RF transmissions systems special issue
If you’ve been putting off doing stereo field remotes for fear of risking a fragile, expensive stereo mic, Shure’s new VP88 is what you’ve been waiting for.

The VP88 is an advanced single point stereo condenser mic that not only recreates the sonic environment with extraordinary audio fidelity, but meets Shure’s legendary standards for ruggedness and reliability.

The VP88 is built to withstand the punishment of field remotes. And, it comes at a price you’ll find surprisingly affordable.

TRUE MS STEREO.

The VP88 features a forward facing Mid capsule, perpendicular Side capsule and built-in stereo matrix to assure a wide, natural, uncolored response for stereo imaging. Yet, it’s perfectly mono compatible.

To enable you to control the degree of stereo spread and ambience pick-up, the VP88 has three switch-selectable stereo modes or direct mid and side output. And it’s designed to provide the wide dynamic range and low noise you need for remote broadcasts.

THE FEATURES YOU NEED.

The VP88 can be powered by a self-contained battery or phantom power so you can go where the action takes you. It includes switchable low-frequency rolloff for reduced ambient noise and a built-in “pop” screen.

In addition to camera mounting, the VP88 can be used on a stand, fishpole, or boom. And the mic comes with a wide range of standard and optional accessories to accommodate your most challenging stereo miking requirements.

So whether you’re just beginning to look at stereo miking, or you want to take your stereo to the next level — consider the advantages of the Shure VP88. It’s making stereo miking an affordable proposition.

For the name of your nearest dealer and our free brochure, call or write Shure, 222 Hartrey Avenue, Evanston, IL 60202-3696. 1-800-257-4873. The Sound of the Professionals® Worldwide.

Circle (1) on Reply Card

Shure’s New VP88 Stereo Microphone Offers A New Level Of Reliability And Affordability.
Just what gives us the nerve to say no other transmitters are in our league?

The simple fact that no other transmitters back up the claim like the Toshiba 2000 Series VHF Transmitters.

Because while others are busy introducing their first generation solid state design, Toshiba is years ahead with the introduction of their second generation. The most transparent available.

Because no other transmitters come with Toshiba’s 35 years of proven experience and unsurpassed reliability.

Toshiba’s remarkable high tech design features. Like our exclusive new F Power MOSFET Progressive Air Cooling System. One-to-one power supply-amplifier redundancy. And superb MTBF ratings.

Toshiba’s in-house production of all key components. For cost-efficiency you can take to the bank. From the front access, lightweight plug-in modules to the last rivet and weld, the 2000 Series concept focuses on both obvious efficiencies of purchase price and the more subtle efficiencies designed-in high stability to minimize adjustments and training.

Tap it up with outputs that range from 5KW to 64KW – as well as technical support, service and parts from Midwest’s centrally-located headquarters – and we think you’ll agree. It doesn’t take nerve to say we’re in a league all our own... it just takes a firm grasp of reality.

For complete information on the Toshiba 2000 Series, call the sales representative in a league all his own. Call Midwest.

TOSHIBA
RF TRANSMISSIONS SYSTEMS SPECIAL ISSUE:
The transmission plant of a radio or TV station is the critical link in the broadcast chain. Without a reliable system, the station cannot effectively compete in the marketplace. With the increased sophistication of equipment today, it is becoming more difficult for engineers and technical managers to keep up with the state of the RF art. This month, we take a detailed look inside the RF equipment that makes transmission of radio and TV programs possible.

DEPARTMENTS
4 News
6 Editorial
8 FCC Update
10 Strictly TV
12 re: Radio
14 Uncommon Engineers
16 Circuits
18 Troubleshooting
20 Management for Engineers
84 Applied Technology: Variable circularly polarized UHF antenna
90 Station-to-Station
98 SBE Update
100 Field Report: Nytone Video Slide Scanner
104 Field Report: MCG surge protectors
110 New Products
118 People

FEATURES:

26 RF Technology: Setting New Standards
By Jerry Whitaker, associate publisher
New devices are pushing radio and TV transmitters to higher levels of performance, efficiency and reliability.

50 Is Your STL Ready for the 1990s?
By Dane E. Ericksen, P.E., Hammet & Edson
You're running out of time to bring your STL into compliance.

63 Tower Lighting Update
By Rich Lehtinen, TV technical editor
Don't take tower marking light-heartedly.

70 Remote-Site Security Primer
By Gerry Kauthold, SGS-Thomson Microelectronics
Electronically guarding remote locations.

ON THE COVER
The best audio and video systems are useless in a broadcast environment if the RF link doesn't work. Fortunately, today's tube and solid-state transmission systems are more efficient and reliable than ever before. (Cover credits: Solid-state RF amplifier modules supplied by Harris/Allied, design by MediaScan.)
One of Our CCD Cameras Should Be One of Yours

Presenting the Hitachi SK-F Series...
A Line-up of Five High Performance Broadcast CCD Cameras.

Use the SK-F700/710 for studio & field production work. A choice of RGB Triax, Composite Triax or Multicore gives you total system flexibility.

The SK-F3 is our top-of-the-line EFP portable with 400,000 pixel FIT CCD's.

The SK-F2 is our Broadcast ENG camera featuring FIT CCD's with 700 lines of resolution.

The SK-F1 is our ENG/EFP model that makes FIT technology affordable.

Hitachi Denshi America, Ltd
150 Crossways Park Drive, Woodbury, New York 11797 Tel: (516) 921-7200
First Varian VISTA transmitter on air

The first of Varian TVT division's energy-efficient VISTA series of UHF-TV transmitters went on air March 2 at KVDA Channel 60, San Antonio. Early results indicate an electrical consumption of 147kW for the 120kW station, half of what would be expected with a conventional transmitter.

Network frequency coordination

The upcoming economic summit July 9-11, at Rice University, George R. Brown Convention Center, Houston, requires frequency coordination. To coordinate frequencies for this event, please contact any of the following numbers:

1. 2-way, 713-438-3838 (Bill Cordell).
2. TV auxiliary, 713-974-4848 (Blane Huhn or John Harvey).

3. SBE BBS, 713-974-3912 (Frequency Coordinator Conference).

Agreement for private investment in TTC

At the NAB convention in Atlanta, an agreement for a major private placement investment in TTC was announced. The investor group, The Partnership, is led by Dirk Freeman, who has assumed the presidency of TTC from Byron St. Clair, the founder of TTC. St. Clair will remain active in the company as chairman.

Order of the Iron Test Pattern to be revived

The recently inactive Order of the Iron Test Pattern will be revived in 1990 as an independent non-profit organization, according to E.G. Gramman, chairman and CEO of Dynair Electronics, San Diego.

Robert N. Vendeland, marshal of the order, who retired from Dynair in 1987, is presently organizing industry support to continue the association as an independent entity.

The order was started by Dynair in 1979 and has honored more than 2,400 members in 23 countries by presenting them with membership certificates that document technical service in television. Officer appointments are made after 15 years of service, and commander ranks are earned after 25 years of service. Approximately half of the members are commanders.

A committee is being formed to arrange for incorporation, financial support and the formal transfer of the association from Dynair to the new corporation.

World Telecommunications call for papers

A limited number of papers will be accepted for presentation at the Technical

Continued on page 97
Introducing Nikon ENG/EFP Lenses.
A host of outstanding features.

And one you’ll probably never use.

Selecting an ENG/EFP lens for your 3/4" CCD camera is a creative decision. It should be lightweight, responsive and zoom smooth as silk at any speed. Its design should utilize Extra-low Dispersion Glass to minimize chromatic aberration. It should include an anti-reflection coating for improved spectrum transmission ratio. And it should have an advanced design that improves corner resolution and produces a high, flat MTF curve. In short, it should be a Nikon.

But selecting an ENG/EFP lens is also a business decision. And on that score we provide something almost as compelling as Nikon quality – our unique Express Loaner Service. Simply register the Warranty, then in the unlikely event your lens needs service we’ll get you a loaner lens overnight. All your investment in equipment and crews is more secure than ever before.

A service like this is remarkable in itself. But not quite as remarkable as our lenses.

As with all Nikon products, our new ENG/EFP lenses have all our renowned quality, tradition and technology built right in. Our growing line is also fully accessorized, including adapters that allow the use of your entire arsenal of Nikkor 35mm SLR camera lenses for special effects.

To find out more, call or write for our complete brochure: Nikon Electronic Imaging, Dept. D1, 101 Cleveland Avenue, Bayshore, NY 11706, (516) 222-0200 Ext. 324. Or call 1-800-NIKON-US (645-6687) for the dealer nearest you.
The RF mystique

A guest editorial

I’ve spent most of the past 20 years maintaining many different types of transmitters. I’ve been chief operator and director of engineering for radio and TV stations for the past 15 years, I find the work so fascinating that I’ve passed up several higher-paying career opportunities just so I could remain in my element of transmitters, antennas and various other analog disciplines.

One of the frustrating aspects of my work, however, has been the fruitless attempt to find competent help. I believe that a discouraging trend is developing. Allow me to state my case in blunt terms: Most of today’s electronics technicians don’t know a transmitter from a toaster!

The problem is not limited to the so-called license mill graduates. Some of the BSEE graduates who have applied for broadcasting jobs never have had a single class in RF transmission theory.

In an attempt to get to the root of the problem, I called several electronics correspondence schools and asked about their lack of courses specializing in high-power radio transmission techniques. The general response was that there was “no need” for such courses.

This reply shows clearly how out of touch our educational systems really are. All you have to do is spend a minute tuning to various radio bands to discover there are more high-power radio transmitters on the air now than ever before.

The correspondence schools haven’t supplied the type of graduates needed because we broadcast engineers haven’t demanded that they do so. Our apathy has allowed the mystique of radio to disappear from the public consciousness.

To be fair, I must say I have experienced a few surprises. One recent trade school graduate learned the RF theory with incredible ease, even though it was all new to him. When he had completed my in-house training course, he exclaimed in utter astonishment, “Why didn’t anyone ever tell me that radio was so much fun?” Why not, indeed? By asking that question, my young friend had unwittingly supplied the answer.

We have only ourselves to blame for the demise of our profession. Broadcast engineers have done a lousy job of public relations. We have been conspicuously absent from high school and college career guidance programs. In fact, broadcast engineering seldom is represented in the usual places where employers go to display their trades.

Is this trend reversible? I think so. Anyone who has experienced the thrill of working with RF technology will more than likely love it. But we must allow others the experience.

We all enjoy the security of having a rare and valuable skill, but there’s no need to feel threatened by the next generation. Go ahead and part with a little of that knowledge. Teach a young person what you know about that RF mystique. Perpetuate your trade. You, the aspiring engineer and the entire industry will be better off.

Eric Nicholes,
Director of Engineering,
KJNP AM/FM/TV,
North Pole, AK
Orban's new digitally-controlled 787A Programmable Mic Processor integrates an unprecedented combination of vital signal processing functions into one powerful, compact package. It delivers fully programmable **mic- or line-level** processing with access to 99 memory registers through MIDI or RS-232 interfaces, or a console-mounted remote control. All you do is add the talent.

The 787A offers a space-saving, elegant solution to many annoying problems (voice deficiencies, poor room acoustics, noise, sibilance, wandering levels) in the broadcast control room, TV newsroom, or in commercial production, video post, audio-for-video, and film scoring facilities. The 787A gives you an important competitive edge by enabling you to repeat the same optimum sound every day for every voice, quickly and efficiently.

The 787A is complete audio processing arsenal in a box—a flexible parametric EQ, a smooth compressor, noise and compressor gates, and a handy de-esser. The 787A can be operated in mono or dual-channel/stereo (with the addition of a second-channel slave). An optional Jensen transformer mic preamp with 48V phantom power adds further flexibility.

Orban's 787A Programmable Mic Processor will help you remember tomorrow the way your talent sounded yesterday.

Orban a division of AKG Acoustics, Inc.,
645 Bryant Street,
San Francisco, CA 94107 USA
(415) 957-1067 Telex: 17-1480
FAX: (415) 957-1070

Circle (5) on Reply Card

www.americanradiohistory.com
Clarifying the role of FM translators

By Harry C. Martin

In late March, the FCC issued a notice of proposed rulemaking in which it put forth a number of proposals for restructuring its FM translator rules. The principal proposals are as follows:

- FM translators will be classified as either "fill-in" facilities or those facilities providing service to "other areas." Fill-in facilities will be limited to 1kW ERP, with the additional restriction that the translator's predicted Nv/m contour may not exceed the protected service contour of the primary station. This type of translator may be owned and operated by the licensee of the primary station. FM translators providing service to other areas also will be limited to 1kW ERP, subject to the further restriction that the distance to the translator's predicted Nv/m contour may not exceed 16km. Other area translators may be owned only by independent parties, and a primary station is prohibited from providing financial support to any such facility, either before or after it commences operation.

- Microwave delivery of signals to FM translators would be permitted only for those providing a fill-in service, and no satellite delivery of programs to commercial FM translators would be permitted.

- FM translators will be allowed to operate on all 80 non-reserved channels, and specific criteria will be developed for determining predicted and actual interference.

- The ban on AM rebroadcasts over FM translators would be retained.

- The commission will continue the freeze on the acceptance of applications for new commercial FM translators or major changes to existing ones until 60 days after the effective date of any new rules adopted in the proceeding. This freeze does not apply to applications for NCE-FM translators operating on the lower-20 reserved channels.

The commission set June 15 as the date for comments on its proposals and July 16 as the date for replies.

Chairman Sikes’ views on FCC’s role in the ’90s

In a speech delivered April 3 at the NAB Convention in Atlanta, FCC chairman Al Sikes outlined a 4-point program that will guide the agency’s regulation of broadcasting during his administration.

First, he wants to strengthen broadcasters’ ability to “fully and fairly” compete in today’s rapidly changing media environment. He said the need for Congress to eliminate cable’s compulsory copyright license is a priority. He affirmed his commitment to the adoption of an HDTV standard by early 1993 so existing TV broadcasters will have a fair opportunity to participate in this technology.

However, Sikes’ major points about the commission’s role in improving the media marketplace were directed to radio. He cited the commission’s initiative in the FM translator area (outlined previously) and its effort to restore the technical integrity of the AM broadcast service as examples of the commission’s recognition that improving the quality of existing radio serv-

ice is a better way to promote competition than by creating more new, but substandard stations. Sikes also said streamlining the commission’s processing procedures has reduced application backlogs, thereby speeding improvements in existing radio services.

Sikes’ second policy goal is to expand individual opportunity in broadcasting. In this connection, he said the commission will continue to aggressively pursue its policies favoring equal employment opportunity. He also pointed out the need for more industry initiatives such as BROADCAP, an industry-funded venture capital company that helps minorities become station owners.

Sikes’ third initiative is to promote and encourage broadcast excellence. Pointing to how years of “regulatory neglect” contributed to the deterioration of AM, he said the commission should do its best to afford both radio and TV broadcasters the opportunity to capitalize on the better video and audio quality that supportive commission regulations can foster, particularly in the AM and HDTV areas. With regard to AM, Sikes intimated that new audio-processing standards, requirements for improved receiver capability and standards for AM stereo may be in the offing.

Sikes emphasized the need to maintain an industry consensus that the marketplace serve as a more effective regulatory tool than government-imposed constraints. Of particular concern to him is the need for a voluntary industry code dealing with violence and indecency in programming. Sikes indicated the commission’s reluctance to enter into these areas, which, he said, would be more appropriately handled through industry self-regulation.

AM Radio	4,977
FM Radio	4,273
FM Educational	1,424
TOTAL	10,674
UHF Commercial TV	550
VHF Commercial TV	549
UHF Educational TV	224
VHF Educational TV	123
TOTAL	1,446
FM Translators and boosters	1,815
UHF Translators	2,205
VHF Translators	2,722
TOTAL	6,742
UHF Low-Power TV	490
VHF Low-Power TV	159
TOTAL	649

Table 1. The commission has announced the following totals for broadcast stations licensed as of Feb. 28, 1990.
Comfort.

So you’ll never lose your touch. Nobody supports you like GVG.

Grass Valley Group®
A Tektronix Company

As the heart of Television

Circle (6) on Reply Card

www.americanradiohistory.com
Hawaiian pattern is for the birds

By Rick Lehtinen, TV technical editor

King Broadcasting operates seven full-service TV stations. The newest one is KOGG Channel 15 in Mailulu, Maui, a satellite station for KHNL, Honolulu. KOGG went on-air one year ago and serves 83,000 viewers in its transmission area, which covers portions of the islands of Hawaii, Maui, Molokai, Lanai and Oahu.

The antenna site is located near the top of the 10,000-foot Mount Haleakala on the island of Maui. It was the natural choice because it is the highest point on the island, but the location presented challenges.

The state of Hawaii identified one site as being too close to the nesting area of the nocturnal dark-rumped petrel, a protected bird species. The state told KOGG that it could not interfere with the flight patterns of the birds.

When an approved site was found, it was located one mile from an astronomical observatory complex, known as "Science City," operated by the University of Hawaii. The observatory also is used by the University of Wisconsin and the U.S. Air Force.

Astronomical observatories can be sensitive to RF frequencies, which means the station had to be careful with its antenna pattern. Approval of the selected site was on the basis that KOGG would not cause interference to operations at the observatory.

Another concern was severe and unpredictable weather conditions at the 10,000-foot site. The weather can change from warm sunshine to driving wind and rain within a few moments. Storm winds can reach 150 mph.

Conquering Mount Haleakala

The transmitter shelter building for KOGG is a 12' x 24' precast concrete preassembled structure. The $48,000 structure was built in Texas and trucked on a special flatbed trailer to Oakland, CA, where it was loaded into a freighter bound for Honolulu. It then was barged to Wailuku, Maui and trucked over the winding Haleakala highway from sea level to the 10,000-foot summit. A crane lifted the building onto an elevated concrete support, which is a foundation specially designed for the site's soft volcanic soil.

KOGG's antenna is a horizontally polarized, 16-bay, dipole array, twin-lobe design, with a package designed to make it impervious to the hazardous environment. The antenna provides a modified peanut-shaped pattern, with a beam tilt of 2° provided to serve populated areas near sea level.

The KOGG transmitter operates at 15kW, with an effective radiated power of 759kW. To reduce the signal in the direction of the observatory, the antenna contains a choke, a metal shield that suppresses signal radiation toward the observatory by 43dB-45dB. Repeated testing and actual operation have demonstrated no interference.

The hazardous environment package includes a support pipe of hot-dipped galvanized steel, a stainless steel and copper power distribution system and feedlines that are pressure-tight up to the gas barrier near the radiating points. The hardware is stainless steel.

According to Ken Hermanson, vice president and chief engineer of King Broadcasting, the antenna has satisfied the demands of the state of Hawaii, the observatory, the mountain and the shape of the Hawaiian Islands, as well as those of the dark-rumped petrel.

Acknowledgment: We wish to thank Ken Hermanson, King Broadcasting, Seattle, and Martin Wank, Wank Associates, Greenvale, NY, for assistance in the preparation of this article.

Figure 1. Contour map of KOGG-TV, Channel 15, Hawaii. The station had to site its transmitter so as to protect a nearby observatory and the nesting ground of the dark-rumped petrel, a protected species of bird.
Who's Setting The Pace For FM Transmitter Technology?

When it comes to technological developments in FM transmitters, the record is very clear.

Broadcast Electronics:
First to introduce a Proportional VSWR Foldback System.
First to introduce "PWM Automatic Power Control" with "Soft Start".
First to offer a built-in synchronous AM test port.
First to design a single tube high power 30kW FM Transmitter.
First to introduce a single tube 10kW FM Transmitter with a 4CX7500A tube.
First to introduce a single tube 3.5kW FM Transmitter with a 4CX3500A tube.
First to introduce a Microprocessor Video Diagnostic System.
First to offer built-in, PC based, transmitter remote control.
First to offer a standard synchronous FM booster option.
And, Broadcast Electronics again sets the world standard for FM Exciters with the new FX 50 which stands alone in audio performance with 93 dB SN and .003% THD and IMD.

State of the Art Leadership
Stereo technology, only B.E. designs AM, FM and TV stereo generators.
Broadcast Electronics is the only major FM transmitter manufacturer who designs and builds its own solid state intermediate power amplifier (IPA).
All products are backed by B.E.'s 24 hour parts and service and a strict quality assurance program.
The result of this commitment to state-of-the-art innovation is a complete line of RF products, designed to provide you with years of reliable service. Certainly it's clear who is setting the standards for FM transmitter technology!

Patented Innovations
Broadcast Electronics has the largest and most skilled engineering staff dedicated to the radio broadcast equipment industry. Significant FM transmitter design patents awarded to B.E.:
- Internal Second Harmonic Suppressor, patented 1982.

Circle (7) on Reply Card

4100 N. 24th ST., P.O. BOX 3606, QUINCY, IL 62306, (217) 224-9600, TELEX: 25042, FAX: (217) 224-9607
www.americanradiohistory.com
Install your NRSC-1 now

By John Battison, P.E.

By the time you read this, NRSC-1 will be a fait accompli. If your station is not using it, you could be headed for trouble. You must install an NRSC-1 compliant processor by June 30 of this year, because you need a device that will limit the occupied bandwidth to 20kHz. It is possible to construct one that meets the requirements of the average radio station, but time is a major factor. Your best bet is to purchase a modification kit, if your station's processing equipment manufacturer makes one.

NAB has an information packet with the FCC's NRSC-1 requirements and a list of manufacturers who sell retrofit kits to bring some audio processors up to date. At least one company offers a series of inexpensive modules that can be installed in your audio chain to bring your station into NRSC-1 compliance.

The NRSC-1 filters provide a 75μs pre-emphasis prior to any processing. The signal then is passed through a sharp 10kHz low-pass filter. The filter is inserted before the modulator stage.

Improved signals

Approximately 1,200 AM stations already have installed NRSC-1 processors. The results have been quite surprising in many cases. Despite some engineers' doubts about limiting the high-frequency output of the transmitter, listeners seem to like the added crispness. Stations have reported an increase in apparent loudness and reception in areas previously not covered. This probably is due to decreased adjacent-channel interference.

Nevertheless, some AM stations that have prided themselves on wide bandwidth signals will have to cut back. Some stations have taken advantage of the previously allowed 30kHz bandwidth. Without nearby first-adjacent channel stations, these broadcasters have provided hi-fi service far past these new limits. Some stations with adjacent stations only 40kHz away who used to splatter over will have to watch themselves carefully.

Use of NRSC-1 will not require much change in the method of operation. Transmitters should be properly maintained and not overmodulated. Of course, if additional transmitter clipping is used to obtain additional loudness, the benefits of NRSC-1 will be lost.

If NRSC-1 is installed and operated properly, stations will be assumed to be operating in compliance with the new, more stringent Rule 73.44. Unless FCC inspectors uncover out-of-tolerance operation, or competitors complain, a properly installed and operating NRSC-1 system will be assumed to ensure that the station is complying with the rules. However, it will still be necessary to make a harmonic check every year to ensure that out-of-band harmonics are not being produced.

Big Brother and 1994

Beginning June 30, 1994, all AM stations must be able to prove compliance with the rules. No other changes are anticipated in the bandwidth or transmission standards. The rules for NRSC-2 will spell out exactly what has to be measured and how to do it. This means that most stations either will have to purchase instrumentation capable of demonstrating compliance or have such measurements made on a regular basis.

Until June 1994, the commission will accept the premise that installation and proper operation of NRSC-1 satisfy Rule 73.44. If out-of-tolerance operation is suspected, the spectrum analyzer will have the deciding vote. The splatter monitor that currently is available should satisfy most monitoring requirements. In case of dispute, the spectrum analyzer has the last word. The NRSC-2 standards set the requirements for measuring the RF mask and transmitter RF performance, including occupied bandwidth under program conditions, pulsed noise and stereo conditions.

If events follow their usual pattern, most stations will not want to spend money on something that does not contribute directly to increased coverage or improved signal loudness. Demand should be good for contract engineers who possess either splatter monitors or spectrum analyzers. By the time the rule becomes effective, lower-priced portable spectrum analyzers should be on the market to meet the demand.

More thoughts on NRSC-1

The objective of NRSC-1 is to alleviate the adjacent-channel interference that is present with the now-specified 30kHz bandwidth. Although the average radio receiver cannot pass the higher audio frequencies, its presence creates the "monkey chatter" and harmonics that still can be heard in the narrow passband of the poor-quality receivers.

Remember, NRSC-1 alone will not remove the interference problems in the AM band. Program directors still will demand the loudest signal and will crank up the compression when the CE is not around. Also, the clever engineer can easily modify NRSC-1 equipment to bypass the bandwidth limits and the degree of limiting.

FCC monitoring is expected to become stricter after June 30. With the expanded range of FCC fines, a few stations may be hit with an unexpectedly heavy assessment for NRSC-1 violations. No station wants to be fined; however, if the stations that continually abuse FCC rules become examples, the rest of us may be encouraged to follow the rules. If the ring-leaders in overmodulation and compression continue to get away with it, then NRSC-1 may not be AM's salvation. It could signal the finish for AM.

Engineers must make sure their stations follow the rules, or we might see the FCC putting the blame on the engineer for technical violations. The commission has the power to do this, and warnings have been given many times. If we do not educate station owners, Big Brother's foot may come down where it hurts.

Where are the receivers?

Now that broadcasters have taken positive steps to improve transmission, radio receiver manufacturers should do their part to follow through on NAB's development of a radio that makes the best of our new signals. The next step should be continuous tuning for all radio receivers so no sharp discontinuity occurs when going from AM to FM, or FM to AM.
High-performance Audio Testing With System One + DSP

Designing, manufacturing and maintaining high-performance analog & digital audio equipment places extreme demands on your test equipment. Your test set must have extremely low residual noise and distortion as well as extremely high accuracy... and the variety of systems under test calls for extremely flexible test set-up and control.

System One + DSP from Audio Precision is the solution. The trace below is a System One + DSP FFT spectrum display showing the residual distortion performance of our generator and analyzer. 2nd harmonic distortion of the sine wave is 125dB below the 1kHz fundamental level before nulling. The 3rd, 5th & 7th are all even lower.

This self test is typical of the high-performance, high-accuracy measurement capability of System One + DSP.

System One + DSP features include:
- Dual Channel FFT Analyzer — Signals up to 80kHz may be acquired and analyzed with 16 bit resolution.
- Waveform Capture — Acquire and display signals on the PC screen for analysis in time domain "digital storage oscilloscope" mode.
- Harmonic Analysis — Perform harmonic analysis such as measurements of individual distortion components, with automatic tracking to 9th harmonic.
- Processing Power — Dual high-speed 24 bit internal DSFs and precision 16 bit analog I/O conversion.
- Low residual THD + N — Total analog system THD + N (2kHz bw) .001%. DSP analysis permits resolution of distortion as low as 145 dB below fundamental.

System One + DSP... When you're serious about performance.
Uncommon Engineers

Lew Wetzel

By Elmer Smalling III

As a schoolboy, Lew Wetzel was fascinated with radio. He listened regularly to everything from standard broadcast through short wave. "I would follow the United Airlines flights from Chicago to Newark, night after night," he said. "Their routes took them right over our home in central Pennsylvania. I would listen to them report in over Bellefont, wait five minutes, then go out the front door to watch them pass over, go back in and one minute later, hear them report in over Sunbury, PA." This early interest in all types of radio listening whetted his appetite for a career in engineering.

Wetzel was born in Beaver Springs, PA, in 1924. He attended Lehigh University and earned a degree in electrical engineering in 1947. He went to work as a power engineer for the Pennsylvania Power and Light Sunbury plant, not far from his home.

In the late '40s, his cousin introduced him to ham radio. Because it was during the height of the sunspot cycle, they could keep in touch with friends in various parts of the world. Every weekend, weather permitting, they built or modified antennas for 10 and 20 meters. Antenna design became Wetzel's first engineering love.

With the Korean War beginning, Wetzel went to work for the military at Picatinny Arsenal in New Jersey. There, he designed electronic fusing for ammunition. In 1951, he returned to Lehigh University to augment his electrical engineering education.

New directions, new technology

In 1953, Wetzel began what would become a long and distinguished career in broadcasting when he joined RCA in Camden, NJ. His first assignment put him just where he wanted to be — in the UHF antenna design group. It was here that Wetzel met Ed Shively, who was to become a lifelong friend. The group worked on early UHF antennas, especially the UHF slot antenna, which Shively had invented. Wetzel, who had no fear of heights, was assigned to the final assembly, impedance matching and pattern shaping for the antennas. He and Shively formed a special team with Woody Darling (a VHF antenna designer and the father of the traveling-wave antenna). This team would design and develop the RCA antenna test facility at Gibbstboro, NJ. From 1954 to 1957, Wetzel supervised the production of the first 120 UHF slot antennas sold by RCA.

Wetzel married in 1954. Too much travel led him to leave RCA and join the consulting firm of Kear and Kennedy in Washington, DC, as general radio and TV consultant. His most interesting assignment there was experimenting with on-channel TV boosters. Most of Wetzel's Kear and Kennedy work, however, was for the Triangle Publications Television Group, located in Philadelphia at its flagship station, WFIL-TV. He was hired as assistant director of engineering for Triangle in 1960.

Wetzel often traveled to Washington, DC, for Triangle meetings at the FCC. On these trips, he and his lifelong friend Harold Kassens frequently discussed their mutual fear that broadcasters might lose the FM frequencies to another service. Almost every FM station was merely simulcasting its AM programming, and poor profits were causing many to turn back their licenses. "We felt that the key to the situation was to get FM used in the automobile, but with horizontally polarized broadcast antennas, this was impossible," he said.

One day, Kassens gave him a copy of a paper written in 1948 by consultant Carl Smith. It dealt with the circular polarization of FM transmissions. Smith had had the answer almost 15 years before! Wetzel agreed with Kassens that circular polarization was the ticket to the revitalization of FM broadcasting. He proceeded to equip the Triangle station in New Haven, CT, with an experimental circularly polarized antenna.

After 15 kW of ground tests and readings, the station was issued a license for circular polarization in 1964. Modern FM broadcasting was born. Wetzel presented a paper about this new technology to a standing-room-only crowd at the 1965 NAB convention. It was an exciting time for radio.

Other contributions

As a U.S. state department representative to the CCIR, Wetzel traveled often to Geneva and other European locations from 1965 to 1975 to represent American broadcast engineers. Meanwhile, in 1966, while still with WFIL-TV, he began experimenting with aural power levels. At that time, aural transmitter power was required to be 50% of the visual transmitter power. On most transmitters, this meant 25 kW. His tests proved that a received audio signal comparable to the received video signal could be transmitted using only 6% of the visual power. As a result of these and similar tests run by Crosley Broadcasting at WLW, the FCC decided that 10% was a safe limit and changed the 20-year-old rules. For the first time, TV stations could reduce power usage by millions of kilowatt-hours per year.

From 1966 to 1967 he served as national vice president for the Society of Broadcast Engineers, and in 1968, was elected president. When the Triangle Group stations were sold to Capital Cities, he joined Shively Labs in Raymond, ME, owned by his old friend from RCA. He helped Shively triple sales by expanding into the newly opened Canadian market. His next stop was just down the street in Raymond, to Dielectric Products, a manufacturer of strobe lighting for TV and radio towers. In 1975, he joined Bird Electronics (famous for the ubiquitous Bird Watt-meter).

Wetzel was appointed NAB senior vice president for engineering in 1980. He upgraded the engineering laboratory and hired additional engineers to prepare the NAB for the many high-technology issues that erupted during the 1980s.

Today, Wetzel is sales and marketing manager at Flash Technology in Nashua, NH.
Finally, a cart that delivers the creature comforts that other Otari audio machines have offered for years! And not only does Otari's CTM-10 make your job easier, it also delivers outstanding audio performance, so your output sounds more like a CD player than a cart.

You get extensive metering, including dedicated metering for the cue-track. (Now you can verify the cue-tone before you go on-air!) And for adjustments to program length, there's a true vari-speed control.

You'll also find a record azimuth adjustment system with phase display for when you want to make the best recording possible.

But the CTM-10 is not all just bells and whistles. It's the only cart you can buy with HX-Pro.* That means that you can get a really hot signal off the tape, and still keep those high frequencies where they need to be for that crisp, clear sound.

And some things we keep real cool, like we don't use solenoids for our pinchroller because they can generate excess heat. You'll also appreciate the CTM-10's fast start time—it lets you cue up tighter without worrying about wow.

And, of course, we give you choice. There are stereo and mono record/play decks, and a mono/stereo play-only deck.

Call us at (415) 341-5900 for more information about the CTM-10.

The cart machine with bells and whistles your audience will never hear.
Matching impedances with Smith charts

By Gerry Kaufhold II

You can accomplish a variety of filter functions with a properly designed impedance-match network. For example, these networks can provide low-pass, high-pass, bandpass or notch filtering. Each part of each problem can be solved using Smith charts, taking advantage of the graphical nature of the charts to obtain several different solutions quickly. Because power components for RF work come in limited sizes and value ranges, impedance-matching problems often must be reworked to obtain final component values that can be realized with off-the-shelf parts. We now will work out an impedance-matching problem in detail.

Smith charts step-by-step

Any time you use Smith charts, the following steps must be performed in sequence:

1. Write down all the pertinent actual resistance and reactance values.
2. Choose a convenient denominator that brings the normalized resistance of the characteristic impedance close to 1.0. Normalize all other values by dividing by this number. Note which values are impedances for series circuits and which are admittances for shunt circuits.
3. Plot the normalized values onto the Smith chart.
4. Resolve the problem by applying the rules of Smith charts.
5. De-normalize circuit values by multiplying.
6. Solve the reactance equations at the frequency of interest to obtain correct final component values for the circuit.

Working a practical problem

Suppose a transmission line exhibits $R = 50\Omega$, $XR = -j5.0\Omega$ (capacitive) at a center frequency of 50MHz. You wish to match an antenna with impedance of $R = 72\Omega$, $XR = +j15.0\Omega$ (inductive) at the operating frequency.

First, normalize the actual circuit values to get $R = 1.0$, $K = 50$ is a convenient constant for normalizing the elements of this problem. The normalized transmission-line output values are $R = 50/50 = 1.0$, $XR = -j(5/50) = -j0.1$. The normalized antenna input values are $R = 72/50 = 1.44$, $XR = +j(15/50) = +j0.3$.

Recall that to create an ideal impedance match, you want to cancel out the reactive component so that the source "sees" a pure resistance. The problem to be solved requires the creation of an impedance-matching network that makes the antenna input impedance appear to be the complex conjugate of the transmission-line output impedance. In addition, the impedance-matching elements form a low-pass filter.

In this case, the source has a normalized impedance of 1.0 $-j0.1$. To cancel out the capacitive reactance, the impedance-matching network must have a normalized impedance that is the complex conjugate of the given source impedance. The normalized complex conjugate of 1.0 $-j0.1$ is 1.0 $+j0.1$. This is used as the desired source impedance.

Plot the antenna input impedance first, labeled "L" for load as shown in Figure 1. The coordinates of the antenna input impedance are 1.44 $+j0.3$. Plot the complex conjugate of the normalized transmission-line output impedance and label it "S" for source. The coordinates of the normalized complex conjugate of the transmission-line output impedance are 1.0 $+j0.1$. This point is just above prime center on the $R = 1.0$ circle.

Next month, we will work backward from point "L" to get to point "S," solving for an impedance match that places a capacitor as the shunt element.

Kaufhold is a market development engineer for SGS-Thomson Microelectronics, Phoenix.

Figure 1. The setup of an impedance-matching problem using the Smith chart with overlay.
Orban Stereo Television.
Experience and Support.
Outstanding Performance.

Orban’s experience — more stations are on the air in stereo with Orban TV Stereo Generators than all other makers combined.

The Orban 8185A second-generation TV Stereo Generator has performance specs and features that meet or exceed those of every other generator on the market in all significant parameters.

And installation and setup can’t be easier — typical setup time is less than one hour! You’ll need your RF Spectrum Analyzer, composite demod, audio oscillator, and oscilloscope. Nothing else.

The Orban 8182A OPTIMOD-TV® Audio Processor — the standard of the industry for both stereo and mono. It’s used by more than 80% of the stereo TV stations because it sounds better than other choices — even where another make of stereo generator is installed.

OPTIMOD-TV provides complete audio processing to give your station a natural and pleasant sound that is easy to listen to. And users tell us that our Automatic Loudness Controller eliminates viewer complaints of excessively loud commercials.

The Orban 275A Automatic Stereo Synthesizer makes your station “all stereo” when desired. Its remote control interface permits you to easily and automatically put the 275A into “bypass mode” for stereo program feeds. For operational convenience, the 275A’s automatic recognition circuit will direct the unit to synthesize mono audio and to pass stereo through unchanged. And the Auto Polarity Corrector will ensure that you’ll never transmit out-of-phase stereo audio to your mono receivers.

Ready to deliver. We’re ready when you are. Tell us your date. We’ll meet it. We have units ready to deliver almost anytime.

A word about transmitter interfacing. In the early days of TV stereo, there was much concern about transmitter plants needing complex modification to adequately pass stereo.

Experience has proven otherwise. Most exciters can be easily modified to accept a composite input. With no further modifications, the resulting transmission usually meets BTSC stereo specifications. (You may need a more careful evaluation if you need SAP and/or PRO.) Further improvements can be implemented as time and budget permit.

Call us for brochures; ask questions — about TV Stereo or the Orban TV Stereo Television System, to find out which Orban TV Broadcast Representative serves you.

Use our toll-free number: (800) 227-4498 (except Canada, CA, AK, HI).

Orban, a division of AKG Acoustics, Inc.
645 Bryant Street, San Francisco, CA 94107 USA
Telex 1-1480 FAX (415) 957-1067
Telephone (415) 957-1067 or (800) 227-4498

© OPTIMOD TV is a registered trademark of Orban Associates Inc.

North American Representatives: CT, MA, ME, NJ, NY, RI, VT: DLE (508) 947-6801; DC, DE, MD, Eastern PA: Bradley Broadcast Sales (301) 948-0650; NC, SC, VA, WV, EME/Broadcast Services (919) 869-3335; Southern MI, OH, Western PA: By James (313) 471-6027; IL, IN, MS: International Broadcast Co., (312) 222-9548; MN: Midwest Communications Corp. (913) 607-6810; KY, MS, IN, AR, LA: Orban (800) 227-4498; AL, FL, GA: Midwest Communications Corp. (305) 625-5155; IA, Northern MI, MN, NE, SD: W. Todd Communications (612) 911-9550; AZ, CO, NM, OK, TX, UT: Dyna Engineering (800) 222-5962; Southern CA, Southern NV: Com Logic (818) 991-7500; Northern CA, Southern NV: Advanced Marketing (415) 365-1984; Orban (415) 957-1067; AK, HI, ID, MT, OR, WA, WY: NORCOM (503) 632-7488; Canada: M.S.C. Electronics Ltd., Ontario & Atlantic (416) 741-3500, Quebec (514) 587-5748.

Circle (10) on Reply Card

www.americanradiohistory.com
Tracking those pesky culprits

By Brad Dick, editor

Repeated calls to repair the same device irritate not only the user, but also the maintenance engineer. Such problems can be a huge source of tension among employees and departments. The operator thinks the engineer either doesn’t care or doesn’t know how to fix the problem. The engineer often perceives an intermittent problem as an operator error, not an equipment failure.

Don’t give up

The easiest type of problem to fix is that of a dead device. It’s much easier to locate the cause of a completely failed device than it is to diagnose intermittent failure. Today’s digital equipment, however, is likely to fail only when a certain combination of events occur. Those events may include time-related or operator-generated sequences or steps. In these cases, it’s almost impossible for a repair technician to duplicate the conditions that result in failure.

Locating the intermittent type of problem can be time-consuming and frustrating. Maybe the problem simply doesn’t occur in the technician's presence. But don’t let your staff members shrug off the problem with an “if-it-ain’t-broke-I-can’t-fix-it” attitude. That approach invariably leads to a repeat complaint. It’s easier to fix a hard failure, but if that’s not the case, the technician cannot simply ignore the operator’s problem.

Where to start

Repairing something that isn’t broken at the moment is more art than science. Through experience, the successful engineer develops a knack for locating problems. But what if you don’t have years of experience or the equipment is new?

Use a systematic approach. If you don't understand how the equipment is supposed to work, ask the operator. You may pick up valuable information simply by listening to the operator explain what was happening when the device failed. An explanation such as, “I accidentally bumped the machine with my chair while I was updating my slide,” could prove extremely useful in helping you identify the problem area. In this case, you might immediately suspect a write error with the disk drive.

Listen to the operators. You may know how the device is supposed to work, but you probably don’t know how they actually use the device. There is a big difference.

After you’ve discussed the problem with the operator, make a thorough visual inspection of the system. Observe the environment. Are factors present that might affect the device’s operation?

Detective work

A common culprit is heat. A new device often will be installed in a rack that contains little other equipment. Over time, other equipment is installed, and no one thinks about the resulting heat build-up. Also consider outside factors. Has new equipment been installed that could affect the device’s operation? An arc welder recently installed in the maintenance shop could account for the glitches in digital equipment operation. An air conditioner or other large motor device can disturb power lines enough to cause problems. The maintenance engineer must be mindful that the cause for failure may be external to the equipment itself.

Sometimes even static electricity can cause intermittent problems. Take the situation of an equipment problem being encountered by only one operator; the other operators didn’t have the problem. It turned out that when the problem-plagued operator wore certain clothes, sufficiently large amounts of static electricity were generated to affect the equipment. It’s easy to see how tempers could flare in such a situation.

Recreate the problem

When you’ve identified the cause, make the appropriate repairs. Re-test the equipment under as many conditions as possible. Place the defective card or component back into the system and observe whether the same problem occurs. If it does, there is a good chance you’ve actually identified the glitch.

What if the failure doesn’t recur? Then you’re back to ground zero. It may be that moving the component or cable was all that was needed to solve the problem.

On the other hand, maybe the card or component wasn’t the problem after all.

You know you’ve found the problem when you can control what happens by what you do to the system. If the system seems to behave independently of your actions, then you have yet to identify correctly what is occurring.

Ask for help

When tracking intermittents, ask the operator to keep a log of problems. Operators usually aren’t trained to identify the cause-effect relationship in failures. They often view problems as random occurrences. A time-vs-failure log will help both you and the operator identify the trigger that causes the problem.

Teach the operators how to keep the logs. Tell them what actions and settings would be important in helping you identify the problem. Convince them that the failure probably isn’t random at all and that their help is important in finding the cause.

Know when to pitch

Some stations are so pennywise that they cost themselves a fortune. There’s a time to fix something and a time to pitch it. Don’t be afraid to tell the boss that it’s time to replace the entire board or device, especially when you’re having problems with computer gear.

Don’t spend time trying to repair most PC-based equipment. If you can’t solve the problem in an hour or so, either send it outside to be repaired (if it’s an expensive device) or get yourself some spare boards. There isn’t much in a PC that can’t be replaced for about $500. Trying to repair a video board or even a motherboard usually is a foolish proposition.

The same logic applies to the inexpensive audio equipment used in many radio stations. Consultants are quick to recognize the financial futility of trying to repair a $500 CD player, but some chief engineers find it hard to admit that a device isn’t worth repairing. Save yourself the grief. When it comes to much of the consumer-type equipment, replacement makes a lot more sense than repair.
“We’ve always known JVC makes great cameras...”

JVC’s engineers specifically designed the KY-25U to be a versatile camera, with multiple signal outputs for docking to any component VTR, satisfying all the rigorous demands of field acquisition. Plus, it’s well balanced, comfortable and feels great to use.

It’s an outstanding camera that will give you over 700 lines of resolution to take advantage of today’s superior recording formats like S-VHS, MII and Betacam. Three 2/3” high density CCDs, each with 360,000 effective pixels and a signal-to-noise ratio of 60dB, ensure exceptional picture quality.

Compare the KY-25U’s compact size and advanced features including high speed shutter, stereo audio, advanced circuitry and much more. You’ll agree...for price and performance there is just no better camera available today.

For further information call 1-800-JVC-5825 or write JVC PROFESSIONAL PRODUCTS COMPANY, 41 Slater Drive, Elmwood Park, NJ 07407.

JVC PROFESSIONAL

...so we were especially interested to hear about their new KY-25U three chip camera. We’ve been looking for a camera that offers at least 700 lines of resolution, can dock with our component VTR’s, and won’t eat up our limited budget.”
Finances and today's engineer

By Brad Dick, editor

How does your station spell success? Probably not r-a-t-i-n-g-s.

Market share is only one measure of a station's success. The primary test of a commercial station's success is financial performance. Today, because many stations operate as part of a group, about the only thing that counts is the amount of money the operation brings in. This increased emphasis on financial performance means that engineers must re-examine ways they can contribute to the numbers on the bottom line.

Your effectiveness in helping the station to be financially successful requires that you employ more than your engineering skills. You also must understand the basics of your station's financial operation. You don't have to be an accountant, but you do have to comprehend how money flows within the system and how your department's expenses and income affect the results. The more you know about the station's finances, the better you'll be able to contribute to its success and, ultimately, your own.

This series can help you develop a basic understanding about station finances and accounting. By the time you are finished, you'll understand how to read a balance sheet and income statement. You also will know how budgets set the stage for your department's objectives and, therefore, how you will be evaluated.

You'll even learn some tricks that will help you earn budget increases. As you'll see, getting your share of the monetary pie requires two things: a knowledge of how the system works and a bit of salesmanship. Let's begin by learning how the financial system works.

Accounting 101

The proper financial operation of a station requires that certain practices be implemented carefully. Budgeting is the one engineers are most familiar with. It's the set of records called ledgers and journals, however, that best describes a station's operation.

The basic financial controls and policies often are administered by the business department. This staff also may be responsible for banking, billings to and collections from advertisers and agencies. Additional duties may include purchases and payment for services used by the station.

Payroll, which also is handled by this staff in most stations, often includes the processing of insurance claims and tax payments. A large station or corporation may have a separate payroll department.

The key to effective accounting is establishing and maintaining accurate financial records. These records form a system that protects the station's assets and provides financial information for decision-making by the management and department staff.

Types of accounts

Most accounting systems consist of various journals and ledgers that record and summarize all financial activity. The basic distribution process is symbolized in Figure 1.

The general ledger is the main accounts book. It contains two sections and records the transactions posted from the other journals. One section records assets, liabilities and capital. The other section lists the income and expense accounts information. The general ledger information is used to prepare the station's two major financial records, the balance sheet and the income statement.

The cash receipts journal lists all income. Each entry contains a revenue account number and identifying payer. This record of advertising receipts includes the gross amount, discounts, agency commission and net amount received. Journal entries are kept for a specific period of time, then are posted or transferred to the general ledger.

All client payments are credited to the proper account in the accounts receivable ledger.

Although station managers prefer to collect money, it's also necessary to pay some of it out to cover expenses. That's where the cash disbursements journal comes in. This journal records all monies disbursed by the station. The entries are broken down into several types of expense categories: engineering, sales, direct, program, general and administrative. Each entry includes the check number, date of payment, amount and company or person paid. Totals are posted later to the general ledger.

The sales journal records sales by client, invoice number, date and amount. It also lists the name of the salesperson. The journal ensures that each salesperson receives proper credit for commission purposes. Trade-outs are listed here along with other revenue-producing activities.

At the appropriate time, these entries are totaled and posted to the general ledger. The gross billing figure is entered on the client's page in the accounts receivable ledger.

The general journal includes non-cash transactions and adjustments. This may incorporate depreciation and amortization and accrued bills not yet paid. The accounts receivable journal records the money owed to the station. Entries are tracked by account. This information is used to prepare an aging sheet, which shows which accounts are current and which are delinquent. An accounts payable ledger records the money owed by the station. Each entry lists the creditor, invoice date, amount and to what account the bill will be charged.

Figure 1 shows the basic record-keeping process within a station. All financial transactions are recorded in these journals and ledgers and form the basis for tracking a station's financial well-being.
NEW FROM ARRAKIS SYSTEMS

10,000 SERIES

For features, performance, price and reliability, NOBODY BUILDS CONSOLES LIKE ARRAKIS.

Call (303) 224-2248

Circle (13) on Reply Card

www.americanradiohistory.com
RF transmissions systems special issue

Do you remember your first transmitter experience and the nightly care it took to keep it up? With today's transmitter systems, daily maintenance is a thing of the past.

Try to recall your first AM, FM or TV transmitter encounter. Unless you're too young to drive, the transmitters were probably tube-based systems that required considerable attention. I remember the first two rigs I worked on. Both were old, but they were still in use. The GE FM transmitter consisted of a 1kW exciter coupled to a 10kW amplifier. I crossed my fingers every morning at sign-on time.

The AM transmitter was so old it made the GE look like new equipment. The AM transmitter was a Western Electric 405 B-1, installed in 1939. We used it for backup, and it always worked. I remember the station chief engineer relating when a lightning storm occurred, he would turn off the relatively new 1960 vintage RCA transmitter because the old Western Electric took the lightning hits better. "It seems to turn those hits around and shove them back up the tower," he said. He sounded convincing.

Those of us who cut our teeth on those vintage devices may remember them fondly. The fact is they required constant attention. Regular maintenance at night was a fact-of-life. Letting one of those old systems operate without daily checks was unthinkable.

Fortunately, today's RF systems are far more reliable. I know of stations today where the transmitters aren't maintained weekly, let alone daily. Even so, these systems continue to provide reliable and high-quality service. One key to the superior operation of modern transmission systems lies in the devices used to generate and amplify the RF signal.

This month's special issue looks inside the RF section of the broadcast chain. Without this important link, all of those CDs with digital audio and high-quality video signals you generate in the studio would never reach the audience.

This month, BE takes a detailed look inside the RF equipment that makes transmission of radio and TV programs possible. Articles this month include:

- "RF Technology: Setting New Standards".......page 26
- "Is Your STL Ready for the 1990s?".................52
- "Tower Lighting Update"...........63
- "Remote-Site Security Primer"...............70

Brad Dick, editor
Once you try our new edit
yourself getting more

It's Sony's adaptable, expandable
BVE-9000. And it offers you more
choices than ever before available in an
edit control system.
The BVE-9000 is designed to work
with just about anything. It's compati-
ble with a vast range of hardware,
which includes D-1,
D-2, Betacam SP®,
Type C 1-inch, and
U-Matic SP® VTRs. And, of course, it
can be hooked up to the entire line of
Sony switchers, digital effects devices,
audio mixers, and
audio tape recorders.
It's a system
that adapts to you. The BVE-9000's
fast, facile operation allows you the
Control system, you’ll find attached to it every day.

Flexibility to customize both your screen and keyboard. You can also create powerful keystroke macros. This is a system that will even adapt to your future. It can control anywhere from three to 28 VTRs, and can be easily reconfigured to accommodate your changing needs. And since it’s designed to accept future product introductions, it’s a system that will truly grow with you. To hook up with your own BVE-9000 edit control system, call 1-800-635-SONY.

SONY
RF technology: setting new standards

New devices are pushing radio and TV transmitters to higher levels of performance, efficiency and reliability.

New solid-state devices and advanced microwave power tubes are changing the way broadcasters put their signals on the air. Semiconductors, in particular, play an increasingly important role in the generation of RF energy. Designs based on semiconductors offer a number of advantages over conventional vacuum tubes, including:

- reduced size and weight.
- lower operating voltages.
- no warm-up period required.
- fault-tolerant designs practical.
- simplified cooling.
- improved operating efficiency (depending on the frequency, power level and type of modulation).
- reduced susceptibility to mechanical shock and vibration.

Solid-state devices are routinely used at power levels of 250W (CW). As designers find ways to improve operating efficiency and remove heat generated during use, the maximum operating power will rise. However, it is unlikely that semiconductors will be able to operate cost-effectively in a CW mode in excess of 500W anytime soon. In order to achieve greater output levels, devices — indeed entire amplifiers — must be operated in parallel. Figure 1 illustrates an RF amplifier using both parallel devices and parallel amplifiers. The input signal is split to drive each amplifier, and the outputs are combined to feed the load.

Parallel amplification is attractive from several standpoints. First, redundancy is a part of the basic design. If one device or one amplifier fails, the remainder of the system will continue to operate. Second, lower-cost devices can be used. It is often less expensive to put two 100W transistors into a circuit than it is to put one 200W device. Third, troubleshooting the system is simplified because an entire RF module can be substituted to return the system to operation. The defective part can be replaced at a later time by the technician or returned to the factory for repairs.

Solid-state systems have their drawbacks. A high-power transmitter using vacuum tubes is much simpler in design than a comparable solid-state system. The parts count in a semiconductor-based transmitter may be an order of magnitude higher than a tube design. Higher parts counts usually translate to higher overall failure rates.

However, it is only fair to point out that failures in a parallel, fault-tolerant design usually will not cause the entire system to fail. Instead, some parameter, typically peak output power, will drop when one or more amplifier modules is out of commission.

This discussion assumes that the design
Quick Terminations

“Meet the Fastest Gun in the West”... Switchcraft

In a showdown, no other audio patch panel is “faster on the draw” than the APP Series from Switchcraft.

Bullet quick terminations are achieved with color-coded insulation displacement connectors (IDCs) that provide speedy wiring access of T, R, S, TN & RN termination points. One simple tool eliminates the need for wire stripping and makes connections fast and easy.

Other sharp shooting features include:

- **Versatile Configurations:** The APP can adapt to any installation as a full assembly, front panel only with 48 jacks installed and cabled to rear panel, or rear panel only.

- **Easy Wire Management:** Wiring guides and cable support bar offer convenient wire routing.

- **Many Normaling Options:** Including top and bottom normals, half normals, and others.

Plus, Switchcraft manufactures a complete line of technologically advanced audio components, jacks, cords, connectors, plugs, and audio adapters.

You don’t have to bite the bullet and put up with inferior audio products. Insist on genuine Switchcraft audio components “... from the fastest gun in the West.”

Switchcraft
A Raytheon Company

5555 N. Elston Avenue
Chicago, Illinois 60630

For instant response to your questions or for more information, call our audio department at 312/792-2700 or FAX 312/792-2129.

Circle (12) on Reply Card
www.americanradiohistory.com
of a solid-state system is truly fault-tolerant. For a system to provide the benefits of parallel design, power supplies, RF divider and combiner networks and supervisory/control systems must also be capable of independent operation.

Operating efficiency
The efficiency of a solid-state transmitter may or may not be better than a tube transmitter of the same operating power and frequency. Much depends on the type of modulation used and the frequency of operation. For example, new solid-state designs have led to significant improvements in the operating efficiency of high-power (50kW) AM broadcast transmitters. This improvement has come from both improved devices and new modulation schemes. High-power (30kW to 60kW) solid-state TV transmitters, on the other hand, operate with about the same overall efficiency as their vacuum tube counterparts.

Choosing between a solid-state or vacuum tube design is not as simple as it might appear on the surface. Many items must be considered, and trade-offs accepted.

Power-handling capability
The primary factor in determining the amount of power a given device can handle is the size of the active junctions on the chip. The same power output from a device may be achieved through the use of several smaller chips in parallel. This approach, however, can result in unequal currents and uneven distribution of heat. At high power levels, heat management becomes a significant factor in chip design.

Specialized layout geometries have been developed to ensure even current distribution throughout the device. One approach involves the use of a matrix of emitter resistances constructed so that the overall distribution of power among the parallel emitter elements results in even

![Figure 1. Schematic diagram of a 600W VHF amplifier using eight FETs in a parallel device/parallel module configuration.](image-url)

The engineers who know RF best already know us very well.

If you're looking for superior rigid coaxial transmission line and RF components, your transmitter or tower might be a good place to start. Take a look around — you'll probably find the bright blue Myat logo. TV and radio RF engineers at Harris, Acrodyne, QEI, Micro Communications, and Broadcast Electronics all routinely specify our products. And so do the antenna experts at Jampro and the engineers for the Navy's top airborne radar system.

All of these manufacturers demand long life and superior efficiency. They expect the highest quality materials, the toughest construction techniques, plus the most effective expansion compensation designs. And, like you, they have budgets and schedules to meet. All of them demand Myat, because they know Myat delivers.

Next time you need rigid transmission line or RF components, call your favorite RF equipment distributor or phone us direct at (201) 767-5380. For quality, durability, value and service, Myat is the name to know.

MYAT, INC. • 380 CHESTNUT ST. • P.O. BOX 425 • NORWOOD, NJ 07648
TELEPHONE: (201) 767-5380 • FAX: (201) 767-4147

Circle (14) on Reply Card
ELEGANT SIMPLICITY

It’s obvious that Platinum Series™ solid state VHF transmitters look like nothing else in the field. But the real beauty of their breakthrough technology is inside.

The elegance of our cooling system, for example. As it quietly distributes constant temperature air flow to each module, individual heat sinks maximize energy transfer with a patent-pending design that nearly doubles the surface area of conventional extruded heat sinks.

The simplicity of Platinum Series operation, for another. Broadband solid state PA modules eliminate complicated, time-consuming tuning and other adjustments. And they’re self-protecting against six fault conditions.

Harris engineers have made Platinum Series maintenance simple, too. The hot-pluggable modules are easily accessible from the front panel—so are the power supplies, controllers and test points. Routine maintenance tasks can be performed safely, even while your transmitter is on the air.

Platinum Series transmitters from 1 to 60 kW offer a host of advantages like these. Which is why the majority of U.S. stations who bought a solid state high power VHF transmitter in the past year chose Harris as their manufacturer.

We invite you to take a closer look at the innovative Platinum Series of solid state VHF transmitters from 1 to 60 kW. Simply call (217) 222-8200, Ext. 3408. (Outside the continental US, fax your request to (217) 224-2764.) We’ll send you full information on the Platinum Series—solid state VHF transmitters that take a quantum leap into the future of broadcasting.

© 1990 Harris Corporation

Circle (15) on Reply Card
thermal dissipation. Figure 2 illustrates the *interdigitated* geometry technique.

With improvements in semiconductor fabrication processes, output device SOA is primarily a function of the size of the silicon slab inside the package. Package type determines the ultimate dissipation because of thermal saturation with temperature rise. A good TO-3 or a 2-screw-mounted plastic package will dissipate approximately 350W–375W if properly mounted. Figure 3 demonstrates the relationships between case size and power dissipation for a TO-3 package.

Power devices

Today, both bipolar and field-effect transistor (FET) semiconductors are used in broadcast transmitters. FET, particularly metal-oxide silicon FET (MOSFET), devices are common. Silicon RF power FETs are generally N-channel MOS enhancement mode devices. Most are vertical structures, meaning that current flow is primarily vertical through the chip with the bottom forming the drain contact. Vertical construction has the advantage of providing greater current density, which translates to more watts per unit area of silicon.

The design of an FET RF power amplifier has much in common with a bipolar amplifier. Both must include circuitry to supply bias voltages and matching networks to perform the necessary input/output impedance transformations over the operating frequency band. Most FET amplifiers produced today use the same basic collector voltages as bipolar systems (12.5V, 28V and 50V). Higher-voltage FET devices also are available.

There is no FET parallel to the common zero base bias bipolar RF amplifier. FET amplifiers require forward gate bias for optimum power output and gain. The bias network may consist of a simple resistive divider.

MOSFET devices can usually be operated in parallel for higher output power at frequencies up to 150MHz-200MHz. Circuit instabilities can sometimes arise at higher frequencies, however, unless careful attention is given to amplifier design and component layout.

Operating limits

Power MOSFETs have found numerous applications in RF transmission equipment because of their unique performance attributes. MOSFETs do not suffer from secondary breakdown as do bipolar transistors. A variety of specifications can be used to indicate the maximum operating voltages a specific device can withstand. The most common specifications include:

- gate-to-source breakdown voltage,
- drain-to-gate breakdown voltage,
- drain-to-source breakdown voltage.

These limits mark the maximum voltage excursions possible with a given device before failure. Excessive voltages cause carriers within the depletion region

Figure 2. Interdigitated geometry of emitter resistors used to balance currents throughout a power device chip.

Figure 3. Relationship between case (die) size and transistor dissipation.

Figure 4. Safe operating area (SOA) curve for a power FET device.
Introducing the Gates Line of 1, 2.5 & 5 kW Solid State AM Transmitters.

Gates. It’s more than a name — it’s a tradition of quality and value. To earn that name, these affordable new transmitters had to meet the highest industry standards in five key areas:

Value
- Overall efficiency of up to 72% cuts power costs.
- Multimeter plus PA voltage, PA current, and forward/reflected power meters standard.
- Output tuning included as standard.
- Remote inputs compatible with both TTL and relay-type remote systems.

Durability
- No tube failures, time-consuming adjustments or replacement costs.
- Modular construction with easily accessible socketed MOSFETs.
- “Chimney design” air handling keeps transmitter clean and dust-free.
- 100% solid state “soft-failure” power amplifiers.

Simplicity
- Six independently adjustable power levels accommodate virtually all PSA/PSSA requirements.

- Color Stat™ front panel with signal flow block diagram and red Fault LEDs shows transmitter status at a glance.
- Rugged, dependable discrete logic controller.

Reliability
- Automatic overload power cutback keeps the transmitter on the air at the highest safe power level.
- Bandpass output network has proven its lightning survival capabilities in the field.
- Automatic instant AC restart.
- Battery backed-up controller memory.

Performance
- Patented Polyphase Pulse Duration Modulation technology.
- Unsurpassed reach with 130% positive peak capability.
- Minimal distortion, overshoot and ringing for crisp, “ear grabbing” sound.

Original circa-1946 Gates transmitters are still on the air to remind us that value, durability, simplicity, reliability, and performance are as important right now as they ever were. So if you want an affordable solid state transmitter with all the “old-fashioned” advantages, call Harris today for more information on the newest AM transmitters — and how they earned the proudest name in radio.

Harris Broadcast Division
Marketing Department
P.O. Box 4290, Quincy, IL USA 62305-4290
Tel (217) 222-8200 Ext. 3406
Fax (217) 222-7204
of the reverse-biased PN junction to acquire sufficient kinetic energy to cause ionization. Voltage breakdown also can occur when a critical electric field is reached. The magnitude of this voltage is determined primarily by the characteristics of the die itself.

Safe operating area

The safe dc operating area of a MOSFET is determined by the rated power dissipation of the device over the entire drain-to-source voltage range (up to the rated maximum voltage). The maximum drain-source voltage is a critical parameter. If exceeded even momentarily, the device can be damaged permanently.

Figure 4 shows a representative SOA curve for a MOSFET. Limits are plotted for several parameters, including drain-source voltage, thermal dissipation (a time-dependent function), package capability and drain-source on-resistance. The capability of the package to withstand high voltages is determined by the construction of the die itself, including bonding wire diameter, size of the bonding pad and internal thermal resistances. The drain-source on-resistance limit is simply a manifestation of Ohm's Law; with a given on-resistance, current is limited by the applied voltage.

To a large extent, the thermal limitations described in the SOA chart determine the boundaries for MOSFET use in linear applications. The maximum permissible junction temperature also affects the pulsed-current rating when the device is used as a switch. MOSFETs are, in fact, more like rectifiers than bipolar transistors with respect to current ratings; their peak current ratings are not gain limited, but thermally limited.

In switching applications, total power dissipation is composed of both switching losses and on-state losses. At low frequencies, switching losses are small. As the operating frequency increases, however, switching losses become a significant factor in circuit design.

Applying RF semiconductors

The primary criteria for constructing a solid-state amplifier for RF applications include:

- output power.
- operating frequency.
- required bandwidth.
- noise performance.
- efficiency desired.
- power supply voltages available.
- cost.

Achieving all of the design objectives is a difficult task. Trade-offs are usually required to produce a practical system. The most basic design variable is the type of power device used. For solid-state RF applications the primary choices are bipolar transistors and FETs. Table 1 lists some of the principal comparison parameters.

Solid-state RF amplifiers

Solid-state transistors make use of various schemes employing pulse-type modulation and high-efficiency linear techniques. In order to achieve the needed RF output level, several semiconductor devices are usually assembled in a single module. These 500 building blocks are then combined to provide whatever power level is needed.

Because of the unpredictable conditions that some transmission equipment will experience over its operating lifetime, protection circuits are required. Each module must be protected against voltage transients on the V+ input line and RF output port, thermal overloads and severe load VSWR. Some designs also incorporate a soft-start feature. With this approach, when the system is turned on, the modules do not simultaneously draw current from the power supply. Rather, each module switches on at a different time, thereby reducing the initial surge applied to the supply. The delay times may range from a few milliseconds to a few seconds.

Each module in a typical high-power system is combined through a combing network. In addition to coupling the modules to obtain higher power levels, the network also protects the modules from the load and from each other. In a properly designed combiner, the failure of one module will have no effect on the other operating modules.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>BIPOLAR</th>
<th>FET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current carrier</td>
<td>minority</td>
<td>majority</td>
</tr>
<tr>
<td>Input impedance</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Switching speed</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>good</td>
<td>high</td>
</tr>
<tr>
<td>Gain medium</td>
<td>low</td>
<td>excellent</td>
</tr>
<tr>
<td>Paralleling capability</td>
<td>difficult</td>
<td>high</td>
</tr>
<tr>
<td>Thermal-handling capability</td>
<td>excellent</td>
<td>easy</td>
</tr>
</tbody>
</table>

Table 1. Comparison of bipolar and FET operating parameters.
3:45 Thursday, way ahead.
He's a tough client but you were ready. And right now you can hear him saying.
"Fast...this is going fast."

You could tell him about the speed of your new Abekas A72 CG—How it sizes characters instantly, does italics, drop shadows, outlines—instantly.
All with no waiting to render.

But you don't.
Device requirements

High-power RF applications demand a high degree of performance from transistors and FETs. Operation at high frequencies requires a device geometry and package that offers the lowest possible stray inductance and capacitance. Operation at high power levels requires a device that can tolerate high temperatures and a package that offers low thermal resistance to its accompanying heat sink. Figure 5 shows some of the more common RF transistor packages. A variety of approaches have been taken to solving the problems of generating high powers at high frequencies.

The BLV37 transistor (Philips) is a representative device. Rated for 250W dissipation, the package is a 5-lead rectangular flange envelope with a ceramic cap. All leads are isolated from the flange to facilitate a good thermal bond with the external heat sink. The transistor package (designated SOT-179) measures 13.2mm×28mm. It includes a thin base layer of beryllium oxide between the transistor junction die and the package, which incorporates an Alkonite flange. Alkonite is a strong heat-conductive substance that can be machined flat for optimum contact with the heat sink. Internal input matching provides for wideband operation and high power gain.

Key specifications for the BLV37 transistor include:

- maximum power dissipation, 250W.
- typical operating frequency, 108MHz.
- nominal collector voltage, 28V.
- minimum gain, 11dB.
- typical operating class, Class B.
- typical operating efficiency, 65%.

This device is intended for use in FM broadcast transmitters and commercial/military mobile radios.

The BLV37 package contains two transistors in a push-pull configuration. Each device has 1,400 emitters on an area of just 2.5mm×4.8mm. This arrangement provides for even current distribution on the die, thereby eliminating hot spots. Emitter ballasting resistors, more than 700 per device, further improve heat distribution.

Stage coupling

The typical gain of a single RF amplifier stage ranges from 5dB to 12dB, depending on the operating frequency and bandwidth. To obtain higher gain, stages are combined in series. Usually the input and output of each stage is designed to interface using a common impedance (typically 50Ω resistive) to facilitate stage-to-stage compatibility and isolation. Band-limiting is usually a useful by-product of interstage coupling.

Coupling networks are needed to provide for the best possible energy transfer from stage to stage. The input impedance of an RF power transistor is low, decreasing as the power increases or as the chip size becomes larger. Impedance transformations ratios of 10-20 are not uncommon. Coupling circuits must deal with a number of parameters, not the least of which is operating bandwidth.

Figure 6 shows the equivalent circuit for the input impedance of an RF power transistor. (Courtesy of Motorola.)

![Figure 6. Equivalent circuit for the input impedance of an RF power transistor. (Courtesy of Motorola.)](image-url)
In The Category Of “Innovative Broadcast Facilities,” These Are The Nominees.

If there actually were such a category, they would all be winners.

Why? Because they’ve purchased a Sony Multi-Cassette System.

In fact, Sony has installed over 40 Multi-Cassette Systems nationwide in the past eighteen months alone. A winning solution to a very real challenge confronting broadcast facilities.

It’s a vision worthy of recognition. And one which Sony supports with their commitment to technical and service leadership.

For more information, contact your Sony Broadcast Sales Engineer. Or call 800-635-SONY.

Sony Communications Products Company, 1600 Queen Anne Road, Bloomfield, New Jersey 07003. Sony is a registered trademark of Sony.

© 1990 Sony Corporation of America.
transistor consists principally of a capacitance that varies as a function of operating frequency. (See Figure 7.) The internal resistance of the device is generally much higher than the load, and is typically neglected.

Impedance matching is accomplished only at the input of the device. Interstage and load matching are basically impedance transformations of the device input impedance and of the load into a value determined by the power demanded from the output device and the supply voltage.

Two techniques are commonly used to accomplish the required coupling: transformers and transmission-line techniques, including stripline. For frequencies below about 100MHz, matching is usually accomplished with ferrite transformers. Above 100MHz, transformers are too inefficient to compete with simpler transmission-line devices. Transmission-line networks are only practical at VHF frequencies and above. Lower frequencies translate to longer wavelengths, and the length of coax or stripline required to yield a 1/2- or 1/4-wave section can be prohibitive.

Output networks

The design of a network to resonate and couple the output of an RF transistor or FET to its load is a complicated exercise, which involves balancing a number of parameters. Amplifiers that operate Class C rely on a tank circuit to resonate the stage.

Consider an amplifier designed to deliver 50W into a 50Ω load, working with a 12V power supply. A pair of L networks is used for impedance coupling. The basic equation \(E = PR \) shows that to deliver 50W into a 50Ω load, 50V rms must be supplied. In order to get 50V rms from a 12V supply, the output network must act as a step-up transformer. Stated from a different perspective, the output network must transform the load so the transistor sees a lower impedance.

Suitable circuits include transformers, pi networks, T networks and L networks. The approach chosen depends on the operating frequency, preference of the designer and the power level. If the network has reasonable Q, the waveform of Figure 8 will be observed at the transistor collector when the amplifier is driven to full output. The output will swing down from the supply voltage to a minimum point \((E_{out})\), limited by the transistor, and will swing above the supply voltage by approximately the same amount. This increased voltage is a result of the flywheel effect of a resonant circuit. In order to achieve the

Heart Monitor.

No matter how you look at it, the heartbeat of your TV station depends on a healthy transmission line. If a problem develops, how would you ever know until it's too late?

Now there's a way to check your line thoroughly and accurately before a simple problem becomes a major malfunction. It's the PRH-1 High Power Pulse Reflectometer from Delta Electronics.

The rugged PRH-1 puts out a low current, 5,000 volt variable pulse that overcomes the obstacles of long transmission lines, with no risk of damage. What you end up with is a series of echoes from the pulse displayed on your oscilloscope screen which represent your transmission line. The shape of the echoes determines the nature of any problem.

The PRH-1 operates like a champ in high RF fields, withstanding interference without any visible degradation of pulse echoes. This makes the PRH-1 ideally suited for crowded antenna farms and community antennas, unlike traditional time domain reflectometers. Its ability to measure AM and FM lines as well make the PRH-1 a sound investment.

What you don't know about your transmission line can hurt you. Considering the consequences you'll suffer being knocked off the air, shouldn't you consider buying the PRH-1 as your top priority?

To see actual PRH-1 test results, call or write today. Delta Electronics, Inc., 7503 General Washington Drive, P.O. Box 11268, Alexandria, VA 22312. Telephone: (703) 354-3350, FAX: (703) 354-0216, Telex: 90-1963.

©1989 Delta Electronics, Inc.

36 *Broadcast Engineering* May 1990

Circle (20) on Reply Card
Videotek's new combo monitor gives you more inputs, more output and more memory for less money.

Only Videotek's TVM-620 waveform monitor/vectorscope gives you three selectable inputs for multiple viewing combinations, a roster of other winning features and the economy of a two-in-one unit.

Parade or overlay modes let you view any combination of up to three inputs simultaneously with one touch of our new membrane control panel. And ours is the only combo monitor that currently offers user-defined, one-button memory recall.

For portable monitoring of video signals during remote shoots, the TVM-620 is available with an optional internal AC/DC power supply (ADC-1). A four-pin XLR connector provides an easy interface with a variety of DC power supplies.

Engineers look to Videotek for thoughtfully-designed equipment that's built to be reliable and priced to be in your ballpark. See your Videotek dealer today about the TVM-620 plus our full line-up of test equipment.

Circle (21) on Reply Card

243 Shoemaker Road
Pottstown, Pennsylvania 19464
(215) 327-2292
TWX 710-653-0125 FAX (215) 327-9295
desired 50W output, the coupling network must transform the 50Ω load to present 1Ω
to the transistor.

This greatly simplified example brings up an important point in output coupling
circuit design: Seldom are output networks
designed to match the output impedance
of the transistor to the external load. The
"equivalent circuits" concept states, in
part, that maximum power transfer occurs
when the load is matched to source. (See
Figure 9.) The key point is that maximum
power is not always wanted. Output net-
works are designed and adjusted to the im-
pedance that will result in the desired
power output and bandwidth. There can
be a big difference between maximum
power output from a stage and the operat-
ing power that will provide the required
parameters and not destroy the output
device.

It should be obvious that just because
the output impedance of the transistor is
not matched, neither is it ignored. Choices
a device for a given application in-
volve the following criteria:

- available supply voltage,
- gain required at the operating fre-
cquency,
- output current required,
- thermal dissipation at the operat-
ing power level.

The device also may have some reac-
tance that can be used to advantage in the
coupling network.

Fixed-frequency circuits
One of the often-mentioned attributes

Continued on page 42
It takes teamwork to produce the industry’s best-performing router. It takes confidence to guarantee it for ten years.

At Utah Scientific, people know how to work together to bring you the best in product design, product performance, and product support. Products like the AVS-2, the new generation of Utah Scientific routers.

With the best operating specs in the business, the AVS-2 offers these exclusive features:

- Surface mount component technology—increased packaging density for maximum size reduction with no sacrifice in signal integrity
- Up to 525 crosspoints per rack unit including power supplies
- 1280 x 1280 matrix sizes with 8 separately addressable levels
- HDTV compatible—video frequency response flat to 30 MHz
- Matrix cards automatically assigned to location—change card positions without reprogramming
- Full matrix salvo capability—reconfiguration in one vertical interval
- Only multi-sourced components are used—no hybrid circuitry.

And even though the AVS-2 is a revolutionary new design, we have the confidence to guarantee it for ten full years—parts and labor.

That means you can have confidence every time you buy a Utah Scientific product. Confidence that you are buying the best. Confidence that our team of experts is available to help you whenever you need it. Confidence that your Utah Scientific switcher will keep working for you year-after-year with the best reliability record in the industry.

Call us today for more information about the AVS-2 or any other Utah Scientific product.

Utah Scientific
4750 Wiley Post Way
Salt Lake City, Utah 84116-2878
(801) 575-8801 Toll Free: (800) 453-8782

Dynatech Broadcast Group
Ampex D2. A better business machine... from the ground up!
Yes, it's true that our new VPR-200 and VPR-250 D2 video recorders are designed and built specifically for broadcast operations. It's also true that they offer the broadcaster superior signal quality. But a much more important consideration is that these machines make business sense. Here's how.

You probably amortize your recorders over 5 or 7 years, but the "200" and "250" are built to be around a lot longer than that—you're not going to find any "bent metal" here! Precision-milled castings and pre-aligned guide assemblies not only give you dependable long life, but also low maintenance costs. Replaceable heads and easy access components reduce downtime.

We've given your operators some help, too. For example, these are the only D2 machines designed specifically for broadcast that make it easy to change program length. With program compression, your operators merely enter the program length required and the machine does the rest. You get no bounce, no blur video, and recovery of all four audio channels! And because all machine selections are clearly displayed and easily changed without cumbersome menus, operator training time and operator errors are significantly reduced.

Then there's virtually instant lock-up and 60 × shuttle speed to save you time and money, plus air lubricated tape guides, and... but you get the idea.

You may not have thought of video recorders as "business machines" before, but we think your first VPR-200 or 250 will change your mind. Call 1-800-25AMPEX for more information.
of a solid-state amplifier is its wide operating bandwidth. However, broadband operation for solid-state systems is not really cleverness at all. Using semiconductor devices means working at much lower voltages than vacuum tubes. Low voltage means low impedance, and low impedance translates to high-value capacitors and low-value inductors in coupling networks. With these design criteria, it often becomes impractical to make components variable. As a result, fixed networks are used.

The result is amplifiers that do not have to be tuned or that cannot be tuned. Solid-state amplifiers also are typically more sensitive to changes in load impedance. This fact must be taken into account in the design of transmission line, filter and antenna systems.

Vacuum tubes

The phrase “high technology” is perhaps one of the more overused descriptions in our technical vocabulary. It is generally reserved for discussion of integrated circuits, fiber optics and satellite systems. Few people would associate high technology with vacuum tubes. The notion that vacuum-tube construction is more art than science may have been true 10 or 20 years ago, but today it's a different story.

The demand on the part of broadcasters for tubes capable of higher operating power and frequency, and the economic necessity for tubes that provide greater effi-

Figure 9. The “equivalent circuits” concept: a power source (a), no matter how complex, can be represented by a simple equivalent circuit (b) consisting of a voltage source with a series impedance. (Source: Mobile Radio Technology, an Intertec publication.)
Put Dolby SR before the cart

There's no doubt that compact discs and other digital audio sources have helped to raise broadcast audio quality to new heights. And to some degree, almost all broadcasters have embraced this new technology.

But you probably continue to use carts right along with these new formats. For on-air playback of your programming, as well as commercials, spots, and jingles, carts are still tough to beat for convenience, ruggedness, and familiarity.

Carts do have one limitation, though: sound quality that doesn't measure up to today's high expectations. Dolby SR (spectral recording) overcomes that limitation. With Dolby SR, your carts can capture the full range of dynamics present in all your source material, digital or analog. And using Dolby SR to produce spots and jingles ensures an outstanding finished product.

You've always had good reason to use carts. Now with Dolby SR there's a great one: sound quality updated for today's demanding broadcast environment.

The Dolby Model 363 provides two channels of Dolby SR in a compact, reliable package ideally suited for both production and on-air playback.*

*Broadcast units incorporating up to 12 channels of Dolby SR for use with multiple cart machines or open-reel recorders are also manufactured by Pacific Recorders & Engineering Corp., Carlsbad, CA.
Now you can give your clients the:
- low cost
- convenience
- durability and
- performance of the

NR2HF rubber shielding!

EMI shielding used in the space program

The performance problem:
Any client who is adding today's sensitive electronic equipment will experience occasional and sometimes very expensive interference problems of sound and video equipment. He can also expect a certain "dulling" of performances which he probably will blame on equipment quality. Electronic interference has become a universal problem. Major computer makers now advise shielding around computer rooms. As more and more EMI-producing sources crowd around his sensitive equipment, two things happen:

- First, the frequency of costly errors increases in hospital diagnostics, factory control, bookkeeping, billing, and financial equipment. These come from infrequent but large pulses, beeps, and hums of interference.
- Second, for clients who have recording, video, and communication equipment, there is a general decline in QUALITY -more static or just a dullness and lack of clarity. This is usually blamed on the equipment itself or its maintenance. It comes from low-level hums and pulses.

The economic problem
In almost every real-world case, the interference problem is solved by an EMI reduction of 90% to 99% - of 10 dB to 20 dB. Since most clients' major problems come from identifiable directions, painting a few walls, ceilings, and floors with NR2HF is more than adequate. Insisting upon conventional shielding simply results in the client paying too much or refusing all shielding.

But, if construction is completed without shielding, the cost of electronic errors will soon exceed the savings. Then operations must be stopped, equipment moved, the NR2HF shielding applied, floors re-laid, and walls repainted. The cost to the client can now be $7,000 for a $5,000 shielding job plus perhaps $80,000 for lost production and customer problem resolution.

The client will appreciate your looking ahead.

NR2HF electronic shielding paint is used right at the launch pad.

- NR2HF lets you give customers the shielding that they need for as little as one fifth of previous costs ... in one fifth of the time.

- Conventional shielding would cost them years of net profit or money taken from other important programs.

- Now that the space program, hospitals, recording and broadcast studios, factories, and many other users during the past five years, have proved that NR2HF is a major new shielding component - often the only one required, a growing number of consultants are designing shielding around it. Clients increasingly require it.

- NR2HF is so durable and effective that it is used right at the shuttle launch pad where there is intense vibration, hot combustion gas, and salt air. So easy to apply - like house paint - that it is usually applied by a commercial painting contractor or by the client.

- Circle the Reader Service Number below or FAX us for test data, application instructions, users and prices.

Micro Circuits Co., Inc.
Ph: 616-469-2744 • FAX 616-469-2742
10800 Maudlin Road
New Buffalo, MI 49117

Our 42nd year in electronics

Circle (86) on Reply Card

44 Broadcast Engineering May 1990

...ciency and reliability, have moved power tube manufacturers into the high-tech arena.

Power grid vacuum tubes have been the mainstay of transmitters since the beginning of radio. The need for new power tubes is being met today with new processes and materials. Users are asking for systems that incorporate solid-state components in low - and medium-power stages and vacuum tubes in high-power stages. Each technology has its place, and each has its strengths and weaknesses.

Device design
Vacuum tube technology is advancing just as fast as developments in solid-state technology, although accompanied by less fanfare. Today, power tubes are designed with an eye toward high operating efficiency and high gain/bandwidth properties. Above all, a tube must be reliable and provide long operating life. The design of a power tube is a lengthy process that involves computer-aided calculations and modeling. The design engineers must examine a laundry list of items, including:

- **Cooling.** How the tube will dissipate the heat generated during normal operation. A high-performance tube is of little value if it will not provide long life in typical applications. Design questions include whether the tube will be air-cooled or water-cooled, the number of fins the device will have, and the thickness and spacing of the fins.

- **Electro-optics.** How the internal elements line up to achieve the desired performance. A careful analysis must be made of what happens to the electrons in their paths from the cathode to the anode, including the expected power gain of the tube.

- **Operational parameters.** What the typical interelectrode capacitances will be, and the manufacturing tolerances that can be expected. This analysis includes: spacing variations between elements within the tube, the types of materials used in construction, the long-term stability of the internal elements and the effects of thermal cycling.

High-power tetrode
Tetrodes have been used in AM, FM and VHF TV transmitters for years. Until recently, however, tetrodes were not used in high-power UHF transmitters because of device limitations. Advancements in vacuum tube technology have now permitted the construction of high-power UHF transmitters based on tetrodes. Such devices are attractive because they inherently operate in an efficient Class A-B mode. At least two 25kW tetrode-based...
FUJINON’S FOCUS ON THE FUTURE.

THE BEST LENSES FOR TODAY’S CCD CAMERAS.

The newest CCD cameras demand unprecedented lens performance. Far higher transmission, far lower distortion. Every FUJINON 2/3” and 1/2” ENG/EFP lens delivers all the image quality built into today’s cameras.

That shouldn’t be surprising. No one can match FUJINON for experience, innovation, performance or selection. And no one can match the commitment FUJINON made to CCD lens design and development. New optics, coatings and the tightest manufacturing tolerances in our history result in the best built, best performing lenses available. True to tradition, each lens is built for years of use and abuse and weatherized against the elements.

For the new CCD cameras in your future, focus on FUJINON for the exact lens — and all the accessories — to meet any production need. For more information or a demonstration, call your nearest FUJINON representative.
Figure 10. Simplified schematic diagram of the Klstrode tube

A 120kW MSDC-equipped transmitter installed at KVDA Channel 60 in San Antonio. (Courtesy of Varian TVT)
And Cablewave's FM Broadcast Antennas ARE PROVEN First Rate Performers!

Proven performance and reliability are two of the many reasons broadcasters from Canada to Chile choose Cablewave Systems. Manufactured under stringent quality control, our most popular FM antenna lines, CFM and HFM, are both designed with high power-handling of 5-40 kW with up to 16 bay configurations. The CP-1000 and HP-1000 FM antennas are suitable for lower power applications of 1-4 kW. Our ECFM and EHFM antennas are designed for the lower power requirements of educational stations.

Write or call for our new 12 page FM BROADCAST ANTENNA literature — Cablewave Systems, 60 Dodge Avenue, North Haven, CT 06473, (203) 239-3311.

Cablewave Systems
TV transmitters are now on the air in common amplification service. The TH563 tube (Thompson) is capable of 35kW peak-of-sync power output in split (separate aural/visual) operation.

UHF tetrodes operating at high-power levels provide essentially the same specifications, gain and efficiency as tubes operating at lower powers. The anode power supply is much lower in voltage than the collector potential of a klystron- or Klystrode tube-based system (8kV is common). The tetrode also does not require focusing magnets.

Efficient removal of heat is the key to making a tetrode practical at high power levels. The TH563 uses water-cooling. Air-cooling at such levels is impractical because of the fin size that would be required. Also, the blower for the tube would have to be quite large, reducing the overall transmitter ac-to-RF efficiency.

The expected lifetime of a tetrode in UHF service is shorter than a klystron of the same power level. Typical lifetimes of 8,000 to 15,000 hours have been reported. It must be noted, however, that the replacement cost of a tetrode is much less than a klystron or Klystrode tube.

Work is under way on methods to extend the operating limits of the tetrode, while still retaining the benefits of its inherent Class A-B operation. Tetrodes designed for 50kW peak-of-sync power have been considered by at least one tube manufacturer.

Microwave power tubes

The klystron is the mainstay of UHF broadcasting. The klystron is a linear-beam device that overcomes the transit-time limitations of a grid-controlled tube by accelerating an electron stream to a high velocity before it is modulated. Modulation is accomplished by varying the velocity of the beam, which causes the drifting of electrons into bunches to produce RF space current. One or more cavities reinforce this action at the operating frequency. The output cavity acts as a transformer to couple the high-impedance beam to a low-impedance transmission line. The frequency response of a klystron is limited by the impedance-bandwidth product of the cavities, which may be extended by stagger tuning or by the use of multiple-resonance filter-type cavities.

For decades, the klystron has been the primary means of generating high power at UHF frequencies. Output powers for multicavity devices range from a few thousand watts to 60kW. The klystron provides high gain and requires little external support circuitry. Mechanically the klystron is relatively simple. It offers long life and requires minimum routine maintenance.

The operating efficiency of a high-power transmitter is important to every end-user. The penalties for low-efficiency include high operating costs, shortened tube life and increased complexity of the cooling system. Much progress has been made within the last few years to dramatically improve the efficiency of power tubes used in UHF TV broadcasting.

Comparing efficiency

Comparing the efficiency figures of TV transmitters is complicated by the many variables involved. Any examination of efficiency must be tempered with an under-

Figure 11. Mechanical design of the multistage depressed collector assembly. Note the "V" shape of the 4-element system.
Panasonic Digital Is Olympic Choice For Barcelona

ATLANTA, GA (March 30, 1990) – Panasonic Broadcast Systems Company released information today that its parent company, Matsushita Electric Industrial Co., Ltd. (MEI), Osaka, Japan, has announced that its 1/2-inch composite digital video systems have been designated the official broadcast equipment for the 1992 Barcelona Olympic Games by the Comite Organizador Olímpico Barcelona '92 (COOB).

According to the official supplier contract, Matsushita, the manufacturer of Panasonic, Technics and Quasar products, will supply its new 1/2-inch digital video systems to the broadcast organization for the Olympic Games, the Radio Television Olimpica '92 (RTO). All equipment will be passed through PESA Electronica S.A., an authorized prime contractor for the supply of Olympic broadcast equipment.

Matsushita’s 1/2-inch composite digital video systems were jointly developed with NHK, the Japanese national broadcasting corporation, and will be available in both studio VCR’s and camcorders. The camcorder model will be the world’s first one-piece unit to incorporate a fully digitalized camera and the new 1/2-inch digital VCR unit.

Some 400 systems will be supplied by Matsushita to the RTO and installed at the International Broadcasting Center. The RTO will provide history’s first Olympic coverage employing digital video systems. Through this arrangement, stations from other countries will be supplied with footage of the finest picture quality available.

The new 1/2-inch composite digital format features not only compact and lightweight configuration, but also multigeneration digital editing free from deterioration of picture quality. Available with such equipment as camcorders, portable VCRs and studio VCRs, the Matsushita 1/2-inch digital system will allow the integration of all processes from field shooting and post production to studio transmission with the same format.

Matsushita will supply ENG/EFP-use digital cameras and professional audio systems to the RTO.

AQ-11 Latest in All-digital Processing Cameras

ATLANTA, GA (March 30, 1990) – For a new dimension in ENG operation, Panasonic Broadcast Systems Company (PBSC) introduced the AQ-11 3-CCD digital processing camera here at NAB. The unit can be directly attached to the any compact broadcast 1/2-inch VTR without an adaptor to form a highly sophisticated portable Camcorder system.

The Panasonic Broadcast AQ-11, with its slim profile, weighs about seven pounds and warms up in less than three seconds. It incorporates three densely packed 400,000-pixel (754H x 487V) 2/3” Interline Transfer CCDs to provide the unit with a horizontal resolution of 700 lines. The camera has a signal-to-noise ratio greater than

Continued on page 8.
ATLANTA, GA (March 30, 1990) – Panasonic Broadcast Systems Company ushered in a new era of television recording with the introduction of its AJ-D350 1/2-inch composite digital videotape recorder at the 68th Annual Convention of the National Association of Broadcasters here. The AJ-D350 is the first example of the new 1/2-inch Composite Digital Videotape Recording format that Panasonic expects to see widely adopted by the broadcast and related production and post production industries in the immediate future.

“The new 1/2-inch digital machines will cost substantially less to purchase and to operate than their D2 predecessors,” said Stanley E. Basara, President and COO of Panasonic Broadcast Systems Company. “More importantly, we’ve accomplished those objectives while greatly improving the performance of composite digital recording for both professional broadcast and teleproduction environments.”

The AJ-D350 1/2-inch Composite Digital Studio VTR is just the first in a series of new 1/2-inch digital VTRs that will include a broad line of products from a field portable recorder, a camera/recorder, to a Digital M.A.R.C. system. Models of these units were on display at the company’s exhibit on the NAB convention floor.

The AJ-D350, as well as other VTRs use half-inch Metal Particle videotape cassettes offering more than 2-hours of running time. Not only are the cassettes themselves much smaller than the 19mm (3/4-inch) videotape cassettes required by D2 recorders, but they are also less expensive to purchase and to store. Cassettes for the 1/2inch digital video systems will come in two different sizes with four different play-durations (64 and 125 minutes and 50 and 95 minutes).

Many new technical advances were forged during the development of the new composite digital recording format. A new 8-14 channel coding system, for instance, led to a packing density 2.5 times greater than that achieved in D2 recording systems. A new error correction format is four times more powerful than the approach used in D2 systems. A new audio recording format utilizing double error correction, field shuffling audio sector allocation and guardband editing insures audio interchange and robust and reliable editing. Other original audio recording techniques provide for scratch protection and head clog protection.

The AJ-D350, an editing VTR, is enhanced markedly by the development of an entirely new editing technique which first erases the original data and then generates a guardband at the IN and OUT points. Even with tracking error, an edit does not result in any unerased original with the same azimuth as the new data. Wide playback heads read only the new data with the correct azimuth. With the error rate minimized, maximum interchange reliability is assured.

A new amorphous head design has increased sensitivity dramatically. Search speeds up to 100X normal are practical.

The Panasonic 1/2-inch composite digital videotape systems was developed jointly with NHK to meet the standards they have proposed to all manufacturers. “We are hopeful that in the next few weeks or months, other manufacturers will announce their intentions to developed machines to meet this standard,” said Mr. Basara.

Shown at NAB: Models of a piece camera/recorder (top) and a field portable recorder soon to be added to the digital line.
NBC Adds $2 Million Worth of MII Equipment for News Bureaus

ATLANTA, GA (March 30, 1990) – Panasonic Broadcast Systems made public the NBC decision to add two million dollars in new MII field and studio recorders over the next few months to all its domestic and foreign news bureaus. “We are delighted,” said Stanley E. Basara, President of Panasonic Broadcast Systems Company, “to meet the ENG requirements for NBC Network News.”

Michael J. Sherlock, President, Operations and Technical Services, NBC said, “This latest round of MII purchases is merely a reflection of NBC’s continued commitment to the MII format. A major portion of the new MII gear will be used to upgrade those foreign news bureaus still using 3/4-inch U-Matic equipment. The remainder of the MII equipment will be distributed among the domestic news bureaus.” Mr. Sherlock continued, “In point of fact NBC has taken delivery of over 2000 MII machines to date. We are extremely satisfied with the performance, reliability, and the resulting operational cost savings the format has provided.”

“I would like also to add that Panasonic Broadcast Systems has been very responsive to our needs in terms of training, service and parts. We look forward to continued business with Panasonic,” Mr. Sherlock said.

New Dockable Recorders in the Cost-effective MII VTR Line

ATLANTA, GA (March 30, 1990) – Panasonic Broadcast Systems Company (PBSC) introduced the economically priced MII AU-410 and AU-410S high performance dockable recorders designed for ENG and EFP applications here at the NAB Show.

The AU-410 and -410S provide one-inch quality on a compact cassette which can be used in any MII VTR or player without an adapter. The 410S features somewhat higher video and audio signal performance in order to meet the more stringent demands of broadcast use. Recording time is more than twenty minutes.

The new units weigh about eight pounds and have a signal-to-noise ratio of better than 40 dB for the 410 and better than 54 dB for the 410S. Both recorders are equipped with video confidence heads for both luminance and chrominance channels. The luminance channel playback is available through the viewfinder or conventional monitor while the chrominance signal is monitored by an indicator.

The AU-410 and AU-410S features two longitudinal tracks with Dolby™ C noise reduction, and two high quality FM tracks (CH3/CH4) that are simultaneously recorded on the chrominance track. The units also have a built-in speaker for audio monitoring.

The Panasonic Broadcast MII units have a SMPTE LTC and V/ITC time code generator with an eight digit LCD display; a connector is provided for external input. Also featured is automatic backspace editing capability accurate within plus 3 or minus 2 frames. Playback can be monitored with the camera viewfinder or a black and white monitor by means of the video output connector.

The AU-410 will be available in August at a suggested retail price of $8500. At the same time, a high performance version of the unit, the AU-410S, will be available at a suggested retail price of $9,500.
Low-cost AU-63 Designed For High Quality Automatic Tracking

ALTANTA, GA (March 30, 1990) – Panasonic Broadcast Systems Company introduced here at the 68th Annual Convention of the National Association of Broadcasters the AU-63—a new low-cost MII half-inch format studio playback VTR. The AU-63, priced at $13,000, is designed as a high quality automatic tracking playback unit for broadcasting or for source use in editing and dubbing.

Many of the unit’s features have been specially designed for its principle role as a source or playback machine in editing and dubbing applications. A Tape Speed Override adjustment compensates for differences in playback speed in a second VTR in ranges from +/- 6.25 percent to +/- 12.25 percent. An 8-digit LCD displays time code, CTL and all other data necessary to check the operation of the AU-63. Extensive front panel LED indication is provided for reference SCH, color framing, Dolby NR, and other data.

The AU-63’s analog component and advanced CTCM system, incorporating an amorphous head, assures superb playback quality from metal-particle cassettes that permit more than 50 minutes of playback. A small 20-minute cassette can be used without an adaptor; footage can be edited and broadcast directly from ENG tapes without dubbing.

An internal component digital time base corrector (TBC) provides 32 line correction for the baseband video signal. Complete synchronization with other equipment can be controlled by the internal TBC and external TBC reference input.

By plugging in the optional AU-F65 time Code Generator/Reader, the AU-63 reads SMPTE time code from recorded tapes, switching between vertical interval and longitudinal data according to tape speed. User bit data can be retrieved independently for either VITC and LTC (time code).

The AU-63 provides high-speed picture search, up to 32 times normal speed, in forward and reverse; the jog mode’s quick response permits accurate, convenient picture search. Slow motion speed can be set to 1/2, 1/8, 1/16, or 1/32 times normal speed prior to normal playback for smooth transfer using the VAR key with no disruption in the picture.

Also, the unit allows up to four cue points to be registered and the independent Cue Up button provides speedy access to desired cue points. A tape speed override permits manual adjustment of playback speed differences between the AU-63 and a second VTR in ranges of plus or minus 6.25 or plus or minus 12.25.

The S-Vide (4-pin) connector of the new Panasonic Broadcast Studio Player provides separate output of luminance (Y) and chrominance (C) signals for editing and dubbing — it assures that high picture quality is maintained during transfer to S-VHS and VHS format videotapes. When playing back tapes with color framing, the unit will control color framing in a 4-field sequence to prevent H-shift at edit points and produce a clear picture.

In addition, the AU-63 features four channel audio — two FM channels supplement the two longitudinal channels, providing stereo as well as bilingual reproduction. Dolby C noise reduction circuitry provides superior audio signal-to-noise performance on longitudinal tracks.

With the Studio Player’s on-screen mode setting, more than 40 fine user adjustments, that once required DIP switch changes, can now be made quickly and easily on-screen. There is less likelihood of error since all settings can be verified on the monitor. A digital hour meter self-stores accumulated running time that can be displayed on the monitor to keep track of maintenance cycles.

The AU-63 is equipped with the RS-422A, a serial (9P) remote interface, that is compatible with existing broadcast serial control equipment. It also accepts 50-pin parallel input by means of an optional interface board. An 8-digit LCD displays time code, CTL and other data necessary to check the operation of the AU-63.
50th M.A.R.C. Cart System Delivered

ATLANTA, GA (March 30, 1990) – Panasonic Broadcast Systems Company announced the delivery of the 50th M.A.R.C. automated recording/playback cassette system at the National Association of Broadcasters (NAB) show. Panasonic Broadcast has sold more than 55 M.A.R.C. cart systems to date.

Panasonic Broadcast will deliver M.A.R.C. Sytems to KTRV in Nampa, Idaho, and to KGSW in Albuquerque, New Mexico, immediately after NAB show, where both systems will be displayed.

Since the stations' agreement for display at NAB caused deliveries to be almost simultaneous, Panasonic will award both 50th delivery honors.

Panasonic Broadcast's "cart machines" have been purchased by ABC, CBS, and Fox network affiliates and independent stations throughout the U.S. as well as the NBC network and O & O stations. NBC has taken delivery of these systems for use at network facilities in New York and Burbank, as well as stations in Chicago, Washington, Cleveland, and Denver. The M.A.R.C. system plays on-air commercials, as well as programming, not only for these diverse stations but for the Family Channel, a major cable program supplier, as well.

PBSC Posts Strong 4 Quarter Finish: M.A.R.C. Leads The Way

SECAUCUS, NJ (January, 1990) – Panasonic Broadcast Systems Company put a strong finish on its 1989 season with sales in the closing weeks of the calendar year topping $3-million.

Especially gratifying to the company was the sale, in just the past few weeks, of four M.A.R.C. systems, the company's automated video cassette system. The new M.A.R.C. buyers were KTRV, a Fox Television Network affiliate station in Boise, Idaho and the News Press & Gazette, headquartered in Jackson, Mississippi which has purchased a 100-cassette M.A.R.C. system for use at its Wilmington, North Carolina station, WECT. The Providence Journal Broadcast Group purchased two M.A.R.C. II-400 systems for use at its KGSW-TV, station in Albuquerque, New Mexico and at its Tucson, Arizona station, KMSB-TV; both of which are Fox Television Network affiliates.

The strong fourth-quarter performance for Panasonic Broadcast has not been limited to the M.A.R.C. system. In the same period, nearly $2-million worth of recorders and cameras were sold to broadcasters as well as business and institutional television producers. Especially strong was the new low-cost AU-60 Editing VTR, more than 35 of these systems were sold in the span of just a few weeks.

"We're looking at this strong 4th quarter finish as a harbinger of the New Year," said Stanley Basara, president and CEO of Panasonic Broadcast. "We've got an extremely strong hand to play in 1990 in both digital and analog video systems and I think this past quarter is just the beginning of what might well be the Panasonic decade."

WBRE Goes With M.A.R.C. For Automation

SECAUCUS, NJ (March, 1990) – WBRE-TV, Channel 28 in Wilkes-Barre, Pennsylvania, has ordered the M.A.R.C. II-100 MII automated recording/playback cassette system and six AU-60 VTRs, from Panasonic Broadcast Systems Company.

The M.A.R.C. II-100, scheduled for delivery this summer, replaces two quad cart machines for spot play and other VTRs for program playback at the NBC affiliate, according to chief engineer, David Swartz. "We investigated all the systems currently available, including some sequencers," said

Continued on page 6
WBRE Goes With M.A.R.C.
For Automation.
Continued from page 5

Swartz. "We were looking for the
best quality picture, cost-effectiveness
for operations, tape longevity
and size, and versatility of system."

"Panasonic’s M.A.R.C. II-100
promises to be WBRE-TV’s first
step in station automation.
"Because the M.A.R.C. is con-
trolled by a Compaq PC we can tie
it to our engineering department
computer for daily database back-
up and link it to our traffic system,"
said Swartz.

"We expect the M.A.R.C. to
get us through at least three hours
of spots and programming during
local access," he added. "It will
also enable us to be more creative
with fast-paced promos since the
M.A.R.C. can easily handle four or
five, five-second IDs back-to-
back."

Five of the station’s new AU-
60 VTRs will be dedicated to the
M.A.R.C. with one used externally.
"We’ve been using three AU-650
recorders for more than a year to
create break tapes," said Swartz.
"They’ve been utilized heavily with
few problems and the quality of the
tapes coming off the VTRs has
been as good as the originals."

High Performance Studio VTR With Auto Tracking Debuts

ATLANTA, GA (March 30, 1990)—An advanced, high perfor-
mance Mill Studio VTR with noiseless auto tracking and 90-minute
playback — the AU 665 — was intro-
duced by the Panasonic Broadcast Systems Company (PBSC) here at
the NAB show.

The new AU-665 VTR incorporates a 9-bit digital Time Base
Corrector with 32 Hp-p correction capability to reduce quantizing
noise and provide signal-to-noise ratio of better than 50 dB. It incor-
porates one event editing function recall and has an optional CCIR
601 output to provide a digital signal feed to a D-VTR.

The new studio VTR combines advanced video/audio quali-
ity and features confidence playback during editing, S-VHS in/out
terminal and input switch, XLR TC in/out terminals, field DOC, digital
timer and on-screen display.

Color framing is controlled in a 4-field sequence to eliminate the
H-shift at editing points and assures optimal picture quality in
editing. Like other Mill format VTRs the unit features 90 minutes of
recording/playback though the new AU-665 can run a 20-minute
cassette without an adaptor.

An important feature of the AU-665 is a standard adaptive
dege comb filtering that delivers

heads that allow real-time monitoring of picture and sound during
recording. Two FM audio tracks
(CH3/CH4) enable audio recording and playback on four separate
channels.

Besides insert/assemble editing, the AU-665 offers Audio
Split, Variable Memory, On-The-Fly in the AT mode, Preview,
Review, Trim, Go To, Auto Tags,
Retry and Discontinuous Time
Code. It is equipped with parallel
(50-pin) and serial (9-pin) remote
interfaces. The AU-665 will be
available in November at a sug-
gested retail price of $35,500.

Model AU-665 High-Performance
Mill Studio VTR With Auto Tracking
KPNX-TV Finds Place In The Sun For MII

SECAUCUS, NJ (March, 1990) – KPNX-TV, Channel 12, in Phoenix, Arizona has completed its conversion to Panasonic Broadcast Systems' MII recording format this past October with the addition of three AK-400 cameras, reports chief engineer Chuck Deen. KPNX began the conversion to MII with the purchase of a large number of field and studio MII VTRs more than two years ago.

The versatile three-CCD color video cameras are used in a variety of applications from rough-and-ready EFP and ENG to shooting station promos, commercials and sporting events for KPNX-TV's production wing.

Known for capturing the lion's share of area Emmys and other awards for its news coverage, KPNX airs three hours of local news weekdays.

For news photographer Howard Shepherd, who began in the industry carrying a 65-pound film camera, the AK-400's mobility and easy handling is crucial to getting the news whenever and wherever it happens. "We do lots of spot news here and since that happens so quickly, if you need to spend an extra 10 seconds getting your camera ready, the story could be gone," says Shepherd.

"The AK-400 powers up quickly and can white balance instantly," he notes. "This is critical for spot news. As soon as I get in the car I turn on the camera so when we arrive on-site I'm ready to roll tape while other photographers are still waiting to power up and white balance."

Shepherd, who had previously been using tube-type ENG cameras, also appreciates the AK-400's low-light levels. "In deep black and shadows you can see lots of detail," he says. "I've used the black stretch feature several times and found it very helpful; that's a feature I haven't seen on other chip cameras." Meeting the rigorous Phoenix's desert climate is also a day-to-day necessity for the AK-400s. "It gets so hot here that many cameras will turn off at 115 degrees," states Shepherd. "But the AK-400 is still operating at 125 degrees."

A recent feature Shepherd lensed on fraud perpetrated against aliens trying to obtain U.S. citizenship under the amnesty program, subjected the camera not only to heat but also the heavy dust of Mexican-border locations. "The dust didn't seem to bother the camera at all," says Shepherd. "All the AK-400's critical areas are capped with spring-loaded doors to keep dust and grime out."

As photographer/editor at KPNX-TV’s Gannett Production Services, the production wing of the station, Steve Snow has a different perspective of how the AK-400 performs in a wide range of activities.

"I have to admit the AK-400 was not my first choice," said Snow. "But it's surprised me; I didn't think it would be as good as it is. It's certainly the best buy in the market at the moment."

Snow has used the camera docked to its AU-400 recorder as well as with the AU-500 MII-format portable VTR. He finds the AK-400 very responsive in low-light conditions and likes such design features as the adaptable mic holder, phantom power switch and viewfinder display.

Snow recently packed up his AK-400 and traveled to Yuma and Tucson, Arizona to tape features on two outstanding volunteers for the "Twelve Who Care" series telecast on all Gannett stations. "We spend time with volunteers, following them around and capturing the activities they're involved in," explains Snow. He admits that he was hard pressed to keep up with the likes of 87-year-old Fan Kane in her work with minority and brain-damaged children and Margaret Smith's fund-raising for kids with Downs syndrome.

"I've used a lot of chip cameras over the past few years, so I think I'm able to make good comparisons," says Snow. "The AK-400 stands up very favorably with other chip cameras and with the Sony 330 tube camera we used to have. My experience with the AK-400 in the field has been just great. I really enjoy using it."
Young Broadcasting Goes With MII For Present And Future

SECAUCUS, NJ (March, 1990) – When Young Broadcasting’s CBS affiliate WLNS-TV in Lansing, Michigan decided to make a complete switchover to half-inch for its news, on-air playback and multi-cassette operations, it chose Panasonic Broadcast’s MII format.

“This is a total revamp for us, replacing our 3/4-inch equipment,” explains operations directors Steve Hillman. “We’re confident the MII format will not only help us step into the 1990’s but also take us through to HDTV.

The image quality of MII is outstanding; it’s as close to 1-inch as you can get,” said Hillman who selected four AK-400 lightweight, compact, 3-CCD cameras for ENG. “We’re the number-one station in the market and we strongly believe the future of local TV is news. The AK-400 is an excellent camera that’s going to keep us way ahead of the competition.”

WLNS-TV outfitted its four edit suites with a combination of four AU-60 Editing VTRs and four AU-630 studio players with dynamic tracking. Two additional AU-60s are utilized to record network and satellite feeds, one for news and one for sports.

Sister-station WTVO-TV in Rockford, Illinois, which started its conversion to the MII format two years ago, recently ordered six AU-60 VTRs for three news and sports edit suites, an AU-505 portable player for field playback and AK-400/AU-400 ENG camera/recorder systems.

“Young Broadcasting has made a major financial commitment to moving us into the next decade,” said WLNS-TV’s Steve Hillman. “We’re excited to be taking that step with Panasonic technology. Panasonic has shown us its products and service are second to none.”

AQ-11 Latest in All-Digital Processing Cameras Continued from page 1

60dB and high sensitivity of 2,000 lux at F5.6.

The new Panasonic Broadcast camera is equipped with a variable speed (1/100, 1/125, 1/250, 1/500, 1/1000, 1/2000) electronic shutter that minimizes lag of moving objects and permits the creation of “stop action” effects. Sampling frequency is 4 fsc (4X subcarrier frequency), allowing direct connection to composite digital VTRs and a wide range of other digital equipment.

The AQ-11 features registration accuracy better than 0.05% and its digital processing technology practically eliminates registration shifts due to time lapses or temperature changes in ambient conditions, making adjustments unnecessary. A large variety of settings can be controlled centrally with the AQ-EC1 Extension Control Unit and setting values are indicated in the viewfinder.

The AQ-11’s digital processing circuitry allows selection of peak frequencies within a range of 2.5 MHz to 5.5 MHz; a selection of optimum values according to individual shooting conditions. It also enables precise shading at high speed (within 10 seconds), at a touch of a single button.

The camera provides automatic shading correction and set-up memory to compensate for high-light situations and bring out details even from within dark areas. A two-dimensional digital filter suppresses cross-color contamination from the mixture of subcarrier and high frequency luminance signals. More than 500 gamma curve points can be designated for a pinnacle of precision never before attainable.

Panasonic Broadcast Systems Company
One Panasonic Way, Secaucus, NJ 07094 (201) 348-7671
Panasonic Broadcast Systems Company Field Offices: (Northeast) Washington, DC; (703) 759-6900; (Southeast) Norcross, GA; (404) 925-6772; (Midwest) Arlington Heights, IL; (708) 981-7325 (317) 852-3715; (Southwest) Fort Worth, TX; (817) 695-1132; (Western) Cypress, CA; (714) 373-7209; (Northwest) (408) 866-7974, Parts, Service, Technical Information: 1-800-222-0741

Call toll-free (800) 888-1967 Ext. 15 for more information and receive a FREE informative video cassette, “The Professional’s Guide to Component Video Systems.”
standing of the measurement parameters. Some manufacturers specify overall transmitter ac-to-RF efficiency, including the cooling system. This number is really what the end-user needs to know. With klystron-based transmitters, the efficiency of the final amplifying stage also is important because that is where most of the energy is expended.

Because the klystron is a Class A device, the average dc input power does not vary significantly with picture content. The figure-of-merit (FOM) is defined as:

\[\text{FOM} = \frac{\text{RF peak power output}}{\text{average dc input at 50% APL}} \]

Peak-of-sync efficiency = FOM x 100%

Work over the last two decades to ease the burden faced by UHF stations has been evolutionary. Early klystrons for TV service had an FOM of between 0.30 and 0.40. The introduction of mod-anode pulsing enabled FOM performance of greater than 0.40 to be achieved using these tubes. Improved designs and new methods of tuning, which traded gain for efficiency, brought the basic tube FOM to more than 0.40. External cavity klystrons of this efficiency that were fitted with a pulsed angular control electrode (ACE) further improved the FOM to between 0.50 and 0.60. The latest generation of external cavity klystrons have achieved a basic FOM of 0.50, which when pulsed may be raised to between 0.60 and 0.75. Integral cavity ACE tubes are now in service with a potential FOM in excess of 0.80.

The next step up the efficiency ladder is revolutionary, not evolutionary. The Klystrode tube, the first true high-efficiency high-power UHF transmitting device to go into regular service, and the MSDC klystron achieve a dramatic leap in FOM.

Klystrode tube

The basic concept of the Klystrode dates back to the late 1930s, but it was only within the last decade that serious engineering effort was put into the tube to make it a viable product for high-power UHF service.

The fundamental advantage of the Klystrode is its ability to operate Class B. The result is higher efficiency when compared to a conventional klystron. (A simplified schematic diagram of the Klystrode tube is shown in Figure 10.)

Several variations on the basic Klystrode theme have been developed, including air-cooled klystrons operating at 15kW, 30kW and even 60kW. Air-cooling is practical at these power levels because of the improved efficiency that Class B operation provides.

So far, 10 Klystrode-equipped transmitters have been placed into service (by Comark), and another five are under construction. Power levels ranging from 10kW to 240kW have been delivered and commissioned. Both split and common amplification have been successfully used. A transmitter is currently under construction for WSNSTV in Chicago that will operate with 120kW in common amplification, air-cooled. FOM performance of Klystrode-equipped transmitters has consistently measured between 1.20 and 1.45.

MSDC klystron

Developmental work on the multistage depressed collector (MSDC) klystron began in the mid 1980s, although experimentation with depressed collector klystrons dates back to at least the early 1960s. Early products offered a moderate improvement in efficiency, but at the price of greater mechanical and electrical complexity. The MSDC design, although mechanically complex, offers a significant gain in efficiency. MSDC tubes have been built around both integral-cavity and external-cavity klystrons. The devices are essentially identical to a standard klystron, except for the collector assembly. Mathematical models provided researchers with detailed information on the interactions of electrons in the collector region. Computer modeling also provided the basis for optimization of a beam recombination scheme incorporated into the device. Beam recombination is achieved by including a transition region between the RF interaction circuit and the collector under the influence of an intermediate magnetic field. It is interesting to note that the mathematical models made for the MSDC project translated well into practice when the actual device was constructed.

From the electrical standpoint, the more stages of a multistage depressed collector klystron, the better. The trade-off, predictably, is increased complexity and, therefore, increased cost for the product. There also is a point of diminishing returns that is reached as additional stages are added to the depressed collector system. A 4-stage device was chosen for production design because of these factors. As additional stages are added above four, the resulting improvement in efficiency is proportionally smaller.

Figure 11 shows the mechanical configuration of the 4-stage MSDC klystron. Note the "V" shape that was found, through computer studies, to provide the best "capture" performance, minimizing electron feedback.

Currently, three MSDC-equipped transmitters are on the air (built by Harris and Varian/TVT). They have been in about two to three months to system operation at 60kW and the other at 120kW.

Recent developments

This article was going to press as the NAB convention approached. Several developments were expected to be announced at the show, including second sources for both the Klystrode tube and the MSDC klystron. The latest news in this area will be covered in the NAB wrap-up report in the June issue.

BIBLIOGRAPHY

Is your STL ready for the 1990s?

You're running out of time to bring your STL into compliance.

Nothing lasts forever. Case in point: The expiration date is just about up on the Federal Communications Commission rules that have exempted grandfathered TV auxiliary microwave stations from meeting minimum antenna standards and minimum path-length standards. Similar minimum antenna standards have been proposed for aural microwave links. This article will review those standards and provide a guide as to whether your studio-transmitter link (STL) will be affected.

Minimum antenna standards

In Docket 21505 (October 1980), the FCC adopted minimum antenna standards for TV STLs and intercity relays (ICRs) in the shared 13 GHz band. STL applications submitted after Oct. 1, 1981 had to meet minimum antenna standards. Existing fixed microwave stations and applications on file as of Oct. 1, 1981 were given a 10-year grandfather period. They had until Oct. 1, 1991 to upgrade their transmitting antennas.

FCC General Docket 82-334 subsequently extended minimum antenna standards to the 2 GHz, 7 GHz, 18 GHz and 31 GHz TV STL/ICR bands. Any existing fixed links were grandfathered until Oct. 1, 1991.

To promote sharing of the spectrum, the commission adopted two categories of minimum standards. These standards, A and B, define the antenna's beamwidth and off-axis discrimination or radiation pattern envelope (RPE). Fixed-link microwave stations that have not upgraded their antennas to category A in frequency congested areas and to at least category B in other areas will not have their license renewed after 1991.

The minimum antenna performance standards for the 2 GHz, 7 GHz, 13 GHz and 18 GHz TV STL/ICR bands are shown in Figures 1-4. In general, at least an 8-foot dish must be installed for category A performance in the 2 GHz and 7 GHz bands and at least a 6-foot dish is needed for category B performance. For the 13 GHz band, category A generally means at least a 6-foot dish, and category B performance calls for a 4-foot dish.

At 18 GHz, high-performance antenna with diameters of two feet or more generally will provide category A performance. Standard-performance antennas with diameters of two feet or more usually will provide category B performance. The only FCC requirements for 31 GHz-band antennas are that the antenna half-power beamwidth (HPBW) not exceed ±2° and the antenna have a gain of at least 38 dB. The author has been unable to locate data on 31 GHz antennas, and is not aware of any equipment being manufactured commercially for the 31 GHz broadcast auxiliary band.
THE MOST IMPORTANT AUDIO CONTROL EQUIPMENT WORKS FROM HERE TO HEAR

Keeping sound clean and accurate can make or break your audio projects. SONEX from illbruck ensures that you're getting the sound you want. Our complete line of acoustical materials gives you total control—in the studio, the control room, or wherever sound quality is critical. There's a reason SONEX continues to lead—nothing works better. Put the leader to work for you; call today for all our performance specs and application guides—800-662-0032.

SONEX
The only acoustical foam with the illbruck anechoic-wedge—over 400% more surface area than flat materials. Controls reverb, reflections, and resonances—beautifully. The proven performer.

SONEX 1
The same unbeatable performance of SONEX but in materials that meet all Class 1 regulations. For demanding applications where heat or fire are factors. Safe for you but deadly for sound.

SONEX CEILINGS
Suspended ceiling treatments that deliver new levels of acoustical performance. Unique, contemporary designs. Available in a variety of styles and colors.

BARRIERS & COMPOSITES
When the problem requires more than absorption, illbruck barriers deliver. Single layer vinlys to multilevel laminates. Lead performance without lead price or problems.

illbruck
Sonex Acoustical Division
5155 River Road N.E.
Minneapolis, MN 55421
1-800-662-0032
In MN: 612-521-3555

Circle (31) on Reply Card
The minimum antenna standards currently apply only to transmitting antennas. Table 1 summarizes available microwave antenna performance and approximate costs in each band. The table is intended to provide only general guidelines for antenna size vs. performance. Verify the performance specifications and FCC antenna category for the actual make and model of antenna you plan to use.

What is a frequency-congested area?

Whether a category A antenna must be installed in place of a category B antenna depends on whether your STL/ICR transmitter is located in "an area subject to frequency congestion." This term is used in Section 74.641 of the rules. Unfortunately, the commission never got around to defining it. However, if a grandfathered link is located in a major metropolitan area, there is little question that it is located in "an area subject to frequency congestion," and category A antenna standards would apply.

Similarly, if a link is located in a small community with few or no other microwave paths, the station is located in an area not subject to frequency congestion, and category B antenna standards would apply. What is unclear is the status of TV microwave stations located in communities that fall somewhere between these two extremes.

In February 1990, the Society of Broadcast Engineers (SBE) asked the commission to clear up the issue. The SBE filed a rulemaking petition proposing that all standard metropolitan statistical areas (SMSAs) be considered frequency-congested areas. The petition also proposed that the FCC create a list of speci-

COMPLETE YOUR DEFINITION OF "CLASS A," CALL CONTINENTAL ELECTRONICS

Continental Electronics is here to assist you with your new definition of "Class A." You can increase power, increase revenue base, and expand your listening audience by upgrading your transmitting facility.

Continental has engineered four transmitters to meet your needs. The 500/1000 Watt transmitter is single phase and is only 42 inches tall. This transmitter and the 3.8 kW are totally solid-state and designed for high efficiency and reliability.

The 2.5 kW and the 5 kW transmitters are single tube transmitters. All Continental FM transmitters include an internal harmonic filter and the Ultimate 602A Exciter.

For service after the sale, call the Continental 24-hour tech line. At Continental, service is an attitude, not a department.

So, call your Continental Sales Manager to get the complete definition of "Class A."

varian®
continental electronics division
PO. Box 270879 Dallas, Texas 75227
Telephone: 214-381-7161 Fax: 214-381-4949 Telex: 73398

Circle (30) on Reply Card
THE HEART
OF A GREAT TV TRANSMITTER!

Thomson Tubes Electroniques!

Make sure the UHF transmitter you invest in comes with the unique competitive advantage of a TH-563 tetrode from Thomson. With 25 kW in common and 35 kW in vision-carrier amplification, the TH-563 is based on the same principles as the TH-582, which routinely achieves more than 20,000 hours of operational lifetime.

Efficient, compact, linear - TV transmitters using the new TH-563 tetrode from Thomson outperform their competitors with unsurpassed reliability.

For additional information, mention code FM

Circle (32) on Reply Card

www.americanradiohistory.com
fic sites, outside of SMSAs, which also would be considered "subject to frequency congestion." It was recommended that this list be updated annually, under delegated authority to the Mass Media Bureau chief or the Auxiliary Services Branch chief. Once a site made the list, it would stay on the list because it would be unlikely to become uncongested.

The SBE proposed that a set of geographical coordinates be assigned to each site on the list, and that any microwave station within 3km of those coordinates be considered as located at that site. The SBE anticipates that members of its numerous frequency-coordinating committees and others would help the commission create the initial list and make additions as needed.

The proposal is a departure from previous attempts by the commission and others to define frequency-congested areas based upon burdensome "bean counting" methods. Those methods required a detailed census of all microwave links within a given area. An advantage of the SBE's SMSA/designated site approach is that it would be easy to implement.

With the exception of the New England states (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont), SMSA boundaries comprise one or more county boundaries. Therefore, congested area status could be determined simply by referring to a list of SMSA counties. In the New England states, SMSAs are comprised of New England Consolidated Metropolitan Areas, or NECMAs. For administrative convenience, the SBE has proposed that county boundaries also be used in the New England states because, for the most part, NECMA boundaries comprise most of their affiliated county boundaries. Until the commission acts on this peti-

![Table 1. Some of the performance characteristics available with today's antennas.](image)

<table>
<thead>
<tr>
<th>BAND</th>
<th>ANTENNA DIAMETER</th>
<th>TYPICAL HPBW</th>
<th>TYPICAL GAIN</th>
<th>FCC CATEGORY</th>
<th>APPROXIMATE COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>2GHz</td>
<td>6 ft</td>
<td>5.5°</td>
<td>29.4 dBi</td>
<td>B</td>
<td>$1,600</td>
</tr>
<tr>
<td>2GHz</td>
<td>8 ft</td>
<td>4.1°</td>
<td>32.0 dBi</td>
<td>A</td>
<td>$2,400</td>
</tr>
<tr>
<td>7GHz</td>
<td>6 ft</td>
<td>1.7°</td>
<td>39.9 dBi</td>
<td>B</td>
<td>$1,800</td>
</tr>
<tr>
<td>7GHz</td>
<td>8 ft</td>
<td>1.3°</td>
<td>42.4 dBi</td>
<td>A</td>
<td>$2,500</td>
</tr>
<tr>
<td>13GHz</td>
<td>4 ft</td>
<td>1.4°</td>
<td>41.5 dBi</td>
<td>A</td>
<td>$1,500</td>
</tr>
<tr>
<td>13GHz</td>
<td>6 ft</td>
<td>0.9°</td>
<td>45.1 dBi</td>
<td>A</td>
<td>$1,800</td>
</tr>
<tr>
<td>18GHz</td>
<td>2 ft (standard)</td>
<td>1.9°</td>
<td>38.9 dBi</td>
<td>B</td>
<td>$700</td>
</tr>
<tr>
<td>18GHz</td>
<td>2 ft (high-perf)</td>
<td>1.9°</td>
<td>38.9 dBi</td>
<td>A</td>
<td>$1,700</td>
</tr>
</tbody>
</table>

Note: Data based upon composite of performance characteristics for Andrew Corporation, Cablewave Systems and Radiation Systems antennas. Costs are based upon 1989 price lists.

![Figure 2. Current FCC minimum antenna standards for the 7GHz band.](image)
Introducing the Series 1 cart machine from ITC. As the world's leading cart machine manufacturer, we understand how to make a superior cart machine. And the new Series 1 cart machine is superior.

Equally as important, we realize each station has a different need and a different budget. That's why we designed the new Series 1 with all the features you need at a realistic price. Pound the buttons. Flip the switches, jam a cart in and yank it out a few hundred thousand times. We've built the new Series 1 to take anything you can dish out, 24 hours a day, 365 days a year.

So before you mortgage your program director or settle for something of less value than ITC, check out the new Series 1 today.

You won't need an excuse to buy one.

For more information and the names of the Series 1 dealers nearest you, call ITC toll free at 800-447-0414 or call collect at 309-828-1381 from Alaska and Illinois. Outside the USA, contact your local ITC distributor.
tion, the congested area question will not be resolved. In the interim, the author suggests that licensees upgrade to category A status any fixed-link transmitting antennas that do not meet even category B criteria. The cost differential is only about $1,200 at 2GHz, $700 at 7GHz and $300 at 13GHz. For grandfathered links, which are already category B, the question is

Figure 3. Current FCC minimum antenna standards for the 13GHz band.
The Tek 1780R: We don’t mind if you judge by appearances.

Even at first glance, you can see that the Tek 1780R is in a class by itself. Only the 1780R offers full-bandwidth analog measurement capabilities with separate, complementary waveform and vector displays. Component and composite capabilities are provided through four video inputs and a front-panel probe input. You get polar SCH presentation, precision differential gain and phase displays required to test modern television systems, and more. All made easy enough for even first-time operators.

But enough said. Ask your nearest Tektronix representative for a demonstration of the 1780R: by all appearances, the most advanced analog video measurement set you can buy!
more troublesome. It is a matter of no change at all vs. upgrading to a category A antenna.

How will the deadline be implemented?
Exactly how the commission may implement the 1991 deadline is not known. The author's informal discussions with FCC staff members have disclosed that at least one possibility is under consideration. It would have the FCC license renewal documents that are issued after Oct. 1, 1991 list exactly which STL and ICR stations are being renewed. This would differ from the current practice of allowing the Part 73 license renewal to serve as a blanket renewal of all associated auxiliary broadcast stations.

It is presumed that the commission will have established its congested area criteria by that time. If so, the agency can use those guidelines to decide which grandfathered links with category B antennas will be subject to renewal.

You may not want to wait until the FCC issues your next renewal document to find out whether your STL or ICRs are going to be renewed. It might be smart to go ahead and upgrade the transmitting antenna to category A if the link is located in an SMSA, on a congested mountaintop or on a tall tower with several TV auxiliary links. Such sites would be obvious candidates for inclusion on the proposed list of additional sites outside of SMSAs that would be subject to frequency-congested status.

Minimum path-length requirements
A second upcoming requirement for grandfathered stations concerns the minimum path length adopted in 1987 by the Third Report and Order to Docket 82-334.

Figure 4. Current FCC minimum antenna standards for the 18GHz band.
A POWERFUL FORCE IS SURFACING IN COMPONENT GENERATORS

Take full advantage of component television’s many capabilities with the powerful new component generator, Model 425 from Leader. First, though, we should explain what the 425 is doing in the jaws of this primitive, half-ton killing machine. The generator develops a number of test signals tailored to gauge distortion and relative timing in component systems. Among these is a new timing signal we call the “shark fin.” It exposes relative timing errors over a 2 MHz bandwidth rather than at a single frequency.

The 425 generates both component and composite test signals. These include a number of test signals dedicated to component analysis (available in GBR, Y/R-Y/B-Y, and Y/Time-Compressed Chroma) as well as the more familiar test signals applied to the composite feeds. You can order the 425 in either Betacam or MII format.

No matter what end of the business you’re in—from ENG to post-production—if you’re going to swim with the sharks, do it with the help of a cutting-edge component generator, the new Model 425 from Leader.

For our full-line catalog, in NY call 516-231-6000. Or call toll free:

1 800 645-5104
LEADER
FOR PROFESSIONALS WHO KNOW THE DIFFERENCE
These requirements are summarized in Figure 5. Minimum path-length requirements do not prohibit short paths at lower microwave frequencies. They do require that the effective isotropic radiated power (EIRP) be reduced according to formulas included in Section 74.644(a) of the FCC rules.

After April 1, 1992, grandfathered links will become subject to the same minimum path-length requirements that new fixed links have had to meet since 1987. These links will be required to reduce their EIRP for paths shorter than 17km (10.6 miles) at 2GHz and 7GHz or shorter than 5km (3.1 miles) at 13GHz if a newcomer station makes a showing that the higher EIRP is preclusive. New microwave links have no such option. They must comply with the minimum path-length EIRP limits in order to be licensed.

950MHz aural STL band

In January, again at the invitation of the FCC, the SBE filed a rulemaking petition proposing to extend minimum antenna standards and minimum path-length requirements to microwave stations in the 950MHz aural STL/ICR band. The same category A and B antenna standards now required for Private Operational Fixed Microwave Service stations in the 952MHz-960MHz band were proposed for aural STL/ICR stations in the 944MHz-951MHz band. These requirements are shown in Figure 6.

A minimum non-EIRP restricted path length of 22km (3.7 miles) was proposed, along with a transmitter output power limit of 10W. The SBE suggested that the frequency tolerance for aural STLs and ICRs be tightened to ±0.0005%. The petition also asked that new aural STLs and ICRs be required to provide at least a 50dB desired-to-undesired ratio to existing co-channel stations and at least a 60dB desired-to-undesired signal ratio to first-adjacent channel stations. In effect, the SBE proposed putting numbers on the longstanding but ambiguous "good engineering practice" requirements of Section 74.503(b), *Frequency Selection*, and Section 74.536(a), *Directional Antenna Required*.

Receive antennas

The commission does not, in general, have direct authority over receive antennas. To help assure the use of spectrum-efficient receive antennas, the SBE proposed that calculations of desired-to-undesired ratios be made assuming that the receive antenna meets not only the RPE corresponding to a 6-foot grid-parabolic antenna in frequency-congested areas, but also the RPE corresponding to a 4-foot grid-parabolic antenna in other areas. A licensee with a lower-performance receive antenna who elects not to upgrade would have to accept any interference caused by the antenna.

If an existing link has an antenna that exceeds these RPEs, the actual RPE should be used when performing the desired-to-undesired calculations. A similar approach has been required for many years for Instructional Television Fixed Service (ITFS) stations. Newcomer ITFS stations must show that certain co-channel and adjacent-channel desired-to-undesired ratios are provided to licensed receive locations. These stations are allowed to make the calculations using the RPE shown in Section 74.937(a) of the FCC rules.

Be alert to changes

Whether or not the FCC adopts the SBE petitions, it is clear that grandfathered microwave links in the TV auxiliary bands are facing two important deadlines. All grandfathered TV STL/ICR links must meet the new antenna performance standards by Oct. 1, 1991. Effective April 1, 1992 these links become subject to the new minimum path-length requirements.

Perhaps this article will prevent TV stations being caught by surprise at the expiration of a grandfather period, as recently occurred near the end of a 5-year grandfather period for type acceptance or notification of aural STL/ICR transmitters (see Author’s note). Station engineers should be on the alert for further developments this year.

Editor’s note: The SBE petitioned the FCC in November 1989 for a 3-year extension of the July 1, 1990 deadline requiring that aural STL transmitters be type-accepted or notified. The commission granted the request on Jan. 18.
Remote Control Systems

How to get an engineer to babysit your transmitter 24 hours a day, 7 days a week, and like it.

Babysitting the transmitter is no one’s idea of a good time. Somehow, nothing seems to go sour from nine-to-five. You get “beeped” or called at the most inopportune moments. They’re in a panic and you’ve got to jump in the car, race to the site and start problem solving. What a nuisance.

What You Need Is A Not So Silent Partner.

With the VRC-2000 on duty, it’s like having a full time engineer in the plant. And we mean full time, 24 hours a day.

All You Need Is A Standard Telephone Line And A Willing Ear.

The VRC-2000 doesn’t require a dedicated line, a standard telephone line is sufficient. That saves you money. You can use any conventional dial-up telephone or radio link. Gentner’s patented voice remote control gives you the lowdown. Within parameters that you establish, the VRC-2000 will even make certain programmable adjustments, then call to tell you what it has done.

Full Control And Documentation From A PC.

The VRC-2000 is more than just a friendly voice, it can be programmed and controlled by a PC so you can manage your transmitter and get a complete data trail on transmitter activity. Whether you use hard copy printout or review the data from the PC’s monitor, identifying problems and developing solutions couldn’t be quicker or easier.

Let Gentner Show You How To Get A Good Night’s Sleep.

Give us a call. We’ll hook you up with your Gentner dealer so you can get all the facts. Then put VRC-2000 on call. You’ll play harder and sleep a whole lot better knowing your not so silent partner is on duty, 24 hours a day, 7 days a week.

GENTNER

Gentner Electronics Corporation
1825 Research Way
Salt Lake City, UT 84119
(801) 975-7200
Fax: (801) 977-0087
Improve The Means to the End
Introducing Our New Extended Benefits Package:
Model MCE325 Programmable User Station

Think of it...
a versatile intercom user station with a wide range of operational and packaging formats.

Physical benefits include a five way modular packaging technique
for permanent or portable applications. While headset operation comes standard,
adding our MCS325 Speaker and a plug-in microphone supports an open-listening setting.

Operator benefits sport user-friendly software and hardware based programming;
the MCE325 can be operationally and functionally configured to suit individual requirements.

As for the small print: the MCE325 works in conference-line
or dedicated-line environments, with 2-channel split talk/listen or 4-channel combo talk/listen,
in 2-wire or 4-wire line mode, or a combination of both. Also featured are two channels
of IFB, two program inputs, and call signaling. Modular packaging includes: rack mount or
portable headset station, rack mount or portable speaker station, or console mount headset station.

Please call or write for details.

RTS SYSTEMS
A Telex Communications Company
1100 West Chester Street
Burbank, California 91506
Phone 818-566-6700
Fax 818-843-7953

The First Name In Intercommunications
Professional Intercommunications
Professional Audio Products
1988 - 1989
Engineering
Emmy Award
Don’t take tower marking light-heartedly.

In the midnight hour in the heart of Kentucky, a thin and wiry engineer carries lightbulbs hundreds of feet up an aging TV tower. He scales the antenna itself the last 50 feet or so, something that can only be accomplished by hanging on for dear life with one hand, tensing, and then leaping upward, hoping to catch the opposite peg. Even spry, catlike movements can cause towers to shake at this height.

Near sunset outside of Topeka, KS, an engineer energizes a new set of tower light flashers. At times, the old ones presented an unbalanced load, drawing much more current than was good for the circuitry. The engineer steps back and smiles. By adjusting the flash pattern of the new lights, he gives truckers cause to chatter up and down a lonely stretch of I-70.

In Kansas City, a prominent, self-standing tower has for years been bedecked with external white lights reminiscent of the Plaza area it overshadows. Recently, the lights have been given a new twist; the pattern of the flash indicates whether precipitation is coming and whether tomorrow will be warmer or colder.

Whether your relationship to obstruction lighting is designer, bulb-changer or power-bill payer, you have no doubt sensed some of the romance, and possibly a great deal of the headache, that comes from placing lightbulbs far up spindly structures. There is no doubt that the lights serve a noble purpose. When even the slowest of aircraft travel a hundred miles an hour, RF transmission towers can present a terrifying hazard, especially around airports.

For the past 20 years, white strobes have been allowed in some areas instead of red beacons. Fifteen years ago, white strobes were required in some areas instead of beacons. In some cases, broadcasters have been required to mark their towers with both white strobes and red beacons. In short, the industry needs to recognize some of the forces that have shaped the field of tower obstruction lighting.

Red or white?

The good news about strobes is that the need to paint the tower structure is usually relaxed, and that the interval for relamping a strobe is from four to 10 times longer than beacons. A tower equipped with high-intensity strobes typically consumes 50% less power (85% for medium-intensity strobes) than an equivalent beacon-marking system. The bad news is that strobes can be complex electronic devices. Trying to fix them while dangling several hundred feet above the ground is not as simple as screwing in a lightbulb.

The FAA thinks that several areas of the country are “natural flyways,” which are areas above convenient geological surface features, such as rivers or major highways. According to the FAA mandates, anything within a few miles to either side of a flyway that sticks up into the “navigable airspace” (above 200 feet) has to be marked. The alternating bands of orange and white
were once considered sufficient, but tall towers (above 1,000 feet) usually are re-
quired to use high-intensity strobes. Shorter towers (between 200 and 500 feet) can
be painted and use red beacons or medium-intensity strobes can be installed.

Some experts think that the rules are not enforceable by the FAA, but that the
rules take the form of recommendations. If broadcasters were not controlled by the
FCC, they could shrug off the recommendations, as has allegedly been done by
operators of certain high structures such as smoke stacks. (Of course, there would
probably be a tremendous liability if a plane hit such an unmarked structure.) In
broadcasting, the commission works directly with the FAA and makes proper
lighting a condition of obtaining a license.

The commission has sometimes re-
quired a station to use red lights for night-
time use, even if the tower already is
equipped with strobes. One of the first
such instances took place in a western sub-
urb of Baltimore in the early 1980s. Resi-
dents, allegedly annoyed by the presence
of a 700-foot tower but lacking any other
grievances, complained about the tower’s
strobes to their congressional representa-
tives. Pressure from Capitol Hill is thought
to have led the commission to require that

the tower be fitted with red beacons at
night.

When people in other areas learned of
this victory, the traffic from Capitol Hill in-
creased. For a time, the commission ap-
parently started asking for red lights on
nearly every tower, even if the tower’s
height mandated strobes. This left station
owners in the position of having to man-
ge two separate tower-marking systems.
Currently, approximately 50% of the tow-
ers that have high-intensity strobes also
have a red light system. However, tower
operators who can convince the commis-
sion that their tower is not near a com-
munity may be able to maintain a reversal.

One reason for the complaints is that
high-intensity strobes can be devastat-
ingly bright. When they were first proposed in
1970, the daytime intensity was 200,000
candela (the metric term for candle pow-
er) and the nighttime brightness was 1,000
candela. During the twilight period,
roughly 30-minutes before conventional
beacons activate, the 1,000 candela inten-
sity was inadequate. In 1974, a more
moderate 20,000 level was proposed dur-
ing times when the North sky intensity
was 30-50 foot-candles. When the North
sky intensity reaches 3-5 foot-candles, the
traditional time to turn on tower lights, a
nighttime mode of 4,000 candela was in-
itiated. In 1985, when medium-power
strobes were allowed for shorter towers,
the nighttime mode was reduced to 2,000
candela, where it remains today.

THE BROADCAST DECK FOR PUSHY PEOPLE.

No tape deck gets pushed around more than
a professional broadcast deck.

Round-the-clock fast forwarding and rewinding
can burn out motors fast, while relentless play takes
its toll on the tape heads. That’s why the standard
for broadcast decks is the 122MKII from Tascam.

Its FG-servo direct-drive capstan motor was
designed to prevent tape damage and deliver per-
fet performance under heavy workloads. The unique
Hysteresis Tension Servo Control actually lets you
adjust take-up, back tension, torque and azimuth
with open-reel precision. All without even taking the
machine off the rack.

At the same time Tascam’s proprietary three-
head design delivers crisp, clean sound that’s
enhanced even more by a choice of Dolby® B, C and
HX-Pro.

With 4-track, 2-channel stereo, Cue and Review,
and easy serviceability the rack-mountable 122MKIlives up to its reputation as the professional broad-
cast deck.

Call or write for more information about the
122MKII. Or ask other broadcast professionals.
They’re the people who really push our buttons.

TASCAM®

© 1989 TEAC America, Inc., 7733 Telegraph Road, Montebello, CA 90640 213/726-0303 ©Dolby B, C and HX-Pro are trademarks of Dolby Laboratories Licensing Corp.
Circle (50) on Reply Card

64 Broadcast Engineering May 1990

www.americanradiohistory.com
There's only one faster way to edit news.

This brand new, and very affordable ACE™ 10 editor gives you an intuitive keyboard that's lightning to learn and use. It lets you concentrate on pictures, instead of numbers! And to let you move even faster, you can control most switcher functions right from the shuttle knob.

Want more speed? Things like A/V splits, cassette eject, and tag are just a keystroke away. And so you can choose the way you work best, ACE 10 features four user files—one keystroke and you’re editing the way you like to edit.

The truth is, you just can’t find an editor that will let you do the news faster.

Call 1-800-25AMPEX for a full-sized poster that any editor can love, and for more information about what the ACE 10 can do for your news editing.
Careful design of the strobes could have eliminated most of the problem, however. Internal louvers can baffle most of the light from a high-intensity strobe away from the ground. By the time you get far enough away where the strobes can be seen, they are probably no longer obnoxious. Most medium-intensity strobes use a Fresnel lens system that shapes the vertical beam and controls the downward light.

Back to beacons
The good news about red beacons is their simplicity. What could be easier than changing a light bulb? However, beacons have their quirks, too. Although it is easy to change bulbs, it needs to be done frequently. Secondly, there is a lot of vibration on high towers. This can cause the side lights (the beacons are usually spring loaded) to “back out” of their sockets, lose contact and necessitate a trip back up the tower. Finally, the mechanical flashers that have served for so long are frequently a great sink for preventive maintenance. Some experts think that reliable solid-state versions have come about slowly, although they are available now.

The early mechanical flashing systems lasted for years, but their mechanical operation necessitated frequent preventive maintenance. The fail-safe feature, in which the flashing beacon lamps remain in a steady burning state upon failure of the flasher assembly, is still a prime requirement of today’s tower lighting controllers. Controls designed within these parameters are important to the tower constructor or maintenance contractor for a lighted tower in accordance with FCC/FAA regulations.

Modern solid-state devices are now available that can meet these needs, but you have to shop carefully in order to find those that will meet all of the requirements for tower operation and will stand up in use.

Some solid-state tower flashers can greatly increase the life of beacons. This is done by switching the power to the beacon at a zero point on the ac sine wave. When an incandescent lamp is turned on, the cold resistance of the filament is low. Depending on where in the ac sine wave the power is applied, the cold lamp can draw up to 10 times its normal current. This is referred to as the inrush current and it can damage the lamp filaments.

It is not yet clear what today’s advanced flashers will mean for tower relamping. The FAA advises that bulbs are to be changed at the half-life point. If the bulb is guaranteed for 6,000 hours, it should be replaced at 3,000. In practice, this is usually done at some convenient time of year, such as the fall. Also, if one bulb fails, you usually change them all.

With red lights, the lamp should be changed every six to nine months. Many manufacturers advertise that strobes can be changed every four years, although many operators have reported nearly twice this usage. If bulb life can be significantly extended through the use of inrush limiting switching devices, the convenience of strobes might be mitigated. However, there is the issue of painting the tower, which is not typically required with strobes. (For further information about painting towers that are fitted with strobes, see “Harden Broadcasting Towers,” BE March, 1990.)

Acknowledgments: The author wishes to thank Lew Welzel, Flash Technologies, Gary Krohn, KMCI-TV, and Rick Murphy, Kentucky Educational Television, for help in preparation of this article.
The Telecine People...

URSA
URSA offers the quality of flying spot, the accuracy of digital processing and the flexibility of video effects by combining advanced CRT technology, totally new scanning techniques and a full digital color channel.
The premium top of the line film transfer equipment.

ADS-2
Rank Cintel's versatile multi-purpose CCD Telecine featuring a unique electronic dirt and scratch cancelment system, lever operated film gauge change and "state of the art" 135 sensors. The ideal transfer telecine for dailies, features, archival, broadcast and documentary use.
Now with optional AMIGO pre-programming system.

MK III TURBO
The Unimedia MKIII TURBO, based on Rank Cintel MKIII Telecine. The outstanding features and quality of flying spot technology at an economical price.

MK III HDTV
Available now, HD version of the world acclaimed MK III telecine. A flying spot high definition equipment to meet all proposed HDTV standards.

TO THE FUTURE
A joint venture between Rank Cintel and Kodak to develop a CCD HDTV TELECINE.
Lighting system design

By R.M. "Bob" Mosher

Before a tower-lighting control system can be designed and fabricated, certain parameters must be known:

1. The overall structure height must be known, including any length of "bridge" from controller location to the base of the structure. From these dimensions the FAA classification of A0, A1, A3, etc. can be applied to determine the location (elevations) of mounted lighting fixtures on the structure. These calculations are necessary in order to evaluate wire size and power input to fulfill the FAA requirement of a lamp socket voltage of 120Vac ±3%. In many cases, voltage boost transformers are used rather than oversized conductors to achieve the socket voltage requirement.

2. The style or shape of the tower may be helpful in determining which (conduit) runs. On extremely tall towers in the A3 through the A6 class, it is important to know whether the structure contains an elevator system and/or bunched conduit runs that might qualify the tower in a solid structure category.

3. At what location will the controller be secured? Indoors or outdoors?

4. What type of lamp failure alarm indicators will be required and in what locations?

5. What type of flasher circuitry will be used? What will be the flash sequence?

All aspects of the lighting program are well-defined in a series of advisory circulars and standards publications.

The main reference for tower and obstruction lighting is the FAA Advisory Circular, AC 70/7460-3G, titled "Obstruction Marking & Lighting." The circular (suffix I) is the latest publication, with indications from reliable sources that a newer revision is imminent. Transport Canada has presented "Air Navigation Systems Requirements," a TCAC publication covering the Standards of Obstruction Markings, which is equivalent to the FAA Advisory Circular 70/7460-3G.

In conjunction with the FAA Circular I, is the companion Circular AC 150/5345-4D, which covers the Specification of Obstruction Lighting Equipment. The publication redefines the intensities of the flashing red beacons and obstruction (side) lights. The L-810 classification for the steady burning side light has a revised specification divided into two classes. Class 1 is low intensity and Class 2 is high intensity. Furthermore, the red flashing beacon, previously designated as L-866 (red), has been changed to L-864 to minimize confusion with the L-866 (white) strobe flashing beacon. Circular AC 150/5345-4D is currently under FAA scrutiny for significant revision.

An additional Advisory Circular, AC 150/5345-1, titled "Approved Airport Lighting Equipment," lists manufacturers and suppliers of FAA-classified beacons, obstruction lights, connectors, cables, signs, regulators, transformers, switches, taxiway and runway lights.

12-209

Here are just a few of the over 1,500 individuals and facilities worldwide who use the ADAP Digital Audio Recorder and Editor to make their jobs faster and easier in the production of music, effects, and dialog:

Access Network
ADAC Radio
Alberta, Canada
France
England
Germany
Can
One Still Store Does More Than Just Store Pictures

Simply Storing Pictures Isn’t Enough Anymore.
Your still store had better deliver absolutely pristine images and be a multitasking production center, or you’re not getting your money’s worth.

Can Any Still Store Really Do This?
One can. ALTA’s Centaurus. Look at our bandwidth, for example. We don’t just meet broadcast specs. We exceed them with high-speed component processing throughout. That means you get the sharpest image possible.

Store More For Your Money!
Now compare Centaurus’ storage capacity. All on-line, for instant recall at the lowest cost per picture.

And when your storage requirements grow, we’ll grow with you. With additional on-line storage, and a digital tape cartridge for unlimited offline storage.

No Other Options Needed!
Our dual synchronizers and TBCs are built right in. So you can work directly with images from tape, camera, microwave and satellite feeds, whatever. All without having to invest in additional equipment.

Becomes a Master of Effects in Minutes!
Put some polish on your productions. Centaurus gives you more effects to work with, on a keyboard that’s simple to operate. Plus its built-in switcher and dual TBCs let this still store stand alone, so you won’t tie up your entire studio.

How Can This Be?
How can we make a full-featured, dual channel still store for less than the cost of other single-channel systems? Simple. We’ve been doing it for years. In fact, ALTA engineers were among the pioneers of the digital still store. That’s why our warranty is twice as long, and our still store gives you twice the value.

So if you’re looking for a still store that does more than just store pictures, choose the one that does more for your money.

Choose Centaurus.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>ABEKAS A42</th>
<th>ALTA Centaurus</th>
<th>AMPEX ESS-5</th>
<th>HARRIS ESP II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>4.2 MHz (±0.25 dB)</td>
<td>5.5 MHz (±0.5 dB)</td>
<td>5.9 MHz (±0.5 dB)</td>
<td>5.0 MHz (±0.5 dB)</td>
</tr>
<tr>
<td>Signal to Noise</td>
<td>52 dB</td>
<td>58 dB</td>
<td>?</td>
<td>56 dB</td>
</tr>
<tr>
<td>Storage Capacity*</td>
<td>200 fields</td>
<td>250 fields</td>
<td>207 fields</td>
<td>200 fields</td>
</tr>
<tr>
<td>Synchronizer</td>
<td>—</td>
<td>Dual</td>
<td>—</td>
<td>Dual</td>
</tr>
<tr>
<td>TBC</td>
<td>—</td>
<td>Dual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Production Effects</td>
<td>1 wipe dissolve</td>
<td>9 wipes dissolve</td>
<td>1 wipe dissolve</td>
<td>3 wipes dissolve</td>
</tr>
<tr>
<td>Warranty</td>
<td>1 year</td>
<td>2 years</td>
<td>1 year</td>
<td>1 year</td>
</tr>
<tr>
<td>Single Channel</td>
<td>$19,900</td>
<td>$24,900</td>
<td>$31,500</td>
<td>$26,333</td>
</tr>
<tr>
<td>Dual Channel</td>
<td>$16,900</td>
<td>—</td>
<td>$30,995</td>
<td>—</td>
</tr>
</tbody>
</table>

*Basic System

Based on available data as of June, 1988.
Remote-site security primer

Electronic guarding remote locations.

Remote transmitters and repeater sites must be protected from vandalism, fire and weather-related damage. Station owners must be protected against liability related to remote-site accidents. This makes remote-site security an important part of station operations. Responsibility for specifying security-related equipment often falls to the engineering department.

The security industry is evolving, adding new capabilities and combining with other technologies. New microprocessor-based security equipment, for instance, can perform remote-control functions as well as security tasks, or else security functions can be integrated into a remote-site, remote-control system. What is some of the modern security technology that broadcasters can use to protect their remote sites?

Security at the remote site

Figure 1 shows a typical remote broadcast facility. There is a transmitter building and a storage shed for building maintenance supplies. An auxiliary generator is housed near the transmitter building and the antenna tower. An open space permits a vehicle to be parked within the fence. A pole-mounted high-efficiency floodlight or streetlight illuminates the entire facility. Let’s explore how to protect such a facility.

Remote-site security can be broken into seven categories:

1. Perimeter limits surround the remote-site buildings and are defined by a fence or other enclosure.

2. Perimeter access openings can be used to get into or out of any of the remote-site premises. This includes the main gate in the chain link fence and the doors and windows of each of the buildings.

3. Enclosed protected area is the entire area within the perimeter limits.

4. Interior protected areas comprise the insides of the transmitter building, generator shack and storage shed.

5. External equipment at the remote site might be the antenna tower, generator set and public utility access.

6. Fire sensing and reporting.

7. Non-security applications, such as equipment remote control and monitoring or facility energy management.

Perimeter limits

The perimeter limits provide the first line of defense against unwanted intrusion. Investing in a good perimeter-limits protection scheme might reduce the need for

Continued on page 74

Kaufhold is a market development engineer for SGS-Thomson Microlelectronics, Phoenix. He writes BE’s monthly “Circuit” column.
HMI Daylight for leading News Teams.
Sachtler Reporter 125D.

The new dimension in lighting.
Reporter 125D, 270D, 100H, 250H, 300H, 650H, Production 575D, 1200D
Sachtler's new product line brings innovation in lighting. Built with worldwide known Sachtler quality.
The new Sachtler Reporter 125D is all you need for first class reporting: light-weight, flicker-free HMI daylight, robust synthetic housing, and strong light output.
The 3-inch reflector produces 400–1800 lux (flood/spot) at a distance of 16.4 feet/5 m. You'll find even light distribution over the whole focusing range. Compare the Reporter 125D with existing 650-watt halogen bulbs.

With the integrated handle and camera mount, or stand adapter, the Reporter 125D will master any situation. It may be powered by battery, or AC with its featherweight Netronic, as well as by car battery.
The Reporter 125D features rotatable fourleaf barn doors, with an integrated compartment for the Sachtler “Swing Filters”.
The Sachtler Reporter 125D is available in a compact carrying case. It puts HMI daylight for film and video productions, even for CCD cameras with electronic shutters, in your hands.
The Sachtler Reporter 125D. The new dimension in lighting.

sachtler corporation of america
55 North Main Street
Freeport, N Y 11520
Phone (516) 867-4900
Telex 140107 sac frpt
Fax (516) 623-6844

California office:
3316 West Victory Blvd.
Burbank, CA 91505
Phone (818) 845-4446

Circle (49) on Reply Card
www.americanradiohistory.com
Panasonic Field Recording

Panasonic® makes it easier than ever to carry away the performance of SVHS. By offering you the smallest, lightest and most versatile SVHS dockable VCR available. The Panasonic AG-7450 delivers field recording with no strings attached.

Now you can combine the high performance of Panasonic’s 300CLE, 200CLE and F70 CCD Cameras with the AG-7450. To create a one-piece SVHS camcorder system designed for one-person operation. Because everything you need for high performance field recording sits right on your shoulder. Which means greater mobility and flexibility when shooting. The AG-7450 can also be used as a stand-alone field recorder with an optional 14-pin VCR adaptor.

And even though the AG-7450 weighs in at a mere 7.5 pounds, it delivers heavyweight performance. Because it provides you with all the exceptional recording and playback characteristics you demand. Like the economy of two-hour recording on a single cassette, Y/C signal separation with over 400 lines of resolution and a signal-to-noise ratio in
With No Strings Attached.

excess of 47dB. So there’s no need to “bump” your original footage for post production.

In addition, the AG-7450 provides street smart features. Like an antirolling system to compensate for gyro error on the video head. Four channel audio [two hi-fi and two linear] with independent level controls. And an optional vertical interval/longitudinal time code (VITC/LTC) generator/reader that docks directly to the back of the unit.

So if you’re looking for a lightweight dockable VCR that performs like a heavyweight, take a good look at the AG-7450. You won’t have to look any further. It’s Panasonic field recording. With no strings attached.

For more information and your local dealer, call your nearest regional office:
Eastern Zone: (201) 348-7620
Central Zone: (708) 981-4826
Southern Zone: (617) 685-1117
Atlanta Region: (404) 925-6841
Western Zone: (206) 285-8883
Los Angeles Region: (714) 373-7275

Panasonic
Professional/Industrial Video

Circle (59) on Reply Card
www.americanradiohistory.com
Continued from page 70

other security measures.

The gate can easily be protected using contact switches that sense when it is opened and closed. The security system can be programmed to provide several minutes' delay to allow station personnel time to unlock the transmitter building, enter and disarm the alarm.

Station management must work out policy on whether personnel will be safe at the remote site if they close and lock the gate after they enter the perimeter limits. An unlocked gate may be an invitation to crime or a liability risk stemming from curious passersby entering the premises. On the other hand, if employees routinely lock themselves in, local law enforcement agencies may request a set of keys to facilitate rescue if an emergency situation develops.

An advantage of providing a set of gate keys to local law officers is that they can occasionally provide help making spot checks of the premises between visits by station employees or contract engineers. Also, having a good working relationship with the local police may help reports and claims to be filed quickly, if there ever is an incident.

Although the gate is the logical first

![Diagram of a security system for a typical remote broadcast facility. The perimeter limits are protected by a chain link fence, with gate-opening and fence-tampering sensors installed. A pole-mounted, high-efficiency floodlight illuminates the entire facility.](image)

Figure 1. A security system for a typical remote broadcast facility. The perimeter limits are protected by a chain link fence, with gate-opening and fence-tampering sensors installed. A pole-mounted, high-efficiency floodlight illuminates the entire facility.

THIS ONE'S DIFFERENT

REMOTE MONITORING

R-2000 - The next generation of remote monitor and control systems for broadcast transmitter sites. Count on the R-2000 for those critical situations where every second off the air means lost revenue. Quick corrective action is required. The R-2000 provides this by automatically assuming control. It then informs you of the details. It does this by using a terminal found in 99% of all homes and offices... a telephone! All status is spoken in a pleasant digitized female voice.

R-2000, the "R" stands for "Rest Assured". Contact your nearest NCA dealer for more information.

Uncompromised Flexibility

- Pluggable modules, rack mountable, and user friendly pop up window and menu software.
- Up to 256 inputs/outputs, controllable by telephone keypad or personal computer back at the office.

Standard Features:

- 32 inputs (expandable to 256)
- 16 Outputs (expandable to 256)
- All inputs configurable as analog, digital or temperature
- Battery backup included with every system
- Telephone keypad access (input) with digitized voice (output)
- Completely user configurable
- Pullout drawer with keyboard and display included
- Remote data communication option
- One year warranty

TO TALK TO AN ACTUAL R-2000 DIAL OUR DEMO NUMBER (506) 634-5018

NCA Microwave Inc (506) 634-5014

In U.S.A. 716-852-4521
In Canada 418-255-9188

Circle (52) on Reply Card

74 Broadcast Engineering May 1990

www.americanradiohistory.com
COMARK'S 240 kW FIELD PROVEN KLYSTRODE® EQUIPPED TRANSMITTER

The Clear Winner!
Now In Service
At WDRB-TV Channel 41
Blade Communications, Louisville, KY

Comark financing or leasing available to qualified buyers.

Comark has the only proven track record in advanced technology transmitter performance.

For further information on Comark's complete line of water or air cooled Klystrode equipped transmitters call or write:

COMARK COMMUNICATIONS, INC. 1990®
A Thomson-CSF Company

Route 309 & Advance Lane, Colmar, PA 18915
(215) 822-0777 • FAX: (215) 822-9129 • TELEX: 846075

Klystrode® is a registered trademark of Varian Associates, Inc.

Circle (53) on Reply Card
www.americanradiohistory.com
point of entry, the entire perimeter protected by the fence should be capable of sensing a breach of security. Several technologies have been developed to recognize tampering with the fence. One runs complete loops of wire around the entire perimeter. One strand runs along the top, one or two in the middle, and a final strand near the bottom of the fence. A small current is run through the top wire, and leakage currents are detected within the other wires. By using a pulsed current source and time-domain reflectometry techniques, the approximate location of a fence-climber can be determined. Another system uses buried coax cables. An ultrasonic (sub-RF) signal is pulsed through this cable, and the reflected wave is sampled. If a person or vehicle compresses the coax cable by stepping near it, the reflected wave changes, and an alarm condition is triggered.

Enclosed protected area
Adequate lighting will help protect the enclosed area. Studies undertaken by the Security Electronics Industry Association (SEIA) have shown that continuous bright lighting of remote areas significantly reduces instances of reported crime. The increased costs of leaving the lights on all night may be paid back by statistically preventing a crime. In Figure 1, notice that the security floodlight is mounted so it illuminates the entire protected area.

The security floodlight will be a benefit any time a station employee must be at the remote site after dark. A shatterproof housing should surround the light, because vandals in remote areas have been known to use security lights for tar-

The 21 Bit Stereo Audio DA

The application of the digital process to audio has been well received. Unfortunately, digital audio has been given a 1970s standard of 16 bits, with its 96 dB dynamic range. To improve upon this, some are using 18 bit converters with 16 bit data, to bring the last drop from an undersized pipe line. Even when an 18 bit standard comes, it's dynamic range will be limited to 108 dB.

Compare that with the spectacular DA-102, and its dynamic range of 130 dB, (21 bits +). That’s 34 dB beyond current digital and 22 dB beyond a future 18 bit standard. With digital still in its infancy, the mature analog technology of the System 1000 is the safe long term investment. At an affordable price, you can have the finest today, and build confidently for the future. Benchmark - anything less is 2 bit technology!

Call 1-800-BNCHMRK (262-4675) Nationwide
BENCHMARK MEDIA SYSTEMS, INC.
3817 Brewerton Rd., North Syracuse, NY 13212

BCAM

MAINTENANCE
SOFTWARE
"FOR YOUR PC"
KEEP TRACK OF

* EQUIPMENT REPAIRS
* EQUIPMENT HISTORY
* EQUIPMENT INVENTORY
* WARRANTY STATUS
* PARTS INVENTORY
* PERSONNEL ACTIVITIES
* PROBLEMS & SOLUTIONS

Computer Assisted Technologies
847A Second Avenue Suite 175
New York, NY 10017
Tel. (212) 360-2591
Fax (212) 573-8362
THE INTERCOM SOLUTION FROM McCurdy

Looking for an integrated communications system? Look to McCurdy for the affordable solution. McCurdy's advanced Digital Intercom Systems have set a new standard for programmability, flexibility, expandability and reliability. We offer you cost-effective solutions to your intercom needs, large or small.

Our affordable, high-performance intercoms are integrated communication systems with the following superior capabilities:

- Point-to-Point communications
- Programmable Party Lines
- Programmable IFB's (Program Interrupt)
- Programmable selective Group Calls
- 2-wire beltpack interface
- 2-way radio interface
- Telephone interface with auto answer
- Camera interface
- Camera ISO capability
- Relays for auxiliary equipment control.

Other features include:

- Ultra-reliable
- Instantaneous Cross-point Access Time
- Fastest system reconfiguration time
- Disk based storage system or EEPROM
- Completely modular and field expandable
- 3-pair telco wire between matrix and control panels
- Wide choice of control panels
- Bright, easy to read 4 character alphanumeric displays
- Easy to program
- All keys universally programmable locally or at central terminal
- System configuration can be changed by user at any time
- Very compact: CS9500
 50×50 matrix is only 3 RU (5¼") high

McCurdy's intercom systems are in use around the world; they range in size from 10×10 to 400×400 systems.

As the premier intercom supplier for the 1988 Calgary and Seoul Olympic Games,

McCurdy intercoms succeeded with flying colors!

Make it an easy choice. Select McCurdy's Digital Intercom System ... the Integrated Intercom Solution.

McCurdy Radio Industries
108 Cansforth Road, Toronto, Ontario Canada M4A 2L4 Tel: (416) 731-6560
Telex: 6963533 Telefax: (416) 751-6555
1051 Clinton Street, Buffalo, New York 14206 Tel: (716) 772-0719
get practice. Keep the security floodlight in good condition and have several spares stored at the site. Train all station personnel to be conscious of the condition of the security floodlight, and make sure it gets replaced immediately whenever it burns out.

If there is expensive equipment at the remote site, it will be worthwhile to install monochrome closed-circuit TV cameras at the remote site. These cameras can feed a stop-frame video recorder similar to those used at banks and convenience stores. If a break-in occurs, the tape may provide clues that help police to recover stolen property and bring the perpetrators to justice. Additionally, the CCTV cameras could easily feed slow-scan video signals down phone lines to a monitoring point back at the main studio or to a local security central alarm station.

Interior protected areas

Figure 2 illustrates several ways to monitor a building's interior protected areas.

Protection of the building interior may once have been considered the most complex and costly portion of a security system. This comes from the days of door-opening sensors and aluminum window tape. Protecting the perimeter openings of a building can now be accomplished with inexpensive sensors that provide double-duty. For example, several companies manufacture glass-break sensors that trigger on the high-frequency sounds of breaking glass. One sensor can protect an entire bank of plate-glass windows, replacing hundreds of feet of aluminum window tape, which saves a lot of cost and labor.

By using several glass-break sensors, adjusted for varying levels of sensitivity, a broad range of situations can be detected. A glass-break detector set for extremely high sensitivity can detect the vibrations in a window caused by someone banging on the glass or a rock being thrown against the glass, which does not actually break. An appropriately tuned set of glass-break sensors can provide an early warning and trigger a local sounding alarm, scaring off a would-be intruder and preventing a crime, rather than simply reporting a break-in after one has occurred. Vibration and shock sensors also can be glued to the surface of a window, which provide similar protection.

Another way to protect the perimeter of a building is to use tightly focused infrared light or lasers to send a beam around the perimeter of a protected area. Anything crossing the path of the beam will be detected and will set off an alarm. Many broadcast transmitter sites already use this method.

Passive infrared detectors

A technology that is gaining popularity for protecting controlled access areas uses a passive infrared (PIR) detector. The sensor is at the focus of a group of mirrors, and detects radiant energy, such as that given off by a human.

PIR detectors trip whenever a person moves side-to-side past the front of the PIR. The detectors tend to be less sensitive for detecting an object that is approaching on a line or receding on a line. For this reason, two PIRs are usually installed in each area to be protected. By aiming the PIRs at right angles to each other, there is a good chance that motion in a room will be detected.

PIRs can sometimes be fooled by reflected sunlight from passing automobiles, the moving blades of overhead ceiling fans and any form of direct sunlight. However, when installed properly in a room with limited windows, PIRs can protect an area of more than 1,000 square feet, up to 50 feet deep and 25 feet wide.

Another popular sensor uses microwave detectors. Low-power pulsers bathe the
AKG’s DSE 7000. Digital Solutions to Analog Problems.

Creating polished audio tracks with analog equipment while under the gun is a real problem.

Have you ever ruined a track by punching in or out at the wrong moment? AKG’s Digital Sound Editor stores your takes in RAM memory, so you can “undo” any mistakes and make adjustments quickly and precisely.

Have you ever had to hand-synchronize three or more analog decks in order to time-align narration with music and effects? The DSE 7000 allows you to synchronize any combination of tracks in perfect timing.

Have you ever used your last track and wished you had more? The DSE 7000 provides 8 tracks plus lossless digital bounce to give you all the freedom of multi-track, and more.

Have you ever wished for a sound editor that’s as powerful and easy-to-use as your word processor with controls as familiar as your mixer and tape deck? With the DSE 7000, you can easily cut, copy, move, slip and adjust sound elements. It’s an AT compatible-based, digital sound editor that combines both record and mix functions together in one convenient unit — with ease, speed and flexibility.

Contact AKG to learn how the affordable DSE 7000 will provide digital solutions to your analog problems.
Fire control

Fire-control equipment and smoke detectors used in commercial buildings are covered by local, state and federal regulations, and should be installed by or under the supervision of licensed fire-control equipment contractors.

The field of fire control has become highly specialized. Each municipality has unique fire codes, enforced by the local fire marshal. However, several certification boards test and approve equipment to be used for fire and smoke detection and for sprinkler control. The California Fire Marshall (CFM) certifies components used for fire and smoke detection. Factory Mutual (FM) also tests and certifies fire sensors. Underwriter’s Laboratories (UL) performs extensive tests on all components to be used for fire detection and reporting. If a component has received a UL listing, you can be confident that it has been extensively tested. However, a complication exists with UL certification. UL provides different quality levels of approval. You must verify that smoke detectors and fire sensors meet the minimum UL certification level called out by your local fire code.

Non-security accessories

In addition to the security-related functions performed by the security system, a variety of other tasks can be performed. For example, passive infrared detectors can sense when someone is in the studio. When the room is vacant (all clear condition) the security system can send a signal to the air-conditioning equipment and the lighting controller, telling them to turn off. When someone enters, the work lights can be re-energized, allowing employees to enter the studio without having to activate the lighting console.

The nature of this specialized remote vehicle equipment is such that it must be installed by factory-trained technicians who work for an authorized dealer. The broadcaster should approach the dealer well in advance, and work out all of the details for fitting the security system equipment around the space requirements of the broadcast gear.

A simpler system uses a single motion detector that triggers the alarm and deactivates the ignition anytime the vehicle is moved, even if it is being moved by a tow truck.

With the huge investment in rolling stock that most stations have, a thorough checkup of vehicle security may be in order.
“For Dependability and Quality, You Can’t Beat the Odetics Cart Machine...”

"Since we switched over to the Odetics TCS2000 Cart Machine, on-air discrepancies have dropped from about six per day to virtually none. And the quality has improved dramatically.

Our old machines were labor intensive. Too much time was spent daily pulling carts from storage and programming. We needed a machine that would do away with human effort...and human error.

I shopped and compared for over two years before I settled on the TCS2000. The other machines I researched didn’t have the Odetics level of automation, and they were not nearly as dependable.

I’ve been especially impressed with the Odetics machines ability to download from our traffic computer and generate a play list. Not only does that feature save time and effort, it eliminates the error factor. And, of course, if we don’t have on-air failures, we don’t worry about makegoods.

The on-air appearance of the station is 100% better now. That’s a big morale booster for everyone here. And the machine has certainly made my job easier. I don’t miss those phone calls about our old machines problems at all hours of the night.

I didn’t know a lot about Odetics before I bought their equipment, so I asked for a factory tour and demonstration. After I saw the large-scale robotics work the company was doing for the space industry as well as the broadcast business, I knew Odetics had the automation expertise I needed. In fact, I would strongly recommend that any chief engineer looking at cart machines take that factory tour. Also, I knew Odetics had already installed about 80 machines at other stations, so I called some of those chief engineers. I didn’t talk to anyone who wasn’t happy with the Odetics machine.

Most of the engineers I talked to emphasized the exceptional after-sale service and support Odetics provided. We found that out for ourselves when our new machine was installed. The training and support our operations people got was efficient, thorough and highly professional.

If you’d like to know about what the Odetics cart machine has done for KPHO, why not get some firsthand information? Feel free to give me a call at (602)264-1000.”

Bill Strube, Director of Engineering
KPHO, Phoenix

Odetics Broadcast
1515 South Manchester Avenue, Anahein, California 92802-2907 Phone (800) 243-2001 or (714)774-2200

Circle (61) on Reply Card
www.americanradiohistory.com
Security terminology

As with other industries, the security industry has assigned special meanings to certain words that might not make sense to broadcasters. The security industry originated more than 100 years ago to serve the banking and retail merchant businesses. Much of the terminology is consistent with these original purposes. For example, day mode means the store is open for business, so the alarm is disabled. Night mode means the system is enabled. A broadcast facility presents a unique set of problems because of its 24-hour operation. The broadcast security system is always active, but at differing levels.

- Security system. Usually refers to the intrusion detection and access control parts of a system, not including fire control.
- Local alarm system. Any security system that uses only local alarms, those that sound on the premises.
- Monitored system. Refers to the monitoring service provided for a monthly fee by the security company. Many security companies specialize in monitored systems, and some may not even bid on a job that does not include the monitoring service.
- Sensor. Each individual device that is used by the security system to detect a change in the status of an area.
- Annunciator. The action taken by the security system in response to a change in status of a sensor. For example, the chime sound you hear when you enter a retail store is a daytime annunciator. The alarm and/or flashing lights are the nighttime annunciators.
- Report. In addition to annunciating an alarm, a monitored system will report via telephone to the central monitoring station.
- Pinpoint system. A high-end security system that is capable of annunciating the status of each individual sensor.
- Zone, zone of protection or protected zone. Refers to a grouping of sensors that activate the alarm as a group. For example, the perimeter zone includes all of the sensors that protect the perimeter. The fire zone includes all of the smoke detectors.
- Arm. The action of placing a system into the armed state. When armed, the system will sound an alarm and place a report if any protected zone is violated or any sensor fails.
- Disarm, clear or day mode. The action of disabling the alarm to permit free use of an area during the day.
- Restoral. If a device reports an alarm and the alarm condition clears, this is a restoral.
- Digital communicator. The circuit that connects directly to the telephone line for a monitored system, and formats the digital message that goes to the central monitoring station.
- False alarm. A bugaboo of the entire security industry, and a constant nemesis to security technicians. This is what happens when a sensor triggers by accident or misadjustment, or whenever an alarm system reports a breach of security when nothing really happened.

[End of article]
The Moseley PCL 6020 and PCL 6030 blend technology and innovation to offer the world's first truly ser-programmable transparent aural program link.

Totally Transparent

The system specifications are the tightest in the industry with better than 76 dB Signal to Noise Ratio (SNR), 0.1 dB frequency response and 0.1% distortion for transparent, high quality sound.

Pure World Product

Both the Transmitter and Receiver are fully synthesized with up to 40 channels per link and available all frequencies from 145 MHz to 1.9 GHz. Each unit can be operated in either monaural or stereo mode with channel bandwidth from 100 to 500 KHz.

User-Programmable

Frequency, channel bandwidths, monaural or stereophonic operation are all user-programmable in the old eliminating costly factory/testbench realignment.

Moseley Experience and Support

Moseley has over 30 years of experience in over 120 countries worldwide and has engineered numerous national and international program networks. All Moseley products carry a standard 2 year warranty (extended warranty is available for up to five years). You can put your trust in a company that has a worldwide reputation for customer support and technological leadership.

Moseley

The Trusted Name in Communications
Variable circularly polarized UHF antenna

By John Schadler

Circular polarization is common to most FM and many VHF TV stations but, until recently, UHF stations didn't pay much attention to the technology. The development of a slot-driven parasitic dipole, however, now makes this technology available to UHF channels as well. The first variable circularly polarized UHF antenna was installed in March 1989 at WYHS-TV, channel 69, in Hollywood, FL.

Antenna design

A coupled-slot cut into the wall of a coaxial, rectangular or circular waveguide radiates the RF energy. This signal is polarized in the plane perpendicular to the long dimension of the slot. Arrayed vertically on a cylindrical pylon antenna, these slots radiate horizontally polarized signals. Dipoles placed above these slots couple a controlled amount of energy and radiate it as a vertical signal in phase quadrature with the horizontal signal. (See Figure 1.)

Schadler is an electrical engineer at Diellect Communications Antennas, Gibbstown, N.J.

Grounding the vertical radiating elements, or Z poles, to the pole above the slot circularly polarizes the antenna. The ratio between horizontal and vertical power is based on the amount of coupling between the slot and dipole. Coupling, in turn, varies with the slot and dipole.

Axial ratio

Axial ratio quantifies the figure of merit of circularly polarized TV antennas. It is expressed as the relationship between minimum and maximum voltage at the output of a receiving dipole rotating perpendicularly to the radiating antenna. In a pure circularly polarized wave, this ratio is one. In a variable circularly polarized wave, it fluctuates with the polarization ratio of the horizontal and vertical components.

If a rotating test dipole indicates a voltage higher than that of the horizontal component or lower than that of the vertical component, the two components are not phased in quadrature. These conditions produce an axial ratio that is higher than the polarization ratio. The result is picture breakup caused by linear or rotational movement of the receiving antenna.

Because the Z dipoles of the transmit antenna have the same phase centers as the slots, phase quadrature and axial ratio remain constant in all directions. Designs using interspersed slot and dipole radiator may be subject to deteriorating axial ratios as the angles of depression increase below the peak of the main beam. This deterioration results from the increase in space phase between adjacent radiating elements. (See Figure 2.)

For a typical spacing of 1/2-wavelength between interspersed radiators, the space phase differential in the first 60° of depression increases by almost 19°. This result is equivalent to a deterioration of 3dB in axial ratio, which is acceptable for most antenna designs. However, as the depression angle continues beyond 60°, the axial ratio deteriorates rapidly. When th

Figure 1. Circularly polarized pylon antenna. Z dipoles placed above radiating slots couple a controlled amount of energy to the vertical plane in phase quadrature.

Note the Z dipole elements mounted in front of each antenna slot. These allow the amount of vertical radiation to be adjusted as desired in the manufacturing process.
This switcher handles standard bandwidth like it’s going out of style

The new TVS/TAS-3000 video/audio distribution switcher from BTS handles standard bandwidth switching in stride. But the fact is, standard bandwidth may not be the standard much longer. And that’s why the TVS/TAS-3000 is not your standard switcher.

With the advent of wide bandwidth video, you’ll need a switcher that can handle the new higher bandwidth signals. The 3000 will. It provides a video bandwidth of more than 50 MHz, measured with a full-amplitude sine wave or video signal. Which makes it upwardly compatible with HDTV or computer graphics—no matter what the standard.

The TVS/TAS-3000 also delivers the cleanest signal and expands to accommodate any matrix size to meet your specific needs.

And if high bandwidth capacity isn’t a requirement, BTS still has you covered with our best-selling switcher, the TVS/TAS-2000. The 2000 represents the same advanced technology and quality as the 3000 in a standard bandwidth switcher. BTS also offers a full-range of control panels and distribution amplifiers for a complete system designed, tested and guaranteed by one supplier.

All BTS switchers undergo 100% computerized factory testing and are protected with a 5-year warranty. In the unlikely event you do have a problem, simply return the board for a free replacement.

Dependable, performing switchers from BTS. Anything else is substandard. Call for information and technical specifications today: 1-800-562-1136, ext. 21.

BTS
The name behind what’s ahead.

TVS/TAS-3000 Distribution Switcher
depression angle reaches 30°, space phase differential is 90°, resulting in an axial ratio of infinity. Beyond 30°, axial ratio begins to decrease, but the sense of rotation of the circularly polarized wave reverses. As illustrated in Figure 3, this rise/fall axial ratio and polarization reversal occur at each 30° cycle throughout the elevation pattern. The slot-driven Z dipole de-

Figure 2. Dipoles and interlace antenna designs. The spacing between radiating slot and Z dipole in the interlace design creates a phase difference in the horizontal and vertical signals. This can cause the axial ratio to deteriorate with increasing depression angle.

Figure 3. The rise and fall of the axial ratio and polarization reversal occur at each 30° cycle throughout the elevation pattern in an interlace-type antenna.
The SL 5000 M Series is an open architecture console system comprising a wide range of standard audio and control cassettes in a variety of mainframe sizes. It can be configured to exactly match your current and future requirements. The use of standard cassettes eliminates the service and maintenance problems often associated with systems of this sophistication.

A unique sectional grid distributes audio and control busses throughout the mainframe, interlocking master and local facilities in virtually any combination you desire. This makes a wide range of applications possible – live radio, continuity, outside broadcast, film and video post production.

The SL 5000 M Series retains the full benefit of computer-assisted operation and centralised assignment, where appropriate. Dynamic fader automation, optional motorised faders, and SSL's Instant Reset™ and Total Recall™ computer systems provide maximum control of these advanced functions.

At last the specialised requirements of broadcast audio production can be served by a new level of operational efficiency and creative flexibility.

The SL 5000 M Series mainframes are available in 3 depths and from 8 to 128 channels wide, allowing consoles of almost any size and capacity.

The SL 5000 M Series is used by:

ABC TV, USA
Bayerische Rundfunk, FRG
BBC Radio, UK
BBC TV, UK
Radio Bremen, FRG
Fox TV, USA
ITN, UK
NRK, Norway

Nippon Hosio, Japan
Paris Omnisport, France
RTE, Eire
SRC, Switzerland
TBS, Japan
TVS, UK
Video time, Milan
YTV, UK

Solid State Logic
SL 5000 M SERIES

Begbroke, Oxford, England OX5 1RU (0865) 842300
London (071) 706 4948 • Paris (1) 34 60 46 66 • Milan (2) 612 17 20 • New York (212) 315 1111 • Los Angeles (213) 463 4444
• Toronto (416) 363 0101 • Tokyo (03) 5474 1144
U.S. Toll Free Number 800 343 0101

www.americanradiohistory.com
The new circular polarization design is available in numerous vertical and horizontal pattern combinations to meet a wide range of broadcasting requirements. Factory-adjusted for vertical component, these antennas incorporate the same basic hardware as Dielectric's standard horizontally polarized UHF pylon antennas—slotted outer pipe, internal coupling, feed design and radome considerations. The result is a simple, sturdy design that provides excellent performance. The antenna is insensitive to lightning and provides a true circularly polarized signal in both azimuthal and elevation planes.

Measurement

Figure 4 illustrates four different antenna patterns. Each shows the measured azimuthal patterns for the two linear components, as well as axial ratios for full and variable circular polarization designs. These patterns show that phase quadrature is maintained throughout the azimuth.

If the axial ratio falls significantly below the vertical component (i.e. poor quadrature), orientation of the receiving antenna becomes a critical factor in obtaining good signal strength and picture quality.

Because the axial ratio of the dipole over the slot is optimal, the new design eliminates this problem as well.

Figure 4. Measured azimuthal patterns for the two linear components and axial ratios for full and variable circular polarization designs. Note that phase quadrature is maintained throughout the azimuth.

Acknowledgment: The author sends special thanks to Dr. Oded Ben-Dor and the staff at Dielectric Communications Antennas.
ScreenSound. A fully integrated audio for video editing suite

Post production facilities need to take advantage of the efficiency offered by today's technology. Speed and creative flexibility are essential to commercial success. Digital sound quality is no longer a luxury.

ScreenSound is a fully integrated audio for video editing suite. It combines digital audio storage and editing with machine control of multiple VTRs, Laserdisc or film reproducers. It also interfaces with Quantel’s digital video editor, Harry.

Simple to learn and fast to use, a cordless pen, tablet and RGB monitor provide control of all ScreenSound functions.

Multiple sound reels enable music, dialogue and effects to be laid back to picture and synchronised to the exact video frame.

Edit, review, time offset, track slipping, cross fades and many other production techniques are available at the touch of a pen. Gain and stereo pan controls can be automated to timecode.

AES/EBU interfacing keeps digital audio transfers free of analogue distortions and losses, preserving the highest audio integrity through to the final format.

Above all, ScreenSound is a dedicated system - purpose-built to bring the advantages of hard disk sound manipulation to audio post production.

AUDIO STORE
The hard disk store of sound clips gives title and duration, in addition to powerful search and sort routines.

SCRUB EDITOR
Provides accurate edit marking and scrub of audio waveform.

OPTICAL LIBRARY
An off-line library of sound clips and effects can be compiled on a Write Once Read Many (WORM) optical disc.

MACHINE CONTROL
For control of multiple VTRs, laser disc or film reproducers.

SSL DIGITAL
Solid State Logic

Begbroke, Oxford, England OX5 1RU (0865) 842300
London (01) 706 4948 • Paris (1) 34 60 46 66 • Milan (2) 612 17 20 • New York (212) 315 1111 • Los Angeles (213) 463 4444
• Toronto (416) 363 0101 • Tokyo (03) 5474 1144
U.S. Toll Free Number 800 343 0101

Circle (66) on Reply Card
www.americanradiohistory.com
Taking the measure of video processors

By Jack Baird and David Dykstra

Over the past few years, there has been a quiet revolution in the field of video-processing equipment. The result is an increased high-frequency response. The new current-feedback operational amplifiers have made it relatively easy to build a video amplifier with an upper-half power frequency of 500MHz or more.

For some video systems, this increased frequency response may not be necessary. Many video technicians and engineers will agree that whether or not the improved high-frequency performance solves any of their problems, it does in fact create a new problem. How do you measure the frequency response of this new equipment?

The measurement technique used from 0MHz to 10MHz does not seem to work at 60MHz. Let's first discuss the standard measurement technique, look at what goes wrong with this technique between 10MHz and 60MHz, then consider a simple solution that will correct the problems.

Start by measuring the frequency response of a unity gain distribution amplifier. Two pieces of test equipment are required: a signal generator and an oscilloscope. The signal generator should be capable of producing at least a 1V output at a frequency of at least 60MHz. The old HP606A (3V at 65MHz) is satisfactory and not too expensive if purchased surplus. The 50Ω output impedance is acceptable.

The oscilloscope should have dual channels with at least a 60MHz frequency response. A Tektronix 2215 (or equivalent) is sufficient.

The standard technique

The standard measurement technique is illustrated in Figure 1. The output of the signal generator is connected to channel 1 of the oscilloscope through a BNC tee. The same signal also is applied to the input of the distribution amplifier under test. The cable is terminated with a 75Ω load at the amplifier input.

The output of the distribution amplifier is connected to the channel 2 input of the oscilloscope. A second BNC tee is used at the scope input to allow the cable to be terminated by a 75Ω resistor.

The amplitude of the signal-generator output is now set to 1Vp-p as measured on channel 1 of the scope. The gain vs. frequency of the amplifier is recorded by changing the frequency of the signal generator and recording the amplifier output voltage as observed on channel 2 of the scope.

This technique works well at frequencies up to about 10MHz. But, between 10MHz and 100MHz, strange things start to happen. The amplitude of the output of the signal generator seems to change dramatically as the frequency is changed. The output of the distribution amplifier under test also is strangely affected above 10MHz.

The problem

Two things happen at about 10MHz. First, the input impedance of a typical oscilloscope is 1MΩ in parallel with about 30pF of capacitance. (Some higher-priced scopes are as low as 15pF.) At frequencies of 7MHz or below, it is a good approximation to neglect the impedance of the scope input capacitance. It cannot be neglected.

![Figure 1. The typical test configuration for measuring frequency response works adequately with signals below 10MHz.](image1)

![Figure 2. The key to accurate measurement of the higher frequency response is to rely on a 10:1 voltage divider, as shown here.](image2)

Baird and Dykstra are engineers with Video Accessory Corporation, Boulder, CO.
FOR BROADCASTING EXCELLENCE...
SOLID, POWERFUL, TELEVISION AND RADIO EQUIPMENT

High Power UHF TV Transmitters
TTC's High Power UHF TV Transmitters provide the ultimate in picture quality, reliability and efficiency. These transmitters are designed that way, without compromise.

All new state-of-the-art design utilizes CMOS logic for control functions. TTC multiple klystron/klystrode transmitters maximize reliability by offering total redundancy. Each multiple klystron/klystrode transmitter includes two or more amplifier cabinets, control circuits, high voltage contactors, beam supplies, cooling systems and exciters. Klystron, MSDC klystron & klystrode systems are available.

Low Power Transmitters
TTC offers a full line of outstanding VHF and UHF translator-transmitters, with an ultra-stable design that assures high quality and trouble-free operation.

For both VHF and UHF TV up to the 100W level, TTC offers solid state translator-transmitters designed for worry-free unattended operation in remote and hostile environments.

The 1000 Watt TTC XL1000 has become the best selling UHF transmitter in the world. Long-term reliability, performance, advanced capabilities, and versatility for use with UHF, VHF, satellite, or video inputs provide you with assurance of lasting quality.

FM Radio Transmitters
TTC has established a longstanding track record for producing highly reliable and durable FM radio transmitters—combining unsurpassed value and performance.

A complete line of transmitters is manufactured including solid state units with a power output of as low as 30 Watts and ranging upward to 8000 Watts.

Featuring our clean, uncomplicated designs incorporating refinements developed from over twenty years of proven performance in radio stations worldwide, today's TTC radio transmitters provide unmatched price-performance value and quality.

Put TTC, the leading manufacturer of transmitters/translator, to work for you. Call or write us with your requirements.

TELEVISION TECHNOLOGY CORPORATION
P.O. BOX 1385 • BROOMFIELD, COLORADO 80020 USA • (303) 665-8000 • TWX: 910-938-0396 TTC COLO
above 7MHz.

The second occurrence at about 10MHz is that a 10-foot coaxial cable starts to lengthen to a significant fraction of a wavelength. This alone would not be a problem if all lines were terminated properly. When an impedance mismatch is present, however, cable length can alter the results of any measurements dramatically.

The simple solution

The video engineer does not need to become an expert in transmission-line techniques. There is only one cardinal rule: Every video line must be terminated by a pure resistance equal to the characteristic impedance of the cable (75Ω). The technique of using a BNC tee and a 75Ω terminator at the input of the scope does not work above 7MHz because of the scope’s 30pF input capacitance.

It is possible to borrow a trick from scope probe technology and raise this 7MHz limit to 70MHz, as illustrated in Figure 2. The idea is to build a 10:1 resistive voltage divider with a total resistance of 75Ω. Then parallel this resistive divider with a capacitive voltage divider using the 30pF input capacitance of the scope as one of the capacitors.

The resulting circuit is a 10:1 attenuator with an input impedance of 75Ω in parallel with 3pF (instead of the 30pF that exists with the BNC tee and the 75Ω terminator). The input shunt capacity of this circuit is, of course, the 3.3pF in series with the 30pF of the scope.

It is a relatively simple matter to build this high-frequency terminating attenuator, as illustrated in Figures 3 and 4. It is recommended that 1/4W metal (or carbon) film resistors be used. The series resistor should be 67.5Ω, and the shunt resistor should be 7.5Ω. Unfortunately, neither value is available in 1% tolerance. If 5% tolerance resistors are used, the voltage divider ratio could be off by as much as 10%.

An accuracy of better than 1% can be achieved if the resistors are selected with the use of a good digital ohmmeter. First, check the accuracy of the ohmmeter by measuring several 1% tolerance resistors in the 68Ω to 75Ω region. Now, obtain a large number of 68Ω, 1/4W, 5% resistors, and find one that measures 67.5Ω. Do the same thing with a large number of 7.5Ω resistors.

The 3.3pF capacitor shown in Figure 2

October 4-7, 1990
St. Louis, MO

1990 SBE NATIONAL CONVENTION
and
Broadcast Engineering Conference

Plan to attend. Call 317-842-0394 for registration information and materials

Your future depends on it!
Fast.

On your left, the Porsche 911 Targa Carrera, one of the fastest production cars in the world. It goes from 0-60 in just 6.1 seconds. Fast.

On your right, the revolutionary Schmid SIAT, the world’s fastest, most precise audio network testing system. It features technology so advanced, you can check 10 critical parameters of your audio broadcasts, including noise, harmonic distortion, frequency/phase response, channel transposition and more, all at the push of a button.

Even more impressive, you can test any transmission network, from the simplest to the most complex, all from a single location. All in an amazing 5 seconds flat. Very fast!

No more time-consuming manual tests. No more annoying tone tests. No more service interruptions. Instead, faultless audio transmissions that will leave your viewers and listeners coming back for more.

Save time. Save money. All while revving up your audio performance. For more information and a free copy of our SIAT video presentation, call toll-free 1-800-955-9570 or mail the coupon today.

Schmid Telecommunication
Circle (68) on Reply Card
www.americanradiohistory.com
Figure 5. A 50Ω to 75Ω tee may be constructed to minimize the effects of the mismatched impedances.

Introducing:

NauteL AmpFET ND25/50, 25 kW & 50 kW
Second Generation All Solid State AM Transmitters

- Solid state design utilizing digital circuit techniques results in superior audio performance and high efficiency
- Specifically designed for NRSC Standards compatibility and AM Stereo operation in support of improved AM radio
- Parallel modular configuration provides true active reserve without need for operator intervention
- On air serviceability features allow module removal without interruption in broadcasting
- Built-in duplicate exciter sections offer complete backup of critical low level control circuitry

All Solid State AmpFET ND Series AM Medium Wave Transmitters
Power Range up to 100 kW

Phone: (902) 823-2233 Canada-Fax: (902) 823-3183-Tlx: 019-22552

NauteL (NauteL Electronic Laboratories Limited)
RR#1, Tantallon, Halifax County
Nova Scotia, Canada B3Z 1X0

NauteL Maine Inc.
204 Target Industrial Circle
Bangor, Maine
04401 U.S.A

The input-matching network

With the standard measurement technique, the output of the RF signal generator is connected to a BNC tee at the channel 1 input of the scope, and the other side of the tee is connected to the input of the distribution amplifier. Again, this is poor transmission-line practice and will lead to standing waves. In this case, the scope input looks like a 30pF capacitor connected across the transmission line at a point somewhere between the signal generator and the input to the distribution amplifier.

It is possible to build a simple circuit to diminish the adverse effects of the scope input capacitance. The recommended circuit is shown in Figure 5. It has one input...
We Speak Your Language

Switcher Protocol

ESAM II

PC/MAC

GPI

Editors

Now in Production! Call to arrange a demonstration by your authorized FOR-A Audio Products Dealer.

Automated Audio for Video

No matter what equipment you use, FOR-A's new automated Audio for Video System speaks your language. The AFV-500 is compatible with almost every popular editor and switcher in the industry. So it gives you an open path to expand in any direction. And that's just for openers.

The AFV-500 is remarkably easy to operate. Its internal memory lets you program up to 90 complete setups at a time. From source assignments — up to 20 with our new Audio Matrix Interface option — to levels, fades and stereo pans. With perfect transitions between key frames. With speed and simplicity that cuts your post time dramatically, allowing the freedom to be more creative as well as productive. Starting at under $8,000, the AFV-500 is also easy on your budget.

AFV-500. Audio for Video in any language.

FOR A
INNOVATIONS IN VIDEO and AUDIO TECHNOLOGY

FOR-A Corporation of America
Nonantum Office Park, 320 Nevada Street
Newton, MA 02160

Any questions?? Let's talk!

Boston (617) 244-3223
Chicago (708) 964-1616
Houston (713) 894-2668
Los Angeles (714) 894-3311
(from the RF signal generator) and two outputs (one to the scope input and a second to the cable leading to the input of the distribution amplifier).

The input impedance of almost any distribution amplifier should be close to 75Ω resistive with, at most, 1pF or 2pF of shunt capacitance. The shunt capacitance at the scope input is caused by the input attenuator (gain control), which is not present on most video equipment. On video equipment, it is more common to find an input impedance with a small amount of series inductance due to the wires from the BNC connector to the actual load on the circuit board.

As shown in Figure 5, the output going to the distribution amplifier looks as if it is 75Ω resistive. This 75Ω is in parallel with the 15Ω of the voltage divider going to the scope. The input impedance to this circuit is then 50Ω, with about 3pF in parallel. If a 50Ω coaxial cable is used between the RF signal generator and the 3-port circuit of Figure 5, then the impedances are matched everywhere. Above 70MHz, a slight mismatch will start to occur between the signal generator and the scope because of the 3pF input capacity of the voltage divider.

Figure 6 shows a simple way of constructing the circuit shown in Figure 5. Again, the 135Ω resistor needed for the 10:1 voltage divider is not a standard 1% tolerance value. Using a good digital ohmmeter, select two 1/4W, 240Ω resistors and connect them in parallel (135Ω) as shown in Figure 6. The 15Ω resistor may be selected or a 1% tolerance resistor may be used.

A good approximation of the 3.3pF capacitor is achieved by the physical placement of the resistors and shorting wire between the input connector and the output connector. Figure 7 shows the same circuit fabricated in a Pomona box (model 4057). The cover has been removed to show the physical layout of the parts.

To test a homemade scope-terminator/attenuator, use a 10-foot length of RG-59 cable in place of the distribution amplifier. The output signal should be attenuated by no more than 5% at 60MHz. To prove that your efforts were worthwhile, try the same measurement using BNC tees and 75Ω loads.

Rely on Telex. They know this business inside and out.

Intercommunications, whether it be in television, radio, auditoriums, theaters, film studios or industry can be very complex. Problems of headset compatibility, audio distribution control and balanced/unbalanced wiring have plagued installers for years. Turn to the problem solvers at Telex. Their full line of AUDIOCOM® intercom equipment is built tough, built smart and built in the USA. They solve problems! For complete details, write to Telex Communications, Inc., 9600 Aldrich Ave. So., Minneapolis, MN 55420.
News
Continued from page 4

The papers must be unpublished and based on original research, developments and approaches carried out in the period between Telecom '87 and Telecom '91. The papers should deal with technical aspects of telecommunications, technologies, networks and services.

Australian regional AES convention features new venue

The Melbourne Audio Engineering Society (AES) convention will be held Aug. 20-22, 1991, at the Moonee Valley Function Centre. It is 6.3km north of Melbourne's business district and offers expanded exhibition space.

If you wish to participate in the event, contact the AES Melbourne Office, P.O. Box 149, Ashburton, Vic. 3147, Australia; telephone 03-885-5088; fax 03-885-9974.

Microwave Radio purchases M/A-COM MAC division assets

Microwave Radio has agreed with M/A-COM, Burlington, MA, to purchase the business and assets of the M/A-COM MAC division, Chelmsford, MA.

The assets include short-haul and long-haul analog radio communications systems used in the microwave transmission of audio, video and data signals.

News from Europe

By John Blau,
European correspondent

Satellite TV study for EC

British Aerospace (BA) has been commissioned by the EC to study satellite television in Europe, particularly how it can be further developed to meet future broadcasting needs. In its review, BA will focus on technical and legal developments in Europe's turbulent market for satellite television. A major focus will be on the status of HDTV direct-reception, including the possibility of interference with other satellite broadcasts.

Confusion of D2 Mac in Germany

West Germany's two main public-service networks, ARD and ZDF, are debating the future standard for satellite broadcasts in a united Germany. Their discussion has emerged from the need to provide East Germans with West German broadcasts via satellite. East Germany does not have a modern terrestrial broadcasting infrastructure. It will take years and cost billions to modernize East Germany's broadcasting industry.

Distribution via relay to cable systems is not viable in East Germany because of the poor state of cable systems in rural areas.

Satellite television is an obvious solution.

Continued on page 108

Rely on Telex. They know this business inside and out.

With all the newcomers to the wireless microphone business, it's hard to know where to turn for advice. You want a proven product, a trusted brandname, a USA manufacturer and expertise that's readily available. Telex offers all of that plus the widest selection in the industry. So, when it's time for you to get serious about wireless, turn to the people who are serious about the wireless business. For complete details, write to Telex Communications, Inc., 9600 Aldrich Ave. So., Minneapolis, MN 55420.

© 1990 Telex Communications, Inc.
Congested area proposal filed

By Bob Van Buhler

In the effort to meet a long-standing federal need, the SBE has filed a petition for rulemaking, which defines the criteria for determining whether a particular broadcast market is designated a congested area for frequency coordination purposes.

The FCC has referred to these congested areas, particularly about issues raised in Docket 82-334, but never has defined exactly what was meant by a spectrum-congested area. More than a year ago, the California consulting firm of Hammett and Edison filed a request for a declaratory ruling that would define the term. FCC officials, in discussing the matter, indicated in conversations to the SBE that a filing by the society would be welcomed to resolve the issue.

SBE proposal

Two alternative criteria have been suggested for triggering the congested area status under the SBE proposal. The first criteria is the Census Bureau’s designation of an area as a standard metropolitan statistical area (SMSA). There are 309 SMSAs in the United States, recognized in the report on the 1980 census. More probably will be added after the 1990 census.

Mountaintop areas or tall structures with favorable locations also would fall into the category of a congested area if many users operated at the site. The SBE plan would draw a circle with a 3km radius around such sites and specify the nature of auxiliary antennas allowed within the area. Annual updating of these lists is recommended.

Antenna types

The plan proposes two categories of antennas. Category A antennas include those with a half-power beam width of 14° or less. Category B antennas would have a half-power beam width of up to 16°. This would compare roughly to a 6-foot grid parabolic antenna, which meets Category A standards, to a reflector-style antenna that meets the Category B criteria under vertical (but not horizontal) polarization conditions.

According to the SBE filing, there would be a cost difference of about $1,000 for a new installation. With new aural STL installation costs approaching $20,000, this represents a cost differential to the broadcaster of about 5%, which is not unreasonable.

Initially, the criteria proposed by the SBE is recommended only for the aural STL band and the 2GHz and 7GHz auxiliary bands, because the matter can be handled exclusively by the Mass Media Bureau. ou have made any rule changes for the 13GHz, 18GHz and 31GHz bands involves other bureaus of the FCC, and cooperation would be necessary.

The best recommendation for extension of the rule to other bands would be a successful track record in the Mass Media Bureau-controlled bands. According to the society, this proposal, if adopted, would provide such an opportunity.

The society’s current filing on congested area definition and the previous filing on technical amendments to the 950MHz aural STL broadcast auxiliary band were prepared by SBE director Dane Ericksen, P.E., Hammett and Edison, and SBE Washington attorney Christopher Imlay, of Booth, Freret & Imlay.

SBE examines convention

Current studies indicate that the convention committee and board must continue to grow in size and scope. The convention must move to areas that have the greatest number of broadcast engineers, rather than going only to attractive locations. This probably will mean changing the travel orbit to include East and West Coast locations, where there is the largest concentration of broadcast engineers. Research indicates that a successful show follows the highest concentration of local attendees, as well as easy and convenient air travel locations.

Protecting the name

The society holds exclusive rights to the logo and the service mark, “SBE,” and has taken action in the past to protect this name from infringement. Anyone wanting to use the logo or service mark “SBE” should contact the SBE office for information regarding their proper use.

The image and reputation of the SBE is important and will be aggressively protected by the officers and directors.

Mark your calendars

The 1990 SBE Convention will be held Oct. 4-7 in St. Louis. This year’s convention promises to be bigger than ever. New Ennes workshops include: Using Computer-Based Design Software, AM Stereo Installation and Maintenance, Transmitter Maintenance, AM and FM Antenna Tuning and Management for Engineers.

New equipment from a wide range of manufacturers will be available for inspection. Don’t be left out. Plan now to join us at the 1990 SBE Convention.
"LARCAN's strip-line combiners ensure accurate phasing, year after year after year. My LARCAN transmitter is virtually maintenance free."

Chuck Morris
Corporate Director of Engineering and TV Chief Engineer
KIRO-TV, Seattle, Washington

LARCAN continues to be the solid state leader in major market acceptance from proven third generation performance. LARCAN M Series 100% solid state VHF transmitters from 3 to 60kW are your best buy for the long run.

LDL COMMUNICATIONS, INC.
14440 Cherry Lane Court, Laurel, MD 20707
Tel: (301) 498-2200. Fax: (301) 498-7952.

MEMBER OF THE LeBLANC COMMUNICATIONS GROUP

© 1970 LDL COMMUNICATIONS, INC.
Nytone Video Slide Scanner

By Mark Fenton

The 11 o’clock news has ended and most of the staff has gone home, leaving only a handful of people on duty. A phone call comes in to the assignment desk about a large fire at an industrial plant. The on-call photographer is contacted after some delay, but by the time he gets there, the blaze is almost out. He picks up shots of the cleanup work and gets an interview with the fire marshal. Although it was a headline fire, the video only rates a page three. However, a local shooter who was on the scene at the height of the fire with a 35mm camera has a whole roll of top-quality slides.

Unfortunately, the station has a policy against using amateur photography in newscasts. The policy has a sound basis; home VHS and Beta equipment usually doesn’t produce the kind of quality you want to air. Besides, most stations don’t maintain equipment for editing those tape formats.

Still photography is out because of the problems of getting it into the still-store. This is not because it is not of high quality. It is simply that the resolution of film is an order of magnitude greater than even professional video equipment. Because a still camera has no video output and cannot be edited, it is just not used for TV video.

There is a solution: the Video Slide Scanner from Nytone.

System description

The Video Slide Scanner fits into a standard 19-inch rack. It accepts a standard slide carousel on top and outputs an NTSC video signal. The controller is a desktop unit that takes up about as much space as a keyboard.

The scanner provides several operational features: advance, random-access sequencing and programmable sequencing. With optional equipment, it can zoom, pan, flip horizontally or vertically, rotate or change the horizontal or vertical dimensions.

![Figure 1. Using flying-spot scanner technology, the image is first separated into RGB components.](www.americanradiohistory.com)
The basis of the video translation is a flying-spot scanner. This is basically a cathode ray tube similar to those used in early studio cameras, so the technology is not new. However, the flying spot scanner is still a stable, time-proven idea, and it has the advantage of simplicity. A 3-tube camera requires registration, whereas a scanner does not.

In operation, the unit looks like an elaborate slide projector. However, it is much more sophisticated. The scanner produces an intense, flying-spot light source that scans the film with a raster-type sweep, similar to the sweep used in a television or monitor.

Although the image produced on the other slide is complete, as perceived by the human eye, the internal image at any instant is only a tiny light spot. The light passes through the film and through a collector lens, then is separated into its red, blue and green components by a series of dichroic filters. (See Figure 1.)

After being separated, the light is collected by special color-selected photomultiplier tubes, amplified, gamma-corrected and processed by an internal IQ encoder. The video signals are controlled automatically to give constant output signals in relation to the variable density of the slides.

The scanner's CRT is coated with rare earth phosphorus to reduce spot retention and enhance spectral response. A special non-burning faceplate is used to increase tube life. The system also uses high-efficiency optics and photomultiplier tubes that allow the CRT to operate at a relatively low beam current.

Special effects

The scanner provides 700 lines of resolution. Even though NTSC video only uses 525 lines, the higher resolution of the scanner provides some advantages. When a picture is zoomed in on, the detail of the image normally becomes grainy. With a digitally enlarged image, this grain would be apparent. Rather than using digital manipulation, the Video Slide Scanner controls the image with a computer that directs the scanner's sweep.

Magnification is achieved in reducing the scanned area to a part of the picture desired. This compresses the sweep and squeezes the scan lines together. Because the internal image at any instant is only a tiny dot, as seen by the photomultiplier, this means that more emphasis is being applied to fewer pixel elements. With the high information density of film and the relatively high resolution of the flying spot scanner, an image section can be magnified several times without graininess or loss of picture detail.

The company claims the scanner will produce a 4X power magnification, which may be conservative, depending on how you define magnification. If you reduce

C-Band and Ku-Band High Power TWT Amplifier Systems

For Video, Voice and Digital Communications

50-3000 Watt

To meet expanding needs of the video, voice and data markets, MCL offers a host of C-Band and Ku-Band High Power TWT Amplifier Systems, 50-3000 Watt, with flexibility in configuration and consistently reliable power output. MCL is dedicated to manufacturing amplifiers of the highest quality, yet at competitive prices. The amplifiers are recognized and accepted worldwide for incomparable performance. They are designed to withstand interference from EMI-radiation/API-susceptibility, electrical (power source), mechanical stress, environment (temperature/humidity), or general maintenance and transportation.

MCL's C-Band and Ku-Band High Power TWT Amplifier Systems are designed with state-of-the-art engineering concepts, and options are available for customized applications. The C-Band units (5.850-6.425 GHz) operate at 50-3000 Watt power levels; and the Ku-Band units (14.0-14.5 GHz) operate at 50-2000 Watt power levels.

MCL is a primary source of amplifiers and allied equipment for satellite communications worldwide. Commonality in operation, design, and mechanical layout of all MCL equipment provides for interchangeability and keeps maintenance and repair time at a minimum, performance at a maximum.

Write for your FREE copy of MCL's New Brochure #008 for additional details and technical specifications on the complete line of MCL High Power TWT Amplifier Systems.

MCL, INC.
501 S. Woodcreek Road
Bolingbrook, IL 60449
708-759-9500 TWX 910-683-1899
FAX 708-759-5018

May 1990 Broadcast Engineering 101
The 16× magnification is useful when you want to emphasize only a portion of a photo. Shown first is the original photo of a ship. The second photo shows a 16× magnification of only the bow area.

the scan to one-fourth, as is done in this system, you can say that you have 4X magnification. However, because the scan is reduced to one-fourth of both the vertical and horizontal sweep, you actually are viewing 1/16th of the total picture. A 16X power magnification is impressive.

Operational features
A joystick on the control panel controls both rotation and panning, and a pair of button switches control zooming, with both a fast and a slow zoom. Operation is straightforward.

The scanner can be programmed for a sequence of up to 250 moves. This allows a program to be created and edited before it goes onto videotape eliminating the need for video post-production. Adding a bit of movement creates a nice effect, too, by reducing the impression that you are looking at a still picture. This effect is used frequently in documentaries.

A printer/processor can be combined with the scanner into a single unit. These units are intended for professional film finishers so that, someday, you will be able to drop off your film at a local store, and for an extra fee, get a videotape copy of your prints. Because televisions and VCRs are replacing more and more slide projectors and screens in homes, offices and classrooms, this is likely to become a common procedure.

Internal controls
The unit was fully adjusted before shipping. Anyone familiar with the setup of cameras should be able to handle the maintenance with the aid of the service manual. The system uses IQ encoding and has the same familiar camera controls of luminance and chroma gain. It also has a sync generator and color-bar generator. Components are card-mounted, and all circuitry is easily accessible. If any circuit fails, the card is removed and either repaired or replaced.

The Video Slide Scanner can be ordered in several configurations, and upgrades to the advanced features can be made later. With both RGB and composite video output, it can be used in virtually any application.

DID YOU KNOW?

Print advertising attracts
OVER TWICE
the new customers as
direct mail!*

You can reach over 83,000 potential customers for a fraction of a cent each by placing your ad in the Classifieds.

FAX your ad to 913/541-6697
or send it to

BROADCASTING :

9221 Quivira Rd.
Overland Park, KS 66215.
Attn: Renée Hambleton

*Source: Cahners Advertising Research Report
Tektronix offers the industry’s most complete line of sync and test signal generators. Each one precisely matched to your specific application requirements. You don’t pay for capability you don’t need and won’t use. Ask your Tek representative for a demonstration. There’s a perfect fit, whatever your format.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSG-170A</td>
<td>NTSC sync and test signal generators,</td>
</tr>
<tr>
<td>TSG-170D</td>
<td>Correctly SK H-phased outputs,</td>
</tr>
<tr>
<td></td>
<td>Genlock sync generator with timing presets,</td>
</tr>
<tr>
<td></td>
<td>Character identification with ID presets and tape leader countdown.</td>
</tr>
<tr>
<td>TSG-170D</td>
<td>D-2 digital video output plus parallel and serial audio outputs,</td>
</tr>
<tr>
<td>Only</td>
<td>Ideal for the NTSC house with D-2 in its future.</td>
</tr>
<tr>
<td>TSG-370</td>
<td>Simultaneous and independent component and NTSC composite test signal generators,</td>
</tr>
<tr>
<td></td>
<td>Up to 8 color black outputs for equipment synchronization,</td>
</tr>
<tr>
<td></td>
<td>Ideal for component edit suite operation and maintenance,</td>
</tr>
<tr>
<td></td>
<td>A hedge on the future for NTSC houses contemplating but not yet using analog components.</td>
</tr>
<tr>
<td>TSG-422</td>
<td>4-2.5 digital component test signals per CCIR Rec. 601 and SMPTE RP 125,</td>
</tr>
<tr>
<td></td>
<td>Full test signal complement including signals for testing co-siting, dynamic range and digital/analog blanking width,</td>
</tr>
<tr>
<td></td>
<td>Receiver test facilities including digital gray signal and data-to-clock timing offset,</td>
</tr>
<tr>
<td></td>
<td>Genlock and color black outputs,</td>
</tr>
<tr>
<td>1910</td>
<td>NTSC Test Signal Generator/VITS Inverter,</td>
</tr>
<tr>
<td></td>
<td>NTC7, FCC, ANSI T1.502 and EIA RS 250-B test signals,</td>
</tr>
<tr>
<td></td>
<td>Provisions for insertion of externally generated signals,</td>
</tr>
<tr>
<td></td>
<td>Remote control via RS-232-C.</td>
</tr>
</tbody>
</table>

Copyright © 1990 Tektronix, Inc. All rights reserved. #TSG-101

Circle (76) on Reply Card

www.americanradiohistory.com
MCG surge protectors

By Robert Andrade

If you've ever had to repair the damage caused by a lightning-induced power surge, you know it can be expensive. Lightning and power-line transients surging along ac power lines can be potentially disastrous to sensitive broadcast equipment. Today's microprocessor-driven recorders, videotape machines and studio computers all demand clean power. Transient or surge suppressors can be effective in reducing or even eliminating the damage caused by lightning and power surges.

Need for protection

Evergreen Broadcasting owns two stations in South Central Pennsylvania: WWCP-TV, a Fox-affiliated station in Johnstown, and WATM-TV, an ABC affiliate in Altoona. All programming and available spots for both stations are generated at the Johnstown facility with an IBM System 36 computer. If the computer system goes down, both stations are off the air.

I suspected that we were getting spikes in the primary feed, which was resulting in equipment failure. Our area experiences thunderstorms, which can trigger voltage spikes on the power line. Aut

The SPB series of protectors can be repaired with plug-in modules. Each module has redundant circuitry, which reduces the likelihood of being without protection.

System overview

WWCP is a large facility located in a former high school building. The auditorium was converted into the studio and the upstairs area became offices.

Two power buses feed power to the studio. One supplies the satellite equipment, and the remaining bus handles the office power requirements.

The SP series of protectors works by rapidly intercepting an overvoltage whenever it exceeds the clamp voltage. Once this point is reached, the protector creates a low-resistance path to ground. Most models incorporate redundant protection elements on each phase. This ensures that the unit is never out of service, even in the event of a catastrophic hit. If one protection element is damaged, a fuse operates, taking it off-line. The second element remains on-line to protect the equipment.

Installation documentation was com

The SPA-type surge protectors are usually installed near the main power panel.

Andrade is chief engineer, WWCP-TV, Johnstown, PA.

selected the MCG SP series of surge protectors. Performance and price were the major considerations. The SP series delivered more energy-absorption capability per dollar than other products. The MCG protectors also have status LEDs that show whether the suppressor is operational. The units are UL listed, which made us confident that they would perform safely.
EEV’s TOTAL COMMITMENT ... what’s in it for you?

The most comprehensive range of wideband klystrons.

Devices incorporating latest UHF amplification technology.

Emergency tubes and circuit assembly parts available ex-stock with no premium charges.

Klystron Engineering Notes providing application guidance.

Technical assistance available over the phone or on-site.

An established support theme already servicing more than 200 satisfied clients.

This adds up to the most cost effective package for you, the UHF TV Broadcaster.

For more information please call:
1-800-DIAL-EEV

Circle (82) on Reply Card

EEV Klystrons

USA: EEV Inc., 4 Westchester Plaza, Elmsford, NY 10523 Telephone: (914) 592 6050 or 'Toll Free' 1-800-DIAL EEV Telex: 6818096 Fax: (914) 682 8922

CANADA: EEV Canada Ltd., 67 Westmore Drive, Rexdale, Ontario M9V 3Y6 Telephone: (416) 745 9494 Telex: 0898363 Fax: (416) 745 0618

UK: EEV, Waterhouse Lane, Chelmsford, Essex CM1 2GU, England Telephone: (0245) 493493 Telex: 99103 Fax: (0245) 492492

Subsidiary of the General Electric Company plc of England

www.americanradiohistory.com
complete and easy to follow. The surge protectors were mounted close to the service panel, shunted across the ac power line. The protector draws no power and it is completely silent in operation. The only maintenance the unit requires is periodic checks of the indicator lights to see that the green light is illuminated.

Equipment must be repairable on-site whenever possible. Although we haven’t had to service the suppressors, there are status indicators on the front panel informing us of any damage. Because this was an important feature, we did not consider competitive units without status lights. We did not want to be uncertain about the protector’s working status.

Repair time on the field-repairable SPB series is supposed to be less than five minutes. The units are equipped with troubleshooting LEDs to help pinpoint the problem area. The built-in redundancy on each phase greatly reduces the likelihood that the station would ever be totally without protection.

Our specific needs

The studio’s primary wiring plan is shown in Figure 1. Two SPB-120Ys are installed at the main inputs. A 102Vac/208Vac 3-phase, 4-wire plus ground protector was used for the wye systems. The device is capable of handling 800 joules per leg or 2,400 joules total. Clamping begins at 200V peak and will withstand IEEE 557 category B impulses (6kV-3kA).

These units provide ample protection for all of our studio equipment, which includes videotape machines, still-store, routing switcher, video cart machine, four editing bays, satellite receivers and the auxiliary support equipment.

Two more protectors are used near the IBM System 36 and the North Star computers. These protectors operate and are configured similar to the SPBs we have at the main electrical entrance. The joule rating is scaled back for use at the local service panel (380 joules per leg or 1,140 joules total). These units help ensure that program logs, commercials, payroll and all stored data from various departments as well as microprocessors inside the computer are adequately protected.

Figure 1. The surge-protection scheme for WWCP-TV relies on the SPA and SPB protectors. Since they were installed, the station has not experienced any damage from power surges.
Downtime costs
Before the SP protectors were installed, we experienced a lot of downtime. Whenever the power failed and then returned, there was always a voltage surge that was damaging studio and office equipment. When there's an equipment failure, our two technicians troubleshoot and try to make repairs within 24 hours. If the routing switcher goes down, we have to find another way to patch the commercials onto the air.

The cost of downtime varies with the time of day. During prime-time, the cost can run as much as $1,000 per hour. At other times, it varies between $400 and $600 per hour. These costs do not include employee overtime or replacement part costs. Nor does it take into account the aggravation of scrambling against the clock to get back on-line.

Errors and damage dropped to zero after the installation of the suppressors. I was correct in assuming that the previous equipment damage was being caused by electrical power surges. Since then, no ICs have been replaced and downtime is nil. The SP protectors just sit there and do their job.

Future installations
The studio in Altoona does not house computers like the Johnstown facility, but it has sensitive recorders, players and other equipment, which also need protection.

When the building was erected, the contractor installed a step-down transformer to convert the incoming 480Vac power to the required 208Vac. The transformer provides some surge suppression with thermistors, but the technology is not fast-acting. High speed, short-duration transients still pass on to the equipment. As a first-step measure, protective devices will be installed on the incoming 480Vac line.

We also are investigating protection for the transmitters and translator sites. For these applications, we'll use the Surge Master series. These units have a substantially higher transient-absorption capability and several additional features, including an audible alarm that sounds in case of failure.

The addition of the MCG SP series has cost-effectively solved our transient-related equipment problems. The additional peace of mind and continued uptime are pleasant additional benefits.

Editor's note: The field report is an exclusive BE feature for broadcasters. Each report is prepared by the staff of a broadcast station, production facility or consulting firm.

In essence, these reports are prepared by the industry and for the industry. Manufacturer's support is limited to providing loan equipment and to aiding the author if support is requested in some area.

It is the responsibility of Broadcast Engineering to publish the results of any piece tested, positive or negative. No report should be considered an endorsement or disapproval by Broadcast Engineering magazine.
Continued from page 97

Currently, West German broadcasters can beam their programs via the Kopernikus telecommunications satellite or the Astra medium-powered direct-broadcast satellite in PAL, requiring no special receiving equipment. They can also use the direct-broadcast satellite TV-Sat 2 in D2 Mac, an intermediary step to HDTV. This technology, however, is not compatible with PAL.

Although East Germany uses SEACAM, approximately 90% of the sets in the country are equipped with dual SEACAM/PAL systems. Officials in West and East Germany have pushed hard in recent weeks for PAL to be the transmission of choice in the East. Their interest in D2 Mac is waning rapidly.

The West German networks have never warmed up to Mac technology and now have a good reason to avoid it. Approximately four million satellite dishes are in operation in East Germany. To re-equip these for D2 Mac reception would require manufacturing special chips. East Germany lacks the knowledge and technology to manufacture these components and can't import them because the country is (still) subject to CoCom regulations.

ARD and ZDF have agreed to broadcast their public channels via satellite in East Germany only if D2 Mac is dropped. However, an EC directive stipulates that Mac must be used for all DBS broadcasts in Europe.

Nevertheless, rumors are circulating that the French are willing to let D2 Mac "die silently" if the Germans agree. Given the East German situation, the French have every reason to do so. Also, experts say the EC is willing to compromise.

For those companies that risked investing in Mac technology, the prospects look gloomy. But for the East German electronics industry, there may be a good chance to start production of PAL equipment and to export cheap satellite receivers to Western markets.

New channels in Turkey

Turkey will receive three new channels this year. The country's national broadcasting station and Magicbox have already started to test transmissions on the Eutelsat satellite.

Magicbox, a commercial operation, has signed a series of program deals, including one with CNN. The channel also has a contract with ITT for 200,000 satellite receiving systems. Aimed at the 1.5 million Turkish expatriates in central Europe, Magicbox also is looking at the domestic market where broadcasting re-

mains a state monopoly.

A third venture, German-Turkish TV, is still looking for a transponder but is likely to transmit from three Intelsats.

European media trends in the '90s

The European media landscape will continue to be marked by turmoil and transition during the '90s as its revenues double from 17 billion pounds to 35 billion pounds, according to a study by Booz Allen & Hamilton in London. This growth will be affected by four factors: increased advertising revenues, the arrival of pay-TV, continued high growth of video, and the approximately 127 additional households from the former Eastern bloc.

According to the study, the newly discovered revenue opportunities in Europe are already stimulating increased merger and acquisition activity. Moving rapidly on this front will be larger non-media investors, such as European construction companies and utilities, seeking synergies with their own management systems. Also, the internal telecom giants, with the exception of British Telecom, are interested in the broadcasting business. U.S. phone companies, for instance, are building a strong presence in Europe. The key media investors, including Bertelsmann, Maxwell and Murdoch, who are seeking expansion into the single European market, will vie for a larger piece of the pie.

Booz Allen & Hamilton predict that one-quarter of the deals will represent "upstream" investments into production and facilities. Recent examples include Paramount’s investment in Zenith and ABC’s 25% share of Hamster.

As for the Japanese, they could bypass the cable operators entirely and use the whole spectrum of direct-delivery systems, such as DBS, VCR and videodiscs, to distribute their own software, doing so from other studios they are likely to acquire — and, of course, in an HDTV format.

Europe, including the former Eastern bloc countries, could soon become a major lower-cost production base, according to the study. The 1990s will be an exciting decade of change, partnerships and new ways of doing business. Additionally, these new partners could provide a useful obstacle to hostile takeovers or the funds for expansion and bids. The new owners also will bring new management, financial and technical expertise into the European broadcasting industry. Initially, a large reverse flow of funds is expected as much of the revenue growth will return to the Hollywood film industry; the study contends.

The bypass of cable by terrestrial pay-TV or by direct-to-home is expected, not only in Europe but also in the United States, where a DBS venture is being planned by Murdoch, NBC, Hughes Communications and Cablevision. Finally, HDTV may be the lever that will give the Japanese the opportunity to overturn the structure of the industry in the '90s.

HDTV project in West German state

The government of North Rhein-Westphalia (NRW), West Germany’s most populated and industrial state, has established its own HDTV studio. Located in the industrial Ruhr Valley, it is receiving state aid to develop new HDTV applications, to make several productions for the state’s large public-service network (WDR), and to experiment with new HDTV video technologies.

Although independent of the Eureka HDTV project, the studio is cooperating closely with officials in Brussels. In fact, Reimit Jochimsen, minister of economics in NRW, hopes that the state-subsidized project will be able to contribute to Eure-

ka’s development efforts.

West Germany telecom ministry runs HDTV tests

The Deutsche Bundespost Telekom, the entrepreneurial arm of the West German Ministry for Post and Telecommunications, is currently running tests regarding the new HDTV standard (1,250 lines/50Hz). According to a DBP Telekom official, reception quality is being checked on broadcasts beamed from the Kopernikus telecommunications satellite. The results of the testing have not been disclosed.

Italian media scene rapidly changing

The Italian media scene is being changed rapidly by Silvio Berlusconi, one of Europe’s leading commercial TV magnates. Berlusconi has a controlling interest in three commercial TV stations and a stake in several other local channels. With all of these interests combined, he controls almost one-third of Italy’s total viewing audience — second only to the country’s public-service network.

This month, the Italian Senate passed Italy’s first law to regulate overlapping ownership of newspapers and TV stations. Last year, Berlusconi took over control of Mondadori, the largest publishing group
in the country.

If the lower house confirms the legislation, Berlusconi could be forced to dispose of either his newspaper interests or one or more of this three commercial networks.

Also, the left-wing faction of the Christian Democratic Party has called for legislation to halt advertising in the middle of movies, operas and other theatrical performances. Berlusconi claims this measure would cost him $300 million a year in lost revenues and would put many smaller stations out of business.

Portugal moves slowly on commercial TV

Portugal's socialist party has criticized the government for dragging its feet on commercial television. It has been pushing hard to change the state-controlled monopoly on broadcasting. Elections are scheduled for next year and the party aims to make commercial television an issue. The Portuguese government has still to present its long-awaited commercial broadcasting bill.

Japanese sponsor HDTV production

The Bavarian Opera Company will be participating in the world's largest HDTV production. More than 70 hours of opera written by Richard Wagner have been recorded in this new technology. Approximately 16 hours of the opera will be used. The project is being financed and produced by NHK, the Japanese network. Its premiere is scheduled for September.

West German broadcasters test broadband networks

West Germany's public-service broadcasters have been participating in the country's nationwide fiber-optic preliminary broadband network. The technology has been engineered by Nixdorf Computer and ANT telecommunication, both of West Germany. They are supplying the technology to the Deutsche Bundespost Telekom, West Germany's national telecom carrier.

West German network moves on HDTV

Production will determine the future of HDTV in Europe, according to Gerd Pohle, chairman of the technical commission with West Germany's ARD public-service network. In a recent interview, Pohle said that ARD is discussing the possibility of joining the European Economic Interest Group, an EC project supporting HDTV production equipment.

According to Pohle, the group has received widespread support from the European Broadcasting Union, representing the public-service broadcasters throughout Europe.

Philips cooperates with Chrysler

Philips of the Netherlands and Acustar, Chrysler's components subsidiary, have formed a joint venture to develop and produce car audio and video products as well as information and communication systems.

Be sure of your audio quality

You will with the S-T 1510A — the only test system that's complete, inexpensive and doesn't need a computer GURU to use.

- The only “all-in-one” instrument — 2 channels of asynchronous I/O — our exclusive CRT graphic display of test results • EASY TO USE — select one of 14 tests and push “Start” • PORTABLE — no need for a cart full of test equipment, but GPIB compatible, too • And it’s INEXPENSIVE — call/FAX today.

SOUND TECHNOLOGY
1400 DELL AVENUE
CAMPBELL, CALIFORNIA 95008
(408) 378-8540
Fax (408) 378-6847
Telex: 35 74 46

Circle (85) on Reply Card

Circle (84) on Reply Card
Note of caution
Editor's note:
• In February issue of BE, an announcement was published regarding a low-power TV transmitter device. The product was included because of its potential use in closed-circuit applications. However, if such a unit was used to “transmit” from your VCR to various TV receivers around the house or office, it would be considered illegal because of interference caused to standard broadcast services.

Digital multimeters
By American Reliance/ARI
• AR-3000 series: 3 1/2-digit DMMs; programmable, autoranging; 40-segment analog bar graph display, automatic data hold feature; min-max memories; relative measurement, dc voltage, current; ac current, dBm; continuity, diode junction, resistance measurements; fast display updates each 50ms.

RF suppression
By Renco Electronics
• RL 1325, RL 1326: power-line chokes; standard values from 3.9µH to 1.0H; high saturation flux density material with saturation currents from 77mA to 14.7A; axial lead design; restricts RF energy from entering equipment via power line.

Cable management
By Panduit
• Tie mounts: low-profile aluminum, adhesive-backed with 40 lbs pull-off force; thread cable-tie through slot to secure single cable or bundle; adhesive activated by non-flammable solvent; device may also be attached via screws.

Experimenter packages
By Sintec Company
• FO designer kit: all components to construct a datalink via...
PEOPLE WHO KNOW ROUTING SWITCHERS, CALL US FIRST.

FIRST - 20 MHz solid state video switching system (NASA), 1963
FIRST - 360 x 800 20 MHz switching system —worlds largest (JPL), 1964
FIRST - 30 MHz bandwidth switching system (USAF), 1965
FIRST - 30 MHz equalizers for up to 200 feet of coaxial cable, 1967
FIRST - 90 MHz video matrix (Satellite Tracking Center), 1969
FIRST - 42 MHz bandwidth switching system (USAF), 1969
FIRST - Use of laser-refracted hybrid video circuits, 1978
FIRST - Switching of high res computer generated graphics, 1980
FIRST - 120 MHz switching system, 1987
FIRST - 135 MHz switching system, 1987
FIRST - 150 MHz video DA's, 1988
FIRST - 40 MHz 2 RU V/A router, 1989

It only makes sense. When you want the most advanced routing and distribution systems, you come to the people who've set the standards. The people of DYNAIR.

Just consider what the list above means for you. Because while it details our technical milestones, there's another message coming through. One of experience. And reliability. Proven reliability. Like the DYNAIR switcher at NASA's Jet Propulsion Laboratory. It's been in continuous use since its installation—26 years ago.

26 years. Isn't that the kind of dependability you need when your job counts on it?
For reliable system routing and coax/fiber connectivity. For needs ranging from CCTV to high resolution graphics. For performance that's designed in, not tweaked in, dial 800-854-2831. We'll send you information on our full line of routing switchers and distribution systems. And you'll see why for 32 years, people have called DYNAIR. First.
Selecting the most comprehensive video production system has never been easier. The Panasonic® Professional Video Production System is designed for total systems operation in the field, studio, editing suite and for virtually any playback operation.

The SVHS recording format is at the heart of Panasonic’s comprehensive video production system. It provides a new level of high performance and cost efficiency across the spectrum of video recording and playback. One look at the numbers tells it all. Five generations of signal integrity, 400 lines of resolution and two-hour operation on a single cassette.

It is Panasonic performance you’ll benefit from in the field. Panasonic’s compact SVHS camcorders feature component signal technology and the efficiency of half inch cassettes. Including both dockable and fully integrated one-piece units. And only Panasonic has SVHS camcorders available with three, two and single CCD image sensors. So you can specify the configuration that best satisfies your requirements. Panasonic lets you decide what’s best for you.

Panasonic also captures all the details in the studio. With CCD cameras that feature component outputs to take full advantage of the SVHS recording format. And to make sure all the action you’re recording looks its absolute best, Panasonic monitors allow you to easily analyze any video signal from any video source. A safeguard you’ll appreciate during postproduction and final playback.

You can complement the performance of SVHS with the sophistication of Panasonic’s MII recording format. The MII format delivers the operational characteristics you need for demanding broadcast
and postproduction applications. Like a luminance bandwidth of 4.5MHz, a K factor of 2% and a signal-to-noise ratio in excess of 50dB. It provides images that equal one inch VTRs with signal integrity that exceeds five generations of recording.

The integration of SVHS and MII video production components adds a new dimension to video system specialization. Because you can select the Panasonic components you need for the highest degree of performance and flexibility for specific system applications.

Panasonic SVHS and MII editing components provide a host of sophisticated features designed for virtually any application. From programmable 128 event A/B roll systems with time base correction to highly accurate insert and assembly systems. In addition, Panasonic speaks the industry’s language with RS-422 VCR control interface components and video signal transcoders for inter-format editing.

And for highly efficient playback operation, there’s Panasonic’s line of professional SVHS, MII and VHS VCRs, monitors and projection systems.

Make Panasonic your choice. After all, Panasonic has video production down to a system.

Panasonic
Professional/Industrial Video

For more information and your local dealer, call your nearest regional office:
Eastern Zone: (201) 348-7620 • Central Zone: (708) 981-4826
Southern Zone: (817) 685-1117 • Atlanta Region: (404) 925-6841
Western Zone: (206) 285-8883 • Los Angeles Region: (714) 373-7275

Circle (88) on Reply Card
www.americanradiohistory.com
fiber optics: simplex (1-way), duplex (2-way) versions; 10m system with extension kits available; for 5Vdc power supply; interfacing to TTL/CMOS logic.

Circle (355) on Reply Card

Wide enclosures
By Equipto

• 30" panels: an addition to the Heavy Duty line of equipment racks in vertical and sloped-front configurations; the extra wide units are available in 32 standard heights and in depths to 36 inches.

Circle (387) on Reply Card

Component TBC
By Prime Image

• Model 50 TBC/Freeze: full-frame synchronizer with 525-line memory; complete proc amp control of video level, setup, chroma saturation and hue; 7-LED front-panel indicator uses three colors to permit signal adjustments without use of a wave-
form monitor; 8-bit luma, chroma processing
Circle (362) on Reply Card

Test instrument
By Leader Instruments

• Model 1100: 100MHz oscilloscope; 3-channel system with
dual time base; 6-trace capability with 500μV maximum sens-
sitivity; 5ns maximum sweep speed; alternate trigger, alternate
time base and variable holdoff for versatility in measuring; two
vertical, one horizontal sync separator circuits; permits simul-
taneous monitoring of horizontal and vertical signals.
Circle (384) on Reply Card

Signal routing
By Eidson
• TEC EIC 2088: vertical interval router; programmable switch-
er control from PC or terminal; integral blackburst source with
eight outputs for source timing; three audio channels per in-
put, output with audio-follow capability; BNC video, RCA au-
dio connectors; memory protection guards against power
failures.
Circle (368) on Reply Card

Power protection
By Lightning Prevention Systems
• GROUNDGRID: ground reference point; for 10x greater
grounding capacity than standard rod, 12' x12' unit of high-
grade copper; all intersections silver soldered; useful in areas
where soil composition makes grounding difficult or in limit-
ed spaces.
Circle (351) on Reply Card

Cable protection
By Tytron
• LightGuide System: protective channel designed for fiber-
optic materials or other types of cables; available in three sizes
with 90° elbow and “T” sections; attach via adhesive backing
or mechanically mounted to equipment racks, snap-on plastic
covers.
Circle (356) on Reply Card

Western Radio
and Television
Engineers—
There’s some-
thing special in
store for you in
Santa Barbara
July 14-17.

Don’t miss the 43rd
Annual Western
Regional Broadcast
Convention of the
California Broad-
casters Association.

For the first time—
Engineering Ses-
sions tailored for
you.
(turn the page for details)

LET’S GET
TO THE
GOOD PART!

• Genuine Ampex replacement parts
• 35,000 different parts in stock
• Parts for out of production recorders
• For overnight delivery, call 1-800-227-8402
AND FOR AN EXCITING OFFER, TURN THE PAGE!
Security device
By Midland International
- Model 72-130: remote-control switch; keychain transmitter and companion receiver operate on UHF-coded channels, similar to garage door systems; receiving unit can be connected into the power system of any equipment operating on 12Vdc; remote control at distances to 50 feet are possible; reduces unauthorized equipment operation and stymies theft.

Upgraded receiver
By ISS Engineering
- GL5620A: second-generation satellite receiver; for C-/Ku-band operation; front panel can be removed for installation of VideoCipher II Plus descrambling module; switchable narrow bandwidth filter to remove terrestrial interference; proof of performance provided with each receiver shipped; remote control via RS-232, serial communications software provided.

Power phase conversion
By RotoPhase Systems
- RPSR, RPSS series: rotary phase converters; single-phase input, 3-phase output from fully remote-controlled deluxe system; automatic regulation and startup current limiting; easy serviceability; front-panel 3-phase metering; also available in standard versions without remote control; ratings from 48A for 10kW transmitter to 135A for 35kW transmission system.

Duplication DAs
By Tobin Cinema Systems
- BVA-12, SVA-12: video with stereo audio distribution amplifiers; one looping input drives 12 outputs; BVA type with BNC, SVA type with Y/C S-VHS video connectors, audio may be balanced or unbalanced with RCA jacks or solderless terminals; video response flat to 12.5MHz; audio response is ±1dB to 200kHz.
Multitester
By B&K Precision/Maxtec International

- **Test Bench Jr No. 377**: multifunction instrument includes voltage, current, resistance, capacitance and frequency measurements in addition to logic, transistor, diode and continuity testing, pocket-sized unit is designed with protective circuitry for reverse polarity and overload as well as high-energy fusing. Circle (385) on Reply Card

Probe replacement
By Test Probes

- **TPI 300**: oscilloscope probes for operation to 300MHz; on-

Continued on page 120

Western Engineers—be sure to attend these sessions at the Western Regional Broadcast Convention, July 14-17

- Audio Processing
- Testing and Implementation of HDTV, including an IDTV demonstration
- FCC rules, applications, upgrades from FCC personnel
- The Future of EBS
- Digital Audio via Satellite and Cable

Featuring
Michael Rau, Science and Technology Vice President, NAB
Single day registration available at special rates. Spouses welcome in the superb oceanfront setting of Santa Barbara's Red Lion Inn. For more information call Vic Biondi at CBA (916) 444-2237
Exhibit space available at attractive rates.
Call (408) 395-1161.

BUY FIVE, GET ONE FREE

Yes! For every 5 of our new C format universal AST™ heads that you order between March 31 and July 31, we'll include another one free. And because this same head fits Ampex VPR 80s, VPR 6s, VPR 3s, and VPR 2s, your inventory costs go down, so you save two ways. (We're so confident of these genuine Ampex heads that we've extended the warranty to one year or 1000 hours.) Call Ampex Customer Support at 1-800-227-8402 for complete details.

Ampex Customer Support
Peter Suzuki has been named president of Yamaha Corporation of America, Buena Park, CA.

Kevin J. Breen, William F. Lyons, Christopher Gagliano, Scott G. Nicholson and Douglas Triplehorn have been promoted to positions with Hughes Television Network, New York. Breen and Lyons are senior communication services coordinators. Gagliano, Nicholson and Triplehorn are communication coordinators.

Peter Hearne has been appointed president, U.S. operations for GEC-Marconi, Arlington, VA.

Kevin Elliott has transferred from the New York office of JVC Disc America Company to its Los Angeles office.

Michael G. Blankenship has been named Development Fellow by Corning, Corning, NY. The distinction recognizes his contributions to the development of optical fiber products and manufacturing processes.

Carl C. Dorwaldt, Mark Duncan and Graeme Harrison have been appointed to positions with Renkus-Heinz, Irvine, CA. Dorwaldt is national sales and marketing manager. He is responsible for planning, promotion and sales activities. Duncan is product manager. He directs new product development programs and engineering assistance. Harrison is European marketing manager. He is responsible for marketing in the United Kingdom and Europe.

Richard A. Cooper has been named national sales manager, robotics, for A.F. Associates, Northvale, NJ.

Dave Powell has been named Eastern regional sales engineer for Solid State Logic, New York. He is responsible for sales of the Scrensound digital audio-for-video editing system.

Robert H. Joseph and Richard J. Parissidi have been named to positions with Joseph Electronics, Northbrook, IL. Joseph is vice chairman. He is responsible for special projects and assignments. Parissidi is president and CEO. He is responsible for the operation of the business, with all officers reporting directly to him.

Greg Pine has been appointed product marketing manager of Broadcast Television Systems, Salt Lake City. He also will serve as the acting marketing manager for Betacam products.

Daniel J. McCarthy, George I. Hardy, Carl Guastafiero and Eric P. McCulley have been appointed to positions with Microwave Radio, Lowell, MA. McCarthy is Northeastern regional sales manager, Hardy is Southeastern regional sales manager, Guastafiero is Western sales manager and McCulley is Midwestern regional sales manager.

Phillip Lachapelle has been appointed Western regional sales manager, large screen display products for BARCO, Smyrna, GA. He is responsible for sales of large screen display monitors and large screen projection systems.

F. Wesley Dixon has been appointed vice president of U.S. operations for CEL Electronics, Saffron Walden, England. CEL U.S. offices will be located in Kansas City, MO.

Michael C. Rau has been named senior vice president, science and technology, for the National Association of Broadcasters, Washington, DC.

Courtney Spencer has been named vice president, professional audio division, for Sony Communications Products Company, Park Ridge, NJ. He oversees all sales and marketing operations and activities of the professional audio division.

Hugh R. Heinsohn and Elaine Jones have been appointed to positions with Gentner Electronics, Salt Lake City. Heinsohn is director of marketing. He is responsible for company sales, distribution, marketing coordination and customer support departments. Jones is director of corporate projects. She is responsible for the implementation of corporate level projects.

Jay C. Adrick, Robert D. Johnston and Brad L. Nogar have been assigned new management duties with Midwest Communications, Edgewood, KY. Adrick, executive vice president, manages the systems group. Johnston, executive vice president, manages the branch sales group. Nogar, executive vice president, manages the marketing group.

Warren T. Reeves has been named LPTV chief engineer for Video Jukebox, Miami. Reeves is responsible for the installation and maintenance of the owned, operated and affiliated LPTV broadcast stations that carry the Jukebox network programming.

Denise Lund has been appointed resident architect for the Shaffer Communications Group, Houston. She is responsible for new designs for antenna applications on high-rise buildings and tower structures.

George N. Chalatas and Joseph M. Wallace have been appointed to positions with Broadcast Data Systems, New York. Chalatas is director, Western region. Wallace is director, Eastern region.

Philip Atkins and Paul Jones have been appointed to positions with BAL (UK) Limited. Atkins is export sales manager. Jones is sales engineer.

Katcha Burnett and Gary Attanasio have been appointed to positions with Aurora Systems, Melville, NY. Burnett is international sales manager. Attanasio is Northeast regional sales manager.

Joe P. Wellman has been named marketing manager for Microtime, Bloomfield, CT.

Lawrence Weiland has been appointed president of Microtime, Bloomfield, CT.

Scott Smith, Stavros Hilaris, Jordan Scott, Peter Greco, Richard Hanf and Eric Silverthorn have been promoted to new positions in the broadcast and systems divisions of IDB Communications Group, Los Angeles. Smith is director of operations at the international facilities teleport on Staten Island. Hilaris is director of engineering at IDB-NY. Scott is audio manager. Greco is audio supervisor. Hanf is video supervisor. Silverthorn has relocated to IDB Systems in Dallas as project manager.

Brent Bullock has been named national sales manager for Quanta, Salt Lake City.

James L. Faust has been appointed corporate vice president international, a new staff position, for Scientific-Atlanta, Atlanta. The company's international subsidiaries will report to Faust. He is responsible for foreign representative relations, and will coordinate between SA operations and provide leadership in building cable TV business abroad by assuming responsibility for the company's international cable TV operations.

Andrew Duncan has joined Vinten Broadcast, Hauppauge, NY. He is marketing manager of remote-control camera systems.
We sold more of our new Auditronics 900 TV audio consoles at NAB-Atlanta than we forecast.

So our 1990 production schedule is filling up rapidly. Which means if you want to assure getting one of the five 900s that remain to be allocated this year, you should talk to us NOW.

Call your Auditronics factory direct engineering representative at:

- West: Audio Images 415-957-9131
- Central: Audio Broadcast Group 616-452-1596
- South: GP Enterprises 817-572-0132
- Mid-Atlantic: Broadcast Services 919-934-6869

or call Auditronics free at 800-638-0977. Do it today!
Continued from page 117

site repairable, thin-cable unit matches instruments with 1MΩ input impedance, modules screw together for secure, solderless contacts and quick repair; models have an activator pin to trigger readout and auto scale factoring features of some instruments; compatible with most popular oscilloscope models.

TVRO downconverter
By Standard Communications

- ODC1A: block downconverter; converts 270MHz-700MHz TVRO systems to 950MHz-1,450MHz; permits operation with a lower noise temperature for improved C/N and S/N ratios resulting, enables satellite receiving system to be used with some newer receiver models offering descrambling functions.

Automatic level sensor
By Lucas Sensing Systems

- AccuStar II: measures angular orientation through two clinometers; useful for automatic leveling, motion detection systems; ±20° range in X and Y axes with ±0.2° linearity, repeatable to ±0.1°; output signal is proportional to relative tilt of two axes at right angles to one another.

Circle (381) on Reply Card

Circle (374) on Reply Card
If you want to deliver the best, you have to start with the best. And for critical applications like original acquisition, editing, and mastering, you can't do better than Ampex 196 1" master broadcast videotape and Ampex 197 3/4" U-matic and 297 3/4" U-matic SP master broadcast videocassettes. They offer consistent low dropout performance with exceptional high RF output and superior signal-to-noise ratios. So you can depend on every reel, every cassette, every carton to deliver uniformly high performance every time, end to end. All backed by the industry's most acclaimed service and support organization. Surprising? No. It's Ampex.

THE PROFESSIONAL CHOICE

Ampex Recording Media Corporation
401 Broadway, Redwood City, CA 94063, (415) 367-3809
Circle (100) on Reply Card
Portable audio mixer
By Sennheiser

- **WM-1 wireless:** field mixer includes four channels with wireless mic receivers, fifth channel for wired mic or line level audio source; bass, treble EQ controls, 70Hz cut-off filter; LED bargraph monitors audio, RF levels; headphone output; 1kHz tone source; operates from six D cells.

Circle (376) on Reply Card

Production organizer
By Victory International Productions
- **Production Forms Manager:** software package for IBM and compatibles; user completes necessary information for storyboard, time sheets, photo releases, contracts, logs and other applicable forms; tracks petty cash expenses, calculates staff salaries; completed forms may be produced on a wide range of printers; blank forms may be produced for completion at a later date.

Circle (379) on Reply Card

Wiring terminals
By Zierick Manufacturing
- **Torsion-Lok IDC:** insulation displacement contacts for strand or solid wire from No. 24 through No. 30 sizes; creates dependable connections without solder; enables quick disconnection if needed; dual spring design maintains fixed tension on wire, unaffected by vibration, temperature cycling.

Circle (359) on Reply Card

Coaxial cable
By Comms/Scope
- **PLENUMAX:** plenum rated coaxial cable; designed for CATV or an in-house CCTV system; meets NEC Article 820 smoke and flame propagation standards; RG59, RG6 designations; Ky-
nar jacketing, fluorinated ethylene propylene dielectric.

Circle (372) on Reply Card

Waveguide-to-coaxial

By ITT Selectro

- **Selectro adapters:** provides correct matching structure between waveguide and coaxial transmission lines; broadband with low reflection and low loss; available from 2.65GHz-40GHz; rectangular and double-ridged with interfaces for N, K, TNC, SMA and PC7 male and female connectors.

Circle (371) on Reply Card

Cable protection

By Bentley Harris Products

- **Expando oversleeving:** self-fitting protective materials for individual or bundled cables, air lines, fluid hoses; available for temperature range from -70°C to 200°C; open-weave construction from polyester, dual-monofilament, Halar fluoropolymer, polyetherketone, polyphenylene sulfide materials to meet various environmental and fire hazard conditions and restrictions.

Circle (370) on Reply Card

FO material

By Belden Wire & Cable

- **Multifiber material:** six fiber-optic conductors in a single tube; for outdoor FO interconnection applications; may be used in aerial installations; available with 2, 4, 8 and 12 fibers and with various fiber sizes.

Circle (366) on Reply Card

Frequency measurement

By Optoelectronics

- **Model 2210-A:** frequency finder and counter; easily held in one hand; usable from 10Hz to 2.8GHz in two ranges; 1Hz, 100Hz resolution with ±1ppm accuracy; 10mW input sensitivity; CMOS VLSI counter chip with monolithic microwave ICs.

Circle (373) on Reply Card

WE’VE MADE DEAD AIR A DEAD ISSUE

There are worse things in radio than dead air. But not many.

And if your CD players aren’t built to resist tracking errors, you could find yourself listening to some very embarrassing silence.

Not with the new CD-701 from Tascam. Its unique disc clamping system is a technological triumph that virtually eliminates disc vibration. So you never hear the awful hush that means a tracking error has occurred.

What you do hear is the finest sounding CD unit you can buy, with the same proprietary “CD Circuitry” praised by two of Japan’s top audio magazines for eliminating low-level digital distortion.

Then there’s the optional RC-701 Remote Control with Auto Cue so you can cue to the music instead of the track (for even less dead air). Or you can add the Ram Buffer for true, instantaneous startup.

And with four times oversampling and 16-bit D/A converters in an extra-rugged chassis, the CD-701 is superbly designed for the broadcast environment.

Can a CD player really deliver this kind of performance, track after track, disc after disc? Only if it’s a Tascam.

Contact us or visit your Tascam dealer for more information about the CD-701. And take the sounds of silence off your playlist.

TASCAM

© 1989 TEAC America, Inc., 7779 Telegraph Road, Montebello, CA 90640, 213/726-3303

Radio Technology - Component Gold Pick 39th CD Player; Stereo Audio - Component of the Year 1988 & Best Buy 1990

Circle (101) on Reply Card

May 1990 *Broadcast Engineering* 123
Ice-free microwave
By Radiation Systems/Mark Antennas

- Heated antennas: for 335-2,700MHz microwave systems heated grid parabolic antennas in diameters from four feet to 16 feet; de-icer activates with temperatures in the 25°F to 35°F range; radiating element heated by lamp or heater strap, depending on antenna size; 110Vac or 220Vac operation.

Strain relief
By Panduit
- DISCOGRIP: molded disconnects: for 22-18 and 16-14 wire sizes; guards against inadvertent disconnections in areas of high vibration or excessive conductor strain; nylon barrel improves wire insulation grip; meets UL, CSA requirements.

Correction
The telephone number for Intraplex was listed incorrectly in the March issue. The correct phone number is 308-486-6709.
Professional services

Why not run your Business Card here? It’s a great way to promote your service and increase business, all for as low as $110 per insertion.

For information just call Renée Hambleton at (913) 888-4664
Classified advertising now available as Classified Display or By-the-word.

Classified Display: $100 per column inch, per insertion, with frequency discounts available. 1 inch minimum, 10 inches maximum. Blind ads $40 additional. Read- er Service number $50 additional. Spot color available for $150 (color determined by publisher).

By-The-Word: $175 per word, per insertion. Initials and abbreviations count as full words. Blind ads $40 addition- al. Minimum charge $40 per insertion.

Contact Renée Hambright, at (913) 888-6664, for infor- mation on frequency and pre-payment discounts. To place your classified ad send your order and materials to Broad- cast Engineering, Classified Ad Mgr., PO. Box 12901, Over- land Park, KS 66212.

HELP WANTED

Great Opportunity to Relocate to NYC or LA

• Shooters and Audio Men Wanted for Top National Syndication Shows.
• 3 years experience in News Magazine style shooting required.
• Lighting skills a must.
• Great opportunity to break into NY and LA markets.

Send resume and reel to Citicam, 630 9th Ave. NY, NY 10036, Suite 411 EDE

VOICE OF AMERICA. An International Broadcast Service of the United States. A part of the U.S. Information Agen- cy, the VOA broadcasts news, commentaries and features in over 40 languages to more than 150 million people world- wide daily. As we expand our radio broadcast facilities worldwide, we have immediate openings for the following managerial level positions:

NETWORK CONTROL MANAGER--A Senior Manager to develop and manage the operational control system for VOA’s broadcast network. Ap- plicants should have experience with management, en- gineering and development of large international communication operations, including specific experience in a complex operation control environment.

BROADCAST FREQUENCY AND MONITORING MANAGER--A Senior Manager to prepare international broadcast schedules for the operation of VOA’s worldwide broadcasting facilities, resolve domestic and international spectrum issues involving VOA’s telecommunication facilities and to collect and analyze technical monitoring data. Applicants should have knowledge and experience with state-of-the-art technology and of the accepted practices relevant to International Broadcast Operations. These positions are based in our Washington, D.C. headquarters and require an appropri- ate technical degree or an equivalent combination of edu- cation and experience. The VOA offers competitive compensation, excellent benefits, and the opportunity for foreign travel. If you would like an opportunity to be a part of American public diplomacy while enhancing your profes- sional career, we invite you to send your resume or SF-171 to: VOICE OF AMERICA, Office of Personnel, Room 1541, ATTN: PO. Box 310, Independence Avenue, S.W., Washington, D.C. 20547. U.S. citizenship is required.

HELP WANTED

BROADCAST ENGINEERS WANTED: 2 broadcast en- gineers with experience in 3/4" tape equipment. Studio and transmitter knowledge helpful. Great benefits, no agencies please. Send resume to Don Roden or Steve King, WHNT TV, 200 Holmes Ave., Huntsville, AL 35801 or call (205) 533-1919. 04-01-91

BROADCAST SENIOR ENGINEER. System design, instal- lation, training, and component level maintenance of broad- cast electronics. Facilities include: Public FM Radio & UHF TV Stations, TV & audio production studios, mobile TV post- truck, CCTV/ATV, mobile satellite uplink. Min. 3yr compo- nent level video electronics maintenance experience and 2yr degree in related field required. Previous maintenance experience on 3-tube cameras and 1 C format tape ma- chines a plus. Experience with computer hardware and soft- ware, and supervisory experience helpful. Competitive salary with University benefits. Applications including a prof. ref. Prev. applicants need not re-apply. Apply to: Karl Tur- cot, Chief Engineer/Minerva Unit., WCBU/FM/TV, Peoria, IL 61605, A/A/EQ. 05-01-91

MAINTENANCE ENGINEER—Premier southern Florida post facility seeking quality person experienced with Ampex 10, Sony Beta, and Grass Valley equipment. Send re- sume to: Chief Engineer, 204 Sherman St., Hollywood, FL 33020. 05-01-91

MAINTENANCE ENGINEER—Western Illinois Stations Seek A CHIEF ENGINEER. Must have transmitter repair ex- perience, RF knowledge a must. Studio engineering and microwave knowledge required. Excellent pay and benefits. Send resume and salary requirements to: Broadcast Engineer, Dept. 712, PO. Box 12901, Overland Park, KS 66212. 05-01-91

TRANSMITTER MAINTENANCE ENGINEER, WTEN/ WDDO-TV is searching for an experienced RF maintenance technician to work on our UHF and VHF transmitter sites. This station is a rare opportunity for an ambitious engineer to advance himself through experience gained in both UHF and VHF transmitter maintenance. Previous experience in RF maintenance of television transmitters is necessary. Send resumes to: Shickler Landing, WTEN, 534 Northern Blvd., Albany, NY 12204. 05-01-91

FOR SALE

TV TRANSMITTER

New! Color / RF COLOR TV TRANSMITTER TWIN COLOR -100 WATT AMPLIFIER (FREQUENCY MULTIPLIERS, COLOR CONTROLS AND CIRCUITRY COMPLETE) $950.00 NEW! Color / RF COLOR TV TRANSMITTER TWIN COLOR -250 WATT AMPLIFIER (FREQUENCY MULTIPLIERS, COLOR CONTROLS AND CIRCUITRY COMPLETE) $1,150.00 NEW! Color / RF COLOR TV TRANSMITTER TWIN COLOR -1000 WATT AMPLIFIER (FREQUENCY MULTIPLIERS, COLOR CONTROLS AND CIRCUITRY COMPLETE) $3,500.00 NEW! Color / RF COLOR TV TRANSMITTER TWIN COLOR -1000 WATT AMPLIFIER (FREQUENCY MULTIPLIERS, COLOR CONTROLS AND CIRCUITRY COMPLETE) $3,500.00 05-01-91

CAPACITORS OVERNIGHT: CAPACITORS for transmitters and CAPACITORS for power supplies. CAPACITORS overnight from stock. Sprague Malloy Cornell Dubilier and others. The CAPACITOR PEOPLE, KELLNER ELECTRONICS, INC. FAX 1-800-425-3664. Charlotte, Vermont. Call 1-800- 03-02-0406 for CAPACITORS. 05-01-91

ATTENTION—HURGH! Government jobs—your area. Many immediate openings without waiting list or test. $17,840- $19,685. Call 1-602-383-6885. EXT. 813484. 05-09-91

MAINTENANCE ENGINEER: Five years experience in Broadcasting or related fields required. Repair to compo- nent level on cameras, VTR’s, switchers and related studio and ENG equipment. FCC license or SBE certification preferred. Reply to Operations Manager, WINK-TV, PO. Box 1900, Ft. Myers, FL 33902. Tel. 81-334-1101 EE005-01-91

TELECINE RESEARCH AND DEVELOPMENT FACILITY is seeking an experienced film telecine technician. Duties will include research and development, light assembly, and customer service. Send resume and expected salary require- ments to: Broadcast Engineering, Dept. 714, PO. Box 12901, Overland Park, KS 66212. 05-01-91

MEANING ENGINEER: Christian TV station seeks full time Maintenance Engineer. Experience reparing and maintaining broadcast equipment is must. UHF transmis- sion/ receiver experience helpful. Send resume and salary requirements to Trinity Broadcasting Network, ATTN: HC-17, 6600 Atlantic Blvd., N.E., Louisville, Ohio 44641. EOE 05-01-91

CLASSIFIED

TV MAINTENANCE ENGINEER needed for a major Christian studio post production satellite uplink facility. Three year component level maintenance experience: Ampex, AVC, ADO, VPF-3, Sera, Scientific Atlanta Uplink. Positions available in San Diego and Dallas. Competitive salary and benefits (Paid vacations, holidays, incentive programs, medi- cal & dental insurance) with an exciting organization. Send resume to: Personnel Dept., World of Faith, PO. Box 51909/09, Dallas, TX 75231-9099 05-01-91

NEW! 24" PRODUCTION TRUCK, production switcher, 16 channel Telecam audio board, Sony monitors, 2 65Kw generators, Sigma distribution system 500, RFT circuits, and much more. 305-983-6607. 05-01-91

EASTERN IOWA/WESTERN ILLINOIS STATIONS SEEK A CHIEF ENGINEER. Must have transmitter repair ex- perience, RF knowledge a must. Studio engineering and microwave knowledge required. Excellent pay and benefits. Send resume and salary requirements to: Broadcast Engineer, Dept. 712, PO. Box 12901, Overland Park, KS 66212. EOE. 05-01-91
FOR SALE

Equipment For Sale
One owner, one engineer, corporate use, very low hours, excellent condition:
AMPEX 4100-L Switcher $18,000
MA-79 Ikegami CCU Multi-core $3,500
Ikegami 79-D1, Fujion Lens $17,000
O'Connor Hydro-Pod Model 102B $2,000
Leitch Sync-Pulse Gen SPG-102N $2,000
Tektronix Oscilloscope 465B $1,200
Tektronix Vectorscope 520A $3,200
Tektronix Waveform Monitor 1480R $2,500
Telec恩ion Compression $10,000
Call Dwight, Video Projects, (801) 595-1246

FOR SALE: Tubes 3CX1500A7, 4CX250B, 4CX2500A, 4CX3300A, and more. We carry fgy, inventory; all major brands (EAMEX, AMPEREX, RCA) Call Stew 1-800-842-1489.

COMPUTER SOFTWARE
IBM PC API! WIRE CAPTURE SOFTWARE. Key features: Captures ANPA 5khz-high speed wires. Stores wire to DOS 3.2 or 3.3 directories, NETWORK Compatible Novel, SCOM, etc. Special directory viewing software, keyword SEARCHING, file archiving, translates data to ASCII format, compatible with wordprocessors. Eliminates need for printers, helps to automate the newsroom. Contact: Porter Communications, 579 B.W. Highway, Millinocket, N.H. 04462. Tel: 603-424-4161.

COMMERATIVE ADVERTISING

SITUATIONS WANTED
TV OPERATIONS BROADCAST ENGINEER. SBE certified. Seeks entry level position in Northwest area. For information 206-385-1770.

PHONE

Renée Hambleton
for Classified Advertising Information
(913) 888-4664

SERVICES

WE PLACE TV MANAGEMENT, SALES & ENGINEERING PERSONNEL
America’s Leading Source For A Decade For Information Phone or Write Mark Kornish
Key Systems International, Inc.
479 Northampton Street
Kingston, PA 18704
Phone (717) 283-1041
Fax (717) 287-5889

TRANSMITTER TUBE REBUILDING SINCE 1941.
3CX2500, 4CX2500, 4CX15000 and many others. Write for details. FREELAND PRODUCTS INC., 7541 W. 25Th., Ciborgton, LA 70433. (504) 890-1243 or (800) 626-7926.
6-79-tf

BROADCAST TRAINED MAINTENANCE ENGINEERS will repair your ENIG/EPF cameras, VTR & related audio/video equipment. Quality work. Quick turnaround. For information call MNP Technical Services, Inc. 617-932-9545.

03-90-tf

UHF KLYSTRON TUBE REBUILDING. SAVE 50%-75% on External/Integral cavity Klystrons. New tube warranty. Major market stations use our services. CALIFORNIA TUBE LABORATORY. For full details (901) 324-4490 or (805) 995-1072.

04-90-tf

TAPE TRANSFER SERVICE. We transfer all obsolete video tape formats, one inch AMPEX, VCM, TYPE B, and SONY EV series. Also, all half inch black and white open rear format, including PRE-ElA standard. No job too small. Call TAPE TRANSFER SERVICE, PHILA., PA 19116, 215-484-9158.

05-90-tf

NI-CAD BATTERY PACKS RE-BUILT All materials and workmanship warranted for one year. We also have new packs and inserts available for immediate shipment. Call Dave at Lowing Products, 616-245-2244.

04-90-tf

TRAINING

05-90-tf

NAPA VALLEY COLLEGE offers a 2-year telecommunication's program with emphasis in 1-inch "CC" format, TBCS, component and digital video. Call or write Gary Vann, 707-253-2258, Napa Valley College, Napa, California 05-90-tf

May 1990

127

www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Reader Service Number</th>
<th>Advertiser Hotline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abekas Video Systems</td>
<td>18 415/369-5111</td>
</tr>
<tr>
<td>AKG Acoustics, Inc.</td>
<td>58 203/348-2121</td>
</tr>
<tr>
<td>Alta Group Inc.</td>
<td>48 409/297-2562</td>
</tr>
<tr>
<td>Ampex Corp (AVSD)</td>
<td>89,95 800/227-8402</td>
</tr>
<tr>
<td>Ampex Corp (AVSD)</td>
<td>40-41,65 800/25A-MAPEX</td>
</tr>
<tr>
<td>Ampex Recording Media</td>
<td>100 415/367-2911</td>
</tr>
<tr>
<td>Anvil Cases, Inc.</td>
<td>98 618/575-8614</td>
</tr>
<tr>
<td>Arakis Systems, Inc.</td>
<td>13 303/224-2246</td>
</tr>
<tr>
<td>Audio Precision</td>
<td>8 800/231-7350</td>
</tr>
<tr>
<td>Audiontronics, Inc.</td>
<td>106 901/362-1350</td>
</tr>
<tr>
<td>Behman, Div. of Fiskars Electronics</td>
<td>38 800/456-2006</td>
</tr>
<tr>
<td>Belar Electronics, Lab., Inc.</td>
<td>124 215/687-5550</td>
</tr>
<tr>
<td>Benchmark Media Systems</td>
<td>54 415/452-0400</td>
</tr>
<tr>
<td>Bext, Inc.</td>
<td>35 619/239-8462</td>
</tr>
<tr>
<td>Broadcast Electronics, Inc.</td>
<td>11 217/224-9600</td>
</tr>
<tr>
<td>Broadcast Video Systems, Ltd.</td>
<td>58,116 39,91 416/764-1584</td>
</tr>
<tr>
<td>BTS Broadcast Television Systems</td>
<td>85 51 800/962-4BTS</td>
</tr>
<tr>
<td>Cablewave Systems</td>
<td>28 203/239-3311</td>
</tr>
<tr>
<td>California Broadcasters Assoc.</td>
<td>115,117 916/444-2237</td>
</tr>
<tr>
<td>California Tube Laboratory, Inc.</td>
<td>90 800/824-3197</td>
</tr>
<tr>
<td>Clear-Com Intercom Systems</td>
<td>83 415/527-6666</td>
</tr>
<tr>
<td>Comark</td>
<td>73 215/622-0777</td>
</tr>
<tr>
<td>Computer Assisted Technology</td>
<td>55 212/360-2591</td>
</tr>
<tr>
<td>Conex Electro Systems</td>
<td>92 206/734-4323</td>
</tr>
<tr>
<td>Continental Electronics, Div. of Varlan</td>
<td>52 214/381-7161</td>
</tr>
<tr>
<td>Cortana Corporation</td>
<td>87 505/325-5336</td>
</tr>
<tr>
<td>Delta Electronics</td>
<td>20 703/354-3350</td>
</tr>
<tr>
<td>Di-Tech Inc.</td>
<td>73 516/667-3000</td>
</tr>
<tr>
<td>Dolby Labs, Inc.</td>
<td>26 415/558-0200</td>
</tr>
<tr>
<td>Dynair Electronics, Inc.</td>
<td>96 619/263-7711</td>
</tr>
<tr>
<td>EEV, Inc.</td>
<td>82 914/592-6050</td>
</tr>
<tr>
<td>ESE</td>
<td>65 213/322-2136</td>
</tr>
<tr>
<td>For-A Corp of America</td>
<td>95 213/402-5391</td>
</tr>
<tr>
<td>Fujinon, Inc.</td>
<td>45 201/633-5600</td>
</tr>
<tr>
<td>Full Compass Systems</td>
<td>80 800/356-5844</td>
</tr>
<tr>
<td>Geleco Electronics, Ltd.</td>
<td>77 416/421-5631</td>
</tr>
<tr>
<td>Gentner Electronics Corp.</td>
<td>61 42-43 800/975-7200</td>
</tr>
<tr>
<td>Grass Valley Group, Inc.</td>
<td>9 916/478-3000</td>
</tr>
<tr>
<td>Harris Corp.</td>
<td>15.16 800/4HA-RRIS</td>
</tr>
<tr>
<td>Henry Radio</td>
<td>34 800/877-7979</td>
</tr>
<tr>
<td>Hitachi Denki America Ltd.</td>
<td>3 800/645-7510</td>
</tr>
<tr>
<td>Hybrid Arts</td>
<td>47 213/841-0340</td>
</tr>
<tr>
<td>Ilbruck</td>
<td>31 800/662-0032</td>
</tr>
<tr>
<td>International Tapetronics Corporation</td>
<td>55 800/447-0414</td>
</tr>
<tr>
<td>Intrapex, Inc.</td>
<td>38 508/486-3722</td>
</tr>
<tr>
<td>ITT Canon/Canada</td>
<td>25 416/668-8881</td>
</tr>
<tr>
<td>Jampro Antennas, Inc.</td>
<td>17 916/383-1177</td>
</tr>
<tr>
<td>Jensen Transformers, Inc.</td>
<td>92 213/876-0059</td>
</tr>
<tr>
<td>JVC Professional Product Co.</td>
<td>19 800/582-5825</td>
</tr>
<tr>
<td>LDL Communications</td>
<td>99 301/498-2200</td>
</tr>
<tr>
<td>Leader Instruments Corp.</td>
<td>59 800/654-5104</td>
</tr>
<tr>
<td>Leitch Video Of America, Inc.</td>
<td>2 804/424-7290</td>
</tr>
<tr>
<td>Mark Antennas, Div. of Radiation Systems</td>
<td>122 706/298-9420</td>
</tr>
<tr>
<td>Markertek Video Supply</td>
<td>93 800/522-2025</td>
</tr>
<tr>
<td>McCurdy Radio Industries</td>
<td>77 415/751-6262</td>
</tr>
<tr>
<td>MCL, Inc.</td>
<td>75 708/759-9500</td>
</tr>
<tr>
<td>Micro Circuits, Co.</td>
<td>44 861/669-2744</td>
</tr>
<tr>
<td>Midwest Communications Corp.</td>
<td>3 606/331-8990</td>
</tr>
<tr>
<td>Minolta Corporation</td>
<td>63 201/825-4000</td>
</tr>
<tr>
<td>Moseley Associates, Inc.</td>
<td>83 805/968-9621</td>
</tr>
<tr>
<td>Mt. E.</td>
<td>28 14 201/767-5380</td>
</tr>
<tr>
<td>Nautel</td>
<td>94 902/823-2233</td>
</tr>
<tr>
<td>NCA</td>
<td>74 716/852-4521</td>
</tr>
<tr>
<td>Nikon Corporation</td>
<td>4 516/222-0200</td>
</tr>
<tr>
<td>Odetics, Inc.</td>
<td>81 800/243-2001</td>
</tr>
<tr>
<td>Opamp Labs, Inc.</td>
<td>116 213/934-3566</td>
</tr>
<tr>
<td>Orban, Div. of AKG Acoustics, Inc.</td>
<td>7,17 800/227-4498</td>
</tr>
<tr>
<td>Otari Corp.</td>
<td>15 805/952-8311</td>
</tr>
<tr>
<td>Panasonic Broadcast Systems Co.</td>
<td>48A-H 201/348-7336</td>
</tr>
<tr>
<td>Panasonic Pro Industrial Video</td>
<td>72-73,112-113 85/60 800/553-7222</td>
</tr>
<tr>
<td>Polyphaser Corp.</td>
<td>38 800/325-7170</td>
</tr>
<tr>
<td>Pro Audio Asia</td>
<td>122 105 201/530-6555</td>
</tr>
<tr>
<td>Queue Systems</td>
<td>36 213/656-0258</td>
</tr>
<tr>
<td>Rank Cintel, Inc.</td>
<td>46 818/765-7265</td>
</tr>
<tr>
<td>RTS Systems, Inc.</td>
<td>62 818/843-7022</td>
</tr>
<tr>
<td>Schacht Corp. of America</td>
<td>71 516/867-4900</td>
</tr>
<tr>
<td>Schmid Telecommunications</td>
<td>93 201/530-6555</td>
</tr>
<tr>
<td>Shure Brothers Inc.</td>
<td>1 708/866-2553</td>
</tr>
<tr>
<td>Small State Logic LTD.</td>
<td>87,89 6566 800/343-0101</td>
</tr>
<tr>
<td>Sony Communications Prod/ Broadcast Div.</td>
<td>24-25 800/635-SONY</td>
</tr>
<tr>
<td>Sony Corporation/ Broadcast Products</td>
<td>35 800/635-SONY</td>
</tr>
<tr>
<td>Sound Technology</td>
<td>84 800/359-5080</td>
</tr>
<tr>
<td>SSAC, Inc.</td>
<td>66 351/638-1300</td>
</tr>
<tr>
<td>Standard Tape Laboratory, Inc.</td>
<td>92 415/786-3546</td>
</tr>
<tr>
<td>Switchcraft, Inc.</td>
<td>12 312/792-2700</td>
</tr>
<tr>
<td>Tascam, Div. TEAC Corp. of America</td>
<td>64,123 213/726-0303</td>
</tr>
<tr>
<td>Tektronix, Inc.</td>
<td>57,103 800/452-1877</td>
</tr>
<tr>
<td>Telex Communications, Inc.</td>
<td>96,97 612-687-5570</td>
</tr>
<tr>
<td>Thomson Tubes Electronics</td>
<td>53 203/612-9000</td>
</tr>
<tr>
<td>TTC-Television Technology Corporation</td>
<td>91 303/665-8000</td>
</tr>
<tr>
<td>Utah Scientific, Inc.</td>
<td>39 800/453-8782</td>
</tr>
<tr>
<td>Videotech, Inc.</td>
<td>37 602/997-7523</td>
</tr>
<tr>
<td>Ward-Beck Systems, Ltd.</td>
<td>BC 416/438-6550</td>
</tr>
<tr>
<td>Winsted Corp.</td>
<td>120 800/447-2257</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
Faster Action!

If you have immediate interest in any products in this issue, write in the number(s) below and check all the appropriate boxes.

I am interested in these items

Circle reader service numbers below for more information

1 34 67 100 134 168 202 235 270 304 338 372 406 440 474 508 542 576
2 35 68 101 135 169 203 237 271 305 339 373 407 441 475 509 543 577
3 36 69 102 136 170 204 238 272 306 340 374 408 442 476 510 544 578
4 37 70 103 137 171 205 239 273 307 341 375 409 443 477 511 545 579
5 38 71 104 138 172 206 240 274 308 342 378 410 444 478 512 546 580
6 39 72 105 139 173 207 241 275 309 343 377 411 445 479 513 547 581
7 40 73 106 140 174 208 242 276 310 344 378 412 446 480 514 550 582
8 41 74 107 141 175 209 243 277 311 345 379 415 447 481 515 551 583
9 42 75 108 142 176 210 244 278 312 346 380 414 448 482 516 552 584
10 43 76 109 143 177 211 245 279 313 347 381 415 449 483 517 553 585
11 44 77 110 144 178 212 246 280 314 348 382 416 450 484 518 554 586
12 45 78 111 145 179 213 247 281 315 349 383 417 451 485 519 555 587
13 46 79 112 146 180 214 248 282 316 350 384 418 452 486 520 556 588
14 47 80 113 147 181 215 249 283 317 351 385 419 453 487 521 557 589
15 48 81 114 148 182 216 250 284 318 352 386 420 454 488 522 558 590
16 49 82 115 149 183 217 251 285 319 353 387 421 455 490 523 559 591
17 50 83 116 150 184 218 252 286 320 354 388 422 456 491 524 560 592
18 51 84 117 151 185 219 253 287 321 355 389 423 457 492 525 561 593
19 52 85 118 152 186 220 254 288 322 356 390 424 458 492 526 562 594
20 53 86 119 153 187 221 255 289 323 357 391 425 459 493 527 563 595
21 54 87 120 154 188 222 256 290 324 358 392 426 460 494 528 564 596
22 55 88 121 155 189 223 257 291 325 359 393 427 461 495 529 565 597
23 56 89 122 156 190 224 258 292 326 360 394 428 462 496 530 566 598
24 57 90 123 157 191 225 259 293 327 361 395 429 463 497 531 567 599
25 58 91 124 158 192 226 260 294 328 362 396 430 464 498 536 600 601
26 59 92 125 159 193 227 261 295 329 363 397 431 465 500 537 602 602
27 60 93 126 160 194 228 262 296 330 364 398 432 466 500 538 603 603
28 61 94 127 161 195 229 263 297 331 365 399 433 467 501 539 604 604
29 62 95 128 162 196 230 264 298 332 366 400 434 468 502 540 605 605
30 63 96 129 163 197 231 265 299 333 367 401 435 469 503 541 606 606
31 64 97 130 164 198 232 266 300 334 368 402 436 470 504 542 607 607
32 65 98 131 165 199 233 267 301 335 369 403 437 471 505 543 608 608
33 66 99 132 166 200 234 268 302 336 370 404 438 472 506 544 609 609
FASTER ACTION!

If you have immediate interest in any products in this issue, write in the number(s) below and check all the appropriate boxes.

I am interested in these items

<table>
<thead>
<tr>
<th>#</th>
<th>Immediate Need</th>
<th>Have Salesperson Call</th>
<th>Name Preferred Dealer</th>
<th>Send Literature</th>
<th>Send For Future Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circle reader service numbers below for more information

1 34 67 100 134 168 190 216 237 260 304 339 372 406 440 474 508 542 576
2 35 68 101 135 169 193 217 240 272 306 339 372 407 441 475 509 543 577
3 36 69 102 136 170 204 238 272 306 340 374 408 442 476 510 544 578
4 37 70 103 137 171 205 239 273 307 341 375 409 443 477 511 545 579
5 39 71 104 138 172 206 240 274 308 342 376 410 444 479 512 546 580
6 39 72 105 139 173 207 241 275 309 343 377 411 445 480 513 547 581
7 40 73 106 140 174 208 242 276 310 344 378 412 446 481 514 548 582
8 41 74 107 141 175 209 243 277 311 345 379 413 447 482 515 549 583
9 42 75 108 142 176 210 244 278 312 346 380 414 448 483 516 550 584
10 43 76 109 143 177 211 245 279 313 347 381 415 449 484 517 551 585
11 44 77 110 144 178 212 246 280 314 348 382 416 450 485 518 552 586
12 45 78 111 145 179 213 247 281 315 349 383 417 451 486 519 553 587
13 46 79 112 146 180 214 248 282 316 350 384 418 452 487 520 554 588
14 47 80 113 147 181 215 249 283 317 351 385 419 453 488 521 555 589
15 48 81 114 148 182 216 250 284 318 352 386 420 454 489 522 556 590
16 49 82 115 149 183 217 251 285 319 353 387 421 455 490 523 557 591
17 50 83 116 150 184 218 252 286 320 354 388 422 456 491 524 558 592
18 51 84 117 151 185 219 253 287 321 355 389 423 457 492 525 559 593
19 52 85 118 152 186 220 254 288 322 356 390 424 458 493 526 560 594
20 53 86 119 153 187 221 255 289 323 357 391 425 459 494 527 561 595
21 54 87 120 154 188 222 256 290 324 358 392 426 460 495 528 562 596
22 55 88 121 155 189 223 257 291 325 359 393 427 461 496 529 563 597
23 56 89 122 156 190 224 258 292 326 360 394 428 462 497 531 565 598
24 57 90 123 157 191 225 259 293 327 361 395 429 463 498 532 566 599
25 58 91 124 158 192 226 260 294 328 362 396 430 464 499 533 567 600
26 59 92 125 159 193 227 261 295 329 363 397 431 465 500 534 571 601
27 60 93 126 160 194 228 262 296 330 364 398 432 466 501 535 576 602
28 61 94 127 161 195 229 263 297 331 365 399 433 467 502 539 577 603
29 62 95 128 162 196 230 264 298 332 366 400 434 468 503 542 578 604
30 63 96 129 163 197 231 265 299 333 367 401 435 469 504 543 579 605
31 64 97 130 164 198 232 266 300 334 368 402 436 470 505 546 580 606
32 65 98 131 165 199 233 267 301 335 369 403 437 471 506 547 581 607
33 66 99 132 166 200 234 268 302 336 370 404 438 472 507 548 574 608
34 100 133 167 201 235 269 303 337 371 405 439 473 508 549 575 609

R5A
Introducing STILL NET™…
the Key to Multi-User Still Storage

Advance into a new era in still management that breaks the confines of today’s multi-user systems.

STILL NET connects independent still stores, creating a multi-user environment so powerful that users are free to share their material without compromising their own operation.

STILL NET, using the industry standard Ethernet, is unbounded in size and time, and will grow as your requirements and technology change.

STILL NET, multi-user Still Storage with a future.

Call 1-800-387-0233 and we’ll show you the key to set Still Storage free.
Ward-Beck’s Beltpack ... the mobile link for your professional intercom system!

Now total communications has become a reality with the new high-performance WBS Interphone Beltpack.

This superbly designed two-channel, single pair wired, compact unit interfaces with Ward-Beck’s advanced four-wire, programmable MicroCOM system. It assures studio quality voice communications to your outermost mobile location.

Beltpack moves quality communications yet another step ahead of the rest of the pack ... and at a very attractive price!

Ward-Beck Systems Ltd., 841 Progress Avenue, Scarborough, Ontario, Canada M1H 2X4. Tel: (416) 438-6550. Fax: (416) 438-3865.