenced to the 60 hertz line (a common requirement of industrial cameras).

A modification of the LC oscillator of Figure 1 enables frequency control with external voltage. This second oscillator, shown in Figure 3a, is the oscillator of Figure 1 (IC1) shunted by a reactance—control circuit (IC2).

The reactance control portion of this circuit uses an adjustable react-
ance effect to vary the effective capacitance shunted across the LC tank via Cc. This is accomplished by combination of a gain controlled amplifier and a feedback capacitor as elements of control. In a circuit of this type, the effective shunt capacity is a function of both the reactance feedback capacitor, Cf and the amplifier transconductance.

The amplifier configuration of IC2 consists of Q3, Q1 and RL1, Q3 being the inverting amplifier, Q1 a grounded base stage, and RL1 the load resistance. Since the total current of Q3 can be shunted to either Q1 or Q2, Q1's share of the current in this circuit can be varied by a control voltage (3) (4) (5) (6) (7) (10) (14). Thus the gain of the amplifier and the effective reactance can be made a function of control voltage, which in turn controls the oscillation frequency of IC1.

When considered as a system component, this oscillator is advantageous because the control voltage necessary to fully control frequency is very low; it is in fact the transition width of the differential pair of IC2. The voltage necessary to transfer current from Q1 to Q2, at room temperature is approximately 114 mv. It is naturally centered at zero volts DC (or small offset voltage) by the matching of Q1 and Q2. The frequency limits (min and max)
are also readily predictable since the reactance control can only slew between 2 discrete limits of capacity corresponding to minimum and maximum gain. Increase of control voltage beyond the transition width cannot further effect the frequency, as the emitter current of Q1 can only have 2 limits; full on or full off.

This oscillator then possesses a peculiar combination of features; very high sensitivity in the region of control due to its millivolt sensitivity, but with 2 discrete frequency limits beyond which no amount of control voltage will allow it to pass. In a phase locked application such as a line-locked clock oscillator or receiver horizontal oscillator this is very important, as it means a high degree of control—but an inability to range too far from the center frequency. Because the mean center frequency is determined by an LC tank, there is good, basic stability. As in the simple LC oscillator of Figure 1, both sine and square wave outputs are available from IC1. The control characteristic of this oscillator can be easily plotted.

Monitors or Receivers
Monitor or receiver sweep oscillators require two differing rates (60 and 15,750 Hz) with two different locking capabilities (vertical rate triggered, horizontal phase locked). Although these two requirements are somewhat diversified, the differential amplifier can perform both functions adequately.

Although the previously described LC voltage controlled oscillator was a camera master oscillator, its use as a receiver line scan oscillator is quite apt (Figure 4). The use of LC stabilized oscillators for this function is prevalent in almost all commercial receivers manufactured today, although predominantly the vacuum tube variety. The microcircuit version offers the stability and frequency control characteristics necessary for a TV horizontal sweep oscillator in a miniaturized package with its minimized power dissipation. The square wave output of this oscillator, with suitable adjustment of the duty cycle, can drive a horizontal output switching transistor.

The requirements of this horizontal oscillator (Figure 4) can also be fulfilled by a RC coupled version with a reduction in component count. In fact, many different varieties of RC oscillators are possible. The first, a voltage controlled emitter coupled astable oscillator (Figure 5) is unique because its frequency can be controlled in two ways, it provides an isolated rectangular wave output and it is exceedingly fast in operation.

Examining the circuit, Q1 and Q2 are the emitter-coupled pair with Q3 providing a constant DC emitter current (in conventional form, Q3 would be a simple resistor). The timing components C1 and R1 serve as the predominant frequency determining components. Direct manual control of frequency is achieved by making the charging time of C1 variable with a potentiometer from pin 7 to ground (Rt).

To control the operating frequency with an external voltage, use is made of the emitter current source transistor, Q3. The voltage drop across RL1 with Q1 on is directly proportional to the emitter current of Q3. If the current supplied by Q3 is made variable, the charging time of C1 will be variable.
NEW FAIRCHILD REVERBERTRON

Fairchild introduces the Reverbertron 659. There are many reasons why this new artificial reverberator may be considered outstanding: 1. The sound has the same natural, real-life quality as the world's finest acoustic chambers. The sound capability, with full range equalization, supersedes all other artificial reverberators within its price range. 2. A switch selects local or remote operation for 3 degrees of reverberation control; (dry, premix 1, premix 2). The 659 also has an exclusive* selector for short, medium or long decay times. 3. Frequency response range from 20 Hz to 20 KHz on the dry channel (-1 db) compares with 50 Hz to 6 KHz on the reverberation channel with a range of adjustment to ±15 db. S/N is 10 db improved over previous models.

4. Operation of the Reverbertron 659 is effective for input levels as low as -30 dbm; output levels up to +18 dbm. Transformer isolated input and output impedance is 600 ohms or 150 ohms balanced or unbalanced. 5. All electronics are on easy plug-in P.C. boards; all signals are metered; controls have continuous mix facilities. 6. The Reverbertron 659 is compact; the total space requirements are only 22 3/4" high x 19" wide x 10" deep. 7. The price is low. It is a good value because Fairchild is both a custom designer and a component manufacturer.

A number of other advanced features make the new Fairchild Reverbertron 659 highly suitable for broadcast or recording purposes. Contact your Fairchild Distributor or write Fairchild for more data. FAIRCHILD RECORDING EQUIPMENT CORPORATION, Dept. BE-10, 10-40 45th Avenue, Long Island City, N.Y. 11101.

*U.S. Patent #3436674
also, since C_t must charge towards Q_2's firing potential from the drop developed across RL_2. Therefore, control of the drop across RL_1 can also control frequency. The current provided by Q_3 can be varied by the frequency control input, R_2 which modulates the static bias of the D_1-D_3 bias chain. Other methods of frequency control are possible and in general, any method which controls the drop across RL_1 with Q_1 “on” will alter the charging time of C_t and the frequency.

Since the collector of Q_2 is not part of the positive feedback loop, it can be considered an isolated output and will deliver a voltage proportional to the value of RL_2 (if IQ_3 is fixed).

By deleting the frequency modulation input to this circuit and providing a suitable synchronizing point, this same oscillator can be used as a vertical rate oscillator to drive a sawtooth generator (Figure 6a). In this configuration, operation is very similar to the circuit in Figure 5. The timing control serves as a vertical hold control. Negative sync pulses are applied at the collector of Q_1, which force Q_2 off and Q_1 on, synching the oscillator with the incoming pulses.

Another variation of this oscillator is Figure 6b, a symmetrical (50% duty cycle) astable. With a balanced output waveform, triggering of the oscillator at the alternate collectors will force the output wave to either be in phase or 180° out. This causes the display of the vertical interval information in the center of the screen during the 180° out-of-phase position. This is a rather simple solution to the vertical portion of a pulse-cross display for professional monitoring applications.

Although this differential configuration is equivalent to an LMX71 type in that it uses a matched monolithic pair (18) (22) and a constant current source, the use of the CA3018 array in this biasing condition is for another reason. Normal component tolerances and timing ranges for a vertical rate oscillator require a rather wide range of emitter current from the current source element when using this current to control frequency. Although this is possible in an LMX71, the CA3018 connected as shown allows a temperature compensated current source. It also allows a slightly higher package dissipation.

Waveform Generators
Having produced a synchronized waveform, it remains now to trigger a sweep generator to generate a voltage ramp (sawtooth) to use for deflection. The first circuit is Figure 7a, a positive ramp generator. This circuit operates by alternately charging and discharging the timing capacitor C_t by transferring the constant current of Q_3 alternately between the differential pair Q_1-Q_2. During the charging period of C_t (positive output slope), Q_2 is held off and Q_1 on, via the .6V bias provided by D_1-R_1. Retrace or discharge of C_t occurs when a negative step is applied to Q_1 through C_1. When Q_1 is pulsed off, the emitter current is transferred over to Q_2, which discharges C_t.

Since the discharge current of C_t is constant due to the constant-current action of Q_2, the slope of the discharge will be very linear. Positive slope linearity (Q_2 off) is dependent on R_t-C_t time constant, charging potential and output loading. Linearity can be optimized by charging C_t towards a very high voltage (100-200 volts) or alternatively, charging through a transistor constant current generator operating from $+V$ (see note 2 of figure). In
any of these options, it is necessary to buffer the high impedance charging node across Ct with an emitter follower. This can be done by a high gain Darlington pair or a voltage follower configuration as mentioned in Part I. An example of the Darlington pair using a monolithic array is shown in the figure.

The circuit of Figure 7b appears to be similar to 7a, but a few subtle changes have transformed it into a negative slope ramp generator. This circuit also works by alternately charging and discharging Ct, but the sequence of events is different in this case. When a positive trigger pulse arrives at Q1, this side of the differential pair switches on, which in turn drives Q4 on, charging Ct to +V. After the trigger pulse ends the negative bias of D1—R1 hold Q1 off (during the trace period) while Q2 discharges Ct linearly back towards ground potential, forming the negative ramp. As in the previous circuit, an output buffer is used to isolate loading effects from the timing network.

In the triangle generator, Figure 8, the emitter current of Q1-Q2 again is alternately switched back and forth, but on a 50-50 basis resulting in equal positive and negative slopes—a linear triangle waveform. To accomplish this, a square wave is applied to Q1 which switches it between equal periods of conduction and non-conduction. When Q1 is on, it in turn gates on Q4, a constant current generator which charges Ct positive. When Q1 switches off, Q2 comes on and discharges Ct forming the negative slope. Once again the output is buffered as in the two previous cases of waveform generators.

Waveform Shaper

The final circuit is a waveform shaper (or clipper). This is a circuit useful for processing a linear sawtooth into a pre-distorted or "S" corrected waveform to compensate for deflection yoke distortion.

Referring to schematic diagram, Figure 9a, the circuit utilizes two monolithic transistor arrays connected in a dual polarity, fully variable clipping arrangement. In both sections of the circuit, full advantage is taken of the inherent matching characteristics of monolithic transistors—as a result the clipping levels are very stable and temperature independent.

October, 1969
To analyze operation of the circuit refer to the simplified diagram of Figure 9b. In essence, both sections of the clipper are biased diodes such as D1 and D2 of Figure 9b. If the potentials applied to the diodes via R1 and R2 are such that D1 and D2 are back biased, they are effectively out of the circuit and do not effect the signal applied via Rin. When signal amplitude becomes great enough to forward bias D1 and D2 on signal peaks, these diodes clip further increases in amplitude and the signal becomes "limited".

Several factors influence the quality of a limiter such as this. The temperature dependence of a normal silicon diode (−2mv/°C) can become a problem if the signal amplitude is small and the total drift is a relatively high percentage. This indicates the desirability of some form of temperature compensation. Also, the impedance of the potentiometer can be troublesome if a high degree of attenuation is desired, as the abruptness of the clipping is a direct function of the "stiffness" of this voltage source. This indicates a low impedance, emitter follower type voltage source to bias the clipping diodes.

With these considerations in mind, Figure 9a will show how they have been accomplished. In the positive clipper, diode—connected Q2 is the clipping diode and its bias is furnished by Q4, an emitter follower. The respective Vbe’s of these two transistors cancel, and the circuit clips at the same potential as Q4’s base due to the monolithic matching. The remaining two transistors of the array, Q3 and Q1, act as additional emitter follower (Q3-Q4 form a Darlington pair) and an offset canceling diode. Since all of the Vbe potentials within the circuit cancel, the voltage introduced at R1 will be the voltage at which clipping takes place. Introduction of the series resistance, Rp, allows the degree of clipping to be varied by softening the clipping action.

The negative clipper is very similar in concept, but arranged slightly different. Q4 is the clipper diode and is biased by Q3 an emitter follower. The two Vbe’s of Q3-Q4 are cancelled by Q1-Q2, connected as diodes. Again, the voltage introduced by the level pot R2 is the same as the clipping potential, due to the Vbe cancellation. A similar series resistance, Rn, allows adjustment of negative clipping slope.

Operationally, this circuit allows independent adjustment of four parameters: positive and negative clip level and positive and negative clip slope. With this degree of manipulation, a wide variety of functions can be synthesized even with this simple single clipping level circuit. These basic techniques can be expanded into a wide variety of specialized video processing functions, with similar considerations towards the optimization of control.
Why do so many corporations contribute to America’s colleges?

1. () they want to help the colleges

You were right if you checked No. 2.
American corporations want to make sure there will be enough college-trained leaders to fill the management jobs open today and in the future.

This is good insurance for business.
And the need, we must remember, isn’t getting smaller.

World trade is developing fast; business is getting more competitive, more complex; science is introducing new products and processes rapidly.

College-trained men and women are needed, in increasing numbers, to plan and direct the activities of business.

2. () they need the leaders colleges train

But the colleges can’t do the training job alone. They need classrooms, laboratories and facilities, yes. But even more, they need backing to maintain a staff of top-notch teachers.

This is the human equation that makes the difference in reaching the margin of excellence needed in the U.S.

This is everybody’s job, but especially industry’s.

Of course American business wants to help the colleges, so you were also right if you checked No. 1. College, after all, is business’ best friend.

GIVE TO THE COLLEGE OF YOUR CHOICE

SPECIAL TO MANAGEMENT—A new booklet of particular interest if your company has not yet established an aid-to-education program. Write for: “The Rationale of Corporate Giving”, Box 36, Times Square Station
New York, N.Y. 10036

Published as a public service in cooperation with The Advertising Council and the Council for Financial Aid to Education

October, 1969
Faced with carrying a couple of hundred RF kilowatts? Need low, low attenuation? Move up to 8" HELIAX® coaxial cable. Big. Semi-flexible. Continuous lengths to 850 feet. Eliminates connector bullets and complicated hangers. Thermal expansion and contraction don't faze it. Power capabilities: 300 kw average at 30 MHz; 58 kw at 600 MHz. Use for HF; Tropo; OTH radar; VHF and UHF-TV. Wouldn't you like to know more?

Communicate with Andrew.
Automating complex programming for educational television

By Lloyd W. Brown

From its beginning, the South Carolina Educational Television Network was primarily designed to provide instructional television for elementary and high schools in South Carolina. That was twelve years ago.

The system used only closed-circuit distribution until 1963, when federal matching funds became available for the construction of broadcast stations. ETV has evolved into a network combination of open- and closed-circuit transmission paths which reach almost every school in the state.

Over this network, the ETV Center in Columbia, South Carolina, transmits instructional programs to schools; programs of continuing professional education for doctors, lawyers, nurses and others; law enforcement training programs; supervisory training for industries; adult education information and programs of general and cultural interest. This diverse programming has placed unusual demands on the ETV Center.

After years of study and analysis of present and future needs, the ETV engineering staff developed the concept of a completely automatic, computer-operated switching system, which would eliminate human errors in switching and timing to the greatest extent possible.

Program Storage

A high percentage of the programs sent from the ETV Center are on video tape. The Center maintains a large tape vault where more than 5,000 reels are stored. Some of these reels contain two or more complete programs. There is also a library of instructional and other films, plus numerous tapes and films which are regularly shipped to and from other stations. In addition, the Center maintains two complete production studios as well as a mobile unit.

During the broadcast day, the programs may originate live or from any of the stored film or tape sources. Many programs are repeated at various times during the day, or the same program may be shown twice or more during a single week.

The educational program schedule for the entire school year is worked out with school officials from the entire state during the preceding year and incorporated into a master list for all instructional programming. Around this basic schedule are inserted the other types of programs to be shown. By the end of the summer, the master schedule for the next nine months is set. Another problem arises in the scheduling of the nighttime programs, which are of a more general nature, often timely, and impossible to schedule completely months in advance.

Computer Complement

The first step was to enter all information on tape and film pro-
grams contained in the ETV libraries into the memory of a state-owned computer. All information about each program was entered in this manner: title; whether it was tape or film; tape speed; high or low band; color or monochrome; length and any pertinent special information. The master schedule for the upcoming school year was also entered into the computer memory, as well as a tentative schedule of all programs other than instructional. This was accomplished during the summer.

During the school year, additional information about new programs, program changes, and deletions is entered into the computer memory every two weeks.

From the basic memory and instructions written into a special program, the computer prints out biweekly program schedules for master control and all five open-circuit stations. These schedules are printed on forms which are also used as program logs. There is also a separate schedule of tape/film machine assignments to be used in loading the machines.

The master control schedule not only shows the program to be transmitted, but also which tape/film machine is to be used, the reel number of the program, the channel it is to be fed to and the times involved. The computer also schedules the sign-on and sign-off for each open circuit station, as well as test patterns (where there are no programs to be shown) and station identification in accordance with FCC Rules.

At the same time the computer is printing out the schedule forms, it is also punching out a deck of IBM cards, one deck for each day's operation. The cards contain the same information which is printed on the schedule.

The open-circuit schedules are then mailed to the stations involved, and the master control schedule and the decks of cards are taken to the master control/tape area.

The Master Switcher

The master control switcher has two basic parts: a control/monitoring console and five racks of associated equipment. In the racks are the card read-out, all audio/video switching devices, patch panels, distribution amplifiers, power supplies, test signal generator, monitor amplifiers and the microwave transmitter for the local broadcast station.

The Master Console

The console section contains a video and information monitor for each of the twelve outgoing channels, plus two switchable master monitors, audio VU meters and controls for the manual operation of the system when necessary.

The heart of the system is the master clock, an extremely accurate oscillator, regularly calibrated against WWV. This oscillator and
<table>
<thead>
<tr>
<th>SCHEDULED TIME</th>
<th>PROGRAM TITLE</th>
<th>UNN Hod.</th>
<th>UNO.</th>
<th>OUT Hod.</th>
<th>PROGRAM LENGTH</th>
<th>START</th>
<th>END</th>
<th>TYPE</th>
<th>HOM</th>
<th>LOP</th>
<th>TYPICAL DIFFICULTIES</th>
<th>COMMENTS OR DISCREPANCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00:00 A</td>
<td>I ELEMENTARY ALGEBRA</td>
<td>OSS</td>
<td>3549</td>
<td>D</td>
<td>08:50:00</td>
<td>28:50</td>
<td></td>
<td>L</td>
<td>0224</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:15:00 J</td>
<td>03 ETV NETWORK 10</td>
<td>08:36:00 D</td>
<td>08:50:00</td>
<td>W</td>
<td>10:47:00</td>
<td>9:18:00</td>
<td>0223</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30:00 J</td>
<td>03 WALK-TV STATION 10</td>
<td>08:36:00 D</td>
<td>08:50:00</td>
<td>W</td>
<td>10:47:00</td>
<td>9:18:00</td>
<td>0223</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30:00 A</td>
<td>I GENERAL MATH 1</td>
<td>08:49:00 D</td>
<td>08:50:00</td>
<td>W</td>
<td>10:48:00</td>
<td>9:19:00</td>
<td>0223</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 associated counters provide time information to the switcher, as well as to digital readouts which may be installed at any local or remote location.

In its basic form, the system takes video and audio from any of its 36 sources and switches it any of 12 outgoing channels. The innovations come in the associated circuitry.

When loaded into the card readout, the punched cards tell the switcher which program is on which machine. The switcher starts the tape ten seconds and the film three seconds before air time; then switches audio and video to the proper channel at the correct time.

The switcher also has a built-in memory circuit. There are two sets of digital readouts for each outgoing channel. The memory bank shows the source which is “on air” at that particular moment on one readout, the source which is scheduled to be used next, and the time the next source is to be switched.

There is an audio sensing circuit which flashes to notify the operator when there are sustained periods of silence from the audio source. In the event that there is no card for a program to follow the one that is on air, the readout will flash a “memory vacant” sign to warn the operator. Should a tape or film machine fail to start when the card says it should, an audible alarm sounds in the control room.

One picture monitor and VU meter are provided for each outgoing channel. Two master monitors, consisting of an oscilloscope and picture monitor, may be switched to any channel. In addition, one monitor may be set to automatically scan the outgoing channels in rotation, stopping for a short time on each channel.

The control console also contains video level and pedestal controls for each video source, as well as audio level controls for each outgoing channel. An audio monitor speaker may be switched to any channel at the operator’s discretion. In an emergency, or for special programming, the automatic features of the switcher may be by-passed and the entire operation done manually.

In theory, once the cards are loaded into the readout, all the operator has to do is watch video and audio levels and make sure the correct tapes and films are loaded on the proper machines before air time. The normal ETV complement includes one master control operator and two tape/film operators on duty during the main part of the day.

The computer-operated automatic switcher has eliminated many manual errors in the transmission of programs, thus allowing greater attention to the technical quality of the material being sent. When programming becomes as complex as the South Carolina ETV network now demands, this kind of operation becomes a must, not icing on the cake.
We just widened the generation gap.

It's the significant lag between "our own things" and the also rans.

The first time we did it (a couple of years ago) we came up with the first all-digital sync generator with a near perfect time base stability (4 nsec typical) and pulse jitter spec. Nobody else can touch it.

Now we've added a color encoder with all plug-in boards and built-in color bars. It has balanced modulators using linear IC's. Provisions for contours out of green. The works.

And still another first. A television programmer with magnetic disc memory. Whether used for CATV non-duplication or station automation, it gives maximum capacity and flexibility at minimum cost. Like 200 events on 26 output channels with one second resolution. Repeats to 7 days. (So you could say 1400 event capability.) Greatest reliability. Simplest operation.

Then we have a broadcast electronic character generator. Format is 14 lines of 40 characters each. Raster (not dot) generation assures
(again)

maximum readability even on poorest home receivers.

And EIA video test generators. Multiburst. Stairstep. Sin²—Window. Modulated 20T pulse. Color bar. All EIA/NTSC/VIT compatible. Can be used singly or with new electronic sequential switcher to provide single continuously switched output. Has it all.

Now for the sleeper. A Vertical Interval Data Transmission system. Transmits data from news wires or character generator over existing video channels. Provides VIT keying pulse and adds test signals. Works with any video, local or remote. Encodes. Decodes. Erases. 8 line selection. So many applications it boggles the mind.

These are just some of our new ideas. If you take time to check the parameters of the products we’ve mentioned, you’ll find no one else is half as close in concept. Let alone delivery.

So when you want some real help with your ideas, talk to TeleMation.

TELEMATION INC.
The Total System Supplier
2275 South West Temple
Salt Lake City, Utah 84115
(801) 486-7564
3M HAS FORTY-FIVE MAJOR THESE ARE SOME

EBR-100 Electron Beam Recorder Now you can transfer live or tape TV to 16mm film electroacoustically and get prints with 1000-line resolution. This is the first system to produce monochrome film copies comparable to the original live or video tape original. It has no optical components. Direct electron bombardment transfers image to film without faceplating halation or camera-lens light losses. Uses low-cost, fine grain film that can be processed after processing on any 16mm projector. Far superior to kinescope techniques. Opens new horizons for mass distribution of TV training and educational footage. Write for brochure.

Dropout Compensator (DOC) for Color Video This is where hi-band color dropouts get turned off, and clarity and sparkle restored to damaged tape content. The 3M Brand DOC detects the dropouts as they occur, replaces the “lost” signal with stored information from the previous scan line of the same field. Provides precise color match and complete freedom from switching transients. Disturbance to time correction unit is eliminated. Proc amp and servo stability allow tape to play in full synchron mode. Write for booklet.

Dropout Profile Recorder (DPR) for Color Video RIGHT: The logical companion to the DOC (above). The 3M Brand DPR produces a permanent strip chart showing the dropout rate and dropout annoyance factor during normal on-line video tape playback. It performs this evaluation electronically while the 3M DOC is compensating the dropouts. The DPR indicates when a tape is too degraded to commit to valuable programming. Five inches of chart reads one hour. Chart can be torn off and stored with video tape. Write for brochure.
The Mincom Division of 3M is deeply involved in sophisticated hardware like telemetry recorders and digital test systems. The same 3M technology and research brings you these four video products. Each pioneers new levels of performance. If you are interested in one or all, call our Video Products Information Phone at (805) 482-1911, Ext. 216, or write for brochures.

Color Video Encoder Has two unique features not obtainable elsewhere: 1) The color bar generator is completely (not partially) digital. When you get a reading you know it is accurate—needs no adjustments. Simpler to use and maintain than analog encoders. 2) Input clamping of video signals eliminates low frequency hum, noise and other unwanted effects on the matrix. Works with smaller, less expensive cameras as well as large ones. Give it the SMPTE color test and see the proof. The 3M Brand Color Encoder meets all FCC and EIA specs. Has monochrome switching. Meets or beats anything on the market, yet costs less. Write for a brochure.

THERE’S MORE COMING!
Watch our advertisements for announcements of new video products.
Taking the dog out of the doghouse

By Robert A. Jones

- Take antenna tuning houses for granted and something inside will surely go wrong. Take them so much for granted that you fail to put adequate planning and materials into tuning houses and they will become real “dog houses” and something will go wrong inside.

Good, sound structures will pay for themselves because the equipment is better protected from the weather, vandalism, aging, bugs, snakes and other pesty varmints. Also, less time will be required for regular maintenance work. Greater stability and dependability of the antenna system will result. This means less frequent visits from the consulting engineer. One retuning of the antenna pattern due to inadequate protection of the antenna coupling could be more expensive than the cost of a good tuning house.

This article contains two basic designs used to provide good, high quality shelters. One uses concrete blocks, the other wood.

Both designs start with the same foundation, a solid concrete floor. In areas where the soil may be soft or where freezing and thawing can shift the foundation, it is necessary to dig footings under the outside walls for stability. If the transmission lines, sampling lines and other cables are to be installed underground, it is a good idea to place a clay pipe or plastic tube in the foundation forms before pouring the concrete.

Before concrete is poured, the grounding system should also be considered. Several copper ground wire may be run through the foundation forms before the cement is poured in the first stage. These short lengths of wire are laid through the forms. Later, the antenna tower side of these wires is brazed to the tower pier and the opposite side to the long ground radials. The wires must be installed first because the dog house floors are usually poured at the same time as the tower piers and anchors.

Also, there is a second method of installing the grounding system. In this method, either a two or four inch copper strap is buried six inches below the ground peripherally around the foundation. The size of this copper strap depends on the station’s frequency and power. The ground wires are then brought up to the edge of each side and brazed. This second method is almost always used where an expanded copper ground screen is employed as in Figure 2. The edge of the copper mesh is brazed to the copper strap around the tower pier.

If a wooden building is constructed, it is advisable to bury some one-half inch bolts along the edge of the foundation. These are used to bolt the “plate” to the floor. The plate is the 2 x 4 which forms the bottom edge of the walls. These are not required in a concrete block wall. The grounding strap that connects the tuning panel and the tower

Fig. 1 All-weather roof construction is an important consideration.

'A' = 4' OR 6' REINFORCED CONCRETE DEPENDING ON WEIGHT LOAD.
'B' = 7' X 7' REINFORCED CONCRETE SLAB POURED IN PLACE.
* * IT IS SUGGESTED THAT THIS ROOF STRUCTURE BE USED ONLY ON BLOCK WALLS.
pier can be brought up through the clay pipe, under the bottom row of concrete blocks or in under the 2 x 4 plate.

Wooden Walls

In the wooden dog house, the walls, plates and braces are constructed from 2 x 4's. Some stations try to save money by using 2 x 2's, but these will warp and curve and weaken the structure. Each corner is formed by two 2 x 4's nailed in an "L" configuration. Figure 3 is a view looking down on the spacing between the vertical wall braces or studs. Nineteen 2 x 4's, seven feet high are used for the vertical members or studs and eight 2 x 4's, 64 inches long form the bottom and top plates for the walls.

The best material to use for covering the walls is marine plywood because it will not be affected by rain or moisture as will ordinary plywood. This can be purchased in 4' by 8' sheets and then cut to size. Five sheets of plywood would be required to cover the walls of the dog house shown in Figure 2. The corners of the outside walls can be trimmed with 1 x 3 boards. These boards will keep the corners or edges of the plywood from chipping or becoming broken and will also enhance the appearance of the dog house. Similar trim can be used around the door opening.

Doors

The best type of door for this building is either one of solid wood or metal. Well-seasoned wood should be used for the 2 x 4 frame to give the least amount of warping or sticking. Station KWEB installed both metal frames and doors to prevent any sticking. Hollow doors are not recommended because they are prone to warp and can be kicked in.

Wooden Roofs

The roof is made of several 2 x 6's in an open box with ten-inch eves all around the building house as shown in Figure 4. The rafters,
marked "A", are notched into the 2 x 4 wall joists and help to form the top plates for the walls. The roof is then covered with two 4 x 8 foot sheets of marine plywood. The extra plywood can be used to cover the underside of the eves, completely sealing the roof against the weather and animals.

The only difference between the pitched roof and the flat roof is the angle of the pitched roof. The pitch angle need not be great, usually ten or fifteen degrees is sufficient. In areas where the snowfall on the roof may be great, the pitched roof is preferred. Metal edges may be nailed along the top edge of the outside rim of the roof. This helps protect the wooden edge of the eves from rain and moisture.

A first coat of good paint sealer should be applied to the walls, doors and eves to protect them against the weather. This is followed by two finishing coats. High quality paint is recommended for this job because if cheap paint is used, the structure will need repainting too often.

The flat roof is covered with a high grade of tar paper and spread with a thick layer of roofing cement. Some stations prefer to use a gravel mix with this cement. As this gravel mix is worn away, additional coats may be added. The tar paper may be wrapped over the eves instead of using metal flashing.

Concrete Block Walls

If the walls are made of concrete block, the wooden or metal door jam is set and held in place by a temporary brace. Long bolts should be installed through the door frame into the blocks at several levels to hold the frame securely. The blocks should be laid one row at a time, all the way around until there are eleven rows. Each row should be checked to make sure it is level and each corner should be checked with a plumb bob.

If the tuning house is constructed using cement blocks, there are two ways to bring the tower leads into the house. The most common way is to break out the center of one block and bolt a small, square piece of marine plywood on each side of the wall. A typical bowl insulator can then be attached to this wood.

Another method, illustrated in the photographs, requires mounting a panel of glass or plexiglass in the wall in place of one or two of the blocks. This can be done when the blocks are being laid. Holes can then be drilled in the glass to accommodate the various tower leads and cables. Glass blocks are not recommended for this because they are thicker and would require holes to be drilled on both sides. They also tend to fill up with water.

Concrete Roof

There are several types of roofs that can be used with concrete block walls. The flat, wooden roof would be the easiest to install since the walls are all even at the top. If a wooden roof is used, it is advisable to close up the eves and to use a metal flashing around the lip of the roof. Again, the use of tar paper and roofing cement is recommended.

All-cement or pre-stressed roofs can also be used. In some locations, small pre-stressed roofs can be purchased and installed. Other stations use a poured cement roof. This can be made by building wooden forms atop the completed walls then pouring the concrete into the forms. When the cement dries, the form are removed.

The dog house can be either square or slightly rectangular. The ideal house would be five blocks deep and six blocks wide. These di-
dimensions will yield slightly less inside space than the 64 inch square wooden house mentioned previously. The normal height is eleven blocks.

Special Suggestions

It is simple, while constructing either type of tuning house, to add a second door which opens inside the tower fence. This was the method used by Charles King when he constructed the wooden tuning house at WZBN, seen in Figure 2. The cost of this extra door is about the same as that of a good gate.

No equipment should be installed on the floor. The tuning equipment and lighting equipment should be installed on the walls in such a way that the station operators can go inside to work and close the door in bad weather. Flat panels are preferable to wall and shelf units as they do not collect as much dirt or as many dead mice and bugs.

Since the tuning house is expected to last several years, only quality materials should be used for basic construction.

The labor and money put into constructing a sound antenna tuning house will be less in the long run that the expense of replacing or repairing equipment ruined because of inadequate protection. It pays to have equipment in the right kind of dog house. In fact, this approach could take the “dog” out of dog houses.

One of a series of brief discussions by Electro-Voice engineers

PHASE IN... PHASE OUT

WILLIAM RAVENTOS
Field Engineer

Envision a podium at stage center, with chairs for honored guests at either side. Add a good sound system for the audience. Problem: how to get sound to the people on the stage without increasing feedback? Edward Jones, Supervisor of Audio Operations, Brigham Young University, with the assistance of E-V engineers, has a unique solution that increased the “fold back” sound level on stage by about 15 db.

A single super-cardioid microphone is used on the podium (E-V Model RE-16). Two small, flat response speakers are placed back-to-back on a small table about 5 feet directly behind the podium, facing the wings. The speakers are wired out of phase to a single output tap. The phase difference creates a sharp null 90° off axis (about 18° wide) with the result that almost no direct sound reaches the podium. Output of the speaker pair is quite bi-directional, with more than enough level to saturate the guest seating area. Relative location of the microphone and speakers is critical, and must remain fixed for best results.

The creative use of out-of-phase wiring is just now coming into its own, with several new developments that solve specific needs. For instance, an excellent bi-directional microphone can be created by mounting two Model RE15 super-cardioid microphones with the heads back-to-back (the head of one microphone extends just past the head of the other). Both microphones are then connected to a single input, electrically out of phase. The output of the pair is an almost classic bi-directional pattern at all frequencies, and is superior to many single bi-directional microphones in most respects.

Out of phase microphone pairs can also be used to reduce feedback and/or distant noise pickup. Connect a matched pair of microphones, electrically out of phase, to a single input. Locate them so that the desired sound source will be picked up only by one of the microphones (if the source is one foot from one microphone, it must be at least four feet from the other). Sound that is equidistant from both microphones will be substantially suppressed while sound originating near either microphone will be unaffected.

For reprints of other discussions in this series, or technical data on any E-V product, write:

ELECTRO-VOICE, INC., Dept. 1093V
618 Cecil St., Buchanan, Michigan 49107

Electro-Voice
A SUBSIDIARY OF GULTON INDUSTRIES, INC.

Circle Number 21 on Reader Reply Card

October, 1969
THE TAPE-ATHON 5000 SYSTEM

IS DESIGNED AND PRICED TO GET ANY STATION INTO SOPHISTICATED AUDIO AUTOMATION

By incorporating a "building block" engineering concept and using high quality mass produced equipment, Tape-Athon can deliver a sophisticated audio automation system for 1/4 less than comparable units. Starting with standard "Carrousel" cartridge decks (from one to eight per system) we add our own tape transports (up to 9 if you like) and our logger/recorder (optional). The Tape-Athon master timing control and solid-state intersperser permit a wide range of music sequencing.

The ultimate in programming of course is provided by one or more of these switchboards which allow an infinite variety of music/announcement ratios and timing.

Before you invest in any system, contact your Tape-Athon rep or write for our 5000 System brochure giving complete details.

Tape-Athon Corp.
502 S. Isis, Inglewood, Calif. 90301
Tel: (213) 776-6933

Circle Number 18 on Reader Reply Card
METROTECH
PROFESSIONAL
RECORDERS

The new 500-A Series reflects the concept that good design results in functional simplicity. This, combined with heavy duty construction and careful workmanship, has made these new recorders outstanding performers — assures you of dependable, trouble-free operation and long life.

Metrotech Recorders, Reproducers and Loggers — in networks and major stations everywhere. Write for complete information.

Metrotech
670 National Avenue
Mountain View, California 94040
A Division Of Dictaphone
Noise suppression in cable systems

By E. Trompeter

Electrical noise has the accepted definition of being any unwanted and interfering voltage developed within or external to a system, which reduces the performance of that system. Interfering noise has been a problem in the past and was usually reduced by brute force filtering which worked on the principal of stopping the noise after it had entered the system. This method was quite expensive but reasonably effective, since signal information voltages were low in frequency while systems were few and not too large or complex.

In an atmosphere of expanded electrical and electronic equipment usage, present day communication and data systems are continually becoming larger and more numerous, using higher information rates and frequencies. The net result is ever increasing interference and noise, creating an electronic traffic jam of major proportions.

This is particularly true now that a preponderance of new systems are using low level digital pulse techniques. Filtering is practically useless or in some cases, completely unusable, since it produces excessive deterioration of the desired pulse waveforms, or inaccuracies and distortion of analog signal voltages.

Obviously, noise reduction is best accomplished by simply stopping the noise before it enters the system. The purpose of this article is to discuss how noise is primarily introduced into systems by the equipment interconnecting wiring and the improvements that can be made by installing noise rejecting type cables while applying good equipment isolation and grounding techniques.

Most electronic equipments do not produce random noise unto themselves and usually perform a singular task. When assembled and connected to other equipments to form a circuit, unwanted noise is picked up by the interconnecting wiring through the direct contact action of the ground loops and common mode returns or by inductive and capacitive pickup of nearby radiated fields. A desired signal in one circuit can be noise to another and could be produced by local circuits within the system or from equipment completely removed and external to the system.

Conversely, these same cables will radiate or cross-talk the signal they are carrying into adjacent circuits becoming themselves a generator of interference to other data systems or the cause of security compromises in classified military communications. In other words, poorly selected and installed cabling can act both as noise transmitting and receiving antenna or as undesired primary and secondary windings of coupling transformers, injecting interference.

Systems are often designed, fabricated and installed using the simplest multiwire cable or grounded coax between equipments, racks and buildings, not realizing that they will probably encounter and pick up all manner of interference. Nearby electrical equipment such as high power radar, broadcast stations, power distribution mains, florescent lighting, arcing motors, teletype and communications circuits are but a few of the noisemakers. The lower the signal voltage level, the greater is the susceptibility to this outside interference.

A newly designed system might work fine on paper or when first assembled for checkout, but when installed at its final crowded location on ship or shore, it will not perform as anticipated. Only then is it realized that the completed system has picked up much noise and hum or is itself radiating so heavily that the equipment is unusable. Costly additional effort, parts and time must be expended to locate and attempt to eliminate the cause of the noise pickup.

Taking Noise Out

To avoid this unnecessary waste, cable to equipment interface engineering should be applied at the start of system planning and design. This applies to all systems irrespective of whether the signal is low or high frequency or used in TV, telemetry, timing, ordnance, environmental testing, computer, telephone, test instrumentation or just plain communications. Each system must be considered individually, since the signal frequency and amplitudes with the system will dictate what type of cabling and installation techniques should be used.

Cable Engineering

The following are typical examples where good cable engineering applies. Low level environmental cabling systems predominately now use "guarded" balanced and shielded lines to transmit the calibrated transducer test voltage to an isolated charge amplifier.

TV video is distributed over 124-ohm "shield twisted pair" or twinax, instead of coax, in high noise areas to obtain the low frequency magnetic field crosstalk and hum cancellation provided by the "twist".

Digital engineers in the computer and instrumentation fields must begin to use good high-frequency design engineering to transmit nanosecond rise time pulses. A 10 nanosecond rise time pulse is equivalent to 100 MHz RF and must be transmitted using the best coax cable techniques to avoid pulse reflection, false noise triggering or data inaccuracy.

Low level communication circuits should be space separated and have effective shielding from adjacent parallel power circuits to avoid in-
duced hum. Unprotected ordnance and timing circuits can be dangerous if exposed to external radiated RF interfering fields.

High megawatt pulsed radar will introduce both its carrier and PRF into nearby sensitive low level unprotected cable runs that inadvertently act as antenna. Sometimes, the transmitted pulses have amplitudes of hundreds of thousands of volts as used in atomic energy testing or linear accelerators, thereby producing large magnetic and capacitive interference fields. These in turn play havoc with local cable connected instrumentation and electronic equipment.

Long telephone lines in the near field of a nuclear explosion will pick up the accompanying tremendous electrical fields and transmit the induced high voltage pulse long distances and burn out equipment in contact with these lines.

In today's economy, the lack of money, time and qualified personnel will not permit the very complicated and expensive post-completion interference cleanup of poorly engineered systems. Expensive electronic equipment handling low level signals cannot be interconnected with the cheapest of cable and connectors and still be expected to work properly in a system.

The use of coax, twinax, triax or double shielded balanced line "quadrax" in isolated or guarded circuitry will do much to suppress outgoing EMI and RFI while reducing incoming unwanted noise pickup. This protects both your system and the adjacent system from mutual interference. Obviously, careful cable-to-equipment interface planning must be exercised in the future to produce workable, compatible systems. Design engineers will not be free to treat cable installation casually as in the past.

Coax Cable

In all cases of potential interference, low or high frequency, shielded cable should be used to protect against magnetic and capacitive stray fields. Grounded coax cable installations are excellent and can be used from 20 KHz to 5 GHz for most systems. But even coax, if subjected to very strong interference, will not completely protect the desired signal. The more sophisticated cable and equipment isolation techniques must be used, dependent upon the frequency of the interfering noise and how it enters the cable system. Additional measures taken to reduce noise will conversely reduce outgoing radiation and crosstalk.

Ground Loops And Common Mode Returns

Coax cable consists of an inner and an outer conductor insulated from each other, with both conductors carrying the desired signal currents (source to load and return). Inasmuch as the outer conductor is usually grounded at the source, load, bulkheads and other intermediate points, "ground loop" or "common mode" currents caused by potential differences of external noise sources are also carried on the outer conductor. Since the desired signal and the undesired noise are both carried on the same outer conductor simultaneously, noise will be introduced into the system, greatly reducing the "signal to noise ratio."

Low frequency signals (20 KHz to 6 MHz) are particularly susceptible to both ground loop and common mode interference. In this case, coax cable is recommended with the complete coax chain having a minimum number of outer conductor ground contacts. Reducing the number of ground connections reduces the number of possible ground loops. This demands that major equipment, relays, switches, connectors, patch panels, etc. be isolated from ground with the ultimate being one ground connection at the source.

Radiated Fields

Where strong radiated noise fields exist, such as high powered radar, broadcast stations, power lines, fluorescent lighting, office and industrial machinery, and multiple cable runs, the cable conductors act as receiving antennas or secondary windings of transformers and pick up the external noise sources. A particularly bad source of noise pickup is the "crosstalk" or induced currents encountered in large, multiple cable installations. To protect against these radiated noise sources, two other types of cable may be used.

Triax Cable

Triax cable is coax cable with an additional outer copper braid insulated from the signal carrying conductors that acts as a true shield and protects the enclosed coax conductors. This braid or shield is grounded and bypasses both ground loop and capacitive field noise currents away from the signal carrying coax, thereby greatly improving the "signal to noise" ratio over standard coax cable usage.

Triax cable is also used in "driven shield" applications where the inner conductor and first shield are driven in parallel at the transmitting end and work against the outer braid which is insulated above ground. At the receiving end, the inner braid is left floating, providing a Faraday shield between the inner conductor and outer braid. In this way, the cable distributed capacity is greatly reduced thereby reducing cable losses and loading. This application is most effective in low frequency transducer data systems where the distributed capacity in coax cable limits the data capability.

Twinax Cable

Twinax cable is a two-conductor twisted balanced wire line having a specific impedance, with a grounded shielding braid around both wires. Twisting the two balanced signal-carrying wires provides cancellation of any random induced noise voltage pickup, thereby giving protection against magnetic noise field of the low frequency variety that passes through the copper braid.

This cable also provides protection against ground loops and capacitive fields as does triax cable. Twinax cable usefulness however is limited to approximately 10 MHz since it has rather high transmission losses above this frequency. Concentric twinax cable and connectors are available for low frequency and video distribution systems.

Additional common mode rejection of noise can be obtained in instrumentation systems where thermocouple and other transmitter information must be remotely recorded.
by using twinax with only one ground contact located at the transducer.

For the ultimate in flexible cable protection and guarded circuits, twinax cable with two separate and insulated braids (quadrax) can be used wherein the two braids are connected to "system" ground and "earth" ground respectively.

Quadrax cable can also be used to provide additional noise and EMI suppression by connecting both shielding braids to earth ground if a separate equipment ground is not available. Quadrax connectors are available for this application.

Bonding And Grounding

Bonding and grounding problems have been with us many years and much has been written to define the correct methods to accomplish both. Some suggested reading material is listed in the bibliography. However, equipment isolation, bonding and grounding still play a part in the noise pickup and EMI/RFI problem.

From The Ground Up

"Earth" grounds require extensive grids, ground rods and chemical preparation to obtain an extremely low resistance and impedance system ground return.

Where equipments comprising a system are widely separated, equipment ground "planes" in many instances should be isolated from earth grounds to avoid "noisy" ground loops caused by power and other equipment in the immediate area.

If "system" ground and "earth" ground must be connected, it should be done at minimal locations (preferably one) using extremely low-impedance bonding paths and materials. On the other hand, RF bonding should be made quite frequently to provide the shortest RF path to ground and to prevent the ground return from acting as an additional length of antenna. To repeat, the method of equipment interconnecting and grounding is a function of the signal frequency (LF, video or RF) and no one simple answer to interference can be provided.

This article is not intended to be a complete interference manual, but awareness as to what must be done to produce noise-free systems without extensive rework and debugging is important.

Recommended reading for detailed examination:

- **Brush Instruments Article in Measurements & Data, May/June 1968, D. H. Nalle.**
- **Hum Reduction in Video Systems, Dynair Electronics, San Diego, D. A. Keller.**
- **Shielding and Grounding for Instrumentation Systems Dynamics, Instrumentation Co., Monterey Park, California, Ralph Morrison.**

2x2 slide projectors for the television film chain

by **SELECTROSLIDE**

Spindler & Sauppe offers the broadest line of slide projectors for the television industry... seven models in all. There's one to fit your requirements exactly: color or monochrome; uniplex or multiplex; forward or reverse actuation; sequential or random access operation; 16-slide to 96-slide capacity. All built to the highest professional standards. Write for complete information.

Spectrum 32: The most advanced slide projector available. 32 slide, for color or monochrome chains. Many exclusive features.

Model 332: Workhorse of the industry now improved. Slide, for monochrome chains. Model 332: single turret for 36 slides, monochrome or color.

Model SLR-TV: 96 slide, random access. SLR-TV: 48 slide, sequential. SLR-TV: 96 slide, sequential. SLR-TV: 48 slide, sequential forward/ reverse. All for monochrome or color chains.
HEAT STABILIZATION

Servicing Transistor Circuits

By Carl Babcock

Current and gain in vacuum tubes are affected very little by ambient temperature since each tube has its own private built-in furnace that is many times hotter than the surroundings. Not so with transistors. Heat is not necessary for normal operation; any generated heat is strictly a byproduct, and often a detrimental one.

Those of you who have experience only with well-designed solid state circuits may be surprised how thermally unstable some of the simpler circuits can be. In the low-level audio circuit of Fig. 1A, assume that the base resistor is the correct value to produce maximum gain. Use an audio oscillator for an input signal, monitor the output with an AC meter and the collector with a DC meter. Just cup your thumb and forefinger around the transistor case for a few seconds and watch both the output AC and collector DC voltages drop enough for a definite difference in reading. If you go one more step and also monitor the base-emitter voltage, you will discover that the base voltage decreased from this slight increase in heat. The transistor conducted more collector current with less base voltage. Or turn that statement around so it reads: for the same collector current, less forward bias is required at higher temperatures.

It is undoubtedly true that more base current caused more collector current (transistors are "current amplifiers"), but base current is very difficult to measure, while base voltage measurement is simple if you have a meter with a full-scale reading of .5 or 1.0 volt. Later we will show that collector or emitter current can be measured easily by reading a resistance, the voltage drop across it and calculating the current by Ohms Law.

Stabilization

Four basic types of temperature stabilization are commonly used. Fig. 1B shows the base voltage supply taken from the collector rather than the supply voltage. This is an effective method, if the resistance in the collector circuit is fairly high. Any increase in collector current will lower the collector voltage which in turn reduces the base supply voltage. And this lower base voltage will decrease the collector current. The opposite action takes place if the collector current goes down.

There are two limitations. Transformer output coupling is not practical since the collector DC voltage would not change enough for effective control, and the resistor between collector and base can introduce negative feedback which lowers the gain.

The two most common thermal stabilizing methods are both shown in Fig. 1C. Forward bias for the base is developed by a voltage divider to minimize voltage variations, and more important, an emitter resistor is added. For example, increased emitter current raises the emitter-to-ground voltage and any emitter voltage is subtracted from the base-to-ground voltage to give the true forward bias. The more emitter voltage, the less forward bias and this causes less gain and collector current.

Let's consider some hypothetical voltages. Assume a base-to-ground voltage of -2.15 and an emitter-to-ground voltage of -2.0; the forward bias is -.15 volt. Suppose that a higher transistor temperature increases the collector-emitter current so the readings become: base -2.15 and emitter -2.05 for a forward bias of -.10. This reduced forward bias decreases the collector-emitter current and restores the change in gain. Of course, reverse action takes place if the emitter current goes down, but we are not so concerned because this is just the opposite of "thermal runaway".

Omission of the emitter bypass capacitor would allow AC current feedback which reduces gain just as an open cathode capacitor will do in tube circuits. In practice however, we find the gain reduction in transistor circuits to be much larger than that caused in tube circuits by an open capacitor, where the resistor is the same in both cases. In a tube circuit, the gain might be reduced 10 dB, while the transistor circuit gain could be decreased by 20 to 30 dB.

The fourth type of heat stabilization uses a diode (of the same material as the transistor) as a voltage regulator.

How Critical Is Forward Bias?

A short answer to that question is: extremely critical. Transistors normally produce far more gain than tubes, so we would expect a percentage change in forward bias to cause more change in output current and gain than in tube circuits.

Next month we will discuss a unique transistor phenomena, the gain reduction that occurs when the bias is either raised or lowered from the optimum voltage.

October, 1969
That's right, QRK now offers a line of mono and stereo equalized pre-amplifiers, which can achieve +10 dbm output without distorting or clipping. Normally, the output of a pre-amplifier is only -20 dbm, but with loud passages, "head room" is required! Only with the QRK "Ultimate" pre-amplifiers, can you be sure of true reproduction of your loud passages. Other features - 0.1% distortion; -75 db noise; built-in rumble filter; self-contained power supply; balanced output transformer.

Contact the QRK Plant or your CCA Area Representative for details:

QRK ELECTRONIC PRODUCTS, INC.
1568 NORTH SIERRA VISTA, FRESNO,
CALIFORNIA 93703 • Phone: 209 251-4213

Subsidiaries of
CCA ELECTRONICS CORP.
716 JERSEY AVENUE, GLOUCESTER CITY,
NEW JERSEY 08030 • Phone: 609 456-1716

Circle Number 26 on Reader Reply Card

Remote Problem

Keeping Material On The Circuit

This unit is the outgrowth of living with an average of 25 remote program circuits for a period of many years. Certainly, line failure is no stranger to us. Many of these circuits are 20 to 30 miles long and of course include from 1 to 4 telco repeat amplifiers. Some of these circuits involve permanently installed remote amplifiers which the client turns on and off.

This unit will keep test program material on the circuit at all times. The loop can be routinely checked the day before it is needed and right up to program time. One of these was used for more than 5 years on a particularly troublesome line and it "saved the day" at least 10 times.

Perhaps this will suggest other uses and refinements. Actually, one of the "module" code-practice oscillators can be used instead of the tuner. One caution on this point; a high-frequency tone will sometimes transmit very well on a long cable circuit with "one side open" and will sound nearly normal whereas such a circuit will not pass any lows at all.

The circuit: L1-C2 is tuned to your station. C1 furnishes an effective antenna connected to one side of the power line. A good ground is essential. S1 is a DPDT which replaces the line switch in the permanently installed remote amplifier. Either the remote amplifier or the monitor circuit is on the line at all times. The relay applies the test circuit to the program line. This can be a DC relay, if one is at hand, by using a series diode and a 150 mfd. / 25 volt capacitor across the relay to obtain the 6 volts DC.

Luther Crumbaugh
KGER
Long Beach, Calif.
Getting Those Base Ammeter Readings

The chief at the small radio station faces weekly frustration calibrating the remote reading base ammeter. He reads the base ammeter, then jogs into the station to calibrate the remote meter. Or, if the calibration control is out at the antenna, he adjusts it while someone else (usually an announcer) gives readings over an intercom.

This problem can be avoided. Two meters, one at the antenna base and one inside, are connected in series. As there is no shunt element, the two meters must read the same current. Thus the meter inside the station tracks with the meter at the antenna and the chief can watch the latter while adjusting the calibration control.

Try to use two meters identical in scale as well as manufacturer. An 0-50 microamp meter can be read as 5 RF amperes full scale, or an 0-100 microamp meter for 10 RF amperes full scale. These ranges should meet telemetering requirements for almost any antenna current encountered in small AM stations.

Many different sampling devices may be used. "Linearizing Antenna Current Indicators," by C. G. Cunningham, Broadcast Engineering, May, 1966, page 48, offers many ideas. I used a solid state diode feeding a calibrating resistance in series with the meters. The high impedance seen by the diode causes it to operate in the microamp range, assuring good linearity. The pickup loop delivers just enough RF voltage to the diode to result in proper current through the microammeters and series resistance. The resistance is chosen to keep peak voltage within the diode's rating.

The pickup loop shown in the photograph consists of several turns of hookup wire taped firmly to the rf line. The number of turns is adjusted empirically as is the value of the calibrating control.

Whether a commercial or composite sampling device is used, it must be fed into the two meters in series. This makes the weekly calibration much easier.

Ronald Pesha
Lawrence, Kansas

Remote Base Reading

Cartridge Motor Bearing Cures

Older tape cartridge playback units sometimes develop motor bearing problems under heavy use, particularly in warm locations. Here is a corrective modification worked out for the Collins ATC PB-150, and applicable to similar units.

As the units aged, motor bearings often "froze" on heavy commercial days. The situation became worse when new units were installed in the control room and the old playback were used on remote broadcasts. Announcers on remotes seldom removed a cart until the machine was needed for another spot. As on many machines, the motor on the PB-150/190 runs as long as there is a cartridge in the slot.

The circuit diagram of our machines showed a set of unused contacts on the relay that activates the solenoid used to pull up the drive puck. On our ATC models, this re-
Good News for Pot Pushers

Vertical pots on all Bauer audio consoles give fast, positive, and visible control over a multitude of programming elements

Here's a new line of audio consoles, available now... all with new RF shielding, lots of gain, plug-in solid-state circuitry, wide-open accessibility, and compact size... plus special features to meet individual station audio needs:

Model 915 for the remote TV truck; 8-microphone versatility with multiple inputs for turntables, tape units, and projectors.

Model 910S 8-mixer stereo console with all the inputs and controls needed by any station, AM or FM, large or small.

Model 910D dual unit, easily handles two programs simultaneously; 8-mixing channels, and multiple input selector switches for rapid programming changes.

There's more to tell... we have an information packet for audio pot pushers. Please write.

The motor start time—at least on the units we modified—is fast enough to prevent "wow." The motor picks up speed before the puck engages the capstan. Although this idea would not work with machines having quicker engagement, it has functioned very well with those of considerable engagement travel. (The relay contacts which turn on the motor should be set to make as soon as practical upon relay activation, and should be cleaned and adjusted periodically.)

Relay contacts are bridged with a .05 600V capacitor such as used elsewhere in the units for suppression.

On models with no unused relay contacts, a supplementary relay could be used, activated by the same source as the solenoid relay. (An additional relay—one with heavier contacts—might be a good idea anyway, although no problems have been encountered.)

As an added precaution against heating, we installed a small record player motor and fan inside the machine. There is room in the PB-150 for a small fan inside one of the perforated side panels. The fan motor was connected to the original motor-start wiring points, so that it comes on as soon as a cart is inserted and runs until the cartridge is removed.

Jack Thornton
KBND
Bend, Oregon

Granger Associates
COMMUNICATION SYSTEMS DIVISION
1601 California Avenue, Palo Alto, California 94304
Circle Number 28 on Reader Reply Card
Equalizing telephone lines for remote radio pickup

By David Talley*

Remote pickups have been used since the early days of radio broadcasting to supplement studio programs. They are an extension of the studio microphone often used for sporting events, such as baseball and basketball games, for on-the-spot news coverage and for important public gatherings especially during elections.

The current widespread use of taped programs for delayed broadcasts does not nullify the need for remote pickups. Because remote facilities may be used for both live and delayed broadcast programs, stations using remote programming may attract a larger audience by utilizing the live broadcast. Few people would care to listen to the delayed broadcast of a football game after the game had been played and the score announced.

Remote radio pickups are usually comprised of the following elements which are illustrated in Figure 1:

- Microphones and associated amplifiers at the program pickup or remote location; the program transmission facility (normally a leased telephone line) and the necessary interface equipment at the broadcast studio for properly receiving the remote audio program and its subsequent transmission.

Wireline Facilities

The type of transmission facility employed between the remote pickup point and the studio is the controlling link in this broadcasting chain. If it were feasible and economical to install a UHF radio link (assuming FCC approval) for this purpose, there would be no wireline transmission and interface problems. The radio link could satisfactorily provide a 100-15000 Hz transmission facility between the remote location and the broadcast studio and there would be no need to install equalizing and other interface devices at the studio end.

Wireline facilities however, are primarily utilized for remote radio pickups. They are usually leased from the local telephone company for the duration of the remote broadcast program. Several types of program circuits can generally be furnished for connection to remote pickups within the area served by the broadcast station. These circuits are normally provided for use on an occasional basis in accordance with the telephone company's tariffs. The following is a listing of typical program lines in the ascending order of their costs:

- **Schedule D**: 100-3500 Hz (3 kHz)—For speech.
- **Schedule B**: 100-5000 Hz (5 kHz)—For speech and music.
- **Schedule BB**: 100-8000 Hz (8 kHz)—For speech and music.
- **Schedule BBB**: 100-15000 Hz (15 kHz)—FM Program Circuit. Dual channel is required for stereophonic use.

For many AM broadcast purposes, the 3 kHz program facility may prove satisfactory especially if speech only is to be transmitted from outdoor events such as, golf matches, meetings or baseball games. In general, it is desirable to utilize the 5 kHz program line for most remote pickups, but for important musical programs, the 8 kHz facility should be used. The 15 kHz program line need only be considered for use with FM broadcasting stations.

However, the same telephone cable-pair used for a Schedule D or 3 kHz circuit would not necessarily be suitable for a 5 kHz or 8 kHz program facility. In many instances, the 3 kHz telephone line, like almost all cable pairs used for subscribers telephone service, would be bridged to other cable pairs serving the particular central office area. The resultant increased capacitance and impedance changes may make it very difficult to properly equalize the line for either 5 kHz or 8 kHz transmissions. Therefore, the electrical characteristics of the telephone line determine the design of the equalizer and other interface equipment required at the studio end.

Distortion Effects of Telephone Line

When currents of a wide band of frequencies are transmitted over a telephone line not specifically equalized for these frequencies, distortion will result. This distortion is of two types. There is first, amplitude distortion which results because the loss or attenuation of the telephone line is not the same at all frequencies being transmitted and secondly, delay distortion caused by the currents of various frequencies requiring different time intervals to build up and decay.

Amplitude distortion in telephone circuits decreases the strength of the higher frequency currents more than the lower and therefore slightly narrows the transmitted frequency band. Amplitude distortion is very harmful to effective program transmission but can usually be corrected by the installation of an equalizer or other filter interface devices.

Delay distortion is distinctly different and is more difficult to correct. Its effect on speech and music is to prolong the interval of time required for the signal wave to build up to its full amplitude and the time needed for it to die down. Delay distortion effects may cause a slurring over the beginning and a dragging out of the ends of the

*Telecommunications Consultant.

New York, N.Y.

October, 1969
A modest miracle from RCA
(or how to get more VTR for your money...for less money)

The TR-60. The only thing modest about this unique studio and mobile VTR is the price. It's lower. But it's capable of superior performance! What's the secret? An RCA exclusive. 48 years of experience in the broadcast business. The most. With that kind of background, it's easier to make the best for less.

Only RCA could have produced a modestly priced VTR with correct color field editing carried down to a single frame (to avoid color disturbance). Plus line-by-line correction of hue and saturation error with (optional) "CAVEC" for life-like playback reproduction. Plus an erase head that makes tape scratch impossible. Plus total remote control over editing sessions. Plus in-phase dropout correction (optional) that puts the right color back in the picture. Plus reactance and resistance controls that give you more uniform color. Leave it to RCA to get all the imperfections out of the VTR color picture...and, for less money.

Get all the facts. Call your RCA Broadcast Representative or write: RCA Broadcast Equipment, Bldg. 15-5, Camden, N.J. 08102.

IMPORTANT NEWS:
The TR-60 can also be used as a master VTR with the world's first automated video cartridge tape recorder/player—now under development.
voice sounds, thus imparting an unnatural character to the speech by giving it a hissing or fuzzy sound. The characters of a musical selection would be similarly affected. Considering the relative small distances (up to about 15 miles) usually involved for remote radio pickups, the delay distortion effects of leased telephone lines usually may be disregarded.

Transmission Theory Applied to Lines

A telephone line, such as a pair of wires in a cable, is fundamentally a medium for wave propagation. Voice- or audio-frequency transmission over a telephone line is electrical wave propagation in which the energy is confined to a particular bandwidth or channel such as the 100 to 8000 Hz frequency band normally used for radio program transmissions. The same general axioms covering energy propagation apply to telephone transmission lines. These precepts may be summarized as follows:

1. The amount of audio-frequency energy attenuated by the telephone line depends on the line constants or elements. They may be defined as combinations of distributed capacitance (C), distributed inductance (L), and the distributed resistance, both in the series form (R), as that of the conductors, and in the shunt or leakage form (G).

2. The speed of propagation or velocity at which the wave travels, depends upon the electrical characteristics of the telephone line as established by these line constants.

3. Energy will be reflected whenever the wave passes the junction of one transmission line with another, if the two lines have different electrical characteristics. This reflection of energy will result in a voltage standing-wave-ratio (VSWR) greater than 1, because of the change in the line's characteristic impedance.

Capacitance Effects

The capacitance of a cable pair increases with the size of its conductors, assuming the same separation between conductors and equivalent insulating material. This capacitance is normally expressed in microfarads per loop mile. For example, 19 gauge cable has a capacitance of 0.084 uF/mile and 22 gauge is rated at 0.082 uF/mile. The distributed capacitance causes a capacitive reactance (Xc) to develop in the telephone line because of the changing audio currents. As a result, some of the audio-frequency currents would be shunted across the line and less of the energy would reach the studio end. Because Xc decreases as the frequency increases, the shunting effect of the capacitive reactance on the audio currents becomes greater with increased frequency.

Inductance Effects

The program wireline circuit also has inductance (L) distributed throughout its length. This inductance decreases as the diameter or gauge of the cable pair decreases. A counter-voltage is induced in the cable pair by the changing audio currents because of this series inductance. This counter-voltage or effect is termed inductive reactance (XL) and increases with frequency in accordance with the general formula for inductive reactance in Figure 2.

Line Resistance and Leakage Effects

The direct current (DC) resistance of a cable pair or telephone line is determined by the Ohm's Law measurements, usually indicated in ohms per loop mile. If a six mile long telephone circuit has a DC resistance of 275 ohms per conductor, its loop resistance will be 550 ohms. When audio-frequency currents are transmitted over a cable pair, the distributed resistance depends on the frequency of these currents and the wire size. This variation of resistance with frequency is caused by the "skin effect" of the alternating currents. That is, the currents of the higher audio frequencies tend to travel along the outer surface of the conductor instead of inside the wire. Consequently, the AC resistance or R of the cable pair will be greater than its measured DC resistance to voice-frequency currents.

Another effect, although normally very small, is the leakage between the conductors of a cable pair. Temperature and humidity changes effect this leakage factor which is called shunt conductance (G). It may also be expressed as the reciprocal of resistance.

This leakage acts as a shunt across the cable pair to the audio currents in a manner similar to that caused by a parallel resistance. Although it results in an additional loss to the transmission of audio signals along the telephone line, its effects may be generally disregarded in transmissions from remote pickup locations.

The second article in this series on the equalization of telephone lines for use in remote pickup will deal with the causes of the problems encountered in this area, how equalizing can eliminate these problems and the design and testing of an equalizer and other interface equipment required at the receiving end of the telephone line.
James E. Allen Jr., assistant secretary for education, Department of Health, Education and Welfare, will speak at an afternoon general session at the 45th annual convention of the National Association of Broadcasters November 9-12, will focus their attention on the role of public broadcasting and social responsibility. Dr. Allen serves as principal consultant to HEW Secretary Robert E. Smith on educational policy and on other federal education programs about the government. He also serves as chair of the Federal Interagency Committee on Education, which ties federal education programs about the government. Before assuming his duties in Washington, Dr. Allen served for several years as New York state commissioner of education.

W. Macy Jr., president of the Corporation for Public Broadcasting, will address a November 10 meeting at the annual convention. He will examine educational broadcasting's role in disbursing its social responsibility.

Before joining the CPB, Macy served as chairman of the U.S. Civil Service Commission under both President Johnson and the late President Kennedy, and was executive vice president of Wesleyan University, Middletown, Conn. from 1958-1961. During his tenure at WETA, he introduced the use of television for employee and supervisory training and development through broadcasts on WETA, Washington's educational TV station. He was a consultant to the American Foundation for Continuing Education and participated in a major two-year study on Education for Public Responsibility as a consultant to the Fund for Adult Education.

Sir Charles Moses, secretary-general of the Asian Broadcasting Union, Sidney, Australia, will be the featured speaker at a general session, Wednesday morning, Nov. 12, at the convention. The subject of Sir Charles's address will be international broadcasting.

Sir Charles entered broadcasting in 1930 as an announcer and sports commentator for the Australian Broadcasting Commission in Melbourne. He became the ABC's Controller of Talks and School Broadcasts in 1932 and was appointed general manager in November, 1935, a position which he held for 30 years until he retired in 1965 to become secretary-general of the ABU.

During his term as chief executive for ABC, Sir Charles was responsible for introducing broadcasting in school systems throughout Australia; setting up the federal structure of ABC; establishing orchestras in every state, and introducing the ABC's independent news service.

In the international sphere, his status and achievements have led to his being made a member of the Councils of the recently established International Broadcast Institute, Rome, Italy; of the International Council of the Prix Jeunesse Foundation, Munich, Germany, and of the Asian Mass Communication Information and Research Center, Singapore, Malaysia.

Send Your News On Non-commercial Broadcasting To Our Editors For Better Coverage Broadcast Engineering 1014 Wyandotte Kansas City, Mo. 64105
voice sounds, thus imparting an unnatural character to the speech by giving it a hissing or fuzzy sound. The characters of a musical selection would be similarly affected. Considering the relative small distances (up to about 15 miles) usually involved for remote radio pickups, the delay distortion effects of leased telephone lines usually may be disregarded.

Transmission Theory Applied to Lines

A telephone line, such as a pair of wires in a cable, is fundamentally a medium for wave propagation. Voice- or audio-frequency transmission over a telephone line is electrical wave propagation in which the energy is confined to a particular bandwidth or channel such as the 100 to 8000 Hz frequency band normally used for radio program transmissions. The same general axioms covering energy propagation apply to telephone transmission lines. These precepts may be summarized as follows:

1. The amount of audio-frequency energy attenuated by the telephone line depends on the line constants or elements. They may be defined as combinations of distributed capacitance(C), distributed inductance(L), and the distributed resistance, both in the series form(R), as that of the conductors, and in the shunt or leakage form(G).

2. The speed of propagation or velocity at which the wave travels, depends upon the electrical characteristics of the telephone line as established by these line constants.

3. Energy will be reflected whenever the wave passes the junction of one transmission line with another, if the two lines have different electrical characteristics. This reflection of energy will result in a voltage standing-wave-ratio (VSWR) greater than 1, because of the change in the line's characteristic impedance.

Capacitance Effects

The capacitance of a cable pair increases with the size of its conductors, assuming the same separation between conductors and equivalent insulating material. This capacitance is normally expressed in microfarads per loop mile. For example, 19 gauge cable has a capacitance of 0.084 uF/mile and 22 gauge is rated at 0.082 uF/mile. The distributed capacitance causes a capacitive reactance(Xc) to develop in the telephone line because of the changing audio currents. As a result, some of the audio-frequency currents would be shunted across the line and less of the energy would reach the studio end. Because Xc decreases as the frequency increases, the shunting effect of the capacitive reactance on the audio currents becomes greater with increased frequency.

Inductance Effects

The program wireline circuit also has inductance(L) distributed throughout its length. This inductance decreases as the diameter or gauge of the cable pair decreases. A counter-voltage is induced in the cable pair by the changing audio currents because of this series inductance. This counter-voltage or effect is termed inductive reactance (XL) and increases with frequency in accordance with the general formula for inductive reactance in Figure 2.

Line Resistance and Leakage Effects

The direct current (DC) resistance of a cable pair or telephone line is determined by the Ohm's measurements, usually indicating ohms per loop mile. If a six long telephone circuit has a D resistance of 275 ohms per conductor, its loop resistance will be ohms. When audio-frequency currents are transmitted over a pair, the distributed resistance depends on the frequency of currents and the wire size. This action of resistance with frequency is caused by the "skin effect" of alternating currents. That is, currents of the higher audio frequencies tend to travel along outer surface of the conductor, instead of inside the wire. Consequently, the AC resistance of the cable pair will be greater than its measured DC resistance to audio frequency currents.

Another effect, although very small, is the leakage between the conductors of a cable pair. Temperature and humidity changes affect this leakage factor which is called shunt conductance(G). It may also be expressed as the reciprocal of resistance.

This leakage acts as a shunt across the cable pair to the audio currents in a manner similar to that caused by a parallel resistance. Although it results in an additional loss to the transmission of audio signals along the telephone line, its effects may be generally disregarded in transmissions from remote pickup locations.

The second article in this series on the equalization of telephone lines for use in remote pickup will deal with the causes of the problems encountered in this area, how equalizing can eliminate these problems and the design and testing of an equalizer and other interface equipment required at the receiving end of the telephone line.
Key Speakers Announced For Nov. 9 NAEB National Meeting

Dr. James E. Allen Jr., assistant secretary for education, Department of Health, Education and Welfare, will speak at an afternoon general session at the 45th annual convention of the National Association of Educational Broadcasters November 10. Delegates attending the convention, which will be held at the Sheraton Park Hotel, Washington, D.C. November 9-12, will focus their attention on the role of public broadcasting and social responsibility.

As assistant secretary of education, Dr. Allen serves as principal advisor to HEW Secretary Robert Finch on educational policy and on matters relating to coordination of educational activities within the Department. He also serves as chairman of the Federal Interagency Committee on Education, which ties together federal education programs throughout the government.

Before assuming his duties in Washington, Dr. Allen served for 14 years as New York state commissioner of education.

John W. Macy Jr., president of the Corporation for Public Broadcasting, will address a November 10 meeting at the annual convention. He will examine educational broadcasting's role in discharging its social responsibility.

Before joining the CPB, Macy served as chairman of the U.S. Civil Service Commission under both President Johnson and the late President Kennedy, and was executive vice president of Wesleyan University, Middletown, Conn. from 1958-1961. During his tenure at CSC, he introduced the use of television for employee and supervisory training and development through broadcasts on WETA, Washington's educational TV station. He was a consultant to the American Foundation for Continuing Education and participated in a major two-year study on Education for Public Responsibility as a consultant to the Fund for Adult Education.

Sir Charles Moses, secretary-general of the Asian Broadcasting Union, Sidney, Australia, will be the featured speaker at a general session, Wednesday morning, Nov. 12, at the convention. The subject of Sir Charles's address will be international broadcasting.

Sir Charles entered broadcasting in 1930 as an announcer and sports commentator for the Australian Broadcasting Commission in Melbourne. He became the ABC's Controller of Talks and School Broadcasts in 1934 and was appointed general manager in November, 1935, a position which he held for 30 years until he retired in 1965 to become secretary-general of the ABU.

During his term as chief executive for ABC, Sir Charles was responsible for introducing broadcasting in school systems throughout Australia; setting up the federal structure of ABC; establishing orchestras in every state, and introducing the ABC's independent news service.

In the international sphere, his status and achievements have led to his being made a member of the Councils of the recently established International Broadcast Institute, Rome, Italy; of the International Council of the Prix Jeunese Foundation, Munich, Germany, and of the Asian Mass Communication Information and Research Center, Singapore, Malaysia.

Send Your News On Non-commercial Broadcasting To Our Editors For Better Coverage

Broadcast Engineering
1014 Wyandotte
Kansas City, Mo. 64105

October, 1969
101. AEROVOCX CORPORARION—A 24-page catalog describes the company's complete line of precision instrument switches. Complete mechanical and electrical specifications are included for Series 14, 18, 22 and CEG switches. Information is also provided on proper switch selection, prewired terminal boards, multiple deck units and MIL and hi-rel types. The switches may be used in computers, telemetering systems, test equipment, instruments, programming and automatic check-out equipment.

102. ANDREW CORPORATION—Catalog #26 contains product information and engineering data on microwave, fixed station and telemetry antennas, antenna positioners, Heliax® flexible coaxial cables and elliptical waveguides, coaxial switching and pressurization equipment and system accessories. The catalog features new product and system developments for military, broadcast and commercial applications.

103. AMPHENOL DISTRIBUTOR DIV. — Connectors, sockets and switches plus a new line of ten coaxial cable/connector assemblies are described in a general line catalog. Included are the 131 Series precision and 5116 Series Subminax rf connectors, tube and relay sockets, test and tip jacks, microphone connectors and home and industrial type ac plugs and receptacles. Photographs, line drawings, electrical characteristics and mechanical specifications are provided.

104. B & K INSTRUMENTS, INC.—Full specifications, applications and photographs of the Model 4117 Piezoelectric microphone are given in a two-page bulletin. The microphone is said to have dynamic range up to 140 dB sound pressure level. The bulletin suggests uses for the microphone with B & K sound level meters and sound distribution compensating systems in theaters, public address systems and machinery monitoring systems.

105. BECKMAN INSTRUMENTS, INC.—Insulation test equipment, electronic test and measuring instruments, high-voltage power supplies and automatic component testers are covered in a 52-page catalog. Complete technical data and specifications are provided in the section on insulation test equipment. The high-voltage power supplies

Neve designed and built it for THAMES TELEVISION LTD

24 Channel free grouping TV Sound Control Console with two plug-in 12 Channel auxiliaries.
This is the first stage of a complete re-equipment programme entrusted to Rupert Neve & Co. Ltd. by THAMES TELEVISION LTD

Rupert Neve & Co. Ltd. Cambridge House, Meldonham, Rayston, Herts. Telephone MELBOURNE 776
Circle Number 38 on Reader Reply Card

BROADCAST ENGINEERING
section covers models ranging from packaged units to heavy-duty types for operation up to 50 kV.

106. COHU ELECTRONICS—Selection of vidicon image tubes for television cameras is the subject of data sheet 6-296. Operating characteristics, an illumination formula, tube selection table and special performance data in the two-page sheet describe the choice of video tubes available for TV cameras and applications.

107. ECKEL INDUSTRIES, INC.—"Anechoic Chambers," an 8-page illustrated publication discusses enclosures with An-Eck-Oic®, wedge construction, engineered for acoustic research and testing usage. Portable chambers are also covered. Included in the brochure, #59063, are methods of testing within chambers, photographs of these techniques and brief specifications.

108. GENISCO TECHNOLOGY CORP.—The key features of the model 10-236 magnetic tape recorder are described in a recent bulletin. The recorder has a 300 foot tape capacity, Cobelt drive, variable tape speeds from 7½ to 120 ips and 14 channels of record.

109. HALLICRAFTERS COMPANY—The electrical and mechanical characteristics of a line of frequency instrumentation products are described in catalog #94-005173. Included are frequency synthesizers, multipliers, dividers, crystal frequency standards, precision crystal oscillators and component ovens.

110. HEWLETT - PACKARD—Application Note #922, "Applications of PIN Diodes," describes the use of PIN diodes in microwave switches, attenuators and phase-shifters. Included is a description of how the electrically-controllable resistances of the diodes at RF and higher frequencies are applied to a variety of circuits. Other sections discuss techniques for maximizing power handling capability and the effects of package parasitics on performance.

111. JFD ELECTRONICS CO.—The master antenna TV system products guide is a catalog of solid state 82 channel MATV equipment. Included are antennas, preamplifiers, amplifiers, AGC units, filters, mixers, tapoffs, matching transformers, splitters, FM converters, traps, coaxial cable, connectors and terminators.

112. ELECTRONIC RESEARCH LABS—Bulletin 92 is a presentation of microwave waveguide components and equipment. Special sections are included on ferrite circulators and isolators, dummy loads, antenna horns, coaxial and waveguide switches, coaxial attenuators and terminations and slotted lines.

113. NATIONAL SEMICONDUCTOR CORP.—"National/883" is the title of a new brochure describing the Mil-Std-883 reliability program. The report describes the background, production and flow of 883 standard parts through processing and ordering.

114. OAK MANUFACTURING CO.—A catalog, "Distributor Switches," describes a line of low-power switches now available to electronic parts distributors. It contains data on rotary, pushbutton, lever and slide switches. Included are photographs, line drawings of electrical characteristics, mechanical specifications, prices and a cross-reference selection guide.

115. RADIAL CONTROLS—An eight-page catalog covers over 50,000 available instrument knobs. Dimensions, price and choice of ten different colors are included. Knob models include round, index flange, pointer, pointer flange, concentric and spindle type.

116. RHG ELECTRONICS LAB.—Catalog #704 describes the company's line of microwave transmitters, receivers and components. It contains specifications on over 300 models of microwave FM transmitters, receivers, mixer preamplifiers, linear and log amplifiers, discriminators, filters and multipliers and FM microwave re-
lay equipment including air-to-air and air-to-ground relay links and portable and fixed ground stations. Photos and technical specifications are included.

117. **ROME CABLE**—Low voltage power and control cables are described in “Rome XLP Insulated 600 Volt Power & Control Cables” (R-600-1). The bulletin contains specifications and splicing recommendations and information about pulling tensions, bending radii and pulling compounds.

118. **SONY CORPORATION**—Two data sheets on new video equipment are available. One describes the Model EV-320 color and monochrome video tape recording system. The sheet includes complete specifications, standard and optional accessories and a list of equipment applications for video equipment. The second data sheet details the model SEG-1 special effects generator, which provides effects such as switching, fading, superimposing or wiping two video signals.

119. **SPARTA ELECTRONIC CORP.**—An illustrated information folder covers the model 726 automatic program controller. The controller will provide 15, 30 and 60 minute format control for up to 24 hours, automatic on-time ID’s, a priority interrupt channel and overlap cueing. Technical information and specifications are included.

120. **SYLVANIA ELECTRIC PRODUCTS**—A brochure describing a systems approach to equipment support training offered to government and industry by Sylvania is now available. The systems approach identifies and evaluates course presentation.

121. **TELEMATION, INC.**—Two short-form catalogs are available for CATV and ETV, closed circuit and broadcast systems. The 12-page brochures include brief descriptions and illustrations of the company’s line of television cameras, control equipment, switchers, film and optical systems and other equipment.

122. **TRIAD CORPORATION**—A new data sheet describes film movements. Included are a standard series for 16mm, 35mm, and 70mm film. Other items include film drive motors and take up motors, movements for wide film and some examples of special movements.

123. **TRIPLETT CORPORATION**—A technical bulletin features a new battery-operated, handheld, solid state Volt - Ohm - Milliammeter model 310-FET. The bulletin provides a complete listing of all electrical and mechanical features and accessories.

124. **WABER ELECTRONICS**—A catalog containing a complete list of pre-wired power outlet boxes including more than 400 standard models and 150 illustrations is now available. Included are a variety of multiple pre-wired power outlet boxes for industry, institutional, school and home laboratory use.

PROTECT YOUR SOUND REPUTATION

VTR RECONDITIONED BY TABER
Nationally recognized recorder head manufacturing and reconditioning experts.
- Heads reconditioned under controlled laboratory conditions.
- Reconditioned heads guaranteed to meet, or exceed equipment manufacturer's specifications.
- Modern precision machine shop, and sophisticated laboratory installations ensure highest quality reconditioning.
- Free loaner assemblies available on request.
- 24 hour service.
- Cost: $100.00 for four (4) heads.

TABER'S sophisticated quality control, and test procedures, insure total frequency response and uninterrupted sound playback. Maintain the high quality audio that your equipment was engineered to produce.

Call or write:
TABER MANUFACTURING AND ENGINEERING COMPANY
OAKLAND INTERNATIONAL AIRPORT, BLDG., L-821
P.O. BOX 2365, OAKLAND, CALIFORNIA 94614
Telephone (415) 635-3832

Circle Number 35 on Reader Reply Card
NEW PRODUCTS

(Use circle number on reader service card for further information)

Channel Governor

Cable television system operators can now offer subscribers FM band reception through the use of two new solid state FM channel governors, developed by Anaconda Electronics, Limited, Vancouver, B.C.

Designated as Models 8710 and 8711, these crystal-controlled FM levelers are available for any FM frequency and will operate on input signals as low as -30 dBmV. The channel governor maintains a constant output level through input signal fading by means of a delayed AGC and limiter circuitry.

The new equipment has frequency ranges of 88 MHz to 108 MHz with an IF frequency of 20 MHz. Input levels range from a minimum of 30 microvolts to a minimum of 3 millivolts; there is no maximum when FM pads are used.

Other specifications include: band width, 250 KHz; stability, .005%; crystal-controlled; and output level, adjustable from +35 to +50 dBmV. Shipping weight is six pounds and mounting requires a 19-inch rack and 3½ inch panel.

Circle Number 56 on Reader Reply Card

Demodulator

A new digital multimeter introduced by Philips Electronic Instruments can make readings as low as 10 microvolts and 10 picoamperes and yet combines bench-application operating convenience with high flexibility teleprinter/recorder outputs for production line use.

Accessories allow 2 millivolt—140 volt RF voltage measurements at frequencies at high as 700 MHz.

Digital Multimeter

ERASE RECORD REPRODUCE
MONO - STEREO

Professional Direct Replacement Heads with complete written and pictorial instructions.

Our factory will clean, rebuild, defat and test your head ASSEMBLY. Install new MI Heads... replace minor hardware and modify your gate to accept our "NON-POPPING" springs.

Circle Number 80 on Reader Reply Card

October, 1969

www.americanradiohistory.com
Get a $295 tape timer Free

An impossible dream?
Not when you buy the Studer A-62 studio tape recorder.
It's got every feature you've ever looked for in a professional tape recorder—plus others you'll find only in ours. Like the tape timer. It's not the famous Lyrec TIM-4 you know so well. This one's built in to the deck.

To get a direct reading in minutes and seconds, just run the recorder, even at fast speed. (The Timer's accurate to within 3 seconds in a 1/2 hour tape.) In the time it takes to rewind, your program will be timed.

We've also developed an electronic forward regulating servo loop that keeps the tape tension constant—regardless of reel size. Even the smallest reel hub won't cause any problem. So there's no speed variation, no need for reel size switching, and no varying tape tension. Ever.

And the Studer A-62 practically takes care of itself. It's precision-made by the Swiss. So it will run like a dream. A not-so-impossible dream.

Maximum resolution is 10 pico-amperes in the 14.00 nanoampere range, and 0.01 ohm in the 14 ohm range. DC voltage readings are accurate to 0.1 percent ±1 digit, with a maximum resolution of 10 microvolts in the 14.00 millivolt range.

Plug-in Multimeter
Hewlett-Packard's new Model 5268A Frequency Multiplier Plug-in is an economical new approach to the problem of how to get good resolution when measuring low frequencies with an electronic counter. In operation, Model 5268A multiplies the frequency of a CW or pulse-train input signal by 10, 100, or 1000, depending upon the setting of a front-panel switch. It then applies the multiplied frequency to the counter. For a given gate time, the counter's resolution improves by the multiplying factor; or for a given resolution, the gate time can be decreased by the multiplying factor.

As an example of what the new Frequency Multiplier can do, suppose the frequency of a 60 Hz input signal is to be measured in one second. Counting the frequency directly, the counter would read 60 ±1 count. With Model 5268A, the reading becomes 60,000 ±2 counts in the least significant digit for the same one-second gate time. Alternatively, the gate time can be reduced to one millisecond and a reading of 60 ±1 count can be obtained in 1/1000 of the previous time.

This is the most expensive turntable you can buy.

Also the cheapest.
It's a simple matter of economics. And quality.
At $1350, the EMT-930st Turntable costs considerably more than any other turntable. But, for your money, you get a precision-made turntable that really slashes maintenance costs because it's virtually trouble-free. ("Still in excellent condition despite ten years of hard use," says one pleased radio station."

Typically, you get ±0.035% rms flutter; low, low rumble; and you can cue to any beat or syllable with a wow-free start from the world's only remote-controlled turntable.

A lot of broadcasters must think the EMT-930st is a smart investment. Right now, there are more than 10,000 in use throughout the world. We know of only one greater value: our brochure. It's free. Send for it today.

As an example of what the new Frequency Multiplier can do, suppose the frequency of a 60 Hz input signal is to be measured in one second. Counting the frequency directly, the counter would read 60 ±1 count. With Model 5268A, the reading becomes 60,000 ±2 counts in the least significant digit for the same one-second gate time. Alternatively, the gate time can be reduced to one millisecond and a reading of 60 ±1 count can be obtained in 1/1000 of the previous time.

Digital Ohmmeter
Push button operation of CALICO Model 8303 allows selection of 9 ranges from 1 ohm full-scale to 100 megohms full-scale. Accuracies are ±.02% of reading and ±.01% of full scale. The non-blanking readout presentation features five Nixie® digits, including overrange, with true electronic storage to prevent operator fatigue.

Resolution of .01% and 20%
overranging are provided in all 9 ranges. The California Instruments unit input cable features four-wire Kelvin compensation, terminated in gold-plated Kelvin clips. Resistance is measured at the points of contact with the test sample only, thereby eliminating errors attributable to input cable resistance. Input circuits are completely protected against inadvertent voltage inputs. (An input voltage of 115 VAC, for example, will not damage the instrument.) Recovery to within the specified accuracy is instantaneous upon removal of the input voltage.

Portable Reference Light
Here is a unique item for use in setting correct color balance of color monitors and receivers.

The new Power-Optics Bloutube is a simple, light-weight, but sturdy device consisting of a 12-inch long, ½-inch diameter, 6500K, long life fluorescent tube, together with a photographic step wedge inside a clear, high impact acrylic tube held firmly at each end in molded, shock absorbent fittings.

The materials for both the tube and the photographic wedge have been selected for their color neutrality over the required spectral range. The tube is independent of ambient temperature and voltage fluctuations.

The Bloutube is used in the black and white mode and held horizontally across the receiver or monitor tube face. By direct comparison at the appropriate brightness level, the picture, which is arranged to display a suitable monochrome test signal,

The Professional Color Camera Alignment System

TELE-PAT IV-B
Test Pattern Illuminators and Precision Test Slides

Nearly 200 Tele-Pat IV-B Systems are presently being used by all major television stations and camera manufacturers to provide a consistent reference for color camera set-up and performance control to industry standards.

- Permits easy and rapid alignment of studio color cameras because of TELE-PAT's mobility.
- Facilitates immediate camera set-up reference.
- Provides uniformity between multiple camera set-ups.
- Positive illumination uniformity across the face of the slide!
- Accurate color temperature consistency - calibrated to NBS standard!
- Full field calibration of light output and color temperature!
- Unique quartz light, reflector and diffuser sub-system shows little or no ageing effects to both output and color temperature!

TELE-MEASUREMENTS, INC.
145 Main Ave., Clifton, N. J. 07014
(201) 473-8822; (212) 581-9020
Broadcast Distributor: Television Equipment Associates

October, 1969
SIDEBAND FILTER

ELIMINATE THE COST AND PROBLEMS OF HIGH POWER FILTERING: USE IT BETWEEN YOUR DRIVER AND POWER STAGES.

Model 43100
Frequency: 470 - 890 MHz
Insertion Loss: .75 dB @ Visual Carrier
Rejection, Lower Sideband: 20 dB
VSWR: 1.1:1
Power Handling: Up To 1 KW
Size: 30" x 8" x 7"
Weight: 54#

another product from MCI.....

Your one source for complete transmission line systems from transmitter to antenna; designed, built, installed and tested. Proven designs include Diplexers, Switches, Patch Panels, Directional Couplers, Loads and Hybrids plus all accessories. Complete custom installations are our specialty.

Building or converting? Discuss your requirement with us! For further information or a copy of our catalog, call or write:

MICRO COMMUNICATIONS INC.
GRENIER FIELD
MANCHESTER, NEW HAMPSHIRE 03103
(603) 624-4351

By virtue of its FET design, it achieves low loading (DC input Z is 11 megohms; AC input Z is 1 megohm) as well as a sensitivity that is 500-times that of a standard 20,000 ohms-per-volt volt-ohmmeter. Its 4½" 200 microamp meter and solid state circuitry are protected against burnout. The housing is high impact bakelite, with handle useable as instrument stand. Zero center position is available.

The unit offers: an FET transistor, 4 silicon transistors and 2 diodes; four Peak-To-Peak AC voltage ranges: 0 to 3.3, 33, 330, 1200 volts; four RMS AC voltage ranges: 0 to 1.2, 12, 120, 1200 volts; four DC voltage ranges: 0 to 1.2, 12, 120, 1200 volts; four resistance ranges: 0 to 1K, 0 to 100K, 0 to 10 meg., 0 to 1000K, 0 to 10000 meg.; and four dB ranges: -24 to +56dB. Size 5½" x 6¾" x 2½".

Stereo Preamp

QRK Electronic Products announces the availability of a monaural and Stereo Equalized Pre-Amplifier with more "headroom". These equalized turntable pre-amplifiers, called "Ultimate I and Ultimate II", will produce +10 dBm output at .08% distortion with a signal to noise ratio of 75 dB and a separation between channels in excess of 60 dB. They are supplied with self-contained power supply and balanced magnetically shielded output transformers.

FM Modulation Monitor

McMartin Industries, Inc. has developed a new FM modulation monitor calibrator. Designated as Model TX-300, it simplifies monitor calibration test procedures. In addition, it reduces the time required for precise determination of ± 75 kHz deviation (100% modulation) of transmitters operating in the FM broadcast band. The new calibrator is capable of modulation percentage measurements to within 0.25 dB accuracy.

The receiver portion of the TX-300 consists of an input mixer which produces a 10.7 MHz intermediate frequency, resulting from the heterodyning of the FM transmitter operating frequency. The 10.7 MHz signal is filtered, amplified and detected and the detector output signal is displayed on a front panel null indication meter.

Operation of the TX-300 is based on Bessel functions and requires only a few minutes from setup to completion.

Circle Number 62 on Reader Reply Card

Circle Number 63 on Reader Reply Card

Circle Number 64 on Reader Reply Card

Circle Number 65 on Reader Reply Card
Keyer Parts
(Continued from page 10)

R-37 2.7 K
R-38 3.3 K
R-39 39 Ohms
R-40 1 K
R-41 1 K
R-42 250 Ohms
R-43 680 Ohms
R-44 2.2 K
R-45 2.2 K
R-46 2.5 K POT,
R-47 150 K

48 ¼ watt 5% resistors in the following values
3 3.3 K Ohms
2 4.7 K Ohms
1 10 K Ohms
1 15 K Ohms
1 27 K Ohms
1 100 K Ohms
4 120 K Ohms
1 150 K Ohms
1 3½" Gray blank rack panel
1 3½" Blank bathtub chassis

Chassis mount BNC connectors UG 290/U
Cable mount BNC connectors UG 260/U
12.6 Volt filament transformer
(Thoradson 26 F 67 or equiv.)
11N4736A 6.8 volt Zenur Diodes (or equiv)
1 1 Amp/50 volt diodes (HEP 170)
1 40319 RCA transistor
1 2N3053 RCA transistor
1 1000 UF/15 Volt capacitors
1 HKL indicating fuse holder
1 Pilot Lamp Assembly for #327 Lamps
7 Asst. Test points
2 RCA CA-3036
1 RCA CA-3005
1 RCA CA-3001
2 RCA CA-3018
23 RF Chokes-Miller 9310-40 (No Subs)
25 ACP Ceramic Capacitors
(Aerovox ADM-10-560)
3 Pole 12 Position Ceramic Switches
(Centralab PA-2009 or Equiv.)
1 Dual 200 Ohm c.t. Pot
10 100 Ohm 1%, resistors
1 Molded AC cord with plug
3 AB series pots (500 Ohm, 2.5K, 2.5K)
2 Omit AFR 252 M, 2.5K Pots (No Subs)
1 AB series POT, 5K, with shaft lock
20 Elect. caps 100UF/15 Volt
(Sprague TE-1162 or Equiv.)
1 2N3638A
1 2N3856
2 680 Ohm ½ watt Res.
2 2N708
2 68 ohm 2 watt Res.
1 2.2K ½ watt Res.
1 4.7 K ½ watt Res.
1 2.5 K Pot (Any type)
1 0.02 UF/50 Volt (or higher) Cap.
1 10 Volt/1 watt Zenir Diode
6 6 Terminal, terminal strips

D. J.'s...Combo-Men... Station Managers... Technical Assistants...
Want to move up faster in Broadcasting?

Get yourself a First Class FCC License the CIE way!
No matter what your goals are in broadcasting—no matter which side of the microphone you want to work on—you’ll earn more money, and get to do “your own thing” a lot faster, if you’ve got a First Class FCC License.

If you’re a D.J. or Combo-Man looking for a better job and a chance to make a name for yourself—you’ll find it easier to get the spot you want at the station of your choice if you can say that you also have a First Class Ticket. Ask around and see.

If you’re a station manager—having a First Class Ticket means you’re better equipped to supervise and to substitute for technical personnel—and to choose and evaluate new equipment. So you’re worth more to any station owner.

If you’re an announcer, technical assistant—or just an ambitious beginner waiting for a lucky break—you’ll find that the “lucky breaks” come sooner if you have something more to offer your employer besides your interest and ambition. And that “something more” that separates the men from the boys in this business—is a First Class FCC License.

You’ve probably heard that it’s very difficult to pass the FCC License exam. For un-trained men, it is hard. In fact, an average of two out of every three men who take the FCC exam fail.

There is one way, however, of being pretty certain that you will breeze through the FCC exam with flying colors. That’s to take one of the FCC home study courses offered by the Cleveland Institute of Electronics. CIE courses explain things so clearly that better than 9 out of every 10 CIE graduates who take the FCC exam pass it. That’s why CIE can afford to offer this ironclad, money-back Warranty: “A Cleveland Institute of Electronics FCC License course will quickly prepare you for a Government FCC License. If you don’t pass the FCC exam after completing your course, CIE will refund all your tuition. You get an FCC License—or your money back!”

With that kind of Warranty you have nothing to lose on CIE training. And everything to gain.

So send today for your FREE book, “How To Get A Commercial FCC License.”

Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

Please send me your FREE book, “How To Get A Commercial FCC License.”

Print Name ____________________________
Address ________________________________
State __________________ Zip ____________
Age __________

[] Veteran & Service
[] G.I. Bill Information

Acredited Member National Home Study Council BE-60

Circle Number 40 on Reader Reply Card

October, 1969

www.americanradiohistory.com
People in the News

Lang Accepts IEC's Philippine Position

G. William Lang of Elgin, Ill., Engineering Consultant to the president and vice president of WGN Continental Broadcasting Company, has accepted an appointment with the International Executive Corps. He will serve as a volunteer executive to the Associated Broadcasting Company in Manila, Philippine Islands.

Lang is a pioneer in the radio field. He built his first broadcast transmitter in 1922 for station WFAU in Boston. In 1924, he joined the Westinghouse Company Broadcasting Division at stations WBZ-WBZA in Boston and Springfield, Mass. Lang joined WGN in Chicago in 1929 and has served as an engineer for radio, FM and television and as Chief Engineer of Radio.

Since its beginning in 1965, IESC has sent executives like Lang to over 1535 enterprises in 44 countries in Latin America the Middle East, Africa and South and East Asia. Its volunteer executives have worked on food production, health standards, textile and apparel manufacture, investment and banking systems, industrial processes, merchandising and market programs, mining and natural resource development, government and educational services and communications and tourist facilities.

Send Your News Of Staff Honors And Changes To Broadcast Engineering

The Perfect Log
STANCIL-HOFFMAN R-70
24 HR. 4 TRACK RECORDER

Here's a full 24 hour, 4 track logger that's so compact and versatile you can take it anywhere to handle any assignment with 100% dependability or rack mount it in the studio. A remarkable new series of silicon transistor plug-in amplifiers makes the R-70 the most versatile ever—AGC, recall, full remote or automatic control, stereo, fail-safe, synchronous time injection, etc. 4 channels round the clock, complete on just one 7" reel of 1/2" tape.

WRITE NOW FOR SPECIFICATIONS AND PRICES.
STANCIL-HOFFMAN CORP.
921 NORTH HIGHLAND, HOLLYWOOD, CALIFORNIA 90038

Circle Number 42 on Reader Reply Card

Sherman Is Named To Engineering Post

John M. Sherman has been named Director of Engineering for Midwest Radio and Television, Inc. by Lawrence F. Haeg, president of the corporation.

Sherman was responsible for engineering at WCCO Radio and WCCO Television. Now his sphere of influence has been expanded to cover WCCO-FM and the company's CATV properties.

J. M. Sherman

A pioneer in broadcast engineering, Sherman has been a consultant in assisting applicants in putting both radio and TV stations on the air. He has been responsible for the establishment of four TV stations and more than a dozen radio and FM stations through the years.

Other Appointments

Recently-elected officers of the California CATV Association are Keith Burcham, Coachella Valley Television, president; Vernon Gill, Times Mirror Co., vice president; Kester Kreig, TelePrompter of Santa Cruz, vice president-technical; Geoffrey Nathanson, Harriscope Cable Corp., secretary and Bill Hargan, Comas Signal Corp., Pinnole, treasurer.

Harry W. Hoth, president of KRDO Radio and TV in Colorado Springs, Colorado has been named that state's Broadcaster of the Year by the Colorado Broadcasters Association.
New Engineering Chiefs

Elmer Smalling III has joined the Westinghouse Broadcasting Co. and KYW-TV in Philadelphia, Pa. as chief engineer. He succeeds Charles Magee who is now with Westinghouse Broadcasting in New York City as manager of engineering for all stations.

Smalting is a member of the Royal Television Society of London, the IEEE, SMPTE, SBE, the Franklin Institute of Philadelphia and the American Chemical Society.

O. T. Lester, engineering technician, has been promoted to maintenance supervisor at Kaiser’s WKBF-TV Cleveland, Ohio. Lester joined the station in 1967 before it began operation.

He was previously a technician with WKTR-TV, Dayton, Ohio.

Paul Steele, producer/director at WBZ-TV Boston, has joined Kaiser-Globe Broadcasting’s WKBG-TV in a similar capacity. Steele previously was supervising producer/director at WTMJ-TV, Milwaukee.

Jerry D. Blandenbeker has been made chief engineer for WGHP-TV, High Point, N.C. He was formerly assistant chief engineer with WLWI-TV in Indianapolis, Indiana.

Charles Paul Crossno, electronics engineer for Continental Electronics Mfg. Co., has joined Wagenvoord Broadcasting Co., as director of engineering. His engineering responsibilities will also include the company’s AM/FM facility in New Orleans and station KRBE in Houston, Texas.

Robert O. Donahue has joined WJZ-TV, Channel 13, Baltimore, Md. Donahue came to WJZ-TV from KDKA-TV, Pittsburgh, WJZ-TV’s sister Group W (Westinghouse Broadcasting Company) station.

He is a member of the Society of Broadcast Engineers and the Society of Motion Picture and Television Engineers.

Lawrence A. Wilkinson has been named chief engineer of Metromedia’s KNEW Radio in San Francisco. He is replacing Fred West who has joined KNEW-TV as chief engineer.

Wilkinson was chief engineer at WCBM in Baltimore.

E. Allen Brown has been named chief engineer of radio stations WJEJ and WJEJ-FM, Hagerstown, Md. He succeeds Harry E. Hager.

Brown is active in amateur radio and is a member of the Antietam Radio Association. He has been with the Hagerstown Broadcasting Co. since 1968.

ONE OF THE BEST REASONS FOR BUYING A TAPECASTER CARTRIDGE MACHINE today, is tomorrow.

There are many good reasons for purchasing a TAPECASTER cartridge machine: its superb performance is insured by the use of only the highest quality components, each subjected to rigorous quality control testing by trained TAPECASTER technicians. Its advanced solid state design offers a new industry standard for excellence and dependability.

Standard in all TAPECASTER units is the new SUPER-TORQUE hysteresis synchronous motor. It is twice the weight of motors found in competitive units, contains extended life bearings and is rated for continuous duty with an estimated three times longer life.

The SUPER-TORQUE motor, exclusively in TAPECASTER units represents a significant breakthrough in professional tape cartridge machine design and promises far better performance with years of trouble-free operation.

Before you buy a tape cartridge machine today, consider tomorrow and you will find yourself buying TAPECASTER.

TAPECASTER TCM, INC.
BOX 682 - 12328 WILKINS AVENUE
ROCKVILLE, MARYLAND 20851

Please send additional information:

Name & Co. ____________________________
Street ________________________________
City ___________________________ State __ Zip ________

TAPECASTER TCM, INC.
Box 682 - 12328 Wilkins Avenue, Rockville, Maryland 20851
Phone: 942-0665 Area code 301

Circle Number 45 on Reader Reply Card

October, 1969
THE PRICE IS RIGHT

CROWN SX811

THE QUALITY AND RUGGEDNESS NEEDED FOR STUDIO USE... AT A PRICE LITTLE MORE THAN THE SEMI-PRO RECORDERS.

DEPENDABILITY
built for 10 years minimum continuous service
electronics recognized for industry supremacy
construction "rugged enough to withstand parachute drops" (Audio 4/68)
all silicon transistors and tantalum capacitors

SIMPLICITY
true straight-line threading with no arms computer logic control never breaks tape
modular construction for instant servicing
non-mechanical brakes never need adjusting
only ten moving parts in transport

PRICE
under $1500 for SX800 series, mono or stereo (as described)
under $1000 for SX700 series, mono or stereo (same features and construction less computer logic control)
under $600 for SP700 series players only, mono or stereo

Write Box 1000, Elkhart, Ind., 46514

MADE ONLY IN AMERICA
Circle Number 31 on Reader Reply Card

74

Call For Technical Papers Given By National Associations

A call for papers has been issued for the Joint Conference on Automatic Test Systems to be held April 14-16 in Birmingham, Warwickshire, England.

The conference will be concerned with the present state of the automatic test field and the probable direction of future developments. Papers will deal with industrial, transport, aviation and military applications, the techniques available and under development and the operational problems presented by the employment of automatic test and performance evaluation systems.

Papers should describe the progress made and the future prospects in any sphere of automatic testing and performance evaluation including: the determination of operational requirements; language; program preparation, proving and up-dating; measurement, stimuli, response and calculating devices; switching and connection networks; interface problems between automatic test systems and entities under test; control, command and communication systems; operation participation and man machine interfaces; management aspects and user organizational problems; use of test results for statistical purposes; the impact of automatic testing on equipment design and future trends.

Synopsis of proposed contributions are invited and should be sent no later than Oct. 31 to The Secretary, Organizing Committee for the Conference on Automatic Test Systems, The Institution of Electronic and Radio Engineers, 8-9, Bedford Square, London, W.C. 1, England.

The synopsis should be about 200 words long. Papers in final form will be due by Dec. 31.

Symposium Papers

Copies of the Proceedings of the 23rd Annual Symposium on Frequency Control have been printed and are available at $6.50 per copy through the Electronic Industries Association, 2001 Eye Street, N.W., Washington, D.C. 20006. The symposium was sponsored by the Solid State and Frequency Control Division, Electronic Components Laboratory, U.S. Army Electronics Command, Ft. Monmouth, N.J.

Included in the Proceedings are 42 papers presented during technical sessions on the following subjects: Trends in Frequency Control Applications, Fundamental Crystal Studies and Crystal Filters, Crystal Measuring Problems, Crystal Design Engineering and Processing, Oscillators, Synthesizers and Circuits, Timekeeping and Distribution, Atomic and Molecular Frequency Control and Optical Frequency Control.

Orders for the Proceedings, accompanied by a check made payable to EIA, should be sent to the Publications Committee, Annual Frequency Control Symposium, at EIA headquarters.

Unsurpassed: New... LANG SOLID STATE PROGRAM EQUALIZER

Unsurpassed in design, performance and versatility, the new LANG SOLID STATE PROGRAM EQUALIZER PEQ-2 incorporates the finest features found in quality equalizers.

PLUS THESE EXCLUSIVE FEATURES...

• Eight low boost shelf frequencies • Four low droop shelf frequencies • Eight high boost peak frequencies • Six high droop shelf frequencies • Frequency select switches and equalization controls for all boost and droop functions • All controls and switches may be used simultaneously • Low frequency peak boost by use of boost and droop controls • Equalization "off" lamp indicates when equalization is taking place • Engraved stainless steel panel blends harmoniously with other equipment • Plug-in transistor amplifier and power supply cards • Compact size 3½"x4½"x8½".

For complete details and new Lang Catalog write:

LANG ELECTRONICS INC.
107 FIFTH AVE., N.Y. 17
For all your audio needs - look to Lang!

Circle Number 44 on Reader Reply Card
Associations Set Conference Dates

The long hot summer is over and, as the news indicates, the annual conventions are back in full swing. Since there are so many new products being exhibited and since preliminary session plans include many high interest technical papers, engineers and technicians with an eye on the future should now be selecting the seminars, symposiums and conventions pertinent to their jobs.

For a more complete list of meetings, see the Industry Calendar on page 76.

NAB Meets

The National Association of Broadcasters has announced that license renewals, cigarette advertising, community antenna television and pay-TV will be major topics of discussion during its six Fall Conferences in October and November.

Other highlights include a presentation on plans for the 1970 observance of broadcasting's 50th anniversary and a panel discussion on cost savings for radio and television stations.

Vincent T. Wasilewski, NAB president, will deliver the featured luncheon address at each day-and-a-half meeting.

The Conferences will be held in Chicago, Ill., Oct. 23-24; in Boston, Mass., Oct. 27-28; in Atlanta, Ga., Oct. 30-31; in Dallas, Tex., Nov. 13-14; in Denver, Colo., Nov. 17-18 and Portland, Ore., Nov. 20-21.

A panel on cigarettes, CATV and pay-TV will be moderated at each conference by Willard E. Walbridge, KTRK-TV, Houston, Tex., chairman of NAB's Board of Directors. Panelists will be five station executives and five NAB staff members.

A license renewal panel will feature top staff members of the Federal Communications Commission, NAB's general counsel and a member of the Federal Communications Bar Association.

KARB Conference

The second annual Kansas Association of Radio Broadcasters Managers' Seminar is scheduled for November 21 at the Ramada Inn in Lawrence, Kan. The seminar will include round table discussions of the current problems facing radio managers and upcoming legislative activities in the radio field.

Meet the ADIA, a solid state audio distribution amplifier specifically designed for AM, FM and TV broadcast stations and recording studios. The ADIA distributes audio signals via five separate output channels (up to 25 with the addition of ADIA-X extenders), and incorporates a front-panel YM meter and monitor jack to permit visual and aural monitoring of the incoming signal at the output of the line amplifier. Response is essentially flat from 40 to 20,000 Hz, with low distortion and noise, 65 db channel isolation and 12 db peak factor. For further information, write or call today:

BROADCAST ELECTRONICS, INC.
8810 Brookville Road
Silver Spring, Maryland 20910
Area Code 301 • 588-4963
WHY BE LIMITED?

Vinten

PNEUMATIC PEDESTAL

VINTEN PEDESTALS GIVE
20" MORE RANGE — 10" HIGHER* —
10" LOWER THAN ORDINARY PEDESTALS

Vinten Cam Heads and Pneumatic TV Pedestals offer greater range and flexibility than any other equipment available.

A choice of two pedestals complement the famous Mark III Cam Head; Type 556 with standard 20" lift and Type 419 with a full 30" travel (more than any other pedestal). Vinten's pneumatic design provides unequaled ease of handling. Each will carry up to a 430 lb. load, fully counter-balanced and allows finger tip lifting and combined crab steering for operational efficiency.

We know you will agree, Vinten Pneumatic Pedestals are worthy companions to the well-known Mark III Cam Head which, unlike other cam heads, has accurate cam profile to ensure perfect balance at all tilt angles.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>TYPE 419 PEDESTAL</th>
<th>TYPE 556 PEDESTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Extended Range)</td>
<td>(Standard Range)</td>
</tr>
</tbody>
</table>

MARK III CAM HEAD

If you are looking for quality at reasonable prices, why not look into Vinten today—Manufactured in England by W. Vinten, Ltd. Literature and prices available from:

Sale Distributor
in U.S.A.

LISTECK TELEVISION EQUIPMENT CORPORATION
35 Cain Drive
Plainview, New York 11803

Circle Number 81 on Reader Reply Card

INDUSTRY CALENDAR

OCTOBER

18-21 The North Carolina Association of Broadcasters will sponsor its annual fall convention at the Robert E. Lee hotel, Winston-Salem, North Carolina.

20-23 The fall conference of the Electronic Industries Association will be held in Los Angeles.

22-24 The Indiana Broadcasters Association annual fall convention at the Sheraton hotel in French Lick.

23-24 The Ohio Association of Broadcasters will hold its annual fall convention at Neil House in Columbus, Ohio.

29-31 The Illinois Association of Broadcasters annual fall convention at the Drake-Oakbrook hotel in Oakbrook, Illinois.

NOVEMBER

8-12 The annual convention of the National Association of Educational Broadcasters at the Sheraton-Park hotel, Washington.

9-12 The Marriott motor hotel in Philadelphia will be the site of the annual seminar of the Broadcasters Promotion Association.

21 The Kansas Association of Broadcasters will host its annual fall management seminar at the Ramada Inn in Lawrence, Kansas.

DECEMBER

8-12 The National Association of Broadcasters will sponsor its annual engineering/management seminar at Purdue University in West Lafayette, Indiana.

15 The presentation of the first national awards in communications media by the American Civil Liberties Union will be held in New York.

JANUARY 1970

19-23 The winter meeting of the National Association of Broadcasters board of directors will be at the Sheraton Maui hotel in Maui, Hawaii.

26-29 The National Association of Religious Broadcasters will hold its annual convention in Washington.

Get Results with Classified Ads
In The Industry Leader
Broadcast Engineering
RECORDING ENGINEER

One of the nation’s leading producers of pre-recorded musical tapes, more than 6,500 selections, in the four major configurations from 70 recording labels, is seeking a qualified Engineer for the newly created position. Responsibilities will be in the area of: supervising mastering from studio masters, generating sequences and timing information, coordinating mastering with graphics and manufacturing. To qualify, you need a minimum of 3 years broadcast station, or recording studio experience at a responsible engineering level. Degree is required preferably in Engineering. You will join a team of professionals in a pleasant midwest community and receive an excellent starting salary plus a complete fringe benefit package. For more details, send letter with salary history to:

Broadcast Engineering, Dept. 231,
1014 Wyandotte St., Kansas City, Mo. 64105

An Equal Opportunity Employer

Closed Circuit Television Technician. Must be familiar with all phases of CCTV, including systems design, installation, maintenance and repair. Excellent opportunity created by expansion of our TV Division. Don Sahlein, Alan Gordon Enterprises, 5302 N. Cahuehena Blvd, N. Hollywood, Calif. 91601. 10-69-tt

Equipment for Sale

AM or FM Audio P.O.X. form kit $1.50 postpaid. Broadcast Service Co., Box 2605. Corpus Christi, Texas, 78405. 2-69-tf

Coax TRANSFER SWITCHES—3 1/4” Andrews 6720 50 ohm—Unused. $500.00 each. Sierra-Western Elect. Co., Oakland, Cal. 94607. Phone 415-832-3527. 3-69-tf

Surplus audio and video patch panels and patch cords. 500 to 500 ohm, repeat coils flat to 20,000 cycles. Send for list. Gulf Electro-Sales, Inc., 6325 Beverly Hill, Houston, Texas 77027. 4-69-121

For Sale: 30,000 feet #10 soft drawn, non-insulated new copper wire for antenna ground system. $1,000 P.O.B. Mo. Bridge, S.D. KOLY Radio. 8-69-61

CCTV Salesman Hardworking, aggressive salesman for rapidly expanding TV Division. Must have extensive experience in CCTV field. Excellent opportunity for advancement. Don Sahlein, Alan Gordon Enterprises, 5302 N. Cahuehena Blvd., N. Hollywood, Calif. 91601. 10-69-tt

1000 watt FM transmitter ITA FM-1000B. Also stereo generator. Box 2605. Corpus Christi, Texas, 78405. Other equipment available. 10-69-tf

CARTRIDGE TAPE EQUIPMENT—Completely reconditioned Spotmaster and Tapecarter Record/Playbacks, $375.00. Playbacks $250.00. 30-day money-back guarantee on all equipment. BROADCAST PRODUCTS CO., INC., 12230 Wilkins Avenue, Rockville, Maryland 20852. Ph: 301-933-3400. 10-69-tf

Buying? Selling?
For Better Results
Use BE
1014 Wyandotte
Kansas City, Mo. 64105

October, 1969
Advertisers' Index

American Data Corp. 20
Ampro Corp. 23
Andrew Corp. 23
Applied Electro Mechanics, Inc. 65, 75
Broadcast Electronics, Inc. 13, 65, 75
CBS Laboratories 17-18
CCA Electronics Corp 8, 56
Canon U.S.A., Inc. 23
Century Lighting, Inc. 75
Cleveland Institute of Electronics 71
Cohu Electronics, Inc. 1
Collins Radio Co. 5
Crown International 74
Electro-Voice, Inc. 49
Fairchild Recording Equip. Corp. ... 33
Elektromesstechnik W. Franz KG 3
Gates Radio Co. 11
Gotham Audio Corp. 68
Granger Associates 58
International Nuclear Corp. Cover 3
Japuro Antenna Co. 63
Lang Electronics, Inc. 74
Listec Television Equip. Corp. 76
Metron Instruments, Inc. 57
Metrotech, Inc. 51
Micro Communications, Inc. 70
Mincom Div., 3M Co. 44-45
Minneapolis Magnetic, Inc. 67
Philips Broadcast Equip. Corp. 28-29
Power Optics, Inc. 66
RCA Commercial Electronic System ... 60-61
Riker Video Industries Cover 2
Rupert Neve & Co. Ltd. 64
Scalia Radio Corp. 20
Sencore, Inc. 15
Spindler & Saupe 54
Spotmaster 13, 65, 75
Stancil-Hoffman Corp 72
Stanton Magnetics, Inc. 27
Superscope, Inc. 9
Taber Mfg. & Eng. Co. 66
Tape-A-Thon Corp 50
Tapecaster (TCM) 73
TeleMotion, Inc. 42-43
Tele-Measurements, Inc. 69
Telemet Company Cover 4
Television and Computer Corp. 10
Valad Electric Heating Co. 16
Varian Associates 14
Visual Electronics Corp. 21
Vital Industries, Inc. 7

Classified

Advertising rates in Classified Section are $155 per word, each insertion, and must be accompanied by cash to insure publication.

Each initial in G. J. Bill covers a full word. Upper case words, 30¢ each.

Minimum classified charge, $2.00.

For ads on which replies are sent to us for forwarding there is an additional charge of $2.00 to cover department number, etc., which is printed in advertising copy, and processing of replies.

Classified columns are not open to advertising of any products regularly produced by manufacturers unless used under the name of a company or firm owned by the manufacturer or a distributor.

Training

To advance in electronics, knowledge and ability are required. Grantham offers correspondence and resident instruction, in depth, leading to the degree of Associate in Science in Electronics Engineering. G. J. Bill approved. Credit for previous training and experience allowed.

Free Catalog: Write: Dept E-2, Grantham School of Electronics, 1500 N. Vermont Ave, Hollywood, California. 90027. 6-67-tf

Help Wanted

SENIOR DEVELOPMENT ENGINEERS

Openings created by steady planned growth through industry leadership. Personal growth through project responsibility for new or expanding product lines. Personal qualifications include EE degree and desire for professional growth in one of the following development functions:

TV Transmitting Equipment
Broadcast Audio Console
FM Transmitting Equipment

for further information call collect or send resume to Robert T. Fluent, Assistant Personnel Mgr.

GATES RADIO COMPANY
A Division of Harris-Intertype Corporation
Quincy, Illinois 62301 — (217) 222-8200
An Equal Opportunity Employer (M & F)

GATE ENGINEERS

IMMEDIATE OPENINGS: Qualify for any of the following positions: RCA CCTV Equipment, monochrome or color. TV Systems Engineers - Maintenance Technicians - Video Engineers - to work in either New York, New Jersey or California area. Write: RCA Radio, 1504 30th Ave, Hyde Park, New York 11040.

BROADCAST ENGINEERS — Immediate employment opportunities for West Virginia's first public educational TV station, WTVN-TV, located in the beautiful mountain resort area of West Virginia seventy miles south of Pittsburgh, Pennsylvania. Complete color broadcast facility with latest equipment. Excellent fringe benefits. Send resume to West Virginia University, Morgantown, West Virginia 26506. An equal opportunity employer.

Chief Engineer wanted for new UHF operation in rapidly expanding southeastern market. Our carded air date is January 1, 1970. This is definitely a good opportunity for the right man. All replies kept in confidence. Send resume and salary requirements to: Broadcast Engineering Magazine, Dept 333, 1014 Wyandotte St, Kansas City, Mo, 64105. 10-68-tf

www.americanradiohistory.com
transistorized background colorizer
for creating color backgrounds.

* When used with any modern special effects equipment, this unit can create color tinting and color matting from any black and white source.
* With the proper input signals a complete composite color signal is available for use with any modern production color switcher.
* Luminance levels are automatically set to approximate the values for 75% color bars. This is done by the hue selector switch.
* Saturation can be adjustable to suit desires.
* Has a one-year guarantee.
$675.00 FOB Nashville

INTERNATIONAL
NUCLEAR CORPORATION
608 Norris Avenue
Nashville, Tennessee 37204
615-254-3385
New Catalog Sent On Request.