Studer's flexible approach to synchronization in audio, video and film production.

The new Studer TLS 4000 synchronizer system offers extraordinary flexibility across a broad range of audio/audio, audio/video and audio/film synchronizing applications. And, thanks to its modular design, the TLS 4000 system can expand along with your growing facility.

Lock in a Box. The TLS 4000 "black box" unit functions as an extremely accurate chase lock synchronizer for one tape transport. It resolves two SMPTE time codes of any standard, and it will also accept pilot frequencies, video frame pulses, film bi-phase pulses, and move pulses. The RS232/422 serial port links the TLS 4000 synchronizer (in single or multiple units) to centralized controlling and editing systems.

Local Control Unit (LCU). A separate Local Control Unit for the TLS 4000 is available in two different versions: the basic version (type B) for many common applications, and the extended version (type A) which offers enhanced display capabilities as well as WAIT LOCK, SLEW MODE, LOOP, and CUE + GO-TO operating features. The compact Local Control Units fit in standard 19" racks as well as in the extended console overbridge on Studer A810 recorders.

Suit Yourself. Modular design lets you tailor a TLS 4000 system to fit your particular needs — present and future. For more information on Studer synchronizing systems, please write or call: Studer Revox America, 1425 Elm Hill Pike, Nashville, TN 37210; (615) 254-5651.
When you get the DPS-103 TBC you get more than you think. You get more dependability because of the engineering expertise of one of the biggest names in the industry. You get more flexibility. The DPS-103 is designed to handle virtually any heterodyne VTR. You get more quality. The DPS-103 boasts a long list of features that ensure consummate quality under any condition. These include:

- Picture lock through 40x in forward and reverse.
- Color lock through 10x normal speed.
- Line by line velocity compensation.
- 16-line correction window.
- Automatic color framing.
- Cycle hop elimination.
- RS-170A output.
- Built-in color bar and calibration generator.
- Heterodyne option available.

So a DPS-103 gives you more. But at Midwest you get it for less. As one of the largest equipment distributors in the country, Midwest deals in volume. So we can charge less per unit. In this case, $4995 until 1/31/85 a savings of almost $3000 from the regular price of $7950. And since we maintain an in-depth inventory of DPS-103 TBC's, we can ship your order as soon as we receive it. Quantity discounts are also available. So if you want to get more than you pay for in a TBC, contact Midwest today.

$4995 Price good until 1/31/85

Circle (4) on Reply Card
SPECIAL REPORT: AUTOMATION IN BROADCASTING

Computers are changing the way radio and TV stations operate. Advancements in technology and reductions in cost have brought the power of the computer to virtually every area of a broadcast facility. This month we assess where our industry is, and where automation may take us.

22 TV Automation: Integration Is the Key
By Terry Kelly, ColorGraphic Systems, and Dale Buzan, Utah Scientific of Florida
Linking the computerized equipment at a broadcast station is the next major hurdle facing our industry. This article examines how automation gear can be designed to meet a station's present and future needs.

26 Automating Master Control
By Carl Bentz, technical editor
New developments in machine control systems for TV facilities. Related articles include:
- The Basics of Push-Button Dialing
- The Local Bus

36 Time Code: TV's Sprocket Holes
By Carl Bentz, technical editor
A look at what time code is, why we use it and what it can do in an automated facility.

38 Program Automation for Radio
By Jerry Whittaker, editor
How radio automation equipment is changing to meet new marketplace needs.

52 What to Expect in Transmitter Control Systems
By Wm. Smith, Harris Corporation
A report on advancements in transmission system automation, and predictions on what the future may hold. Also examined:
- Relaxed Remote Control Rules

OTHER FEATURES

70 Studio Acoustics, Part 2
By Eric Nell Angervine, broadcast acoustics consultant
Applying basic rules of acoustic isolation to keep outside sounds out and inside sounds in.

80 AM Radio: Looking Toward the Future
By Michael Rau, NAB office of Science and Technology
What AM broadcasters can—and should—do to effectively compete with FM stations.

90 Field Report: Shure FP31 Mixer
By Richard Rudman, KFWB Radio, Los Angeles
How this new, portable 3-channel ENG/EFP audio mixer performed in the field.

About the cover
Automation is playing an increasing role in the on-air operation of radio and TV stations. Our issue this month examines the options available to broadcasters seeking to automate their facilities. Shown is the newly installed computer-controlled master control room of WTAE, Pittsburgh, PA (Photo by Rich Wilson).

Coming events
May 7-11
American Women in Radio & Television, Hilton, New York

May 12-15
Broadcast Financial Management, Chicago

May 14-15
LPTV, Western Bonaventure, Los Angeles

May 15-18
Public Broadcasting Service/ National Association of Public Television Stations, St. Francis Hotel, San Francisco

May 19-23
National Public Radio, Marriott City Center, Denver

May 29-June 1
ITVA Conference, Marriott, New Orleans

DEPARTMENTS
4 News
6 FCC Update
8 Strictly TV
12 AM Stereo Update
16 Satellite Update
20 Editorial
100 Business News
103 People
112 New Products
The revolutionary Hitachi HR-230 1” VTR has the most advanced real-time, self-diagnostic capabilities ever perfected.

In either the record or playback mode, a computer inside the HR-230 monitors 49 different performance parameters second by second. And then stores this information within the memory for recall at a later time—not just with numbers and symbols, but in words.

This means no more errors slip by when your operator is not there. And there’s no more need for hit-or-miss spot checking.

The Hitachi HR-230 has a unique quick-threading tape path, incorporating retracting entrance and exit guides, main erase head, as well as a scanner air system that protects tapes.

It recues a 30-second segment in 3.5 seconds. It has a fast/slow motion range that provides real-time reverse and field/frame still motion. Plus programmable time compression up to 20%, with 0.1% accuracy.

A unique, concealed fold-out control panel groups editing functions and separates edit controls from the main control panel.

In short, it’s the ultimate 1” for networks, affiliates or teleproduction companies. Don’t consider your next 1” purchase without looking into it. Contact Hitachi Denshi America, Ltd., Broadcast and Professional Division, 175 Crossways Park West, Woodbury, NY 11797. (516) 921-7200 or (800) 645-7510. Hitachi Denshi, Ltd. (Canada), 65 Melford Drive, Scarborough, Ontario M1B 2G6. (416) 299-5900.
FCC adopts RF radiation standards

The Federal Communications Commission (FCC) has amended its environmental rules effective Oct. 1, 1985, to provide provisions addressing human exposure to RF radiation.

FCC actions granting construction permits, licenses or authorizing modifications to existing facilities, will be treated as major environmental actions if the facility or operation in question would expose workers or the general public to levels of RF radiation exceeding the safety guidelines issued by the American National Standards Institute.

Under the new rules, designation of an action as major would require an applicant to submit a narrative statement describing the environmental effect, if any, of the excessive radiation. The commission's staff then would determine whether to prepare an environmental impact statement, which would have to be considered in deciding whether to grant the application.

The new rules will apply to radio and TV stations, experimental broadcast and LPTV stations, satellite uplink stations and experimental radio stations authorized under Part 5 of the rules. Guidelines on evaluating compliance with the rules will be provided in a technical bulletin now being developed by the commission's Office of Science and Technology. This bulletin will be available in August or September of this year.

Japan links to European satellite

A new transatlantic satellite link has been established to allow Japan's six major TV networks to receive TV news programming from Europe at less cost and with greater flexibility.

The link, provided by Brightstar, transatlantic carrier of TV programming, transmits the European programming from Great Britain to the United States where it is picked up and carried to the networks by the Japanese international satellite system. Previously, the networks had to use another, totally independent system via an Indian Ocean region satellite.

John Milman, Brightstar's general manager, said that adding a European link to the Japanese networks' existing 24-hour service from the United States has increased access to European television while reducing their satellite costs.

Another factor in the Japanese networks' decision to use Brightstar was the quality of its transmissions.

Japanese networks using the new Brightstar link include Nippon Hoso Kyokai (NHK Channel 1 & 3), Nippon Television Network Corporation (NTV Channel 4), Tokyo Broadcasting System (TBS Channel 6), Fuji Television Network (Fuj TV Channel 8), ASAHI National Broadcasting Company (ANB Channel 10), and Television Tokyo (TV Tokyo Channel 12).

Brightstar, a joint venture of Western Union and London-based Visnews Ltd., transmits via an advanced land and satellite network, incorporating dedicated circuits on the Westar and Intelsat satellites, and associated earth stations and microwave facilities in the United States and Great Britain.

Brightstar handles transatlantic broadcasts for CNN, BBC, Thames Television and the European Broadcasting Union. The company also handles TV broadcasts for World Communications, Turner Broadcasting and Canadian Broadcasting.
OUR SCIENTISTS HAD TO OPERATE IN A VACUUM TO GIVE YOU A NEW QUALITY OF SOUND.

The quality of any sound system begins at its source. Precision in the power supply is vital to capturing and maintaining the fullness and subtlety of amplified sound. The need for that exactness is why we insist on operating in a vacuum rather than depending on outside sources.

A vacuum tank, to be precise. An environment in which our transformer is created with an air expulsion process. Where air pockets are purged from multi-layers of the transformer's high grade core laminations, and the core made air tight with a special impregnating sealant.

This process gives us impeccable control of transformer function and quality. Which gives you the assurance of the most efficient transfer of power possible, and an end to the acoustical “buzz” that so often fights sound purity.

To a lot of manufacturers the lowly transformer is far down on the list of priorities. For us, every element in the sound system relies on the exacting performance of every other element, and must be painstakingly attended to.

Whether you’re driving your studio monitors in a demanding final production mix with our 6000 Series amplifiers, or making critical adjustments to signal quality with our peak or RMS limiter/compressors, you’ll find our audio science giving outstanding clarity to your work. To find out which system is designed to meet your needs, contact your authorized JBL/UREI professional products dealer today.
In a notice of rulemaking issued in February, the FCC proposed to delete restrictions on the acceptance of applications for new AM stations or applications for major changes in existing AM stations.

Current rules preclude acceptance of AM applications unless they meet one of the following criteria:

For a new daytime station:
- At least 25% of the area or population which would receive interference-free primary service does not receive such service from an authorized AM station or a 1mV/m service from an authorized FM station; or
- The proposed station would provide the designated community with a first or second aural transmission service and no FM channel is available for use in the community; or
- At least 20% of the area or population of the community receives fewer than two daytime aural services and no FM channel is available for use in the community.

For unlimited time facilities:
- At least 25% of the area or population that would receive interference-free primary service at night from the proposed station does not receive such service from an authorized AM station or 1mV/m service from an authorized FM station; or
- The proposed station would provide the community with a first or second authorized nighttime aural transmission service and no FM channel is available for use in the community; or
- At least 20% of the area or population of the proposed community of license receives fewer than two aural services at night and no FM channel is available for use in the community; or
- For applicants for Class II-B stations on one of the 25 Class I clear channels, that minority people hold more than 50% of the ownership interests in the applicant or that the applicant proposes to operate on a noncommercial basis.

In proposing to delete these restrictions, the commission questions whether, in light of the number of years the restrictions have been in place, there continues to be demand for new AM stations in the remaining eligible communities. The commission is not contemplating a change in interference protection requirements, and all previously eligible applications for underserved areas or by minorities or educational groups will continue to be acceptable.

The most controversial aspect of this proceeding is deletion of the rule that in effect "reserves" the Class I clear channel frequencies for minorities, at least in larger communities. However, it does not appear the rule change will affect minority opportunities significantly because the clear channels already are cut off from further applications in most urban areas.

TV channel swaps

The FCC is considering changes to its rules that would permit commercial and non-commercial educational TV stations licensed to the same market area to exchange channels without being subject to competing applications.

Presently, such channel swaps can be arranged by contract but FCC policy requires that third parties be allowed to apply when a channel is first made available for commercial use. This has stifled channel swapping even where a trade would be technically beneficial.

The FCC views its proposal as a means of attracting financial support for public broadcasting. If channel swaps are allowed without the threat of competing applications, commercial UHF stations could take over a VHF frequency, or a non-short-spaced UHF channel, in return for payments that would be used by an educational station to improve its facilities or its programming.

The commission is requesting comments on whether this proposal should encompass operating stations only, and stations licensed to different communities in the same market. The permissible uses of funds obtained from trades is also covered in the inquiry.

Eliminating cable record keeping

Effective March 18, cable TV systems were relieved from most FCC-imposed record keeping requirements. The only records that still must be maintained are for origination cablecasts by candidates for public office, sponsorship identification and equal employment opportunities.

Not required are: records pertaining to local franchising, certificates of compliance, petitions to the commission, FCC rulings, FCC Forms 325, applications for transfer of a CARS station, network program non-duplication agreements, subscription cablecasting and FCC registration statements.

Also eliminated was the requirement that cable systems retain for FCC inspection records of the subscribers served during each quarter of operation.

These record-keeping requirements were eliminated because they no longer are necessary for federal oversight of cable operations. Also, the commission found that the paperwork involved in record keeping was too burdensome considering the "negligible" usage of local files by the public.

Broadcast auxiliary rules to be streamlined

The FCC has proposed changes to Part 74 of its rules to permit more efficient use of frequencies reserved for broadcast auxiliary stations. The proposals, intended to alleviate spectrum scarcity, involve the following:

- Division of the 944-952MHz aural STL band into 25kHz segments that can be stacked to provide various channel widths that will match the aural service more closely than present fixed-width channels;
- Reduction of the present maximum allowed 500kHz channel bandwidth in the 944-952MHz band to widths that more closely match the aural service of those channels;
- Division of the 2GHz and 7GHz TV pickup bands into 1MHz segments that can be stacked to provide various channel widths;
- Revision of the emission standards for the broadcast auxiliary bands above 944MHz to allow the use of any type modulation;
- Allowing TV auxiliary services to share the UHF-TV band on a non-interfering basis;
- Relaxing of the auxiliary service remote control rules; and
- Removal of the identification requirements for fixed auxiliary links.
The New TEN-XL, Suddenly Money Is No Objection.

Now, when you buy a routing switcher you can feel like a big spender without having to spend like one. And without short-changing your system. The Grass Valley Group's remarkable new TEN-XL packs into one rack unit a program quality 10 x 1 routing switcher complete with video, breakaway stereo audio, and local control panel. All economically priced at about the cost of a ¾ inch video player. With optional remote control panel costing little more than a good cigar lighter.

You get Grass Valley Group quality in the plug in boards, removable from the front. Standard features include: DC restored differential video inputs, +24dBu audio differential input/output levels, binary control, power supply fault alarm, input expansion capability and one hour crosspoint memory.

The list of TEN-XL options includes a relay module, RS422/232 serial control, dual power supply, and even RGB capability.

If you're budgeting for new program quality 10 x 1 routing switchers, money should be no objection. For complete details, contact your regional Grass Valley Group office or local authorized distributor today.

Grass Valley Group
A Tektronix Company
PO. Box 1114, Grass Valley, CA 95945 USA
Telephone (916) 273-8421 TRT 160432

OFFICES: Edison, NJ (201) 549-9600; Atlanta, GA (404) 321-4318; Elkhart, IN (219) 264-0931; Arden Hills, MN (612) 483-2594; Fort Worth, TX (817) 921-9411; Woodland Hills, CA (818) 999-2303; Palo Alto, CA (415) 968-6680.
HDTV and 2CTV

“There can be no doubt that high definition is one of the most remarkable technical achievements of our time,” E. E. B. Mackintosh, from the catalog to the Television Exhibition of 1937, London. “High definition” referenced 240-line mechanical and 405-line electronic TV systems that were being investigated by the BBC at the time. Compared to the approaches to TV prior to 1937, the systems shown were truly remarkable.²

Another large step forward in TV image definition is being considered. As before, the prime question is how to do it.

Is there to be compatibility with present television? Should graduated steps reach the final goal? Or should there be a total break with the present?

Most technical seers predict a stepped approach to arrive at the "ultimate" television. We are now seeing preparations for the first step, improved and enhanced TV systems. Both will retain remnants of today's transmission standards. The eventual goal, however, is an international standard, which may not closely resemble any of the systems.

There is a working model for such a high definition system, NHK HDTV. NHK is synonymous with high definition television. As early as 1968, work began at the Nippon Hosyo Kyokai, the Japan Broadcasting Corporation, to develop HDTV imaging.

Guided by Dr. Takahashi Fujio, HDTV evolved into a 1125-line image with a 5:3:3 aspect ratio. In operation experimentally in Japan by 1973, NHK HDTV was first displayed outside Japan to rave reviews at the 1981 SMPTE TV conference.

Incompatible line and aspect ratio factors required new cameras, displays and recording systems. NHK research and the Japanese manufacturers worked diligently to develop equipment for the HDTV system.

Large displays with diagonals greater than 22 inches and projection systems to 55 inches or greater were of particular interest, as large presentations are expected to show the greatest use of HDTV.

From the research came improved camera tubes and ventures into satellite broadcasting of the HDTV signal. Feasibility studies of DBS broadcasts at 22GHz in 1977 led to experiments with the Japanese BSE (Yuri) satellite in late 1978. Tests on terrestrial HDTV transmission at 38GHz occurred in 1980.

The NHK HDTV system works impressively. Sony and CBS proved that for U.S. observers in 1982. Today, many Japanese manufacturers have products that operate to the 1125-line specifications. Yet, there are drawbacks.

Foremost, the NHK system is incompatible with the world's three primary TV systems. The line rate is unrelated to all CCIR TV systems. The 5:3 aspect ratio is fine for wide screen motion pictures and is more pleasing to the observer, but at present, millions of home displays around the world use the 4:3 ratio.

Another problem is that NHK HDTV is frequency hungry. As originally specified, the luminance signal has a 20MHz bandwidth, the equivalent of several NTSC or PAL/SECAM RF channels. Chrominance needs an additional 10MHz. Bandwidth compression can perhaps confine the signal to a 20MHz baseband spectrum. Yet the postulated RF modulated bandwidth remains about 72MHz to achieve a realistic S/N ratio.

Fujio says that incompatibility should be of no great concern. The world now uses three incompatible systems. Rather than politically bowing to a current standard, Fujio suggests an entirely different standard for worldwide use.

The NHK specification is not cast in concrete, as Fujio has expressed a willingness to work (and compromise) with others toward an international HDTV standard. No answer is offered about the extra bandwidth or the fact that it will reduce variety, a factor that U.S. viewers constantly demand.

HDTV advantages

What would it take for 1125 lines to be accepted? Greater resolution, using more than twice the number of lines of NTSC. The apparent line structure of an NTSC image is greatly reduced, particularly on large screen displays, as in movie theaters or conference centers.

The 2:1 interface scheme retains the 60Hz field/s rate of NTSC. If 60Hz flicker troubles NTSC viewers, that problem would most likely remain.

The aspect ratio of 5:3 closely emulates the motion picture screen. If wide screen films form the bulk of
At last a monitor with its focus on your needs.

At last there's a line of broadcast color monitors that's built the way you'd build them if you built them yourself—the Lenco 514 series. It's all here—everything you want in a professional monitor. Everything you need to give you maximum performance, easier adjustability and greater reliability.

All the latest technology is here. Including PIL tube for simplified convergence and an ultra-stable, non-scan-derived high voltage system that really nails down regulation. Lenco monitors mean you get the stable picture you want—with the color accurate every time.

Features that are optional at extra cost on many other units you get standard with Lenco. Including RGB and two NTSC inputs, Comb filter, Pulse cross, Underscan, Chroma align, Int-Ext sync and degauss—all selectable from the front panel.

And if service is your concern, you'll really like the modular construction that makes every printed circuit section easily accessible. Plus the fact that we're building these Lenco monitors with nearly all American parts—parts your distributor knows and carries.

Before you buy, take a look at how much better Lenco monitors fit your needs. Ask us today.

Photograph of actual transmission.

The Professional's Choice
300 N. Maryland St.
P.O. Box 348
Jackson, MO 63755
314-243-3147
TWX — 910-760-1382

Circle (8) on Reply Card
program materials, the ratio is reasonable. The eye is more mobile horizontally than vertically, which also suggests the wider display.

Finally, psychophysical experiments indicate the most pleasing visual display has a 1.6:1 ratio, actually slightly wider than the 5:3 case.

More scanning lines give improved vertical definition. Horizontal definition in the expanded width must be increased to match, from an apparent resolution of 240 to 660 pixels. Increasing horizontal and vertical resolution comes at the expense of greater video and RF bandwidths to carry the information. Compared to NTSC, with an effective luminance bandwidth of approximately 3.4 MHz, NHK suggests a 20 MHz bandwidth. For color, a 10 MHz spectrum replaces the 0.8 MHz of NTSC.

A CBS proposal

Compatibility with current TV displays and enhanced viewing on wide screen sets were goals of a project from the CBS Technology Center. In September 1983, CBS proposed a 2-channel approach to greater image definition (Figure 1).

Channel 1 would carry 525-line, 60-field video in time multiplexed components (TMC) without color subcarrier for 4:3 aspect ratio receivers. Multiple audio signals suggest stereo or multi-lingual broadcasts. For today’s receivers, a satellite receiver with a TMC video to NTSC transcoder would be required.

Channel 2 also carries a 525-line image, but with a 5:3 aspect ratio. A special receiver combines the two channels to reconstitute a 1050-line image. Again a 2:1 interface and 60 fields are used.

Within the center 80% of the image (the 4:3 aspect area), full 1050-line HDTV quality exists. To the left and right of the 4:3 area, interpolation recreates the 1050-line display. The interpolation scheme is similar to that in the GE’s Comband system (“Strictly TV,” March 1985).

Suppose the original material is generated in a 5:3 aspect ratio with 1050 lines. Prior to transmission it is processed as shown in Figure 2. Adjacent lines A and B are combined to form a 525-line image for the channel 1 signal.

In channel 2, the outside 10% on each side of the picture is combined, while the central portion consists of only the 525 B lines. In the dual-channel receiver relatively simple arithmetic provides the reconstruction. B lines are displayed unchanged. A lines are derived by the formula

\[A = (A + B) - B \]

Just as in the MAC systems (“Strictly TV,” January 1985), the CBS TMC video alternates color difference signals with each line of the central portion (channel 1). In channel 2, the situation is far more complex. Not only must the signal contain B lines only color components, it must also provide color difference information for the two side portions.

Clock rates for the TMC approach would produce 903 luminance samples in channel 1 and 301 for color difference data. In channel 2, luminance occupies 846 samples, while color (for B lines) occupies 376 samples. The left and right expansion portions have 45 samples each.

In addition, channels 1 and 2 have 125 and 13 samples, respectively, for audio and data. Remaining samples, for a total of 1365 in a 63.55 s line, give partitioning and clamping data.

Each channel is limited to a 24 MHz bandwidth on a Ku-band (12 GHz) DBS satellite. Within the signals the luminance baseband is about 16 MHz, while chroma is 8 MHz. The video baseband component bandwidths are less than the NHK proposal, but they are considerably larger than NTSC values. The CBS approach would be more RF spectrum-efficient than NHK. An additional feature is pseudocompatibility with NTSC.

On terrestrial transmissions

CBS also considered the question of terrestrial transmission for HDTV signals. This work took place in the San Francisco area in 1982. (See “Experiments at 12,290 MHz,” Broadcast Engineering’s Spec Book, Dec. 15, 1982.)

Conclusions of the tests noted that the 12 GHz land-based transmissions would be feasible for line-of-sight operation. The tests did not use HDTV video or the dual channel approach. The extent that those two factors would add to or detract from reception is unknown.

Overcoming incompatibility

There is a definite interest in making a change in the video format. There is no consensus in the approach that should be used to achieve that change. Should compatibility be a major concern? These questions seem best answered by the Ogden Nash comment, “You can’t get there from here!”

STUDIOS • POST PRODUCTION • MOBILE UNITS
MASTER CONTROL • MICROWAVE • FIBER OPTICS

If your future plans include an individual component, a turnkey system, or something in between, we can develop your ideas into a complete television facility.

THE LERRO CORPORATION
3125 N. Broad St., Philadelphia, Pa. 19132
215 - 223-8200
AM stereo broadcasting has brought about the need for a different form of audio limiting: stereo matrix limiting. It's called stereo matrix limiting because the processing action has been shifted to the matrixed sum-and-difference axis of the stereo sound field. This method differs significantly from the conventional FM system, which operates on the left- and right-channel axes.

Matrix processing is needed for AM stereo broadcasting because it is essential to achieve monaural vs. stereo compatibility.

With AM stereo, generation of the algebraic sum and difference of the left and right channels occurs before the points of stereo modulation. This difference, compared to FM stereo transmission, makes conventional audio processing incompatible and matrix processing necessary.

AM stereo limiting patterns

The diagrams shown in Figures 1 and 2 are in a form that can be easily seen on an oscilloscope when monitoring the X - Y lissajous patterns produced at the right and left outputs of an AM station's limiter or stereo modulation monitor. If the limiter has L + R and L - R outputs, the patterns will be shifted counterclockwise by 45° from those illustrated.

Full matrix limiting

Figure 1 represents the oscilloscope X - Y display of the right and left limiter outputs with monaural support matrix limiting. Output levels of the L + R and L - R signals are adjusted for equal modulation (which is the point of maximum separation). As shown, the amplitude limit levels are perpendicular to the L + R and L - R axes, and intersect each other at the left-channel and right-channel axis.

When stereo output temporarily shift to the full left-only or right-only axis, these limit levels allow the L + R component to remain at 100% modulation, which maintains full monaural reception compatibility. The shaded part of Figure 1 highlights the increased areas of monaural support modulation produced by this system, compared to conventional left and right limiting (used with FM stereo transmissions).

Unfortunately, further analysis also shows that stereo reception will experience a 6dB increase in the single-channel mode. Although this modulation will be noticeable to the audience, critical listening tests have demonstrated that such an increase is far more acceptable than a loss of 6dB in monaural loudness. Also, remember that most stereo programming doesn't contain full single-channel audio.

Modified matrix limiting

When light or moderate amounts of limiting are used, full matrix processing produces outstanding results in monaural and stereo. Heavy amounts of limiting or processing can produce different results.

Extreme levels of audio processing, demanded by many AM radio stations, may cause certain types of overload in stereo receiver decoding circuits. To reduce the chances of such problems, a modified full matrix processing system has been developed.

Figure 2 represents the oscilloscope X - Y display of the right and left limiter outputs with the modified monaural support matrix limiting system. The significant differences between this limiting pattern and the one shown in Figure 1 can be seen in the left and bottom corners of the illustration. Here, the corners formed by the L + R and L - R axes are removed by an adjustable single-channel limiting network.

This system allows full monaural compatibility during most stereo conditions, but causes a reduction of L - R and negative peak L + R modulation levels during left-only or right-only
MAXIMUM SEPARATION ACROSS THE SPECTRUM

The SG 800 stereo generator represents a major improvement in the state of the art. It offers superior dynamic transient handling capability, transparent sound, and exceptionally low distortion. It was designed to handle highly processed audio.

DIGITALLY SYNTHESIZED CARRIER GENERATOR. Both the carrier frequency and the waveform shape are digitally synthesized. This provides low distortion, excellent stability, and dramatically reduces spurious signals.

OUTSTANDING SEPARATION. New techniques developed by CRL provide unsurpassed stereo separation. It is typically 65 db or better across the entire spectrum from 30 to 15 kHz.

SUPERIOR SIGNAL TO NOISE PERFORMANCE. Minimum of 80 db, typically 85 to 90 db.

PULSE AMPLITUDE MODULATOR. This unique circuitry produces a digital approximation of the 38 kHz sinusoidal, double sideband signal. Carrier suppression is typically 70 db or better.

ULTRA STABLE 19 kHz PILOT. Frequency will vary less than ONE Hz over a temperature range of –10 to +40 degrees, Centigrade.

FRONT PANEL INPUT LEVEL INDICATORS. Green, yellow, and red LED indicators provide precise adjustment of audio input levels.

ADDITIONAL FEATURES:
Active balanced input circuit. No audio transformers.
Front panel pilot defeat switch.
Effective RFI shielding.
Front panel composite output and pilot injection controls.

ACTUAL SCOPE PHOTOS OF CRL-SG-800 BASEBAND PERFORMANCE

$1450.00
Suggested List Price

Circle (9) on Reply Card

Circuit Research Labs, Inc.
2522 W. Geneva Drive ● Tempe, Arizona 85282 U.S.A.
800-535-7648 ● 602-438-0888
TELEX: 350464 CRL TMPE UD.

www.americanradiohistory.com
stereo conditions. As shown, the single-channel limits are set for a left- or right-only L + R negative peak of 70%, instead of the 100% level that would occur without such limiting.

This modified matrix system is designed to reduce potential problems associated with AM stereo transmissions. At the removed corners shown in Figure 2, L + R and L - R modulation components are at maximum and can cause decoding difficulties.

If high density negative peak L + R modulation is consistently allowed to reduce the transmitter carrier, the L - R decoding circuit in the receiver has little or no carrier to demodulate. The result can be that the stereo decoding system returns to monaural operation or produces distortion.

Depending on the degree of processing used and maximum L + R modulation depth, the single-channel limiting network can be adjusted to a level that prevents (or greatly reduces) stereo receiving problems. If the feature isn't desired, it can be defeated.

Next month in this column we will examine methods that can be used to monitor the performance of an AM stereo system.

A component for every camera. A tube for every transmitter.

Our purpose is clear: to provide the ultimate source for all broadcast related tubes and components. We've geared our entire distribution system to ship virtually every order the same day. Our highly personalized service and technical knowledge is legendary in the industry. Best of all, because of our large volume buying, Calvert has the lowest prices — and cannot be undersold.

PRODUCTS: Cathode Ray Tubes • Diodes • Klystrons • Monitor Tubes • Plumbicons • Receiving Tubes • RF Ceramic Capacitors • RF Transistors • Satcoms • Solid State Replacements • Transmitter/Power Tubes • Tube Sockets, Accessories • TV Linear Devices • Vacuum Capacitors • Vidicons • Vistascons

MANUFACTURERS: Acrion • Amperex • Cetron • EEV • Eimac • GE • Hitachi • ITT • ITT Jennings • Machlett • National • Philips • RCA • Raytheon • Thomson-CSF • Varian • Westinghouse

Call our Toll Free number now and start saving. 800-526-6362

CALVERT ELECTRONICS, INC. CEI
One Branca Road, East Rutherford, NJ 07073 • 201-460-8800 • Telex 423265 CALV • TWX 710-989-0116
Circle (13) on Reply Card
BALANCE

The symmetry gained from the equalization of complementary forces. Symmetry as in the precise blending of sensational chrominance with outstanding signal-to-noise. Symmetry resulting in a video tape of breathtaking balance. Ampex 196.

AMPEX

Amplex Corporation - One of The Signal Companies

Amplex Corporation, Magnetic Tape Division, 401 Broadway, Redwood City, CA 94063, (415) 367-3809
The FCC has established an Advisory Committee on Reduced Orbital Spacing in response to satellite communications industry pressure for a more detailed examination of the technical and economic implications of 2° spacing.

The policy, adopted in 1983, was primarily motivated by the demand for orbital positions which existed at that time. Before adopting the policy, the Commission requested comments from the industry, and, because of negative feedback, decided to phase in the closer spacing policy over a period of 10 years.

After a little more than one year, the FCC is being forced to re-examine its policy because of continuing opposition within the industry and the possibility of a new class of interference problems in the recently deregulated environment.

These potential interference problems would affect both C-band and Ku-band satellite systems and are threatening to put the brakes on the growth of satellite communications, just when it appears to be on the verge of blossoming into a major business. The key to this new growth is the small earth station antenna, in the 5- to 8-foot diameter range for C-band, and the 2- to 5-foot diameter range for medium power Ku-band.

Satellite downlink EIRPs have gradually increased over the past five years, as higher power traveling wave tube transponder output amplifiers have been developed. The result has been a steady drop in the size of earth station antennas, making possible the delivery of broadcast programming and data services to small dishes. New 2-way applications are about to be introduced also, for business communications networks, utilizing Ku-band satellites.

In the past six months, the satellite communications industry has had to face up to the reality that the success of 2° spacing depends on coordination and cooperation between satellite operators. However, deregulation of the satellite communications industry is occurring at the same time as an order-of-magnitude increase in the complexity of potential interference problems.

Higher power Ku-band satellites have been proposed, but if located adjacent to lower power satellites, would cause unacceptable interference into earth stations using the adjacent satellite. In C-band systems, existing small receiving antennas are subject to potential interference from a number of sources, including transmitting antennas with non-compliant sidelobe pattern characteristics, large mismatches in downlink EIRP between desired signal and interfering signal, and poorly aligned transportable transmitting antennas.

The potential for interference problems is so great that it stimulated the creation of a satellite communications industry spectrum managers' association last autumn. The FCC has charged the new advisory committee with finding a way to make 2° spacing work, and has welcomed the participation of any and all interested parties. The committee, which includes three working groups, is scheduled to report its findings and make recommendations by mid-year. The working groups will focus on earth stations, satellites, and coordination and includes representatives from all segments of the industry, including the spectrum managers' association formed previously. The task facing the committee is formidable, with recommendations expected on earth station antenna sidelobe performance improvement, antenna testing and performance verification, on-site testing, satellite performance improvement in areas such as polarization purity, Ku-band satellite transponder frequency plan standardization, system interference analysis standardization, and also the development of a centralized industry database and monitoring station.

This issue is so fundamental to the continued growth of satellite communications that it must be resolved as soon as possible, but it is questionable whether the industry can perform the massive amount of work necessary to meet the FCC's mid-year deadline. It is also difficult to visualize the degree of cooperation and integrity of cooperation that is necessary coming from a relatively new industry that has no tradition of such behavior in the past, simply because the situation did not demand it previously. Besides the advisory committee recommendations, the FCC must reconsider the 2° spacing policy in view of the apparently lower demand for orbital positions than appeared to exist at the time the policy was adopted. Several proposed Ku-band satellite systems have failed to meet financial requirements and have lost their FCC authorizations to proceed. Also, the rapid growth of fiber-optics networks for future telecommunications traffic must be factored in to ensure that the demand for future satellite capacity is realistic.

By John Kinik, satellite correspondent
New Portable Uplink Small
Enough To Go Anywhere
For Live Reports.

Covering news events from "any" location in the world used to be an impossibility. Now it's a reality.
With GEC McMichael's unique Satellite News Gathering (SN) FLY-AWAY, news events that previously could not be captured by existing television transmission systems can easily be covered "live," regardless of their location.
The entire FLY-AWAY system is compact and lightweight enough to be flown to remote locations in a private plane as well as by regularly scheduled airlines. Once on location, the SN terminal can be quickly set up by as few as two men in 1/2 hour and powered by a hand-carried portable generator.

The entire FLY-AWAY system is compact and lightweight enough to be flown to remote locations in a private plane as well as by regularly scheduled airlines.

The SN terminal equipment is packaged in three shock-mounted aircraft enclosures. The majority of which weigh no more than 80 pounds. Since the weight and size of the system are so attractive, it can easily fit into an econoline-type van, allowing rapid deployment for live satellite coverage of local events.

Designed for portability and quick, efficient set-up, the FLY-AWAY is composed of GEC-McMichael's unique elliptical Ku band antenna, uplink Ku band electronics and McMichael's own video compression bandwidth electronics.

Each of the three shock-mounted containers which make up the SN terminal measures 27" x 24" x 21". The total system including uplink/receive electronics, antenna and portable generator weigh no more than 500 pounds total. The one-piece offset gregorian-fed antenna measures 2 x 1 x 5 meters and weighs 90 lbs packaged. In order to ensure quick set-up time and retain critical surface tolerance and during operation, the antenna reflector will remain in one piece.

The McMichael Ku band antenna is the heart of the FLY-AWAY system since it allows real-time transmission from anywhere in the world.

In the event of signal loss due to severe weather conditions or poor footprint locations, the GEC McMichael CODEC makes it possible for the operator to reduce the bandwidth. As a result, the system permits live video transmissions from any global location under practically any weather conditions.

GEC McMichael, a leader in Ku band satellite transportable technology in the United Kingdom and Europe for over 6 years, just recently introduced its line of broadcast products to the United States. The development of the portable SNG system resulted from the company's expertise in Ku band transportable terminals, ACE standards conversion equipment and video bandwidth compression teleconferencing equipment.

To date, there is absolutely no better way to beat the competition to the scene than with the new FLY-AWAY Satellite News/Data Gathering System. For more information about this exciting live/remote transmission breakthrough, please contact GEC McMichael 8260 East Raintree Drive, Scottsdale, Arizona 85260. Phone: 602/948-7255 TLX: 6502246202

NOBODY DOES MORE WITH LESS SPACE
Circle (2) on Reply Card to have a salesman to call
Circle (3) on Reply Card to receive literature.
www.americanradiohistory.com
WHILE EVERYONE ELSE HAS BEEN PROMOTING A FORMAT, SONY HAS BEEN PERFECTING A SYSTEM.

Over the last three years, Sony's rivals in the combination camera/recorder arena have spent considerable time inventing wonderful things to say about their new formats. But apparently, they've overlooked inventing many wonderful new products to go along with these formats.

Sony has taken a different course.

In 1982, Sony introduced Betacam,* and the BVW-10 playback unit. An evolutionary system that didn't force stations to abandon their existing ¼" and 1" equipment.

Then, in 1983, Sony expanded the system with the three-tube Betacam, the BVW-40 edit/recorder, and the world's first battery-operated ¼" field playback unit.

And this year at NAB, Sony announced a major breakthrough in cart machine technology with Betacart.** A system
t demonstrated the Betacam format's strength beyond the
studio, beyond the studio, and beyond field production.

At the same time, Sony also unveiled the world's lightest
-camera/recorder, the BVW-2 Newsmaker. And a prototype
ley/decoder system that will make it possible for Betacam to
transmitted by microwave.

Each of these products is the result of Sony's dedication to
the needs of the ENG and EFP industry. Work which has earned
the Betacam format widespread acceptance by television sta-
tions and production companies around the world.

Which only makes sense. After all, in this business you
don't win sales on the merits of your
arguments. You win them on the merits
of your products.
t’s not over yet

To most of us, our transmitting facilities are stalwart towers of our industry, representative of strength and prosperity. They are hardly the poisonous creatures they have been accused of being in recent months by parties concerned about non-ionizing radiation. Enter the federal government.

The FCC, for the most part, has agreed that a potential problem exists and has established guidelines on permissible exposure levels of humans to non-ionizing radiation from these facilities. The limits are reasonable and achievable.

Congratulations, FCC, on a job well done. Perhaps those individuals and groups screaming for a more stringent national policy will find another cause. Basically, broadcasters have won this battle, but the war is not yet over.

The potential health effects resulting from continuous exposure to high level radiation has become a significant concern to many industries and individuals in recent months. Among the industry groups brought into this fight are broadcasters, equipment manufacturers, common-carriers, power distribution companies and other firms and individuals who are involved in the use of equipment that generates high level electromagnetic fields.

Concern has been expressed not only regarding the use of high frequencies — such as the broadcast bands — but also low frequencies, where questions have been raised about the safety of exposure to high intensity fields at 60Hz.

The FCC and the Environmental Protection Agency (EPA) have been evaluating the radiation dilemma for some time. The court of the commission recently adjourned and rendered its verdict.

Effective Oct. 1, 1985, the RF energy guidelines limit human exposure to the levels recommended by the American National Standards Institute (ANSI). These safety standards are widely accepted as being both reasonable and achievable.

The new FCC guidelines limit human exposure to RF radiation to 100mW/cm² for AM transmission; 1mW/cm² for FM and VHF TV; and a calculated amount (f/300) mW/cm² for UHF TV. These calculate to 632V/m for AM; 63V/m for FM and VHF; and 63 X (f/300)V/m for UHF TV.

For the short term, no sweat. But when renewal time rolls around, be prepared to prove your compliance, particularly if there are any modifications requested for your facility. There is no grandfather provision attached to the ruling, which includes AM, FM and TV operations (and other services as well).

So much for the FCC. But what happens when the EPA, whose jury is still out, renders its decision. The broadcast industry has reason to fear that the agency may enact more stringent radiation requirements.

At last report, the EPA was considering at least six options as a way to address the questions posed by non-ionizing radiation. These are:

- No action at all on radiation limits;
- Standards that agree with the well-researched ANSI recommendations (as the FCC has already done);
- Standards that are 2.5 times more stringent than the ANSI recommendation;
- Standards that are 10 times more stringent than the ANSI recommendations;
- Standards based on research by other research organizations;
- Standards based on the USSR limit of one microwatt per square centimeter (a very stringent requirement).

The EPA also has determined the approximate cost to the broadcast industry at the various levels of proposed protection. If the national standard were established at the value recommended by ANSI, the cost to the broadcast industry is estimated by EPA to be $15.1 million.

This would break down for FM broadcasters to approximately $14,000 for each affected station. (This figure presupposes that the station could come into compliance at its current location and using its current tower.) If the standards were made more severe, the total cost would go up. At a protection level 10 times more stringent than the ANSI recommendation, the cost to the industry would double. If the USSR standard were accepted, the total cost would skyrocket to an estimated $333.5 million.

Continued on page 98
EIMAC celebrates its 50th Anniversary with an extensive line of FM Broadcast Cavity Amplifiers.

Varian EIMAC celebrates 50 years of service to the broadcast industry with a spectrum of FM from a powerful 60 kW to a mini power 150 W solid state IPA.

The cost-effective path to a modern FM transmitter.
No one knows more about broadcast tubes and cavities than EIMAC. Our strong cavity development capability reduces RF engineering problems. EIMAC cavities are inexpensive and simple to use.

For more information call or write Varian EIMAC or contact any Varian Electron Device Group sales office worldwide.

EIMAC FM BROADCAST CAVITY PRODUCT LINE

<table>
<thead>
<tr>
<th>POWER</th>
<th>CAVITY</th>
<th>EIMAC TUBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kW</td>
<td>CV-2230</td>
<td>4CX30,000G</td>
</tr>
<tr>
<td>30 kW</td>
<td>CV-2222</td>
<td>4CX20,000C</td>
</tr>
<tr>
<td>25 kW</td>
<td>CV-2200</td>
<td>4CX20,000A</td>
</tr>
<tr>
<td>15 kW</td>
<td>CV-2210</td>
<td>4CX12,000A</td>
</tr>
<tr>
<td>10 kW</td>
<td>CV-2228</td>
<td>4CX7500A</td>
</tr>
<tr>
<td>5 kW</td>
<td>CV-2225</td>
<td>4CX3500A</td>
</tr>
<tr>
<td>1.5 kW</td>
<td>CV-2220</td>
<td>3CX1500A7</td>
</tr>
<tr>
<td>150 W</td>
<td>AM-2215A</td>
<td>Solid State</td>
</tr>
</tbody>
</table>

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221

Varian AG
Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: 042-23 25 75
TV automation:
Integration is the key

By Dale Buzan, general manager, Utah Scientific of Florida, and Terry Kelly, president, ColorGraphics Systems

Automation systems cover a variety of automatic operations or computer controls. These operations can include, or involve, all departments of a television or radio plant, from accounting to tape machine control.

Automation can provide benefits in four prime areas. It increases speed of operations, increases information handling capabilities, reduces errors and provides improved record keeping.

At present, three areas of a broadcast station are amenable to computer assistance: traffic/billing, the newsroom and master control, all of which are related to revenue generation. Other likely candidates for automation in the future include live-on-air operations and peripheral programming operations, such as feeds to non-broadcast outputs.

Keeping the books
Most stations are familiar with traffic and billing computerization. Many medium and large stations have had this equipment for some time. Traffic and billing systems keep track of spot availabilities, and ensure proper spot rotation and product separations. They accept input from national sales representatives and allow billing generation and invoice printing as the spots are run. Most systems provide program logs for the control room as a guide to properly load and air commercial spots and other programming.

A trend in recent years has been toward in-house systems for traffic and billing. This is mainly because of the increased power and decreased cost of the minicomputers normally associated with such tasks. The in-house concept has also met with favor, because it gives the station more control over the system.

Beyond the books
Equipment to assist the other areas is available from several manufacturers, although installed systems number less than 5% of the broadcast facilities. Still, the future of automation is favorable, according to surveys. The automated newsroom, for example, is a likely 2- to 5-year goal at nearly 50% of all U.S. television stations.

News views
Newsroom systems aid in the flow of information through the newsroom. They allow more accurate and accessible record keeping and archiving, increased story production and a more up-to-date news product on the air.

In an electronic news system, incoming news wire services tie directly to the system and are categorized, then stored for review. Copy may be called up by wire service, date or time, subject, key word or words within stories (global search), and department. The material may be developed into stories or used as background. Most systems accept simultaneous wire services, including the new high speed services, storing up to 24 hours of each for later review.

With a news system, the assignment desk can track all pending stories, schedule crews, review past materials relating to breaking stories and send materials to reporters in the field. Improved organization of raw material likely to make interesting news allows assignment editors to keep track of up to twice as many stories as they could with paper systems.

This does not mean more stories on the air, but it does suggest a better mix of story opportunities and a more up-to-date look at the day’s news.

Word processing, editing, rewrite and electronic mail functions replace typewriters in the newsroom with video display terminals. Communications within the station and in the field are nearly instantaneous. Also, reporters at the scene of a story can file stories using a portable computer tied to the station’s central news processor through telephone modems.

News producers and managers using automated systems are better able to review story content and style, newscast cohesiveness, work output and story lineups or rundown. Electronic assembly of the newscast rundown will include automatic timing of the computer. In some systems, an on-air monitoring function constantly updates the producer as to whether the show is light or heavy.

The producer’s rundown can be sent to a digital telepromter. A remote controller offers changing of the story line-up and smooth scrolling of the text.

Finally, some newsroom systems archive large amounts of script, assignment, and wire service copy onto digital discs. Quick access to the offline information is possible.

Technical sectors
Master control systems literally take charge of the audio and video switching on the TV plant and handle the machine control functions required for programming continuity. They may automatically execute off-line network delay recording of satellite feeds.

Program schedules may be entered at a computer terminal or may be linked with a traffic and billing system.

Once a schedule has been executed by the automation system, as run logs are printed and electronically returned to traffic to aid reconciliation of the billing process. Some master control systems also print reports of what material is loaded on different tape machines, film and slide projec-
Figure 1. Interconnections of automation systems and device controls.
tors or electronic still-store systems.

Automation today
The complete automation system of today has three prime components:
- The traffic area is equipped with one or more terminals to enter the schedule, either manually or from an external traffic system. Once the schedules are entered, the system automatically verifies all entries for correct information. When the schedule is complete, a log is transferred to the operating system.
- The traffic system will receive an as-run log of yesterday's events showing exact air times. This log serves as the official log for accounting functions.
- The machine loading area has the task of sequencing tape, film and slides on the machines for on-air playback. The machine loading terminal permits pull-lists indicating all upcoming loading requirements.

Once a machine is loaded, a machine assignment can be made on the terminal by entering the in-house ID number of the program. The computer system will find that event in the log and assign the proper machine number. Machine events may also be assigned with bar code wands.
- Tape/cart recorders, equipped with tape sensors and material readers, can be interrogated by the machine loading computer. The computer can send playlists, or sequence numbers, to the tape equipment for hands-off machine assignments.
- The on-air area is equipped with master computer terminals, which contain the information to handle the on-air program switching of audio and video signals and run the transport equipment with hands-off precision.

Users may reprogram transition speeds and preroll times in seconds and TV fields (60 per second) for precision.

Automation tomorrow
It seems unlikely that a particular system will be planned for all automation purposes. Different data storage and data rate capabilities are involved. Traffic and billing systems handle mainly numbers. Newsroom work primarily with text and text processing. Master control automation systems involve unique personality interfaces to other devices, making an all-encompassing solution to station automation unlikely. However, exciting developments are expected in interconnects between the three types of systems.

Figure 1 presents an assessment of presently available interfaces. Some of the interconnections may be available this year. Introductions scheduled for 1986 and 1987 are also indicated.

Presently, interfaces between traffic and billing and certain station automation systems pass log and as-run spot information back and forth between the systems.

Scheduled for introduction this year are interfaces that embed control characters in electronic teleprompter news text to select and control character generator display, videotape rolls, audio cart start and still-store frame selection. Also, the interface of all systems to the station's master clock seems likely to happen.

Satellite feeds involving delayed programming and multiple programming retransmission are increasing. Both traffic and billing systems and master control devices are being designed to interface with programmable satellite acquisition devices and automated route switching.

The next few years may bring additional interfaces between the newsroom computer and live on-air automation. These may provide automated camera shot selection. Camera moves and camera focus could be controlled by the story line-up from embedded controls in the teleprompter text. An interface will also be needed between live on-air automation and present device control systems.

The introduction of programmable production switchers suggests the flexible assignment of production switch capabilities to certain locations and specific program elements.

Figure 1 also indicates a trend toward peripheral device control, using RS-232 or other digital communication links. Options for some news systems include interfaces to the station master clock, electronic teleprompters, computer graphics systems, control of news archives and direct drive of closed-captioning and teletext devices from newsroom computer scripts.

For master control automation, master clock interfaces are complete now. These devices can control programmable master control switchers. They have personality software to interface and control major brands of videotape machines, audio cart decks, character generators and still-stores. On the horizon are interfaces for digital audio capability linked to both master control automation and newsroom systems.

One important consideration, when examining the number of pathways possible for interconnection, is the increased number of routing switcher channels or levels, which may be required to accommodate future needs.

Interconnections for stereo, SAP and professional channels, SMPTE time code and vertical interval data for textual services may be needed. Then, add NTSC video and up to three analog or digital video component channels for a total of 10 levels of crosspoint control. There could be more needed for audio.

When purchasing broadcast equipment, it is important to consider devices that are RS-232 controllable. More and more such smart devices and their eventual integration are possible.

Increasing performance
Most implications of the developing linkage between the elements of automation systems are positive. The increased efficiency, faster communication between discrete elements, more accurate record keeping and higher levels of on-air performance ultimately lead to increased station ratings and revenues.

Will the next three years prove to be a turning point in station computerization? Many major broadcast facilities will add newsroom and master control systems to their traffic and billing systems. Those new tools will increase station performance at every level.

Figure 2. Block diagram of an automation system in the technical areas of the station.
Imagine what you can see this year

Imagine a new DVE[®] system that gives you just about every move we ever made. And then some. A system so simple, it can put you on-line in half the time. For a price that's sure to move you. We call it DVE[®] System 10. Imagine two new TV transmitter lines (PCU-900 UHF and PCN-1400 VHF). Both with impressive new ratings for efficiency. And both with improved exciters and stereo capability. Imagine the smarter 3-chip CCD camera, our SP-3A. Offering more sensitivity. Higher signal/noise ratio. And no re-tubing, re-registration, burn-ins or comet tails. Ever.

Imagine a 10-bit frame synchronizer, the FS-19. ENG microwave. Audio synchronizers. And lots more.

Imagine the excitement when you see NEC's Emmy award winning digital broadcast technology in action.
Automating Master Control

By Carl Bentz, technical editor

The trend to automation, including unrealized breakthroughs, will use existing equipment at your station.

Is there a TV master control operator who can boast a record of no muffed commercial or ID breaks? Probably not.

Smooth TV switching transitions mean consistent split-second timing and concentration, two uncommon human traits. The slightest timing error or loss of concentration can be devastating, causing a make-good to be scheduled, often at considerable expense to the station.

Commercial breaks gone awry is the prime reason for automation in TV broadcasting. Additional reasons are a smoother, more consistent look to the station's operation and increased operator productivity. The quartz chip replaces inconsistent human timing with accurate efficiency, leaving the operator free for other duties. Instead of replacing personnel, automation brings a redirection of efforts.

To what degree automation? Perhaps your station needs only a few automated functions. Transmitter logging is common. A complete set of parameters is measured and printed every 10 minutes. Or, a video recorder could be started by tones to catch satellite feeds at 1 a.m., when no other programming is being sent.

Perhaps your station needs almost total automation. As more stations move toward on-air operation with cassette tape, semi-unattended (random access magazine) or operator-assisted (multiple deck) automation systems will find favor. Use of any cassette format should be simplified through the automated approach.

Using a log stored in its memory, the automation system requires only that each VTR, audio cart machine and slide projector is given the right program material. The operator then oversees and monitors the operation.

Remote control

Automation operation requires remote control capability. Mode changes from standby to operational must be possible by means of switch closures from either local or remote control panel switches.

Switch emulation with ICs or other solid-state devices in a digital clock can replace actual switches. Current sinking to ground through a solid-state device actuates the machine functions. When the binary states of several gates are correct, the clock starts the VTR or initiates any other function that can be remotely controlled. If a program length is known, the clock can also stop the VTR (or other machine) and signal that the tape be rewound.

VTR functions usually involved are play, record and stop. Three separate conductors, in parallel with normal switches, are required. Another conductor forms a common ground for all functions.

If the clock has separate control channels, automatic operation of more than one machine is possible. However, each remote controlled machine will require a multiconductor hookup.

Monitoring the system

Visual feedback at the control point shows the status of automated equipment to the operator. LEDs, in parallel with control panel indicators, require only a few volts dc for operation. In the simplest approach, every displayed status requires an additional conductor in the interconnecting cable.

When multiple machines are involved, monitor wiring also increases. Logic gates and switches (Figure 1) may be arranged to permit one set of status indicators to serve all controlled devices.

Tone actuation

Time is often the control factor, but it may be desirable for one event to trigger another. The next event is started from end tones on the audio or control track of the tape being played.

When the tone is sensed (detected), perhaps with a simple IC circuit (Figure 2), a resulting pulse causes the next machine to start. A crosspoint on the master control switcher may be activated simultaneously.

Sequential activation with tones can run a series of program and commercial or ID segments, assuming segment timings are known and fit within the schedule. Such a series might consist of slides or character generator screens with audio cart messages or videocassettes. In such a system, machine control will normally be wired for a given sequence.

As a result, the slides, carts, etc., must be in the correct order. The system cannot rearrange the material.

A different tone activation method was developed in the CATV industry. Programs by satellite often include dual-tone multifrequency (DTMF) signals to start and to stop VCRs and to actuate signal switching for local commercial inserts. (Background on dual tone methods is found in "The Basics of Push-Button Dialing" on page 28.)

A DTMF control system could be tied to a dedicated telephone line. The tie allows a system operator to take control remotely from his home or office in case of equipment malfunc-
Tandberg's new Series TCD 900 is a superior and cost-efficient alternative to the (unprofessional) practice of using inferior home tape decks for Professional applications. These new Professional Cassette Decks offer unparalleled sound capability, advanced mechanical and electronic design, plus extraordinary control flexibility based on an 8-Bit microprocessor with 32K of EPROM memory. These are the type of quality products for which Tandberg is well known, and are designed and built in keeping with the company's more than 50-year reputation for quality, performance, and long-term owner loyalty.

TCD 910 Master Cassette Recorder

TCD 910 is designed to replace both reel-to-reel and cartridge machines in many applications, and is capable of producing tapes at sound and silence levels beyond that required by broadcast and studio requirements. Combined with its extremely accurate real time counter and sophisticated autolocator functions, this machine is truly a multipurpose cassette recorder.

Features include:
- High precision, rugged 4 motor tape transport with direct load, instant access cassette positioning.
- Discrete three head system with built-in record azimuth adjustment is combined with Tandberg's proprietary Active Phase Correction Circuitry, exclusive discrete, wide band electronics, plus the highly regarded Actiliner II and Dyneq systems. In addition, the latest generation Dolby B and C noise reduction processors are utilized.
- All audio circuitry uses high spec polypropylene capacitors and metal film resistors.
- Built-in autolocator with 10 cue points in real time, auto cut search and cue/review.
- Auto stop and/or rewind after cut.
- Electronically balanced XLR input/output connectors.
- Front panel bias and record current adjustment, with built-in oscillators.
- Optional RS 232 computer interface, infrared wireless and hard wire remote with fader start.
- Wide range of options and accessories.

TCD 911 Cassette Playback Deck

The TCD 911 offers the same quality of construction and design as the TCD 910. Its special features include:
- Playback pitch control.
- External playback azimuth control, for optimum performance from any pre-recorded cassette.

In a multi-deck studio situation, the TCD 910, combined with the TCD 911, makes for the ideal match of performance, reliability and price.

TANDBERG

TCD 900 SERIES PROFESSIONAL CASSETTE DECKS

TANDBERG OF AMERICA

Professional Products Division • One Labriola Court • P.O. Box 58 • Armonk, NY 10504 • (914) 273-9150

Circle (1) on Reply Card

www.americanradiohistory.com
tions or garbled network tones.

DTMF tone signaling is found in translators and cassette-based automated LPTV systems, but less often in standard broadcast operations. Broadcast applications more often use the tones to alert the operator, who then performs the required functions.

Tying things together
Remote control automation with parallel wires for each function of each machine becomes burdensome in large multimachine systems. The 2-tone method allows a somewhat simpler approach.

In satellite programming, the space link brings the tones to the operating site. A decoder senses the incoming signal and, perhaps with a microprocessor, takes control of the equipment. Each decoder could handle several machines through a parallel control structure.

Alternatively, the tones may be delivered through a single signal line to decoders in several machines, one after another, in series. Each decoder or interface then operates its machine in accordance with internal wired instructions. A control line looping between several machines is termed a party line or daisy chain architecture.

The basics of push-button dialing

Push-button dialing, introduced by Bell Telephone during the 1960s, brought a new type of signaling to communications.

Where dial phones use a series of dc pulses to activate their switching networks, the push-button systems use tone-coded information. Tones provide faster and more reliable operation, and can be used directly over radio links.

The standard telephone keypad includes 12 buttons, arranged in four rows of three buttons. An optional fourth row is possible. For each button on the keypad, a unique pair of tones are produced (table below). Close tone accuracy and stability is required. The waveform of the individual tones must be sinusoidal for reliable operation.

At the receiving end of the system, a series of decoding circuits are tuned to sense the presence of any of the possible seven (or eight) tones. Because the tones are generated in pairs, the decoder produces 12 (or 16) unique outputs, depending upon the combinations. Several of the IC manufacturers offer decoder chips that accept the encoded signal and produce high or low outputs on a specified pin, according to the tone pair detected.

Using the individual tone pairs (one keypad digit) limits the signaling capability to a maximum of 10 events. However, if more than one digit is used, far greater control capability is possible. For example, using two buttons (perhaps a 1 and 9) in sequence produces many more possibilities.

The most common method uses a sequence of three buttons. Mathematically, the number of possible combinations is given by

$$\frac{n!}{(n-m)!}$$

For our example, n = 12, m = 3. The "1!" sign is the "factorial" operator, which is calculated as

$$12! = 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \\
5 \times 4 \times 3 \times 2 \times 1$$

12! = 479,001,600. The value produced by the equation becomes

$$\frac{12!}{12 \times 9!} = 121 \times 8! = 120$$

By using 3-digit sequences from the 12 possibilities, 120 unique combinations are available for specific control functions. Using a 16-button keypad would increase the total significantly.

Integrating computerized control into broadcast operations requires that the various system units must converse with one another. Such interactive interfacing is the purpose of data bus systems. Bus refers to the pathway along which data travels between system components. Buses are further specified as serial or parallel, depending upon the format of the data.

In general, most broadcast automation equipment will fall into one of three types: RS-232-C, RS-422 and IEEE-488. The RS systems pass serial data, while the IEEE-488 approach, sometimes called the general purpose interface bus (GPIB), is a parallel structure. Of the three, GPIB is the least common in the station, finding its primary use in automated test equipment.

<table>
<thead>
<tr>
<th>1209Hz</th>
<th>1336Hz</th>
<th>1477Hz</th>
<th>1633Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>#</td>
<td>D</td>
</tr>
</tbody>
</table>

Touch tone frequencies for a 16-button keypad.
The Spanish artist Velázquez painted classic pictures in 1660. And today, PESA high-resolution color monitors create the crisp pictures that meet the exacting specifications of the broadcast industry. Again, from Spain comes the precision and quality that make a classic.

PESA color monitors have been selected for their quality for many years. The finest broadcast facilities and production houses use PESA monitors exclusively.

PESA monitors are designed by the Spanish masters to be a formidable contender among the American monitor suppliers.

PESA America Inc
6073 N W 167th Street
Miami, Florida 33015
305-556-9638
Digital discussions
The major automation systems installed today involve a central computer. With a majority of reel-type
VTRs, the computer will be separate from the VTRs. Cassette-based systems may use a separate controller, if
individual playback machines are involved. The new generation systems with random access cassette search
and retrieval or multideck packages include a controlling computer.

Two methods to interface the controlled equipment to the computer are common. With the first method, systems
are based on an RS-232-C link, with individual lines to each machine. (See "The Local Bus," below.)

In the second, the computer converses with each controlled machine through a party line. Each device has
an assigned ID code, so the computer precedes all instructions with the ID for that device to which it is talking.
The interconnection is by means of coaxial cable or a twisted pair of wires. These control methods use
serial bus. Serial, in this case, refers to the data format of the instructions.

The system may be composed of two types of controlled equipment. Some machines may be both listener
and talker. Others may only listen for commands and respond through operation. In general, however, each
machine responds only when talked to (Figure 3).

When the microprocessor in a device is called, it answers, stating its current status. This process is called
handshaking. If the central processor must take control of an operating machine, an overriding interrupt
command is issued. When an interrupt is received, the microprocessor initiates a predefined set of instruc-
tions to handle system shutdown.

Perhaps the VTR has not been pre-

The Local Bus

Operation of equipment through an RS-232-C connection requires that each unit be fed through an individual link with the control computer. Although there are 25 parallel conductors in the cable, data streams are passed through only four. The data stream is sequential in nature. Other conductors carry 1 or 0 levels in accordance to the status condition of the system.

An adaptation of RS-232 may be used in conjunction with ICs called universal asynchronous receiver transmitters (UART). UARTs convert the parallel 25-conductor configuration to a coaxial cable format. Although strict RS-232-C requires individual cables, UARTs allow the individual controlled unit to be addressed through a daisy-chain approach.

RS-422
The RS-422 serial bus requires a balanced pair of conductors to link the controlling and controlled points. RS-423 is identical except for an unbalanced conductor pair. A 4-wire configuration is also possible. Data may be synchronous or non-synchronous with a bit rate maximum of 2Mb/s.

In an RS-422 system, either a twisted pair (balanced) or coaxial (unbalanced) line loops from the control computer to all controlled units. Each unit is addressed in the serial code bit stream with its own ID.

IEEE-488
A single 24-conductor bus connects up to 15 instruments to the control computer. Communication is by means of a byte-serial, bit-parallel format. The bus includes eight bidirectional data lines, eight command lines and eight ground lines. Transmission line paths are limited to slightly more than 65 feet, with data rates greater than 1Mb/s.

Data may be transferred only after a 3-wire handshaking procedure is completed. The three lines are named data valid, not ready for data and not data accepted. In this GPIB method every operation must be confirmed as completed by all addressed units. When confirmation is completed, the next step may be initiated.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Conductor Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Protective Ground</td>
</tr>
<tr>
<td>2</td>
<td>Transmitted Data</td>
</tr>
<tr>
<td>3</td>
<td>Received Data</td>
</tr>
<tr>
<td>4</td>
<td>Request to Send</td>
</tr>
<tr>
<td>5</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>6</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>Signal Ground/Common Return</td>
</tr>
<tr>
<td>8</td>
<td>Received Line Signal Detector</td>
</tr>
<tr>
<td>9</td>
<td>(Data Set Testing)</td>
</tr>
<tr>
<td>10</td>
<td>(Data Set Testing)</td>
</tr>
<tr>
<td>11</td>
<td>Unassigned</td>
</tr>
<tr>
<td>12</td>
<td>Secondary Received Line Signal Detector</td>
</tr>
<tr>
<td>13</td>
<td>Secondary Clear to Send</td>
</tr>
<tr>
<td>14</td>
<td>Secondary Transmitted Data</td>
</tr>
<tr>
<td>15</td>
<td>Transmission Signal Element Timing</td>
</tr>
<tr>
<td>16</td>
<td>Secondary Received Data</td>
</tr>
<tr>
<td>17</td>
<td>Receiver Signal Element Timing</td>
</tr>
<tr>
<td>18</td>
<td>Unassigned</td>
</tr>
<tr>
<td>19</td>
<td>Secondary Request to Send</td>
</tr>
<tr>
<td>20</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>21</td>
<td>Signal Quality Detector</td>
</tr>
<tr>
<td>22</td>
<td>Ring Indicator</td>
</tr>
<tr>
<td>23</td>
<td>Data Signal Rate Selector</td>
</tr>
<tr>
<td>24</td>
<td>Transmit Signal Element Timing</td>
</tr>
<tr>
<td>25</td>
<td>Unassigned</td>
</tr>
</tbody>
</table>

RS-232-C pin assignments.

(Courtesy of ETA)
MECHANICAL VIDEO CART MACHINES

STOP MECHANICAL BREAKDOWNS. START RELIABILITY. GET SAM-CART.

The SAM-CART system:

- Redundant tape decks
- No elevators or carousels
- Talks to traffic system
- Positive identification of media
- Finds all traffic and loading errors
- Produces live tags
- Converts to future storage media
- Low investment—fast return

SAM-CART—The Solution You've Been Looking For

an advanced product from

VITAL

SEE SAM-CART AT NAB BOOTH 1212

or call 904/378-1581 and ask for a SAM-CART specialist
Vital Industries • 3700 NE 53rd Avenue • Gainesville, Florida 32601
pared for operation; that is no tape has been loaded. If that VTR is instructed to play, the central computer must know the status. The system issues a fault alert condition, ideally soon enough that the operator may correct the fault. VTR sensors tell the computer to indicate the cause of the fault on the control terminal CRT.

However, if the machine is ready, it tells the computer, and instructions are communicated, as required, to put the VTR into action.

Such a conversation between the controller and a number of peripheral devices (VTRs, switchers, etc.), consists of a stream or series of bits, thus the term serial. Data bursts on the bus are fast enough to make responses from controlled units seem instantaneous. The bit rates may be hundreds or thousands of bits per second.

A terminal or keyboard with a CRT display is the operator's connection to the system. The CRT shows the status either in menu presentations or in colored graphic displays. A printer connected to the central processor provides a hard copy of events as necessary.

Dumb vs. smart

Automation equipment falls into two categories. Machines requiring an operator to set them up fall into the dumb category. The operator performs all necessary adjustments, finds the program beginning and backs the tape up for the desired pre-roll.

With these functions complete, the operator switches the machine to READY and the automation computer then takes over. Such machines may use microprocessors to monitor their operation and to report status. They do not necessarily perform diagnostic, preparatory or corrective actions.

With smart equipment, the operator needs only to load the tape onto the machine and then release the machine to prepare itself for operation. With no further instructions from the central processor, the VTR searches for a header data block, which contains pertinent data about the program on the tape.

With that information, the VTR calls the central processor to check if it has the correct material by comparison with the log in the central memory. Upon finding a data match, the smart machine proceeds to the beginning of the program, sets the desired pre-roll time and places itself in standby mode until called upon. A message on the system CRT notes the machine as ready.

In the absence of a data match, the VTR alerts the operator, and the VTR may be unloaded. The smart VTR helps to prevent the error, and yet takes time from the central system only to check for a match. In the case of last-minute log changes, a manual override allows human operators to take system control.

The header could include an index of several cuts on one tape. With this index, numerous segments can be loaded into the automation system at once. A random access system finds the desired item, allotting cycling time for an item to be located and prepared for play.

Data can be provided in various ways for the automation system, but the operator also needs to see what program material is involved. Barcodes have been used in several system designs. A reel of tape, audio cartridge or video cassette may have a barcode label, similar to universal product codes found in stores.

The label, a pattern of parallel lines of varying widths, identifies the contents. Name, running duration and other data may be encoded in the label. Several configurations can use the barcodes. If the system consists of a number of individual reel or cassette playback machines, each needing individual loading of material, each machine might include a barcode reader accessory.

The operator loads the program or segment, then passes the reader across the label. Data from the label are immediately sent to the computer along with the identity of the machine where the segment is located.

For systems with a random access library (magazine), when the cassette is first placed into an automation storage magazine, the barcode is read and the cassette's storage address, along with program data, are stored in the computer's memory. As the controller prepares for the next event, the cassette address allows the mechanism to find the correct cassette quickly. The cassette is shuttled to the next available playback deck, cue, and the machine placed in standby.

Event verification

Automated billing is an important feature in the commercial station, and the business computer must know if all events went according to plan. Commercial spots are sold against particular programs or specified time slots. If the Paradise Pizza Palace spot was erroneously replaced by Old Yeller Dog Food, you can plan for a make-good. A means of verifying what did run is essential.

When events match the schedule, the printed as-run log merely notes each event. The business computer receives a signal to bill the client according to his advertising contract. If errors occur, special notes or flags are printed on the log to show the error. The billing computer is signaled regarding the error and notes the discrepancy in the client's account record.

Barcodes allow verification, but we must assume the correct label is placed on the right cassette. An additional method of checking could be helpful.

A data header on a tape could provide identification to cue the correct material for airplay. The block could be compared against the barcode. But perhaps a means of checking the actual segment against the header and barcode would be worthwhile.

Another step toward verifying the segment is through encoding an ID into the video. Longitudinal (LTC) or vertical interval (VITC) time codes, more commonly found with editing procedures, allow this additional step. "Time code: TV's sprocket holes," page 36, shows the data structure of the time code signal. Reader modules

Figure 2. A linear IC may be used as a tone detector in a bandpass filter circuit. R1, R2, R3 and C2 determine the desired tone frequency.

Figure 3. A daisy-chain communication structure uses an interface on each device to catch information intended for the device.
...performs accurately under any RF situation."

John Bortowski, chief engineer for radio station WLAK in Chicago, had a problem.

Will a frequency counter work under his adverse conditions?

Here is what he told us.

"To give you some background, WLAK is located on the 90th floor of Sears Tower. Studios and service area are located a mere 30 feet from an antenna farm transmitting frequencies from 150MHz to 800MHz. Atop the building are two VHF, two 5 megawatt UHF and five FM stations.

"We have just completed testing the Sencore FC-71 frequency counter in this environment. The only care taken was keeping the test leads as short as possible to minimize stray pickup. Otherwise the unit performed brilliantly under these conditions.

"I'm confident the FC-71 will perform accurately under any RF situation."

TAKE THE 71 CHALLENGE. RF immunity is only one reason you'll like the FC-71. Take the 71 Challenge and see for yourself. Try a new FC-71 on any job site in any RF field for a month. If in 30 days you don't believe the FC-71 is the best buy on the market, we'll buy your FC-71 back for every penny you paid including freight both ways.

Give us a factory direct call today for the complete FC-71 story. PHONE TOLL-FREE:

1-800-843-3338
In Canada Toll-Free 1-800-663-4871 South Dakota, Alaska and Hawaii call collect at 805-339-0100

Sencore FC-71, portable, 1 GHz
FCC accurate Frequency Counter

✓ FCC accurate (.5 ppm) — even at 1 GHz
✓ Exclusive 9.5 hour battery operation
✓ Super sensitivity. 5 mV average
✓ 01 Hz resolution in one second
✓ Completely RF immune — we guarantee!
✓ IEEE 488 bus-compatible
✓ Exclusive crystal check
✓ 1/3 less than the nearest competitor

$995

Sencore
Innovatively designed with your time in mind.
verify the segment as the tape is set up, played or both.

For this application of the time code signal, user bits contain the ID data. If both LTC and VITC are used, the ID can be read during still, play and search modes of the VTR, that is, whenever the tape is in contact with a sensing head. The code is recorded at the same time the tape is prepared. Time codes also serve automation with in and out cues, just as in editing.

The horizontal sync period may also be used for verification. The H-sync pulse may be short, but ID information can be encoded into the μs interval. For broadcast use, a TBC will replace sync before the signal goes on air, preventing the encoded data from interfering with signal reception.

Like time codes, this system requires the data to be generated as the tape is prepared. It also requires the VTR to faithfully reproduce the sync interval. Of the two data encoding schemes, time code is the more reliable.

Broadcast quality

It is possible to detect how a video segment appeared on-air. Just as the correct segment must run at 8:25 p.m., it must run properly. The client does not wish to pay for a spot that was unwatchable.

Vertical interval switching provides an uninterrupted sync pulse train in the switcher output video with a change in segments. Gating circuits may be combined to sense the train. If a disturbance in sync during fields or frames is detected, it may tie back to the automation system. When the log is printed, a flag denotes problems during the segment.

To observe play quality, photo sensors on the monitor screen can watch for undesirable disruptions in the video. The sensors, tied to the computer, see a constant raster, unless video breakup occurs. When a noise bar (tracking error) or other disturbance disrupts the constant line pattern on the screen, the computer flags the printed log with the discrepancy. Quality sensors may also tie to the station business system to automatically handle possible accounting needs.

Transmitter control

The completely automated TV station has a transmission monitoring system to sense out-of-tolerance parameters. A printer and CRT keep the operator informed of STL, tower and transmitter status. Meanwhile, correction signals pass to automatic proc-amps to compensate video problems, and power controllers for over- or under-power conditions.

If carriers should fail, a carrier monitor communicates with program automation. A flag to traffic indicates rescheduling needs for all commercials that should have run during the outage.

Faulty automation

Early attempts at TV automation often failed miserably. Commercials and programs alike were chopped unceremoniously. Some problems were caused by unreliable equipment. Some were the result of misunderstood equipment. Many were the result of human errors.

If the traffic secretary loads the wrong program data into the computer log, the system might never find the "Sesame Street" episode to run at 11 a.m. For that situation, manual override of the system is a must for the operator on duty.

Although computers seldom make mistakes with good data, they cannot counteract human error or equipment faults. The automation system requires a good partnership with a human operator. At the same time, automation does relieve the human partner from many menial tasks. Keeping a watchful eye on the operation is not one of those tasks.

Orban TV Stereo is on the air.

San Francisco, Calif. Orban is now delivering its new BTSC Stereo Generator for television sound known as Model 8182A/SG. According to Bob Orban, it includes many exclusive features such as built-in monitor decoding, and test modes that let the user go on the air without a stereo monitor.

The company reports that it is also delivering its Model 8182A, a field-proven companion multiband limiter/compressor (which includes the CBS Automatic Loudness Controller standard). This processor assures natural sound on both voice and music programming (compared to single-band units which often pump severely on music with dominant bass) and is an integral part of the stereo generator.

Orban states that the company is presently delivering everything needed to get on the air in stereo NOW. And at a fair price to boot. ($9990, for the complete system, $4905, for stations already having the 8182A audio processor).

Orban is well known in the broadcast industry for its excellence in FM stereo audio processors and stereo generators. Its customers report consistent reliability, superior documentation and responsive customer support.

There are many Orban Broadcast products Dealers throughout the country. The names of Dealers can be obtained directly from Orban.

Orban Associates Inc.
645 Bryant St, San Francisco, CA 94107
(800) 227-4498 or
(415) 957-1067 in California

Circle (20) on Reply Card
A flash of light and an explosion of color! Your creativity becomes positively electric!

Unbelievably, these exotic expressions of spectra are produced by simply adding a filter to the front of your lens or the filter wheel of your camera. Just add motion and these filters come alive!

Eight geometric patterns of color in diffraction. Eight stars of unsurpassed crispness and clarity. Each series of filters is created by the magic of laser and holographic techniques.

Drive yourself to diffraction. You don't just see these special visual effects ... you experience them! Add breath-taking brilliance to your own creativity.

Call or write for more information ... then dazzle yourself!

Distributed by E55 7838 N. San Fernando Road • Sun Valley, California 91352 • (818) 768-8064
Circle (21) on Reply Card
Tota Radio Recall.

How can you tell where a particular frame occurs within a program? The answer is through time code data. This type of information is essential for exact video editing. It can also be useful for automation.

Two types of time code are now used. Longitudinal (LTC) or serial code is recorded along the length of the tape as an audio signal. Vertical interval (VITC) time code is generated and inserted into an unused line of the video vertical interval, then recorded as part of the video signal.

For NTSC use, each second of time is divided into 2400 equal segments, or 80 bits per frame. Thus, every frame of video may be individually identified. The format provides hours, minutes, seconds and frames as shown in Figure 1. Data in the various bit positions are counted only if the state of the data changes from 1 to 0 or 0 to 1 in the middle of the bit period.

Some of the bits are defined for specific information. Bit 10, for example, is called the drop frame bit and designates if the material is based on 30 frames per second video or 24 frames per second motion picture time. Bit 11 is used for color framing purposes, with a “1” indicating that 4-field color framing for NTSC applies. The final 15 bits of each frame are designated for time code sync.

Mixed within the format are eight 4-bit groups called user bits. These may include any type of information and must be recorded at the time the remainder of the code is placed on the tape. Automation verification is a possible use of these data bits.

Compared to LTC, the VITC code includes 10 additional bits of data. Two sync bits are inserted before each of the time segments. Bit 27, unsigned in LTC, is a video field mark, with a “1” meaning color field 1 or 3, and a “0” denoting field 2 or 4. Bits 82 through 89 are called the cyclic redundancy check (CRC) and provide for error correction.

LTC vs. VITC

LTC code requires an audio track on the tape, often one of the two tracks usually provided. Some systems are designed for a special head and track for the code. VITC does not require any special track or head. It is part of the audio.

LTC code may be prerecorded with video black. The video can be later placed on the tape with respect to the code. User bits must be included when the code is originally recorded. If user bits are changed, the entire code strips must be rerecorded. VITC cannot be rerecorded. Similarly, user bits may be changed only if the video is changed.

LTC works over a wide speed range, but it is not effective at still frame and very low speeds. VITC also works at almost any speed where a video field is read completely. However, in high speed forward or rewind, VITC may become ineffective.

The greatest application of time code systems is for editing. If all audio segments are recorded with time code prior to editing, it is possible to create a decision list based on the TC numbers. A computerized editing controller may then take control of a system of VTRs, VCRs, other video sources, switches and effects systems to do the final editing job.

With time code, special video processing is possible. For example, if coloring in motion picture films used on TV needs correction, it can be done automatically as the movie is televised, all based on the time code. Electronic panning of wide screen images for TV is also controllable through this means.

Time code can provide automation cues as well. More preparation may be required for this application. However, combining time and user bit verification possibilities make a full time code system with both LTC and VITC functions a valuable aid to automation.
Can the Panasonic® AK-30 stand head to head with the bestselling broadcast camera in the world?

You bet it can. In fact, when you compare picture quality, automatic features and price, you'll discover the Panasonic AK-30 is far and away your best bet.

Compare pictures. You'll notice the AK-30 produces a superrefined video image. The kind of image broadcasters love to see. But that's not surprising with these kinds of specifications. Horizontal resolution is 650 lines center. S/N is a very quiet 62dB (-6dB gain), the highest ratio in the industry. Digital registration is 0.05%, 0.1% and 0.25%. And illumination is a mere 24 lux at f/4 (+18dB gain).

This high level of performance is achieved with a unique combination of image-enhancing circuitry and high-focus-field Plumbicon® tubes.

You'll also appreciate the AK-30's automatic circuits. Like auto-white balance with memory for setting 2 color temperatures. Presettable black stretcher. Auto-black balance, and a knee circuit for variable dynamic range.

Together, they let you customize the image you're shooting for.

Still, the AK-30 has plenty more going for it. Consider its dual outputs. One works with standard NTSC. The other lets you set new standards because it's compatible with component recording. That means you can use it as part of our famous M-format Recam system.

The Panasonic AK-30. Compare it to the world's bestselling broadcast camera. And see why it stands out far ahead.

For more information call your nearest Panasonic regional office: Northeast: (201) 348-7336
Southeast: (404) 925-6772 Central: (317) 852-5973
West: (619) 941-3387 In Canada call: (416) 624-5010

*Plumbicon is a registered trademark of N.V. Philips for TV camera tubes.

Panasonic
Broadcast Systems

ANOTHER BROADCAST INNOVATION FROM MATSUSHITA ELECTRIC
Program automation for radio stations is nothing new. But fluid market conditions, satellite technology and economics are changing the way many broadcasters view this alternative to the live announcer. The options are numerous, and growing each year.

Satellite technology has had a great impact on broadcasting in the short time it has been generally available to the industry. A number of networks offer complete programming services for all or part of the broadcast day. It is conceivable that before long, satellite programming may become a serious challenge to the long-established syndicated music program services, which have been the mainstay of most automated stations.

The music service people are doing their part, however, to meet these new challenges. Sophisticated voice-tracking systems have been devised, and high visibility community involvement is being encouraged as a way to create unique station images that satellite programming cannot easily match.

Increased market competition has led some stations to abandon their automated formats in an effort to attract listeners with a live sound. Others have decided to go live during certain parts of the day, such as morning and afternoon drive, and automated for the rest of the broadcast day.

Automation equipment manufacturers have responded to the marketplace changes with a variety of products. Many simple, inexpensive controllers are available to automate satellite-programmed stations, which generally require less hardware and computer intelligence than the classic full-function automation system. These mini-controllers are also finding their way into live operations as a way to improve operator performance and add walk-away time to the system.

The other end of the equipment spectrum is seeing a great deal of interest in interfacing automation systems with dedicated business computer systems. Such installations can do virtually all of the paperwork needed at a station, once the proper information has been entered. The Computer will generate logs, load it into the automation system, read the commercial data from the system as it is run on the air and generate billing invoices, in addition to performing other financial or personnel-oriented tasks.

The fuel that makes the automation system wheels turn is, of course, money. An accurate cost vs. benefit analysis of the needs of each installation is required to determine which avenue is the best to follow.

A full service program automation/business computer system requires a large initial investment of time and money by the station. In many cases, such a system will pay for itself in two or three years. Some, however, will not.

Program and business automation does not mean that the office staff can be dismissed. The computer must be programmed by someone and checked by someone else. It will not answer the phone or settle disputes between the sales and production departments. And although business automation in the broadcast industry has allowed workers to do their jobs more efficiently, in most cases, it has not resulted in substantial savings in personnel costs, relative to pre-computer times.

Many large business systems are expandable from a basic arrangement to the full configuration. This allows the user to make the move to full automation in a series of steps, rather than one large leap.

Automation/equipment

The traditional radio automation system has come a long way from the stepper relay and program peg-board days. Current models feature microcomputer controllers that can be updated to new functions through replacement of programmable read only memory (PROM) chips loaded with the latest software instructions. Disk drives are used on many systems for mass storage of program data, allowing easy loading or dumping of the station schedule. A disk of the program schedule also provides backup in the event of a system crash that erases the memory.

The classic program automation system is built around a central computer and source machine interface chassis (Figure 1). Recent product introductions have added personal computer systems to equipment options available to broadcasters (Figure 2).

Interface circuits allow an off-the-shelf stand-alone personal computer (PC) to control source machines and monitor secondary control tones and network control signals. Software for the PC provides the user with many of
The only one in the field with 1/2” color playback that’s as good as 1.”

Is it a “wrap” or isn’t it? Now you can tell right on the spot. Because the Panasonic® Recam™ AU-220 is the only 1/2” VCR that gives you the quality of 1” color playback in the field. So you can instantly see what you’ve shot. Either through the viewfinder or a monitor.

Consider the facts: The Panasonic AU-220 records, utilizing the M-Format, on standard 1/2” VHS cassettes. Yet it delivers the kind of picture quality that’s long been the broadcast standard. Luminance is 4.0mHz (typical). Chrominance is 1.0mHz. While the video S/N is every bit as good as 1” with chrominance better than 50dB.

For total flexibility, the AU-220 includes a built-in switchable SMPTE time code generator. And it’s compatible, not only with component analog video equipment, but also with YC and NTSC.

The Panasonic AU-220 1” color quality from 1/2” tape makes it one of a kind.

Panasonic
Broadcast Systems

SEE US AT NAB BOOTH 1019

ANOTHER BROADCAST INNOVATION FROM MATSUSHITA ELECTRIC
"Please stand by." Three words that make any broadcaster fighting mad. But now you can fight back because the MVP-100 video tape cart machine from Panasonic Broadcast Systems has just eliminated dead air for good. And virtually eliminated your biggest problem. "Make Goods!"

Built-in Redundancy

The MVP-100 maintains broadcast continuity with an incredible array of technical achievements. Starting with its automatically threaded tape transport systems. Available in 8, 12, 16, 20, or 24 transport configurations. Each transport can be individually programmed and controlled. All with the accuracy of SMPTE time code identification through the MVP-100's built-in computer.

Automatic Continuous Programming

News spots, commercials, editorials, station IDs, promos, even program length material can be scheduled in advance and automatically aired. But what really sets the MVP-100 apart is how easily it eliminates dead air. With its built-in recorders and spot players, you can forget about the hassle and expense of "double rolling" a second machine. Because the MVP-100 plays protection copies
dead issue.

simultaneously. So in the unlikely event that your "on air" transport fails, the MVP-100 can be programmed to switch to the protection copy maintaining broadcast continuity.

What's more, the MVP-100 also eliminates "custom mechanics." Since each removable transport operates independently of each other, individual repairs or maintenance can be done without putting the entire system out of commission.

YIQ Format Delivers 1" Quality from 1/2" Tape

Total, reliable automation of your broadcast day is just one reason to make the MVP-100 an integral part of your station. The picture quality of its YIQ, M-format is another. Especially when you consider how good it is. One-inch quality from 1/2" VHS tape just about says it all.

Panasonic Broadcast Systems

FROM MATSUSHITA ELECTRIC

Circle 24 on Reply Card
www.americanradiohistory.com
the usual automation features. A PC-based system may also offer the station business features such as traffic, billing, logging, order processing, sales management reporting, invoice and affidavit preparation and accounts receivable/payable.

An automation system is a complex piece of equipment that is not easily broken down into specifications. There is no substitute for hands-on experience. This experience should come from several days of on-the-job training at the manufacturer's plant, or at least the recommendation of another broadcaster currently using the system. Most manufacturers will supply prospective buyers with a list of stations using their gear. Many companies also have complete working models at their manufacturing plants for examination.

Automation system designs vary widely from one manufacturer to another. Each unit has its own particular set of functions and features. Prices also vary, so comparison shopping is strongly advised.

Most automation systems feature plain-text video displays and printouts of commercial messages and other events. This feature saves a great deal of time in commercial verification work. A printout of nothing but code numbers is difficult to check because traffic personnel must constantly refer to look-up tables. Figure 3 shows a typical plain-text automation system printout.

No two automation systems are programmed the same, but once the operational codes are learned by the

Whose new AGC packs 110 dB of dynamic range into 1-3/4 inches of rack space?

Only the new Harris Ulti-Mate 91 Tri Band AGC! Here's more signal shaping flexibility than you'll get from anything else on the market...with phase coherent design that won't degrade even digital source material. Ulti-Mate's phase coherent circuitry insures waveform fidelity and minimizes distortion as signals are processed and amplified.

Improve any audio source
You'll hear the difference immediately. Beef up your audio chain with Ulti-Mate's unprecedented 110 dB dynamic range. Use it as your final broadband limiter. Put it in front of your Optimod or other audio processing system for a remarkable improvement in sound. The linear VCA gain control allows extraordinary processing capability to enhance even the purest system.

Stereo Ready
When you're ready for stereo—whether it's AM, FM or TV—so is Ulti-Mate 91. It's totally compatible with all broadcast stereo systems. And it can drive your STL, too.

Takes only 1¾” of rack space
The Harris Ulti-Mate 91 Tri Band AGC slips neatly into 1¾” of vertical rack space (3¾” for stereo version). Adjustments are deftly concealed but easily accessed through a slide-out drawer. And if unauthorized adjustments are a concern, secure tamper-proofing is easily achieved.

First-rate equipment for first-place ratings
Good sound is the currency of Radio; it buys audience. Ulti-Mate gives you better dynamic equalization through the phase coherent Tri Band AGC, for markedly improved signal transmission. At a surprisingly low cost.

The Harris Ulti-Mate 91 Tri Band AGC Audio processing has never been this good. For more information, contact Harris Corporation, Studio Division, P. O. Box 4290, Quincy, Illinois 62205, 217/252-8200.

For your information, our name is Harris.

Circle (25) on Reply Card
Only the beginning

A thing of beauty... this Dynair System 21.

Begin with this single, high density frame using as few as 10 inputs and 10 outputs. Select combinations of video, audio, time code, data, tally, or machine control switch modules.

Grow sensibly, easily and cost effectively to impressive matrices of one thousand inputs and one thousand outputs of every module type by simply adding frames and modules.

Grow into high definition TV, if this possibility is in your future, without changing a thing. Bandwidth of the System 21 is already 30 MHz.

Write or phone. We would like to send you additional information. Give us a chance to begin with you as you upgrade your plant.

DYNAIR
5275 Market Street, San Diego, CA 92114 U.S.A. Phone (619) 263-7711 TWX (910) 335-2040

Circle (26) on Reply Card
user, the day-to-day loading of commercial schedules and programming instructions is accomplished with relative ease. Most units allow various format files to be created in memory for music rotation, commercial clusters and special programs. These subroutines greatly simplify programming of the system, reduce the number of potential errors in loading or editing the schedule and conserve expensive memory space.

Front office functions
A full-scale automation system can be used not only for complete automation of the station's program facilities, but also as a component in a larger business computer that handles front office functions. This step in the automation process can be as simple or complex as the station desires.

Sophisticated systems are available that eliminate all paperwork from the point at which the sales orders are entered. The computer will create a log, adhering to separation limits and format restrictions. This information will be loaded into the slave automation system, which monitors the unit's performance and reads out commercial data as spots are aired (Figure 4).

A comparison is automatically made between what was scheduled to run and what was actually aired. A discrepancy report is then compiled, showing defective cartridges or source machines.

Billing information is pulled from the business computer memory at appropriate times and invoices are generated, based on accurate and complete data from the peripheral automation system.

Radio station computer packages are also available with features that are more common to business minicomputers, such as accounts receivable, cash receipts, general ledger and accounts payable.

Group-owned radio stations located in different geographical areas can be linked using such computer systems with dedicated or dial-up telephone company lines. This feature can result in considerable savings in time and money for large stations that require close cooperation (financial and otherwise) among various elements of the corporation. Word processing packages are then available to greatly speed the generation of correspondence and advertising copy.

Total automation of a station provides numerous benefits to management, including timely, concise information on cash flow, inventory con-

Figure 2. Using a personal computer (PC) to automate program functions at a radio station. A PC-based system offers the user many off-the-shelf business office options.

Figure 3. A typical program log plain-text printout. Many automation systems also feature discrepancy logging for notifying operators of tape or machine problems.
Fuji 1/2-inch professional tape. Because you'll go to any length to get the story.

No one ever said getting a story was easy. So you want a 1/2-inch tape that makes the effort pay.

You want a 1/2-inch tape that can take the high-speed transport of systems like the Sony Betacam™, or M-Format equipment. One that survives editing hazards like constant shuttling and quick stops. Which means you want a cassette with a precision-engineered transport mechanism, and a videotape with a unique DUROBACK backcoating that keeps the tape on track.

When it's air time, you want a 1/2-inch tape that will deliver the best performance possible. Which means a tape with outstanding video and color S/N performance, regardless of how many times the tape is used. It also means a tape with the absolute minimum number of dropouts even after extensive use, thanks to special anti-static leader and trailer tapes.

Finally, you want a 1/2-inch tape with extremely low wow and flutter, so that stereo broadcasts sound as clear as they look.

In short, you want Fuji's H421 and H321 1/2-inch professional videotape. Because Fuji's 1/2-inch tape is the shortest distance between just getting the picture and getting it just right.

For more information on Fuji 1/2-inch professional videotape, call your Fuji representative. He'll go to any length to tell you what you want to know.

FUJI

Nobody gives you better performance.
trol, FCC compliance, sales trends, budget status and collec-
tion problems. A sophisticated automation system can be, in the right application, a lifeboat for a station drowning in a sea of paperwork.

Live assist

In lieu of total automation of a station's facilities, the use of a standard automation system to assist a disc jockey in running a live show has become popular. The live-assist can be for the entire day or specific day parts.

Full-scale live-assist finds little application in small market stations, because the primary reason for purchasing a standard automation system is often to reduce the daily operating costs of the plant. Larger stations, on the other hand, can usually justify the installation of an automation system for live-assist functions because of the added flexibility and improved execution it brings to an otherwise manual operation.

With live-assist, the operator does not have to cue records, find and stack carts or keep a program log. The automation system will handle these duties, resulting in a cleaner on-air sound with fewer mistakes and encouraging more creative performance from air personnel.

News and talk stations can use live-assist to allow their talent to concentrate on the issues being discussed, rather than what cart needs to be played next. Routine, pre-programmed functions can be scheduled days in advance; the operator needs only to push the next button to call up the spot sequence. For specific newscasts, the reporter can simply push the next button for each actuality.

Live-assist can also be used to automate certain functions not directly related to the on-air sound. For example, real-time controllers can be set up to record network feeds at predetermined times, freeing station personnel from these tasks.

Need vs. cost factors determine the best route for a station to follow when considering the purchase of an automation control system. If the disc jockeys have so many tasks to perform that spots are missed, or the on-air sound otherwise suffers, live-assist is a cost-effective solution. Likewise, if a station continually misses network news or sports feeds that need to be tape-delayed for later broadcast, some sort of live-assist is in order.

Live-assist hardware comes in a wide variety of designs. Such gear can generally be divided into two categories: sequential steppers and smart peripherals. A sequential stepper is just what the name implies: a control unit that will perform a set number of consecutive pre-programmed functions. Smart peripherals are generally source machines with additional logic, and perhaps some memory, that will perform pre-defined actions when addressed by the user or an external controller.

For special applications, custom-designed systems may be required, incorporating both sequential steppers and smart peripherals. Stations requiring a specialized control unit for their operation should also examine the possibility of constructing the device themselves. TTL and CMOS technology has made it possible to build sophisticated logic systems for a relatively low price.

Program sources

An automated station has a number of options when it comes to program source material. It can generate its own music library using either a reel-to-reel or cartridge format, subscribe to one of the many music services or climb on board a satellite network.

Music libraries and programs generated in-house have the obvious benefit that the format of the station can be tailored to whatever management wants. The drawbacks are the time and money involved in assembling and maintaining a large library.

Broadcasters who turn to live over to a music service have many formats from which to choose. Everything from country music to hard rock is available, with varying amounts of disc jockey talk.

Some music libraries are beginning to appear on cassette tape formats. Cassette storage of program material allows new flexibility for the station, given proper supervision of the system by a computer.

A large number of program elements can be stored on a single cassette. One estimate puts the practical density at 50 monophonic music selections or 76 mono commercial announcements. A supervisory computer can search for the required program elements using control signals encoded on each tape.

The ability to search a cassette for a particular element and automatically cue-up opens the door to an entirely new philosophy toward program automation. Recent improvements in the audio quality of cassette tape decks make such a system a viable alternative to reel-to-reel source machines in some applications.

An increasingly popular method of delivering program material to subscriber stations across the country involves the use of satellite links. The main benefit of satellite distribution is simplification of station operation.

![Diagram](image.png)

Figure 4. The architecture of a full-scale program automation system interfaced with a business computer for order and invoice processing.
UHF-TV broadcasters: Grab a pencil... you’re about to see just how much money our transmitter can save you.

<table>
<thead>
<tr>
<th></th>
<th>Your Transmitter</th>
<th>Harris TVE-60S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption</td>
<td>___________ kW</td>
<td>___________ kW</td>
</tr>
<tr>
<td>Times hours on air per year</td>
<td>___________ hrs.</td>
<td>___________ hrs.</td>
</tr>
<tr>
<td>Times cost per kilowatt hour</td>
<td>___________ $/Kwh</td>
<td></td>
</tr>
<tr>
<td>Equals yearly electricity cost</td>
<td>$ ___________</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Replacing your transmitter with a Harris TVE-60S saves you $ ___________ per year.

Harris builds the world’s most efficient UHF-TV transmitters. Do a few quick calculations above and prove it to yourself. If you’re running a 55 kW or 60 kW transmitter, compare it with our TVE-60S, 60 kW model. Replace your transmitter with a Harris TVE-60S, and save up to $25,000 a year in utility bills!

Success with the Varian "S"
Harris engineered every efficiency improvement technique available into its entire UHF transmitter line. An example is the most effective use of the new Varian "S" series super high efficiency klystron with variable visual coupler. Harris operates these klystrons with a new design high voltage pulser for up to 68% peak visual beam efficiency. In addition, klystrons are steam cooled—not liquid cooled—for high efficiency and long life.

How we dispatch distortion
Pushing klystrons to peak operating efficiencies causes picture-distorting, non-linear operation. Harris UHF transmitters are equipped with the MCP-2 visual exciter. Its uniquely simple Quad Corrector effectively cancels distortions, so you get the lowest total power consumption and performance specifications unsurpassed by any competitive model.

FM quality stereo and SAP
Extremely low incidental phase modulation (less than 2°) and a highly linear wideband aural exciter give you FM quality stereo and Second Audio Program performance as well. And every Harris transmitter is shipped stereo-ready. No awkward retrofits. No costly modifications.

Get on line with a Harris UHF-TV transmitter. Contact Harris Corporation, Broadcast Transmission Division, P.O. Box 4290, Quincy, Illinois 62305. 217/222-8200.

For your information, our name is Harris.
Perfect reception situations.

Because there are no tape decks to worry about, network Satellite Automation can be used to automize local stations with a moderate increase in cost. A new Satellite Automation system can be purchased for as little as $50,000, providing an alternative to traditional voice-over systems.

Shure Satellite Automation

A dedicated Satellite link is required for the Satellite Automation system to work correctly. The Satellite link must be capable of handling a minimum of 64 Kbps of data traffic. The Satellite link can be purchased from various suppliers, including Shure Satellite Automation.

The Satellite Automation system is designed to work with existing Satellite links, or to be integrated into new Satellite networks. The system is compatible with all major Satellite link suppliers, including Eutelsat, Inmarsat, and Intelsat.

The Satellite Automation system is simple to install and configure, and requires no special training or expertise. The system can be installed in a matter of hours, and is designed to be easy to use and maintain.

The Satellite Automation system provides a number of benefits, including:

- Increased productivity: satellite automation allows stations to focus on their core business, rather than spending time on manual tasks.
- Cost savings: satellite automation reduces the cost of running a station, by eliminating the need for manual labor.
- Improved service: satellite automation provides a more consistent level of service, as automated systems are less likely to make mistakes than manual systems.

The Satellite Automation system is available from Shure Satellite Automation, and can be purchased online at www.shuresatelliteautomation.com.
M/A-COM MAC, INC.
Microwave Systems
For Broadcasters Around the World

Over the past 25 years, Microwave Associates Communications has been installing communications links and Electronic News Gathering (ENG) equipment around the world. We are now the leading microwave systems supplier to the broadcast industry. One stop shop for portable transmitters, receivers, and antennas to base-band and heterodyne fixed links.

Continuous Product Innovation
Beginning with the first solid-state portable transmitter in 1964, B-line fixed and portable equipment in 1967, G-line terrestrial radio in 1970 and up to present day with a complete line of ENG equipment, M/A-COM MAC has been the technological innovator. We have delivered the most advanced and reliable equipment spanning both local broadcasters and major networks around the world. To further our role as product innovators, we introduced a new series of portables, a new central receiver and a helicopter skypod system in 1983. In 1984, we introduced the 40 GHz portable system, multiband radios and a state-of-the-art ENG receiver.

Commitment To Service
As part of our commitment to total customer satisfaction, we now have two dedicated domestic service and support centers: Eastern region – Massachusetts (800) 343-3006 and Western region – California (714) 538-3772. Plus, for product information, write to me, Duke Brown, M/A-COM MAC, Inc., 63 Third Avenue, Burlington, MA 01803 or call (617) 272-3100, Ext. 4331. See us at the N.A.B. Show in Las Vegas, April 14 to 17, 1985 (Booth 1004).

Microwave innovations for a changing world.
Ampex Listened When You Described Your Ideal VTR.

Console with overhead picture monitor—one of 6 configurations available.

Hi Fi speakers let you appreciate superior audio quality of VPR-6 with excellent stereo phase response.

Handles spot to 2 hour reels with equal precision and gentleness.

Brushless DC scanner motor and individually replaceable heads.

Logical, efficient control panel—all operator controls up front.

TBC-6 with 32 line memory and 28 line correction window; performance matched to VPR-6.

Dual numeric readouts—one for tape time/time code; one for cue points, diagnostic codes, tape speed, setup codes.
Now, Here It Is The New VPR-6.

When hundreds of users worldwide told us what they wanted in a one-inch VTR, we listened closely and then designed and built it. It's our new VPR-6, the easiest VTR to operate, service and maintain of any in its class. And it's in the price/performance ratio that most users want.

Smart, yes. Complicated, no.

Intelligent but not intimidating, the new VPR-6 offers features that allow you to get the job done more productively. For example, virtually all machine setup procedures can be done at the highly efficient control panel. Most board edge controls typically found in VTR's have been eliminated.

You insisted on fast but gentle tape handling... the VPR-6 shuttles tape at speeds approaching 500 ips and handles all reel sizes from spot to 2 hours with equal precision and gentleness. The servo microprocessor senses when the end of the tape is near and slows down the reels and scanner and unthreads the tape gently.

You asked for power-down memory... so we built in a long-life battery to protect setups, edit and cue points and all editor configuration parameters.

"Make it easier to troubleshoot," you said, and we built in an extensive diagnostics system that constantly monitors many system conditions and warns you if a fault occurs. You can even run from the control panel a diagnostic routine using a logic probe to test every IC in direct communication with the two microprocessors.

A tried and true transport

You demanded reliability. Not wanting to tamper with success, we borrowed the tape transport and mechanical design of our reliable and proven VPR-80. We also eliminated most wire harnesses in favor of more reliable printed wiring boards and backplane connectors throughout. The modular package allows convenient access to any part of the VTR for easy maintenance.

A TBC to Match

Because you wanted play speeds from 1 to 3X normal and picture in shuttle, we also developed the new TBC-6 digital time base corrector, performance-matched to the VPR-6. Its 32-line memory and 28-line correction window are the largest in any TBC appropriate for a VTR of this type.

State of the art editing

So much for recording and playback, how about editing? The VPR-6 has all the capabilities you asked for, including split audio-video auto edit and auto tag. RS-422 serial communications capability lets VPR-6 function efficiently in a state-of-the-art editing system with the Ampex ACE and other edit controllers.

First-rate audio

"Make audio better," you said, and we did. The VPR-6 has audio (as well as video) confidence playback. The audio system also offers high quality stereo phase and an optional fourth audio channel for EBU systems.

Selection of styles

Most users may agree on capabilities, but you prefer a variety of configurations to choose from. So, we offer the VPR-6/TBC-6 in four console styles as well as tabletop and rackmount versions. Many Ampex video accessories work with it, including some you may now own.

In production now

The VPR-6 is too good to wait for, so it's already in factory production. Ask your Ampex video sales engineer to quote price and delivery for any model in any world standard, and watch his face light up!
What to expect in transmitter control systems

By Whit Smith, Harris, Quincy, IL

Computers can monitor, control and diagnose problems at remote transmitter sites. However, the systems' capabilities have notable limitations.

Transmitter control systems traditionally use relays, motorized potentiometers and variacs. But for the last several years, discrete digital IC logic has been replacing mechanical control.

The change from mechanical to electronic control is relatively easy, as AND and OR gates and counters can closely simulate series and paralleled relays, motorized potentiometers and stepping relays. Adding extra features to the control design is also greatly simplified.

Service benefits support this transition as well. All control logic can be on the same circuit boards, which already contain power comparing, overload and resistive divider circuitry. For most maintenance, you only need access to the PC board holding the related circuitry, instead of crawling around inside the transmitter, VOM in hand, to check power relays and contactors.

In new generations of transmitters, however, discrete IC logic may not reasonably handle all of the desirable control functions. With enough dis-

Microprocessors, such as this National Semiconductor NS 32032 chip, allow versatile monitoring, control and diagnostic programming. Present systems, however, require fewer capabilities and usually use 8- or 16-bit processors instead of a 32-bit device.
Your requirements are unique to your organization, and that’s how your operating system should be.

CCI offers a complete line of video automation equipment that is software based. You tell us how you want your system to run. You even select the format from 1/2" to 1" and how many machines you want.

CCI custom-builds the system to your specifications in our own plant. If you later change your mind about the way your system should operate, no problem. Our CMOS circuitry is driven byEPROMs, so just tell us what you want done differently, and we’ll blast a new EPROM. Presto, the change is made.

There is nothing CCI loves more than a challenge, so challenge us with your requirements. We’ve met a lot of challenges already and have over 500 channels currently in operation.

Call us toll-free and let CCI demonstrate how to have automation your way.

7353 Lee Highway
Chattanooga, TN 37421
Phone: (615) 894-2580

(800) 367-5742
crete logic, a designer could build almost any system, but the cost and maintenance of such systems become staggering.

Consider, for example, discrete control logic in a dual TV transmitter, where multiple visual, aural and emergency multiplex RF paths join multiple high voltage power supplies and control points. The number of PC boards, their location and their internal communication become unwieldy.

When they are built, such systems often require extensive modifications to meet a station's custom desires, increasing costs of custom systems and system upgrades.

The use of MPU (microprocessor unit) control logic in transmitter equipment, however, suggests more sophisticated control than previous technology allowed.

Microprocessor technology

MPU-based circuits can perform the same functions as more complex discrete device counterparts. Far fewer parts are needed, because the function description is stored as a program in a solid-state memory. With discrete devices, the interconnection of a large number of fixed function ICs defines the control architecture.

The MPU is merely a generalized device that follows specific instructions presented to it from external or internal memory sources. The instructions are executed quickly, with speeds from 100,000 to 4 million instructions per second. The instructions are organized so that when interfaced to appropriate circuitry, the resulting controller may count brounsticks or calculate linearized VSWR readings from forward and reflected RF power levels.

The set of control functions are stored as a computer program, instead of being implemented by etched traces on a PC board. As a result, the design engineer may maximize the controller performance, given the same transducer inputs and controllable outputs of the discrete controller.

The same information, from which the discrete IC controller displayed tube plate voltage, tube current, forward and reflected RF powers before, can now automatically reduce power to a safe operating level. The transmission line is protected from high VSWR, or a tube from excess dissipation, until the problem is corrected. Previously, these conditions would have shut down the transmitter.

With intelligent use of computer control, the transmitter can do much more. Specifically, areas where MPU technology will be best used include transmitter monitoring, control and diagnostics.

Monitoring/Display

Most monitoring has relied on mechanical D’Arsonval movements physically located on the transmitter and at the station control point. At the transmitter, several dedicated meters display major parameters, while a separate multimeter indicates the other values as selected with a multiple position switch.

Typically, far fewer parameters are sent to the remote control site than are available at the transmitter. They are normally observed one at a time because of limitations in the STL or telephone link bandwidths or other hardware.

MPU technology overrides the limitations of mechanical meters and switching mechanisms. The computer's transducers are calibrated to internal voltage references, compared to the variable resistor and set screw references of the mechanical meter. The computer stores information as absolute digital numbers, not as analog values. Thus, several digital displays at different locations show the same reading, while two mechanical meters tend to show different values, unless they and their communications link are calibrated frequently. The computer system offers

Continued on page 58
OPT MOD-AM STEREO.

In the past, if you were considering C-QUAM™ AM stereo, the exciting manufacturer may have suggested a certain audio processor. But now you have a choice—after extensive testing in Motorola's lab, OPTIMOD-AM Model 9100A/2 with the new #1-S Stereo Compatibility Card has been fully approved by Motorola for use in C-QUAM installations. There are already scores of 9100A/2s driving C-QUAM exciters. Now that Motorola is telling its customers and using the 9100A/2 to demonstrate their system at trade shows and technical exhibitions, we expect OPTIMOD-AM to become an even more popular choice for C-QUAM stereo. (In addition to C-QUAM, the versatile 9100A/2 can be configured to operate ideally with any of the other AM stereo systems.)

OPTIMOD-AM: The Original AM Stereo Matrix Processor

Our 9100A/2 was designed from the ground up for the matrix (sum-and-difference) processing that is necessary to achieve full loudness on mono radios. So we only need to use two carefully-harmonized AGC stages from input to output; a slow "hand on the pot" AGC, and a six-band limiter with patented distortion-cancelled multiband clipper. The result? Competitive loudness is complemented by uncanny smoothness and naturalness. Punching and other processing artifacts are below perceptibility. And efficient single-chassis card-cage construction assures easy circuit board access without removing the unit from the rack.

In contrast, the competition added a matrix processor onto an existing non-matrix system. There are four boxes, four power supplies, and up to six stages of AGC in cascade. One large board is used per box, making updates and repairs inconvenient. Is it any wonder that this system is not as simple to configure as ours? Further, the process is more processing artifacts, but is also substantially costlier than OPTIMOD-AM.

Single-Channel Modulation Control

To prevent distortion in C-QUAM receivers, Motorola recommends limiting single-channel modulation to 75% negative. In published advertising, our competitor has falsely claimed that our system works by switching to mono under single-channel conditions. In fact, we perform as much control as possible by L and R clipping. Distortion is prevented by a variable-blend circuit which reduces L-R gain as necessary to prevent overdriving the clippers. On most program material, the effect is inaudible. On material with extreme stereo separation, image width is slightly reduced. However, the signal never becomes mono, or even close to it. And sound on mono radios is never audibly affected. Because most of your diary-holders will be listening in mono for some time to come, we think this point is crucial.

In contrast, our competitor performs this control by means of limiters in the L and R channels. If the limiters are not coupled, this can cause a stereo image shift similar to "platform motion." And this circuit can punch "holes" in both stereo and mono when the limiters act.

As usual, there's no free lunch. But Orban's system fully protects your mono listeners, while our competitor's doesn't.

Preemphasis

OPTIMOD-AM offers a continuously-variable front-panel HF EQ control. This boosts high frequencies to extend the effective bandwidth of the receiver, providing a sound more competitive with FM. Its curves were computer-optimized on the basis of a two-year engineering study of typical automobile, and portable radios. With the introduction of new wide-band AM stereo radios, we made available three plug-in modules which can change the family of curves produced by the HF EQ control to suit the needs of your target audience. In addition, we provide a fully-parametric BASS EQ control.

The competition offers an EQ control on their matrix processor which provides only a single curve family of unspecified origin. If you use their four-band compressor, you also get a four-band graphic-type equalizer.

We believe that most stations do not want or need excessive numbers of equalization controls which, if misadjusted, can easily produce colored, honky, unnatural, and fatiguing sound. OPTIMOD provides controls to get the sound right—not controls to lead you astray.

But if your situation demands a broader equalization range, you can combine our 622B stereo Parametric Equalizer with OPTIMOD-AM to create an integrated system with far more powerful equalization capabilities than the competition—at about the same cost as our competitor's processor alone!* Consistency

Many consultants now believe that one of the keys to a polished, professional, audience-building sound is consistency in texture and tonal balance from source to source. OPTIMOD-AM's six-band limiter with steep-slope crossovers provides this consistency automatically—labourious re-equalization and processing in the production studio are almost never required.

Even with their four-band compressor, the competition can't match this level of consistency because of their compressor and crossover design. The longer you listen, the more you'll appreciate OPTIMOD-AM's superiority.

Protecting Your Investment

We like to think that Orban earned its #1 place in audio processing with a solidly-engineered and superb-sounding product line which has backed with ten years of quality, reliability, and customer service—plus the best manuals and documentation in the industry. Plug-in construction allows low-cost updates as AM stereo technology advances. All these factors combine to protect your substantial investment in AM stereo processing—for C-QUAM, or any other system.

Fighting The FM Challenge

Your FM competition is after your audience share. OPTIMOD-AM offers a remarkably favorable tradeoff between loudness and processing artifacts, plus smoothness, consistency, and a bright, open sound that holds its own against FM stereo—on real-world AM radios.

When you add it all up, it becomes clear that there's really only one choice for AM Stereo processing: OPTIMOD-AM 9100A/2.

-Robert Orban

Try it yourself.
Ask your Dealer if he can provide a No-Obligation evaluation demonstration in your station.

Orban Associates Inc.
645 Bryant Street
San Francisco, CA 94107
Tel.: 17-1480
Toll Free: (800) 227-4498
In California: (415) 957-1067

*Based on manufacturer's list prices, 1984
C-QUAM® is a REGISTERED TRADEMARK OF MOTOROLA, INC.

ORBAN PROCESSING KEEPS YOU COMPETITIVE

Circle (33) on Reply Card

www.americanradiohistory.com
YOUR WORLD IS CHAOS
STATIC ELECTRICITY...
CAUSING A SHOCKING
OF DROPOUTS.
Your once-in-a-lifetime shots...destroyed by transient dropouts—caused by a fiber, a smoke particle, or even an eyelash that’s been drawn into your videocassette by its inherent static charge. It’s been an inevitable problem...until now.

We know you need a videocassette that can go anywhere and not pick up static-drawn souvenirs that will destroy your picture. So we developed the exclusive Scotch® Anti-Stat Treatment, a revolutionary cassette coating that minimizes static attraction, giving our new Broadcast Videocassettes the industry’s lowest electrostatic charge levels. Automatically reducing your transient dropouts. Dramatically improving your picture. And we’ve applied this unique technology to the lengths and formats you need. All distinguished by our red doors and hubs for easy Anti-Stat identification. All backed by our engineers a call away. All the more reason we’re number one in the world of the pro.

Our Tape

Anti-Stat...Anti-Dropout.

Scotch®

Audio & Video Tapes

Number One in the World of the Pro

Circle (34) on Reply Card
repeatability not possible with mechanical meters.

D’Arsonval meters normally allow about 2% of full scale accuracy because of mechanical limitations. Current transducers and A/D converters give more accurate readings.

An inexpensive 10-bit A/D converter, for example, presents a 100% range with a resolution of 1024 parts, or an accuracy of approximately ±0.1%. Parts of greater precision are generally used in broadcast equipment. Often only one A/D device is used in the circuit and is shared among all the parameters measured.

Because the converters are referenced to one source, all maintain the same level of accuracy.

Intelligent digital displays, such as alphanumeric LEDs and LCDs, bargraphs or even CRTs, present parameters for best human perception. For example, a filament voltage may best be given as a 7-segment digital

Relaxed remote control rules

New FCC rules took effect on Dec. 1, 1984, for AM and FM stations operating by remote control. The changes, in recognition of improvements in transmission system reliability, give greater operational flexibility. Personnel requirements remain unchanged.

An operator at the remote control point must be able to monitor vital parameters of the system. The only required operational control, however, is transmitter shut-down in case a problem cannot be corrected using facilities at the remote point. Various wired or wireless monitoring telemetry methods may be used, including telephones and microwave and subcarrier radio links.

Facilities for corrective adjustments are allowed, but not mandatory, except in AM installations using separate day and night equipment.

When remote control equipment fails, the maximum repair time is lengthened to three hours. If control is not re-established or an operator is not at the site within three hours, the transmitter must cease RF radiation.

Operation must also cease if out-of-tolerance parameters cannot be corrected immediately, either locally or from the remote point.

The commission must be notified (within three days of first use) if control is to be initiated at any location other than the transmitter building or the main studio and will be used when no one is on duty at those locations.

AM directional stations must apply for commission approval before beginning remote control operation from any location, including a non-colocated main studio. Approval of an application for such operation is dependent upon prior commission approval of the antenna sampling system.

If you are planning changes to your remote control system, consult part 73 of the FCC rules and your station’s attorney for assistance.

“Flexibility and ease of operation; two reasons why KCPT automated with Alamar.”

John Long
Chief Engineer

KCPT Channel 19, Kansas City

ALAMAR ELECTRONICS
Affordable Automation™

- Station Automation
- Commercial Insertion
- Cart Machine Replacement
- Timed Remote Control
- Remote Monitoring
- Delayed Programming
- Movie Playback

Alamar Electronics USA, Inc.
36 Railway Avenue
Campbell, CA 95008
408/866-9373

Circle (35) on Reply Card
600 Video Cassette Capacity is the ideal system for Commercial Broadcast Programming

With the one cassette/one program system, ASACA’s Video Cart enables concentrated management and automatic/continuous transmission of 600 cassettes. It shows its power especially in sending CMs, news and station breaks.

♦ Completely automatic/continuous random access operation.
♦ ACL-6000B utilizes a sophisticated bar code reader/identification system to eliminate any possibility of error.

♦ One cassette/one program format facilitates program scheduling.
♦ The high speed cassette delivery system enables the ACL-6000B to complete the program unload/load access time in 15 seconds.
♦ Programs that have completed their daily schedule are automatically ejected to provide space for additional cassettes.
♦ A highly accurate queing system utilizing SMPTE Time Code has been designed for precise start and stop points of the commercial program.
♦ The ACL-6000B utilizes either Betacom or M-format 1/2 inch cassettes.
number. IPA reflected power might better be shown as a bargraph to simplify the tuning process, where relative readings and rate of change are important.

An alphanumeric display shows the name of the parameter along with its value. You do not need to reference an isolated number back to its source. Meanwhile, system designers have the freedom to add new parameters without hardware changes.

As the desired parameter count increases, the MPU-driven display becomes cheaper than meters. With CRTs and other 2-dimensional devices, many parameters can be simultaneously offered in any format desired, such as the bargraphs, X-Y graphs or even colored graphic diagrams.

Another benefit gained with an MPU handling information gathering includes the ability to more thoroughly analyze and to chronologically catalog the data. Given the dc input and RF output powers of a tube, efficiency and dissipation can be calculated. These are useful values that cannot be directly measured.

The measured information can be stored for days or weeks, if desired. This could be useful for legal purposes, as well as for predicting trends in component life. A short-term history of relevant transmitter parameters may aid in solving cases of previously unexplained overloads and faults. Now you can look at a snapshot of transmitter conditions immediately preceding the fault. The picture may divulge the fault's cause.

Control

Traditional control systems used resistor-capacitor timing circuits to switch contactors according to chronological sequences determined by hardware. Analog op-amp feedback loops also used RC circuits for such functions as automatic power control. The only other control inputs came from external (typically human) sources. MPU technology expands the control possibilities.

Timing sequences no longer depend upon questionable RC time constant accuracy. The crystal-controlled clock of the MPU counts the time between step/start contactor actuation, filament warm-up and rundown times and other time related functions. Timing functions are freed from independently tweaked and thermally sensitive resistive and capacitive elements.

Crystal accuracies, typically to several parts per million, allow microsecond resolutions. For manufacturers, the result is simpler initial calibration of the system. Broadcasters benefit with fewer knobs to be adjusted.

The intelligence of the system allows more than simple sequencing. In step/starting a power supply, the charging current or voltage across a capacitor can serve to indicate when to close the main contactors and then remove the starter resistors. A software timer provides a safety backup to protect starter hardware from a shorted power supply circuit.

Output power can be raised and lowered to keep the tube to within a safe operating area, given the mentioned parameters as input data. The transmitter can fail softly, but not completely off the air, as in the case of a VSWR mismatch from antennacing.

The control mechanisms include voltage-controlled power supplies and regulators, motorized varicaps, resistors and reactive components and relays. Additional solid-state components are under development to replace older mechanical methods. An example is the PIN diode RF switcher, which replaces an RF relay for multiple exciter switching.

Phase controlled triacs control power supply circuits where varicaps and hand switched multiple-tap transformers were required previously. These electronically controlled

TIME AND MOTION...

Two Good Reasons for Time Code and DATUM's 5300 ITP

Timing and tape motion, two of the most important factors in video tape management, are what DATUM's 5300 Intelligent Time Processor (ITP) is all about.

- SMPTE/EBU time code reader generator - LTC and VITC code formats
- Video character generator
- Jam sync code generation for dubbing
- Parallel BCD time and user bit outputs
- Microprocessor controlled
- Modem construction permits future expansion

The 5300 ITP can be a basic time code generator, reader, or the most sophisticated time processor. It's ideally suited to the classical applications (editing, dubbing, master station timing, etc.). Versatile, expandable and cost effective, DATUM's 5300 ITP makes good sense any way you look at it.

When it comes to time code technology, the people at DATUM are among the pioneers. Experience is reflected in everything we do.

For complete information, call or write.

DATUM INC Timing Division

1363 S. State College Boulevard
Anaheim, California 92806
714/533-6333

Circle (37) on Reply Card
KEY PERFORMANCE

Performance and Design simplicity enhance Command Decisions.

Horizon International introduces System Four, a computer assisted video editing system that combines creative engineering and user experience to produce a unique video editing system. System Four offers a five year warranty, is user compatible with CMX, ISC and Mach 1, has edit list for 850 events, includes a printer, and has provision for optional paper tape. It controls a combination of video and dual audio tracks from keyboard or track ball. The Horizon's System Four has bilingual capability in Spanish or English. This straight line approach to performance editing provides a key decision for a realistic investment.

See us at NAB/85
Booth 2351, Hilton

Select
Representative Territories
Available

HORIZON International • 3837 East Wier Avenue, Ste. 1 • Phoenix, Arizona 85040 • Phone 602/437-3800 • Telex 322043
devices are becoming less expensive and more reliable than their electromechanical counterparts.

In addition, the electronic components respond much faster to control signal inputs.

The same displays used for metered parameters can also indicate the transmitter control functions. The user can see when a contactor has been activated. With clever designs, no auxiliary contacts are necessary for feedback from the contactor. The controller deduces a closure from the presence of voltage in another part of the circuit and shows a successful contact closure (or else a fault).

Diagnostics

Computer technology can also be used to diagnose problems that occur in transmitter hardware. Many electronic equipment manufacturers include fault tree diagrams in product instruction books to aid in identifying equipment problems. The computer can use the information to passively step through a fault diagram residing in its software and specify a fault or narrow the possibilities.

The controller may inform station personnel of a possible problem and indicate what it thinks the problem to be. The short history saved prior to shutdown enables the diagnostic software to analyze not only the static readings but also enable it to look at the transmitter as it makes state transitions.

Active diagnostics are extensions of computer self-test methods. Diagnostics require more monitoring transducers and the ability to exercise control functions as part of a test mode. This includes "flexing" of contactors and motorized components to see if they are working properly.

Well defined test signals, such as TV VITS or multiple audio tones, can be injected into the input of the system. Monitoring these signals throughout the RF chain with appropriate demodulators and transducers allows the controller to diagnose the health of each stage. Such tests can be run during station down times or continually, as with the TV VITS, which can be injected during each vertical retrace.

Although not implemented in any commercial broadcast equipment at this writing, this data could automatically tune RF stages or exciters and amplifiers to dynamically bring the devices into specification. The procedure could compensate for some failures or perform normal maintenance tasks.

Historical diagnostics use the information gathered for a period of time to indicate detrimental trends. Changing V-I characteristics of a tube filament aid predictions of tube life. The power requirements of an ion pump for a klystron tube may indicate that vacuum seals are deteriorating.

The limitations of diagnostic capabilities lie in what can be measured, what can be controlled and how well the designer defines the possible faults. These are the manufacturer's responsibilities. A transmitter designed without diagnostics in mind cannot be specific about the problems it may encounter.

However, with thought in design, technical personnel can drive to the transmitter site, knowing what parts and test gear to carry. The extra capital cost to the broadcaster for the diagnostic capability will pay for itself in terms of maintenance and technical personnel time.

Serial remote

Another benefit of MPU control involves serial communications. Instead of a dedicated wire or channel per parameter, all information available at one end of a serial link may be sent to the other end over a single channel. This permits easy hardware expansion at the transmitter site, compared with using traditional remote control applications.

Serial communications involve sending and receiving digital codes in a time sequence over a single channel.
AM Stereo Without Compromise

C-QUAM® AM Stereo System by Delta Electronics, Inc.
FCC Type Accepted

Delta Electronics, Inc. introduces the ASE-1 AM Stereo Exciter and ASM-1 AM Stereo Modulation Monitor: FCC type-accepted C-Quam System transmission equipment for the AM Stereo broadcast market. C-Quam is the Compatible Quadrature Amplitude Modulation system developed by Motorola, Inc. C-Quam is the system of choice for more than 200 U.S. stations plus additional Canadian stations. Users range from kilowatt day-timers to full-time network flagships. These stations report enthusiastic response from listeners using multimode and full C-Quam stereo receivers as well as typical monophonic receivers. The key is compatibility without compromise. All listeners, stereo and mono, receive a clear signal with low distortion. Delta's twenty-year leadership in the field of broadcast instrumentation solidly backs this technological advance.

The proliferation of receivers from GM's Delco Electronics, Inc., MacIntosh Labs, Sherwood Electronics, Chrysler Corporation, Concord Electronics, Samsung Electronics and others not yet announced, is creating a sizeable C-Quam audience. With the outstanding performance of this equipment, you can be sure that the audience will stay tuned to your Delta C-Quam AM Stereo transmission system.

For additional information, contact Bob Bousman at (703) 354-3350.

C-QUAM is a registered trademark of Motorola, Inc.
Manufactured under license from Motorola, Inc.
The codes must be recognizable by both sending and receiving hardware. The speed of transmission is a function of the channel bandwidth. A 300-bit/s channel passes about 30 characters of text or may update several metering channels per second.

Typical methods use two specific audio frequencies for voice-grade bandwidth telephone channels (300-bit/s), phase shift keying for higher speed channels requiring a carrier (9600-bit/s over telephone leased lines), or voltage level changes on dedicated local lines (1Mb/s).

Algorithms (formulas) provide methods for error detection and correction (or retransmission requests). Examples of serial communication applications include RTTY, computer terminals and infrared television remote controls.

At the transmitter site, serial links allow controllers within a multiple transmitter configuration to communicate with a minimum of external wiring. Serial links will soon be used within the transmitter itself to communicate commands and status between different parts of the transmitter. Again, this lowers wiring costs.

A serial link between studio and transmitter sites gives the operator access to all information available to the transmitter controller. A series of parameters are observable in any desired order. Instead of dedicating many channels on an STL to the status of discrete functions, one channel carries all the information. The controllers at each end organize the information for display.

MPU control offers a new form of maintenance services. The consultant providing this service contact the transmitter site at regular intervals and inquire as to the health of the hardware. If problems are diagnosed, they are reported to the station management or directly repaired as part of the service agreement. This approach is used with fixed aircraft navigation beacons on a worldwide scale.

Various links may connect the transmitter to the service or monitoring location. Modems may use the public telephone network for data rates from 300 to 9600-bit/s.

Other possibilities include a terrestrial microwave STL channel, a transmitter SCA channel for 1-way status monitoring or direct satellite networks. The SCA channel approach allows monitoring of equipment status from anywhere within the station's coverage area with a receiver, modem and a personal computer.

Drawbacks to computer-based controls include the cost of additional transducers and control devices, a different type of maintenance and different failure modes. Parts of the industry have also resisted the use of MPU-based controllers.

Traditional control and monitoring can be accomplished with transducers and control circuits, which cost about the same as similar discrete logic controllers. However, to achieve a reasonable degree of diagnostic capability, hardware costing much more must be integral to the transmitter. The industry has not yet taken that step.

If properly built, the MPU control circuits will have reliability figures many magnitudes higher than the rest of the transmitter. They draw little power, and they do not get hot. (General Motors' repair manuals for late model cars tell mechanics to replace everything before replacing the computer-based control unit. It rarely fails even in an automotive environment.)

The people who understand RF hardware may not usually understand computer hardware. This is also true of the manufacturers. Traditionally, a technician fixes a transmitter with a VOM and an oscilloscope. Some sta-

The Monroe Model 5002 Remote Control will handle channel selection for two dual audio or voice cue modules for the Scientific Atlanta DAT-32® and the Comtech DART-384®. It will also provide remote transponder selection for the DART-384®.

THE NEW 5002 WILL SAVE YOU TIME AND MONEY AS YOU REDUCE THE NUMBER OF DEDICATED LINES AND CHANNEL CARDS.

- Control by phone
- Access Code
- Memory
- Automatic Disconnect
- Low Priced

Write or phone today for literature.

A NEW DAT REMOTE CONTROL
FROM MONROE ELECTRONICS

MONROE ELECTRONICS, INC.
100 House Avenue, Lyndonville, NY 14868 Phone: (716) 785-2254
Telex: 756662 Easylink: 62547830

* Registered Trade Names
NTSC DIGITAL TEST GENERATOR
DTG-1010N

the multitasking machine...

Dual feeds of 40 test signals to FIVE different locations with complete remote control.

Two new test signals for chroma noise measurements and transmitter power calibration.

Three VITS packages.

Full range of trigger signals.

Variable H and V blanking.

Genlock.

RS170A ... of course.

Plus outputs of

SYNC
BLANKING
SUBCARRIER
TRIGGERS

Leitch Video of America, Inc.
825K Greenbrier Circle
Chesapeake, VA 23320
Tel.: (804) 424-7920
Telex: 710 882 4342

Leitch Video Limited
10 Dyas Road
Don Mills, Ontario M3B 1Y5
Tel.: (416) 445-9640
Telex: 06 986 241

Circle (42) on Reply Card
NEWS COMPUTER CHECKLIST

- FASTEST SPEED.. NewStar
- HIGHEST RELIABILITY.. NewStar
- LARGEST ARCHIVE.. NewStar
- GREATEST FLEXIBILITY.. NewStar
- FULL ELECTRONIC TELEPROMPTING............................... NewStar
- EASIEST FUTURE EXPANSION... NewStar

More U.S. television and radio stations have purchased NewStar than any other system.

Join the NewStar Revolution!
NAB Booth 1116

Colorgraphics Systems, Inc.
5725 Tokay Blvd., Madison, WI 53719 608-274-5786
Circle (43) on Reply Card

Dynatech Broadcast Group...Leade
If make-goods have become a fact of life at your station, it's probably time to talk to someone from Utah Scientific about automating your on-air operation.

Here are some important facts about our Station Automation Systems:

- Built around the Utah Scientific MC-500 Series Master Control Switcher—the only switcher specifically designed for automation.
- Distributed processing throughout—where hardware failures are an inconvenience, not a catastrophe.
- Interfaces directly with your business service computer—no manual entry required.
- Generates media pull lists, FCC log and business service reconciliation.
- Bar code reader available for direct entry of machine names and media numbers. Also interfaces with TCR-100 bar code reader.
- Machine control interface included.
- Also automates off-line operations such as network and satellite delays and feeds.

UTAH SCIENTIFIC, INC.
a DYNATECH company

1685 West 2200 South, Salt Lake City, Utah 84119
TOLL FREE (800) 453-8782 PHONE (801) 973-6840
TWX: 910-925-4037

Circle (44) on Reply Card
Continued from page 64

Interlocks have little more equipment available. With relays or discrete digital logic, the technician has a chance of tracing a push-button depression through the control circuits to the final result of this action with his scope and meter.

Under computer control, all signals pass through the MPU circuits, which may not have fixed function paths. Conventional test equipment does not tell its user anything useful. Therefore, an anxiety exists concerning owning microprocessor based equipment. This does not need to be the case.

First, the controller will probably never break. Second, if it partially fails, but the self test software still operates, the controller attempts to define its situation and guide service personnel through the repair procedure.

If the core of the processor's circuits are gone, you will have to determine which parts to replace to get the transmitter back on the air.

There are many ways to fix a broken microprocessor controller. Methods include board swapping and kernel isolation at the circuit level. The controller can also be treated as another black box and replaced like a car control unit.

Before buying an MPU-based transmitter, broadcasters should make sure that equipment manufacturers fully support their products. This support should include thorough and readable technical manuals, the availability of technical training for station maintenance personnel and field service support.

You should also check the hardware for ease of maintenance. The location of various controller components should be well defined and in an easy-to-reach place to facilitate board swapping.

Microprocessor-based control circuits have arrived. They pose new maintenance problems, but with their reliability and benefits, they will become universally used. They offer better control, monitoring, diagnostic and communication capabilities than their predecessors.

Meanwhile, their use facilitates the economics of automated stations and eases the rising costs of technical labor.
“When KTLA-TV went stereo, I went Modulation Sciences.”

“While everyone else is thinking about or tinkering with Multichannel Television Sound, here we are—broadcasting not only in stereo, but making full use of the SAP and Pro Channels as well.

We installed the Modulation Science's stereo generator last October. A couple of months later, and after 'A-B' testing against another manufacturer's proposed stereo system, we committed to the Modulation Science's TSG™ package—complete with their SAP and Pro options. We're using the SAP for Spanish language and the Pro for controlling two ENG satellite stations.

I'm pleased with the performance and feel so confident in Modulation Science's capabilities that I've ordered a second system from them. I'm also the first in-line to evaluate their new precision multichannel stereo decoder.

For KTLA-TV's implementation of MTS, performance, reliability and ease of installation were equal priorities; money wasn't a major factor as the other system we evaluated was comparably priced. The real bottom line came down to this: making a jump as big and as new as TV. Stereo, you don't fool around!"

Modulation Sciences can get your station up & running in stereo too. We're the leader in Multichannel TV Sound for two good reasons; one, we can deliver the only fully-integrated stereo generator that truly meets all the technical requirements of the BTSC's OST #60; and two, we've got the answers. Working closely with scores of TV broadcasters, we've developed the necessary expertise to solve your unique TV stereo implementation problems.

Contact us now for full information. We'll be pleased to help you—just like we helped Ira Goldstone at KTLA-TV.

modulation sciences, inc.
115 Myrtle Avenue
Brooklyn, New York 11201
(718) 625-7333

The Multichannel Television Sound Experts.
If someone were to ask you “What is an acoustical material?” what would your response be? If you answered that “Any material is an acoustical material,” you would be correct, because all materials are sound absorptive in varying degrees. But where do you draw the line on acoustical absorption? If a material that is 75% absorptive is an acoustical material, what about one that is 60%? What about 50%? 40%? 25%? And some materials offer little acoustical absorption but have other properties that make them good acoustical materials.

In Part 1, we discussed the internal acoustics of studio spaces, but that is only one of the acoustical concerns that broadcasters must consider. The problem of sound transmission into or out of the studio is just as important. Although this is commonly thought of as keeping the outside world out, it is equally important to keep studio sound in.

Materials that provide high percentages of sound absorption are usually not good at containing sound. Although sound absorptive products are usually made of soft, fibrous or porous materials, building components that make good sound barriers are solid and massive.

A material’s capacity for containing sound is generally a function of its surface weight (expressed in pounds per square foot of area). Some common materials that make good sound barriers are concrete, gypsum board, sheet steel and masonry products. Lead is another heavy material known for controlling the transmission of sound. The advantage to using lead is that it conforms to almost any shape, when used in thin sheets. However, lead is expensive. Its use in building construction is limited, because the expense is hardly ever justified by the minimal wall thickness that can be achieved.

The sound transmission loss of a typical homogeneous material is shown in Figure 1. For most common building materials, the audible frequencies are in the mass-controlled portion of the curve (Region II) where sound attenuation increases by 6dB per octave (doubling of frequency). From this, you can see that nearly all products contain high-frequency sound better than sound at low frequencies. You may have noticed that it is most difficult to contain the low-frequency “beat” from music.
We designed-in features the competition couldn’t.

Get the competitive edge with our new family of field/studio cameras. The SK-97 and SK-970 combine on-board computers and advanced technology to provide the maximum flexibility and control available today.

No competitive video camera automatically sets up full color balance and full registration, including the green channel, in just two minutes.

No other video camera in its class has a full-function, “smart” Remote Control Unit offering more capability in less space.

No other competitive video camera offers real time registration correction during lens zooming and focusing.

No other camera in its class offers automatic corner registration correction as part of its automatic registration set up.

No other video camera has a prism heat sensor and pre-programmed ROM to ensure correct registration in real-time.

Each camera contains an on-board computer that allows simultaneous set-up of up to 42 cameras within two minutes. Plus only one camera is affected in case of auto set-up failure.

Hitachi’s SK-970 and SK-97 Computacams.

Our SK-970 and SK-97 Computacams offer superior noise-free video (59 dB signal-to-noise-ratio)! Combine all this with other advanced features such as 700 horizontal lines of resolution, high gain in 3 dB steps from 0-21 dB, completely interchangeable boards, and built-in auto diagnostics, and you can see why our SK-970 and SK-97 Computacams stand alone!

Get the features the competition couldn’t design in. For descriptive literature, technical information, or a personal demonstration, contact Jack Breitenbuchar, National Sales Manager, Hitachi Denshi America Ltd., Broadcast and Professional Division, 175 Crossways Park West, Woodbury, N.Y. 11797 (516) 921-7200 or (800) 645-7510.

Circle (47) on Reply Card
At very low frequencies, the sound transmission characteristic is stiffness-controlled, and here it is best if the material is somewhat limp—or at least not excessively stiff. Within some range of high frequencies, there is a coincidence frequency, \(f_c \), at which the material tends to be a poor barrier. In theory, a material will transmit all sound at the coincidence frequency if it impinges on the wall at a singular angle of incidence. Fortunately, in real life, sound strikes real walls at all angles and the coincidence effect is not so severe.

The mass law for sound transmission loss may be expressed as

\[
TL = 20 \log w + 20 \log f - 33.5 \text{dB}
\]

where \(TL \) is the transmission loss at frequency, \(f \) and \(w \) is the surface weight of the wall in pounds per square foot (in instances in which the wall's mass is given in kilograms per square meter, the subtracted constant term becomes 47.)

The frequency dependent term is responsible for the 6dB per octave slope of the mass-controlled portion of the curve. Similarly, the other term implies a 6dB increase in transmission loss with a doubling of surface weight. This indicates that a doubling of the amount of material in a homogeneous wall will increase the sound transmission loss by only 6dB. From this, you can see that it would not be effective to use thicker walls in an effort to improve sound insulation.

The sound transmission loss provided by two totally independent walls would be the sum of the sound transmission loss of each. From this, you should note that two 4-inch concrete or masonry walls provide far more sound attenuation than a single 8-inch wall. However, it is difficult to provide truly independent support for two walls constructed side by side. In practice, it is commonly estimated that the total sound transmission loss will be equal to the loss of the heavier wall plus one-half of the sound transmission loss of the other wall.

Although the mass law predicts that heavy materials will provide greater sound attenuation than light ones, structural constraints often limit the quantity of heavy materials that can be used in modern construction. A common problem occurs when you want to construct studio spaces on an upper floor of an existing building. The use of concrete or masonry products is almost always prohibited because of their weight. However, it is possible to achieve large amounts of sound transmission loss using lighter products if they can be installed in a way that independently supports the various layers.

Most of the techniques used to improve the sound transmission loss of lightweight frame walls are designed to isolate the individual layers of material from one another. A wood stud wall, commonly found in residential construction, rigidly ties the gusset board panels together so that they act as a unit. In fact, a wall with 1/2-inch drywall on each side of wood studs is no better as a sound barrier than a wall with one inch of gusset board on only one side.

The common improvement for wood frame construction is the staggered stud wall, where 2x4 studs are attached to 2x6 plates alternately on one side, then the other. In this way, the two sides of the wall are supported by separate sets of studs and connected only at the top and bottom.

An improvement on the wood stud is the lightweight metal stud. These steel channels have cut-out webs to prevent the transmission of structural vibration from one side of the wall to the other. Metal studs are commonly used for most commercial construction.

There are two products on the market designed to give wood stud walls the same vibration isolation as walls built with lightweight metal studs. Resilient furring channels are applied across the wood studs and the gusset board is attached to them. If properly built, wood stud walls with resilient furring channels can be as good as partitions with lightweight metal studs. Care must be taken that the drywall is screwed to the channels between the studs, so that screws do not anchor the wallboard to the studs.

The use of resilient furring channels on one side of a wood stud wall is usually adequate, but they may be used on both sides of a partition for critical applications. A second product which is commonly misunderstood and often misused is sound deadening board or sound control board. This wood fiber board is designed to be a resilient underlayer for gusset wallboard. It does not provide significant sound attenuation by itself. As with resilient channels, be careful that the drywall is not attached directly to the studs through the underlayer. One way of guaranteeing this is to nail or screw the sound deadening board to the studs and then attach the wallboard to it with an adhesive. Even using this technique, it is important that the nails be dimpled or set so that their heads do not contact the wallboard.

In the completed wall, a trapped airspace in the wall cavity will act like a spring, tying the two sides of the partition together. At some frequency, a resonance occurs, at which the sound transmission loss is much less than at
JVC's experience—and success—in designing the highest quality and reliability into compact video production cameras is unmatched. Now, continuing this tradition of high performance at an affordable price, JVC has brought a "high-end" teleproduction camera within the financial reach of production people often victimized by modest budgets. This time, it's ProCam 320.

What a package!

Sensitivity: ProCam 320 features three, 2/3" Plumbicon pick-up tubes for incomparable picture quality. A refined f/1.4 prism optics system provides horizontal resolution of better than 600 lines at center. A 2H vertical contour correction circuit further assures image clarity. And minimum illumination measures only 38 lux (3.6 fc) at f/1.7, permitting shooting even in limited or artificial light.

A video S/N ratio of 57 dB. Color framing output signal (RS-170A). A split field color bar generator for consistent color reference. A genlock circuit for maintaining a stable picture while switching or mixing with other signals locked on the same source.

EASY OPERATION:
Several 8-bit data memory chips offer operator conveniences for quick set-up and consistent performance. These include: Auto centering, auto-black balance and auto-white balance, auto black level stabilization and auto beam control circuits. Matrix masking for true color reproduction and automatic protection for the pick-up tubes are a few of the many features standard on this new camera.

VERSATILITY: Easy portability. Outstanding performance in low-level lighting. High degree of automation. An extensive selection of options and accessories combine to make the ProCam 320 suitable for both studio production, EFP, or ENG; or, indeed, to any application, anywhere, that calls for top quality video production while staying within a tight budget.

PROCAM TECHNICAL SUPPORT: Your ProCam sales representative will be happy to explain the availability and calibre of the ProCam technical support program.

For a demonstration of the ProCam 320 Video Camera, a 320 Spec Sheet, or JVC's complete catalog, call, toll-free:

1-800-JVC-5825

JVC Company of America
Professional Video Division
41 Slater Drive,
Elmwood Park, N.J. 07407

JVC CANADA,
Scarborough, Ont.

© 1984 JVC Company of America
ProCam is a trademark of US JVC Corp.
* Plumbicon is a registered trademark of North American Philips Corp.
** Saticon is a registered trademark of Hitachi Denki, Ltd.
Continental's
5 kW AM Power Rock: a sound winner that's ready for AM stereo.

The Power Rock is designed to give you the very best audio. Listen to the loud, clear signal, and you know you have a winner. The Power Rock is ready for AM Stereo and accepts sophisticated audio.

- Owners and managers like Power Rock's superior performance and outstanding on-air performance
- Program directors like the crisp, clean signal and compatibility with the most sophisticated audio processors
- Engineers like the proven design and conservative components: a safety margin for steady, reliable on-air performance.

Left: Photo shows excellent dynamic response of Continental's 5 kW AM transmitter at 20Hz modulation. Right: Photo of modulation waveform shows effect of instantaneous peak limiter

For a copy of our brochure on the 315R 5 kW AM Power Rock, call 214-381-7161, Continental Electronics Mfg. Co. Box 270879 Dallas, TX 75227

© 1983 Continental Electronics Mfg. Co. 5161

Small pieces of Homasote are specified for insulating walls beneath the wall and above and below the window. Homasote is a soft material that provides a resilient cushion and improves the isolation of the wall from the floor. Another technique for reducing the structural connection between the two sides of the wall in concrete construction is an expansion joint in the floor between the two sides of the wall.

The sound transmission loss of any wall is usually limited by sound leaks and the sound transmission loss of elements such as doors and windows. It is important that a sound reducing wall be carefully constructed and tightly sealed at the floor, ceiling and room corners. If the wall does not extend to the underside of the floor or roof deck above, a ceiling of comparable construction must be used.

The sound transmission loss due to a wall with even small sound leaks may be approximated by the expression

\[TL = 10 \log \frac{\text{area of wall}}{\text{area of leaks}} \]

Because the leaks are small, you may think they pose no problem. Consider then, a wall in which leaks amount to no more than 0.01% of its area. The formula indicates that the transmission loss is limited to 10 log (1000/0.01) = 40dB. Because a good wall may provide a sound transmission loss of 50dB or 60dB, this limitation is a serious defect. To guarantee a transmission loss up to 60dB, sound leaks must be limited to less than 0.0001%, equivalent to a ½-inch-square hole in an 8x12' wall.

This master control room requires a high percentage of acoustic absorption. Significant details of the room include its shape and the window facing the street.
Shure's new FP31 Mixer takes a big weight off your shoulders.

Introducing the most innovative field production mixer of its kind. Shure's FP31. You won't find another mixer this small with these features, dependability and ease of operation.

The FP31 measures only 6½" x 5½" x 1½", and weighs just 2.2 pounds! Incredibly, it offers the same important features as much larger mixers. Plus, a few of its own.

Every channel has a mic/line level and a low-cut filter switch. And to prevent overload distortion, there's a built-in limiter with adjustable threshold.

The FP31 can be powered by two internal 9-volt batteries, or from an external 12-volt source. A green LED flashes to remind you that the mixer is on. Phantom and A-B power are also provided to operate lavaliere and shotgun microphones.

A slate tone can be laid down on the tape for locating specific takes, and there's also a built-in mic for voice slating.

The mixer also has two separate mic/line outputs for 2-camera shoots and a tape output to feed a cassette. For monitoring, there are two stereo headphone jacks—one ¼-inch and one for mini-plugs. The FP31's rugged nylon carrying case allows you easy access to every mixer function and lets you piggyback the mixer on your VCR or other equipment.

For ENG, EFP and film use, Shure's FP31 has everything you need to make your mix a perfect success. Coming from a mixer this small, that's quite an accomplishment.

For more information on Shure's FP31 Mixer, call or write Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204, (312) 866-2553.
AM BROADCASTING - HIGH FIDELITY

Are these terms mutually exclusive?
☐ YES ☐ NO ☐ DON'T KNOW

Surprisingly, many broadcasters may not know that the correct answer to this question is no. Large sums of money are spent each year to purchase new transmitters, new studio equipment, new audio processing equipment and to modify antenna systems for improved AM sound. Unfortunately, until now, there has been no such thing as a professional quality AM monitor receiver. As a result, the perceived fidelity of an AM signal has been severely restricted by receiver performance.

Potomac has developed the SMR-11 Synthesized Monitor Receiver which will let you hear and measure the quality of your transmitted AM signal... perhaps for the first time. Features include: Crystal Stability; 60 dB Signal to Noise Ratio; Audio Frequency Response ±0.5 dB, 20 Hz to 8 kHz; Total Harmonic Distortion less than 0.2% (95% Modulation) at audio frequencies above 40 Hz... please write for complete descriptive brochure.

THIS DIAL WILL TUNE YOU IN TO THE NEW SOUND OF AM BROADCASTING

Potomac INSTRUMENTS
932 PHILADELPHIA AVE.
SILVER SPRING, MD. 20910
(301) 599-2662

Circle (61) on Reply Card

Nady VHF: The best sounding wireless
is now also the most user friendly.

NADY 901
VHF RECEIVER

NADY 701
TRUE DIVERSITY RECEIVER

501 LT TRANSMITTER WITH LANAJAL MICROPHONE

DIMENSIONS: 2.5" x 2.5" x 10" 115B OZ.

501 LT TRANSMITTER RECIEVER: ELEMENT.

Circle (62) on Reply Card

Windows and doors also reduce the effectiveness of a sound enclosure. Doors or windows seldom provide the same degree of sound attenuation as the wall. As long as their area is kept to a practical minimum and they provide fair sound transmission loss, their effect will not be disastrous, but will reduce the overall sound transmission loss of the wall assembly.

A typical single-glazed window will have a sound transmission loss of less than 40dB, even at high frequencies. Therefore, double- or triple-glazed windows are necessary in partitions where high sound attenuation is expected. Because glass panes of different thickness have different coincidence frequencies, the use of two or more varying thicknesses will reduce the coincidence effect. Laminated glass panels are available that also reduce the coincidence effect.

It was formerly thought that sloping one pane with respect to the other would increase the sound transmission loss of the assembly. Recent research shows this is not true, but common practice still includes this detail in order to minimize double reflections from the glass. Sloping panels should tilt out of the wall at the top, to prevent images of the ceiling lighting from being reflected into the eyes of room occupants.

The individual panels of glass should be supported independently. In a double wall, each pane of a double-glazed window can be mounted in one half of the wall, as shown in Figure 2. The airspace between the panes is lined with acoustical absorption to reduce the cavity resonances.

Doors present a similar problem. It is possible to select doors that provide high values of sound insulation. However, in the most critical installations, it may be difficult to provide a sound transmission loss equal to that of the wall without using two doors. You can mount two doors in the same frame, one swinging into the room, and one swinging out, but a more popular and effective approach is two doors on either side of a small vestibule. This forms a sound lock through which people can enter even when the studio is in use. The use of two doors and a sound lock may be less costly than a single door with a high sound transmission loss rating.

Just as a window can compromise the sound transmission loss of a wall, a view panel in a door can limit the sound attenuation of the door. Keep in mind that the dimensions of a view panel usually govern the sound transmission loss, and therefore a long, narrow pane is better than a square pane of equal area.

As you might have guessed, the factor affecting the sound attenuation of
When You’re Racing Against The Clock, Tascam Works as Hard and Fast as You Do.

At TASCAM, we know the pace demanded of you and the additional demand you’re making on your audio systems. And we’ve built the professional equipment you need to put you out in front. We know the last thing you need with a deadline rushing at you is audio equipment that slows you down.

We designed our rugged 58 recorder/reproducer to handle rapid, high-torque tape shuttling with exacting precision and trouble-free dependability. Built to take the most rigorous production schedules, the 58 is the industry’s first 1/2” 8-track with the performance capabilities and engineering depth of a 1” machine. Microprocessor 3-motor servo control moves you quickly and cleanly to the point you’re after, and stops on the dime. Our unique Omega Drive ensures smooth, consistent tape path stability, keeping tape from stretching no matter how often you start and stop. And tape to head contact is uniformly precise across all 8 tracks.

The 58 links your work to a complete TASCAM system. Our hard-working 500 Series mixers give you the speed you need with fast signal routing, logical, easy-to-use board layouts, and broad creative flexibility.

When you’re ready for layback, our 2-track 52 offers you exceptional mastering capabilities. This durable duet features the same superb control and SMPTE-interlock accuracy as the 58, with equally outstanding audio performance.

For less elaborate production needs, our 4-track 44B keeps SMPTE up to speed for fast editing. Or integrate it as a stereo layback machine from our 48 or 58. Use our 42 for mono mastering plus code.

The best way to get the best of a relentless deadline is to get your work down to a system. A TASCAM system.

Ask your dealer for full details or write TASCAM, TEAC Professional Division, 7733 Telegraph Road, Montebello, CA 90640, (213) 726-0303.

Copyright 1984 TEAC Corporation of America

TASCAM
TEAC Professional Division
We test your equipment, not your patience.

Technical Project's new microprocessor-controlled MJS401D, Audio Measurement System is a powerful cure for test frustration, leaving engineers with more time and energy for solving problems. Here's the prescription:

- **FAST** Accurate, clear, multi-standard Noise and Level measurement.
- **FAST** Totally Automatic THD measurement.
- **FAST** 4 Digit Frequency Display.
- **FAST** Unique "below noise" crosstalk measurement.
- **FAST** ±15dB Expanded Scale magnifies variations.
- Butler to ±45dB range to measure any device.
- Linear volts scale too.
- Function Interlock recalls settings, speeding repeated measurements.
- "Plug in and go" options, all field installable.
- Balanced in and floating out for minimal earth noise.
- Speedy recovery from accidental overload.
- RF and oscillator breakthrough abolished.
- Optional IEEE-488 for automatic testing.

Get your engineers the tool for efficiency—Technical Project's MJS401D Audio Measuring System—they deserve the best.

Circle (59) on Reply Card
NEW FROM AFA!

WHAT?
Pegasus Commercial Compilation Systems
Marconi B3410 Telecine
Sharp Cameras and Monitors
Tektronix Test Equipment
Leader Test Equipment
RTS Intercom and Audio Equipment
ROH Communications Equipment
ADM Audio Consoles and Distribution Amplifiers
AVS Standards Converters
Chyron Character Generators
ABEKAS Electronic Still Stores and Digital Effects

WHERE?
AFA Products Division

WHY?
Knowledgable Sales People, personal service, competitive prices!

HOW?
Call: (201) 767-1000 or (213) 466-5066 for immediate action!

A.F. ASSOCIATES INC.
ADVANCED SYSTEMS AND PRODUCTS FOR THE VIDEO INDUSTRY
100 STONEHURST COURT NORTHYALE NJ 07647 (201) 767-1000
1438 NORTH GOWER STREET HOLLYWOOD CA 90028 (213) 466-5066

Circle (55) on Reply Card
Charting a course for AM improvement

By Michael C. Rau, NAB, Washington DC

Consider AM's assorted technical problems. Among those presently identified are AM skywave interference; the nature of electromagnetic noise; narrowband AM receivers; excessive boosting of high audio frequencies; spreading of communities beyond the intended interference-free service area of local AM stations; a lack of centralized technical information; spurious emissions and/or distortion caused by transmitter transient distortion; and widespread interference from electrical devices. Are there solutions to these problems? Perhaps. Some may be beyond solution.

In response to these identified subjects, the AM Improvement Committee has suggested eight specific considerations. Briefly, these are:

- To begin an industry-wide AM promotion campaign;
- To establish a center for AM technical information;
- To urge AM broadcasters to limit boost of audio frequencies above 12kHz before transmission;
- To improve AM transmitting antenna fidelity through broadbarding;
- To research promising new antenna designs;
- To research transmitter transient distortion (TTD);
- To work closely with receiver and IC manufacturers; and finally,
- To work for mitigation of existing and potential RF interference from electrical devices.

Let us focus on each of these points in turn. We will expand on efforts afoot or needed to implement the recommendations.

Promoting AM

Launching an industry-wide campaign to promote AM radio appears the most difficult of the suggestions to implement on a nationwide basis. Certainly the broadcast industry could mount an AM listening campaign. However, obstacles may shadow the success of such a quality-oriented promotional effort.

A campaign to sensitize people, who already listen to AM radio, that AM can sound good, must carry an implicit message. AM can, indeed, sound great—but only on new generation radio receivers. The listener must be enticed to experience how good AM can sound.

Unless radio stations promote and present quality AM receivers to the public, virtually the only place the consumer can listen to quality radio is in a store that sells quality receivers. The campaign to increase quality consciousness for AM must, at least in the beginning, be formulated to bring consumers into retail receiver outlets.

Encouraging the sale of quality radios in itself presents no problems. However, which radios should be designated as quality? Who or what will decide which specifications of the radios determine quality? What minimal specifications will be taken as acceptable? Can a broadcaster be assured that nearby retailers will carry the specified radios? Can those radios be properly demonstrated in the store? Many retail outlets do not provide for reception of AM.

Perhaps a standards committee could formulate evaluation guidelines for AM receivers. The results could furnish an input for the quality radio campaign. Sadly, committees consume considerable time as well as financial and personnel resources, but they offer no assurance that the endeavor will be successful.

Note that several localities, such as New Orleans, have mounted cam-

Figure 1. Trends in radio listening audiences.
IF YOU MISSED
THE FIRST SHOWING
OF THE INEXPENSIVE
COMPUTERIZED
CONTROLLER
FOR THE UNITROL SYSTEM
AT THE NAB SHOW
THEN CALL or WRITE US.

We’ll fill you in
on all the details
of this unique
lighting control system.

THE
UNITROL
LIGHTING CONTROL SYSTEM

NO DIMMER RACKS
NO PATCH PANEL
NO MAINTENANCE
NO CONTROL WIRING

NO ADJUSTMENTS OR TUNING
NO CONTRACTOR INSTALLATION COSTS
NO OPERATIONAL TRAINING
INSTALLS IN MINUTES BY STAGE CREW

IT’S THIS SIMPLE

Plug light source into SU-1... Then plug SU-1 into any outlet... Now plug DIGI-1 into any outlet anywhere on the same wiring system... AND YOU ARE READY TO GO.

- AC LINE CARRIER CONTROL
- COMPLETELY SILENT
- 2400 WATTS (2.4KW)
- CONTROLS UP TO 256 CIRCUITS

- SOLID STATE DIMMERS
- PORTABLE OR HARDWIRED
- MODULAR AND EXPANDABLE
- MORE ECONOMICAL THAN A PACK SYSTEM

FOR IMMEDIATE INFORMATION CALL

UNION CONNECTOR CO., INC.
140 BABYLON TURNPIKE
ROOSEVELT, NEW YORK 11575
Tel (516)623-7461

U/L Listed
OSHA Acceptable

Copyright 1985

Circle (89) on Reply Card

April 1985 Broadcast Engineering 81
“Ikegami’s HL-95 Unicam can handle — and more.”

— John Hall, Director of Engineering
WDAF-TV, Kansas City, Missouri
The biggest eruption in the professional hand-held television camera market occurred with the introduction of Ikegami's UNICAM, a multipurpose Plumbicon® camera concept with a host of applications.

Utilizing a unique building block approach which incorporates the HL-95B basic camera head, various configurations are possible: Several ENG stand-alone cameras, combined camera-VTR units with a selection of 1/2 inch or 1/4 inch component recorders and remote controlled EFP cameras with multicore cable or triax cable base stations can be assembled.

The versatility and flexibility of the HL-95 system is provided without sacrificing state-of-the-art performance in the areas of sensitivity, resolution and registration; these are achieved with minimum equipment size, weight and power consumption.

Pound for pound the HL-95 is the hottest little camera you'll ever hold in your hands.

For a demonstration of UNICAM and other Ikegami cameras and monitors, contact us or visit your local Ikegami dealer.

Ikegami

Ikegami Electronics (U.S.A.), Inc., 37 Brook Avenue, Maywood, NJ 07607
• East Coast: (201) 368-9171 • West Coast: (213) 534-0050 • Southeast: (813) 884-2046
• Southwest: (214) 233-2844 • Midwest: (312) 604-9774

Plumbicon is a registered trademark of N.V. Philips.
paiges to promote the quality aspects of AM radio in general. Also the benefits of AM stereo and selected radio receivers have been stressed. Perhaps campaigns focusing on AM improvement are best initiated on a local level.

Technical aid
As of this writing, a technical reference center is being established at NAB. A student intern has been hired to complete the information-gathering process by convention time. This service will be provided to NAB members at no charge.

A chief engineer needing information on any particular aspect of AM engineering may contact the center. A comprehensive bibliography of the available materials will be furnished to the caller. Finally, by contacting the NAB Science and Technology Department, you can obtain a copy of the desired article or paper.

A second move toward technical assistance will be completed by year’s end. NAB plans a collection of useful articles as a primer on basic AM radio frequency maintenance in an effort to increase quality technical operation.

Reduce the boost
The practice of boosting transmitted audio above 12kHz should be limited. Many industry engineers believe it is unnecessary to pre-emphasis these frequencies to realize good quality AM reception. A significant benefit to AM listenability because of less interference would result if frequencies above 12kHz were reduced. Many AM audio processors already contain such filtering, in effect implementing this recommendation.

The committee found no consensus on the pre-emphasis issue. It was agreed that significant interference exists on adjacent channels from excessively boosted audio frequencies above 12kHz. At the same time, there is little, if any, benefit to the audio fidelity of co-channel AM reception.

Although a standard pre-emphasis curve could not be agreed upon, the committee was positive toward establishing a de-emphasis standard for AM receivers.

Current antenna systems
A spot study of directional antenna arrays operating at 1300kHz revealed that many could be improved through broadening. Known techniques are highly technical in nature and usually require the services of a skilled engineering consultant. To assist the station personnel in accomplishing the task, the reference center will include material about the broadband process. Such material will be available to NAB members upon request.

Future antenna systems
Supplementary antenna designs offer the potential to significantly attenuate skywave radiation in specified directions. They promise to enhance groundwave coverage by as much as 15dB in the areas where coverage is now limited because of distant signal protection requirements.

A computer model has been developed to analyze the theoretical characteristics of such antennas. A 27MHz model antenna is under development. A report of this work and suggestions to implement the concept will be released when the work is finished.

The transmitter
Transmitter transient distortion (TTD) potentially causes interference with no apparent compensating benefit. The nature and causes of TTD and some of its effects remain unknown. Research into transmitter designs may find cures for TTD in existing systems. Investigation on this topic is under way.

Background

In October 1983, the NAB Engineering Advisory Committee saw the need to address AM technical problems on an industry-wide basis. It was held that NAB and its technical staff should be responsible to examine pertinent issues and develop solutions and strategies to those issues. The purpose of the AM Improvement Committee was to collect, to study and to analyze problems facing AM transmission and reception to develop ways to improve technical quality in AM broadcasting.

An array of topics were covered during the eight committee meetings held in 1984. Industry experts were solicited for their views. Letters from interested GMs, CEs and other industry representatives and participants were received. All submissions to the committee were considered.

AM stereo is without a doubt an AM improvement. Its controversial nature precludes a consensus in various issues. As a result, stereo was not within the scope of the committee’s mandated work.
Still The Performance Champion! Broadcast Electronics’ FX-30 Exciter.

In every major market and in over 750 stations, the FX-30 Exciter delivers superior FM sound.

Unmatched Performance.
User testimonials confirm that the FX-30 means outstanding on the air sound, that it offers lowest distortion (THD and IMD typically 0.02%) and that it delivers typical signal to noise of 80dB or better.

Unmatched Acceptance.
Over 750 satisfied users know how the FX-30 consistently provides the kind of results that top broadcasters demand.

Unmatched Reliability.
Field proven dependability, rugged construction and precision workmanship from the high quality front panel to the shock mounted encapsulated modulated oscillator.

Unmatched Conservative Design.
Quality engineered with thorough attention to detail assures you that every component in the FX-30 is operated conservatively.

There are imitations, but if you search the world over, you won’t find a better exciter than the FX-30

For more information on the FX 30 Exciter and BE's exciting FM transmitters and the name of your area RF distributor, call us at 217-224-9600

Broadcast Electronics Inc.
4100 N. 24th St., P.O. Box 3606, Quincy, IL 62305-3606, (217) 224-9600, Telex 250142

Circle (60) on Reply Card
www.americanradiohistory.com
them more attractive to future generations of AM receivers. Quality ICs will only find widespread use if their cost/performance ratio is low.

Highlighting interference

Existing and potential RF interference from automotive ignition systems, vacuum cleaner motors and various electrical fixtures impedes quality AM, notwithstanding potential receiver improvements such as noise blanking.

The pending introduction of RF lighting technology will significantly cut energy costs, by replacing the ubiquitous incandescent light bulb with RF devices. Unfortunately, many RF lighting devices emit energy at AM broadcast frequencies, both over the air and through the power line. (See Figure 1.) A current FCC Notice of Inquiry is exploring the issues of RF lighting, the need for regulation of such equipment; and interference protections to be provided to the AM radio service.

We do not know the extent that RF light bulbs will significantly impair the AM radio listening environment. A current NAB research program is comparing electrical interference to AM reception from existing devices with the likely interference from new RF lighting equipment.

If the RF lighting would not significantly increase existing interference, opposing such technology would not benefit AM broadcasters. We should instead find means to reduce existing sources. If RF lighting significantly increases interference over existing devices, NAB should act to ensure that the FCC adopts regulations carefully designed to protect the AM radio service.

The mandate

This summarizes AM improvement matters as of early March. NAB is pursuing each option as time and resources permit. No guarantees are given, but the committee consensus places the task of researching AM problems and offering AM solutions on the shoulders of the industry’s largest trade association. A failure to address the industry’s real problems would be an abdication of NAB’s responsibility to its AM members.

Comments and suggestions should be addressed to AM Improvement Committee, NAB, 1771 N Street, N.W., Washington, DC 20036. For those interested in the discussion and background of the issues, a copy of the NAB AM Technical Improvement Report may be obtained by calling NAB Science and Technology at 202-429-5339.
It's no wonder 5 out of 6 cartridge tapes sound bad. Phase Fixer makes them sound good.

Even the best tape machines... even the finest cartridge tapes fall prey to sound-robbery phase error and flutter. Carts are dropped. Pressure rollers wear. Playback heads get dirty. But now the revolutionary Harris Phase Fixer audio time base corrector virtually eliminates phase error and flutter. The Phase Fixer is a twin pilot tone system employing high quality 16-bit digital audio.

Why mechanical solutions have failed
Extremely critical tolerances are essential to keep phase error in check. Visualize your cart playback head being expanded to 300 feet high—as tall as a football field is long. Even on this greatly exaggerated scale, tape path errors of as little as two inches will cause signal cancellation within the audio passband for the mono listeners of your stereo programming! Obviously, these close tolerances in the tape heads and moving tape paths cannot be maintained mechanically. And a tape cartridge that is acceptable one day can be made a dud the next—simply by being dropped.

How Phase Fixer works
The Harris Phase Fixer consists of two compact rack-mounted units. The first, a pilot encoder, injects an inaudible pilot signal on the audio as it is recorded onto tape. The second unit is the time base corrector. When an encoded tape is played, the time base corrector is automatically enabled, electronically reducing stereo phase error and flutter to insignificant levels. Tapes that are not encoded will play normally.

What's in it for you
The Phase Fixer dramatically cleans up your air sound, eliminates annoying cancellation drop-outs and retrieves missing musical notes. In fact, your source material can sound five to ten times better. And you can use existing cart record and playback equipment—as well as existing carts—without modification. Just one Harris Phase Fixer system can accommodate all the tape source machines at your station.

Take charge
Don't accept substandard performance as the inevitable trade-off of cartridge tapes. Eliminate it with a Harris Phase Fixer audio time base corrector. Contact Harris Corporation, Studio Division, P.O. Box 4290, Quincy, Illinois 62305. 217/222-8200.

HARRIS

For your information, our name is Harris.

Circle (62) on Reply Card

www.americanradiohistory.com
What you see above is yet another installment of TV’s longest-running horror series: “The Lost Commercial.”

The villain is the antiquated 2-inch cart machine—notorious for making valuable commercial air time vanish into thin air. And its appetite for destruction seems endless. Statistics show it’s not unusual for a station to squander upwards of $15 million yearly on makegoods alone.

But the nightmare is ending. Because Sony announces the first real advance in cart machine technology in over a decade. The new Betacart™ multicassette system.

THE CART MACHINE VS. THE SMART MACHINE.

What the old cart machine tried to do by mechanical means, the Sony Betacart achieves through superior intelligence.

Microprocessors keep constant track of 40 cassettes. They maintain the alignment of the system’s four BVW-11 decks and its elevator. They run self-check diagnostic routines.

And, in the belief that an ounce of prevention is worth many times its weight in makegoods, they solve problems before they occur—such as warning a technician that he’s about to remove a cassette that’s due to air shortly.

The Betacart is communicative in other ways, too. It’s smart enough to guide your technicians through its operation, and will even interface directly with your station’s main computer.

MAINTAINING MACHINERY VS. MAINTAINING PROFITS.

The end result of all this electronic
THE MACHINE INSPIRED BY BILLIONS OF DOLLARS WORTH OF COMMERCIAL FAILURES.

sophistication is the kind of mechanical simplicity that virtually eliminates breakdowns—not to mention the makegoods, excessive downtime and high maintenance costs that are generally part of the package.

And, as its name implies, the Sony Betacart uses Betacam cassettes—which cost less than a third of what 2-inch cartridges cost. Its format also makes the system ideal for ENG use during newscasts—thanks to its compatibility with the Betacam camera/recorder, along with its multiple video and audio outputs and freeze/instant-start capabilities.

All these advantages, plus its low initial cost make the Sony Betacart multicassette an investment that will pay for itself quickly. And it will keep paying off in new ways. Its stereo capability, for example, will allow you to capitalize on the coming introduction of stereo TV broadcasting.

For more information, call in New York/New Jersey (201) 833-5350; in the Northeast/Mid-Atlantic (201) 833-5375; in the Midwest (312) 773-6045; in the Southeast (404) 451-7671; in the Southwest (214) 659-3600; in the West (213) 841-8711.

After all, to err may be human. But there's nothing divine about having to forgive a machine.
Field report: Shure FP31 mixer

By Richard Rudman, engineering manager, KFWB radio, Los Angeles

The Shure FP31 is a 3-channel portable remote audio mixer designed for radio and TV ENG and EFP. The mixer is intended for applications requiring more sophisticated handling of audio sources at remote location events than built-in mixing equipment available on cassette VTRs or audio/tape machines can provide. The unit is also designed as a stand-alone remote radio mixer.

Operational features

The FP31 provides three transformer-coupled XLR connector inputs, which are switch-selectable for microphone or line level signals. A low-cut filter may be switched into each input channel to reduce low-frequency ambient noise.

Figure 1 shows the low-frequency roll-off provided by the filter (15dB at 30Hz). The slope of the filter is gentle (6dB per octave) to prevent unnatural coloring of the input signal.

Simplex (phantom) or A-B power for condenser microphones is available on each input. Three separate switches determine the microphone powering method used: no dc applied (for dynamic microphones); 9V dc (for A-B power); and 11V to 18V dc (for simplex power). No dc is applied to any channel that has been switched to the line input position.

Battery access is through a trap door and latch assembly on the rear apron of the unit. The polarity for battery insertion is clearly marked, although it is possible to insert all three batteries backwards and close the door. If this happens, however, a protection diode will prevent any damage to the unit.

The mixer provides two transformer-coupled XLR connector outputs, each switchable to either a low impedance balanced microphone level (for driving a portable VTR or audio recorder) or a 600Ω balanced line level (for driving a telephone company loop).

The 600Ω line level output of the mixer will operate into a dc biased dial-up Telco line. However, the unit's instruction manual warns there may be a slight increase in distortion. A QKT voice coupling unit should be used between the mixer and a dial-up line for best results.

A separate 3.5mm tape output jack is provided to feed a tape recorder input or other unbalanced aux-level input. This is an important and much needed feature for field mixers.

Two headphone outputs are provided on the FP31, one located on the front panel (for a 3.5mm jack) and another on a side panel (for a ¼-inch jack). The outputs are fed by a front panel headphone level control. Up to four headphones with impedance values from 8Ω to 20000Ω may be used. If necessary, either or both jacks can drive the aux or unbalanced line level input of a tape recorder.

The front panel controls for the FP31 are straightforward. Each of the three input channels has a gain control and low-cut filter in/out switch. A built-in 1kHz oscillator may be ac-

The Shure FP31 remote ENG/EFP audio mixer.
Convergence is rolling out the 195.

The New 195 is a completely new edit controller designed for economical A-B roll editing. This streamlined system controls two source VTRs and can trigger auto transitions on an effects switcher — all for less than $10,000.

The 195 gives you less.

It’s less trouble for people who mostly want to do A-B rolls. The 195 is from Convergence so you can learn to use it in less time. You can even start out with less and add features later. Customize your system with options, as you need them, including a Time Code Reader/Generator and expanded List Management.

The 195 gives you more.

More standard features you can really use. More tag functions for backtiming and match frames. More ways to do A-B rolls including SyncRoll for on-the-fly cutting with both source machines. More editing for less money.

The 195. There’s more to it than meets the eye. See it unveiled at NAB, Convergence Booth #1430.

1641 McGaw, Irvine, CA 92714-5661, (714) 250-1641
AVAILABLE INTERNATIONALLY THROUGH ACQUIS LTD. 1 Airlinks, Spitfire Way, Heston, Middlesex TW6 9NR U.K. Telephone: 01-769 3891 Telex: 929344 ACQUIS G
Circle (18) on Reply Card
tivated by a pull-on/push-off switch on the channel 1 level control. The master gain control determines the mixer output level, making it possible to leave the mic level undisturbed when tone has to be set.

A slate button on the front panel activates a 1s 400Hz tone and turns on the slate microphone, which is built into the front panel of the unit. The omnidirectional electric slate mic remains on as long as the button is depressed. This feature is normally used to identify recorded segments. It can also be used as an emergency microphone. The slate mic feeds a dedicated automatic gain control circuit for consistent recording levels.

A peak-responding limiter may be switched into the program line to prevent output clipping because of input overload. The limiter is fast acting (3ms attack, 500ms recovery) with a factory-set threshold of +14dBm. The limiter threshold may be set to another level by the user, if desired, by adjusting an internal trimpot, accessible through the battery compartment.

A peak LED flashes with the operation of the limiter circuit. When the limiter is defeated from the front panel switch, the peak LED will flash when the program output exceeds +12dBm. A pulse stretcher keeps the LED lit long enough for operators to view transient peaks in the program audio.

The VU meter is factory calibrated for +14dBm output from the mixer with a 0VU indication on the meter. This setting provides about 14dB of headroom. The meter calibration level may be changed by the user by adjusting a trimpot accessible through the battery compartment.

The VU lamp button will illuminate the meter as long as the button is depressed. The lamp will automatically turn off five seconds after release to limit battery drain.

The battery check button will switch the VU meter input to the power supply for a reading on the condition of the batteries. A reading of 0VU or higher indicates good batteries or an adequate external dc supply voltage. The on/off power switch is also located on the front panel.

Figure 1: Frequency response curve for the low-cut filter available on each input channel.
STABILITY

With ten years of service and dedication to quality, Centro has provided the production and broadcast industries with the ultimate in television facilities and mobile systems.

Innovative concepts, attention to detail and competitive pricing has identified Centro as the leader in facilities planning, systems integration and project implementation.

Our experienced disciplines can provide you with a single point of contact and responsibility for the design and construction of television facilities and remote units.

Centro’s longevity during a time of rapid technological growth is a testimonial to our creative approach to telecommunications facilities.

Our goal for the future is to continue to provide our present and future clients with innovative solutions for tomorrow’s challenges.

In order to achieve this goal, we will continue to provide you with our most valuable asset: stability.

San Diego, California (619) 560-1578

Circle (87) on Reply Card
Power supply

Two standard 9V alkaline batteries power the mixer. The batteries can also supply simple power for condenser microphones, if used. If A-B powering of microphones is required, a third 9V alkaline battery is added. Specifications call for an 8-hour minimum battery life under normal operating conditions.

The subject of battery life brings up the question of whether the mixer would be more useful on remotes if rechargeable batteries with a built-in charging circuit were included.

The lack of rechargeable batteries is not a concern. At KFWB, we prefer the alkaline batteries commonly used in portable gear instead of rechargeables. For the type of service we require, it is easier to simply give the reporter or engineer a replacement set of batteries.

In any event, we have never done a remote that was long enough to kill a set of alkaline batteries. Recent improvements in alkaline battery design have substantially improved typical battery life.

A problem common to all rechargeables is reliability in the field resulting from the failure of personnel to place the batteries on charge when needed. Most everyone is familiar with the situation where a crew goes out to cover a story only to find that the last user had failed to charge the batteries, leaving the equipment dead in the water.

In addition to the battery supply, the FP31 may also be powered from any 11V to 18V dc source, such as a standard belt pack, automotive electrical system, VTR or wall socket ac supply. In our application, we used a regulated 12.6V dc wall socket power unit.

The mixer supply voltage has an effect on available headroom. I measured a 2 dB difference between the regulated power supply and two fresh alkaline batteries.

Circuit design

A block diagram of the FP31 is shown in Figure 2. Input signals are routed through a switching arrangement for selection of mic or line levels and phantom mic powering, if used. All sources pass through an isolation transformer before application to the pre-amplifier stage. An active, feedback type gain control is used with each pre-amp, allowing direct input of high level sources without input attenuation. Each input channel feeds the mix bus.

The slate microphone and gain control stage is switched on and off by the slate push-button switch on the front.
Technical editorial. Written by technically-oriented editors.

Two reasons why broadcast engineers read Broadcast Engineering. More often than any other industry publication.

And those are your two most important reasons for advertising in BE.

Call today for a media kit.
panel. The 400Hz oscillator is gated on to the mix bus through a 1s timer circuit. The mic remains active as long as the slide button is depressed.

The 1kHz test tone oscillator, when activated from the front panel pushbutton switch, also feeds the program bus.

A gain-controlled amplifier raises the level of the program bus for application to the line amplifier. The limiter circuit gain control signal is developed using a sample from the line amplifier output. This signal feeds a buffer stage, which is rectified to drive an LED-LDR device placed in the feedback loop of the gain-controlled amplifier. A threshold adjustment for the limiter driver determines the output level at which the circuit becomes active.

A comparator samples the limiter driver output and feeds a buffer amplifier, which powers the front panel peak indicator LED. The input signal for the comparator is switched from the limiter driver to the line amplifier output when the limiter function is defeated.

A VU driver and rectifier feed the front panel meter. A switch in the circuit also allows the battery supply to be checked using the meter. A sensitivity control sets the VU reference output of the mixer.

A dedicated headphone amplifier drives the two headphone output jacks. An input level control allows front panel adjustment of headphone gain.

The two XLR program outputs are transformer-balanced. Separate windings on the secondary provide line level or mic level outputs for each of the XLR connectors. This arrangement gives complete electrical isolation of the two outputs.

Line amplifier protection is built into the FP31. Shorting of either or both outputs—even for prolonged periods—will not damage the output stage. Shorting one output results in a decrease of not more than 8dB at the other output.

RF filtering is provided on all input and output lines, including the external power supply jack.

Power supply circuitry consists of a

Table 1. The manufacturer's specifications and measured performance of the FP31 mixer.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response:</td>
<td></td>
</tr>
<tr>
<td>30Hz to 20kHz, ± 2dB</td>
<td>30Hz to 20kHz, ± 0.8dB</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>at 10Hz response was down 0.1dB.</td>
<td>The high frequency 3dB point was 35kHz.</td>
</tr>
<tr>
<td>Total Harmonic Distortion:</td>
<td></td>
</tr>
<tr>
<td>50Hz to 20kHz, less than 0.25%</td>
<td>50Hz to 20kHz, less than 0.00%</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>Intermodulation distortion was measured at 0.42% (SMPTE 4:1).</td>
<td></td>
</tr>
<tr>
<td>Noise:</td>
<td></td>
</tr>
<tr>
<td>Less than – 129dBV equivalent input noise</td>
<td>Less than – 123dBV equivalent input noise</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>1. The measurements were made using a Sound Technology 1710A analyzer. The mixer was powered by an external regulated 12.6V dc supply. An input signal of – 45dB was fed into channel 1 and the gain controls were adjusted to give + 4dBm (0 VU) output. This resulted in 12dB of headroom. The mixer met the factory specification for 14dB of headroom when powered by a pair of fresh alkaline batteries.</td>
<td></td>
</tr>
<tr>
<td>2. Duplicating the factory equivalent input noise (EIN) test was not possible due to the lack of required test equipment. The noise figure shown (– 123dBV) was the limit of measuring capability of the test instrument used. The S/N performance of the mixer, measured using common broadcast techniques, was 70dB below rated output (referenced to 1kHz at + 4dBm line output).</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: A block diagram of the FP31 remote mixer.

10V regulator, which drives the slate microphone amplifier and oscillator and a power LED control circuit. The green power LED flashes at a 1Hz rate when the power switch is on.

A VU lamp driver and pulse stretcher automatically turns off the meter lamp five seconds after the lamp button is released.

Performance
The FP31 was used for four months as a remote board mixer at the Los Angeles Hall of Administration. The unit was connected to a 5kHz broadcast loop from the hall to our studios for news coverage of board of supervisors meetings. It was also used by reporters to send live and taped reports back to the station when they were at the hall.

The mixer, in operation 24 hours a day for the four months we had it, performed flawlessly. The unit did everything we wanted it to and expected it would.

The design, layout and operational features are well thought out. The placement of knobs and controls is somewhat cramped for use on remote broadcasts, but this concern is outweighed by the versatility of the unit.

The mixer is ruggedly built and should survive the punishment that radio and TV remote broadcast equipment typically receives. Although a “drop test” wasn’t performed, I am confident it would have survived better than most other field mixers I have used.

The mixer has 14dB of headroom before clipping with a line output level of +4dBm (for an indication of 0VU). Although this probably isn’t adequate for symphony broadcasts, it is more than enough for most remote applications.

On remote, the mixer is generally working into a system or piece of equipment that has no more than 14dB of headroom, such as a portable audiocassette or videocassette recorder, telephone company broadcast loop or wireless ENG system.

The mixer was checked at the KFWB engineering shop for adherence to specifications after being in use at the hall of administration. The unit easily met its published specs (Table 1).

One slight measurement aberration was noted. The LED flasher, used to show power is applied to the unit, causes pulses in the output that can be seen as meter fluctuations when noise measurements are made. The pulses were inaudible on the test equipment monitor speaker and did not degrade the measurements.

A test was also made for RF susceptibility. A Shure SM57 microphone was connected to the mic input using a 25-foot cable. The mic channel and master gain controls were set for normal voice levels. A 3W hand-held UHF transceiver was keyed repeatedly next to the microphone, mixer and cable. No adverse effects could be measured.

Conclusion
After evaluating the FP31 mixer for a period of four months, the unit worked reliably and according to specifications. It appears to be ruggedly built and capable of surviving rough field use. The FP31 is well suited for applications requiring a small, portable ENG/EFP mixer.

Editor’s note:
The field report is an exclusive BE feature for broadcasters. Each report is prepared by the staff of a broadcast station, production facility or consulting firm.

In essence, these reports are prepared by the industry and for the industry. Manufacturer’s support is limited to providing test equipment and to aiding the author if support is requested in some area.

It is the responsibility of Broadcast Engineering to publish the results of any piece tested, whether positive or negative. No report should be considered an endorsement or disapproval by Broadcast Engineering.
Editorial
Continued from page 20

On another front, numerous state and local agencies have either established arbitrary standards or are considering the establishment of such standards, without direct correlation to the scientifically based ANSI recommendations. For instance, at least one TV station has been denied a construction permit because of arbitrary community standards.

There is no advantage to the general public in going beyond what is needed to provide a reasonable margin of safety for non-ionizing radiation. In fact, there are disadvantages in so doing, because the cost of goods and services increases—or they become unavailable—without compensation to the public.

The point is that broadcasters must stay involved in the standard-making process. It is in the best interests of the broadcast industry to establish a reasonable standard that will protect the public but not unduly penalize our industry.

Obviously, non-ionizing radiation may present significant health hazards above a certain threshold. The FCC’s decision has provided the public with a level of protection that is reasonable and technically sound at a price that the broadcasting community can afford.

But the issue is not dead. We must now wait to see which way the EPA wind will blow. Although we have won the FCC battle, the war to prevent the establishment of arbitrary and unreasonable limits on non-ionizing radiation is still under way.

Reconfirm your involvement in the broadcast industry!

Renew your subscription today.
If you need rigid line here’s where to get it fast

CELWAVE rigid coaxial transmission line is available in sizes from 7/8 inch to 3 3/8 inches in 50 ohm impedance and 6 3/8 inches in both 50 and 75 ohm impedances.

Not only available, but in most cases, we can ship from stock. You will rarely have to wait more than two weeks.

You can order twenty foot lengths or any shorter length cut to your specifications. You can request that line be fitted with flanges on both ends, one end or without the flanges. Hardware and other installation accessories are also available from stock. Aluminum outer conductor is available, as well.

Quality? You can count on it. Every inch is constructed of high conductivity, hard drawn copper tubing and fitted with pin-type Teflon dielectric insulators produced to exacting standards.

And, all rigid line, flanges and conductors are manufactured in accordance with MIL-L-3980, EIA Standard RS-225 and international IEC recommendations.

While purchasing rigid line for system upgrading and repair may be a simple matter, you may encounter layout and design problems in new installation. We can help here too, with appropriate technical and engineering assistance. Just ask.

Write, telephone or TWX for Catalog 779 with all the details: CELWAVE, Route 79, Marlboro, NJ 07746, (201) 462-1880, TWX: 710-722-3861.

CELWAVE

See us at NAB, April 14-17. Booth #202

Circle (83) on Reply Card
CMX Corporation has moved to new facilities located at 2230 Martin Ave., Santa Clara, CA 95050. The new phone number is 408-988-2000.

The first omnidirectional Wavestar UHF antenna, built by Harris Broadcast Transmission Division, Quincy, IL, is now transmitting a TV signal from Hartford, CT. Arch Communications' WTIC-TV installed the antenna in September.

A Harris TVED-220, 220kW transmitter, recently installed by Harris on a turnkey basis, generates WTIC's signal. The transmitter, actually two completely independent 110kW transmitters combined in a switchless "Magic T" combiner system, provides total redundancy. WTIC's transmitter is the first to use Varian's new ultra-high efficiency "S" klystrons.

Ikegami Electronics, Maywood, NJ, has announced a 14-camera sale to Tribune Broadcasting Corporation. The cameras will be used by three different TV stations owned by Tribune.

Eight Ikegami HK-322 Triax studio cameras have been delivered to WGN-TV in Chicago. The HK-322 is a state-of-the-art studio camera that incorporates microprocessor controls.

Three additional HK-322 Triax cameras are scheduled for delivery to WPIX-TV in New York City in May. These units will be used for the Independent Network News (INN) telecasts which are carried on numerous channels throughout the country, as well as for WPIX-TV's local productions.

These systems are for use in two TV audio post-production facilities for LWT productions. The custom controllers were designed and manufactured by IGM for LWT's specific requirements. The instacarts were modified to meet IBA specifications for audio post-production.

Traffic was brought to a standstill on one of London's busiest thoroughfares as a Solid State Logic master studio system was hoisted into a fourth floor window at the Oxford

Proper credit
Three photo credit lines in "Color- resulted. Because each of the graphic Mapped vs. Full Color" by David Fa- items are works of art in their own bian (BE, February 85) were in- right, we are repeating them here with advertently deleted. We regret any the proper credit information. misunderstanding that may have
PLAN AHEAD

WITH A BLUEPRINT OF ADVANCED TECHNOLOGY

BSM manufactures a complete line of DISTRIBUTION AMPLIFIERS and ROUTING SWITCHERS designed to stay ahead of your expanding needs — including TV STEREO — through MODULARIZATION.

Telex #326417 Call Back JREMOSP/6
BSM Box 8081 Spokane, WA 99203 (509) 448-0697

Circle (84) on Reply Card
Street complex of AIR Studios. The new console, an SL 4000 E series with 56 channels of Total Recall, is the second SSL System at the London recording studio.

CSI Electronics, Lakeland, FL, has completed the sale of more than 200 FM radio transmitters to China. The transmitters were purchased by Beijing Broadcast Equipment Factory to enhance the broadcast opportunities throughout the country of China.

Ampex Magnetic Tape Division, Redwood City, CA, has signed a contract with Turner Broadcasting to supply the WTBS Super Station, CNN, CNN Headline News and Turner Cable Radio Network with audio and video recording tape. Under the terms of the agreement, Ampex will be Turner’s sole supplier of 1- and 2-inch videotape and sole supplier of ½- and 2-inch audiotape.

Sansui Electronics, Lyndhurst, NJ, has announced a reorganization of the company, positioning it to accommodate the company’s recent and continuing growth. In the move, present officers of the company are promoted and four new vice presidencies created.

H. Omikawa, previously executive vice president, replaces M. Miyake as the on-site president of Sansui Electronics. Tom Yoda moves from the position of president, sales and marketing, to a newly created post of executive vice president. In his new position, Yoda will continue to direct the company’s sales and marketing activities but with greater emphasis on planning, while line responsibilities will be delegated to the newly appointed vice presidents.

Hiro Higashimori assumes the position of senior vice president of marketing. Warren Mann, formerly assistant to the vice president, sales and marketing, becomes vice president, sales for home audio and video. Jim Oblak, formerly car audio division manager, becomes vice president, sales and marketing for car audio, and Terry Gribbin assumes the title vice president, operations for credit and EDP.

Hughes Associates, Huntsville, AL, has expanded its operations to include offices in Huntsville, AL; Corinith, MI; Norcross, GA; Raleigh, NC and Morristown, TN.

Midwest Communications Corporation, Edgewood, KY, has finalized the purchase of the Communications Systems Division from Midwest Corporation. This concludes the process that began with an initial offer in October 1983, followed by the signing of a purchase agreement on Sept. 14, 1984.

Ampex Magnetic Tape Division, Redwood City, CA, is helping to continue a research project on talking gorillas by supplying Ampex video recording tape for the project. The Gorilla Foundation, a nonprofit organization based in Woodside, CA, was founded in 1976 to preserve gorillas and other ape species, and to study interspecies communications. Under the direction of Dr. Francine Patterson, the foundation is now using American Sign Language to communicate with two lowland gorillas, 13-year-old “Koko” and 11-year-old “Michael.”

Ampex's involvement with the project began five years ago. Ampex recording tape and recording equipment are used to record complete records of the gorillas' linguistic development—on a day-to-day basis.
Acrodyne Industries, Blue Bell, PA, has announced the appointment of two people following the company's recent purchase from Whittaker Corporation, Los Angeles, CA.

Thomas Creighton has assumed the position of vice president of marketing and sales and is responsible for Acrodyne's domestic and international sales. Prior to his appointment, Creighton was most recently with Thomson-LGT, Chatou, France/Stamford, CT, as national sales manager.

John J. Brady Jr., president,CCI, Chattanooga, TN, has announced the appointment of George M. Cudabac as national marketing manager. Cudabac will be responsible for all national and international marketing of equipment and software, including establishing a distributor network.

Lawrence Weiland has been named vice president and director of marketing at CMX Corporation, Los Gatos, CA.

Most recently, Weiland was president of Tri-Data, Mountain View, CA.

The Ampex Audio-Video Systems Division, Wheat Ridge, CO, has appointed Jerry Ayers to the new position of switcher marketing specialist for the Ampex Switcher Company. Ayers will be responsible for coordination between marketing activity in Wheatridge and field sales offices, customer liaison and other support functions. His area of responsibility will be the United States and Canada.

Sony Broadcast, Hampshire, UK, has announced the appointment of Mitsuru Ohki as administration and commercial director. Ohki has worked for Sony Corporation since graduating from Aoyama Gakuin University in Tokyo with a Bachelor of Economics degree in 1966.

JBL, Santa Ana, CA, has hired four engineers to work on the design and development of new professional sound products at the Northridge, CA, plant. Drew Daniels has been hired as the applications engineer for JBL and UREI. Daniels previously worked at JBL for several years as a senior research lab technician where he gained experience with laser interferometry and technical photography, time-energy measurements and acoustical testing methods.

William G. Shute, president of Pro Audio General Store, Ocala, FL, announces the promotion of David Kerstin from MidWestern sales manager to vice president of national sales.

The Board of Directors of Comark Communications, Colmar, PA and Southwick, MA has named Nathaniel S. Ostroff to the position of president of the Corporation. Ostroff has served Comark as a vice president and a director for the last four years. Richard Fiore Sr., a founder of Comark, will continue as chairman of the board.

Gregory A. Green has been named North American sales manager for the Professional Products Division of dbx, Newton, MA. Prior to joining dbx, Green spent four years as director of sales and marketing at Ashly Audio in

Better than BMX! Ahead of Auditronics! Astounding Price!

The Logitek PERFECTIONIST
8 and 12-Channel Broadcast Consoles

<table>
<thead>
<tr>
<th>PERFECTIONIST</th>
<th>Audi. 200</th>
<th>BMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max THD</td>
<td><.1%</td>
<td><.15%</td>
</tr>
<tr>
<td>Inputs/mix channel</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Fader Type</td>
<td>rotary or slide</td>
<td>slide only</td>
</tr>
<tr>
<td>Connectors</td>
<td>remote punch blocks</td>
<td>internal plugs</td>
</tr>
<tr>
<td>Switches</td>
<td>hall-effect</td>
<td>hall-effect</td>
</tr>
<tr>
<td>Warranty</td>
<td>5 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Price (8 ch/12 ch)</td>
<td>$8,500/10,500</td>
<td>much more</td>
</tr>
</tbody>
</table>

Hear it at NAB Booth 613 or CALL 800-231-5870
(Texas, Alaska, Hawaii call 713-782-4592 collect)
for full information and the name of your Logitek Instant Action Dealer.

Logitek Electronic Systems, Inc.

Circle (66) on Reply Card

April 1985 Broadcast Engineering 103
Philips at NAB. Undoubtedly the star of the show. With a range of state-of-the-art new products and existing equipment that has already proved itself for broadcasters across the world. Like the Philips LDK 6 family of computer-controlled television cameras, now renowned in the studio and field for picture quality, reliability and ease-of-use. To join them is the portable LDK 54 that extends its excellence through ENG, EFP triax or multicore modes and on-camera recording with its 1/4" tape format. New too is the Philips 20" color monitor with high resolution CRT for ultimate pictures. For ultimate sound and flexibility of application there is the professional Compact Disc Player, today's most revolutionary advance in audio reproduction, for radio, production, special effects, etc.

First of the third generation of Philips/Pye TVT UHF transmitters with a completely new klystron tube is the compact 60-120 kW LDM 1791. Also from Pye TVT is a range of dual channel, modular FM radio transmitters from 15 W to 1 kW. New from Pye TVT is the dazzling CVE, Component Video Effects, which gives more effects for less money than any comparative unit. Philips is the name that stands for reliability through quality in all its broadcasting equipment. See Philips at NAB.

If you are unable to visit the show or want immediate information, write, telephone or use the coupon.

For further information use the circle nos or send the coupon to:

PHILIPS TELEVISION SYSTEMS, INC.
900 Corporate Drive, PO Box 618, Mahwah, New Jersey 07430, USA
Tel: 201-293-1550 Telex: 37-62690
Canada: Electro & Optical Systems Ltd, 31 Progress Court,
Scarborough, Ontario, Canada M1A 3S5 Tel (416) 429-9333 Telex: 065-25431

Please send me further information on

☐ LDK 6 camera 100
☐ LDK 26 camera 101
☐ LDK 54 camera/recorder 102
☐ LDK 54 portable camera system 103
☐ Color monitor 104
☐ Compact Disc Player 105
☐ Professional CVE—Component Video Effects system 106
☐ Comb Filter Decoder 107
☐ UHF television transmitters 108
☐ FM radio transmitters 109
☐ Studio mobile systems 110

Name__________________________
Status_________________________
Organization__________________
Address________________________

www.americanradiohistory.com
TELEVISION TRANSMITTERS
VERSATILITY!

We design our UHF transmitters to work with all makes and power levels of klystrons. Select any model, any make of Klystron. We'll have a UHF transmitter for it... and we're the only company that can say that.

Townsend Product Lines:
- High power UHF to 240 Kw
- High power VHF to 50 Kw
- VHF and UHF LPTV transmitters
- All solid state MDS and ITFS transmitters

See us at Booth 1420 at NAB

TOWNSEND
The Television Transmission Specialists
Townsend Associates, Inc.
79 Mainline Drive, Westfield, MA 01085 • 413-588-9581

“UNEQUIVOCALLY THE BEST TCR-100 CARTRIDGE AVAILABLE”
— Expressed by engineers at over 100 TV stations across the U.S.

THE BEST PRODUCT
Reliability is one of the most important features to look for in a TCR-100 cartridge. You can always trust National Video Service’s TCR-100 cartridges. It is manufactured to RCA’s TCR-100 specifications, and has LAMAR® door latches to provide a lifetime guarantee against the number one breakage problem of the competition. To prove the best quality, NVS uses only 3M Scotch 400 video tape.

THE BEST PRICE
National Video Service will not knowingly be undersold on any of our services. New one-minute message cartridges are as low as $2495.

Emergency? National Video Service offers same day shipping via pre-paid Federal Express.

National Video Service
2150 Rheem Drive
Pleasanton, CA 94566
(415) 845-1500

TCR-100 New Cartridge Sales • Reloading • Trade-In-Exchange

People

Rochester, NY, where he was responsible for all foreign and domestic sales as well as for setting up the company’s financial control and sales tracking systems.

Thomson-CSF Broadcast, Stamford, CT, has appointed Charles J. Gaydos national sales manager. Prior to joining Thomson-CSF, Gaydos held several positions with the Broadcast Systems Division of RCA Corporation, including sales representative, manager of teleproduction sales and, most recently, director of marketing services.

Artel Communications Corporation, Worcester, MA, has named Bruce M. Richardson as director of product planning. In this capacity, Richardson is responsible for all computer communications product planning and marketing activities.

Gordon Tubbs has been appointed sales manager, Professional Products Division, Ikegami Electronics (U.S.A.), Maywood, NJ. Tubbs will assist in the administration and marketing of broadcast and color CCTV products.

Dolby Laboratories, San Francisco, has announced the appointment of Kevin G. Dauphine as vice president of sales and marketing, and the promotion of Robert M. Schein to vice president of Motion Picture Division. Both will report directly to Bill Jasper, president, along with Joan Allen, now vice president of advanced marketing.

Scientific-Atlanta, Atlanta, GA, has appointed Clinton E. Ellison national sales manager for the Optima Division. In his new position, Ellison will be responsible for the sale of Optima cabinets and enclosures in the North America.

IGM Communications, Bellingham, WA, has announced the appointment of Fred Harkness as broadcast equipment sales manager. Harkness is responsible for all sales in the United States and Canada of the IGM standard product line.

Richard A. DeBerardinis has been named eastern regional sales manager for CMX Corporation, Los Gatos, CA. DeBerardinis, who will be headquartered in New York City, was formerly eastern regional sales manager of CDL for more than 11 years.

John L. Klecker has been named
Technical

Technical editorial. Written by technically-oriented editors.

Two reasons why broadcast engineers read Broadcast Engineering. And more often than any other industry publication.

And those are your two most important reasons for advertising in BE.
Call today for a media kit.

RMS 175.0 mV/m
FREQ 1000 kHz
RSS 149.0 mV/m
POWER 1.0 kW

Broadcast Engineering

Intertec Publishing • P.O. Box 12901, Overland Park, Kansas 66212 • 913/888-4664
People

Midwest TV-RF district sales manager for Harris, Quincy, IL, Kluck will serve TV broadcasters in Minnesota, Iowa, Illinois, Missouri, Wisconsin and upper Michigan.

Electro-Voice, Buchanan, MI, has added David E. Goldsmith to its marketing team for broadcast and professional recording.

Shure Brothers, Evanston, IL, has announced the appointment of two new professional product marketing coordinators: Alan G. Hersher and Daniel P. Marchetto. Hersher's and Marchetto's primary responsibility is to establish and maintain contact with audio professionals in TV and radio broadcasting, as well as in video and film production. They will be introducing new Shure professional products to the broadcasters, as well as offering support for the existing microphone and circuitry lines.

David Brack has been named mid-Atlantic district manager for MCI/Quantel, Palo Alto, CA. He will report to eastern regional manager David Dever.

Fortel, Atlanta, GA, has announced the appointment of C. Steve Young as president. Young has served as vice president, technical operations at Fortel since September 1984. In his role as vice president, Young was responsible for management of all engineering activities.

Dr. Sophie Sa has been appointed executive director of the Matsushita Foundation, New York, a $10 million foundation established by the Matsushita Electric Corporation of America to fund educational programs in the United States.

As executive director of the foundation, Dr. Sa will be responsible for the administration of the foundation, funding, and the establishment of new programs.

Prior to joining the Matsushita Foundation, Dr. Sa was a staff associate with the Social Science Research Council in New York, where her responsibilities included the administration of several of the council's international committees. Previously, she served as administrator and assistant director of the Center for Policy Research, a non-profit research organization with an annual budget of $2 million.

Lake Systems Corporation, Newton, MA, has announced that Paul N. Duncan has been named senior systems representative.

Mycro-Tek, Wichita, KS, has promoted Gary L. Jack to the newly created position of service marketing manager. Replacing Jack as field service manager in Wichita is Scott Hendrickson. Richard A. Bailey has joined Micro-Tek as vice president of marketing.

Microdyne, Ocala, FL, has announced the appointment of Stephen R. Benoit as sales engineer, satellite communications. Benoit will be responsible for the sales of satellite equipment for TV and radio broadcasting, fixed and portable uplinks and teleconferencing.

BASF Systems, Bedford, MA, has appointed Robert McKinley video
70 YEARS
OF EXPERIENCE
IN POWER
GRID TUBES...

And still looking ahead!
That's your assurance of world-class UHF/VHF-TV
tetrodes and coaxial-cavity circuits:
- up to 50 kW UHF output
 power and 40 kW VHF output
 power
- up to 18 dB typical gain.

Incorporating decades of innovation and experience with
Hypermotion® anode cooling and Pyrobloc® pyrolytic-graphite grids.

THOMSON-CSF
COMPONENTS CORPORATION
Electron Tube Division
301 Route Seventeen North
RUTHERFORD, NEW JERSEY 07070
Tel.: (201) 438.23.00
TWX: 710989 7285

THOMSON-CSF
ELECTRON TUBES
People

product manager. McKinley brings an extensive track record in consumer product marketing and sales to BASF's video product area—one of the fastest growing product areas in the company.

TFT, Santa Clara, CA, has announced a change in the company's top management. **Henry Wu,** formerly senior vice president, becomes executive vice president and general manager of TFT's broadcast division; and assumes full profit-and-loss responsibility over that operation.

The president and founder of TFT, **Joseph C. Wu,** will head TFT's new product development and utilities communications marketing efforts.

Jerry E. Smith has been appointed vice president, sales and marketing for the broadcast transmission division of Harris Corporation, Quincy, IL.

Ron Colgan has been named national sales manager for Sharp Electronics Corporation's Professional Products Division, Paramus, NJ. Colgan will oversee sales operations for all four sales regions of the United States and Canada.

COMSAT World Systems Division, Washington, DC, has appointed **Irving Dostis** to director, Advanced Communications Technology Satellite (ACTS) Program at COMSAT Laboratories in Clarksburg, MD. He was also named vice president and assistant director, COMSAT Laboratories. **Lew Norman,** who had been acting program manager, will now assume duties as associate program director.

Moseley Associates, Goleta, CA, announces the appointment of **Arthur Constantine** as manager of U.S. sales. Formerly vice president of sales at Fidelipac Corporation and engineering section manager at GCA Electronics, Constantine will be responsible for all sales of Moseley-manufactured products and systems throughout the United States.

Otari Corporation, Belmont, CA, has announced that **Steve Krampf** has been named vice president, sales and marketing of Otari Corporation.

Tandberg of America (TOA), Armonk, NY, has announced the appointment of **Peter Wellikoff** as vice president of Tandberg's Consumer and Professional Audio Products Divisions. Wellikoff was also made a member of the company's board of directors.

Dr. William O. Mehmuron, deputy director of the National Security Agency’s research and engineering organization, has joined Ampex Corporation, Redwood City, CA, as corporate vice president of engineering, a newly created position.

At Ampex, Mehmuron will be responsible for strengthening and focusing the company’s commitment to excellence in engineering and technology throughout the corporation, including the Advanced Technology Division, which remains under the direction of vice president and general manager **Michael Felix.** Felix is also appointed to the new post of senior scientist for Ampex.

Mark B. Nevejans has been promoted to the position of national sales manager for the Magnetic Tape Division of Agfa-Gevaert, Totterboro, NJ. Since joining the company two years ago, Nevejans has served as sales supervisor for the Atlantic Region for the Magnetic Tape Division and most recently as sales manager for the Atlantic Region.

Al Cervenka has joined Dynar Electronics, San Diego, CA, as systems sales manager, a position established in January. He is responsible for sales of major routing switcher systems, including custom controls, to the communication industry, government and systems contractors.

John W. Patterson has joined Fortel, Atlanta, GA, as national sales manager. Patterson will be responsible for working directly with the regional sales managers to develop new and more innovative distributor sales programs.

Ampex Corporation has appointed **Neil Selvin** to the newly created position of marketing manager, digital video processing. In the new position, Selvin will direct marketing and product management activities for the division's video processing product lines, including the Ampex Digital Optics (ADO) family of products.

John Bloomfield has been named general manager for the Spin Physics division of Eastman Kodak Company, Rochester, NY. Bloomfield succeeds **Bruce C. Burdick,** who has been promoted to the position of director of finance for Kodak's Diversified Technologies group. In his new position, Bloomfield will be responsible for the design, development and marketing of magnetic recording heads, electronic imaging systems and other products for high technology markets.
New Technology Expands Dynamic Range of Vinyl

Designed for broadcast production and on air application, the GSP1000 E Electric Audio Isolator offers the cleanest sound reproduction possible from your separate component turntable. For a live demonstration, See Our New Isolation Systems at the AES Anaheim, Cal.

If you don't read this, you'd better hope someone else does.

Suppose an employee sitting across from you at lunch suddenly started choking. Would you know what to do?
If you, or someone else, didn't act quickly, that person might die. And how can you act quickly, if you don't know what to do?
That's why the Red Cross offers CPR and First Aid courses that teach your employees what to do in an emergency.

One day someone's life may depend on the techniques the Red Cross can teach you now.
So call them. You never know when you'll be glad you did.

American Red Cross
We'll help. Will you?

People

Orban Associates, San Francisco, maker of Optimod and other signal processing products, announces the departure of Jesse Maxenchs, marketing and sales manager for broadcast products for the past six years. Jesse has accepted a position at TFT, Santa Clara, CA, as director of marketing. TFT is a manufacturer of microwave STLs, transmitter remote control systems and modulation monitors for radio and TV broadcasters.

William E. Deegan has been named national sales manager for the nova systems, Avon, CT, manufacturer of a line of digital TBCs.

William F. Patton recently joined Dielectric Communications, Raymond, ME, as director of field service and project implementation.

David Buckler has been appointed vice president of sales for the Chyron Telesystems, Melville, NY, manufacturer of sophisticated graphics and titling systems for television.

Swiderski Electronics, Elk Grove Village, IL, has added Rich Schultz as rental services coordinator to their team of professional audio/video experts. Schultz's responsibilities will include client contact, scheduling rentals, inventory selection, evaluation of new technology in rental applications and follow-through to ensure complete customer satisfaction.

O'Connor Engineering has appointed Gary "Kelly" Nelson to the newly created position of field sales manager. Nelson has more than 10 years of dealer sales experience.

Want more information on advertised products? Use the Reader Service Card.

Keep your reputation firmly in the groove!

Model AT1010 Tone Arm

Don't trust your modern, lively reputation to old-style tone arms. Get all of the sound from today's records, with the AT1010 tone arm designed to survive the station environment while delivering top-of-the-charts sound.

The AT1010 is a stable, reliable platform for any cartridge. Easy to use, rugged and reliable. And Dynamic Tracing design keeps tracking force constant even with the highest modulation levels.

Learn more about the most important element in your audio chain. See your Audio-Technica sound specialist or write for literature today.
new products

Weather forecasts
Weather forecasts from Accu-Weather are available on Telemet. The two companies have announced that a number of specifically formatted Accu-Weather forecasts are available on Pocket Quote. These reports detail the upcoming weather for the 20 largest metropolitan areas in the United States, giving high and low temperatures and weather conditions for three days ahead.

Circle (308) on Reply Card

Sequencer
Engel Engineering has announced its model SEQ-1A red, green, blue sequencer. The unit enables the display of RGB on a line scope or an oscilloscope. The sequencer has been designed for use in film to tape color correction suites, computer graphic and animation suites, editing rooms using the new component video switchers and video tape recorders.

Circle (309) on Reply Card

Color palette
Vectrix Corporation has announced an optional 16.8 million color palette for its VX/PC board set. The standard VX/PC board set was designed to provide high resolution color graphics for users of the IBM family of personal computers and compatibles. The standard 2-card set offers a basic color palette of 4096 out of which 512 colors are concurrently displayable at a resolution of 672 x 480.

The option upgrades the standard board set to a color palette of 16.8 million, out of which 512 colors are concurrently displayable at a resolution of 672 x 480. This permits greater functionality for applications such as color matching, textile design, Landsat and medical imaging.

Circle (310) on Reply Card

Peripherals

Chromatics has announced seven new product peripherals for the CX 1500 Colorgraphic Display System. These options include digitizer, mouse, light pen, trackball, 24-function switchbox, Bezel switches and joystick.

Circle (311) on Reply Card

Stereoscope
Leader Instruments has introduced a stereoscope, the LBO-552BH1. It displays left and right channel traces side by side, simplifying channel-to-channel amplitude...
comparisons. Designed with studio applications in mind, the Stereoscope is rack mountable and is provided with back-panel XLR input connectors. The graticule has indications for left and right channels and a zero phase angle reference line making the stereoscope an optimum unit for making stereo channel measurements of level, balance, azimuth, separation and phase angle.

Circle (313) on Reply Card

¾-inch videotape

Ampex Magnetic Tape Division is expanding its line of 197 ¾-inch videotape, with the addition of four configurations. The product was developed to meet broadcast applications, such as electronic news gathering, electronic field production and on-line editing.

The videotape is a 5-minute mini-cassette that will operate in portable and standard-sized videocassette recorders.

Circle (312) on Reply Card

TV demodulator

The Tektronix 1450-1 precision TV demodulator is being upgraded and features a wide bandwidth audio section compatible with BTSC multichannel sound. The audio section of the demodulator has been redesigned to be compatible with the multichannel sound systems used in the United States and Japan. All 1450-1 demodulators will include these multichannel sound capabilities.

For Tek's television broadcasting customers, who already have a 1450-1 demodulator and plan to convert their facility to multichannel sound operation, an upgrade kit called a 1450F20 will be offered.

Circle (300) on Reply Card

Phone line system

DCC has introduced their four telephone line version of the single line TeleClerk. The 4-20M can store 90 minutes of digital speech and handle four independent, interactive telephone conversations at the same time. The system keeps track of where each recorded speech segment is stored with an average search time of only 30ms before playback.

Each of the four telephone lines are connected to an FCC-approved interface and can accept calls automatically or dial telephone numbers from a prepared list. Once the call is answered, whether it is inbound or outbound, the system will start speaking and ask the respondent any type of question that is recorded.

Circle (301) on Reply Card

OUR FM MONITOR DESERVES A SECOND GLANCE.

BUT IT DOESN'T NEED IT.

Engineers look twice when they first see our 691 Stereo and SCA Monitor. But when they start to use it, they find the 691's meters are easily tracked in a single glance. Like everything else about the 691, its measurement displays are very well thought out.

A color-coded system ties together the associated displays, switches, and jacks for a particular function or test. Select your test by pushing a color-coded button and simply read the results on all of the indicators. It's as easy as it sounds.

Other benefits of the 691 include over 40 proof-of-performance and signal quality measurements. Add a scope and use the 691 as a spectrum analyzer... or get a vector display of L/R phasing. Perform a Bessel-Null calibration in minutes. Measure clipped composite accurately and quickly.

The 691 can now be optionally ordered to measure two SCAs. There are many other features... write or call for complete information.

QEI Corporation

One Airport Drive □ P.O. Box D
Williamstown, NJ 08094 □ (609) 728-2020

Circle (96) on Reply Card

April 1985 Broadcast Engineering 113
Telephone interface

Centner's microtel is an ultra-light, battery-operated telephone interface for use in a variety of applications. It consists of a small box with an input for a microphone, a mini-jack input for another source such as a cassette deck, a jack for a headset, a mini-jack for direct output to a tape recorder or similar device and a modular jack for direct connection to the telephone line. These inputs and outputs enable the user to mix a source with microphone and feed it to a tape recorder or directly down the telephone line. A built-in headset amplifier allows the user to hear sources.

Circle (302) on Reply Card

On-air radio console

Pacific Recorders & Engineering has announced the series three version of their BMX on-air radio console. The BMX III features three main stereo mix buses, each with distribution line amplifiers, two telephone mix-minus feeds with a monitor mix and monitor facilities for two separate studios. Independent outputs for the console, host, co-host and guest headphone feeds are provided as well as a stereo cue system with automatic headphone monitor switching.

Each input of the modular console (mic or line) has full and independent remote control logic. Audio and logic interconnection is compatible with the AMX and ABX operations and production consoles.

Circle (303) on Reply Card

Digital multimeter

A miniature hand-held digital multimeter capable of reading eight functions on 22 ranges is available from Sponte.

It offers ac voltage, dc voltage, dc current, resistance,
conductance, HFE transistor test, diode test, battery test, and 300 hours of battery life and overload protection on all ranges.

The Digital Multimeter measures 4.8"x2.8"x0.9" and weighs 7 oz.

Circle (304) on Reply Card

Switch selectable measurement capability

Switch-selectable 50/75Ω (50Ω to 75Ω) measurement capability is available with the Tektronix 496 and 496P portable, high performance, VHF/UHF microprocessor-based spectrum analyzers. This option 07 provides 75Ω with dbm readout or 50Ω with dbm reference at the push of a button with no need to use adapters. Calibration is provided so that it’s no longer necessary for the user to convert the units or to account for external losses in changing from 50Ω to 75Ω. Option 07’s frequency range of 5MHz to 1GHz, and 300kHz resolution provides optimal measurement capability for all cable and broadcast measurements.

The analyzers provide portability plus high performance spectrum analysis and measurements in the 1kHz to 1.8GHz range. Their high stability and 80dB dynamic range meet user demands for proof-of-performance measurements, on site or on the bench.

Circle (305) on Reply Card

Attenuators

A series of 33 broadband, high performance attenuators with six continuous-power ratings from 2W to 75W are available from Bird Electronics. The 8300 series of 50Ω fixed attenuators covers a frequency range from dc 4GHz with a VSWR below 1.25, except for the 75W and the 2W units, which cover dc 2GHz. Models 8308 (75W), 8306 (25W), 8305 (15W), 8304 (10W) and 8303 (5W) are rated at a peak power of 3KW with pulses to 5ms wide. They are available with attenuation levels of 3dB, 6dB, 10dB, 20dB or 30dB and have male N input, female N output connectors.

The 8300 series attenuators can be used in tandem for odd dB values, or in connection with Bird’s Tenuiline high power attenuators (to 4000W) for additional attenuation.

Circle (306) on Reply Card

Measuring instrument case

The portable BA series apparatus case with handle from Alabama Case is available in six sizes. The smallest is 4.72" (W), 5.90" (H), 8.26" (D), while the largest is 13.77" (W), 8.26" (H), 7.87" (D). The vented case body is dark blue green PVC leather patterned laminated steel, while the panels are light silver colored aluminum.

Circle (307) on Reply Card
A.F. Associates 79
Alamar Electronics USA, Inc. 58
Alpha Audio 86
Ampex Corp. (AVSD) 50-51
Ampex Corp. (MID) 15
Anchor Audio, Inc. 98
Asaka/Shibasoku Corp. America 59
Aspen Music Festival 98
Audio Digital 96
Audio-Technica U.S., Inc. 72
Audio-Technica U.S., Inc. 111
Belair Electronic Labs 94
Broadcast Electronics 94
Broadcast Video Systems Ltd. 94
BSM Broadcast Systems Inc. 101
Calvert Electronics Inc. 13
CCE 31
Celwave RF, Inc. 99
Centro Corp. 93
Cetec Antennas 68
Christie Electric Corp. 62
Circuit Research Labs, Inc. 13
Colorgraphics Weather Systems 66
Comrex Corp. 102
Convergence Corp. 91
Crosspoint Latch Corp. 120
Datam Corp. 60
Delta Electronics 63
Dictaphone Corp. 36
Dynair Electronics Inc. 43
ESE 115
Fuji Photo Film USA Inc. 45
Fujinon Inc. 54
GEC McMichael Ltd. 10
GEC McMichael Ltd. 17
Grass Valley Group, Inc. 7
Harris Corp. 47
Harris Corp. 87
Harris Corp. 42
Hitachi Denush America Ltd. 3
Hitachi Denush America Ltd. 71
Hollywood Rental 35
Horizon International 61
Ikegami Electronics Inc. 52-63
JBL Inc. 5
JVC Company of America 73
Lang Video Systems Corp. 98
LEA Dynatech Inc. 112
Leitch Video Ltd. 65
Lenco Electronics 9
Lerro Electrical Corp. 11
Logitek Electronic Systems ..., 103
MII 110
3M Broadcast & Related Products 56-57
M/A Com MAC, Inc. 49
Midwest Communications Corp. .. 4
Modular Audio Products 112
Modulation Sciences 96
Monroe Electronics, Inc. 64
Nady Systems Inc. 76
Nalpak Video Sales, Inc. 94
National Video Service 88
NEC America Inc. 25
NEC America Inc. 114
Opalm Labs Inc. 98
Orban Associates Inc. 55
Orban Associates Inc. 33
P.T.S.I. 104-105
Panasonic 39
Panasonic 37
Panacon 40-41
Pesa 29
Polyline Corp. 96
Potomac Instruments 76
QEI 113
RTS Systems, Inc. 92
Sencore 32A,32B
Sencore 33
Sennheiser Electronic Corp. 84
Sescom, Inc. 98
Shure Brothers Inc. 75
Shure Brothers Inc. 48
Sims Vibration Engineering 111
Stiler's Inc. 98
Sony Corp. of America (Broadcast) 31
Sony Corp. of America (Broadcast) 18-19
Spectratek 35
Standard Tape Laboratory, Inc. .. 98
Student Revox America Inc. ... 97
Student Revox America Inc. ... 108
Surcom Associates Inc. 98
Tandberg of America 27
Tascam Div Teac Corp. of America 77
Tec Pro Inc. 78
Temtron 98
Thomson-CSF/DETE 91
Townsend Associates, Inc. 106
Union Connector Co., Inc. 81
Utah Scientific Inc. 67
Varian 21
Vital Industries, Inc. 31
Ward-Beck Systems Ltd. BC
Winsted Corp. 86
Why not run your business card here? Only $60 per insertion. Frequency discounts available. Call 913/888-4664.
equipments for sale

VIDEO LAB & BROADCAST EQUIPMENT, new and used, all types and Brands, want for sale, or trade for latest in- ventory list. Pioneer Technology Corporation, 1201 N.
Lake St., Burbank, CA 91502, (818) 842-7655.

COFFER! For your broadcast needs. 10# Ground
rails, 2, 4, 6, 8, 10 x 10 trailer, cornerpost meshes.
317-962-8596. Ask for Coffer sales.

RCX-TI-10AH HIGH BAND color transmitter. Present-
Can be seen operational. You remove and ship.
Available immediately. $10,000 or best offer. Eric
Dukas, EOE, (406) 725-2601.

cf. Crosspoint Lapch 6060C syn gen. All like new and operating. (2) 403-4761.

35mm & 16mm DUBBERS: Westrex RA 1551. Solid state with 3 phase syn inc. Call Bob McDowell at
212-573-6777.

Chroma, BW mon., 520 WFM. 6,000.00 each, 1 CD-
E2000-Editor with interface for 2—VR 2000B VTRs
with VR 2000B VTR. $4,200.00. 1 CDL 1700 produc-
tion 3 MEs with soft wipes, bordered key, encoded chromakey, 3 BKGs, aux monitoring, 3' s input, 1" x 1" recorder, 200 hrs.
timecode, EC. $14,000. Call Larry Brewer (913)
362-2756.

1 TEKTRONIX 1480 Waveform Monitor and 2 Conrac
SNA Video Monitor, Parts & Service, 30 Bobhamon Road, Fairburn, Georgia 30213. (404) 964-3764.

COMPLETE 2-WAY ENG SYSTEM for sale. Includes
Motorola 75 watt repeater, 5 H.T.'s, 6 mobiles, voter
and base. Also, used tape cart, decks, limiters, monitors, etc. Send for list. Phil Weiss, 9865
Gibbs Dr., #201, San Diego 19221-1772 619-565-6006.

HELP WANTED

VIDEO TEST EQUIPMENT REPAIR Supplier in the south shore area of Long Island, New York needs some
familiar with a sophisticated camera tube tester, who
can put unit back in tip top operating con-
tion. Transformers and other parts needed are already
on hand to speed the job. Unit is a Line model #107
tester made in the U.K. Please respond to Mr.
Trotman of TDI Electronics, area code 516-599-6400.

MAINTENANCE ENGINEER for the N.Y.C.
production house. Must have 3-5 years experience in
maintaining Sony 1", GVG switcher. Quanti, CMX,
Sony 4", RCA 4", RCA 2", Sony 3", etc. Should have
Experience in systems design and help. Salary com-
mentsure with experience. Video 44, 219 East 44Th
Street, New York, N.Y. 10017 212-267-2655.

MAINTENANCE ENGINEER, KAEV, a northern Minne-
sota PBS station having an interest in maintaining
VTRs, cameras, switchers and VHF trans-
mitters. Must possess an FCC General Radionele-
tration license. Salary and benefits to be discussed.
Send resume to: KAEV, 6001 Penn Ave., St. Paul
55114.

HELP WANTED

DIRECTOR ENGINEERING/TECHNICAL ADMINIS-
TRATION for VHFR television station in highly com-
petitive top market. Ideal candidate will possess at
least 10 years experience in commercial broad-
casting, strong administrative and interpersonal
skills. Must have an extensive knowledge of televi-
sion station operations, and exceptional ability
in long range facilities and capital planning. An equal
opportunity employer. Send resume to: Broadcast
Engineering, Dept. 640, 9221 Quivira Road, Overland
Park, KS 66215.

CHIEF ENGINEER for WGUS AM F.M., P.O. Box 1475,
Augusta, GA 30901. Considered Fully. Full Mainte-
nance Manager 803-279-1380, Box 298
504-641-1560.

DIRECTOR, the State University of New York at Plattsburgh seeks a Director of Instructional Engi-
neering and Maintenance. Must have a Bachelor's Degree preferably in EE and two years experience as assistant or CE of a TV station or equivalent.
Excellent benefits. Send resume with reference to: Dr. Dave Harrington, Assistant Vice Presi-
dent, c/o Ms. MaryAnn Miller, Director of Personnel Affirmative Action Coordinator, Box 913, State University of New York, Plattsburgh, NY 12901. Closing date for applications: April 30, 1986.

An Equal Opportunity/Affirmative Action Employer.

TELEVISION MAINTENANCE ENGINEER, Naval
Audio Visual Center, Washington, D.C. Electronic
Technician, GS-655-S, $21,804. Federal Civil Service
Status required. Must be 18 or over. 1/4 U.S. Matic,
TV-76, D-260,000 cameras. Send SF-171 to
Consolidated Civilian Personnel Office, Bldg. 200,

ASSISTANT CHIEF ENGINEER—Five years mainte-
inance/operating experience broadcast/non-broadcast
tv equipment. ENG/EMP, maintenance background
essential. Technical or trade school desirable. FCC
license and/or SBE certification. Knowledge FCC
rules. Salary range $24,000-$25,000 depending on ex-
perience, qualifications. Excellent benefits. Send ap-
lication and resume by April 20, 1985 to: William
Leutiz, Bowing Green State University, Bow-
lngton, Ohio 43003. An EOE/Affirmative Action
employee.

TERRITORY SALES MANAGER
A TBC Manufacturer seeks Sales Manager in New York and Chicago area. Technical background in
TBC is necessary. Please send resume to:

HOTRONIC, INC.
1210 South Bascom Ave., San Jose, CA 95129 (408) 292-1779

UHF TRANSMITTER ENGINEER: Top 50 market, East
Coast Group owned. ARC affiliate. Excellent benefits. Write resumes to: Rotterdam, NY 12149.

IMMEDIATE OPENING FOR TV Maintenance Engineer
with 5 years experience. Must be experienced in main-
stream, TV Studio Equipment. KMFTV-M is an equal opportu-
nity employer. Send Resume to Gene Rade, P.O. Box 2775, Harrington, PA 17326.

UHF REMOTEetroit: Top 50 market, East
Coast Group owned. ARC affiliate. Excellent ben-
fits. Write resumes to: Rotterdam, NY 12149.

REPS WANTED: Fast growing wholesale supplier based on Long Island, New York. Needs qualified reps to sell diversified lines of camera tubes, transmitting tube parts, mobile system, converters and com-
ponents. Continuous sales of these repeat type items
will be steady, in-season. Please summarize your
interest in territory. Contact J. Trotman 516-599-6400.

www.americanradiohistory.com
MAINTENANCE ENGINEER, PRO-AUDIO: Immediate opening. National cable stereo company, based near Washington, D.C. Needs experienced person to maintain our high-quality tape production & broadcast automation systems at our facilities in Reston & Arlington, Virginia. Organizational skills required as well as a strong background in the maintenance of professional quality tape machines, audio consoles & related equipment. Technical school graduate or equivalent. Send resume to: Barbara Fahey, Studio-line Cable Stereo, 11450 Commerce Park Drive, Reston, VA 22091. No phone calls please! 4-95-11

ENGINEER FOR CAPITOL RADIO NETWORKS, facilities in Raleigh, NC and Richmond, VA. Maintain and operate studios, audio satellite systems and uplinks. Require BS degree or equivalent. Minimum two years Radio-TV experience with microwave, RF frequencies, satellites preferred. Good organizational skills, deadline oriented. Contact Dept. of Human Resources, Capitol Broadcasting Co., P.O. Box 1300, Raleigh, NC 27605-2000. EOE, MF. 4-84-11

ASSISTANT EXECUTIVE DIRECTOR for Engineering and Operations. Fifteen years' experience in broadcast engineering, or ten years' experience in broadcast engineering and a bachelor's degree in Electrical Engineering. Experience must include five years in a supervisory position. First Class or General Class FCC license is required. Salary range: $30,000-$40,000. Send resume to: Ray Sullivan, Personnel Administrator, KET, 601 Cooper Dr., Lexington, KY 40502-2296. EEO employer M/F/H. 4-85-11

CHIEF ENGINEER for the School of Cinema-TV at USC. Perform complex work in the planning, maintenance and modification of TV equipment and systems. Supervise studio and field production engineering efforts. Act as Project Director regarding studio facilities planning, construction and systems design. Min. Req: degree related to engineering, current FCC license. Solid knowledge of Ampex and related equipment, must be able to repair and modify video and audio equipment. Salary commensurate with qualifications. Send resume and letter to Dr. John Stanford, Personnel Administrator, School of Cinema TV, University of Southern California, Los Angeles, CA 90089-2511. USC is an Affirmative Action/Equal Opportunity Employer. 4-85-11

TV ENGINEER- RESPONSIBLE for the operation and maintenance of state-of-the-art broadcast equipment in the new Telecommunications Center. Minimum qualifications: Two year degree in electronics and at least 2 years experience in operation, maintenance and installation of TV equipment. Would consider Bachelor's degree with no experience. Prefer experience with 7 & 10 meter uplink satellite operation. Equivalent combinations of education and experience may substitute for the above stated qualifications. To receive full consideration, submit application and resume by May 31, 1985 to: Marshall E. Allen, Director, 104 Telecommunications Center, Oklahoma State University, Stillwater, OK 74074. OSU is an AFFIRMATIVE ACTION/EQUAL OPPORTUNITY EMPLOYER. 4-85-11

EMployment Services

10,000 RADIO AND TV JOBS a year for men and women are listed in the American Radio Job Market weekly paper. Up to 300 every week. Engineers, Q's, Newspeople, Program Directors, Production, Sales, All markets, all formats. One week computer list, $6.00 Special bonus 6 weeks, $14.95. You save $21.00. American Radio Job Market, Dept. 1, 1501 North Eastern, Las Vegas, Nevada 89101. 7-64-1fn

WE PLACE

TV and Video Engineers

COAST TO COAST

[All Levels, But Not Operators]
ALL FEES PAID BY EMPLOYERS

Phone/Resume

KEY SYSTEMS

Westminster Road
Wilkes-Barre, PA 18702
Phone Alan Kornish at (717) 655-1458

April 1985 Broadcast Engineering 119

Tektronix International Career Opportunity

In The People's Republic of China

Tektronix develops, manufactures, sells and services a broad line of electronic measurement, display and control instruments and systems that are used worldwide in science, industry and education.

Rapid expansion of our business in the People's Republic of China has created an exciting opportunity for a Communications Sales Engineer within the Tektronix China Project.

Communications products include instruments designed to test, measure and monitor television, RF, fiber optic and data communication network signals.

This position will involve training at the corporate headquarters in Oregon and extensive travel.

Qualified candidates will have either 2+ years of sales experience for an electronics/communications corporation, or experience in broadcasting/television engineering. An understanding of RF baseband and microwave instrumentation is desired. BSEE or technical degree is preferred. Fluency in Mandarin Chinese and English is unconditionally required.

Tektronix offers excellent compensation, benefits and advancement potential. Relocation assistance will be provided.

For immediate consideration please forward your resume to Carol Evans, MS 51-288, Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077.

We are an equal opportunity employer m/f/h.

Tektronix

COMMITED TO EXCELLENCE.

BROADCAST ENGINEER

PLUS STAFF ENGINEER

Needed for Washington, D.C. operation of growing Satellite Co.

BROADCAST ENGINEER must have BSEE or equivalent plus three (3) years experience in TV Broadcast Engineering, working knowledge in Satellite Communications; terrestrial microwave operation and maintenance experience; proven ability to understand technical schematics and provide quality technical services; assure effective working relationship with supervisor and others with whom must interface, ability to compile effective oral and written reports and maintain accurate records of operating and maintenance activities; General Class Radio Telephone License required. Management experience desirable.

STAFF ENGINEER must have Associate Degree in electronics plus two (2) years electronic technician experience (or equivalent) with one of the two years in:

1) In maintenance of typically utilized technical equipment:
 a) Eng U-Matic tape recorders
 b) Eng television cameras
 c) Micro-wave STL equipment
 d) Audio follow video routing switching equipment
 e) Associated audio support equipment

2) In electronic circuit design with emphasis in micro-wave and TV broadcasting equipment.

Demonstrated ability to properly use electronic test equipment and interpret electronic schematics and block diagrams, normal color vision and hearing; General Class Radio and Telephone License required. Work hours will include evenings and some weekends. Have proven ability to work effectively with others.

CALL COLLECT to BIC Personnel Department for Employment Application Form. (801) 575-7508

AN EQUAL OPPORTUNITY EMPLOYER

www.americanradiohistory.com
6139 FOR EXCELLENCE IN PERFORMANCE

The quality of the 6139 is superb. You could not ask for more. Even if you ignored all else, the 6139 would be selected for its single most important feature - its quality.

There are several models to choose from: 8, 16 or 24 inputs; LED or incandescent lamp buttons; fully computerized ("K" versions). The 7239 AUTO DRIVE™ is the most sophisticated computer controller in the industry.

- 3 MIX EFFECTS SYSTEMS
- TEST MODE FOR SYSTEM TIMING
- MASTER FADE TO BLACK
- QUAD SPLIT
- TWO CHROMA KEYERS (OPTIONS)
- DOWNSTREAM KEYER WITH EDGE
- COMPUTER CONTROL OPTION
- EDITOR INTERFACES
- ROTARY AND MATRIX WIPE OPTIONS
- BLANKING PROCESSOR

Prices start at $14,500. for 8 input version and go up to over $70,000. with all options.

CROSSPOINT LATCH CORP.

95 PROGRESS STREET • UNION, NJ 07083
(201) 688-1510 • TELEX 9104901990

Circle (99) on Reply Card

This magazine gives you good reading, good writing and good arithmetic.

We present the information in our articles clearly, accurately and objectively. That's good writing. Which means good reading.

We present the information in our circulation statement clearly, accurately and objectively. That's good arithmetic.

BPA (Business Publications Audit of Circulation, Inc.) helps us provide precise and reliable information to both advertisers and readers.

An independent, not-for-profit organization, BPA audits our circulation list once a year to make sure it's correct and up to date. The audit verifies your name, your company, your industry and your job title.

This information enables our advertisers to determine if they are reaching the right people in the right place with the right message.

The audit also benefits you. Because the more a publication and its advertisers know about you, the better they can provide you with articles and advertisements that meet your information needs.

BPA, for readers it stands for meaningful information. For advertisers it stands for meaningful readers. Business Publications Audit of Circulation, Inc.
360 Park Ave. So., New York, NY 10010

We make sure you get what you pay for.
COMMUNICATE

In the past, sailors established great trade routes around the world. Today, GEC McMichael has established sophisticated communications around the planet.

We offer a total capability in broadcast, studio equipment and studio system facilities: reliable, stable line array Telecine; the finest standards converter, ACE, in the world; broadcast colour and monochrome picture monitors; 1" C format VTR’s; PAL and NTSC adaptive comb filter decoders; frame synchronisers; and cost-effective graphics equipment.

GEC McMichael also offer an extensive capability in satellite communications and video teleconferencing equipment. Contact the address below for further details.

GEC McMichael Limited
Septon Park, Bells Hill,
Stoke Poges, Slough, England SL2 4HD.
Telephone: (02816) 2777 Telex: 849212

US Representative:
8305 East Gainey Drive, Scottsdale, Arizona 85260.
Telephone: (602) 9487235 Telex: 550 2342602.

Circle (10) on Reply Card
For the engineer who has everything...

We present the Ward-Beck family of DAs that offers even more!

Engineered to provide flawless performance with complete operational flexibility, the units may be arranged in numerous combinations within the MF-6B 3½” standard rack mounting frame. Each module is individually self-powered, with a choice of either actively balanced transformerless circuitry or a fully balanced transformer design, and features front panel LED level and status indicators. Fully-enclosed metal construction, utilizing a unique combination of custom extrusions, provides maximum RF immunity. Remote sensitivity is also available.

The M600 Series... created for systems focussing on the future!