Video technology: moving into the '90s
FIELD PRODUCTION

A special job demanding specialized products.

For your audio needs: a growing line of compact, easy-to-use FP amps and mixers.

Shure FP products are built specifically for ENG, EFP, film, and video work. They're not general audio products that "might" work on remotes. And no one offers as wide a selection with this kind of built-in ruggedness and reliability.

For Stereo Remotes. The FP32 Stereo Mixer is comparable in size and features to our famous FP31. Its stereo capability, light weight, easy-to-use controls and convenient shoulder harness make it the first choice of field crews. Our FP42 Stereo Mixer simplifies mic cueing, so important in situations like sports remotes. Plus it enables you to easily mix down stereo in your post production booth. It offers all the features of the popular M267 plus stereo capability and a stereo headphone amp.

The Industry Standards. The FP31 is Shure's original field production mixer. Thousands bet their audio on it worldwide. The FP16, a one-by-six distribution amp with transformer balancing and link jacks, outperforms all competition. It's also ideal as a portable press bridge.

For Long Yardage Situations. The FP11 Mic-to-Line Amp provides freedom from noise in long line situations, with up to 84 dB of gain in 15 6-dB steps. It converts any mic to line level and includes an invaluable limiter circuit. The FP12 Headphone Bridging Amp is a must for shotgun and boom operators. It keeps them on target without need for a return line. It's ideal for multiple headphones, troubleshooting, and as an intercom.

The new FP51 gated compressor/mixer rides gain automatically. Once you set the compression level, the FP51 adjusts automatically to changing signal levels in critical remote-to-studio feeds to maximize signal output. As a result, your broadcast is quieter, smoother, better balanced and more natural sounding.

For more information on the entire FP line, call or write Shure Brothers Inc., 222 Hartrey Avenue, Evanston, IL 60202-3696. (312) 866-2550.
The strength of Technologix Transmitters owes as much to the people behind them as to the technology within them. LeRoy Wallace, Sr., LeRoy Wallace, Jr., and Don Adams, a design team that possesses over 60 years in the broadcast industry, have created the line of high power UHF transmitters they’ve always dreamed of building.

Performance, Reliability and Serviceability.
Technologix and Midwest have teamed up to create a complete line of UHF television transmitters ranging from 30KW to 280KW. Each transmitter is meticulously designed to deliver high performance, reliable operation, ease of service and trouble-free maintenance.

Technical Service and Support.
Midwest has over 50 sales and service centers throughout the country. Plus, the Technologix Response Team is on-call 24 hours a day to respond quickly to solve your problems.

Replacement Parts Availability.
Technologix transmitters have been designed using readily accessible "off the shelf" parts, so they can be quickly obtained from numerous third-party sources. By utilizing these parts, your replacement costs are also kept at a minimum.

When it’s time to purchase a new transmitter, go with a Technologix from Midwest. Because your transmitter is the last thing you need to worry about.

Circle (3) on Reply Card

www.americanradiohistory.com
ON THE COVER
Few areas of technology are moving as fast as video, providing new solutions to old problems. Our cover this month represents a key technology that makes program exchange possible — standards conversion. (Photo courtesy of Snell & Wilcox. Monitor photos supplied by Barco.)

DEPARTMENTS
4 News
6 Editorial
8 FCC Update
10 Strictly TV
12 re: Radio
14 Satellite Technology
16 Circuits
18 Troubleshooting

20 Management for Engineers
110 SBE Update
111 Applied Technology: Film-to-tape transfer technology
118 Show Replay: Montreux TV Symposium
120 People
121 News Special Report: ATTC Progress Report
122 Business
123 New Products

VIDEO TECHNOLOGY UPDATE:
In the electronics business, few areas of technology are moving as fast as video. The power of the computer, coupled with innovative approaches to analog signal processing, have given users a whole new set of opportunities and challenges. This month, we examine some of the areas of particular interest to broadcasters.

26 Easing Into Newsroom Automation
By Rick Lehtinen, TV technical editor
When it comes to automation, wade in slowly to keep your head above water.

38 Inside Standards Conversion
By Rick Lehtinen, TV technical editor
Interpolating filters are the soul of standards conversion.

56 Advances in Analog Instrumentation
By Margaret Craig, Tektronix
Analog waveform monitors and vectorscopes are better than ever.

OTHER FEATURES:

70 The Ins and Outs of Microphones
By Brad Dick, radio technical editor
The applications for microphones run the gamut, from the radio remote to the TV panel discussion. The right mic is a must.

102 The Role of Film in Television
By Jerry Whitaker, editorial director
Although the motion-picture industry first sought to “take over” television, the marriage of the two has worked quite well.
NOW, THE RIGHT CHOICE IN ADVANCED CCD CAMERAS IS CLEARER THAN EVER.
THE NEW SK-F3 AND SK-F700.

Hitachi presents two new 3-chip CCD broadcast cameras that give you higher resolution and better image quality than you have ever seen before in a broadcast camera.

The SK-F3 dockable and the SK-F700 studio cameras include the newest Frame Interline Transfer (FIT) CCD technology. Smear is virtually eliminated. Sensitivity is dramatically improved.

A 6-speed electronic shutter and contrast function are both built-in. And as for high resolution, the SK-F3 and SK-F700 hit a crystal clear 700 lines.

Your choice for a high performance camera system has never been easier. Learn more about the new SK-F3 and SK-F700. In the studio or in the field, they are clearly superior.

Contact Hitachi, 175 Crossways Park West, Woodbury, NY 11797, (516) 921-7200.
By Paula Janicek, staff editor

Experimental antenna under construction

Construction is under way on the National Association of Broadcasters’ experimental AM tower in Beltsville, MD, a suburb of Washington, DC. The antenna, designed by Ogden Preston, is intended to provide separate control over the skywave and groundwave radiation to produce minimal signal levels in the skywave pattern of a broadcast signal in a given direction. NAB will conduct tests to determine whether the antenna achieves this.

If this technology is successful, AM broadcasters with directional antennas could use it to achieve improved nighttime signal coverage by substantially increasing their nighttime power in a single direction.

NAB also plans to conduct general research into the behavior of medium-wave AM signals and test an antenna-grounding system that could dramatically lower ground-system installation costs. The ground system was developed by Al Christman and Roger Radcliff of Ohio University. The facility is being constructed by LDL Communications, Laurel, MD.

SMPTE issues call for papers

The Society of Motion Picture and Television Engineers has issued a call for papers to be presented at the 24th Annual SMPTE television conference, Jan. 26-27, 1990.

If you would like to have a paper considered, send your name, address, telephone number and a 100-word abstract of the proposed paper or an author form to: Marilyn Waldman, SMPTE Program Coordinator, 395 West Hartsdale Ave., White Plains, NY 10607. Author forms are available from SMPTE headquarters, at the same address.

The theme of the conference, which will be held at the Disney Contemporary Resort near Orlando, FL, will be “Television — Merging Multiple Technologies.” For more information, call 914-761-1100.

IEEE to sponsor annual symposium

The 39th Annual Broadcast Symposium, sponsored by the IEEE Broadcast Technology Society, will be held at the Hotel Washington, Washington, DC, Sept. 21-22. Topics will include AM, FM and TV transmission systems, advanced TV systems and RF radiation.

Luncheon and banquet speakers will include Alfred Sikes, NTIA director and FCC chairman designate; James McKinney, ATSC chairman, and Thomas Stanley, FCC chief engineer. For more information, contact Steve Crowley, symposium chairman, at 202-223-6700.

Continued on page 105

Editorial and advertising correspondence should be addressed to: P.O. Box 12901, Overland Park, KS 66212-9981 (a suburb of Kansas City, MO); (913) 888-6664, TDD: 42-4777, Intertec OLPF, Circulation correspondence should be sent to the above address, under P.O. Box 12937, RAPIDFAX: (913) 841-6697.

EDITORIAL
Jerry Whitaker, Editorial Director
Brad Dick, Radio Technical Editor
Carl Bentz, Technical and Special Projects Editor
Rick Lehman, TV Technical Editor
Tom Cook, Senior Managing Editor
Paula Janicek, Staff Editor
Dawn Hightower, Associate Editor
Suzanne Oliver, Editorial Assistant
Andrew Naugher, Editorial Assistant
Pat Blanton, Directory Editor

ART
Stephanie Swaull, Graphic Designer

EDITORIAL CONSULTANTS
Fred Amsel, Audio
Nils Conrad Pearson, Electronics
Ned Soseman, Video
Michael Heits, Consulting Editor
Don McCoordy, Consulting Editor

BUSINESS
Cameron Bishop, Group Vice President
Duane Helmer, Group Publisher
Stephanie Hanaway, Marketing Director
Evelyn Hornaday, Promotions Manager
Darren Sexton, Promotions Coordinator
Dee Unger, Advertising Business Manager
Mary Birnbaum, Advertising Production Supervisor
Sally Nickoles, Advertising Coordinator

ADMINISTRATION
R.J. Hancock, President
Chuck Rash, Corporate Circulation Director
Sandra Stewart, Circulation Director
Doug Wilding, Circulation Manager
Customer Service: 915-341-6625
Kevin Callahan, Creative Director

TECHNICAL CONSULTANTS
Eric Neil Angevine, Broadcast Acoustics
John H. Battison, Antennas/Radiation
Blair Benson, TV Technology
Dennis Clapura, Radio Technology
Dane E. Erickson, Systems Design
Howard T. Head, European Correspondent
Wallace Johnson, FCC/Std. Engineering
John Kean, Subcarrier Technology
Donald L. Markley, Transmission Facilities
Harry C. Martin, Legal
Robert J. Nelson, Studio/Communications
Hugh R. Paul, International Engineering
Art Schneider, A.C.E., Post-production
Elmer Smalling III, Cable/Satellite Systems
Vincent Waskowicz, Communications Law

MEMBER ORGANIZATIONS
SUSTAINING MEMBERS OF:
• Acoustical Society of America
• Society of Broadcast Engineers
• Society of Motion Picture and TV Engineers

Member, Association of Business Publishers
Member, Business Publications Audit of Circulation

BROADCAST ENGINEERING is edited for corporate management, engineers/technicians and other station personnel at commercial and educational radio and TV stations, teleproduction studios, recording studios, CATV and CCTV facilities and government agencies. Qualified personnel include consulting engineers and dealers/distributors of broadcast equipment.

BROADCAST ENGINEERING (ISSN 0007-2794) is published monthly (except in the fall, when two issues are published) and mailed free to qualified persons within the United States and Canada in occupations described here by Intertec Publishing Corporation, 5221 Quivira Road, Overland Park, KS 66212. Second-class postage paid at Shawnee Mission, KS, and additional mailing offices. POSTMASTER: Send address changes to Broadcast Engineering, P.O. Box 12560, Overland Park, KS 66212.

SUBSCRIPTIONS: Broadcast Engineering is mailed free to qualified persons in occupations described above. Others may subscribe at the following rates: United States, one year $50; all other countries (surface mail), one year $50. Rates include postage. Foreign air mail and Canadian first class options are available at the annual subscription rate of $115. Single copy price $4.50, except for the annual Buyers’ Guide/Spec Book, which is $20. Back issues, when available, $5, Buyers’ Guide/Spec Book back issues $25. Adjustments necessitated by subscription termination at single copy rate. Allow six to eight weeks delivery for change of address or new subscription.

Copyright 1989 by Intertec Publishing Corporation. All rights reserved.

Advertising offices listed on page 131.
Figuring out what test signals you need to test all the video formats you use — that’s the easy part. What’s complicated is getting them where you need them to go. Who has room for two or three different signal generators for every rack of equipment?

MAGNI knows that space is as important to you as function. And the new Signal Creator™ brings you the best of both worlds: all the flexibility of a fixed-format/programmable generator in one go-anywhere package.

Inside the unit, precision hardware provides you with full 10-bit digital signal generation. Outside Signal Creator™, signals are stored on a memory card that fits in your wallet. Testing NTSC equipment? Insert the card, and a full NTSC signal set is automatically downloaded and stored: just make your choice from the display menu. Need to switch to component signals? D1 or D2? PAL? Choose another memory card, and the new format is there at your fingertips — you can even load Signal Creator™ with custom signals tailored to your needs.

No duplicate instruments or complicated programming: just multi-format testing where you need it, when you need it.

An idea that’s as easy as...

MAGNI

MAGNI SYSTEMS, INC
9500 SW Gemini Drive
Beaverton, OR 97005 USA
(503) 626-8400
(800) 237-5964
FAX (503) 626-6225
TEL 690-27697183100

MAGNI is a registered trademark of MAGNI Systems, Inc. MAGNI Systems and Signal Creator are trademarks of MAGNI Systems, Inc.
Montreux, Switzerland, is a beautiful place. Situated on the shores of Lake Geneva, it is steeped in history and wrapped in excitement. It is a great place to go for a vacation, or to shop, or to get a tan, or to watch others get a tan. It is, however, a lousy place to hold a major trade show.

Two years ago, at the 1987 International TV Symposium at Montreux, show organizers promised to fix several serious problems. They promised to increase exhibit floor space; they promised to replace the temporary convention center annex with a permanent structure; they promised to work on getting additional hotel rooms in the city; they promised to increase the amount of parking available near the waterfront. Well, I'm being too harsh. Make it one-and-a-half out of four.

Based on the assurances of 1987, exhibitors and attendees alike decided to give Montreux another try. The assurances squelched talk of moving the show to Geneva, which has a real convention center with air conditioning, permanent buildings and all the comforts of home. The City of Montreux and show organizers were long on promises and short on actions.

The biggest improvement was a new parking garage, as promised, near the waterfront. This essentially eliminated most parking difficulties for attendees that had to commute to Montreux because there were not enough hotel rooms available in the city. Although the garage was quite a distance from the convention center, it was, nonetheless, a welcome addition to the scene.

The really big problems were to be found at the exhibition halls. If you've never attended a Montreux exhibition, it is difficult to explain the organization, or lack of organization, of the convention center itself. The building gives the appearance of having expanded incrementally over the years, which it probably has. Now, there's nothing wrong with that, except the result is a group of small halls, most with low ceilings. How low? Twelve feet or less in some areas! If that wasn't bad enough, the individual halls do not necessarily connect with each other directly. Going from one level to another might require that you traverse an intermediate space.

So much for the good news. The top two floors of the convention center, Level 4 and Level 5, were unbelievable. They were not part of a finished building, as you would expect for a major convention. Instead, they were constructed temporarily, using a mixture of steel girders, scaffolding and plywood. I was told the structure was more sturdy than it looked. For that I am thankful.

No association or trade group in the United States would stand for the kind of facilities that were offered at Montreux. The permanent halls were nothing to write home about, but the temporary ones were downright scary. Levels 4 and 5 were a fire inspector's and insurance underwriter's nightmare. One open flame from any of the hundreds of pieces of electronic equipment in the building would have turned the top two levels into a deathtrap.

Then there was the heat. Air conditioning was installed at the center, but provided only marginal relief. Some halls, and parts of halls, were comfortable, but most were unpleasant, even unbearable. There's no doubt that the heat on the upper levels of the center kept customers away from those exhibits.

So what's in store for us two years from now, when we all return to Montreux? Well, more promises — for permanent convention halls, more hotel rooms and air conditioning. Maybe these promises will be kept. I hope so.

Don't get the wrong idea. Montreux is a neat place. I'll probably go back there this fall for vacation. But for a convention? No way.

Jerry Whitaker,
editorial director
Orban’s 642B Parametric Equalizer/Notch Filter offers unmatched versatility, superb specs, and highly musical equalization in a new generation of our famous and widely-used 622 series. The 642B represents Orban’s continuing dedication to the art of creating the “most musical” parametric equalizers through the use of carefully designed, series-connected “constant Q” sections which minimize ringing and stridency.

The 642B’s superiority over conventional parametric equalizers is particularly apparent at the extremes of its boost/cut parameter and at narrower bandwidths on difficult program material. In situations like these, the 642B’s performance provides consistently satisfying results without complications or unpleasant surprises.

<table>
<thead>
<tr>
<th>Model 642B</th>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
<th>Band 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Same in both channels.)</td>
<td>25-500Hz</td>
<td>80-1.6kHz</td>
<td>315-6.3kHz</td>
<td>1-20kHz</td>
</tr>
</tbody>
</table>

Special Application Versions

<table>
<thead>
<tr>
<th>Model 642B/SP</th>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
<th>Band 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Same in both channels. Limited frequency range for speech processing, forensic work, notch filtering/feedback suppression, and similar applications.)</td>
<td>80-1.6kHz</td>
<td>80-1.6kHz</td>
<td>315-6.3kHz</td>
<td>315-6.3kHz</td>
</tr>
</tbody>
</table>

Model 642B/SPX Frequency ranges of 642B in channel A; 642B/SP in channel B. (For combined full-frequency range broadband shaping and restricted-range narrowband notching.)

Features include:
- Dual 4-band or mono 8-band configuration selectable by the front-panel Cascade switch
- Each band can be tuned over a 20:1 frequency range; tuning ranges of bands overlap significantly to maximize versatility; +16dB boost/−40dB cut in each band; “Q” variable from about 0.29-5.0
- Vernier frequency control to facilitate fast, precise tuning of sharp notches
- Frequency-selectable 18dB/octave high-pass filter and 12dB/octave proprietary “Automatic Sliding Besselworth”™ low-pass filter to provide full flexibility with maximum musicality
- Noise and distortion specs significantly better than 16-bit digital

Call or write today to discover more about Orban’s new, ultra-quiet, 642B Parametric Equalizer/Notch Filter—a new generation of parametric excellence from the leader in parametric EQ.

Orban a division of AKG Acoustics, Inc.,
645 Bryant St., San Francisco, CA 94107
(415) 957-1067 Telex: 17-1480 FAX: (415) 957-1070

Circle (6) on Reply Card
Congress urged to repeal copyright law

By Harry C. Martin

The FCC has recommended to Congress that it eliminate the compulsory copyright license for cable retransmission of both local and distant TV broadcast signals.

Under current law, cable TV systems may carry, or refuse to carry, any signal they wish. No copyright payments to TV stations or program producers are required in connection with carriage of local broadcast signals. When distant signals are carried, however, cable operators must pay a nominal copyright fee to the Copyright Royalty Tribunal, which distributes the proceeds to eligible program owners. The “compulsory” license system obviates the need for program-by-program negotiations with TV stations and program producers.

Criticism of this system has mounted since the Court of Appeals in Washington invalidated the commission’s must-carry rules in December 1987. The compulsory licensing scheme was created, in part, as a way to offset the constraints put on cable by the former must-carry rules. Now, local TV stations find that cable systems operating in their markets can import, at little or no cost, the same syndicated programs for which the TV stations must pay a premium.

With cable no longer having any carriage obligations, the critics of the compulsory license system view cable as having an unfair advantage in the competition for local viewers. By imposing full copyright liability on cable systems for the programs they carry, Congress could create incentives for producing larger quantities of higher-quality programs.

The commission’s recommendation to Congress that the compulsory license system be scrapped is based upon the prevailing view at the agency that competitive enterprise and free markets will do more than government constraints to promote program diversity. FCC Chairman Dennis Patrick issued a separate statement that read in part, “The compulsory license inhibits the free flow of information about consumers’ tastes and programming preferences and weakens the incentives of producers to respond to such information. Moreover, by subsidizing program acquisition by cable systems, the compulsory license introduces a significant bias into the program distribution system, disadvantaging competitive alternatives to cable.”

Commissioner James Quello recommended eliminating the compulsory license for distant signals, but advocated retention of the system for local signals. He thinks that, under full copyright liability, cable operators must choose not to carry local broadcast signals because of the costs of program retransmission rights. Quello, a long-time advocate of reformation of must-carry rules for cable, thinks that the compulsory license system for local signals should not be retained unless legislation requiring cable systems to carry local signals is adopted.

“Absent must-carry rules and with a compulsory license, the cable industry is enjoying a free ride at broadcasters’ expense, and this cannot continue indefinitely,” Quello said. He pointed out that if Congress acts on the commission’s recommendation to eliminate the compulsory license system before addressing the must-carry issue, it may have to re-impose both regulatory schemes.

The cable industry has enjoyed effective representation in Washington and has blocked efforts to repeal the compulsory license provisions of the Copyright Act. Broadcasters and program producers have been less successful in their lobbying, partly because of other legislative priorities such as license renewal reform. The commission’s decision to advocate repeal of the compulsory license system will focus more attention on the issue.

Tax certificate decision reversed

The commission has reversed a December 1988 decision granting a tax certificate to a minority-owned St. Louis cable company that sold its assets to Tele-Communications.

Under Section 1071 of the Internal Revenue Code, if the sale or exchange of a communications facility is certified by the commission to be necessary or appropriate to further a policy goal, such as minority ownership of the media, such sale or exchange may be treated as an involuntary conversion of the property, thereby exempting the profit obtained from income tax. To qualify for this treatment, the seller must reinvest the sale proceeds in a like business within 18 months after the sale.

In its December decision the commission granted, for the first time, a tax certificate to the seller of a communications facility, reasoning that minority ownership of the media would be promoted if the minority seller could maximize the amount of money available to it for reinvestment in other communications ventures.

In reversing itself, the commission decided that deviating from its existing tax certificate policy was unwarranted because there is no basis for treating minority- and non-minority-controlled entities differently for tax purposes when they sell to non-minorities.

Repeal of 2-year affiliations limit

The commission has repealed the rules that limited to two years the terms of affiliation agreements between local TV stations and the networks.

The 2-year rule was adopted in the 1940s to ensure that emerging networks would not tie up the few existing TV outlets by entering into lengthy affiliation agreements. The commission thought this would foreclose the development of new networks.

In repealing the 2-year rule, the agency found that the current video marketplace provides so many opportunities for establishing alternative network-type systems for the delivery of video programming that existing networks no longer can block the entry of new networks. Moreover, the developing networks that the rule was intended to assist view the rule as counterproductive, because they cannot make the kind of long-term arrangements with their affiliates that are necessary to attract capital and advertisers.

Editor’s note: For additional FCC information, 100 BROADBAND on CompuServe.

Martin is a partner with the law firm of Rody, Begley & Martin, Washington, DC.
With the Master-21™ Master Control Switcher, the pressure goes off when the commercials go on.

The intelligent Master-21 Master Control Switcher will get rave reviews from a small but highly critical audience.

The people in your control room.

Thanks to the Master-21 switcher’s configurable pre-set bus, you can take the guesswork out of complex set-ups by programming them in advance. And the system’s RS422 ESbus port interfaces with a variety of automation systems.

The Master-21 system is a dedicated stand-alone matrix that’s loaded with high performance features. Like 16 inputs, accumulative keying, built-in stereo, and the industry’s first-ever Transition Status Display.

There’s something else intelligent about the Master-21 Master Control Switcher: the price. It’s proof you don’t need a big budget to enjoy great programming.

Who knows? With the Master-21 system, you may actually enjoy watching television again.

For complete details and ordering information, contact the Grass Valley Group office nearest you.

Grass Valley Group
A Tektronix Company

THE GRASS VALLEY GROUP INC.
P.O. Box 1114, Grass Valley, CA 95945 USA
Telephone (916) 478-3000 TRT: 160452
FAX (916) 478-3187

Circle (7) on Reply Card
www.americanradiohistory.com
Designer test signals aid troubleshooting

By Rick Lehtinen,
TV technical editor

If the bars don’t look right, you know something’s wrong near the encoder. If the multiburst rolls off too soon, you know there’s an equalization problem. The test signals you enjoy today were developed carefully over the years to provide a quick way to diagnose equipment and system problems.

Test signals are supposed to highlight the problems in a picture that, if left uncorrected, would be most likely to degrade the image. The signal must test for something important. It is no good for a signal to diagnose a fault that has little effect on the overall quality of the picture.

Although these signals are quite functional for setting video and chrominance levels, they may not be particularly efficient when it comes to aligning equipment. Perhaps it is time to develop a new generation of test signals designed specifically to aid in alignment and repair, especially now that analog component and digital formats are here. In some cases, the current test signals, designed to work with NTSC systems, lack relevance.

Too many formats?

Test signals aren’t handed down from on high. Dedicated committees labor long over their development and standardization. Unfortunately, new generations of equipment are arriving faster than the standardization process can work. This does not speak poorly of the committees; actually, it reflects how seriously they take their work. But they face two huge handicaps. First, they dare not give their blessing to a signal until they know whether it really does the job. As previously mentioned, the signal must test for a defect that really matters. Nailing down the exact parameters of a signal may require several iterations, and that takes time.

Second, video equipment manufacturers may not always consider it in their best interest to reveal information about upcoming products. This forces test-signal standardization into a reactive rather than a leading role. As a result, test-signal generators typically provide standardized signals, well after the need for them arises, or they provide the signal-generator manufacturer’s best guess at a signal that could be of use for a given new format.

Factory-sealed

While servicing video equipment, perhaps you have stumbled across some test points that really don’t seem to do much. Their circuit positions won’t allow you to gain useful information. Or perhaps you find a test point on a schematic that corresponds not to a probe loop, but to a tiny coaxial connector. Chances are, what you have found is an injection point rather than a sample point. Manufacturers often align circuitry by using customized signals. These may not bear much resemblance to the test signals you are used to seeing.

For instance, if you wish to tune a circuit to peak at a given level, you could inject a signal having a null where you desire the peak. Tuning the circuit until an oscilloscope reads a flat line will peak the circuit, because if the circuit has overcome the null, it must be adjusted to achieve the peak. Such a setup is much faster than one that involves actually reading the scope. (See Figure 1.)

In the past, it would have been difficult for the average station to duplicate this arrangement. Customized generators were pricey. Also, the video equipment manufacturers might not have wanted you, the end-user, to know as much about their equipment as you would need to in order to duplicate the signals. Recently, however, new generators have appeared that allow the user to program the generator, or to play back preprogrammed custom signals.

One new offering uses a removable RAM card to provide the memory for up to 100 test signals, which then can be played back in essentially any analog or digital video format, depending on the options installed. Furthermore, this manufacturer is providing several basic signals as part of a royalty-free library, and it plans to encourage users to develop their own signals and even to trade them via modem. The device will accept signal description commands from PCs as well as accept input instructions from a variety of sources, including automatic measurement systems. This could result in a fast, automatic method of sweeping signal systems.

Hidden sword

Although this is good news for the engineer, it may be that technology’s cutting edge is actually a double-edged sword. It leaves equipment manufacturers at a disadvantage. If any engineer is able to concoct signals that will expose the flaws in a piece of video equipment, the manufacturer has to be careful in equipment design. This might not be an altogether bad idea. However, it could lead to compromised performance in critical areas, simply to avoid the possibility of generating artifacts in areas that aren’t nearly as important.

![Figure 1. Custom test-signal generator allows fast, automatic verification of signal systems.](image-url)
Not for amateur radio.

You’re no amateur at this game, so why play around with amateur CD players in the studio? You’ve tried consumer models in the past, just to see if they’ll work long enough to make sense. We can understand that. But in the long run, they don’t make sense. And you know it. Even modified or beefed up versions have given you headaches... wrong levels, hi-fi connectors, too many buttons or the wrong ones. Not to mention skips, mutes and breakdowns. Why take chances playing around with an amateur deck in a pro application? Leave that home player at home where it belongs. Check out the Studer A727 and A730—pro players for radio pros.

A727 Thousands of A727’s prove their reliability in radio stations all over the world—everyday. The A727 provides full 16-bit resolution with 4x’s oversampling—plus powerful error correction circuits to protect against on-air problems from damaged or dirty discs.

A730 Designed for fast, creative production play, the A730 is the newest addition to the Studer line of Pro CD players. This machine can recognize 100 discs and store up to 3 start cue points per disc. Its die-cast aluminum transport is built for professional use.

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>A727</th>
<th>A730</th>
<th>"Brand X" Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fader Start</td>
<td>▼</td>
<td>▼</td>
<td>Disc Recognition</td>
</tr>
<tr>
<td>Parallel Remote w/Tailies</td>
<td>▼</td>
<td>▼</td>
<td>Varspeed Built-in</td>
</tr>
<tr>
<td>Start & End Review</td>
<td>▼</td>
<td>▼</td>
<td>End of Modulation Sense</td>
</tr>
<tr>
<td>End of Track Alarm</td>
<td>▼</td>
<td>▼</td>
<td>Monitor Speaker</td>
</tr>
<tr>
<td>RS422 Serial Control</td>
<td>▼</td>
<td>▼</td>
<td>Separate PGM & Monitor Outputs</td>
</tr>
<tr>
<td>System Clock in/out</td>
<td>▼</td>
<td>▼</td>
<td>Remote Monitor Speaker Mute</td>
</tr>
<tr>
<td>Digital Output</td>
<td>▼</td>
<td>▼</td>
<td>Audio Channel Reset</td>
</tr>
<tr>
<td>Die-cast CD Drive</td>
<td>▼</td>
<td>▼</td>
<td>Rack Mouts Standard</td>
</tr>
<tr>
<td>Cue Memories</td>
<td>3</td>
<td></td>
<td>Flush Mounting</td>
</tr>
</tbody>
</table>

Go ahead. Make the comparison.

Before those amateur machines break again, call your Studer Revox Full-Line Dealer, or contact us directly.

STUDER REVOX
Studer Revox America, Inc ▪ 1425 Elm Hill Pkwy ▪ Nashville, TN 37210 ▪ (615) 254-6551
Los Angeles, (818) 780-4234. New York (212) 255-4462.
In Canada, Toronto (416) 423-2831
Circle (8) on Reply Card

www.americanradiohistory.com
Taking the measure of your station

By John Battison, P.E.

From time to time, I receive interesting letters from readers, which, incidentally, I greatly enjoy. They give me feedback and ideas for points of discussion. A recent letter from J.B. Crawley of Campbellsville, KY, was especially welcome because it brought up a subject I had been considering, namely, the accurate measurement of broadcast transmitter and receiver performance. Crawley also mentioned out-of-band radiation problems. He is not alone in wondering how to handle these phenomena without going broke buying specialized and expensive test equipment.

He asked how a small, 250W AM station that can barely afford a scope and modulation monitor could afford a spectrum analyzer, or even a splatter meter.

His question led into another important FCC compliance issue: How about measuring frequency? Now that the commission no longer requires the mandatory frequency monitor and its regular loggings, how do you know your station is on frequency, and how do you prove it? Let’s discuss frequency measurements first.

Frequency measurements

Many of us remember the old frequency monitor readings that had to be logged showing operation within limits of ±20Hz. Then the commission removed the need for daily regular logging, saying that if an accurate frequency measurement were made every 40 days or less, the requirements would be met. Many stations opted to use outside measuring services that come into town, or near town, or can make more distant measurements, for a monthly charge of about $5.

The certification arrives monthly, showing that the carrier is, let’s say 1.3 Hz high or low. The report then is clipped to the transmitter log, in the case of a DA station. The report should be filed with the maintenance log in the case of non-DAs.

The rules are the same for FMs and AMs as far as regular frequency checks are concerned. Many stations probably don’t even bother to use an outside measuring service, and they may not even be aware that the rules require regular checks.

Counter accuracy

Many contract engineers and chief engineers use frequency counters to keep check of their stations. This is acceptable if the accuracy of the frequency counter is known, and the counter is calibrated.

Larger stations may have a cesium standard; in fact, some state networks use one to keep control of all their microwave and AM/FM transmitters. They use such a standard to calibrate a high-frequency quality counter, then check their operating frequencies.

How do you know your station is on frequency, and how do you prove it?

As far as I know, any good frequency counter can be used, provided it has been calibrated properly. I don’t know how long the cheaper ones will remain in calibration, but it probably will be necessary to recalibrate regularly and, of course, before every reading.

How can a counter be calibrated if a standard is not available? There is always good old WWV or one of its relatives, depending on where you are. The signals from these stations can be used to calibrate a frequency counter, and they are always available.

Another excellent source of standard frequencies is television. If your station is a network TV affiliate, you can select one of the many test tones sent down the line, and calibrate against that. A TV station’s sync generator can be a good source.

Now that satellites have proliferated, many stable signals are available if your station uses a downlink for programming. Be aware that there is a caveat with the use of satellite signals; there could be a form of Doppler shift under some circumstances.

Actually, the regular measurement of frequency deviation is not difficult, and it can be managed either by an owned or borrowed frequency counter. You also could use a receiver capable of receiving the WWV stations and rely on the use of beat frequency techniques. Whatever method you use, remember that a check at intervals of fewer than 40 days is required.

Performance of the monthly frequency check easily could pay for itself through an additional small fee for the use of the counter. In my opinion, this service should not be performed as part of a contract engineer’s regular work, but only for an extra fee.

Emission bandwidth

Many engineers do not seem to be aware that the commission still requires proof that an AM station’s emission bandwidth does not exceed certain specified limits. The introduction of NRSC-1 does not remove this requirement, but provides a built-in means of complying with this requirement.

Section 73.44 of the rules calls for an annual emission bandwidth measurement to be made at intervals not exceeding 14 months. If your station has installed an NRSC-1 filter, measurements no longer are required.

The commission has said that any station installing an NRSC-1 filter will be assumed to be in conformity with the rules until NRSC-2 is required in the early ’90s. AM stations have until Dec. 31, 1989, to install the NRSC-1 filter to remain in compliance.

Can a selective receiver with a crystal filter be used to check bandwidth compliance? I don’t believe that such instrumentation would be adequate to satisfy the requirements. In addition, the setup and tests would require considerable time.

Any kind of measuring device can be used to check emissions, but only readings from a spectrum analyzer will be accepted in the event of a disagreement. Another type of measurement device now is available to check your bandwidth emission. We’ll talk about that product next month.
SERVING THE BROADCAST WORLD!

For over 50 years Varian Eimac's tradition of quality and dependability has been firmly established, and continues to be the industry leader today.

Stringent manufacturing standards and controls reduce transmitter downtime and eliminate excessive operating overhead. Varian Eimac tubes from watts to megawatts, cavities from megahertz to gigahertz, and a large selection of accessories support this complete product line in radio and television.

All Varian Eimac tubes are warranted 100% to be free of manufacturing defects. Specific warranties for individual tube types are available from Varian Eimac sales organizations worldwide:

Next to producing a wide variety of products, Eimac provides rapid customer service and support. Eimac people are trained in their field ready to offer the expertise needed in technical problem solving and special applications.

From design to final product, Eimac quality and reliability are carefully built in. Eimac is small enough to handle special orders, and large enough to handle large requirements.

We guarantee Varian Eimac products will be here today for tomorrow’s applications. Varian Eimac’s 50 plus years of outstanding performance stands as the benchmark for the industry.
The making of a space station

By Elmer Smalling III

The National Aeronautics and Space Administration (NASA) has begun work on Space Station Freedom. Plans call for a first-element launch in early 1995. The space station will be a cooperative effort of the United States, Japan, Canada and the European Space Agency.

NASA’s program objectives are to accomplish the following:

- Establish a permanently manned space station by 1996.
- Stimulate technologies of national importance, especially automation and robotics, by using them to provide space station capabilities.
- Promote substantial international cooperation in space.
- Create opportunities for private sector activity in space.

Space Station Freedom will be assembled in low Earth orbit, and will consist of four pressurized modules mounted on a truss backbone with solar panels at each end. The station is the prototype for a device that will support missions to the moon or Mars. The space station truss structure lends itself to simple expansion into a dual-keel unit (with two spines) where spacecraft can be assembled, fueled and checked out for manned missions. Such spacecraft could be berthed, refueled and repaired at the space station without disturbing work on the other keel.

Multiple design centers

Various NASA centers have been chosen to work on the space station.

Marshall Space Flight Center in Huntsville, AL, along with subcontractor Boeing Aerospace, will design and manufacture the living quarters, the U.S. laboratory module, the logistic elements, the node structures connecting the modules, the environmental control and life support systems, and the thermal control and audio-video systems within the pressurized modules.

Johnson Space Flight Center in Houston and its subcontractor, McDonnell Douglas Astronautics, will manufacture the truss assembly, the propulsion assembly, the mobile transporter system, the EVA system, the thermal control system, the space shuttle attachment systems, the communications and tracking system, the data-management system and the airlocks.

Goddard Space Flight Center, with the Astro-Space division of General Electric, will manufacture the servicing facility, the flight telerobotic servicer, the accommodations for attached payloads, and the U.S. unmanned free-flyer platforms. The Lewis Research Center, Cleveland, and its prime contractor, Rocketdyne, will manufacture the electrical systems.

Multiple launches

The first section of the station to be launched will be a fully functional spacecraft that will be used as a “cornerstone” for the complete station. This first element will include solar panels and radiators, power module, S-band communications pallet and antenna, reaction control systems, tank farm, mobile transporter, and associated truss and support structure.

By the end of 1995, and after at least four major launches, the station will be ready for human visitors. It will include a thermal control system, robotic servicer, gyro pallet, propulsion thrusters, power and fluid-management pallets, a TDRS (tracking data relay satellite) antenna, first-phase mobile service center and a pressurized docking module.

NASA is hoping for the space station to have permanently manned capability status by the fourth quarter of 1996. This will include additional support truss structures, on-board power modules with additional solar panels and radiators, more tanks, additional reaction-control modules and attached payloads for the aft node structures with cupolas, airlocks and a habitation module.

The initial size of the space station will be four, expanding as additional international modules are added (Japan, Canada and the European Space Agency).

The fourth and final phase of the space station will be complete by early 1998. It will include the international modules, additional solar panels and power modules.

The completed space station will be operated on a day-by-day basis from the Earth and onboard the station. Completion of Space Station Freedom should require about 20 assembly shuttle flights.

Figure 1. Space Station Freedom will evolve from a simple, unmanned platform into a permanently manned research facility, and then into this mammoth platform capable of servicing spacecraft on missions to the moon and to Mars. First-element launch date is set for 1995.
Otari's new MX-50. Built around the premise that you can have everything you ever wanted in a two-track tape machine, and still stay within your budget. For example:

- **The Transport**
 - DC quartz PLL capstan motor with front panel selection of operating speeds (from either a 15/7.5 or 7.5/3.75 ips speed pair).
 - Capstan speed variable by ±7% from the front panel, and by ±50% from SMPTE time-code external controllers via an Otari-standard 37-pin connector.
- **The Electronics**
 - Optional remote control.
 - Lighted VU meters with peak-reading LED indicators.
 - Transformerless active balanced inputs with XL-type connectors.
 - Optional Voice Editing Module (VEM) for twice normal play speed with normal pitch.

Otari's MX-50. For whenever or wherever you need a professional audio machine at an affordable price.

For more information, call your nearest Otari professional audio dealer, or Otari Corporation at (415) 341-5900.

www.americanradiohistory.com
Thermistors used in temperature control

By Gerry Kaufhold II

Thermistors are semiconductors that exhibit a large variation in conductivity when exposed to a small variation in operating temperature. Positive temperature coefficient (PTC) thermistors increase in resistance as temperature rises. Negative temperature coefficient (NTC) thermistors decrease in resistance as temperature climbs.

For most applications, NTC thermistors are preferred. Many national temperature standards laboratories use NTC thermistors as primary reference materials. Broadcast engineers will benefit by learning how thermistors can be useful for measuring temperature, for controlling and protecting electrical circuits, and for measuring microwave power emanations.

Temperature parameters are controlled by measuring the resistance of the thermistor against a known reference using a high-impedance bridge circuit. Current-sensing and time-delay circuits are implemented by measuring current vs. time, or I vs. T. Microwave power and overcurrent indications are determined using voltage vs. current measurements, or E vs. I.

Choosing a thermistor

Thermistors are produced according to a variety of processes. Each “recipe” produces a family of products that are optimized for a particular application and range of temperatures. To control the crystal oven at its correct temperature, the thermistor selected must exhibit its maximum resistance change near the operating temperature of the oven.

A chart showing resistance vs. temperature usually is shipped with each thermistor. This chart is developed by factory engineers who have worked for many years with each type of thermistor. Several mathematical formulas have been derived to permit calculation of resistance vs. temperature. Most of them involve higher mathematics, and none of them completely solves the problem. The R vs. T chart remains the best way to choose a value.

Once a thermistor is chosen, the circuit is created using high-input-impedance circuitry, so that almost no energy travels into the thermistor. This helps avoid self-heating.

To observe self-heating, connect an NTC thermistor between the leads of a volt-ohmmeter, with the display set for resistance in kilohms. The reading will begin high and gradually decrease as current flows through the thermistor from the reference voltage supplied by the meter.

When analyzing or troubleshooting a thermistor-based temperature controller, take care to completely understand the circuit before test equipment is connected. Most thermistors used for temperature applications use 4-wire leads and operate between a reference voltage and electrical ground. If test leads are referenced to true ground, the sensitive bridge circuit might become unstable and oscillate, producing incorrect readings.

Temperature-measurement circuits

Let’s look at a typical application for controlling temperature. (See Figure 1.) This circuit might be found in a temperature controller for a crystal oven used in a frequency-stable transmitter.

The first problem to be overcome is mechanical. The thermistor probe must be coupled tightly to the crystal to assure thermal accuracy. Heat tends to radiate down the thermistor lead-wires, acting as a small heat sink that will cause slight errors. To minimize this kind of error, thermistor lead wires are quite thin.

Because energy flowing through the thermistor will cause self-heating, the temperature controller uses high-impedance-sensing amplifiers. Such circuitry works well in electrically quiet environments, but can be quite sensitive to EMI, RFI, and inductively coupled noise.

The most common temperature-control circuits use a variation on the Wheatstone bridge. The reference resistor is chosen so that its resistance is close to the expected resistance of the thermistor at the operating temperature. The two voltage-divider resistors are chosen to divide the reference voltage across the bridge, and to give good common-mode noise rejection. The voltage at the input of the measurement circuit should be approximately half the power-supply voltage, to permit maximum voltage swing of the controller output.

The thermistor probe usually uses four copper wire leads. Two provide the drive current to the thermistor, and the other two carry the measured signal back into the bridge. Notice that the circuit that drives the thermistor appears to be complicated. The buffer op-amp is used to compensate for the voltage loss due to the resistance of the lead wires.

In operation, the circuit acts like a closed-loop servo system. As the temperature increases with the heating element on, the resistance of the thermistor lessens. This causes the output of the bridge to decrease, turning the heating element off. As the crystal cools, the thermistor resistance goes up, causing the bridge to unbalance, and the heating element to go back on. Using such a circuit, temperature can be controlled to within fractions of a degree.

Kaufhold is a market development engineer for SGS-Thomson Microelectronics, Phoenix.

Figure 1. A crystal oven control circuit that uses a thermistor.
Be prepared.

For the first real improvement AM sound more than a decade.

The future offers real promise for AM radio. NRSC AM radios are almost here, factory-installed in new cars. Soon, home stereos and portable sets will also be NRSC-equipped.

NRSC (National Radio Systems Committee) has created a voluntary national transmission standard that makes wideband high-fidelity AM radios practical. As broadcasters adopt the NRSC standard, receiver manufacturers can extend and flatten their frequency response without risk of increasing the audibility of interference.

Is your station prepared?

The 9100B NRSC-standard OPTIMOD-AM® is the first choice of AM stations concerned about improving their sound to compete with FM. OPTIMOD-AM sounds great on both the new NRSC receivers and on the millions of narrow-band receivers already in the field that will be in use for years to come.

When replacing older-style processors with OPTIMOD-AM, stations experience a significant increase in coverage area. And when replacing any processor, stations experience a dramatic improvement in sound quality, on both voice and music, with no sacrifice of loudness.

Superior sound is an important part of an overall strategy to increase ratings and profits. With OPTIMOD-AM, your announcers' voices will have presence and impact, while still sounding very clean. Music will have real bass, with punch and warmth, not boom. The highs will seem to open up. And loudness and tonal balance will be consistent from source to source.

OPTIMOD-AM can be configured to operate optimally in mono, C-QUAM® stereo, or Kahn stereo. Mono units can be field-upgraded later to stereo by simply plugging in additional cards.

Be prepared. Call your Orban Broadcast Products Dealer for more information on OPTIMOD-AM 9100B, or call us direct.

Orban

a division of AKG Acoustics, Inc.
645 Bryant St., San Francisco, California 94107 USA
Telex 17-1480, FAX (415) 957-1070
Telephone (415) 957-1067 or (800) 227-4498

© OPTIMOD-AM is a registered trademark of Orban Associates Inc.
© C-QUAM® is a registered trademark of Motorola, Inc.
Learn to spot CD defects

By Brad Dick, radio technical editor

Making a high-quality CD is a demanding process that brings plenty of opportunities for problems. This month's column will discuss some actual CD defects. By the time you finish reading this page, you should be able to recognize the more common types of manufacturing defects in your own station's CD library.

"Red Book" standards

The manufacturing specifications for CDs are contained in what is called the Sony/Philips "Red Book." Although CD manufacturers are supposed to adhere to these specifications, reports from users suggest that may not always be the case.

The "Red Book" recording standard recommends that CDs not be recorded with more than about 74.6 minutes (74 minutes, 42 seconds). This allows enough tolerance in the manufacturing process that the produced discs still can be tracked properly. However, some record companies require that the recording time be extended to as much as 80 minutes. To get that much material on a CD requires altering the cutting parameters (pit profile) on the disc.

For instance, track pitch is specified to be 1.6μm ± 0.1μm. Reducing the track pitch to 1.5μm allows the disc to still meet "Red Book" specifications, but now more audio can be placed on the CD. Even with the 1.5μm spacing, most players probably would be able to play the disc. The problem surfaces as tolerances in other areas of the manufacturing process come into play. For example, the smaller 1.5μm track pitch combined with a slightly off-center hole may cause a player to mistrack.

Outer-edge damage

The outer disc edge is a critical playing area. Disc warp, fingerprints and edge damage are more likely to occur here than anywhere else. As long as this area doesn't contain audio, the damage doesn't cause any problems. However, when the player is forced to track audio to the outermost limits of the disc, even minute manufacturing defects and user damage can cause failure. It's important to recognize that a player that fails to properly track an 80-minute CD may not be defective. In this case, it's the disc that does not meet the CD specifications.

To see where the audio is recorded on the disc, hold the CD up to a bright light and look for a rainbow-colored reflection. The top photo shows the light reflecting from the surface of a CD. If you look closely, you can see where the color pattern changes. This is where the actual audio portion on the disc ends. Any scratch outside the audio portion will not affect playback.

Because every disc cannot be played during the manufacturing process, some of the resulting problems will not be caught in the quality-control process. This may mean that a 2% defective disc rate increases to perhaps 20%, which again emphasizes the importance of understanding the interrelated nature of manufacturing tolerances.

Pinholes and black spots

Let’s look at some other examples in which tiny imperfections in the manufacturing process can cause problems even for a properly aligned player. Pinholes in CDs are not necessarily the sign of a defective disc. In fact, small pinholes are relatively common. If it is located across tracks or in a radial direction, a pinhole as large as 300μm should not affect a player's ability to track. It's when the hole becomes too large or is located parallel to the tracks to the disc (along the tracks) that problems may develop.

These types of problems are called local defects. The "Red Book" recognizes only three types of local defects:

- Air bubbles must be less than 100μm in diameter.
- Black spots within the program area must be less than 200μm in diameter.
- Black spots outside the program area must be less than 300μm in diameter.

Although many specifications are related to CD quality, local defects cause most of the problems for users.

Look for damage

With a bit of training, you can learn to identify some of these defects. Look closely, and you will be able to see the rings of silence that separate the cuts. This will help greatly in the troubleshooting process. Suppose, for example, a disc repeatedly fails on track 7. If you examine the disc and can identify a large pinhole in that track area, you've eliminated the player as the problem. The bottom photo shows a disc with large pinholes. They were discovered when the player began to mistrack.

With practice, you should be able to identify pinholes as small as 150μm. Learning to recognize such defects can save you several hours of wasted time trying to repair something that's not broken.

Next month, we'll look at how your own staff may be responsible for causing CDs to fail. By implementing some of the suggested practices, you could cut your complaint rate in half.

Figure 1. Use the color of reflected light to locate the data area on your CDs. Mistracking on the high-numbered cuts may indicate edge damage.

Figure 2. These large pinholes caused the player to mistrack. Pinholes this large are not typical for a new disc.
We've always known
JVC makes
great cameras...

JVC's engineers specifically designed the KY-25U to be a versatile camera, with multiple signal outputs for docking to any component VTR, satisfying all the rigorous demands of field acquisition. Plus, it's well balanced, comfortable and feels great to use.

It's an outstanding camera that will give you over 700 lines of resolution to take advantage of today's superior recording formats like S-VHS, MII and Betacam. Three ½" high density CCDs, each with 360,000 effective pixels and a signal-to-noise ratio of 60dB, ensure exceptional picture quality.

Compare the KY-25U's compact size and advanced features including high speed shutter, stereo audio, advanced circuitry and much more. You'll agree...for price and performance there is just no better camera available today.

For further information call 1-800-JVC-5825 or write JVC PROFESSIONAL PRODUCTS COMPANY, 41 Slater Drive, Elmwood Park, NJ 07407.

...so we were especially interested to hear about their new KY-25U three chip camera. We've been looking for a camera that offers at least 700 lines of resolution, can dock with our component VTR's, and won't eat up our limited budget.
On being a leader

By Brad Dick, radio technical editor

Gee, I don't know how he does it, but Ben seems to be on top of everything. I've yet to hear about a problem he couldn't resolve. He's the best engineering manager we've ever had."

Wouldn't it be great to be perceived in such glowing terms? The key to Ben's success is not that he's exceptionally smart, or that he has a great deal of academic background. What Ben has going for him is his ability to involve others in developing solutions to the technical problems within his station. Ben uses the management team approach to problem-solving.

More heads are better than one

Management teams allow a supervisor to bring the skills of each team member to bear on the problem. The result: problems are solved quicker, and the solutions are of higher quality.

Being a supervisor or manager doesn't mean you have to solve every problem yourself. Instead, your task should be to see that problems get solved. There's a big difference.

Using management teams to handle problems has several advantages. A major benefit of using this approach to problem-solving is that you don't own the problem. A second benefit is that you don't necessarily need to know the solution; you just have to know where to find it. An important advantage is that people support a decision they had a part in making.

The team approach to problem-solving is actually one facet of generating good solutions. The second is the use of a structured plan to generate answers. Let's see how you can combine the use of management teams with another technique to generate quality solutions.

Six steps to solutions

The problem-solving process can be broken down into six steps. No matter what the problem is, resolution follows the same pattern. Whether you are trying to get the news department to return broken equipment to maintenance for repair or to get the accounting department to pay bills promptly, the problem-solving process involves the six steps shown in Table 1.

The roles taken by the leader and the subordinates vary with each particular step. Some problems, especially personal problems of employees, require you, the leader, to be less involved in the development of solutions. In such cases, you act primarily as a facilitator as the other person works through the problem-solving process.

- Step 1. Define the problem.
- As the leader, you are often in the best position to identify and define the problem. However, if you are involved emotionally with the problem, accurately defining the situation is much more difficult.

- Step 2. Develop alternatives.
- Because they operate on the front line, subordinates often are better-equipped than you to suggest changes and offer solutions that will alleviate the problem. Given the chance, they often develop scores of creative alternatives. The key here is to come up with as many solutions as possible. At this stage, suggestions should not be debated or eliminated.

- Step 3. Evaluate alternatives.
- This step requires the use of the subordinates' varied experiences as well as their cognitive skills. Each of the alternatives must be examined carefully. The goal is to find the optimum solution — not to satisfy a leader by selecting his or her predetermined resolution. This is the stage at which you make the case for the alternative that you desire. Be careful, however, of arguing too strongly for a certain solution. The group should select the best alternative, not simply rubber-stamp the leader's ideas.

- Step 4. Choose a solution.
- The resources and expertise of everyone in the group are essential in completing this step, because this is when a decision is made. It's imperative that the solution be decided upon by the group, not the leader. If you pull the rug out from under the group by overriding its decision, you will have lost their respect and, more important, destroyed any reason for them to help you resolve problems in the future.

Overshadowing the group's decision also will destroy the team's spirit, and lead the members to believe that they have little power to effect change and control their own destinies.

You may have good reason to disagree with the group's decision. However, you should have proposed the alternative and the justifications during Step 3. Never mandate a different solution after the group has worked through the problem.

- Step 5. Implement the decision.
- This step is crucial because most decisions must be implemented by the group members. For example, the station has to install new master-control room equipment over the weekend. There is not enough weekend staff to handle both the installation and on-air operations. This means that some people are going to have to work overtime. Who does what and when now become the critical issues.

- Step 6. Follow up.
- In the follow-up evaluation, the solution is assessed. This is not a case of finger-pointing. Rather, the staff or leader may assemble data showing the effectiveness of the group's solution. As the team evaluates the results of the selected solution, a relative report card is produced. This can be a great learning experience. It's likely that even better solutions will be generated next time.

Next month, we'll discuss the technique of active listening. The process can eliminate the broadcaster's typical communication problem, which goes something like this: I know you believe you understand what I think I've said, but I'm not sure you realize that what you heard is not what I meant.
NEW FROM
ARRAKIS
SYSTEMS
10,000 SERIES

For features, performance, price and reliability,
NOBODY BUILDS CONSOLES LIKE ARRAKIS.

Call (303) 224-2248

ARRAKIS SYSTEMS INC. 2619 MIDPOINT DRIVE FORT COLLINS, CO 80525
Video technology update

Will new equipment be analog or digital? Yes!

Video is a moving target. The power of the computer has given us a new set of opportunities and challenges. Our TV plants are beginning to look like large local area networks, with interconnection on the signal layer through routing switches and patch panels, and interconnection on the control layer via station automation systems. But some of today's advances are on the analog front. New ICs and techniques make today's analog equipment the best that has ever been.

The most significant inroads are made when equipment designers recognize the inherent strengths of both the analog and the digital worlds, then build on those. This hybridization is evident in much of the latest equipment.

Our video technology update touches on three areas. "Easing Into Newsroom Automation" provides guidelines for computerizing a newsroom without getting in over your head. "Inside Standards Conversion" looks at the algorithmic core of standards conversion devices. "Advances in Analog Instrumentation" reveals how digital techniques can be used to convey facts about analog signals.

As video technology moves relentlessly forward, BE's goal, as always, is to provide a monthly status report to help you keep abreast of the changing world of broadcasting.

Rick Lehtinen, issue editor

August 1989 Broadcast Engineering 23
Once again, S, the art of cuttin'

Leave it to Sony to keep the simplicity of a childhood art form in the sophisticated art of video editing.

For the fact is, we've made technological advances that have added both precision and speed to editing, without adding complexity. And that holds true for all our editing control units.

The Sony RM-450, BVE-600 and BVE-900 clearly demonstrate this approach. They all share Sony's operating feel and philosophy. For one thing, they all share key common features. Such as Auto Detect, which automatically identifies the type of Sony VTR being used, and automatically sets the appropriate control parameters through its RS-422 serial control port.

In addition, they also share the ability to read Control Track and Time Code. As well as the ability to perform video/audio split edits. Yet they also offer a range of other features to accommodate every budget.

For two machine editing, you don't have to think twice. It's the Sony RM-450.

Two-machine editing has never been as smooth, effortless and flexible. The RM-450 comes equipped with both 33-pin and 9-pin RS-422 remote control interface connectors, for comparably equipped VTRs.

What's more, mixed operation is possible using any combination of 33-pin and 9-pin VTRs. The RM-450 can work with Time Code based editing (with 9-pin VTR connections) as well as CTL editing. It will also do split audio/video edits.

In fact, every aspect of the RM-450 has been designed for stress-free operation. This includes a keyboard layout which allows for a minimum of key strokes, a JOG/SHUTTLE dial on both the player and recorder side for convenient search, and dynamic tracking operation, and more.

Indeed, it is difficult to think of a dual-VTR editing task for which the RM-450 wouldn't be perfectly suited.

The BVE-600.
A/B Editing from A to Z.

The BVE-600 goes beyond the capabilities of the RM-450 to offer three VTR control (two players and one recorder). This makes A/B roll editing possible, when used with the optional plug-in video switcher boards and an external MXP29 Audio Mixer. With either composite or component/composite boards in place, you have dissolve, wipe, superimposition at your fingertips...with no
Sony elevates editing and pasting

BVE-600

need for an external video switcher.
In short, there is simply no more adaptable, efficient tool for use with U-matic® and Betacam® VTRs than the BVE-600.

The BVE-900. Created to be at home in any post-production house.
The BVE-900 was created with a clear strategy in mind: design the most expandable, easy-to-use, economically sound editing system possible. And make it meet Sony's rigorously high standards, and your high demands.

This editing control unit controls up to four VTRs in any A/B roll edit, enabling you to perform sophisticated editing chores like sync roll, sync play, and more.

The BVE-900 gives you sweeping control of video switchers, and of audio mixers, including fader selection and VCA control, for automated split audio/video edits.

And all this control is easily controllable, through a simple-to-master keyboard and easy-to-read menu driven display. Its technology that fosters creativity, rather than thwarting it.

Beyond any individual feature, all Sony editing control units are built with a full recognition of your post-production demands. That's why all our units, when connected to Sony VTRs, switcher, audio mixer and video monitors, form a system which is capable of satisfying the most difficult editing needs. Yet if you need help or service, you only have to remember one name, Sony. What could be more convenient and efficient than that?

For more information about Sony's entire line of editors, call the Sony Information Center at 1-800-523-SONY. There's a lot more to learn about the editing control units that bring new technological innovation and performance to cutting and pasting.

SONY

Professional Video

©1988 Sony Communications Products Co., a division of Sony Corp. of America. 1600 Queen Anne Rd., Teaneck, NJ 07666. Sony U-matic, and BetaCam are trademarks of Sony.
Easing into newsroom automation

By Rick Lehtinen,
TV technical editor

When it comes to automation, wade in slowly to keep your head above water.

Jumping into newsroom automation with both feet is like diving off a cliff before you know how deep the water is. Automating a newsroom today requires a substantial commitment of station resources and demands decision-making that may lock you into or out of other choices down the road. In some cases, it may compel you to remain loyal to a particular team of manufacturers.

This suggests the need for a phased approach to automation. With this type of approach, you can concentrate on the automation items that provide maximum return on investment. At the same time, by getting your feet wet, you gain some perspective for evaluating subsequent automation steps. Let's explore the process of easing into newsroom automation.

The robotic toolbox

In the first place, automation is not about robots or computers; it is about tools for people. You are introducing ways to help produce newscasts. It follows that the tools actually should help the news team do its job. Forcing technology on the news department makes as little sense as choosing engineering test equipment by throwing darts at a catalog. The needs of the operation first must be considered carefully, for now and for the future.

To buy the right tools, you need to know the jobs they'll be used for. This requires analysis. You might set up a task force, including members of both the news and engineering departments, to conduct this research. It is likely that news managers would be resentful of engineering department representatives nosing around uninvited. It also is likely that the news department may be too close to the process to tackle the analysis objectively. Together, however, you should be able to come up with an accurate portrayal of how news stories travel through the station. In your research, you might seek answers to these questions.

• How do you do things now?
What is the flow of information through the news department? How does a story go from being a lead or a hot tip into a finished package on the 6 and 10 o'clock news? What paths does a story take in the production phase, from field tapes through editing to on-air playback? How do name supers get from the reporter's story to the screen? Where do weather images come from, and how do they make it to the chroma-key device? How do you file and retrieve materials in the archive?

Study the information and signal flows until you can draw them in the form of flowcharts, including charts for emergencies and exceptions to the rules. You then should be able to isolate and identify the areas in which automated processes would allow the news staff to do more work in less time, and involve fewer people.

• Is it the way you would want to do things?
Once you know the path information travels through the news department, ask yourself whether it is the way you'd like
WE'RE RELIABLE. YOU'VE GOT THEIR WORD ON IT.

Mr. transmitter has stood the test time (nearly 9 years). We're very satisfied with its reliability.

Joe Alvin, Chief Engineer
WNNE-TV
White River Junction, VT

"NEC has bent over backwards to help us with any questions about the transmitter. We've had a wonderful association with them. We're very impressed with NEC quality."

Karl E. Paulsen, Chief Engineer
KTZZ-TV
Seattle, WA

"We were impressed with its 'turn key' performance. It's easy to operate and doesn't require any 'tender loving care'. It's reliable."

Bob Hollinger, Assistant Chief Engineer
WQEX-TV
Pittsburgh, PA

"Their technical support is always there. You can just call Chicago and get the information you need on the transmitter's good. We're very satisfied with its performance."

Phil DeLorme, Dir. of Engineering
WTXK-TV
Manassas, VA

If you want a clear picture of just how good an NEC UHF transmitter is, take a look at what people who use them are saying. They're talking about reliability, stability, excellence in design, low cost operation. And there's no comparison when it comes to maintenance. They require very little attention.

They're also saying that NEC people are always there when needed. With suggestions. Ideas. Answers to questions. Replacement parts. Or whatever it takes to keep a transmitter running smoothly.

What they're telling us is what we'd like to tell you. If you need a transmitter that's built to be reliable year after year, that's known for stability, and that's not power hungry, take a look at what NEC is offering. Better yet, take a user's word for it.

Here's why there's no comparison:

• Highly efficient Amperex, EEV, or Thorn EMI klystrons
• Power ranges from 10 kW to 240 kW (parallel running)
• 30% reduction in exciter parts for 50% increase in MTBF (to 30,000 hours)
• Diagnostics throughout transmitter
• Water or vapor-cooled — as you choose
• External (oil) or dry, internal power supply — as you choose
• ATS ready
• Ready for stereo without modification
• Ion pump to increase klystron life

Emergency parts are available 24 hours a day, 365 days a year.

Simply call 1-800-323-6656.

For more information about NEC transmitters, contact NEC America, Inc., Broadcast Equipment Division, 383 Omni Drive, Richardson, TX 75080-3545. Or, call 214-907-4710. Fax 214-907-4711.

PCN-1400 Series VHF Transmitters also available. Power sizes 1 kW to 100 kW (parallel running)

Circle (14) on Reply Card

© 1987 NEC America, Inc.

650-099
www.americanradiohistory.com
things to be. Personalities, traditions and habits have a way of changing the course of operations from something rational to "the way we do things here." One of the benefits of automation is that it forces you to think through your procedures, giving you a chance to clear out obstructions and bottlenecks. You also are likely to find several ways to improve the works that have little to do with automation. More phones, different radio procedures, or additional (or fewer) intercom stations might bring about great benefits.

Two questions

Automation also is about economics. You don't automate because it's fun; you do it to make money. Perhaps there was once a time that automation could have been justified because of its "gee whiz" factor, the same way helicopters were justified because they sported station logos. But television is changing from show business into just plain old business. It should be approached like any business plan — long on planning, short on spending.

When weighing any aspect of news automation, ask these two questions: Will it save money? and Will it make money? If you can answer "yes" to both questions, you've got a justifiable expenditure. Think harder if either answer comes up negative. Any move toward automation must offset the costs associated with it. Jump in over your head, and the payback might take excessively long.

If the expense seems justifiable, you can quantify its desirability by working through a simple worksheet, as shown in Table 1. Remember, the purpose of the exercise is not to provide rigorous financial analysis. Rather, it is to provide a way to rank automation purchases by their benefits. Apply both questions and your worksheet to each area you think could benefit from automation.

The equipment of automation

The newsroom computer system is the heart of an automated newsroom. The computer is used for script preparation, script review by supervisors and wire service ingest — getting news and information out of the national wire services and into the station. Other chores that are natural for computers but may or may not fall to the newsroom computer, depending on its capabilities, are database service access, archive access and automated data input such as election service tie-ins. Another capability is the automated interface with station production devices, such as CGs, still-stores, cart machines and camera robotic equipment.

Newsroom computer systems fall into two main topologies. They may consist of clusters of personal computers connected by a LAN (local area network), or they can

![Diagram of newsroom system terminal topologies](image)

Figure 1. Block diagram of newsroom system terminal topologies.
NBC/New York needed a routing switcher for the 1988 Summer Olympics that offered 9 levels of switching and 182,464 crosspoints. They chose 3M. Later, they needed a routing switcher for their Visa Graphics facility in New York. Once again, they chose 3M.

For over 25 years, we've been surpassing the standard in the broadcast equipment business. Before you commit to any routing system, large or small, call us at 1-800-328-1008. We'll help you get where you're going.
be a mainframe with a multitude of terminals. There are strong arguments for going either direction and, in fact, some mainframe systems allow PCs to sign on as terminals. (See Figure 1.)

Engineers are not likely to have a great deal to say when it comes to evaluating the purchase of a newsroom computer as a creative tool. Some technical questions need to be asked, however, and engineering may be a logical place to generate some answers. How reliable is the equipment? How will the system's performance degrade as users sign on? What is the manufacturer's track record for dealing with service problems?

An interesting and important study is to determine the price per terminal. Note any large jumps in that price, perhaps because of the need to buy a new interface card every eight or 12 terminals. Answers to questions such as these may help to make good decisions for both today and tomorrow.

Connective issues

When it comes to evaluating a system for interface to production equipment, the engineering department probably will have a great deal to say.

A fairly complex newsroom automation system is shown in Figure 2. You can't go on the air with promises. A news automation system has to work now. Although it is true that many of the subsystems shown in the figure are available today, often these devices work best free-standing. Technology isn't yet to the point that all the equipment interconnects for control or data transmission. Is this a bad situation? Not if you are happy with the equipment and don't mind waiting for interfaces to become available. If lack of an interface is holding you back, or if a key link in the chain turns out to be "vaporware," then you have just hit bottom. This is one of the big reasons to wade slowly into the waters of automation.

The universal acceptance of RS-170A may have spoiled station engineers. For years, American TV plants have operated under the premise that a given box, whatever its function, has standard video inputs and outputs. If a still-store purchased yesterday isn't adequate today, the cure is to disconnect the wires, swap it out with a newer model, reconnect the coaxes and time it into the system. If station leaders have shopped carefully, and if the unit performs as advertised, it will integrate nicely.

Similarly, in the high-tech world of telecommunications, open system architectures have developed wherein the functionality of each layer is defined, along with the access into and out of that layer, leaving the elements inside the layer free to evolve as technology advances. Unfortunately, the station automation system's data and control protocols are not yet standardized. There simply hasn't been time. These signals drive devices that, in many cases, didn't exist two years ago.

Worse, the development of automation equipment often has stretched the manufacturers' resources. Any time or energy the manufacturers have is likely to be spent on completing and improving their own products, saving handshakes with other systems for a later day. Also, developing a universal protocol might mean tipping one's hand, and some manufacturers are fearful of revealing their plans to a competitor or of exposing hidden weaknesses in their systems. This delays implementation of completely automated newsrooms.

One approach to solving this problem has been seen recently in the field of robotic cameras. At least one manufacturer has published the protocol used in its system. Although the task remains for the other manufacturers to write an interface for that protocol, at least half the roadblock is removed.

Let's work through the issue of adopting some recently introduced technologies.

Today's finest video rental equipment comes with a valuable accessory.

Free!

All our rentals come with an added no-cost PLUS. The expertise, experience and deep involvement of our dedicated video professionals. They'll help you choose the right gear for your job. Get it to you on time. And make sure it's in perfect working order. They're knowledgeable pros. Factory-trained—so they know the equipment inside out.

And do we have equipment! We can give you entire video systems. Everything you might need for studio or location. Video cameras, lighting, grip, audio and much, much, more.

And all the video formats.

In short, we have it all. So, call us. It's the only call you'll have to make.

The **Camera Mart, Inc.**

SALES • SERVICE • RENTAL

456 West 55th Street, New York 10019 • (212) 757-6977 FAX: (212) 582-2498

Broadcast Engineering August 1989
UP HERE—TO BE A LEADER
YOU HAVE TO PERFORM

And Cablewave's FM Broadcast Antennas
ARE PROVEN First Rate Performers!

Proven performance and reliability are two of the many reasons broadcasters from Canada to Chile choose Cablewave Systems. Manufactured under stringent quality control, our most popular FM antenna lines, CFM and HFM, are both designed with high power-handling of 5-40 kW with up to 16 bay configurations. The CP-1000 and HP-1000 FM antennas are suitable for lower power applications of 1-4 kW. Our ECFM and EHFM antennas are designed for the lower power requirements of educational stations.

Write or call for our new 12 page FM BROADCAST ANTENNA literature — Cablewave Systems, 60 Dodge Avenue, North Haven, CT 06473, (203) 239-3311.

Circle (17) on Reply Card

Cablewave Systems
An important topic in newsroom automation is that of robotic cameras. Automating one or more of the studio’s cameras may make good sense. For instance, a high camera that provides an overview of the studio as a cover shot, or a tower-mounted weather camera, is a natural. It makes money because you can provide unique, interesting video on a regular basis. It saves money because the cost of installation easily is offset by the safety and convenience of not having to put a photographer into such awkward positions.

Full-fledged studio automation requires a more careful look. One station is proceeding at full speed with a major camera project that will pay for itself in about 2½ years. Another station is holding back, however, because if automated cameras were installed, there would not be enough production work to keep the crew busy, and that would force the closing of a production studio.

Bit by bit
The automation of a newsroom should be a carefully controlled series of events. Gradually acquiring automated techniques will make for a painless and cost-effective transition to automatic operations. Automate by all means, but think clearly, buy deliberately, and do what you do according to a well-considered master plan.

Continued on page 36

Newsroom automation expense worksheet

- **Equipment name:**

1. Will it save money?
2. Will it make money?
3. What is the price, including cable, extra cards, etc.?
4. How many years will you use it?
5. What is the cost per year (line 3 ÷ line 4)?
6. How will this save money?

Equipment savings:

-
-
-
-
-

Personnel savings:

-
-
-
-
-

How much will this save us each year?
Rating:
Priority:

Table 1. Sample worksheet to rank newsroom automation projects by the benefits they would bring to the station.
PUZZLE. WHY ARE ALL 1000 ABEKAS A53-D CUSTOMERS SO HAPPY?

Answer: They made the right choice in Digital Special Effects. All 1000 happy customers picked the Abekas A53-D from a field of worthy competitors. Many of them switched from other systems. And all 1000 took delivery in the last 2½ years. Remarkable when you consider the A53-D is just 2½ years old. But then, the A53-D offers a host of remarkable innovations. Page turning, Warp excitement, for example. Drag shadow with one channel. Or variable transparency of foreground and drop shadow. Even serial control via all major editors. Nobody does this stuff better than owners of A53-Ds. Which brings us to another puzzle. Why did 1000 professionals who know what’s hot and what’s not go with the A53-D? Answer: We’d say digital innovation. Our customers call it happiness. Who can figure? Go buy an Abekas A53-D and be happy. For details: (415) 369-5111

Abekas
A Carlton Company
Leading in Digital Innovation
More and more people are lining up for the Panasonic SVHS Pro Series.

One look is all it takes. And you'll see why more and more people are lining up for the Panasonic® SVHS Pro Series. Because anyone in the market for a high-quality professional video production system, simply can't afford not to look at what the Pro Series can do for them.

Take Cost-Performance. The Panasonic SVHS Pro Series delivers both. By combining the efficiency and systems flexibility of half-inch technology with the exceptional performance of Y/C component signal processing.

The result. A comprehensive video production system that provides two hours of operation on a single cassette. With over 400 lines of horizontal resolution. And signal integrity through five generations.

By now it should be obvious. The closer you look and the more you compare the Pro Series to historical video formats, the sooner you'll line up for the Pro Series.

As a Panasonic SVHS Pro Series user, you'll have direct access to Panasonic's nationwide network of engineering, service and technical support specialists. And with over 300 professionally trained dealers, many of whom are self servicing, you'll always get the most out of your Pro Series equipment.

Finally, a professional video format more and more people are lining up for. The Panasonic SVHS Pro Series.

For more information and your local dealer, call your nearest regional office.
Eastern Zone: (201) 348-7620 • Central Zone: (312) 981-4826
Southern Zone:
Dallas Region: (817) 685-1122 • Atlanta Region: (404) 925-6837
Western Zone:
Seattle Region: (206) 285-8883 • Los Angeles Region: (714) 373-7275
To assure excellent quality, support, service and professionalism, the Panasonic Pro Series is available through authorized dealers.

Panasonic
Professional/Industrial Video

Circle (20) on Reply Card
Figure 2. Fairly elaborate control network manages a variety of production devices. Not all the interfaces are fully developed.
How Good is Our 3rd Generation?
Take a Look at Our 5th!

<table>
<thead>
<tr>
<th>PERFORMANCE DATA (AG-7500A)</th>
<th>1st Generation</th>
<th>3rd Generation w/o TBC</th>
<th>3rd Generation w/TBC-200</th>
<th>5th Generation w/TBC-200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Resolution (Color Mode)</td>
<td>400</td>
<td>370</td>
<td>360</td>
<td>350</td>
</tr>
<tr>
<td>S/N Ratio (dB)</td>
<td>57.2</td>
<td>51.7</td>
<td>52.0</td>
<td>49.0</td>
</tr>
<tr>
<td>Luminance (Color Mode)</td>
<td>51.8</td>
<td>47.5</td>
<td>51.4</td>
<td>44.5</td>
</tr>
<tr>
<td>Chrominance (AM)</td>
<td>44.3</td>
<td>40.1</td>
<td>43.8</td>
<td>35.2</td>
</tr>
<tr>
<td>Chrominance (PM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data represents measurements by independent engineering evaluation. VCRs taken at random from inventory.

- Signal Source: Shibasoku TG-711
- Luminance: 50 IRE flat field w/burst
- Chroma: 50 IRE w/100 IRE p-p
- Resolution: Monoscope Shibasoku 56A-1
- Noise Meter: Rohde & Schwarz UP523/UP523E2
- Y-S N: 200 kHz HPF subcarrier trap on
- C-S N: 4.2 MHz LPF weighted
- 100 Hz HPF 500 kHz LPF unweighted

From the first to the third, even to the 5th generation Panasonic® SVHS Pro Series specifications speak for themselves. And they say “outstanding.” Here are some of the reasons:

The AG-7500A editing VCR with its new laminated amorphous heads produces superb quality generation after generation.

The AG-A750 editing controller has everything you need for highly accurate single event editing.

And the AG-7400 portable 2-hour VCR is a natural performer in the field.

Our TBC-200 time base corrector has a 16-line correction window, chroma plus/ enhancement, chroma noise reduction and no-roll circuitry. To make multi-generation recordings even better.

The UTP-1 signal transcoder is more than ready to transcode virtually any component signal into any other component signal. Saving you an extra generation.

The IFP-44 editing interface controls Pro Series decks on both the source and edit side. To easily integrate into selected 3/4’’ systems.

Our CCD Cameras are equally spectacular. And with the Panasonic SVHS Pro Series you not only get outstanding performance, you also get the added economy of 2-hour operation in the field and in the studio.

The Panasonic SVHS Pro Series: In a word it’s outstanding.

For more information and your local dealer, call your nearest regional office.
Eastern Zone: (201) 348-7620
Central Zone: (312) 981-4826
Southern Zone: (213) 665-1122
Atlanta Region: (404) 925-6837
Western Zone: (208) 285-8683
Los Angeles Region: (714) 373-7275

Circle (21) on Reply Card
Interpolating filters are the soul of standards conversion.

Standards converters. Who needs 'em? We do. In the early 1980s, the world failed to come to terms on a color TV standard and, as a result, several were used. Today, as HDTV standards proliferate, we might see standards conversion equipment become even more important.

Most of the broadcast material that undergoes standards conversion today is finished production, and for the most part, it is in a composite format. Analog component formats, such as Betacam or M-ll, are increasing in popularity. In the future, it is likely that a great deal of standards conversion will take place in the D-2 (composite digital) arena.

How standards converters work
Briefly, you input composite, decode to component, interpolate and store the video in memory to take care of line- and frame-rate differences, read video back out of the memory, and encode it to the desired format. (See Figure 1.)

It sounds simple in principle, but there is certainly more to the story. Standards converters are akin to sophisticated digital effects devices. In fact, they can be said to go a step beyond; an effects device maps video pixels to new screen locations, but standards converters can map video to new points in both space and time.

Decoding
The first step in standards conversion is decoding. The input composite format, which is usually a function of the tape's country of origin, is broken down into one luminance channel and two color-difference channels, or YUV. The decoder can be analog or digital, and the choice splits standards converter manufacturers into two camps.

Those of the analog persuasion maintain that their technology is proven and that it is more than capable of handling the task. The digital camp claims that newer techniques are better. Analog decoding requires essentially a new front end for each format used. Digital merely requires reloading some new coefficients into filter taps, but usually at the cost of converting and carrying an extra bit or two.

If you were to feed your converter with an analog component signal, the issue of analog vs. digital decoding becomes moot. (See Figure 2.) As digital formats increase in popularity, various other front ends can be provided. Whichever is chosen, the result at some point must be digitized YUV in order to process the signal further.

Filtering
Getting from one format to another involves far more than dealing with the differences relating to choice of subcarrier frequency and treatment of phases. By the time decoding is completed, those items are out of the way. The magic of the conversion process is in the filtering. A brief review might first be in order.

You can filter a signal digitally by performing a weighted average on a series of adjacent samples. This is done by
THIS IS NOT THE MOST IMPORTANT ADVANCE IN BROADCAST OPERATIONS.
The key to successful station operation is more than hardware. It's people. Sony people. Designers and engineers who understand the real problems of integrating a new system into your station. When you invest in a multi-cassette system, it is vital to plan for the 1990s and beyond. It's the only way to meet current needs efficiently while retaining the flexibility to grow.

You need a manufacturer with a range of products and expertise covering the entire "on-air" operation. And with systems specialists to help you select and configure the right system for you.

You need Sony, the company whose Betacart® pioneered intelligent cart systems. Today Sony,
with the most complete line of Library Management System™ products available, is working toward a true network integrated system.

Sony offers you a choice. Formats, capacities and software. Analog or digital. For single- or multi-spot operation. Direct-to-air or compiling. All with Sony quality and reliability. And with the engineering resources, support, and service to protect your investment.

Check with the specialists in LMS. Contact your Sony Broadcast Sales Engineer. Or call (800) 635-SONY.

Sony Communications Products Company, 1600 Queen Anne Road, Teaneck, NJ 07666. ©1989 Sony Corporation of America. Sony Betacast and Library Management System are trademarks of Sony.

THIS IS.
Filtering in three directions

Imagine what has to happen to get from the line length of a PAL signal (52μs) to the line length of NTSC (51.3μs), or vice versa. A certain number of samples must be either derived or discarded. This process is called horizontal filtering, as shown in Figure 4. This operation is similar to the expand-and-compress operations performed by many digital effects devices.

Looking in another direction, PAL has 625 horizontal lines per picture, and NTSC has 525. Each sample cannot simply be mapped to a new location, because several of the locations are “phantom.” Figuring out what to write on each new line is the goal of spatial, or vertical, filtering. (See Figure 5.)

At first glance, this seems manageable, but there is a difficulty. The goal is to take information off the existing lines and map it onto new lines, but the existing lines must first be revealed. Because of interlaced scanning, images are constantly divided over the current frame and the previous one. In other words, at any mo-

\[\text{Figure 4. Filters interpolate value for new samples on a horizontal TV line. The new samples are in the correct position for the destination format's line length.} \]

\[\text{= OLD SAMPLE} \]
\[\text{= NEW SAMPLE} \]

Videotek’s new, compact VSG-21 sync generator provides four test signals, balanced audio tone and continuous blackburst.

Videotek’s done it again—packed more features for less money into a single product—our new VSG-21. It’s equipped with four selectable NTSC test signals, SMPTE color bars, Multiburst and 10-step modulated stairstep or 10-step unmodulated stairstep.

That’s just one example. Look at our full line of feature-rich sync generators, all engineered for zero defects. The VSG-201 has 6 blackburst outputs, audio test tone and “textbook” accurate SMPTE color bars and can be genlocked with guaranteed SCA Phase regardless of input phase. With our Times Six Plus, at the touch of a button, you can synchronize and automatically time six devices regardless of various cable lengths or equipment drift. And our Times Six allows manual centralized control of six devices.

Get them all at a price that’s in sync with your budget.
To make you a better editor we had to get personal.

Personal computers are easy-to-use, fast, and extremely reliable. That's why we chose this powerful technology for the engine of our new low-cost editor, the ACE™ 25.

As you cut your first shows, you'll realize that the ACE-25 is not only fast, powerful, and fun to use, but that it also delivers a host of professional features: an easy-on-the-eyes menu display with EQ bar graphs and VU meters, a 1000 line EDL with list management, and a multi-function rotary knob that controls everything—from transports, to key clip, to audio levels.

This new technology also allows us to give you the flexibility you've always needed. You can choose between an internal composite, or a component video switcher, plus an internal audio switcher—each built on a single board and designed to fit neatly into the ACE-25 system's main chassis. Even better, these unique switchers are controlled fully by the keyboard's rotary knob! All this simplifies system operation and lets you devote your energies to the creative job at hand.

And now the best news! No matter what your business, whether it be TV news editing or off-line post production, the ACE-25 delivers more features than any comparably priced editor.

You see, we took the PC's greatest strengths and used them to your advantage to give you power and affordability—and an editor that's easy to get to know.

So call Ampex at 800-25AMPEX to find out more about the newest, friendliest editor in the world.

It's about time you had some fun in the edit bay.
ment, you have available only half the information needed to interpolate the new lines. The solution, of course, is to use some field storage to build up a frame, and sample across the complete image. But there is a complication here, too.

PAL has 50 fields per second, and NTSC has 60 (actually 59.94). This means that there is no way to simply map fields on a one-to-one basis. Instead, you must guess what a given frame might contain if it were viewed at a given point in time. (See Figure 6.) This is called temporal filtering.

So, vertical or spatial filtering requires a complete frame of lines to filter from, but temporal filtering is needed to develop those lines. This sets up a chicken-or-egg situation. Neither the frames nor the lines can come first. They must come along together. This means they are non-separable, and any processing must work on both directions at once.

The equations to describe these multidimensional transformations have not been formulated completely. To date, many of the coefficients to perform these operations have been developed on an empirical, "try-it-and-see" basis. It is interesting that many manufacturers perform the temporal and spatial filtering operations together, and perform the horizontal filtering either before or after those operations, depending on which route requires the least memory.

Moving targets
The conversion process is difficult enough even if the images are standing still, but video moves. The ultimate test for a standards conversion system is how well motion survives the conversion process. It seems it is fairly easy to get a high-resolution image or one that has good motion characteristics. It is beastly hard to get both.

The scanning frequencies video uses are actually a bit too slow to do a good job

Continued on page 53
At Texas Scottish Rite Hospital for crippled children in Dallas, Sony U-Matic SP™ equipment is helping young students overcome dyslexia.

This puzzling disability is of special interest at the Hospital, which is actively treating more than 10,000 disabled children today. Dyslexia makes it difficult to learn the alphabet correctly. Even very bright dyslexic students have difficulty learning to read, write and spell.

Doctors and dyslexia therapists at the Hospital have developed a successful teaching technique. Today, cameras in a studio classroom transmit lessons via closed-circuit television to the dyslexia laboratory. And the training is provided on cassette to 140 school districts in Texas.

As video services manager Alexander Carduff explains, “the program consists of 350 one-hour videotaped sessions, with instruction in reading, writing and spelling using multi-sensory techniques. We use three floor cameras and an overhead camera—plus prerecorded graphics, a video writer and character generator. A crew of five works under my direction.

“We edit each master tape online before it’s duplicated.”

The editing and recording at the Hospital include two Sony BVL-850 U-Matic SP Recorders, a Sony BVL-870 with Dynamic Tracking™, a Sony BVE-900 Editor and an SEG-2550 Special Effects Generator.

“It is a demanding production,” Mr. Carduff notes. “What makes it possible is the controllability and picture quality of U-Matic SP. And the still-image capability of BVL.”
When it tests a jetliner, Boeing Commercial Airplanes goes to remarkable lengths. The flight test division must be certain to capture every instant of every test and record it with the fine detail they need for evaluation. So they use video equipment that's made with the same rugged precision as a Boeing jetliner: Sony U-Matic SP™ players and recorders.

By the time flight tests are over, nearly every inch of these huge craft has been scrutinized by video camera, and each image preserved on tape by a Sony Recorder/Player—one of two BVCL-950s or a VO-6800 Portable. To do the job, these Sony recorders must stand up to some tough environments: vibration, violent temperature swings, and breathtaking altitudes.

In one procedure, the pilot tests the landing gear and brakes of a 747 by deliberately applying maximum braking just as the jumbo jet reaches takeoff speed. The test group videotapes this so they can later observe, in detail, the response of the landing gear to the stress of the aborted takeoff. In another ground test, Boeing engineers apply loads to the wings of an airplane until they fail, to confirm that the design specs have been met.

“Like many of our tests,” photo administrator Pat Johnson points out, “these are costly ones. So it's
important to capture them on tape the first time. That's why we put a premium on recorder reliability.

“We need sure-fire performance, and we get it from Sony U-Matic SP equipment.

“We have to edit these tapes before we can evaluate the tests—yet we've also got to hold fine detail. That's why we edit on Sony BVU-950s.”

Not all of the tests performed at Boeing are so dramatic. One procedure monitors the exterior skin of the aircraft in flight: small cones are attached to the skin and watched by a camera feeding the VO-6800 Portable Recorder/Player. If the tape shows any cone to be vibrating, it means that there is an airflow disturbance at that site.

Airborne cameras monitor the movements of the control surfaces—the flaps and ailerons. Other cameras, on the ground or attached to the exterior of the aircraft, monitor the landing gear as they retract, extend, and make contact with the runway.

Boeing engineers resort to ingenious strategies to videotape some elusive physical effects. For example, they release dyes to make air flows around the craft visible to the camera. On the flight deck, a camera monitors many cockpit instruments, including a small CRT which displays status and warning messages. Since some messages are on the screen too fleetingly to be read, they are captured on video and viewed with still-frame.

“We go to great lengths—and great expense—to test our product thoroughly,” Mr. Johnson adds. “We've got to squeeze every last drop of useful information out of those tapes.

“That takes quality and reliability—which is exactly where Sony U-Matic SP equipment shines.”
"Stores are run autonomously," Westover emphasizes, "and are scattered from Arizona to Alaska. So video is a vital link for consistent training and communications.

"This is the 'Star Wars' generation," he notes. "If your videos don't match television's production values, your credibility suffers.

"At Longs, we're determined to find and train qualified people from the stores to do production, rather than hire outside professionals. And, so far, that's just what we've done.

"Today," he says, "we use the very best to do the very best." Longs has a studio and editing suite centered on Sony U-Matic SP™ equipment—two BVU-950 Recorder-Players and one BVU-900 Player.

"The idea is to be creative, to avoid on-camera lectures. We use dramatizations, shooting a lot of footage in the stores."

"We were told we were crazy to hope to produce at a professional level," says audio-visual supervisor Max Timms, "but we found a helpful supplier who encouraged us.

"Today, this is a department of fully qualified professionals—and all of us came from the stores."

Don't confuse longitudinal time-code with Vertical Interval Time-Code (VITC). The former, available in all BVU and Type IX machines, is recorded on a dedicated address track above the audio tracks. (VITC, used in one-inch VTRs, is part of the video signal.)

In U-Matic™ format, this track overlaps the vertical blanking (harmlessly). A dedicated head reads it at a fixed point in the tape path, for a consistent offset between time-code and video.

In BVU, you can put time-code on an audio track. But you lose an audio channel and there are some other limitations.

Three new pieces in Sony's value line of U-Matic SP™ equipment are here: Today.

Wait till you see them: The VO-9850 Editing Recorder, VO-9800 Recorder/Player, and VO-8800 Portable Recorder.

Now you can have SP quality at prices you can afford. As well as time-code and self-diagnostics, among other functions. And a lot more. While your existing U-Matic tapes remain compatible.

Call your Sony Professional Video dealer. He'll tell you about it.
of representing moving images. You could prove this by jogging a reel of videotape and noting how much difference exists between fields. When the tape is played back at the same speed as it was recorded, however, your eyes can be fooled into seeing smooth motion. Video that is standards-converted has no such advantage. Because of differences in frame rates and difficulties in interpolating motion, converted video is full of motion artifacts or aliases, sometimes called “judder.” (See Figure 7.)

One cure for motion problems is to use some form of adaptive algorithm in the filtering process. Presumably, such a system could sense which sections of the screen are full of detail, and which sections contain motion, and dynamically optimize the coefficients in the filters for each section.

A second technique is to use motion interpolation. In this system, a picture is broken down into sampling blocks, which are compared to detect motion. A vector describing the motion is calculated. This vector is used to “slide” portions of the image around the screen. (See Figure 8.) Advocates of the motion-interpolation process claim that it works great and allows savings by using 2-field instead of 4-field storage. Others aren’t so sure. They wonder, for instance, what the device is supposed to do when the background and foreground elements of a picture move at different rates, or when the camera zooms in or out, in which case virtually every pixel in the screen is moving.

Future moves

Overcoming motion artifacts is the next great step for standards conversion. The solution must challenge the human eye in determining what is right and wrong. Unfortunately, at this point, the eye and brain have a lot more experience than the equipment designers. Some experts say the successful solution to motion problems in standards conversion must provide good answers to these three questions:

- What level of performance is practical?
Will any added processing degrade the picture?
Are the improvements worth the cost?

Broadcasters would do well to pay close attention to the solutions that develop. Conversion technology is likely to be a major component of future HDTV systems.

Acknowledgment: The author wishes to thank James Grunder and Associates and the Otis Electric Industry Company for assistance in preparing this article. Special thanks to David Lyon, technical director, Snell & Wilcox.

Never twice the same color

The year was 1964. A special meeting of certain members of the IEEE had been called in New York. The agenda: to determine a color system for all of European telecasting. For 10 years the United States had been in color, using NTSC. Now Europe was examining NTSC, PAL, SECAM and a host of others.

One participant in the conference was the late Joe Roizen, at the time an engineer for Ampex Corporation. Roizen's assignment was to illustrate how Ampex could produce tape machines in any of the proposed formats.

As he pondered the various systems, Roizen became incensed that so many standards could have developed. Each system had its champion, who extolled some virtue of his system that "obviously" made it the color system of choice. Worse, nationalistic and political influences had hopelessly muddied the water. Although Roizen personally favored a worldwide standard, the hope seemed remote. He vented his feelings in the form of a comic document in which he proposed an all-embracing system that captured the most famous feature from each contending system. In the process, acronyms sprang forth. National Television Standards Committee (NTSC) became "Never Twice Same Color." The French line memory system, SECAM, which would be adopted later by the Soviets, became "Something Essentially Contrary to American Methods." Phase alternative line (PAL), a reasonable compromise at the time, became "Peace at Last." Few proposed systems escaped Roizen's barbs. His own system, NUTSEQAMIR (which defies description), became "Never Underestimate the Stubbornness of Engineers Quite adamantly Manifest at International Referendums."

A NUTSEQAMIR receiver would have required two picture tubes, a special mirror and a whirling glass disk. Unwieldy, to say the least, it was a clear parody of what was happening as politics muddled technical judgment.

Roizen requested a few extra moments in front of the audience and, after his serious paper, he launched deadpan into his roast. Ampex artists had prepared some humorous placards to illustrate the presentation. The audience roared.

Although the paper was effective — the acronym popularized in NUTSEQAMIR lingered to this day — neither it nor the fond hopes of all concerned could save the day for a world color standard. Three principal systems, with several variations of each, are currently in use. And history seems destined to repeat itself. It appears that recent events may upstage the dreams of those who had hoped to see a universal HDTV system. A new generation of standards conversion equipment undoubtedly will evolve.
How to take control of a broadcast station.

MCS-2000 Master Control Switcher

Go ahead, be ambitious. Controlling a broadcast station is no small potatoes, but these advanced products from BTS make it easy by giving you total control of all on-air programming from two workstations.

The MCS-2000 Master Control Switcher together with the BTA-2300 Automation System automate many of the routine operations that are currently handled by staff, which makes both your people and your equipment more efficient and productive. Computerizing your station also drastically reduces programming errors. Since that prevents makegoods, the system quickly pays for itself.

You simply pre-program the BTA-2300 Automation System to air all programs, station and commercial breaks exactly as you want, in real time. The Master Control Switcher accesses material from whatever sources you select: Betacarts, character generators, live feeds or satellite systems, for instance.

The MCS-2000 is user configurable, so you can select (and change) which buttons access which sources. Since it uses the existing outputs from the routing switcher, you don’t need a second router. And its on-air bypass feature lets it serve as a simple production switcher if necessary.

The computer system is not only powerful; it’s extremely flexible, allowing you to revise the program on a moment’s notice. And there’s no more reliable automation system available. Both products go through 100% computerized factory testing and have a 5-year warranty.

So take a controlling interest in the station. Find out more about the MCS-2000 Master Control Switcher and the BTA-2300 Automation System. For complete information and technical specifications, call BTS at 1-800-562-1136, ext. 31.

BTS
The name behind what’s ahead.

BTS is Broadcast Television Systems, a joint company of Bosch and Philips. P.O. Box 30816, Salt Lake City, UT 84130-0816.

Circle (27) on Reply Card
www.americanradiohistory.com
Advances in analog instrumentation

By Margaret Craig

Analog waveform monitors and vectorscopes are better than ever.

Analog waveform monitors and vectorscopes are not a thing of the past. In fact, they’re better than ever. Computer-based test and measurement equipment, which digitizes and automatically analyzes the video signal, is becoming increasingly available to TV stations. These instruments offer significant advantages in repeatability of results and ease of use.

Does this mean that analog monitors and vectorscopes soon will be replaced by digital instruments? Maybe eventually, but today’s digital technology cannot yet meet every analog measurement requirement. Digital equipment can perform automatic measurements and reduce operator error. Even so, numeric readouts and displays of digitized signals cannot provide a complete picture of some signals. Today’s analog and digital TV test equipment complements each other. Well-equipped facilities will rely on both types of equipment.

The demand for analog test equipment continues, and new analog products are being developed for TV applications. These new waveform monitors and vectorscopes perform the same basic functions of their predecessors, but they also benefit from modern digital technology. Recently introduced models have new features, enhanced capabilities and better performance.

Analog oscilloscopes

The design and implementation of analog oscilloscopes is by no means trivial, but the concept is straightforward. A waveform monitor, like a general-purpose oscilloscope, presents a display of voltage vs. time. In the vertical direction, the CRT beam is deflected in proportion to the video signal itself. In the horizontal direction, the beam is swept across the screen by a ramp locked to horizontal or vertical sync. A vectorscope demodulates the incoming video and drives the display vertically with the R-Y signal and horizontally with the B-Y signal.

In both cases, the signal is processed only in the analog domain. Signal-processing techniques such as amplification, demodulation, filtering, phase lock and sync separation are used to condition the signal and to extract synchronization information. In contrast to computer-based instruments, however, the baseband signal never is digitized and manipulated as digital data.

Why analog?

The analog method of displaying signals has some inherent benefits. An analog display is real-time in that the waveform is displayed at the same rate it occurs, virtually every time it occurs. In a line-rate video display, every line in the frame is displayed, one on top of the other. Aberrations that appear on only one line, therefore, do not escape the notice of the operator. This ability to display all of the lines overlaid is one of the principal advantages of an analog scope.

Waveform displays of one or two video fields, which are useful for evaluating hum
This switcher handles standard bandwidth like it's going out of style

TVS/TAS-3000 Distribution Switcher

The new TVS/TAS-3000 video/audio distribution switcher from BTS handles standard bandwidth switching in stride. But the fact is, standard bandwidth may not be the standard much longer. And that's why the TVS/TAS-3000 is not your standard switcher.

With the advent of wide bandwidth video, you'll need a switcher that can handle the new higher bandwidth signals. The 3000 will. It provides a video bandwidth of more than 50 MHz, measured with a full-amplitude sine wave or video signal. Which makes it upwardly compatible with HDTV or computer graphics—no matter what the standard.

The TVS/TAS-3000 also delivers the cleanest signal and expands to accommodate any matrix size to meet your specific needs.

And if high bandwidth capacity isn't a requirement, BTS still has you covered with our best-selling switcher, the TVS/TAS-2000. The 2000 represents the same advanced technology and quality as the 3000 in a standard bandwidth switcher. BTS also offers a full range of control panels and distribution amplifiers for a complete system designed, tested and guaranteed by one supplier.

All BTS switchers undergo 100% computerized factory testing and are protected with a 5-year warranty. In the unlikely event you do have a problem, simply return the board for a free replacement.

Dependable, performing switchers from BTS. Anything else is substandard. Call for information and technical specifications today: 1-800-562-1136, ext. 21.

BTS
The name behind what's ahead.

BTS is Broadcast Television Systems, a joint company of Bosch and Philips. P.O. Box 30816, Salt Lake City, UT 84130-0816.

Circle (28) on Reply Card

BTS is Broadcast Television Systems, a joint company of Bosch and Philips. P.O. Box 30816, Salt Lake City, UT 84130-0816.

Circle (29) on Reply Card

www.americanradiohistory.com
BTS did not invent the TV dinner. The Swanson® Company did.

But you'd be surprised at how many of the most revolutionary ideas in the history of video did come from BTS. In fact, because we look at things differently, the whole world looks at things differently.

We introduced the first 3-D computer animation system. The first CCD film scanner. The first software-based character generator. The B format for videotape recording. The modular routing switcher. And of course, the Plumbicon camera tube, for which we won one of our three Emmies.

BTS has been a technological innovator in the video industry for six decades. Our cameras,

Swanson is a registered trademark of Campbell Soup Company
Switchers, videotape recorders and graphics equipment are among the best-engineered, highest quality and most reliable in the world. Our work in High Definition and CCD products is pacing an industry which faces the most sweeping technological advances since its beginning.

And we’re as dedicated to better product service and support as we are to better products. So although BTS may not yet be a household word, here’s a word to the wise. In the years ahead, BTS will continue to be more forward thinking, more responsive and more innovative in our approach to video technology than anyone else.

Including the Swanson Company.
and they may be either synchronous or asynchronous with the video waveform.

In general, this is not a problem, but in some cases the multiplexing can produce visible artifacts. If something suspicious appears on the waveform, turn the readout off to be sure that the aberration is really part of the incoming signal.

Conversely, there is also a chance that the signal itself may have a problem that cannot be seen because the beam is busy with the readout when it occurs. Again, you can make a quick check simply by turning off the readout.

Amplitude and time cursors

Traditional waveform monitors, and indeed oscilloscopes of all kinds, require the operator to quantify signal amplitude and timing by comparing the waveform with a graticule screened on the face of the CRT. Internal graticules work well, but they have some limitations where high precision is required. Inaccurate readings can be caused by amplifier non-linearities or in the CRT itself. Although careful design and high-quality CRTs can minimize these effects, the opportunity for error is not eliminated. External graticules, which are mounted in front of the CRT, further compromise accuracy because both viewing angle and distance affect the reading.

Electronic cursors are one solution to graticule problems. Because the cursor voltage passes through the same signal path as the waveform, distortions manifest themselves equally in the two signals and do not affect the results. An important advantage is that electronic cursors can simplify and speed the measurement process.

Amplitude cursors typically appear as independently positionable horizontal lines. An on-screen readout indicates the voltage separation in millivolts, IRE or as a percentage. Figure 2 shows how voltage cursors can be positioned to measure white bar amplitude.

Timing cursors can be displayed either as vertical lines or as bright-up dots on the waveform. Figure 3 shows the dot method being used to position the cursor accurately on the 50% point of a pulse edge. Measurement accuracy is highly dependent upon the method by which cursors are implemented. Voltage can be quantified in a fairly straightforward manner using a D/A converter. The digital input to this device is varied in proportion to the desired cursor separation and the corresponding voltage number on-screen. From this digital data, the D/A converter produces analog cursor signals at known voltage levels that are switched into the signal path for comparison with the waveform. The quality of the D/A con-

Figure 1. Alphanumeric readouts provide important information to the user and help eliminate mistakes.

Figure 2. The amplitude cursors are positioned to measure white bar. The amplitude is displayed automatically on the CRT.

Figure 3. Time cursors, shown here as dots, allow timing intervals to be measured.
Here's another reason we sell more cart machines than anyone else.

The Delta series. The world's most popular cart machine over the last five years.

And here are three more.

Our Authorized 3M Dealers

Allied Broadcast Equipment
800/622-0022

Broadcast Services Company
919/934-6869

Broadcast Supply West
800/426-8434

3M International Tapetronics — The World Leader In Cart Machines
verter and the number of bits are the key determinants of accuracy and resolution. Timing cursors present a somewhat more difficult problem. The most obvious implementation involves dividing the horizontal ramp voltage (which represents a known time interval) into voltage increments that represent smaller time intervals. The accuracy of this method depends on both ramp linearity and horizontal calibration, neither of which are perfect.

A more complex method involves the generation of a crystal oscillator reference for the timing cursor separation. Because this reference actually exists in the time dimension, the voltage-to-time conversion is not required, and greater precision can be achieved.

Cursors are particularly useful if they expand with the waveform when it is magnified horizontally or vertically. This implementation removes the constraint that both cursors be on the screen at the same time. With the instrument in a high-gain mode, the user can more accurately position a cursor on the waveform.

More digital technology

In addition to providing new features, digital technology can improve the ac-

Now, all of your ENG microphones are wireless.

...the PRO mini-H by Lectrosonics.

XLR in ... XLR out
The ingenious H185 transmitter simply plugs onto any of your handheld, lavalier or shotgun microphones with XLR connectors. The battery powered CR185 compact receiver mounts on your camcorder and provides a balanced audio output via an XLR jack on the rear panel.

Faster set up time
Your ENG crews can set up faster, cover more events than ever before, and use whatever mic they need. The operating range of this system allows a wide variety of camera angles and shooting distances, which generally produces more spontaneous interviews and makes covering large events simple and efficient.

Highest reliability
Machined aluminum housing withstands rigorous daily use. The RF link is stable, without dropouts or interference. The audio is broadcast quality. The factory support is second to none.

Call us now for the location of your nearest dealer.

(800) 821-1121

LECTROSONICS, INC.
P.O. Box 15900 • Rio Rancho, NM • 87174

Made in the USA

If your ENG operations aren’t wireless isn’t it about time?
Nikon improves TV lens technology

- Compact, lightweight lenses for 3-CCD cameras, with the flexibility to meet any shooting requirement.
- Nikon ED (Extra-low Dispersion) glass for faithful color rendition and minimal tracking/registration errors.
- New anti-reflection coating improves spectrum transmission ratio.
- Highly advanced optical design via CAD for improved corner resolution and high, flat MTF curve.
- 15x zooming ratio — highest among standard ENG/EFP lenses (S15x8.5B).
- Minimum focal length of 8.5mm — widest among standard ENG/EFP lenses (S15x8.5B).

S15x8.5B
1.25kg
(2.76 lb)

S13x9B
1.1kg
(2.4 lb)

Nikon

NIKON CORPORATION
Fujig Bldg., 2-3, Marunouchi 3-chome, Chiyoda-ku, Tokyo 100 Japan

U.S.A. © Nikon Inc.
623 Stewart Avenue, Garden City, New York 11530, U.S.A.

Canada © Nikon Canada Inc.
1366 Aerowood Drive, Mississauga, Ontario, L4W 1C1 Canada

Europe Nikon UK Ltd.
380 Richmond Road Kingston, Surrey KT2 5PR, UK

West Germany Nikon GmbH
Tiefenbroicher Weg 25, 4000 Dusseldorf 30, West Germany

Australia Maxwell Optical Industries Pty Limited
Unit 5, Level B, 100 Harris Street, Pyrmont, N.S.W. 2009, Australia

Circle (65) on Reply Card
“Our ratings are powerful... and so are the demands of our equipment.”

Beaven Eils, Chief Engineer, WFAA-TV Dallas

A television signal going to millions of homes can be a very complicated process. In Dallas, WFAA-TV has been THE dominant force for decades. This success is due, in large part, to the technical expertise behind the camera.

As Beaven Eils will attest, WFAA-TV is committed to investing in the finest equipment. From the most sensitive recording instruments to the electric clock in the lobby, WFAA-TV must have a reliable source of power. That’s why Chief Engineer Eils chose to have everything protected by the POWER SIFTOR from Current Technology.

The effects of unfiltered power can wreak havoc in a television station. Digital equipment and computers can be destroyed by “dirty power”. And, the POWER SIFTOR typically eliminates these effects. And, Underwriter’s Laboratories has made the picture even more clear by giving the POWER SIFTOR outstanding marks in the 1449 testing program.

Beaven Eils is right. WFAA-TV’s investment in programming and equipment are two reasons for the station’s success. But without power protection, the station’s “sign off” might occur earlier than scheduled.

Don’t wait. Failure to act can result in permanent damage to your equipment!
Our analysis of your power protection needs is free... and so is the call.
800 238 5000
ask for Peter Diamond, ext. 480

The Power to Succeed™

CURRENT Technology
1400 South Sherman
Richardson, TX 75081
(214) 238-5300 (800) 238-5000

Power SIFTOR and The Power To Succeed are registered trademarks of Current Technology, Inc.

Curucy of analog oscilloscopes. The phase control of a vectorscope is one function that benefits from a digital implementation.

Traditionally, phase shifting has been accomplished by inductively or capacitively delaying the subcarrier signal. However, this is difficult to do in a linear fashion, even over a small range. A digital implementation of this phase-shifting function allows the user to shift phase in precise 0.05° increments over the entire 360° range.

Another problem is measurement of differential phase and gain in the presence of noise. One solution to this problem is to use a recursive filter to remove the noise without significant bandwidth reduction or loss of horizontal resolution.

The 1-line delay required for this filter is implemented by digitizing and storing the demodulated video signal, something that would not have been a cost-effective solution just a few years ago. Figures 4 and 5 illustrate the noise-reduction capabilities of such a filter.

New standards and measurement needs

Basic analog oscilloscope designs can be adapted readily as industry requirements change. For example, X-Y inputs for checking channel-to-channel audio phase and amplitude were added to vectorscopes when stereo audio came into use for TV applications. Although some additional processing and switching are required for the audio, the deflection amplifiers, power supplies and CRT can be shared with a vectorscope. Eliminating the need to purchase and maintain another specialized piece of test gear is clearly an advantage to equipment users.

As new analog video standards appear, new variations on the basic waveform monitor/vectorscope theme often are required. Analog component standards, for example, require the addition of input clamping and switching so the three signals can be displayed side by side or overlaid. Test equipment for such signals also may include new displays such as lightning and bowtie, which facilitate measurements unique to those standards. The new HDTV standards require yet another configuration, including wide bandwidths and special sweep rates.

The future is digital...and analog

In today’s environment, analog waveform monitors and vectorscopes continue to play an important role in verifying the quality of video signals. New models provide the real-time displays needed for making accurate measurements while incorporating the advantages of digital technology.

Despite an overlap in functionality between these products and the digital in-
FINALLY, THE CONCEPT OF TOTAL NEWS AUTOMATION IS NO ILLUSION.

It seemed the closer you looked for news automation solutions, the farther away they appeared.

At BASYS, we know the challenges you face as a television engineer. You're in a climate that demands a streamlined operation to deliver high-quality, competitive programming.

The ability to do more with less is no longer a point on the horizon.

News production machine control is here. INTEGRATE PEOPLE, MACHINES AND COMPUTERS.

BASYS Total News Automation is a total solution because it addresses every operational aspect of news coverage and production—like assignment, news gathering and scripting. All the way to direct machine control.

BASYS Total News Automation represents an effective integration of people, machines and computers.

By designing our systems to exclusively use open system standards like UNIX, Ethernet (TCP/IP) and X-Windows, BASYS guarantees integration into your present and future systems. No matter where technology may travel.

CALL NOW FOR SOME REFRESHING INFORMATION.

We'd like to send you some free information about the BASYS Total News Automation solution. Call us today at 800-869-7009, or write to BASYS, 5 Odell Plaza, Yonkers, NY 10701.

BASYS Total News Automation. You've got to see it to believe it.

SONY IS A REGISTERED TRADEMARK OF SONY CORPORATION.

Circle (34) on Reply Card.
Instruments, the obsolescence of analog scopes is by no means imminent. Computer-based instruments offer distinctly different features that complement the real-time displays. Together, digital and analog test equipment provide a comprehensive set of measurement capabilities. Broadcast engineers can expect both digital and analog instruments to be useful tools for years to come.

Figure 5. The same signal shown in Figure 4, with the digital filter switched on.
The best wireless performance at any price.

Pro Plus microphone systems from Vega.
They’re the wireless choice of major broadcast networks, video producers, and television/film studios the world over.
Why?
Because Pro Plus provides superior rejection of interference . . . high signal-to-noise performance through the exclusive Dynex II® processing system . . . and the extended operating range you demand.
It’s also the best-sounding, most reliable wireless mic available, bar none.

So remember—
Other high-end wireless microphones may cost more than a Vega, but that doesn’t guarantee they’ll deliver the performance you paid for.
Of course, you don’t have to buy a Vega wireless. You can always pay more for less.

Vega
a MARK IV company

600 Cecil St., Buchanan, MI 49107 (616) 695-6831
In Canada: P.O. Box 520, Gananoque, Ontario, Canada K7G2V1 (613) 382-2141

Circle (36) on Reply Card
www.americanradiohistory.com
The ins and outs of microphones

By Brad Dick, radio technical editor

The applications for microphones run the gamut, from the radio remote to the TV panel discussion. The right mic is a must.

Using a microphone is easy. The hard part is selecting the best one for your particular application. As stations strive for better, higher-quality audio, choosing the proper microphone becomes even more important.

Ideally, there would be a single type of microphone best-suited for all applications. Unfortunately, that's not the case. Each application has its own set of requirements. Providing PA for a bluegrass band on a stage in the hot August sun is quite different from recording the same band in a studio. Likewise, the microphone used by a sports caster inside a basketball arena must provide a different type of performance than the microphone used in your air studio.

Transducer types

Microphones are classified in several ways. The first is by type of transducer, or how the acoustical energy is converted into electrical energy. Three general types of transducers are used in broadcast-type microphones: moving coil (dynamic), condenser and ribbon. Each has unique characteristics that translate into advantages and disadvantages, depending on the particular application.

The construction of the moving coil or dynamic microphone resembles a speaker. (See Figure 1.) A coil of wire attached to a flexible diaphragm is suspended in a magnetic field. As sound pressure vibrates the diaphragm, the coil moves inside the magnetic field. The movement generates a small current in the coil, which represents the sound.

A condenser-type transducer is shown in Figure 2. A diaphragm, plated with gold or another metal, is mounted above a conductive backplate. Sound waves strike the diaphragm, forcing it to move back and forth with respect to the backplate. If a voltage is applied to these two surfaces, the plates form a capacitor. As the spacing between the plates changes, so does the capacitance. The varying voltage developed on the backplate represents the sound.

Condenser microphones typically rely on a polarizing voltage between 9Vdc and 48Vdc. The voltage must be obtained from either an external power supply or internal batteries. Some condenser microphones rely on a permanently charged element to form the capacitor. They are called electret condenser microphones.

Because the condenser microphone elements represent an extremely high impedance, amplifiers are needed to drive the mic cable. The amplifier's function is twofold: Boost the signal level, and isolate the element from the lower impedance of the cable and termination load.

The ribbon microphone, shown in Figure 3, is similar to the dynamic

![Figure 1. The dynamic or moving coil transducer resembles the construction of a speaker. The simplicity of dynamic transducers makes them highly reliable and rugged.](image-url)
Just as no performer can stay on top without innovation, no company can retain its reputation for performance without product innovation. The standards we’ve set with our broadcast cables are a reflection of our commitment to product innovation—something that continues today with Brilliance.

Named for the sound and picture brilliance obtainable through product innovation and improved signal integrity, Brilliance products range from exciting audio/video cable assemblies to the four new cable products below:

Soft, flexible Microphone Cables.

The debut of Belden’s four-conductor microphone cable sets an industry standard. Featuring matte finish jackets in a wide range of colors, these new cables are designed to increase cable flexibility while enhancing performance.

High-Flex and CL 2 Rated Precision Video Cables.

To solve the problems of rack installations and CCTV systems, Belden has developed a new 75 ohm precision video cable. High-Flex combines Belden® 8281 electrical performance with improved flexibility and longer flex life.

Audio Snake Cables.

Belden now offers a line of multi-pair snake cables. Featuring individually jacketed and shielded pairs, Belden snake cable provides maximum protection against signal loss. Features include loose tube construction and a non-reflecting black matte finish.

Audio and Video Composite Cables.

For systems combining audio and video, Belden has specifically designed cables for ENG and camera applications. They combine off-the-shelf availability with specialty design center technology and fiber/copper composition.

Call your local Belden distributor for our Broadcast Catalog, or contact us directly.

Belden Wire and Cable

P.O. Box 1980

Richmond, IN 47375

1-800-BELDEN-4

(in Indiana, call 317-983-5200)
FUJINON GETS MORE PRODUCTIONS OFF THE GROUND.

AND ON THE ROAD
These trucks carry as many as 14 lenses. Goodyear airships carry only one. Either way, they have good reason to rely on FUJINON exclusively.

FUJINON offers more lenses (in every format) than anyone else. For any production demand, there's a model that gives you the precise angles, range, f-stop, plus every conceivable accessory for manual, servo, remote control or automatic operation.

When you're on the road, you're never up in the air. FUJINON field service plus two, fully-staffed, factory-trained service centers provide the industry's fastest turnaround for repair or routine maintenance. And, to keep productions on schedule, loaners are available overnight.

Introducing the A55 x 9.5 ESM.
For productions requiring the field lens with the world's highest zoom ratio, FUJINON has it. For use with even the most advanced CCD cameras, zoom from 9.5mm out to 525mm (1050mm with the built-in 2X extender). It holds a steady F1.4 out to 253mm; F2.9 at full tele. And it's available now.

On or off the road..., in the studio, you'll see the difference FUJINON makes. So will your viewers. For more information or a demonstration, call your nearest FUJINON location.

FUJINON INC. 10 High Point Drive, Wayne, New Jersey 07470
Southern, 2101 Midway, Suite 350, Carrollton, Texas 75006
Midwestern 3 N. 125 Springdale, West Chicago, IL 60185
Western, 129 E. Savarona Way, Orange, California 90746
(201)632-5600
(214)385-8902
(312)231-7838
(213)492-2961

Circle (38) on Reply Card
microphone because of the moving element in a magnetic field. A thin metal foil or ribbon is suspended within the air gap of a powerful magnet. The ribbon is clamped on each end, but the middle is free to respond to acoustical pressure.

When sound strikes the ribbon, it vibrates, cutting the magnetic lines of force in the air gap. This induces a low voltage in the ribbon. The extremely low impedance of this type of microphone requires a transformer, which boosts the voltage and isolates the ribbon impedance from the load impedance.

Although there are other types of transducers, they seldom are used in professional applications. Examples include carbon and piezo-electric elements. This article will discuss only the three types of transducers mentioned.

Transducer performance characteristics

Microphone performance depends greatly upon the type of transducer. It's not that one transducer is better than another. It's just that some transducers are more appropriate for particular applications.

Dynamic microphones are well-suited for high sound-pressure-level applications. They have low self-noise levels and are extremely rugged. Dynamics tend to be less susceptible to high humidity problems. An important advantage is that they don't require power. This helps make them highly reliable and often less expensive than other designs.

Dynamic microphones come in a wide variety of types and models ranging from hand-helds to headset microphones. These microphones have a slower transient response, which makes them ideal for applications that do not require excessive detail. Typical sensitivity of a dynamic mic might be −54dBV to −57dBV.

Condenser microphones are considered high-performance devices. The transducer's low diaphragm mass and high damping allow it excellent transient response, which is important for micing percussion instruments, cymbals and large ensembles. Any application requiring a clean detailed sound may benefit from a condenser mic.

The high sensitivity of condenser microphones makes them perfect for distant micing. A typical output level might be −46dBV to −52dBV. This high output level sometimes is useful with long cable runs to capture sound sources from a distance. Condenser mics are available in many configurations. Because the transducer can be made quite small, most tie-tac microphones are condensers.

Ribbon microphones are not used widely today, but in addition to a warm, smooth sound, they offer excellent transient response and low self-noise. Ribbons often are used in the studio as voice microphones. Of the three major types, this microphone offers the lowest output level. Sensitivity might be −57dBV to −50dBV.

Despite the low mass of the ribbon microphone, high frequencies tend to be canceled by the acoustic phase interference between the front and rear of the ribbon. Ribbon microphones are, unfortunately, more fragile than dynamics.

Directional patterns

Every microphone has a unique direc-
The AVS-2 from Utah Scientific represents a significant advance in the design of routing switchers. The exclusive use of surface-mount technology results in a dramatic reduction in the physical size of the switcher, allowing you to put more crosspoints in your existing rack space. The AVS-2 is controlled by our existing range of control panels and accessories—the industry's best. And, of course, the AVS-2 is covered by our exclusive 10-year warranty.
tional or polar pattern. As with transducers, no single type of polar pattern is best. Each type of pattern has advantages and disadvantages and is primarily application dependent.

An omnidirectional microphone is equally sensitive to sound from all directions. A unidirectional microphone is more sensitive to sound arriving from the front than to sound arriving from the rear. A bidirectional microphone responds equally well to sound from the front and rear but responds less to sound from the sides. Bidirectional microphones often are called "figure 8" microphones.

Omnidirectional microphones sometimes are called pressure microphones. They can be either condenser or moving coil, but are open to sound only on the front of the diaphragm. (See Figure 4.) Sound waves from any direction create the same pressure at the front of the diaphragm, making the pickup pattern omnidirectional.

The omnidirectional microphone comes close to approximating the directional characteristics of the human ear. The head represents an acoustical obstruction to high frequencies, which results in a directional pickup pattern for these frequencies. Likewise, because of its size, a large omnidirectional microphone will become more directional at higher frequencies.

Unidirectional microphone patterns are subdivided into three categories, each progressively more directional. A cardioid (heart-shaped) microphone is sensitive to sounds arriving from the front and, to a much lesser extent, from the rear. The polar pattern for a cardioid microphone is shown in Figure 5.

Directional microphones develop their pickup patterns through phase shifting. Unlike the omnidirectional microphone, the unidirectional microphone diaphragm is open to sound from both the front and rear. The diaphragm, therefore, responds to the difference in pressure between its front and rear surfaces.

The sound from the front strikes the front of the diaphragm (path a). The front sound also travels around to the rear of the diaphragm along a greater distance and through the phase-shift network, path b. The diaphragm is, therefore, exposed to direct sound from the front and phase-shifted (delayed) sound on the back. The resulting difference in pressure drives the diaphragm. The audio flow path is shown in Figure 6.

Sound from the rear reaches the front of the diaphragm by going around the case (path c) and through the rear-entry ports or vents to the rear of the diaphragm (path d). The front sound, sound passes through the phase-shifting (delay) network. The acoustical network is designed to match the delay experienced by the sound traveling around to the front of the mic. The result is that, for rear sound, the pressure on the front and rear of the diaphragm is the same, hence no output voltage. This makes the microphone less sensitive to sounds from the rear than the front.

This points out something that is often overlooked: The microphone's directional pattern is highly dependent on the rear and side ports or vents. Cardioid microphones have holes running along the entire case. If you tape or otherwise obstruct those holes, the microphone's directionality will be affected.

Two other types of unidirectional patterns should be mentioned. They are supercardioid and hypercardioid. These types of patterns are especially useful in applications in which acoustic feedback or noise is a problem. However, such characteristics don't come free.

In general, as the microphone becomes more directional, it also becomes more susceptible to handling noise. Polar patterns of supercardioid and hypercardioid microphones are shown in Figure 7.

A special type of cardioid microphone is the shotgun. It offers an extremely tight polar response pattern and often is used for distant micing of dialogue and sound effects in film, television, ENG/EFP work and news and sports coverage.

Frequency response

A microphone's frequency response is a measure of its sensitivity vs. frequency. Unlike many other electronic devices, microphones do not exhibit extremely flat response across wide ranges of frequency. All microphones deviate to some degree from what is known as flat response.

This is not necessarily bad. In fact,
The rapidly evolving Grass Valley Group® range of digital equipment is spearheaded by Kadenza.™ Compatible with analog. Ready for digital.

Kadenza is the perfect investment for your production requirements. For now. And for the future.

Kadenza is the first real-time multi-layer compositing device for post production professionals. Its infinitely flexible modular design allows it to be configured to meet the changing needs of your facility.

It reflects the Grass Valley Group philosophy of making the analog to digital transition a smooth one.

When the all-digital studio is commonplace, there will be one common standard everyone can rely on.

Trust GVG for that, it’s here now... and it’s called Kadenza.

Contact your Grass Valley Group distributor for the full story.
frequency-response variations often are used as advantages in certain applications. Many microphones exhibit a peak in the upper frequencies. This gives them a characteristically bright sound, which is often useful in vocal applications. The same characteristic also might result in feedback in PA applications.

Another factor compounds the issue of frequency response. The frequency response of a microphone often is directionally dependent. This means that the response changes depending upon the direction from which the sound originates.

Figure 8 shows the frequency response of an omnidirectional microphone at 2kHz, 4kHz and 10kHz. Note that as the frequency increases, the microphone becomes more directional.

Cardioid microphones have a more difficult time controlling frequency response throughout the pickup pattern. One measure of a directional microphone's performance is how flat the response is off-axis. This is extremely important if the sound source, person or instrument might move during the recording or broadcast. Any frequency-response variation is called coloration. Uniform off-axis frequency response is a characteristic of high-quality directional microphones.

The polar response of a cardioid microphone measured at 1kHz, 6kHz and 10kHz is shown in Figure 9. At 1kHz, the microphone has excellent rear rejection. However, at 6kHz and 10kHz the rear response is about 15dB higher than at 1kHz. Compare this to the 10kHz rear response of the omnidirectional mic.

The issue of frequency response also is related to proximity effect, an increase in a microphone's low-end response as the sound source becomes extremely close. As an example, some performers begin their shows holding the microphone six inches away from their mouths. As the show progresses or during certain passages, they may move the microphone right up to their lips. The result is a change in the microphone's frequency response.

Figure 10 illustrates what happens to the frequency response as the sound source moves from three feet to one inch from the microphone. The lower frequencies are boosted. Proximity effect is a common characteristic of single-D directional microphones. (Single D means that the microphone element is the same distance from the front and rear entry points.)

Proximity effect can be either useful or problematic in vocal applications. Many microphones rely on a switchable bass rolloff filter to reduce the effect. Variable-D microphones reduce the problem by providing multiple rear ports along the mic for the entry of sound.

The low-frequency boost can be extremely useful in live vocal applications. Bill Cosby is an example of an entertainer who uses the proximity effect to good advantage in his performances.

Basic applications

All the theory in the world is useless if you can't apply it. So let's look at some real-world applications in your own station.

One of the first choices you must make for any recording or broadcast is polar pat-
Our Network Ratings Are In.

Our clients have certainly appreciated the cost savings and everyone has enjoyed the extra time satellite has provided us. Cycle-Sat has proven that satellite is a very viable method to distribute commercials.

— Dana Geiken, DMB & B

Our association with CycleSat has been an exciting one for us. Cycle-Sat has made it easier for us to execute many commercials to multiple markets.

— Merle Welch, Foote, Cone and Belding

We have become accustomed to the ease and reliability of receiving commercial spots via satellite. We are also impressed with the flexibility of the system in regard to getting refeeds and special feeds. We look forward to a long working relationship.

— Karl Hagnauer, KPLR

Our experience at WGN-TV with Cycle-Sat has been quite positive. The system has been very reliable and the convenience of receiving the commercials in non-primetime has been helpful in scheduling our tape machines. Our equipment has been freed for production use during the prime hours.

— Robert Strutzel, WGN-TV

The quality and reliability of the hardware and software is outstanding. It’s error free in its operation, and the speed with which we receive commercial feeds saves us make-goods and lost time.

— Jim Martin, WOAY-TV

If you haven’t already joined the Cycle Sat spot delivery network, check out the reception we’re getting from those who have. We guarantee network quality transmission of your spots, along with standardized traffic instructions. For service that’s out of this world... Call 800-274-2728.

© Cycle Sat, 1989
tern. Do you want an omnidirectional or directional microphone? Consider the following suggestions.

If the broadcast involves talent holding the microphone, try to use an omnidirectional mic. These mics are less susceptible to handling and cable noise than most cardioid mics. They also won’t change frequency response as performers change the way they grip the microphone or move toward it. Hand-held applications demand a microphone with an internal shock mount.

Unless you expect extremely loud ambient noise, an omnidirectional mic still should be able to balance the ratio of talent to background noise. Most live shots sound better with omnis because the background noise is included. A cardioid or supercardioid pattern may be too tight or the talent positioned in such a way that the audio sounds flat, almost studio-like. Be careful when using a cardioid mic with moving talent. If the talent moves with respect to a particularly loud background sound, the level of that sound may change up and down as the microphone’s null swings past the sound.

Remote broadcasts demand that the mics be rugged. Quality means nothing if the microphone won’t take a fall from a table and continue to work. Today’s dynamic and some condenser microphones are extremely rugged and reliable. Consider the environment in which the microphone needs to work. Some condenser microphones may fail in extremely humid conditions. Ribbon microphones are not well-suited to outside use, especial-

Figure 8. This polar pattern shows how even omnidirectional microphones become more directional at high frequencies.

Figure 9. Cardioid microphones often suffer from coloration because their pattern changes with respect to frequency. Here the microphone’s rear pickup increases greatly at high frequencies.

ly in windy conditions.

Condenser microphones require power. If you use them, be sure the batteries are fresh. If you are going to rely on phantom power, be sure the snake or splitter will handle it. If you are on the wrong side of
HEADSETS AHEAD OF THE GAME—IN MORE WAYS THAN ONE

For coaches and broadcasters alike—the pros pick Telex.

On the football field and in the broadcast booth high atop the stadium you'll find Telex Headsets are the choice of the pros. National Football league stadiums and major television networks use a variety of Telex Professional Headset models day-in and day-out.

Furthermore, thousands of colleges, high schools and local radio/television stations who have recognized the value of clean, clear, dependable communications are also using Telex. If you're not already using a Telex, we urge you to take a closer look next time you have a requirement.

A model for every purpose.

Whether your need is communication, camera, sportscaster, studio announcing or inconspicuous on-camera listening, Telex has a model that will fit your requirements perfectly. No other headset manufacturer has the tremendous model variation Telex offers.

Lightweight, full cushion, single sided or dual, boom mic or monitor headsets are all fully described in the latest Telex Headset Catalog. Full specifications are included and the catalog is free. Call or write today:
Telex Communications, Inc.,
9600 Aldrich Avenue South,
Minneapolis, Minnesota 55420.

© 1989 Telex Communications, Inc.
the split, your condenser microphones will have to rely on batteries.

TV applications demand a non-reflective microphone surface. Many quality microphones are available with both reflective and non-reflective surfaces.

Be especially careful about changing microphones between shots. Try to rely on the same microphone for the entire recording or shot sequence. This is especially important when using shotgun microphones. The sound produced by a shotgun microphone often is difficult to match. If you have to rely on a shotgun microphone for some camera shots, try to use the same one even for the standups. If you don't, the sound may be noticeably different.

Figure 10. Proximity effect is common with directional microphones. Microphones often provide bass rolloff filters to help compensate for this phenomenon.

SYSTEM TIME, REAL-TIME, ROLL-TIME
Model TSG-440

Sync Generator

Pattern Generator

Source I.D.
Memory for Ten

Count Down
Generator

Vertical Interval I.D.

SIGMA ELECTRONICS INC.
184 ENTERPRISE ROAD, PO BOX 448
EAST PETERSBURG, PA 17502-0448
Tel. (717) 569-2681 FAX (717) 569-4056

Perfect Timing for $2395.00

Circle (46) on Reply Card
WHY
WTVH-TV'S
BRUCE
LEY
LOVES
HIS
EPO
ROBOTIC
CAMERA
CONTROL
SYSTEM.

Far more than 20 years, WTVH-TV, the CBS affiliate in Syracuse, N.Y., has broadcast its news using EPO remote camera control systems. During that time, the systems have outlasted four sets of cameras—a clear testament to EPO's durability and reliability.

For most of those years, as Bruce Levy, the production chief at WTVH-TV, will tell you, the station was virtually alone among American broadcasters.

Now, of course, all that has changed. Americans are beginning to wake up to what their European brethren have known for some time—that EPO Camera Control Systems can save them money. Lots of money!

But even EPO Robotic Camera Systems don't last forever. Recently, when WTVH-TV's 20-year-old unit began to show some wear and tear, Bruce Levy confidently ordered three new ones from A.F. Associates, thereby continuing his and WTVH-TV's long association with the EPO systems.

If you would like to know more about Bruce Levy's favorite way to save money, call A.F. Associates. In the east: (201) 767-1201; in the west: (619) 277-0291.

THE RADAMEC EPO ROBOTIC
CAMERA CONTROL SYSTEMS.
Distributed exclusively in the U.S. by

A.F. ASSOCIATES INC.
ADVANCED SYSTEMS AND PRODUCTS FOR THE VIDEO INDUSTRY
100 STONEHURST COURT, NORTHVALE, NJ 07647
A.F. Associates, Inc. is a Video Services Corporation company.

Circle (47) on Reply Card
Multiple-mic setups

Most commercial radio and TV broadcasts can be handled with one or two microphones. Primarily, non-commercial stations that broadcast music need to use the more complex multi-microphone setups.

Adding a second microphone makes things more than twice as complex. The chance for error probably goes up by a power of two. Multiple microphone setups often seem easy at first. It’s only after you consider the opportunity for problems that you realize how difficult the tasks may be. For most applications, relying on the 3:1

![Figure 11. Observe the basic 3:1 rule when using more than one microphone. Remember that the rule applies for each microphone and sound source. Maintaining these distances can become a problem with more than a couple of microphones.]

![Figure 12. Panel discussions are often miced improperly. Note that the 3:1 rule is violated by the mic placement shown here.]

How to pick out a voice in the crowd.

The MCE 86. Whether shooting on-location interviews or industrial videos, the MCE 86 shotgun mic lets you hear your spokesperson loud and clear. Its remarkable reach and accuracy give you crisp, clear response and articulation. No background chatter, no extraneous noises. And its lightweight design makes it easy to handle, whether mounted on the camera or on a boom.

Make your sound source stand out, with the industry’s most outstanding shotgun mic. The MCE 86.

The art of shaping sound.

SONEX is a high-performance acoustical foam that upgrades your studio inexpensively. Ideal for a temporary isolation booth, it can also eliminate slap echo and harsh resonances in the main room or silence noisy tape equipment in the control booth.

Write for our color brochure today.

Broadcast Group beyerdynamic

Beyerdynamic 5-35 Burns Avenue, Hicksville, NY 11801 Tel. (516) 935-8000 Fax (516) 935-8018

Circle (48) on Reply Card

Circle (49) on Reply Card
October 5-8
Kansas City
Convention Center

Kansas City—known for its jazz legends, beautiful fountains, great steaks and Harry Truman. And, this year, host to the 1989 SBE National Convention and Broadcast Engineering Conference.

The broadcast industry is changing rapidly. To stay ahead today, you need to know where technology is heading. This year, in cooperation with major manufacturers, special hands-on training sessions will be available. It's your chance to be trained by factory engineers on the equipment your station uses. Other sessions allow you to learn the latest developments important to your job including satellite uplinking, HDTV, engineer licensing and new FCC regulations.

With technical sessions and exhibits specially designed to meet your needs, this is your show for '89.

So help us celebrate the silver anniversary of the SBE by attending the 1989 SBE National Convention and Broadcast Engineering Conference, October 5-8. Take in the show, and while you're in Kansas City, take in the sights!
Figure 13. The M-S stereo miking pattern provides excellent stereo localization and good mono compatibility. The main drawback is that it requires a figure-8 microphone.

Figure 14. The M-S recording technique requires a matrix and can be implemented with a pair of matched transformers. The wiring scheme is described in the text. Continued on page 90.
AKG's 568EB.
Stand Back.

AKG's C568 short shotgun offers you real directivity in a remarkably small and convenient condenser microphone. Only 10” long, the C568's sensitivity, wide frequency response, durable metal housing, and integrated impedance converter/preamp easily meet the demands of live on-air or recording applications. A perfect balance of pressure gradient and interference principles means the C568 can be up to three times as far from a sound source than normal mics and still yield the same ratio of direct to indirect sound. Used close, it reduces indirect sound levels by 8 dB for improved isolation. So whether it’s for ENG, film, theatre or church sound reinforcement, or music applications, AKG’s C568 means business. And at half the price of the competition. Just stand back and take a listen.
THE PRODUCTS
ISS Engineering offers the Broadcaster a full line of frequency agile Satellite Receivers, RF Modulators and Demodulators for use in the in-house RF distribution System, ENG vans, translators as well as many other applications. Each product is designed to provide two basic functions to the engineer: first, simple, reliable operation and with zero maintenance and second, a product which meets and exceeds specification and does not sacrifice quality in attaining any design objective.

Satellite Receiver, The GL-5000A • 950-1450mHZ input - External loops for TI filtering - Non-volatile "Last Channel" memory - 1 rack unit high - Optional Morales and Intelsat formats - Continuous 5-8mHZ audio tuning.
COMING Second quarter 1989, GL-5020 a completely new professional receiver with a "nesting" slot for use of optional audio subcarrier cards for SAP or Pro Channel, Discrete Stereo. Programming encrypted utilizing Videocipher technology can be accessed with an optional module inserted in the nesting slot.

Agile Demodulator, The GL-1000A/B • Tunes the entire VHF, UHF as well as all CATV channels from simple front panel selections - Supports multiple signal source inputs - Accepts a wide range of input signal levels - 600 ohm balanced audio - BNC connectors - Non-volatile program memory to lockout undesired channels - Options include composite output, 4.5 audio, modulated test point as well as extended subchannel tuning below 54 mHZ.

Agile Modulators, The GL-2610XT SERIES II • Full front panel operation of all tuning (channels 2-WW and UHF 14-26), RF levels, depth of modulation and offsets. Full 60dBmv output - 600 ohm balanced audio - External IF loops - Dual crystal controlled synthesizers, each with its own oven control - ± 3kHZ stability - ±1kHZ aural intercarrier stability. Options include Subchannel tuning - 4.5 mHZ audio.
SPECIAL OPTIONS
RS-232. Both the CL-2610XT SERIES II and our specialty Agile Demodulator, the LAN-1001 allow for full remote tuning via RS-232, as well as expanded features. For complete information on these special option products, contact the factory.

The Company
ISS Engineering has earned a reputation for solid dependability and performance. Broadcasters have utilized our product line in ENG vans, covering the Summit Talks, Seoul Olympics, and the Papal visit. Many Government applications are fulfilled by ISS as well as commercial, school and industrial RF applications. In the professional world of video, wherever an RF application exists, chances are you will find ISS Engineering filling the requirement.

For complete information or to schedule a demonstration of the dependability of ISS, call ISS Engineering or the Representative in your area.

Represented by:

Southeast Jim Freeman Associates
(404) 921-8687

Northeast Omnilvue
(212) 532-5576

North Central G.B. Morrison
(313) 632-5847

Midwest Applied Technologies Mktg
(312) 934-6262

Southwest The Enright Company
(213) 595-4624

ISS Engineering, Inc.
1047 Rwell Court
Palo Alto, California 94303
(415) 853-0833

East (800) 351-4477

West (800) 227-6288

Circle (52) on Reply Card
The two microphones are mounted on a single vertical stand to produce the M-S signal. The top microphone produces the M (mid) sound and the bottom the S (side) sound.

Continued from page 86

rule will keep you out of major trouble. The basic principle is illustrated in Figure 11. The 3:1 rule states, for example, that if the distance between the sound source and microphone is one foot, then the nearest microphone should be spaced at least three feet away.

Note that this rule applies to each combination of sound source and microphone. If you mic one source at a distance of two feet, then all microphones should be separated by at least six feet. It’s usually easier to move the microphones closer to the sound source than to try for widely spaced microphones.

This principle often is violated in setups for panel discussions, as shown in Figure 12. Note that the distance between each panel member and the microphone is 18 inches. Yet, the distance between microphones is only 24 inches. This violates the 3:1 rule, and comb filtering may result. This might be a good application for the boundary microphone. Other options are to use fewer, wider-spaced microphones or move the mics much closer to the panelists.

Continued on page 93
One Still Store Does More Than Just Store Pictures

Simply Storing Pictures Isn’t Enough Anymore.

Your still store had better deliver absolutely pristine images and be a multitasking production center, or you’re not getting your money’s worth.

Can Any Still Store Really Do This?

One can. ALTA’s Centaurus. Look at digital tape cartridge for unlimited off-line storage.

No Other Options Needed!

Our dual synchronizers and TBCs are built right in. So you can work directly with images from tape, camera, microwave and satellite feeds, whatever. All without having to invest in additional equipment.

Becomes a Master of Effects in Minutes!

Put some polish on your productions. Centaurus gives you more effects to work with, on a keyboard that’s simple to operate. Plus its built-in switcher and dual TBCs let this still store stand alone, so you won’t tie up your entire studio.

How Can This Be?

How can we make a full-featured, dual channel still store for less than the cost of other single-channel systems? Simple. We’ve been doing it for years. In fact, ALTA engineers were among the pioneers of the digital still store. That’s why our warranty is twice as long, and our still store gives you twice the value.

So if you’re looking for a still store that does more than just store pictures, choose the one that does more for your money.

Choose Centaurus.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>ABEKAS A42</th>
<th>ALTA Centaurus</th>
<th>AMPEX ESS-5</th>
<th>HARRIS ESP II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>4.2 MHz (± 0.25 dB)</td>
<td>5.5 MHz (± 3 dB)</td>
<td>5.9 MHz (± 5 dB)</td>
<td>5.0 MHz (± 0 dB)</td>
</tr>
<tr>
<td>Signal to Noise</td>
<td>52 dB</td>
<td>58 dB</td>
<td></td>
<td>56 dB</td>
</tr>
<tr>
<td>Storage Capacity*</td>
<td>200 fields 100 frames</td>
<td>250 fields 125 frames</td>
<td>207 fields 207 frames</td>
<td>200 fields 200 frames</td>
</tr>
<tr>
<td>Synchronizer</td>
<td>Dual</td>
<td>Dual</td>
<td>Dual</td>
<td>Dual</td>
</tr>
<tr>
<td>TBC</td>
<td>Dual</td>
<td>Dual</td>
<td>Dual</td>
<td>Dual</td>
</tr>
<tr>
<td>Production Effects</td>
<td>1 wipe dissolve</td>
<td>9 wipes dissolve 7 digital</td>
<td>1 wipe dissolve 3 wipes dissolve 3 digital</td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td>1 year</td>
<td>2 years</td>
<td>1 year</td>
<td>1 year</td>
</tr>
<tr>
<td>Single Channel</td>
<td>$19,900</td>
<td>$24,900</td>
<td>$31,500</td>
<td>$26,333</td>
</tr>
<tr>
<td>Dual Channel</td>
<td>$16,900</td>
<td></td>
<td>$31,500</td>
<td>$30,995</td>
</tr>
</tbody>
</table>

*Basic System

Based on available data as of June, 1988.
THE FACE OF INTERCOM AS IT SHOULD BE
USER ACTIVATED

WORKS ON ONE OR TWO CHANNELS AND INCLUDES CALL SIGNALING, MOMENTARY/ LATCHING SWITCHES, PROGRAM INPUT, CENTRAL-POINT MIC TURN-OFF, AND MUCH MORE.

MODEL BP325: USER ACTIVATED FOR OPTIMUM PERFORMANCE. PLEASE CALL OR WRITE FOR DETAILED LITERATURE.

RTS SYSTEMS INCORPORATED
THE FIRST NAME IN INTERCOMMUNICATIONS
100 WEST CHESTNUT STREET BURBANK, CALIFORNIA 91506
PHONE 818 566-6700 FAX 818 843-7953
Continued from page 90

Simple stereo setups

If you happen to find yourself facing the prospect of recording or broadcasting a large group, don't panic. A couple of simple techniques may save the day.

One of the most popular stereo miking techniques used today is the mid-side (M-S). The M-S technique relies on a pair of coincident microphones. One microphone produces the mid (M) sound. Although this microphone can be of any polar pattern, a cardioid is often used. The side (S) microphone must be a figure 8 and be aimed perpendicular to the primary sound source. The stereo sound is determined by the difference in the intensity of sound as it arrives in phase at the pair of microphones. The polar pattern of an M-S setup is shown in Figure 13. The technique offers two important advantages to the broadcaster. First, only one microphone stand is required. This greatly simplifies setup. Second, the resulting sound is highly mono-compatible, which is critical to both radio and TV broadcasters.

The following equation shows how the monaural signal is developed from the M-S pair of microphones. Because the S outputs cancel, the resulting 2M output is identical to that from a monaural microphone, but it is increased by 6dB.

\[
\begin{align*}
M + S &= \text{left} \\
M - S &= M + (-S) = \text{right} \\
L + R &= (M + S) + (M - S) \\
&= M + M + S - S \\
&= 2M
\end{align*}
\]

The M-S technique requires that the two microphone outputs be combined properly. Figure 14 shows a method that uses a pair of transformers. Each transformer has a single primary and dual secondaries. One secondary winding of each transformer is connected in series and in polarity for the sum output. The other set

Figure 15. This M-S matrix can be installed in the console, just after the microphone pre-amps. This avoids the problem of phantom powering the mics.

ACTIVE, LINE-LEVEL M-S MATRIX (UNBALANCED)

OPERATION:

1. W/S-LEVEL OFF (CCW). ADJUST MID MIC-PRE-AMP GAIN TRIM FOR PROPER LEVEL. THEN SET SIDE MIC-PRE-AMP GAIN TRIM TO THE SAME APPROXIMATE POINT.

2. ADJUST S-LEVEL FOR DESIRED STEREO IMAGE WIDTH.

IC 1,2=5532

ALL R=1%, W METAL FILM

C1=0.1 µF POLYSTYRENE

C2=100 µF/25V ELECTROLYTIC

C3=10pF POLYSTYRENE
of secondary windings is connected in series, but out of polarity, creating the difference output. Adding attenuators before the transformers allows the ratio between the M and S signals (overall stereo image) to be adjusted. The disadvantage of this setup is that phantom powering becomes difficult.

An active M-S matrix is shown in Figure 15. The matrix is designed to be inserted in line after the microphone pre-amps. This solves the phantom powering problem. This design also offers a convenient adjustment for the S signal level. Other versions of the circuit permit the matrix to be installed before the console or recorder inputs. Several manufacturers offer stereo microphones equipped with built-in M-S capability. Simply connect the microphone outputs to your stereo tape recorder or console.

The coincident pair (X-Y) microphone method uses two directional mics mounted close together. The mics are placed one on top of another so their diaphragms are centered vertically and aimed toward the left and right sides of the sound source. The amount of included angle determines the apparent stereo width. The microphones should be aimed properly, matched closely, and they should have good off-axis response to avoid coloration.

This recording technique allows good stereo imaging and is extremely easy to set up. When used with cardioid microphones, the technique narrows the stereo image more than M-S does.

The same setup can be used with bidirectional (figure 8) microphones in what is called the Blumlein configuration. Tests show this provides better stereo localization and a natural sound. The disadvantage is that not every station has a pair of figure 8 microphones.

Special microphones

Two other types of microphones deserve consideration: the boundary microphone and the Soundfield microphone. The boundary microphone uses a miniature electret condenser pickup mounted extremely close to a reflecting plate. This configuration prevents the comb filtering that results in many situations.

Modern unidirectional microphones can provide excellent performance. The construction of this mic shows some of the features that help make dynamic microphones so popular and useful.
The Faroudja

Ahead of its time

The LD-1 Line Doubler accepts 525 line, 2:1 interlaced, 59.94 Hz video signals and converts them to 525 line progressive scan or 1050 line interlaced signals.

The motion detection techniques used in the LD-1 are considered by experts in the field as being the most advanced. Along with proprietary bandwidth expansion techniques* and patented detail processing, ** Faroudja Laboratories LD-1 delivers images that rival HDTV.

35 mm Film Quality

The absence of visible scanning line structure, edge blurring or motion artifacts at the LD-1 outputs makes it an ideal companion for large screen TV displays. Its crystal clear, artifact free image delivers a "cinema-like" feeling from standard 525 line video sources.

SuperNTSC™

The Faroudja LD-1 Line Doubler, CTE-2 Encoder and CFD-N Decoder comprise the basic building blocks of the fully compatible SuperNTSC™ ATV system.

* Patent Pending
** Patent Numbers 4,030,121 and 4,262,304

Faroudja Laboratories Inc.
946 Benicia Avenue
Sunnyvale, California 94086
Telephone 408/245-1492
Telex 278559 MUHA UR
Fax 408/245-3363
Circle (57) on Reply Card
Figure 17. Boundary microphones avoid audible comb filtering by placing the microphone capsule close to a plate. Because the distance between the boundary and capsule is extremely small, the fundamental comb frequency is shifted into the inaudible range.

Figure 18. The Soundfield microphone uses four separate capsules to develop almost any type of polar pattern. If the four capsule outputs are recorded, the polar pattern can be varied in post-production work.

Although the microphone offers a good deal of freedom to the on-site recording engineer, what makes it unique is its post-production options. If the four separate capsule outputs are recorded during the original session, each of the pickup parameters can be adjusted later in a post-session.

Next time you're faced with selecting a microphone, begin by looking first at the application. The requirements will help narrow your selection to those types of microphones most appropriate for the task.

Bibliography

Acknowledgment: Appreciation is expressed to Nigel Bramwell of Calrec by AMS, and Mike Solomon of Beyer Dynamic.
Until now, there have been only two choices for stereo microphones. Mid side and X-Y mics gave good mono compatibility but produced wishy-washy imaging and sacrificed ambience. The second choice, near-coincident pairs, produced sharper imaging at the expense of poor mono compatibility and required awkward stands and field assembled parts.

Either way, low end has been weak and off-axis coloration lurked in the background.

All that has changed with the introduction of Crown's Stereo Ambient Sampling System™: SASS™. Now, two new choices are available, each with no sacrifice in performance.

SASS-P with switchable battery or phantom power and Crown's best studio grade PZM capsules; or SASS-B to utilize the world standard Brul & Kjaer 4003 and 4006 studio mics.

Full ambience without coloration, excellent sum to mono and an extraordinarily broad frequency response, SASS offers fantastic imaging with pinpoint localization for both music and non-music sources.

It's all done within a single, lightweight, Crown-patented frame that is easily adaptable to all common stands and mounts. A cushioned grip is provided for hand-held applications.

On one hand, portability and impressive high end; on the other, ultraquiet response to the lowest audible frequency. Both SASS models have it all.

See your Crown representative. You'll find the new SASS family stands alone as THE choice for stereo. No trade-offs.
The role of film in television

By Jerry Whitaker, editorial director

Although the motion-picture industry first sought to “take over” television, the marriage of the two has worked quite well.

George Eastman finally met Thomas Edison in person during a visit to Edison’s New Jersey laboratory in 1907. Eastman asked Edison how wide he wanted the film for his new cameras. Edison held his thumb and forefinger about $\frac{3}{8}$-inches (35mm) apart and said, “About so wide.” With that, a standard was developed that has endured for 82 years.

The TV and motion-picture industries have been closely tied since the 1930s. As Broadcast Engineering magazine observes its 30th anniversary this year, the motion-picture industry celebrates its centennial. Two people share credit for the invention of film: Thomas Edison and George Eastman.

In 1877, the Civil War was still a recent memory. Rutherford B. Hayes was in the White House. Thomas Edison was a year away from inventing the incandescent bulb. And the primary means of transportation was by horse and buggy.

George Eastman was a 23-year-old bank clerk working in Rochester, NY. Legend has it that young Eastman was planning a vacation to the Caribbean, his first vacation since he went to work as a teenager to help support his family. Another employee at the bank suggested he take a camera with him. Eastman soon discovered that it was easier said than done.

Cameras were heavy and cumbersome. They were as big as soapboxes. They required sturdy tripods because it took so long to expose each image, and any movement would spoil the picture. And taking the picture was the easy part. Photographs in those days were recorded on glass plates that had to be coated with a wet chemical emulsion in total darkness just prior to exposure. The picture had to be taken before the emulsion dried, and the plate had to be processed immediately, again in total darkness.

Eastman never went to the Caribbean, but he did buy a camera outfit. He also paid one of the few photographers in Rochester the princely sum of $5 a lesson to teach him how to take, and make, pictures.

Eastman goes to work

From the start, Eastman searched for ways to simplify photography. An article he read in a photographic journal published in England mentioned a new kind of dry photographic plate. Eastman was intrigued. There would be no more need for lugging along bottles of chemicals on photo expeditions. He started experimenting, searching for a way to manufacture dry plates of consistent and uniform quality. Eastman’s laboratory was the kitchen table of his mother’s boarding house, where he spent most of his evenings and weekends.

In 1879, two years after he began experimenting, Eastman invented a machine to manufacture dry plates of sufficient and consistent quality. He traveled to London, then the capital of the photographic world, to patent his invention. One year later he and an associate named Henry Strong, a local businessman who boarded with the Eastman family, rented a third-floor loft in Rochester and started manufacturing dry plates for sale. In 1881 they formed a partnership called the Eastman Dry Plate Company.

Eastman, however, had a much grander vision. He wanted to further simplify picture taking. He set out to invent a flexible, transparent base for film to replace the rigid glass plate. Eastman soon discovered that owners of glass plate cameras had little interest in film. But, by then, he had a new inspiration — to popularize photography by inventing an affordable, easy-to-use camera that took good pictures. In 1888 he brought to the marketplace the world’s first snapshot camera, which used roll film. The Kodak camera was born.

Eastman’s film, Edison’s camera

In 1889, Eastman’s company invented a way to manufacture a transparent film base that was flexible and sturdy enough to be used in a camera. The base was manufactured on 200-foot-long, 42-inch-wide glass tables. After the base dried, it was coated with a light-sensitive gelatin emulsion. Word of the development reached W.K.L. Dickson, an assistant to Thomas Edison. Dickson ordered a Kodak camera on May 30, 1889. What he really wanted was the film.
THE UBIQUITOUS STANDARDS CONVERTERS

ME 8800
MULTI STANDARD CONVERTER

NTSC, NTSC 4.43, PAL, PAL-M, PAL-N AND SECAM

- The world's only complete range of standards converters, featuring more than ten models - from simple unidirectional models to multi-standard, multi-featured 4-field machines and HDTV for the most demanding broadcast applications.
- Total upgrade path through the converter families - when your needs grow they grow with you.
- Six machines in one. Besides offering broadcast quality conversion, MSW converters also serve as time base correctors, synchronizers, color correctors, enhancers and as powerful noise reducers.
- All fully supported by our range of grade-one multi-standard decoding and monitoring equipment.
- The confidence and reliability of the best selling most trouble free professional standards conversion available.

Designed, built and serviced by broadcast professionals

MERLIN SNELL & WILCOX
1890 EMBARCADERO ROAD, PALO ALTO, CA 94303 TEL: (415) 856-0900 FAX: (415) 858-2302

Circle (59) on Reply Card
Using the film, Edison was able to invent the first motion-picture camera and projector used in the United States. Edison also built the first movie studio, in Orange, N.J. He subsequently showed his film viewer, the Kinetoscope, at the Chicago Exposition, where hundreds of thousands of people saw moving images for the first time. In the beginning, movies were a novelty. Most films were recordings of real or staged events, ranging from parades and foot races to vaudeville acts.

In 1896, Kodak manufactured the first print film designed for projection. This film eliminated the necessity of viewing motion pictures one at a time on the Kinetoscope, a “peep show” type of contraption, and opened the way for the introduction of movie theaters. In 1899, Frank Lovejoy, a young chemist employed by Eastman, developed a way to manufacture film in 1,000-foot lengths. This breakthrough made it possible to photograph longer and more complex scenes.

Just about the time cinematography was peaking as an art form, its biggest crisis occurred. The year was 1928. “Talkies” came into vogue overnight. With the overwhelming public acceptance of “The Jazz Singer,” the silent film died. The transition was immediate. Studios stopped production of silent movies that were in the making so that sound could be added to some scenes.

The change caused enormous technical problems. After some experimentation with recording sound on disks that could be mechanically synchronized with the film in theaters, the industry decided such an approach would be impractical. It was decided, instead, to record sound directly on the film. There was an immediate need to solve a myriad of technical problems that threatened to compromise both the art of cinematography and the quality of the images and sound recorded on film. The scientists of the day, however, met the challenge. As they say, the rest is history.

Theater television

On July 30, 1930, a large TV screen was installed and demonstrated at an RKO theater in Schenectady, N.Y. After a successful test, a reporter for a leading entertainment magazine wrote: “With this successful experiment, the technical arrangements are virtually complete for projecting (television) on normal-sized motion-picture screens...”

RKO had hopes of supplementing the motion pictures it regularly featured in theaters with televised vaudeville acts. The “large-sized” TV screen was just five feet high. Nevertheless, television had been launched.

From these humble beginnings, the major motion-picture studios began to develop plans on how to deal with the new medium of television. Only one week before the RKO demonstration, David Sarnoff wrote on the science pages of the “New York Times” that television soon would serve as a theater in every household. He foresaw great cultural benefits, with educational programs for children and an electronic art gallery for the family. The motion-picture industry didn’t care much for Sarnoff’s “theater-in-every-household” concept.

From the start, the motion-picture industry viewed television with suspicion. It is interesting, then, that in 1928, under Sarnoff’s direction, RCA became heavily involved in movies through the Photophone sound recording system, and in the purchase of two theater chains to form RKO.

Nevertheless, the Academy of Motion Picture Arts and Sciences was sufficiently concerned about television to appoint a research council in 1938 to study the issue. The committee suggested that motion-picture companies install TV systems in their theaters. Members of the panel reasoned that the major movie corporations could “take over” television through their ownership of first-run theaters offering theater television.

During 1938, Paramount took the lead by purchasing a significant interest in DuMont Laboratories. Paramount put the first TV station in Chicago on the air in 1940 and established another in Los Angeles in 1943. With DuMont’s stations in New York and Washington, Paramount had an in-
interest in four of the nine first TV stations in the United States.

At the end of World War II, the other major movie corporations sought to get into the TV business. There was even talk of alliances with NBC and CBS. None of these plans ever came to fruition, however, because of the movie industry's mounting record of antitrust convictions. The FCC ruled that it would not grant a TV license to a corporation convicted of any monopolistic practices. In 1948, the U.S. Supreme Court affirmed the FCC action, effectively stopping the movie industry's efforts to "take over" television.

At the end of World War II ... major movie corporations sought to get into the TV business.

Disappointed but undaunted, the movie corporations returned to the idea of theater television that had been proposed a decade earlier. Led again by Paramount, they added TV rooms to existing selected theaters, which would continue to run feature films. The TV portion of the operation was intended to provide newscasts and sporting events, which could be covered better and faster with television than with film. Theater television offered a way to deliver news and sports on the screen with a speed formerly associated only with radio.

There was no shortage of promising theater TV projection systems in the late 1940s. Many were exotic, and many never made it out of the laboratory. The most intriguing idea came from Paramount. Called the Paramount intermediate film system, the concept was to distribute audio and video signals to theaters via electronic means and, upon reception, inscribe the video images and sound onto motion-picture film. The benefits were that both standard TV receiving systems and standard motion-picture projectors could be used. The conversion process from video and audio to film took 66 seconds.

The equipment to accomplish this task, however, was elaborate and expensive. The film had to be recorded, developed and projected in one continuous process. The system worked, but the quality of the reproduced image was considered only "fair." Other systems were tried, but the quality of the reproduced image never compared favorably with 35mm film.

Still, numerous theater TV systems were installed across the country with some degree of commercial success. By May 1952, more than 300 different events had been presented. Networks were formed, using phone company facilities, to offer special attractions to the local theaters. Perhaps best remembered was the Joe Walcott vs. Rocky Marciano heavyweight championship fight in September 1952. Fifty movie houses in 30 cities were wired.

Theater television offered a way to deliver news and sports on the screen with a speed formerly associated only with radio.

A Memo to C.E.’s About Audio Switchers

Anyone who has researched the routing switcher market has uncovered "The Problem": Audio switchers are small or they are large, but they aren't mid-size. And even when they are small, the price is still large—to cover the upgrade path that's always built in.

360 Systems has a solution. We invite you to compare our new AM-16 Series with anything else on the market. Here are just a few of our features:

- Balanced inputs and outputs
- Mono, stereo or multi-level
- Expandable matrix
- Gain adjustment on each input
- Non-volatile program storage
- Multi-station remote control via EIA-422/485 or MIDI
- Redundant power supply
- Large, clean LED displays
- Exceptional audio performance

360 Systems' new audio switchers start at only $1195 for a 16 x 16 matrix. And that includes everything. Call us for complete information on the industry's new price performance leader.

360 Systems
18740 Oxnard Street
Tarzana, California 91356
Phone (818) 342-3127
Fax (818) 342-4372

Circle (86) on Reply Card
As home TV receivers became affordable, the interest in theater television began to diminish.

If the theater owners were suspicious of television, they couldn’t stand the idea of pay cable television. Pay cable was a major bone of contention during the 1950s and ‘60s. Theater owners had failed to sidetrack over-the-air television, but they did their best to squash pay cable. The effort included a 1964 campaign by theater owners in California to flatly ban pay cable television. Following much promotion, the measure (Proposition 15) passed. It later was declared unconstitutional. The fight, not surprisingly, revolved around money. TV advertising revenues were up, and movie receipts were down.

Film production for TV
Failing to either kill off or take over television, the motion-picture industry in the late ‘40s and early ‘50s decided it was better to jump on the bandwagon than try
to derail it. Among the first TV programs from Hollywood was a 3-camera show called “Public Prosecutor,” produced by Jerry Fairbanks in 1947-48. Independent film producers provided a number of programs for the fledgling networks at that time.

By 1952, television was taking a deep bite out of theatrical audiences. However, Hollywood film producers were discovering that television had the welcome mat out for their services. At first, the mainline studios avoided direct contact with television. They set up separate TV production wings, which operated under different names and even out of different facilities. During the early 1950s, an average of 16 prime-time network programs were originated on film every week.

A significant contribution that film made to the TV industry at that time could be summed up in one word: residuals. To appreciate just how significant that word was, consider this: Only 39 episodes of the famous Jackie Gleason “Honeymooners” series are available for distribution. (Recently, some additional “lost episodes” have been uncovered.)

Lucille Ball and Desi Arnaz insisted on producing “I Love Lucy” on film in front of a live audience. The network didn’t like the idea, but Lucy and Desi prevailed. The decision paid enormous dividends. Episodes of the original “I Love Lucy” series are still being aired today. In fact, it may have been the best deal any TV program producer ever made.

By the time Broadcast Engineering was founded in 1959, many (if not most) prime-time entertainment programs seen on the networks were originated in Hollywood by the same studios making movies for theaters. This was reflected in the quality and entertainment value of the programs. Some people still talk of the “good old days” when dramas were seen live. However, the reality was that Hollywood — the film production industry — won the battle for ratings and critical approval hands-down.

Hollywood film producers were discovering that television had the welcome mat out for their services.

George Eastman (left) and Thomas Edison had a lot to talk about at their first meeting, in the late 1920s. By then, the motion-picture industry, which they helped to create, had blossomed into an important art form. (Courtesy of Kodak.)

("I Love Lucy") may have been the best deal any TV program producer ever made.

By the early 1960s, the switch to color programming was gaining steady momentum. NBC had an obvious vested interest: Its parent company, RCA, manufactured color TV receivers. "Bonanza" was the showcase for color on NBC for many years. About that time, Eastman Kodak introduced a new, faster color negative film. It was a boon to TV producers because they could originate programs with less light and setup time and work with script situations that previously would have been prohibitive. By the fall of 1965, almost all of NBC’s prime-time schedule was produced on color film. CBS was a year behind in reaching that plateau, and ABC
You receive an important extra with every quality TTC Transmitter...

TTC TOTAL SUPPORT

Quality people stand behind every TTC transmitter. Our service begins the minute you buy TTC—and it never ends. We still support products made over twenty years ago. Our marketing, engineering, manufacturing, and service personnel keep you on the air.

Advanced broadcasting technology acknowledged worldwide. TTC’s advanced TV, FM, and AM transmitters/translators meet your most stringent technical specifications. All our products are made with strict attention to quality control and thorough testing. Throughout the USA, Canada, Central and South America, China, Southeast Asia, the Middle East and Africa, TTC is recognized for quality and performance.

We’re there with Total Support if you need us. At TTC, we take pride in our rapid response to customer needs. Our twenty-four hour Total Support Hot Line lets you call for technical or engineering support at any time—for questions, additional parts, or maintenance.

Made in the USA. Get to know TTC and our full line of transmitters, translators, and broadcasting equipment. For more information or product literature, call or write TTC:

Television Technology Corporation,
650 South Taylor, Louisville, Colorado 80027 USA
Telephone: (303) 665-8000 FAX (303) 673-9900

The Quality is TTC

Circle (60) on Reply Card
followed the next season.

News film

News was becoming increasingly important to local stations during the mid-1960s, and film was used for nearly all of it. The sound cameras were bulky by today's standards and had to be used with tripods. Most news photographers carried an additional small, hand-held, silent camera to film segments not requiring sound and to shoot cutaways. The photographic soundtrack of the cameras of the day did not have the quality or flexibility of the magnetic soundtracks used on later news cameras.

Like most local entertainment programming, news was black and white until the mid-1960s. Reversal films were used, so the film shot in the camera could be edited easily and projected at the station. Processing machines for reversal were, however, bulky and expensive, and the work was time-consuming compared with processing film as a negative. This prompted the introduction of a small, table-top machine in which the reversal film could be processed to a negative. The negative film was aired by reversing the polarity of the telecine chain. This simplified procedure permitted many more stations to install their own film-processing equipment.

With the increasing trend toward color in entertainment programming, local stations were anxious to add that capability to their news menus. As soon as one TV station in town was running and promoting news in color, the others had to quickly follow. . . .

As soon as one TV station in town was running and promoting news in color, the others had to quickly follow.

In 1971, the introduction of the Cinema Products CP-16 camera hit the news-gathering industry like a bombshell. It was small and lightweight with innovative features designed to make news coverage easier and more reliable. Subsequent models featured a built-in sound amplifier and reflex viewing. Other news camera manufacturers followed suit and brought out improved, lightweight cameras of their own.

The introduction a few years later of portable videotape recorders and lightweight video cameras marked the beginning of the end for the use of film in local news. With the introduction of the first camera/recorder ENG system in 1981, the fate of film for news purposes was sealed. It should be noted, however, that film still is used to produce documentaries for the commercial networks and PBS.

Bibliography

Background information on the development of film provided by Eastman Kodak Company.

Think of it as a REV7

For the past few years, audio professionals have been praising Yamaha's REV7 digital reverb to the skies. So there was incredible pressure to make its successor even better than expected.

Introducing the REV5. Representing a breakthrough in the sound barrier for reverb. And a collective sigh of satisfaction from the overachieving design engineers at Yamaha.

Because not only is the REV5 matured in capabilities, it's improved in sonic quality as well.

We added more DSP chips to boost the REV5's processing power, creating smoother reverb sounds and multi-effect combinations. Full bandwidth extends reverb to 20 KHertz.

In addition to master analog EQ, the REV5 has three-band parametric, programmable digital EQ. So when you make individual EQ settings, they're recalled with each program.
Elliott named to new NAB post

Janet H. Elliott has been named director, operations, of the NAB's Science and Technology Department. She will manage the department's non-technical operations, such as convention and seminar organization, and committee services, department publications and information resources. Elliott's former position in the department was manager, special projects.

News from Europe

By John Blau, European correspondent

TV production in advance of 1992

The magic year 1992 is drawing near, and the European broadcasting industry is getting serious about it. There's lots of money at stake.

According to a study by the European management consultants Booz Allen & Hamilton International, the U.S. TV broadcasting industry, serving about 88 million households, earned about 22 billion pounds ($38.28 billion) in 1988 from advertising and subscription revenues. The United States continues to be a major exporter of programs to the rest of the world, with export revenues totaling 0.8 billion pounds in 1988.

By contrast, the European broadcasting industry, which serves approximately 112 million households, recorded revenues last year of only 10 billion pounds. TV exports (135 million pounds) represented just 1% of this total, compared with 4% in the United States.

The U.S. TV production industry, according to the study, long ago established an international approach to both producing and marketing programs. Europe's industry remains highly fragmented, linguistically divided and dependent on only two principal sources of funding -- the license fee and advertising.

Nevertheless, Europe, still regulated and dominated by the national public terrestrial networks, has maintained reasonable levels of spending on program production. Large public service broadcasters such as Britain's BBC, West Germany's ZDF and Italy's Rai claim to do somewhere between 50% and 65% of their production in-house.

New media channels, on the other hand, are almost exclusively dependent on U.S. products. The dilemma now facing these broadcasters is how to respond to the imbalance between programming and funding that is emerging in the new era of deregulation broadcasting. Total transmission hours are set to double to more than 500,000 across Europe over the next five years as a result of new terrestrial and DBS channels as well as extended broadcast hours.

The race to capture market share is a hot one, especially for the public service broadcasters, who will have to identify and develop new sources of funding, according to the Booz Allen & Hamilton study. They will need strong financing to keep pace with the imminent escalation in acquired programs and the quantum leap in capital expenditure as HDTV and digital transmission are introduced across Europe.

with a sonic boom.

And when you don't have the time to make many decisions, there are 30 preset programs, plus nine unique preset combination programs. Sixty user-memory slots let you save your custom effects.

And even though a lot of the features are new, using the REV5 won't be. Because the format is the same as the REV7 you're used to using.

Check with your friendly Yamaha Professional Audio dealer about the new REV5. Once you hear it, you may find it difficult to come back down to earth. Yamaha Music Corporation, Professional Audio Division, P.O. Box 6600, Buena Park, CA 90622. In Canada, Yamaha Canada Music Ltd., 135 Milner Avenue, Scarborough, Ontario M1S 3R1.
International TV Symposium at Montreux

By Jerry Whitaker, editorial director

To say that the 16th International TV Symposium at Montreux, held June 17-23, was the PAL version of NAB is probably an oversimplification, but it’s not far off the mark. Insofar as new equipment was concerned, there were a few landmark products introduced. Most, however, we saw six weeks earlier in Las Vegas, albeit in their NTSC versions.

What sets Montreux apart from any professional video trade show in the United States is its international flavor. Attendees from the world over converge on the city every other year to look at new products and discuss new technologies. Unquestionably the most frequent topic of discussion was high-definition television. Although talk of HDTV is nothing new to this industry, shows such as Montreux and the International Broadcasting Convention (IBC) in Brighton, England, offer distinctly different perspectives on those big questions looming on the horizon.

Eureka EU95

Everybody went to Montreux expecting the Eureka forces to come out slugging. Nobody was disappointed. On the opening day of the convention, leaders of the Eureka 95 directorate held a press conference to outline the progress made since IBC last September. The press package handed out to everybody in attendance included a news release that identified Eureka as the “Single World Production Standard” (their emphasis). During a question-and-answer session that followed the formal presentations, Peter Bogle, president of the directorate, admitted that perhaps the pronouncement was a bit premature.

The Eureka group is a case study in cooperation and division of labor. The directorate consists of representatives from Bosch, Philips and Thomson. Partners include Angenieux, AVS, Barco Industries, the BBC, Quantel, Rank Cintel, Captain Video and other major players in European manufacturing and media circles. Since the launch of the project in June 1986, the group has developed and produced a complete 1250-line/50Hz HDTV system that is tailor-made to the current and future European TV distribution system.

Bogle admitted that there was a good deal of cynicism when the project began. After all, some of the companies involved are fierce competitors (or have been in the recent past). Reasonable questions were raised as to whether the Europeans could get their act together and produce a system that worked. Bogle said, “Well, today you have your answers. Not only have the Europeans done it, it has been done very convincingly.”

The Eureka group makes a convincing argument for its system in the European market. There is no doubt that Eureka will go on the air and will succeed in Europe, to one extent or another. Key government and industry leaders in all the major European countries are behind the effort — increased commercialization of broadcasting notwithstanding — and governmental bodies still hold sway over most activities on “the continent.”

1992 is the magic date for Europe, marking the start of HDTV broadcasting. Still, a few producers will be using the Eureka 1250 system in the field in the meantime, for shoots including the upcoming Moscow Jazz Festival, the World Cup Football games in Italy, the Port Pop Festival in Rotterdam and the Summer Olympics in Spain.

To back up their ambitious plans, the Eureka member companies brought new and improved versions of their 1,250-line hardware to Montreux. The images were, predictably, good; in fact, they were better, for the most part, than those demonstrated in Brighton nine months earlier. Essentially all the hardware needed to build a complete HDTV system was on display.

The Eureka news conference included one particularly intriguing aspect — the reported interest by Hollywood producers in the 1250 system. Although this may be the case, it’s the first this observer has heard of it. In point of fact, Hollywood does not appear to be busting down the doors to buy high-definition gear from anybody right now. The more confusion and controversy that swirls around video of any definition, the more certain Hollywood is that 35mm film is the real high-definition medium, or at least the safe one for the time being.

1125/60

Not to be outdone, the 1,250-line/60Hz proponents put on an impressive demonstration of the full line of products available today based on their standard. Twenty-five major players from Japan, the United States and Europe demonstrated products that included everything from cameras to monitors. With Montreux being literally in the back yard of the Eureka 95 group, 1125 boosters did everything possible to demonstrate that they were backing the better system, and that they were ready to deliver products.

The 1125 demonstration was a smaller version of the show put on in Las Vegas during NAB. The wide range of equipment available demonstrated clearly the leading position of the Japanese-led contingent.

With increasing numbers of 1125-based hardware now in the field, and planned deliveries of 1250-based gear, it is clear that any hope for securing a single worldwide production standard for HDTV is remote. Some hopeful remarks were made at various sessions on the topic, but the chances for compromise dwindle with each piece of hardware shipped by the
When your transmitter's down you're out of business. That's why you need the VRC-2000 Remote Control to let you know what's happening with your transmitter 24 hours a day. And, once you know the status of your system, the VRC-2000 lets you make adjustments quickly and efficiently at the touch of a button.

With the Data Interface, status reports are displayed on-screen and adjustments can be initiated directly from your PC. When you're away from the plant, status reports can be called up by phone using your personal access code. Once your ID code is recognized, a synthesized voice relays transmitter status. Adjustments may be made immediately via your Touch-Tone™ phone, or maintenance personnel may be dispatched to the transmitter site.

With options like the 2400 bps stand-alone modem, temperature probe, computer printer and automatic dialer, the VRC-2000 becomes an extremely powerful monitoring and control system. Conditions at the remote site are continuously monitored and reports are logged and printed on command. Corrective action can be initiated based on monitor conditions. In the event of an emergency, the VRC-2000 dials a series of numbers until a human operator is reached.

Whether you're broadcasting AM, FM or Television, your transmitter is a critical link. The VRC-2000 is designed to provide vital round-the-clock status even when man-hours are limited. Extensive diagnostics and complete remote control keep you up and running and on schedule. Check out your local Gentner dealer and find out how the VRC-2000 can help you maintain the Status Quo.
proponents. If the industry can't manage to work out agreement on a set of standards before users have invested hundreds of thousands, or even millions, of dollars in hardware, it is doubtful that it ever will.

Fibercasting

Aside from HDJTV, the second hottest topic of discussion on the shores of Lake Geneva was fiber-optic technology and what it could do for, or to, broadcasting. Fiber-optic distribution within a broadcast plant offers many potential benefits. It is not, however, without its problems. Both were discussed in engineering sessions and on the floor of the convention center.

Fiber to the home, although long-range, made for more exciting discussion. The installed base of fiber-optic broadband networks is increasing. Cable TV operators are looking at fiber as a more efficient means of distributing their signals.

The promise of video via fiber is viewed much differently in Europe than in the United States. Many Americans see fiber-casting as a significant threat to over-the-air television, but most Europeans view it as just another way to get a picture from here to there. The obvious difference is the traditional non-commercial structure of broadcasting in Europe. You can expect this view to change as commercialization sweeps across the continent.

The show, overall

No show wrap-up would be complete without statistics. So, here goes. Montreux organizers put attendance for both the symposium sessions and equipment exhibitions at about 40,000. That's about 3,000 more than attended the 1987 show. Registered delegates and other officials numbered about 2,300.

The 1989 Montreux Achievement Medal was awarded to M. D. Windram, head of engineering research and development for the Independent Broadcasting Authority (IBA) in England. Dr. Windram was recognized for his "outstanding role" in the development of the M/C (multiplexed analog component) TV transmission system.

Dr. Windram joined the IBA in 1971 and, 10 years later (together with Dr. K. Lucas), published the paper that launched the MAC system for TV broadcasting via satellite. He is currently head of the IBA experimental and development department, responsible for all engineering research and development.

Overall, Montreux 1989 was a good show. There were problems (discussed in some detail in "Postcard From Montreux," page 6), but it was, nonetheless, the world-class event for 1989. NAB is important because it is big and overpowering. Montreux is important because it is the meeting place for the world's key players in the video business.
ALL TETRODES ARE NOT CREATED EQUAL.

Beware. If it's not an original Thomson tetrode, you're not getting Thomson performance, reliability and longevity.

Isn't your station worth it? We carry a full stock of our tetrodes, so you can buy direct from the source.

All tetrodes are available for immediate delivery. To order, simply contact us at the address below.

THOMSON ELECTRON TUBES AND DEVICES CORPORATION

Circle (66) on Reply Card
40 G Commerce Way - P.O. Box 540 - Totowa, New Jersey 07511 Tel: (201) 812-9000 - Fax: (201) 812-9050.
www.americanradiohistory.com
Register early for Ennes workshops

By Bob Van Buhler

A new feature of the 1989 SBE Convention and Broadcast Engineering Conference will be the Ennes Engineering Workshops, which will precede the official convention opening by one day. The workshops are designed to give attendees valuable factory training at no cost.

Because the sessions are designed in a hands-on format, attendance will be limited to 25 persons per session. Registration for the sessions will be on a first-come, first-served basis.

Ennes workshops

The Grass Valley Group, Dubner Graphics Factory will conduct two separate workshops. The first will provide an overview of the Graphics Factory and how it is used in a broadcast environment. The second workshop will introduce Graphics Factory operators to software design features and provide training on the use of K Programming software.

The Harris Corporation will provide a workshop to explore how semiconductor devices are being used in radio and TV equipment. The course will examine how the devices are applied and how to maintain them. Instructors will be Darryl Buetchting and Dick Fry.

Sony Professional Video will provide a look at the applications for D-2, the composite digital format. The formats D-2, type C and D-1 (the component digital format) also have unique and interrelated applications. This session will compare the operational features and applications of all three formats. Hands-on machine operation will be provided to demonstrate the capabilities of D-2.

Broadcast Electronics will offer an inside look at its new advanced-technology FM exciter, the FX-50. The exciter provides audio specifications that rival CD performance. RF design engineer Ed Anthony will take all the covers off the FX-50 so that 25 fortunate engineers may get an inside look at this product.

Mitchell Vocational Technical School will present a comprehensive workshop on the key aspects of satellite communications. The following topics will be covered:

- Satellite launch and operation, SCPC communications, TV applications, signal analysis and uplink operation, GTE Spacenet
- Midwest Communications, Tektronix and MTTVs will provide instructors and equipment for this hands-on practical training for both mobile and fixed uplinks. This is a must-attend workshop for uplink operators.
- AM and FM radio antennas will be the subject of a workshop featuring consulting engineer Ralph Evans, John Sadler of the FCC, and Gaeza DiEnes of Andrew Corporation. Don’t miss this chance to upgrade your skills in the critical area of AM and FM radio antenna systems.

Engineering management techniques will be the subject of a daylong workshop coordinated by the Cupka Corporation. The session will teach engineers how to grow and survive in the rapidly changing field of broadcast engineering. Topics to be covered include management style, communication techniques and dealing with difficult people. Instructors will be Sim Kolliner and Brad Dick.

Ampex Corporation also will provide a workshop. The details of this session have not been specified.

To attend any of these workshops, you must register for the Broadcast Engineering conference. Sign up early for these valuable programs to ensure successful registration. You must select a first and second choice for workshops. The successful registrants will be notified of their selection before the convention. Paid registration to the BE conference is required for admission. Ennes workshop attendees may want to adjust their hotel and airline reservations accordingly.

The Ennes workshops were arranged by Don Borchert, WHA-TV, for the Ennes Foundation. The foundation is responsible for education, training and certification programs of the SBE.

Bring the family, celebrate

This year’s convention is especially well-suited to spouse and family entertainment. The convention will feature daily spouse programs, ranging from the culinary secrets of Kansas City to museum tours and a seminar on stress in the family. The wives of Chapter 59 will host many of the local events for spouses. There are plenty of fun things to do in Kansas City. Don’t miss this chance to share the fun with your family.

The Kansas City convention marks the SBE’s 25th anniversary. The crowning event of the convention is a matter of special pride to both the SBE and Broadcast Engineering magazine. Early organizational efforts 25 years ago by John Batson while he was editor of BE resulted in the birth of the society and Chapter 1 in Binghamton, NY.

A special 25th anniversary observance will be held at the Aills Hotel featuring a reception and banquet, followed by a special member and attendee party. There will be gifts and prizes for all. Among the prizes will be a laptop computer. Don’t miss the celebration.

Officers and board nominees

The nominating committee presented president Jack McKain with an official slate of officers and directors for the 1989 election. The nominating committee’s slate of officers and directors is shown in Table 1. Write-in candidates will be announced next month after their certification by the national office.

<table>
<thead>
<tr>
<th>Officers</th>
</tr>
</thead>
<tbody>
<tr>
<td>President: Brad Dick, Lawrence, KS</td>
</tr>
<tr>
<td>Vice president: Richard Farquhar, Columbus, OH</td>
</tr>
<tr>
<td>Treasurer: William Harris, Denver</td>
</tr>
<tr>
<td>Secretary: Paul Lentz, Sylvania, OH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Directors</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Phil Aaland, Tucson, AZ</td>
</tr>
<tr>
<td>*Frederick Baumgartner, Aurora, CO</td>
</tr>
<tr>
<td>*Terrence Baun, Milwaukee, WI</td>
</tr>
<tr>
<td>Dennis Behr, Madison, WI</td>
</tr>
<tr>
<td>*Dane E. Erickson, San Francisco</td>
</tr>
<tr>
<td>William Hineman, Indianapolis</td>
</tr>
<tr>
<td>Charles Kelly, Quincy, IL</td>
</tr>
<tr>
<td>Joseph Sneidson, Kansas City, MO</td>
</tr>
<tr>
<td>*Tom Weems, Los Angeles</td>
</tr>
<tr>
<td>*Larry White, Tulsa, OK</td>
</tr>
</tbody>
</table>

* Incumbents seeking re-election

Table 1. The 1990 proposed slate of SBE officers and board members submitted by the nominating committee.

Van Buhler is manager of engineering at KNOX-AM/FM, Phoenix.
Film-to-tape transfer systems

By Peter R. Swinson

For nearly half a century, flying-spot telecines have been the cornerstone of post-production and film-to-video transfer facilities. Indeed, until the advent of video recorders in the 1960s, the only true prerecorded and editable program source for broadcasting was film. Even today, film remains the only internationally compatible medium for moving images. Major post-production facilities around the world rely on advanced technology telecines and highly skilled operators, or colorists, to obtain the best-quality video from film.

Some telecines minimize the amount of operator input needed to achieve satisfactory results. However, experts who work on high-profile, quality-sensitive jobs often demand telecines that can perform creative image-positioning moves, and more important, that allow them absolute control of primary and secondary color correction.

Some operators complain that although CCD telecines require minimal day-to-day alignment and adjustment, they are limited by their inability to provide a “live” (as opposed to frame-stored) image of the film frame in the gate when the transport isn’t moving. Such a feature is desirable for making color and positioning decisions when transferring film to video. Conversely, until recently, flying-spot telecines have required the loving care of engineers to ensure that they remain at peak performance.

A new generation of CRT-based flying-spot telecines (such as the Rank Cintel Ursa) have reduced greatly the need for engineering adjustments and added new capabilities to the film-to-video transfer process. Three new technologies can be considered responsible for this new generation of flying-spot telecines:

- advances in cathode ray tube (CRT) design.
- new digital methods of CRT scan control.
- digital video channel processing.

The cathode ray scanning tube

A new CRT design is at the heart of the new system. (Laser scanning also is flying-spot, but a successful system has been elusive so far because of the difficulty in controlling its scanning systems.)

The latest CRT for telecine usage employs novel principles to:

- remove flare from its scanning surface.
- reduce the effect of dust on the faceplate.
- prevent external magnetic fields from influencing spot position.
- ensure quick and easy replacement.
- allow precise spot location.

Flare removal, dust-effect reduction

Colorists have to face the unpleasant effects of CRT flare and surface dust, two problems that have been traditional sticklers in the transfer suite, on a daily basis.

To address these concerns, the new CRT assembly includes a thick faceplate — more than three inches of precision optical glass — that prevents all total internal reflections from reappearing on the phosphor surface. (See Figure 1.) The thickness of the faceplate also ensures that any dust on its surface is defocused and will not interfere with the scanned image.

Removing the flare from the CRT makes a great difference in the quality of the final video image. On print film transfers, highly contrasting picture portions retain their depth of image without halos of diffused light around the brighter objects. On negative transfers, where some early CRTs gave an unnatural look, flare showed up as dark halos appearing on lighter parts of the object. Therefore, although the degree of flare is less on the negative transfers, its removal can be more dramatic than with print film.

Previous thin-faceplate CRTs attempted to reduce flare by including neutral density filters to reduce the level of secondary illumination reflected back onto the

Figure 1. A new, thick-faceplate CRT eliminates flares and internal reflections, resulting in better images. Neutral density filters, used on thin-faced CRTs, are no longer required.
phosphor. But this naturally also reduced the main light beam. The new, thick faceplate requires no such filter. This gives the extra advantage of additional available scanning light, with resulting improvements in signal-to-noise ratios.

Other advantages of the thick-faceplate CRT are extended dynamic range and removal of "clamped-in defects:"

Preventing external magnetic influences

Television artists rely upon pinpoint accuracy of the scanning beam. Again, great strides have been made in ensuring that the beam does not waver from its appointed rounds.

The latest CRT package forms a single assembly completely encased in a magnetic screen, which prevents external magnetic fields from influencing the electron beam's position. (See Figure 2.) Slight positional movements of the beam, caused by external fields, cause equivalent movements of the final video image. These have a progressively greater effect as the size of the scanned raster becomes smaller, as is the case when zooming. In the past, this effect has been described as "positional hum." An effective magnetic shield wrapped around the CRT attenuates positional hum, thereby ensuring that the final video image is extremely stable, regardless of the amount of zoom applied.

CRT replacement

In addition to technological improvements that afford quality upgrades to colorists, ergonomic issues also must be taken into consideration. With earlier flying-spot telecines, CRT replacement, pre-aging and alignment could take up to 48 hours. This was a fact of life all colorists learned to accept and live with.

The redesigned CRT addresses this issue. It comprises a complete assembly that can be pre-aligned and pre-aged by the manufacturer as a single system. In addition, the CRT assembly also is designed to be loaded and unloaded from the front of the telecine. Also, today's telecine requires only minor electrical alignments. The total replacement exercise takes less than 30 minutes. This is expected to greatly improve film-to-tape transfer suite productivity.

Precise spot location

The experienced and creative colorist needs absolute control of every aspect of the image. This need can be addressed with CRT innovation. The scan coils in the new CRT assembly are special, low-inductance devices, with negligible back-EMF properties. In conjunction with special linear drive amplifiers, precise and instantaneous spot positioning is possible. This technology has come about from development with the military and civil aviation display industries, which require fast, vector-scanned displays.

Linear scan amplifiers

Producers seek out highly skilled flying-spot colorists for their ability to manipulate and modify the filmed image in the delicate process of transferring it to the extremely different video medium. So that colorists can have even greater power to change and manipulate film images before the first generation of tape, the new television also incorporates special scan amplifiers, which are controlled via digitally generated signals. With digital precision, the flying spot can be directed instantaneously to any part of the CRT face. Such precision CRT control is something entirely new for the colorist, and it opens up tremendous creative capabilities. The following functions are added to the repertoire of the CRT-based flying-spot telecine:

- pan and zoom cuts,
- extended zoom ranges,
- rotation and positional effects.

The instantaneous nature of the scan allows completely different positions of scanning from one film frame to the next. Therefore, pan, and zoom cuts are possible in situations in which, previously, colorists could cut image positions only by editing several transfer sequences. What's more, precise scan control, in conjunction with the lack of positional hum, allows an extended range of zooms both in and out. In fact, through variation of the raster size, the zoom range is at least double what was available previously.

Various methods have been attempted to provide image rotation in real time. Historically, rotation has been applied after transfer using digital video effects units. However, quality degradation often occurred because of aliasing of the reprocessed video image. In comparison, rotating the flying-spot scan causes no video image degradation, because the effect is identical to keeping the scan steady and rotating the film. (See Figure 3.)

The sophistication of the digital control of the latest CRT flying-spot telecine provides a wide range of special effects. Indeed, the resultant images may be indistinguishable from film optical effects produced with optical glass (except, of course, that it is unlikely that many could be achieved using even the cleverest glassware).

Linear effects include rhombic, trappezoid and multi-image, whereas non-linear effects include curved images and fish-eye distortions. Every effect is selectable for X- and/or Y-plane adjustment, all effects can be used dynamically in real time, and any combination of effects is available. Transition from any one combination to another is possible either dynamically or as an alternate.

All these effects are made possible through the computerized control of linear scan amplifiers and use of special scan coils, which are an integral part of the CRT package design.

Digital video channel processing

So far, this has been a look at the latest developments in scanning the film image. Now, let's consider developments in proc-
Put Dolby SR before the cart

There’s no doubt that compact discs and other digital audio sources have helped to raise broadcast audio quality to new heights. And to some degree, almost all broadcasters have embraced this new technology.

But you probably continue to use carts right along with these new formats. For on-air playback of your programming, as well as commercials, spots, and jingles, carts are still tough to beat for convenience, ruggedness, and familiarity.

Carts do have one limitation, though: sound quality that doesn’t measure up to today’s high expectations. Dolby SR (spectral recording) overcomes that limitation. With Dolby SR, your carts can capture the full range of dynamics present in all your source material, digital or analog. And using Dolby SR to produce spots and jingles ensures an outstanding finished product.

You’ve always had good reason to use carts. Now with Dolby SR there’s a great one: sound quality updated for today’s demanding broadcast environment.

The Dolby Model 363 provides two channels of Dolby SR in a compact, reliable package ideally suited for both production and on-air playback.*

*Broadcast units incorporating up to 12 channels of Dolby SR for use with multiple cart machines or open-reel recorders are also manufactured by Pacific Recorders & Engineering Corp., Carlsbad, CA.

Dolby Laboratories, Inc., 100 Potrero Avenue, San Francisco, CA 94103-4813, Telephone 415-358-0200, Telex 34409.
346 Chapel Road, London SW9 5AY, Telephone 817-720-1111, Telex 91909

‘Dolby’ and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation. SB1/0689

Circle (67) on Reply Card
essing the image. Digital video processing is used extensively for both color and telecine alignment. Such processing offers better image accuracy and a reduced maintenance requirement for the entire video channel.

Once the film image has been scanned, the resultant illumination levels are beam split into red, green and blue (RGB). Photomultipliers detect the relative illumination levels and output a video signal proportional to the illumination. Analog afterglow correction is applied to each signal.

From this point on, the new telecine differs from its predecessors. The signal for each RGB channel is converted to a 14-bit digital signal. As no gamma or other nonlinear correction has yet been applied, the dynamic range of the digital signal must be capable of the entire density range of the film. For print film this range may well exceed 4,000:1, hence the requirement for a 14-bit signal, to ensure that no information is lost in digitization.

Automatic shading alignment

With earlier telecines, some form of shading correction always has been applied to overcome unevenness of the CRT illumination and optics. In the case of CCD telecines, this is done to overcome the different gain levels of each CCD photo site. With the latest-generation telecines and associated complex CRT scan patterns, simple manual or single-line automatic shading and pattern correction would be impractical. With a fully digital channel, however, a much more elegant approach is possible.

In each of the RGB channels, a large memory is used, not to store the video image, but to store a gain-correction signal for every X–Y location on the CRT faceplate. For each film format and gate change, or at power-up, an auto alignment sequence can be activated to scan every location on the tube face. The same scan signal is used to address the memory, where for each X–Y address, the illumination level is recorded. This data is used to modify and to balance the peak signal. The alignment procedure can be completed automatically in less than two minutes. Such a procedure eliminates any manual intervention and takes into account all illumination errors in the optical path.

Use of digital channels can reduce, by several hundred, the number of internal preset controls, compared with previous flying-spot scanners.

Color correction

Color correction is an integral part of any transfer. The eye of the creative colorist is a much-valued post-production asset. Colorists have grown in industry stature as the technology of color correction has advanced, and as the need for quality film-to-tape transfer has escalated.

To obtain the best dynamic range from any film material, both the digital channel gain and photomultiplier gain must be controlled continuously for each film scene, or even for every film frame. Until now, such a range of control has been difficult to achieve.

The digital channel maintains 14 bits RGB until gamma correction is applied to the signal. After this, 10-bit RGB gamma-corrected signals are processed by secondary color-correction IC chips. These chips allow not only hue and saturation control, but also include luminance control for each of the red, green, blue, cyan, magenta and yellow vectors. Digital and secondary color ranges far exceed those found in previous analog systems.

Following secondary corrections, the RGB 10-bit signals are digitally matrixed to obtain luminance and color-difference signals. Variable digital horizontal and vertical enhancement (aperture correction) signals are applied, and the resultant signal is routed to a conventional flying-spot framestore where sequential-to-interlace conversion is applied.

Cinema-quality video?

The overall effect of combining new CRT, CRT-Scan and digital-channel technology in the latest-generation flying-spot telecine offers not only the benefits previously described, but also greater stability of video levels, considerable improvement in signal-to-noise ratio, reduced maintenance and increased operational flexibility.

With today's technological breakthroughs and highly skilled telecine artists, more quality can be extracted from film stock and recreated on tape than ever imagined in the past. Video now can take several steps toward matching the quality of the much-acclaimed cinema image.

Figure 3. Rotating video with scan rotation, as opposed to a digital effects device, eliminates aliasing artifacts.
Vertical interval AGC meter

By Eliot Case

Setting up a live microwave shot is easy in theory, but often difficult in practice. If you have a microwave site with no telemetry to help you call in a live shot, you need a circuit that will make it easier than just looking for the best picture. This article is about just such a circuit, which performs three basic tasks: First, it decodes the sync from incoming video. It then times out to a selected line in one field and inserts a 40IRE white line proportional in length to the receiver's AGC level. The line then can be viewed easily at the final receive site on any pulse-cross video monitor.

The circuit never breaks the path between the receiver baseband output and the transmitter baseband input. If the device fails, it will not disable the relay site.

The inserted line is additively mixed (voltage-summed) to the baseband signal passing through the device. Protection against interference into the audio subcarriers is provided by limiting the high-frequency content of the inserted line.

Circuit description

The circuit is placed in the video, or baseband path, between a microwave receiver and a microwave transmitter. (See Figure 1.) A representative dc AGC (signal-strength) voltage from the receiver is encoded onto the video signal being passed to the transmitter.

The circuit is shown in Figure 2. The baseband signal is passed from BNC 1 to BNC 2 without interruption. A sample of the video signal is tapped by R1 and fed to the high-impedance input of half of IC1 (a 5532 dual high-speed op-amp). The amplifier's gain is set to 2 by R2 and R3. The video level is doubled before it reaches the sync separator to optimize the locking range. This is important for tracking a wide range of video levels.

The amplified video passes through a dc blocker capacitor, C1, then through a low-pass filter to eliminate chroma and other subcarriers. The processed video then is coupled to IC2, an LM1881 sync separator chip. Resistor R5 and capacitor C3 determine the time constant of the sync separator.

The field-index pulse is taken from the sync separator, which identifies field one vertical. The pulse triggers half of IC3, a 4538 l-shot. The l-shot is adjusted by R6 to the desired metering line. (Line 14 is nominal.) The resistor also sets the start point of the next stage. When adjusting the circuit, set the start of the pulse at pin 7 of IC3 to the middle of horizontal sync preceding the desired line.

The output from IC3 pin 7 triggers the second half of IC3, another l-shot. This second l-shot is the horizontal window generator. Adjusting R7 will determine the maximum length of the inserted line.

The horizontal window is sent to half of IC4, a 4073 dual 3-input AND gate, where the back porch and composite sync pulses are compared. The comparison guarantees that the IC's output pulse will not occur during any sync pulse or colorburst. This output is considered safe video and is sent to the other half of IC4, a dual AND gate.

The dc AGC voltage from the receiver is applied at terminal strip T1, which connects to the wiper of R11. Centering R11 nulls the gain of half of IC5. Adjusting R11 in either direction allows the circuit to accommodate either a positive- or negative-going AGC voltage. The output from this half of IC5 mixes with an adjustable bias from R9. The combined signal creates a default line length, which results in at least a small bar being displayed even when no AGC voltage is present. Under that condition, the video probably would be usable. This also makes it possible to set up the device on the bench for testing to determine the amount of AGC level needed to get a lockable signal and maximum meter range.

The second half of IC5 compares the processed AGC voltage from the first half of IC5 with the ramp signal from C5, the horizontal window-timing capacitor. The op-amp produces a negative-going pulse when the dc is above the ramp. This meter pulse is dependent upon the dc level. The higher the voltage, the longer the pulses.

The meter pulse is passed to a Schmitt inverter, one-sixth of IC6, to half of IC4. The AND gate compares the pulse against the safe video pulse from the first half of IC4. This guarantees that no signal will occur to be inserted during sync or colorburst. The output of IC4 passes through two Schmitt inverters (IC6) and to C6. The

Figure 1. The AGC meter can be inserted between a microwave receiver and transmitter. If more than one hop is needed, use one metering circuit per site.
capacitor rolls off the higher frequencies that would interfere with audio subcarriers. Resistor R17 couples the signal back to the loop between BNC1 and BNC2.

The power supply is regulated at +5Vdc for stability in the timing circuits and dc voltage processors. The negative supply is unregulated and is used only to supply the op-amps with a negative rail. Transformer X1 is a 110V to 12V CT transformer. Diodes D1-4 form a 50piv bridge rectifier. Capacitors C7 and C8 are rated 1,000µF 50V. Be sure to bypass IC7 with a high-quality 0.01µF capacitor (C9). This will keep the regulator from oscillating at RF frequencies.

Capacitors C4 and C5 are high-quality polyester or other temperature-stable devices. Thermal stability in these capacitors is important because they affect the accuracy of the timing circuits. All resistors are ¼-watt. Mounting the circuit in a sealed metal box helps promote thermal stability. A complete parts list is shown in Table 1.

Other considerations
If more than one microwave relay station is in the same video path and multiple metering at several points in the system is required, multiple inserters can be set on different lines so they will not mask each other. If the inserter is not used for baseband insertion and is only used on video monitoring, C6 may be removed, which will produce a sharper line.

Inserting an AGC reading is only one of the uses of the meter. The circuit also can be used to meter any positive- or negative-going dc voltage. Even audio can be monitored if it is first rectified and filtered.

Figure 2. AGC metering circuit. Temperature stability is important, so use quality components.
Enough said.

More than 65 large library management video cart systems playing direct to air.
An ATTC progress report

By the BE staff

It has been two years since the Federal Communications Commission initiated its inquiry into advanced TV services. The 2-year charter for the blue-ribbon Advisory Committee is about to expire and is expected to be renewed by the FCC at the same time as another “tentative decision and further notice of inquiry” is issued. This article discusses the findings of the committee and expectations for the next two years or more.

Subcommittees

The Advisory Committee created the following three subcommittees to carry out its work.

- **Planning Subcommittee**: conducts initial studies of economics, spectrum and other factors; develops guidelines for analyses and tests of proposed systems.
- **Systems Subcommittee**: performs technical and economic analyses of proposed systems; conducts laboratory and field tests; recommends standards.
- **Implementation Subcommittee**: analyzes technical and regulatory implications of systems and develops implementation scenarios.

The Planning Subcommittee has completed much of its work. Its working parties have developed an extensive list of system attributes to be considered in testing and analysis. Technical guidelines have been established for testing the performance of proposed systems in the areas of terrestrial broadcasting, cable television, satellites, fiber optics, terrestrial microwave and recorded media. Spectrum studies have indicated the constraints on availability and use of spectrum. Subjective test plans have been developed.

The Systems Subcommittee is currently the most active. Anyone interested in its work should contact the chairman — Irwin Dorros, of Belcore — or the individual working party chairman, listed in the following updates:

- **SS/WPI, technical analysis** (Birney Dayton, Grass Valley Group)

Last year this group requested that proponents submit detailed technical proposals for ATV systems. In November, all who had submitted proposals were invited to make presentations during a weekend "marathon" meeting, sometimes referred to as “Hell Week.” A second meeting of this type was held in May of this year. SS/WPI is responsible for certifying that a system is of sufficient technical merit and has reached a level of development at which it should be accepted for testing.

- **SS/WP2, evaluation and testing** (Ben Grutchfield, Advanced Television Test Center). This working party has taken the test guidelines developed by the Planning Subcommittee to prepare detailed test procedures. Because neither the commission nor its Advisory Committee have the resources to conduct laboratory or field tests, SS/WP2 also must identify laboratories that can do the work.

- **SS/WP3**, economic factors (Larry Thorpe, Sony). While the other groups are conducting technical studies, SS/WP3 is studying the costs of implementing proposed systems. Factors include the costs of equipping networks, broadcast stations and cable systems to produce and deliver the signals as well as the costs of consumer equipment.

- **SS/WP4, ATV standard** (Bob Hopkins, Advanced Television Systems Committee). The analyses and data from the other working parties will be assembled and used to prepare recommendations to the Advisory Committee on which system or systems should be recommended to the commission as a new standard for TV broadcasting in the United States.

Although the Advisory Committee considers other media, its primary responsibility is to recommend a terrestrial broadcast system. The commission has no jurisdiction over the choice of systems used by the other media.

Systems

Last year, 19 companies responded to the SS/WPI call for proposals through letters indicating their interest. Of those, 14 submitted some sort of proposal or made a presentation during Hell Week. By the end of 1988, 23 ATV systems or technologies had been proposed. (If variations on the systems were counted, the number would be even higher.) Although only one of the original 19 has made a formal withdrawal, only eight were present at a recent meeting to which proponents had been invited.

The proposed systems may be divided into three general categories, according to how they use spectrum. These are:

1. The 6MHz systems compatible with existing receivers. Most systems in this category are improved- or enhanced-definition television (IDTV or EDTV), basically NTSC with "compatible" improvements. In theory, pictures will look the same or better on existing receivers and will look even better on new receivers designed to take advantage of the improvements.

Some go beyond EDTV. One proposal, the Del Rey HDNTSC, claims to be able to transmit HDTV with an NTSC signal. Another, Production Services, Inc. (PSI), claims to offer a transmission technology that can use an NTSC signal as a "pipeline" to carry augmentation information, a second NTSC signal or even a separate HDTV signal. Just how compatible these systems are and how they work remains to be seen.

2. The 9MHz-12MHz systems using a 6MHz NTSC signal and an augmentation signal (of 3MHz to 6MHz). The NTSC signal is broadcast on the station's current channel, VHF or UHF. An augmentation signal — carrying some combination of more detail, side panels for wide screen and digital audio — is broadcast on another channel, probably UHF. The NTSC signal also may be enhanced. Existing receivers receive the main channel as always. New receivers will receive both channels and combine the signals to produce an HDTV picture.

3. The 12MHz simulcast systems (through which the same program is broadcast over an NTSC channel, at NTSC quality, and over a 6MHz ATV channel). In this approach, the two channels are independent. The second channel, however, need not maintain any characteristics of NTSC except as needed to avoid interference with NTSC signals. Otherwise, the designer can use any available coding and modulation technologies to get the best picture and sound into 6MHz.

Although the term simulcast implies broadcasting the same signal on two channels, it is not clear exactly how much would have to be the same, nor is it clear how long simulcasting would continue. The answers will depend on implementa-
Testing laboratories

The Advisory Committee and all its subsidiary groups are voluntary and have no resources other than the time donated by its members. A small budget has been created from contributions by members, but its purpose is only to cover certain expenses such as travel to committee meetings for individuals who lack company sponsorship.

The actual work of building laboratories and conducting tests is being done by member organizations. Broadcasters established the Advanced Television Test Center to conduct tests related to terrestrial broadcasting. Tests related to cable and fiber will be done by the Cable Television Laboratories, a research group established by cable system operators. The Jerrold Applied Media Lab also has offered to conduct system tests, and others have contributed or offered considerable support.

The Communications Research Centre of the Canadian Department of Communications has offered to conduct the subjective tests. This is an element of the testing program essential to the education of system performance under conditions of interference and other transmission impairments, as well as testing the baseband quality of the system output.

Camera cable information from the company that knows best...Mohawk!

Mohawk offers superior broadcast camera cable and a free, newly expanded camera cable and connectors information kit!

If the job demands flawless broadcast transmission, order the best cable—Mohawk. Count on Mohawk's quick response to assembly orders and repairs to save you precious time. Our expanded product line features:

- Ultra-flex VTR cable assemblies for Hitachi, Ikegami, Panasonic, Sony and others
- Slimline studio camera cables
- Waterproof, high strength three-piece connector design
- Customized lengths

Mohawk's entire team of engineers, technicians, and sales and service professionals are committed to providing product and service excellence. Our strict performance standards exceed even industry requirements.

Get your information from the reliable source! Mohawk's new edition of the TV camera cable and connectors information kit is available free. Just call or write Mohawk today!

Mohawk

Wire and Cable Corporation

0 Mohawk Drive • Leominster, MA 01453 • 508-537-9961
Toll free: 1-800-422-9961 • In MA: 1-800-642-9961

Circle (71) on Reply Card
Paul Fisher has been appointed manager of Microwave Radio's system integration and contract service group, Lowell, MA.

David Anglin and David Webster of Ampex Recording Media, Redwood City, CA, have been awarded the 1988 Alexander M. Poniatoff Award for Excellence in Engineering and Ampex's Excellence in Manufacturing Award, respectively. Anglin, a senior chemist, received a silver Poniatoff Award. He is being recognized for his contributions in the development of polymer combinations and chemistries that have been incorporated into both the Ampex 298 Betacam SP and Ampex 319 D-2 videotapes. Webster received Ampex's Excellence in Manufacturing Award for his work as production/inventory control manager of the Material Group at the Opelika, AL, manufacturing center. His contributions include the development and implementation of a planner/buyer program, an inventory control program, a microcomputer-based Manpower Requirement Planning System, as well as the fostering of teamwork and communications between his department, manufacturing, engineering and quality assurance.

Recipients of the 1988 Poniatoff Awards were determined by a committee of Ampex vice presidents for all operating units. Each silver and Excellence in Manufacturing Award carries a $3,000 cash stipend and a desk trophy.

Rick Berry has been named product manager for the ARRI grip line of lighting and grip equipment for Arriflex, Blauvelt, NY. He will assist in developing a line of equipment.

Joseph Germani has been appointed Eastern regional sales manager for Belden Wire and Cable, Richmond, IN. He is responsible for directing the sales activities in the sales office located in Shrewsbury, MA. Additional responsibilities include overseeing the field sales personnel and the customer service department.

Phillip Smith, Kenny Shewmake and Greg Smith have been appointed to positions with BTS, Salt Lake City. Smith is Southwestern regional sales manager. Shewmake is Southwest regional sales manager. Smith is Midwest regional sales manager.

Joseph R. Patton has been appointed Western regional sales representative for Canon U.S.A., Optics Division, Jericho, NY. He is responsible for servicing new and existing clients, in addition to handling trade shows and other assignments.

Manfred Klemme has been named marketing manager for Cinema Products, Los Angeles. He is responsible for new product introductions, including the CP KEYKODE Reader, as well as marketing the company's film and video products.

Lani Ridley has been appointed vice president of worldwide sales for Cubicomp, Hayward, CA. She directs all sales activities including the direct sales force for the Vertigo workstation-based 3-D animation systems, the video dealer network for PictureMaker graphics systems, and all international sales.

Richard Salter has been appointed development director at Focusrite Audio Engineering, Bourne End, England. He is responsible for overseeing the mass production of the company's modules and consoles.

Gary Carter has been named marketing director for FOR-A, Newton, MA. He works with research and development groups in Japan and the United States in connection with new product development as well as cultivating new applications and enhancements for existing products.

Thomas Volpicella has been promoted to regional sales manager for the Northeast region for Fuji Photo Film U.S.A., Magnetic Products Division Professional Products, Elmsford, NY. He is responsible for managing sales efforts of professional videocassette. He also oversees the region's sales force.

David Higgins has been named director of engineering/satellite systems for Hughes Television Network, New York, NY. He supervises all technical aspects of the encryption and related transmission facilities—both satellite and terrestrial for the company's scrambling network.

Steve Cunningham has been appointed vice president of sales and marketing for Hybrid Arts, Los Angeles.
He is responsible for the strategic planning and distribution of the company's hardware and software products.

Bob Palmer has been appointed Eastern regional sales manager for LDL Communications, Laurel, MD. He is responsible for the sale of TV transmitters, TV and FM antenna systems and LeBlanc & Royle towers.

Bob Strauss, Bill Warnke and Hank Van Amburgh have been appointed to positions with Landy Associates, Cherry Hill, N.J. Strauss is sales representative industrial accounts for Massachusetts and Rhode Island. Warnke is sales representative broadcast and production accounts for Massachusetts and Rhode Island. Amburg is sales representative for Maine, New Hampshire and Vermont.

Greg Brown, Ertha Sims, Clayton C. Dore and Karen A. Martinez have been appointed to positions with Standard Communications, Los Angeles, CA. Brown is product support technician in the customer service department of the SatCom division. He is responsible for assisting customers in learning to operate new equipment, and to solve technical problems over the phone. Sims is customer service administrator in the customer service department of the SatCom division. She is responsible for maintaining customer records, customer repairs and loaner units distributed under the Lifetime Loaner Program. Dore is manager of technical services for the SatCom division. He is responsible for providing technical support and field service. He also oversees the Gold Standard and Lifetime Loaner Programs. Martinez is senior sales administrator for the SatCom division. She is responsible for receiving and processing orders, telemarketing and working with special network customers.

Joe Bean has been promoted to Eastern sales manager for professional dealer products for Studer Revox America, Nashville, TN.

David Tearle has been appointed Western regional sales manager for LEE Filters, a division of LEE Colortran, Burbank, CA. He is responsible for all sales activity in the motion picture and theatrical markets in the western United States. He also manages the filter product line manufacturing operations in Andover, England.

Salatore G. Coraccio has been appointed operations manager for Microwaves communications, Lowell, MA. He is responsible for manufacturing, purchasing and manufacturing services.

Rick Plushner has been promoted to national sales manager for PCM products for Neve, Bethel, CT.

Robert E. Lambdon has been appointed national sales manager for Microtime, Bloomfield, CT.

David W. Keller has been appointed president and chief executive officer for Quanta, Salt Lake City, He will continue in his position as director, new market development for the Dynatech Broadcast Group.

THE ANTENNA COMPANY
40 Years As The Leader In Antenna Development

GRID ANTENNAS
- 335 - 2700 MHz
- 125 M.P.H. Survival With 1/2" Radial Ice
- Pressurized & Non-Pressurized
- Meets Or Exceeds FCC Requirements
- De-Icing Available
- Split Reflectors Available
- Superior Cross Polarization Response

HIGH PERFORMANCE AND MAXIMUM
HIGH PERFORMANCE ANTENNAS
- 1427 - 23600 MHz
- 125 M.P.H. Survival With 1/2" Radial Ice
- Plane Or Dual Polarized
- Hypalon Or Raydel Covers
- Very High Front To Back
- High Gain
- Low Side Lobs
- Low VSWR

Radiation Systems, Inc.
Mark Antennas Division
2180 SOUTH WOLF ROAD • DES PLAINES, IL 60018
TELEPHONE: 312/298-9420 TELEX: 282557 FAX: 312/635-7946

Circle (68) on Reply Card

WinWinsted
FREE CATALOG

Video Furniture Systems
Big, full color catalog includes complete descriptions, pricing and ordering information on:

- Editing Consoles
- Video Consoles
- Equipment Cabinets
- Micro Computer Stations
- Tape & Film Storage Systems

WinWinsted Systems ... Preferred by Professionals Worldwide
THE WINWISTED CORPORATION
10001 Hampshire Ave. So • Minneapolis, MN 55438
612-944-8556
Phone Toll Free (800) 447-2257

Circle (69) on Reply Card
August 1989 Broadcast Engineering 121
Varian TVT and Larcan reach distributorship agreement

Varian Associates TVT Division, Montreux, Switzerland, and Larcan Communications Equipment, Ontario, Canada, reached a distributorship agreement at the International TV Symposium. Larcan will serve as exclusive distributor for Varian TVT's TV and solid-state FM products in Canada. Varian TVT will be the exclusive European distributor of Larcan's solid-state VHF transmitters.

Each organization will provide total field sales and service support.

Aphex on the move

Aphex Systems, Sun Valley, CA, has moved its headquarters to a new facility, which more than doubles its space. The address is 11068 Randall Street, Sun Valley, CA 91352. The phone number is 818-767-2929, the fax number is 818-767-2641.

BTS enters sales agreement with BARCO

BTS Broadcast Television Systems GmbH, Darmstadt, Federal Republic of Germany, has decided to cooperate with BARCO, Kortrijk, Belgium, in the monitors sector. The BTS product range has been expanded to include the BARCO master-control color monitors CTVM 4, the CVS series control color monitors, the CVM color monitors as well as monitors from the HD series for HDTV.

In accordance with market demand, the product range will continue to include complimentary BTS monitors.

Microwave Radio creates contract service organization

Microwave Radio, Lowell, MA, has created a system integration and contract service group. The company has recently introduced a line of portable, short-haul and long-haul fixed-link microwave systems. With the systems, the company has moved from supplying portable systems as part of a contract to providing complete microwave systems for major installations.

New England Digital forms European distribution company

New England Digital, White River Junction, VT, has formed a London-based office, New England Digital (UK), to directly oversee sales of Synclavier, Direct-to-Disk, and PostPro, digital audio workstations throughout the United Kingdom and Europe.

In doing so, New England Digital and its European distributor, Harman International, have restructured their relationship. New England Digital will oversee all European sales and provide support for distributors, while assuming direct responsibility for sales of its workstations throughout the United Kingdom. Harman Deutschland has expanded its territory to include the Netherlands, Belgium and Luxembourg.

Solid State Logic opens Canadian office

Solid State Logic, Ontario, Canada, has announced the opening of a Canadian subsidiary. Based in Toronto, the office will provide sales and service support for SSLs increasing client base. The office is located at 36 Toronto Street, Suite 850, Toronto, Ontario, Canada, telephone 416-363-0101; facsimile 416-360-3838.

Does Your VO-6800 or AG-7400 Need Time Code?

The P-1 Portable SMPTE Time Code Generator/Reader

Fast Forward Video

CALL YOUR LOCAL DEALER OR CONTACT US AT:
17955-F Sky Park Circle, Irvine, CA 92714 (714) 852-8404

Stamp Out SCR Buzz. Forever.

Diff amps may work - when far from SCR dimmers and RF transmitters. When you're up close, you'll need a good transformer.

jensen transformers INCORPORATED

10735 Burbank Blvd • North Hollywood, CA 91601
FAX (818) 762-4574 Phone (213) 876-0059
TELEX 6502919207 MCI UW
(Mon-Thurs, 9am-5pm Pacific time)

Circle (75) on Reply Card

For AM, FM, SCA and TV modulation monitors.

WHEN ACCURACY COUNTS... COUNT ON...

Call (215) 687-5550 or write for more information on Belar AM, FM, Stereo, SCA and TV monitors

Circle (77) on Reply Card
Transportable uplink
Midwest Communications has introduced the S-2 transportable uplink system that uses a 2.4m collapsible antenna for increased gain. Driving the antenna are two phase-combined MCL 300W traveling-wave-tube amplifiers.
Circle (350) on Reply Card

CAD symbol libraries
Network Communications Consultants has expanded the CADalog symbol libraries with video product drawings to simplify facilities-design projects made with AutoSketch and AutoCAD. Symbols include wiring drawings and information regarding heat loads and rack layouts. Current CADalogs include products from Abekas, Ampex, BIS, Chyron, Grass Valley Group, Ikegami, Quantel, Sony and Tektronix.
Circle (351) on Reply Card

Loudspeaker system
Altec Lansing has introduced the A700 loudspeaker system that provides a building-block approach to loudspeaker clusters in sound systems. Included are subwoofer systems, electronic crossover and system protectors, power amplifiers and an accessory suspension kit. A single trapezoidal cabinet houses a vented bass horn, compression driver and Mantaray horn.
Circle (352) on Reply Card

Precision video cable
Belden Wire & Cable has introduced the Belden Brilliance 8281A precision 75Ω video cable with flame-retardant PVC jacketing. It is UL CL2 listed by NEC codes for installation in walls of commercial buildings without conduit. Electrical performance is equivalent to No. 8281 cable. Belden also has announced the Kings BNC 75Ω coaxial and Tri-Loc triaxial connectors as well as Neutrik 3-prong audio connectors with internal strain relief, expanded boots for larger cable diameters and an O-ring design for improved fitting of connectors.
Circle (353) on Reply Card

Color comparator
Bourbon Street Associates has announced the Geisbrecht IRT MK II color monitor comparator. It is a battery-operated, portable unit to assist color-temperature adjustments and gray-scale balancing. Referenced to Illuminant-D (6,500°K), comparisons are made from 19-foot-L peak white to 0.95-foot-L low-light levels. The unit can be mounted on a tripod.
Circle (354) on Reply Card

Large lens adapter
BIS has introduced a large lens adapter accessory for the LDK 90/91 CCD cameras. Enabling a wider range of lens systems, the adapter configures for different local or remote power-supply arrangements for ENG and EFP applications.
Circle (355) on Reply Card

Computer power protection
Liebert Corporation has introduced a computer isolation transformer with integral spike suppression. A 3-phase system, available for 10kVA to 150kVA capacities, uses double-shielding to achieve 140dB common-mode noise rejection in addition to the suppression network to guard against high-speed, high-energy transients and high-frequency noise in normal mode.
Circle (356) on Reply Card

LOOK TO SIERRA TO GET INTO (AND OUT OF) SVHS.
Sierra makes it easy with the new Delta Series Format Conversion System.

Now you can gain the advantages of working in a component video environment with your SVHS equipment.

With the Delta CS you can convert RGB or YUV to the YC format. And reverse the process from YC to YUV or RGB with the new Delta SC module.

The CS and SC modules are compatible additions to the versatile Delta Series from Sierra Video Systems.

Call SVS today for more details on our cost effective component video products.

SIERRA VIDEO SYSTEMS
Look to Sierra for the clear image.
P.O. Box 2462, Grass Valley, CA 95945 • 916-273-9331 • Fax: 916-273-9390
Circle (79) on Reply Card

August 1989 Broadcast Engineering 123
Video printer

Eastman Kodak has introduced the Kodak SV6510 color video printer to document video material. It offers continuous-tone, thermal prints from NTSC or RGB with sync-on-green sources. Full color or black-and-white images in single or quad formats are produced by a 512-point thermal sublimation process. Single prints are 4"×5.2" with ¼-inch borders, while the quad mode prints four 2¾×2.6" images of the same subject or two images each of two subjects.

Ground isolation device

BURLE INDUSTRIES has introduced the TC8235GIT that solves common ground-loop conditions found in many video and data line installations. For 75Ω coax, the device has a bandwidth of 10Hz-7MHz, dynamic range. With 12 digital tracks, two analog tracks serve synchronization requirements.

Multipurpose audio mixer

Mackie Designs has introduced the CR-1604 multipurpose mixer. The 16-channel system features seven aux sends per channel, 3-band EQ, true stereo solo and constant power panning. In driving the 4-bus main output, six channels include -129dBm EIN mic pre-amplifiers. Faders feature sealed rotary design.

Digital multitrack recorder

Akai Digital and International Music Company have introduced A•DAM, a digital multitrack recording system using 8mm videotape. The 12-track recorder incorporates 16-bit linear resolution with 44.1kHz or 48kHz sampling for a 90dB

Client management software

Richmond Software has introduced the Maximizer client management database software package, which includes contact database, communications capabilities, appointment and planning calendar, personal expense records, mail merge and notepad. DOS 3.0 or above; 640k RAM and a hard drive or dual 3.5-inch floppy drives are recommended.

SBE '89

October 5-8
Kansas City Convention Center

The broadcast industry is changing rapidly. To stay ahead today, you need to know where technology is heading. Find out at the 1989 SBE National Convention and Broadcast Engineering Conference.

With technical sessions and exhibits specially designed to meet your needs, this is your show for '89.

Help celebrate the silver anniversary of the SBE by attending the 1989 SBE National Convention and Broadcast Engineering Conference, October 5-8. Take in the show, and while you're in Kansas City, take in the sights!
Console automation

J.L. Cooper Electronics has introduced the MAGI II for Apple Macintosh or Atari ST PCs. It offers audio mixer automation with SMPTE time-code accuracy. The system consists of rack-mounted VCAs, a controller unit, remote fader unit and software for 16- to 64-channel configurations. An interface to existing VCAs also may be used.

Computer accessories

Electronic Specialists has introduced the portable computer survival kit that contains adapters, tools and cables for use with traveling computers. The kit also features the RJ-11 Tee and 4-pin to RJ-11 adapters for telephone line use and 2-prong to 3-prong adapter plugs.

Satellite equipment

IDB Systems has introduced the AMSET antenna-mount satellite earth terminal and MACS-50 control system. AMSET locates low- or high-power amplifiers, power supplies and RF upconversion equipment, as well as monitor and control interfaces, at the antenna, easily accessed from the ground or rooftop antenna-mounting location. Redundant and non-redundant packages have multiple transponder capability. MACS-50 includes an earth-station controller and command console with microprocessor-based automatic redundancy switching and interface to the earth-station equipment. The controller may be used in slave or stand-alone configurations.

When BSW was founded in 1973, our goal was to establish a single source supply house to serve the needs of America's broadcast professionals. Regional offices solved the problem of time zone but only served to delay delivery of equipment critical to a station's operation.

So we decided to work overtime every day of the week. 12 hours a day, there is a qualified sales engineer on duty who knows your business and your needs. And there's only one number you need to know — toll free across America. BSW's commitment to service is why we're America's full-time broadcast supplier.
Solve your intercom interface problems forever.

CLEAR-COM
TW-12B
System Interface

- Interfaces: Clear-Com to RTS
 - RTS to Clear-Com
 - Clear-Com to Clear-Com
 - Even RTS to RTS

- Easy, fast, accurate nulling — up to 40dB!
- Matches system levels — even between incorrect or multiple terminations!
- Transformer isolated/opto-coupled to eliminate ground loop hum, buzz and noise!

Call Clear-Com or your local dealer for details

Circle (81) on Reply Card

Antiglare screen

Opto-Technics has introduced the Glare Eliminator kits. They provide an anti-reflective optical coating for computer terminal or video monitor screens. The coating applies directly to the faceplate of the CRT, and does not alter the appearance of the monitor or impair the field of view of the screen.
Circle (365) on Reply Card

Console software options

Orion Research has introduced three options for the NewsMaker software-based audio consoles. Fault Recover System (FRS) protects against power failures with redundant CPUs and power supplies, an automatic switchover module and "Last Image Recall" recovers the last system configuration. An MM-16 mix-minus matrix extends any NewsMaker console with an additional 16 mix-minus sends, while incorporating the status of all sends into the console ReMem memory files. A floor stand for the consoles provides space for a meter panel and external signal processors.
Circle (366) on Reply Card

SCA receivers

SCA Data Systems has introduced the Type II MUSIC 4 receivers. They are compatible with other MUSIC 4 system equipment but exhibit improved S/N ratios and flatter audio response at lower RF levels. The 50kHz incremental channel-frequency control adapts the equipment to different market requirements.
Circle (367) on Reply Card

NEW! FROM ANVIL CASES

THE "LITE LINE™"

- Built 30% lighter, but just as strong — and costs 25% to 30% less than Anvil A.T.A. cases
- Building quality cases since 1952

Call Today For More Information

Circle (85) on Reply Card
Color correction

Pandora's Other Box has introduced PRISM with POGLE, an RGB color-correction device with computer control. For film-to-tape transfer processing, the system can select from a wide range of shades of one color without affecting other shades, enabling the use of colors very close to video keying hues. The POGLE computer is needed to support the complexity of the corrector.

Circle (368) on Reply Card

SMD repair equipment

PACE has introduced the SMR-25 pulse-heat reflow system and CRAFI-15 workstation. The system provides controlled-temperature ramping to avoid thermal shock to components and substrates using SMD devices. Various handpieces and tips can be rapidly changed to meet space and component requirements. CRAFI-15 offers total thermal process control and accurate device alignment in a single-head station with temperature control between 500°F and 800°F and X–Y positioning control.

Circle (369) on Reply Card

Temporary communications service

ViaSat Technology has introduced PSAT, a Ku-band portable satellite terminal, which serves emergency or temporary communications when regular services are unavailable or interrupted. With ViaSat Dial Access Service, the PSAT unit enables private network voice, data and 1-way video communications with Hughes Network Systems' personal earth station to link the members of a remote crew with their headquarters location.

Circle (370) on Reply Card

There are worse things in radio than dead air. But not many.

And if your CD players aren't built to resist tracking errors, you could find yourself listening to some very embarrassing silence.

Not with the new CD-701 from Tascam. Its unique disc clamping system is a technological triumph that virtually eliminates disc vibration. So you never hear the awful hush that means a tracking error has occurred.

What you do hear is the finest sounding CD unit you can buy, with the same proprietary "ZD Circuitry" praised by two of Japan's top audio magazines* for eliminating low-level digital distortion.

Then there's the optional RC-701 Remote Control with Auto Cue so you can cue to the music instead of the track (for even less dead air). Or you can add the Ram Buffer for true, instantaneous startup.

And with four times oversampling and 16-bit D/A converters in an extra-rugged chassis, the CD-701 is superbly designed for the broadcast environment.

Can a CD player really deliver this kind of performance, track after track, disc after disc? Only if it's a Tascam.

Contact us or visit your Tascam dealer for more information about the CD-701. And take the sounds of silence off your playlist.

TASCAM

©1989 TEAC America, Inc., 7733 Telegraph Road, Montebello, CA 90640, 213/725-3333

Circle (79) on Reply Card
Tape storage racks

RTI/Research Technology International has introduced a series of modular videotape storage racks with a capacity for 350 videocassettes. The double-sided, heavy-gauge steel 36-inch-width modules double the storage capacity per square foot of floor space.

Circle (371) on Reply Card

Instructional program

Reference Recordings has introduced a video standard instructional program that combines test signals with instructions for system calibration in an interactive laser videodisc presentation. Viewers learn techniques for producing high-quality NTSC video signals.

Circle (372) on Reply Card

Intercom equipment

Production Intercom has introduced three intercom products. The HS-1 headset station includes XLR connections for headset or handset units, volume controls and lighted signaling button. A wall-mount station connects to the wired intercom through a 4-pin edge connector. An LS-3 loudspeaker station supports 2-way communications automatically adjusting for press-to-talk, full-duplex with gooseneck mic or headset station operation. BLAZON adds signaling capability, using 5-second series of 70,000 candle-power strobe flashes or audio tones to command attention.

Circle (373) on Reply Card

NOTICE FOR CONTRIBUTORS

Original material may be accepted for publication provided it is not being published elsewhere. Please make sure your name and address are legible. All contributions should be accompanied by an SASE. To submit material, use the address on the cover.

SIR A SISTEMI RADIO

Our new test range facilities include two computerised rotating towers.

Circle (83) on Reply Card

TIMECODE EDITING... LIVING DANGEROUSLY?

Not if you have the new ADx-02 Timecode Analyzer. This is a sophisticated test instrument, as well as a fully functional reader-generator with video key and L.E.D. displays. It can save you time and money. Finding timecode errors on tape before an edit is attempted, or matching color frames and SCH phase, or tracking on a Betacam is easy. For the engineer, it can be the quickest way to set tape speed, realign video play-back heads or check an audio synchronizer for wow. Each timecode bit is displayed graphically.

The ADx-02 is being used around the world in a variety of environments and applications. But the diagnostics function is not the end of the story, the ADx-02 is a very versatile timecode reader-generator-insetter, with multiple screen displays, selectable fonts, three jam-sync modes, stable code generation, full speed range read and much more. So why buy just a timecode reader-generator?

The ADx-02.
The only timecode unit that can safely save you money.

Circle (84) on Reply Card
VIR JAMES P.C.
CONSULTING ENGINEERS
Applications and Field Engineering
Computerized Frequency Surveys
3137 W. Kentucky Ave. — 80219
(303) 937-1900
DENVER, COLORADO
Member AFCCE & NAB

D. L. MARKLEY
& Associates, Inc.
CONSULTING ENGINEERS
2401 West Muea Ave.
Peoria, Illinois 61604
(309) 673-7511
Member AFCCE

SMITH and POWSTENKO
Broadcasting and Telecommunications
Consultants
2033 M Street N.W., Suite 600
Washington, D. C. 20036
(202) 293-8774

CHUCK JONES
ANTENNA SYSTEMS SPECIALIST
618 864-2481
SOUTHERN ILLINOIS ANTENNAS
Route 8, Box 49
METROPLEX, IL 62060

CHUCK JONES
ANTENNA SYSTEMS SPECIALIST
618 864-2481
SOUTHERN ILLINOIS ANTENNAS
Route 8, Box 49
METROPLEX, IL 62060

STAINLESS, INC.
Stainless, Inc.
New Towers, Antenna Structures
Engineering Studies, Modifications
Inspections, Erection, Appraisals
North Wales, PA 18904
215-699-4871 FAX 699-9567

Unsued Call Letters Mailing Labels
AM • FM • TV

CONSULTATION SERVICES
Lightning, Power Conditioning - Grounding
Over 40 years experience, fully warranted

Netcom
(201) 837-8424
NETWORK COMMUNICATIONS CONSULTANTS
931 Teaneck Rd. Teaneck, N. J. 07666
STATE OF NEW JERSEY ENGINEERING FOR AUDIO & VIDEO
• FACILITY PLANNING
• SYSTEM DESIGN
• CAD SERVICES

K. BLAIR BENSON
Consultant
Television Technology
23 Park Lane
Norwalk, CT 06854
203-838-9049

Eric Neil Angeline, P.E.
consultant in acoustics
specializing in broadcast studio acoustics
910 Laketide Drive
Stillwater, OK 74075
405-744-8444
405-372-3049

Franklyn R. Beemish & Co.
Engineering for the Video, Motion Picture & Recording Industries
574 Sunrise Highway, Baldwin, NY 11510
516/667-8510

Your Card Here
reaches 88,528 prospects
for as low as $55 per insertion.
Call 913-888-4664.

Evans Associates
CONSULTING TELECOMMUNICATIONS ENGINEERS
AM-FM TV-CATV-IFTS-PLPT SATELLITE
218 N. Green Bay Road
Thiensville, Wisconsin 53092
Phone: (414) 242-6000 Member AFCCF

The Nissen Group, Inc.
Communications Technology Consultants
32 Ridge Drive • Port Washington, New York 11050
(516) 944-5477

Patch Prints
Custom Patch Bay Labeling
by
PATCH BAY DESIGNATION COMPANY
inc. of Greetings Rubber Stamp & Printing Co., Inc.
P.O. Box 6728, Grafton, CA 91205
4742 San Fernando Road
Glendale, CA 91204
Telephone
(818) 217-5835
FAX (818) 807-5000

Get a hurt Miller? We can restore it
to factory original specifications.
MILLER FACTORY SERVICE
• Economical • Thorough • Fast • Guaranteed

August 1989 Broadcast Engineering 129
YOUR CARD HERE
reaches 88,528 prospects for as low as $55 per insertion. Call 913/888-4664.

PROMOTE YOUR SERVICES
and increase business for as low as $55 per insertion. Call 913/888-4664.

Classified

Advertising rates in Classified Section are $1.50 per word, each insertion, and must be accompanied by payment to ensure publication. Each initial or abbreviation counts as a full word. Minimum classified charge is $3.50.

For ads on which replies are sent to us for forwarding (blind ads), there is an additional charge of $4.00 per insertion, to cover department number, processing of replies, and mailing costs.

SERVICES

TRANSMITTER TUBE REBUILDING SINCE 1941:
3CX2500, 4CX5000, 4CX15000 and many others. Write for details. FREELAND PRODUCTS INC., RR. 7, Box 628, Covington, LA 70433. (504) 893-1243 or (800) 624-7436.

TRANSMITTING AND CAMERA TUBES. One stop for all of your requirements. All domestic and brands, rebuits, and obsolete material available at low, low prices. Large inventory means fast delivery. Daily Electronics, PO. Box 5029, Compton, CA 90224, (800) 546-6667, (213) 774-1255.

AUDIO AUTOMATION: Computer controlled, 8-CD changers, music and commercial program software, hard disk for commercials. Complete, $6900. BGM INTERNATIONAL, (904) 439-8054.

NAPA VALLEY COLLEGE offers a 2-year telecommunications program with emphasis in 1-inch "C" format, telecasting, component and digital video. Call or write Gary Vann, (707) 253-3256 Napa Valley College, Napa, California 94558.

FOR SALE:

HIGHEST PRICES: 112 Phase Monitors, vacuum capacitance and clean, one kw or greater powered AM and FM Transmitters. All duty and transportation paid. Surplus Equipment Sales, 2 Thorncliffe Park Dr., Unit 28, Toronto, Canada M4H 2Z1 (416-421-5631).

HARRIS 5000 STEREOTRONIC AUTOMATION SYSTEM: (10) Otari AFS-1000 DS, (2) 24 Tray 60 Cart II, (1) FFC Delta Triple Deck. Logging package. Additional CRT Console, $25,000.00 complete, used only 6 months. Contact Ken Britton, CE, WMHT, 17 Fern Ave., Schemiotady, N.Y. 12306-518-355-1700.

Help Wanted

CHIEF ENGINEER
Public Access Center in Fairfax, Virginia seeks Chief Engineer. Equipment includes two 3-camera studio, 4 CCD camera Van and CCD portapak units. Salary depends on experience. Send resumes and salary history to:

Chief Engineer
Channel 10
P.O. Box 2465
Fairfax, VA 22031

Help Wanted

MAINTENANCE ENGINEER: Responsibility for repair and maintenance of all equipment for 7 cable TV facilities in Memphis area. Experience required in servicing satellite equipment. ENG. systems and digital units. Uncovered total engineering support for new systems installation, upgrades and purchasing. Prior experience in TV studio maintenance required. SBE certification desirable. Send resume to: Heritage Cablevision, Attn: Frank Brietenbichler, P.O. Box 381316, Memphis, TN, 38163-1316.

TV MAINTENANCE ENGINEER: KVUN-23 Dallas, TX is seeking a maintenance engineer. Prefer 3-5 years experience, first phone, SBE certified, knowledge of UHF transmit, VTRs, switchers, cameras, ENG. Good benefits, fast growing UNIVISION station. Send resume to: Richard Craig, 3750 Marques, Garland, TX 75042. EO: EEO.

TELEVISION SALES PROFESSIONALS needed immediately for Textronix Television Division. Openings in Dallas, Denver, Syracuse, and Long Island. Competitive compensation, company car opportunities to grow. Send resume to: John Kelly, Region Sales Manager, Textronix Inc., 390 Inverness Dr. South, Englewood, CO 80112, (303) 795-1000. Textronix is an equal opportunity employer.

Broadcast/Production Market Development Manager

Interested in a marketing career with the world's fastest-growing manufacturer of professional audio products? That's what we offer the person we choose to oversee the marketing and distribution of our line of broadcast/production audio products. Our successful applicant will be someone with:

• Education background in marketing
• Experience in the broadcast/production or professional audio industry as an audio engineer/technician or sales person
• Familiarity with broadcast/production audio products such as microphones, monitor speaker systems, wireless microphone and intercom systems, etc.
• Working knowledge of product applications in various broadcast/production markets such as radio/television/remote and studio, corporate video production, film and video production, etc.

We're an equal opportunity company in southwest Michigan offering a wide range of paid benefits. Send resume and salary requirements to:

Jim Long, Marketing Director
Electro-Voice, Inc.
600 Cecil Street
Buchanan, MI 49107
MAINTENANCE ENGINEER: Innovative, expanding Hollywood Post Production Facility is looking for experienced, responsible engineers. A minimum two years College education in a related field and three years maintenance experience with the following systems required: Sony 1" and 1/2" Video Tape Machines, Grass Valley (300) switchers, Ampex ATR 5000 (Mile). Must have three years experience with people and have flexible hours. Excellent benefits. Send Resume to: Jerry Brown, Pacific Video Inc., 209 N. Cahuenga Blvd., Los Angeles, CA 90038. All responses will be held in strict confidence.

TELEVISION MAINTENANCE ENGINEER: 3 years’ troubleshooting and repair experience on 1/3" Beta ENG equipment, microwave, and digital equipment. Send resume and salary requirements to: Mr. Bob Williams, Chief Engineer, WATE-7V, P.O. Box 2544, Knoxville, TN 37901.

RADIO BROADCAST ENGINEERS

International Broadcast Systems, Inc. (IBS), a subsidiary of Radio Free Europe/Radio Liberty, Inc., is currently seeking a Radio Broadcast Engineer to work on the design, construction and establishment of a 5-station VHF broadcast facility in Israel.

The successful candidate will serve a short period at the IBS offices in Arlington, VA and will then be assigned to the IBS project team in Israel. We offer a generous salary and comprehensive benefits package which includes healthcare, relocation allowance, housing allowance, and much more.

Please send resumes to: Ms. Marilyn Palmer, INTERNATIONAL BROADCAST SYSTEMS, INC., Suite 380, 4601 N. Fairfax Drive, Arlington, VA 22203. An Equal Opportunity Employer.
<table>
<thead>
<tr>
<th>Company</th>
<th>Page Number</th>
<th>Reader Service Number</th>
<th>Advertiser Hotline</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.F. Associates Inc.</td>
<td>83</td>
<td>47</td>
<td>201/767-1201</td>
</tr>
<tr>
<td>Abekas Video Systems</td>
<td>33</td>
<td>19</td>
<td>415/369-5111</td>
</tr>
<tr>
<td>ADX Systems — USA</td>
<td>128</td>
<td>84</td>
<td>800/844-4239</td>
</tr>
<tr>
<td>AKG Acoustics, Inc.</td>
<td>87</td>
<td>51</td>
<td>201/348-2121</td>
</tr>
<tr>
<td>Alpha Audio</td>
<td>84</td>
<td>49</td>
<td>804/958-3852</td>
</tr>
<tr>
<td>Alta Group, Inc.</td>
<td>91</td>
<td>55</td>
<td>408/297-2582</td>
</tr>
<tr>
<td>Ampex Corp. (AVS)</td>
<td>47</td>
<td>64</td>
<td>415/367-2911</td>
</tr>
<tr>
<td>Anvil Cases, Inc.</td>
<td>90,126</td>
<td>54,85</td>
<td>818/575-8614</td>
</tr>
<tr>
<td>Arrakis Systems, Inc.</td>
<td>21</td>
<td>13</td>
<td>303/224-2248</td>
</tr>
<tr>
<td>Audio-Video Engineering Co.</td>
<td>90</td>
<td>53</td>
<td>516/546-4239</td>
</tr>
<tr>
<td>Basys</td>
<td>67</td>
<td>34</td>
<td>800/869-8206</td>
</tr>
<tr>
<td>Belar Electronics Laboratory, Inc.</td>
<td>122</td>
<td>77</td>
<td>215/667-5550</td>
</tr>
<tr>
<td>Belden Wire and Cable</td>
<td>71</td>
<td>37</td>
<td>800/BEL-DEN4</td>
</tr>
<tr>
<td>Benchmark Media Systems</td>
<td>108</td>
<td>63</td>
<td>315/452-0400</td>
</tr>
<tr>
<td>Beyer Dynamic Inc.</td>
<td>84</td>
<td>48</td>
<td>516/935-8000</td>
</tr>
<tr>
<td>Broadcast Supply West</td>
<td>125</td>
<td>82</td>
<td>800/426-8434</td>
</tr>
<tr>
<td>Broadcast Video Systems, Ltd.</td>
<td>120</td>
<td>72</td>
<td>416/764-1584</td>
</tr>
<tr>
<td>BTS Broadcast Television Systems</td>
<td>55,57</td>
<td>27,28</td>
<td>800/582-1136</td>
</tr>
<tr>
<td>Cablewave Systems</td>
<td>59,60-61</td>
<td>29,30</td>
<td>800/562-1136</td>
</tr>
<tr>
<td>Camera Mart, Inc.</td>
<td>31</td>
<td>17</td>
<td>203/239-3311</td>
</tr>
<tr>
<td>Clear-Com Intercom Systems</td>
<td>126</td>
<td>61</td>
<td>415/527-6666</td>
</tr>
<tr>
<td>Comad Communications</td>
<td>128</td>
<td>83</td>
<td>800/387-4991</td>
</tr>
<tr>
<td>Crown International</td>
<td>97</td>
<td>58</td>
<td>800/236-5000</td>
</tr>
<tr>
<td>Current Technology Inc.</td>
<td>66</td>
<td>33</td>
<td>800/236-5000</td>
</tr>
<tr>
<td>Cycle Sat</td>
<td>79</td>
<td>42</td>
<td>800/274-2728</td>
</tr>
<tr>
<td>Di-Tech, Inc.</td>
<td>1BC</td>
<td>2</td>
<td>516/667-6300</td>
</tr>
<tr>
<td>Dolby Labs, Inc.</td>
<td>113</td>
<td>67</td>
<td>415/958-0200</td>
</tr>
<tr>
<td>Electro-Voice, Inc.</td>
<td>69</td>
<td>36</td>
<td>616/695-6831</td>
</tr>
<tr>
<td>Faroudja Laboratories, Inc.</td>
<td>95</td>
<td>57</td>
<td>408/245-1492</td>
</tr>
<tr>
<td>Fast Forward Video</td>
<td>122</td>
<td>75</td>
<td>714/852-8404</td>
</tr>
<tr>
<td>Fujinon, Inc.</td>
<td>72-73</td>
<td>38</td>
<td>201/833-5800</td>
</tr>
<tr>
<td>Full Compass Systems</td>
<td>80</td>
<td>43</td>
<td>800/356-5844</td>
</tr>
<tr>
<td>GE Broadcast Systems Integration</td>
<td>54</td>
<td>26</td>
<td>215/583-6800</td>
</tr>
<tr>
<td>Gentner Electronics Corp.</td>
<td>43,107</td>
<td>22,52</td>
<td>801/268-1117</td>
</tr>
<tr>
<td>Grass Valley Group, Inc.</td>
<td>9,77</td>
<td>7,41</td>
<td>916/478-3000</td>
</tr>
<tr>
<td>Gray Engineering Laboratories</td>
<td>119</td>
<td>70</td>
<td>912/683-2121</td>
</tr>
<tr>
<td>Hitachi Denshi America, Ltd.</td>
<td>3</td>
<td>4</td>
<td>800/645-7510</td>
</tr>
<tr>
<td>Hotronic, Inc.</td>
<td>74</td>
<td>39</td>
<td>408/378-3883</td>
</tr>
<tr>
<td>IBTS-Milan</td>
<td>68</td>
<td>35</td>
<td>800/227-6268</td>
</tr>
<tr>
<td>ISS Engineering, Inc.</td>
<td>88-89</td>
<td>52</td>
<td>800/227-6268</td>
</tr>
<tr>
<td>Jampro Antennas, Inc.</td>
<td>32</td>
<td>18</td>
<td>916/383-1177</td>
</tr>
<tr>
<td>Jensen Transformers, Inc.</td>
<td>122</td>
<td>76</td>
<td>213/876-0059</td>
</tr>
<tr>
<td>JVC Professional Products</td>
<td>19</td>
<td>12</td>
<td>800/582-5825</td>
</tr>
<tr>
<td>LDL Communications</td>
<td>44</td>
<td>23</td>
<td>301/498-2200</td>
</tr>
<tr>
<td>Lectrosonics, Inc.</td>
<td>64</td>
<td>32</td>
<td>800/821-1121</td>
</tr>
<tr>
<td>3M Broadcast & Related Products</td>
<td>29,63</td>
<td>15,31</td>
<td>800/328-1684</td>
</tr>
<tr>
<td>Magni Systems, Inc.</td>
<td>5</td>
<td>5</td>
<td>503/626-8400</td>
</tr>
<tr>
<td>Mark Antennas (Radiation Systems)</td>
<td>121</td>
<td>68</td>
<td>312/298-9420</td>
</tr>
<tr>
<td>Midwest Communications Corp.</td>
<td>1</td>
<td>3</td>
<td>800/543-1584</td>
</tr>
<tr>
<td>Mohawk Wire & Cable</td>
<td>119</td>
<td>71</td>
<td>800/422-9961</td>
</tr>
<tr>
<td>NEC America, Inc.</td>
<td>27</td>
<td>14</td>
<td>312/860-7600</td>
</tr>
<tr>
<td>Nikon Corporation</td>
<td>65</td>
<td>65</td>
<td>800/227-4498</td>
</tr>
<tr>
<td>Oedtcs, Inc.</td>
<td>117</td>
<td>88</td>
<td>800/243-2001</td>
</tr>
<tr>
<td>Opamp Labs, Inc.</td>
<td>120</td>
<td>73</td>
<td>213/934-3566</td>
</tr>
<tr>
<td>Orban Associates, Inc.</td>
<td>7,17</td>
<td>6,11</td>
<td>800/227-4498</td>
</tr>
<tr>
<td>Otari Corp.</td>
<td>15</td>
<td>10</td>
<td>415/592-8311</td>
</tr>
<tr>
<td>Panasonic Pro Industrial Video</td>
<td>34,35-37</td>
<td>20,21</td>
<td>800/553-7222</td>
</tr>
<tr>
<td>Roscor Corp.</td>
<td>58</td>
<td>67</td>
<td>312/539-7700</td>
</tr>
<tr>
<td>RTS Systems, Inc.</td>
<td>92</td>
<td>56</td>
<td>818/843-7022</td>
</tr>
<tr>
<td>Shintron Electronics</td>
<td>80</td>
<td>44</td>
<td>508/486-3900</td>
</tr>
<tr>
<td>Shure Brothers, Inc.</td>
<td>IFC</td>
<td>1</td>
<td>312/888-2553</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>123</td>
<td>78</td>
<td>916/273-9331</td>
</tr>
<tr>
<td>Sigma Electronics, Inc.</td>
<td>82</td>
<td>46</td>
<td>717/569-2681</td>
</tr>
<tr>
<td>Snell & Wilcox</td>
<td>99</td>
<td>59</td>
<td>415/856-0900</td>
</tr>
<tr>
<td>Sony Communications Prod/Broadcast Div.</td>
<td>39,40-41</td>
<td>800/635-SONY</td>
<td></td>
</tr>
<tr>
<td>Sony Communications Products/Pro Video</td>
<td>49-52,24-25</td>
<td>800/523-SONY</td>
<td></td>
</tr>
<tr>
<td>Standard Tape Laboratory, Inc.</td>
<td>120</td>
<td>74</td>
<td>415/786-3546</td>
</tr>
<tr>
<td>Studer Revox America, Inc.</td>
<td>11</td>
<td>8</td>
<td>615/254-5851</td>
</tr>
<tr>
<td>Tascam Div. TEAC Corp. of America</td>
<td>45,127</td>
<td>24,79</td>
<td>213/726-0303</td>
</tr>
<tr>
<td>Telepak</td>
<td>108</td>
<td>64</td>
<td>619/268-8559</td>
</tr>
<tr>
<td>Television Technology Corp.</td>
<td>103</td>
<td>60</td>
<td>303/665-9000</td>
</tr>
<tr>
<td>Telex Communications, Inc.</td>
<td>81</td>
<td>45</td>
<td>612/887-5550</td>
</tr>
<tr>
<td>Thomson-CSF/DETE</td>
<td>109</td>
<td>66</td>
<td>201/812-9000</td>
</tr>
<tr>
<td>Utah Scientific, Inc.</td>
<td>75</td>
<td>40</td>
<td>800/453-8782</td>
</tr>
<tr>
<td>Variian</td>
<td>13</td>
<td>9</td>
<td>415/592-1221</td>
</tr>
<tr>
<td>Videotek, Inc.</td>
<td>46</td>
<td>25</td>
<td>602/997-7523</td>
</tr>
<tr>
<td>Ward-Beck Systems, Ltd.</td>
<td>BC</td>
<td>12</td>
<td>416/438-6550</td>
</tr>
<tr>
<td>Winsted Corp.</td>
<td>121</td>
<td>69</td>
<td>800/447-2257</td>
</tr>
<tr>
<td>Yamaha International Corp.</td>
<td>104-105</td>
<td>61</td>
<td>800/227-4498</td>
</tr>
<tr>
<td>360 Systems</td>
<td>101</td>
<td>86</td>
<td>818/342-3127</td>
</tr>
</tbody>
</table>
Which one advertisement in this issue was of most interest to you?
Advertiser's name __________________________ Circle No. ____________

Your comments on this issue:

NO ENVELOPE NECESSARY
FOLD—TAPE—STAMP—MAIL

P.O. BOX 12902
OVERLAND PARK, KANSAS 66212-0902

Circulation Department
ACTION CARD

IMPORTANT: Do you wish to ☐ receive or ☐ continue to receive your free subscription? ☐ Yes ☐ No

Your signature is required: Date

Please answer all the following questions. Please print or type:

Name

Company

Co Address

City

Phone

For address change or literature request, place peel-off label from cover here

FREE LITERATURE REQUEST

For Issue of August 1989 Use until December 1989

(After this date, please contact supplier directly.)

FASTER ACTION!

If you have immediate interest in any products in this issue, write in the number(s) below and check all the appropriate boxes.

I am interested in these items

☐ Immobile Needs

☐ Home Safety and Security

☐ Name Brand Furniture

☐ Seed Literature

☐ For Future Reference

Circle reader service numbers below for more information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Use this form to...

☐ Apply for or renew your FREE subscription

☐ Request FREE literature on items in this issue

☐ Submit change of address

(All information must be provided)

1. Please check the ONE type of facility or operation that best describes your business classification.

☐ TV Station 20 Non-Broadcast TV including Closed Circuit TV (CCTV)

☐ AM Station 21 Recording Studio

☐ FM Station 22 Reproduction Facility

☐ AM & FM Station 23 Microwave, Relay Station or Satellite Company

☐ TV Station 24 Government

☐ TV & FM Station 25 Consultant (Engineering or Management)

☐ TV AM & FM Station 26 Dealer (Distributor or Manufacturer)

☐ Low Power TV 27 CATV Facility

☐ 35 Other (Please specify)

2. Which of the following best describes your title? Write the number in the box (select one number only):

☐ A ☐ Company Management — (1) Chairman of the Board, (2) President, (3) Owner, (4) Partner, (5) Director, (6) Vice President, (7) General Manager (other than in charge of Engineering or Station Operations Mgr.), (8) Other Corp./Financial Officer

☐ B ☐ Technical Management & Engineering — (9) Technical Director/Mgr., (10) Chief Engineer, (11) Other Engineering or Technical Titles.

☐ D ☐ Other: Specify

3. If you checked 20 through 26 above, which of the following best describes your over-the-air station? (check only one):

☐ A ☐ Commercial

☐ B ☐ Educational

☐ C ☐ Religious

☐ D ☐ Municipally Owned

4. What is your annual budget for equipment purchases? (check only one):

☐ A ☐ Less than $25,000

☐ B ☐ $25,000 to $49,999

☐ C ☐ $50,000 to $99,999

☐ D ☐ $100,000 to $249,999

☐ E ☐ $250,000 to $499,999

☐ F ☐ $500,000 to $999,999

☐ G ☐ $1,000,000 to $2,499,999

☐ H ☐ $2,500,000 to $4,999,999

☐ I ☐ $5,000,000 to $9,999,999

☐ J ☐ $10,000,000 to $19,999,999

☐ K ☐ $20,000,000 to $49,999,999

☐ L ☐ $50,000,000 to $99,999,999

☐ M ☐ $100,000,000 to $199,999,999

5. What is the ADI rank of your station?

☐ A ☐ Top 20

☐ B ☐ 21 to 50

☐ C ☐ 51 to 100

☐ D ☐ Over 100

6. Which statement best describes your role in the purchase of equipment components and accessories?

☐ A ☐ Make final decision to buy a specific make or model.

☐ B ☐ Specify or make recommendations on make or model.

☐ C ☐ Have no part in buying or specifying.

www.americanradiohistory.com

R89
Which one advertisement in this issue was of most interest to you?
Advertiser’s name ___________________ Circle No. ________________

Your comments on this issue:

NO ENVELOPE NECESSARY
FOLD—TAPE—STAMP—MAIL

P.O. BOX 12902
OVERLAND PARK, KANSAS 66212-0902

Circulation Department
DI TECH'S VIRTUAL MATRIX MAKES OTHER ROUTERS VIRTUALLY PASSE

Routing switchers are simple and efficient when all you need is a full AFV matrix. If you try reserving a few video only or audio only crosspoints, however, they can quickly become very clumsy and awkward. Now, you could play games moving switch cards around, tie up "spare" inputs with terminators, or rewire your router frames. But there is a better way.

Di-Tech's virtual matrix control system, Model 9002, maintains a software map of your router's hardware connections. This makes it easy to define single level crosspoints anywhere in a matrix, as well as preset breakaway switches. Special purpose routing – such as time code, RS422 or RGB – can be smoothly integrated into an 8 level master grid at any time.

Prepare for tomorrow with the company that can do it all today...Di-Tech.

di-tech inc.
48 Jefryn Boulevard, Deer Park, New York 11729
(516) 667-6300, Telex No. 971806, FAX (516) 595-1012

Circle (2) on Reply Card
MiniCOM® brings a totally new dimension to professional communications!

Until now setting up a production communications system required bulky hardware and plenty of space.

MiniCOM® changes all that! It delivers mainframe performance in a "desktop" sized package. A 24 x 36 matrix in just 8 1/4" of rack space (5 rack units).

And, because we've been able to put all that traditional Ward-Beck quality and performance into such a compact frame, the price has come down to "desktop" proportions too!

No need to dream any more about having a MicroCOM System sometime in the future... You really can afford one today!

WARD-BECK SYSTEMS

Ward-Beck Systems Ltd., 841 Progress Avenue, Scarborough, Ontario, Canada M1H 2X4.
Tel: (416) 438-6550. Fax: (416) 438-3865.