Olympic TV roundup page 14

Stereo Separation
IC Timing Device
AES Convention Review
Further proof... sound has never been in better shape!

RE55 OMNIDIRECTIONAL DYNAMIC MICROPHONE

The RE55, like its predecessor the 655C, is an extremely wide-range omnidirectional dynamic. And in most electrical particulars it is not greatly different. RE55 frequency response is a bit wider, and perhaps a trifle flatter. An impressive achievement when you consider that the 655C has been extensively used as a secondary frequency response standard. Output level is 2 db hotter, and the exclusive E-V Acoustalloy® diaphragm of the RE55 can provide undistorted output in sound fields so intense as to cause ear damage.

The biggest changes in the RE55 are mechanical. For the microphone is even more rugged than the 655...long known as one of the toughest in the business. There's a solid steel case and new, improved internal shock mounting for the RE55. Plus a fawn beige Micomatte finish that looks great on TV long after most microphones have been scarred and scratched almost beyond recognition.

For convenience we've made the barrel of the RE55 just 3/4" in diameter. It fits modern 3/4" accessories. It also fits the hand (and its length makes the RE55 perfect for hand-held interviews). We also provide XLR-3 Cannon-type connectors to help you standardize your audio wiring. Detail refinements that make the RE55 more dependable, easier to use.

Finally, the RE55 has the exclusive Electro-Voice 2-year unconditional guarantee. No matter what happens, if an RE55 fails to perform during the first two years — for any reason — we'll repair it at no charge.

Try the Electro-Voice RE55 today. The more you listen, the better it looks!

ELECTRO-VOICE, INC., Dept. 1121V, 638 Cecil St., Buchanan, Michigan 49107
Canon offers the perfect zoom lens for the camera of your choice

More and more people are discovering how significantly superior Canon Zoom Lenses are for TV broadcasting purposes. Their outstanding color characteristics, even in dim light, is one of the many reasons why Canon was chosen for telecasting the Munich Olympics.

Canon's wide range of excellent zoom lenses encompass three types of operation control—ill-servorized, via flexible cables and by effortless push pull rod control. And it can be attached to fit and operate with any make of TV camera.

Shown on this page are only a few examples of the quality lenses Canon has available to more than meet your particular demands. Specify Canon to stay ahead.

Apart from the above, Canon has available TV zoom lenses for 3" or 4-1/2" image orthicon cameras and can also build special lenses to fit your requirements.
in this issue...

14 Olympic Circuits. Some new video system designs were used at the Olympics. Joseph Roizen.

20 Stereo Separation In Mic Lines. Stereo separation and a design to fill the "hole in the middle." Todd Boettcher.

24 There is another method... Emergency Broadcasting, Part II of a two-part series on emergency alerting systems. Stephen Russell.

28 Test Those SCR's And Triacs. Quick tests for SCR's and triacs. Includes a tester you can build. Ron Merrell

32 Background Monitor Systems. Impedance matching considerations for broadcast station monitoring systems. Clint Tinsley.

36 Two seconds and counting... Using A Versatile IC Timing Device. KOMO engineer continues to probe new devices for use in cue timing. Fred Fowler.

38 Color After Modulation. BE's maintenance editor tells what waveforms to look for and how to interpret them. Pat Finnegan.

40 Visiting The AES Convention. A review of the major sessions and papers at the Audio Engineering Society convention. Walt Jung.

44 Light Level Control For The Film Chain. Introducing a new device that automatically controls light by use of a variable density disc. Donald MacClymont.

DEPARTMENTS
- Direct Current: 4
- Letters to the Editor: 8
- Industry News: 10
- Cable Engineering: CE-1
- Engineer's Exchange: 46
- People In The News: 48
- New Products: 50
- Tech Data: 56
- Ad Index: 59
- Classified Ads: 59

About the Cover
The cover picture this month was supplied by Joseph Rozen of Teleagen. The article on page 14 describes some unique systems designed for use at the Olympics.

Copyright 1972, Howard W. Sams & Co., Inc. All Rights Reserved. Material may not be reproduced or photocopied in any form without written permission of publisher.
DISTRIBUTION AMPLIFIERS

GVG has a complete line of Television Signal Distribution Amplifiers for virtually any purpose. Each distribution amplifier provides four outputs and plug-in interchangability to a GVG frame.

THE GRASS VALLEY GROUP, INC.

SOLD EXCLUSIVELY BY GRAVCO SALES, INC.

6515 Sunset Blvd.
LOS ANGELES, CALIF.
(213) 462-6618

Station Plaza East
GREAT NECK, N.Y.
(516) 487-1311

125 South Wilke Road
ARLINGTON HEIGHTS, ILL.
(312) 394-1344

Redbird Airport
DALLAS, TEXAS
(214) 330-1245

1644 Tullie Circle, N.E.
ATLANTA, GEORGIA
(404) 634-0521

November, 1972
Changes in Broadcast Rules Imminent

While a blue-ribbon industry committee continues work on a complete overhaul of Part 73 of the Commission's Rules (Broadcast), a special task force of Commission personnel has been working on its own to examine relaxations of the Technical Rules which might be made with little or no red tape. Under consideration are such diverse requirements as that for reading transmitter meters every 30 minutes, and the reliability of monitoring point field strength measurements in maintaining AM directional antennas.

Substantial progress is being made by both the industry group and the Commission Task Force. Plans are under consideration for a public briefing of the Commission Task Force's work to be sure that both groups are moving in the same direction and are not duplicating one another's activities.

Congress Considering Receiver Standards Legislation

A bill has been introduced into the House of Representatives (H.R. 16916) which would empower the Commission to set performance standards for radio and television receivers. The only such power vested in the Commission by present law provides for standards with respect to local oscillator radiation and the provision of all-channel tuning for television receivers.

The principal purpose of the new legislation appears to be that "of requiring the filtering out of interference". Amateur-station interference is the only type of interference specifically mentioned in the bill.

Even if such a bill becomes law and the Commission requires "the filtering out of interference" in new receivers, this would obviously have no effect on the 90 million television receivers and estimated 200 million radio receivers now in the hands of the public. In the meantime, there is no progress to be reported in the Commission's inquiry into possible measures for alleviating existing interference from various sources to television reception.

Commission Getting Tougher On License Revocations

In two cases involving an AM station on the West Coast and an FM station in the Midwest, the Commission has proposed license revocations for a variety of rule violations. The FM case involved consistent attempts by the station to identify itself in such a way as to lead listeners to believe it to be licensed to a nearby
Now you can buy Abto cameras and projectors, or convert your existing equipment to the Abto System.

You've seen it at the Industry Conventions. You can now see it in daily usage for television news coverage. Abtography, the process that lets you shoot and process regular black and white film and show in color over your film chain. You also know the tremendous cost and time savings and operational convenience the Abto System offers.

The Abto System is flexible, easily installed. You can buy a complete system, outright, or modify your present equipment to Abtography.

For complete information, let us know your special requirements. We'll respond with specific information on what Abto can do for you.

Abtography. It happened at the right time.
large city rather than the actual small town of license, a problem which faces the Commission repeatedly. Not only that, but the program loop from studio to transmitter was only "Class C" compared with the Commission's requirements for a 15 kHz response.

In the case of the West Coast station, a Commission Administrative Law Judge characterized the case as one of the most flagrant ever to come to his attention. Among other things, he found that the licensee had moved the transmitter to an unauthorized site and had instructed the chief operator to file an application for direct measurement of power without making actual antenna resistance measurements.

Commission Rules on CATV Channel Carriage

In a case involving local station carriage on a Midwestern cable TV system, the Commission ordered the cable system to refrain from changing the local station carriage from "off-channel" to "on-channel". The cable system had originally undertaken off-channel carriage because of expected ghosting which would result if on-channel carriage were attempted.

When the cable system later proposed to switch the TV station to its own channel, the station wasn't convinced that the cable system had licked the ghosting problem. Later, a private agreement was reached between the station and the cable system.

Short Circuits

The Commission has granted several temporary relaxations of the requirements for comparable television tuning accuracy at VHF and UHF and has postponed for one year (until July 1, 1975) the deadline date for full compliance with the requirements...How the Commission spends its time: The Commission has notified a complainant that dog food advertisements, discussion of humane animal treatment, and entertainment programs involving animals do not come within the scope of the Fairness Doctrine.
Optimize your color video performance:

new

from BESTON

Control your film chain light level automatically

Rapid corrections for film and slide density changes are yours with the BEI Auto Light Control. The servo operated neutral density wheel keeps the video level virtually constant with no change in color hue. Picture quality and color fidelity are optimized for both large and small image islands. And, it's compatible with any film chain camera.

Display color vectors on your oscilloscope or waveform monitor

Now you can have the benefits of a vectorscope at half the normal cost. BEI's model 531 Vector Display provides a vector presentation of NTSC or NTSC compatible chroma. This polar coordinate type display allows you to obtain the correct phase and amplitude relationship of the chrominance signal.

BEI
BESTON ELECTRONICS INC.
#20 ON THE MALL • SHOPPING CENTER
PRAIRIE VILLAGE, KANSAS 66208 • TELEPHONE 913-362-4400

Circle Number 7 on Reader Reply Card
Dear Editor:

After considerable debate, I.B.E.W. International has approved a new contract for our 1.B.E.W. 1259 radio engineers. The contract contains precedent setting language related to automation, computer data entry and retrieval, graphics (titling) jurisdiction.

The following are some excerpts from the contract dated May 1, 1972. 1.)Section 1.4 b 1. (1) pg. 4. Electronics special effects and graphics can be set up and changed by any station personnel if the equipment is not located in the video master control room. The actual switching will continue to be handled by I.B.E.W. personnel. 2.)Section 1.4 (c) pg. 6 Nothing contained herein shall prevent any station personnel from entering or extracting of data and/or information via input and output entry and display devices of any type connected to computer type equipment or other electronic memory devices, provided that any such entering or extracting of data and/or information by other than engineers shall not be performed in engineer operating areas, and that any manual operation of television program switching devices controlled by such computer and electronic equipment shall be done by engineers.

This language is universal and should be adaptive to future changes in automation technology in the Broadcast Industry.

I hope this precedent will be of value to organizations in preparing for the age of automation.

Steven A. Smith
Director of Eng.
KCMO Broadcasting
Kansas City, Mo.

Compatible Cable

Dear Editor:

Over the years we have always done our Noon Newscast live on the AM Radio but now we added a new media and are combining our newscast with our Cablevision and are now offering verbal as well as visual news coverage.

We insert pictures of the local
NOVEMBER 1972

in this issue...
Expansion Loops CE-2
Color Origination CE-6
The case for expansion loops

By James B. Wright*

Doesn’t it always seem to end up that the best way to do things is also the most expensive way? Maybe it works out that way because we are not aware of all the alternatives.

James Wright, Cable TV of Rockford, Illinois, has taken a long, hard look at a problem area that has been of concern to cable systems for as long as they have been in existence. The problem is that every material used in cables is subject to expansion and contraction. In long line runs, this can create very real problems, especially when we think of the two-way future.

Wright takes an approach to expansion loops that warrants consideration. And it could just be that loops are more reasonable and more economical.

The Line Problem

When aluminum sheathed coaxial cables became available and began to show up in CATV systems, it was apparent that compensation was needed for the expansion and contraction of the cable following changes in temperature. More specifically, it’s the difference in the expansion of the different materials used that causes the problem.

After a great deal of agony, a number of partial solutions evolved and were applied singly or in combinations. These included the bonding of center conductor to the dielectric, the compression of the dielectric by sheath, the use of fittings which seize the center conductor and sheath, the use of expansion loops.

Material Expansion

The coefficient of expansion of a material is its change in size, in inches per inch per degree of temperature change. Expressed in inches of change for a cable length of 120 feet over a temperature swing of 150°F we get (approximately) the data for Figure 1.

The Case Against Expansion Loops

One of the partial solutions, for the expansion difference in center conductor to sheath, was to stop relative material movement by bonding the center-conductor to the dielectric and by forming the sheath tightly over the dielectric. This caused the stresses to be distributed along the length of the cable where they were offset by counter-stresses, and so they could not cause relative movement of the center conductor and sheath. If aluminum cable could be made to adhere to the steel strand in a similar manner, the stresses caused by their different rates of expansion would also be contained and nullified.

The technique suggested for this approach is straight-forward and consists of double lashing the two materials tightly together, using a maximum number of turns per foot, with cable ends (only) being provided with expansion loops. Assuming one wrap of lashing wire per foot of cable, the differential in expansion would be about 0.01 inch per foot, a small enough difference so that it could theoretically be absorbed by counter-stresses, and/or by a “snaking” of the cable with the effect of the whole span becoming an expansion loop. To be effective, the lashing wire must prevent the cable from moving along the strand.

*Electronic Systems Mgr Cable TV of Rockford Rockford Ill

Fig. 1 Electronic systems manager Jim Wright (L) and Don Ellis inspect a 3⁄4-inch cable bender for use at Cable TV of Rockford.
INTRODUCING THE ALL NEW...

DITCH WITCH R30

...MORE THAN A TRENCHER!

The R30 is the all-new 30-horsepower trencher from DITCH WITCH. But it's much more than a trencher. It's got more to give you more for your equipment dollar. The R30 incorporates the ultimate in trencher design — what we call the modular concept. In the R30 you get a basic trencher vehicle that's the most rugged and dependable in its class. And there's a selection of optional modular attachments that are quickly and easily interchangeable. You pick the modular set-up to fit YOUR needs. Put a utility backhoe on the front and a vibratory plow attachment on the back. Add the new Pavement Breaker. Or a front-end loader or a clean-sweep broom. The R30 gives you more versatility than anything in its class. Let us provide you with more information on the new R30. Better yet, we'd like to bring one to your job site and demonstrate it for you. We think once you've seen the R30 in action, you'll agree that it is more than a trencher.

A Division of
CHARLES MACHINE WORKS, INC.
P.O. Box 66
Perry, Oklahoma 73077

November, 1972

www.americanradiohistory.com
The Case For Expansion Loops

The major weakness in the foregoing approach is that with the larger sizes of cables it is doubtful whether normal lashing wire, even when double lashed, would be strong enough to hold. If it did, would it stay tight over the years so as to continue to hold properly? The expansion loop approach accepts the expansion differences as inevitable and, rather than try to restrain the surplus movement, channels it into the loop.

It should be noted that an inadequate loop is worse than no loop and also that if a loop is to be used it must be properly designed.

For an expansion loop to be able to contract and expand for years without metal fatigue, it must be designed so that the limit of elasticity of the aluminum is not exceeded. The limit can be roughly determined by flexing a piece of cable and noting the flex point beyond which the cable will no longer snap back to its original shape, i.e., the point at which it takes a "set".

Another consideration is that the "minimum bending radius" is not the radius which should be used in loop design as this refers to the extreme to which a cable may be permanently formed without buckling the sheath or seriously impairing the structural return loss. A bend incorporated in an expansion loop should be 11/2 to 2 times this minimum radius figure. Manufacturers' tests indicate that fatigue failure of expansion loops need not be of concern if the loop is large enough to absorb the maximum movement of the cable, i.e., it is matched to the length of cable being served by the expansion loop.

On The Loop

The size of the loop, its shape, its positioning, and its frequency of use, is determined by the length of cable feeding into that loop and by the loop size. Some considerations are:

1. There should be enough loops to keep the amount of movement of the cable relative to the strand, to a minimum, i.e., the cable should be able to move from the middle of a span toward both supporting poles.
2. The lashing wire should be tied off at each end so as not to restrict the cable movement (particularly at the loop) and should be loosely lashed for the same reason.
3. The maximum amount of change in cable length from the coldest night to the hottest day (add 20° for black jacketed cable in the sun) over the length of span being provided for, should be calculated and from this the change in length of the supporting strands should be subtracted.
4. This net cable excursion should be used with graphs provided by the cable manufacturer to determine, (a) the size of the loop needed to absorb the excursion and (b) whether a single loop spanning the pole will suffice or if a loop should be provided on each side of the pole.
5. The life expectancy of a loop depends on how much cable is used in the loop (i.e., the ratio of cable excursion to total loop length) and not on the exact loop shape as long as it can flex evenly over its length.
6. If an amplifier or passive device is used a double loop is mandatory, unless one wishes the cable on the non-looped side to travel over the full length of the adjacent span to the far loop.
7. The use of adequate loops will also relieve the powerful forces acting on fittings and eliminate the problems arising from these forces.

Loop Formation

The problem of forming loops without cable deformation has been partially solved by the half-round bending tools available. The use of two such tools properly made and mounted in opposition on a single handle will permit the formation of a compound bend without danger of cable flattening. By extending the handle, a sufficient amount of leverage is obtained to permit bending the larger sizes of cable as well. The radius of the bend must exceed the minimum bending radius, otherwise, the cable in the bend will not expand and contract freely enough to give the desired life expectancy.

Economics

If you adopt the "no-loop" approach you must carefully and tightly double lash the cable and dress it at each pole to prevent "breakout" of the cable at any one point. This double lashing could
Channel your profits.

Nature abhors a vacuum. As a CATV operator you probably feel the same way toward unused channels. Well, how about making all those channels earn their keep? You'll find it's a good way to increase your profits. And the FCC will wholeheartedly approve.

As you well know, there's a bonanza of film entertainment available to liven up your programming. Not only full-length movies but business and industrial films, too. And with a 16mm videofilm projector, a slide projector, a modestly priced television camera, and a little initiative, you just might get some local advertising to help pay your expenses, with some left over for you. You can make your own films with a 16mm camera and get the film processed just about anywhere. Or do it yourself with KODAK ME-4 Chemicals.

We'd like to send you our new publication VIDEOfilm NOTES. Each issue contains new ways to use film in your business. If you're not already receiving it, please send your name, address, and zip to Dept. 640 Eastman Kodak Company, Rochester, N.Y. 14650.
average an extra $250 per mile, or about $6 per pole. With a proper bending tool, expansion loops can be made rapidly and as often as required at an estimated average of $4 per pole.

Conclusion

Either the "no-loop" or the "loop" approach may be used successfully if all conditions are met and maintained. With the "no-loop" technique a slight deviation from complete control of the cable could mean catastrophic failure, while the "loop" technique such a slight deviation would be inconsequential. It is my opinion that expansion loops should be used and, that, except in short span situations, they should be used on each side of every pole on the span side of any equipment.

Editor’s Note: We invite your comments and your ideas. And yes, we do pay for all articles used in Cable Engineering. If you have found some answers to nagging problems that you want to share with the industry, drop us a line and we’ll send you our author’s guide.

Send all correspondence to: Ron Merrell, Editor, Cable Engineering, 1014 Wyandotte, Kansas City, Mo. 64105. Meanwhile, if there are certain subjects you would like to see covered in CE, let us know.

Foster Sees Positive Cable Signs

National Cable Television Association President David Foster told the New York Society of Security Analysts that "there are a number of positive signs that the cable communications industry is moving into the decade of the 70's with strength and dedication." The following are excerpts from a luncheon address in New York City:

"I have become totally convinced that cable communications is an inevitably strong growth industry, profoundly involved with the public interest, capable of utilizing the best of our nation's technological resources, and made up of the most energetic group of hard-headed optimists I have ever met.

"I think it is clear there are a number of positive signs that the cable communications industry is moving into the decade of the 70's with strength and dedication. For the moment at least, capital seems to be available in good supply. The industry is attracting a new generation of professional managers to work alongside, but never to replace the hard-headed entrepreneurs who brought the industry this far. Technological problems are being solved almost faster than the industry's ability to put the solutions into operation. The brightest sign of all of course is that our subscribers continue to love us. This point cannot be over-emphasized in evaluating the health of an essentially service industry in what has rightly been called the age of the consumer.

"The distant signal importation problem is not all problem. There are many large markets that will be built and are being built at least partly on the strength of those added signals. This is particularly true in light of the increasing program diversity of the independent broadcast stations.

"FCC Chairman Burch has characterized the Commission's cable plan, at least in part, as designed to keep the CATV industry 'lean and hungry.' We hope not lean bordering on starvation. But the metaphor does suggest one thing. The signal limitations will also serve as an incentive to bring to these larger markets additional cable services which will attract subscribers and profit. Observers have noted that perhaps the one value of the five year cable television freeze was that it allowed — indeed forced — us to create a solid base upon which to build the wired nation.

"One more word on programming: it seems clear that economical, widespread specially-originated programming for cable will come about only by means of networking — linking systems together to share programming. Today this is being done only to a limited degree but with the growth in saturation of cable systems, and more importantly, with the availability of a domestic satellite system, we can begin to think in terms of a national cable network."
Honesdale TV goes to color origination

By Leo G. Sands

Although the residents of Honesdale, Pennsylvania are served by one of the nation's oldest CATV systems, they're getting a lot more than subscribers of most newer systems. Their enterprising TV system originates local interest programs — in color.

This fall, Honesdale residents will be watching their home football team on their TV screens. The games are videotaped and then played back over the CATV system. These football programs are sponsored by 18 advertisers.

Live programs are originated in a studio near the head end which is on a mountain top, some 1700 feet above sea level. The studio building is a converted mobile home, a permanently parked long, long trailer. As shown in the floor plan, Figure 1, the building is divided into three rooms — a studio, a news room and a control room.

Behind the announcers' desk, is a drapery which can be drawn to expose a sofa when more than one guest is participating in a program.

A unique feature of the announcers' desk is the way its two microphones are mounted out of sight from the cameras, shown in Figure 2. Near the desk, but out of camera range is a huge clip board on which commercials, announcements and news items are displayed. The use of the clip board eliminates the noise of papers being shuffled.

Two GBC color cameras are used. One is on a tripod and is used for viewing the performers. The other color camera is used in the film camera chain which is equipped for showing 16 mm movies and 35 mm slides. A third input of the optical multiplexer is available for future use. A Vikoa weathercaster is also located in the studio.

The control room is as complete as one used at some TV stations. Directly above the center of the sleek-looking console is a huge RCA color monitor. At the top of

Fig. 1 Honesdale TV's floor plan.

ember, 1972

CE-7

www.americanradiohistory.com
the console are six GBC color monitors. And at the left and right of the console are the controls for the two GBC color cameras. The console also contains a Bogen audio mixer, a GBC video effects generator and switcher, projector control panels, an Anaconda TV modulator and a Tektronix RM-529 TV signal waveform display.

Also in the control room are an audio tape player/ recorder, a record player, an Ampex videotape playback unit, an automated opaque card viewing system and a Sony videotape recorder with its own monitor.

Since programs are televised in color, the studio is lighted by quartz lamps in addition to incandescent spot lights.

The Honesdale CATV system carries 12 channels of television plus the entire FM radio broadcast band. Although, the head end is some 95 air miles from the Empire State Building, the programs of all of New York City's VHF television stations are piped to Honesdale residents.

Without CATV, television reception would not be possible in Honesdale which is surrounded by heavily wooded mountains and is 50 miles southeast of Binghamton, New York and 25 miles northeast of Scranton, Pennsylvania. The only TV antennas to be seen are at homes on hilltops quite a few miles out of town.

The CATV system was initially installed in 1950 and serves more than 1700 homes in this community of approximately 2000 homes. Originally, SKL amplifiers were...
UHF TV stations is possible. Since UHF TV stations can't be picked up in the shop, an RF signal generator is used for determining that a TV set is responsive to UHF signals, but no check of picture quality is possible. This points up that there is a requirement for a tunable UHF band test pattern generator.

Honesdale is an example of many communities that have to depend upon CATV to bring television entertainment and information to its residents. Honesdale is fortunate to have a civic-minded man, such as Sheriff Kalinowski heading up its CATV system which not only delivers off-the-air TV programs but also produces locally-originated programs — in color.

![Close-up of the Honesdale control console.](image)

Accelerating Tape Duplication

Last October, Net Television, Inc., Ann Arbor, Michigan, installed an Ampex ADR-150-5 high speed quadruplex videotape control duplicator in anticipation of fast doubling the output of tape copies a year.

Along with the requirement for high speed and high volume capacity, we expected other benefits from the system, including a reduction in per-unit duplication costs and the ability to maintain and even improve our level of efficiency and flexibility.

The development of the duplicator was quite timely. When Ampex and other manufacturers first began to discuss the feasibility of high speed duplication of two-inch videotapes late in the 60s, Net urged that the capability be made available as soon as possible. Although we were able to handle a rapidly growing demand for tape copies, it was apparent that standard machine-to-machine copying was not the most satisfactory method of meeting our requirements.

In 1971, we sent more than 30,000 half-hour units of quadruplex recordings to stations throughout the world and by the end of 1973, we expect to distribute at least 60,000 to 70,000 units.

(Although Net Television, Inc., copies and distributes materials ranging in duration from a few seconds to 90 minutes or more, the half-hour increment is used as the basic unit in describing volume).

Before the high speed duplicator was pressed into service, our battery of two-inch recorders, installed during more than 15 years in business, was used for all quad copying. During multiple-copy, machine-to-machine duplication, several of the VTRs could be slaved simultaneously to the VTR on which the master was played. In addition, two master modulation systems, equipped with VR-1200 signal electronics, could be used to feed geometrically corrected RF to the record drivers of the duplicating recorders. This technique makes minimum use of the electronics in each VTR and insures that uniform signals reach each VTR.

Net operates around the clock with three eight-hour shifts. The night shift and parts of other shifts are devoted to duplication. Even with the use of 15 or more slave recorders and at least a full eight-hour shift for dubbing, our capacity was barely able to satisfy incoming requests.

With the ADR-150, Net is now making copies at ten times normal playback speed, so that a copy of a half-hour program can be made in three minutes. The machine uses a

CE-9

November, 1972
five-slave system allowing five copies of a half-hour program to be completed in three minutes of duplicating time.

The duplicator system uses transfer chambers in which mirror-image masters (intermasters), recorded on high-coercivity tape, come into direct contact with from one to five blank slave tapes.

During contact in the transfer chambers, the oxide side of the master tape meets the oxide surface of the slave tapes so transfer of the video information can take place. At the same time, the audio information and the control and cue tracks are read from the master and recorded on the slave tape in full synchronization.

Masters are made on an AVR-1 which can be equipped with a modification kit enabling it to produce a mirror-image recording.

Allowing for rewind and reload time of seven minutes for a five-slave process, the average operating volume is thirty duplicate half-hour tapes per hour, or 240 during an eight-hour shift. This compares to 120 half-hour tapes for each eight-hour shift using the machine-to-machine method with 15 slave recorders.

Only two engineers are required to keep the high speed duplication operation at maximum efficiency. Individuals ordinarily involved in machine-to-machine copying may be assigned to do post-production work, to make film-to-tape transfers or to tend to other operations at the facility.

Thus, computed in terms of man-hours, two engineers using the ADR-150 in a single shift can match the output of two two-man shifts employing machine-to-machine duplication.

(It should be noted here that the Net capabilities are rapidly being broadened beyond the requirements of domestic educational stations and networks. We are expanding into the commercial market, and offering high-volume, low cost services for commercial producers.)

Our services include copying and distributing videotape recordings on a contract basis, post-production work, a customer library from which individual programs can be ordered, specialized functions such as film-to-tape transfers and the capability of broadcasting over leased phone lines.

In addition to the 18 quadruplex VTRs, including the Ampex AVR-1, we also have 16 helical-scan videotape recorders, color and monochrome film chains and a full range of control, switching, modulating and tape cleaning equipment.

An important benefit of high speed and high volume duplication, of course, is much more efficient utilization of personnel and equipment, resulting in increased economies—economies that ultimately can be offered in commercial work.

As an example, the cost of black-and-white tapes produced by machine-to-machine methods is roughly comparable to that of black-and-white film (although color tapes can be produced less expensively than color film copies). In some cases, in fact, it is more expensive to make B&W tape copies with the old copying method compared with monochrome film.

But the economics of scale resulting from the use of the high speed duplicator bring the cost of B&W tapes below that of monochrome film copies.

Flexibility and Quality

Along with providing high speed duplication, high volume output and increased efficiency, our equipment capabilities must be consistent with Net requirements—flexibility and quality.

The terms "flexibility" and "quality" are widely used to mean a variety of concepts. But one can appreciate their importance for Net by realizing that we send out more videotape recordings than any other facility in the country, perhaps in the world—all from a small facility (16,000 square feet) with only 41 employees.

In order to satisfy a complex array of requirements with consistently high quality recordings, we have always been committed to finding and developing innovative methods and products.

Consequently, Net was first to use the 7½ ips conversion kit, the VR-1200 conversion kit and the VR-1200 signal electronics (as a master modulator system for multiple duplication). Among Net inventions are the LEXAN plastic reel which will break before allowing flange distortion; the octagonal box which firmly holds tape reel for safe packing and shipping; and the two-inch reel strap which wraps around the tape at its outer periphery on the reel and is sealed by use of the velcro-type fastener.

Specialized routing and booking forms, color-coded boxes and a procedure of attaching mailing labels to incoming orders, aid the production and shipment of large orders quickly and without error.

www.americanradiohistory.com
YOUR BEST COMBINATION FOR FM COVERAGE!!

CCA offers a complete line of field proven FM transmitters from 10 watts to 50KW. Features include 75% plate circuit efficiency, minimum tube life 10,000 hours with zero bias triodes, 65 db signal to noise, distortion less than 0.3%.

CCA TRUE CIRCULAR ANTENNA
CCA circular antennas are available in low and high power versions with antennas from one bay to 16 bays. Null fill and beam tilt together with radomes permit the broadcaster to obtain coverage where he desires with reliability.

UHF Parts Needed

Dear Editor:
I have a GE TT-25-A UHF transmitter that is missing its aural and visual klystron output waveguide cavities.
Twice I have located the trace of one, only to learn that they had been scrapped for brass after being potted for years.
There must be someone who has junked the transmitter or inverted to Eimac klystrons and cavities. I would be interested in hearing from anyone that has made such conversion himself.
I am also looking for any frequency sensitive components necessary to convert a TT-24 exciter Channel 43.

Maury Goldberg, CE
WONH-TV
345 Peat St.
Syracuse, N.Y. 13210

November, 1972
Once you look inside the STUDIOETTE 80, you'll buy it.

You'll see why the new Studioette 80 is the quality buy of solid state, 4-channel audio consoles.

In the Studioette 80, 13 inputs into 4 mixing channels provide maximum flexibility. All inputs and outputs are protected by isolation transformers. Wire-wound, step-type attenuators, used in each of the 4 mixer channels, assure quiet and reliable audio operation.

For more information, write Gates Division, Harris-Intertype Corporation, Quincy, Illinois.

HARRIS
GATES DIVISION
Quincy, Illinois 62301, U.S.A.

Circle Number 11 on Reader Reply Card

The head hunter's HEAD.

Send for our free brochure today

Call or Write:
TABER
MANUFACTURING & ENGINEERING CO.

2081 EDISON AVE • SAN LEANDRO, CALIFORNIA 94577 • PHONE: (415) 635-3831

Circle Number 12 on Reader Reply Card

Set Makers Get Extension On UHF Tuners

Rules governing the tuning accuracy of television receivers utilizing a 70-position non-memory UHF detent tuner have been retained by the Commission in an action disposing of a petition for reconsideration filed by the Philco-Ford Corporation (Docket 19268).

The date by which receiver manufacturers must meet these requirements was extended one year, to July 1, 1975, to ease the problem of transition to receivers meeting those requirements.

Rules authorizing the use of a 70-position non-memory UHF detent tuning system were adopted by the FCC on November 24, 1971. The regulations specified that black and white and color television receivers using the 70-position UHF tuning system should be equipped with AFC circuitry and with a channel selector mechanism capable of positioning the tuner within the “pull-in range” of AFC. These requirements were to become effective July 1, 1974.

Philco-Ford opposed the requirement that black and white receivers with a 70-position tuning system should be equipped with AFC. It also questioned the technical feasibility of the requirement that the 70-position channel selection mechanism be capable of positioning the tuner within AFC pull-in range.

To help monitor progress toward fully comparable accuracy, the Commission said it would require that each application for certification of a television receiver using a 70-position UHF detent tuner be accompanied by a report of measurements of tuning accuracy.
You. When you stay at Chicago's Hotels Ambassador. And the part is perfect for you.

Here you enjoy the same celebrity treatment as the stars who wouldn't stay anywhere else. From a staff that numbers five hundred — almost one for every room.

Speaking of rooms, you can dine in the fabled Pump Room. Or go back 200 years for a drink in the Prince of Wales. Or simply relax in your room. Which you'll find is much more than four walls and a bed.

All for a price that's not a bit astronomical.

Especially for a hotel on Chicago's Gold Coast. We're at 1300 N. State Parkway, Chicago, Ill. 60610. Phone (312) 787-7200. Telex (312) 253-272.

Next trip to Chicago, do yourself a favor. Stay where people don't act like they're doing you one.
Television at the Olympics

By Joseph Roizen

Whatever other facet of the Twentieth Olympiad in Munich may be subject to controversial opinion, the television coverage was by all accounts the best pictorial presentation ever achieved for so large an international spectacle. The combination of Teutonic thoroughness in planning the vast complex of communications equipment and the cooperative assistance of the world major television networks, ABC, BBC, CBS, etc. produced a monumental chapter in television history that will long stand as a model for future activities of the same character.

Every run, every jump, every throw, whether in an elimination heat, a semi-final or a final was under the constant scrutiny of a sharply focused color camera. Relayed live or recorded, every athletic event was available to a billion viewers on five continents, at their own convenience, in their own time zone. Whether seen in the original PAL 625/50 format or transcoded to SECAM and NTSC, the uniformly good quality of the color pictures and the sound were constantly self-evident.

Twelve-hundred hours of sporting events, spread over thirty-three venues and compressed into seventeen days required over 150 color cameras and more than 100 VTR's to register and record all that was going on. No single television entity could field the 30 million dollars worth of equipment necessary to do the complete job. At the venues, mobile units from all over Germany, including the ARD (national network), and ZDF (commercial network) sat side by side with camera and VTR vans from RAI (Italy), ORTF (France), ORF (Austria), BBC (UK), and others. Complete studios were installed at the DOZ center by various German television station personnel. The ABC complex was the responsibility of Norddeutscher Rundfunk, while Sender Fries Berlin engineers installed and maintained Studio 5, the combined ARD and ZDF studio.

The combination worked to perfection so much so that the most unused slide in the caption change at the DOZ Weltregie (World Program Control) was the one that stated in three languages, "We regret the breakdown." The equipment just didn't dare to.

Technical Picture Quality

The uniformity of the picture quality that was evident not only in Munich, but in all the countries where the color coverage of the games was being radiated was certainly not a technical accident.

The first consideration that was given serious attention and eventually proved to be of greatest importance was the unique approach to lighting proposed by Dr. Schwarz, the Head of Engineering for the...
Z. The familiar afternoon shadow that creeps across a stadium during a sporting event creating high differential lighting between sunny and shady sections is a battle most television engineers and cameramen have fought and won since color television began invading in athletic arenas.

The solution proposed was a transparent roof over part of the main stadium and other adjacent halls, which would allow sufficient natural illumination to avoid late afternoon sun syndrome. Architects and structural engineers designed the roof, built and tested a small section to prove the theory over a year before the play and then budgeted the transient cost at 5.3 million dollars. This was probably the greatest single cost run of any structure at Berwiesenfeld, the final price was over 60 million dollars...more than the total cost of the Rome Games in 1960. The saving grace that it all worked to perfection in the pictures coming from under this free form acrylic umbrella were "wunderbar."

Of course many of the events were held at night or indoors. Here also carefully color balanced, high intensity lighting not only turned night into day, but gave the color cameras the right color temperature to produce correct colorimetry under almost all circumstances.

A special phase lock system was developed by Legeler of Fernseh GmbH and installed by that company to all of the fixed cameras at the venues. The Legeler system uses audio lines to provide feedback information that maintains proper phasing of the color encoders at each camera and held the PAL subcarrier phase to within a 2º tolerance at the switcher input in the DOZ control center.

During installation, each venue feed was color timed to 1º of the 4.43 MHz subcarrier through the use of phase correcting networks at the ends of the cables. Once installed, the phase correction loop would then hold all the color frequency generators at the various television installations in the venues locked to the rubidium standard at the DOZ center. Switching between over one hundred color cameras connected through miles of cables and microwave links still yielded an amazing degree of pictorial chromatic uniformity that showed the meticulous care with which the cameras themselves had been color balanced by the camera crews.

The Legeler system tied in not only to the 120 Fernseh KCU-40 cameras that provided the major coverage, but also to the BBC mobile units with their EMI 2001 cameras and the ORF's Philips PC-70's. Even the portable cameras were phase matched when they were tied into the network. To make sure that the system kept operating at peak performance levels during the critical 17 days, the DOZ's own maintenance engineers were augmented by teams of...
camera and generating equipment specialists from Fernseh and VTR experts from Ampex, all of whom worked around the clock shifts from August 26th to September 11th. Test equipment and spare parts were plentiful and near at hand. Three additional key links maintained the high quality of the original images.

All the VTR’s used were high band quadruplex recorders. Half of the 85 video tape machines assigned to key coverage were the latest version AVR-1’s, and all of the slow motion discs were HS-100 PAL versions. Transcoding to NTSC at Raisting and transmission via Comsat’s latest North Atlantic ‘bird’ to the U.S. (or Canada) were done with precision equipment that kept the subjective quality at more than adequate levels.

Total Television

The ancient motto of the Olympics is “Higher, Swifter, Stronger.” It could easily be applied to the camera coverage of the 20th Olympiad. Television cameras seemed to be everywhere. The ‘highest’ was a KCU-40 perched 750 feet above the ground on a unipod that is Munich’s newest and tallest landmark, the ‘Fernsehturm.’ This 951 foot tower comes complete with rotating restaurant (the Goulash soup and Viennerschnitzel weren’t bad), microwave relay stations, and topped by television antenna arrays. This camera with its 18:1 Varatol zoom could take in the whole spectacular layout of the Olympic park or tighten up to a team sport in the main stadium which it looked down upon directly. Cameras moved ‘faster’ than ever in minicars and vans, on dollies and hand trucks. Motorized or man handled, they got to the scene and shot the story.

In the Gymnastics Hall when Olga Korbut blew her performance on the uneven parallel bars and began to cry copiously, the nearest floor camera, a KCU-40 on a bulky pedestal was at the diametrically opposite corner of the floor. Sensing a great human interest potential, the television director ordered the camera trucked around the perimeter of the floor to the balance beam for a close up of the young Russian gymnast. The three man crew sprinted the camera, playing out 250 feet of snaking cable along the way and got there in time to pick up the tearful trauma.

The ‘stronger’ aspect relates to the growing breed of camera crew members who strap on a bewildering array of shoulder harnesses and backpacks to get right in where the action was. Good health and stamina are prerequisites for carrying around a KCR camera head or a VR-3000 backpack for a few hours, staying fussed, pushing buttons, and trailing a fast moving event all at the same time.

Some of the more unusual camera set-ups were as follows:

1. A KCU-40 on a track dolly that rolled at the edge of the swim pool at the pace of the swimmers. This mobile camera cart was pushed by hand.

2. Underwater views were obtained by other KCU-40’s looking through windows at the end of the diving and swimming pools just below the water line. Beneath the surface fould in water polo were harder to coverup with all that submarine camera coverage.

3. A third camera of the same type was installed over the center of the pool just below the ceiling support structure and could zoom from a full wide angle shot of the entire pool to an overhead close-up of individual swimmers.

4. A three man crew handled a PCP-90 that roamed at the edge of the track in the main stadium. The cameraman shoudered the camera ahead, his first assistant carried the camera electronics on his back, and the second assistant kept the required length of cable moving in or out. Many hundreds of feet away under the grandstand, a video engineer in a small van operated the camera control unit.

5. At peak periods, another portable camera using two pick-up tubes and operated by the ORTF, ranged in the stadium. Its Color was in a little car, and producing SECAM encoded images that were converted to PAL before being laid to master control.

6. At the edge of the track, several EM1-2001 cameras supplied the BBC were specially mounted on short unipods close to the ground. The camera operators manipulated these cameras from the photographers pit circling the track.

7. On the playing field seven KCU-40 were on special high wheeled carts and could get close into the athletes competing the pole vault, high jump, broad jump, javelin, shot put, etc.

8. The CBC brought an Edison camera pack consisting of a modified BC-230 in a small vehicle with a VR-3000 inside. This was us for local color since it did not have access to the venues.

9. The BBC minicam unit consisted of an EM1 2001 mounted on a roof platform on a pneumatic self-covering Citroen vehicle. It was called the Safari wagon gave amazingly stable picture while following road events. The VR-3000 in the vehicle recorded the camera output or it could be linked through a helicopter microwave relay to the television center.

10. A KCR hand-held portal on an electric cart so as not to attract pollution for the contestant was allowed to accompany some road events, like the marathon, a close look. This camera signal was also relayed by a hover- whirly bird to the switching center.

Commentators

Without proper commentator video images would be far less interesting. This fact poses a rather difficult problem for an international event like the Olympic Games. Pictures are automatically international, sound isn’t. To provide narration for the television network from over 60 countries requires complex installation involving specially designed commentator announce booths both at the venues and at the DOZ center.

There were over 300 television commentary booths at the venues.

www.americanradiohistory.com
The excellent camera coverage was due in part to very close access to the events. This is a KCU-40 on the floor of the volley ball hall following the action.

Central switching room at DOZ center provided constant checking on inputs from venues. Labeled by venue along venue along the bottom two rows and by destination on the top two rows.

The hotel hall covered all over the Olympic Park, including the press center and the participating networks assigned offices. The commentator, with good direct visual contact of the event under way could also watch the camera coverage on their monitors. Their commentary went to microphones attached to their headset that brought the background sound of the activity in one earphone and instructions from the director in the other.

Sound picked up by field microphones located on site or 'shotgun' microphones on the cameras became the 'international sound' that accompanied the pictures. Specific language commentary was overlaid by audio mixers, the output of which were either aired live or recorded on assigned VTR for later playback. In addition, a bank of multi-track audio recorders (Ampex AM-1000 16 track machines) lived to the master AVR-1 video tape recorders could register up to 45 separate languages for subsequent editing.

The Canadian Broadcasting Corporation's need for dual language coverage for all programs led to the installation of two sound over studios in their section at the DOZ center and the unique use of the audio and cue tracks on their four AVR-1's for simultaneous two language recordings. These were relayed back to Canada over Comsat's link with both English and French sound for the pictures.

Production and Editing

While each of the networks used their own production techniques to satisfy their different end viewer requirements, the commonality of technical equipment led to some similarities of program production.

Only ABC had managed to get the rights to unilateral coverage to American tastes, and could augment the DOZ World Service Program with separate cameras under their own control.

Most of the other networks had to use the DOZ camera coverage by selecting the feeds they wanted from the venues. Usually up to six simultaneous inputs were available. The main switching center at the DOZ could handle up to 13 parallel television feeds and route them through Weltregie for distribution to the production studios. The major networks like ABC, BBC, NHK, etc. had their own studios, VTR's, graphic cameras, and master control rooms and could put together programs on a live or recorded basis.

The recordings were edited by a variety of means. Straight mechanical editing of videotape by cutting and splicing was still in evidence. Because of spooling time on VTR's and tight schedules, this is still the fastest way of getting a few seconds or minutes of an important scene out of a long tape. Manually placed cue pulses and electronic editors were the next step and many of the VTR's in the DOZ center, the venues and mobile VTR vans had this facility built in.

The most sophisticated editing was done with the new 80 bit SMPTE address code which was simultaneously recorded on the cue track of the AVR-1's in the central VTR room. Editing could then be done by transferring the tapes to several pairs of AVR's equipped with RA-4000 random access editing accessories which automatically search out the specified addresses on the tape and perform the edit on command of the editor.

Other production techniques involved the use of chroma key with the familiar blue backdrop. Graphics insertion using color cameras or monochrome cameras with colorizing devices, character
generator tilting with moving or flashing titles and of course timing overlays during a race.

Eleven slow motion HS-100 disc units provided the instant replay and time base manipulation of the video images where it contributed to the informational or esthetic quality of the program.

What the viewer saw as a final composite image often took several color cameras, miles apart, mixed with local ident signals that were later eliminated, overlayed by keying and special effect techniques, inserted by character and graphic sources, recorded, edited, copied into final program form, relayed by microwave to Raisting, standards converted from PAL 625/50 to NTSC 525/60 by an optical transcoder sent by satellite to a ground receiving station thousands of miles away. Then distributed over a network where further re-recording to accommodate time zone requirements preceded the actual local transmission. Notwithstanding all this, the picture and sound got rave revues from all televisioners.

Personal Commentary

A fortunate set of circumstances permitted my wife (who is a Video Consultant) and I to see not only the studio origination and closed-circuit distribution of the World Service Program of the DOZ but also to watch air transmissions of the games on color sets in our apartment in Munich, in Paris, and London. Since returning to the U.S., I have seen recordings of what happened here. The European color pictures whether in PAL or SECAM were excellent and required no manipulation of the home receivers to keep them that way. While the flicker factor of a 50 field image is noticeable at first, it disappears in a few days and one begins to enjoy the superior bandwidth and more stable colorimetry of the European color systems. It should be the goal of the U.S. color television industry to achieve the same kind of picture quality through careful control at the origination and less manipulation range at reception.

The assembly of the informative and pictorial material describing the Olympic television facilities was made possible by the kind help of Dr. Richard Theile, Director of the Institute für Rundfunk Technik in Munich who arranged for accommodation, Dr. Schwarz, H. Mandl, K. H. Schulte and M. Graup of the DOZ for accreditation, access and information, specific details about the Fernseh equipment was obtained from M. Poehl, that company's supervisor, Oberweisend and similar information about Ampex's installation came from Klaus Eichstadt, an old friend and co-worker at the Mexican games.

Thanks are also due E. Alter and H. Wolff of Sender Freis Berlin for a tour of Studio 5 and H. Reidel NDR for the revive of the AB complex. Norm Taylor of the BB and A. Daigneault of the CBC filled in the technical background about their operations.

Now you can save more than 50% on video program control equipment.

No... we're not having a sale. Our building didn't burn down and we haven't lost our lease. But you can save more than 50 percent when you buy DYNAIR Series 150 vertical interval program control equipment.

How? You'll find out quickly when you check the prices of comparable equipment of other manufacturers. For the same capability, you will pay from two to three times as much. And you probably won't get the quality and reliability of DYNAIR equipment.

On DYNAIR program switchers, you won't find cheap, troublesome sliding fader potentiometers; we use quality gear-driven, locking split-lever controls. Nor will you find other inexpensive and unreliable components. The 150 Series uses the latest silicon solid-state devices available—over 80 percent of which are in integrated-circuit form—the same quality components and temperature-compensated circuitry used in our broadcast and aerospace equipment. Fully color delay compensated too.

If you take time to compare... you'll buy DYNAIR.
One of the very best broadcast color monitors is on the shelf...waiting to brighten your day.

It's known as the TCB-19, from the Miratel Division, Ball Brothers Research Corp. We call it one of the very best because TCB-19 users report a consistently high level of performance.

Dual regulated power supplies hold picture stability with wide input voltage variations. Solid-state circuitry insures low maintenance and consistent performance over the long haul. Switchable long or short time-constant AFC adds to monitor usefulness for VTR alignment, and a front panel switch allows for selection of two video inputs. All critical set-up and adjustment controls are front-mounted for convenience.

The TCB-19 performs the way it's built, and it's built well. Check it out!

The rest of the family is also standing by.

And it's a large one. Color and monochrome monitors from 9 to 25 inches. Rack-mounted, frame-mounted, broadcast or information display. All Miratel monitors feature over-design of critical circuitry for exceptional long-term performance. Each unit is power aged, and subjected to quality control checkout before shipping. Miratel monitors are designed to serve as your single best check of signal quality.

We also offer a variety of video accessories from special effects generators to waveform monitors to video signal multiplexers. Depend on the Miratel family for your television equipment needs. Call or write for information.

MIRATEL DIVISION
BALL BROTHERS RESEARCH CORPORATION • 1633 TERRACE DRIVE • ST. PAUL, MINNESOTA 55113 • (612) 633-1742
Stereo separation for microphone lines

The Design of a two-channel, hybrid, passive splitter-mixer.

By Todd A. Boettcher

This article should provide assistance especially to the broadcaster who has the opportunity to utilize two-channel stereo for live or recorded broadcasts.

Traditionally, it has been necessary for the broadcaster to provide a quality broadcast with a minimum of complexity and setup time. Within the last few years, however, there has been a growing trend to provide recording studio flexibility, since many contemporary artists have had their images molded in the recording studio. Conventional microphone techniques would be detrimental to that image. As a result, the close-microphone-placement technique, which allows better mixing control by the audio engineer, is being experimented with and used more frequently.

Eliminating The Hole In The Middle

Close-micing can cause a problem for many broadcasters, because few broadcast audio consoles have pan-pots or other special audio processing equipment. Close-micing, plus the lack of pan-pots, will tend to exaggerate separation to the point at which instruments in a band, will appear in one channel or the other, with very little chance to be heard by microphones in the opposite channel. Hence, the "hole-in-the-middle."

This hole-in-the-middle can be eliminated in the limited-flexibility console by using two microphones on each instrument—one mic in each channel. Then each instrument can be placed anywhere in the stereo spectrum. The result is the same as if a pan-pot had been used. In practice, this is not a feasible alternative because most broadcast consoles do not have enough microphone inputs to offer this luxury.

An economical solution is the following simple construction project that was designed to fill in the hole-in-the-middle that sometimes creeps into two-channel stereo recordings and live broadcasts, yet will still allow the sound in the middle to have a stereo dimension. Just as importantly, it does not require the use of extra microphone inputs.

Specifically, a portion of Input 2 is fed to Output 1, and a portion of Input 1 is fed to Output 2 (see Figure 1 and Figure 2). The "x" in the output formulas is the ratio of the voltage of the primary channel to the secondary channel. I have arbitrarily chosen that the secondary channel information should be one third the voltage of the primary channel for initial testing; thus x = 3.

Six resistors were incorporated for isolation (see Figure 3). R1 and R4 isolate the input, R5 and R6 isolate the output, and R2 and R3 reduce interaction related to mixing resistors R7 and R8.

Voltage ratios can be determined at points "c" and "g." Using the "x = 3" formula above, the resistor formulas are:

\[(1a) 3(R_1 + R_2) = R_4 + R_7 \text{ for point "c"} \]

\[(1b) 3(R_1 + R_3) = R_4 + R_8 \text{ for point "g"} \]

R1, R2 and R3 form a series resistance in Channel A, and R4, R5 and R6 form a series resistance in Channel B. Unless these resistors are incorporated as a portion of pad (resistive attenuator), they will alter the terminating impedance.

Although Figures 1-3 are drawn as unbalanced circuits for clarity, this circuit is to be used as a 150-Ohm, balanced microphone line. In a balanced circuit, the

![Fig. 1 Diagram of the basic concept. The output formulas indicate that both Input and output signals need to be combined in some way at each output.](image)

![Fig. 2 Simplified schematic of the resistive network. This shows that a portion of each input is fed to the opposite output, resulting in the desired mixing.](image)
Every professional sound recording application needs a recorder/reproducer that assures peak performance each and every time it's used. A heavy duty machine with a built-in reputation for reliability. A machine that will work when others won't and will keep on working when others can't.

The new Telex 1400 Series are such machines. They've added a new dimension in design features to the rugged reliability of the Magnecord 1000 Series that fathered them. The result is the optimum combination of today's technology with field proven dependability.

But these units don't just outwork and outlast other recorder/reproducers. They also outperform anything else in their class. How many recorder/reproducers starting at-under $1500 have a DC servo drive system to assure a timing accuracy of less than 1 second deviation in a 30 minute program, keep flutter and wow at a bare minimum and work with any AC power source?

How many others in this class have a three-speed drive system (3 3/4, 7 1/2, and 15 ips); a catenary head block design with polished, hyperbolic contour heads; a high frequency bias oscillator for maximum S/N ratio; VU meters to monitor record, playback, or bias levels; complete remote control capability; separate gain controls for mic and line inputs as well as a master gain control—to give each machine the potential of a small mixer?

All of this performance capability is kept in long-lasting, smooth operation by total solid state logic circuits that make tape spill virtually impossible, a durable die-cast transport frame, and a host of other heavy-duty and failsafe design features that make Telex 1400's workhorses in any operation.

With dual or single channel options and the availability of all standard head configurations, there's a Telex "reel thing" for every application. Write for free information.

9600 ALDRICH AVENUE SOUTH • MINNEAPOLIS, MINNESOTA 55420

CANADA: DOUBLE DIAMOND ELECTRONICS LTD., Scarborough, Ontario
EUROPE: ROYAL SOUND COMPANY, INC., 409 North Main Street, Freeport, N.Y. 11520 U.S.A.
INTERNATIONAL: TELEX EXPORT DEPT, 9600 Aldrich Ave. So., Minneapolis, MN 55420

Circle Number 15 on Reader Reply Card

November, 1972

www.americanradiohistory.com
logical pad to use is the "H" pad (see Figure 4). Since Figure 3 is unbalanced, it must be duplicated for the second leg of the balanced circuit. The series resistance in Figure 3 can be summed and substituted for the pad input resistors \(R_a \) and \(R_b \). Therefore, the formulas would be:

\[
\begin{align*}
(2a) & \quad R_a = R_1 + R_2 + R_3 \\
(2b) & \quad R_b = R_{1a} + R_{2a} + R_{3a} \\
(2c) & \quad R_c = R_4 + R_5 + R_6 \\
(2d) & \quad R_d = R_{4a} + R_{5a} + R_{6a}
\end{align*}
\]

Practical resistor values were calculated after determining the loss of the pad. 10 dB of loss was chosen because it will provide a start at attenuating the mic lines for high-level sound sources (i.e.: close-micing a music pick-up), yet is low enough to be usable with a speech-level input. In the "H" pad with equal input and output impedances, the following formula is true:

\[
(3) \quad R_a = R_b = R_c = R_d
\]

The closest E.I.A. 5 per cent resistor value for these resistors is 39 Ohms. The closest value for \(R_c \) is 110 Ohms. Dividing these through \(R_1 \) equally to evenly distribute the isolation, those resistors all become 13 Ohms. Checking back to Formula 1, \(R_7 \) and \(R_8 \) become 65 Ohms for the 3:1 ratio.

In Channel A, points b-c can be considered a series-parallel circuit with b-c forming one side and b-g-c forming the other side. So that b-

![Fig. 3](image)

Fig. 3 The complete mixing network with all isolation resistors. It must be remembered that, although the mixing network is complete, if used as drawn, the characteristic impedance of the line would be altered considerably.

![Fig. 4](image)

Fig. 4 The "H" pad. This network is one of the basic balanced circuit attenuators, being derived from the unbalanced "T" pad.

![Fig. 5](image)

Fig. 5 Complete schematic of the circuit. If greater stereo separation is needed between channel A and B, the 10K-Ohm pot may be replaced with one of higher value. However, that would produce less control over the lower resistance range where the most audible effect takes place.
On The Breadboard

A test circuit was breadboarded and found to give main channel loss of 12.5 db as an alternate channel loss of 16 db. These figures are close enough to the design goal to be considered acceptable for practical application.

Several minor, but handy, modifications were made before final construction. The 3-Ohm resistors were removed from R1 and R2 and replaced by 30 Ohm resistors (the design minimum). They were wired in series with a ganged, inar-tapered, 10 kOhm pot. This pot will allow variable stereo separation from approximately 3 dB to 25 dB. Also wired in series in a rotary switch (4-pole, 2-position) to open the mixing circuit, allowing the use of two independent 10 dB attenuators (see Figure 5).

Two comments need to be made in summation. First, it is possible to produce a much less complex stereo separation circuit. Consumer-type stereo amplifiers often utilize just a single potentiometer across the preamplifier outputs of the two channels to achieve variable stereo separation. Of importance to the audio professional is that, in the circuit described here, impedance matching at both inputs and both outputs will remain correct within a reasonable tolerance. Other than the intended mixing of signals, there should be no other interaction between the channels.

Control Pot

Second, some discussion might arise on the desirability of inserting controls in a microphone-level audio line. The fixed resistors are of no concern with respect to noise generation, but the potentiometer is a possible source of noise, especially after extended use. Remember, however, that this pot will not be used actively after initial set-up at a session, so wear will not be severe. A good quality pot should give plenty of service. This pot is inexpensive enough so that if and when replacement is necessary it will not be a financial hardship.

This design was conceived to utilize existing equipment without modification. If you want to install this circuit directly into an audio board, it would probably be worthwhile to wire it in following the microphone preamps. Resistor values would have to be re-calculated to provide impedances matching those within the board at that point. Still, the estimated construction cost is under twenty dollars.

new LSC VEDETTE

16mm and 35mm PROFESSIONAL PROJECTORS

for fast, safefly high speed viewing and inspection of motion picture film

- The ideal machine for high quality control, timing and projection, and release print inspection. No mias, major scratches or dust points. Fine print detail, etc.
- Visual inspection for picture and optical sound quality. Avid state of the art amplifier for single or dual screens. Monitoring of picture and sound.
- Efficent revolving center hub and sharp optics produce bright, clear images without heating film.
- Smooth, gentle film handling at up to 400 ft./min., without intermittent movement of usual claw or Geneva gear drive. Stable, positive focus. 2,000 foot film capacity.
- Write for LSC Vedette literature or request a "no obligation" demonstration.

CF2 ULTRASONIC CLEANER

for MOTION PICTURE FILM · MICROFILM · MAGNETIC TAPE

Presented The Academy of Motion Pictures Arts and Sciences Award of Merit for Outstanding Technical Achievement.

Ultrasonic energy is the most effective and economical way to completely clean motion picture film, microfilm and tape without mechanical scrubbing and wiping. Ultrasonic energy performs the entire cleaning operation.

- Restores clarity and sound to maximum quality.
- Enhances the entertainment value of motion picture film and improves commercials.
- Assures static free film with color balance undisturbed.
- Cuts projector maintenance costs ... no dirt or dust carried into gates and orifices ... less breakdowns.
- Completely automatic ... requires only loading and unloading.
- Costs only 1/20 of a penny per running foot to operate.
- Used by every major motion picture lab in the world.

LIPSNER-SMITH CORPORATION
7334 No. Clark St., Chicago, Ill. 60626 · 312-338-3040

Circle Number 17 on Reader Reply Card

www.americanradiohistory.com
There is another method for...

Emergency Broadcasting

Part II of a 2-part Series
By Stephen A. Russell

Mr. Russell's discussion of the technical aspects of the DIDS system began in the October issue of BE. A change of the FCC rules (Part 73, Subpart G) is scheduled for November. The proposed change would delete all stated references of the broadcasters potential role in alerting the public, to include automatic home warning during a national disaster.

Any comments our readers wish to submit should be sent to the Editors of BE or sent directly to Commissioner Charlotte Reid, Defense Commissioner, FCC, 1919 M Street, N.W., Washington, D.C. 20554.

An alternative system that would dramatically reduce warning receiver costs is available. It is a signalling system operated by broadcast stations. The broadcaster method of distribution, as noted in Part 1, is far more secure, because the danger of sabotage is distributed over 6,000 transmitters.

Receivers demoted by broadcast stations could be simple and low cost. The warning function could add less than $10 to an existing entertainment receiver if it were mass produced. A low cost tuning forklift and decoder would be the only major changes necessary to add the warning option to a radio. Only the broadcast receiver meets Mr. Joyce's criteria, namely, "The price of such a receiver should be so low that every household can afford one. Economic discrimination in the distribution of warning receivers would undoubtedly be recognized as grossly unfair." Given this fact, why is the current DIDS being favored? I believe the answer rests on serious technical misinformation, in addition to the aforementioned failure to confront the national security implications.

The UPAS system features signalling by a patented system known at the Cue Signal System. The Cue Signal System was designed for use by both DIDS transmitters and broadcast stations throughout the country. DIDS transmitters are to be used to signal government facilities, air raid sirens, AP-UPI facilities, and the broadcast industry. The task of signalling home receivers under the UPAS is the responsibility of broadcast stations. In addition to receiving warning information from DIDS, the broadcasters would have a redundant source of warning via the EBS.

The technical defects of DIDS and the technical strengths of the UPAS Cue Signal System are revealed when the contradictory nature of the warning system goals in the Joyce Status Report are recognized. The goal of alerting reliability directly conflicts with the goal of security against false alerts; the requirement of a 30-second response time conflicts with the desire for selectivity; and the goal of 24-hour coverage conflicts with receiver cost.

How About UPAS?

UPAS stands for Unified Public Alerting System. The creation of a Japanese inventor, Dr. Masao Fukata, the UPAS was devised to unite the different agency requirements. The word "unified" specifically refers to the unification of the DIDS and the EBS so as to guarantee warning, not just in test conditions, but in an actual emergency.

The February 20, 1971 EBS failure demonstrated the difference between test and emergency conditions. DIDS, as it is currently proposed, may perform in a test but it is doubtful its transmitter antennas would be standing to serve in a national emergency.

The UPAS system features signalling by a patented system known at the Cue Signal System. The Cue Signal System was designed for use by both DIDS transmitters and broadcast stations throughout the country. DIDS transmitters are to be used to signal government facilities, air raid sirens, AP-UPI facilities, and the broadcast industry. The task of signalling home receivers under the UPAS is the responsibility of broadcast stations. In addition to receiving warning information from DIDS, the broadcasters would have a redundant source of warning via the EBS.

The technical defects of DIDS and the technical strengths of the UPAS Cue Signal System are revealed when the contradictory nature of the warning system goals in the Joyce Status Report are recognized. The goal of alerting reliability directly conflicts with the goal of security against false alerts; the requirement of a 30-second response time conflicts with the desire for selectivity; and the goal of 24-hour coverage conflicts with receiver cost.

The principal enemy of a radio wave signalling system is atmospheric and man-made noise. Noise contains virtually every signal pattern. It has unexpectedly persistent power to confuse receiver falsings.

There is no way to prevent all noise at its source. The only way to prevent noise falsing is to employ a special filter with an extremely narrow passband and sharp cutoff characteristics. This type of filter will pass only the control signal frequency. This narrow filter also prevents falsing by spurious signals that randomly occur in broadcast program material. The narrower the filter bandwidth is, the better is the security against false alerts.

Unfortunately, every type of narrow passband filter (e.g. tuning fork filter, active filter) is subject to the problem of filter frequency shifting due to temperature variations, aging and divergence in mass production. Thus, the wider a filter bandwidth is, the better is the chance for reliable alerting.

The ability of a system to resolve this contradiction is a critical test of system effectiveness. DIDS has failed to resolve this. Rather, DIDS has employed the conventional techniques of a fixed frequency control signal on the transmitter side and a high quality, costly, filter on the receiver side.

Filter stability and high production quality is seen by DIDS simply as a cost the receiver must bear.

Back To The Xmtr.

The UPAS Cue Signal System features a unique solution. The system places the responsibility for security and reliable alerting on the transmitter, leaving the receiver unburdened. Using a patented technique known as wobbling, the Cue Signal generator transmits a control signal frequency that sweeps back and forth across its...
designed center frequency. In each receiver an extremely narrow pass-band filter that eliminates noise is used, since the wobbling compensates for any center frequency shifts that might otherwise cause a failure to demute. The wobbling function may add $1,000 to each transmitter but this is insignificant when the role of each transmitter in a public warning system is considered.

In a typical non-broadcast communications system there may be one transmitter and a few hundred receivers, and the cost of the total system may be apportioned accordingly. In a broadcast station public alerting system, each transmitter will service thousands of receivers. Virtually any transmitter cost that will reduce the technical burden and costs borne by the individual receiver is justified. With the wobbling technique, a warning receiver may now employ a narrow pass-band filter that is a fraction of the cost of the quality filter necessary in the current DIDS receiver.

Program falsings, it was noted earlier, are also eliminated by a narrow pass-band filter. Unlike noise falsings, the filter alone cannot guarantee to prevent program falsings. Noise falsing duplicates the control signal frequency along with a spectrum of other frequencies. There is not enough power in any single frequency contained in noise to overcome filter attenuation. A program falsing signal, however, may have enough power to easily pass through a narrow pass-band filter, assuming the untinted program signal is the right frequency.

Once again the technique used by DIDS to deal with a falsing problem burdens the receiver. DIDS features a complex 12-bit digital control signal to reduce the probability of program material duplicating this signal. This coded signal is also used for multiple addressing but its primary role is to prevent false alerts. A less complex multiple addressing scheme could be possible if preventing falsings was not a goal.

More False Alerts?

To further reduce the effect of a falsing, the DIDS signal is being transmitted. When transmission ceases, the DIDS receiver returns to a muted condition. This "driven" or "holding tone" principle eliminates falsings that would permanently latch open receivers, but it is detrimental to alerting reliability.

If an atmospheric storm exists when the 12-bit digital signal is being transmitted, which is likely in weather emergencies, one of the bits may be blocked by interference in the receiver. Noise not only causes falsings but prevents reliable alerting when warning is most needed.

To compensate for this possibility, the DIDS system developers once again added to the cost of the receiver by requiring a receiver "holding memory". They hold the receiver open for up to 60 seconds in the event of a control signal interruption. This creates a new problem, since this holding memory will also hold open for 60 seconds, receivers that have been falsed.

In summary, DIDS use of a complex digital signal plus a "driven" signal technique, produces a signalling method that is, at best, probability challenging. In the short run it may appear to have eliminated the falsing problem, but without any guarantees, and at great cost to the receiver.

Spurious Signal Self Suppressor

The UPAS Cue Signal System uses another patented technique to resolve the contradiction between program falsing and alerting reliability. A Spurious Signal Self Suppressor, known simply as the 4S is a device that again burdens the transmitter to spare the receiver. Accepting the principle that "space pollution", i.e. program material falsing, should be stopped at its source, the 4S is built into the broadcast studio signal generator. Just prior to a complete duplication of the control signal by the latest rock and roll hit, the 4S automatically switches into the program line a band elimination filter that blocks the falsing elements. After 5 sec-
Signal to Generator automatically broadcast studio. When signalled, the monitor is reset, can only correct spoofing after the fact. Using the 4S principle, the UPAS Cue Signal System features strategically placed monitor receivers in each transmitter's service area. Like the 4S, these monitor receivers are set to detect a spoofing signal prior to the false alerting of home receivers. The monitor receivers are connected by land line to a signal generator in the broadcast studio. When signalled by the monitor receivers, this generator automatically sends out a signal to override a spoofing signal.

It is important to note that this Anti-Spoofing Technique is one of the critical measures necessary to make a broadcast station operated warning system possible. This anti-spoofing technique eliminates the danger of adjacent channel or skywave channel warning signals, that travel beyond the area that needs to be warned, from accidentally demuting home receivers outside the emergency area. The override signal, that will automatically be transmitted when a warning signal from an adjacent or skywave channel exists, will generally be strong enough to prevent local receivers from being spoofed.

The UPAS system resolves the conflict between security against falsings (program material, noise and spoofing) and reliable alerting, by burdening the transmitter as opposed to using various complex receiver techniques. The result is a receiver that is within the economic means of most Americans.

Selectivity vs. Response Time
The Joyce Status Report stated that over 5,000 different addresses were possible with the DIDS signal. These were allocated to reduce a single address area to only 1/10 the area served by a typical broadcast station (i.e. 25 to 40 mile radius). In addition, it was reported that all of these addresses could be signalled within the OCD time requirement of 30 seconds.

My studies have revealed serious exceptions to this latter claim. One of the reasons why the DIDS signal is a "driven" signal, is to insure alerting reliability. As noted, when any one of the bits in the 12-bit digital signal is interrupted by atmospheres, the receiver will fail to demute. Repeating the signal is necessary. Since one transmission of the 12-bit signal plus the necessary pause requires nearly 30 seconds, many instances will occur in which the 30 second objective will not be met. This is an inherent defect of a digital signal.

Address Problems
A second exception occurs on the many occasions when the same message must be delivered to an arbitrary combination of different addresses. For example, tornado funnels may suddenly appear in several non-adjacent areas at the same time. The capability to alert an arbitrary combination of addresses via a "group call" is needed.

DIDS cannot perform a group call. It would be virtually impossible for DIDS to pre-program every combination of 5,000 addresses for instantaneous retrieval by an operator. Instead, DIDS must signal each address sequentially. In addition, because the drive technique is used, each address must be followed by the entire emergency message. Since only one address can be transmitted at one time and must be sustained throughout the message, extensive delays will occur as the same message is repeated and repeated before the last address area is warned. Because of this fact, the smaller address area proposed for DIDS are detrimental. Reducing the size of the DIDS address only increases the probable need for group calls which DIDS cannot perform.

Apart from the technical problems of dividing the country into such small address areas, the DIDS addressing scheme creates serious policy problems. First, receiver cost is once again not considered. A fixed-tuned, multiple address receiver may quickly become obsolete. The U.S. citizen is extremely mobile. One out of every five households move every year. This mobility will require decoder addresses in masses of receivers to be changed annually. The percentage of the population that will go to the trouble and cost of keeping their receiver addresses current after every move is likely to be very small. Second, too selective an addressing system may be undesirable. In many emergencies, particularly weather emergencies, it is just not possible to predict what percentage of a community will be being affected. It would be far safer to err on the side of warning a larger area than too small an area. Finally, the complexity of the DIDS multiple addressing scheme may call for a super human operator. Someone erred in selecting between two taped addresses in the February 20th EBS incident. What is the probability of an operator erasing the choice of hundreds of addresses in a crisis situation?
Fernseh will now sell, ship, and service its TV cameras from all over America. And you will like it.

We’ve combined the quality of Fernseh TV cameras and studio equipment with an entirely new American sales and service organization. It’s now quite easy to get the KCU-40. The 3-tube color TV camera that revolutionized European production techniques. High light sensitivity. High signal-to-noise ratio. Tiltable viewer. And one-quarter or one-half inch camera cables that make the KCU-40 an ideal lightweight camera for both studio and location use.

We’re ready with a full team of specialists to give you all the service, parts and technical help you’ll need. Plus, a complete line of products including telecine cameras, standards converters, special effects equipment, and video recording systems. So now, you can get the quality and dependability of Fernseh TV equipment from an American company with an office near you:

Chicago Headquarters (312) 681-5000
Houston (713) 681-8461
Los Angeles (213) 398-0777
New York (516) 921-9000
San Francisco (415) 583-9470

Fernseh Division
Robert Bosch Corporation

November, 1972
Test Those SCR’s And Triacs

Once you understand these solid state devices, you’ll find them easy to test and to use in broadcast circuits.

By Ron Merrell

Silicon controlled rectifiers and triacs have made their way into rather common use in broadcast equipment these days. What’s more, you may even find them in modifications made on standard units as well as in home brew circuits.

Although we’re now taking their existence for granted, how much do we know about testing SCR’s and triacs? Suspecting that we all need more than their theory of operation, we went to our lab to see if some simple tests could be devised to check these solid state components.

Solid state devices can be checked against their specs and this may suffice when they are used in fairly simple units or modules. The problem in checking solid state components comes when we realize that each is often directly connected to a network of circuits. And the problem initiated by just one part can dovetail into several other circuits.

In order to understand what tests are meaningful, it is necessary to take a step beyond explicit construction descriptions and translate their operation into practical terms.

Conventional diodes are really voltage controlled switches. The diode becomes a conductor when the anode voltage is more positive than the barrier voltage (relative to the cathode). When the opposite polarity is applied to the diode, the circuit will remain open.

We’ve backed up to the diode here, because diode actions form the basis for SCR and triac functions. Figure 1 helps describe the comparison. SCR’s and triacs have more than one PN junction and one of these added sections is called a gate. In this case, the gate also can block conduction.

SCR Actions

An SCR can be visualized as a diode in series with a switch. But conduction can now be controlled by the gate and the polarity of the applied voltage. The anode voltage may be positive, but if the gate is zero or negative (relative to the cathode) conduction will not take place.

A positive anode voltage and a sufficiently positive gate will allow conduction. The change from non conduction to full conduction takes place instantaneously when the gate-cathode voltage raises enough to pass the “trigger” point. Once conduction has started, the gate loses control and cannot block conduction. This latching effect continues until the anode voltage and current drop below the holding point.

Fig. 1 The SCR symbol and circuit equivalent at left, basically, a diode and a switch. At right, note that the triac uses back-to-back diodes and a switch. Both can be tested by the device in Figure 2.
SIMPLER AND MORE RELIABLE TV TRANSMISSION

With cavity-matched VHF power tetrodes

Our transmitting tubes for VHF applications are supplied with matched cavities to ensure optimal system performance. It's a simple idea that Philips introduced, that the market liked and others copied. Something that's harder to copy is our unique 'K'-grid material. This allows a high power gain and excellent linearity to be combined with long-life stability. Philips cavities and air-cooled tubes go from 1.5 to 25 kW for operation in channels 2 to 13, for both vision and sound service.

If you're a television engineer, who's looking for minimum design problems and optimum operating efficiency, we have another simple idea. Check out our claims in detail by sending for the relevant data sheets.

Philips Industries
Electronic Components and Materials Division
Eindhoven - The Netherlands

Distributed and sold in the U.S.A. by:
Amperex Electronic Corporation
230 Duffy Avenue, Hicksville N.Y. 11802

In Canada:
Philips Electron Devices
a Division of Philips Electronics Industries Ltd.
116 Vanderhoof Avenue
Toronto 17 - Ontario

<table>
<thead>
<tr>
<th>tube type</th>
<th>useful output power*</th>
<th>cavity type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Band I (kW)</td>
<td>Band III (kW)</td>
</tr>
<tr>
<td>YL1520</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>YL1430</td>
<td>12.5</td>
<td>17.5</td>
</tr>
<tr>
<td>YL1420</td>
<td>6.25</td>
<td>8.5</td>
</tr>
<tr>
<td>YL1440</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

*Peak sync power in C.C.I.R. system with B(-1dB) = 7 MHz

1) Only cavities Band III vision shown from total range.
Resistance readings between the gate and cathode usually are under 1000 Ohms. If you reverse the test leads, you'll get about the same reading.

Anode measurements are something else. The anode should measure nearly infinite resistance to both the cathode and the gate.

Triac Basics

By now you should begin to suspect what we will get for resistance tests on the triac. Figure 1 shows that it consists of back-to-back diodes and a gate. The following list will give you a better idea of triac operating conditions:

- When the anode is negative and the gate zero (relative to the cathode), no conduction is possible. This is diode action.

- With anode voltage positive and the gate at zero (relative to the cathode, no conduction is possible). This is gate action.

- If the anode is negative and the gate voltage sufficiently negative, conduction will take place.

- Anode voltage positive and the gate voltage sufficiently positive will cause conduction.

- After conduction begins, a latching effect takes place. The gate loses control and conduction continues until the anode voltage and current are reduced below the holding point.

Resistance measurements for triacs are nearly identical to those of SCR's. The anode should measure nearly infinite resistance to both the cathode and gate.

An open circuit between gate and cathode, or a short or leakage from anode to gate or anode to cathode is a sure sign of a defective part.

Tester For SCR, Triac, Transistor

The tester shown in Figure 2 will check SCR's, triacs and power transistors by applying 6 Volts DC limited to 150 mills. This is a good operational test for these devices and should give you a good demonstration of triggering and holding actions.

If you have any doubts about the identity of the component, the test results indicate whether it is a transistor, triac or SCR.

Use the following procedure with this tester:

A. Prepare the tester by adjusting the polarity switch (S1) to the SCR-NPN position, the toggle switch (S2) to off, and the gate-voltage control (R1) to minimum.

B. Connect the device by use of color-coded clips and test leads.

C. Flip on S2, the power switch. If the bulb lights, the device is shorted, so the test leads are touching.

D. Gradually turn up the gate-voltage control. At a certain critical voltage (measured by a meter for the most detailed information) the bulb should light, indicating conduction.

E. A gradual brightening of the bulb when the control is turned up, and a gradual decrease in brightness as the control is turned down.
indicating that the device is a NPN-
ity transistor.

5. A sudden lightning of the bulb
full brilliance at one point on the
age-voltage control, and no reduc
in brilliance when the gate-
voltage control is turned down indi
cates that the device is a SCR or a
triac. Subsequent tests will deter
mine which. The bulb should re
main lit after the control is turned
own until a momentary open in S3
breaks it permanently.

6. Slide the polarity-reversing
switch (S1) to the TRIAC-PNP
position, and starting at minimum,
turn the gate-voltage control.

7. A gradual brightening and
blinking of the bulb when the
age-voltage control is increased
indicates that the device is a PNP-polarity power
transistor.

8. No lighting of the bulb when
the gate-voltage control is in
creased indicates the device is a
SR.

9. A sudden lighting of the bulb
full brilliance at one point on the
age-voltage control adjustment.
An increased indicates that the
device is a triac.

10. Flip the power switch to the
off position to minimize battery
strain.

Testing LDR's

Maximum resistance of a LDR
be obtained only by maintain
the cell in complete darkness
for several minutes before measur
it with an ohmmeter. Many cir
cuits, including this one, do not uti
lize the high-resistance characteris
tic; therefore, this reading is usual
ly not critical.

Minimum resistance is obtained
when the CdS cell is subjected to
light. A rough test can be made by shining a flashlight at
the cell from the same distance each
time.

Remote Start
For Turntables

A simple static switch, using a
triac, is used to control six turn
tables and one cart machine here at
WHCN (FM). When we tried to
start and stop our turntables
remotely, a large pop would occur
because of the high switching cur
cents encountered from the reverse
EMF from the turntable motors
and switches, even though the
manufacturers include a capacitor
to counteract this. This pop came
across "air," being picked up in
our pre-amps.

The circuit shown included
switches for both the turntable and
the remote switch plate. This ena les the DJ to cue records at
the table or start the table from
the board. Neon indicators are located
both places for a positive indication.
The current in the switch
leads is just enough to fire the triac,
not enough to cause a pop in the
pre-amps. The by-pass capacitor
by-passes radio frequency currents
generated by the triac in its off
condition and is rated at 600 VDC.

This interesting triac use was sent
to BE by Lawrence Titus of WHCN,
Hartford, Conn.

![Diagram of Turntable Switch](image-url)

117VAC ➔ 0.1µF TRI ➔ 100Ω ➔ SW1 ➔ REMOTE SW2

TURN TABLE MOTOR ➔ NEON ➔ REMOTE NEON

117VAC ➔

4 Turntable switch used at WHCN-FM. The triac is a IRT82-C.
Background Monitor System

By Clint Tinsley

If you haven’t kept up with the state-of-the-art in audio equipment, you may think your station’s sound is far worse than it really is. Of course, you can look at your sound to make sure. Trouble is, other people visiting the station may not understand your monitoring problem. In the September issue of BE, Pat Finnegan opened the door on monitoring. We’ve all been inside before, but let’s take one more look around and see if we’ve advanced as far as we need for today’s market.

Constant Voltage Distribution

We will return to the concept of constant impedance as it relates to 8 Ohm systems and is used in present-day broadcast consoles. Basically, assume that constant voltage and constant impedance are synonymous. Given the formula Z=E^2/P, Ohms, Volts and Watts respectively, you can determine the source impedance or the load impedance of any amplifier or speaker load.

Table 1 details the various values of impedance based on line wattage and voltage. Note that secondary impedance is not specified but if a transformer is intended to work into a 8 Ohm load and you place a 4 Ohm load across the secondary, you effectively half the primary impedance value and double the wattage required from the line.

The Amplifier Output

Of prime importance in any speaker system is the rated RMS value of the amplifier. Inflated IHF or Music Power ratings will not suffice. In any speaker matching system, you are-in reality-matching impedance and nothing else, and the impedance of a C.V. system is based on the wattage rating of the amplifier.

You may have an amplifier which does not show an RMS rating but gives an IHF or music power rating. Check the ratings of the output transistors and use that figure as the maximum. This will give you the collector dissipation rating and you shouldn’t get into trouble. For example, say you have an amplifier which is rated at 20 Watts RMS into 8 Ohms and you use a transformer to convert to 70.7 Volts. You will obtain a source impedance of 250 Ohms provided you use the proper transformer. To this end, you should obtain a 20 Watt 8 Ohm 70.7 Volt transformer and use it for the amplifier output by working it backwards. These are called line transformers.

Some commercial amplifiers have auto-transformers in the output, but most of them use a regular transformer from which a balanced output or floating line can be obtained, at the 25 and 70.7 Volt levels. The commercial amplifier also carries two ratings: The RMS power rating and the line impedance values. If not published, you can obtain the impedance value for each line (25V and 70.7V) from Table 1 based on the RMS rating.

The Line Transformer

Each speaker, or speaker pair should have its own line transformer. This transformer will have a multilapped primary and at least one secondary value, usually 250 Ohms. Normally, the primary will be marked in Watts and the secondary in Ohms. Again, you can

Table 1

<table>
<thead>
<tr>
<th>PRIMARY IMPEDANCE (OHMS)</th>
<th>25 VOLT LINE</th>
<th>70.7 VOLT LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1500</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2000</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>2500</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>3000</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>3500</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>4000</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>4500</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>5000</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>5500</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>6000</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>6500</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>7000</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

Fig. 1 Example of a house monitor system using a 70.7 Volt line and a 20 Watt RMS amplifier. Using Table 1, we see that 5 Watts in a 70.7 Volt system is equivalent to 1000 Ohms, and the 20 Watt source impedance will be 250 Ohms.
"When I suggested to the staff that we try out other cartridges, they were unanimously against it."

Ernie McDaniel, Director, Technical and Broadcast Operations, WCBS Newsradio 88

In an all-news station, cartridges are one basic tool. A substantial portion of our programming depends on them.

"We've got to be able to depend on them."

We use Audiopaks exclusively. People prefer them.

"A few years ago, we had a problem with cartridges. We talked to the Audio engineers. We worked with them to come up with the present Audiopak. We're happy with it."

With a weekly audience of 305,800 (according to the latest ARB), we’d better have dependable cartridges.

New Audiopak A-2 Broadcast Cartridges

www.americanradiohistory.com
refer to Table 1 to make any necessary adjustments, remembering that if you place a 4 Ohm load across the 8 Ohm secondary you double the wattage value as you would do if you placed two 8 Ohms speakers in parallel across a common transformer. There are line transformers designed for use in only 25 or 70.7 Volts systems as well as transformers with a proliferation of power taps that make them useful in both systems.

The Sound Distribution System
Premise: The advantage of constant voltage speaker systems is the ease in which a speaker line can be matched out such that the amplifier matches the load.

Example: Station house monitor system using a 70.7 Volt line and a 20 Watt RMS amplifier. There are four speakers, each of which is receiving an equal amount of power which will be 5 Watts. You simply tap off each line transformer at 5 Watts across the 70.7 Volt line as in Figure 1 resulting in a 20 Watt load to the amplifier. In most systems, this reasoning will prevail even with different power values being tapped off to different speakers in locations of varying noise levels. As long as the total of the power taps equal power rating of the amplifier, you will have achieved a perfect match between the amplifier and the load.

VOLUME CONTROLS AND THE C.V. LINE
This could be considered one of the "gray" areas of constant impedance matching. You have two or possibly three choices of location of volume controls. I would first consider the headend approach in which you have a remotely located source. In this case, an L or T pad at the source impedance level would be advised. For a 10 Watt amplifier, the value of the pad would be 250 Ohms.

A second point of consideration is the speaker end of the line, after the line matching transformer. When purchasing speakers for commercial background music installations, I usually have two choices: a 20 Ohm pot or an 8 Ohm L pad - as a matter of economy. We normally have our speaker battle prewired with the 20 Ohm pot, although the 8 Ohm pot would be a better approach.

In examining the 20 Ohm pot approach, the pot bridges the secondary of the line transformer in the voltage divider concept with one side of the speaker connected to the wiper. This approach has a couple of minor drawbacks: In attempting a constant impedance match, (1) when the speaker is fully turned down, the line transformer is terminated in 20 Ohms and (2) when the speaker is fully turned up, the line transformer is terminated in approximately 57.7 Ohms and this error in "wattage matching" for a wattage relationship based on

the "performer" class A state-of-the-art

Class "A" and educational broadcasters can now enjoy the same quality and superior signal characteristics of major stations ... at a budget price, with budget installation and maintenance costs.

Efficient design is the key. The "Performer" is elliptically polarized for a clearer signal, even in the fringes of your broadcast area. And its low VSWR guarantees you better stereo performance.

Built to last, the "Performer" features thick-wall copper tubing and marine brass. It's the best FM antenna bargain on the market today.

JAMPRO ANTENNA COMPANY
A DIVISION OF COMPUTER EQUIPMENT CORPORATION
6939 Power Inn Road • Sacramento, Calif. 95826 • Phone (916) 363-1177

www.americanradiohistory.com
2 A 20 Watt/250 Ohm source amplifier is matched to a 600 Ohm broadcast loop or telephone circuit which includes a head- phone monitor circuit.

4 Ohm load multiplied 20 times installation could cause prob-

My "favorite approach" is use a 10 K pot on the line side of the transformer on a 70.7 Volt line (for 25 Volt line. I would use a 500 Ohm or 1 K pot). When using this approach I simply add a Watt per

I can locate the control anywhere along the line instead of running wires from the speaker, in the case of a secondary oriented volume control arrangement.

You would note from previous publication in this field (HE July, 1972) that in the 45 Ohm monitor circuit in the Gates Solid State Duolox II console I have used 100 Ohm pots with good success in a line side approach. This line side approach has been proven in prac-

(Continued on page 43)

FIDELIPAC®
Automatic Tape Cartridges

... the standard of the industry for quality, durability and flexibility are now obtainable world-wide. Available in three size configurations:

- Model 300, in lengths to 10½ minutes
 @ 7½ ips (19.05 cms)
- Model 600, in lengths to 16 minutes
 @ 7½ ips (19.05 cms)
- Model 1200, in lengths to 32 minutes
 @ 7½ ips (19.05 cms)

Heavy-duty tensilized Polyester Tape used throughout. Compatible with all standard Broadcast Cartridge Recorder-Reproducers. Over 25,000,000 now in use.

For complete information and the name of your nearest Fidelipac® Automatic Tape Cartridge Distributor, contact

FIDELIPAC®
3 Olney Avenue, Cherry Hill, New Jersey 08034 U.S.A.
Telephone: 609-424-1234

Fidelipac is a registered trademark of Telepro Industries Incorporated
Color After Modulation

By Pat Finnegan

Video information going into a transmitter and that coming out is not the same. Aside from distortions that can be added due to improper operation, there is vestigial sideband transmission. Detection devices for recovering the video information should tell the truth all the time. Yet even when telling the truth, the information sometimes requires interpretation.

For our discussion, consider that the transmitter is operating properly and the signal is not being distorted in any way, and not consider VSB transmission as distortion.

In VSB transmission, one full sideband and only a part of the other sideband is transmitted. The color information is only on the full sideband.

Detection devices, such as a diode, are non-frequency selective, and can be very non-linear due to an internal noise or to the signal levels applied to it. Other devices (such as a demodulator) can have an improperly adjusted bandpass or yield the same results due to component failure. The output also can be distorted due to RF overload, improper circuit voltages, or non-linearity can be introduced by component fault.

An irregular video response curve or improper bandpass in the demodulator can cause improper burst to chroma amplitudes. This is due to the fact that the chroma and the burst lie in somewhat different regions of the transmitter response curve.

Detection And Interpretation

If only a diode is used for demodulation, some consideration must be given to its placement in the system and interpretation of the results. The diode cannot be placed in the circuit where the sound carrier is present since it cannot reject the unwanted signal.

Placement before the carrier diplexer, brings up another question. Has bandpass shaping already taken place? If it has, the output of the diode will be the ideal response curve as given in the FCC Rules. That is, low frequency video information below 1.25 MHz will be present as double sideband, the color will be single sideband. This means that video information below 1.25 MHz will be twice the amplitude of the information above 1.25 MHz. A good example is the horizontal sync pulse and the color burst on the back porch. The burst will appear as only half amplitude to that going into the transmitter. For this mode of monitoring, that is the correct display, and the operator should not try to correct it. For the same reason, a color monitor fed from this diode will show colors that appear more pale than when fed from the video line. This is especially apparent on monitors with a preset color control.

A demodulator is simply a single channel receiver, minus all the sync, audio and other circuitry of regular receivers. The IF bandpass is deliberately shaped to complement the VSB signal, the output of the detector is a flat video bandpass. The output video is the same as the input video to the transmitter.

Overload

Front end overload can cause several problems, two of which are non-linearity and bandpass distortion. Use the step test pattern or the one in the VIT signal, adjust the probe for noncompression on either end. Check the multiburst pattern for video amplitude distortion. Reduce the probe pickup below the point where the multiburst is effected. If neither signal is available during programming, adjust on

(Continued on page 47)
The Setchell Carlson reputation for QUALITY and RELIABILITY is demonstrated over and over in every S.C. Electronics monitor and monitor/receiver with features such as plug-in circuit modules (pioneered by S.C. to assure operating dependability and ease of maintenance), 100% solid-state circuitry for maximum stability, long-life, low power drain, and a minimum of heat; up to 640 lines horizontal resolution; and regulated circuitry that provides extremely stable operation while preventing raster size or brightness deviations due to line voltage fluctuations.

Available in a broad line of screen sizes, Setchell Carlson products lack only one thing...a high price. Whatever the application, broadcasting, CCTV, Medical training, industrial TV applications, custom remote installations, industry, education, or many others, Setchell Carlson has the monitor you need.

Ask about them today at your nearest S.C. Electronics dealer, or write for full information and descriptive literature.

ALSO ASK OR WRITE FOR INFORMATION AND FULL-COLOR LITERATURE ON QUALITY COLOR MONITORS.

SC ELECTRONICS, INC.
A SUBSIDIARY OF AUDIOTRONICS CORPORATION
530 5th AVE. N.W. ST. PAUL, MINNESOTA 55112
PHONE (612) 633-3131

Circle Number 39 on Reader Reply Card

November, 1972
New York’s Waldorf Astoria was recently the meeting place for the Audio Engineering Society’s 43rd annual convention. This convention features the annual unveiling of the latest audio gear and the platform for state-of-the-art reports on industry R and D.

The biggest item in audio these days is quadraphonic sound, both recorded and broadcast. Considerable convention program time was devoted to quad, and highlights of the technical sessions of particular interest to broadcasters are covered here by Broadcast Engineering’s solid state editor.

Quadrasomics

The technical proceedings of the AES got underway with the session on Quadrasomics, chaired by John Woram of Vanguard Records.

Albert Grundy of the Institute of Audio Research, Inc. gave a paper entitled “On the Mathematics of Quadruphonic Matrices”, a look at a simplified means of describing various quadruple-matrixing systems with algebraic expressions of the various signal components. With a minimum of higher mathematics, this paper gave an excellent view of what happens in the processes of encoding and decoding of 4 channel signals.

John Eargle of Altec Corporation gave a paper, “4-2-4 Matrix Systems: Standards, Practice and Interchangeability” which goes a long way toward putting the various matrixing systems in current use into perspective. Describing the different systems in terms of Peter Scheiber’s spherical notation (which presents a matrix system’s phase and amplitude inter-relations in an x-y-z form), Eargle illustrated the basic differences of the popular systems such as EV and SQ, the Sansui QS matrix, and the Cooper-Shiga UMX matrix. Transformation from one matrix to another was discussed, as well as inter-matrix compatibility. This paper serves well to sort out the region of confusion between various matrixing systems, not only in regard to the material it contains, but also its bibliography on previous material.

Do you have a quad monitoring requirement via headphones? If so, the paper “Can We Hear Four-Channel Via Headphones” by Peter Tappan of Bolt Beranek and Newman, Inc. should be of interest to you. This paper examined the fore-aft depth perception effects of the ear and the results with 4 and 2-transducer headphones towards the 4-channel effect.

“Some Single and Multiple-Source Localization Effects” by Mark Gardner of Bell Telephone Laboratories examines directivity effects of multi-source reproduction from a common program origination. Control of a sound image’s placement is useful for various special effects, such as pseudo stereo. The paper has a very extensive bibliography.

“A Quadraphonic One-Point Pickup Microphone” by Takeo Yamamoto of Pioneer Electronic Corporation (Japan) describes a one-point pickup microphone with 4 unidirectional patterns.

A paper by Rex Isom of RCA, “An Analysis of the Frequency-Modulation of the Carrier in Discrete 4-Channel Records” analyzed performance of the FM modulated ultrasonic subcarrier used in RCA’s discrete 4 channel disc.

“Characteristics of the Sansui QS Vario-Matrix Based on a Psychoacoustic Study in Four Channel Stereo, Part I & II” by Ryousuke Itoh, Susumu Takahashi, and Kouichi Hirano of Sansui (Japan) and Masao Nishimaki, Tokyo Institute of Technology.

This extensive paper examines the Sansui Vario-Matrix system and the psychoacoustic requirements of 4 channel sound reproduction. The vario-matrix concept alters the matrix coefficients on a continuous basis to enhance inter-channel separation.

Broadcast Engineering

The Broadcast Engineering session was chaired by Eric Small of WOR-FM and included a number of papers of general broadcasting interest as well as quad-broadcasting considerations.

Leading off this session was a paper, “The Status of Broadcast Cartridge Design” by Robert Manierre of Audio Devices, Inc. This paper describes the improvements in tape cartridge design over the years necessitated by tough handling consumer usage and the improvements in broadcast cartridges resulting from this feedback.

“Compatible FM Broadcasting of Panoramic Sound” by James Gibson, Roy M. Christensen and Allen L. R. Limberg of RCA Laboratories, describes a new system for 4 channel transmission over FM radio. The basis of the system is transmission of the most important information to convey an acoustic picture around the horizon. Signal constraints of compatibility, fidelity, and economy are discussed.

“Effects of Multipath Interference Upon FM Transmissions” by Raymond Schwartz, Alford Manufacturing Company examined the effects of large buildings in metropolitan areas on signal reflection and shadowing, with particular emphasis on audio distortion components.

The last part of this session was composed of a panel discussion devoted to 4-channel broadcasting. The panel, moderated by Eric Small, included Duane Cooper of the University of Illinois, George Endres, CE of WGMS AM/FM Washington DC, Jim Gibson of RCA Labs, and Emil Torick of CBS Labs. The discussion was a lively one, both among the panel members and augmented by ques-
George Endres described GMS's experiences relating to matrix quad broadcasting which it does on a live basis. Endres choose Dynaco (Gately Electronics) matrix scheme from a standpoint of minimum listener cash outlay and ease of implementation. Speaking further, Endres said he feels a prime and obvious consideration to a broadcaster is the return on his investment when he gets into a 4-channel. Since the situation is still very unclear as to standardization when the matrix camp, this is a difficult decision facing any broadcaster ready for this step.

Papers From Other Sessions

These papers were the main topics of interest to the broadcaster, but there were a few other general interest papers from other sessions. The titles are listed here, and any paper with an asterisk may be ordered by mail from: Audio Engineering Society, Room 929, 60 E 42nd Street, New York, N.Y. 10017. Price: $1.00 for AES members; $1.00 non-members.

Papers from other sessions:

"Performance and Interface Specifications For Professional Audio Magnetic Recorders", John McKnight, Scully/Metro/Endres, Preprint# 903.

"EIA RS-400 "Reproducer Type" Review", John G. McKnight, Magnetic Reference Laboratory, Preprint# 898.

"Design Considerations For A Transportable Sound Reinforcement System", Allan P. Smith, Naval Training Equipment Center, Preprint# 880.

The AES equipment exhibits were by and large oriented toward the recording industry's needs, with broadcast interests taking a lower priority. The glamour items in studio equipment at this convention were automated mixing equipment, with new systems being introduced by a number of manufacturers.
If you service and repair television sets and other home entertainment equipment as an extra income sideline or as a hobby, you should be reading Electronic Servicing.

Each month you get the latest solutions to service problems of black/white and color TV, tape recorders, auto radio, stereos, and antenna systems. It's all presented in easy-to-understand, step-by-step explanations of the most efficient trouble-shooting techniques.

Give us a look! Satisfaction guaranteed—anytime you say so we'll refund the unused portion of your subscription.

Fill out the order form below and mail it today! We'll start Electronic Servicing coming to you with the next current issue.

YES!
Enter my subscription to ELECTRONIC SERVICING®.

[] 3 years at $13.00 ($5.00 off regular price)
[] 2 years at $10.00 ($2.00 off regular price)
[] 1 year at $6.00

[] Payment of enclosed
[] Please bill me

PLEASE PRINT

NAME

STREET

CITY

STATE

ZIP CODE

SIGN

IMPORTANT! Please check business AND position

Type of Business
☐ Independent Electronic Service Organization
☐ Retailer with Electronic Service Department
☐ Independent or Self-Employed Service Technician
☐ Electronics, Radio, TV Manufacturer

☐ Industrial Electronic Service
☐ Wholesaler, Jobber, Distributor
☐ Other (Specify)

Position
☐ Owner, Manager
☐ Service Manager
☐ Technician
☐ Other

MAIL TO:
Electronic Servicing®
1014 Wyandotte St., Kansas City, Missouri 64105

Quad Demos

However, broadcasters were served by the demo rooms of the various quad systems where they could personally assess the differences in performance of the systems. This writer's observations will not, of course, serve as a substitute for your own, but there are some factors which might be noted.

There has been a great deal of improvement by the matrix camp in apparent inter-channel separation. This was evident in both the CBS-SQ demonstrations and the Sansui QS demo room. CBS is currently working with a major IC manufacturer on soon to be announced decoder and logic "separation enhancement" chips. Sansui has the equivalent effect with their Vario-Matrix encoding/decoding. An A-B test of this system against a 4-channel tape over short periods yields a quite favorable comparison. Not as "discrete" but certainly the effect is there.

The other side of the matrix/discrete picture was demonstrated by JVC with their 4-channel subcarrier disc. When listening to this discrete disc, one is immediately impressed with the total separation of the four channels. However the technical problems yet to be resolved are formidable. Cutting speed is reduced to 1/2.7 of playing speed to accommodate cutter head frequency response limitations, and a special pickup is still necessary for playback. The decoder is relatively complex, using a PLL to offset carrier signal strength reduction with wear, a noise reduction circuit and a newly developed Shibata stylus is recommended for best reproduction.

Nevertheless, this method is the only current 4-channel disc, and reproduction is certainly adequate for a large percentage of users. But the time FCC standards for 4-channel transmission are set, the JVC disc may well be a highly refined product.

Impedance Matching Using Transformers

Let us return to the Figure 1 and evaluate the systems. By using Table 1, we can see that 5 Watts in a 0.7 Volt system is equivalent to 100 Ohms and the 20 Watt source impedance is going to be 250 Ohms. Four 1000 Ohms loads in parallel results in our 250 Ohm load matching the 250 Ohm source. Thisology will prevail regardless of power taps used, or number of speakers in the system. As long as the sum of the power taps equals rating of the amplifier, conversion to impedance values will result in load matching the source.

Using power values can be confusing. It might be said that you are dissipating 5 Watts in a given speaker. The only time this might happen is if you were driving the amplifier at a continuous 20 Watt input level. In reality you are simply matching impedances by use of this 5 Watt factor.

Various Considerations On C.V.

Another use of the C.V. transformer is in monitoring various audio lines of varying impedance values with a 8 Ohm headset.

One use of the C.V./constant impedance concept is shown in Figure 2 (as reprinted from the May, 1972 issue of BE) in which a 20Watt/250 Ohm source amplifier matched out to a 600 Ohm broadband loop or telephone circuit which includes a headphone monitor circuit.

Another possible application is the use of line transformers back to back to obtain an impedance match without the loss attendant in resistive networks.

Gates Console Monitor Systems

The Gates company uses a slightly different form of constant impedance matching which uses 48 Ohm auto-transformers but the monitor amplifier impedance value actually 8 Ohms. Figure 3 shows one of the installations Gate's suggests when using their #478 000 speaker matching transformer.

Before you buy an audio console... look inside the GATESWAY 80.

One look will convince you that the Gatesway 80 monaural 8-channel console is the best buy for your money. Here's why:

- Modular solid state plug-in amplifiers
- Program, cueing, and monitor amplifiers all interchangeable
- Step-type attenuators
- Leaf-type key switches throughout
- Excellent frequency response 20-20kHtz ± 1dB
- 18 inputs into 8 mixing channels provide versatility

These are a few advantages.

For more information, write Gates Division, Harris-Intertype Corporation, Quincy, Illinois.
Controlling Film Chain Light Levels

By Donald R. MacClymont

The different densities of film and slide material used in color film chains has long been a source of video level problems. This article describes a fast reacting, simple, and automatic method of controlling these level changes with a servo-controlled Neutral Density Disc system.

Film Chain Light Control System

A film-chain is normally composed of a color camera, two film projectors, and one or two slide projectors. These projectors transmit light through the film, on to a field lens, and into the camera. If the film density varies, the amount of light into the camera varies, thereby varying the video level out of the color camera.

By inserting a Neutral Density Disc somewhere in the light path, we can compensate for these changes in film density, keeping the apparent density of the film constant and, therefore, the light level input to the camera constant. (Figure 1)

A Neutral Density Disc is a circular piece of glass which has varying amount of neutral density material on it. Starting at one point on this disc it is very dense and as we rotate the disc it slowly diminishes until it reaches clear glass at the other end. The disc used in this system can compensate for a 100:1 change in light (approximately 6 F-stops), and attenuates all colors of light equally. (Figure 2)

A motor is connected to the center of the disc which can rotate the disc in either direction. The motor direction is controlled by a servo amplifier. The position of the disc is indicated to the servo amplifier by a variable resistor called a "follow pot" which is connected to and rotates with the disc and motor.

Manual Control

In manual operation the position of the follow-pot corresponds to the exact position of a "control pot" which is another variable resistor located on the operator's control console. If the control pot is rotated 15° the follow-pot, motor, and disc will rotate 15° also.

In this mode of operation, the operator can manually control the video level of his film chain by turning his "control pot" which rotates the disc to a less dense or more dense position.

Automatic Control

In the automatic mode a composite video signal is used to generate an error voltage which drives the wheel in the correct direction to compensate for the change in light level. If the light level is too low the unit will sense low video and drive the neutral density disc to a less dense position. If the light level is too high the unit will sense high video and drive the Neutral Density Disc to a more dense position. As soon as the video level reaches the 1.0 volt nominal setting the error voltage decreases to zero and the Neutral Density Disc drive motor stops.

When showing a film, the system will correct continually for changes in the film density from scene to scene. With slides the unit will correct once to 1.0 volts nominal video level and hold until the next slide.

The response time for a 10:1 light change is less than 0.07 seconds and the end to end response is 0.7 seconds.

Automatic Black Level Sense

When no film or slide is on, the unit will automatically return to its mid-range position. This eliminates
unit having to correct from the open position when the film or slide is first turned on.

The system provides fast correction for film and slide density changes. It can be used on large or small image film chains. Use of composite video for its sensing allows it to be used with any camera system and there is no color or hue shift problem incurred during its operation.

Fig. 2 Neutral density disc begins with 80 percent black and gradually decreases to 0 percent.

Fig. 3 Block diagram of neutral density disc system.

Don't lose your head

Loose oxide dust can do in a tape head all too soon. It's rough on tape, too.

MS-200 Magnetic Tape Head Cleaner is an efficient antidote for oxide dust. Even the valve on the can is designed to deliver a wet spray to flush away oxide buildup on heads and stray particles embedded in tape. Can be applied while tape is running.

ms-200 magnetic tape head cleaner

<table>
<thead>
<tr>
<th>Don't lose your head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose oxide dust can do in a tape head all too soon. It's rough on tape, too.</td>
</tr>
<tr>
<td>MS-200 Magnetic Tape Head Cleaner is an efficient antidote for oxide dust. Even the valve on the can is designed to deliver a wet spray to flush away oxide buildup on heads and stray particles embedded in tape. Can be applied while tape is running.</td>
</tr>
</tbody>
</table>

miller-stephenson chemical co., inc.
Danbury, Connecticut 06810 • (203) 743-4447

Please send me data and prices on MS-200.
I intend to use MS-200 on: ____________________________

Name ____________________________ Title/Dept. ____________________________

Company ____________________________

Address ____________________________

City ____________________________ State ____________________________ Zip ______________

CHICAGO • LOS ANGELES • TORONTO • DIST. IN MILAN HAMBURG • PARIS • LONDON • BEIRUT

Circle Number 30 on Reader Reply Card

November, 1972

www.americanradiohistory.com
No. 1 number for tape cartridge equipment 309-828-1381

3D SERIES REPRODUCER

A collect call to the above number will bring you all the facts you need to know about tape cartridge equipment. One call will establish a working relationship between you and our broadcast oriented people...a relationship that delivers dependable performance at a truly competitive price. The relationship will last as long as you use ITC equipment...in the selection of equipment, proper servicing, and adaptation of machines to your broadcast requirements. If you're thinking tape cartridge equipment, find out why hundreds of stations depend on ITC.

WRA SERIES RECORDING AMPLIFIER

Call collect for information on free trial and leasing plans

INTERNATIONAL TAPETRONICS CORPORATION
2425 South Main Street, Bloomington, Illinois 61701

Circle Number 31 on Reader Reply Card

ENGINEER'S EXCHANGE

Accurate transmitter logs are one of the many headaches of most small station engineers. How can you be sure that the third class operator on duty always takes the required readings on time? There is no foolproof method of course, but we felt that a "gentle reminder" might be helpful.

Our "Live" AM Operation coexists with a fully automated FM Station which uses a "Broadcast at :58 and :28 minutes after each hour and another closure at :02 and :32. These functions were used to latch relays K1 & K2 respectively, and the reset switch was incorporated with the "modulation kill" switch on the front of our AM Products Model 5025 Time Gate for all real time functions. (If this unit is not available, a cam timer would work equally well.) This was programmed to give a relay closure

Replace your Ampex or Scully motor with a Beau Motor

<table>
<thead>
<tr>
<th>Tape Speed</th>
<th>Ampex Model</th>
<th>Scully Model</th>
<th>Deco P/N</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3/4-7 1/2</td>
<td>440</td>
<td>270-275-280-282</td>
<td>43H-108</td>
<td>$150.00</td>
</tr>
<tr>
<td>7 1/2-15</td>
<td>440</td>
<td>270-275-280-282</td>
<td>43H-115</td>
<td>150.00</td>
</tr>
<tr>
<td>0.00015 Inches Max. Tir.</td>
<td>300-350</td>
<td>351-354</td>
<td>54H-65</td>
<td>165.00</td>
</tr>
<tr>
<td>3 3/4-7 1/2</td>
<td>300-350</td>
<td>351-354</td>
<td>54H-61</td>
<td>165.00</td>
</tr>
</tbody>
</table>

BEAU MOTOR DIVISION

460 Sackett Point Road North Haven, Conn. 06473 Phone (203) 288-7731

Circle Number 32 on Reader Reply Card

BROADCAST ENGINEERING

www.americanradiohistory.com
Logic Reprints
Available

BROADCAST ENGINEER.
Mary now has a limited supply of reprints on the four-part series Dig-
Logic Basics written by E.S. Baby, Jr. The series started in the
If you would like to receive a
copy free of charge, write to: The
gor, 1014 Wyandotte St., Kan-
City, Mo. 64104.

COMPLEX
CONTROL
MADE
EASY

RICHMOND HILL LABORATORIES INCORPORATED
964 Koehl Avenue, Union, New Jersey 07083
(201) 381-5955

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

SP SERIES REPRODUCER
A two week test in your own broad-
cast facilities is the only fair way
for you to evaluate the performance
of ITC's premium line cartridge
equipment. Advertising statements
are no longer simply claims, but be-
come actual facts proven first hand.
Find out for yourself how ITC has
built in all the features demanded
by broadcasters since tape car-
tidge equipment was invented. If
ITC equipment fails to measure up,
you're under no obligation. You'll
find that ITC dependability is some-
thing on which you can rely
completely.

COMPLEX CONTROL MADE EASY
RICHMOND HILL LABORATORIES INCORPORATED
964 Koehl Avenue, Union, New Jersey 07083
(201) 381-5955

Call us collect
to arrange a
15 day free trial
309-828-1381

INTERNATIONAL
TAPETRONICS
CORPORATION
2425 South Main Street,
Bloomington, Illinois 61701

The RHL VPM 2003 is a compact simple
video and audio switcher intended for
use in television "Master Control" or
Presentation Studio applications.
The basic switcher will accommodate
up to 20 video signals, including colored
background and black. Each video input
has an associated audio input, for APF
applications, with an additional 5 audio
inputs selectable separately.
Standard facilities allow video mix, in-
ternal key, and matte key. Audio transi-
tions are cut, crossfade or audio over.
Call us we'll answer all your questions.

Color After Modulation
(Continued from page 38)
the signal. Watch for sync com-
pression as the probe is inserted
deeper, and also watch for a
change in the color burst ampli-
tude. Leave the probe at a point
below either of these distortions.
The same linearity check should be
made with a diode only type moni-
tor.
If the video bandpass (as shown
by the multiburst) is distorted and
yet it is not overloaded, the demod-
ulator needs to go to the shop for
repair and or realignment. Align-
ment is a ticklish job so it must be
done with care. Remember, the
demodulator also is a standard.
Color phase measurements can
be made on the VIT signal step
pattern and the color bar, using a
vectorscope. The step pattern will
check differential phase shifts. Be
careful when using VIT signals
from outside program sources as
they may already be distorted. If
you can insert your own signals,
you have control.
Color measurement after modu-
lation calls for devices that are kept
in good adjustment so they can act
as a standard. Even then, interpre-
tation may also be needed for the
results you obtain.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.

15 day free trial shows you why
ITC tape cartridge equipment
is an industry leader.
The appointment of James R. Treble to the position of chairman of the Department of Television-Radio, Ithaca College, has been announced by the director of the Division of Communications, John E. Keshishgou... Dave L. Fornshell, Executive Director of the Ohio Educational Television Network Commission, Columbus, has announced the enlargement of his staff as the ETV Network in Ohio begins interconnecting affiliated stations. Edwin M. Eakins will serve as Program Coordinator for the 10 station Ohio network. Public Information Director will be Mrs. Paula H. Walker; and Dr. A. Edward Foote has joined the Network Commission staff as Project Director for the Ohio Valley Medical Microwave Television System. . . .

TeleMation, Inc. announces the appointment of Hank Maynard as Chief Engineer of Research and Development. Marion L. Stage has been appointed director of engineering for the radio-television operations of Rollins, Inc., Atlanta, Ga. McClatchy Broadcasting of Sacramento, Calif. has named Richard Thompson as its Director of Engineering. He replaces Irwin Dickinson who recently retired after 40 years with the company. Elliot Klein has joined

TELAN

gas fueled thermoelectric generators

Nestled under the ice covered eaves of an equipment shed on a 11,000 foot mountain peak in Utah, this TELAN generator provides power for a TV translator. The propane tanks supplying fuel to TELAN require service only once a year. TELAN is available in from 10 to several hundred watts. 12-24-48 VDC standard.

TELEDYNE ISOTOPES

110 W. TIMONIUM ROAD — TIMONIUM, MD. 21093
PHONE: 301-252-6220 — TELEX: 87-780

Circle Number 35 on Reader Reply Card

Circle Number 56 on Reader Reply Card

www.americanradiohistory.com
JUDYK Jachimowicz has been named associate director of research and Jerry Olszewski as assistant director of research for the communications cable section of the laboratory, General Cable Corp. Anixter has tapped Charles K. Lindsey of Ormond Beach, Fla., as Southeastern sales representative. Burnup & Sims Inc. has announced the appointment of Billy R. Jones as Divisional Manager of the company's Eastern CATV operations. J. K. Davis, General Cable Corporation vice president, general manager and sales, has announced the election of E. C. Holton as vice president and communications sales manager.

Magnavox Company, CATV Division has announced the promotion of James B. Emerson as acting director of Advertising and Sales Promotion. Harold E. Horn has joined the staff of the Cable Television Information Center in Washington. Paula M. Span has joined the staff of the Cable Television Information Center as special assistant to the director of information.

Douglas C. Williamson has been named National Sales Manager for Sadelco, Inc., Weehawken, N.J., Collins Radio Company has announced three important promotions: Vice President C. I. Rice, general manager of the company's avionics division in Cedar Rapids, was promoted to senior vice president; M. W. Guelin, general manager of the special programs division in Dallas, and G. W. Sullivan, general manager for the telecommunication equipment division in Cedar Rapids, were promoted to vice presidents.

The appointment of Larry Freemire as manager of West-Pruzan's Los Angeles office has been announced. John Bacon has been named General Manager, Optima Division. Scientific-Atlanta, Inc., Bellingham, Wash., has appointed Robert W. Butterworth as Regional Sales Representative for Ohio, Pa., New Jersey, New York and New England, Continental Apparatus Co. William F. Roberts was recently selected Senior Systems Engineer for the Comcast Division of the Scott-Buttner Corp., Oakland, Calif.

Howard B. Flink has been named a sales engineer by Herold Electronics Corp.

William C. Taylor, manager of East Coast Technical Operations, has been elected an assistant vice president of ITT World Comm., a subsidiary of International Telephone and Telegraph Corp. EMR Commer has announced key executive appointments: James J. Harman to the post of Manager, Systems Department, Robert W. Hippe appointed National Sales Manager; and, John T. Montilino to the post of manager, Marketing Operations. James W. Emmick has been named Director of System and Field Engineering for Ameco, Inc., Phoenix. Robert M. Jones has joined Malarkey, Taylor and Associates as a Financial Analyst. Bryant Ellis has been named West Los Angeles Area Sales Representative, Table Manufacturing & Engineering Co., San Leandro, Calif.

LG Electrical & Engineering, Bellingham, announces the appointment of Joseph D. Coons as sales director. M. Jean Landensmier has been named market research manager of Wes Corp., Milwaukee.

All ESE digitals are designed and constructed using the latest solid state electronic components and circuitry. This equipment is perhaps the most economical line of digital clocks, timers and counters available. Circuit efficiency and lasting quality are designed into every ESE digital product. Constructed with the built-in ruggedness necessary for studio use. No moving parts.

Special custom items, like the video tape/cutter editor, a monitoring system with unique display configuration, 12 and 24 hour clocks or timers, 10 minute timers, 3 digit, 4 digit, 6 digit, record second in tens, hundredths or thousandths... All available from ESE. Options include: Thumbwheel switch or patchboard programming, BCD outputs, relay closure outputs, and solid state buffered outputs. Many products available in kit form.

MOST EFFICIENT DIGITAL CLOCKS/TIMERS AVAILABLE ANYWHERE:

ES-112/124, 12 hour or 24 hour clock; 6 digit — Records hours, minutes, seconds $100.00

ES-300, 100 minute up/down counter: Displays up to 99:59 — Easy pushbutton: Reset — Count up — Count down — Advance seconds — Advance minutes — Stop 125.00

ES-400, 10 minute timer: Displays up to 9:59 — Pushbutton: Start — Stop — Reset 68.50

ES-500, 12 hour clock/timer: 6 digit — Records hours, minutes, seconds. Start — Stop — Reset — Slow and Fast Advance buttons. Displays up to 12:59:59 110.00

ES-510, 60 minute timer: Displays up to 59:59 — Pushbutton: Start — Stop — Reset, Only 3/4" deep for flush mounting into walls or std. alum. case 95.00

WRITE, WIRE OR CALL TODAY:

EST ENTERPRISES
506 MAIN ST. • EL SEGUNDO, CA. 90245 / (213) 772-6176

Circle Number 36 on Reader Reply Card
Variable-directivity condenser studio microphone provides 130 dB dynamic range.

Building-Block Console Design

A new concept in broadcast console design that utilizes only seven easy-to-plug-in IC op-amp modules—with unique limiters on some inputs—has been developed by Fairchild Sound Equipment Corporation, of Commack, L. I., N.Y. 11725. The unique approach is said to provide custom features for no more than the cost of a standard wired-in system.

Fairchild Sound is a subsidiary of Robins Industries Corp., also of Commack.

Its new integrated circuit broadcast modules (ICBM) are assembled in building-block fashion, according to need. They provide for mic, medium-level, high-level and remote inputs and outputs, communications and monitoring.

Each module is a complete operating channel, with frequency response, distortion and noise characteristics claimed to exceed NAB proof-of-performance standards.

A major advantage of the concept is that a broadcast studio can be started with a few channels and gradually expanded. Also, channels can be moved from one studio to another, as programming requires. Plugging in and out is said to be as easy as handling a household appliance, eliminating testing or repair downtime.

Twenty (20) days of broadcasting* logged on a single 10½” reel.

This Tape-Athon model 900 Logger can operate at 15/32 ips the way most loggers run at 15/16 and 17/16. Imagine fidelity to 2500 Hz at 15/32 ips! That extra slow speed allows 409+ hours of recording over 8 channels on ½ mil tape with a 10½” reel.

Twenty days of broadcasting on a single reel. Doesn’t that eliminate a lot of problems—like tape changing, tape storage, and even the cost of tape? Write now for details.

*Based on a 20 hour broadcast day

Tape-Athon Corp.
502 S. Isis Ave., Inglewood, Calif. 90301
(213) 776-6933

Circle Number 38 on Reader Reply Card

NEW PRODUCTS

(Use circle number on reader service card for further information)
The new ICBMs are packaged durable Formica-covered aluminum strips with "Blue Ribbon" connectors. Although black is the standard color, almost any desired color can be supplied to fit a studio's decor.

Modules are available individually in kit form with console shell, completely assembled at the factory.

Although there are some variations, the mic, medium, and high-level inputs have essentially similar features. Two of them, the mic and medium-level ICBM-L1 modules, contain limiting circuits that make them impervious to overload, no matter how strong the signal.

The ICBM-M1 also features a vertical fader with a cue switch and delegating and cough switches. ICBM-L1 is similar, except for the cough switch and gain. The high-level input module, ICBM-H1, has balanced input, followed by gain control with a cue switch and an alignment circuit.

A remote input (ICBM-R1) provides six, switch selectable lines that are fed into an input fader with cue switch and then are delegated into a mixing bus. A talk-back facility into the remote lines, via momentary pushswitch, is part of the circuit.

Emergency Power

The ELECTRO-PAC "A" Inverter is a solid state DC to AC inverter, capable of providing uninterruptible power for critical load requirements, a product of ICS Inc. A patented feature allows critical load requirements to be shifted from the primary AC source to the inverter output as an AC source within a 0 - 4 milliseconds (less than 1/4 cycle) time period. A solid state AC line circuit is employed to prevent the inverter output from feeding into the AC source line.

The "switchless" transfer is accomplished by lagging the output of the inverter by approximately 20° to the AC source signal. An

(Continued on page 52)
The Top Turntable

Spotmaster's new Studio Pro B, offering instant start and the tightest cue potential in the industry. Heavy duty hysteresis motor drives a 63/4 lb. machined aluminum platter in a solid cast aluminum chassis for inaudible rumble, lowest wow and flutter. Indicator lights tell speed (33 or 45) at a glance, and speeds can be changed with platter in motion. Detachable mounting plate (accepts any tonearm), integral 45 spindle and neutral cue position are other features ... all for just $198.00.

And an Outstanding New Tonearm

Is the Spotmaster stereo BE-402 (mounted on Studio Pro B above), which combines reasonable cost, rugged design and professional specs. Features include high compliance for modern stereo cartridges, minimum tracking error, anti-skating, low mass, quick-change head, easy single-hole mounting ... for only $54.95.

Complete line of Gray professional arms and all broadcast quality phonograph cartridges also available at competitive prices.

And the Best Turntable Preamp

is our new Model TT-22, all solid state, modular, stereo equalized and completely self-contained. Features separate balance/level controls, high output (+49dbm), phone jack, plus switchable and removable rumble and scratch filters. Both stereo and mono models are available, starting at $121.50. Our time-tested TT-208 mono preamp and PR-4C power supply (will power up to 4 preamps) are also available, providing top performance at economy prices.

...all from Spotmaster

PLUS a complete range of accessories for both turntable and cartridge tape operation. Write for details.

BROADCAST ELECTRONICS, INC.
A Filmways Company
8810 Brookville Rd., Silver Spring, Md. 20910
(301) 588-4983

automatic cutoff of the line switch occurs when the AC source voltage drops to 95 VAC (or customer specified cutoff point). An 8 second delay is built in to function at restoration of the AC source voltage to prevent "hunting".

Because of this switchless feature, the ELECTRO-PAC "A" allows sensitive and critical equipment such as boiler controls, medical monitor equipment, computers and instrumentation to function without interruption whether the unit is to be used as sole source of emergency power, or to fill in during a time lag for motor generators' start up.

This switchless feature is available on all of the ELECTRO-PAC Inverters and systems, sized from 125 VA through 25.0 kVA single phase units.

Circle Number 66 on Reader Reply Card

Dual Trace, Triggered Sweep Oscilloscope

Dynascan Corp. has announced the availability of the new B & K Model 1470 Dual-Trace Triggered Sweep Oscilloscope, developed "to meet the ever-increasing demand for a moderately price dual-trace scope in industry, labs, schools and the service field." Selling price is $499.95.

For those applications where inputs and outputs are to be compared, or outputs of multiple stages triggered by the same pulse are to be compared, a dual-trace scope is ideal. Used in industry and labs for years, the dual-trace scope is showing up on service benches with increasing frequency.

Applications include: viewing simultaneously two waveforms that are frequency or phase-related, such as in digital circuitry; checking frequency dividers; checking differential amplifiers for balance; relay testing and sequencing; measuring amplifier phase shift.

The B & K 1470 offers DC to 10 MHz bandwidth, 10 mV/cm sensitivity, maximum sweep of .2 microseconds/cm, and fully automatic and triggered sweep. It permits dual display of waveforms in 6 modes: Channel 1, Channel 2, Chopped (for low-frequency waveforms), Alternate, Add and Channel 2 Invert. In the first 2 modes, only one input signal will be displayed. In the Alternate mode, Channel 1 and 2 inputs are displayed on alternate sweeps—the two traces appearing as simultaneous waveforms.

In the Chopped mode, the amplifiers are switched at a 140 KHz rate by an internally generated signal. At low sweep rates, this switching frequency provides two individual traces on the screen. This eliminates flickering that would occur if low-frequency waveforms were observed in the Alternate mode. In the Add mode, any two waveforms can be added algebraically. Also, the Channel 2 Invert switch inverts the polarity of the Channel 2 waveform; thus, in the Add mode, it is possible to obtain the difference between 2 waveforms under study by inverting Channel 2.

Circle Number 67 on Reader Reply Card

19-Inch Color Broadcast Monitor

The Miratel Division of Ball Brothers Research Corporation has
produced a new ultra-stable color broadcast monitor, the TCB-19. The TCB-19 is designed to serve as the color standard for any video installation. This series is also available in a cabinet-mounted 25-inch version.

This TCB-19 addition to the Karl family of broadcast monitors is available either with cabinet enclosure or in rack mount configuration. Stability and reliability are ensured with temperature compensation, power supply regulation and low-drift chroma demodulation.

Special features include switchable long or short time-constant R-C (automatically returns to short time-constant when sync is lost, for wide capture range); all-sid-state circuitry; and controlled phosphor picture tube. A black matrix Hi-Light picture tube is optionally available.

Circle Number 68 on Reader Reply Card

Sync Pulse Generator
CBS Laboratories introduces a new sync pulse generator.

The Model CLD-1100 Sync Pulse Generator incorporates the latest digital-circuit design technology, and makes extensive use of high-quality integrated circuits. Unique design affords maximum adaptability and use as a master unit, as a standard sync generator, or in pulse system applications.

Unit stability is derived from a timing circuit employing a single rsvloop in which the 3.58 MHz color frequency is generated from a 14.31818 MHz crystal reference source. Subcarrier drift is less than 0.1 Hz per month. Horizontal and vertical pulses are subsequently created directly from the 3.58 MHz signal, thus virtually eliminating jitter between horizontal, vertical and color burst.

The CLD-1100 Generator also features a 15 Hz Color Frame Identi Pulse to assure correct color subcarrier-to-sync phase relationship.

To assure correct color phase editing for network sync lock application, the new generator also has a 100 nanosecond "window" to allow for minor sync time instabilities and references only to 3.58 MHz, thus eliminating certain problems associated with video tape recording sensitivity to such sync instability.

Pulse timing is easily accomplished up to a maximum of 2 lines, advance thus simplifying system timing application. The new line is available immediately from stock.

Circle Number 69 on Reader Reply Card

IFTS Transmitters
Nine new Varian Micro-Link TV transmitters have been type accepted by the Federal Communications Commission for use in 2500 MHz instructional television systems. The transmitters are also suitable for other applications such as the two-way conference TV network being installed for the Metropolitan Regional Council in New York, New Jersey, and Connecticut.

(Continued on page 54)

Four-Channel Headphones
Koss Corporation, Milwaukee,

has introduced three new sets of headphones specifically tailored to four-channel audio.

Each of the new headphone models features a two-channel/four-channel switch, making it compatible with both popular modes of sound reproduction.

Last year, Koss pioneered four-channel headphones with the introduction of the Quadrafone K2+2.

Each incorporates a new Koss-designed pressure-type dynamic driver element which delivers quality sound reproduction and features volume/balance controls on each cup for convenience.

Circle Number 78 on Reader Reply Card

meet the metrics

Xcelite's where the Metrics are!

A great variety of tools and sets to help you turn most any Metric fastener or adjusting screw you're likely to encounter ... hex socket set screws and cap screws, hex nuts, hex head cap screws, and whatever.

All tools precision made for exact fit. Bright nickel chrome nutdriver shafts and protective black oxide finished hex socket screwdriver blades. Plastic (UL) handles shaped for perfect grip and balance.

FIXED HANDLE NUTDRIVERS

COMPACT SETS
No. 99-PS-41-MM
(7 Metric hex socket blade hex head cap screws and handle)

REQUEST CATALOG
nationwide availability through local distributors

XCELITE, INC., 118 Bank St., Orchard Park, N. Y. 14127
In Canada contact Charles W. Ponion, Ltd.

Circle Number 41 on Reader Reply Card
The new transmitters range from a four-channel, micro-power studio-to-transmitter link unit to a dual-channel, 10 watt transmitter that will broadcast omnidirectional signals up to 20 miles. All models feature improved color performance, high stability, and vestigial sideband operation.

According to D. D. Milne, Micro-Link Marketing Manager, new modulators in the transmitter exciters provide greatly improved stability of the aural carrier due to the use of a phase-locked loop to maintain the 4.5 MHz visual-aural spacing.

"In addition," Milne pointed out, "the differential phase and gain specifications have been tightened to improve color performance."

The metering panel of the new exciter includes means for measuring the exciter output as well as the remote transmitter output, and means to independently adjust the picture and sync amplitude.

Multiple H Line Rate Sync Generator
A new crystal controlled, multiple H line rate sync generator is now available from Telemet Company. The unit is said to eliminate the need for several units usually required to provide multiple drives.

Model 3519A is housed in a compact 19" wide X 4" high X 14" deep frame. Flexibility is built-in, enabling the unit to provide line rates of 525, 875, 945 and 1023. A single front panel switch selects the desired line rate required for driving high resolution video systems.

Outputs provided are horizontal drive, vertical drive, composite blanking and composite sync.

Broadcast Audio Console
CCA announces its new "Futura" professional Audio Broadcast Console. CCA is now offering, in both mono and stereo versions, a new line of audio consoles with capacities of 6 and 10 faders. These units feature modern, slide attenuators, plug-in electronics, full accessibility, switchable meters and independent, but identical, audition and program channels.

These consoles are also available in prewired audio systems and can be purchased from CCA Electronics Broadcast Division in Gloucester City, N.J. and CCA's subsidiary, QRK Electronic Products in Fresno, Calif.

Circle Number 72 on Reader Reply Card

Installer's Signal Level Meter
The Mid State Communications DT-12V utilizes a new approach for measuring signal levels at the subscriber's drop. The LOW band makes a wide-band composite measurement from 54 MHz to 86 MHz. The HIGH band makes a similar measurement from 150 MHz to 250 MHz. The operating range is from -10 dBmV to +36 dBmV.

Only four pushbutton controls select the band of operation or attenuate the signal. The two band approach permits the DT-12V to...
used as a trouble shooting aid on top installations. Near normal signals on the high band and a low reading on the low band would indicate a broken center conductor. Adequate low band performance at weak high band reading would indicate a crimped center conductor.

The DT-12V also contains a 0 to 20 Volt AC and DC voltmeter. The voltage can be measured and amplifier and power supply trouble shooting can be performed with the same instrument.

The DT-12V is a small, lightweight, high quality test instrument. For example, electronic regulated power supplies are utilized for absolutely stable operation throughout the life of the batteries. All circuits are temperature compensated for all weather use.

Video Monitors

Modtec will soon be in full production on a line of modular video monitors. The modular design is used on a series of maintenance features.

The Modtec line is available in 9, 12, 16, 18, and 23-inch models. All modules plug in from the rear of the chassis and are interchangeable regardless of CRT sizes.

The line includes a 9 and 12-inch solid state monitor with a chassis that can be pulled out from the front. Their 9-inch color monitor is a “jeeped” receiver. This unit will be available in cabinet, chassis, rack, and dual rack configurations.

Video-Typer

Developed by Kapeo Enterprises, the KG-1632 is a low priced Character Generator designed to title live TV programs, or existing helical scan video tapes. The unit can be used with a monitor to display messages only, or in conjunction with a VTR to add titling.

Unique features of the KG-1632 are the ability to add titles to black and white or color recorded video tapes.

The slightly modified typewriter keyboard contains sixty-four characters including letters, numbers, and punctuation. Sixteen lines of copy, with thirty-two characters per line, can be typed and displayed on a television screen against a black background, or overlaid on another picture.

A window may be inserted to mask out all but one of the sixteen lines, or an entire page of copy can be displayed. The individual line appearing in the window, or an entire page, can be rolled upward or downward on the screen, and can be stopped at any location.

Send your Engineer’s Exchange Ideas To:

BE, 1014 Wyandotte

Kansas City, Mo. 64105

OPERATING ON A TIGHT BUDGET?

CHECK OUR SERIES 800 ROUTING SWITCHER Features

- **SIZES** 6 x 2 to 12 x 15
- **RELIABILITY**
- **INSTANT ACCESS**
- **VIDEO & AUDIO (Optional)**
- **INPUT & OUTPUT AMPERES**
- **ILLUMINATED PUSHBUTTONS**
- **BRIDGING INPUTS**
- **ECONOMICAL**
- **DC RESTORER ON ALL INPUTS & OUTPUTS**
- **ADJUSTABLE FREQUENCY COMPENSATION**
- **TWO VIDEO OUTPUTS PER CHANNEL**

MODEL 8062

(6 x 2) A/V

$1300

MODEL 81215

(12 x 15) A/V

$6000

OTHER PROFESSIONAL QUALITY BUT ECONOMICALLY PRICED PRODUCTS ARE:

MODEL 701 VDA

$75

MODEL 702 PDA

$75

MODEL 705 ADA

$125

MODEL 700 FRAME

$155

MODEL 800 VDA

$125

MODEL 810 EIA Sync Gen.

$455

MODEL 811 EIA Sync Gen.

$585

(Color)

AMERICAN DATA CORPORATION

4306 Governors Drive, S.W.
Huntsville, Alabama 35805
Phone (205) 837-5180

Circle Number 74 on Reader Reply Card

Circle Number 73 on Reader Reply Card

Circle Number 75 on Reader Reply Card

Circle Number 43 on Reader Reply Card

Circle Number 44 on Reader Reply Card

November, 1972

MCMARTIN INDUSTRIES INC. 605 NORTH THIRTEENTH STREET

OMAHA, NEBRASKA, 68102 TELEPHONE (402) 342-2753

Circle Number 43 on Reader Reply Card

Circle Number 44 on Reader Reply Card

www.americanradiohistory.com
106. AEL COMMUNICATIONS CORP.—A new four-page brochure on the new "AELCC Tunerless Converter" is now available. The brochure presents AELCC's single output and dual output tunerless "block" converters for Mid-Band and Super-Band ranges. The converters feature flexibility and low operating cost; each adds seven channels and together they can provide up to 14 additional channels on existing cable. Charts and block diagrams delineate specific applications. Converter accessories and their specifications are listed.

107. ANIXTER-PRUZAN—A new 100-page CATV catalog describing all products necessary to build and maintain a CATV system is now available. The catalog contains most wanted items, and is completely indexed and cross-referenced, using both technical and popular names of items. It includes CCTV items such as cameras, microphones and microphone stands. The company will also offer FM processing equipment and public address accessories. The catalog's complete table of contents includes these section headings: aerial construction material; underground construction material; cable; connectors and fittings; splicing materials; drop and installation material; antennas; electronics, including both active and passive devices as well as head-end equipment; test equipment; tools and safety equipment; and specialty items, including CCTV items.

108. AVANTEK—A new Application Note featuring Avantek's Remote Automatic Sweep System is now available. The 20-page application note describes CATV system measurements that can be performed with the remote automatic sweep system. The system consists of the Model CT-1000 Cable Transmitter and the Model CR-1000 Cable Receiver. Working together, these two equipments employ a very low level test signal to measure the swept frequency response of a CATV system without interference to subscriber's reception. Also included are line drawings and schematics.

FREE CATALOG HARD-TO-FIND PRECISION TOOLS
List more than 1700 items—files, tweezers, wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Also includes four pages of useful "Tool Tips" to aid in tool selection.

JENSEN TOOLS 410 N. 44th Street, Phoenix, Ariz. 85018

USE OUR CASH FOR YOUR NEW EQUIPMENT
You choose the equipment; we will lease it to you—3-4 or 5 years with option to buy.
Increase Head Life with ISOLAIR
New Clean Air Unit by LIBERTY

Its unit provides a laminar downflow of the cleanest possible air to the critical video head area. Residues, wear and damage by airborne contaminants are virtually eliminated, extending head life by 100%, or more and further better overall VTR performance, as well as saving time and money. The unit is suspended from the ceiling thus requiring no additional floor space. It is easily installed and maintained and meets Federal Standard 209a, class 100.

Additional positive effect is the cumulative result of the constant purging of air from the entire room, so that during an extended period of use, the level of contaminants in the surrounding environment is progressively reduced.

Liberty Industries has the capability for providing complete clean air environments for any size or type of operation. Our sales engineers are ready to help you.

Let
PACE
Fill Your
WIRE & CABLE
requirements

we manufacture:
MIL-W-16870B HOOKUP WIRE
MIL-W-768 HOOKUP WIRE
MIL-C-55021A INTERNAL HOOKUP CABLES
MIL-C-27072A SPECIAL PURPOSE MULTICONDUCTOR
MIL-C-23437 ELECTRICAL SHIELDED PAIR CABLE
PAIRED INTERCOM CABLE
AUDIO CABLE, SHIELDED & UNSHIELDED
COMMUNICATION CABLE, SHIELDED PAIRS
COMMUNICATION CABLE TO REA SPEC PE-20
SHIELDED MICROPHONE CABLE
PLASTIC KINKLESS TEST WIRE

Write for complete brochure

PACE WIRE & CABLE CORP.
3590 OCEANIDE ROAD
OCEANIDE, N.Y. 11572

516 678-2275

Circle Number 51 on Reader Reply Card

Let a minimum of noise are critical.
Owing a standard line rate of
or 525 or 875, TE-21 provides
opinion combination for such
as image intensification, radi-
graph analysis, data transmission,
chain circuits and radiosystems
nding better overall
lessive
s, diodes, solid state tube re-
ements and electrolytic capac-
s. Products featured for the
byst, consumer and research

d development engineer include
ar cells, fiber optics, instrument
s, printed circuit board mate-
als, relay switches, heat ex-
s, project and engineering hand-
books and a complete selection of
semiconductors.

111. JOSLYN MFG. AND SUP-
PLY CO.—A pocket-sized refer-
ce bulletin of materials for
CATV is now available. The
16-page folder lists the most common
items used in the construction of
CATV lines. These include an-
chers, guy attachments, bolts, clamps, preformed deadends, por-
celain strain insulators, nuts, an-
chor roads, and hundreds of other
items of construction hardware.

112. LASER LINE CORP.—A
new booklet describing "How to
Layout an Airlink CATV System"
is now available. The 12-page book-
et covers such subjects as
installation, selection of transmit-

ter and receiving sites and how to
determine power requirements.
Technical and engineering layouts
and schematic drawings are also
included in the booklet.

113. LITTEL.FUSE, INC.—A
new 56-page, multi-color, product
catalog featuring complete me-
chanical and electrical specifi-
cations of all types of glass and ce-
ramic tube fuses, fuseholders, fuse
clips and blocks, automatic and
manual reset circuit breakers,
heavy and medium duty relays,
alarm buzzers and momentary ac-
ction switches is now available. The
new catalog is a necessity for the
circuit designer, industrial dis-
tributor and purchasing agent in the
electronics, electrical, automotive
aerospace and appliance indus-
tries.

114. MAGNAVOX—A new cata-
log sheet on "Ultra-High-Quality" coaxial connector Series 990 is now
available. A complete description,
specifications and ordering infor-
mation are given for the 5-300
MHz, high RFI integrity, anti-pul-
lout connector line. The series is
made for standard .412, .500 and
.750 cable and comprises splice,
feed-thru, long-pin chassis and
short-pin chassis types.

115. MALLORY DIST. PRODS.
CO.—An electrolytic Capacitor
(Continued on page 58)
Guide edited for the electronic technician is now available. This 32-page brochure tells how to find a good capacitor replacement for an original equipment capacitor of a given rating, size and shape. Over 4500 capacitors including singles, duals, triples and quad types are listed in the Guide. Complete information on how to use the Capacitor Guide is included. All capacitor replacements are listed by microfarad and voltage rating and physical case sizes.

116. MOUNTAIN WEST
ALARM SUPPLY CO.—A new alarm equipment catalog "Space Age Security" is now available. This 64-page catalog describes and offers over 350 intrusion and fire alarm products. Many are UL listed. The broad product lines presented are of particular use to alarm installers, dealers, and skilled industrial electronic and electrical technicians who require local alarm systems, parts, and accessories. The alarm equipment offered ranges from relatively simple "open loop" hardware to the latest ultrasonic, radars, and infrared intrusion detectors. Many storeroom supplies also are available. Major product categories include Intrusion Systems, Fire Systems, Fire and Intrusion Detectors (Radar, Infrared, Ultrasonic, CCTV, Switches, Heat, Smoke), Remote Controls, Annunciators (Bells, Horns, Sirens, Oscillators, Lights), Telephone Dialers, Lock Specialties, Tools, Accessories, and Books. Products are described in some detail regarding application, principle of operation, and specifications to allow skilled technicians to make the right choices—eliminate guesswork.

121. RF SYSTEMS, INC.—A new price list for CATV products ranging from new co-channel Rejection Kit to Astro Logs, Parametric Antennas, Yagi and Zig Zag antennas is now available.

SEND YOUR LETTERS TO THE EDITOR to
Broadcast Engineering
1014 Wyandotte
Kansas City, Mo. 64105
Advertising rates in Classified Section are 15c per word, each insertion, and must be accompanied by cash to insure publication.

Each initial or abbreviation counts a full word. Upper case words, 30c each.

Minimum classified charge, $2.00.

For ads on which replies are sent to us for forwarding, there is an additional charge of $2.00 to cover department number, etc. which is printed in advertising copy and processing of replies.

Classified columns are not open to advertising of any products regularly produced by manufacturers unless used and no longer owned by the manufacturer or a distributor.

MICHELANGELO FOR SALE

FOR SALE

RADIO STATION — 5,000 Watts — Eastern Arizona $175,000 substantial cash — Harold Bruze KHLI Willcox 6-72-6t

FOR SALE

TV MOBILE BUS 1970 Bluebird coach, 30 feet. Empty interior paneled, carpeted, no side windows, full width rear door. Ready for installation of your equipment. Includes two 5kw generators, two overhead 110V air conditioners plus engine air conditioner, fluorescent lighting, wired for internal and external power. Many other extras. Write Dept 271, Broadcast Engineering, 1014 Wyandotte St., Kansas City, Mo. 64105 11-72-It

HELP WANTED

TV MAINTENANCE ENGINEER & SUPERVISOR seeks position at top of major market station. Resume and references on request. Box 270 Broadcast Engineering 1014 Wyandotte St. Kansas City, Mo. 64105 11-72-It

SPECIALISTS FOR AM-FM-TV

445 Concord Ave. Phone 876-2810
Cambridge, Mass. 02138

APLH E. EVANS ASSOCIATES

Consulting Radio Engineers
AM - FM - TV - CATV 11661
3500 North Sherman Blvd

WICHIGAN, WISCONSIN 53216
Phone: 414-442-4210

TO跨越 ASSOCIATES

CONSULTING RADIO ENGINEERS
Alva C. Todd, Ph.D., P.E., Principal
7 S. Summit Avenue, Ph: (312) 832-4104
VILLA PARK, ILLINOIS 60181

SMITH and POWSTENKO

Broadcasting and Telecommunications Consultants
2000 N Street, N.W.
Washington, D.C. 20036
(202) 293-7742

VIR JAMES

CONSULTING RADIO ENGINEERS
Applications and Field Engineering
345 Colorado Blvd.
Phone: 518-378-2137
DENVER, COLORADO 80206
Member AFCCE

MICROWAVE LINKS

KTR-1000-A

Color TV Microwave Links.
C Band NTSC Color TV Plus
Program Audio. CATV/Studio
Xmit/Remote uses Raytheon.
As new also Collins
MW-103 Components in stock. $950 per rack W/4
CH MUX.

WEATHER RADAR

3CM RCA 50KW up to 40
mile range. 12" Indicator
Console as new $1975.

RADIO RESEARCH

INSTRUMENT CO., INC.

3 Quincy Street,
Norwalk, Ct. 06850
(203) 853-3600

HELP WANTED

TV MAINTENANCE ENGINEER & SUPERVISOR seeks position at top of major market station. Resume and references on request. Box 270 Broadcast Engineering 1014 Wyandotte St. Kansas City, Mo. 64105 11-72-It

SESCO, Inc.

47 NICHOLS AVENUE
P. O. BOX 518
(206) 378-2137
FRIDAY HARBOR,
WASHINGTON, 98250

CLASSIFIED

FRIDAY HARBOR,
WASHINGTON, 98250

MEMBER, 1972
HELP WANTED CONT.

CUSTOM BUILDING brended engineer Lab Equipment 20 years experience in the Broadcast Field. Established repair service. J & E ELECTRONICS, 153 Chestnut St., Manchester, Conn 06040

TV CHIEF ENGINEER

A deep South TV station in a 3 station TV market needs a new chief engineer who knows how to organize as well as repair and maintain equipment. We prefer a man who wants something better in this life. The pay is excellent, working conditions are ideal and fringe benefits are maximum. And we are the #1 station in the market, so your ego won’t be hurt either. Send us your resume so we can start talking, face to face. Write Dept. 272, Broadcast Engineering, 1014 Wyandotte St., Kansas City, Mo. 64105.

WANTED

PLEASE HELP BUILD a worthwhile community-minded educational FM Donation. We are building a new station of used studio equipment gratefully accepted. Send details to Redesign Office, Central School District, No. 1, Box 7097, North Grove, New York 14515

AMPEX 1200 VTR from Owner Reply to D ZUILL (212) 466-7757

WANTED: Ampex VH-1200A, B or C Also color film sound Call Steve Volle 408-298-5679.

WANTED SPOTMASTER and other cartridge machines. Highest prices paid for used equipment. Contact for details COMMUNICATION MEDIAS Box 54, Allentown, Pa. 18105 215-437-0607 9-72-21

c o m

SERVICES

CRYSTAL & MONITOR SERVICE. Frequency change, repair or replacement of oven type broadcast crystals. Also frequency change and recalibration or repair of AM frequency moniters, and H-F FM moniters. Past service at reasonable, 30 years experience! Call or write Edison Electronics Co. Box 96, Temple, Texas 76501 Pbe 817 773-3901

CARTRIDGE RELOADING. Send us your worn cartridges for reconditioning. Cartas cleaned, new pressure pads installed, and minor parts replaced at manufacturers cost. 48 hour service Competitive prices! New cartridges also available. Call or write: Martin Electronic Co., 195 Prentis Ave., Drew, Miss. 66717 (601) 745-8360

TRAINING

6-9-49

EARN ELECTRONICS DEGREE, mainly by correspondence. A.C. license preparation included at your option. Accredited by Accrediting Commission of HNSC. G-1 Bill approved. Free brochure. Write: Grantham School of Engineering, 1505 N. Western, Hollywood, California 90027

EQUIPMENT FOR SALE

RCA TFE-10A: 2500 Mhz transmitting antenna. Complete WANTED. Write John Wilkinson, 609-677-0861, 32 Moss Hill Lane, Willingboro, N.J. 08046

7-9-2t-3

MOTORS FOR SPOTMasters NEW 5HP hysteresis synchronous motor HSZ 20 50-4-4700 as used in series 600 and 700. Price $39.00 each prepaid, while they last. 90 day warranty Terms check with order only, no C.O.D. Recommend for Tapescater series 600 or 700

TAPCASTER/TCM, INC., Box 662, Rockville, Maryland 20851 1-72-7F

ONE STOP FOR all your professional audio requirements. Bottom line oriented. F.T. C. Brew Company, P.O. Box 8057, Pensacola, Florida 32505

7-1f-4

"NEW & USED TOWERS, Buy, Sell or Trade. Erect Good B. & M. 300-1000. Box 55, Greenville, N.C. 27834." 2-71-4f

SURLINO AUDIO PATCH PANELS, All Standard Configuration. Gulf Telephone & Electronics, Inc., 6325 Beverly Hill, Houston, Texas 77027

7-72-7F

CARTRIDGE TAPE EQUIPMENT—Rebuilt. New paint, heads, flywheel, pressure roller, belts, etc. Spatterless clean and thoroughly tested. 30 day money-back guarantee, 90 day warranty. Also contact us for possible discounts on new equipment and accessories. AUTO-DYNE, Box 1004, Rockville, Maryland 20850, (301)762-7626.

7-72-7f

SPECIAL—NEW FIDELIPAC NAB CARTRIDGE 10 sec to 6 minutes. Only $1.25 each. Minimum quantity 50 carts. Specify length when ordering. Gates Electronics, 57 W. Hillcrest Avenue, Havertown, Pa. 19083

9-72-3t

New and Used Towers AM, FM, TV, Communication. Complete design, TV antenna, complete. Complete, sales, service, erection and painting, Serving Florida & Georgia. Write DISCOVERY, Box 280, Jacksonville, Florida 32213 or phone 904-754-6285.

9-72-3t

RCA TT25 SOUND AMPLIFIER CHANNEL 5 can be modified to picture. RCA T25A TRANS-MITTER CHANNEL 5 can be modified to air cooler modulator, will not work in car changer. Service manual available. Harmonic filter, VSFB, and Di- plorer not included. PRICED TO MOVE. Chief Engineer, KSD-AM, 1111 Olive St., St. Louis, Mo. 63101

10-72-24

EQUIPMENT FOR SALE CONT.

FIDELIPAC Cartridges. FACTORY Rejects. New and Used SPOTMASTER cartridges, boxes, accessories, and parts. Many other equipment lines. Contact COMMUNICATION MEDIAS Box 54, Allentown, Pennsylvania 18105 215-437-0607. Consult our other ads in this magazine.

11-72-21

140' GALVANIZED SELF-SUPPORTING ANTENNA TOWERS. Weight 7.5 tons, 12 sq. feet tapering to 1 sq. foot at top. Weight load 145 M.P.H. Layton Cablevision Box 14 Snow, Pa., 18674; 914-387-4961. 11-72-21

RCA CSR-40A, 60W FM base station on 2650 mhz. 600 ohm out for board, local and remote control panel, handset or speaker operating circuit $250. Rust RI-108 system, complete $135. RCA 77-D factory reconditioned, $144.95. 638A stand, $50. ARC W-24, chart, cable $130. Gates M-6304 preamps, two each $41.95. 60-el pot set (120) 6000k/sorted ladders and T's with cues, lot $108. WEED 89 Paisney Street, Schenectady, New York 12306 Telephone 518-356-0411 11-72-21

SPARTA 600WCRP & 600WCRK stereo car-ridge playback and recorder both with 1500W & 5KHz aux cue. One year old in excellent con-dition. KZST (FM) Box 2755, Santa Rosa, California 95405. (707) 526-4434 11-72-21

STATION ENGINEERS—LOOKING FOR A CONOLE? Take new Electrolyde 1244 desktop console for quad, stereo. Nine 71111 strips, wired for fifteen, 8 frequency equalizers. Altec faders, AB pots. Four output busses, stereo, duo-mixdown busses. Write for details and photo write: Earth Audio Tech-niques, 113 Church St., Burlington, Vt. 17601

11-72-21

FOR SALE: Mobile Unit 24 ft. International custom van. 4 RCA TK-30 cameras, 2 RCA syn-chronizers, RCA T-800 switcher, 6 input audio mixers, intercom, adjustable power trans-former. Chief Engineer, WTMJ-TV, Milwaukee 314-332-9611 11-72-21

COAXIAL CABLE—jacketed 3 inch dia dielectric-helix—270 feet—Andrew’s No. 18-50A/Miln. RG 322A—fitted with two male coax terminals installed, EIA flanges. Excellent condition. $1,300. Write Call WKJF, Inc., 1715 Grand Avenue, Pittsburgh, Penna. 15211. 6-72-21

Standard RCA Style VIDEOPATCH JACKS unas $1.75 each. You supply power, holes and plugs. RCA, Go. 15-2/308A, Snow Shoe, Pa., 16874; 412-387-4961. 11-72-21

GET COMPLETE DETAILS about the products advertised or described in this issue.

Free Use Inquiry Card. Be sure to include your name and address

BROADCAST ENGINEERING

www.americanradiohistory.com
READER SERVICE CARD
BROADCAST ENGINEERING

For issue of November 1972–Use until February 1, 1973

Use This Handy Card
For More Information On The Products Described

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Station or Company

Address/City

<table>
<thead>
<tr>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
</tbody>
</table>

READER SERVICE CARD
BROADCAST ENGINEERING

For issue of November 1972–Use until February 1, 1973

Use This Handy Card
For More Information On The Products Described

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Station or Company

Address/City

<table>
<thead>
<tr>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
</tbody>
</table>

BROADCAST ENGINEERING FREE SUBSCRIPTION CARD

To start or renew your subscription to Broadcast Engineering on a no-charge subscription basis you must check all appropriate boxes, print your name and address, sign and return this card promptly.

Please check all boxes that apply AND occupation title

My company is:
- AM Radio Station
- FM Radio Station
- TV Station, Commercial
- TV Station, Educational
- CATV System
- CCTV or Instructional TV
- Campus Radio Station
- Consulting Firm

My occupation title is:
- Owner, President, Officer
- Gen. Manager, Advisor or Director
- Chief Engineer
- Engineer, Technician

- Dealer or Distributor of Broadcast Equipment
- Educational Radio Station
- Industrial or Medical TV
- ITFS
- Recording Studio, Audio or video
- Microwave
- Government Agency

Are you responsible for more than one station or facility? **Yes**
No

Please sign here

PLEASE PRINT

Name

Title

Station or Co.

Street

City

State

Zip
Attn: Engineers Tech Data Dept.

Attn: Evelyn Rogers
If you’re looking for the easiest way to accurately measure envelope delay, look no further.

Frequency range is 0.1 to 10 MHz for the Video Modulator and 25 to 250 MHz for the RF Modulator.

We’ve developed a solid-state measuring system that has everything in one box. And that includes a convenient, low-harmonic content Sweep Generator. The result is exceptionally good accuracy. In fact, delays of ±30 ns to ±1000 ns can be measured in 4 ranges, with a resolution of 2 ns. The test signal is provided with or without sync and blanking for meaningful TV transmitter measurements. Readout is by way of a front panel meter that provides point by point measurements. And a scope-jack offers continuous sweep display. The price is one more unusual statistic.

Only $3700

We’d like to tell you more. Write or call us today for complete data.

GET THE VITAL EDGE with the VIX-100-4 production powerhouse

Drift-free circuitry makes it possible to enjoy three mix-effects system with quad-split in a control panel no larger than most single mix-effects switchers. Discover the advantages of a switching system that satisfies ad agencies and insures dominance in production capabilities.

SALIENT FEATURES:
- 3 presettable mix-effects systems
- No coaxial delay lines in all re-entries
- Quad split with external drives
- Edger on all keys
- Up to 3 chroma keys. Composite and RGB type
- Ultra stable system
- Easy to install. Only one sync pulse is required
- All the extras used in today's production techniques

10 years of specialization. Designed, manufactured and delivered some of the world's largest and most complex integrated telecommunication systems.