Radio warning system status report
page 16

TV Custom Audio
PPL Applications
Cable Engineering
HELIAX
COAXIAL CABLE...

the ultimate
in high power
performance

The one cable that has all the advantages
for transmission of high power RF. One piece connects
transmitter to antenna. Eliminates the numerous flanges
and bullets of rigid systems. HELIAAX is easiest
to plan. Easiest to install. Most reliable.
Corrugated conductors eliminate the differential
expansion problems. Cable can be clamped directly to
tower, buried directly in earth.
Standard types and sizes up to 8”.
Communicate with Andrew.

ANDREW CORPORATION, 10500 W. 153RD STREET, ORLAND PARK, ILLINOIS 60462, PHONE (312) 349-3300
Cohu's Broadcast Color Film Camera offers superlative performance with complete convenience at a moderate price. Rapidly adjust for poor film colorimetry with "Instant Paint Control" and return to normal colorimetry with the touch of a button. Enjoy ease of operation with precision triple action automatic circuitry. Reduce annual retubing costs to an industry low with three long-life separate mesh vidicons.

A new optical system design virtually eliminates flare and ghosting to give you unsurpassed colorimetry. All circuit boards are silkscreened with each circuit function clearly designated by name. The price includes image enhancer, color encoder, remote setup and control panels, remote setup and waveform monitors and a cable connector kit.

For complete information on the Model 1500 contact Cohu Electronics, Inc., Box 623, San Diego, California 92112 Telephone 714-277-6700 TWX 910-335-1244

REGISTRATION

REGISTER THE CAMERA IN ONLY 2 TO 3 MINUTES

COLOR BALANCE IN LESS THAN 3 MINUTES

CHANGE A VIDICON IN 30 SECONDS WITHOUT DISTURBING THE YOKE OR OPTICAL ALIGNMENT

February, 1972
22 Directional Adjustments. The author reveals a plan designed for making directional antenna adjustments with a small engineering team. J. G. Rountree.

26 A Custom Audio Design For TV. There was not an abundance of money or engineering time, but the maintenance supervisor of a Denver TV station tells how a completely new audio production room was designed and built. Les Dunn.

32 Remember The Versatile Relay? The author reminds us that while solid state components are gaining acceptance, there are still many meaningful uses for the relay. Fred Chapman.

34 Communication Applications for the PPL. A Signetics design engineer discusses the theory and application of the phase locked loop. Jack Mattis.

40 An Old Unit Provides New Answers. The Monarch Network worked for three years with a telephone company to improve telephone remotes. Their surprising results came by using the recorder connector. Sidney King.

ABOUT THE COVER
The cover this month shows an inside view of a van and crew on remote. The big story this month is the OTP policy on emergency broadcasting. See article on page 16. Photo by Ampex.

DEPARTMENTS

<table>
<thead>
<tr>
<th>Department</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>4</td>
</tr>
<tr>
<td>Letters to the Editor</td>
<td>8</td>
</tr>
<tr>
<td>Industry News</td>
<td>11</td>
</tr>
<tr>
<td>Cable Engineering</td>
<td>CE-1</td>
</tr>
<tr>
<td>Engineer's Exchange</td>
<td>42</td>
</tr>
<tr>
<td>New Products</td>
<td>45</td>
</tr>
<tr>
<td>Tech Data</td>
<td>52</td>
</tr>
<tr>
<td>Book Reviews</td>
<td>51</td>
</tr>
<tr>
<td>Ad Index</td>
<td>53</td>
</tr>
<tr>
<td>Classified Ads</td>
<td>54</td>
</tr>
</tbody>
</table>

Copyright, 1972. Howard W. Sams & Co., Inc. All Rights Reserved. Material may not be reproduced or photocopied in any form without written permission of publisher.
If you are considering TV automation for your station, write for our new detailed brochure describing the APC-2000 Automation System and Associated Master Control Switching equipment. GVG Computer-Controlled Systems are supplied in building block form. This feature allows users to start with 15-event break capability, which can be expanded at a later date to provide a full day's programming with automatic logging.

THE GRASS VALLEY GROUP, INC.

FOR ADDITIONAL INFORMATION, CONTACT GRAVCO SALES, INC.

6515 Sunset Blvd.
LOS ANGELES, CALIF.
(213) 482-6618

Station Plaza East
GREAT NECK, N.Y.
(516) 487-1311

125 South Wilke Road
ARLINGTON HEIGHTS, ILL.
(312) 394-1344

Redbird Airport
DALLAS, TEXAS
(214) 330-1245

1644 Tullie Circle, N.E.
ATLANTA, GEORGIA
(404) 634-0521

Circle Number 5 on Reader Reply Card

February, 1972
TV Remote Control Rules Go Into Effect Unchanged
The Commission has denied several petitions for re-consideration of various aspects of the new rules governing the remote control of television broadcast transmitters. The three major networks, as well as several individual licensees, had complained about the required five-day-a-week transmitter inspections, the requirement for observing the VIT signal every thirty minutes, and the components of the prescribed VIT insertion signal (See Dec., 1971 Broadcast Engineering).

Even these various reconsideration petitions disagreed among themselves as to what should be substituted for the presently-required VIT waveform. The absence of such agreement left the Commission little choice but to prefer the waveform already adopted. On the matters of half-hourly logging and daily inspection, the Commission emphasized that the primary reason for the adoption of the new rules had been to improve color picture quality, and that considerations of economies in transmitter operation were only secondary.

The Commission did, however, provide additional time for UHF ETV stations to comply with the new rules when operating by remote control, and extended the date to April 30, 1974. The present deadlines of April 30, 1972 for commercial UHF stations and April 1, 1972 for commercial VHF stations remain in effect. Several new remote-control authorizations under the new rules have already been issued.

Canadian Domestic Satellite Plans Well Under Way
While the FCC continues to delay action on pending proposals for a domestic satellite relay system for the U.S., Canada is pressing ahead with its own plans. The Canadian organization, known as Telesat Canada, is a private corporation chartered by Parliament in 1965 and subject to the usual common-carrier regulation. Ground stations are now under construction and the components of the satellite are being tested. Present schedules call for a launch of the satellite from Cape Kennedy before the end of 1972. Regular operation is expected to begin shortly thereafter.

The Canadian satellite system will be used for the relaying of television, radio, and telephone communications. Satellite relaying is of particular importance in Canada, particularly in the remote areas of northern Canada which presently have no other reliable means of communication.
now... a company that has AM, FM and TV frequency and modulation monitoring systems.

Now... Belar. Belar is the only company that has the necessary type approvals on all three monitoring systems. Belar accuracy permits use of the maximum power allowable and maximum power means maximum profit. Add to this that all Belar equipment is immediately available.

Isn't it time you stopped running around and finally settled for a company that can handle all your frequency and modulation monitoring needs? Contact Arno Meyer... he'll show you the way.
Controversy Continues on Picture Coding System

The Commission has granted International Digisonics Corp. (IDC) additional time to submit technical studies in support of its proposals for relaxed tolerances on the transmission of coded picture information (See Nov., 1971 D.C.). In the meantime, the television networks and individual stations have been studying the present coded transmissions by means of pulse-cross displays which, by grouping the four corners of the picture near the center of the kinescope, make observation of the coded corners relatively simple.

The observations are generally indicating that even under the proposed relaxed rules, the coded material as it is now being transmitted falls outside of the permitted areas for a substantial portion of the time. CBS has given notice that after February 1, 1972, it will no longer transmit material carrying the IDC code, an action which has brought loud protests from IDC. IDC has asked the Commission to permit the employment of codes falling outside of the permitted area for periods of time not to exceed one second in duration.

New Height Determination Technique to be Permitted

The Commission has announced that applicants for land mobile base station licenses in the 470-512 MHz band (shared with TV broadcasting), who must make a showing of the effective antenna height, may do so by employing a computer method originally developed by the Commission. This method employs computer tapes developed by the U.S. Air Force, which reduce ground elevation data on topographic maps to a computer equivalent. Comparisons by the Commission have indicated that the accuracy of the method compares quite favorably with conventional manual methods.

The principal advantages of the computer technique are that answers may be obtained at only a fraction of the time and cost of present methods. The new method has obvious applicability to FM and TV broadcasting, but for the present the Commission is confining its use to land mobile applications.

The Commission has also proposed to permit land mobile base stations in the 470-512 MHz band to employ effective antenna heights in excess of 500 feet above average terrain, the presently prescribed limit. A reduction in power would be required for effective antenna heights above 500 feet to avoid any possibility of increased interference.

Short Circuits

Congratulations are in order for veteran FCC'er Harold Kassens who has been appointed Assistant Chief of the Bureau... A VHF television translator in Michigan has been ordered off the air to protect a new UHF station... Several CATV systems in the Midwest which have proposed distant signal carriage permissible under the Commission's "letter of intent" to Congress (See Sept., 1971 D.C.) have been reminded that the proposed new rules are not yet in effect.
Vidifont is the completely automated television play system that does all your titling instantaneously. One typist can compose news flashes and other messages in real time that are graphically superior. Because Vidifont features proportional letter spacing...a choice of type styles and sizes...upper and lower case characters...word-by-word color...push-button entering...three-speed flashing...built-in ringing...and roll and crawl. Vidifont can pay back your investment in less than one year...while making your station the undisputed leader in your market.

CBS LABORATORIES
A Division of Columbia Broadcasting System, Inc.
227 High Ridge Road, Stamford, Connecticut 06905

Circle Number 7 on Reader Reply Card
Dear Editor:

Compatible single side band for the AM broadcast band as suggested by Mr. Floyd's letter in November BE, is not a practical solution to the AM interference of coverage problem.

CSSB cannot be demodulated by the universally used diode detector. Both sidebands must be present for low distortion demodulation. In the case where the sideband and carrier amplitudes are the same, the demodulated output of a diode will contain 22 percent 2nd harmonic distortion. In older CSSB systems this was overcome by generating distortion products at the transmitter out of phase with those generated by the diode to produce a resultant signal of low distortion. Theoretically this would work if the receiver IF bandwidth was sufficient—requiring careful tuning—and the phase and amplitude of the transmitted distortion information cancelled at the diode.

The only way to demodulate a SSB+carrier signal is by using exalted carrier or product detector circuitry such as the commercial communications systems use—something not found in entertainment receivers. Old fashioned or not, AM is still pretty good.

Francis Sherwood
Mgr. Audio Engineering
Radio Free Europe
Munich, Germany

Exciter Identified
By BE Reader

Dear Editor:

In the December issue of BE, Letters to the Editor, there was a letter "Exciter Identification Help Needed." We have advised Mark Worley of KAMU-TV that the exciter is a Standard Electronics exciter. An instruction book and

(Continued on page 10)

SEND YOUR LETTERS TO THE EDITOR to Broadcast Engineering 1014 Wyandotte Kansas City, Mo. 64105

SPARTA ELECTRONIC CORPORATION

5851 Florin-Percyms Road SACRAMENTO, CALIFORNIA 95820 (916) 363-5353

A DIVISION OF COMPUTER EQUIPMENT CORPORATION

Circle Number 41 on Reader Reply Card
Black and white into color. Think what it means to you...

See it in operation now. Color at half the cost. In less time. With greater operational flexibility. That's what the Abto Equation means to you. A whole new horizon...or should we say rainbow...of possibilities in programming.

The Abto system is amazingly simple, inexpensive to install. The more you use it, the more money you save. And if you wish to use black and white or conventional color film, the Abto system handles them with no problem. Yes, Abtography even works with slides. Shoot in black and white. Show in full color.

The only problem with the Abto Equation is that it's hard to believe. Seeing is still believing. Arrange a demonstration. Come skeptical. Get the facts in black and white. You'll leave thinking color.

Demonstrations will be arranged in the order in which requests are received. We anticipate a deluge.

abto INC.

1926 BROADWAY / NEW YORK, N.Y. 10023 / (212) 787-5000
Letters
(Continued from page 8)
schematic have also been sent to
Mr. Worley.
We appreciate the comment that
"the unit is well built with quality
components..." Thank you for the
service your fine publication pro-
vides to both the broadcaster and
to us, the manufacturer.

Bill Zillger, Sales Mgr.
Red Bank, N.J.

Elephant Needed With
Light Step

Dear Editor:

I am at a loss how a broadcast
station is to maintain a good
weight on a record when that
recording is warped or other-
wise damaged. I have almost
had to hire an elephant to
weight the tone arm to keep
the stylus from bouncing on
the disc. I would assume that
this method is disastrous to
stereophonic
Another related problem is the
fact that people entering the con-
trol room, and perhaps stepping too
heavily, cause the needle to bounce
off the record (this occurs on
weights lighter than 2 grams). The
tone arm I am using is a Viscous
damped Gray arm with a Stanton
cartridge.

Randall B. Sturm, CE
KWYR AM-FM
Winner, S.D.

Moving?
Send Your Change
Of Address To:
Broadcast Engineering
1014 Wyandotte
Kansas City, Mo. 64105

National Radio Month
Theme For 1972 Is:
"Sound of Service"
The National Association of
Broadcasters announced the selec-
tion of "Radio...the Sound of
Service" as the 1972 National
Radio Month theme.
James H. Hulbert, NAB execu-
tive vice president for public rela-
tions said the theme was chosen
"to reflect the continuing relation-
ship between the nation's radio
stations and the people they serve."
National Radio Month, an an-
nual, month-long event celebrated
each May, is designed to acquain-
t the public with the many and varied
services radio provides. The ob-
servance is sponsored jointly by
NAB, its nationwide radio mem-
ership and the four national radio
networks.

Elephant Needed With Light Step

Dear Editor:

I am at a loss how a broadcast
station is to maintain a good
weight on a record when that
recording is warped or other-
wise damaged. I have almost
had to hire an elephant to
weight the tone arm to keep
the stylus from bouncing on
the disc. I would assume that
this method is disastrous to stereophonic
Another related problem is the
fact that people entering the con-
trol room, and perhaps stepping too
heavily, cause the needle to bounce
off the record (this occurs on
weights lighter than 2 grams). The
tone arm I am using is a Viscous
damped Gray arm with a Stanton
cartridge.

Randall B. Sturm, CE
KWYR AM-FM
Winner, S.D.

Moving?
Send Your Change
Of Address To:
Broadcast Engineering
1014 Wyandotte
Kansas City, Mo. 64105

National Radio Month
Theme For 1972 Is:
"Sound of Service"
The National Association of
Broadcasters announced the selec-
tion of "Radio...the Sound of
Service" as the 1972 National
Radio Month theme.
James H. Hulbert, NAB execu-
tive vice president for public rela-
tions said the theme was chosen
"to reflect the continuing relation-
ship between the nation's radio
stations and the people they serve."
National Radio Month, an an-
nual, month-long event celebrated
each May, is designed to acquain-
t the public with the many and varied
services radio provides. The ob-
servance is sponsored jointly by
NAB, its nationwide radio mem-
ership and the four national radio
networks.

Elephant Needed With Light Step

Dear Editor:

I am at a loss how a broadcast
station is to maintain a good
weight on a record when that
recording is warped or other-
wise damaged. I have almost
had to hire an elephant to
weight the tone arm to keep
the stylus from bouncing on
the disc. I would assume that
this method is disastrous to stereophonic
Another related problem is the
fact that people entering the con-
trol room, and perhaps stepping too
heavily, cause the needle to bounce
off the record (this occurs on
weights lighter than 2 grams). The
tone arm I am using is a Viscous
damped Gray arm with a Stanton
cartridge.

Randall B. Sturm, CE
KWYR AM-FM
Winner, S.D.

Moving?
Send Your Change
Of Address To:
Broadcast Engineering
1014 Wyandotte
Kansas City, Mo. 64105

National Radio Month
Theme For 1972 Is:
"Sound of Service"
The National Association of
Broadcasters announced the selec-
tion of "Radio...the Sound of
Service" as the 1972 National
Radio Month theme.
James H. Hulbert, NAB execu-
tive vice president for public rela-
tions said the theme was chosen
"to reflect the continuing relation-
ship between the nation's radio
stations and the people they serve."
National Radio Month, an an-
nual, month-long event celebrated
each May, is designed to acquain-
t the public with the many and varied
services radio provides. The ob-
servance is sponsored jointly by
NAB, its nationwide radio mem-
ership and the four national radio
networks.

Elephant Needed With Light Step

Dear Editor:

I am at a loss how a broadcast
station is to maintain a good
weight on a record when that
recording is warped or other-
wise damaged. I have almost
had to hire an elephant to
weight the tone arm to keep
the stylus from bouncing on
the disc. I would assume that
this method is disastrous to stereophonic
Another related problem is the
fact that people entering the con-
trol room, and perhaps stepping too
heavily, cause the needle to bounce
off the record (this occurs on
weights lighter than 2 grams). The
tone arm I am using is a Viscous
damped Gray arm with a Stanton
cartridge.

Randall B. Sturm, CE
KWYR AM-FM
Winner, S.D.

Moving?
Send Your Change
Of Address To:
Broadcast Engineering
1014 Wyandotte
Kansas City, Mo. 64105

National Radio Month
Theme For 1972 Is:
"Sound of Service"
The National Association of
Broadcasters announced the selec-
tion of "Radio...the Sound of
Service" as the 1972 National
Radio Month theme.
James H. Hulbert, NAB execu-
tive vice president for public rela-
tions said the theme was chosen
"to reflect the continuing relation-
ship between the nation's radio
stations and the people they serve."
National Radio Month, an an-
nual, month-long event celebrated
each May, is designed to acquain-
t the public with the many and varied
services radio provides. The ob-
servance is sponsored jointly by
NAB, its nationwide radio mem-
ership and the four national radio
networks.

Elephant Needed With Light Step

Dear Editor:

I am at a loss how a broadcast
station is to maintain a good
weight on a record when that
recording is warped or other-
wise damaged. I have almost
had to hire an elephant to
weight the tone arm to keep
the stylus from bouncing on
the disc. I would assume that
this method is disastrous to stereophonic
Another related problem is the
fact that people entering the con-
trol room, and perhaps stepping too
heavily, cause the needle to bounce
off the record (this occurs on
weights lighter than 2 grams). The
tone arm I am using is a Viscous
damped Gray arm with a Stanton
cartridge.
Remote Control Extension

UHF noncommercial educational television broadcast stations have been granted time until April 30, 1974, by the Commission, to comply fully with recently adopted rules governing the remote control operation of UHF and VHF television stations (Docket 18425).

The remote control regulations, which amended Part 73 of the rules, were approved by the Commission in two actions—a First Report and Order, adopted March 17, 1971, stating the basic requirements for remote control of VHF and UHF television stations, and a Second Report and Order, adopted August 18, 1971, specifying regulations for the use of vertical interval test signals by remote controlled stations.

The Commission authorized additional time for UHF ETV stations to meet certain requirements of the new rules in response to petitions for reconsideration of the First Report and Order, but denied any other relief. Petitions for reconsideration of the Second Report and Order were also denied.

(Continued on page 12)

FM Translator Permits Granted

The first applications for construction permits (CP) for FM radio translator stations, in the FM radio translator service created by the Commission in September 1970, have been granted by the Chief, FCC Broadcast Bureau.

Granted simultaneously, on December 21, 1971, were CPs to: Wisconsin Christian Broadcasting Foundation, Inc., to serve Viroqua, Wis., by rebroadcasting WRVB-FM, Madison, Wis., on 106.3 MHz (BPFT-1); Communications Investment Corporation, to serve Evanston, Wyo., by rebroadcasting KQMU, Salt Lake City, Utah, on 105.5 MHz (BPFT-4); and KSL, Incorporated, to serve Brigham City, Utah, by rebroadcasting KSL-FM, Salt Lake City, on 105.5 (BPFT-8).

Although more than twenty CP applications for FM translator stations have been filed in recent months, action on some of them was delayed because of the lack of type accepted equipment. Several manufacturers have recently indicated that they intend to seek type acceptance for their FM Translators.

Each of the three granted CP applications proposes operation with peak transmitter output power of one watt. Under the rules, FM translator stations in areas west of the Mississippi (except central and southern California) would be permitted to operate with ten watts peak transmitter output power.

The translators are used to improve a broadcast station's signal in sections in its service area where it may be weak because of terrain or other conditions. A translator is actually a low power broadcasting station which receives the station's signal and rebroadcasts it.

Gates' new BC-1H 1000 watt AM transmitter features reliable, long life 833A tubes, solid state oscillator, instantaneous power cut back to 250 watts, and 120% positive peak modulation capabilities. It will be operating reliably at your station for years to come. Get the details on tomorrow's transmitter today. Write Gates Radio Company, 123 Hampshire Street, Quincy, Illinois 62301.
The First Report and Order required stations to make transmitter inspections at least five times each week, although weekly inspections were permitted if the station was equipped for auxiliary operation with at least 20 percent of authorized power in the event of main transmitter failure. UHF stations, formerly operated by remote control under rules requiring transmitter inspections only once a week, were to become subject to the five-a-week rule requirements within one year of the effective date of the rules.

Petitions for reconsideration of the First Report and Order, filed by a number of UHF licensees and by the National Association of Educational Broadcasters, asked that all UHF be exempted from the new inspection requirement or be granted a five year grace period.

In denying these requests, the Commission said that the best overall service to the public will be provided when remote controlled stations all operate in full compliance with the amended rules. It noted, however, that UHF ETV stations have unique financing problems (the larger part of their funds come from state legislative action or from Federal grants, the Commission said, and a long lead time is usually required for obtaining additional amounts) and found good cause for giving educational stations a longer time to meet the more frequent inspection requirement. UHF ETV stations may conduct transmitter inspections at intervals of one week, whether or not the stations have facilities for auxiliary operation, until April 30, 1974.

Commercial UHF stations will have until April 30, 1972, to comply with the regulations, as originally proposed.

Petitions for reconsideration of the Second Report and Order were filed by the three major television networks, Kaiser Broadcasting Corp. and Forward Communications Corp., objecting to certain characteristics of the test signals that were adopted, the degree to which the test signals occupy the vertical interval and to requirements for observing and logging the test signals.

Denying these requests, the Commission stated that while there might be some redundancy in the prescribed test signal format, it did not seem to place a substantial burden on the broadcaster, or, at this time, to cause "needlessly great occupation of vertical interval space which might otherwise immediately be devoted to other useful purposes." "The availability of all signals affords the broadcaster a considerable degree of flexibility in developing effective procedures for the surveillance of transmitting system performance."

Equal Opportunities
In Broadcasting
For Women

Section VI of various broadcast application forms (FCC Forms 301, 303, 309, 311, 324, 340, and 342) which licensees use to file equal employment opportunity programs designed for Blacks, Orientals, American Indians, and Spanish-surnamed Americans has been amended by the FCC to include equal employment opportunity programs for women (Docket 19269). The rule amendment becomes effective February 4, 1972.

Comment on the amendment was invited in a rule making notice released on June 28, 1971, in response to a request from the National Organization for Women (NOW).

The Commission said that almost all of the comments filed in response to the notice supported the NOW proposal. Opposition to the change was expressed by the National Association of Broadcasters (NAB) and Mrs. Virginia F. Pate, President and General Manager, The Chesapeake Broadcasting Corporation.

NAB and Mrs. Pate argued that licensees are already required to establish equal employment opportunity programs designed to prevent discrimination on the basis of sex and that it would be an additional burden for the licensee to require that specific programs concerning women be filed with the Commission. Asserting that no pattern of discrimination against women in the broadcasting industry has been established, NAB said...
V.O.V. ENDS BASEBAND WASTE AND REDUCES MICROWAVE POLLUTION

Now there's no longer a need to have separate microwave systems for video and voice transmission. With Coastcom's Voice Over Video (V.O.V.) system you can intermix data, telemetry, and voice signals with broadcast quality video on the same microwave baseband.

The result? A marked increase in operating efficiency and lower equipment costs with little or no modification of existing systems. V.O.V. is the ideal way to add data and voice transmission to your ETV, law enforcement or medical microwave.

The system's extensive processing, level regulation, and quality filtering eliminate video interference.

If your school, government, or business needs more transmission capability, don't add another microwave or cable system, add V.O.V. and use all of your present baseband. For more information, call or write Coastcom, 534-20th Street, Oakland, California 94612, (415) 465-5900

February, 1972

that since a specific program cannot be drawn up for every kind of minority group, a line must be drawn somewhere—and it should be drawn to exclude women from the filing requirement. In its comment on the NOW proposal to add the full text of Section VI to the rules (73.125, 73.301, 73.599, 73.680 and 73.793), NAB stated that the provisions of Section VI are flexible guidelines which are not precise enough to be stated as rules, and that adding the section to the rules will not enhance its availability to the public.

The Commission, while agreeing with NAB that specific programs cannot be developed for every conceivable group or subgroup, said that in considering a requirement of specific programs and reporting requirements “it is necessary to focus on those groups which comprise a substantial portion of the population and which have in the past suffered from discrimination in employment.” The Commission pointed out that women make up over 50 percent of the population, that the history of employment discrimination against them is “amply demonstrated by the comments in this proceeding,” and it is “fully appropriate” that broadcasters provide equal employment opportunities for women “as well as for Negroes, Orientals, American Indians and Spanish-surnamed Americans.”

The Commission said that the guidelines set out in Section VI are flexible in their application to particular situations, and we do not intend to change their character in this respect.” It said that it saw no undue burden which would outweigh the substantial public benefit of requiring broadcasters to articulate the programs and file them with the Commission.

Stating that its general practice is to avoid encumbering the rules with lengthy application forms, the Commission said it did not consider it appropriate to repeat the text of Section VI in the rules or make the guidelines “more rigid by casting them as formal rules.” However, a provision generally stating the requirement that equal employment opportunity programs be filed was added to appropriate sections of the rules.

In past columns in this series we reported on a novel concept for improved distant sound stage pickup that involves locating the microphone quite close to the floor. Further experiments by a number of engineers have fully proven the validity of the idea.

Briefly, the technique is designed to eliminate pickup of out-of-phase sound reflected from the floor which degrades level, frequency response, and gain before feedback. However, to work properly, the microphone head must be within

The success of the “floor wave” concept gave rise to the need for suitable microphone stands. And while the purpose can be served with traditional hardware approaches, a simpler method has been devised to solve the problem.

The new "stand" (Model 411) is simply a block of Acoustifoam™ with a hollow core, about 8" long and formed as a half-cylinder with a 2" radius. The microphone is inserted from the bottom into the hollow core so that only the connector projects from one end (the other end is closed to surround the microphone head).

The final result is a 2"-high mound of charcoal grey foam with a cable extending from the back. Its inconspicuous appearance has earned it the informal nickname of "stake mouse." Despite its simple nature, the foam has several advantages over more complex hardware approaches. It provides an integral windscreen, plus protection against dust from the floor, while shielding the microphone from accidental impacts from performers.

Foam characteristics are carefully chosen and controlled to offer no acoustic barrier, while supporting the microphone at a uniform distance from the mounting surface and offering excellent isolation. The "mouse" is washable, and has no moving parts to adjust, wear or break. Its large contact area makes it unlikely to creep or bounce, and it can be attached to the floor or (even a vertical surface) with double-sided tape. It can be used on desk tops for talk shows or news programs. And there is no gleaming metal or complex shape to distract the audience.

Finally, because it is simple to manufacture, the cost is low. The Model 411, designed exclusively for the Electro-Voice RE10 and RE15 Super Cardiod Microphones, is less than $10.00 to professional users.

For reprints of other discussions in this series, or details on any E-V product, write: ELECTRO-VOICE, INC., Dept. 223V 638 Cecil St., Buchanan, Michigan 49107

EASY DOES IT... BETTER!

ROBERT F. WERNHOLD, III
Project Engineer
Microphones

Number 87 In a series of discussions by Electro-Voice engineers

Circle Number 13 on Reader Reply Card
a new
mcmartin monitor
fm frequency & modulation

The new McMartin TBM-3700 combines FM frequency deviation and modulation percentage monitoring in a single rack-mount unit. The two functions are independent of each other. Frequency measurement or calibration adjustment has no effect on modulation monitoring or audio feed to house monitoring systems. AM and FM signal-to-noise ratios may be read directly as well as the inherent internal noise level of the monitor. Automatic calibration of the 100% modulation level is made internally.

The TBM-3700 is compatible with the McMartin TBM-2200 and TBM-2000A for stereo and/or SCA monitoring. Long the leader in FCC Type-Approved monitoring equipment, McMartin expands its “full-choice” line of broadcast products with the TBM-3700.

For full details, contact: Broadcast Product Manager (402) 342-2753

McMartin
605 north thirteenth street • omaha, nebraska • 68102 •

Circle Number 15 on Reader Reply Card

Low Cost
FM Stereo Monitoring...
with KENWOOD KC-6060A Audio Lab Scope

- 3"-screen Oscilloscope
- Built-in 1 kHz Oscillator
- 5-position Selector Switch
- Built-in Sweep Generator
- Solid-state Circuits
- Price: $219.95

For complete specifications, write: KENWOOD
15777 S. Broadway. Gardena, Calif. 90248
72-02 Fifty-first Ave., Woodside, N.Y. 11377

Circle Number 14 on Reader Reply Card

Minnesota ITV Goes To System With Talkback

More than 700 hours of college credits are being beamed for the first time by the University of Minnesota this semester to off-campus students through a new half-million dollar two-channel microwave TV network completed here by Genesys Systems, Inc., a Palo Alto, California communications firm.

The new TV network called UNITE (University-Industry Television for Education), went on the air with 20 courses on September 27.

Richard A. Swalin, dean of the University's Institute of Technology said the system was provided to meet the growing demand for mid-career education in graduate and advanced level courses in science and engineering. "The new instructional TV network," he stressed, "makes it possible for the University to significantly augment its continuing programs of off-campus education."

The ITV system, designed and installed by Genesys, is being funded through long term agreements for participation by those industries in the area which are the prime users of the system.

The firms include IBM, Univac, Honeywell, Northern States Power Company and a government agency, the U.S. Bureau of Mines Research Center.

The Minnesota network was approved by the FCC to broadcast in an assigned band of channels at microwave frequencies ranging from 2500 to 2690 megahertz known as the Instructional Television Fixed Service (ITFS) band. An FM radio talk-back capability from each off-campus site allows every student, on or off-campus, to participate in discussions with the instructors as if they were all in one classroom.

Genesys Systems was founded in 1967 to develop instructional television networks for universities and government. The company also designs and installs microwave systems for industrial uses.

Broadcast Engineering
Two Broadcasters As Directors

Fred J. Rebman, executive vice president of WJCT-TV Jacksonville, Florida, and Jack D. Summerfield, general manager of KPBS-FM-TV San Diego, California, have been elected to four-year terms on the board of directors of Educational Television Stations, a division of the National Association of Educational Broadcasters.

A graduate of Michigan State University, Rebman has been professionally involved in television production, development and administration. In these capacities he has been at various times affiliated with Sports Network Inc.; the U.S. Army; the American Management Association; the Chamber of Commerce; the U.S. Office of Education; and the Southern Network. In addition he has served as an advisor on cable television to the Federal Communications Commission, the White House, cities, major corporations and several members of Congress.

Summerfield, who holds degrees from the University of Texas, has served as chairman of the National Advisory Committee, Educational Communications System; project officer, Corporation for Public Broadcasting; consultant, Ford Foundation; general manager, WVRV New York; producer, production manager, FM manager and assistant general manager, WGBH-FM-TV Boston; radio-TV producer and production manager, University of Texas; and faculty member, Columbia University Graduate School.

Summerfield's broadcast productions have won Peabody, DuPont, Armstrong and other major awards.

KIRO-FM Joins The Move To Quad Stereo

Last November KIRO-FM teamed with KIRO-TV and AM in presenting the first series of Four Channel Happenings in the Puget Sound Area. Since April the Seattle Bonneville outlet has used the Electro Voice Encoder and Decoder, which electrically processes four channel source material such as tapes into two channels at the broadcast end and then reprocesses them back into four channel programming at the receiving end. This system is compatible with existing equipment and FM broadcasting standards.

Listeners at home continue to receive the complete signal and programming of the station. However KIRO-FM's participating stereo dealer sponsors hold open-house demonstrations for the public to hear the four channel broadcasts weekly.

KIRO-FM's pioneering in four channel broadcasts is also Sunday mornings when the acoustic properties of the Salt Lake Tabernacle and its famous Choir are enhanced by the quad sound.

Send Your Industry News To Broadcast Engineering For Better Coverage

This is the signal for better performance at a lower price*

The Setchell Carlson Model DEM 911 UHF/VHF television demodulator is a modestly priced, all solid-state unit with many features and capabilities usually found in much more expensive models, and is the only one in its price range with Automatic Fine Tuning (AFT). It produces outstanding monochrome and color picture quality due to the excellence of its bandwidth characteristics. Internal switching for an external video/audio signal is standard and makes it an ideal source for broadcasting, CATV, and CCTV systems.

Every feature of the DEM 911 is engineered in the Setchell Carlson tradition of quality: Four IF stages • High RF sensitivity • Low noise • Low chrominance / luminance delay difference • Full chrominance signal level • Regulated power supply • Exclusive Setchell Carlson UNITIZED* construction for easy maintenance. Available in several rack-mount configurations or attractive metal cabinet.

*BEST OF ALL . . the DEM 911 is priced under $280.00.

Write or call today. We will send you complete information.

SC ELECTRONICS, INC.
A SUBSIDIARY OF AUDIONETICS CORPORATION
530 5th AVE. N.W. ST. PAUL, MINNESOTA 55102
PHONE (612) 633-3131

Circle Number 16 on Reader Reply Card

February, 1972
"We interrupt this program..."

The Status of Radio Warning Systems In The United States

By Charles C. Joyce, Jr., Asst. Director, OTP

Fig. 1 Shown here is a tornado which struck Fargo, N. D. in June, 1967. (Photo by NOAA)
Studies of nuclear attack, as well as experience with natural disasters, provide convincing evidence that adequate warning is one of the key factors in saving lives in such situations. Over twenty years, the Federal Government has provided financial assistance to state and local governments for the installation of community sirens for warning purposes. However, the coverage of sirens is limited and their effectiveness at night is low.

For years, the Federal Government has studied a variety of ways of using broadcast communications systems—radio and television—to get warning information directly to the listener. In the early post war period, CONELRAD was instituted for this purpose. CONELRAD provided emergency information to the public on two frequencies, 640 and 1240 kilohertz. All other commercial broadcasting was suspended. Commercial stations were used to broadcast on these two frequencies, using a transmission pattern designed to prevent enemy bombers from homing in on radio transmissions.

The EBS System
By 1963, the radio had ceased to be a useful means of navigation for enemy attackers, so the CONELRAD system was replaced by the Emergency Broadcast System (EBS). The EBS permits selected stations to broadcast at normal power on their assigned frequencies during emergencies, to allow the President to address the nation and to provide supplementary emergency information from Federal, state, and local agencies. Civil defense warning announcements were incorporated in the procedures for activating the EBS, although sirens continued to be the primary civil defense warning system.

While commercial broadcast stations can quickly relay a warning to the listening audience, they cannot reach people whose radio or television sets are turned off. Hence, means have been sought for using radio techniques to sound an alarm in every home at any time of the day or night. Research on a means of transmitting a signal through power lines was begun in 1951, culminating in the development of the National Emergency Alarm Repeater (NEAR) system. This system had to be abandoned, however, due to increasing interference from new electrical devices in the frequency band which NEAR was using.

When NEAR was abandoned, efforts were focused on the development of a system of over-the-air transmission of a special warning signal which would turn on (technically, de-mute) a receiver in the home (or car, or boat) and transmit a specific warning message. Three different approaches were pursued independently by three Federal agencies.

Decision Information Distribution System
The Office of Civil Defense (OCD) developed the Decision Information Distribution System (DIDS), which used ten government-owned low frequency transmitters to provide nationwide coverage. DIDS planners envisioned the use of separate low-frequency receivers for institutions including Federal, state and local government agencies, and a low frequency receiver incorporated in a standard radio or television set for reaching the general public.

The National Oceanic and Atmospheric Administration (NOAA, formerly ESSA) augmented its nationwide weather teletype network with a network of VHF radio transmitters planned ultimately to cover coastal areas and the "tornado belt." Owners of VHF receivers can receive continuous weather information on the NOAA channel. A new receiver with a de-muting feature has recently been developed which would permit NOAA to "turn on" the receiver with a special warning signal. Currently, this receiver costs about $150.00 and very few have been sold.

At the request of the Federal Communications Commission, its National Industry Advisory Committee (NIAC) developed a signalling technique which would enable a commercial broadcast station to de-mute a specially designed radio receiver if it were tuned to that station. Incorporating this technique into the EBS could also provide a widespread warning capability.

A fourth approach to warning, using the telephone system, was also under consideration by OCD. By the end of 1970 it became clear that unless the public was to be faced with a bewildering array of different warning systems, some fundamental decisions would be necessary. A review was undertaken within the Federal Government, led by Clay T. Whitehead, Director of the President's Office of Telecommunications Policy in the Executive Office of the President, to determine what system or systems could best and most economically meet the need to warn the general public of the United States in an emergency.

The first step in the review was to establish the goals that a warning program should meet. While there are a variety of pertinent technical goals, the following factors most significantly affect the choice of systems.

Warning System Goals
First, the warning system must be capable of reacting in seconds.
Studies have shown that timeliness is critical for civil defense warning. Delays of 5 to 10 minutes could greatly diminish the benefits of a nationwide public warning system. A response time of 30 seconds was established as the objective to be met by any warning system designed to meet civil defense needs.

Second, the warning system must be operative 24 hours a day. The critical deficiency in current warning systems is coverage during the night. The principal advantage of a radio warning system capable of reaching into the home is that it can wake people up.

Third, any 24-hour warning system designed to provide weather and natural disaster warnings must be highly selective. Such warnings are valid only for relatively small geographical areas. The widespread dissemination of a weather warning would unnecessarily disrupt the lives of many who would be totally unaffected by the particular threat. Unless such false warnings can be held to the absolute minimum, large segments of the public could become disenchanted with the warning system and would disable their receivers.

Finally, to assure public confidence, the system must be highly reliable. Unobtrusive means of testing should be available to assure the owner that his receiver continues to function. False activation of the receiver must be virtually eliminated.

It became obvious early in the review that only one system had, up until this time, been thoroughly planned and engineered to meet these requirements. That was DIDS. With the nationwide coverage provided by its ten government controlled transmitters, DIDS would be capable of alerting over 98% of the U.S. population within 30 seconds, at any time of the day or night. Use of its addressing feature would permit DIDS to selectively address any of 5,000 or more individual geographic areas. While there were some uncertainties with respect to DIDS, there were equal or greater uncertainties associated with all of the other candidate systems which were under consideration. The principal question addressed in the review was whether any other system could come close to meeting the objectives at a cost significantly lower than the expected costs of the DIDS system.

System Costs
A few simple calculations showed that the cost of any nationwide warning system receiving a high degree of acceptance would be dominated by receiver costs. At costs ranging from $5 to $25 per receiver, a system with one receiver in each of the 66 million American households would entail an expenditure within the range from a third of a billion to one and a half billion dollars for the receivers. The transmitter system costs of roughly $35 million for DIDS, or a lesser figure for the use of existing private broadcast facilities, are not a major factor in the selection of the most economical warning approach. It would be a disservice to the American public to minimize the transmitting cost of the warning system while ignoring the much higher costs of an effective distribution of receivers.

Unfortunately, the problem had not been looked at this way before, and sound comparative receiver costs studies were not available. Only very rough cost estimates were available. However, a qualitative comparison of the functions to be performed by the receiver in different systems allowed a determination of relative costs sufficient to accomplish the purpose of the review.

Certain alternatives were readily dismissed as being inferior to DIDS. A study of the feasibility of using the telephone system for warning had been completed by the telephone company for the Office of Civil Defense. That study revealed that the use of the telephone system to provide a comparable warning service would be at least as expensive as DIDS, and would provide coverage to only about 85% of the U.S. population. In addition, such use of the telephone system would disrupt normal communications at critical times. All things considered, the use of the telephone system did not appear to provide an attractive alternative to DIDS for national warning.

Next we considered the possible use of AM or FM radio broadcast stations, television broadcast stations, or expansion of NOAA's VHF warning system. Because of the large number of transmitters which would have to be linked and controlled for any of these approaches, it was clear that there would be no advantage to any of these systems unless some way could be found to make the warning receivers significantly cheaper than a DIDS receiver. Two possible ways to do this were analyzed: (1) by using the geographical selectivity inherent in FM, TV or VHF coverage patterns instead of using the digital address scheme included in DIDS, or (2) by use of a "tunable" receiver.

The Receiver
The DIDS system would achieve the necessary geographic selectivity by including in each receiver an address decoder capable of distinguishing 5,000 or more different digital addresses. The inclusion of this address decoder adds to the cost of the DIDS receiver, as does the need to provide a means for changing addresses whenever a household moves from one addressing area to another. Since FM, TV and VHF signals are limited to a radius of 25 to 40 miles, a degree of selectivity could be provided which might serve as an alternative to the digital addressing scheme. However, there would only be about 500 different addressable areas in such a scheme. On the average, the minimum area warned in this case would be at least ten times larger than the minimum area addressable in DIDS. This represents a considerable loss in selectivity.
FULL EIA
BROADCAST
SYNC
GENERATOR
AN UNBELIEVABLE VALUE
$399.00
ONLY USER COST

- Meets or Exceeds All FCC and EIA RS-170 Specifications
- Four Sync Modes: Power Line, Internal, Crystal and External

Your sync generator is the heart of your origination studio. Why settle for an "EIA type" or "quasi EIA" type generator? Why chance rolling or horizontal tearing on the TV screen?

The GBC ED 6064 is the same type of sync generator used by broadcast stations. It provides all pulses (including vertical serrations) needed for top quality, rock stable pictures. (4 volt horizontal, vertical and sync pulses.) Yet it costs less than half the price of any comparable FULL EIA SYNC generator — even less than "EIA TYPE" generators.

for complete specifications call or write:

GBC Closed Circuit TV Corp.
74 FIFTH AVENUE, NEW YORK, N.Y. 10011 / (212) 989-4433

BUILT-IN GENLOCK

THE PERFECT HEART FOR YOUR ORIGINATION STUDIO

NEW FROM GBC

Circle Number 17 on Reader Reply Card

February, 1972
The DIDS receiver is a fixed-tuned receiver. Whether packaged separately or included in another piece of home entertainment equipment, it would require its own antenna, front end, and demodulator, in addition to the address decoding and filter circuits. If AM or FM broadcast stations were used, an alternative would be to use the normal "tunable" receiver front end, simply introducing the filter and control circuitry necessary to identify and decode a warning signal. An AM or FM radio designed for use as a warning receiver in this manner would, when not in use, be in a powered but muted condition. If the correct warning alert signal were transmitted by the radio station to which the receiver was tuned, it would activate the filter circuitry and de-mute the set. The elimination of the fixed-tuned front end would reduce the cost of adding this type of warning feature to a conventional radio set. However, this approach has operational disadvantages.

The tunable receiver would provide a warning only if it is tuned to a station which is on the air when the warning is to be sounded. Since many popular stations go off the air some time during the evening, radio or television sets left tuned to these stations would not be activated in the middle of the night by a warning signal unless those stations were left in a standby condition at all times and could be remotely activated by the Federal Government. This could be overcome if the homeowner were willing to retune his radio to a 24-hour station before turning it off at night. This is expecting too much of human nature.

Careful consideration of these factors led to the conclusion that those alternatives to DIDS which had the potential for significant savings in receiver costs also entailed losses of selectivity or reliability which could seriously compromise the effectiveness of the warning system.

Receiver Distribution

Another factor affecting the usefulness of a national warning system is the means by which receivers would be distributed to the population at large. Unless the warning receiver is accepted into the home, the system will not be effective at night and will probably achieve little more in the way of warning coverage than the existing siren systems.

Studies made several years ago indicated that a warning receiver sold separately would not achieve a very significant market penetration. This led to consideration of the possibility of incorporating the warning receiver into an item of home entertainment equipment. This would achieve certain savings in manufacturing costs due to the sharing of such common items as power supply and speaker. Distribution costs would also probably be reduced relative to the cost of distributing a stand-alone item. Television sets are the obvious choice as a "carrier" for the DIDS receiver, because of the very high penetration of television sets into the home market, and because the percentage impact of the DIDS receiver on the overall cost of the television set would be small. Legislation requiring the incorporation of a warning receiver in every new television set would, within ten years, achieve a very high penetration of warning receivers, and would assure that the economies of mass production would be fully exploited in the manufacture and distribution of warning receivers.

There are, however, overriding disadvantages to such legislation. Part of the problem is psychological. The thought of the government's voice booming out from a television set conjures up images of Orwell's famed novel 1984. Commentators have already raised this specter, although the analogy is very poor. "Big Brother" appeared in sound and picture, preempted all other programming, and was capable of listening in on individual households. The DIDS system would provide only voice transmission of warning messages, is clearly limited to one-way transmissions to the home, and does not preempt other programming. If included in a television set as described, the DIDS receiver would be disabled whenever the television set is on. Hence the listening television audience would receive the warning through the cooperation of the private broadcast industry.

There is no precedent for the government requiring every citizen to purchase a device solely for the purpose of allowing the government to communicate with the citizen. However valid this approach may be in consideration of the warning mission, it will surely be objectionable to many on general policy grounds. American society today is faced with considerable uncertainty about where the rapid evolution of communications and information handling technology is taking us. The Office of Telecommunications Policy, in coordination with other elements of the government and with the private sector, was established to clarify these issues and to provide improved mechanisms by which the nation can direct the use of these technologies into socially desirable channels. Until a clearer national understanding and consensus about the role of these technologies emerges, however, legislation of the kind we have been
Talking about is bound to be misunderstood. Accordingly, a conscious decision has been made by this Administration that any warning receiver entering the home should be purchased voluntarily by the individual citizen.

It is recognized that this decision means at least initially, that the warning system will not achieve a very high overall penetration because of the decisions of individual home owners about their participation in the system. A change in the national climate or the clear appearance of an external threat could, of course, radically change this initial situation. For the present, however, the responsibility of the government is basically twofold. First, to provide warning signals which can be received by any citizen who is willing to buy the warning receiver. Second, to design the system so that the home warning receiver can be as inexpensive as possible. The price of such a receiver should be so low that every household can afford one. Economic discrimination in the distribution of warning receivers would undoubtedly be recognized as grossly unfair.

Government Actions

In accordance with these conclusions, the government of the United States is proceeding with several related actions. The first operational DIDS warning transmitter is being constructed in Maryland and will be completed in mid-1972. This transmitter will provide for a thorough operational test of the DIDS system with its selective addressing capability. In addition, the Office of Civil Defense is undertaking design studies for home receivers in order to fully validate the design concept and to provide a firmer basis for determining the ultimate cost of these receivers. Cost performance tradeoffs are being reviewed once again to assure that every feature which adds to the cost of a home receiver is truly desirable in the context of a voluntary home warning program. These actions reflect the commitment of this Administration to achieve the maximum benefits of communications technology for warning purposes while permitting individual citizens to retain freedom of choice with respect to both economic and operational participation in the system.

A word of clarification may be in order with respect to the Emergency Broadcast System. There seems to be a widespread public belief that the Emergency Broadcast System is the primary means of warning the general public of an attack. Actually, the purpose of the Emergency Broadcast System is to permit the President to reassure the Nation of the continuity and determination of its government under conditions of extreme emergency. The plan for the Emergency Broadcast System permits Federal agencies, including the Office of Civil Defense, to use the system to pass other emergency information once activated by the President. The Office of Civil Defense had therefore planned to use the system on this basis to pass emergency information and instructions.

As a result of a recent review of the Emergency Broadcast System, the White House, the Federal Communications Commission, and the Office of Civil Defense have agreed to remove the warning function from the Emergency Broadcast System. The Office of Civil Defense will make separate arrangements for the transmission to news media of information concerning any attack upon the United States. The Emergency Broadcast System will be designed to perform optimally its function of allowing the President to address the American people at times when it is appropriate for him to do so. The Office of Telecommunications Policy, in conjunction with the FCC and with the government and private organizations involved in the EBS, will continue to seek improvements to the EBS which will maximize its effectiveness in serving that purpose.

Fig. 4 The hurricane's worst killer comes from the sea. Surge heights along flat coasts can bring catastrophe. The greatest loss of life during hurricanes is caused by flooding due to the storm surge. Adequate warning enables the public to evacuate in time. (Photo by NOAA)
Time Coordination Plan
For Directional Adjustments

Here is a time-coordinated plan for directional antenna adjustments where manpower is limited and equipment is minimal.

By J. G. Rountree, P.E.*

Ideally, a directional antenna will produce the desired pattern when the operating parameters are adjusted to theoretical values. While careful attention to the overall installation of a directional antenna system and particularly to the phase and current monitoring system will result in the production of something close to the desired pattern on the initial tune-up, the sad fact is that such tune-up is only a point of departure for further adjustments.

The usual next step in adjusting a directional antenna system is to make sufficient measurements to determine in what direction and to what extent the radiated fields differ from the desired fields. Having such data, the consulting engineer adjusting the antenna system can re-design the system to determine what changes in current and phase relationship will be necessary to achieve the desired pattern. Such parameters are then set up, and any further change in the pattern is usually achieved by experimental means.

Ideal Conditions

Ideally, these further adjustments are made by positioning assistants at each monitoring point, each equipped with a field-intensity meter and with two-way radio communication to the engineer at the transmitter location. It then becomes a relatively simple matter to “talk in” the monitoring points to the desired values of field intensity. This arrangement is equally applicable to the readjustment of an existing antenna which has drifted out of adjustment.

Unfortunately, however, there frequently is not sufficient manpower or equipment to carry out this idealized procedure, and it becomes necessary to resort to other, more expedient methods. It is the purpose of this article to discuss one such method, a time-coordinated plan of procedure.

Time Coordination

Under this plan, it is assumed that manpower and equipment are minimal, so that only two persons are available to do the work—one to adjust the phasor controls and one to make field-intensity measurements—and that two-way radio equipment is not available. If additional field sets and qualified manpower are available, or if two-way radio equipment is available, the work can be speeded up by their judicious use.

The essential elements of the plan are that both the person adjusting the phasor and the person making the field-intensity measurements have coordinated timepieces and have a definite schedule to follow. Then, at the specified time, various adjustments are made to the phasor, and the resulting effect of each adjustment is noted at the measuring point. The person making field measurements then proceeds to other measuring points of interest, and the procedure is repeated.

Phasor Controls

It goes without saying that the phasor controls must have counter dials, so that a control can be re-set to a specified point. Unfortunately, such dials have some play or backlash, so that it becomes necessary to adopt a standard direction of turning to eliminate the effect of such shortcomings. One practice which is easily remembered is always to turn the dial in the direction of increasing numbers in approaching a desired setting. Thus, if a number lower than the initial setting is desired, the dial is turned to an even lower number, far enough below the desired number to completely overcome backlash, then the dial is turned in the direction of increasing numbers to the desired setting.

Typically, it has been found that only a fraction of a turn, about two-tenths of a turn above and below the initial setting, is sufficient to determine the effect of moving a control but not so great that the system will go completely “ape.”

Unavoidably, changing the phasor controls will change the common-point impedance. Usually, however, such changes are small enough to be inconsequential if

*Consulting Engineer, Austin, Texas.
TELEX MAKES CHOICE TAPE EQUIPMENT SO YOU CAN BE CHOOSY.

KTIS AM/FM Stereo Had an opening in Their studio. They chose a Magnecord To fill it.

February, 1972
the changes in phasor settings are small, and frequently it is found that only the reactance, not the resistance, of the common point will change.

In any event, after the complete series of tests have been run, phasor settings producing meaningful changes in field intensity must be re-examined to determine whether the change in field resulted from actual changes in the pattern or from changes in the amount of power fed into the antenna system. In general, however, a transmitter provides a surprisingly steady source of constant power output. The effect of phasor changes can be checked most readily by provision of a common point impedance bridge or by insertion of an operating impedance bridge at the common point.

Test Timing
The amount of time allowed between changes in the phasor settings is a matter of individual choice. On the one hand, the changes should be made rapidly enough to minimize the effect of drift in calibration of the field meter and change in line voltage at the transmitter. On the other hand, they should not be made so rapidly that they cannot be recorded reliably by the person measuring field intensity. About 15 to 20 seconds seems to be about right. Certainly, not over 30 seconds should elapse between changes. In order not to be interrupted during the procedure, the one controlling the phasor should silence the telephone, "squawk box," or visitors.

At each measuring point, the one reading the field meter should immediately re-calibrate the meter at the conclusion of a series and then repeat and record the last reading. This will give an indication of the rate of drift of calibration of the field meter during each series.

Interpreting Results
Table 1 gives a typical series of measurements, and Table 2 shows the analysis of this series. With such information, it becomes relatively simple to determine the changes required at the phasor to achieve a desired change in field intensity at a measuring point.

A closing word of caution is in order: This procedure, like any procedures dealing with adjustment of a directional antenna system, should be undertaken only by or under the direction of an engineer trained and experienced in the theory and practice of directional antennas. The effects of undirected and unorganized "knob twiddling" are often awesome and—expensive to correct.

Footnote
"Expanding the Impedance Bridge" by J.G. Rountree

![Fig. 2 Field intensity measurements are made in coordination with phasor adjustments.](image)

TABLE 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Control Setting</th>
<th>MP #1</th>
<th>MP #2</th>
<th>MP #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>To T</td>
<td>Phase 2</td>
<td>057</td>
<td>40.5</td>
<td>158</td>
</tr>
<tr>
<td>T (……)</td>
<td>Phase 2</td>
<td>059</td>
<td>40.9</td>
<td>159</td>
</tr>
<tr>
<td>T + 15 sec.</td>
<td>Phase 2</td>
<td>055</td>
<td>40.1</td>
<td>154</td>
</tr>
<tr>
<td>T + 30 sec.</td>
<td>Phase 2</td>
<td>057</td>
<td>40.4</td>
<td>158</td>
</tr>
<tr>
<td>T + 30 sec.</td>
<td>Phase 3</td>
<td>099</td>
<td>40.4</td>
<td>158</td>
</tr>
<tr>
<td>T + 45 sec.</td>
<td>Phase 3</td>
<td>101</td>
<td>44.7</td>
<td>155</td>
</tr>
<tr>
<td>T + 1:00</td>
<td>Phase 3</td>
<td>097</td>
<td>32.5</td>
<td>163</td>
</tr>
<tr>
<td>T + 1:15</td>
<td>Phase 3</td>
<td>099</td>
<td>40.2</td>
<td>158</td>
</tr>
<tr>
<td>T + 1:15</td>
<td>Power 2</td>
<td>029</td>
<td>40.2</td>
<td>158</td>
</tr>
<tr>
<td>T + 1:30</td>
<td>Power 2</td>
<td>031</td>
<td>40.2</td>
<td>156</td>
</tr>
<tr>
<td>T + 1:45</td>
<td>Power 2</td>
<td>027</td>
<td>40.2</td>
<td>160</td>
</tr>
<tr>
<td>T + 2:00</td>
<td>Power 2</td>
<td>029</td>
<td>40.2</td>
<td>157</td>
</tr>
<tr>
<td>T + 2:00</td>
<td>Power 3</td>
<td>062</td>
<td>40.2</td>
<td>157</td>
</tr>
<tr>
<td>T + 2:15</td>
<td>Power 3</td>
<td>064</td>
<td>39.4</td>
<td>155</td>
</tr>
<tr>
<td>T + 2:30</td>
<td>Power 3</td>
<td>060</td>
<td>37.9</td>
<td>159</td>
</tr>
<tr>
<td>T + 2:45</td>
<td>Power 3</td>
<td>062</td>
<td>40.2</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Re-calibrate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Control Setting</th>
<th>MP #1</th>
<th>MP #2</th>
<th>MP #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Phase 2</td>
<td>Increases</td>
<td>Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>Increase Phase 3</td>
<td>Increases</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>Increase Power 2</td>
<td>No change</td>
<td>Decreases</td>
<td>Decreases</td>
</tr>
<tr>
<td>Increase Power 3</td>
<td>Increases</td>
<td>Decreases</td>
<td>Decreases</td>
</tr>
</tbody>
</table>
YOU CAN BELIEVE IT
A PEAK LIMITER WITH INSTANTANEOUS
ATTACK AND DISTORTION SO LOW
YOU CAN MAKE PROOF THRU IT

* DISTORTION — ⅛% for 6db of limiting.
1% or less to 20db of limiting.
* ATTACK TIME — 5/4 Radians for gain control before
clipping.
* OVERLIMIT ATTACK TIME — Instantaneous.
* COMPRESSION RATIO — More than 35:1.
* FREQUENCY RESPONSE — + 1db 50Hz to 35KHz
with full limiting.

A NOISE FREE AGC AMPLIFIER
WITH A DYNAMIC RANGE PRESERVER

* NOISE — —75db even with loss of input. Automatically
“rides” gain without regard to peaks. Ex-
clusive RMS Detector preserves dynamic
range. Will not adjust gain if signal removed.
* DISTORTION — 0.1% all gain settings.
* FREQUENCY RESPONSE — ± ¾db 50Hz to 20KHz
any gain setting.

NO ONE IN THE WORLD CAN MATCH THIS COMBINATION

WILKINSON ELECTRONICS, INC.

1937 W. MacDADE BLVD.
WOODLYN, PA. 19094
TELEPHONE (215) 874-5236/874-5237

February, 1972
Circle Number 19 on Reader Reply Card

www.americanradiohistory.com
A custom audio design for television

Backed by management, the KBTV engineers built an entirely new audio production system that challenged their talents and proved the value of broadcast engineering. By Les Dunn

The average television station large or small, sooner or later face the task of construction and installation of new or different facilities. This station was no exception. Early in 1970, it became apparent that KBTV was to have a new production control room for use with an existing studio. This discussion will cover the audio production area and the design philosophy for it.

A former conference room measuring approximately 25 feet by 10 feet immediately adjacent to the studio and almost directly over master control was made available. Figure 1 is a "before" view. The area was divided to allow some 15 feet in length for video, leaving an area approximately 10 by 10 feet for audio. It was decided that by raising this area two feet, several ends could be accomplished. The video monitors at the far end of the room could serve both video and audio operators; one set of clocks would suffice as the audio man could easily see over the video area; and it would provide crawl space underneath for bringing in microphone control, intercom, and trunk line to master control. Figure 2 shows the view from the audio operating position after completion.

Limited Budget, Limited Time

The next question was of equipment. With an unlimited budget, unlimited time, or both, there are a number of ways to go. All new custom-built equipment is the easiest but expensive means. If time is no importance, the modular, do-it-yourself approach is the least expensive. Having both limited funds and time narrowed our choices considerably.

A station of this size cannot afford to have expensive equipment idle a good part of the time, as strictly production work. Neither must the audio be second-rate.

*Maintenance Supervisor,
KBTV, Denver, Colo.
must, therefore, be quality equipment and able to serve as a live "on-air" control room as well as capable of show and commercial production work. At times it may serve as a regional feed point for the ABC television network. In addition, some film production had to be considered since the station has a film production subsidiary. After much study, it appeared a 24-input, 4-output console would be adequate. This immediately put us in the expensive category.

At the time bids were being taken, delivery of most audio equipment was 90 to 120 days. Adding installation time on top of this made this route intolerable. Smaller consoles at substantially lower cost were available off-the-shelf from some sources.

After much discussion and searching, it was decided that two consoles could be cascaded, and with some work by the station staff, a custom installation could be made. It was found that Philips Broadcast Equipment Corp. (Norelco) could deliver two MD12RF2 mixing desks with 12 inputs and 2 outputs each. Discussion with their engineers showed they could easily have their outputs paralleled, giving us just what we needed. Included in the desks were equalization available for any four of eight input channels, built-in cue and reverb, and talkback facilities with the necessary amplifiers.

The only variation from the standard factory console was the addition of two rows of switches for six projectors to feed two inputs, and two rows for VTR's to feed two other inputs, making it possible to mix two projectors or VTR's. They were ordered, and immediately upon delivery were put through exhaustive performance tests.

Getting to a Functional Design
The next project was to get the...
Here are eight problems that cost you money

- no control track
- control track out of phase
- unstable capstan
- 60 cycle drum error
- bad electronic edit
- head not locked to video
- non-synchronous switches
- low-band color played in hi-band

www.americanradiohistory.com
Protect your profits automatically with the AVR-1

Fake goods are no good for anyone. Clients stream. Agencies drop their schedules. Profits from your precious air time go down with the fake good.

Today, eight major production errors that cause you to lose profits are corrected automatically with the AVR-1... and save operator time, too. Your VTR man hits the playback button and unplayable tapes are playable.

The automatic AVR-1 not only corrects mistakes of others, but also frees personnel for new profit opportunities. Spots, new program development, promos. The AVR-1 saves money here, too. Easy-to-use controls and advanced automatic features cut operator and set-up time.

And these same automatic error correcting features are also built into the new ACR-25 Cassette Recorder, companion to the AVR-1.

Our seemingly boastful claims were proved true when television executives and engineers across the country when they viewed our "World’s Worst Videotape Recording" demonstration tape. First we ran the world's most unplayable tape recording on a second generation VTR... without success. Then, we took the same tape and showed perfect pictures corrected automatically on the third-generation AVR-1.

It's everything a third-generation VTR should be. Created with Ampex expertise. Designed to meet your record and playback requirements as you have expressed them. There's no doubt, you need the third-generation AVR-1.

Contact your Ampex representative or write: National Sales Manager, Video Products Division, Ampex Corporation, 401 Broadway, Redwood City, CA 94063.

AMPEX

The monitor picture shown below is an unretouched photo taken directly from a color monitor; shown here on a standard AVR-1. A color monitor is available as an option.
There was more than a little apprehension as to how well an operator could handle a console nearly seven feet long, particularly in a fast-moving show. The standard console delivered with the twelve input channels to the left, the output in the approximate center, the monitoring block toward the right, and the equalizers at the far right. Each console has the two VU meters in the approximate center in a vertical panel, with a cu speaker toward the left, and the mic at the right. Obviously, there would be an awkward arrangement if two consoles were to be used.

With tongue-in-cheek, much courage, and more study, one console was completely stripped. The VU meters were moved to the right-hand console. The microphone and speaker were removed from the left-hand console and eight rows of single-type patch jacks were installed. Twenty-four mic outlets were provided in the studio, any twelve of them selectable by key switches in the rack field. Terminal blocks were mounted on the lower rear of the console so all connections to and from it were readily accessible. With the consoles already raised two feet due to the raised floor, wiring was much easier than at the top or bottom of a rack as all too often customary.

Next, the input blocks of the #2 console were moved to the right end, thus putting the 24 inputs adjacent. The two output channels of this console were moved to the same module housing as the ones in the #2 console. This put the four output channels adjacent. The equalizer and monitor blocks were then moved to the left, since they are used much less.

This is all easier said than done, as the input blocks had four connectors to plug into the frame, and the monitor block which had to be moved had only three. This entailed a good deal of cutting and drilling. However, the consoles are very straightforward, cables easily identified, and prints readable, which eased the
The wiring of the jacks and terminal blocks, the cable runs, and grounding was all done with strict attention to good audio engineering practices. Figure 5 shows the installation under construction. All low-level cables were run in their own conduit to their own terminal blocks to separate low and high level cables completely. All microphone input channels are in one console. Jack fields were arranged the same way, and arranged so that under normal operation, no patch cords are ever necessary. Cables were all tied and run through plastic duct to give a neat, professional appearance. Easy access to both consoles, terminal blocks, jacks, and speaker monitor amplifiers is provided by removable panels held by magnetic catches. A trouble light on a reel was installed, providing a work light and outlet for soldering irons or vacuum cleaner as seen at the extreme right of Figure 6.

Audio Feeds

A scheme was designed to use audio distribution amplifiers, pads, and combining networks so that any one or combination of the four output channels could be fed to master control. However, the amplifiers used did not perform satisfactorily and the plan was discarded in the interest of time. This may be added at a later date if found desirable. As an alternative, one output channel is normalised to feed MC at all times, a second feeds a cartridge tape recorder, and the third and fourth feed two reel-reel audio tape machines.

The reverb unit was mounted in a cabinet beneath the cart machine. There was some feeling that this would not be the ideal place for it, but no problem has been observed. One TB unit is used for the audio operator to talk to his director, the studio, and the video tape and projection areas. The other unit is remotely controlled by the director to talk back to his audio man, the studio, video tape, projection, and a studio cue headset.

The two monitor channels in the monitor block of the #2 console feed two Norelco MDM/MDL20 speaker-amplifier combinations which appear to us to outperform anything else available. One monitor channel of the monitor block of console #1 feeds an MDM/MDL20 combination in the video control area, and the other feeds an announce booth speaker.

Two reel-reel audio tape machines, an audio cart PB and REC/ PB machines, and a Norelco turntable round out the equipment available. These are all mounted at the operator’s right in an “L” shape as shown in Figure 7. The reverb unit is seen mounted directly below the cart machines. The reel-reel machines were inclined slightly for easier operation and visibility.

The completed #1 console is shown in Figure 8. The #2 console is pictured in Figure 9. The small panel in the foreground of Figure 9 is a remote control panel for the reel-reel and cart machines, placing the machines at the operator’s fingertips. The two removable console desks were replaced with one long formica-covered desk as seen in Figure 2.

The room is walnut panelled with the custom-built cabinets covered with matching formica. The console jack field is also formica covered. Jack designations were done by a local engraver with white lettering on walnut formica. The input and output blocks are also identified with white lettering engraved on black backing for optimum visibility.

After nearly six months of operation, the CR is as functional as it is handsome, and the equipment has performed equally well. The fact that no modification has been necessary or desirable has proven the system layout and design, and system proof-of-performance was ideal.

Acknowledgement must be made to Mr. H. H. Schubarth, Director of Engineering for the Mullins Broadcasting stations, for his design of the system and his assistance. Mention must also be made to our two fine staff carpenters whose craftsmanship gave the installation its custom appearance.

Fig. 8 The completed #1 console.

Fig. 9 The #2 console. The small panel in the foreground is a remote control for the reel-to-reel and cart machines.
Remember The Versatile Relay?

Don't abandon your old parts box. There are still circuits where those relays can be used.

By Fred Chapman*

In today's solid-state world, where everything seems to run on four D-cells, we tend to overlook the virtues of some of our old friends in the electronic parts field. Such is the case with the relay.

Most good relays costing five dollars or more are good for 100,000 to 1,000,000 operations. They have a fairly fast attack and release time (in milliseconds), and are capable of handling large currents while 'standing-off' good sized voltages. The advantages of solid-state switching are small size, high speed and (in theory) unlimited life. This last factor can be negated in the blink of an eye by one overvoltage spike.

In high speed data handling and processing systems, the solid state 'relayless' circuits are at home. For many slow speed operations, however, it makes no sense to trade a $5 relay with one or two associated components which will last three or four years, for a $40 PC board bristling with vulnerable, solid state parts. In many cases, a simple relay circuit can be made to perform logic functions which require a number of solid-state components.

The Classic Circuit

Let's take a look at Figure 1. In (a), we have the classic relay circuit. S1 may be a pushbutton or a snap switch. D is used to prevent high voltage spikes when the voltage is removed from the relay. (We assume our relay is surrounded by solid state devices which must be protected from such transients.)

Note that, regardless of the wiper connection, the outputs are limited to on-off functions in step with the input switching.

In (b) we have replaced the diode with a resistor-capacitor network. This is the 'delayed off' circuit which is usually shown with just a capacitor. Use of the resistor, however, keeps the supply voltage from being pulled down to almost nothing at the instant S1 is operated. Note that we may now obtain either a delayed off or a delayed on for the NC contact depending on the connection of the wiper. So far — no earth shaking circuits.

Now let's look at (c). Here we see a 'delayed-on, delayed-off' function. Looking at the two output waveforms, we show very different patterns with the two possible wiper connections. D is needed with the connection as shown to prevent the capacitor discharge 'burps' shown as shaded areas in the first waveform drawing. In (b) and (c) the 'off' delay is controlled by the size of C, the DC resistance of K's coil and the dropout voltage of K, which is usually about 10 percent of the design voltage (2.4 Volts for a 24 Volt relay). This drop out will vary with the number of poles, spring tautness, etc. The 'on' time of (b) is the normal one for the relay. In (c) the on time is controlled by the value of R and C. This is rather a complex circuit which must be carefully designed.

RxC must be large enough to give the proper 'on' delay without making R so large that the voltage is dropped across K too low a value to allow pull-in. The running voltage of the circuit, determined by the DC resistance of K and the value of R in a voltage divider will also control the drop-out delay time. You will note the 'as shown' circuit is capable of an interesting output waveform.

Multiple Function

In (d) we get a timed 'on', similar to the transistor 'one-shot' circuit. Current will flow through K's coil until C is fully charged, then stop. R is made large enough so that it will not provide 'hold-in' for the relay but not too large to allow bleed-off of the charge across C when the switch is off. D is needed when wired as shown to prevent a long discharge tail.

If you want to have some fun take the circuits of (c) and (d) and draw a DPDT relay and wire one

*CE, WMCF, Stuart, Fla.

Fig. 1 At top (A) is a classic relay circuit (B) the diode of (A) is replaced with resistor-capacitor network. The circuit at (C) is a delayed-on, delayed-off design (D) is a timed 'on' circuit, (E) and (F) unique pushbutton control circuits.
wiper as shown and the other to 'A'. Then plot the outputs. Now figure out how many transistors you would need to create that magnitude of output functions!

Figure 1(e) and (f) show a couple of unusual pushbutton control circuits I have stumbled across. In (e) C is charged slowly through R, then when S is pushed, discharges quickly through K. If R is large, K will drop out when C's voltage drops below the 'hold-in' value. If R is small enough, K will hold in at minimum voltage. This circuit may be used where it is desired to operate a high current drain relay from a supply too small to operate it. For example, assume K to be a 700 Ohm, 28 Volt relay. Normal drain is 40 ma. Drop out current is about 5-8 ma. for most of these relays. Make R 2.7K. The maximum charge current for C will then be limited to 10 ma. Running current will be 8.2 ma. R may be raised to as high a value as desired (determined by the allowable charge time for C) if K is to drop out after C discharges.

In (f), full relay current is drawn while S1 is pushed, but only the hold-in current while the relay is operative. S2 shorts the relay and causes it to drop out. In practice it is best to limit the running current to no less than 25 percent of the known full-voltage coil current. This will insure solid operation of the contacts.

Figure 2 shows a circuit which was developed to perform a group of design functions. (This is a for-real circuit.) Let's look at its operation. If S1 is pushed with K1's contacts as shown, it will operate K3. When K3 pulls in, charged capacitor C3 will discharge through K4, causing the stepper to advance. When S1 is released, C2, which was charging while K3 was pulled in, will discharge through the step switch wiper W1, operating external circuits 1-2-3—n, whichever is selected by the stepper. Now, if we depress S2 for a moment before pushing S1, we will close and latch K1. This changes S1's output to feed to the two diodes D1-D2. Now when S1 is pressed, K2 is pulled in and K1 is held in (even though its 'hold-in' contact W2 has been disconnected by W2-K2). When S1 is released, K2 will hold-in a bit longer, allowing K1 to drop out. Then K2 drops out. The next operation of S1 will now be shifted to K3.

Some modifications are possible. K2 may be made to latch closed, in which case it will drop out only when S3 is pushed. The arrangement of the capacitors, etc., of K3 can be changed to cause an operating pulse to be fed through the wiper of the stepper when S1 is pushed. The stepper then advances when S1 is released and K3 drops out. This circuit is actually in use in an automation system design. You will note that where there is no capacitor or resistor path shunting the relay coils, they are shunted by diodes. This, as stated before, is to protect the system from voltage spikes which could ruin solid state components.

No Panacea

By no means have we attempted to cover in this short article all of the ways in which relays may be used. However, I hope that some of the ideas shown here will help to suggest to engineer's brought up on a solid-state diet some ways in which the older electronic devices may still be of great value in new design. There is a saying which I have heard; 'Don't use a transistor where a relay will do as well and don't use a relay if you can use a switch.' I don't subscribe wholeheartedly to this theory, but having spent about four years in high-level semiconductor research, I can assure you that the solid-state device is not always the answer to every problem.
APPLICATIONS FOR THE PHASE LOCKED LOOP

The PPL has many applications in communications circuits. Here is an inside look at their operation and uses. By Jack Mattis/Signetics

The concept of the Phase Locked Loop (PLL) is by no means new. The first description of Phase Lock appears to have occurred in 1932 in a paper describing synchronous reception of radio signals. Since that time, the PLL has been used in a variety of applications, but has not achieved the widespread usage that might at first be expected.

General usage of the PLL has been hampered by the fact that the circuit complexity, and the relatively large number of components required, made it use economically unfeasible in many applications. In discrete component form, the PLL was simply too expensive for all but the most sophisticated applications which could justify the additional expense.

The recent development of the Phase Locked Loop as an integrated circuit, however, is doing much to change the picture, since the cost of an integrated circuit is only indirectly related to the number of components it contains. The monolithic PLL is now available as an inexpensive building block similar to the monolithic operational amplifier in the diversity of its applications.

The Phase Locked Loop

The phase locked loop is basically no more than a specialized feedback or servo system. The primary difference over conventional systems is that the feedback or error signal, rather than being in the form of a voltage or current, is a frequency. The equations which define the operation, and hence determine the characteristics, of the Phase Locked Loop however, are the same as would be found in conventional feedback systems.

The basic PLL, shown in Figure 1, consists of four building blocks: a phase comparator, a low pass filter, an amplifier, and a voltage controlled oscillator (or VCO). The heart of the loop is the phase comparator which compares the input and VCO signals and generates an output which is dependent upon their relative phase. This output signal, when filtered and amplified becomes the control signal which, when the loop is in lock, keeps the VCO frequency identical to that of the input signal. Should the input signal increase or decrease in frequency, the relative phase change with the VCO signal generates the control signal necessary to increase or decrease the VCO frequency accordingly.

The operation of the phase comparator may be shown graphically by Figure 2. When the frequency of the input signal is the same as the VCO free running frequency loop locks with a constant 90° phase difference between the two signals. With this phase relation the average DC value of the compared signals (which is to become the VCO control voltage) is zero since the positive and negative excursions are of equal area. This is expected because the VCO is already running at the proper frequency and hence needs very little control voltage to lock to the input signal. For input signals of higher or lower frequencies, the phase difference can shift up to 90° in either direction to generate wave forms with the positive or negative average DC values shown in Figure 2. The frequency deviation of the VCO, in response to the maximum positive and negative error voltages generated by the phase comparator determines the “tracking” or “lock range” of the PLL. The Tracking or Lock Range can be further defined as: the frequency range, centered about the VCO initial free running frequency, over which the loop can track the input signal once lock has been achieved.
Another means of describing the operation of the PLL is to observe that the phase comparator is, in actuallity, a multiplier circuit which mixes the input signal with the VCO signal. This produces the sum and difference frequencies \(f_s \pm f_o \) shown in Figure 1. When the loop is not lock, the VCO duplicates the input frequency so that the difference frequency component \((f_s - f_o) \) is zero and, hence, the output of the phase comparator contains a DC component. The low pass filter removes the sum frequency component \((f_s + f_o) \) but passes the DC component which is then amplified and fed back to the VCO. Notice that when the loop is in lock, the difference frequency component is always DC, so that the lock range is independent of the bandedge of the low pass filter.

Consider now the case where the loop is not yet in lock. The phase comparator again mixes the input and VCO signals to produce sum and difference frequency components. Now, however, the difference component may fall outside the bandedge of the low pass filter, and be removed along with the sum frequency component. If this is the case, no information is transmitted, and the VCO remains at its initial free running frequency. As the input frequency approaches that of the VCO, the frequency of the difference component decreases and approaches the bandedge of the low pass filter. Now some of the difference component is passed which tends to drive the VCO towards the frequency of the input signal. This in turn decreases the frequency of the difference component and allows more information to be transmitted through the low pass filter to the VCO. This is essentially a positive feedback mechanism which causes the VCO to "snap" into lock with the input signal. With this mechanism in mind, the term "capture range" can be defined as: the frequency range, centered about the VCO initial free running frequency, over which the loop can acquire lock with the input signal. The capture

Fig. 2 Basic phase comparator output waveforms.

Fig. 3 Typical lock and capture range characteristics (SE/NE 565).
range is a measure of how close in frequency the input signal must be to that of the VCO to acquire lock. The "capture range" can assume any value within the lock range and depends primarily upon the band-edge of the low pass filter together with the closed loop gain of the system. It is this signal capturing phenomena which gives the loop its frequency selective properties. Figure 3 shows a typical lock and capture range characteristic for a PLL. Note that the capture range may assume any value within the limits of the lock range.

Applications
As a functional building block, the Phase Locked loop is suitable for a wide variety of frequency-related applications. Most of these applications, however generally fall into one or more of the following categories:

1. FM demodulation
2. Frequency multiplication/division/fractionalization
3. Frequency synchronization
4. Signal conditioning
5. AM demodulation

FM demodulation is a fairly obvious application, since when the loop is in lock, the VCO frequency is identical to that of the input signal and the error voltage (which drives the VCO) becomes a direct representation of the input frequency. This error voltage then corresponds to the demodulated FM signal, and its linearity depends only on the control voltage to frequency transfer characteristics of the VCO.

FM demodulation applications are numerous, however, some of the more popular are:

1. Broadcast FM detection. Here, the PLL can be used as a complete IF strip, limiter, and FM detector which may be used for detecting either wide or narrow band FM signals with greater linearity than can be obtained with other means. It should also be noted that for frequencies within the range of the VCO, the PLL functions as a self-contained receiver since it combines the functions of frequency-selectivity...
and demodulation. One increasingly popular use of the PLL is in scanning-receivers where a number of broadcast channels may be sequentially monitored by simply varying the VCO free running frequency.

2. FM Telemetry

This application involves demodulation of a frequency modulated subcarrier of the main channel. A popular example here is the use of the PLL to recover the SCA (storecast music) signal from the combined signal of many commercial FM broadcast stations. The SCA signal, typically, is a 67 KHz, frequency-modulated subcarrier which puts it above the frequency spectrum of the normal stereo or monaural FM program material. By connecting the circuit of Figure 4 to a point between the FM discriminator and the de-emphasis filter of a commercial band (home) FM receiver and tuning the receiver to a station which broadcasts an SCA signal, one can obtain "hours" of commercial free background music.

3. Frequency Shift Keying (FSK)

This refers to what is essentially digital frequency modulation. FSK is a means for transmitting digital information by a carrier which is shifted between two discrete frequencies. In this case, the two discrete frequencies correspond to a digital "one" and a digital "zero" respectively. When the PLL is locked to a FSK signal, the demodulated output (error voltage) shifts between two discrete voltage levels, corresponding to the demodulated binary output. FSK, as a means of transmitting data, is used primarily over telephone lines. Frequency multiplication can be achieved with the PLL in two ways:

1. Locking to a harmonic of the input signal.
2. Insertion of a counter (digital frequency divider) in the loop.

Harmonic locking is the simplest, and can usually be achieved by setting the free running frequency to a multiple of the input frequency and allowing the PLL to lock. A limitation on this scheme, however, is that the lock range decreases as successively higher and weaker harmonics are used for locking. This limits the practical harmonic locking range to multiples of approximately less than ten. For larger multiples, the second scheme is more desirable.

A block diagram of this scheme is shown in Figure 5. Here the loop is broken between the VCO and the phase comparator, and a counter inserted. The fundamental of the divided VCO frequency is locked to the input frequency in this case, so that the VCO is actually running at a multiple of the input frequency. The amount of multiplication is determined by the counter. An obvious practical application of this multiplication property, is the use of the PLL in frequency synthesizers.

For the case of frequency fractionalization, both schemes could be used to generate, for instance, a frequency exactly 16/3 the input. In this case, the circuit of Figure 6 could be used with the initial VCO frequency set to approximately 16/3 the expected input frequency. The counter then divides the VCO frequency by 16, and the input is locked to the 3rd harmonic of the counter output. The output can

Fig. 8 Note reduction in sideband amplitudes when the VCO is locked to the fundamental. Makes PPL useful in digging out weak signals buried in noise.
now be taken as the VCO output and will be exactly 16/3 of the input frequency so long as the loop is in lock. Frequency translation may be achieved by the addition of a second mixer (phase comparator) and low pass filter to the basic PLL as shown in Figure 7. This scheme allows small variations in the VCO output frequency even though its center frequency is locked to a highly stable reference frequency.

Frequency synchronization allows a relatively unstable VCO to be locked to a low level but highly stable input signal. The VCO output signal will now have the same stability as the input signal, but at a much higher power level. A popular practical application of this principle is to lock a PLL on to WWV and generate a cheap laboratory frequency standard. Other practical applications include synchronizing disc or tape drive mechanisms in information storage and retrieval systems, slaving two systems clocks together, or locking to a low duty cycle burst at a specific frequency in which case the PLL can regenerate a coherent CW reference frequency by locking on to the bursts. In addition, this principle might be applied to synchronize tape recorder speed for playback of a tape that had been recorded at an irregular speed.

Signal conditioning is generally used to remove unwanted sidebands from a signal, even though the sidebands may be so close to the fundamental that the usual filtering techniques prove ineffective. By proper choice of the VCO free running frequency, the PLL can be made to lock to any one of a number of signals present on the input. Thus the VCO is able to reproduce the desired frequency while rejecting the unwanted sidebands. Figure 8 shows the reduction in sideband amplitudes when the VCO is locked to the fundamental. This effective sideband reduction makes the PLL extremely useful in regeneration of weak signals buried in noise.

AM demodulation may be achieved with PLL by the scheme shown in Figure 9. In this mode of operation, the PLL functions as a synchronous AM detector. The PLL locks on the carrier of the AM signal so that the VCO output has the same frequency as that of the carrier but no amplitude modulation. The demodulated AM is then obtained by multiplying the VCO signal with the modulated input signal, and filtering the output to remove all but the difference frequency component. It may be recalled from the initial discussion that when the frequency of the input signal is identical to the free-running frequency of the VCO, the loop goes into lock with these signals 90° out of phase. If the input is now shifted 90° so that it is in phase with the VCO signal, and the two signals mixed in a second phase comparator, the average DC value (difference frequency component) of the phase comparator output will be directly proportional to the amplitude of the input signal.

The PLL still exhibits the same capture range phenomena discussed earlier, so that the loop has an inherent high degree of selectivity, centered about the free running VCO frequency. Because this method is essentially a coherent detection technique which involves averaging of the two compared signals, it offers a higher degree of noise immunity than can be obtained with conventional peak-detector-type AM demodulators.

One very practical application of this principle, is its use in tone decoding or frequency sensing applications. A specific example is the SE/NE567 Tone Decoder which, using this technique, is able to sense the amplitude of a specific frequency in a signal even though the signal itself may be buried in noise. Specifically, this circuit can sense the frequency and amplitude of the desired signal from an environment with a signal to noise ratio of up to −10 dB, without tuned circuits.

Conclusion

These are but a few of the most fundamental applications of the phase locked loop. From these basic uses, technically speaking, come an almost limitless number of other possible applications. The fact remains, however, that it is the economic advantages of monolithic integration that makes most of these applications practical. Because the monolithic PLL is cost competitive with other existing techniques, and can, in many cases, give superior performance, it is destined to become a major building block of many new communication systems.

References

Can LPB offer the same or better specs in their $475 S-2 Audio Compressor/Limiter than the people in Connecticut can? Yes! The S-2 has an instantaneous attack time constant, 10 db/second recovery time and +11 db VU peak power at the absolute limiting point on the limiter! The compressor gives .066 seconds attack time constant, 2 db/second recovery rate, 2:1 Δdb Pin/Pout compression rate plus a variable compression threshold of -40 to -10 db VU... for $475.00! Just send us a refundable deposit of $50.00 plus your purchase order and we'll ship your LPB S-2 for a free 30-day trial. We know you won't return it so we'll bill you for the remaining $425.00. And don't forget LPB makes and distributes 5 and 8 channel consoles, turntables and all the other studio necessities you can use, all at lowest possible prices. If you're still not convinced about the LPB S-2 Audio Compressor/Limiter, we'll spring for the cost of a collect call to John Gafford at

LPB Inc.
520 Lincoln Highway, Frazer, Pa. 19355
(215) 644-1123
Old unit provides new answers for broadcast remotes

By Sidney King*

For some three years, KVOC and the Monarch Network were involved in pioneering the direct dial method of originating out-of-station broadcasts. These were particularly effective for long distance program origination in view of considerable increases in rates for broadcast loops.

During our early experimental period we experienced, and advised accordingly, problems concerning the elimination of certain frequencies which would disconnect a direct dial call. We also helped in the refining of equipment now recommended by the telephone company for direct dial origination. It generally consisted of a dial telephone with a recorder coupler attached. A station producing the remote broadcast merely fed its signal from its own mixing apparatus into the recorder coupler.

Although it was possible to get directly into the phone, many stations used this system. However, there has been one serious problem—this problem was experienced in the summer of 1964 for any reason there was a disconnect, inasmuch as it was almost impossible to reestablish connections without finding an alternate means of notifying the feeding broadcaster so that he could hang up the telephone. This proved a source of embarrassment to more than a few broadcasters as well as to the telephone company.

During the past summer our station engineers, along with some exceedingly cooperative employees of the Bell Telephone Company, experimented with several different pieces of equipment. We found an answer to the problem of a disconnect which we would like to share with you.

New Answer In Old Device

Strangely enough, the answer did not come from any newly developed equipment. We found it in a recorder coupler which has been part of the Bell Telephone system equipment for many years. (The recorder coupler is completely different in its operation from the recorder coupler.)

The recorder coupler (List #1-USOC Code RDC) is a completely self-contained unit which the station originating a broadcast can feed directly from a remote amplifier. The recorder coupler is wired by the standard telephone jack to a phone line. The station originates the call by dialing a preassigned number, and on the first ring is automatically connected with the recorder coupler, thereby receiving whatever signal is...
being fed into that instrument at the point of origin.

Please note that while a telephone is normally attached to the recorder connector unit, it is wired so that the telephone transmitter will not function during the period that the recorder connector is active. Actually, a broadcast may be originated and completed without the use of a telephone at the originating end, using only the recorder connector.

KVOC and Monarch Network have mounted both phone and recorder connector on a small portable board before traveling to do a sports broadcast. We merely request the telephone company to install a four-prong standard female telephone jack and predetermine the telephone number assignment at the point of origination. Upon arrival, the recorder connector, using a male phone jack, is plugged in. The recorder connector also requires an AC source. We have established by using this method, that when a disconnect does occur, it is only a matter of some 15 seconds to have the station re-dial the number and be reconnected to the broadcast source.

Monarch Network not only originates its sporting events in this manner, but feeds some 15 other radio stations by having them dial into individual recorder connectors, each using a different telephone number assignment. Here again, the savings over the regular Class E or F broadcast loop is substantial and we have determined that there is less difficulty in feeding each station separately than we experienced when a broadcast loop broke down, requiring some length of time to locate and repair the trouble.
RELAY CONTROLLED MIC

Many engineers have often thought that switching the control room mic with a relay would create problems. However, at WRSC and WQWK FM, we found that it works quite well.

I believe that many engineers will agree that you could wire a control room to be operated in many different ways... and still find that there are some announcers who will have their own set procedure for operating from the board.

Microphone switching in the control room was one of our problems for a while. Some announcers would begin their show by setting a level on the pot and using the key without moving the level. This can be good or bad depending on the type of format programmed, or depending on the type of program aired by the individual announcer.

There have been engineers who have used cure pots for a mic in-out, using the cue switch for an on/off position. This also can be good or bad, depending on the format. However, this does not solve the problem of what to do for the announcer who does not like to do his show with this type of mic switching.

These are just a few reasons why we developed a relay switching microphone. With this unit, you may mount the on/off switches wherever they would be most convenient, because the switches only switch 12 Volts at less than 1 Amp. This gives you a wide selection of switches to choose from.

Figure 1 shows the wiring diagram of a typical relay switching microphone. (This one is used at WRSC and WQWK FM. The unit utilizes two relays, Potter and

www.americanradiohistory.com
switch to fire the relay shorting the 1N3211 diode, or the remote mirror change switch can cause this function to occur.

The projector lamp idles at one half the RMS voltage, then as the mirrors shift for airing the slide projector, the lamp voltage rapidly rises to optimum.

During on-the-air changes, this rise is so fast as to be virtually undetectable in the video. The small mini-box is mounted out of sight

(Continued on page 45)
Integrated Circuits may prove more reliable than conventional devices, but they still fail, occasionally. The problem seems simple enough: pull it out. But many IC's are soldered directly to the printed circuit board. If you're lucky, they are plug-in types. Replacement seems easy enough, but care must be taken, and the proper tools must be used.

In the days of vacuum tube circuits, regular size tools were needed. However, the smaller (or even miniature) tools should be used when working with solid state circuits. In addition, you should use a small size 25-40 Watt iron. (One with a variable heat control is helpful.) The tip should be about 1/6th of an inch wide.

A device for removing solder is a "must". There are several types available. The piston type device works well. It is cocked so that when the trigger is released it will vacuum off the melted solder. Another hand model is heated like a soldering iron, but it has chambers and a squeeze bulb to vacuum off the solder. (If you haven't bought one yet, you can "wick-up" the solder by holding a braided wire on the melted solder.)

Of course, a bench vise is an asset. You probably will need both hands in solder removing operations.

Whether or not the IC must be replaced should be determined by dynamic signal tracing methods and followed by voltage checks. Ordinarily, if a signal goes into an IC but doesn't come out properly - yet input voltages are correct - the IC is defective and must be replaced. There just is no way to repair an IC ... it got to come out.

Before you attempt to remove the IC, its position on the board should be noted. Locate pin #1. There may be a #1 engraved or printed on the board. If not, mark it yourself. Once the IC is out, you may find your time wasted trying to figure out the proper orientation for the new IC. If you install it reversed the circuit will not work, and worse yet, you may ruin the new IC.

IC Removal

Heat the solder and remove it from all pins. Even with the solder gone, the tinning may still keep the pins stuck. With a small size long nose pliers, gently press each pin sideways (toward the board) and each will break loose. Remove the IC and then check the board to make certain the new IC will fit easily onto the board. Clean all connectors.

When soldering in the new IC (or any solid state device) a good safety measure is to lightly spray the device with a shot of coolant. Then if there is any trouble soldering any or all pins, the excessive heat will not damage the device. Remember also, that the printed wiring on many boards will not hold to the board after excessive heat has been applied.

Add the new IC in correct orientation and solder it to the board. Make certain no solder gets between the pins and shorts them out. There isn't much room.

Then inspect the solder job, but be kind to your eyes - use a magnifying glass.
RF Proofing TT Preamps

Since I have not seen much on RF proofing of broadcast equipment in Broadcast Engineering, I am sending information on RF proofing the Gates M6244 and 6244B TT preamps.

Beginning with the advent of FM and more so of late as more FM licenses are granted, engineers are having to cope with the problem of RF feeding back into their control room, studio and production room equipment. In many cases the FM station is an add-on event at the AM studio location with the FM tower located immediately behind or to the side of the AM studio. Normally the building is not shielded. With a circular polarized antenna above the building, the equipment is subjected to a high RF field.

We encountered RF problems in all our equipment, including the Gates turntable preamps, and we found that by doing the following we could almost completely eliminate it. We use M44-7 Shure cartridges and Gray 208S and 303 micro-trak arms.

To RF proof the Gates Preamp;
we removed the scratch filter switch—we planned not to use a scratch filter or play scratchy records. Then we removed TB-1, including scratch filter condenser and ground straps.

Cut out a small metal panel to overlap the hole left by removal of TB-1, you may start re-wiring. Use a Miller RFC 144 RF choke and wire from center pin on phono jack to C2 of preamp. Bypass center pin of jack to ground using a 47 pf capacitor. Also run amplifier ground to ground side of phono jack. Be sure to make all leads as short as possible. Now, if you have any ferrite beads, install them on AC leads to power transformer and bypass both sides of AC line to ground with .005 mfd capacitors. All capacitors should be ceramic for small physical size and short leads. If ferrite beads are not available, just bypass AC leads.

R. T. Whitaker, CE
KINE-KPUP
Kingsville, Tex.

for you, the professional...

The Gray 6400 Pre Amplifier

Become acquainted with the Gray 6400 Series Turntable Pre-Amps. Realize the high quality reproduction they'll provide. Higher outputs (0 dBm into 600 OHMS) and smaller packages than ever. Three output curves fully adjustable to match requirements. Monoaural (6400) Stereo (6401). Complete specifications at your request... You'd probably worry about it if it wasn't from Gray.

New Zoom Lens

Angenieux Corporation of America has a new zoom lens with basic focal length capability of 18-270mm, and a total focal length range of 18-675mm using the range extender turret. The complete 15x18E is an entirely new concept in studio lenses, and a new standard since the introduction of the first 10:1. This lens is also designed for remote applications not requiring extremely long focal lengths.

For studio operations and remote broadcasts, the short focal length of 18mm (51° horizontal angle) has been retained and the longer focal length has been increased from 180mm to 270mm. The aperture of f/2 (f/2.4 for the lightweight "L" model) remain constant throughout for focal lengths between 18 and 180mm thereafter dropping linearly to f/(f/3.4 for the lightweight "L" mode for the standard 1½" plumbicon.

The 15x18E has a close focus distance of 25" (21.7" for the "L" model) and still retains its full zoom capability. With a close-up adapter and range extender the lens is capable of fully-screening an object of less than one-half inch in height.

The positioning of the three range extenders (1.5x, 2x, 2.5x) in an integral part of the lens: all housed in a turret at the rear of the lens which can be remotely controlled. An entirely new development and an essential feature of the 15:1, there are two important results: first, the need for a sliding carriage support system is eliminated thus reducing the weight second, the essential ease of controlling the range extenders from the rear of the camera by means of a small electric motor activates...
by a turret command box. Change in range extenders requires only about one second, and the iris is automatically set to compensate for variations in video level.

Dolbyized Recorder

The Revox A77 is now available with the Dolby B Noise Reduction Unit as an integral part of the recorder. Change in range extenders requires only about one second, and the iris is automatically set to compensate for variations in video level.

Dolbyized Recorder

The Revox A77 is now available with the Dolby B Noise Reduction Unit as an integral part of the recorder. Change in range extenders requires only about one second, and the iris is automatically set to compensate for variations in video level.

The unit is equipped with four additional Dolby-Processors, two compressors and two expanders, one for each of the two record and reproduce channels. Thus, the recorder can record and play on each channel individually or on both together, with or without the Dolby system being in effect.

The Revox A77 Dolby version has an additional on-off switch to bring the Dolby electronics into the circuit. Revox claims the built-in calibration controls and reference oscillator allow calibration of such a high degree of accuracy that the frequency response remains the same, regardless of whether the Dolby electronics are in or out of the circuit. The built-in multiplex filter protects the Dolby electronics from interferences.

The Revox A77 Dolby version has an additional on-off switch to bring the Dolby electronics into the circuit. Revox claims the built-in calibration controls and reference oscillator allow calibration of such a high degree of accuracy that the frequency response remains the same, regardless of whether the Dolby electronics are in or out of the circuit. The built-in multiplex filter protects the Dolby electronics from interferences.

Circle Number 61 on Reader Reply Card

Triggered Sweep Scope

Sencore, Inc., manufacturer of quality professional test equipment has announced a new, low cost, dual channel-dual trace oscilloscope featuring both triggered and free-running sweep.

The new scope, model PS163, is said to provide the features and stability of lab type scopes for a fraction of their cost. The company spokesman also stated that the operation of the scope has been greatly simplified with the use of pushbutton switching and employing both manual and automatic triggering.

The free-running sweep, an exclusive feature, allows the unit to be operated as a service type scope for those technicians unfamiliar with a triggered scope. The PS163 may be operated either single or dual trace and has been designed to fill the demand for a low cost lab type scope in both servicing and industrial applications.

(Continued on page 48)

TELAN
gas fueled thermoelectric generators

Nestled under the ice covered eaves of an equipment shed on a 11,000 foot mountain peak in Utah, this TELAN generator provides power for a TV translator. The propane tanks supplying fuel to TELAN require service only once a year. TELAN is available in from 10 to several hundred watts. 12-24-48 VDC standard.

TELEDYNE ISOTOPES
110 W. TIMONIUM ROAD — TIMONIUM, MD. 21093
PHONE: 301-252-8220 — TELEX: 87-780

Circle Number 40 on Reader Reply Card

February, 1972

www.americanradiohistory.com
New Products (Continued from page 47)

The stable triggering circuit and time base calibrated to 2% accuracy allows precise time and frequency measurements necessary in many industrial and design applications. Special TV vertical and TV horizontal sweep positions with a sync separator stage have been added to permit stable displays of complex television signals. The dual trace, triggered operation is considered by the manufacturer to be a valuable asset to the television service technician when troubleshooting difficult AGC and chroma problems. The critical timing of concurrent waveforms present in these stages can be readily observed to check stage operation.

Circle Number 62 on Reader Reply Card

Supercard Kit

Television Equipment Associates introduces a new graphics kit for the immediate production of supercards and titles which will be marketed under the name MAGNETITLE.

Two sizes of flipcard boards with a mat-finished black steel facing and dimensions of 11"x14" and 16"x20" are supplied with edge markings to facilitate horizontal and vertical positioning of words. Letters are screen-printed in white on black vulcanized fiberboard and are easily moved around on the flipcard board for best layout effect. Shadows are electronically eliminated. Four alphabet fonts are currently available with others to follow. The complete kit includes four boards, four fonts and a container.

Circle Number 64 on Reader Reply Card

Custom Turntable

The GT-12 custom turntable from Sparta Electronic Corporation has three moving parts set in a one-piece cast aluminum ribbed frame. The user has a choice of two motors, a hysteresis synchronous (GT-12-SY) or four-pole (GT-12-4P). Wow and flutter is held to 0.1% at 33 1/3 RPM. Rumble is 45 dB at 33 1/3 RPM and 40 dB at 45 RPM.

The GT-12 features a one-hand cueing lever. The power-paddle switch is spring loaded in one direction allowing the platter to turn until the switch is released. When the switch is activated in the other direction the platter will continue to rotate until the switch is manually returned to the neutral position.

Speeds of 33 1/3 and 45 RPM are selected by a single front mounted lever. When the lever is centered the turntable is in neutral. The lever when moved to either the right or left, will activate the motor and select the speed.

Available to complete the SPARTA GT-12 system are M232 or M236 Tone Arms, and TEP-3S (stereo) or TEP-3M (mono) turntable pre-amplifiers. The tone arms have low tracking forces and provide for critical adjustments. The turntable pre-amplifiers are equalized for the RIAA standard curve and designed for both high-Z and low output cartridges.

Circle Number 63 on Reader Reply Card

Patch Cords For Miniature Jack Panels

For miniaturized telephone broadcast, telecommunications and industrial patching applications Switchcraft, Inc. has designed a new series of 2- and 3-conductor shielded patch cords.

Designed for Switchcraft, “ instantly telephone” jack panels and equivalent, TT-840 (3-circuit) and TT-860 (5-circuit) Patch Cords can be specified in a variety of types and lengths from 6 inches to 6 feet for interconnecting applications requiring 3 and 5 circuit twin patch.
The new patch cords feature bronze tinned conductors covered with thermoplastic insulating material. Woven over insulated conductors is a braided shield and a black nylon braid.

The series use standard Switchcraft 2- and 4-conductor cords with a TT-Twin Plug phone plug attached at each end.

Circle Number 65 on Reader Reply Card

Stereo Amp/Receiver

One of the latest additions to the growing line of quality stereo receiver/amplifiers is the Heath AR-1500. The unit BE tested moved the state-of-the-art ahead once more.

The AR-1500 should not be tackled by the inexperienced builder, but for the builder it answers a lot of questions. The AR-1500 takes a lot less time to build than the AR-15. But what has bothered many builders is that on homebrew circuits, they have tested each circuit as it was finished... reducing the meaning of a "smoke test." Heath has used this same approach. And they took it a step further.

As shown in Figure 2, the major unit circuits are built on circuit boards. These boards plug into hinged connectors, allowing a quick disconnect should trouble occur. With the covers removed, the unit can be relieved of most of its major circuitry in just a few minutes.

Troubleshooting represents no particular problem, because Heath has built-in circuitry that allows its panel meters to be switched for making relative resistance and voltage readings. Although each board is checked before it is inserted in the unit, it also is checked after installation. As a backup for any trouble that might occur, the manual contains circuit board operation details, numerous point by point check lists, voltage test points and photos. From a builder's... (Continued on page 50)

Two-Faced Production Timer/Stopwatch

Radio and TV production and engineering personnel can observe elapsed time simultaneously with the new ADRL Two-Faced Two-Timer marketed by T.E.A. Because of the two readouts, the unit has no back. Instead, it has two fronts.

The timer can be ordered with either a 3 or 4 nixi-tube display for maximum elapsed time of nine or 99 minutes 59 seconds. Single-faced models are also available, plus remote controls for Stop, Start and Reset. Controls can be interfaced with audio or video tape recorders and cart machines, and prices start at $225.00.

Circle Number 67 on Reader Reply Card

For More Information on Products advertised or described in this issue use Free Reader Service Card. Be Sure to include your name and address.
(Continued from page 49)

standpoint, the AR-1500 should be a challenge, even with all its assurances.

The time-saving, troubleshooting advances are equal to the circuitry involved. But here again, you notice that there is something different. Squelch circuits (controlled from the front panel) are seldom found, as are special built-in oscilloscope vertical and horizontal amplifier circuits. Once attached to the AR-1500, the scope will indicate FM multipath reception, tuning, and signal strength.

Field effect transistors in the pre-assembled FM tuning unit and AM RF circuit provide excellent sensitivity and large signal handling capability. L-C filters in the IF circuits increase selectivity and stereo separation and never require alignment.

The direct coupled power amplifiers will drive the most demanding speakers. Limiting circuits protect the power amplifier from damage during excessive power dissipation periods, including shorting the speaker terminals. Output sockets are provided for two separate speaker systems and are controlled by pushbuttons on the front panel. Cross-over outputs for use with electronic cross-over networks and external amplifiers are included.

Fig. 2

System specs include: frequency response is ± 1 dB from 20 to 15,000 Hz; harmonic distortion 0.5% at 1000 Hz with 100% modulation; SCA suppression is 55 dB; and channel separation for stereo is 40 dB or greater at mid frequencies. For Mono: sensitivity is 1.8uV; selectivity 90 dB; image rejection 100 dB; IF rejection 100 dB. Dynamic power output per channel: 90 Watts (8 Ohm); 120 Watts (4 Ohm); 50 Watts (16 Ohm).

Increase Head Life with ISOLAIR New Clean Air Unit by LIBERTY

This unit provides a laminar down flow of the cleanest possible air at the critical video head area. Excessive wear and damage by airborne contaminants are virtually eliminated, extending head life by 100% or more and insuring better overall VTR performance, as well as saving time and money. The unit is suspended from the ceiling thus requiring no additional floor space. It is easily installed and maintained and meets Federal Standard 209a, Class 100.

An additional positive effect is the cumulative result of the constant filtering of air from the entire room, so that during an extended period of use, the level of contaminants in the surrounding environment is progressively reduced.

Liberty Industries has the capability for providing complete clean air environments for any size or type of operation. Our sales engineers are ready to help you.

Call or write.

LIBERTY INDUSTRIES, INC.
598 Deming Road, Berlin, Conn. 06037
Telephone (203) 928-6361
Beginning with this issue of BE, we are using Reader Service card numbers with our book reviews. If you're interested in any book we cover and if you want more information, such as prices and paperback vs. hardback offerings, note the "circle number" at the end of the review. Tear out the Service Card, fill in all blanks, circle up the numbers of items that interest you, and drop the card in the mail.

The new Sams Technical Book Catalog lists dozens of new and revised titles designed to increase technical understanding and know-how in every phase of electronics and allied areas ... including electronics math.

Each subject is presented in simple, easy-to-understand terms and made completely clear with how-how photos and drawings. Facts and methods are easy to grasp ... and easy to remember. Here are the professional trade methods that put new skills and abilities in your hands.

Circle Number 75 on Reader Reply Card

The second edition of Howard Tremaine's Audio Encyclopedia is now available. Nowhere is there a book more important to broadcasters who work with audio than this one. Tremaine has updated his authoritative reference volume in most areas, so it should remain a "must" book for every station.

This volume of about 1,800 pages covers every phase of audio and includes the latest solid state and integrated circuit devices as they are used in audio. After the first edition of this volume had been circulated, it became known in some circles as "the audio man's bible".

It's available by book number 20675 in the hardback version from the Howard W. Sams Company, 4300 West 62nd Street, Indianapolis, Ind. 46206.

Circle Number 76 on Reader Reply Card

The Technique of the Sound Studio by Alec Nisbett of the BBC) is another revised audio book, but this one takes another approach. The book is concerned with general principles and not with the operation of particular items of equipment. It deals with the medium in which, within certain limits, the final judgement must always be subjective. It places emphasis "ear training", telling what to listen for, and how to analyze the characteristics of good and bad sound effectively and quickly.

High interest chapters deal with microphone balance of music and speech, and characteristics of microphones and studios, together with other equipment used. Uses the most elaborate and most simple studios as examples.

Circle Number 77 on Reader Reply Card
100. AEL COMMUNICATIONS CORP.—A four-page brochure entitled "Tomorrow’s Capabilities Now!" featuring the latest in CATV equipment is now available. The completely illustrated brochure gives full features and detail on AELCC’s Super-Band Challenger Mark Series single and dual cable bi-directional trunk systems, trunk extender amplifiers and other special CATV units. Booklet stresses special features, money-saving characteristics and applicability. All units are fully diagrammed, in color.

101. ALLIED RADIO SHACK—Allied Radio Shack’s new 1972 Electronic Parts & Accessories Catalog lists thousands of hard-to-find electronic items, including those parts and pieces most often needed to keep equipment working, and the accessories used with them. The 132-page catalog is a complete buying guide for hobbyists, kit builders, hams, CBers, "fix-it" men, electricians, servicemen, technicians, hi-fi installers, experimenters and anyone interested in any aspect of electronics. Exclusive Allied, Realistic, Archer, Micronta and Radio Shack brand products are listed, as well as the complete line of Knight-Kit and Science Fair kits.

102. ALLIS-CHALMERS—Specifications on Allis-Chalmers Model DES-45 Diesel Electric System are presented in a new six-page brochure, Bulletin EE-304F. Rated at 45 kW continuous duty, the DES-45 is designed for both standby and prime power use. The DES-45 is suitable for lighting, heating, motor circuits, communications, and similar application. The brochure describes precision performance features of the set. Charts and graphs illustrate voltage and frequency regulation characteristics, power ratings, and fuel consumption using the standard Allis-Chalmers Model 2800 6-cylinder 73 hp diesel engine. Complete physical data and discussion of standard components and optional equipment are also included.

103. ALTEC DIVISION—“Ontario Motor Speedway Incorporates the World’s Most Powerful Sound System” is the title of a new 16-page brochure available from the Altec Division of LTV Lin Altec, Inc. The brochure details the technical problems and the innovative answers provided for the 30,000 Watt system at OMS—the largest facility of its kind in the world, covering more than 70 acres of ground, and having seating capacity for 140,000 persons in the grandstands.

104. ANACONDA WIRE AND CABLE CO.—A new telecommunication cable for T-1 Carrier systems is described in a four-page bulletin. The cable features two extra pairs, one for repeater interrogation and one for voice order wire, and two compartments for electrical separation of pair groups. All pair counts of the new cable, known as Plus 2”, are said to allow 100 percent of the pairs to be used for T-1 Carrier systems, with transmission in both directions, at maximum repeater spacing. According to the bulletin, all repeater house spaces can be utilized regardless of whose equipment is installed. Cable pairs from the nominal pair cannot be allocated for repeat
interrogation and voice order wire functions. Maximum repeater spacing is possible due to improved near-end crosstalk coupling loss characteristics. Separation of the core into two compartments by means of a polyolefin-coated metallic shield enables simultaneous transmission of T-1 line signals in opposite directions without interference between channels.

105. ARCDY ASSOCIATES—The new two-color, 20-page catalog from Arcidy Assoc. details the company’s comprehensive capability in wirewound resistors over the range of 10 milliwatts to 50 Watts. Covering nearly all the popular package configurations of both precision bobbin and power type resistors, the catalog also describes new combination precision-power device geared to be competitive with metal-film counterparts. Among the power styles described are both silicone coated and molded axial lead types, aluminum housed chassismount and through-mount types. Precision styles include standard and miniature axial lead, radial lead, axial-radial lead, cylindrical and rectangular printed circuit, lug terminal, high frequency and hermetically sealed packages.

106. B&K INSTRUMENTS, INC.—B&K’s new 1971/72 Short Form Catalog describes briefly the firm’s full line of precision transducers and instrumentation for sensing, measuring, and analyzing all aspects of sound, noise, and vibration. Included are accelerometers; artificial ears, mastoids, and voice; udiometer calibrators; deviation bridges; digital and data processing equipment; filters; frequency response tracers; hearing aid test boxes; spectrum analyzers; graphic level recorders; measurement microphones; noise generators; noise monitoring equipment; oscillators; power amplifiers; sound level meters; real-time analyzers; signal conditioners; tape recorders; vibration control equipment; and voltmeters. This catalog is a handy reference for those involved in applied acoustics, mechanical dynamics, vibration testing, and lab sciences.

107. CBS ELECTRONIC VIDEO RECORDING—In normal use, EVR cassettes are close to indestructible. But if dropped on a hard surface they may separate. The CBS Electronic Video Recording Div. has prepared an illustrated booklet demonstrating re-assembly and outlining procedure for ordering cassette parts.

122. RENTAL ELECTRONICS, INC.—The new 60-page catalog includes rental information for such general purpose test equipment as analyzers, bridges power supplies, generators, amplifiers, oscilloscopes, couplers, and meters. Instrument rentals can be offered by REI for as little as one week but are usually of one to six months’ duration. Equipment is housed at seven nationwide inventory centers and can be supplied to the customer within 24 hours. All equipment listed in the catalog is owned and held in rental inventory which includes equipment from most leading instrument manufacturers.

ADVERTISERS’ INDEX

- Abco Inc. 9
- Ampex Corp. Pro Video Division 20-29
- Andrew Corporation Cover 2
- Belar Electronic Laboratory Inc. 10
- Broadcast Electronics Inc. 43, 48, 52
- Broadcast Products Inc. 30
- Scott Buttern/Coastom 13
- CBS Laboratories 7
- Cleveland Institute of Electronics 51
- Cohu Electronics, Inc. 1
- Ditch Witch Trenchers Div. 43
- Machine Works 13
- CEC 3
- Electo Voice, Inc. 19
- CBC Closed Circuit TV Corp. 11
- Gates Radio Co. 11
- The Grass Valley Group, Inc. 3
- Gray Research Division 48
- Clifford B. Hannay & Son, Inc. 50
- Jensen Tools and Alloys 52
- Kenwood 14
- Liberty Industries, Inc. 50
- Low Power Broadcast Co. 14, 45
- McMartin Industries, Inc. 49
- Minneapolis Magnetics, Inc. 49
- Rupert Neve & Co. LTD. 10
- Nortronics Company Inc. 12
- Petomac Instruments, Inc. 42
- Richmond Hill Laboratories 52
- Roll A Reel Company 45
- SC Electronics, Inc. 15
- Howard W. Sams & Co., Inc. 41
- Shure Brothers, Inc. Cover 4
- Spectra Electronics 8
- Spoots 43, 48, 52
- Standard Electric Time 45
- Stanlone Magnetics, Inc. Cover 3
- Switchcraft, Inc. 45
- Teletype Manufacturing & Engineering Co 46
- Tech Laboratories, Inc. 50
- Technology Sources 47
- Telelx Communication Division 23
- Visual Educrom Inc. CE 5
- Wilkinson Electronics Inc. 25
- WESCO, Inc. 47
- Nichols Avenue P.O. Box 518
- (206) 378-2137
- Friday Harbor, Washington, 98250

PROFESSIONAL SERVICES

- VIR JAMES CONSULTING RADIO ENGINEERS
 Applications and Field Engineering
 Computerized Frequency Surveys
 345 Colorado Blvd. - 80206
 (303) 333-5582
 DENVER, COLORADO
 Member AFCEE

- CAMBRIDGE CRYSTALS
 PRECISION FREQUENCY
 MEASURING SERVICE
 SPECIALISTS FOR AM-FM-TV
 445 Concord Ave., Phone 876-2610
 Cambridge, Mass. 02138

- COURTRIGHT ENGINEERING
 MORRIS COURTRIGHT, Jr., P.E.
 Automation - Applications Field Engineering
 ELECTRICAL AND BROADCASTING
 Route No. 1, Box 8546, Flagstaff, Ariz. 86001
 Phone (602) 774-9206

- RALPH E. EVANS ASSOCIATES
 Consulting Radio Engineers
 AM - FM - TV - CATV - IF
 3500 North Sherman Blvd.
 MILWAUKEE, WISCONSIN 53216
 Phone: 414-442-4210

- TODD ASSOCIATES
 CONSULTING RADIO ENGINEERS
 Alva C. Todd, Ph.D., P.E., Principal
 827 S. Summit Avenue, Phone: (312) 832-4104
 VILLA PARK, ILLINOIS 60181

- BROADCAST MEASUREMENTS
 Certified frequency
 Measurements AM, FM, TV
 Box 663 Pontiac, Mich. 48056
 Phone: 313-332-5283

- SESCO, Inc.
 47 NICHOLS AVENUE
 P.O. BOX 518
 (206) 378-2137
 FRIDAY HARBOR, WASHINGTON, 98250

Radio Station For Sale

Equipment for Sale

HELIX—STYROFLEX. Large stocks—bargain price—tested and certified. Write for price and stock list. 767-7668.

ONE STOP FOR all your professional audio requirements. Bottom line needed. P. O. Box 8057, Pensacola, Florida 32505. 7-71-TI

CARTRIDGE TAPE EQUIPMENT—Completely rebuilt and reconditioned. Tapecaster and Spotmaster. Record/Playback $35.00, Playbacks $55.00, 30-day money-back guarantee. AUDYNE, P. O. Box 1004, Rockville, Maryland 20850 (301) 762-7628. 11-71-TI

USED EQUIPMENT—Pay Cash for FM/AM transmitters, antennas, consoles, etc. Contact: Electronica Fernández, Box 413, Hato Rey, Puerto Rico 00919, Tel. 767-3500. 11-71-TI

KTR-1000 COLOR TV MICROWAVE LINKS—NTSC Color TV plus program audio microwave links for studio-remote, CATV, etc. Rack mounted, Mr. Raytheon. 255 Main St., as new condition, Radio Research Instrument Co., Inc., 3 Quincey Street, Norwalk, Conn. Tel. 203-853-2600. 12-71-TI

MOTORS FOR SPOTMASTERS

NEW Paps, hysteresis synchronous motor. HSZ 20.50—$270 as used in series 450 and 500 machines. Price $399 each. Prepaid, while they last. 90 day warranty. Terms check with order, only, no COD's. Not recommended for Tapecaster series 600 or 700. TAPECASTER TCM, Inc. Box 662, Rockville, Maryland 20851. 1-72-TF

TOWER, LAND, BUILDING, Orlando. Florida 10 miles North of Disney World. 550 ft. tower manufactured by Stainless, Inc., with self-climbing person 250 ft. transmitting line four insulated and tuned sections. 480 ft. building 1400 acres of land. Tower suitable for TV, FM or microwave relay at present site. Will sell or exchange. TMA or direct. C. O. D. H. Bartlett, Orlando, FL 32803. Phone (305) 841-5040. 2-72-TI

Save $165,000. Two RCA color studio camera chains complete with pedestals. Mint condition 5 years old. Phone 412-898-1509. 2-71-TI

Several Tektronix 556 vecsotrons. New original cations $1200.00. Also new Varias Vlystrons 609-541-4200. 2-72-TI

LPX CARRIER CURRENT MTRRS—1 RC-226, 1 RC-227, 1 RC-321, 1 UTM-33A, each with T301 coupler. RC-T5A splitter with 3-RC-T28 couplers Take all or part. WJR, Lafayette, Easton, PA. 806-42. 2-72-TI

IGM Automation System #300 including: Brain, sine wave generator with alarm, program load. 2 IGM 14" reels. Miaratra #2408 Carroll, 2 Mctara #108 Cartridge machines. time announcer: tone generator/filter. Price: $8,000.00. F.O.B. Kawasaki Tucson, Arizona. Phone: AC 606-752-5588. Mrs. Much-2-72-TI

1600 UFH TRANSLATOR. EMCEE UHF-HF with added SSB-STU-75, 1 KW ERP. Presently Ch. 20/In. 25 Out. J. Merritt. WICS-TV, Springfield, Illinois. 2-72-TI

FOR SALE: Ampex 403 F.T. unmounted T-15 in working condition with record electronics and new Noritronics heads-5450. GATES M900 10 watt exciters—two available. one with stereo-ended cables. In TRADE. Carta 581A time announce in new condition for used carousel or Scully 270. WREK Box 29274 Atlanta, Ga. 30327 (404) 892-2468. 2-72-TI

Help Wanted

Tape Recorder Field Service Technicians

Scully

Scully Recording Instruments Co.
A Division of Dictaphone Corp.
480 Bunnell Street, Bridgeport, Connecticut 06607

Job Headquarters for all Radio and Television Engineers. Immediate openings exist in 9 western states and elsewhere for qualified and technical personnel. All positions categories from trainees to experienced transmitter maintenance engineers. Chances for advancement. Live video color, transmission and technical education. Send your complete resume now to The American Radio History, 11661 San Vicente Blvd., Suite 200, Los Angeles, Calif. 90049. Telephone 213-850-2078. By Broadcasters 11-68.

Broadcast Transmitter Technician—3 years experience 1st Phone. Desires job in Denver. W. H. Wilson, 6481 S. 21st, Denver, Colo. 80123. Phone 303-942-6014. 2-72-TI

Engineering Supervisor, Production center, Phoenix. ETV Network. No experience necessary. Has job open at University of Montevallo. Mobile, Ala. 35113. Immediate. 2-72-TI

CIRCUIT DESIGN ENGINEER. COMPANY IS ENGAGED IN DESIGN AND MANUFACTURE OF TELEVISION BROADCAST EQUIPMENT. KNOWLEDGE OF VIDEO AND AUDIO ACQUISITION CIRCUITRY IS REQUIRED. SEND RESUME TO THE VICE PRESIDENT, MUNSON ING. MUNSON ENG. CO., 319 WEST MAIN JACKSON, MO. 63055.

Classified Advertisements

Advertising rates in Classified Section $1.30 per word, each insertion, and must be accompanied by Classified Security Number. Each initial or abbreviation counts as a word. Periodicals, $2.00 each. Minimum classified charge, $.50.

For ads on which replies are sent to us within 45 days of publication, there is an additional charge of $.50. To cover department number, etc., which is typed in advertising copy, and process as per the rules.

Classified columns are open to advertising of any products regularly manufactured or distributed by any manufacturer or distributor.

Training

To advance in electronics, knowledge, and ability are required. Grantham offers correspondence courses in 2 year radio engineering degree, Associate in Science in Electronics Engineering. G. I. Bill approved. Credit for previous training and experience allowed. Fee payable. Write for details. 250 Central Ave., Hollywood, California 90027.

First phone through tape recorder less than 1 year experience. Knowledge of installation in Washington, D. C. Atlanta, Boston, Detroit, New Orleans, Minneapolis, etc. Excellent salary. Proven results. 17 year experience. Must have installation experience. License Preparation, 10600 Duncan, Miami Beach, Calif. 90028. Phone 307-441-7525.

Services

CRYSTAL & MONITOR SERVICE. Frequency change, repair or replacement of TV or broadcast crystals. Also complete crystal cleaning and recalibration for repair of AM frequency monitors, and H-F monitors. Fast service at reasonable rates. 30 years experience! Call or write: Elrian Electronic Co., Box 96, Tamalpais, TX 75501, Box 9 J-7.

The Pick-Up Pros.

WOR-FM, the country's leading FM/Stereo rock station, has been using Stanton cartridges since its inception.

Program Director Sebastian Stone likes the smooth, clean sound the Stanton delivers; the way it is able to pick up everything on the record so that the station can assure high quality transmission of every recording.

Eric Small, Chief Engineer for WOR-FM, likes the way that Stanton cartridges stand up under the wear and tear of continuous use. "We standardized on Stanton a couple of years back," Small said, "and we haven't had a cartridge failure since. Studio Supervisor Artie Altro concurs.

Whether you're a professional or simply a sincere music lover, the integrity of a Stanton cartridge delivers the quality of performance you want.

There are two Stanton professional cartridge series. The Stanton 681 Series is engineered for stereo channel calibration in record studios, as well as extremely critical listening. The 500 AL Series features design modifications which make it ideally suited for the rough handling encountered in heavy on-the-air use. In fact, among the nation's disc jockeys it has become known as the "industry workhorse."

All Stanton cartridges afford excellent frequency response, channel separation, compliance and low mass and tracking pressure. And every Stanton cartridge is fitted with the exclusive "longhair" brush to keep grooves clean and protect the stylus. They belong in every quality reproduction system—broadcast or high fidelity.

For complete information and specifications on Stanton cartridges, write Stanton Magnetics, Inc., Terminal Drive, Plainview, L.I., N.Y. 11803.

All Stanton cartridges are designed for use with all two and four-channel matrix derived compatible systems.
Boom Boon.

We've taken our most versatile, best-performing unidirectional studio microphone, the Shure SM53, and made it even more versatile by developing a complete boom accessory system that equips the SM53 for every conceivable boom and "fish-pole" application! Shure design engineers started with a major breakthrough in design: a small, lightweight, extremely effective isolation mount. They developed a super-flexible isolation cable, a pair of highly-efficient front-and-rear windscreens, and a 20" boom extension pipe. Finally, they developed a complete boom assembly that combines unusually small size with superb control and noise isolation. Result: an accessory lineup that makes every Shure SM53 studio microphone a complete microphone system! Write:

Shure Brothers Inc.,
222 Hartrey Ave., Evanston, Ill. 60204.