This Month:

- Remotes from 45,000 feet
- Power-conditioning systems
KCAL-TV/California 9 Wins Edward R. Murrow Award for News Excellence

WHEATSTONE is proud to be a continuing part:

- SP-5 console S/N 15688 delivered July 1985
- SP-5 console S/N 15691 delivered July 1985
- SP-5 console S/N 15754 delivered September 1985
- SP-5 console S/N 15818 delivered October 1985
- SP-5 console S/N 15927 delivered October 1985
- TV-600 console S/N 22121 delivered October 1994
- TV-600 console S/N 23436 delivered October 1995

KCAL-TV-9 is owned and operated by the Walt Disney Company.
From 10 kW to 1 Megawatt, nobody even comes close.

Proven quality and unmatched power.
For nearly a decade, Harris has raised the world standards of reliability, efficiency and power for medium wave transmitters. With solid state power amplifier modules delivering an MTBF of 6 million hours, typical AC to RF efficiency to 86 percent and a signal that sounds like FM, Harris DX transmitters have proven to be the choice of more than 600 broadcasters around the world.

To meet the demands of the global market, Harris provides DX transmitters at all power ranges from 10 kW to 1000 kW. In fact, with our 1995 International Broadcasting Award-winning DX 1000, Harris is the only company in the world that can deliver — and has delivered — a 1-Megawatt solid state AM transmitter.

Digital is here now, with Harris.
As the only transmitter proven to be capable of digital medium wave broadcasting, Harris DX Transmitters have been used for every on-air In Band/On Channel AM DAB test to date. And, because DX is the only medium wave transmitter compatible with both analog and digital transmission, while meeting IBOC DAB standards, Harris stands alone in its ability to meet your broadcasting demands today, while preparing you for tomorrow.

Experience that serves you well.
Broadcasters worldwide rely on the vast experience and resources of Harris. From medium wave to FM, UHF, VHF, satellite and wireless cable networks, Harris has repeatedly proven its ability to help clients get the most out of their facilities and their budgets.

And that's a matter of record, too.

So, why settle for coming close, when Harris can take you all the way? For more information, just call Harris.
THIS MONTH...

24 Remotes from 45,000 Feet
By Juan Rivera
Sometimes it's not how far out you go, but how far up.

42 Power System Protection Alternatives
By Jerry Whitaker
In the realm of power quality, you can pay now or pay later. But you will pay.

52 Using Fiber in the Field
By Richard A. Cerny
As costs come down and reliability goes up, the advantages of fiber-optic signal transport on remotes become undeniable.

66 1996 State of the Industry
By Dawn Hightower
The pulse of the industry has a nice steady beat.

74 Broadcast 2000
By Marjorie Costello
MegaWave's set-top antenna: The shape of things to come.

DEPARTMENTS:

8 FCC Update: Owners must register towers with FCC
10 EAS Update: Operational areas
12 Transition to Digital: Choosing a system integrator, part 1
16 Management: The ABCs of management
18 Production: Editing on the fly
20 Interactive: Using the Internet and what is out there
22 ATV Update: VSB modulation (some of the details)
80 Transmission Technology: A new transmission facility design
85 SBE Update: Contact your local SBE chapter
86 Applied Technology: Thomson digital remote vehicle
88 Applied Technology: Matrox PC bus architecture
108 Digital Basics: The basics of digital video

COLUMNS:

4 News
6 Editorial
90 Industry Briefs
103 Classifieds
107 Advertisers' Index

ON THE COVER: A remote weather reporting system where the signal is MPEG-encoded by a FutureTel MPEGThere system. Image created by Douglas Schwartz, Santa Clara, CA, and Rick Der Photography, San Francisco.

Introducing
The DSA309
Digital Studio Analyser

All Format Digital Video Analyser: Tests
component and composite serial digital video
signals in both 525 line and 625 line formats.

Real Time Measurements: Continuous real
time, on-line measurements of all key parameters
permits live monitoring of:

- Serial Jitter
- Signal Amplitude
- Color Levels
- Non-Recommended Value Errors
- EDH Errors
- Parity Bit Errors
- TRS Errors
- Bit Activity
- Reserved Code Errors

Real Time Color Level Monitoring: Monitors
component digital video in real time for RGB or
NTSC/PAL color space infractions.

Extensive Error Logging: Permits system
performance monitoring and documentation by
logging system errors on either the built-in
LCD display, external printer, or on the built-in
3.5" disk drive.

Alarm Interface: Provides immediate notification
when user defined thresholds are exceeded.

Comprehensive Digital Displays: Complemented
by simulated analog waveforms, these displays
help bridge the gap between analog and digital
testing, creating a user friendly interface for both
operations and engineering staff.

Easy To Use: The touch screen interface and
easy to use menu system permits full instrument
utilization while minimizing user reference to
the manual.

Circle (5) on Action Card
For a comprehensive information
packet, call 1-800-769-AAVS (2287).
Tower owners have to register towers

According to a new FCC plan, tower owners, rather than licensees of facilities located on them, will have to register their towers. The FCC is now the single point of contact for FCC or FAA business concerning towers.

Tower owners have primary responsibility for marking, monitoring lighting and maintenance. The FCC has developed a staggered schedule for existing tower owners to register over a 2-year period. Those applying for tower modifications or for new tower construction will begin registering July 1, 1996. For more detailed information, see this month’s "FCC Update" on p. 8.

Panasonic makes donation to The Museum of Television & Radio

The Panasonic Broadcast & Television Systems Company has donated video equipment to The Museum of Television & Radio in New York City. This donation will let the institution duplicate its extensive collection for its new West Coast facility in Los Angeles with no decrease in program quality. The new facility will open on March 18 and will be located at 465 North Beverly Drive, Beverly Hills, CA.

The museum is a non-profit organization founded by William S. Paley in 1975 to collect and preserve radio and TV programs and to make these programs available to the public.

Panasonic’s equipment donation includes 10 AJ-D350 D-3 digital composite videotape recorders, 12 FT-2700 27-inch color video monitors, RAMSA audio mixing consoles, power amps and condenser microphones and two 51-inch Panasonic consumer projection televisions. The D-3 equipment will help in duplicating the New York archives and help in preservation efforts.

ANSI proclaims SCTE as a standards developer

The American National Standards Institute (ANSI) has recognized the Society of Cable Telecommunications Engineers (SCTE) as a Standards Developing Organization (SDO) for the broadband telecommunications industry.

SCTE works with a variety of industries to determine that their proposed standards have been given due process and proper evaluation. According to SCTE president Bill Riker, the society can submit standards developed by its engineering subcommittees to ANSI. ANSI will certify that the industry has had proper input in the development of SCTE-submitted technical standards. Upon ANSI approval, SCTE's standards will have increased credibility and visibility in the industry. This can assure their adoption and use by broadband telecommunication companies nationwide. The SCTE plans to submit 16 standards developed by its Interface Practices Subcommittee to ANSI for approval.

WavePhore gets more patents

WavePhore has been allowed two additional patents by the United States Patent and Trademark Office. These are extensions of previously issued patents dealing with WavePhore's proprietary in-band transport of digital data within the NTSC TV signal. The two additional patents deal with transmitting data with video and transmitting data with dynamic data injection control.

WavePhore's advanced multimedia data-casting was recently approved for field testing by the National Data Broadcasting Committee (NDBC), a joint effort of the NAB and the EIA.

Microsoft exec to speak at SMPTE Conference

SMPTE's 30th Advanced Motion Imaging Conference, to be held Feb. 1-3 in Seattle, WA, will feature speaker Steve Raney of Microsoft. He will address some of his company's relevant technologies associated with the conference theme, "The Convergence Continues... Computer Technology and Television."

The conference will also address the technologies that are changing the face of the motion-imaging industry and will feature a day-long course on an introduction to digital video.

For additional information, contact the SMPTE Marketing Department by phone at (914)761-1100 or by fax at (914)761-3114 or by E-mail at mktg@smpte.org. More information can be found on the SMPTE home page on the web at http://www.smpte.org.

On another SMPTE note, 1996-1997 officers and governors have been announced. Mark S. Richer, PBS, is engineering vice president; Neil B. Feldman, Video Post & Transfer, is financial vice president; and Fung Fai Lam, Sony of Canada Ltd., is sections vice president. Edward P. Hobson II, Graham-Patten Systems, has been re-elected as conference vice president. Newly elected governors include Gary Teitscher, Astral Tech, Canadian region; Donald T. Adydan, Post Effects, Central region; Thomas M. Jordan, Leitch, and Robert J. Ross, Westinghouse Broadcasting Corporation, Eastern region; Robert B. Kisor, Paramount Pictures and Gavin Schultz, Four Media Company, Hollywood region; Edgar A. Schuller, Entertainment Video Systems, New York region; Clyde D. Smit, Turner Entertainment Networks, Southern region; and Peter D. Synes, The Grass Valley Group, Western region.

The Weather Channel creates interactive and on-line programming

The Weather Channel and Time Inc. are creating and distributing interactive programming for a series of ventures launched by Time Inc. New Media Division.

TV programming from The Weather Channel appears on The News Exchange, Time Inc. New Media's news and information service on Time Warner Cable's Full Service Network (FSN) in Orlando, FL.

As part of the service, viewers will be able to view on-demand local, regional and national weather that is produced by The Weather Channel. The News Exchange provides customized news and information selected by cable subscribers.

The Weather Channel will also provide global forecast information, maps and graphics to the Pathfinder Weather Center. This feature is located on Time Warner's web site at http://pathfinder.com.

SMPTE welcomes international section

The Society of Motion Picture and Televison Engineers (SMPTE) has formed its 28th section worldwide. The society inaugurated the Hong Kong section during a reception at the Park Hotel at Tsim Sha Tsui, in Hong Kong.

Michael Cheng and his group from AV Technology formed the section because international cooperation is important to SMPTE in its standardization efforts.

CONFERENCE CALENDAR

- **April 14-18**
 - NAB in Las Vegas
 - (202)429-5350
- **April 15-17**
 - Cable & Satellite London
 - +44 181-910-7918
"BTS cameras give us the best pictures under the sun... or snow... or humidity..."

Gideon Uys
Operations Manager
Soljay Productions, Inc.

"Our mobile production company covers some of the hot television sports—NFL games of the week for Fox, college football, hockey and baseball for ESPN... We're on the road 250 days a year: a new venue every few days.

"Our clients demand the best pictures whatever conditions: today, in Alabama, with 95 degree temperatures and 90 percent humidity, or tomorrow in Green Bay, in 14 degrees and snow.

"We can't have cameras that require constant tweaking. They have to function perfectly every time.

"That's why our Mother Series MUs are equipped with BTS cameras. They deliver the finest, sharpest pictures thanks to BTS' phenomenal FT-SR CCD sensors. Our clients tell us about the unbelievably good pictures we get — more proof that we've got the right cameras. Some have bought BTS cameras for their own trucks, based on their experience with ours.

"We're so satisfied that we're on our third generation of BTS cameras. On our newest truck, 'Mother Mother,' we bought both BTS LDK 10 full size cameras and 10P companion cameras.

"In mobile production, there's no time for second-best performance. That's why we're such strong supporters of BTS cameras."

Call toll-free (300) 962-4BTS
Outside the U.S. and Canada, call (805) 584-7436
For Immediate Information
AXBack: 1-800-962-4BTS opt 4
Document #1012

A PHILIPS COMPANY
When the Government giveth, it also taketh away

I'd laugh if it weren't so serious. First, there was the trial balloon idea that the government would sell the needed UHF ATV allocations to broadcasters. For the billions (yes billions) the sale might generate, the government would then “give back” $50 vouchers to consumers so they could buy set-top decoder boxes. These boxes would be needed to convert the UHF digital ATV signals back to NTSC for display on current TV sets.

After broadcasters blasted the idea of forcing them to buy ATV allocations (see the November “Editorial”), the Clinton administration floated a second proposal. This plan involved selling the spectrum vacated by broadcasters to new users. The money generated from that sale would be counted toward the national debt. (Oh yeah, I believe that!) In addition, vouchers of $100 would be given to consumers to upgrade their TV sets (note the amount has now doubled).

Now, another so-called industry pundit has suggested that part of that “revenue windfall” be given to broadcasters in the form of $2 million vouchers to purchase new equipment for ATV transmission. Whoa, isn't that a nifty idea? Free money!

When was the last time the government gave you anything? Nary a dollar comes from Washington without strings attached. If you think the government is in your pocket now, just cash a $2 million voucher and see what happens.

Current EEO guidelines might seem lightweight compared to what could be mandated upon a station's participation in such a voucher program. Also, stations who saw a free meal in this idea might find their Uncle Reed telling them how many hours of children's programming to carry, the number of commercials permitted each hour and the amount of community service programming they'd have to provide. There's no telling what strings Washington would put on these so-called vouchers. When the Government giveth, it also taketh away.

Also, equipment manufacturers are not likely to discount anything when it's a seller's market. That's especially going to be the case if the suppliers know that the broadcast station is going to be getting $2 million in free federal bucks. A program like this is more likely to increase the real price of those very products needed by stations to get ATV on the air.

Politicians don't give anything away, let alone money, without getting something in return. It's the give a dollar, get a vote syndrome.

The idea of giving vouchers to consumers or broadcasters based on revenue from spectrum sales is a wolf in sheep's clothing. The process will merely place government more squarely than ever on the backs of the American consumer and broadcaster.

The last election clearly indicated that the American public wants less, not more, government involvement in their lives. I think the U.S. broadcaster is too smart to follow the pied piper of DC, even if he is throwing (someone else's) money around.

Brad Dick, editor
Daily Planet

'It's my pride and joy, my Porsche - I love it and so do my clients.'

Daily Planet is a leading Chicago-based editing boutique heavily involved in graphics, special effects and 3D animation. Since it was founded 15 years ago, Daily Planet has grown into a full-service post production facility occupying more than 10,000 square feet and employing 25 people.

Fred Berkeover
President and Senior Editor

Call our 24 hour Editbox Hotline now: 1 800 218 0051 Ext. 125
Quantel Inc., 85 Old Kings Highway North, Darien, CT 06820 Te: (203) 656 3100 Fax: (203) 656 3459

Circle (14) on Action Card
Owners must register towers with FCC

The commission has adopted a streamlined procedure under which tower owners will register antennas that require FFA clearance and special painting and lighting because of aviation safety concerns. In addition, the FCC has revised the painting and lighting requirements in Part 17 of its rules to conform to the specifications in two FAA advisory circulars on tower marking and lighting.

Under the new scheme, each antenna will be registered by its owner rather than by each individual licensee that uses the structure. The owner will be the only point of contact for resolving antenna-related problems. Now, the burdens associated with the antenna clearance process will be reduced for the commission and the licensees.

Beginning July 1, 1996, under the new antenna clearance procedures, owners of all proposed antennas requiring FAA notification or of existing structures with alterations requiring FAA notification will be required to register such structures with the FCC, prior to the construction or alteration. The commission will also establish a phased 2-year window for registration of all existing towers (i.e., constructed prior to July 1, 1996) that require FAA notification. During the period between July 1, 1996 and June 30, 1998, the owners of all existing towers must register them with the FCC.

Auctions or no auctions?
The budget reconciliation bill, not the highly publicized telecommunications bill, will control the future disposition of facilities for which mutually exclusive applications are pending. The budget bill includes language that provides for the auction of any facilities for which mutually exclusive applications are filed after the effective date of the bill. With respect to mutually exclusive applications pending, the bill provides that such proceedings will be determined by an auction unless the application has been "accepted" prior to the effective date of the bill. Little guidance is available on the definition of "accepted" as used in the bill. "Accepted" may or may not have the same meaning as "accepted for filing," a term of art at the FCC.

Broadcasters with mutually exclusive AM, FM or TV applications that have been pending since before the February 1994 comparative freeze probably will not be affected by the auction mandate, since in those cases, mutually exclusive applications already have been accepted for filing. However, because none of the mutually exclusive FM applications filed with the FCC after the February 1994 freeze have been accepted for filing, they would not fall within the exception to the auction language just discussed. (Unlike FM applications that are filed only during a designated window, AM and TV applications are filed in response to cut-off lists that include previously accepted applications. Thus, an AM or TV application filed after the freeze may have been accepted for filing.)

Any broadcaster who has a mutually exclusive radio or TV application for a facility that was filed with the FCC after the comparative freeze and has not been accepted for filing, may have to bid at auction for a facility authorization or will find that the time and money already invested in the process are lost.

Commercial stations in the following states must file their annual ownership reports or ownership certifications by Feb. 1, 1996:
Arkansas, Kansas, Louisiana, Mississippi, Nebraska, New Jersey, New York and Oklahoma.

LPTV/TV translator window not expected till '97

Recent discussions with the FCC staff indicate that it does not plan to open a window for applications for new low-power TV (LPTV) or TV translator stations anytime soon. There were some expectations that the commission was going to open the LPTV/TV translator window by the end of December. However, the FCC's staff advises that a window for new stations will not open until the Advanced Television (ATV) spectrum has been allocated. The ATV allocations could reportedly take anywhere from one to two years. However, a window may open to allow for major modification of LPTV/TV translator stations as early as January of 1996.

Although it seems that applying for a new LPTV/TV translator in the near future is hopeless, an option does exist. The FCC does allow, without the need of a window, the purchase of existing operating stations and stations under construction permits.

Recent discussions with the FCC indicate that it does not plan to open a window for applications for new low-power TV or TV translator stations anytime soon.

EEO sanctions levied

The FCC granted the renewal of a North Carolina station subject to reporting conditions, and issued the licensee a notice of apparent liability (NAL) of $15,000 for violations of the EEO rule. The action was taken following its approval of a joint request for settlement agreement between the NAACP and the licensee, and the subsequent dismissal of the NAACP's petition to deny the pending renewal application.

The record indicated that in an MSA, which was 17.8% minority, the licensee had maintained an average of 15% minorities on its staff, and 11% minorities in upper-level positions during the 5-year period preceding the filing of its renewal application. During the period between July 31, 1988 through July 31, 1991, the licensee had 29 full-time hires, including 19 for upper-level positions. Although the licensee claimed to have contacted a variety of general and minority-specific recruitment sources for 29 of its full-time vacancies, it was unable to provide any recruitment data for 15 of its 29 full-time job openings. Specifically, the licensee could not provide recruitment sources for 135 of its 216 applicants, and could substantiate the use of only five general recruitment sources for any of its remaining applicants. Moreover, the licensee was unable to provide evidence regarding the race or national origin of any of its applicants.

The FCC concluded that the licensee did not keep adequate records and failed to conduct a self-assessment of its EEO program until the end of its license term.

By Harry C. Martin and Andrew S. Kersting

Martin and Andrew S. Kersting are attorneys with Fletcher, Heald & Hlafibeth, P.L.C., Roslyn, VA.
If you made this many improvements, you'd want to broadcast it too.

Today, hundreds of broadcasters worldwide are using the Avid AirPlay® system for news and commercial playback. That's an impressive following. Even more impressive is Avid's new AirPlay MP playback server, designed for better performance, faster operation and superb images. Learn more about AirPlay MP and the broadcasters who have already made the move to disk-based playback. To request a free Avid AirPlay Case Study Portfolio, call Avid today at 1-800-949-AVID (1-800-949-2843) PRESS 1.
Operational areas

By Leonard Charles

The federal government's Emergency Alert System (EAS) commitment is to distribute national emergency messages to each state. Each state will be divided into operational areas defined by its State Emergency Communications Committee (SECC) to disseminate the national, as well as the state EAS messages. Additionally, the SECC will determine the EAS designation and two monitoring assignments for each broadcaster and cable operator in the operational area. This information, along with actual emergency procedures, will be published in your EAS state plan and distributed to you after FCC approval. Because many SECCs are small, they would welcome any input into formulating this plan. To find out the chairman of your SECC, contact the FCC's EAS office at (202)418-1220.

Operational areas can be further broken down into local operational areas (LOAs). Each LOA can be thought of as the "last-mile" path to the public for an EAS message. Because most emergencies are local in nature, the role of the LOA in disseminating local EAS information is immense. It is here where the web architecture of the EAS will see its full development. When properly implemented, this web will carry emergency messages through the LOA on background (non-broadcast) channels.

Background channels

To facilitate these channels, additional monitoring inputs will be necessary on your EAS decoder. The strength of using background channels comes from their availability 24 hours a day, every day of the year. Any broadcaster or cable operator monitoring these channels will have emergency information delivered to them as soon as it is available. They can then make the decision to broadcast based on the event and area data encoded in the digital header. No longer will one station's decision not to relay prohibit other broadcasters from receiving the message.

A typical background channel is the NOAA weather radio and its Specific Area Message Encoding (SAME). The SAME and EAS protocols are identical. Add to that the fact that a high percentage of emergencies are weather related, and it becomes clear that the NOAA weather radio makes an excellent choice for an additional monitoring input to your EAS decoder.

In counties equipped with a 911 center, an EAS encoder outfitted onto an existing communications channel from that center would be another excellent background channel. Broadcasters and cable operators monitoring that channel would be in constant connection to each government agency served by that 911 center. In counties not fortunate enough to have a 911 center, developing a background channel from the county sheriff or the local police department would accomplish the same goal.

Header codes and local planning

An important part of any local EAS plan involves the identification of message-header codes that will represent life-threatening situations vs. codes that will precede advisory information. This is essential for those automated or unattended facilities in your LOA and any facility choosing some level of automatic relay.

EAS equipment will allow such facilities to choose automatic relay of messages containing life-threatening codes and manual relay of all others. Though the EAS rules publish the only codes permitted in an EAS digital header, the FCC recognizes that more codes could be necessary to effectively design a local EAS. As such, they will accept additional code requests from LOA committees submitted through the state plan. Deciding on these additional custom codes will be part of the LOA organizational effort.

Because each LOA is unique, its EAS design is best accomplished through the cooperative efforts of the broadcasters, cable operators and local government officials within it. Local SBE chapters can be valuable starting points for this organizational effort. The result will be an LOA plan that includes participants, paths, procedures and header codes to be used in it. This plan must be submitted to and approved by your SECC and the FCC before implementation.

Leonard Charles is an SBE board member and engineer at WISC-TV in Madison, WI. He chairs the SBE National EAS Committee.
Ikegami’s HK-366 Wideband Studio/Field CCD Camera System

Our HK-366 camera incorporates many new features demanded by video professionals. For superior studio performance that draws encores, the HK-366 offers a newly-developed Snap-Shot Memory-Card, JF DT and Picture-In-Picture, including Auto Skin Hue Set-Up, and Six Vector Color Correction.

During the development of the HK-366, every identifiable operating nuance came under close scrutiny. Exceptional image quality was achieved with 450,000 pixel CCDs. Cable runs up to 2400 meters are handled with the new long-range triax transmission system. Commitment to essential functions plus producer features, combined with exceptional picture quality, results in the HK-366’s superb performance.

The HK-366 achieves a horizontal resolution of 800 lines (V-ch), a S/N ratio of 62db, and a high sensitivity of f8, while offering startling picture quality typical of the HK-Series Cameras.

When an optional Digital IF unit is added, the base station can provide a composite serial digital signal (143Mb/s) or a component serial digital signal (270Mb/s). This allows the HK-366 to be interfaced with a variety of digital systems. The HK-366 and its portable companion are readily upgradeable to a 16:9 aspect ratio.

Take command and learn more, call the nearest Ikegami Regional Office.

THE PROFESSIONAL’S CHOICE

Ikegami Electronics (U.S.A.), Inc. 37 Brook Avenue, Maywood, NJ 07607 East Coast: (201) 369-771
West Coast (310) 534-0050 Southeast: (305) 735-2308 Southwest: (514) 869-2363 Midwest: (708) 334-5774

Circle (17) for Action Card
Choosing a system integrator, part 1

The transition from an analog to an all-digital facility is no longer a question of if, but rather when, and there is no better time than the present. Enough products are currently on the market to ensure a smooth and successful transition. However, it won’t be accomplished without some forethought and pragmatic planning.

The ideal situation would be to design a brand-new all-digital facility and switch over after final checkout. The major constraints here are time and money. Some can afford this luxury, but for many, it will be a step-by-step process, replacing one section or functional area at a time. The objective is to capitalize on existing equipment investments and arrive at an all-digital facility as quickly and cost-effectively as possible, avoiding the traps and shortcomings that the pioneers have encountered on the way.

Having worked as a technical support engineer for a leading manufacturer of digital products, such as production switchers, routers, DVEs, editing and format conversion products, I have been involved in working through many of the initial problems that have been encountered. Many of these solutions have become industry standards. There are still lessons to be learned and problems to solve, but progress has been made. There are many choices to make and many paths to follow on the way to an all-digital facility. This article will help you make better choices when deciding how to upgrade your facility.

Which digital format?
The format of choice is clearly digital component. A major factor is the lower cost of the new digital component videocassette recorders. Component digital costs are still slightly higher than composite, but the advantages far outweigh the cost difference. Some of these advantages include:

- Higher signal quality due to the absence of subcarrier artifacts;
- Quantizing resolution for a 10-bit component signal is higher than a 10-bit composite signal because component digital does not digitize below black;
- In component, bit rates for 525 and 625 serial digital are similar;
- Most component products can switch between 525- and 625-line formats by merely changing a software or hardware switch and/or the reference signal;
- Most production switchers, DVEs and routers are 16x9 ready;
- Because this is the emerging standard, manufacturer’s support will take you well past the new century;
- Available converters allow for use of analog component as well as composite analog and digital signals.

Using a component production switcher with composite VTRs, although possible, should be approached with caution. The choice of various composite VTRs, production switchers, converters and translators should be carefully studied to make sure that the whole system can be properly timed, especially in edit facilities where the prereread capability of VTRs is a requirement. Timing is usually not a major problem when one or two composite VTRs are used as sources only. However, advanced reference of a line or two may be required to compensate for the decoder and/or digital converter.

NTSC composite digital may be a viable choice for some facilities, based on current equipment investment and client requirements. However, PAL composite digital applications have never been viable due to editing limitations.

Choosing equipment
Choosing major pieces of equipment, such as large-scale routers, production switchers, DVEs and edit controllers, is an important step toward the future success of your facility. Take your time, don’t be pressured into making a hasty decision. Exhust all avenues and get all the information before deciding. The best decisions are usually made by a team rather than individually. First, make a list of requirements and consider items such as:

- Budget;
- Industry standards;
- Client preferences, especially for leading edit facilities;
- Availability of freelance operators;
- Important features specific to your needs;
- Extent of intercontrol of various equipment — extremely important when considering automation;
- Reliability; and
- Manufacturer’s technical support and financial stability.

Put a team together by getting operators and maintenance engineers involved in the selection process. People are more likely to support the changes if they are involved. Seek operator input, because they will ultimately use the equipment and make money for you. They can provide information as to ease of use and important feature sets.

Maintenance engineers usually have valuable information as to
which products are reliable and which manufacturers have the best technical support. All the features, bells and whistles mean nothing when you have a major piece of equipment down, and there is no tech support and spare parts are unavailable.

Armed with your team of advisers, set up as many demos as possible and compare features, keeping in mind the requirements list. Trade shows are an excellent place to gather comparable data.

If the product is fairly new on the market, find out how many are currently installed in working facilities. If possible, have the sales person set up a demo at an existing facility. This way, you will get an opportunity to ask the end user some practical questions about the equipment's functionality and reliability.

Once the field is narrowed down, ask the sales person to arrange for the equipment to be left at your facility for a few days. Then have the operators spend some time working on it. As the time to make a purchase decision nears, make sure that a manufacturer's checkout, operational and technical training, along with a full set of service literature, is also included in the negotiations.

Staff engineers or outside integrators?

Unless your facility has a department dedicated to installing systems, it's not wise to use maintenance support engineers to design and install a digital facility. Even though they may best understand the facility's specific needs, they usually do not have sufficient time, system expertise or project management skills to pull it off smoothly. Despite this, their participation at various steps of the design process is of utmost importance. It's a good idea to assign a maintenance engineer to work with and communicate their needs to the system integrator.

The system integrator and or independent consultant will ultimately put the facility together; get them involved in the process as early as possible. It is important that they have a good understanding of the facility's requirements and procedures.

System integrators come in many shapes and sizes, from the conglomerate "we-do-it-all" manufacturer/system designer/architect/contractor to the 1-man video- or audio-only system engineer. All are capable of doing an excellent job in their respective field, but they do not necessarily do a good job all the time. The bigger and/or most expensive companies are not necessarily the best in all cases. Many factors need to be considered, such as who will manage the project? Does he/she have the relevant experience and a good reputation? Does the company have more projects than resources at present? Have any of their top project managers recently left the company?

Larger companies are financially more stable, can throw in more resources if needed, and will probably be around for a while after the installation is completed. On the other hand, smaller companies or individuals are usually chosen for their specific expertise and reputation, which may be worth more than financial stability.

Just as on the artistic side where clients tend to follow artists as they move from one company to the next, companies stick with engineers they know and trust. Many large companies will stick with the same project manager/design engineer as he/she moves from one company to the next. Large contracts have been awarded to small companies rather than to a large system integrator because of previous experience with an individual at the small company.

Dealers, or "systems houses" as they are referred to, sell equipment from various manufacturers and will design and install the video/audio part of the system. They normally

"YES! THE WAY AHEAD TO DIGITAL CAN BE PRETTY TRICKY" CAUTIONED SNELL.
handle smaller-sized projects and usually do not have a staff engineer, or they have one who is overworked, and thus many times will look outside for additional help.

Regardless of their size, the quality of work tends to vary when companies use outside design engineers. To ensure quality work and overall satisfaction, check the reputation of the company as well as the system engineer.

When choosing equipment manufacturers and a system integrator, make sure that they have a good working relationship and that the manufacturer will support your system integrator. This should be carefully considered when the equipment manufacturer and system integrator are competing for the same project.

If you are working with a company that will sell you the equipment and also design your facility, it is wise to hire an independent consultant that will research and give you an impartial opinion on the recommendations they make. You don’t want to buy a product only to find at the last minute that it does not perform as promised.

Some large manufacturing companies may be interested in taking on the project management of large installations. The managing company can put together a team where-by the best in each field is chosen for the project. The client can choose from a list of possible candidates, or may request a specific company or individual to be part of the team. The client gets the best of both worlds, the backup and support of a large corporation and the cumulative expertise of industry leaders. This way, you are assured the manufacturer will support the integrator during the installation and your facility long after the project is completed.

Planning and scheduling the change

The biggest mistake facility owners or managers can make is to wait too long before getting an integrator involved. It does not make sense to spend hundreds of thousands or even millions of dollars on equipment and then undermine the entire operation by not allowing enough time for due process.

Some facilities seem to wait forever to decide whether they will go for the change or not, and once they decide, they rely on sales representatives to come up with an equipment list. Getting the integrator involved after the equipment orders have been placed is doing it backward, to say the least.

Not allowing enough time for the design and installation puts everything in a state of chaos. Enough time needs to be allowed for each of the following stages:

- Equipment selection;
- Equipment delivery planning;
- Design and installation;
- Check out equipment problems and solutions of any system;
- Operator and technical staff training; and
- Operations changeover.

Next month, we will discuss things to look for in choosing a system integrator, as well as what to look for during and after the installation.

John Joannou is the owner of Teklogic Systems, a consulting firm based in Woodland Hills, CA.
Do you really need to dump your existing equipment to change to digital?

"THIS MUST BE THE LEGENDARY ANALOG'S GRAVEYARD..."
GUESSED SNELL.

Does changing to digital have to be so daunting?

"THEY OBVIOUSLY WENT DIGITAL TOO ABRUPTLY "GASPED WILCOX.

Don't get left behind! Come and explore the way ahead with Snell & Wilcox.

"WHEN THE WORLD WENT DIGITAL THEY GOT LEFT BEHIND" SNELL EXPLAINED.

Buy "Your essential guide to digital" only at address below.
The ABCs of management

During the past decade when the broadcast industry was in a slump, many facilities spent much of their time looking for another management or re-engineering concept. They spent little time following management or having the courage to act. Don't try to reinvent yourself and others. You can't discover new oceans without having the courage to lose sight of the shore, so take a leap of faith and build from management style that you already have. Don't try to invent yourself and your management style.

The ABCs of management

The ABCs of management are:
- A = Actuator — What a manager does before a performance.
- B = Behavior — Performance or what someone says or does.
- C = Consequence — What a manager does after performance.

As a manager, your job is to make sure that your employees are clear on their key areas of responsibility (accountability) and what good performance in each of those areas looks like (performance standards). Goal setting is the most important actuator for managers to remember because it gets the ball rolling. During this process, make sure that you clarify your own priorities. Weigh the value of each project and estimate the time you want to contribute to it. Then set your priorities according to the objectives that you should already have. Rate and organize your activities to gain a clear perspective on all of the functions of your own work. Remember, you can't lead your staff if you can't even organize yourself.

Next, you should watch what your employees do or say while trying to accomplish the tasks you've given them. This is a measure of their performance or behavior — the B portion of the ABCs. It's important to observe your staff's behavior so that it can be measured. Similarly, you have the same behavioral goals to attain. In other words, to be effective, you must clarify and organize your objectives in the plan that will work best for you. Structure your current and future projects according to priorities, set due dates and deliverables. Thinking further ahead, consider breaking down your long-range goals into monthly, weekly and daily plans, while working out a scheme that will allow you to revise and update them as necessary.

The C of the ABCs is responding, since that has to do with consequences. As the manager, the C is the response you give to your employees when they perform or attempt to perform a task. A note of caution: Avoid giving praise or reprimands if you think it's dependent on your mood swing...it's a good way to lose your credibility fast.

The important thing is not what happens when you're there to supervise, but what happens when you're not there.

Another way to look at it is if a person can't do something, then go back to goal setting, because this is a training problem. If the person won't do something, reprimand him or her, because this is an attitude problem.

In training

The five steps to training a learner (your employee) to be a good "performer" are:
1. Tell (what to do);
2. Show (how to do it);
3. Let the person try it;
4. Observe his or her performance; and
5. Praise the progress or redirect it.

It has been said that only positive consequences encourage good future performance; therefore, performance is determined mainly by consequences. If this is true, then all the goal setting without any managing of consequences — praising good performance and reprimanding poor — will only get things started and provide short-term success. As a manager, the important thing is not what happens when you're there to supervise, but what happens when you're not there.

The secret to getting good performance from your staff when you're not in the office is how effectively you deliver consequences when you are there. The last bit of advice in this area is when you end a reprimand with praise, people think about their behavior, not your behavior. After all, you want your people to think about improving their behavior instead of focusing on how you scolded them and missing the point entirely.

The PRICE system

Now that you have an overview of the ABCs of management, let's expand on it a little with an acronym called the PRICE system. The PRICE system is targeted at achieving excellence in all parts of your life as well as helping to attain positive results for your employees. Using the system, you can make your New Year's resolutions come true, rather than having another unfulfilled promise for yourself and your staff. Here's a brief summary of the system:
- P (pinpoint) — Determine the performance area of interest;
- R (record) — Measure current performance level on a graph that you develop;
- I (involve) — Agree on performance goals and strategies for coaching and evaluation;
- C (coach) — Observe performance and manage consequences; and
- E (evaluate) — Track performance progress and determine future strategies.

If everyone in your organization sets up PRICE-specific projects, then the goals themselves are the pinpointed areas of interest. Present performance on each of these goals will be recorded. Then each employee will be involved with setting his or her own goals, as well as establishing coaching and counseling strategies. Next, coaching can begin. Finally, everyone can join in to evaluate their own progress and make corrections where needed.

In the end, the system won't work unless you start it, so what is important is not that it's done right the first time, but that you and your staff get under way. Of course, that means overcoming procrastination, but that is another lesson.

Tell us your tale

If you have a good management story to tell, we'd love to hear it. Contact us through CompuServe at 74672,3124, via the Internet at be@intertec.com, or by fax at 913-967-1905.

By Curtis Chan
Curtis Chan is president of Chan & Associates, a marketing consulting service for audio, broadcast and post-production, Fullerton, CA.
You can turn to many different companies to equip your new digital studio. Luckily, you don't have to.

The new Tektronix 764's Session Statistics Display records key digital audio parameters, while the WFM601i provides extended error checking, eye pattern testing, and a traditional analog display for serial digital video.

You can shop a long list of suppliers for bits and pieces of test equipment for your new component digital studio. Fortunately, that's an ordeal you can avoid.

Tektronix is the one place you can turn for all the test equipment to equip your entire high-end digital studio. Plus all the expertise and assistance you need to ensure that your move to digital is fast and efficient.

Tektronix offers the industry's most advanced instruments to monitor and analyze everything, including content, data integrity and transport layer. And to perform every essential studio function, from monitoring channel status data and accumulating session statistics during digital audio mastering, to testing the integrity of a 270 Mb/s digital video transport layer.

Why deal with a multitude of suppliers when you can turn to Tektronix, the video industry leader for more than 40 years.

For information on any of our communications test solutions, just call 800-426-2200. (When prompted, press "3" and ask for program 464.) Or, find us on the Web at http://www.tek.com/mbd/w464

TESTING THE CHANGING WORLD OF COMMUNICATIONS

Tektronix

©1995 Tektronix Inc. VIA-TVT170-01

Circle (9) on Action Card
Editing on the fly

(Of course, Murphy’s Law dictates that these will only rear their ugly heads in front of the most demanding clients.) Most manufacturers soon become aware of these problems and generally solve them on their next software version. Although each revision can hold its own new set of bugs, a good system will generally get better with every new software release.

Selecting a system

Your decision to go non-linear may be an easy one, but finding a system to fit your needs may not be. Most of today’s editors have learned and refined their skills working in traditional linear edit suites. Over the last few years, more and more clients have come to the sessions in such facilities with EDLs from non-linear off-line systems. This means that editors working in the on-line suite have found themselves conforming these projects instead of actually building the projects as they used to do.

Your decision to go non-linear may be an easy one, but finding a system to fit your needs may not be.

Many of these editors found that they were missing the creative process, so they learned how to run non-linear off-line systems. Once exposed to this technology, most editors realize that non-linear is a much more efficient way to work. But non-linear converts with on-line backgrounds may miss working with the quality of an on-line suite.

To satisfy these needs, you’ll have to find the ultimate non-linear, real-time on-line system for your operating style. Prepare a list of requirements and go shopping.

Friendly, fast and reliable

The most important quality of a non-linear system is that it meets the needs of yourself as well as the client. You’ll need something that your clients will be comfortable with, because they may be reluctant to use a system that they are unaware of or have negative feelings about.

To get the utmost from your system, it should be friendly, fast and reliable. It should also have real-time CCIR-601 input and output and plenty of storage, along with digital video effects requiring minimal rendering time. Depending on your applications, you may also find that integration tools (such as stabilization and color correction) are important. They may be useful for minor “fixing” of scratches and film dirt.

Of course, technical support is always a critical issue. The true acid test for this parameter is to call after hours and measure how long it takes to get a technician on the phone.

Friendliness is a factor because the more producers understand when they look at the screen, the more they can be involved in the process. Furthermore, the speed of a non-linear system frees up an entire realm of possibilities unknown in the linear world.

Some clients, unaccustomed to the speed of the non-linear world, may be reluctant to request changes in the middle of a session because they think it would be a major time-consuming task. A learning curve is inevitable for some, but once they adjust to the notion of non-linear on-line digital editing, they are never the same. Clients are also beginning to realize that taking a project to a non-linear facility from the beginning (from conforming an EDL list through revisions and fixes to final effects) actually saves them money because of the system’s speed.

Reliability is another key factor. When it is midnight and the producer has decided to make the tenth shot revision of the evening — and the project airs at 6:00 a.m. — speed is useless if the system is constantly going haywire.

Many users who have made the move to non-linear report that they are convinced it represents the future of post-production. Their clients like the system, they are booked solid weeks in advance and they can pump out a large amount of material in a short period of time. In the words of one recent non-linear convert, “It’s nice to feel that I am finally the master of the technology instead of its servant.”

Harold Sellers is vice president and James Klotz is president of 11th Street Post, Atlanta.

For more information on non-linear on-line editing systems, circle (154) on Action Card. See also “Editing Controllers,” p. 74 of the 1996 BE Buyers Guide.

Internet: be@interetc.com
CompuServe: 745723124
FAXback: 913-967-1905

18 Broadcast Engineering January 1996
IF you want to make the move from tape to disk, Ira Goldstone has a few quick words of advice:

Q: As Director of Engineering at Tribune Broadcasting, you're in the midst of updating your entire system. How do you deal with the pressure?
A: Carefully.

Q: Right. So did you choose the Louth ADC-100 automation system to bridge to disk or give you future flexibility?
A: Yes.

Q: Meaning you liked Louth's ability to control all types of different devices?
A: Yes.

Q: And you weren't worried about any problems with proprietary automation software or choosing any disk vendor you wanted?
A: No.

Q: So if you were to give advice on how to make the transition to disk, without worrying about where your station goes in the future, what would it be?
A: Louth.

Q: And what about the multi-casting environment?
A: Louth.

Q: Of course, you'd still need a media management and traffic interface system to tie it together. Any final words of advice?
A: Louth.
By now you're probably tired of all the Internet hype. It's been touted as the '90s panacea, a cure for our dysfunctional educational system and a new home shopping environment. While Vice President Al Gore and Newt Gingrich discuss the societal changes taking place in the "Information Age," there are some practical aspects of the Internet. The Internet grew up — behind our backs — first and foremost because it was practical. And it still is.

Immediate information when you need it, that is the promise of the Internet.

Have you ever had to install a hard drive in a computer, then set the esoteric information required by the BIOS only to find out that you lost the manual? Well, now you can log onto most of the hard-drive manufacturers' sites and get that information with a mouse click. No more waiting on hold for an hour or more for the tech support people. Immediate information when you need it, that is the promise of the Internet.

For today's broadcast engineer, the net offers many opportunities. You can:

1) Seek specific information on manufacturers' products and technologies;
2) Keep updated and save time and money with direct downloads of drivers; and
3) Network with colleagues who can help you solve specific problems and help you grow professionally.

Internet offerings

So, what is out there for the broadcast engineer to access, and why should you care? First, there is Sony (http://www.sony.com) where you can get everything from pin-out configurations on equipment to specs on the new consumer digital camera. This came in handy a few weeks ago when we were on the road and missing a cable. As Murphy's Law dictates, we were also missing the manual, and it was late Friday night when we realized we needed to build a cable. Knowing that the information was just a call away brought my stress level back down to zero. I hooked my Mac portable to my cell phone through a Motorola black box and dialed my access number. Within two minutes, I had navigated to the proper screens and was calling out the pin-outs to our engineer. The problem was solved, and we were on to more important things.

Next, as an engineer you are probably always asked, "What kind of modem should I buy?" You can fill in the blank with anything that has a wire attached to it. As you navigate the net, you can actually comparison shop for everything from printers and computers to video cameras. You can access Digital Equipment Corporation's site (http://www.dec.com) or Hewlett Packard's (http://www.hp.com) and look over their entire catalog of equipment. While you are at it, you may want to look at Silicon Graphics (http://www.sgi.com) or Sun (http://www.sun.com).

For more thorough research, you can open multiple sessions (windows) and actually do real comparisons. This ability recently came in handy while looking for a new laser printer. Instead of having to drive down to my local store to see what they carried, I was able to decide on two different printers (http://www.hp.com and http://www.canon.com) and find a retailer that carried both of them.

The tools

Here's a quick recap of the hardware and software you'll need to get on the net: a computer, a modem (14.4 baud or higher), an Internet connection and a web browser. This can cost as little as $1,000 or as much as a new Viper. The going rate for an unlimited Internet connection is about $30 a month in most U.S. cities. Commercial on-line services, such as CompuServe, Prodigy and America Online, now provide Internet gateways. As a general rule, these proprietary browsers do not function quite as well as Netscape or Mosaic through a direct connection. In any case, you need the fastest modem you can get — a 9,800 baud will not be satisfactory.

When the net becomes part of your daily routine, even a 14,400 baud modem just doesn't cut it. You may wind up spending as much time waiting for the download as reading it. Consider going to your boss (time is money) to suggest that he/she pay for your connection. Have a plan of action demonstrating how you are using the Internet to achieve better efficiencies in your job.

Have a plan of action demonstrating how you are using the Internet to achieve better efficiencies in your job.

In this plan you should also include a path for upgrading your connection. Ask your Network Services/MIS manager if he/she can provide you with an Ethernet connection to your T-1 line (if you have one). The net comes alive when you have a T-1 (1.544Mb/s) access line. The graphics pop on your screen, and the information is literally only a click away.

Here is another example of why the net will become an everyday process in your work. You have been editing a client's video for the past two days, and the last few elements show up in a format that you are unable to handle. No problem. You have your traffic person call the local rental house, and in a few hours your problems are solved, or so you think. You get the machine hooked up only to find out that the drivers you have in your editor are so old they barely control the machine. Never fear, remember that account you begged your boss to pay for... you log on, then search for the machine you just installed, call up that page and hyperlink to the editing company so that you can FTP the newest machine drivers. With the problem solved, you log off and are back to your client's show.

Satisfying your information needs

I hope we have demonstrated some of the more important business aspects of the net. With just a little effort, you will find more and more of your information needs satisfied by the net. Oh, and when you find something on the net that you think other readers might find valuable, let us know (send to Steve or Mark at: gtechsup@im.gte.com), and we'll pass it on in future columns.

Steven Blumenfeld is vice president of technology and studio operations and Mark Dillon is director of on-line services with GTE, Carlsbad, CA.
When NBC affiliate WXIA-TV was named Atlanta's Official Station for the Olympic Games, the first reaction was high-fives. The second was to order a new UTAH-300 Routing System from Dynatech. It was no contest. The UTAH-300 handles analog and digital signals in one compact frame. It's designed for easy expansion, to go the distance as your facility grows. And, reliability is built-in and backed by the best warranty in the business for a full 10 years. Call 1-800-246-6744 ext. 5009 for your free Technical Planning Guide, and see how a single UTAH-300 Router can put your facility in a whole new arena.

At 128 x 128 VAA, with redundant power and control, the UTAH-300 takes up only 27 rack units of space.

dynatech

• Americas 1-801-575-8801
• Europe/Africa/Middle East 44-1635-521939
• Asia/Pacific 852-2868-1993
• info@dvg.com
• http://www.dvg.com

Circle (18) on Action Card

© 1996 Dynatech Video Group, Inc. All brand and product names are trademarks of the respective companies.
The Giant Step is about to take place in TV transmission in the United States. Last month's column introduced you to the 8-VSB transmission system. The 8-VSB system is a digital system, unlike today's analog NTSC system. Last month, we reviewed the basis for the NTSC analog system and explained the basics of a digital modulation system. Also described were the two VSB modes that were approved by the technical subgroup of the FCC's Advisory Committee on Advanced Television Systems (ACATS) for field testing: the trellis-coded 8-VSB terrestrial mode and the 16-VSB cable mode.

These two modes share many of the same fundamental characteristics, such as channel and excess bandwidth, symbol rate, field and segment syncs, segment length and pilot power. However, they differ in several key areas. System robustness is determined by the amount of white noise that can be handled before data errors occur. This is defined by segment error probabilities. The white noise thresholds are 15dB for trellis-coded and 28dB for 16-VSB modes, respectively.

The VSB transmission system uses three supplementary signals for synchronization: a small pilot for carrier acquisition; a data segment sync for synchronizing the data clock in both frequency and phase; and a data frame sync for date framing and equalizer training. A classic data modem (such as Quadrature Amplitude Modulation or Quadrature Phase Shift Keying) achieves all these functions by using the data signal alone, but will lose all synchronization if the received signal drops slightly below data threshold.

Power measurements
Power measurement is different for NTSC and ATV. The NTSC signal is typically measured at peak sync, since the average signal power of an NTSC signal varies greatly with picture content. NTSC peak sync power is the average power of the RF carrier during sync intervals. The ATV signal, being random in nature, does not have a consistent peak level to measure. However, its average power is stable. Therefore, it is used instead of peak power.

Peaks of the transmitted ATV signal are often described in terms of statistical cumulative distribution functions. Typically, 99.9% of the transmitted VSB signal peaks are within 6.3dB of the average signal power.

Performance
The results of the trellis-coded 8-VSB terrestrial field test clearly showed that the VSB transmission system performed significantly better than NTSC, on both VHF and UHF. On VHF, satisfactory ATV reception was found at 82% of the sites when only 40% of the sites had satisfactory NTSC reception.

The VSB spectra
The VSB channel occupancy is shown in Figure 1. The NTSC vestigial-sideband spectrum has the familiar three carriers (visual, chroma, aural), which carry most of the energy in the 6MHz channel. The channel is not efficiently used, in terms of either bandwidth or power. The VSB spectrum, also contained in a 6MHz channel, is flat throughout most of the band due to the noise-like attributes of randomized data.

Two steep transition regions (each 620kHz wide) exist at each end of the band, making it an efficiently used channel in terms of bandwidth. Only one small pilot carrier is present at the lower band edge making it efficient in terms of power and insignificant in terms of interference into co-channel NTSC.

Baseband data format
The baseband data format is illustrated in Figure 2 for a trellis-coded 8-VSB signal. Note that there are eight discrete data levels. The original VSB transmission system has the flexibility to transmit any one of five different VSB modes (2, 4, 6, 8-trellis and 16), with the data rate depending upon the number of discrete levels and the use of trellis coding.

The Grand Alliance selected two of these modes: trellis-coded 8-VSB for terrestrial HDTV broadcasting and 16-VSB with no trellis coding for carrying (at least) two HDTV signals in one 6MHz channel on cable systems.

The data signal is broken down into 832-symbol segments, including a 4-symbol binary data-segment synchronizing signal (sync). The symbol rate for all VSB modes is 10.762MHz. The transmission segment is

Continued on page 102
Matrix Plus™ II
The best in television intercom systems...

Matrix Plus II with its new bright LED display stations and new software features broadens your ability to communicate under a wider range of situations. It is a truly integrated, 100 x 100 digitally-controlled intercom with stations for every application, a comprehensive modular interface system, and simplified PC pull-down menu programming. Exclusive features include “simplified IFB assignment panel”, call-signalling, touch-tone dialing, paging, ISO, station access from remote telephone, variable input levels and many other sophisticated features.

There's also versatile station communications including long line remote capability and fully-digitized single pair wiring. Plus much more, including the highest level of service and support in the industry. Want all the details? Call us at 510-527-6666.

Circle (19) on Action Card

© 1994 Clear-Com Intercom Systems
Matrix Plus II is a trademark of Clear-Com.
Remotes from 45,000 feet

Sometimes it's not how far out you go, but how far up.

The Bottom Line: For video professionals, remotes are a double-edged sword. No matter how well-planned, Murphy's Law must always be considered. At the same time, a well-executed remote goes a long way to strengthen a facility's professional image. Simply put, the ability to do quality remotes increases the opportunities available to see and be seen by your viewers.

NASA Ames Research Center in Mountain View, CA, is home to the Kuiper Airborne Observatory (KAO). The KAO is a highly modified C-141 4-engine jet and is the world's only airborne infrared astronomical research facility. Cruising at up to 45,000 feet, the KAO flies above 85% of the earth's atmosphere and more than 99% of the earth's water vapor. In this clear, dry environment, extremely weak infrared sources, such as star-forming regions at the center of the galaxy, can be studied in detail. This is done using a 6,000-pound, 36-inch-Cassegrain telescope floating on an air bearing, guided by an elaborate tracking system and looking through a large opening forward of the aircraft's left wing.

The KAO typically flies two to three 7½-hour missions a week. Last October, it served as the center piece in a series of historic live broadcasts designed to stimulate interest in science and technology among school children. (See Figure 1.) While we cruised in the stratosphere doing actual science, students throughout the country watched us on television, asked questions and interacted with the flight crew and astronomers. To make all this possible, a bidirectional data and TV link was built, installed and integrated into the aircraft's systems.

NASA/JPL ACTS satellite

Using existing commercial satellites for this project would have been impossible due to the extremely large antenna required on the aircraft, and since we flew across most of the United States at seven-tenths the speed of sound, a link directly to the ground was not feasible. Fortunately, a NASA geosynchronous satellite called Advanced Communication Technology Satellite (ACTS) was available. Built by the Jet Propulsion Laboratory to explore future commercial applications, it operates in the K/Ka microwave bands at 20GHz and 30GHz. The use of these extremely high frequencies allows extremely small antennas to be constructed, which can easily fit on an aircraft.

Each antenna is a waveguide slot array fabricated from five layers of machined aluminum brazed into a single 0.66-inch thick sandwich.

Aircraft antenna

Successfully constructing the aircraft antenna was one of the project's first major challenges. And for that, engineers from the Jet Propulsion Laboratory turned to a company called Electromagnetic Sciences. The antenna system the company constructed is a thing of beauty. The transmit and receive antennas each measure a little more than 4"x8" in size. Each antenna is a waveguide slot array fabricated from five layers of machined aluminum brazed into a single 0.66-inch thick sandwich. Inside the sandwich, power is distributed to eight resonant cavities. From these cavities, RF passes to 54 additional reso-
Due to expected higher-than-normal bit error rates, it was essential that the codec degrade gracefully and recover quickly.

Aircraft antenna pointing and tracking

The KAO antenna's azimuth 3dB transmit beam width was only 2.6°. To keep the satellite in the middle of the main lobe, the antenna had to be kept pointed within a

Continued on page 28
When a television show is a hit,
there's usually a spin-off.

The same is now true for television cameras.

Given the popularity of the BVP-700/750, which set a new standard in high-end studio and field production, we figured it was time for a sequel. Presenting the BVP-500/550: cost-effective cameras that spin off the advantages of Digital Signal Processing into a wide variety of new applications. But here's the real crowd-pleaser.
These new studio and portable cameras can be configured with any one of three plug-in assemblies. Each delivers its own level of CCD quality. That means you've got the imaging performance your application needs. Our new BVP-500/550 also maintains the benefits that made Digital Signal Processing such a big hit. Superior, consistent picture quality. Easier setup and instant recall. Long-term stability and reliability. So it's probably safe to say this is one spin-off that won't be canceled after the pilot. For more information, call 1-800-635-SONY, Ext. 500.
tolerance of less than six-tenths of a degree. Errors that had to be contended with included gear backlash, positioner lag, vibration, misalignment between the receive and transmit arrays, and radome beam shift. And it all had to work over a temperature range of -60°F to +120°F. To do this in an aircraft bouncing down the runway during takeoff is an extremely difficult requirement.

A 3-loop system controlled the antenna pointing and required custom control software. The first loop took its input from a miniature 3-axis inertial rate-sensing package, which is visible at the bottom of the antenna. The output voltages from this loop were proportional to the angular velocity of the aircraft in pitch, roll and yaw. The tracking computer then integrated those rates to generate azimuth and elevation commands to the antenna's positioner.

Navigational data was supplied to the second loop from the aircraft inertial navigation system and a GPS receiver. The tracking computer used these inputs for blind pointing during initial satellite acquisition and long-term drift correction.

And finally, the antenna constantly dithered. The small cyclic changes in signal strength provided the third loop's input. If, for example, the signal was stronger while the dither cycle was to the right, then the center of the dither was too far to the left of the satellite, so a correction was made. The result was an antenna that stayed pointed at the ACTS satellite during two takeoffs and landings and eight hours of flying without a single loss of signal.

The ACTS satellite uses a steerable antenna with a 3dB contour that is only 280 miles wide at ground level, requiring the satellite to track the KAO. This was accomplished by multiplexing KAO geographic coordinates along with the audio and video programming and Internet data. At JPL, the KAO positioning data was demultiplexed and passed to the ACTS ground control site for processing and satellite control.

Signal sources

The video sources consisted of three double image-intensified extreme low-light monochrome cameras boresighted up the axis of the telescope. (These cameras are about 10,000 times as sensitive as a normal broadcast camera.) They're used by the telescope systems for acquisition and tracking. Next came six color micro cameras that were fixed throughout the cabin and flight deck, and finally, there was one hand-held broadcast-quality mini cam. All sources were gen-locked and H-phased carefully to prevent time base errors from disturbing the codec. A 12-input vertical interval switcher selected the program source.

All sources were gen-locked and H-phased carefully to prevent time base errors from disturbing the codec.

Since the noise level during flight precludes unaided conversations (80dB to 100dB), everyone involved in the show was on a noise-cancelling headset with a beltpack. We had three channels of audio in our ears: mix-minus from the ground, program audio and a cue channel. To add to the confusion, there was a completely separate aircraft interphone system with its own headsets. So while the program was on the air, we had to constantly change headsets depending on whether we were doing science or involved with the show. And finally, we installed a flight phone with three handset positions. It provided our cue channel, our technical hot-line, and general all-around backup link to the ground. It was not uncommon to see someone with two headsets clamped around his
The first tilt heads with Sensor controlled positioning of the camera balance.

1 Precise and quick camera balance by metering and setting instead of guesswork.

2 Safe camera balance since all settings are made while the camera is locked.

3 Unlimited tilt range of ±90°, under any load, with the counterbalance supporting the famous Sachtler fluid damping system.

Video 18/20 Sensor. First time electronics. For professionals only.

4 Unique damping range from true “0” for the whip pans up to a super strong fluid for smooth 40x tele shots.

5 Ergonomic design for convenient operation, robust SMT electronic, “Touch & Light” self illuminating bubble level, Touch & Go camera lock and every lever in the right position, standard batteries and minimum weight.

sachtler®
corporation of America
New York office
55, North Main Street
Freeport, N.Y. 11520
Phone (516) 867-4900
Fax (516) 623-6844
Telex 1 40 107 sac-frpt

California office:
3316 West Victory Blvd.
Burbank, CA 91505
Phone (818) 845-4446

sachtler®
corporation of america

Circle (11) on Action Card
Hang Ten Mbps. There's a tidal wave breaking in cyberspace. An ever-increasing swell of millions of net surfers worldwide. This global community of surfers will look to ride on the cutting edge. To push the envelope and surf to the farthest frontiers of the internet in the blink of an eye. Now is the time for cable operators to channel the power of this on-linesurge before it crests.

Introducing CyberSURFR," a product of Motorola's CableComm™ technology. It's a high-speed modem that connects IBM-compatible or Macintosh computers to a hybrid fiber/coax transmission system for lightning fast multimedia communications. Data zips downstream through CyberSURFR at a rate of 10 Mbps. Which is more than a thousand times faster than your average modem today.

CyberSURFR is not just about speed. There's superior bandwidth management, and it successfully overcomes upstream noise inherent in HFC systems, as well as providing tight privacy and security. Its capabilities lower the deployment and operating costs when deploying high speed data services. Any way you look at it CyberSURFR...
Can Catch The Next Wave.

is an excellent way for operators to generate new revenues. However the most important element of this and all Motorola products is the commitment to technological leadership and quality. From radios to pagers to cellular phones to broadband modems, Motorola creates the best available products for operators and their subscribers.

Just like an ocean-going surfer the key to a successful ride in cyberspace is timing. Now is the time for cable operators to make their move. Call Motorola today and find out more about CyberSURFR. But don't wait long or you may wipeout and end up as driftwood on the Infobahn beach. Catch the next wave with Motorola's CyberSURFR and harness the infinite possibilities of the internet for you and your subscribers.

Motorola Multimedia Group • 1475 W. Shure Drive, Arlington Heights, IL 60004 • 1-800-2WAY-HFC • 708-632-3409

Circle (12) on Action Card
KAO VIDEO REMOTE CONTROL VIA INTERNET

Figure 4. Another first was the use of Internet connectivity during the flights to allow interactive teleconferencing via CU-SeeMe. Students on the ground were able to remote control the KAO’s 32x32 video router to select video sources for themselves. This Internet link also provided real-time system health monitoring and remote control of the aircraft’s telescope from the ground.

neck, a finger jammed in one ear and the phone handset in the other, while madly shaking his leg trying to get it free of several tangled intercom cables.

Also onboard were five Sun workstations on an Ethernet that was connected to an onboard Internet router for real-time Internet connectivity.

Putting it all together

The compressed and digitized bistream included bidirectional video and audio, KAO positional data, system health-monitoring data, telescience remote control of instruments and Internet communications. This was passed through the ACTS satellite, which acted as a stovepipe relay between the aircraft and JPL in Pasadena. (The KAO’s RF output was 120W at 30GHz.)

Data passed through JPL via a fractional T1 line back to our home base at Ames Research Center in the San Francisco Bay Area. From there, it was fed to a remote truck that also originated programming from our hanger. From the truck, it passed via C-band back to Maryland Public Television and WNET on the East Coast. Students’ questions from remote sites on the ground were viewed as a reverse of this path, resulting in a 6-satellite round trip and some impressive delays. (See Figure 3.)

While the show was on the air, students were able to log on to the Internet and send up E-mail. Some were able to access our video router and select the camera they wanted to see using a low-resolution system called CU-SeeMe. One group was allowed to actually control the telescope remotely, while our onboard astronomers logged into an observatory on the ground and remote controlled it. (See Figure 4.)

The last broadcast was also the last research flight of the KAO. After 21 years of operation, the KAO has been shut down for good as a cost-saving measure. NASA hopes to replace the KAO with a 747 version called SOFIA. Hopefully, it will receive funding shortly after this article goes to print. If SOFIA is funded, it is scheduled to become operational about 2002. Who knows? Perhaps these weren’t the last live remotes from the stratosphere.

Juan Rivera is with the NASA Ames Research Center, Mountain View, CA.
Canon

THE NUMBER ONE LENS...

FOR MORE REASONS THAN ONE.
Canon's new 70X zoom lens, Digi-Super 70 (PJ70x9.5BIE), provides the longest telephoto and widest angle combination of any lens, an advantage that opens up a wide range of shooting options.

Engineered to incorporate Canon's unique internal focusing and IFplus technologies for long-range telephoto applications, Canon's Digi-Super 70 is the first digital lens now in use.

The Digi-Super 70 provides extremely high performance without regard to object distance, as opposed to other lenses on the market, which are generally optimized for certain distances. No matter what the object distance is, users receive the full benefits of reduced chromatic aberrations. And IF plus technologies reduce those aberrations even beyond conventional IF lenses.

In addition to its optical advantages, with IFplus, the heaviest group of elements remains stationary in the focusing section of the lens, so that the camera's center of gravity never changes.

In addition to its new digital electronics, other enhancements to the Digi-Super 70 include: a new servo system with a wider range of focusing speeds; 10-bit iris technology for a precise level of repeatability; LED tally lamps; and a sleek, new, ergonomic design that features improved RF noise shielding and easier access to the lens' electronics.

For more information on the incredible Digi-Super 70, please call 1-800-321-4388. (In Canada call 905-795-2012.)
CANON OFFERS A FULL-LINE OF PROFESSIONAL QUALITY
Studio/Field Lenses:

DIGI SUPER70
- Image Format: 2/3"
- Zoom Ratio: 70X
- Focal Length: 9.5-670mm
- F-number: 1.6

PJ40X TELESUPER (PJ40X25B IE)
- Image Format: 2/3"
- Zoom Ratio: 40X
- Focal Length: 25-1000mm
- F-number: 2.8

J55X TELESUPER (J55X13.5B IE)
- Image Format: 2/3"
- Zoom Ratio: 55X
- Focal Length: 13.5-740mm
- F-number: 2.0

J55X SUPER (J55X9B IE)
- Image Format: 2/3"
- Zoom Ratio: 55X
- Focal Length: 9-500mm
- F-number: 1.4
- 1/2" Model: PH55X Super (PH55X7B IE)

SUPER21 (PJ21X7B IE)
- Image Format: 2/3"
- Zoom Ratio: 21X
- Focal Length: 7-150mm
- F-number: 1.5
- 1/2" Model: PH20XSUPER (PH20X6B IE)

J45X9.5BIE (Type-C)
- Image Format: 2/3"
- Zoom Ratio: 45X
- Focal Length: 9.5-430mm
- F-number: 1.7
- 1/2" Model: PH45X9.5B IE (Type-C)

J20X SUPER (J20X7.5B IE)
- Image Format: 2/3"
- Zoom Ratio: 20X
- Focal Length: 7.5-150mm
- F-number: 1.5
- 1/2" Model: PH20XSUPER (PH20X6B IE)

J20X8.5B IE (Type-C)
- Image Format: 2/3"
- Zoom Ratio: 20X
- Focal Length: 8.5-170mm
- F-number: 1.6
- 1/2" Model: PH20X6.5B IE (Type-C)

Optical Image Stabilizers:

IS-20B, Image Stabilizer Adapter
- Exclusively designed adapter for Canon's popular ENG zoom J20aX8B/H20aX6, which optically stabilizes the image of these standard ENG lenses with their full specification performance.

J14aX17B KRS-V
Telephoto Zoom Lens
- Image Format: 2/3"
- Zoom Ratio: 14X
- Focal Length: 17-238mm
- F-number: 3.4

J13aX9B KRS-V
Standard Range Zoom Lens
- Image Format: 2/3"
- Zoom Ratio: 13X
- Focal Length: 9-117mm
- F-number: 2.7
Canon's Optical Stabilizing Lenses utilize our revolutionary Vari-angle Prism to virtually eliminate shaking commonly associated with shooting from a moving vehicle, shooting on the run, hand shaking or high wind conditions. This breakthrough technology is available in our J14aX17B KRS-V, a telephoto range zoom, and our J13aX9B KRS-V which features a wider angle for ENG and other applications.

The IS-20B, an exclusive Vari-angle Prism adapter for Canon's popular J20aX8B /H20aX6 ENG zoom lenses stabilizes the image captured by these lenses, while maintaining overall performance of the original lenses.

The Vari-angle Prism is the primary component in the Optical Image Stabilization System which also includes vibration sensors, prism drive actuators, prism angle sensors and a micro-computer, all built-in to the size of a standard broadcast ENG lens.

When Canon's Vari-angle Prism is placed between the subject and the optical system, the angle of the prism can be changed according to the angle of vibration of the axis of light in the lens. This controls the angle of refraction of light rays so that the subject remains centered on the image plane, free from the shaking effect. Once again, Canon's technological advances make your job even easier.
LITY LENSES FOR TODAY’S BROADCASTING INDUSTRY.

ENG/EFP Lenses:

J15x8B IRS/IAS
- **Image Format:** 2/3”
- **Zoom Ratio:** 15x
- **Focal Length:** 8-120mm (16-240mm [2X])
- **F-number:** 1.7
- **Model:** H15aX6 IRS/IAS

J9aX5.2B IRS/IAS
- **Image Format:** 2/3”
- **Zoom Ratio:** 9x
- **Focal Length:** 5.2-47mm (10.4-94mm [2X])
- **F-number:** 1.8
- **Model:** H9aX3.8 IRS/IAS

J20aX8B IRS/IAS
- **Image Format:** 2/3”
- **Zoom Ratio:** 20x
- **Focal Length:** 8-160mm (16-320mm)
- **F-number:** 1.7
- **Model:** H20aX6 IRS/IAS

J33aX15B IAS TELE
- **Image Format:** 2/3”
- **Zoom Ratio:** 33x
- **Focal Length:** 11-363mm (22-726mm [2X])
- **F-number:** 2.0
- **Model:** PH33aX8.5B IAS

J33aX11B IAS
- **Image Format:** 2/3”
- **Zoom Ratio:** 33x
- **Focal Length:** 11-363mm (22-726mm [2X])
- **F-number:** 2.0
- **Model:** PH33aX8.5B IAS

J15X9.5B IRS
- **Image Format:** 2/3”
- **Zoom Ratio:** 15x
- **Focal Length:** 9.5-143mm (19-286mm)
- **F-number:** 1.8
- **Model:** PH15X7B IRS

YH17X9.5B KRS
- **Image Format:** 2/3”
- **Zoom Ratio:** 17x
- **Focal Length:** 9.5-162mm
- **F-number:** 1.8
- **Model:** YH17X7 KRS

YH13X7.5 KRS
- **Image Format:** 1/2”
- **Zoom Ratio:** 13x
- **Focal Length:** 7.5-97.5mm
- **F-number:** 1.4

Tele-Com/Remote Control Lenses:

J15X9.5B ITS A
- **Image Format:** 2/3”
- **Zoom Ratio:** 15x
- **Focal Length:** 9.5-143mm (19-286mm)
- **F-number:** 1.8

YH17X9.5 KTS A
- **Image Format:** 2/3”
- **Zoom Ratio:** 17x
- **Focal Length:** 9.5-162mm
- **F-number:** 1.8
- **Model:** YH17X7 KTS A

YH13X7.5 KTS A
- **Image Format:** 1/2”
- **Zoom Ratio:** 13x
- **Focal Length:** 7.5-97.5mm
- **F-number:** 1.4

Canobeam:

Optical Beam Communication System
- Multi-channel audio/video bi-directional wireless line of sight communication system.
- Unlike radio, no frequency allocation required.
- Transmission Distance: up to 4km.
- Easy to set up.
The widest angle ever lets you see what you've been missing.

Introducing Canon's IFplus J9ax5.2B IRS/IAS

At Canon, our newest technology breakthrough is also our widest. The J9ax5.2 IRS/IAS, the widest lens available, incorporates the outstanding benefits of Canon's IFplus technology, and features an 80.5° horizontal angular field of view (93.2° diagonal) with minimal distortion.

The J9ax5.2IRS/IAS far exceeds the specifications and image quality associated with wide angle lenses and features a focal length of 5.2 to 47mm. The only wide angle lens with a built-in 2X extender, it can achieve a telephoto of 94mm. At 0.3m object distance, the lens offers as much as 15% wider angle of view than competitive lenses, due to its zero focus zooming effect. An exclusive add-on converter, the W83-86, provides a 90° horizontal angular field of view, enabling the lens to reach an extremely wide angle of 4.3mm.

The J9ax5.2 IRS/IAS meets the needs of the next generation broadcasting system, 16:9, while satisfying the standards of today, 4:3. Throughout the entire zooming range, J9ax5.2B IRS/IAS users receive the benefits of reduced chromatic aberrations, a result of a new glass material Hi-UD. Canon's idealy-angled "Ergonomic Grip", incorporates an optional focus motor and allows the user to enjoy fatigue-free shooting.

To see what you've been missing, and learn more about Canon's family of IFplus Lenses, call 1-800-321-4388. (In Canada call 905-795-2012.)
Broadcast helicopter considerations

As an electronic news-gathering (ENG) platform, the helicopter has obvious advantages. It takes off and lands almost anywhere, dashes to the story and hovers over unfolding events. It also provides a clear line-of-sight over mountains or city skylines to transmit or relay imagery back to broadcast stations. Less obvious are the aerodynamic, structural and electronic considerations involved when integrating ENG equipment into a helicopter.

The capabilities of the news-gathering electronics aboard the helicopter depend on the size of the aircraft and the budget of the operator. The Bell 230 helicopter carries a complete TV production facility for the Korean Broadcast System (KBS) and can stay on station for more than three hours with a crew of four. A Bell 206 or Eurocopter AS350 carries a smaller, less-sophisticated ENG suite. Whatever the equipment package, an ENG helicopter demands careful integration by a qualified completion house.

Civil helicopters bear Type Certificates from the U.S. Federal Aviation Administration (FAA). New radios and other modest additions with no impact on handling or safety can be authorized with Form 337 field approval through an FAA Flight Standards District Office. More extensive changes, such as external cameras and deployable antennas, require a Supplemental Type Certificate (STC) with extensive engineering documentation verified in ground and flight tests by FAA engineers and pilots. STC documentation goes so far as to include flight manual supplements and maintenance manuals.

Certification

ENG options range from a sliding door for a cameraman all the way to post-production consoles. Dollars and expectations drive the design, but the completion house applying for an STC has to brief the FAA on proposed changes and work to government ground rules and safety requirements. For example, the deployable skid antenna on the KBS aircraft is designed to break off safely if not retracted on landing.

ENG equipment has to fit within payload, center-of-gravity and structural constraints of the air vehicle. Less easy to define are the aerodynamics of camera gimbals and antennas. Handling qualities have to be verified by flight tests. Any modification that changes the speed of a helicopter also requires a new sound footprint analysis to satisfy the FAA.

Potentially more complicated is the electronic integration of air vehicle and ENG equipment. For broadcasters, helicopters pose an inherent problem with rotor blade signal modulation. Engineers first try to locate antennas to minimize interference with broadcast signals.

However, real estate on the outside of a helicopter is limited, and notch filters to block specific frequencies are usually necessary.

Aircraft beacons, transponders and high-power tactical radios can also interfere with ENG electronics. The installation of a sophisticated production system in a helicopter like that shown above, should be handled by experts. Don't assume you'll even know about, let alone, get all the needed FAA clearances.

Filters in airborne radios are not generally found in commercial broadcast equipment, so custom filters are typically required.

Equally important is the electromagnetic compatibility of ENG equipment with the navigation and communications avionics needed to fly the aircraft. The completion house must perform a spectrum analysis and give special attention to the location of the equipment, wiring, harnesses and shielding. Antenna mounts or other items may have to be relocated to eliminate electromagnetic and radio frequency interference. Fortunately, airborne transmitters usually need less power than ground broadcast equipment. The 15W or 30W transmitters in ground units can be derated to 10W or less for a helicopter.

Adapt and repack

The commercial broadcast equipment in ground stations and mobile units is familiar to technicians but not always available in airborne form. Most ground equipment adapted to a helicopter requires modified power supplies. AC transformers are replaced by custom supplies compatible with 28VDC aircraft power. The single-engine JetRanger makes about 100A available and cannot support much equipment. The twin-engine Bell 230 provides up to 300A.

More than simple power, the real issue in most ENG helicopters is power management. The FAA requires broadcast systems designed so a crewmember can turn all power off with one master switch. An independent, fault-tolerant design means failures on the ENG bus cannot affect power to standard aircraft equipment.

In the confines of a helicopter fuselage, heat dissipation from extra electronics also is a concern. Cooling requirements have to be addressed early with equipment location, venting and fans. Broadcast industry equipment designed for ground stations is seldom compatible with the sustained vibration of a helicopter. Vibration isolation mounts for ENG equipment must be tailored to specific aircraft frequencies.

Unique requirements

Helicopters put unique requirements on broadcast monitors. Monitors bright enough for ordinary applications lack the intensity to be seen in direct sunlight. The FAA requires that cockpit monitors not distract pilots, so directional polarizing filters are used to make the display black to a crewmember sitting to the side of the screen.

As a reporter, the helicopter has enormous flexibility. However, outfitting the helicopter for ENG requires expertise covering the aircraft and its specialized systems.
'I can give you amazing powers.'

How can he do it for the price?

Circle (20) on Action Card
'I can give you powers you thought were out of your reach.'

How can he do it for the price?

Circle (36) on Action Card
'I can push out the boundaries of your imagination.'

How can he do it for the price?

Circle (37) on Action Card
'I can channel your dreams twice as effectively.'

How can he do it for the price?
Power system protection alternatives

In the realm of power quality, you can pay now or pay later. But you will pay.

Utility companies make a good-faith attempt to deliver clean, well-regulated power to their customers. Most disturbances on the AC line are beyond the control of the utility company. Large load changes imposed by customers on a random basis, power factor correction switching, lightning and accident-related system faults all combine to produce an environment in which tight control over AC power quality is difficult to maintain. Like it or not, the responsibility for ensuring AC power quality must rest with the users of sensitive equipment. And, there is an abundance of sensitive hardware at the average TV station or video production center.

The selection of a protection method for a given facility is as much an economic question as it is a technical one. A wide range of power-line conditioning and isolation equipment is available. A logical decision about how to proceed can be made only with accurate, documented data on the types of disturbances typically found on the AC power service to the facility.

The protection equipment chosen must be matched to the problems that exist on the line. Using inexpensive basic protectors may not be much better than operating directly from the AC line. Conversely, the use of a sophisticated protector designed to shield the facility from every conceivable power disturbance may not be economically justifiable.

Purchasing transient-suppression equipment is only one element in the selection equation. Consider the costs associated with site preparation, installation and maintenance. Also, consider the operating efficiency of the system. Protection units that are placed in series with the load consume a certain amount of power and, therefore, generate heat. These considerations may not be significant, but they should be taken into account. Prepare a complete life-cycle cost analysis of the protection methods proposed. The study may reveal that the long-term operating expense of one system outweighs the lower purchase price of another.

The amount of money a facility manager is willing to spend on protection from utility company disturbances generally depends on the engineering budget and how much the facility has to lose. Spending $125,000 on system-wide protection for a top-10 market TV station is easily justified. At smaller operations, justification may not be so easy.

The Key Tolerance envelope

The susceptibility of electronic equipment to fail because of disturbances on the AC power line has been studied by many organizations. The benchmark study was conducted by the Naval Facilities Engineering Command, Washington, DC. The far-reaching program, directed from 1968 to 1978 by Lt. Thomas Key, identified three distinct categories of recurring disturbances on utility company power systems. As shown in Table 1, it is not the magnitude of the voltage, but the duration of the disturbance that determines the classification.

In the study, Key found that most data-processing (DP) equipment failure caused by AC line disturbances occurred during bad weather. According to a report on the findings, the incidence of thunderstorms in an area may be used to predict the number of failures.

The type of power-transmission system used by the utility company also was found to affect the number of disturbances observed on power company lines. For example, an analysis of utility system problems in Washington, DC; Norfolk, VA; and Charleston, SC, demonstrated that underground power-distribution systems experienced one-third fewer failures than overhead lines in the same areas. Based on his research, Key developed the “recommended voltage tolerance envelope”
If you thought the power to create and manipulate fantastic images was way beyond your financial reach, meet Magic DaVE.

This is no ordinary low cost DVE switcher. Thanks to those wizards of technology, Snell & Wilcox, Magic DaVE packs high quality 8 bit 4:2:2 processing within its compact body and achieves full broadcast quality and transparency.

It’s fully expandable and up to four channels of DVE can be controlled from a single control panel allowing it to grow with your needs.

But the real magic is that, in spite of its competitive price, it offers a combination of features and effects found only on much more expensive systems.

- Two channel effects for instance, like dual source, double sided page turns and push-on push-off effects are available from a single channel.

- Other powerful effects include 3D rotation with perspective, lighting, quad peels, fragmentation, flag waves and ripples, bursts and blinds, wipes, and many many more.

Options include an advanced wipe generator, downstream keyer, chroma keyer, trail and sparkle effects with drop shadow and image texturing.

How can he do it for the price?
shown in Figure 1. The design goals illustrated are recommendations to computer manufacturers for implementation in new equipment.

Assessing lightning hazards
As identified by Key in his Naval Facilities study, the extent of lightning activity in an area significantly affects the probability of equipment failure caused by transient activity. The threat of a lightning flash to a facility is determined, in large part, by the type of installation and its geographic location. The type and character of the lightning flash are also important factors.

The Keraunic number of a geographic location describes the likelihood of lightning activity in that area. Figure 2 shows the Isokeraunic map of the United States, which estimates the number of lightning days per year across the country. On average, 30 storm days occur each year across the continental United States. This number does not fully describe the lightning threat, however, because many individual lightning flashes occur during a single storm.

The structure of a facility has a significant effect on the exposure of equipment to potential lightning damage. Higher structures tend to collect and even "trigger" localized lightning flashes. Because storm clouds tend to travel at specific heights above the earth, conductive structures in mountainous areas attract lightning activity more readily. The exposure factor is a function of the size of the facility and the Isokeraunic rating of the area. The larger the physical size of an installation, the more likely it is to be hit by lightning during a storm. The longer a transmission line (AC or RF) or the taller the tower, the more lightning flashes it is likely to receive.

The relative frequency of power problems is seasonal in nature. As shown in Figure 3, most problems are noted during June, July and August. These high problem rates can be traced primarily to increased thunderstorm activity.

Transient protection alternatives
A facility can be protected from transient disturbances in two basic ways: the systems approach or the discrete device approach. Table 2 outlines the major alternatives available, which include:

- UPS (uninterruptible power system) and standby generator;
- UPS stand-alone system;
- Secondary AC spot network;
- Secondary selective AC network;
- Motor-generator set;
- Shielded isolation transformer;
- Suppressors, filters, lightning arrestors and;
- Solid-state line-voltage regulator.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TYPE 1 DESCRIPTION</th>
<th>TYPE 2 DESCRIPTION</th>
<th>TYPE 3 DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSIENT</td>
<td>Transient and oscillatory overvoltage</td>
<td>Momentary undervoltage or overvoltage</td>
<td>Power outage</td>
</tr>
<tr>
<td>CAUSES</td>
<td>Lightning, power network switching, operation of other loads</td>
<td>Power system faults, large load changes, utility equipment malfunctions</td>
<td>Power system faults, unacceptable load changes, utility equipment malfunctions</td>
</tr>
<tr>
<td>THRTHOLD</td>
<td>Note 1: 200-400% of rated rms voltage or higher (peak instantaneous above or below rated rms)</td>
<td>Below 80-85% and above 110% of rated rms voltage</td>
<td>Below 80-85% of rated rms voltage</td>
</tr>
<tr>
<td>DURATION</td>
<td>Transients 0.5-200µs wide and oscillatory up to 16.7ms at frequencies of 200Hz to 5kHz and higher</td>
<td>From 4-6 cycles, depending on the type of power system distribution equipment</td>
<td>From 2-60 sec if correction is automatic; from 15 min to 4 hrs if manual</td>
</tr>
</tbody>
</table>

Table 1: The approximate limits beyond which the disturbance is considered harmful to the load equipment.

Table 2: Types of system-wide protection equipment available to facility managers and the AC line abnormalities that each approach can handle.

Figure 1. The recommended voltage tolerance envelope for computer equipment is shown above. This chart is based on pioneering work done by the Naval Facilities Engineering Command. The study identified the magnitude and duration of a transient pulse in determining the damaging potential of a spike. The design goals illustrated in the chart are recommendations to computer manufacturers for implementation in new equipment. (Adapted from: Lt. Thomas Key, "The Effects of Power Disturbances on Computer Operation," IEEE Industrial and Commercial Power Systems Conference, Cincinnati, June 8, 1978.)
Feel Closed In By 4-letter Companies Dictating Your Editing Needs?

open Up With D-Vision.

No company should tell you what you need. That's exactly what they'll do if you buy their closed proprietary systems.

D-Vision non-linear editing solutions on the other hand are based on a truly OPEN non-proprietary architecture. So, you will have more freedom to choose the post-production tools and systems that are right for you. That means your costs will be lower, and when new technology is available you can use it right away.

And, the D-Vision OnLINE family has the most powerful and easy-to-use timeline in the industry. Period. Based on feedback from over 5,000 users worldwide, OnLINE lets you simultaneously play back up to 24 audio tracks with video, snap to markers, visualize sync, personalize your screen layout and much more.

Don't be locked in. Keep an open mind.

©1995 D-Vision Systems, Inc. D-Vision is a registered trademark and D-Vision OnLINE and Making Digital Media Work For You are trademarks of D-Vision Systems, Inc. Windows NT and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Table 3 lists the relative benefits of each protection method. Because each installation is unique, conduct a thorough investigation of a facility's needs before purchasing equipment. The systems approach offers the advantages of protection engineered to a particular application and need, and usually high-level factory support during equipment design and installation. The systems approach also means higher costs for the end-user.

Developing specifications for system-wide power-conditioning/backup hardware requires careful analysis of various factors before a particular technology or a specific vendor is selected. Factors in this process relate to the load hardware and load application. The electrical power required by a sensitive load may vary widely, depending on the configuration of the system. The principal factors that apply to system specification include the following:

- Power requirements including: voltage, current, power factor, harmonic content and transformer configuration;
- Voltage-regulation requirements of the load;
- Frequency stability required by the load, and the maximum permissible slew rate (the rate of change of frequency per second);
- Effects of unbalanced loading;
- Overload and inrush current capacity;
- Bypass capability;
- Primary/standby path transfer time;
- Maximum standby power reserve time;
- System reliability and maintainability; and
- Operating efficiency.

An accurate definition of critical applications will aid in the specification process for a given site. The potential for future expansion also must be considered in all plans. Power requirements can be determined either by measuring the actual installed hardware or by checking the nameplate ratings. Most nameplate ratings include significant safety margins. Moreover, the load normal-

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>STRONG POINTS</th>
<th>WEAK POINTS</th>
<th>TECHNICAL PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS system and standby generator</td>
<td>Full protection from power outage failures and transient disturbances; ideal for critical DP and life-safety loads</td>
<td>Hardware is expensive and may require special construction; electricity and mechanically complex; noise may be a problem; high annual maintenance costs</td>
<td>Efficiency 80-90%; typical high impedance presented to the load may be a consideration; frequency stability good; harmonic distortion determined by UPS system design</td>
</tr>
<tr>
<td>UPS system</td>
<td>Completely eliminates transient disturbances; eliminates surge and sag conditions; provides power outage protection up to the limits of the battery supply; ideal for critical load applications</td>
<td>Hardware is expensive; depending on battery supply requirements, special construction may be required; noise may be a problem; periodic maintenance required</td>
<td>Efficiency 80-90%; typical high impedance presented to the load may be a consideration; frequency stability good; harmonic content determined by inverter type</td>
</tr>
<tr>
<td>Secondary spot network (Note 1)</td>
<td>Simple; inexpensive when available in a given area; protects against local power interruptions; no maintenance required by user</td>
<td>Not available in all locations; provides no protection from area-wide utility failures; provides no protection against transient disturbances or surge/sag conditions</td>
<td>Virtually no loss, 100% efficient; presents low impedance to the load; no effect on frequency or harmonic content</td>
</tr>
<tr>
<td>Secondary selective network (Note 2)</td>
<td>Same as above; provides faster transfer from one utility line to the other</td>
<td>Same as above</td>
<td>Same as above</td>
</tr>
<tr>
<td>Motor-generator set</td>
<td>Electrically simple; reliable power source; provides up to 0.5 sec power-fail ride-through; completely eliminates transient and surge/sag conditions</td>
<td>Mechanical system requires regular maintenance; noise may be a consideration; hardware is expensive; depending on n-g set design, power-fail ride-through may be less than typically quoted by manufacturer</td>
<td>Efficiency 80-90%; typical high impedance presented to the load may be a consideration; frequency stability may be a consideration, especially during momentary power-fail conditions; low harmonic content</td>
</tr>
<tr>
<td>Shielded isolation transformer</td>
<td>Electrically simple; provides protection against most types of transient and noise; moderate hardware cost; no maintenance required</td>
<td>Provides no protection from brown-out or outage conditions</td>
<td>No significant loss, essentially 100% efficient; presents low impedance to the load; no effect on frequency stability; usually low harmonic content</td>
</tr>
<tr>
<td>Suppressors, filters, lightning arresters</td>
<td>Components inexpensive; units can be staged to provide transient protection exactly where needed in a facility; no periodic maintenance required</td>
<td>No protection from Type 2 or 3 disturbances; transient protection only as good as the installation job</td>
<td>No loss, 100% efficient; no effect on impedance presented to the load; no effect on frequency or harmonic content</td>
</tr>
<tr>
<td>Solid-state line voltage regulator</td>
<td>Moderate hardware cost; uses a combination of technologies to provide transient suppression and voltage regulation; no periodic maintenance required</td>
<td>No protection against power outage conditions; slow response time may be experienced with some designs</td>
<td>Efficiency 92-98%; most units present low impedance to the load; usually no effect on frequency; harmonic distortion content may be a consideration</td>
</tr>
</tbody>
</table>

Note 1: Dual-power feeder network

Note 2: Dual-power feeder network using a static (solid-state) transfer switch.

Table 3. Technical merits of various transient protection equipment.

Figure 2. This Isokeraunic map of the United States shows the approximate number of lightning days per year.

Figure 3. The relative frequency of power problems in the United States, classified by month.
AC Power Distribution SHOWCASE

Rack mounted. Designed to fit standard 19" wide EIA /Std. Standard and optional features include EM/RF filters, spike and surge suppression, 12 front panel mounted NEMA outlets, remote I/O ports. Current protection up to 24 AMPS. Other features include three sections of four outputs, either all switched or two switched and one unswitched. Multiple Time Delay® power-up/down, various current/voltage ratings.

Circle (23) on Action Card
Flush Mounted, Thin Line Power Controllers

Ideal for restricted space applications. Large selection with up to 16 IEC type outlets. Many optional features including current/voltage ratings, quantity and type of outlets, switched/unswitched sections, Multiple Time Delay®, EM/RF filtering (standard on some series), remote I/O ports and latching function.

Circle (26) on Action Card
Satellite Antenna Lightning Arrester System

The solution to multiple line protection problems. Protects all circuit functions, including motor drives and sensors, linking a satellite tracking station with a remote receiver. Can withstand spikes and surges as extreme as lightning strikes on AC power, RF and telephone lines. Provides EM/RF filtering on low frequency circuits. NEMA connectors available for AC lines, R4/S5 for phone and data lines, terminals for motor drive and sensor circuits as well as "F" type connectors for coaxial cables. Convenient, easy to install 19" rack mountable steel enclosure is a slim 1.75" high, 6" deep.

Circle (29) on Action Card

Remote Power Control Panel

Centralize your system's power controls. Controls and EMU /RFI filtering (standard on many controllers). Requires only 3-1/2" height. Includes a utility convenience outlet, red EPO mushroom switch and reset switch. Features finished in light textured gray. FED-STD 595 #26850.

Circle (24) on Action Card
Step Up, Step Down Voltage Controllers, Auto Transformers

Circle (27) on Action Card

3-Phase Power Controllers

Rack mounted. 3-1/2" (2U) high. Depths from 8-1/2" to 14-1/2". Includes EM/RFI filter, remote I/O connectors for power on/off, EPO and power-up of additional equipment. Various EMI /RFI linking all satellite functions, including motor control, and four series, receptacle type controllers.

Circle (25) on Action Card
International Power Control Systems

Circle (28) on Action Card

Custom Designed Systems

Can't find the Power Distribution Unit (PDU) you need? Pulizzi Engineering, with over 20 years experience, can design and manufacture the exact PDU you want and meet agency requirements. Eliminate the time and costs to design, fabricate and wire in-house power controllers. Let Pulizzi Engineering do it for you. Better, faster and less expensively. Call us at the design stage or let us show you how a Z-Line PDU can more pay for itself when it comes to total system cost.

Circle (31) on Action Card

Z-LINE®

Express 48-hour shipping on selected models.
Over 100 models on file with UL, CSA or Tuv recognition.

PULIZZI ENGINEERING INC.
3260 S. Susan St. Santa Ana, CA 92704-6865
To order, to request a catalog, or for assistance, call today: 714/540-4229. Fax 714/641-9062 E-Mail: sales@pulizzi.com

Circle (32) on Action Card

NAB Booth #8067
ly will include a diversity factor; all individual elements of the load will not necessarily be operating at the same time.

Every load has a limited tolerance to noise and harmonic distortion. Critical data processing and computer equipment loads typically can withstand 5% THD with no adverse effects where no single harmonic exceeds 3%. The power-conditioning system must provide this high-quality output waveform to the load, regardless of the level of noise and/or distortion present at the AC input terminals.

If a power-conditioning/standyby system does not operate with high reliability, the results often can be disastrous. In addition to threats to health and safety, there is a danger of lost revenue and hardware damage. Reliability must be considered from three different viewpoints:

1. Reliability of utility AC power in the area.
2. Impact of line-voltage disturbances on DP loads.
3. The ability of the protection system to maintain reliable operation when subjected to expected and unexpected external disturbances.

The environment in which the power-conditioning system operates will have a significant effect on reliability. Extremes of temperature, altitude, humidity and vibration can be encountered in various applications, most notably, transmitter sites. Extreme conditions can precipitate component failure and unexpected system shutdown. Most power-protection equipment is rated for operation from 0°C to 40°C. During a commercial power failure, however, the ambient temperature of the equipment room can easily exceed either value, depending on the exterior temperature. Operating temperature derating typically is required for altitudes in excess of 1,000 feet.

Table 4 lists key power-quality attributes that should be considered when assessing the need for power-conditioning hardware.

The next step

A detailed examination of each of the power-system protection alternatives available to TV stations and production facilities is beyond the scope of this article. There are, however, a number of publications that describe the various approaches in detail, including the following:

- Product literature from power-conditioning manufacturers. A comprehensive listing of vendors is located under the heading "Ancillary & Support Equipment Beginning on p. 87 of the 1996 BE Buyers Guide."

Protection against transient disturbances is a science that demands attention to detail. This work is not inexpensive, and it is not something that can be accomplished overnight. Facility managers will, however, wind up paying for transient protection one way or another, either before or after problems occur. In the world of transient protection, there is truly no such thing as a free lunch.

Jerry Whittaker is a BE contributing editor.
Imagine a towering stack of cartridges, open reels and DAT tapes—a vast wealth of audio cuts—representing hours of costly, painstaking production. Now imagine that treasury of sounds (like commercials, IDs, SFX, and stingers) securely stored, intelligently organized and instantaneously accessible. All within the confines of one very impressive machine—the digital audio hard disk recorder, DigiCart/II.

Smart operating controls and easy-to-read displays makes scanning through DigiCart/II's massive vault of storage a snap. With a simple spin of a knob or keystroke on a remote control, you can call up any single cut, or even an entire playlist—instantly, effortlessly.

While DigiCart/II plays a pre-selected cut, its production-oriented software allows you to program the next series of cuts at the same time. All performed with reassuring reliability.

No dead air, no missed cues, no scrambling around.

It's easy to see why DigiCart/II is fast becoming the industry standard for hard disk recording. If you're searching for the best place to bank your audio valuables, take a look—and listen—to DigiCart/II.

To see, hear and feel the true value of a DigiCart/II for yourself, contact us at 360 Systems and we'll arrange for a hands-on demonstration in your studio or production facility. Call (818) 991-0360.
Confidently making the transition from the editing room to the road, Sony's DVS-7000 Live Production Switcher is designed for the demanding pace and creative challenges of live production. Right from the start, operators will notice how comfortable they feel behind the wheel of the DVS-7000. Its 3.5 M/E control panel is like second nature to experienced technical directors. Its multiple downstream keyers and multiple re-entry capabilities make it faster and simpler to layer graphics and DME moves into a show. And it shifts truck efficiency into high gear, by reducing the size and power consumption of its electronics—plus adding special mobile support features like redundant power supplies and advanced diagnostics. Sony has also created a revolutionary link between our DME effects system and our DVS-7000. It's called DME-Wipe.
To create our live digital switcher, we broke down four walls and added four wheels.

—and it adds keying power by turning DME's into additional keyers, freeing the M/E keyers for more key layers. TD's can now have a full range of powerful DME effects at their fingertips as quickly and easily as wipe patterns. In addition, it has three memory systems: Timeline effects, Snapshot memories, and E-File registers, making it extremely effective for quick changes in live telecasts or on-line editing. The DVS-7000 is also designed for today's fast-changing TV station environment.

It can be configured for either analog or digital inputs. You can convert from digital composite to component 4:3/16:9 at the touch of a button. It handles 525/625 signals. And it's available in multiple control panel configurations. For more information, just call 1-800-635-SONY, ext. 7000. We'll help you get your show on the road.

SONY
Using fiber in the field

As costs come down and reliability goes up, the advantages of fiber-optic signal transport on remotes become undeniable.

In the recent movie Sabrina, Harrison Ford illustrates his character's business vision when he states, "I know it the way I knew that fiber optics would replace coaxial cable." This replacement has been steadily occurring in fixed TV broadcast communications, just as it has already occurred in data communications and voice communications. One area where the transition from coax to fiber is taking place now is outdoors in remote production environments, where it is gaining momentum fast.

A few years ago, fiber optics were unheard of as the primary cabling from camera sites to the production vehicle. Now you see fiber at all the grand sporting events — the Olympics, Super Bowls, the World Cup, Formula One racing and the like. The same applies to entertainment events (like Woodstock and the Three Tenors in Concert) and news events (such as elections, coverage from Bosnia and papal visits). To appreciate where fiber systems best fit, it is important to understand the advantages and limitations of fiber optics.

Applications

There are two main application areas for fiber in remote broadcasting. The first involves feeding video and audio program material from the production site to an uplink or the demarcation point of a common carrier. This has been the predominant use for fiber in the field for the last 15 years. The other emerging application is for lightweight "snakes" linking cameras and microphones to the production control room(s). This is the area that has required significant development of specific systems.

In general, these fiber-optic systems are standard interface adapters that convert electrical signals on copper to/from optical signals on fiber cables. These adapters may be inserted whenever and wherever desired, and they can be moved easily from location to location.

Fiber-optic systems made their field debut in 1980, in such televised events as the Democratic National Convention and the Winter Olympics. At that time, and throughout the '80s, broadcasters adapted conventional rack-mounted systems by "suitcasing" them in shock-mounted roadcases. Although these systems offered the inherent advantages of fiber-optic communications, they were inconvenient to carry and power. Today's portable fiber systems make field teleproduction a much easier and more reliable undertaking.

Those traditional rack-mounted systems still are the mainstay of fixed video and audio communications for studio-transmitter links, campus and intrabuilding networks, as well as medium- to long-haul telecommunications. Typically, such systems employ FM video with multiple audio subcarriers multiplexed above the video baseband or, in long-haul systems, one or more video channels digitized and multiplexed with their associated audio channels onto one optical fiber.

Like all fiber-optic systems, they provide superior signal transmission and eliminate virtually all the problems associated with copper, including ground loops and hum, electromagnetic or RF interference, crosstalk, lightning problems and high-frequency rolloff. The newest generation of fiber systems couples these advantages with the enhanced portability and weight reduction. The fiber-optic cables used have also become more durable, more so than coaxial or triaxial cables, and the electronics are now housed in miniature enclosures built for field environments.

Rugged fiber cables

One slender (0.25 inch) cable can replace as many as six coaxial cables plus more than 64 audio pairs. As a result, every 1,000-foot section of fiber-optic cable weighing less than 15 pounds can replace more than a ton of copper. Naturally, the labor savings on setups and strikes are significant. However, the savings in troubleshooting are even more impressive.

One of the lingering myths about fiber is that
AND WE'RE PRODUCING WINNERS IN EVERY MARKET

The Mark IV Pro Audio Group is one of the fastest growing suppliers to the broadcast industry. With the strength and skill of such respected companies as Electro-Voice, D.D.A. and Klark-Teknik, the reason we're producing winners is clear. For example, Electro-Voice makes some of the most popular microphones in broadcasting, D.D.A. mixing consoles are the choice of WGBH, Boston, one of the largest producers of programming for PBS, and Klark-Teknik is the British signal processor manufacturer that stood the pro audio industry on it's ear by introducing a graphic equalizer with a wireless remote control.

So, wherever your team plays, the Mark IV Pro Audio Group of companies has what it takes to put you in the big leagues.

For more information on the Mark IV Pro Audio Group of companies call 800.695.1010.
OEMs, Systems Integrators and Developers...
It's no secret. The video industry is in the midst of a mass migration to digital technology. PC-based open systems are the wave of the future. You can make the transition quick and painless for your product by building it on Matrox DigiSuite — a solid foundation of digital video hardware and software development tools that you put together in myriad configurations to meet your exact requirements.

Move from expensive black

What do you need to build?
- Nonlinear Editing Systems (NLE)
- Digital Disk Recorders (DDR)
- Virtual VTRs
- Video-on-Demand Servers (VOD)
- Near Video-on-Demand Servers (NVOD)
- Interactive TV
- Live Video Switchers
- M-JPEG to MPEG Transcoders
- Commercial Insertion Systems
- Instant Replay Systems
- Time Delay Systems
- CATV Barker Channels
- 2D and 3D Animation Stations
- Animation Recorders
- Graphics/Paint Workstations
- Character Generators (CG)
- Closed Captioning and Teletext Systems
- Digital Audio Workstations (DAW)
- Visual Effects/Compositing Systems
Use only the best materials.
Choose the building blocks you need for your application from the extensive Matrox collection, the growing list of board-level components from third parties or design your own digital video hardware around the open standard Movie-2 bus. DigiSuite components are modular, highly-integrated, true 10-bit CCIR-601 and take full advantage of the PCI-bus.

- Matrox DigiMix™ — digital video/graphics mixer and 2D DVE unit
- Matrox DigiMotion™ — dual channel motion-JPEG codec/digital audio mixer/Fast-20 SCSI controller
- Matrox DigiVid™ — multi-channel analog video I/O and serial communication interface
- Matrox QMPEG-2™ — four channel MPEG-2 audio/video decoder
- Matrox Marvel Millennium™ — video-in-a-window console display controller
- Matrox Genesis™ — DSP-based application accelerator
- Serial digital (D1) I/O interface, realtime 3D DVE, MPEG encoders and other third party Movie-2 bus compatible products

And the best tools for the job.
Matrox DigiTools™ are based on the new Microsoft multimedia software architecture with OpenDML extensions. A comprehensive selection of proven software modules from Matrox and third parties speeds your application development.

- Matrox DigiSDK™ — Component Object Model (COM) software development kit for Windows NT 3.51 and Windows 95
- Matrox DigiSequencer™ — infinite-layer audio/video/graphics compositing and sequencing engine
- Matrox DigiVTR™ — VTR control software
- Image North Technologies DigiCG, DigiPaint, DigiDVE and DigiStill — application modules

Our solid foundation of state-of-the-art boards, advanced software development tools and world-renowned OEM engineering support let you make a smooth transition to the digital domain and get your PC-based product to market quickly.

For more information, please call:
1-800-361-4903 or (514) 685-2630
Matrox Electronic Systems Ltd.
1025 St-Regis Blvd., Dorval
Quebec, Canada, H9P 2T4
Fax: (514) 685-2853
Internet: http://www.matrox.com/video
because it is lightweight, and because the "conductors" are made of glass, it must be fragile. On the contrary, today's fiber elements are stronger than steel, and the cables are designed for battlefield use. Such "tactical" cables have proven to stand up to golf spikes, automobile traffic and even the environmental horrors of Woodstock '94. In order to survive the remote production environment — random knots, slamming doors, forklift traffic and so on — the cable and connectors should have endured substantial testing. Therefore, you will find the term "mil spec" used repeatedly when specifying fiber cables for remote broadcasting.

For use in the field, fiber cables should have a polyurethane (not PVC) jacket for crush resistance. It should be tightly linked to the reinforcing Kevlar yarn, yet it should be strippable. You can test the cable for integrity by taking a 1m section and trying as hard as you can to stretch it. You won't damage the fibers, but you want to see if the outer jacket wrinkles up when tension is released. (It shouldn't.) Then bend the cable into a small loop or knot; the jacket should remain relatively smooth, not wrinkled.

What happens when a lawn mower or street sweeper cuts a cable? The cable can be quickly spliced in temporary fashion to get on the air, or the ends may be retermined with crimp-on, bayonet-type ST connectors (this requires about two minutes per end) and rebarreled together. In most cases, after the remote, the cable can be properly terminated and returned to regular service as two shorter cables.

The ST-type connector is the industry standard single-fiber connector. It is a low-cost connector and is commonly used in campus backbone applications. One ST is required for each end of each fiber, similar to a BNC on coax. Cable connectors are always male, so connecting two cables requires a double-female adapter barrel. Today's fiber-optic cables often include multiple fibers, and if you terminate these with ST connectors, you will need to be aware of proper labeling and signal directions for each fiber.

The military multipin hermaphroditic connector is becoming the standard in field applications. Originally developed for the Army, this connector is more reminiscent of a triax connector, but more expensive. It has two male contacts and two female contacts in the screw-on plug. The cable crosses over such that each fiber has a male contact on one connector end and a female contact on the other end. Thus, the cable cannot be installed in the wrong direction, and a 4-fiber cable requires only a single connector. Plugs can be directly interconnected together forming extension cables, with no barrel adapters or intermediate patch panels required.

Fiber connectors become lossy when dirty, so they must be kept clean. Always put the dust caps on fiber connector plugs and receptacles when they are not in use; when in doubt, clean the fiber contacts.

Like BNCs or F connectors on coax, the single-fiber ST connector uses male plugs on all cable ends and female jacks on chassis mounts.

A reel light solution

Reels can be the bane of a fiber-optic field installation. With coax, you don't expect the reels to last long because the cable is disposed of soon anyway, and the reel usually goes away at the same time. But fiber cable will last many years, and it's more expensive, so it warrants better care. A reel can hold anywhere from 500 to 3,000 feet of tactical cable. If the reel gives out or falls apart, the cable can spill off sideways, and the untangling nightmare begins. Avoid a reel with flanges that are bolted through the hub — the nuts may fall off in transit, and there goes the cable. Avoid split reels or reels with external hangers for the inside course of cable. The connectors will find a way to flop, causing possible damage during deployment and take up. Use reels that have compartments in the hub (without axles) to store and protect the inside length of cable.

The cable may be pulled from a stationary reel or paid out behind the reel as it is carried. Because there is not a multifiber rotary slip joint, the cable is deployed then connected to the electronics. Otherwise, the inner length of cable will twist with respect to stationary electronics. Plugs attach to mating hermaphroditic receptacles mounted on portable shell-type enclosures or on the panel of the production vehicle.

If a production vehicle is dedicated to the fiber system, the electronics can be mounted in standard 19-inch racks. (See Figure 1.) Fiber pigtails lead from the hermaphroditic receptacle(s) to ST-type connectors on the rear of the electronics frame. The frame typically contains plug-in modules, each being either a transmitter or receiver for various types of signals — video, audio, intercom or control data.

Portable enclosures

At the camera location, the corresponding modules have to be housed in a more robust enclosure. Typically, this portable "shell" will have a hinged lid and be gasketed to provide environmental protection. The hermaphroditic connector will screw onto an externally mounted receptacle, and all electrical connectors (BNC, XLR, etc.) will be on side panels. Although the enclosure may be weather-resistant, unused XLRs can leak, so it's a good idea to bag the enclosure in inclement weather.

Field events do not occur in comfortable environments. Both cable and electronics should be able to operate without fans or heaters in temperatures ranging anywhere from -40°C to +70°C (-40°F to +158°F). Military specs are even wider. The same unit has to be capable of televising summer and winter events.

If the vehicle is not dedicated to using fiber, or if you're using a fly-away system, you will want both ends of the cable run to be portable. (This also applies for occasional rentals, or where flexibility is paramount.) In this case, both ends of the system may be housed in modular shell-type enclosures, or one electronics end may be housed in a shell while the other end may be conveniently mounted inside the cable reel. Indeed, all electronics and cable are transported in a single case suitable for checking as airplane luggage.

Modules may be reconfigured as event communications require. A common configuration is the 3-camera shoot. Typically in
Big News About Something Small.

The CPI Compact Satcom MPA.

Our new Compact Medium Power Amplifier (CMPA) is big news in the portable satcom market. It's ideal for SNG, flyaway and small earth terminals. The CMPA packs high efficiency in a 5.25" single rack drawer.

The amplifier is also easy to use, featuring microprocessor control. Digital and analog control interfaces make the CMPA a snap to integrate into the system. Plus, it's easy to maintain with modular construction and built-in fault diagnostics—all in a rugged design that can stand up to a world of conditions.

And, as with all CPI amplifiers, the CMPA is backed by the industry's largest sales and global service network.

No matter where in the world your story breaks, CPI's CMPA will be there transmitting the news.

Give us the opportunity to tell you more, call us.
Tel: (408) 496-6273 Fax: (408) 496-6235

CPI Satcom Division
3200 Patrick Henry Drive
Sunnyvale, CA 95054 USA

Circle (42) on Action Card
that setup, three remote cameras each send video (NTSC or PAL) plus two audio channels to the vehicle, and they receive gen-lock plus two audio or IFB return channels. Intercom, camera control data and tally/call switch closures are transmitted in both directions.

In remote broadcasting, communications is the tail that wags the dog. With many intercoms, power must be provided to beltpacks from the portable shell. Fiber cables carry lightwave signals, not electrical current, so the remote shell must be powered locally (at the camera end), and the proper voltages sent from there to a number of nearby intercom or IFB beltpacks. The same applies to any phantom-powered audio devices, such as condenser microphones or line amps. Power can be supplied to a shell by AC or batteries. A typical camera battery can power a fiber shell for five to six hours, and a deep-cycle marine battery will power it for an eternity.

Although this can be seen as a disadvantage of fiber on remotes, a battery is still a lot lighter and easier to transport than a ton of copper. Most portable fiber systems already have internal rechargeable batteries that serve as an uninterruptable power supply in the event that external power is lost or has to be changed.

Modulation schemes

Video is transmitted on fiber using FM or digital techniques. Both offer high quality and extreme stability. Avoid using AM-based video (sometimes called intensity modulation or IM) because the optical attenuation of the cable dramatically impacts video level. Even with AGC, AM video levels will vary wildly when the fiber cable is severely bent or driven over by a heavy vehicle. Similarly, AM systems without AGC may have to be recalibrated every time a different cable length is used. With FM and digital, video levels remain steady regardless of cable length or condition.

In specifying video performance, you assure yourself of the highest-quality signal transmission when you demand that the system meets or exceeds the EIA/TIA-250-C, Short Haul recommended standard. According to this standard, video signal-to-noise ratio should be >67dB, but some systems can easily achieve 70dB or more. The better your originating signals, the better they will end up at the receiving end.

Night Scan® ENG Gives You the Scoop!

Nighttime news remotes just became easier and faster. The Night Scan® ENG Telescoping Mobile Lighting System is a compact, self-contained roof-top unit that elevates 3200° K quartz lights to 6-feet above your ENG vehicle in 20 seconds. All functions are remotely controlled, providing deployment, full pan and tilt lighthead control and full retraction with one-button Auto-Stow®. Installation is a simple retrofit and requires no loss of interior space. Call today for complete scoop on Will-Burt’s newest ENG mast innovation.

WILL-BURT

P.O. Box 300
Orrville, Ohio 44667-0900
(216) 682-7015
FAX (216) 684-1190
ISO-9001 CERTIFIED QUALITY SYSTEM

Circle (43) on Action Card
As we move into the digital future, things are looking better and better. Digital transmission standards for satellite, over-the-air, and cable systems, digital video cassette and disk formats — they all deliver picture quality far superior to anything in today's NTSC world.

But why confront the issue of picture quality now? Because a signal that's good enough for NTSC may hide flaws that can become problems down the road.

In today's broadcasting and production communities, new video servers and non-linear editing systems are being tested and evaluated. To accomplish their goals of fast multi-channel access and storage efficiency, most servers rely on video compression. And to help reduce picture distortions caused by high levels of compression, most systems use pre-filtering and sub-sampling to reduce the data that must be compressed. Instead of studio quality 4:2:2 component signals, they work with 4:2:0. Or 4:1:1. Or even 3:1:1.

These sampling structures produce pictures that are acceptable for some applications and may look okay to the eye. But even with no compression, they can prove to be inadequate for high-quality broadcast video productions. Because once chrominance and/or luminance information has been lost through pre-filtering and sub-sampling, it can never be restored.

Only 4:2:2 digital component signals and high-quality compression schemes will stand up to the rigors of sophisticated chroma-keying. Multi-generational editing. Special effects. Blue-screen compositing. Matting. ATV up/down conversion. And multiple transconversion between compression systems.

That's why Sony is developing new compression algorithms that can use 4:2:2 signals to produce broadcast pictures that retain their high quality through the rigors of studio editing and post-production.

In the brave new world of digital pictures, "good enough" will no longer be good enough. To protect your investment— and prevent breakdowns in quality—you need to work with the best picture you can get.

And the first step toward maintaining the picture quality you need is to use nothing less than 4:2:2 Digital Component Video.

Sony explores digital issues in depth with a new series of technical papers. To receive them, call 1-800-635-SONY, Ext. 11.
When You Want More Than Just An Antenna

The military multi-pin hermaphroditic connector handles up to four fibers in a screw-on connector with opposite genders on either end of the cable (like XLR connectors).

Video quality will fare much better if you avoid audio subcarriers multiplexed above the video. Similarly, audio signal quality will be improved by avoiding sync buzz from out-of-band components bleeding through.

The greatest advantage of fiber is its flexibility in that it is not dedicated to a specific signal type or quantity.

Ideally, audio is transmitted digitally, and you can get practically any number of audio channels multiplexed onto a single fiber. You can add audio channels in pairs by adding plug-in modules, or you can add larger increments of, say, eight or 16 at a time in stand-alone multiplexers. With digital transmission, audio frequency response will typically be flat from DC to 22kHz, and S/N will hover around...
Why Settle For Less Than 100% Digital?

The Hitachi SK-2600 is the only fully digital triaxial camera system in the world.

Fire, floods, world upheavals—whatever the year 2000 brings, the "2600" is the camera you'll want to shoot with. This is the camera that will not only make you look good today, but will keep on making you look good 10 to 12 years into your buying cycle—well into the new millennium.

We start with a completely digital triaxial system and add such advanced technologies as a 4:3 aspect ratio, easily switchable to 16:9. Of course we offer flesh tone detail that keeps your talent as youthful as your system. Our six-vector color corrector allows you to paint and fine tune individual colors to make matching extremely easy. The unique LSI processor processes RGB in a single wafer, eliminating cross talk and noise. And only with digital technology can you set up one camera the way you like and transfer the information precisely to all other cameras for an exact match.

These ahead-of-their-time features are just part of the reason that whatever the next millennium brings, if you own a 2600, the one thing it won't bring you is regrets.

Hitachi's SK-2600 Offers You All These Breakthrough Technological Advantages:
- Full digital transmission system
- 4:3 aspect ratio, easily switchable to 16:9
- Flesh tone detail for a softer, more youthful look
- Six-vector color corrector and true linear matrix operating simultaneously
- Single LSI does RGB processing for ultra-pristine image
- 13 to 18 bit digital processing
- Precision digital file transfers
- Extreme range of detail in viewfinder, even in low-level lighting

Not just digital, Hitachi digital.

For the full story and a free copy of our white paper, "Advanced Digital Camera Technology For The New Millennium," call 800-762-6405.

HITACHI

Visit us at Booth #6303 at NAB in Las Vegas
THE VideoStore SYSTEM IS:

EXPANDABLE

Each media unit has a storage capacity of 4.5 hours. The VideoStore system can be easily and economically expanded to up to 31.5 hours of storage. That's almost 3,800 30's.

FLEXIBLE

Because it's digital, the VideoStore system gives you non-linear random access to your entire library. Spots can be added, canceled or moved with an average access time of .2 seconds from command to play.

RELIABLE

Sony's RAID 3 Predictive Maintenance technology provides: advance notice of a failing component; interruption-free playback in the event of most any component failure; and hot swappable components. Plus, in the event of hard drive failure, all lost data is rebuilt automatically, as a background task when the hard drive is replaced.

CONFIGURABLE

Up to 12 simultaneous, independent video/audio output channels per server. That could mean hundreds of channels.

The new Sony VideoStore™ Multichannel Video File Server lets you bring the advantages of digital storage to your commercial playback needs. With the VideoStore system, you can access a huge library of material - instantly and in any order. Last minute changes are simple. Picture quality is improved. The system is designed to be more accurate and reliable than your current analog system - you can have absolute verification every time a spot airs. And there's no more time wasted assembling hundreds of spots onto a cassette - you simply enter the playlist into the VideoStore system. No more resource conflicts. Changes are just a matter of adjusting the playlist. Since the VideoStore system is digital, you save money on labor, maintenance, equipment; you make money from last minute opportunities. You basically make out financially, both coming and going. For further information call 1-800-635-SONY, ext. EARN.
It was just another peaceful day in the life of Bert Canavan, Sales Manager. Then, the phone rang...

Hello, Mr. Weiner. You need your spot on air ASAP? Cost is no object? Er, yes sir!

Wow, Weiner Industries is our biggest advertiser. Still, there isn't much time.

This means.

O.K. First I'll run down to the library and get the spot. How tough can't be?

They've got to be a better way to manage spots. This is insane.

Here it is. And there's still a minute to go.

There's got to be a better way to manage spots. This is insane.

Finally Canavan locates the cassette.

You too can end your commercial insertion nightmares. The expandable, flexible, reliable Sony VideoStore system always delivers a happy ending.

Ugh, what an awful dream. Thank goodness my operation has the Sony VideoStore system. I guess I have to lay off the anchovy pizza before bed.
looking ahead

As broadcast technology advances, fiber systems will remain expandable to accommodate change. Survey the industry and you will find fiber-optic terminal equipment in either stand-alone or modular plug-in form that carries a wide variety of signals, including digital audio (using AES/EBU I/O), digital video (CCIR-601), lighting control (DMX-512 protocol), Ethernet LAN data and digital-matrix intercom signals.

What will the future bring? New adapters will be introduced to interface yet more types of signals using the same fiber cables. For example, one module will be a dial-up telephone interface that permits phone calls from the remote end of a link without having to rent expensive telco circuits to the camera or production site. Another is a fiber-optic adapter that completely replaces triaxial cable on existing cameras, sending all component program video, return video and gen-lock, audio, data, intercom and camera control data up to 10km on one optical fiber (four cameras per fiber cable). This will have a monumental impact on metropolitan production networks.

Clearly, fiber-optic systems will have to coexist with conventional copper cables for years to come, so the technology will rely heavily on interface adapters. Widespread use of end-to-end fiber interconnection is still a few years away, and copper terminations will remain in use, particularly in older facilities. But make no mistake, fiber has advanced well beyond the stage of a mere solution to an occasional transmission problem. It is now a key part of remote broadcasting equipment — one that is quickly replacing ordinary copper as the primary production link.

Richard Cemy is president of Telecast Fiber Systems, Inc., Worcester, MA.
Meet the hottest...

...UHF wireless

Red hot performance and solid reliability...

The UCR190 narrow-band UHF receiver utilizes the proven UNICHANNEL© design with helical resonator front-end filtering and narrow band crystal IF filtering. An all new dual-band compandor provides low distortion and a high signal to noise ratio. Aimed at broadcast ENG applications, the UCR190 receiver provides unmatched interference and IM rejection.

The 195 Series wide-band UHF system utilizes ±75KHz deviation for outstanding dynamic range and signal to noise ratio. An exclusive dual-band compandor and pulse counting detector provide audio quality well suited to the most demanding digital recording techniques. The balanced audio output is adjustable from mic level up to +8dBm studio levels.

More transmitter output power, plus higher receiver sensitivity than any other brand we’ve tested, all adds up to more operating range than you will probably ever need.

Belt-pack and plug-on transmitters are available in both narrow-band and wide-band UHF versions. Audio outputs are balanced XLR types with separate monitor outputs. All housings and panels are made of machined aluminum for a precise fit and lasting ruggedness. Shock mounted crystals and surface mount components withstand the toughest field use.

Inside Lectrosonics UHF products you will find advanced RF engineering, superb mechanical design and the very latest in surface mount technology. This is the present state of the art in wireless systems.

We invite you to compare these systems with any other wireless system, at any price.

Call for more information
800-821-1121
and a free copy of the 50 page "Wireless Guide"

Distributed in Canada by MILLER CANADA
The Bottom Line:
The law of averages applies to this year's state of the industry. Station budgets and staff sizes will not jump significantly ahead of last year, nor should they take any drastic downsails. Stations are holding their own and that's nice to know in this fast-paced industry. This year, stations will be looking to new technology for the answers.
1996 state of the industry

The pulse of the industry has a nice steady beat.

1995 was a year of positive growth for the broadcast industry. Things were on the upswing...stations had bigger budgets and bigger staffs than they have had in the past several years. Now, the pulse of the industry has evened out to a nice steady beat. On average, stations are spending about the same as last year, give or take a few percentage points across the different market sizes. But it's not time to tighten the budget belt anytime soon. And staff size has remained about the same too.

Stations are still in a buying mode. And that's up across all market sizes compared to last year.

Budget basics

What stations will be spending on new equipment is always a hot topic. Being able to purchase needed equipment while staying within a budget can be difficult. But this year, that should not prove to be too much of a problem. Overall, stations have the money to spend on equipment, as you will see later on.

Table 1 shows the forecasted equipment budgets from 1994 through 1996. Compared to last year, forecasted budgets are up slightly for the top 50 stations from $508,724 to $534,618, which is more than 5%. The top 100 budget is down by approximately 6.5%, from $274,343 to $257,933, and the below top 100 budget is up over last year by a decent margin of 9%, from $186,081 to $202,855. This year, we were able to

Photo: Home & Garden TV Network's Avid editing room designed and built by A.F. Associates. Photography by Robert Wolsch Designs.
include totals for the cable and production categories. The cable budget shows a whopping 60% increase over last year, from $112,923 to $180,796, which should enable many cable stations to update some old equipment. The production budget fell back by about 3.5%, from $167,643 to $162,246. Even though not all categories saw percentage increases this year, there still continues to be an upward trend in what stations can afford to spend.

Station spending plans

Compared to last year, stations this year will spend about the same on equipment purchases. On average, the top 50, top 100 and below top 100 TV stations and production companies will all spend about the same as last year. Cable's 60% budget increase is showing a corresponding increase in what equipment will be purchased this year.

The bottom line is that stations want to and need to invest in equipment to remain competitive and up-to-date with all the changes continuing to occur in the industry. Stations are still in a buying mode and new equipment is always on the agenda. Look at Table 2 to find out what kinds of equipment stations are planning on purchasing this year. The table includes 17 different types of equipment.

The top 10 equipment wish list

Continuing the tradition over the years, the ever-popular audio and video monitors once again top the charts as the number one planned equipment purchase for stations. Across the board, more than 63% of stations over all markets plan on buying audio and video monitors. That is 10% above last year. The second priority in equipment purchases for TV stations is test equipment. 1994 was the year for graphics equipment; 1995 was the year for new VTRs; and now, for 1996, the priorities have moved to new test equipment.

In 1995, 45.3% of stations bought test equipment. This year, 51.6% plan on buying test equipment. Even though stations will be spending about the same as last year, equipment purchases have stayed the same or gone up across all market sizes this year, except for video recorders. Here's a rundown of the remaining top 10 equipment purchases for 1996 and how these categories compared to 1995:

Number 3 — Video recorders, down by 5.5% over 1995;
Number 4 — Editing equipment, stayed the same as 1995;
Number 5 — Microphones, up by 5% over 1995;
Number 6 — Signal routing/distribution equipment, up by 1.5% over 1995;
Number 7 — Cameras, up by 9.5% over 1995;
Number 8 — Signal processing equipment, up by 7% over 1995;
Number 9 — Automation equipment, up by 4.5% over 1995; and
Number 10 — Audio consoles, up by 2.5% over 1995.

The two lowest equipment purchase priorities for stations this year are antenna systems and remote production vehicles. However, even though antenna systems are a low priority, these systems purchases are up slightly by 1.5% over last year. The same goes for remote production vehicles, with an increase in purchases this year by a 1.5% margin.

Buying patterns were similar across the different-sized markets, with of course, the larger markets purchasing equipment from almost all of the categories, because of the bigger budgets.

This year, we also included the spending plans for cable and production facilities. Cable's priority also is audio and video monitors, with their second priority being test equipment. And with a 60% increase in their budget this year, many cable stations will be updating and purchasing a lot more equipment.

Production's main equipment purchase this year will be editing and desktop systems. Audio and video monitors rate second, with video recorders a close third in equipment priority.

Engineers are holding their own

Station technical staff sizes will not increase proportionately for 1996, but they are definitely holding their own. Across all markets, including cable and production, staff sizes, on average, have remained the same. Check out Table 3 for staff sizes for 1996.

For top 50 stations, the median staff size is 24.1. For top 100 stations, 11.3 is the average staff size, and for below top 100 stations, 6.4 people seems to be the norm. Cable technical staff size is about equal to that of top 100 TV stations at 11.6. Production, on average, has about 6.3 people, about the same staff size as a below top 100 TV station.
A Smooth Operator...

Tekniche is in the business of solving your standards conversion problems. We are the Company leading the development of the Art of Standards Conversion, supplying converters for a wide range of applications and budgets.

EOS is a cost-effective standards converter which does not compromise on conversion quality. The digital processing provides comprehensive picture enhancement facilities with full resolution four-field conversion.

Cyrus is the World's most flexible four-field standards converter. Designed to support all available digital and analog video tape formats and all world standards, the all-digital signal processing offers unrivaled facilities and signal integrity. Cyrus can be field upgraded to operate with Motion estimation.

Cyrus Prime leads the field in standards conversion. Utilizing advanced motion estimation techniques, it provides the smoothest portrayal of motion available today.

TK3:2 Our Emmy® award-winning TK3:2 Film Converter leads the field in specialized Film-to-Video applications. TK3:2 has been optimized to deliver seamless transfer of film-originated NTSC to PAL.

Tekniche - at the heart of standards conversion.

Circle (57) on Action Card
...TO YOUR SWITCHER?
VAS-1000 10 by 1 VIDEO and AUDIO SWITCHER
- Vertical interval switcher, 1 video and 3 audios.
- 30 MHz BW for HDTV, NTSC, PAL and SECAM.
- Includes 1 video and 2 audio break-aways.
- 3 LED VU meters and 12 W audio power amplifier to drive speaker for audio monitoring.
- Chop feature to compare video levels and phase.
- Loop-through video inputs, 4 video outputs and optional XLR interface for audio.
- Remote control panel operates from up to 3000 feet with no external power.

MULTIDYNE

In the U.S. and Canada call 1-(800)-4TV-TEST
191 Forest Avenue, NY 11560-2117 USA
1-(516)-671-7278, FAX 1-(516)-671-3362

Circle (62) on Action Card

Base=all respondents

<table>
<thead>
<tr>
<th>TV</th>
<th>Cable</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 50</td>
<td>Top 100</td>
<td>Below top 100</td>
</tr>
<tr>
<td>None</td>
<td>0.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>1 person</td>
<td>1.9%</td>
<td>3.1%</td>
</tr>
<tr>
<td>2 people</td>
<td>3.7%</td>
<td>5.2%</td>
</tr>
<tr>
<td>3 people</td>
<td>5.6%</td>
<td>5.2%</td>
</tr>
<tr>
<td>4 people</td>
<td>2.8%</td>
<td>5.2%</td>
</tr>
<tr>
<td>5 to 9 people</td>
<td>17.8%</td>
<td>44.8%</td>
</tr>
<tr>
<td>10 to 24 people</td>
<td>26.2%</td>
<td>29.2%</td>
</tr>
<tr>
<td>25 to 50 people</td>
<td>24.3%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Over 50 people</td>
<td>17.8%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Estimated mean</td>
<td>24.1</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Table 3. Station technical staff size by market size.

Buying power

Engineers (more precisely, vice presidents of engineering, chief engineers, directors of engineering and technical managers) are the ones who've got it when it comes to buying authority. They know the equipment, they handle the budget and they do the recommendations and the buying.

For all markets, including cable, technical managers continue to have the final say on what brands and types of equipment to purchase.

Consulting and contract engineers are more in demand these days. See Table 4. Although the majority of work continues to be done by in-house engineering staffs, the contract engineering business is increasing slightly. On average, more than 25% of stations in the different markets use contract engineers. Depending on how you look at it, this can be good or bad. Experienced and qualified engineers are still in demand to create and maintain a quality facility. And this can be done with an existing engineering staff or with engineers who see more opportunities running their own contracting services. The demand is there and the work needs to be done.

The beat goes on

There is always room for growth. With the fast-paced changes that are occurring in this industry between ATSC, spectrum auctions, going digital and dealing with new regulations, it's nice to hear that strong steady beat. Overall, this year, we'll still be holding our own.
The Thinking is in the Box.

VVCR The high quality Digital Disk Recorder that meets the needs of broadcast facilities today and tomorrow.

The Intelligent Solution.

VVCR provides a standard fully functional front panel and industry standard rear panel connections. Of course, what is inside will impress you even more...

VVCR plays and records PAL or NTSC Composite, Component, S-VHS, or D1 video, at full CCIR resolution, along with two channels of balanced audio.

VVCR performs with a visually-lossless compression ratio of 2.5:1 up to 20:1 for rough cut editing, to maximize storage. With features like nonlinear playback, Dynamic Motion Control™ and variable-length loop record, the applications are limitless.

The Perfect VTR Replacement.

VVCR's unique flexibility makes it easily integrated into any video environment. The industry standard RS232/422 serial connections allow VVCR to be plugged into any standard edit controller, animation controller or desktop video production system.

With over fifty emulation modes and protocol extensions, VVCR's both the perfect VTR replacement and the logical alternative to any other digital recording technology.

For Latin American sales contact:
Gendra Broadcasting Corporation
Tel. 305 372 8845

For all other inquiries contact:
Drastic Technologies
57 Kodak Crescent #6,
Downview Ontario Canada, M3J 3E5
Tel. 416 636 4444 Fax: 416 636 4454

Circle (60) on Action Card
YOUR STORIES AREN'T WRITTEN ON THE PAGE. THEY'RE WRITTEN ON THE STREETS, UPON THE WALLS, AND IN THE MUD. AND MORE OFTEN THAN NOT, THEY'RE WRITTEN ON SONY BETACAM® TAPE, THE ONE USED BY MORE OF YOU THAN ALL OTHERS COMBINED.

WHAT WE SEE, WE CAN UNDERSTAND.
Time for Peace

Northern Ireland - 1994

WHAT WE FEEL, WE REMEMBER.

Alaska - 1939

South Africa - 1993

Soviet Union - 1989

Each day the history of the world is written on Sony Betacam tape.
MegaWave's new set-top antenna: The shape of things to come

By Marjorie Costello

At the 1995 NAB convention, MegaWave made its own big news at the show. Unlike other exhibitors, the company was not in Las Vegas to promote a product for TV stations or video professionals. Instead, its product-in-development, the next generation in set-top TV antennas, was geared toward consumers. However, the antenna's potential impact could reverberate throughout the consumer electronics and broadcast industries.

After meeting with MegaWave at NAB and following the company's progress in the months that followed, a special demonstration was arranged for this column. We'll share our impressions of the performance of the working prototype shortly.

NAB set-top box project
MegaWave was selected this past March by the National Association of Broadcasters (NAB) as the developer for the organization's improved set-top antenna project. In its selection of the company, the NAB heralded the undertaking as the first major improvement for set-top TV antennas in 30 years. NAB launched and funded the project because research indicated that more than 50% of televisions in the United States depended on set-top antennas to receive TV programming.

The research reflects a real-world reception reality: While most homes are wired for cable, often the second, third and even fourth television depends on a set-top antenna for reception of VHF and UHF broadcasts. And, notes Kelly Williams, NAB director of engineering, "It was our opinion that there hadn't been a significant improvement in [set-top] antenna technology in the last 20 or 30 years." While companies had added amplifiers and offered different packaging, set-top box technology was, in Williams' words, "a mature technology" that still relied upon the dipole (or rabbit-ear) antenna approach.

During the past few years, it has also become common practice among TV set manufacturers not to include a set of rabbit ears with most models. This current trend joins the long-time habit among bad-reception-plagued viewers of complaining to the station and asking for advice. As a result, chief engineers often get calls asking for the name of a good indoor antenna. In fact, it was an NAB board member's request for information on the subject that led to an information-gathering assignment for NAB's science and technology department. Then, in June 1994, NAB released a Request for Proposal (RFP) for its set-top box project.

NAB's goal was to fund the development of a new set-top antenna that could be commercialized and sold to consumers. Some of the major problems with rabbit ears, summarizes Williams, include their need for adjustment; the fact that they scratch the wall; and as they get older, the telescoping pieces don't fit. Another drawback is that dipole antennas generate picture interference from near-field coupling: "When you touch the rabbit ears and you tune, and you then let go, boom, it's bad," explains Williams.

"MegaWave solved at least some of the fundamental problems with rabbit ears..."

MegaWave's background
MegaWave's proposal — one of the five submitted — caught the attention of NAB. The proposal, Williams says, offered an exciting application of defense technology to a common everyday consumer application.

Recalls Williams, "I am an old antenna guy, and we engineers are funny people and get excited over strange things. [The MegaWave approach] was very interesting and intriguing.
DFD-U PAL/NTSC DIGITAL DECODER and D1 CONVERTER

The ideal bridge between the analog world of PAL and NTSC and the digital world of D1

- Adaptive Comb Filter Decoding
- Full Frame Synchronization
- Time Base Correction
- Y and C Bandwidth Expansion
- Analog RGB, Yuv Outputs
- D1 Parallel and Serial Outputs

An entirely digital product with 10 bit processing, delivering perfect analog and digital outputs.

FAROUDJA
Faroudja Laboratories, Inc.
750 Palomar Avenue
Sunnyvale, CA 94086
Telephone (408) 735-1492
FAX (408) 735-8571

Emmy Winning Technology
“MegaWave solved at least some of the fundamental problems with rabbit ears: the near-field coupling and the need for minimal adjustment. The company also has built a good antenna in the engineering sense of the word.” The MegaWave design method provides flexibility so that different configurations can be tested via computer. And the antenna combines the VHF and UHF antenna in one unit, so consumers don’t have to attach the UHF “bow tie.” This feature will offer future benefits if plans go forward to co-locate many advanced TV channels in the UHF band next to the NTSC VHF channel.

Founded in 1994 and based in Boylston, MA, MegaWave is comprised of veteran communications and computer engineers, whose work includes the design and testing of innovative military antennas. Before its selection by the NAB, the company had already worked on contracts for the Advanced Research Projects Agency (ARPA) of the Department of Defense. Accustomed to the quick turnaround expected by the military, MegaWave was demonstrating its “black box” prototype by the summer of 1995.

The technology

Company CEO John Benham, while remaining mum on proprietary specifics of his company’s antenna, says that the antenna taps the latest in electromagnetics. Although applying military communications technology to a consumer antenna, MegaWave does not include a microprocessor in the antenna.

The key to the quick project turnaround and overall development effort, explains Benham, was using computer simulations to “make more precise determinations of how an antenna works, taking into account such variables as design of the antenna, distance from the transmitter and the transmitter’s power” among other factors.

Antenna test

Two versions of the 20”x 8”x4” black box prototype were available for the special demonstration arranged by MegaWave: a “passive” antenna, geared toward urban and suburban areas, and an “active” electrically amplified model for fringe areas. The passive antenna receives VHF and UHF signals — like the amplified model — and was tested in a Manhattan apartment and in a suburban New Jersey home 30 miles outside the city. The MegaWave reception was compared with the performance delivered by several major-brand conventional set-top antennas.

The MegaWave models tuned in channels automatically, while the rabbit ears required rod adjustments. The MegaWave antennas could not overcome inherent reception problems at both locations: steel-structure apartment building in Manhattan and the mountain in the suburbs. However, the new antenna offered picture lock and color for more channels than was possible with the conventional antennas in the demonstration.

In addition, gone was the annoying coupling effect. Instead, objects, such as the human body or a hand, could be close — or touching —
Las Vegas, Nevada USA

A REVOLUTIONARY EXHIBITION

As the communications industries continue to converge, it becomes even more important for you to keep up with the latest technologies and trends. NAB '96 will help you do just that. See, compare and discover revolutionary equipment, products and services for broadcasting, audio/video production, post-production, telecommunications and multimedia from more than 1000 exhibitors!

KEEP UP WITH THE EVOLUTION

In addition to the Exhibition, NAB '96 offers over 250 educational seminars and workshops in 10 concurrent conferences. From management, legal, programming and sales/marketing issues, to more technical issues relating to broadcast engineering, tele-production, telecommunications, and multimedia – the NAB '96 conferences will provide you with real-world solutions for all your business needs.

Circle (65) on Action Card

FAX THIS COMPLETED FORM TO: 202/429-5343

□ YES! Send me information on NAB '96

You can also receive information from Fax-On-Demand – dial 301/216-1847 from the touch-tone handset of your fax machine and follow the voice instructions. World Wide Web – http://www.nab.org

For more information on attending, call 800/342-2460 or 202/775-4970
To learn about exhibiting at NAB '96, call the NAB exhibit sales team at 800/NAB-EXPO or 202/775-4988
without affecting the MegaWave-received picture. Hands and bodies registered as picture interference with the rabbit ears.

The amplified antenna was also tested in the suburban location. For some channels viewed, only the active MegaWave antenna provided any semblance of a picture. To optimize reception for some channels, the antenna was turned 90°.

The demonstration indicated that if the antenna was used in locations with good over-the-air reception, the MegaWave antenna would most likely outperform rabbit ears. Its "rodless" design underlined the antenna's adaptability for household venues, such as an audio/video cabinet and under the kitchen counter, where consumers find it next to impossible to use extension rods for tuning in.

MegaWave expects that its technology could be incorporated in a design featuring a more aesthetic and streamlined appearance. Currently, the black box approximates the dimensions of an audio component. Examples cited by Benham include a horizontal winged design that could rest on top of or under the television. Or, the antenna could be integrated into the TV's cabinet once shielding issues are overcome. The company also says that its technology could eventually be built into walls or featured in rooftop antennas.

Marketing plans

MegaWave is demonstrating its antenna to consumer electronics and accessory companies for possible licensing deals. MegaWave is also raising capital to start its own manufacturing operation. Emphasizing that the antenna not only uses state-of-the-art technology, but manufacturing as well, Benham says that the MegaWave antenna contains only 10 parts. This is compared to an estimated 25 to 30 required for current antennas. The company is shooting for a $40 retail price, hoping to have a product on the market by the third quarter of 1996.

However, it is possible that MegaWave's technology could first appear as part of another system, instead of debuting as a stand-alone box, which is the major goal of the NAB.

The DSS connection

One industry segment showing particular interest is the Digital Satellite System (DSS). Since DSS, unlike cable, does not deliver local broadcast TV channels, an antenna that improves reception of terrestrial signals could help wean potential DSS customers off cable. Both cable and DSS charge for service, and with the exception of local stations, offer many of the same cable networks. DSS, while delivering digital video and audio and offering many more pay-per-view choices than cable, costs consumers a minimum of $600 for the equipment.

As a result, the MegaWave antenna — if it can perform as promised — could spur sales of DSS home systems currently sold by RCA and Sony. The MegaWave antenna could,
for example, be marketed as an accessory by those companies or a third-party antenna company. It could even be integrated into components of the DSS system.

An indication of the impact of DSS on indoor antenna sales comes from Recoton, a marketer for set-top indoor antennas. Selling under the Recoton, Rembrandt and Parsec brands - as well as manufacturing for other brands - the company is among several groups evaluating the MegaWave technology. Dramatic growth at Recoton — which also markets other audio and video accessories — has been driven, in part, by the fact that TV sets today usually don't come with rabbit ears.

According to Peter Ildau, vice president of corporate communications, "People have recognized that when they buy a DSS, they can have a choice of maintaining their cable service for local off-the-air broadcast reception or buying a quality antenna." According to Ildau, in most markets, consumers can use an indoor antenna, which even in their current form, have come a long way since rabbit ears.

Riding the wave with broadcasters
Judging from the calls and faxes we've received since mentioning the MegaWave antenna in this column in June, broadcasters also are interested in the antenna.

According to Benham, MegaWave has received many inquiries from interested stations throughout the country who often discuss individual market reception problems.

The common thread is that off-air is always difficult to receive if a household is far away from the broadcast station and/or in mountainous terrain or on the wrong side of the mountain. Says Benham, a typical successful market for the MegaWave antenna is one where viewers are relatively close to the transmitter, such as a large urban population within a 50-mile radius.

We asked Benham how interested broadcasters could work with his company to promote the technology when it becomes available. Aside from recommending the antenna to viewers, stations and networks could include coverage of the antenna in science and technology news stories. Sums up Benham, "Rabbit ears are an irritation and anything that makes off-air broadcast TV easier to receive is going to have a benefit to the broadcast industry."

The shape of things to come
Regarding future plans, MegaWave reports that it already has a modified version of the TV antenna optimized to work for FM rather than television. The radio version is somewhat smaller, among other differences. The company is also investigating other antenna applications featuring its technology, including an integrated AM and FM radio/cellular/navigation antenna.

If you cruise the World Wide Web, MegaWave maintains a home page with updated information at http://www.megawave.com. The MegaWave web site is also linked to the NAB's home page.

Marjorie Costello is a broadcast and video industry consultant and Broadcast Engineering contributing editor based in New York.

...is also the longest lasting battery on the job.

That's because PROCELL® PROFESSIONAL® batteries are DURACELL® batteries — the longest lasting alkaline batteries available. PROCELL is Duracell's line of alkaline and specialty batteries made for professionals. They deliver DURACELL dependability, DURACELL value and DURACELL performance.

PROCELL's superior performance is the result of a new Duracell alkaline battery design with features so unique they're patented.

See for yourself that PROCELL is the longest lasting battery you can buy. For more information or a distributor referral, call 1-800-4PROCELL Ext. 21.
A new transmission facility design

As ATV transmission comes closer to reality, TV broadcast companies must make some fast decisions. Whether simulcasting signals using existing equipment at half power or purchasing new equipment and duplicating facilities, these decisions may be required in the near future. To help simplify this change, the ideal solution will involve a transmitter facility that is efficient and economical, yet uses the latest advances in ice protection and component-style construction. This same approach can apply to possible future TV duopoly facilities, or for that matter, to any multistation transmission site where real estate and construction costs are problematic.

Requirements

Many future transmission sites (ATV, duopoly or joint ventures) will have to accommodate more than one station on the same tower. Ideally, a single transmitter building should house all transmitters, and additional space for offices, other equipment and rental to telecommunications tenants is also desirable.

Many future transmission sites will have to accommodate more than one station on the same tower.

With experience showing that ice is the most common environmental hazard to transmission sites (particularly with tall TV towers), special attention also should be paid to this issue when designing a new transmitter facility in any location where icing is likely to occur.

Speed, cost and ease of construction are other important criteria for the multistation transmission site, along with the potential for modular future expansion. (See Figure 1.) Considering all these needs, a prototypical transmitter building design has been developed (and copyrighted by Thomas G. Crowder, AIA). Resulting from more than eight years of research, this prototype is adaptable to a wide range of applications and geographic conditions, and it takes advantage of the latest in ice-protection technology. It is an appropriate design wherever ice protection, cost and time are factors in the development of a new facility.

Design features

Today, most transmitter facilities in the ice belt are constructed like fallout shelters to protect themselves from radial ice falling from the tower(s) above. Many existing facilities use roof-protection systems, such as rubber tires, concrete ballast or wood crates, which serve more as “quick fixes” than truly preventive methods.

In this new design, a galvanized steel grating system serves to deflect the ice from the facility below, thereby protecting exterior equipment, the building roof and the transmitter(s) within.

The galvanized steel ribs form an equilateral triangle, a more economical and stronger structural form. This triangulation transfers the force from falling ice to the foundations below. The addition of a horizontal member serves to suspend the mezzanine and roof of the inner building skin. (See Figure 2.)

Overhead view of scale model of prototype transmission facility. This version can accommodate three separate transmitters (one in each building wing), all sharing a common ice bridge to the tower's base. (Photo by Doug Van de Zande.)

The same horizontal beam supports the transmission line(s) traveling from the transmitter(s) to the base of the tower. Such double duty of the horizontal member adds significant cost-effectiveness to the design.

The structural skeleton integrates the ice bridge as its backbone, with the equilateral structural members acting as ribs. All of these members are hot-dip galvanized and built as a separate unit outside and above the transmitter enclosure. Steel grating is placed over the equilateral structural members to form an outer skin that protects the building, transmission lines and other equipment.

Construction details

The skin of the transmitter facility is comprised of simple, light-gauge steel framing covered with a metal roofing and siding shell, while its interior veneer is built of concrete masonry blocks. This allows for an economical, yet sturdy enclosure for the transmitter equipment. In the transmitter
The TASCAM DA-88.
Because performance makes the difference.

Whether in front of the camera or in your recording studio, it's the performance that really counts — your performance, the performance of your band and the performance of your equipment. And behind the scenes it's the dynamic efforts of engineers, technicians and artists that result in the great sound tracks that support great performances. To help produce those sound tracks music and production professionals rely on the performance of the TASCAM DA-88.

And when it comes to digital multitrack recording, the TASCAM DA-88 is an outstanding performer. That's why it has been awarded the Emmy for Outstanding Achievement in Engineering Development — the only modular digital multitrack to ever win this award. Next generation digital multitrack technology, ease of use, affordability, compatibility with other equipment, and unmatched reliability have firmly established the DA-88 as the preferred digital multitrack for music recording and post-production.

Why settle for anything less?

Whether you have a project studio, record in your bedroom or operate a full-service facility, demand the best performance — demand a TASCAM DA-88. Because no one was ever sorry they bought the best.
Listen to Intraplex. Improve the management and operation of multiple stations from a single facility as an LMA or a duopoly. Let Intraplex channel module flexibility tune you in to greater profits.

Intraplex solutions provide high quality, uncompressed audio transmission over inexpensive T1 lines. You can combine data and PBX voice channels in the same circuit. And save money month after month after month. Only Intraplex provides LMA/duopoly operators the freedom to combine all your communications into a single, managed network. Listen to Intraplex. You can call for our free booklet on radio stations that have already chosen Intraplex for a quality transmission solution. In it, radio professionals give their own reasons for choosing Intraplex for their solution. Intraplex, Inc. (508) 692-9000. In Europe, +44 1442 870103.

Intraplex
Intraplex, Incorporated
3 Lyberty Way
Westford, MA 01886-3636 U.S.A.
TEL: (508) 692-9000 FAX: 2200
England: Tel: +44 1442 870103 FAX: 870148

Circle (50) on Action Card

Figure 1. Overhead views of building, showing configurations for use with one, two or three transmitters.

rooms, 4-inch masonry veneer increases the ease of mounting grounding straps, a multitude of panel cans, disconnects and other interior equipment.

Planned on a 20-foot bay system, the facility also allows for expansion, and it provides an open, unobstructed transmitter room to accommodate any manufacturer's standard transmitters. The expandability of the facility makes it easy to include such areas as 2-way and telecommunication rental.
spaces, as well as pump and/or high-voltage power supply rooms. Additional structural members and building components can be easily replicated and economically supplied in mass production.

In the central common area, separate workroom/office spaces are provided for up to three stations with a common entry and

Speed, cost and ease of construction are important criteria for the multistation transmission site.

bathroom. Above the central section, a storage mezzanine level is provided, which is open to each transmitter below. The mezzanine level also provides access to the ice bridge, tower elevator and building roof via a common area that also provides access to a common tower telephone/electrical room. This central core combines the amenities that can be shared, further increasing the facility's efficiency, while also providing a security entrance for staff.

Ice protection

As Figure 2 illustrates, in a space above the transmitter enclosure (between the finished roof of the building and the outer steel skin), a protected cove is provided for standard rooftop HVAC equipment. This allows for more economical rooftop-package systems to cool the spaces below without concern for damage from falling ice. HVAC equipment is also easy and safe to access and maintain.

The same erector used to install the tower can erect the structure for the building.

Above this area, a catwalk and hangers for the transmission line(s) provide a truly integrated ice bridge. Although earlier designs may have used an ice bridge of steel box truss design that served as the structural backbone for the facility, this new approach makes the ice bridge an integral part of the entire structure, forming the peak of its equilateral triangle design. Cross members below this peak support the catwalk/ice bridge as well as the roof and mezzanine floor of the transmitter enclosure below.

The equilateral-triangle design also offers simpler construction, which in turn
Reduces time and cost, while providing a stronger and more economical ice-protection system.

Rapid construction and installation

This system of construction can be manufactured off-site and transported to the site for erection, similar to a broadcast tower's components. The site work begins with the foundations for the equilateral structural system, then as the slab is poured, the same erector used to install the tower can erect the structure for the building. With much of the steel fabrication occurring off-site, the quality of steel fabrication and the hot-dip galvanizing can be held to the same tolerances as the tower. This method is especially important in areas where the construction market is tight or skilled labor is difficult to find.

Next, as the enclosure starts to take shape and the inverted masonry veneer is completed, the spaces are enclosed and equipment installation can begin. The reduced time from groundbreaking to completed enclosure makes for an earlier on-air date, thereby further reducing overall costs of the project.

In conjunction with the designer, one of the world's largest tower fabricators has expressed interest in providing this prototypical facility as a turnkey product with its towers. This arrangement, although not the only method of delivery, can provide installation of the building, tower, transmission line(s) and antenna(s) under a single contract. This could further reduce project time, cost and administrative complexity.

Multiple transmitters

As new regulations and increasing costs make "vertical real estate" more precious, the broadcast industry continues to look toward consolidation of transmission facilities. One of this new prototype's greatest advantages lies in its potential for such consolidated application, either for new or existing towers.

Its economy involves not just the use of a single tower by multiple stations, but the incorporation of all required transmission-facility elements into the structure of a single building, as well. This efficiency arises from the use of inner and outer skins to take advantage of the structural, ice protection and enclosure systems, along with the inclusion of more than one transmission line on a single ice bridge. As Figure 1 indicates, the configuration of this prototype can fit up to three separate transmitter facilities within the same building and provide access for all three to a single tower, while combining commonly required areas and services.

The new approaches used in this transmission-facility design will serve broadcasters as they confront the inevitable marketplace and regulatory changes that lie ahead.

Look for more information on sharing vertical real estate and multistation transmitter facilities and towers in next month's issue.

Editor's note: Facility design and all diagrams © 1995, ARCHITEKTUR.

Roy Abernathy, associate AIA, is a project manager at ARCHITEKTUR, Raleigh, NC.

The GALLERY

A Versatile VTR Control System...

1X8 RS422 Switcher

Gang Roll 8 VTRs at the press of a button
Select 1 of 8 VTRs for individual control

Slow Motion Controller

100 Cue Point Memory
Cue points are retained when controller is off
Vary from -100% to +200% of play speed

Call now for a free catalogue
213-650-5256 • 213-650-6639 Fax

Control Solutions from DNF Industries

Call For Rigid Line MYAT & Components

New installation? Facility upgrade? "Right Now" emergency?

MYAT is the solution for dependable quality, maximum performance, long life and on-time delivery.

Call MYAT at 201-767-5380 or FAX 201-767-4147 for our complete catalog and reference guide.
Contact your local SBE chapter

Rockford — #96
Gregory A. Dahl
(815)969-7204

INDIANA
Indianapolis — #25
John Zuber
(317)636-3131
South Bend — #30
John Kinsey
(219)299-1495
Tri-State — #121
Robert Efland
(818)262-8641

IOWA
Quad Cities — #65
Jon Book
(319)44-7000
Des Moines — #109
Don J. Deboef
(515)673-5710

MISSOURI
Kansas City — #59
Mark Lucas
(913)366-1010
St. Louis — #55
Doug Maxsteele
(314)516-3966

NEBRASKA
Holdrege — #87
Ben L. Killen
(308)324-6717
Midland — #74
David Ommesade
(402)491-3128

NEW HAMPSHIRE
New England — #110
Sandra Fryou
(603)668-4390

NEW JERSEY
Central — #119
David Barth
(201)429-2829

NEW MEXICO
Albuquerque — #34
John Ramp
(505)277-1251

NEW YORK
Binghamton — #1
Charlie Hallinan
(607)724-5608
Central — #22
John L. Merrill
(315)477-9422

MAINE
New England — #110
Sandra Fryou
(603)686-4390

MARIANAS
Saipan — #126
Ralph Sanger
(671)322-3841

MARYLAND
Baltimore — #46
Dwight Weller
(410)252-8351

MASSACHUSETTS
Boston — #11
Robert P. Hess
(617)787-7050

MICHIGAN
Central — #91
Michael Bradford
(517)782-5209

ILLINOIS
Central — #49
C. Robert Niller
(217)854-4800
Chicago — #26
Scott Curtis
(312)455-3838

MINNESOTA
Minneapolis — #17
Craig Bomgaars
(612)251-1450

MISSISSIPPI
Jackson — #125
Thomas Bonnard
(601)922-1607

OKLAHOMA
Central Western — #83
Paul Sublett
(405)512-0800
Tulsa — #56
Troy Cook, Jr.
(918)343-7638

OREGON
North — #124
Jerry Nichols
(503)676-4421

UTAH
Southern — #98
Julie N. Balmer
(801)288-4390

SOUTH CAROLINA
Lowell Knoff
(803)723-8371
Greenville — #86
Dave Bennett
(803)246-0928

TEXAS
Austin — #79
Rick J._CHARACTER
(512)471-4811

VIRGINIA
Virginia Beach — #51
Robert C. Poray
(757)432-0000

WASHINGTON
Seattle — #16
John C. Price
(206)223-1037

SBE UPDATE

NOTE:
If you are not located near a chapter and are a ham radio
operator, you can participate in Chapter 73, "The Chapter of
the Air," Chapter 73 meets on the second Sunday of each month at
14,205MHz. All SBE members are welcome.

By John Poray

January 1996 Broadcast Engineering 85
In September 1995, Thomson Broadcast Systems delivered two remote trucks to the Zimbabwe Broadcasting Corporation (ZBC). These vehicles enabled the ZBC, with equipment provided by the South Africa Broadcasting Corporation (SABC), to provide TV coverage of the 6th All-Africa Games. These games are held every four years — on this occasion in Zimbabwe.

Zimbabwe has the most up-to-date digital TV production equipment of any country in southern Africa. The two remote trucks join five existing post-production suites with Thomson 9200 mixers (three of them with Pinnacle PRIZM DVEs) and a digital studio built in 1989 with the TTV 3650 first-generation digital mixer. The trucks act as all-digital, high-capacity, mobile control rooms, using the latest-generation equipment (90% of French origin).

At the beginning of 1995, the challenge seemed ambitious. It was impossible for us to build the two remote vans in time using normal procedures — three months for delivery of the chassis, three months for coach building and two months for cabling and installation, for a total of eight months. The two vehicles had to be finished by the end of June, so that they could be shipped by sea and road to reach Zimbabwe before the end of August. With technical assistance from Thomson Broadcast Systems in training the operators, the ZBC then had to take over the two vans to provide coverage of the 6th All-Africa Games, due to take place from Sept. 13-23, 1995. To meet this tight schedule, Thomson proposed an innovative solution.

Coach work design

The project really began in mid-January 1995, with time already running short. Because of the long delivery time for the vehicle chassis, the assembly of the upper coach work had to begin before the chassis' delivery. This approach had never before been attempted.

To understand the magnitude of the project, consider some parameters of the 19-ton vehicles themselves. Each represents the following:

- Several hundred hours of design;
- More than a hundred drawings, including mechanical modifications and wiring diagrams for power, video and audio;
- Several thousand hours of work at the coach builders;
- Miles of mains, video, audio and triax cabling, as well as two tons of electronic equipment.

Design and implementation

After studying the general layout of the coach work (using CAD techniques) and checking it with the customer, the many drawings for the vehicle were sent to the coach-building contractors (Hatty) in mid-February, so that construction could begin. Before even starting to build and assemble the body work, our coach builders had to produce their own fabrication plans.

Right from the start it was essential to obtain accurate technical drawings and blueprints for the chassis, in order to be aware of all difficulties and constraints in assembly. We obtained this vital information from Renault Industrial Vehicles, to whom we are most grateful.

Each body was 8.3m (27.2 feet) long and 2.5m (8.2 feet) wide, mounted on a short-cabin 19-ton Renault G230Ti left-hand drive chassis, with a total vehicle height not exceeding 4m (13.1 feet). A sandwich construction was used, which provided a high degree of insulation with good electrical continuity.

Following a detailed study of the ergonomics with the client, the body was fitted with two access doors and steps folding into the floor. The body was divided into three independent compartments: a video control room (with slow-motion facilities) accommodating six people; an audio control room for two people; and a technical area for two video engineers and a technical supervisor.

A number of small, but unusual, features made these vehicles particularly easy to use. The cable drums located in the underfloor lockers were mounted on sliding trays. The telescopic masts were pneumatic, with manual controls built into the coach work. The ladder for access to the roof was enclosed. At the rear of the vehicle were four manually operated stabilizing legs and a fold-away working platform for access to the patch panels, drums for triax cables and an air-conditioning system.

The outcome

These custom, left-hand drive vehicles, specially adapted for difficult terrain, were ordered at the beginning of February and arrived at the coach builders in mid-May. The result was convincing: final assembly of the coach work on the chassis took less than a day overall for each of the vehicles.

The challenge had been met. Not all the finishing touches had been completed, but we had saved three months on the overall construction time, that is, the time for fitting out the vehicles. The vans left our contractor's premises just three weeks later (at the beginning of June), painted and ready for fitting.

Power supplies

The electrical supply system was designed in collaboration with the contractors. The vehicles can be powered by connection to the mains or to a trailer generator.

Safety protection was provided by a high-sensitivity 30mA differential-current detector at the input to the installation. Monitoring of the presence of three phases and neutral was provided. None of the technical apparatus, air-conditioning or services, which were transformer isolated, could be powered up unless the supply was functioning correctly. The monitoring system also displayed the mains currents, voltages and supply frequency.

The equipment was powered up via a phase-changeover contact-breaker, which also handled the power to the air-conditioning, always ensuring phase rotation in the same direction. A neutral-impedance-type system was used for the neutral of the isolating transformer secondary. An insulation monitor triggered audible and vis-

Front section of the truck includes video mix and CG positions (background), plus TD's and slow-motion operator's positions (smaller console in foreground).
ible alarms at the first insulation fault. The audible alarm could be inhibited. If a second fault appeared, a circuit breaker would cut power to the involved circuit.

Each generator, manufactured by Simed, was fitted with a soundproof hood (70dB at 1m) and was towed on a twin-axle heavy-duty trailer. The trailer was specially adapted to provide covered storage for four cable drums (in addition to those fitted inside the remote truck). Each generator had a nominal output of 50kVA, down-rated because of its high altitude of Harare (1,000m or 3,280 feet). The generators will function independently for 12 hours at full load, with reserve power for lighting if required.

Air-conditioning equipment

A Gredat air-conditioning system was mounted at the rear of each vehicle. It was a single, compact unit, with a nominal cooling capacity of 15kW for a dissipated heat rating of 11kW for the truck. The air-conditioning system was fitted with dual compression/evaporation systems, providing partial redundancy in the air-conditioning should one of the systems fail.

Cool air was blown in and stale air was extracted via a false ceiling, using a specially designed duct to ensure ideal air speed, uniform pressure and minimum noise in each of the groups of bays and working areas. Air flow was 2,400m³/h.

Wiring

In order to save as much time as possible, power, video and audio cable runs were all preplanned. All the drawings were produced using CAD techniques and submitted speedily to the client for approval.

The relationship between customer and supplier was particularly important. It was essential to reach an agreement before the project started and before work began (supported by validation of the designs) on how the vehicle would finally be built, in terms of design and how it would be operated. A remote vehicle has a design life of at least 10 years and users must be completely at ease working in it.

On that basis, we were able to start all wiring prelims at the beginning of May, using rack layout diagrams, finishing them even before the vehicles were delivered to us from the coach builders. Prewiring saved another month on the overall construction time.

Completion

When the vehicle arrived in our workshops, we had no more than a month left to complete the work. All the cable preforms had to be drawn through and installed.

The power wiring took four days. The power supply rack, entirely prewired on the workbench, was built directly into the vehicle. Video cabling took four days and audio took three days — all the patch wiring had been prepared previously. In less than two weeks, all wiring and equipment had been installed.

The date for shipping was approaching rapidly. We had only three weeks left for commissioning the vehicles and factory acceptance by the client. After the usual minor snags in fine-tuning the systems, the two vehicles were accepted on the due date and embarked from France on July 15 by ship, bound for Durban, South Africa. They were unloaded in Durban on Aug. 17, and arrived in Harare, Zimbabwe, by road without incident on Aug. 22.

A number of small, but unusual, features made these vehicles particularly easy to use.

Prior to on-air use, full training was provided for ZBC's operators and technicians. This was followed by technical assistance during the maiden broadcasts.

Equipment

Each vehicle was prewired for eight cameras and four VTRs, and generally equipped as follows:

- Eight Thomson 1657 cameras with FFP 1685 (digital output); this camera has a well-established reputation: FIT technology CCDs, 4:3 or 16:9 switchable, electronic color temperature and pixel correction; 14 cameras have been supplied, five of them in Sportcam configuration (1657 + A85 + long lens cradle), with three x40 and two x20 lenses from Angenieux.
- Up to four Thomson 3575 DP digital output VTRs with slow-motion facilities; up to four external PAL synchronizers; up to four external digital signals; an Aston Motif character generator with Grab option and software.
- A Thomson 9500 digital mixer with 32 primary inputs (24 video + eight key + black + color + matte); two full-function mix/effect units M/E1 and M/E2 (with fade, wipe and key) and one mix unit M/E3 (PST/PGM); four DSKs with independent transition module; auto-phasing of inputs (30µs adjustment, relative to reference) and all outputs; 10 auxiliary video buses, 10 auxiliary key buses and “key-follow-video” mode.
- TTV 5790 digital routing switcher, which operates as a standby router (32 inputs, 16 outputs);
- 24 input Digitec audio console; and
- Clear-Com intercom switching system, with commentator terminal.

The advantage of all these sources was that they have digital outputs. Signals were distributed using digital video distribution amplifiers from the Evolution range, then processed directly by the mixer; the latter was linked to a Pinnacle PRIZM single-channel video effects generator, which also had digital inputs and outputs. The system was backed up by the TTV 5790 digital router.

Other features

Each vehicle can operate independently, having its own generator. One of the vehicles had a 2.7GHz terrestrial microwave link. The other had a camera Betalink in the 2.5GHz band. Both vans could operate in urban or rural areas with equal facility.

Thanks to the joint efforts of the ZBC, Thomson Broadcast Systems and all its contractors, coverage of the All-Africa Games was a success. The two vans made a lasting impression on all who visited them.

For more information on Thomson digital remote vehicles, circle (150) on Action Card.

Internet: be@intertec.com
CompuServe: 74672,3124
FAXback: 913-967-1905

Figure 1. Plan view of Thomson all-digital remote vehicle.
The desire to use economical general-purpose PCs in demanding professional video applications like non-linear editing, graphics creation, animation recording, video-on-demand and commercial insertion continues to grow. In these applications, specialized PC adapters are typically used to handle the massive processing requirements for transporting natural data types in real time. The problem is essentially one of data rate considering that a single ITU-601 4:2:2 digital videostream requires 21 MB/s (32 MB/s for 4:2:2:4). Additionally, eight 48 kHz/16-bit audio tracks require 768 kbps or a motion JPEG-compressed stream at Betacam quality requires 6 MB/s.

Commonly used PC subsystems include video I/O, video processing (DVE/mixing), video compression/decompression (codec), audio I/O, audio processing (EQ/mixing), mass storage interface, network interface and video-in-a-window console display. Although it is possible to accomplish some of these tasks with host CPU software and a single highly integrated adapter, most professional systems require more than one adapter.

For example, a non-linear editing system may require a codec board, a videographics board, an audio processor, a console display and mass storage and network interfaces.

How to interface these multiple adapters inside a PC is a question that system integrators have been wrestling with for many years. Many consider the ideal solution to be an open architecture that leads to a wide variety of different price/performance solutions from multiple vendors.

PC bus architecture

The solutions

The two most common ways to deal with digital video data types are through the system host bus or through a dedicated bus architecture. Digital audio and video data can be communicated through the system host bus, but the bus must be shared with the other common host CPU activities, such as interfacing with the system hard-disk controller (SCSI or IDE), the graphics display device (GUI) and the network interface controller (NIC). Where the bus bandwidth is insufficient to handle the demands placed upon it, normal application response time diminishes and/or the videostream breaks down.

The two most common ways to deal with digital video data types are through the system host bus or through a dedicated bus architecture.

Based on Table 1, ISA is clearly useless for professional video applications. Bandwidth is insufficient for uncompressed video or even high-quality compressed video data. Products using ISA can only communicate digital audio data effectively.

Nubus, EISA and MicroChannel (MC) have been used successfully by a number of vendors over the last five years to send compressed video and audio data between adapters. EISA and MC theoretically have enough bandwidth to accommodate a full uncompressed digital videostream interface. In practice, unfortunately, there is not enough bandwidth left for the rest of the application, killing overall system performance.

Today, many users are demanding real-time A/B roll systems, 10 MB/s compressed datastreams, multiple audio tracks, powerful mass storage, high-performance graphics controllers and LAN interfaces. Clearly, these buses are becoming less than adequate.

At first glance, the PCI bus with 132 MB/s throughput seems to be the perfect solution. A number of video chipsets are becoming available that can send uncompressed digital video information over PCI. However, video equipment manufacturers quickly found PCI's limits. Here's why:

Although the theoretical speed of PCI is 132 MB/s, the effective bus bandwidth ranges between 40 MB/s and 80 MB/s depending on the chipset used on the motherboard and various PCI implementation factors. In addition, fast disks, high-resolution desktop displays and fast network cards require incremental bus bandwidth, leaving less bandwidth available to video adapters.

PCI transfers data by grouping the data into packets. Different agents alternately take control of the bus every 10 µs to 30 µs (depending upon their latency times), leaving enough time to transfer only a small data packet (approximately 3,000 bytes) until the next transfer. Because video is synchronous, video data needs to be fed continuously. The higher the quality of the video, and the more simultaneous streams involved, the more difficult maintaining continuity becomes. This inherent incompatibility creates substantial hurdles for those who want to interface professional-quality video through PCI. To integrate the bus, design, manufacturers must devise complicated interfaces.

It has become clear that PCI can be used successfully to interface video adapters for some multimedia applications, but it is not for professional video systems.

Expansion buses

The alternative to commercial general-purpose buses are dedicated over-the-top expansion buses. One that has been around for some time is the VideoBahn developed by Intelligent Resources for the Macintosh platform. Several proposals for the PC platform are available in the marketplace including VGA FC, VAFC, VMC and Movie-2 bus.

- VGA FC, the first over-the-top expansion video bus used in PCs, has a single limited video bus
and no audio support. It offers little for the video professional.
- VAFG is an enhanced version of the VGA FC. It offers the ability to interface 32-bit RGB with alpha or YUV without alpha, but still is limited to a single video channel and provides no audio support. Its primary application is in computer graphics.
- VMC is closer to the needs of the professional video marketplace. It interfaces multiple video streams over a unified bus, similar to PCI. Video can be 32-bit RGB or YUV and there is enough bandwidth for designers to implement an alpha channel and audio support.

When it was initially proposed, VMC generated some interest, but it has not found many adherents because, like PCI, it is complicated and costly to implement. And, since both VMC and PCI exchange data through packets, some of the same problems exist in this area, as well. Systems designers ask, "If PCI and VMC accomplish the same task in much the same way, why design the same solution twice?"

The broadcast and professional video industries are converging toward the ITU-601 specification (sometimes referred to as D-1, although D-1 is a tape format, not a video specification). Virtually all professional video chipsets, board-level products and systems adhere to the ITU-601 standard. This specification defines the video parameters, frequency specifications and signal formats for digital video. The Movie-2 bus has been designed around the ITU-601 standard and features an uncompressed 10-bit video bus architecture, which provides board designers with the basics for simple and inexpensive implementation.

The Movie-2 bus carries eight digital video buses, six digital key buses and four serial digital audio buses for a constant data bandwidth above 242MB/s, almost three times the effective bandwidth of PCI.

The concept of modularity is important to the Movie-2 bus architecture. More than 10 leading digital video hardware vendors, including Matrox Video Products Group, Pinnacle Systems, Miranda Technologies, Op-tivision and Interactive Images, currently have plans to introduce Movie-2 bus-compliant products prior to NAB '96.

Movie-2 bus product implementation
Matrox has recently announced DigiSuite, a family of PC-based digital video hardware and software development tools built around the Movie-2 bus. OEMs and systems integrators can use these to build a wide variety of cost-effective, PC-based digital video products, including non-linear editing systems, virtual VTRs, MPEG-2 video-on-demand servers, live video switchers, commercial insertion systems, CATV Barker channels, animation/paint/CG workstations, compositing systems and much more.

Matrox DigiSuite components include:

- DigiMix — a digital video/photoshop mixer with 2-D DVE;
- DigiMotion — a motion-JPEG codec/digital audio mixer/Fast-20 SCSI controller;
- DigiVid — a multichannel analog video I/O card;
- QMPEG-2 — a 4-channel MPEG-2 decoder;
- Marvel Millennium — a video-in-a-window console controller; and
- Matrox DigiSDK — a Component Object Model (COM) software development kit for Windows NT 3.51 and Windows 95.

Movie-2 bus-compatible products from third parties include a 3-D DVE unit, a serial digital (D-1) I/O, MPEG encoders and software modules for CG, paint, 2-D DVE and stills storage.

System integrators, VARs, and ultimately, end-users, will benefit from the modularity offered by the Movie-2 bus technology. It will allow them to quickly and economically integrate different digital video building blocks from many different vendors.

Alain Legault is video products group director at Matrox, Quebec, Canada.

For more information on the Matrox Movie-2 bus, circle (152) on Action Card. For more information on additional Movie-2 bus-compatible products, circle (153) on Action Card.
BUSINESS

Philips Electronics North America Corporation, New York, completed its acquisition of Alamar Electronics USA. Alamar will become part of Philips' Business Electronics, but will continue to operate within its existing management structure.

Hewlett-Packard, Anaheim, CA, announced that telecommunications companies Hong Kong Telecom, Hong Kong, and Deutsche Telekom, Germany, selected the HP MediaStream server to deliver their interactive TV services. Also, MTV Europe chose the HP broadcast video server as the digital-video-server technology for the new Gulf DTH channels throughout the Middle East.

Panasonic, Secaucus, NJ, established a business-to-business on-line service called POLAR (Panasonic On-Line Access and Retrieval), and is seeking to qualify video professionals for a free membership to the network. The service provides instant access to a virtual library of information on Panasonic professional video and broadcast products.

Synergistic Technologies Inc. moved. The company is now located at: 121 Hillpointe Drive, Suite 700, Canonsburg, PA 15317; telephone: 800-659-7715 or 412-873-0800; fax: 412-873-4770.

Thomson Broadcast announced the sale of five of its new 7830 motion-compensated standards converters to NBC for use in Asia. Also, the company sold its 9500 component digital switcher to Roland House, VA. Thomson Broadcast Systems, a subsidiary of Thomson multimedia, received the contract to design and build an all-digital production and broadcasting system for Milan's new local TV channel, SEI Milano. In addition, the subsidiary also received a contract by TDF Cable to build the cable network for Aulnoye-Aymeries in northern France.

Solid State Logic, Oxford, UK, installed two additional Scenaria digital audio/video post-production systems at Fox Tape Engineering, Los Angeles, bringing the total number of Scenaria systems at Fox to six.

Ampex Media Corporation officially became Quantegy, Redwood City, CA. Customers will continue to do business with Quantegy just as they did in the past with Ampex. The use of the Ampex brand name on packaging will continue.

BTS Broadcast Television Systems, Berkshire, UK, announced the purchase of several LDK 10P portable camera systems by QVC, the satellite shopping channel.

Dynatech, Salt Lake City, sold a 128x128 video/stereo audio UTAH-300 routing system and a 32x32 serial digital matrix to WXIA-TV, 11Alive, Atlanta's NBC affiliate.

Louth Automation, Palo Alto, CA, opened a new sales office in New York. For more information contact: Martin Frange, PO. Box 3200, Wantagh, NY 11793; telephone: 516-783-6022; fax: 516-221-5209.

Leitch moved its European headquarters to a larger location in Basingstoke, UK, for additional office and warehouse space.

FAST Multimedia, Foster City, CA, and Panasonic Broadcast & Television announced an OEM agreement to market FASTEDIT, an integrated turnkey editing solution that combines Panasonic's AG-1970 S-VHS VTRs with FAST's PC-based video editor, Video Machine Lite.

Dielectric Communications, Raymond, ME, received three major contracts for digital HDTV implementation studies. ChrisCraft/United Television granted a contract for digital HDTV implementation studies to the company. Also, both Pulitzer and WABC-TV Channel 7, New York, awarded HDTV/NTSC design contracts to Dielectric.

ASC Audio Services Corporation, N. Hollywood, CA, is changing its name to Location Sound Corporation. There has been no change in ownership, management or location.

Macrovision, Sunnyvale, CA, announced that Fox Latin America has been using the company's VES-TP video encryption system to secure satellite transmissions of weekly Fox National Football League telecasts to Latin America.

LNR Communications, Hauppauge, NY, delivered three complete SAFARI digital video flyaway earth stations for use by Taiwan broadcaster TVBS. The station will use the units for news and special-event coverage in Taiwan and other locations in the Pacific Rim area.

Timelapse Vista, Vista, CA, announced sales to four new United Kingdom customers, including freelance editors Rodney Glenn and Peter Joly, who purchased 16-track StudioFrames; the De Lane Lea Sound Centre, which purchased an 8-track StudioFrame; and the National Film & Television School, which now has a 16-track StudioFrame workstation.

Emac, a division of Communications & Power Industries, San Carlos, CA, received its ISO 9001 certification.

Sonix, Park Ridge, NJ, sold several of its products to full-service production and post-production facility ProVideo, Madison, WI, for its redesigned on-line bay.

PEOPLE

William P. "Pete" Mountain has been appointed president of FAST Multimedia and chief executive officer of FAST Electronic U.S.

Robert M. Long has been appointed to oversee operations of Dynatech NewStar, the newsroom automation branch of Dynatech, Salt Lake City.

Milton E. McNally has become vice president and chief operating officer of ClearCom Intercom Systems, Berkeley, CA.

James C. McKinney resigned as chairman of the United States Advanced Television Systems Committee to the ATSC Executive Committee.

Martin Frange has been appointed northeastern sales manager at the new New York sales office of Louth Automation, Palo Alto, CA.

Michael Benya has been named product manager for multichannel multipoint distribution service (MMDS) low-power products for ITS, McMurray, PA.

Also, Rick Labuda has been promoted to sales manager for MMDS; Keith Ross has been named product manager for MMDS high-power products; and Gary Smyth has been appointed corporate communications manager at ITS headquarters.

Jack S. Kenney has been appointed president and chief executive officer of Quantegy, Redwood City, CA.

Ian G. Miller has become regional sales director for Harris Corporation's broadcast division in Africa (excluding North Africa).

Wayne Cook has been appointed national director of sales for The Winsted Corporation, Minneapolis.

Alan R. Davis has become vice president sales/marketing for Lighthouse Digital Systems, Grass Valley, CA.
Oscilloscope
Hewlett-Packard
- HP 54615B: A 2-channel digital-storage oscilloscope that combines fast sample rate with high bandwidth and a peak detect that captures 1ns events at any sweep speed; features include 1-gigasample/s sample rate and 5K memory depth per channel; automatic measurements of frequency, voltage, pulse width and rise time eliminate time-consuming setup of the scope; waveform storage allows signals to be stored for later comparison with other signals; the HP 54615B has storage and recall of up to 16 scope setups and also features roll mode, built-in power for active probes and built-in calibration signals; the HP 54615B uses the same compact, easy-to-use frame as others in the HP 54600 series, and it is compatible with all current HP 54600 scope modules except for the HP 54655A and the HP 54656A.

Circle (350) on Action Card

Solid-state power amplifiers
Satcom Division of Communications & Power Industries (CPI)
- Line of solid-state power amplifiers: the expanded product line includes high-efficiency indoor and outdoor units for satellite communications designed for minimal-current and low-voltage demand applications; the devices incorporate overtemperature shutdown and display current consumption and case temperature; the SSK1-20 to 125W, single-rack Ku-band units (14-14.50GHz) are for single and multicarrier service in transportable or fixed stations where good intermod-to-carrier performance is required; the SSKO-20 to 100W weatherproof outdoor amplifier is available for antenna mount use; the SSCO-30 to 250W C-band (5.850-6.450GHz) unit has weatherproof housing for antenna mounting; the SSCO-30 to 500W C-band (5.850-6.450GHz) unit is for single and multicarrier service where good intermod-to-carrier performance is required.

Circle (351) on Action Card

Enhanced digital audio ISDN system
Dolby Laboratories
- Dolby Fax ISDN system: a reconfiguration of the Dolby Fax system for high-quality ISDN transmission of audio material; the 2-channel, full duplex system now offers AES/EBU, SPDIF, 18-bit ADC, 20-bit DAC and mono/stereo formats; a streamlined Ascend multiband VSX ISDN inverse multiplexer has been incorporated into the system; the package also includes an improved PC interface for the Dolby Fax that features a Windows-based dialer program allowing control of the system from a PC.

Circle (352) on Action Card

Composite decoder and encoder
Vistek
- V4228 (decoder) and V4238 (encoder): composite decoder and encoder featuring ASIC technology, digital stability and accuracy, flexible interfaces, coupled with Varicomb processing; for hit-and-forget operation, the seamless adaptation of Varicomb provides optimum video processing and the automatic format sensing configures the units instantly for different video standards; if required, full control of all parameters is available from the control panel, with commonly used setups stored in the internal memory; the V4228 provides high-resolution transparent decoding that is virtually free of the artifacts of cross-color and cross-luminance.

Circle (353) on Action Card
The new 635L along handled version of the legendary 635A from Electro-Voice

Video modulator/data upconverter
LNR Communications
- LVM series: a low-profile video modulator/data upconverter designed for applications where a compact baseband-to-RF satellite video modulator/low-phase noise upconverter is required; the synthesizer-tuned agile upconverter was specially designed for low-phase noise requirements in preparation for digital/full-motion or compressed video formats; the LVM series is ideal for fixed and mobile applications, SNG vehicles and other transportables, uplinks where access to the 70MHz interface is required, split (remote upconverter) exciter operation and systems that must use a data-capable upconverter for inclusion of SCPC data channels in the same transponder and/or future digital video requirements.

Camera control/monitoring system
Telemetrics
- Camera control system: a camera control system that integrates Telemetrics line of camera robotics components with a software control program for comprehensive camera control capabilities on a single touchscreen workstation; by employing a touchscreen graphical user interface (GUI), the Telemetrics control panel software (TM-CPS) provides simple control of all camera robotic and electronic settings, video switching and peripherals; live camera program and preview images and still video preset images can all be viewed on a single PC display; the program and preview windows are viewed in real time, with still video images to view camera presets.

Digital video interface
Matthey Electronics
- 3000 series: a series of serial digital video interface cards based on an extended Eurocard format; the 3000 system solves problems encountered when interfacing existing analog equipment with new serial digital products; the range includes 10-bit A-to-D and D-to-A converters, plus serial digital distribution amplifiers (both reclocking and non-reclocking); processing using quality 10-bit converters and full specification CCIR-601 filtering ensures optimum broadcast performance; serializers and deserializers to component and composite standards are also included; six cards can be housed in the 1RU subrack frame designed to meet the latest EMC directives.
The Multi-Zone Iris Weighting system gives preference to objects in the lower portions of the picture. This allows the camera to maintain full zoom capabilities in a wide range of lighting conditions.

Super Wide Angle Adapter

The Wide Angle Adapter increases the effective focal length to 3.3mm. Adding the Super Fisheye Adapter creates a whole new range of possibilities. With the Super Fisheye Adapter, you can capture more of the action from close-up—especially crucial when shooting in tight quarters. Using a wide angle adapter also adds natural depth of field and creates a more dramatic effect.

Super Fisheye Adapter

The Super Fisheye Adapter produces an extraordinary degree of perspective distortion for a magnification factor of approximately 8X. For example, adding the Super Fisheye Adapter to the .8X Converter offers a high quality, economical Wide Angle lens. The .5X Adapter is perfect for shooting situations which require wide angle and the ability to zoom. The Wide Angle Adapter creates perspective distortion of a 15° angle of view. Using a wide angle adapter reduces noise and picture degradation while dramatically increasing performance.

WA-75X6 Wide Angle Adapter Set

445.00
WA-56X Wide Angle Adapter

320.00
FA 6X Super Fisheye Adapter

Component precision optics

WIDE ANGLE ADAPTERS

Tools For Creative Videographers

Precision Camera's wide angle adapters open new possibilities for videographers. By providing a wide angle of view you can capture more of the action from close-up—especially crucial when shooting in tight quarters. Using a wide angle adapter also adds natural depth of field and creates a more dramatic effect.

Super Fisheye Adapter

The Super Fisheye Adapter produces an extraordinary degree of perspective distortion for a magnification factor of approximately 8X. For example, adding the Super Fisheye Adapter to the .8X Converter offers a high quality, economical Wide Angle lens. The .5X Adapter is perfect for shooting situations which require wide angle and the ability to zoom. The Wide Angle Adapter creates perspective distortion of a 15° angle of view. Using a wide angle adapter reduces noise and picture degradation while dramatically increasing performance.

Super Fisheye Adapter

The Super Fisheye Adapter produces an extraordinary degree of perspective distortion for a magnification factor of approximately 8X. For example, adding the Super Fisheye Adapter to the .8X Converter offers a high quality, economical Wide Angle lens. The .5X Adapter is perfect for shooting situations which require wide angle and the ability to zoom. The Wide Angle Adapter creates perspective distortion of a 15° angle of view. Using a wide angle adapter reduces noise and picture degradation while dramatically increasing performance.

dna

100% quality assurance on our products.
"THE PROFESSIONAL'S SOURCE..."

DA-88 Multi-Track Recorder

This digital multitrack recorder is designed particularly for the audio professional who needs long term recording capabilities, and the recording environment of a recording studio.

Tascam 8048 / 8048A

8-Track, 4-Channel Stereo, or 12-Channel Monaural, or 12-Channel Multichannel recorder.

Features:
- 8-Track, 4-Channel Stereo, or 12-Channel Monaural, or 12-Channel Multichannel recorder.
- 48khz/96khz ADAT input for high resolution recording.
- 24-bit / 96kHz resolution for high quality audio.
- TG (Tascam Gate) feature for automatic gain control and noise reduction.
- Full matrix functionality with 8x8, 16x16, 32x32, and 64x64 matrices.
- Supports high-level professional applications such as lighting, sound design, and video production.
- Designed for professional audio applications such as recording, music production, and broadcasting.

FOSSIL - RD-8 Multi-Track Recorder

The RD-8 is a lightweight, portable multitrack recorder that is perfect for small recording studios or on-the-go recording situations. Its compact size and durable build make it ideal for a variety of scenarios.

Features:
- 8-Track, 4-Channel Stereo, or 12-Channel Monaural, or 12-Channel Multichannel recorder.
- 48khz/96khz ADAT input for high resolution recording.
- 24-bit / 96kHz resolution for high quality audio.
- TG (Tascam Gate) feature for automatic gain control and noise reduction.
- Full matrix functionality with 8x8, 16x16, 32x32, and 64x64 matrices.
- Supports high-level professional applications such as lighting, sound design, and video production.
- Designed for professional audio applications such as recording, music production, and broadcasting.

PC-CODI TEXTS AND GRAPHICS GENERATOR

A PC compatible (IBM bus based) text and graphics generator to synthesize and print high quality, high resolution text and graphics. It supports 256 characters, including upper and lower case letters, numbers, and special symbols.

Features:
- 8-bit or 16-bit Microcomputer based.
- 256 characters, including upper and lower case letters, numbers, and special symbols.
- Support for 256 colors.
- Support for 8-bit and 16-bit graphics.
- Support for text and graphics generation.

SOUND COLORS MONITORS

13" Production Monitor

- 13" diagonal color LCD monitor with excellent contrast ratios.
- High brightness and high contrast for optimal viewing.
- 5:4 aspect ratio for compatibility with most PC monitors.

13" Production Monitor

- 13" diagonal color LCD monitor with excellent contrast ratios.
- High brightness and high contrast for optimal viewing.
- 5:4 aspect ratio for compatibility with most PC monitors.

SONY - M-2600 Series

16/24-bit, 32-channel eight channel mixers.

Digital effects and processing capabilities.

TASCAM - M-2600 Series

16/24-bit, 32-channel eight channel mixers.

Digital effects and processing capabilities.

LOW NOISE CIRCUITRY

- Combining completely redesigned, low noise circuitry, with superior Speaker Quality Feedback (SQF) technology, the M-2600 series provides unprecedented low noise, even at high signal levels.

THE BEST AUX SECTION IN THE BUSINESS

The M-2600 series features an advanced auxiliary section with high-end capabilities. This includes a variety of aux inputs and outputs, allowing for maximum flexibility in your recording setup.
Horita

WG-50 Window Dub Inserter
- Makes borrows in SMPTE TC window dub cuts.
- Indepitable drop-in or drop-out time code.
- Auto labeling of 1st and 2nd COC time code.
- Adjustments for both vertical and position size.
- Rack mountable for easy installation.
- Single source component of Horita's line.

TS-50 Generator/Insertion/Overlay
- Combines time code generator and window inserts into a single unit.
- Available in features of WG-50 PLUS.

B-5G Black/Blue/Black Tone Generator
- Generates SMPTE color code drop-in drop-frame timing.
- Linear sync mode to line code input and output sync.
- Simple "on/off" control of SMPTE color code.
- Raster set-up control via computer generated 2-D output.
- Outputs 3.5 and 1/2" of window.s
- Indepitable drop-in or drop-out color.
- Selectable 30/60/90/120- second automatic generator back -time.
- Dark mask or "see through" in any combination.
- Outputs window sync for use with any video test signal generator.

SAG-60 Multi Audio Signal Generator
- Generates a full range of audio test signals.
- Generates full range of SMPTE color bars.
- Generates full range of video pattern generators.

Photo & Video Sale

Visit our newly expanded Video Store and Computer Video Showroom

BMP, AVI, TARGA 2003

Real Impact Video Editing Software for TARGA 2000

MAGNI

MM-400

LEADER

Model 5580C

Model 5860C

Model 5860A

Model 5854C

Audio Speaker, Monitor, Decorder, Mic

Visit us at A/V Show

Circle #55 on Reader Service Card
Oscilloscope
Leader Instruments
- Model LS 1040: a 40MHz analog oscilloscope that features 3-channel operation with up to six traces on screen in the delayed sweep mode; sensitivity ranges from 5V/div down to 5mV/div in 10 steps (to 0.5mV/div with the X10 magnifier); bandwidth drops to 5MHz with the magnifier on; CH3 only is switch selected to 0.1 or 0.5 V/div; vertical modes are CH1, CH2, CHOP, ALT and ADD (subtract with CH2 inverted) and CH3 (TRIPLE); a CH1 output jack provides 50mV p-p per div of displayed signal to make use of CH1 as a high-gain preamp, X-Y operation is standard with 1MHz X-axis bandwidth and less than 3° phase shift between X and Y at 100kHz; the main time base ranges from 0.2s/div to 0.1μs/div in 20 steps.

Circle (357) on Action Card

When selecting an audio DA the choice is simple ...toys or power.

You need POWER!

Take 'em for a drive. Savor the difference.

The BENCHMARK Power DA™

The rules have changed. Most engineers now understand that to drive long runs with great HF response requires low Z (60 Ωm) outputs. Fewer engineers understand, however, that multiple output drivers are not desirable. In fact, all the networks will consider is a single amplifier with resistive splits. Want to be listening to a monitor feed and get burned when the air feed fails? Neither would we.

It's true, DAs are an insurance policy, but anything that cannot deliver with up to 1/3 of its outputs shorted is just a toy. 60 Ωm outputs have 30 Ωm resistors in each leg. Short three 30 Ωm resistors and you have a 10 Ωm load. Most DAs simply will not drive that kind of a load...you need power and that's why we designed the Benchmark Power DA™ to put out 40 watts. We hope you'll never need to use that much power, but if you do, the Power DA™ will deliver.

Call Rory Rall today for more information.

BENCHMARK MEDIA SYSTEMS, INC.
Phone 800-262-4675, FAX 315-437-8119

Orbit-tracking system
Andrew Corporation
- VALUTrak: an inclined orbit-tracking system for C-band earth station antennas; the system is ideal for video, voice or data applications and can replace an existing C-band receive-only fixed feed, or it can be supplied with a new C-band receive-only antenna system; VALUTrak allows single-axis motion so that only the feed moves to track the satellite; the system can scan the feed over the antenna's aperture and provide a "steerable" mainlobe over a limited range.

Circle (362) on Action Card

Daylight fixtures
Sachtler AG
- Director 1.2 and 2.5kW: compact daylight fresnel lens lights based on the 2kW and 5kW tungsten models; the sturdy and lightweight aluminum housing was optimized to withstand rough outdoor operation; the linear ball bearings ensure smooth focusing in hot or cold conditions; features include a zero-insertion force bulb socket with floating contacts and optimized convection paths, which help keep the bulb and socket cool and prolong bulb life; the igniter provides cold and hot restrike function, works noise-free and is dew resistant.

Circle (359) on Action Card
Remote party-line intercom station
Clear-Com
- PL-Pro RM-440: a remote intercom station that will replace the industry standard RM-400; the station features IFB-interrupt programming for talent cueing from multiple stations; the microprocessor-controlled talk buttons light up to indicate on/off status of each key and can be set for momentary or latching; when the call button is pressed at another station, the talk button flashes to alert operators who may have removed their headsets or tuned off the external speaker; a new all talk function permits simultaneous talk on all channels and an announce button with relay allows for external paging.

Digital desk for Postbox system
Winsted
- Digital Desk: a Digital Desk for desktop editing and production designed especially to accommodate the Panasonic non-linear A/V workstation; the desk features a 94-inch-wide work surface that provides ample space for keyboard, jog pad and other materials; a 48-inch riser for monitors and hard-disk boxes is adjustable from six to 10 inches in 1-inch increments; a 24½-inch rack cabinet is included to accommodate Panasonic Postbox rackmount electronics; the desk is designed to curve around the user, placing equipment within easy reach.

Modular TV lighting fixtures
Videssence
- Studio 2000 modular lighting: SRGB lighting fixtures that generate virtually no heat and require a fraction of the power required by incandescents, making them ideal for facilities with low ceilings; the modular fixtures contain electronics with a reflector and lens for each lamp; the fixtures are made of composite extrusion with dovetail tracks on the top, back and bottom surfaces, allowing the fixtures to be ganged together for a multiple-source array of light.

Remote Control By Telephone
Control 10 latching relays and check 10 logic-level inputs from any touch-tone phone. User determined access code. Just $339.00

For AM, FM, SCA and TV modulation monitors
WHEN ACCURACY COUNTS... COUNT ON...
Call (610) 687-5550 or write for more information on Belar Am, FM, Stereo, SCA and TV monitors.
FAX: 610-687-2686

January 1996 Broadcast Engineering 101
continued from page 22
compatible with the 188-byte MPEG-2 data packet standard, commonly used throughout the world. Twenty Reed-Solomon parity bytes for every data packet add redundancy for forward error correction (FEC) of up to 10-byte errors/packet. Since Reed-Solomon decoders correct byte errors, and bytes can have anywhere from 1 to 8-bit errors within them, a significant amount of error correction can be accomplished in the VSB receiver.

The VSB transmitter
The trellis-coded 8-VSB transmitter block diagram is shown in Figure 3. The transmitter receives the incoming data packets and randomizes the data so that what is transmitted over the air produces a flat spectrum. Random data is needed for all the receiver recovery loops to work optimally. The Reed-Solomon encoding, known for its burst noise correction capability and overhead efficiency, adds the 20 parity bytes to the end of each data packet before data bytes are interleaved over many data segments to a depth of one-sixth of a frame (4ms). The segment and frame syncs are not interleaved. Data byte interleaving helps protect against the effects of burst noise/interrference.

In the trellis-coded 8-VSB system used in the terrestrial mode, the trellis encoder adds additional redundancy to the signal in the form of more data levels, as well as creating the multilevel data symbols. In 16-VSB cable applications, there is no trellis encoding, and a mapper creates the multilevel data symbols. The segment and frame syncs are then multiplexed with the multilevel data symbols before the DC offset is added for creation of the small in-phase pilot. The VSB modulator provides a filtered IF signal at a standard 44MHz frequency. Finally, the RF upconverter translates the signal to the desired RF channel.

The VSB receiver
The VSB receiver block diagram is illustrated in Figure 4. The RF signal is converted by the VSB receiver's tuner to the standard 44MHz IF. After appropriate IF filtering using the root-raised cosine, the pilot signal is synchronously detected using a narrowband frequency-and-phase-locked loop (FPLL). The FPLL exhibits good wideband frequency acquisition and narrowband noise tracking, and it also works optimally with a wideband phase tracker.

The VSB modem includes the functions of RF selection, local oscillator and conversion; IF amplification and band shaping; baseband demodulation; AGC; co-channel filtering; synchronization and phase tracking of the carrier, the bit clock, and the data framing; equalization, including ghost cancellation; forward error correction, including trellis and Reed-Solomon codes; and data de-interleaving.

The advancements in technology — most notable, digital technology — played a major role in the development of the VSB modulation system that will be used for terrestrial and cable broadcasting in the United States. Digital transmission offers improved video and audio reception, with essentially none of the artifacts usually associated with broadcast TV reception. It appears that the 8-VSB transmission system has been designed for the ruggedness and the reliability that is needed for tomorrow's TV system of the real world.

H. BATTISON
CONSULTING ENGINEER
P.O. BOX 2872
LOUDONVILLE, OH 44842
419-894-3849

D.L. MARKLEY
& Associates, Inc.
CONSULTING ENGINEERS
2104 West Moss Ave.
Peoria, Illinois 61604
(309) 673-7511
FAX (309) 673-8128
Member AACE

H & E
HAMMETT & EDISON, INC.
CONSULTING ENGINEERS
RADIO AND TELEVISION
DANE E. ERICKSEN, PE
BOX 280068
SAN FRANCISCO, CA 94128
707/796-5280 Fax 707/796-5280

J. C. CHAN
& ASSOCIATES
BUSINESS DEVELOPMENT • STRATEGIC MARKETING • PUBLIC RELATIONS
CURTIS J. CHAN
PRESIDENT
2212 HAMMOND WAY
FULLERTON, CA 92633
PHONE: (714) 587-3993
FAX: (714) 587-0244
PACIFIC: (714) 506-1357

NETCOM
STATE OF THE ART ENGINEERING FOR AUDIO AND VIDEO
ENGINEERING DESIGN • CAD DESIGNING SERVICES • NETWORK DESIGN
CABLE FABRICATION • PRE-WIRED PATCH PANEL RACKS SYSTEM INSTALLATIONS • EQUIPMENT SALES
(201) 837-8424 FAX (201) 837-8424
1465 PALISADE AVE., TEANECK, NJ 07666

"Great article! Can we get copies for our clients and sales force?"

Whether it's an article, ad, or an interesting column, take advantage of this unique opportunity to promote your business and products through reprints — available from this magazine. Reprints are great promotional pieces and make excellent marketing tools all at a minimal cost. Available in full-color or black & white, reprints can be obtained from any issue. For a free price quote, contact Chris Lotesto, toll-free at 800-458-0479 or 312-435-2359.

Louis Libin is director of technology for NBC, New York.
CLASSIFIED

FOR SALE

- **Mocile BCS BUYS Video** addition to transponder space, uplinking Remotely Tunable Fixed Video Works,

- **Full** be converted to MPEG2

- **Call** -TIME TRANSPONDER Abekas Beta 3 to the New& Used Tulsa, OK 74145

- **STUDIO EXCHANGE** BURBANK (818) 840-1351 * FAX (818) 840-1354 NEW & USED VIDEO EQUIPMENT BUY, SELL, CONSIGN: 25 YRS EXP

- **STUDIO EXCHANGE • BURBANK** (818) 840-1351 * FAX (818) 840-1354 NEW & USED VIDEO EQUIPMENT BUY, SELL, CONSIGN: 25 YRS EXP

- **EQUIPMENT WANTED** WANTED: USED VIDEO EQUIPMENT Systems or components. PRO VIDEO & FILM EQUIPMENT GROUP: the largest USED equipment dealer in the U.S.A. (214)366-0011.

ENGINEERING AND OPERATIONS OPPORTUNITIES WITH SINCLAIR BROADCAST GROUP

Sinclair is seeking qualified applicants for our company in many areas. We are growing station group moving quickly to secure our technological future. If you are a technically competent hands on engineer with leadership skills, or you are a creative hands on production editor; then you must join our team. Sinclair operates a group of television stations located in Baltimore, MD; Birmingham, AL; Columbus, OH; Flint, MI; Norfolk, VA; Pittsburgh, PA; Raleigh/Durham, NC; and Tuscaloosa, AL. Sinclair offers a competitive benefits and compensation package.

CHIEF ENGINEER: A technically competent leader who is a hands on problem solver, a people person, a good communicator and an organized competent administrator. The position demands an extensive background in RF transmission systems, studio systems, news, and capable of planning, organizing and directing station projects. The applicant must also possess specific knowledge of computers, digital electronics, and a forward thinking attitude on AT&T future digital technology. You must be capable of working in consonance with the other department heads to achieve station goals. An FCC License, SBE Certification, and can accept an "On Call" status are prerequisites for this position.

TELEVISION ENGINEER: A person who is capable of thinking on their own and can apply their "troubleshoot" expertise to all areas of the broadcast plant. You must be a technically competent technician who can repair any type of electronic equipment, including but not limited to, computers, video cassette recorders, cameras, switchers, and monitors. Possessing an FCC license or SBE Certification and a comprehensive background in digital and analog electronics is imperative. Our engineers must be able to see the big picture, but focus and act on the pixel. The ability to effectively communicate and interface with other department's personnel whom you service is a must. You must be a team player who can accept an "On Call" status.

OPERATIONS/PURCHASING PERSONNEL: Artistic creative people who can write copy, shoot video and edit spots on traditional computer editors, as well as any of the non-linear editors currently on the market. You must be well versed and able to handle the pressure of client production, the immediacy of news promotion, and the creative challenges of station promotions. We are looking for someone who is hot on the new technology and is able to use computers to expand your creativity. If this describes you, or what you think you need to become, then please respond.

I encourage minorities and women to apply. Sinclair Broadcast Group is an equal opportunity employer. Send resume and salary history to: Del Parke, Director of Engineering and Operations, Sinclair Broadcast Group, 2000 W. 47th St., Baltimore, MD 21211. No phone calls please.

TELECINE ENGINEERS

THE POST GROUP is seeking experienced Telecine Engineers for day and night shifts, to add to its expanding staff. This is an excellent opportunity to join a company on the leading edge of technology. Applicants must have a strong background in all troubleshooting procedures required to support modern digital color correction systems. Qualified candidates should submit a resume to: THE POST GROUP

6335 Homewood Ave. Los Angeles, CA 90028 Attention: Rick Girardi Fax: (213) 662-0836

BROADCAST MAINTENANCE ENGINEER: Self-starter with experience repairing digital & analog studio equipment, all types of Sony VTR's & automation systems. High power UHF transmitter experience a plus. General class radio license preferred. Send resume to: Alton Engineering, KAYU-TV, 4600 Regal Drive, Spokane, WA 99223. EOE.

ENGINEER

Sinclair Entertainment Television is currently seeking Engineers to work in Los Angeles. Candidates must be experienced in component level troubleshooting and servicing and maintenance of video and audio equipment. Qualified engineers must be able to handle cameras, set up for studio and remote productions, assist in studio design and installation, perform component repairs and system level troubleshooting and installation. Knowledge of post-production and master control required. Salary commensurate with experience. Excellent benefits package and 401(k) Savings Plan. Please send resume with salary history to:

Sinclair Entertainment Television Engineering
Broadcast Engineer AD 5870 Wilshire Blvd., Los Angeles, California 90036
Equal Opportunity Employer
The Entertainment News and Information Authority

TELEVISION MAINTENANCE ENGINEER

Fox affiliate seeking professional, experienced maintenance engineer. Must have 5 years minimum experience in repair and installation of broadcast related equipment. Satellite, RF, and computer knowledge a plus. Salary competitive. We are an equal opportunity employer. Send resume to Lisa Gerald, Personal Director, WXIX TV, 635 West 7th St., Cincinnati, Ohio 45203.

ENGINEERS NEEDED!

NFL Films is ready to draft three All-Pro caliber Maintenance Engineers.

- Cinematography Maintenance Engineer - This position is responsible for the maintenance and repair of our inventory of motion picture cameras and related equipment. Design, fabrication and milling/machining experience a plus.
- Telecine Maintenance Engineer - This position is primarily responsible for the maintenance of our Telecine Facilities. Secondary responsibilities include general plant maintenance and construction. Rank experience a must, FDL experience a plus!
- General Maintenance Engineer - This position is responsible for general plant maintenance and construction including production, editing, graphics and audio facilities. Prior teleproduction facility maintenance experience preferred.

If you're one of our draft picks, you will be compensated accordingly, and work with the best organization in the business.

- Professional, team atmosphere. Quality and innovation are encouraged.
- A career opportunity with all NFL benefits including health, disability and pension plan.
- 70,000 sq. ft. facility 15 minutes from Philadelphia. Low taxes.
- Reasonable real estate.

If you think you've got what it takes, send your resume in strictest confidence to: Jeffrey A. Howard, NFL Films, 330 Fellowship Road, Mt. Laurel, NJ 08054 or by fax to (609) 866-4848 or by email to 76245.52@compuserve.com PLEASE, NO PHONE CALLS!
MAINTENANCE ENGINEER: Black Entertainment Television Inc. Ability to troubleshoot to the component level, digital video effects systems, routing switches, vtr's character generators, cameras, editing systems and audio equipment. This will include system interfacing to computers and compatible components, equipment installation for studio and remote productions. Must be knowledgeable of system timing specifications, digital video effects systems and electronics course study. Ability to perform fiber switches and satellite downlink. Must have 3 years experience, BET, Corporate Human Resources, 1005-E 9th Street, N.E., Washington, D.C. 20018.

BROADCAST MAINTENANCE ENGINEER: Immediate opportunity. Must be able to troubleshoot audio equipment, Betacam SP, RF cable, master control and related equipment to the component level. Knowledge of computers, L.A.N and PBX switches. 3 to 5 years experience, BSEE or equivalent. Good pay, excellent benefits, paid holidays and health plan. Send resume to: Daniel Ouellet, Canadian Broadcasting Corporation, 529 14th Street N.W., Suite 500, Washington, D.C. 20045. (202) 638-3286. Internet: douellet@washington.cbc.ca.

CHIEF ENGINEER WANTED: Requires extensive hands-on maintenance experience, people management and interdepartmental communication experience at a commercial television station. Long range technical planning and budgeting, knowledge of equipment and current trends in technical developments in the industry required. Positive personnel relations and efficient utilization of manpower a must. M/E, ADA, EOE. Employer. Send resume to: Daniel Ouellet, Operations and Program Manager, WPSD-TV, P.O. Box 1197, Paducah, KY 42002-1197. No phone calls, please.

TELEVISION HELP WANTED, TECHNICAL Chief Engineer: Looking for experienced CE, highly qualified in all areas of broadcast engineering to oversee/maintain transmitter and studio equipment. SBE, FCC certification, FCC general license required. Send resume w/salary requirements to Classified Ad Coordinator, Broadcast Engineering, Dept. 775, 9800 Metcalf, Overland Park, KS 66212-2215, EOE.

TV MAINTENANCE ENGINEER: Growing South-west UPN Affiliate has an opening for a TV Maintenance Engineer. Candidate must have the ability to troubleshoot a variety of studio broadcast equipment to the component level. Computer literacy and RF experience a plus. FCC License or SBE certification a must. Send resume, references and salary requirements to: Personnel, KUPN-TV, 920 South Commerce, Las Vegas, NV 89106. EOE. Women and Minorities encouraged to apply. No phone calls please.

STAFF ENGINEER: Charlotte, NC. Post Production/Broadcast Facility has immediate opening for a staff engineer. Candidate must have a degree in electronics. Candidate must also have five years experience as an engineer, EIC or maintenance technician at a post production facility or advanced television broadcast operation. Send or Fax resumes to: Mr. David Whaley, Chief Engineer, Creative Post And Transfer, 377 Carowinds Blvd., Suite 101, Fort Mill, SC, 29715, (803) 548-3153.

ASSISTANT ENGINEER Manager: Reports to Chief Engineer. Demands a highly technical news oriented individual with above average interpersonal skills to build a strong engineering/ news interface. Oversees all daily engineering & technical operations. Requires a minimum of 2 years college or technical school and 5 years as a Broadcast Engineer. Supervisory experience and a college degree a plus. Send resume, names of 3 references, and a cover letter detailing why you would be great at this job. Jim Moore, WDAF-TV, 3030 Summit, Kansas City, MO 64108. No phone calls, please. EOE.

ASSISTANT CHIEF ENGINEER with strong UHF transmitter experience needed for growing FOX station. The successful candidate will be self motivated, team player, excellent studio maintenance and communications skills. Beta SP, 1", and 3/4" experience preferred. Computer literacy a plus. Send resume and salary history to: Tom Thellman, Chief Engineer, KMSV-TV/KSSH-TV, P.O. Box 18033, Newport, LA 71130. PLEASE NO PHONE CALLS. EOE.

BROADCAST ENGINEER: WJCT TV has an opening for an engineer with min. 3 yrs. broadcast experience to maintain television transmission, studio and computer equipment. FCC license and/or SBE certification desirable. WJCT is presently transitioning to serial component digital technology. This position includes installation of NLE, DAW, graphics and video server systems. Send resume and salary requirements to Human Resources, WJCT, 100 Festival Park Ave., Jacksonville, FL 32202 EOE.

TELEVISION ENGINEERS: Turn Broadcasting System, the leading News, Sports, and Entertainment system in satellite communications, has career opportunities for engineers with broadcast maintenance experience. These positions demand an extensive background in television engineering and at least two years of training in electronics technology. Turn Broadcasting System offers an excellent benefit and compensation program. Send resumes to: Mr. Jim Brown, Corp. Engineering Turner Broadcasting System, Inc. One CNN Center P.O. Box 10536 Atlanta, GA 30348-5366 (404) 827-1638 office (404) 827-1835 fax

TVS is an equal opportunity employer.

Projects
Department Manager
Within the Systems Integration Division, you will orchestrate the management of resources to execute complex, fully integrated broadcast systems. The ideal candidate will bring thorough project management experience and will be expected to further enhance project management techniques and new quality assurance programs. Your major responsibility will be to ensure project completion, both within schedule and budget. You will work in concert with our marketing and sales groups for future project budgeting. You will also prepare and update budgets and capital expenditures. Requires 10+ years' experience in broadcast or production systems, as well as project management with 6 years' supervisory experience. Job Code: CCY-PDM

Proposal Manager
Utilize your sales and marketing expertise to oversee the development, coordination and preparation of sales proposals. This position will include sales strategy formulation and plan generation, as well as designing proposal formats and ensuring that guidelines meet customer and company needs. Requires 4+ years' broadcast or television production experience emphasizing operations. Excellent writing skills a must; familiarity with value-added sales processes desirable. Job Code: CCY-PM

Sr. Video Systems Design Engineers
Regular Full-time and Contract/Temporary
We're looking for very seasoned Engineers to work on designing large scale digital audio and video facilities. Candidates must be strong in system level engineering design, technical problem solving, team building and communications. Responsibilities will include the design of floor plans, equipment rack elevation layouts, and detailed signal flow construction diagrams. Fluency in Microsoft Excel for Windows is required; AutoCAD, MS Word and MS Access software knowledge a plus. Requires 5+ years' broadcast engineering experience. Send responses to: Sony Electronics Inc., 3300 Zanker Road, MS: SJ-2C2, San Jose, CA 95134; FAX (408) 585-5166; Or e-mail youngc@cxmls.nhk.sony.com. EOE.

January 1996 Broadcast Engineering 105
LIFETIME TELEVISION, the dynamic cable network, is seeking a highly qualified engineer with leadership skills to bring our extensive production and broadcast facility into the digital future. We need a hands-on problem solver with good organization and communication skills to manage an experienced staff and collaborate effectively with other department heads.

The position demands an extensive background in transmission, automated broadcast playback systems, studio systems, analog and digital distribution, post production and graphics.

We seek an engineer with a vision for the future. You must be well versed in breaking technologies including computer related video disciplines.

The position requires 7+ years of experience in the design, operation, maintenance and testing of video facilities. Prior supervisory or management experience is essential.

Lifetime offers a competitive salary and excellent benefit package. Qualified candidates please send resume in confidence along with salary history to:

LIFETIME TELEVISION
Human Resource Department
309 West 49th Street, New York, New York 10019

EOE M/F
<table>
<thead>
<tr>
<th>AD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES OFFICES</td>
</tr>
</tbody>
</table>
| NEW YORK, NY | Gordon & Associates
| Josh Gordon | 210 President Street
| Brooklyn, NY 11231
| Telephone: (718) 802-0488
| Facs: (718) 522-4751
| Joanne Melton | 1775 Broadway, Suite 730
| New York, NY, 10019
| Telephone: (212) 641-5270
| Facs: (212) 459-0359
| OXFORD, ENGLAND | Richard Wooley
| Kerr Duffy | Interetic Publishing Corporation
| Unit 3, Farm Business Centre,
|Citroon Road, Deddington, Oxford, OX15 4TG England
| Telephone: +44 (0) 1869 338794
| Facs: +44 (0) 1869 338040
| Telex: 837 469 BEGS |

| AGOURA HILLS, CA | Duane Hefner
| Lianne Fairchild | 4236 Colomdo Ave., Suite 108
| Agoura Hills, CA 91301
| Telephone: (818) 707-6476
| Facs: (818) 707-2313
| Email: address: lh@hefner.com
| SANTA MONICA, CA | MC! Communications Marketing Corporation
| Karen Perlman |
| Telephone: (510) 458-9987
| Facs: (510) 458-8080
| SANTA MONICA
| Telephone: (310) 393-2381
| CHICAGO, IL | Bill Wendling
| 55 East Jackson, Suite 110
| Chicago, IL 60604
| Telephone: (312) 435-2361
| Facs: (312) 922-1408
| TOKYO, JAPAN | Orient Echo, Inc.
| Mathy Yoshikawa |
| 1101 Grand Maison
| Shinsengu-cho 2-18
| Shinjuku-Ku, Tokyo 162, Japan
| Telephone: (3) 3235-5961
| Facs: (3) 3235-5852
| Telex: 33376 MYORI
| LIST RENTAL SERVICES
| REPRESENTATIVE
| Lori Christie |
| 9800 Merceil
| Overland Park, KS 66212-2215
| Phone: 913-967-1928
| Facs: 913-967-1872
| BROADCAST ENGINEERING | Brad Dick, Editor
| Skip Pizzi, Technical Editor
| Steve Epstein, Technical Editor
| Dawn Nighttow, Senior Technical Editor
| Deanna Rooot, Associate Editor
| Carrie Flanigan, Associate Editor
| Tom Cook, Senior Managing Editor
| Carl Benes, Directory Editor
| ART | Stephanie L. Masseroni, Associate Art Director
| BUSINESS | Raymond E. Maloney, President
| Cameron Bishop, Senior Vice President
| Dennis Trola, Publisher
| Judson Hotz, Marketing Director
| Stephanie Hanaway, Group Director, Special Projects
| Dee Unger, Director Advertising Services
| Nancy Hupp, Advertising Production Manager
| Annette Hulse, Classified Advertising Coordinator
| Pat Eisenman, Senior Ad Production Coordinator
| Susan Jones, Advertising Coordinator
| Doug Coenrod, Corporate Art Director
| Barbara Kummer, Circulation Director
| Meghan Wright, Circulation Manager
| Customer Service: 913-967-1711 or 800-441-0294
| TECHNICAL CONSULTANTS | Jerry Whitsel, Contributing Editor
| Richard Dean, European Correspondent
| Eric Neil Angene, Broadcast Acoustics
| John H. Barton, Antennas/Radiation
| Dennis Gipara, Radio Technology
| Dane E. Eriksen, P.E., Systems Design
| John Kein, Satellite Technology
| Donald J. Maloney, Transmission Facilities
| Harry C. Martin, Legal
| Curtis Chain, Audio/Video Technology
| MEMBERS ORGANIZATIONS
| Sustaining Members of:
| • Acoustical Society of America
| • Society of Broadcast Engineers
| • Society of Motion Picture and TV Engineers
| • Society of Cable & Telecommunications Engineers
| • Member, American Business Press
| • Member, BPA International
| Affiliate Member, International Teleproduction Society
| BROADCAST ENGINEERING is edited for corporate management, engineers/technicians and other management personnel associated with private, cable, or satellite broadcasting, post-production and recording studios, broadcast networks, cable, cable and satellite production centers and networks. Qualified persons include engineers and dealers/distributors of broadcast equipment.
| SUBSCRIPTIONS: Non-qualified persons may subscribe at the following rates: United States and Canada; one year, $50.00. Qualified and non-qualified persons in all other countries; one year, $115.00 (surface mail), $117.00 (air mail). Subscription information: P.O. Box 12397, Overland Park, KS 66282-2937.
| Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Intertec Publishing, provided that the base fee of $2.25 per copy, plus U.S. $0.10 per page is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 02129. The code for users of the Transactional Reporting Service is ISSN 0361-9492/96 $2.25+00. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. Prior to photocopying items for classroom use, contact CCC (510) 725-4450; or for classroom or personal use, contact CCC (510) 725-8450. Organizations or individuals with large quantity photocopying or reprint requirements should contact Chris Lotstein, (312) 435-2359. Microfilm copies of Broadcast Engineering magazine are available by calling or writing UMI, 300 North Zeeb Rd., P.O. Box 1346, Ann Arbor, MI 48106-1346. Phone: (313) 761-4700 or (800) 521-0600.

©1996 by Intertec Publishing. All rights reserved.

January 1996 Broadcast Engineering 107
The basics of digital video

The basics of digital video are simple: an analog signal, either composite or component, is digitized by sampling at a constant frequency. The sampling frequency used for the digitization must be high enough to allow for the reproduction of the system bandwidth of the TV standard. Nyquist’s theorem states that the absolutely highest reproducible frequency is half the sampling frequency. For a 4MHz bandwidth video system, therefore, the sampling would have to be at least 8MHz. Practical engineering considerations demand that a higher frequency be used, and the higher the better.

Digital composite and component

The two different forms of digital signal are digital versions of two of our analog forms. The digital composite signal takes an analog composite signal and directly digitizes it, so even the color burst and chroma modulation are digitized. In some texts, you might see a reference to “digitized video;” this is usually meant to be digital composite.

The digital composite signal is carried on a single cable, like its analog counterpart, which can be a great convenience. As we will see, however, digital composite has its limitations. The digitizing is based on 10 bits (1,024 levels) while the sampling frequency is a multiple of the subcarrier frequency. Four times (4fs) has been chosen, which corresponds to 14.3MHz for digital composite NTSC and 17.7MHz for digital composite PAL. (See Table 1.)

For digital component video, the coding is based on three channels in the Y, R-Y, B-Y format. The sampling is not equal on all three channels; for the Y channel, sampling takes place at 13.5MHz; for the two color-difference channels, sampling is at half that frequency, at 6.75MHz. Sampling of the color-difference channels is alternated, but always coincident with the luminance sampling. So, when a Y sample is taken, an R-Y sample may be taken. At the next Y sample, a B-Y sample will be taken.

The choice of the 13.5MHz sampling is the same for 525/60Hz video and 625/50Hz. In a major agreement, there is a common standard between all (CCIR-601). There is no subcarrier on a component signal, of course, so there is no immediate, magic frequency to be considered. The original standard called for all the bits of the three channels to be carried on separate conductors using a multipin connector. Currently, the move is to put these signals into a serializer, so that the complete signal can be carried on a single cable.

<table>
<thead>
<tr>
<th>VIDEO FORMAT</th>
<th>SAMPLING FREQUENCY</th>
<th>PIXELS</th>
<th>LINES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HORIZONTAL TOTAL</td>
<td></td>
</tr>
<tr>
<td>NTSC D-2</td>
<td>14.32MHz</td>
<td>910</td>
<td>626</td>
</tr>
<tr>
<td>525/60 D-1</td>
<td>13.5MHz</td>
<td>858</td>
<td>626</td>
</tr>
<tr>
<td>PAL D-2</td>
<td>17.72MHz</td>
<td>1135</td>
<td>625</td>
</tr>
<tr>
<td>625/50 D-1</td>
<td>13.5MHz</td>
<td>864</td>
<td>625</td>
</tr>
</tbody>
</table>

Note: D-2 is the digital composite standard. D-1 is the CCIR-601 digital component standard.

Table 1. The sampling schemes for 525 and 625 digital composite and component systems. The sampling frequency for the component format is for the luminance component.
The unique Videotek digital corrector can even fool Mother Nature.

Quick, easy, and with total control. Videotek's new SDC-101 defeats any threat to your video images. It lets you correct picture errors and alter video levels in serial component digital video inexpensively, with controls and functions familiar in the analog world. 10-bit digital processing guarantees optimum signal quality. And, it does it all without relying on expensive outside services.

Unsuspecting picture variations fall prey to frame by frame correction. Changes in light and shadows are transformed before your very eyes.

The more you work with the SDC-101, the more of its many faces you'll see. Its versatility and ease of operation means cost-effective and timely performance. That's what Videotek's products are all about.

Call us today. The SDC-101 will make your video creations digitally correct.
Why Have We Sold Thousands Of Our Serial DAs?

1. All DAs Meet Industry Standards Using the Latest Technology
2. Format Independent with Automatic Selection of 143/177 Mbs or 270 Mbs
3. Frame Designed for Over 300 Mbs
4. 10 Modules in a 2 RU Frame (4 Modules in a 1 RU Frame)
5. VSE-6800 Monitoring DA - 4 Serial Video Outputs Re-clocked and Equalized
6. VSE-6800 - 8 Serial Video Outputs Re-clocked and Equalized up to 300 Meters
7. VES-2200B Serial Digital Black Generator - 8 Outputs of Digital Black in Component 4:2:2 with +3 to -5 Lines of Phasing with an Analog Black Reference
8. Versatile Frame Accepts Other Modules such as VES-2200 Serial Digital Logo Generator
9. EMI Tested to Comply with FCC Part 15

(And The Price Helped!)

The Digital Glue For Your Digital Systems. 1-800-231-9673

Leitch Incorporated. 920 Corporate Lane, Chesapeake, VA 23320 Tel: (800) 231-9673 or (804) 548-2300 Fax: (804) 548-4088
Leitch Video International Inc. 220 Duncan Mill Rd. #301, Don Mills, ON, Canada M3J 3J5 Tel: (800) 387-0233 or (416) 445-5640 Fax: (416) 445-0595
Leitch Europe Limited. 24 Campbell Ct., Bramley, Basingstoke, Hants., U.K. RG26 5EG Tel: +44 (0) 256 880088 Fax: +44 (0) 256 880428

Circle (3) on Action Card