INTERFACING DIGITAL AUDIO
Connecting the bits

UNDERSTANDING RAID
Protection for servers

QUALITY MPEG
An oxymoron?

CAMERA OPTICS
Pick the lens before the camera

BALANCED POWER SYSTEMS
For noise-free AC
SP-8 – The Console for Local News

While Wheatstone is best known for its major market clients, we have tailored this console specifically for the local facility. It has everything operators need, yet it's straightforward and easy to operate.

The SP-8's fast mix-minus system allows individual foldbacks to talent, anchors and technical crew to keep your live programming moving smoothly. Four auxiliary pre or post send controls provide even more powerful foldback options. Its channel group muting feature lets you energize and de-energize banks of channels with the push of a single button, so break/live transitions become error free. A sophisticated internal logic system has bus assignment dependent monitor mutes to prevent accidental studio interruption during live segments. The console has plenty of monitoring capability and can feed a control room system as well as multiple studio outputs—perfect for separate morning and evening setups.

The SP-8 has all the flexibility of its larger predecessors. You have a selection of mono mic/line modules, dual mic modules (for studio one and studio two), and stereo input modules. You can even get this console with a preselector overbridge, to increase its input capacity eightfold. It's available in countertop, through counter, or furniture stand versions to fit any architectural theme.

Take advantage of Wheatstone's experience and contact our sales engineers. We've got the knowledge!
“Harris gave us more than state-of-the-art. They gave us state-of-the-future.”

Richard Speer, President, Speer Communications

When Speer Communications chose Harris to build systems for their immense $100-million multimedia production and program distribution complex, it was with a vision of the future. As Harris designed, supplied and installed the facility’s all-serial-component digital television production and broadcast systems, Harris engineers devised ways to both incorporate and accommodate future technology.

“We were going where none had gone before,” Richard Speer reflects.

“and Harris helped us get there. They did a phenomenal job of working with us, developing the conceptual infrastructure and making it real.

Where we needed capabilities that no existing products offered, Harris designed and built solutions especially for us. Creating the world’s most capable digital multimedia facility in record time turned out to be a bigger challenge than anyone imagined. We could not have done it without Harris.”

Whether your vision is for digital television studios, teleports or news gathering vehicles – anywhere in the world – call Harris now. As we look into your needs, we’ll show you the future.

HARRIS CORPORATION
BROADCAST DIVISION
7920 Kentucky Drive
Florence, KY 41042 USA
TEL: +1 606 282-4800
FAX: +1 606 283-2818

Television Production – Television Transmission – Wireless Cable

Circle (4) on Action Card
features

Distributing Digital Audio ... 30
By David L. Bytheway
Routing and switching digital audio signals is not a simple task.

RAID Disk Arrays of Video Servers 44
By Bill Moren
RAID systems are far more than just a bunch of disks.

MPEG Encoding: The Secret to Quality Compression .. 64
By Richard Schmeltz
All MPEG encoding is not the same.

Optics 101: What You Really Should Know About Lenses .. 70
By Jerry Whitaker
We all remember the basic principles of optics, don’t we? Yea, sure we do.

An Unconventional Approach to Power and Grounding . 80
By Eric Wenocur
Finding and keeping clean power may have just gotten easier.

columns

FCC Update 10
FCC tower registration, part 2

ATV Update 26
Digital ATV: A new RF system

Transcription 14
Sets: Real and unreal

Broadcast 2000 86
A PC by Sony and other computer products go home

Management 20
Balancing technology burnout

Transmission 89
Winterizing your tower

Production 22
Lighting for video

New Products 98

Interactive 24
Going on-line with your television

Industry Briefs 104

Departments

Editorial 4
Letters to the Editor 6
News 8

ON THE COVER: The Solid State Logic Scenaria with ScreenSound at USA Networks in Jersey City, NJ, is used to edit and mix special projects as diverse as the adult cartoon series Duckman, promotional material and player profiles for the U.S. Open Tennis Tournament, the documentary series Inside Space, and a behind-the-scenes program for the hit movie Independence Day on the SciFi Channel.
With the introduction of the GSC3000, you can now control from one to 256 transmitter sites while barely moving a muscle. What’s more, if you decide you’ve had enough of the office and would rather monitor your sites from home, the GSC3000 can be controlled from a network — either local or wide area. Heck, you can even control them from your laptop, on a beach in the Bahamas. The GSC3000 simply brings you more transmitter site control and expandability than you’ve ever seen before. And no, it’s not expensive and it’s not complex. Because the system is modular, each site can be set up to control from 8 to 256 channels of metering, status, and command. So it can meet the needs and budgets of a single site radio operation or be expanded for the most complex television broadcast company.

The GSC3000 also features automatic and time of day commands, and macro command functions. Plus, the friendly Windows® interface makes the whole thing as simple as point and click. For more information on specs and features, please give us a call.

Gentner

1-800-945-7730
Or 1-801-975-7200

Circle (5) on Action Card

Windows is a registered trademark of Microsoft Corporation.
As I began to write this column, I called up the standard file name for the September Editorial. Up popped last year’s Editorial for September. As I read the wonderfully written copy (after all, I did write it), it was deja vu. One year ago this month, the column discussed the vice president of Apple Computer’s Advanced Technology Group, Dr. Donald A. Norman, trashing the Grand Alliance proposed ATV system. Calling it an anchor around our necks, Norman presented his view of how American consumers would use their living room TVs.

It was video nirvana. Children doing their homework on the family’s “Theater Vision home theater.”

The family gathers around as the daughter voluntarily switches from watching a rock concert to researching her paper on the Mona Lisa. Using the WWW the family tours the Louve Museum in Paris, then moves on to the Gates Da Vinci art collection.

Hockey puck and up chuck! That ain’t gonna happen. In the last year, we haven’t moved an inch. The computer industry still wants the FCC to throw the baby out with the bath and not approve the GA standard. They are still claiming that there is a world waiting to do E-mail, surf the Internet, shop and bank and a whole list of other dumb things on their TV/PC screens.

Well, in case you haven’t been listening Mr. Norman, you were wrong then and you (and your industry) are wrong now. *BE* just happens to have some of the smartest and most savvy writers in the industry and they, along with a large contingent of broadcast, cable and communications engineers don’t see the TV as the next wave of personal communication devices.

Writer and industry guru Marjorie Costello has reported numerous times on the computer industry’s attempt to reinvent the wheel with PC/TVs or TV/PCs, whichever you want to call it. Insiders Mark Dillon and Steven Blumenfeld from GTE Entertainment, who just happen to be on the leading edge of interactive TV, thank you very much, have also covered this issue. If you think these two guys support the computer industry’s approach, just read their column this month. They’re not sitting on the sidelines—they are part of the computer industry!

You can cram the Internet into the TV. You can add a CD-ROM. You can even add memory, remote control and include a wireless keyboard. When you’re done, you’ve created the proverbial Frankenstein TV—lots of parts wired together in an attempt to create something useful. What you’ve really got is a useless feature-laden, overly complex, expensive monster.

I know Thomson’s Joe Clayton really wants you to buy a new TV set, but you can’t make people use a device that is neither convenient to use or cost-effective. All those additions to TV sets is akin to adding a set of cow horns to your car. It doesn’t improve the looks and it certainly doesn’t add anything to its performance.

Go honk that Mr. Norman.

Brad Dick, editor

Editor’s note: Got a thought on where the TV vs. PC revolution should go? Write me. The best letter gets a free *BE* T-shirt.
When news breaks.
Be there first with Philips

DVCPRO LDK 700 camcorder.
Your go-anywhere digital companion.
The new LDK 700 camcorder from Philips BTS. The heart of the new all digital DVCPRO system. Bringing exceptional levels of compactness, convenience and fast on-air digital performance to video journalism. With its DVCPRO metal particle tape cassettes that give up to 63 minutes digital sound and video recording. LDK 700 and DVCPRO. With a cost of ownership that's significantly lower than today's accepted analog broadcast standard systems! Call toll free 1-800-962-4287 (For immediate information faxed to you, press option 4) to find out more about DVCPRO from Philips Broadcast Television Systems Company.
July's "Production" column on handling multichannel audio

Dear editor:

You talked about surround sound for an entire page without providing much useful information. I was dying to know:

1. What is the matrix for encoding and decoding surround sound?
2. How do you encode four channels into two channels so they can be recovered? Saying "backward-compatible 4-2-4 matrix" with "sum-and-difference quadrature techniques" leaves me with no understanding. For example, how can quadrature be used to identify information in the mass of frequencies and amplitudes found in program audio?
3. What kinds of audio processing destroy surround sound and why? Independent limiting and compression? Phase scrambling? Aural exciters, such as Aphex? What should the CE know about passing network surround sound?
4. Did you know ABC TV told affiliates last summer to disable all phase-shifting equipment before Monday Night Football began, so as not to destroy surround sound? Why did they do that?
5. What are "multiple coincident pairs," "S-levels in M-S mic setups" and "dipole speakers?" What percentage of your readers do you think could define these terms? Why don't you concentrate on useful and basic concepts that we can apply to our work?

Dave Moore, CE
KHON-TV
Honolulu, HI

Terry replies:

A one-page article on surround sound is like a one-page article on do-it-yourself brain surgery — pretty dangerous. This article attempted to provide an overview to start you off on your research. In addition, when writing any article, a decision has to be made as to how far back into basics to go.

Unfortunately, your questions 1, 2 and 5 are beyond the scope of this article and the responses would be lengthy. To briefly answer 3 and 4: Any broadcast/production facility, storage medium or processing equipment that modifies phase, polarity or frequency response from the original will affect stereo imaging mono-compatibility and proper surround-sound decoding. Phase and polarity are especially critical.

I suggest that stations use no AGC equipment, especially multiband processors, no automatic phase or polarity "fixers," and definitely no "stereo synthesizers." The audio carnage filling many of our TV channels illustrates what happens when this advice is ignored.

For further information, refer to numerous Audio Engineering Society papers on surround sound and books on stereo microphone techniques.

Regards,
Terry Skelton

July's "Digital Basics" column on new compression chips

Dear Paul:

Your article on "New Compression Chips" made interesting reading.

However, I have a couple of comments worth sharing. First, the wavelet transform has a lot of advantages over the much used (or abused) DCT, specially at low bit rates. Notably, the lack of the "blocking artifact problem." However, I do not think that the wavelet transform provides superior quality over DCT at higher bit rates. Therefore, it is not fair to compare the two transforms in a generic sense. Instead, they should be compared in an application/functionality context. For example, I may have a compression application where scalability may be a non-issue. Hence, I may opt for DCT.

Second, the MPEG committee has not turned a blind eye toward the wavelet transform. In fact, it is a key component in MPEG-4 and addresses a major functionality of scalability. In the future, you can expect MPEG codecs implementing the Wavelet Tx, but my guess is that these codecs would be applied in applications where scalability is a major issue, as opposed to quality.

Cheers.
Arun Ramaswamy, Ph.D
Vela Research Inc.
St. Petersburg, FL

Paul replies:

I agree with you that applications must be compared before deciding on the best technology; also scalability is a key for future work and in that wavelets win...Continued on page 97
Leading edge performance has been a defining feature of Audio Precision products since the inception of our company in 1984. Thousands of our System One audio analyzers are in use worldwide, selected by design engineers for high performance and by test engineers for our comprehensive programmable analog and digital audio measurement capabilities.

Now our System Two true Dual Domain audio analyzer joins the System One, setting a new standard for performance and flexibility in audio frequency test & measurement.

System Two is a true Dual Domain analyzer. Other test instruments may have both analog and digital inputs and outputs...but they're not true Dual Domain! They rely on performance-limiting converters to pass analog signals back and forth to a DSP core of digital-only hardware. Passing signals through a/d or d/a converters for every measurement robs the test instrument of performance. System Two includes separate, independent hardware for direct audio measurements in both domains, plus additional and extensive interface measurement capability including jitter measurements, eye patterns and all other parameters described in AES3, the serial audio interface standard.

The new standard of System Two is represented by performance specifications such as guaranteed analog generator and analyzer residual THD+N of -108 dB, guaranteed analog signal flatness of ±0.01 dB for the generator and analyzer; and 24 bit digital signal generation with 48 bit FFT dynamic range.

From aircraft to automobiles, satellites to cell phones, headsets to hearing aids, System Two represents a new standard for audio frequency test & measurement applications. Compare for yourself - our worldwide force of representatives will be pleased to provide comprehensive specifications and a true Dual Domain on-site demonstration.
Asia Broadcast Centre signs deal with PanAmSat

Asia Broadcast Centre in Singapore has signed a 10-year, multimillion dollar contract with PanAmSat to provide a full-time, digital compression platform system and other services.

The center is using a Scientific-Atlanta MCPC PowerVu system. The multiple channel per carrier compression system will handle traffic on the Pan-AmSat-4 (PAS-4) satellite.

The center also will serve as a backup location for PanAmSat's tracking, telemetry and control hardware and carrier monitoring system used to track the PAS-4.

The deal is significant for Asia Broadcast Centre, because it is the only independent broadcast distributor granted a carrier class license for satellite uplink from the Telecommunications Authority of Singapore. It also represents the first agreement with a major satellite provider in the Asia-Pacific region.

SCTE enters the digital video arena

The Society of Cable Telecommunications Engineers (SCTE) is venturing into digital video technology by forming the Digital Video Subcommittee. This group has issued a call for participants, as well as a call for proposals for digital video standards and practices it will develop for submission to the American National Standards Institute (ANSI).

The subcommittee is responsible for developing the standards necessary for delivery of digital TV services via cable and aims to complete its work by the end of the year. To achieve this, the subcommittee has established the following working groups: video and audio services, data and transport applications, network architecture and management, transmission and distribution, and encryption and access control. Submissions can be sent to Paul Hearty, General Instrument Corporation, 6262 Lusk Blvd., San Diego, CA 92121. For more information, contact Hearty at (619) 623-2935 or fax at (619) 535-2485; or contact SCTE director of standards Ted Woo at (610) 363-6888.

FCC approves Datacast's Digideck system

The FCC has given its approval of the Digideck system from Datacast LLC. The system inserts high-speed digital data into conventional TV station signals. The FCC's action clears the way for Datacast to continue its development and deployment of a national data network for delivering multimedia products to computers. The Digideck technology is digital and transmits at speeds more than 700kb/s.

HDTV stations moving forward

WRAL-HD, Raleigh, NC, the first commercial station to broadcast HDTV, demonstrated the new technology to the industry and media on Aug. 6. The demo was a joint exhibit by WRAL-HD and the Model HDTV Station in Washington, DC, (WHD-TV), showing the first public on-air broadcast and reception of live and taped digital HDTV signals.

The first phase of the station's operation will test signal strength in the Raleigh-Durham-Fayetteville area. A regular fixed program schedule will begin this fall.

SBE plans for future

By Edward J. Miller, vice president of the Society of Broadcast Engineers

The Society of Broadcast Engineers evaluated its purpose in a day-long think tank and strategy planning session. The discussion focused on keeping the society beneficial to its members as demographics and technology change. Other issues discussed included re-defining the SBE's role and how the organization can best address membership concerns; the need for more effort toward establishing a good PR image in the workplace; more effort toward improving chapter communications and relations; possible expansion of the certification program to include the non-broadcast-related industry; and evaluation of membership dues to support future growth.

A "Futures" committee has been chosen and consists of Andy Butler, Jim Bernier, Marvin Born, Mike Fast, Tom Weber and is chaired by Edward Miller. The committee is charged with implementing the findings of the planning session.

The Satellite Communications Users Conference sports name change

After 18 years as the Satellite Communications Users Conference (SCUC), the show's organizers have introduced a subtle name change to ensure that the show continues to attract a comprehensive audience of satellite communications users and professionals. SCUC is now SCEC, the Satellite Communications Expo & Conference. The exhibition is an important part of the total conference experience, and the name "Users Conference" missed that element. SCEC better communicates what the show has always been about — technology deployment for professionals who plan, buy and use satellite communications services, systems and products in worldwide markets.

SCEC '96 will be held Sept. 24-27 at the Sheraton Washington Hotel, Washington, DC. Call fax-on-demand at 1-800-601-3858 for a brochure.
You deliver the story at the top of the hour. Period. The story is everything—and the tools you use to deliver it must be proven. Flexible. And fast.

Avid can help you beat the clock. Letting you air consistently high-quality broadcasts while the competition's still running around with tapes.

Our disk-based editing system, NewsCutter®, is, quite simply, a better way to edit news. Just like word processing for video. Cut and paste. Pinpoint shots frame by frame. Make copies without degradation. And no predigitizing. No other technology allows the control and flexibility that digital-on-disk does.

Avid's newsroom computer systems, Avid NetStation™ and NewsView™, let your entire team share wires, scripts, rundowns and assignments. The latest graphical interface makes it fast and easy. Imagine the impact on productivity and efficiency.

And our unique Digital News Gathering (DNG) system integrates our news editing and playback products into a complete server-based production system. No more waiting. No more missing the deadline.

Avid's field-tested systems are scalable, modular and open. They can be integrated into your existing analog or digital facility and will grow with you.

Sci-fi? Look again. Avid's systems are in use in more than 900 broadcast facilities worldwide. Today. That's a lot of broadcasters who can react to late-breaking news faster—and better—than you can, if you're relying just on tape.

For more information on Avid disk-based news editing, newsroom computer systems or Digital News Gathering, call 800 949 AVID. You can't control time. But you can make better use of it.
In Part 1, highlights of the FCC’s R&O on tower registration were outlined along with the who, what, when and where of registering your antenna structure.

Supplemental filing/posting requirements

In registering more than 75,000 antennas, many owners will likely initiate site surveys to ensure the validity of site information. With the proliferation of inexpensive satellite-based locating devices, such as Global Positioning System (GPS) receivers, some structures that may have been previously located using an area map can now be located to a higher degree of accuracy using “differential” GPS. Also, the antenna registration number must be displayed and be visible from the structure’s base.

The commission will request location data in terms of degrees, minutes and seconds, and height data to the nearest meter. The database will accept latitude and longitude data in either the NAD 27 or NAD 83 datum, up to an accuracy of one second and height to one meter. Owners must specify which datum is used and may use surveying tools of differing accuracy, such as maps, GPS receivers or GPS receivers with differential corrections. It is left to each owner to evaluate the surveying method and round to the appropriate digit. Seven and one-half minute geological maps may yield accuracies within one second, GPS receivers may be accurate to ±3.3 seconds, while GPS receivers using differential corrections may be accurate to ±0.05 seconds.

The FCC will not issue forfeitures to owners or licensees attempting to correct site data during registration. Commission authorizations and FAA determinations of “no hazard” to air navigation, however, are based on the originally submitted data. Thus, changing the coordinates on tenant licensees’ authorizations, depending on the magnitude of the error, may violate the interference protection criteria or may invalidate the original FAA determination.

Therefore, the FCC clarified the procedures by which owners and tenant licensees may ensure that correct data appear in the registration and licensing databases. Owners must submit accurate data without regard to the height or coordinates listed on licensees’ station authorizations. Existing structures will be assigned painting and lighting specifications upon registration based on data from the original FAA determination for the structure or from data referenced in the current antenna clearance database. Corrections of previously submitted data of less than one second in latitude or longitude or of less than a foot in height, will not require a new aeronautical study, and the structure will retain the previously assigned painting and/or lighting specifications.

The FAA requires a new study for corrections in latitude or longitude of one second or more, or a correction in height of one foot or more. In this case, the owner must seek a new FAA determination prior to registration, and the structure will be assigned painting and/or lighting requirements based on the new determination. Each owner must provide a copy of the registration to all tenant licensees. Licensees should note any discrepancies in the data appearing on Form 854R and their station authorizations and notify the appropriate licensing branch. Tenant licensees will not be required to submit a filing fee when correcting site data. In cases where a correction of data for a tenant licensee would be in violation of the rules for a particular radio service, the licensee(s) involved may be required to take measures to avoid interference. In general, the FCC will not require tenant licensees to cease operations while the owner seeks a new FAA determination or while coordinating corrections with the individual FCC licensing branches.

Statutory considerations

Registering a structure constitutes a “federal action” under the National Environmental Policy Act of 1969 (NEPA) or “federal undertaking” under the National Historic Preservation Act (NHPA), such that the imposition of environmental responsibilities on the owner is justified. The owner may be proposing to register and construct a structure at a location that affects the environment within the context of NEPA. Irreparable harm to the environment may be avoided by requiring owners to assume responsibility for environmental compliance at the outset. Moreover, such a requirement will effectuate the implementation of federal environmental policies that require that environmental considerations be integrated into the planning stages of authorized actions. This is particularly true here because the location of an antenna structure in a sensitive area, as defined by Section 1.1307(a), will, in most situations, have the greatest effect on the environment. The subsequent application for an authorization on the structure is a federal action that may have little, if any, additional environmental consequences.
Who Says It's Lonely At The Top?

Maxell is ALWAYS at the TOP with the Exacting digital performance of our D-2 and D-3, Digital BETACAM and BETACAM SP videocassettes. Using advanced magnetic tape technology, featuring Ceramic Armor Metal particles, Maxell has produced the perfect production tapes for every recording application from ENG/EFP to broadcasting. Maxell's "top line" videocassettes feature unmatched error rate and consistent quality, even under severe operating conditions. Add an incredibly strong binder system for increased durability and lower error rates, and you'll be using the superior digital videotapes that keeps Maxell creating innovative tape technology for demanding professionals.

In Your Hands, Our Science Turns To Art

maxell

22-08 Route 2B, Fair Lawn, New Jersey 07410
1-800-533-2836

Maxell Canada - 111 Stiftrem Drive
Concord, Ontario, Canada L4K 2R2 (905) 665-8107

Circle (13) on Action Card
Furthermore, the FCC will divide the responsibility to comply with environmental rules between owners and tenant licensees. A distinction exists between environmental responsibilities pertaining to structural matters and responsibilities pertaining to radio frequency radiation (RFR) levels. Owners who file Form 854 must also comply with federal environmental rules pertaining to the site at the time of registration, while RFR levels at the site will be the responsibility of the tenant licensee(s).

For new structures, under the environmental rules, an owner will be required to identify whether the proposed site is in a sensitive location as defined in Section 1.1307. If so, the owner must prepare and file an Environmental Assessment, which must be reviewed by the FCC prior to registration and construction. In the event that the owner is unable to register the structure due to the ADA, the first authorized tenant licensee would be responsible for registering the structure and complying with NEPA pertaining to the site, as well as RFR levels, at the time of registration. Licensees authorized on structures not subject to registration would remain responsible for complying with the environmental rules.

Part 17 update

The FCC incorporated FAA Advisory Circulars “Obstruction Marking and Lighting” (AC 70/7460-IH), August 1991, as amended by Change 2, July 15, 1992, and “Specification for Obstruction Lighting Equipment” (AC 150/5345-43D), July 1988, in Part 17. This will not change the current procedure in which the FAA recommends painting and/or lighting specifications for a particular structure. The FCC will continue to use the FAA recommendation in meeting its statutory responsibility under Section 303(q) of the Communications Act to prescribe painting and/or lighting requirements.

Owners are not required to update painting and lighting requirements unless recommended by the FAA. The FAA recommends painting and lighting for towers prior to construction only. For existing structures, Form 854R will, in most cases, denote the specific painting and lighting requirements originally assigned. Owners may retain the original painting and lighting requirements indefinitely or may apply to paint and light in accordance with current recommendations. For new construction or alteration of existing structures, Form 854R will reference the FAA Advisory Circulars found in Part 17 at the time of registration.

Primary responsibility

Antenna structure owners will be responsible for maintaining painting and/or lighting in accordance with Part 17. The owner has the primary responsibility for maintaining the painting and lighting, while individual licensees have a secondary responsibility. The FCC rejected the view that licensees on the structure should be relieved of all responsibility for maintaining the prescribed painting and lighting. The reason is twofold. First, in enacting Public Law No. 102-538, 106 Stat. 3533 (making structure owners, as well as licensees responsible for the painting and lighting and making non-licensee structure owners subject to forfeiture), Congress did not suggest that licensees should be relieved of their responsibility to maintain the structure painting and/or lighting. Second, one of the FCC’s primary responsibilities in this area is ensuring that antenna structures do not pose a threat to air safety. For public safety reasons, the FCC must have means to ensure that painting and/or lighting is maintained at all times and that lighting outages will be promptly rectified. Continuing to impose a responsibility on licensees will make it incumbent on them to assure that the owner maintains painting and/or lighting, and, if necessary, take steps to maintain painting and/or lighting in the event of default by the owner.

Under normal circumstances, the FCC will only look to the structure owner to maintain the painting and/or lighting. However, in the event the owner is unable to maintain the painting or lighting, e.g., in cases including but not limited to abandonment, negligence or bankruptcy, the commission would require that individual licensees undertake efforts to maintain painting and lighting. Additionally, if a tenant licensee has reason to believe that the structure is not in compliance or that the owner is not carrying out its responsibility to maintain the structure, the licensee must immediately notify the owner, notify the site management company (if applicable), notify the commission and make an effort to ensure that the antenna is brought into compliance.

The FCC is not requiring licensees to independently monitor the antenna. Instead, licensees must assume responsibility and take appropriate action if circumstances would lead a reasonable person to question whether the structure is being maintained. Under these circumstances, any sanction that may be directed to a licensee will be determined on a case-by-case basis depending upon the magnitude of non-compliance, its length of time, access of the licensee to the structure and the diligence of the licensee to rectify the non-compliance with the prescribed painting or lighting or to alert the FCC or the FAA.

Robert D. Greenberg is a senior supervisory engineer with the Federal Communications Commission, Washington, D.C.
Daily Planet

'It’s my pride and joy, my Porsche - I love it and so do my clients.'

Daily Planet is a leading Chicago-based editing boutique heavily involved in graphics, special effects and 3D animation. Since it was founded 15 years ago, Daily Planet has grown into a full-service post production facility occupying more than 10,000 square feet and employing 25 people.

Fred Berkover
President and Senior Editor
In television, the set forms the stage and backdrop where the talent performs. In keeping with the basic illusion of television, sets create the illusion that the actors are performing in a real house, street, meadow or wherever.

The art of set design

Set design is clearly an art, but it is also an art that requires a good deal of science in order to be convincing. For more than 100 years, the film industry has made images using a mixture of real and virtual elements. What we in television are now calling “virtual elements” the movie industry has called “effects.” Primarily, these effects would be shot using mechanical and optical processes. This includes matte boxes to simulate large cities or landscapes and even moving backgrounds to simulate motion. The dramatic increase in the capability of computers, desktop and larger, has enabled a new branch of set design to develop sets where no wood, canvas or paint is used.

Television is primarily an electronic medium, so in order to accomplish effects similar to those in films, an electronic process needs to be developed. (For the moment, we will ignore the fact that TV shows are often shot on film, and that even in film, some of the effects are created by electronic means.) A phrase that has been borrowed from the popular computer game culture, and has become almost an instant buzz word, is virtual reality. Lately it seems, placing the adjective “virtual” in front of any common term creates an immediate buzz word. So it is with sets.

Virtual sets

Virtual sets, or at least the newest version of them, have appeared at NAB for the past two years. However, if you look back in time, elements of virtual sets have existed in television for many years. An early example of electronic virtual sets that survives to this day is the chroma-key. Announcers are placed against either a green or blue wall (depending on what color the talent is not wearing). Electronically, the color of the wall is detected and used to generate a key signal that is used to switch the video to another source. In this case, the background could be another live camera shooting a wide shot of the stadium. This would give the illusion that the announcers are standing in the crowd when in reality (pun intended) they are in front of a colored wall. Although this illusion conveys the excitement of the announcers being in the stadium, it does not present an accurate simulation of reality. If the foreground camera moves to frame one announcer instead of two, the background does not move to follow the foreground image. Aside from the early newsroom style of chroma-key (where the effect is used to show the talent and some other graphic or video, but not to suggest that the talent was at the scene of the video), there were early studio uses of chroma-key virtual reality. Chroma-key blue (or green), as the paint colors came to be known, were used as part of the set, forming a frame into which a picture of someone could be inserted. This would give the illusion that there were two people in the studio, with the talent interacting with a person in the chroma-key frame as if that person was actually in the studio with the host.

The basic concept of chroma-key — the ability to detect when the camera is shooting a color of a particular hue and saturation — remains a key factor in the modern virtual sets of today. An early implementation of the virtual studio concept (as opposed to the virtual set concept) was where a pair of motorized pan heads were slaved together, with one head mimicking the movement of the other. One camera shoots the foreground scene while the other camera shoots the scene that is intended to be the background. Any movement of the foreground camera is mirrored by the camera shooting the background, including pan and tilt, as well as lens zoom and iris setting (for realistic depth-of-
field changes). Again using chroma-key, the colored background of the foreground camera is replaced by the video of the background camera. Because the foreground and background video is scanned by the camera and not created (or rendered) by an expensive computer system, this can be a cost-effective solution that does not require a lot of computing horsepower.

The next step would be to have the background stored in a still-store/DVE device containing a high-resolution version of the background image (perhaps either a high-resolution scanned photo image or an HDTV-resolution image). The DVE would track the foreground camera movement and simulate the necessary perspective changes.

A lot of the heavy-duty number-crunching must be performed on this virtual set. What results is a computer rendering of each frame of video in which the set appears. This rendering must be done from a mathematical model (which is the set) and must be constantly updated to reflect the perspective and the position of the viewer (i.e., the camera). In a traditional situation with a camera and a physical set, the perspective changes occur naturally through the optics of the camera. Because the image of the set is no longer coming through the camera optics, all of the perspective changes must be calculated.

To calculate the perspective, the image-rendering computer must have data input representing the position, motion and optical parameters (lens settings, such as zoom angle, focus distance and iris opening). This data is generated in many ways. On most lenses, all of the lens information is available through electronic servo readouts. For camera orientation some systems use position sensors on the pan/tilt head, others use motors that are commanded by remote control, while still others derive positional information from the camera video. The last method, using the camera video to derive positional information, allows the system to work with hand-held cameras. This adds another production element that can be used with virtual sets, and also requires the monochromatic backdrop that the moving foreground camera is shooting to have a recognizable pattern. This pattern must contain enough information to allow the computer system to derive its required data, but must not disturb the key or mask-generating function of the system. In other words, it must not spoil the chroma-key.

This brings us back to one of the tools that created the first virtual set effect and is still used to bring the real, physical elements together with the electronic elements — the chroma-key. The chroma-keyer generates a mask or key signal that distinguishes the real elements in the scene, and is used by the compositing device to piece together the final product. Many different types

“LOOK WILCOX, THE DIGITAL COMMUNICATIONS TREND IS CATCHING ON EVERYWHERE,” WHISPERED SNELL.
transition to digital

of processes, such as opacity and layer priorities, can be applied to the key signal to give the resulting image its final look.

Electronic images

An application that can also use virtual set technology is one where the image to be displayed is already electronic data. This would include sports scores, election results, weather data, etc. This data could be animated in the traditional way or it could be reformatted with an eye toward how it would look if it were an interactive part of the set. The foundation for such new-age set design software would be in traditional animation software. Broadcasters are most familiar with these processes through their experience with DVE and character generator/electronic paint systems. Object moves, keyframes and effects time lines must be created for many elements in the virtual set.

Another application of virtual set technology, but one that relies primarily on image recognition, is the process of creating an object that appears on the TV screen, but not in the physical scene that the camera is shooting. Obvious uses for this technology could be the generation of advertising signs in the background of a baseball game or placing one of those ever-present channel logos on top of a football field or tennis court.

In addition to the possibilities of extra ad revenues, with a system of this type it is possible to hang signs where they could not be placed before. There are some venues and sports that would prohibit the actual, physical placement of these signs. This could be due to either contractual obligations or because they would upset or distract play, particularly in tennis.

From a production point-of-view, there are many reasons for trying electronic sets. It allows changes to be made in the set using electronic means. If the elements of the shot are separately recorded, changes can even be made after the live elements have been shot, with the new scene created by compositing the elements. The current crop of virtual set products appeared about two years ago, and were touting the projected cost savings in set construction. Considering that virtual sets must be designed in much the same manner as before (and the current cost of computer hardware and software), it is unlikely that virtual sets will actually cost less than physical sets.

Today's virtual sets require some of the same “construction” techniques as the sets they are attempting to replace. The first is the set itself. The set designer is still required, because the look and content of the set is even more critical. The function of the artist who formerly drew a sketch of the scene (the artist’s rendering)
EXPLORE THE DIGITAL FUTURE WITH SNELL & WILCOX

MARVEL AT THE STUNNING WIDESCREEN PICTURES!

SNELL & WILCOX
Engineering with Vision

Circle (7) on Action Card
becomes more important in the process. The artist's rendering, instead of being a guide for the construction of the set, actually becomes the set. All of the workmanship that went into the fabrication of the set must now be performed on this electronic version of the set, not the physical version of the set. The real value in virtual set technology is the added flexibility provided during and after the production. Using virtual sets shortens the time between "what if..." and the final realization.

The emergence of virtual sets will increase the complexity of TV productions incrementally, but will increase the creative flexibility of the process dramatically. It is an enabling technology that when done well opens up a world of possibilities in TV production. In the future, the virtual electronic set could be viewed as one of the pivotal developments in TV production, alongside the zoom lens, videotape recorder and digital video effects (DVE).

Choosing virtual set technology
By Chris Young

Virtual set systems require sophisticated hardware. At the center is a powerful computer system capable of manipulating large numbers of 3-D objects in real time. High-quality digital cameras mounted on heads provide feedback to the computers. The cameras may even be computer-controlled. In addition, zoom/focus servos and pedestals may provide feedback and be under computer control. A blue (or green) set along with a range of props are needed to give talent the ability to interact with the virtual scene in a believable fashion. High-quality keyers and switching equipment are needed to put all the pieces together. Making a virtual set work effectively requires seamlessly integrated equipment and a team of artists, operators and on-screen talent that can transform ideas into (virtual) reality.

Personnel considerations
When choosing a virtual set system, make sure the systems under consideration provide your artists with a familiar 3-D design environment. It should provide the flexibility to design a scene quickly and easily that is optimized for real-time rendering. More complicated scenes can be pre-rendered, but that requires predefined camera motion paths, which limit the creative freedom of your production team. Choose a system that allows you to balance the need for artistic freedom during the pre-production phase and creative freedom for your production team during production.

Working with virtual sets doesn't have to change the way the production team works. It is beneficial to have the final composited scene appear in the camera's viewfinder. Even better is the ability to have composited views of all the cameras for the director. However, to achieve this requires a system capable of rendering scenes from different camera viewpoints. These capabilities become even more important if virtual 3-D objects are brought into the scene that must be tracked manually by camera operators.

Talent must also deal with changes in their environment. The image processing time can be significant and may be noticeable in the on-set monitors. Because of the video processing delay, audio delays will be needed, adding another level of complexity. At present, delays are an unavoidable necessity that buyers should be aware of. Minimizing these effects will make it easier for the talent to concentrate on their performance rather than the environment.

Validating the cost
It is no secret that the computing power behind a virtual set is complicated and expensive, especially when redundancy and fault tolerance are critical. One way or another, the cost of the system has to be overcome by the amount of revenue it can generate, either directly or indirectly.

Looking first at the tangibles, the single highest cost is for the system's real-time computing engines. Barring physical location restrictions, they do not have to remain dedicated to a studio that may only be in use a few hours a day. The computers can be used as general-purpose engines for the facility, spreading the cost over several departments. In a carefully designed facility, the system can be shared with the graphics pool's general computing resources during off-air periods. They can then be used for generic rendering jobs or to create promos, bumpers and news graphics.

For corporate clients, or those that rent out studio time, it is important to note that a single production studio can be switched over to a new setting almost immediately. This reduction of studio downtime can help a studio reach its maximum revenue-generating potential. When you consider that daily studio rates for a single pilot production for a virtual scene are between $12,000 and $15,000, the payback period can be rather short.

Moving to the intangibles, virtual reality can be used to give a unique look to a program that can become part of its brand image. Entertainment programming, special-events coverage, award shows, prime time news segments, game shows and children's programs are all candidates for this technology. Traditional set design has always played an important part of a program's image, and the same applies to virtual sets.■
THE NAME YOU’LL FIND ON THE WORLD’S BEST LENSES.

Canon’s IFplus lenses take our great IF technology and makes it better, giving users more of what they want. More quality and more selection. This includes the J15aX8B IRS/IAS multi-purpose lens; the J9aX5.2B IRS/IAS widest angle; the J20aX8B IRS/IAS with large magnification ratio for ENG, sports and production; the J33aX11B IAS telephoto portable EFP style zoom; and the J33aX15B IAS longest portable style zoom.

IFplus means wider angles at shorter MOD’s and the widest angle lens available. It means higher MTF performance (corresponding to 6MHz) an

When you want the best family of lenses, be sure to look for the IFplus name. We’d like to tell you more. For information, please call 1-800-321-4388. (In Canada call 905-795-2012)
Balancing technology burnout

Many years ago, Microsoft chairman Bill Gates predicted that business technology would eventually allow people to do a full day’s work in a fraction of the time. They would be free to spend more time on leisure pursuits and with family and friends. That prediction hasn’t materialized. In fact, people are working on average 42 hours a week as compared to 40 hours in 1982. What’s more, being able to work at home, thanks to the home office boom, makes these numbers even more conservative.

In the past five years, more than 40% of companies have reduced administrative jobs. This has caused managers and employees to be engulfed by E-mail and other communications previously filtered by clerical support. According to Olsten Corporation, the main reasons cited were downsizing to cut costs, increased automation and change in the corporate culture. The reality is that people now perform more tasks in the same amount of time, which adds to job stress.

Making a difference in the moment

Many companies still rely on old management paradigms (paternalistic and domineering) for this decade’s evolving technology revolution. The result of this type of management style in today’s computer age is reminiscent of a Gestapo type of monitoring and controlling regime. If we think about how fast technology has increased our ability to analyze things to death, it is frightening.

Managers expect more tasks to be completed in the same amount of time, but often forget that technology itself has replaced layers of workers and the survivors now have more tasks to complete with less help. In fact, the term “multidisciplinary” comes to mind if you read a want ad and compare it to one from 10 years ago. What’s more, with E-mail, the Internet, fax machines, pagers, portable phones and laptops, the sense of urgency becomes paramount.

If we take the adage that work expands to the time allotted to it, we find that people abuse the power of technology. People using “technology” often find themselves doing things not because they should, or because they must, but because they can. Imagine the iterations and “what if” scenarios that you can do now on a computer vs. the slide rule days. Many people may also do this to look “busy” in front of their superiors or to feel that they are busy, but in fact, should be asking themselves if what they are doing is really benefiting the company. In other words, are you really making a positive contribution?

So for managers and employees, stop and smell the coffee or whatever suits your fancy and determine if what you’re doing at the moment is really making a difference. You may feel busy, but are you being productive? As a manager, you should free up some time for yourself and your employees. Doing work for the sake of doing it leaves you with little time to be creative.

The other things to look out for are situations that can cause “brain fade” in your employees. In a recent survey from the American Management Association, the five most cited problems that caused stress were: 1) more tasks than time to do them; 2) too many meetings and correspondence; 3) dealing with incompetence in others; 4) poor communications from upper management and 5) inadequate acknowledgment of personal efforts. Technology can’t rush a person’s creative process without compromising the results.

Technology for support

Another growing concern among managers is how to monitor an employee’s workload away from the office. Thanks to the mobile office, the 40-hour week has long vanished. You must seek your own level of balance between workload and creative and relax time. This means coming to grips with your employer, friends, clients and your family as to when you can be approached. This also means that you need to understand that the technology is there to help you realize your goals and that it is a support mechanism and not a controlling agent.

So if your company has beepers, voice mail, fax machines, access to the Internet, portable phones and other “reach out and touch someone gadgets,” give yourself and your staff a choice of how you and they want to be reached. This choice gives people the ability to better time manage themselves without being overwhelmed by technology.

The bottom line is that technology, like a tool, is a direct reflection of an organization’s thinking and technology infrastructure. As a manager, learn to use the tool properly and you won’t get hurt and can avoid technology burnout.

Curtis Chan is president of Chan & Associates, a marketing consulting service for audio, broadcast and post-production, Fullerton, CA.
At Utah Scientific, we recognize that you need to approach the digital future one step at a time. That's why we designed the UTAH-300 routing switcher. The UTAH-300 handles analog, digital or both in the same frame. Combine this with our new SC-3 Control System and you have a routing system that's powerful and flexible enough to take on today's realities while preparing you for tomorrow's challenges. That means you can upgrade to a digital routing system without retiring your equipment prematurely. It means you have the assurance the UTAH-300 solution will be there to provide the switching and control requirements of the future.

Utah SC-3 Control System
- Analog and digital in the same frame
- Backward compatibility
- Windows programming screens
- Open control protocols
- Ethernet control port
- Third party control capability
- Two level tie line option
- **RealTime Switch™**

Call your Utah Scientific representative at 1-800-246-6744 ext. 5016 for your free UTAH-300 Planning Book. The UTAH-300. So advanced it actually works with your old stuff.
Lighting for video

Light is the stuff from which video images are made. When photons leap through a video camera’s lens onto light-sensitive chips, electrons are sent rushing through the video signal chain. Ultimately, a copy of this original video waveform is re-created inside the TV monitor and electrons hurl themselves at the screen phosphors, forcing them to glow with light.

Quantity, quality and direction are three key words in lighting for video, which prompt the questions: “How much do we need?” “What should it look like?” and “Where should it appear to come from?”

• **Quantity**: The camera needs to be fed with light to make a broadcast-quality picture. (Typically, this could be 800lux from a tungsten source at 2,850°K for a lens aperture of f2.8 onto a neutral surface reflecting 60% of the light energy incident upon it, defining TV peak white.) Creating appropriate images takes more than mere illumination, however.

• **Quality**: The lighting team must paint with the right kind of light in much the same way that an artist might use different grades of pencil. Hard and soft light are two qualities of light that are poles apart. They can be used separately or mixed together.

In hard light, shadows tend to be dark in tone and have defined edges. Reflections and highlights are usually small and intense. Controlling hard light can be done easily using lenses, barn doors, flags, reflectors and a range of modern grip gear. Taken to extremes, hard light can have a rough feel, helping to create cruel, harsh or threatening looks.

Shadows from soft light are tonally lighter and have blurred edges. Highlights are often broad and diffuse. It goes all over the place if not contained, creeping around even large flags and cutters, giving a characteristic lift to an image, which reduces contrast and weakens color. Soft light seems smoother and can make more flattering, gentle or romantic images.

• **Direction**: Imagine that the talent is talking to the camera, introducing a short piece of videotape. (See Figure 1.) After seeing the tape, you wish to cut back to the same presenter, but want to change the camera position by crabbing left through 90° in order to reveal a different part of the studio. Such ways of maintaining viewing interest are commonplace and form the basic challenges that the lighting team must meet.

If the lighting setup stays unchanged, seen from the new point-of-view the talent will appear to be strongly side lit. (See Figure 2.) The relative positions of the subject, lighting source and viewpoint have changed — direction is the key word here. (In both figures, only main lights are shown for purposes of clarity.)

For continuity of lighting style, a second lamp must be used. “Keep it simple” is a good rule-of-thumb. One lamp gives one shadow and two lamps will give at least two shadows. Living on earth, we are used to seeing faces with only one set of shadows. If we lived under the triple solar system of the planet Tharg, we might accept three nose shadows on a face. But here, we try to mimic an ordinary sunny day with our setups.

As initiator of picture quality, lighting professionals have responsibility for the technical and the artistic requirements of any production. They are, quite literally, the keepers of light.

Peter Bryenton is a lecturer at the BBC’s Centre for Broadcast Skills.

For more information, circle (201) on Action Card. See also “Lighting Instruments, Kits,” p. 74 of the BE Buyers Guide.
Our **AT** lineup: the lightest, sharpest zoom lenses in the field.

Even our toughest critics agree: Fujinon's proprietary AT has advanced the TV zoom lens state of the art more than any other breakthrough in the last 20 years. And now we've integrated AT throughout our line of hand-held and ENG-style lenses.

Lenses with AT are lighter, smaller, and better balanced than their conventional counterparts because they require fewer lens elements to deliver optimum performance. They are also optically superior, and deliver greater corner resolution, reduced distortion, and closer minimum focus distance.

You'll find AT only on Fujinon hand-held and ENG-style TV zoom lenses, because only Fujinon has developed the technology to manufacture the large AT optics that these lenses require. There's an AT-equipped Fujinon lens for every application, from the A8.5X5.5 with its ultra-short MOD and extremely wide angle, to the ultralong telephoto of the A36X14.5, and 11 other exceptional performers in between. Each one is rugged, and built to take the punishment of the field.

So whether you're shooting the news or capturing an endangered species, AT gets you a closer shot, with greater detail and in greater comfort than ever before. For more information, contact Fujinon at 1-800-553-6611.

Spherical aberration causes a soft image, and requires multiple spherical elements to correct.

Broadcast & Communications Products Division

FUJINON INC. 10 High Point Dr., Wayne NJ 07470-7434 (201) 633-5600

FUJI PHOTO OPTICAL CO., LTD. 1-324 Uetake, Omiya City, Saitama 330 Japan; Phone: 048-668-2152, FAX: 048-651-8517, TELEX: J22885

See us at WME, Booth #809.
Going on-line with your television

There was an interesting counterpoint to our column in the July issue of this magazine. In her article about the NAB, Marjorie Costello did an excellent job describing how the computer and consumer electronics industries are rushing to stuff the Internet into the home TV set. A few pages earlier, in this column, we made the subdued claim that “As long as more than one person is involved, interactivity in the TV room will be restricted mostly to decisions about which TV program to watch, not interactive shopping, banking or getting stock market quotes. VOD is no more interactive than VHS tape — just slicker.”

So, what is the basis for these conflicting points? First, as TV monitors and computer monitors have become more similar technologically, computer TV set manufacturers have blurred their functionality and user environments. The result is primarily limited to connecting a CPU, CD-ROM and a modem to big tubes with big audio amplifiers. And as Gateway, Zenith, Thomson and others are showing, from an engineering perspective, it's easy (if not cheap). But because it can be done, should it be done?

The PC/TV

"Is it the PC/TV or is it the TV/PC?" — it's neither. A television is a display device. It easily allows anyone to turn it on, select a channel and watch. Televisions will get smarter — but when you go on-line with your TV set, conditions change radically.

Communications

Conversations between individuals have been the killer app of the on-line services and the Internet. This can take the form of chat forums and E-mail. Whatever the mode, it requires a keyboard, some privacy and time.

While the keyboard can be designed, though a bit awkwardly, to work in the living room, privacy cannot be engineered. It is the nature of a television to be of a size and in a position to be easily viewed by as many people as possible. This is exactly the opposite conditions most of us want for E-mail and other personal communications.

Communication with another, whether real-time (chat) or time-displaced (E-mail), usually requires undisturbed time to write. Doing so while watching television can probably be learned, but doesn't seem natural to the TV viewing experience.

On the other hand, television has remarkable powers far in excess of a news group or chat room. The downing of TWA flight 800 and the Olympics were events that were shared as a community. They did so because of the tremendous information gathering, filtering and presentation resources of TV networks.

The idea of browsing the web on your television represents a culture clash between hardware manufacturers without much involvement from the software developers. From a hardware perspective, putting the web on television is easy. However, just because it is available doesn't mean people will use it. There is still a wide gap between personal communications and passive (or interactive) television. The bottom line is that “one size” does not fit all. There's a need for both types of display — and technology.

Steven Blumenfeld is vice president of technology and studio operations, and Mark Dillon is vice president, on-line services, with GTE, Carlsbad, CA.
MPEG-2 digital video? Get more than just a boost in channel capacity. Get network control and save rack space.

Save space. Pack digital video encoding, three stereo digital audio channels and your QPSK modulator into 5 1/4 inches of rack space. Wrap it in a package so rugged it thrives in SNG trucks. Only Wegener delivers this much in this little space!

Get control. Boost programming flexibility with the industry's most advanced network control system. Go beyond addressability!

Control each receive site, groups of sites or all sites simultaneously. Deliver localized programming. Switch external devices. Transmit messaging and e-mail. Send data.

Change video data rates on the fly—2.5 to 15 Mbps—to adapt to broadcast material, weather conditions and available bandwidth. Select FEC coding rate (DVB compliant, of course), output power and frequency.

Locally, use front-panel controls or a remote serial port. Over the network, a new drag-and-drop graphical interface makes Wegener's advanced Addressable Network Control System even more powerful.

Get more than just digital video. Get the Wegener difference in MPEG-2 digital video. Cut your costs and build your profits. Call our Fax-On-Demand toll-free at (800) 711-1142 for a fact sheet that will help you compare digital video products—or e-mail zmpeg2@wegener.com.

Do it today. We'll respond immediately.
All predictions are leaning toward the introduction of digital ATV as a gradual process from the consumer side, as well as the manufacturer side. Initially, the digital ATV market will be small, but as the new broadcasts begin, viewer interest and demand for the new receivers will increase. By the year 2002, the price of ATV receivers and set-top converters should bring ATV within reach of a mass market.

By late this year or early 1997, the entire FCC rulemaking proceeding should be concluded. The technology may be licensed to anyone on reasonable terms in accordance with FCC requirements.

The familiar analog system

NTSC is an analog signal. The picture information that we see is the modulated signal of the visual carrier, and the audio signal is the modulated signal of the audio carrier. The quality of the received NTSC picture deteriorates gradually with decreasing signal-to-noise ratio as distance from the transmitter increases. Because NTSC television is an amplitude-modulated system, the signals are subject to multipath “ghosts” and to natural and man-made electrical noise, which show up as annoying sparkles and lines in the picture.

Under normal conditions, analog transmissions provide excellent picture reception within the city contour nearest the transmitter; pictures of good, but not excellent quality, are received within the Grade A contour; pictures of marginally useful quality are received out to the Grade B contour. This is a gross oversimplification, of course. In the real world, TV reception varies widely from location to location and from time to time. The different grades of reception are statistically derived on the basis of time and location variability. Because of the shape and placement of the carriers, the 6MHz spectrum utilization is non-uniform. The signal power is concentrated at the visual carrier, while using only a small segment of the spectrum. In total, the remaining power of the signal is only 10% of the power in the visual carrier.

NTSC requires extremely low VSWR, approximately 1.05:1 at the visual carrier, especially at the antenna input. This is necessary to eliminate visible ghosts due to internal reflections in the transmission lines. The low visual carrier VSWR is also required because of the concentration of the signal at the visual carrier. In the rest of the channel, the VSWR does not need to be as low; 1.2:1 or lower is sufficient. Moreover, because the 6MHz channel is basically used in a uniform manner, the linearity of the phase and amplitude response over the 6MHz band is not critical.

The new digital service

The first-generation ATV field tests confirmed that digital ATV will outperform NTSC transmission. The digital ATV transmitted signal can deliver HDTV-quality pictures into the fringe areas of the existing NTSC contour, and do so with lower transmitter power and reliability.

In simplistic terms, the digital ATV signal is a string of digital pulse amplitude modulating an RF signal. The visual and audio information are coded as strings of 1s and 0s in the form of pulses modulating the RF signal. So long as there is sufficient signal strength for the decoder to decode digital data, a perfect picture will result. If the signal strength falls below that level, the system loses its ability to maintain picture and sound; it crashes and no reception is possible.

There is no gradual deterioration of picture quality with increasing distance from the transmitter, as with NTSC. Thus, there are no grades of coverage; it is either all or nothing.

Based on the reception planning factors used by the ATV Field Test Subcommittee in calculating ATV service, minimum signal strength levels for ATV service have been calculated for each channel from 2 through 69. There are large propagation disparities between the different channel groups. Channels 2-6 require signal strengths in the 20-30uV/m range. For Channels 7-13, the requirement is around 60uV/m, and for UHF, it varies from 120uV/m to 200uV/m.

The spectral power distribution is almost uniform across the channel when the carrier is suppressed. To make the RF components transparent to such a sideband signal, each component should demonstrate a uniform amplitude response, as well as a linear phase response across the 6MHz band. Minor imperfections in the RF system response can be corrected by using channel...
TO YOUR VIEWER IT'S A COMMERCIAL.
TO YOU IT'S REVENUE.
TO US IT'S OUR PROFESSION.

That's why for over a decade Odetics Broadcast has had a single focus, to provide the highest quality and most reliable on-air presentation systems available. At the heart of our focus is an understanding that no two broadcasters are alike, each requiring a unique solution.

Odetics' created Hierarchical Video Management (HVM) to maximize efficiencies in every installation, whether it's an automated video management solution for a single channel system or a complex multichannel system. Our newest HVM solution is the world’s most sophisticated multichannel video management software, Spectrum™, maximizing the benefits of video tape and digital disk storage.

We are providing scalable system solutions, today and into the 21st century. Contact us now, and see how our video management solutions will help your bottom line.

The Video Management Solutions Company
USA (714) 774-2200 EUROPE +44 (0) 118 956-0564 ASIA +65 324-0636
WWW http://www.odetics.com/ E-mail broadcast-sales@odetics.com

Since our beginning, we have constantly looked for better ways to manage on-air presentations. With the advent of the digital disk recorder, multichannel systems became feasible. The challenge was to make the solutions seamless, automated, and very cost effective. In 1994 Odetics did just that, and introduced the concept of Hierarchical Video Management (HVM). HVM is a system architecture that combines the archival advantages of tape libraries with the speed and immediacy of digital disk. Today, Odetics Broadcast is recognized around the world as a leading supplier of multichannel on-air presentation solutions.
equalization techniques.

The operating power for the new digital ATV is estimated to be 10-13dB below, or 5-10% of, the equivalent operating power for NTSC. Unlike the NTSC spectral power distribution, the digital ATV power is almost uniformly distributed over the channel. Because of the uniform distribution, tough requirements are imposed on the wideband response of the RF components and antennas.

Key RF issues
The most important issue in deciding on an RF system for digital ATV is minimizing the distortions to the digital ATV signal, such as group delay, phase non-linearity and ripples in the amplitude response. The digital ATV signal passes through filters, combiners and transmission lines, and is naturally affected by the response of these components. The total degradation in the signal is the sum of the degradations caused by each individual component. Bearing this in mind, it is to your station's advantage to minimize the number of components, such as combiners and filters, and design carefully for the use of waveguide.

The antenna must be designed and planned carefully to minimize potential distortions from the radiator. The key issues to be concerned with from the aspect of the ATV antennas are pattern stability, phase linearity and group delay. Pattern stability is a measure of insensitivity of pattern shape to frequency across the channel. Stability of patterns in azimuth and elevation planes are mostly a function of the antenna type. Pattern stability also depends on the support tower in those cases where there is the potential of scattering caused by the tower. The azimuth pattern stability usually depends on the radius of the radiator (or radiators, in the case of panel antennas). Slot antennas usually demonstrate better azimuth pattern stability than panel antennas. Patterns with deeper azimuth nulls have less pattern stability.

The typical elevation patterns of the branch-fed antennas demonstrate reliable stability within the angle of the main beam. Antennas fed from the end demonstrate some minor beam scan, which is insignificant in the main beam angle area but could result in a variation of the received field in null areas. Therefore, the end-fed waveguide slot antennas should be carefully designed for their suitability for digital ATV systems because of the dispersive nature of waveguides. For digital ATV, the azimuth circularity of the antenna patterns is not as crucial as it is in the case of NTSC. Unlike NTSC where the quality of reception is critically dependent on the quality of the strength of the received signal, successful reception of the digital ATV signal depends only on the recognition of pulses after demodulation. A perfect picture is usually possible at lowest levels of field, until fall-off.

Louis Libin is director of technology, NBC, New York.
The new Sachtler Vario Pedestals offer unique features for studio and OB operation:

1. Continuous column stroke, for shooting from sitting to standing person’s height – Vario Ped 2 - 75.

2. Rock steady and 50 kg/110 lb lightweight, to carry equipment up to 90 kg/200 lb – Vario Ped 1 - 90.

3. Carriage and column can be disassembled in seconds – compact modules for ease of transportation.

4. Quickfix, allows instant change of fluid heads for flexibility – included.

5. Track width, narrow and wide, symmetric and asymmetric – set in no time and you well can expect precise, easy steering and crabbing, smooth and jerkfree column movement thanks to the patented Sachtler pneumatic system. Test for yourself the optimum camera support for all compact Studio/OB cameras, now!

55 North Main Street
Freeport, N.Y. 11520
Phone (516) 867-4900
Telex 140107 sac frpt
Fax (516) 623-6844

California office:
3316 West Victory Blvd.
Burbank, CA 91505
Phone (818) 845-4446

Sachtler
Corporation of America
Routing and switching digital audio signals is not a simple task.

By David L. Bytheway

Many facility engineers today are establishing AES/EBU digital audio signal distribution systems. Implicit in this task is the capability of signal switching in the digital domain without pops, glitches or other noises. In the analog audio world, this goal was not difficult to achieve. Yet, the digital audio signal is fundamentally different from an analog one: it is a sampled signal. This simple fact changes all the rules. Sampled signals do not respond to switching the same way that analog signals do. Three basic problems must be addressed in order to realize the desired “silent switching” between AES/EBU signals.

Synchronization

The first issue is synchronization. In switching and mixing two digital audio signals, the sample rates of the two signals must not only have identical sample rates, but they must be locked together. If the two signals are not locked, it will be practically impossible to find a point to switch between them without damaging a sample. Synchronization is a familiar process to video engineers, but it is new to many audio engineers. Nevertheless, it has become essential for most audio operations in today’s teleproduction or broadcast facilities.

Signal sources are usually synchronized by connecting a sync or reference signal to all signal sources. If a source cannot be synchronized, the only real solution is to provide sample-rate conversion to bring all non-synchronized signals to the “in-
house” standard before switching or mixing. Fortunately, several manufacturers are now making relatively low-cost (compared to the past) chips that perform this rate conversion. These parts are being incorporated into many digital mixers, but they are not usually used in switching equipment. Sample-rate converters also must be used carefully because the rate-conversion process is not transparent. Distortion is always added in the process.

Timing
Timing refers to the alignment of digital signals’ AES/EBU frame boundaries so that switching can take place without damage to any signal’s samples. This is only possible if the signals to be switched are already synchronized. Some switching equipment provides the ability to automatically align the frame boundaries. This is usually done by decoding the AES/EBU bitstreams of the two signals being switched, then feeding this data into either a double-buffer or a FIFO-type memory. The two signals are clocked out of the buffer or FIFO based upon a local reference signal (usually provided by a sync or reference input to the device). Switching then takes place at a point in the AES/EBU bitstream that will not cause sample damage, such as at the end of the preamble denoting frame boundaries. Damaged samples can make a loud tick or click sound.

Switchers that do not automatically provide time alignment may require cutting of cables or adjustment of the source timing to provide proper alignment of incoming signals. In practice, this can be a nearly impossible task for typical digital audio devices. In anticipation of the problems, a recommend-
Distributing digital audio

ed practice was developed by the AES called AES11-1991 (ANSI S4.44-1991) entitled “AES Recommended Practice for Digital Audio Engineering: Synchronization of Digital Audio Equipment in Studio Operations.”

An automatic timing scheme is defined in this recommended practice, which defines certain timing windows that inputs and outputs must follow in order to avoid cutting cables to timed lengths. Devices that follow this standard will provide a reference input and some method of accepting synchronized but out-of-time inputs.

Dissimilar signals

Even after the two problems just mentioned are solved, there still exists the problem of **dissimilar signals**. A sampled signal does not respond to a disturbance in the stream of samples in the same way as a sudden interruption in an analog signal. Simply stopping a signal at a sample boundary will not give a pleasing result.

If you plan to use a digital audio switcher to present signals to the air chain, you should carefully study this effect. When switching is done between two synchronized and timed signals during silence, such as between two programs, the result can be acceptable in most cases. Many such switching systems are available. But these systems cannot guarantee that all switches will be glitch-free 100% of the time.

When one or both of the signals involved in a switch are “active” (not in silence), there can be an audible pop or click created at the switch. This is not the result of synchronization or timing problems, but is a simple fact of life with sampled signals.

![Figure 1. The waveform of a single digital audio sample exhibits the familiar sinx/x function.](image)

To illustrate this problem, consider the time domain responses of digital audio samples. A single audio sample heard alone will sound like a click. It is actually the sound of an impulse and has the waveshape of a sinx/x curve. A signal such as this was often used in early CD player evaluation and can be found on many CD test discs. It was used to test the output polarity of a CD player, but could also be employed to show ringing of the D-to-A conversion process. Careful examination of the resulting analog waveform will show the classic sinx/x shape. (See Figure 1.)

Each digital audio sample has this waveform, and it is only when all the waveforms of adjacent samples are added that the analog audio output waveform is created. It takes a sequence of many samples (both before and after switching) to give a pleasing result.

Connecting in the analog/digital audio world

* By Bernard Weingartner

One of the proverbial questions in the audio industry is, “When do you think everything will be digital?” It may never happen, because human beings will remain analog communicators as will most acoustic musical instruments. This makes transducer manufacturers and the makers of connectors and wire happy, because it means that microphones and their paths to the A/D — as well as speakers and their paths from the D/A — will remain in the analog domain for quite a while.

Meanwhile, digital connections and paths will coexist with these analog systems. The pace at which digital will overtake analog will likely vary between market segments, however. It will happen quickly in the audio-for-video environment (where users are dealing with wide bandwidth already), followed by home recording (with more robust and forgiving requirements) and then automated broadcasting where much data handling is already in place.

Little digital application is seen in smaller PA installations where price is the leading issue, as well as in larger PA systems for live concerts although they have quite a bit of digital outboard equipment already in use. As far as the large recording studios are concerned, there is no clear picture: Coexistence of analog and digital worlds seems likely to stay that way for some time.

What digital transmission technically means is simply applied RF technology — transmission-line theory — which encompasses terms like propagation resistance, reflections, standing waves, impedance matching, line bandwidth/attenuation, and more important, electromagnetic interference (EMI) problems (incoming and outgoing) where fairly stringent rules prevail in Europe.

(A simple test can help to check the presence of possible EMI between two digital devices: Set them side by side, one input cable and one output cable of 10-foot lengths, 110Ω terminated, paralleled close to each other but not connected, and set a sampling rate of one unit to 44.1kHz and a sampling rate of the other to 48kHz. No interference tone must be audible.)

Therefore, new quality parameters for connectors and cables apply, such as correct and uniform wave propagation...
DIGICART/II. THE VOICE OF MASTER CONTROL. No wonder it's used by virtually every major television network in the world. Fact is, DigiCart/II is the industry standard for playback of bumpers, voice-overs, stingers, and effects. Nothing else organizes, archives, and instantly retrieves more than 10,000 sounds with digital quality and precision. It's networkable, uses both hard disks and removable media, and supports both fully linear digital audio and Dolby compression.

With programmable playlists, full GPI, and serial control, DigiCart/II is your best insurance against dead air, missed cues, and make-goods. So test drive a DigiCart/II in your facility at our expense. Call today and we'll send you one tomorrow.

If you're a call-letter station, you can try DigiCart/II for 10 days with no obligation. If you decide to buy it, we'll arrange your purchase through one of our authorized dealers. Offer good in the continental US and Canada only. Offer expires December 31, 1996.

DigiCart/II

©1996 360 Systems

Circle (19) on Action Card
Your company will take either one road or the

Our VideoStore™ Multichannel Video File Server: This solution is ideal for broadcasters, telcos, cable systems and interconnects who are looking for a cost-effective, stand-alone, complete commercial insertion package.

And it is, indeed, a complete package. The VideoStore System has the capacity to offer hundreds of hours of storage and hundreds of channels of programming. Not to mention MPEG-2 Main Profile at Main Level (MP@ML) for the outstanding picture quality that you’ve come to expect from Sony.

It’s also entirely broadcast ready, with support of closed-captioning and expanded motion estimation, four channels of audio, and instant access to all video clips in your library.

Yet its highlights don’t stop there. There’s also our Predictive Maintenance™ feature. Its built-in redundancies offer maximum protection against mishaps while letting you know of virtually all potential problems before they become real ones.

Plus, with the VideoStore System’s open protocol, even third party automation vendors can use any control platform to operate the VideoStore System. In other words, you get the flexibility that you want, that you require, and that is so necessary to integrate the automation software package that’s best for your station.
The Sony Transmission Automation System (STAS): Our STAS System is modular, making it well suited for broadcasters of most any size, network control environments, cable networks and programming originators.

That's especially true if you consider configurability, growth and comprehensive management of both program and commercial material into a plant-wide digital format to be important requirements.

With hundreds of hours of storage capacity, STAS is more than capable of handling all your long- and short-form programming needs. You can use it for the origination, contribution and distribution of all your transmission materials. And with its MPEG-2 4:2:2 profile compression technology, our STAS System consistently delivers superior signal quality, enhanced chroma, full VBI support, frame accuracy and minimum degradation during subsequent recompression.

What's more, with its Component Serial Digital outputs, STAS offers complete digital signal integrity while being the transmission component of your digital environment.

For additional information on our VideoStore and STAS Systems, simply call us at 1-800-472-SONY, ext. INSERT. Or you can visit us on the Internet. Our address is http://www.sel.sony.com/SEL/bppg/videostore/index.html.
resistance (WPR) or uninterrupted and consistent shielding (including the connectors). Important questions in this context include: Is there any danger of jitter induced by mechanical movements of cable and or a connector? Is the grounding system well-designed throughout?

In the pure digital environment, the final solution will be the coaxial cable (75Ω) and associated RF connectors, a subtle challenge for audio users and “analog connector” manufacturers. In the mixed world of analog and digital, the XLR with 110Ω shielded, twisted-pair cable will prevail, as specified by AES/EBU recommendations. The ideal shielding/grounding technique for this connecting system is a consistent coaxial shield where all XLR connectors are linked together via the cable shields, and linked to the equipment “coaxially,” with as low a resistance as possible. This would solve the well-known “pin 1 problem” in the analog domain (although it must be said that for some normal applications a proper, short-as-possible wired shield-connection via pin 1 to chassis is an acceptable compromise).

Today’s audio systems still require a variety of connectors, handling analog and digital audio of several formats.

The XLR connector is so short compared to the wavelengths in the cable that its theoretically larger WPR causes no reflections. What is more important is a good contact (gold instead of silver) and a stable, low shell-to-shell resistance.

Regarding cable quality/specifications, it is recommended to use precise, short twisting, good isolation of the conductors and a tightly wound spiral shield with at least 97% persistent coverage.

Another issue of the 110Ω technique concerns the use of patchbays. The patchbay must be a low-capacity version with a manufacturer’s declaration that it is “digital capable” or able to pass AES/EBU digital signals without distortion.

Finally, check whether input and output impedances of digital equipment is really 110Ω ±10% and that “RF termination rules” are observed throughout. (For example, if you parallel two devices of 110Ω each, you have to provide 110Ω serial resistors to each input.)

As a rule of thumb, digital audio transmission over a standard unbalanced audio cable connector (usually around 60Ω to 80Ω) should cause no problems over cable lengths of around 30 feet end-to-end. With good twisted-pair cable, the minimum length extends to about 10 times longer (300 feet) with a maximum of 10 connecting points inserted.

However, it is not recommended to use unbalanced (RCA) connectors for professional analog audio because such wiring risks interference problems and a distorted analog signal can never be restored like digital signals can.

Expect to see new and refined connector designs that will continue to improve on the analog and digital hybrid audio interfacing requirements of broadcasters.

 Bernard Weingartner is president of Neutrik AG, Schaan, Lichtenstein.

NEW BELDEN® DIGITAL AUDIO CABLES... 110 OHM IMPEDANCE DESIGN PROVIDES ERROR-FREE TRANSMISSION OVER EXTENDED DISTANCES.

Suppose you need a digital audio cable that meets the latest AES/EBU standard? Simple! It has to be high flex? Or NEC rated? You got it! A patch cable? Or snake? No problem when you specify Brilliance® from Belden.

Belden has developed three new Brilliance cable lines to meet the digital audio needs of your television, radio, post-production or recording studio. And each offers tight impedance tolerance and low capacitance imbalance to minimize signal reflections and jitter.

- High Flex Cable (Belden No. 1696A)
- Cables available in 1 pair CM rated (Belden No. 1800A), 1 pair CMP rated (No. 1801A), and 2 pair Zip-style CM rated (No. 1802A)
- NEC Rated Snake Cables in 4 pair (Belden No. 1803A), 8 pair (No. 1805A), and 12 pair (No. 1806A)

Get winning results every time. Call 1-800-BELDEN-4 and request New Product Bulletin No 105.

© Copyright 1994, Belden Inc. * Trademark of the National Fire Protection Association, Quincy, MA
What if everyone could afford one?

We've been working on this solution for awhile; a loaded, mid-range, digital production system that's all Grass Valley. We came up with the 2200-2i. Sit down at one and you'll feel you're at home: All component serial digital design, Effects Send capabilities, fully integrated Krystal™ DVE with Timelines, Lamina™ Image Layering, Chromatte™ Chroma Key System – features you would normally enjoy only on very high end installations. And yet here they all are, packed neatly together into a very affordable, very powerful post production system.

The Grass Valley 2200-2i is just one of a host of video solutions from Tektronix. Find out more. Call 1-800-395-9478, Dept. 902.
Continued from page 32

any given, single sample), with each sample adding its unique contribution, to create the continuous analog waveform values that “connect” (i.e., fill the space between) sample points. Figure 2 shows a portion of an analog waveform that is the result of the summed response of the individual impulse responses of each sample.

When a digital audio stream is disturbed or truncated, the “side lobes” of the \(\sin x/x \) curves cannot add properly as they do in Figure 2, and the resulting waveform may have a large transient or click. When the digital audio streams of two dissimilar waveforms are butted together as in a switch, the resulting waveform will not necessarily be pleasant sounding. The side lobes of each signal do not add up as they would in an undisturbed signal and, therefore, an audible click is produced, as shown in Figure 3.

The sound of each switch will be dependent upon the exact signal conditions at the switch point. Sometimes these switches will be transparent and other times a noticeable click will occur. This problem exists in today’s digital switching and digital editing equipment. Editors began to learn several years ago that simply butting up two digital audio cuts on a digital editing system could cause problems, and the issue is now well-known among experienced users.

The real solution

When totally clickless audio presentation is the goal, more than synchronization and timing are required. The real solution is to produce either a cross-fade or a “V-fade” between the two signals. A ramp of attenuation over many samples (usually in the hundreds to thousands) will produce a pleasing result. This is usually done with digital signal processing (DSP) techniques. Both signals involved in a switch (signal “A” and signal “B”) are presented to the DSP. The outgoing (A) signal is faded to silent over many hundreds of samples, and then the incoming (B) signal is faded to full over

How to avoid the hidden costs behind every incandescent indicator.

![LED TRONICS](image)

We offer direct replacement LEDs for virtually every incandescent indicator lamp made. Through inexpensive itself, an incandescent bulb brings with it some very costly baggage.

High maintenance and down-time costs. Incandescents have a short operating life because of the intense heat they generate, the destructive on-off cycling they see and their vulnerability to even minor vibrations.

Poor energy efficiency. Over 90% of the power they consume is actually wasted, producing unwanted heat.

The premature failure of nearby components. Incandescents generate high temperatures which simply fry other components.

Now for the solution—our long lasting replacement LEDs. They have no filaments, are unaffected by on-off cycling, and tolerate considerable vibration. They also draw 90% less energy and generate almost no heat.

For more information, call (310) 534-1505 or FAX us at (310) 534-1424.

LED TRONICS
More Choices, More Light.

Circle (31) on Action Card

38 Broadcast Engineering September 1996
Now would be a good time to talk to us about the Profile® PDR Digital Video Disk Recorder. It has complete Fibre Channel network capability; up to nine hours of native digital storage; a new interface that makes editing, scheduling and managing source files as easy as click and drag; an awesome RAID option with as much as 96 hours of instant digital access; or a Profile Library System on the order of 1.5 Terabytes.

What this means is that the ulcer-inducing days of waiting for someone to finish with a vital source tape — or even trying to locate it — are finally gone. Everybody can share the same source, at the same time, instantly.

Talk to us about the PDR and other digital storage solutions. Call: 1-800-998-3588 ext. 703, or visit our web site at http://www.tek.com/VND

Have you talked to Tektronix?
For 17 days, Panasonic brought you the images of the Centennial Olympic Games. World records were broken. Gold medals awarded. And the spectacle and pageantry was captured with Panasonic cameras and recorded on Panasonic VTRs.

This fall, the Panasonic Centennial Olympic Games Series—the cameras, VTRs, and other production equipment used in the Games’ international television coverage—will be available for sale for a limited time. The proven D-3, D-5 and DVCPRO VTRs used for recording, editing and archiving; the digital camcorders and ENG, studio and POV cameras that acquired every Olympic moment can now perform for you. Audio mixing consoles, speakers, amplifiers and DAT decks, a wide selection of broadcast monitors and digital switchers and editing systems—are all part of this exciting and unique program.

Each piece of this limited series is designated as the Panasonic Centennial Olympic Games Series, with gold plaques and certificates of authenticity.

To find out more about how you can own a piece of the gold, call Panasonic at 1-201-348-7671.

Supplies are limited!
many hundreds of samples. This quick V-fade will result in a smooth, click-
free transition between signals.

That approach is the only sure way to produce a perfectly clean output signal from a digital audio switcher. Once this fact is acknowledged, the question that inevitably comes up next is: "Do I really need to do this on all of my switcher outputs?" The answer will usually be no. Most switching (such as that performed by a facility's routers) does not occur during the program audio and, therefore, the sophisti-
cicated and generally expensive DSP devices required for 100% clean switching will not be needed. For dig-
ital switching to air, however, such devices are mandatory to deliver consis-
tent, quality presentation. Without such precautions, hot switching and
digital audio signals simply cannot coexist.

David Bytheway is a principal engineer at Philips Broadcast Television Systems Company in Salt Lake City, UT.

For More Information
Circle (203) on Action Card. See also "Routing Switchers," p. 70 of the BE Buyers Guide.

Converting your facility to digital audio
By Otto Svoboda

The lure of digital equipment has included guarantees of higher productivity, increased efficiency, greater cost-
effectiveness...you've heard it all before. While this may be true, it's not the whole story. The sales pitches generally forget to mention that these amazingly powerful digital tools allow you to create a product with such fine detail and resolution that the time you might have saved is taken up by fiddling with minutiae in the quest for perfection.

More specifically, many products look great from a distance, but their luster fades as you learn their limitations. For instance, the DAW you thought had 99 tracks and super punch-in capability actually can only playback eight tracks (or punch-in two tracks) at a time, and even this takes extensive keystroking.

But I digress. The real challenge for any facility is to find the places where new digital technology can provide the most benefit today, balanced with the places where it makes sense to keep existing analog technology around for a while. Ideally, you'll have a rough master plan for this transition so that today's choices will fit nicely into tomorrow's realities. The process is a slow but progressive integration of digital audio into the working environment.

A case study
At the CBS Television City facility, daytime dramas, game shows and talk shows are the mainstays, with sitcoms and variety shows that come and go. The seven production studios feature a variety of recent analog consoles, including three SSL 6000s, two SSL 8000GBs, one Neve 8148 and one Yamaha PM4000. Digital finds its place in these production studios as storage media. Music playbacks will remain digital from the microphone pre-amps to the console with the space requirements and flexibility of current analog consoles, plus the processing power of DSP, are a sensible goal. Combined console/recorder packages that equipping a new facility with the latest "conventional" systems (or a hyorid of new and conventional technologies) is still a viable option.

What's next?
It's pretty clear that the future holds a continuing conver-
sion from analog to digital for practically every facility in the business. For production and post-production, an all-digital console with the space requirements and flexibility of current analog consoles, plus the processing power of DSP, is a sensible goal. Combined console/recorder packages continue to stir interest, as well. Eventually, the audio signal will remain digital from the microphone pre-amps to the recorders, bypassing all intermediary D/A and A/D conversions. In post-production, true multitrack capability (without virtual-track and I/O limitations) is another goal.

See what comes back and make your decision. Remember that equipping a new facility with the latest "conventional" systems is still a viable option.

Otto Svoboda is an audio mixer at CBS Television City, Los Angeles.
INTRODUCING A LINE OF RECORDABLE MEDIA FOR PERFECTIONISTS. THE TDK PRO LINE. IT'S **PURE PRECISION.**

BECAUSE EVERY FORMAT, EVERY LENGTH, EVERY GRADE IS 100% SPECIFICATION GUARANTEED. FOR YOUR
FINES WORK. IT'S MORE INNOVATION FROM THE PEOPLE THINKING ABOUT WHAT YOU DO, AND THE TOOLS
YOU NEED TO GET AHEAD. FROM THE COMPANY THAT'S TAKING PROFESSIONAL RECORDING FAST FORWARD.

For more information on our complete line of recording products, please call 1-800-TDK-TAPE or check out our site on the World Wide Web. Circle (34) on Action Card

http://www.tdk.com
The convergence of video production, broadcast, communications and digital computing has spawned a new class of computing system — the video server. The video server is related to its cousin, the file server, because both "serve" data to fulfill requests from clients. Serve refers to the action of retrieving data from digital storage and forwarding it to the user via a communication's network. Video servers, not withstanding their similarities to file servers, have performance demands placed on them that make the architectures employed unique.

A key component of these architectures is high performance, redundant disk storage.

The video server paradigm

Video servers are used to deliver digitized video data to a communication outlet (for distribution of the video) in real time. Upon request or on a pre-programmed schedule, the video server must retrieve video (which has been digitized and compressed) from on-line storage and forward it through system buffers to a communication outlet for transmission.
You never get a second chance to make a first Compression
Compression Pre-processing
&
Real-time Test and Measurement

First compressions count - in more ways than one.

If your source material is not as clean as it could be, then valuable bandwidth will be wasted compressing noise, sparkle and other imperfections.

And if the compression system itself is not performing to specification, how can you be sure of finding out - before the viewer does?

Now a new range of powerful compression products from Snell & Wilcox provides the solution to both these problems.

High-performance compression pre-processing equipment guarantees input pictures as perfect as they can be.

And to troubleshoot MPEG2 video compression systems in real time as well as off-line there's a unique series of test and measurement tools.

If you want to make the best possible compression, whether you're a broadcaster, post-production house, program maker, teleport operator or equipment manufacturer, find out more about this exciting new range by calling one of our offices below.
to the viewer. This process must be performed in real time to ensure the video is delivered at a continuous rate of 30 frames per second (fps). A typical video server environment is shown in Figure 1.

The video server is typically a powerful workstation with hardware and software designed to deliver video in real time. The hardware architecture of video servers must allow for many streams of video to move from the online disk storage through internal system buffers and out through communications connections. While any of these components could limit the server's performance, it is the disk subsystems which, if improperly designed, have the potential to degrade performance by 50% or more. Furthermore, because the disks in a video server account for about 50% of the server's cost, anything less than optimal configurations can dramatically impact the server's cost-effectiveness.

Unlike file servers, which manipulate data of any type, the video server's sole task is to retrieve video data. The video data stored on a video server consists of programming that has been digitized and compressed. Typically, there will be a large number of different titles stored in the video server, of arbitrary length (depending on the type of video — movies, news, commercials, etc.). Each title may be played at differing times. Also, multiple copies of the same title may be active simultaneously. Advanced server software, typically found on systems serving metropolitan areas, may schedule multiple requests for the same title into slots, eliminating redundant data requests. For each slot, regardless if single or multiple video requests are being serviced, the video server must supply a single video stream.

The sequence of digitized data that comprises a piece of video, when transferred in such a fashion as to satisfy a viewer's request, is said to be a stream. A stream is sequential, in terms of chronology and not how it is organized on a disk subsystem. In practice, video streams are typically stored sequentially for performance reasons. If a viewer pauses or rewinds, a new stream is generated when the playback resumes (at least from the video server's perspective). Video servers typically support numerous simultaneous streams. For performance modeling, a random distribution between streams is often assumed. Video streams also have isochronal characteristics. Specifically, each frame in a video stream must be delivered every 33ms (time per frame at 30fps). For acceptable video playback, the server can't deliver video on an average of 30fps (e.g. 60fps for one second, 0fps the next). Within the server, the method used to provide isochronous performance may accommodate some components' inability to operate truly in an isochronous mode. For instance, system buffering may allow disk subsystems to load a sequence of video into the server at a rate much faster than 30fps. The server then transfers out of the buffer at precisely 30fps. Fault tolerance is another key video server trait. It is not unusual for video server applications to operate 24 hours per day, seven days per week.

Video server disk storage

The fundamental objectives for video storage are straightforward. First, the storage should be as cost-effective as possible. This implies that the storage subsystem employs an architecture that delivers the highest stream to spindle ratio possible. This ensures maximum performance for the lowest cost. Second, there must be adequate capacity for the total content to be available online. Finally, the storage must be fault tolerant, enabling real-time operations. Individual disk drives do not satisfy the objectives set for a video server's storage. A single drive delivers only a few streams of compressed video. To determine the number of streams a disk can deliver, several variables need to be considered: the request size of the stream, the drive's sustainable bandwidth, the drive's access latencies and system overhead.

The total number of streams (S) a drive can support is the ratio of the time per request at the compressed video rate (Tv) and the time per request at the sustainable disk rate (Td) [S=Tv/Td]. A request is the transferring of an arbitrary amount of data in a unitary disk operation and typically encompasses many frames of video.

Tv (time at video rates) is simply the amount of data requested (L) divided by the video stream rate (Rv), after compression (typically 1-15Mb/s). Td (time at disk rates), on the other hand, consists of the sum of the drive's latencies and the time for the actual data

Figure 1. Video servers are used in conjunction with video switches, communication links, administrative systems and various methods of downloading content.

Figure 2. Average and worst-case performance of a 7,200rpm drive when supporting multiple 3Mb/s video streams.
An Evolution In UHF Television Transmitters!

Now, Aerodyne delivers the benefits of tetrode technology for all UHF power requirements.

In 1980, Aerodyne pioneered UHF transmission by putting the first full service common amplification 5kW UHF TV Transmitter on the air. Since then, Acrodyne’s tetrode-equipped UHF television transmitter product line has evolved to higher and higher power outputs. In 1995, we designed, introduced, and sold the first transmitter using the Diacrode®, a 60kW common amplification (80kW peak visual) double-ended tetrode device – the most powerful single-tube UHF transmitter available. Over the years, our users have logged over 2 million hours on these transmitters.

Acrodyne tetrode transmitters are high efficiency, high performance systems. The simple designs, combined with the tube efficiencies, long life (20,000 hours typical), and low costs, result in the lowest predictable transmitter operating costs compared to other technologies. And, the linearity of tetrodes also makes them ideal choices for future digital transmissions.

Evolutionary UHF television transmitters... transmitters whose time has come.

For complete details, contact Acrodyne today.

© 1995 Acrodyne Industries, Inc. All rights reserved.

Acrodyne Industries, Inc. 516 Township Line Road, Blue Bell, Pennsylvania 19422 • Phone: 800-523-2696 / (215) 542-7000 • Fax: (215) 540-5837

Circle (22) on Action Card
transfer (Tx). A drive’s latencies consist of a seek (Ts), a rotational period (Tr) and overhead (To). (For more information on drive latencies, see “Disk-Based Servers for Production and Broadcast,” December 1995.) Data transfer time (Tx) is request length (L) divided by the drive’s data rate (Rd).

Expressed algebraically, the total number of streams a single drive can support is:

\[S = \frac{L}{(L/Rd + Tx + Tr + Ts + To) * Rv} \]

For example, a 7,200rpm drive with average access times of around 13ms and transfer rates of around 6MB/s will support approximately 15 streams of video compressed to a rate of 3Mb/s.

This same drive, if worst-case performance is evaluated (full-throw seeks, full-revolution rotational latencies), only supports about 10 streams of video at the same compression rate. For better-quality video streams (e.g. lower compression), which require higher data rates, the number of streams supported by this class of drive drops.

Figure 2 depicts graphically the performance of this type of drive for varying data request lengths (L).

While a single drive has modest stream performance at best, the capacity is also rather small in the context of video. Video compressed to 3Mb/s requires more than 22MB of storage for one minute of playback. On a 4GB disk, approximately 180 minutes of capacity are available, enough for only one and half movies. For a server with any reasonable total capacity, many spindles (drives) will be required.

Regardless of the total number of drives used in a video server, media redundancy is required to ensure on-air real-time playback. Even though mainstream drives have high mean time between failures (MTBF) ratings, they do fail and at a rate that may be surprising. For a family of drives with an MTBF of 800,000 hours, the expected failure rate over the service life of the drives is more than 5%. This analysis assumes no drive design failures in either the hardware or microcode, nor any manufacturing process problems endemic to a particular lot or facility. (For more information, see “RAID Storage Technology,” August 1995.)

RAID for video servers

A storage technology referred to as redundant arrays of independent disks (RAID) addresses the performance, capacity and redundancy needs of video servers. RAID was conceptually presented in a paper published by the University of California at Berkeley in the mid-1980s. The paper offered a series of data storage architectures that provided media redundancy, large capacity and high performance. The architectures are colloquially referred to as RAID levels and were arbitrarily numbered one through five to identify each level.

RAID level 1 (RAID 1) is disk mirror-
“Today, TV Stations Have To Be Future-Proof.”

Min Holm
VP, Engineering and Production Operations
Maryland Public Television
On The Set Of Wall Street Week with Louis Rukeyser

Tom Bohn
VP, Engineering and Production Operations
Maryland Public Television
On The Set Of Wall Street Week with Louis Rukeyser

Hitachi Digital Cameras Help Maryland Public Television “Stay Ahead Of The Curve.”

Tom Bohn feels the change from 4:3 analog to 16:9 digital technology “will be a revolution every bit as big as black-and-white to color. And since we don’t know what the standards will ultimately be. we must start to future-proof now.”

As he invests in new technology, Bohn looks for upgradeability on each piece of equipment. That’s one reason he purchased eight Hitachi digital cameras. The SK-2000 Series has four built-in upgrade paths, from the single LSI processor, and A/D converter, to the newest CCD block technology.

“As the fourth largest producer of PBS shows, MPT creates programs with very long shelf lives—which makes 16:9 digital capability crucial. So we needed a camera that was digital from the head all the way through the CCD. I personally visited all the factories and trade shows, and I found Hitachi to be two years ahead of the competition.

“Today, we use Hitachi digital cameras for all our studio productions. We’re very pleased—we believe this is the best purchase for MPT today and well into the next century.”

Not just digital, Hitachi digital.

HITACHI

Hitachi Denshi America, Ltd.
Hitachi Denshi, Ltd.
New York (516) 921-7200
Atlanta (770) 342-3836
Chicago (703) 259-4805
Caracas (416) 299-5900

Circle (24) on Action Card
Mirroring is a technique common to mainframe storage architectures and pre-dates the RAID paper. It was used as a frame of reference in the paper for the other RAID levels presented. Mirroring provides redundancy by simply duplicating each disk in the storage system. The remaining RAID levels incorporate a data-stripping technique in which data is evenly divided across a group of data drives. Error correction information, which can be used to regenerate the data on a failed drive, is stored on a redundant drive. RAID levels 2 and 3 stripe the most elemental unit of data, the disk block, across all data drives. The difference between these two levels is the redundancy technique, in which RAID 2 uses multiple redundant drives, while RAID 3 uses a single drive. Because RAID 2 offers no significant benefit over RAID 3 and has higher costs, it has not been considered a commercially viable alternative, and won't be considered further. RAID levels 4 and 5 stripe blocks with a single or group of blocks entirely contained on a single drive. Like RAID 2 and RAID 3, the difference between RAID 4 and RAID 5 is in the method of redundancy. RAID 4 stores its error-correction data on a dedicated drive while RAID 5 distributes this information across all drives. Although RAID 4 may be easier to implement, it offers lower performance and no cost savings as compared to RAID 5, and it too will not be considered further.

RAID 1, RAID 3 and RAID 5 share a common trait; any single drive in a RAID configuration may fail and all the data stored in the RAID will remain accessible. The similarities end there. Each of the RAID levels have differing levels of normal performance, performance after a failed drive and media costs. These differences define the suitability of these RAID levels for video server applications.

Selecting RAIDs for video servers

While the old adage "your mileage

HOW HIGH WOULD YOU LIKE TO GO TODAY?**

O'Connor is proud to announce the new 35LC carbon fiber quick deployment tripod. This amazing tripod has a height range (at base of camera) from 35" to over seven feet high! Imagine being able to go from this... to this... in just seconds!

The 35LC features a pressurized air-assist column which can lift up to 40 pounds, and a built-in 100mm top casting with integrated tiedown. The spreader has two mounting positions for added versatility. O'Connor's 35 series quick deployment tripods feature a quick release ring that allows adjustment of all three legs simultaneously on any terrain. See this incredibly versatile tripod at your O'Connor dealer today.

O'Connor is proud to announce the new 35LC carbon fiber quick deployment tripod. This amazing tripod has a height range (at base of camera) from 35" to over seven feet high! Imagine being able to go from this... to this... in just seconds!

The 35LC features a pressurized air-assist column which can lift up to 40 pounds, and a built-in 100mm top casting with integrated tiedown. The spreader has two mounting positions for added versatility. O'Connor's 35 series quick deployment tripods feature a quick release ring that allows adjustment of all three legs simultaneously on any terrain. See this incredibly versatile tripod at your O'Connor dealer today.

O'Connor is proud to announce the new 35LC carbon fiber quick deployment tripod. This amazing tripod has a height range (at base of camera) from 35" to over seven feet high! Imagine being able to go from this... to this... in just seconds!

The 35LC features a pressurized air-assist column which can lift up to 40 pounds, and a built-in 100mm top casting with integrated tiedown. The spreader has two mounting positions for added versatility. O'Connor's 35 series quick deployment tripods feature a quick release ring that allows adjustment of all three legs simultaneously on any terrain. See this incredibly versatile tripod at your O'Connor dealer today.

O'Connor is proud to announce the new 35LC carbon fiber quick deployment tripod. This amazing tripod has a height range (at base of camera) from 35" to over seven feet high! Imagine being able to go from this... to this... in just seconds!

The 35LC features a pressurized air-assist column which can lift up to 40 pounds, and a built-in 100mm top casting with integrated tiedown. The spreader has two mounting positions for added versatility. O'Connor's 35 series quick deployment tripods feature a quick release ring that allows adjustment of all three legs simultaneously on any terrain. See this incredibly versatile tripod at your O'Connor dealer today.

O'Connor is proud to announce the new 35LC carbon fiber quick deployment tripod. This amazing tripod has a height range (at base of camera) from 35" to over seven feet high! Imagine being able to go from this... to this... in just seconds!

The 35LC features a pressurized air-assist column which can lift up to 40 pounds, and a built-in 100mm top casting with integrated tiedown. The spreader has two mounting positions for added versatility. O'Connor's 35 series quick deployment tripods feature a quick release ring that allows adjustment of all three legs simultaneously on any terrain. See this incredibly versatile tripod at your O'Connor dealer today.

O'Connor is proud to announce the new 35LC carbon fiber quick deployment tripod. This amazing tripod has a height range (at base of camera) from 35" to over seven feet high! Imagine being able to go from this... to this... in just seconds!

The 35LC features a pressurized air-assist column which can lift up to 40 pounds, and a built-in 100mm top casting with integrated tiedown. The spreader has two mounting positions for added versatility. O'Connor's 35 series quick deployment tripods feature a quick release ring that allows adjustment of all three legs simultaneously on any terrain. See this incredibly versatile tripod at your O'Connor dealer today.
Actually, when it came time to standardize on one disk interface protocol, it wasn't that hard. The top ten manufacturers of disk systems overwhelmingly chose The Louth Protocol.

We'd like to tell you it was our impressive track record in broadcast automation that did it. Or our reputation for pioneering object oriented programming to make automation faster, easier and more flexible. But the truth is, disk manufacturers chose the Louth Protocol because it works. It's open. And it's free. 100% public domain.

Now, whether you call it enlightened self-interest or investment spending, the fact is we didn't give the Louth Protocol away for nothing. We were looking ahead.

It has not only simplified applications such as Ad Insertion, Caching, Program Acquisition, Time Delay and Multi-Channel Management, it has made the future easier for everyone. By opening a pathway that is free of gatekeepers, toll takers, and proprietary potholes. That's why we agreed to make the protocol available to our competitors in automation, as well.

We believe in working with anything. Even when it's hard.
Some people say digital acquisition will never catch on.

Then again, some people said the same thing about sound.

The new BVP-350 camera and DVW-250 portable VTR provide 2-hour recording for added flexibility in 4:2:2 digital field production, expanding on the capabilities of the one-piece DVW-700 digital camcorder.
Digital Betacam® acquisition offers new creative options in television and movie production. More and more directors and cinematographers are seeing for themselves that shooting digital is a creative breakthrough – one that can lend a unique style and look to their projects. Use it for an entire program, or for shooting inserts to be used in conjunction with film. Either way, 4:2:2 digital origination gives you detail you just can’t capture on analog video. Rich colors, higher picture sharpness and a more extended dynamic range than film transfers. You get high production values at a lower cost than shooting film. For independent filmmakers whose budgets dictate the use of 16mm and Super 16mm film, this camcorder and portable camera/VTR combination offers new and innovative production values—at a lower cost than shooting film. And 4:2:2 digital transferred to 35mm film rivals the quality of 16mm and Super 16mm blown up to 35mm for theatrical release. Digital masters ensure the highest picture quality and extend the shelf life of your television programming investment.

Program libraries are becoming broadcasters’ most valuable assets – and 4:2:2 Digital Betacam is the best source material for protecting them. It also gives you a cost-effective bridge from today’s post-production world of Betacam SP. It’s clearer than ever that digital is here. And its name is Sony. For more information, and a complete list of DVW-700, BVP-550 and DVW-250 rental houses, call 1-800-635-SONY, ext. DEC.

© 1996 Sony Electronics Inc. All rights reserved. Reproduction in whole or in part without written permission is prohibited. Sony and Betacam are trademarks of Sony.
may vary" is appropriate when considering different vendors' RAID implementations, a good understanding of the underlying RAID principles will remain any doubt as to the upper limits of each RAID level. To compare the RAID levels, configurations using "n" drives will be considered. The table compares four important metrics for each RAID level. The first metric to compare is the media cost. It is in this comparison that the primary detriment to RAID 1 becomes apparent. RAID 1, because it must duplicate every disk, requires twice the total number of drives needed for any arbitrary capacity objective. As a result, the total cost for a usable capacity equal to n drives is 2n (100% premium). By comparison, RAID 3 and RAID 5 (RAID 3/5) only consume one drive's capacity for redundancy. As a result, the premium for redundancy is only a fraction of the total capacity purchased. A five-drive RAID 3/5 only requires one disk for redundancy, 20% of the total. As the width of the array increases, the premium decreases even further. A nine-drive array, eight of which are usable, has a redundancy premium of only slightly more than 10%. In general, the cost for "n" usable drives in a RAID 3/5 configuration is (n+1)/n. Figure 3 illustrates the difference in redundancy premiums for RAID 1 and RAID 3/5 as compared to just a bunch of disks (JBOD), with no redundancy whatsoever. In addition to RAID 1's much higher cost for redundancy, the large number of drives associated with RAID 1 also increase the packaging and cooling complexities of a system, while lowering the overall reliability due to the larger total number of components. As a result, RAID 1 will not be considered further.

The popular convention is to consider striping RAIDs for use in video servers. Because the media costs are identical for RAID 3 and RAID 5, the primary consideration in selecting one or the other is the comparative performance capabilities. Video servers operate in real-time environments. As a result, the performance of a RAID under all operating conditions is the crucial consideration. While it is important to consider the performance of a RAID during normal operations, when all drives are functional, it is equally important to consider the performance of a RAID after a single drive has failed — also a normal operating condition. This consideration is required because a video server is typically guaranteed to deliver a minimum level of performance under all operating conditions. Therefore, the lowest performance capability of the RAID under any operating situation it may encounter is the specification that dictates the server's specified performance.

Performance with all drives operating

Because one drive in a RAID 3 is dedicated to redundancy, it cannot contribute to data transfer performance. However, the remaining drives are used for data operations. Because of RAID 3's parallel striping technique, the sustained transfer rate approaches the media limits of the data drives. For example, a RAID 3 in a 4+1 configuration (four data, one redundant drive) will have a sustained transfer rate approximately equal to four times the sustained transfer rate of an individual drive. In general, for an n drive RAID 3, the total number of streams supported is equivalent to n-1 drives, with adequately large data requests.

The analysis for a RAID 5 is a bit different. RAID 5 distributes redundancy information across all n drives. Furthermore, each drive is accessed individually. This enables each of the drives to service a data request simultaneously (providing the data requests are evenly distributed and there are no hot spots — a significant assumption). As a result, a RAID 5 theoretically can support n drives worth of streams.

In practice, RAID 3's track theory much better than RAID 5. This is due to the unpredictability of the request distribution. With a RAID 3, all requests access all drives, in parallel. This results in predictable performance. With RAID 5, however, any request distribution pattern that doesn't keep all the drives busy results in performance degradation. RAID 5 performance is much more difficult, if not impossible, to model accurately for a real-time environment. Many RAID 5 users find performance to actually benchmark at or below the n-1 level.

Performance after a drive fails

The strength of RAID 3 is its performance after a drive fails. In fact, there is no performance degradation after a drive has been removed from a RAID 3 array. These arrays perform data striping on-the-fly, using special hardware. The information stored on the redundant disk is also generated on-the-fly, using hardware. Because every piece of user data is striped on all drives, all operations occur in parallel. If a drive fails, a RAID 3 controller turns on hardware that regenerates the missing drive's data by combining the data from the remaining data drives and the redundancy drive. The hardware that performs this function typically is in the controller's data path. These cir-

<table>
<thead>
<tr>
<th>RAID LEVEL</th>
<th>PERFORMANCE</th>
<th>REDUNDANT DRIVE</th>
<th>USABLE CAPACITY</th>
<th>PREMIUM FOR n USABLE DRIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n</td>
<td>n-1</td>
<td>n/2</td>
<td>2n</td>
</tr>
<tr>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>(n+1)/n</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>(n+1)/n</td>
</tr>
</tbody>
</table>

Figure 4. RAID performance after a drive failure in a multidisk array.
See spot.

See spot run.

See spot run without aggravating the entire audience because it's too damn loud.

Who needs the aggravation? With the new OPTIMOD-TV DIGITAL you never have to worry about poorly mixed programs, complaints from irate viewers, or advertisers devising diabolical new ways to “punch” their sound. The 8282 handles it all quietly, digitally, and automatically. The OPTIMOD-TV is fully programmable to optimize audio processing of your programs. And with built-in presets, general programming, news, sports, film, fine arts and other broadcasts will always sound great at home. Never too loud, too soft, or too spotty.

H A Harman International Company
To help you go digital we’ve racked our brains.

The advent of digital television calls for new interface solutions. If you’re going digital, this is the modular system you need to make the transition as painless as possible.

Kudos IQ provides a flexible, controllable, 10-bit digital system, ideally suited to automated environments.

It offers all the performance of dedicated units, but in ultra-compact rack-mountable form.

For more information about Kudos IQ and our ever-expanding range of modular functions, please contact us at: USA Tel: +1 408 734 1688
UK Tel: +44 (0)181 607 9455 Fax: +44 (0)181 607 9466 E-Mail: Info@Snell.co.UK
France Tel: +33 1 45 28 10 00 Germany Tel: +49 611 99 0840
India Tel: +91 11 6481740 Italy Tel: +39 6 66 38 594 Japan Tel: +81 3 3446 3996
Russia Tel: +7 095 1926992
True Transparency.

ShibaSoku monitors provide incomparably precise image reproduction—with the highest color and luminance fidelity available anywhere. Their remarkable durability means less downtime and lower maintenance costs in the long run.

ShibaSoku’s 40 year tradition of accuracy is also reflected in a wide range of superior test instruments. That’s why leading electronics makers choose Asaca/ShibaSoku equipment as the standard by which to measure their own products’ performance.

For true transparency, unparalleled accuracy, and the most precise analysis, look to Asaca/ShibaSoku. The clear choice.

The performance of a RAID under all operating conditions is crucial.

cuits are designed to operate at rates equal to or greater than the media data rate with no additional latency.

RAID 5, on the other hand, has a significant performance degradation after a drive fails. It is RAID 5's strength, independent access to each drive, which causes the severe performance loss after drive failures. When a RAID 5 drive fails, the remaining drives must be accessed for every request of the failed drive. This, in turn, prevents the functional drives from servicing their own requests. To quantify the performance loss, something called the Array To Drive Request Ratio (A_D) must be examined.

The A_D is simply the ratio of the total number of array requests to the total number of disk requests required to complete the array request. In other words, an array request is simply a data request from the host. The drive requests are the actual disk operations inside the RAID 5 array to carry out a host request.

When all drives are operating, the A_D is one, because every host request corresponds to exactly one disk request. However, after a drive has failed, there are far more disk requests (accesses) than host requests. Assume an even distribution of requests to all n drives, from the host’s perspective. After a drive fails, n-1 of the n requests will be for the remaining n-1 functional drives. One of the n requests will be for the failed drive. The total array requests equal n-1 (for the good drives) +1 (for the failed drive) which equals n.

For the drive requests, the n-1 requests for the functional drives will correspond to n-1 drive requests, because each functional drive can perform one request. For a request to the failed drive, another n-1 request is generated, because all of the functional drives are used to regenerate the failed drive’s data. In total, after a drive has failed, a RAID 5 will generate n-1 (for the good drives) + n-1 (for the failed drive) drive requests, or, more simply, 2*(n-1) drive requests. Hence, the ratio of host requests to drive requests (A_D) becomes n/(2*(n-1)).

To complete the analysis, the A_D is factored with the number of drives in a RAID 5 after a drive failure and the number of streams an individual drive can support. In general, the number of streams a RAID 5 will support is the product of the array to disk ratio, the number of usable drives in the array, and the number of streams supported per drive. Algebraically, total streams = A_D number of drives * S. Substituting the expression for A_D and n-1 for the total number of drives in a RAID 5 array after a drive failure, the
The Agile Omni Global VU option gives you one touch access to all satellite formats.

More channels, more signals, more frequencies — life in the down link is becoming more complex every day.

What you need is something to simplify your life.

What you need is the Global VU Model CAM830 Control Access Monitor from Standard Communications.

Direct or remote control.

Used in conjunction with the Agile Omni receiver, the Global VU gives you simplified access to all satellite formats from easy front-panel controls or from a PC comfortably situated on your desk, miles away.

Directly or using the straightforward Windows-based software, the CAM830 lets you add or modify formats, then scan them by RF frequency and/or audio subcarrier. It gives you complete control over all three audio subcarrier demodulators, as well as international video features such as PAL, SECAM and NTSC. It gives you control of video and audio output levels with individual channel memory.

And we're just getting started.

Spectrum analysis.

Want to really see what's going on? The Global VU gives you a screen-filling display of the RF spectrum for each satellite on your remote PC. It also gives you a real-time look at the C/N ratio without any time-consuming precalibration.

And there's more. As a field retrofit or optional add-on, the CAM830 gives your Agile Omni more easy-to-use control than you may have ever thought possible. To get the full story fast, including complete specifications, fax Standard today at 8(0/722-2329 (California and International numbers, 310/532-0397) and we'll fax it right back to you.

Be a know-it-all. Get your hands on a Global VU.

The Right Technology for Right Now.

Standard Communications

SATELLITE & BROADBAND PRODUCTS DIVISION

P.O. Box 92151
Los Angeles, CA 90009-2151
310/532-5300 ext. 280
Toll Free 800/745-2445
Fax: 800/722-2329 (Toll Free)
310/532-0397 (CA & Intl Only)

Circle (26) on Action Card

Knows all. Tells all.

See us at ECC London, Stand #274
When It Comes to MPEG Compression, Our People Make the Difference

Only TELE-TV combines integrated hardware and software solutions with the best craftsmen in the business to give each project a personal touch.

TELE-TV's Digital Service Bureau is a one-of-a-kind MPEG Compression facility with a unique approach: expert assisted encoding. Our experts have encoded over 130,000 minutes since we opened our doors in January 1995.

Call TELE-TV Systems today for custom MPEG solutions.

Circle (27) on Action Card

SPLIT IT!!

USDA is a handy 2-in, 4-out stereo “mini-DA” that can combine or split audio signals for distribution. Mix stereo to mono, get both stereo and mono outputs from a stereo source. Gain trims for each output. Great specs with lots of headroom. Keep one on hand!

HENRY ENGINEERING
503 Key Vista Drive
Sierra Madre, CA 91024 USA
TEL (818) 355-3656 FAX (818) 355-0077
FAX-on-Demand Doc #103 (818) 355-4210
http://www.broadcast.harris.com/henryeng/

Circle (28) on Action Card

RAID disk arrays of video servers

total streams supported = n/(2*(n-1))*(n-1)*S. Simplifying, the total streams supported = n/2*S. Hence, the performance of a RAID 5 after a drive failure is only 50% of its theoretical maximum when all drives are operating. Figure 4 compares the performance of RAID 3 and RAID 5 after a single drive failure.

Subsystem redundancy

In addition to providing high levels of performance under all operating conditions, RAID 3 implementations can also provide redundancy features that are extremely useful in on-air broadcast environments. To ensure reliability, the power supplies and cooling fans (if used) should also be redundant, because they are the two most likely components for failure, after the disk drives. Redundant components should be hot-swappable after a failure. Hot swap is the capability to allow a failed component to be removed and replaced with a new unit without shutting down the subsystem. It is crucial for any redundant component in a real-time environment to support hot swap. Without such a capability, the subsystem must be shut down to service a failed component. During such times the video server would no longer be able to operate at full capacity, if at all. With hot swap, a failed component can be replaced and the subsystem brought up to 100% protection without a user ever knowing the service has been performed.

The converging worlds of video production, broadcast, communications and computing are placing an ever-increasing burden on the architects of video servers. These architects must design systems that deliver many streams of video, in real-time, and for a price that is palatable. The storage component of the video server accounts for about 50% of the total system cost and is a key performance component. It is for these reasons that RAID disk arrays have become an integral part of video server architectures.

RAID 1, or mirroring, duplicates every drive. Compared to alternative RAID architectures, this approach is not cost-effective. Furthermore, the decreased reliability of a large number of spindles and the complexities of packaging, powering and cooling a RAID 1 implementation is prohibitive.

RAID 3 and RAID 5 stripe user data and only require a single drive's worth of capacity for redundancy. They differentiate themselves in performance. While, in theory, RAID 5 may have a slight performance advantage when all drives are operating, in practice this is not often realized. But the main difference in these two RAID architectures is the performance after a drive fails. While RAID 3 doesn’t experience any performance degradation, the RAID 5's performance will drop by 50%. For the real-time environments of video servers, it is RAID 3’s robust performance, over all operating conditions, that makes it an ideal choice.

Bill Moren is a senior product manager for Ciprico Inc., Plymouth, MN.
BEEing is Believing

You'll never know what you missed if you miss the 32nd International Broadcast Equipment Exhibition (Inter BEE'96) — a showcase for the latest professional broadcast, video, and audio technologies.

Inter BEE'96 will be the largest exhibition of its kind in Asia and one of the world's top three.

And it will be an even better show this year, with even more booths, the latest equipment, technologies, and creative work. There will also be an array of special events, as well as presentations by software creators from Japan and abroad.

Subjects include audio processing for large events and sports broadcasts and the impact of digital peripheral equipment on images.

Inter BEE'96 will be held on November 13-15, 1996, at the Nippon Convention Center (Makuhari Messe).

So, get to Inter BEE'96. It will be an unBEElievable experience.

For more information on Inter BEE'96, contact:

Japan Electronics Show Association
Sumitomo Shibadaimon Bldg. No.2 1-12-16, Shibadaimon, Minato-ku, Tokyo 105, Japan Fax: 81-3-5402-7605
Two years ago, work on Bell Atlantic's video dial-tone trials was getting under way. In researching the project, it was determined that most MPEG service providers were limited in the number of minutes of material they could handle on a monthly basis. If pressed to do more, the quality of the encoded product began to suffer. Because of this, Bell Atlantic created the TELE-TV Systems' Digital Service Bureau (DSB) to handle all of its encoding (compression) needs. Using a modular facility architecture, the facility can now encode large amounts of video data without the time vs. quality trade-offs typical of other facilities. This article details the various

Non real-time encoding requires human intervention at every stage, and delivers higher quality video at much lower data rates. (Photography by Adam B. Auel.)

THE BOTTOM LINE:
Quality MPEG encoding can be costly. Doing it yourself requires a significant investment in hardware and personnel. Taking the job out-of-house has certain advantages, but does it make sense for your facility? Understanding the entire encoding process can make the choice easier. $
steps involved in the MPEG encoding process and should make it easier to decide whether to do your facility's MPEG encoding yourself or to send it out of house to a service bureau.

The digital encoding industry is growing as service providers, including broadcasters and cable companies, realize the benefits of digital compression. Encoding can help streamline broadcast operations and squeeze more channels into the same spectrum space, thereby reducing delivery costs. Also, new developments in MMDS technology have escalated the demand for digital content. Telephone and other utility companies are moving rapidly to establish digital TV and business communication services in order to compete with cable and broadcast in this relatively new marketplace. To stay ahead, many traditional providers are beginning to convert their existing video archives for more cost-effective transmission and/or storage through digital encoding technology. To ensure a quality encoding, what goes on before and after the encoding session is just as important as the session itself.

Manufacturers of server, transport and set-top box technology have varied widely in their interpretation and implementation of MPEG-compliant components.

Why digital encoding?

Digital compression allows programmers to deliver more than 100 digital channels in the same spectrum space required to transmit 33 analog channels. Digital transmission also typically provides improved picture clarity and sound quality, thereby heightening the digital providers' edge over traditional analog services. Furthermore, content...
stored and transmitted in compressed digital form results in a much more stable, predictable product than identical content stored on traditional videotape. Analog tape is affected by the ravages of age, poor environmental control, physical damage, generational loss and analog transport errors. The effects show up as visual and/or audible defects that increase over time and distance.

The Moving Picture Experts Group (MPEG) compression standard, which includes MPEG-1 and MPEG-2, is the most widely accepted compression standard in the industry. MPEG encoding uses predictive calculation, evaluating what happened in previous frames and predicting where pixel differences (movement) will occur in succeeding frames. The differences are encoded, maintaining smooth motion between frames.

Under the MPEG umbrella are two methods of digital encoding: real-time and non-real-time. Real-time digital encoding results in higher data rates and eliminates human intervention from the process. The encoding engineer in this scenario has little input in the process as the content moves through the encoding equipment to the transmission system. Picture quality is determined by the quality of the source signal, encoding and delivery equipment, the network transport mechanism and the receiver. The non-real-time method achieves high-quality video at lower data rates. Non-real-time encoding requires skilled human intervention at every step in the process.

The final picture quality determinant is not just a case of hardware — it is dramatically affected by the skill of the encoding engineer. The net result of using non-real-time encoding is high-quality video at significantly lower data rates than are possible in the real-time scenario.

TELE-TV Systems' Digital Service

The Bureau pioneered the approach of assigning a craftsman (the new industry term is “compressionist”) to each encoding project. The practice is called expert-assisted encoding, and it means that a highly skilled compression engineer controls every phase of the encoding process from start to finish, ensuring a rigorous quality-control standard. For each project, the engineer selects project-specific tools and parameters, controls the entire encoding process and personally monitors the results.

What's involved

The encoding process begins when the client or potential client walks in the front door with a request. Many clients want their content digitally encoded to support near video-on-demand (NVOD) and VOD applications. Unfortunately, although they all want MPEG-encoded material, their systems may not all comply with the same MPEG parameters. Significant variations exist among clients and projects. This is why it is important for your service bureau to be able to provide a broad range of features and options. Manufacturers of server, transport and set-top box technology have varied widely in their interpretation and implementation of MPEG-compliant components. Digital compression engineers faced with conflicting MPEG requirements and constraints often lament the irony of the statement: “MPEG is MPEG, unless it’s MPEG.”

The first step in ensuring a quality MPEG-encoded product is high-quality source material; consequently, a large

OUR MAST GETS IT UP FAST

TELESCOPIC PNEUMATIC MASTS

HILOMAST

Applications
- Remote ENG
- Communications
- Field Strength Measurements
- Pop-up Jamming
- Remote Surveillance
- Noise Level Measurements
- Temporary Floodlighting
- Environmental Sensors
- Military Communications

COMPETITIVE PRICING

for Further Information Contact Jim Osborne
ALLEN OSBORNE ASSOCIATES, INC.
756 LAKEFIELD RD. Bldg. J
WESTLAKE VILLAGE, CALIFORNIA 91361
Tel:(805)495-8420 Fax:(805)373-6067
aoa@netcom.com

Circle (40) on Action Card

66 Broadcast Engineering September 1996
Because you can never be too safe. The VR disk-based broadcast system incorporates multiple redundancy strategies — including RAID fault tolerance technology — which eliminate any single point of failure. And that means an integrated digital solution with total redundancy and absolute reliability. Is it possible to have too much of a good thing? Choose a VR system and you won't ask twice.

Virtual Recorder Systems: Multi-Channel • Automation • Commercial Insertion • Network Delay • Nonlinear Editing © 818.843.7004

Circle (44) on Action Card
MPEG encoding: The secret to quality compression

amount of time should be spent evaluating the source material. The evaluation often takes as long as the actual encoding itself. It includes objective and subjective evaluations, such as basic measurements of audio and video levels, checks for contiguous time code, "mapping" any non-program material (i.e., black segments for commercial breaks) that may need to be removed during the encode process, and searching for media defects and/or production flaws. In our case, less than 5% of all incoming material is found to be problematic. Only a small part of the initial source evaluation is dedicated to "weeding out" material unacceptable for encoding. The bulk of the analysis centers on identifying which encoding parameters and tools will best complete a particular project.

Tailoring MPEG video to a particular environment requires a significant investment of time and resources. Service bureaus must research each project for every new customer. The encoding facility soliciting information must understand constraints involved and special factors unique to their MPEG implementations. Also, it is important that specific file format requirements of the server(s) be known. A service bureau should evaluate all the constraints and factors on a project-wide basis to determine a specific solution for that particular component mix. It is often necessary to find a "workaround" solution when constraints are mutually exclusive. This is where a knowledgeable service bureau becomes especially important.

The DSB approach

The Digital Service Bureau found that to maximize efficiency and ensure the highest quality output, it was necessary to develop a custom toolkit of software and hardware resources. The toolkit is literally a set of previously identified workable solutions that are applied when appropriate. The toolkit grows as new solutions are developed. Engineers use the toolkit to tailor the encoding process on a project-by-project and often scene-by-scene basis to optimize quality.

After encoding, every title undergoes a linear review by the quality control team. We firmly believe that, although several products on the market claim to perform objective quality analysis, the best means of quality evaluation today is still the human eye. It is important to note that the encoded content must be evaluated in an environment that emulates the actual target system and viewing conditions as closely as possible. The team ultimately decides whether an encoded title passes muster. If necessary, it has the authority to bounce back content to be re-encoded.

Ensuring quality

Quality of the source material is always the major determinant of the finished encoded product. The garbage in, garbage out cliche is a truism in relation to MPEG as it is nowhere else. Regardless of the tools and engineering skills, a poor-quality source will preclude the production of an optimal-quality MPEG image stream. The best encoding engineer can only overcome source flaws to the limit of the current technology.

Source content ranges from new re-leases to archival material. The quality of archival material varies widely. Content issues begin with the physical integrity of the cassette or reel, from a broken casing to rolls or creases in the tape itself. Resulting video degradation is evidenced in hair lines, snow and faded color.

Another key determinant of final product quality is the encoding engineer's training. The engineer makes crucial decisions before, during and after the encoding process. The ability to make the right choices is key to producing a quality encoded product. The engineer must be able to decide which material is acceptable to encode, what elements in the source material to preserve and what to delete as defects and, finally, what is an acceptable encoded product and what is not. In addition, most clients require the encoded product to look exactly like the original material, with no color correction or audio adjustment. The initial source evaluation is important in these cases because the digitization process picks up everything on the tape, and clients need to know exactly what will be recorded.

As you can see, there is far more to quality encoding than simply running the footage through the proper equipment. Getting a high-quality encoding that maximizes the bandwidth available is critical to using compression effectively. Too few bits adversely affect quality, while too many bits waste valuable bandwidth. Because more bandwidth costs more money, it makes economic sense to use it as effectively as possible.

Richard Schmeltz is the managing director at TELE-TV Systems' Digital Service Bureau, Reston, VA.

FOR MORE information

Call 888-2 ENCODE or circle (202) on Action Card.
We're Not Just Promising a Revolution in Digital Video Editing and Storage, We Can Back It Up.

Introducing, a mind-altering line of uncompressed digital video disk recorders from MountainGate, the world leader in high-end storage.

Unlike other digital disk recorders, which typically hold just 30 to 120 seconds of uncompressed storage, the MountainGate VDR holds over 50 minutes of uncompressed D-1 and over 100 minutes of D-2 video. Now you can preview long-form programs such as music videos and television shows without first converting them to tape. And, you can search through tens of thousands of frames quickly and easily. No more pre-rolls or shuttling VTRs. No more tape degeneration. And that means faster and more cost-effective sessions.

Thanks to a direct high-speed SCSI interface, the MountainGate VDR is fast enough to eliminate the bottle-necks commonly associated with post-production work. And, you can use the VDR’s network interface to send source material digitally to any number of workstations. Another time, and cost, saving measure.

Our new VDR handles multi-video formats, including D1, D2, RGB, and HDTV. Plus, you can choose from many extras, such as independent 4- or 8-channel AES/EBU digital audio.

The video revolution is happening, and it’s coming from a company that can back it up.

For information or a demonstration of the new MountainGate VDR line, call 1-800-556-0222 or visit our web site at http://www.mountaingate.com.

Circle (45) on Action Card

DataShuttle™ features portability and patented shock-isolation technology with capacities up to 16 GB.
Renegade™ our RAID system holds up to ten storage devices in one chassis with storage capacities over 87 GB.
PassPort™ our 1 GB removable hard drive resists shock up to 150Gs.
Chaparral™ our versatile family of mass storage library systems offers up to 74 TB of storage.
IncrEss™ the ultimate in removable hard drive storage, offers up to 4 GB of storage and 8ms access times.
Stampede™ line of disk arrays accepts multiple drive form factors with total capacity in excess of 400 GB.
We all remember the basic principles of optics, don't we? Yea, sure we do.

By Jerry Whitaker

The Bottom Line:
Images "seen" by a camera must first pass through the lens. Distortions caused by the lens become a permanent part of the image. Today's lens assemblies use a variety of techniques, from aspherical elements to hi-tech coatings to provide high-quality images with minimal distortion. A basic understanding of lens theory combined with a sharp eye can help determine minor differences between lenses. Once those differences are identified, choosing the right lens is easier.

Choosing a lens for studio production might at first glance appear to be a straightforward task. However, all types of cameras, from ENG to high-end production models, are used in studios, and each one is served by specific types of lenses. Although this complicates the selection process, a good understanding of the available choices can make the selection considerably easier. And a firm grasp of the physical properties that make lenses work is a big plus too. The latter is the focus of this article. Although we probably studied geometric optics in college, that has been — I'll wager — more than a few years ago. A refresher course is probably in order.
Sierra Video Systems introduces Mirage™, the new digital chroma keyer that doesn’t require the skills of a rocket scientist to make perfect, professional chroma keys. This stand-alone system represents not only a giant step in technology, but a huge leap in ease of operation.

Whether your suite is fully digital, or you’re looking for your first piece of digital gear, Mirage is a perfect addition to your plant. And it’s the first stand-alone digital chroma keyer that anyone can operate. Mirage’s easy to use, on-screen HeadsUp display means you won’t need those expensive, complicated control panels full of knobs and buttons. A simple, easy to use mouse is all that’s needed to operate this powerful tool.

Featuring 4:2:2 serial digital I/O and 4:4:4:4 internal processing, Mirage is ideal for live or post production, virtual studios or any application requiring the highest quality video compositing. Add to that the built-in 8 input mini-production switcher, 15 moving key masks and on-screen color vectorscope and Mirage becomes a powerful, intuitive tool that anyone can use.

Isn’t your job complicated enough? The answer is simple.

The answer is Mirage.

SIERRA VIDEO SYSTEMS
P.O. Box 2462 • Grass Valley, CA 95945 USA
(916) 478-1000 • FAX (916) 478-1105
E-mail: mirage@sierravideo.com

Circle (46) on Action Card
Geometric optics

Geometric optics is the branch of optics that deals with image formation using geometric methods. It is based on two postulates:
1. Light travels in straight lines in a homogeneous medium.
2. Two rays may intersect without affecting the subsequent path of either.

The fundamental laws of geometric optics may be developed from general principles, such as Maxwell's electromagnetic equations or Fermat's principle of least time. However, the laws of reflection and refraction can also be determined in a simple way by Huygen's principle. This principle states that every point of a wave front may be considered as a source of small waves that spread out in all directions from their centers to form the new wave front along their envelope.

The laws of reflection and refraction for optics may be stated as follows:

- **Law of Reflection**: The angle of the reflected ray is equal to the angle of the incident ray.
- **Law of Refraction**: A ray entering a medium in which the velocity of light is different is refracted so that \(n \sin i = n' \sin r \), where \(i \) is the angle of incidence, \(r \) is the angle of refraction and \(n \) and \(n' \) are the indexes of refraction of the two media.

A ray is an imaginary line normal to the wave front. The angle the advancing ray forms with the line normal to the surface in question is the angle of incidence and is equal to the angle the wave front forms with the surface.

The **index of refraction** is the ratio of the velocity of light \(c \) in a vacuum to the velocity \(v \) in the medium:

\[
\frac{c}{v} = n \quad \text{and} \quad \frac{c}{v'} = n'
\]

For air, the velocity of light is generally considered equal to the velocity in vacuo, so \(n=1 \) and the equation may be simplified to:

\[
\sin i / \sin r = n'
\]

When a ray passes from a medium of smaller index into one of larger index, as from air to glass, the angle of refraction is less than the angle of incidence and the ray is bent toward the normal. In passing from glass to air, the ray is bent away from the normal, as illustrated in Figure 1. The incident ray, reflected ray, refracted ray and the normal to the surface at the point of incidence all lie in the same plane.

A ray passing from a medium of higher index to one of lower index may be totally internally reflected. The following relationship applies:

\[
n \sin i = n' \sin r
\]

The value of \(\sin r \) is always greater than \(\sin i \) when \(n \) is greater than \(n' \). The maximum value for \(\sin r \) is unity \((r=90^\circ) \) and occurs for some value of \(i \), called the critical angle, which is determined by the refractive indexes of the two media.

When the angle of incidence exceeds the critical angle, the ray is not refracted into the medium of lower index, but is totally reflected, as illustrated in Figure 2. For angles smaller than the critical angle the rays are partially reflected.

Application of the sine law to two parallel surfaces, such as a glass plate, shows that the ray emerges parallel to the entering ray, but is displaced. The most important applications of the laws
Fingertip control. With its intuitive graphic user interface and touch sensitive screen, the DVA184 is very easy to use.

Working on the Edge

The DVA184 Video BitAlyzer™ is the digital video engineer’s toolbox

Introducing the first all in one digital video analyzer. Offering in one great product features of an oscilloscope, waveform monitor, jitter spectrum analyzer, logic analyzer, Error Detection and Handling (EDH) monitor, format analyzer, and test pattern generator that will perform complete serial link and format tests. For use in designing, manufacturing, and maintenance of digital video equipment.

DVA184 Video BitAlyzer Features
- Jitter FFT and Histogram
- Multi-format Compatibility:
 - 360 Mb/sec - 525 and 625 4:2:2, 16x9
 - 270 Mb/sec - 525 and 625 4:2:2
 - 143 Mb/sec - 525 4 fsc
- Automatic Edge Measurements
- Test Pattern Generator (up to 100 Frames)
- EDH Monitoring and Insertion
- Bit Error Insertion
- Jitter Insertion
- In-service Error Identification
- Automatic Grab of Errored Frames
- Laser Quality Hard Copy Print
- Remote Control (IEEE-488, RS-232C)

Jitter has frequency components which spectrum analysis can identify. Monitor displays give you complete link status.

We offer the Digital Video Engineer a comprehensive “tool box” the DVA184. Contact SyntheSys Research today and find out how the DVA184 can give you the edge in digital video analysis.

SyntheSys Research Incorporated
3475-D Edison Way Menlo Park, CA 94025
415-364-1853 Fax: 415-364-5716

Circle (48) on Action Card
Optics 101: What you really should know about lenses

Refraction at a spherical surface in a thin lens

It can be shown by tracing a ray through a single refracting surface that:

\[\frac{n'}{s'} = \frac{n}{s} - \frac{n-n}{R} \]

Where \(s \) = the object distance to the refracting surface, \(s' \) = the image distance to the refracting surface, \(R \) = the radius of curvature of the surface, \(n \) = the index of refraction of the object medium and \(n' \) = the index of refraction of the image medium.

A ray traversing two refractive surfaces, as in a lens in air, has a path whose image distance and object distance are found by applying the foregoing equation to each of the two surfaces. For a lens whose thickness may be considered negligible relative to the image distance, the following applies:

\[\frac{1}{f} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

Where \(n \) = the index of refraction of the lens, \(R_1 \) = the radii of curvature of the first surface, \(R_2 \) = the radii of curvature of the second surface. The right side of the equation contains quantities that are characteristic of the lens, called the power of the lens. The reciprocal of this expression is the focal length, \(f \):

\[\frac{1}{f} = (n-1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

For a thin lens in air the object distance, image distance and focal length are related as follows:

\[\frac{1}{f} = \frac{s}{s'} \]

Certain conventions of algebraic sign must be observed in the use of this and previous equations. The conventions may be summarized as follows:

- All figures are drawn with the light incident on the reflecting or refracting surface from the left.
- The object distance \(s \) is considered positive where the object lies at the left of the vertex.
- The vertex is the intersection of the reflecting or refracting surface with the axis through the center of curvature of the surface.
- The image distance \(s' \) is considered positive when the image lies at the right of the vertex.
- The radii of curvature is considered positive when the center of curvature lies at the right of the vertex.
- Angles are considered positive when the slope of the ray with respect to the axis is positive.
- Dimensions, such as image height, are considered positive when measured upward from the axis.
- In general, after observing the first two conventions, the others follow the rules of coordinate geometry with the vertex as the origin.

From the previous equations and the foregoing sign conventions it is apparent that the sign of the focal length may be negative or positive. For a lens in air, and parallel incident rays, the focal length is positive when the transmitted rays converge and negative when they diverge. Cross sections of simple converging and diverging lenses are shown in Figure 3.

There are two focal points of a lens, located on the lens axis. All incident rays parallel to the lens axis are refracted to pass through the second focal point.
HDTV
television history
was made on
July 23, 1996!

Harris Corporation congratulates

WRAL 5

Raleigh, North Carolina,
for being the world's first
commercial television station to
transmit HDTV signals over the air.

We're proud that a
Harris Digital Television Transmitter
helped make it possible.
Optics 101: What you really should know about lenses

point; all incident rays from the first focal point emerge parallel to the lens axis, as illustrated in Figure 4. For a thin lens, the distances from the two focal points to the lens are equal and denote the focal length.

The magnification m provided by a lens is defined as the ratio of the image height y' to the object height y:

\[m = \frac{y'}{y} \]

The principles of magnification are illustrated in Figure 5. From the similar triangles ABC and EDC, it follows:

\[\frac{y'}{m} = \frac{s'}{s} \]

Thick (compound) lenses

The equations given previously apply to thin lenses. When the thickness of the lens cannot be ignored, measurements must be made from reference points other than the lens surface, such as the focal points — which have already been defined — or from the principal points. The principal points are located as follows. (See Figure 6.)

- Consider ray OA proceeding from the object parallel to the lens axis. This will be refracted to pass through the focal point F'.
- The ray OB, which passes through the focal point F, will emerge along DI parallel to the lens axis.
- If OA and F'1 are extended, their point of intersection lies in the second principal plane.
- The point H', where this plane intersects the axis, is called the second principal point. Similarly, the intersection of OF and DI extended lies in the first principal plane, and H is the first principal point. The distances FH and F'H' are the first and second focal lengths, respectively.

When the index of the medium on both sides of the lens is the same, as for a lens in air, the first and second focal lengths are equal.

If the direction of the light ray is reversed (the object is placed at the image position), the ray retraces its path and the image is formed at the former object position. Any two corresponding object and image points are said to be conjugate to each other, and hence are conjugate points.

The equation

\[\frac{1}{s'} + \frac{1}{s} = \frac{1}{f} \]

given for a thin lens continues to hold for a thick lens, but s and s' are measured from their respective principal points, as is the focal length f. The object distance, image distance and focal length are related in another form, known as the Newtonian form of the lens equation. If x is the distance of the object from its focal point, and x' the image distance from its focal point, then:

\[x \times x' = f^2 \]

Figure 4. Lens effects: a) parallel rays incident upon the lens pass through the second focal point, b) rays passing through the first focal point incident upon the lens emerge parallel.

Lens aberrations

Up to this point, optical images have been considered to be faithful reproductions of the object. The equations given have been derived from the general expressions for the refraction of a ray at a spherical surface when the angle between the ray and the axis is small so that \(\sin \theta \approx \theta \). This approximation is known as first-order theory. The departures of the actual image from the predictions of first-order theory are aberrations.

Von Seidel extended the first-order theory by including the third-order terms of the expanded sine function. The third-order theory contains five terms to be applied to the first-order theory. When no aberrations are present, and monochromatic light is passed through the optical system, the sum of the five terms is zero. Thus, von Seidel's
Vinten's Quartz Pedestals are designed to transport studio applications into the future. In answer to the increasing use of lightweight digital cameras in today's studio, Vinten designed the Quartz pedestals in single and two-stage versions. The fully-skirted base incorporates a new and innovative cable guard system along with a single foot brake for perfect control at all times. The light and sensitive feel of the steering enables fine and precise movements, allowing Quartz to accelerate smoothly and rapidly to reposition shots, even in the tightest of sets.

Let the Quartz take you into the next millennium...

*Shown with optional Vector 70 Pan/Tilt Head.

Vinten TSM Inc.
709 Executive Blvc.
Valley Cottage, NY 10989
Phone: 914-268-0100 Fax: 914-268-0113

Sales offices in UK, USA, Japan, France, Germany, & Singapore plus worldwide distribution.

Circle (50) on Action Card
Optics 101: What you really should know about lenses

The five monochromatic aberrations are:
1. Spherical aberration;
2. Coma;
3. Astigmatism;
4. Curvature of field; and
5. Distortion of field.

Distortion of field.
4. Curvature of field; and
2. Coma;
chromatic aberrations are:
index with wavelength. The five monochromatic aberrations are:
1. Spherical aberration;
2. Coma;
3. Astigmatism;
4. Curvature of field; and
5. Distortion of field.

Spherical aberration may be described as the failure of rays from an axial point to form a point image in the direction along the axis. In general, spherical aberration can be minimized if the deviation of the rays is equally divided between the front and rear surfaces of the lens. In a system of two or more lenses, spherical aberration can be eliminated by making the contribution of the negative elements equal and opposite to that of the positive elements.

Coma relates to failure of the rays from an off-axis point to converge at the same point in the plane perpendicular to the axis. Coma can be eliminated for a given object and image distance in a single lens by proper choice of radii of curvature.

Astigmatism contains aspects of both spherical aberration and coma. It resembles coma in that the off-axis points are affected, but—like spherical aberration—results from spreading of the image in a direction along the axis. The rays from a point converge on the other side of the lens to form a line image, actually the axis of a degenerate ellipse; continuing, the rays join with other rays to form a circle, and then at a still further distance form a second image crossed perpendicularly to the first.

The best focus occurs when a circular image is formed. The locus of inner line images—the primary images—is a surface of revolution about the lens axis, called the primary image surface, shown in Figure 7.

Another optical distortion is curvature of field. It is not possible to eliminate astigmatism and curvature of field in a single lens.

All rays passing through a lens from the center to the edge should result in equal magnification of the image. Distortion of the image occurs when the magnification varies with axial distance. If the magnification increases with axial distance, the effect is known as pincushion distortion and the opposite effect is barrel distortion.

The five types of lens aberration described in this section can occur in uncorrected lenses even though light of a single wavelength forms the image. When the image is formed by light from different regions of the spectrum, two types of chromatic aberration can occur:
1. Axial or longitudinal chromatism;
2. Lateral chromatism.

Chromatic aberration results from convergence of rays of different wavelength at different points along the axis; the lens focal length varies with wavelength. Because magnification depends upon the focal length, the images are also of different size, producing lateral chromatism. In many instances, lenses are corrected so that the focal points coincide for two or three colors, thus eliminating longitudinal chromatism. However, unless the focal lengths are also made to coincide, the images will be of slightly different size. This defect results in color fringing in the outer portions of the field.

These optical distortions will be familiar to video engineers who have dealt with such aberrations in pickup and display systems for many years.

For further information
In this article, we have only scratched the surface (forgive the pun) of lens technology. In the process, however, we have laid a firm foundation for further study on the subject, and helped engineers understand the many trade-offs that exist in lens design and application. See below for additional information on this subject.

References:

Jerry Whitaker is a Broadcast Engineering consulting editor.
On July 30, 1996, WHD-TV, the nation’s model HDTV station, was the first commercial HDTV station in the world to transmit and receive live HDTV signals using the future United States standard.

The transmitter they used? Comark.

Congratulations to WHD-TV, the model HDTV station and the host, WRC-TV (Washington, DC.)

We’re proud to have been selected for this important job.

For more on this exciting breakthrough and regular updates on the state of HDTV, visit us at http://www.comarkcom.com

Other Comark HDTV firsts:
- First all Digital HDTV broadcast, WETA (1992)
- First HDTV Simulcast, WRC-TV 4 (1992)
- Transmitter selected for the Grand Alliance Field Tests (1992-1995)
Finding and keeping clean power may have just gotten easier.

By Eric Wenocur

Over the years, certain aspects of facility power and grounding have become well-accepted. In particular, single-point grounding techniques have dominated as the best way to create a “clean” technical power system. The objective is to reduce hum, buzz and radio frequency (RFI) components on power and signal grounds, thus reducing noise impressed on audio and video signals.

Recently, however, there have been stirrings around the TV and audio recording industries suggesting other approaches to solving noise issues. Articles and seminars have dealt with the sources of noise.

The three toroidal transformers are mounted in enclosures located near the electrical panels and provide balanced power, as well as some isolation from externally generated noise and spikes.
“Our truck had a total makeover, but our cameras remained Ikegami.”

"When we decided to make our fifteen-year-old truck brand new, we reviewed all the cameras available and decided to stay with an old friend. Ikegami’s HK-366 was a camera we’ve had our eyes on for some time. Ikegami cameras always seem to have a much warmer picture than the other cameras on the market. Our engineers favored the Skin Tone Detail feature which gives us the ability to lock on a skin hue without affecting the detail in the rest of the picture. Extra mic inputs, overall sensitivity, and colorimetry were other key features of the cameras. The MCP panel gives our engineers complete control to create the desired "look." Our EIC was ecstatic over the fact that the MCP memory cards give him each camera setup from scratch.

Our operators liked the PIP return video in the viewfinder, the 2-way trunking (which allows us to feed sources through the triax, i.e., a clock camera to the trunk and iso feeds out of the side of the camera), and the extra intercom features.

We also purchased a new HL-57 to add to the three we bought last year.

Fifteen years ago, we outfitted the truck with Ikegami’s HK-357 and HL-79 cameras. They gave us very little trouble and a lot of good memories. After a complete makeover the equipment in our truck is brand new, while the name on our cameras remains the same. It’s a tradition we’re pleased to carry into the next century, with Ikegami cameras.”

THE PROFESSIONAL'S CHOICE

Ikegami Electronics (U.S.A.), Inc. 37 Brook Avenue, Maywood, N J 07607 East Coast: (201) 368-9171
West Coast: (310) 534-0050 Southeast: (954) 735-2203 Southwest: (214) 869-2363 Midwest: (708) 834-9774

Circle (55) on Action Card
An unconventional approach to power and grounding

noise, how noise gets into signal circuitry, and noise control through the use of balanced (symmetrical) AC power. My own experiences with conventional grounding techniques have been so unsatisfactory— in terms of failure to solve problems and difficulty in implementation— that I have chosen to try some unconventional, but theoretically sound, ideas in recent installations.

Noise sources

The noise problems familiar to audio and video engineers range from audible hum, buzz and interference at various frequencies to visible hum bars and RF moiré in video signals. Many of these can be traced to coupling of environmental noise into signal cabling, while other noise originates in the incoming power or in equipment itself.

One primary source of ground-related hum is voltage differentials between different points in the power system. This is the classic “ground loop” phenomenon; two points are at differing potentials, so current flows between them. In the case of broadcast systems, ground currents can arise from several sources; commonly these include leakage currents from line filters and transformers in equipment power supplies or devices that present an unbalanced load—that is, when some of the power delivered to the load leaves via a path other than the neutral, generally meaning the ground. Recalling Ohm’s Law, a voltage drop occurs when current flows through some resistance. The resistance component is the impedance of the grounding conductors themselves.

A second minor source of noise is induction of AC hum into signal wiring. Any conductor carrying a current radiates magnetic and electrostatic fields that can induce current in a nearby conductor. The intensity of the induced current depends on the proximity of the two conductors, but even following good cable dress practices, such as keeping power and signal wires perpendicular to each other and using steel enclosures, there is enough AC field activity around equipment and signal wiring that this can be an issue. Even if your signal is carried in a shielded cable, a nearby AC field still induces current in the shield, thus becoming a source of ground differential voltage.

The typical solution for ground differential hum is to try creating a system in which all equipment is grounded via only one path: the power cord third pin. This requires isolating chassis from racks, using iso-ground power receptacles and lifting the shields of signal cables at one end. This last practice is absurdly difficult to maintain through patch fields and in systems with considerable unbalanced equipment, such as video facilities, where the ground conductor is also the signal return. Additionally, it makes the shields into appealing antennas for RF signals. In either case, ground-borne hum appears at the “earth ground” of equipment to which the shield is connected. This is typically the enclosure, or some part of the internal structure, which should be protecting the circuitry from noise. Instead, due to poor design, it allows the noise to be coupled inside of the enclosure (the so-

Figure 1. Conceptual block diagram of the grounding and balanced power system used at Fast Cuts, Inc., Washington, DC.
called “pin 1 problem”). This problem is so common it is shameful.

You can try bringing all your shields to some central “earth ground” point in the hope of bleeding off the ground noise, but the noise does not “flow into” the earth. This is a common fallacy. Aside from safety, ground rods (or bonds to building steel) help to equalize any voltage potential between the technical power and utility power grounds and reduce static charge buildup on shields, but they do not absorb ground noise. In the end, single-point grounding and heavy earth grounds are attempts to treat the symptoms of noise, but not the source problems.

An important point to remember is the value of transporting signals on pairs of conductors because of their inherent ability to cancel unwanted noise; if all equipment used balanced/differential floating inputs and balanced outputs, most ground noise issues would be moot. This applies to power signals as well; the hot and neutral conductors in a line cord carry equal and opposite currents that effectively cancel most radiated fields.

Balanced AC power

The notion of balanced AC is not that new, it simply has been forgotten, particularly since modern electrical distribution (at 120V) relies on a single “hot” conductor and a grounded neutral. Balanced (symmetrical) power works much like balanced audio; there are two hot conductors each carrying the same AC voltage but 180° out of phase. In the case of typical electrical systems, this translates to two conductors at 60V relative to ground. The end result at the line cord is still 120V but there is no “neutral.”

The primary advantage of this approach is that common-mode noise (which is equal and in-phase on both conductors) is nulled at the ground. Leakage currents in a power supply, particularly those from line filters (which are balanced by design), are summed and canceled at the ground conductor. In addition, distortion and noise caused by non-linear components in power supplies are also canceled. Switching power supplies, ubiquitous in today’s equipment, tend to introduce more of this type of noise due to their lack of a large transformer at the power input acting as a low-pass filter.

Installing a balanced technical power system is only moderately different from conventional power. The most difficult part is getting electrical contractors to think differently: “balanced” does not

In the end, single-point grounding and heavy earth grounds are attempts to treat the symptoms of noise, but not the source problems.
An unconventional approach to power and grounding

refer to balancing the loads on a three-phase service and there is no neutral. Electricians are so accustomed to neutral and ground being effectively the same that there is no telling what might get connected wrong if they are unclear on the concept. More prosaically, the standard AC line tester with three lamps will not work normally.

Balanced power is created through the use of line transformers. Whatever incoming service you have, the end result is typically 120V at some amperage requirement (though it can be another voltage). Therefore, the necessary transformer(s) should have a primary designed for the available service, perhaps 120V or 240V and a capacity (stated in Volt-Amps, which is essentially watts into a purely resistive load) sufficient for your technical power needs.

The first step is to take a power inventory of your facility to determine the total tech power draw. Most equipment will state somewhere on the rear panel or in the manual either current or watts drawn. In general, it is wise to use VAs rather than watts when determining power consumption for a device. This is because watts can be misleading if the device's power factor is not known. Using VAs based on a device's actual current draw will ensure adequate power system size even for equipment with heavily reactive load characteristics (such as big motors). Add it all up, add in your expansion needs and throw in some extra for good measure. The reality is that most equipment draws less current than rated, most of the time, but start-up surges (such as from one-inch VTRs or film dubbers) must be considered, as well as changes in efficiency due to temperature. Plus, those big digital boxes, like DVEs and switchers, are real juice hogs and might not be fully loaded when first purchased.

The tech power can be derived from a single transformer or several depending on the service. For instance, at Fast Cuts (see Figure 1) there was 120/208V/100A three-phase service available, which can provide three 100A supplies. Three transformers were chosen that could be strapped for 208V primaries and 120V center-tapped secondaries (thus creating the balanced 120V). The terminology of these transformers can be tricky, so be sure the supplier or contractor understands what you want. Purchasing transformers from such a company as Equi-Tech eliminates this problem and also provides precision-wound secondaries that are claimed to give better common-mode cancellation. However, precision transformers are significantly more expensive than common industrial models; the 8kVA unit in this system was about $1,500.

For the Fast Cuts facility, Equi-Tech supplied toroidally wound transformers, which have higher power capacity for their size than conventional laminated-core designs (and well-contained magnetic fields), but had two peculiarities that caused trouble during installation. First, if the transformer is mounted vertically, such as on a wall, support can be provided using the hole in the plastic core but there must not be a completed turn of electrically conductive material through the core. (See Figure 2.) The introduction of a closed electrical circuit through the core acts like a shorted winding and can damage the transformer.

Secondly, though the system in Figure 1 was installed with a 90A three-phase main breaker ahead of the transformers, the breaker would not hold when powering up even one of the transformers. The transformer manufacturer quoted short-duration inrush currents as high as 5,000 amps for the 5kVA units! This was probably due to the transformer cores being undersized and reaching saturation too quickly at start up. Because it was not possible to get a circuit breaker with extremely high inrush specs, a 90A fused disconnect was substituted. This brings up a good point: do not hesitate to contact the transformer manufacturer for technical help with installation, particularly in the areas of lead identification, mounting and cooling.

The code and other issues

Balanced power is first addressed in the National Electrical Code (NEC) with the 1996 revision (thanks to work by Equi-Tech's Martin Glasband). This legitimates the practice, at least for audio and video facilities, and provides some specific directives. For the most part, these directives are common-sense, though sometimes tedious. Because the NEC's sole purpose is to ensure human safety, it is wise to stick with the letter unless you can foresee the consequences of straying. In the end, a given electrical inspector may make unreasonable trouble about a balanced installation, even with support of the code, or may let things slide if he or she understands what is being done.

One problematic aspect of the balanced power code requirements is that each branch circuit must be supplied with a Ground Fault Circuit Interrupter (GFCI or GFI). The reason is to protect against shock in the event someone touches ground while also touching a device whose case is connected to the "neutral" line cord lead. The code
addressed this problem in conventional power systems with the polarized two-prong plug, but with balanced power both sides are at 60V so the polarized plug does nothing. In practice, however, this scenario is unlikely because most professional equipment has a three-wire cord or an isolated chassis.

More important, the typical GFI is designed to trip at only 5mA of leakage current. Unfortunately, in any collection of average professional equipment, a few devices will exhibit this much leakage just from shunt currents in their power supply filters or leaky capacitors. There is nothing functionally wrong with the equipment, but the GFI will trip the instant power is applied. One solution is to install GFI circuit breakers, with adjustable trip current, in the tech power panels, but this is expensive. Another approach is to examine the offending equipment to determine and fix whatever is causing the leakage current.

The code also specifies double-pole breakers for the branch circuits, which is important. Though it increases the cost marginally, without double-pole breakers a branch circuit is never truly off. From an overload or short-circuit standpoint the protection is the same as with conventional power; excessive current draw on either leg will trip the breaker. In addition, the panel box must have power buses isolated from the box itself, such as for 220V distribution. Isolating the ground bus is not really necessary (see final section). Other code requirements, such as labeling circuits and receptacles, are actually a good idea anyway in order to maintain the integrity of the technical power system. That is, all equipment with system signal connections must be powered from tech power, and all non-production equipment (such as copiers) must be kept off tech power.

Clean tech power

A few issues about the power and grounding system remain. As far as line conditioning, regulation and backup power go, these must be addressed on an individual basis depending on budget. In the facility described here, no attempt was made to provide voltage regulation. Most decent equipment already has internal regulation that is sufficient to handle minor fluctuations in line level. I have also known large tap-switching regulators to go haywire and wreak havoc with the power. Similarly, no backup system was provided, though individual UPS units may be added for specific vulnerable devices, such as graphics computers and editors.

In terms of spurious noise and spike control, since balanced power is created using transformers there is the inherent benefit of an isolation transformer between your tech power and the power company. The transformer acts as a steep low-pass filter that reduces high-frequency noise. Surge protection for Fast Cuts was handled by installing some large metal oxide varistors (MOVs) at the breaker panels. These should be rated for the nominal rms voltage (but also sized to handle potential long-duration power-line fluctuations).

Another potential source of equipment damage is when power brownouts or blackouts occur. One approach was to install some relays that monitor the incoming power phases. If any of the three phases drops out, a giant master relay (a 90A industrial "contactor") disconnects all three phases. This relay must be reset manually, which allows facility personnel to determine when the incoming power has stabilized.

Finally, what about grounding? As previously mentioned, I have lost faith in star grounds, ground rods, telescoping shielding and the like. They are cumbersome to implement and solve little. In the facility described here a "brute force" approach was taken: all cable shields connected at both ends, power system grounds connected to racks via third pins and power strip cases, all racks bonded together with bolts and star washers, as well as heavy ground straps to outlying racks, extra-large ground conductors installed between transformer center-taps, breaker panels and distant subpanels.

The idea was to create the lowest-impedance ground possible. This makes it easier for ground-borne noise to return to its source and reduces the possibility of voltage differential problems by bringing all parts of the system closer to the same electrical potential. In practice, the use of balanced power and good layout and shielding practices are meant to prevent the admission of noise into the system, but a solid low-impedance ground is the foundation. The transformer center taps and electrical grounds are bonded to the building (power company ground) via a large conductor coming in with the three-phase from the electrical room (the three-phase neutral is not used).

The presumption here is that shields can always be lifted or ferrite beads installed if noise is found, but so far this has not been necessary. The facility has been in operation since January of 1996, with technical areas covering about 2,500 square feet. There has been no sign of video hum or audible noise (apart from the occasional bad equipment). Although there are plenty of balanced audio and video devices, there are also numerous unbalanced devices, some with two-wire line cords. It just doesn't matter. Admittedly, implementing this type of power and ground system in a large facility would be more difficult, but I believe it is worth considering these "unconventional" approaches. One day they may be considered conventional.

Eric Wenocur owns Lab Tech Systems, specializing in audio and video system design, installation and troubleshooting in the Washington, DC area.

References:

Acknowledgment: Special thanks to John Frey for additional consulting on this article.

September 1996 Broadcast Engineering 85
A PC by Sony and other computer products go home

Sony’s entry into the home PC arena joins loaded laptops, stunning still cameras and portable storage successors.

By Marjorie Costello

This is the first of a two-part look at important introductions in the home PC area. With the PC becoming a mainstay of American life, companies typically associated with making televisions are lining up to get into the business. At the same time, computer companies are tapping their technology to create the next generation of televisions and handheld devices. In the home PC explosion, CE and computer powers are collaborating on new products, with start-ups and spin-offs ready with solutions to portable storage problems. And, as more computers go home and millions go online, the movement is creating new uses for products originally designed for another purpose.

Some of the new home PCs will be used by video professionals for traditional computer chores, such as word-processing and going on-line. The legions of laptops entering the market will provide portability and power — without the price premium — for presentations and on-location signal and machine monitoring. With their expanded multimedia capabilities at lower price points, PCs will expand the use of CD-ROMs — and eventually DVD-ROMs — for training and company communications.

Equipped with faster processors, expanded memory and larger hard drives, home PCs will also be called into action by production operations and prosumers as desktop video tools. Enhanced and simplified communications available on consumer-level products will also make it possible for more companies to connect their employees to internal “intra-nets,” as well as to the vast offerings of the World Wide Web. Some of these new products, as they reach the mass market, will create a demand for services among video professionals. Others signal a new direction for companies who have been among the mainstays of video — professional and consumer.

PC by Sony

The debut of Sony’s line of home PCs should be of special interest since the company is a major player in the professional video world. The launch also signals the beginning of a new direction for the 50-year-old company, likely to affect other Sony divisions. Sony’s vision for the future includes a shift from its identity as an audio/video company to an organization described by Sony
Electronics president, Carl Yankowski, as an AVCC (Audio Video Communications and Computer) company. Now that home PCs have, in Yankowski's words, "reached a critical mass," the company that gave the world the Trinitron, the Walkman and the Betacam, thought the time was right for the PC by Sony.

Sony, like many companies in the computer field, is not going it alone, with its line developed and built in cooperation with microprocessor power Intel. The two-model Sony line, the PCV-90 with 200MHz (Intel's current fastest) Pentium microprocessor and 166MHz Pentium-based PCV-70, range in price from $2,000 to $3,000, with emphasis on offering a high-end multimedia PC for consumers. The PCV-90 offers 32MB of RAM and a 2.5GB hard disk, with the 70 incorporating 16MB of RAM and a 2.1GB hard drive.

The mini-towers housing the CPU and drives of PC by Sony are dark gray and include a purple sliding door covering the CD-ROM and floppy drives. The towers are designed to operate with a 15-inch monitor with two built-in mid-range stereo speakers mounted on either side, a built-in mic and a subwoofer, incorporated into a tilt/swivel stand. The medium gray monitor, slated to sell for $599, matches the keyboard and mouse, and the company promises a 17-inch monitor at a later date.

The models' common features include 3-D accelerated graphics, an eight-speed CD-ROM, floppy drive, 28.8 modem, universal serial bus, full-duplex speaker phone, an extensive software bundle and what the company is calling "Sony-Tuned MPEG decoding." To expand the number of operations that can provide CD-ROM mastering services for the MPEG-1 titles, Sony is now marketing the RTE-3000 MPEG-1 encoding system. Geared toward entrepreneurial CD-ROM publishers, small A/V departments, educational institutions and small business, the real-time encoder ranges in price from $29,995 to $79,995.

The home PCs will be sold primarily by Sony's major consumer audio/video accounts, which started late this summer. In addition, the company said it will likely distribute the line through a few computer chains. To support the line, Sony is promising top-notch service and technical help, through SOS (Sony Online Support), with the company setting up a new call center in Florida. Because the PCs are equipped with a DSVD modem — that allows consumers to be on-line on the same phone line they use for voice — customers will be able to speak with tech support while their systems are being diagnosed.

PC by Sony is the first to carry the Video Audio Integrated Operation (VAIO) “concept” logo, which the company says will appear on future audio, video, computer and communications products to signify their convergence capabilities.

The VAIO name is also carried over as the name for the 3-D graphical user interface (GUI) developed for the Sony home PCs. Called VAIO Space, the GUI rides on top of Windows 95. While in the space, computer users can see film clips from the company's motion picture company. There's an A/V media wall, an application space, a utility base and net space, with single click connection to on-line services, the Internet, SOS and Sony's web site.

Sony changes strategy gears for PCs

Sony, concerned with the often razor-thin margins in the PC industry, decided to diverge from the strategy it has followed through the years in audio and video, for the professional and consumer markets. Many would agree that Sony's success has been based on marketing a product offering more technology and features than the next brand and getting the customer to pay more for it, with Sony's prestige image also playing a role.
Compared with the other PCs on display at this past June's PC Expo in New York (a computer trade show now second to the fall COMDEX in attendance and product debuts), Sony's models offered many of the same features available from the competition at Compaq, IBM, and Packard Bell. However, with the name "Sony" as a powerful draw — underscored by a recent Harris Poll survey naming Sony as America's leading brand — it's expected that the new home PC line will attract many customers.

Because of Sony's pricing concerns, the company decided not to include features and capabilities many would have expected from a company with a franchise in video. Among the features not included — or offered as an option — are video phone capability, a TV tuner card, desktop video, Interact, high-quality video out and integrated AV equipment control.

Compaq, the current market leader in home PCs, will be adding Intel's new Video Phone technology to its home PC line this fall, with IBM and others expected to follow. These consumer-priced PCs are likely to compete with more expensive videoconferencing solutions specifically targeted toward the professional video market. Sony would not say if and when its Video Phone technology would be added. However, with Intel collaborating with Sony on the home PC line, it's more than likely the feature will be added in future PCs by Sony.

The same is also probably true of Interact support, since Intel is one of the major companies supporting this system for delivering data to PCs via broadcast and cable signals' vertical blanking interval. Compaq was the first PC company to add Interact boards and software to its models, which debuted during the Olympics in select models sold in the Atlanta market.

For video professionals — and especially prosumers, the most disappointing omission in Sony's first home PCs is desktop video. Although the PCs can be fitted with add-on boards and software for capturing, compressing and manipulating full-motion video, it was a bit surprising Sony did not offer these products as options. Companies, such as Packard Bell (without Sony's franchise in video production), have offered video capture boards and editing software in recent models.

First FireWire board and a look to future features

On the other hand, Sony did introduce its first FireWire board, the DVBK-1000. When connected to a Sony Digital Handycam and a Windows 95 or 3.1 computer, still images can be captured digitally as computer data without the signal loss associated with analog conversion. The card and software carries a $799 suggested list price. Although the board would qualify to some as "desktop video," the fact that it doesn't capture full-motion video or work with analog camcorders would limit its card-carrying status in the desktop video world.

High-quality video output, although more critical in notebook models used in portable presentations, is another feature we can hope Sony will include in future desktop models. With Sony also planning to introduce notebooks under its own name — with the company making some Apple PowerBooks models since the line debuted — we anticipate that high-quality video output will be included in the portable PCs by Sony, expected in the next year or two.

Sony has also said that future desktop models may include a DV tape drive. Because Pro DVCAM recordings are designed to be playable on Sony DV consumer decks, hopefully, the compatibility will extend to Sony's home PC DV drives when they arrive.

A peripheral Sony has gone on record as saying it will add a 100 CD-ROM changer, a useful playback option for training and educational applications. Also promised is a DVD-ROM drive, once that format moves into the market. Another feature Sony hinted we would see is a board and software for capturing, decoding and displaying DSS signals, although it's rumored Compaq will be the first to offer the capability.

Other extras that could show up in a PC by Sony include a TV tuner card for watching broadcast and cable channels. Your productivity will not suffer too much because Sony has no plans to offer a board incorporating the highly successful PlayStation video game system, although the Sony PC will offer easy connection to the Internet and online services.

A new category, the PC/TV (or TV/PC) is moving into full swing, led by Gateway's Destination. Compaq and Thomson (RCA) are collaborating on a series of convergence products, with a PC/TV promised as the first offering. Toshiba has also hinted it will combine its experience from computers and television in the PC/TV category. We should know more about Sony's plans in this category in the near future.

Look for more information on laptops, still cameras, and portable storage in the next column.

Marjorie Costello is a broadcast and video industry consultant and Broadcast Engineering contributing editor based in New York. Respond via E-mail: MACostello@aol.com.
Winterizing your tower

This is the time of year when wise engineers start looking for trouble, not hoping to find it, but hoping to avoid it. It is time to look at those essential, but often forgotten and neglected, towers that are a major part of the broadcaster’s last link with the viewers.

If the tower was built in pre-WW2 days, it behooves you to take a good look at mechanical items. However, from my experience, these towers were generally built by adequately financed licensees who did not skimp on tower construction. Regardless, after 50 or so years, materials do begin to rust, no matter how good the original. Other items also begin to show signs of age.

At first, the TV explosion did not result in many new TV-only towers. Existing AM owners realized they already had an antenna-supporting structure in the form of their AM towers. Sometimes, it was necessary to erect a new, taller combination AM/TV tower, but in many cases, the existing tower was used.

Some of these were built by penny-pinchers who had to skimp on materials to get on the air. Since then, in many cases, maintenance has been ignored. Judging from those towers I have visited, many might well have more paint than steel in their present physical construction!

AM/TV combos

The combination AM/TV tower brings us to two important considerations. One is tower strength involving the new TV antenna, plus possible iceloads. The other is bypassing the base insulator. Basically, there are two ways of doing this. One is by using a quarter-wave matching stub usually running up the tower, although sometimes horizontally on the ground; or an iso-coupler can be used. This consists basically of a coil of coaxial line at the base of the tower that carries the TV signal and also serves as an inductance across the base insulator tuned to present a high impedance at the AM frequency.

Some of the older, original TV stations that still use a TV radiator mounted on AM towers encounter problems. It often became necessary to build tall AM/TV towers as high as 1,100 feet AGL to provide enough TV height. To obtain efficient operation at the AM frequency such towers were usually treated as Franklin radiators and were of split construction with special driving systems for each of the AM radiating sections.

The last example that I know of was the old NBC station in Cleveland, OH, where Channel 4 was supported on a 1,100-foot Franklin radiator.

I have found that many of the combination AM/TV towers using quarter-wave matching stubs, Franklin design principles and other isolating methods have changed impedance over the years. When performing tower maintenance on such towers, it is essential to measure the AM match with a bridge and to reset it if necessary.

Paint should have been scraped off the tower legs when originally installed. Over the years, moisture can work its way in and produce rust and other forms of solid-state conductors that result in strange spurious RF radiations. It can also change the matching impedance.

If you are lucky, you will be able to find a tower crew who can also perform a mechanical inspection and fine-tune the isolating system adjustment. In the old days, shouting up the tower was the usual means of communication to the adjuster. Consequently, adjustments were often not that precise. Today, we as engineers in the completely RF device-driven communications field should use some form of radio communication. But remember — don’t use ham equipment to do it — the temptation is great, but the FCC’s penalty can be heavy.

If funds permit, hire a tower specialist to make the inspection. He or she will report on the rust and steel safety situation, as well as paint condition. Have all the section joints inspected for rust and corrosion. Guy wire attachment points must be checked, and guys require a careful inspection. Guy greasing seems to be ignored at many stations, but it is an important factor in maintaining tower life and can extend guys life.

Don’t overshoot

Be sure to check guy tension and tower vertical angle. Over the years, many a tower has acquired a slight tilt. If you have a TV antenna with more than a few bays on the tower beware. Unnoticed beam tilt can affect coverage. If you’ve received reports of poor TV coverage in some direction, check the tower’s vertical alignment. With a high gain UHF antenna, a mechanical tower beam tilt of only 1° can cause your signal to pass over the desired area in one direction and fall short in another. I recall one TV station whose new TV antenna was carelessly installed with a 1° tilt, due to lack of shimming, and an important coverage area was lost until the installation was corrected, but only after a lot of complaints.

Don’t neglect the feedline while checking for mechan-
eral problems. Put a Time-Domain-Reflectometer (TDR) on the line and check for loose/burned bullets and line malformation. Properly used, the TDR can even give early warning of antenna problems.

For towers in general, check the guy anchors. Have your inspector dig down to check for guy footing deterioration. Also look for rusted eyelets and turn-buckles that are not locked or are rusted out. Lighting installations are often overlooked. Be sure that all conduits are adequately bonded to the tower and that lighting fixtures are sound and not cracked or missing. If you have a dual beacon be sure that both lamps are good and working. It goes without saying that the photocell system should be checked, not only for turn-on in darkness, but also under FCC specified light conditions. Any light-sensing devices for remote control should be confirmed to be operating also.

If you have strobe lights, check that the daytime/interim/night lighting power change is working properly. We often see strobe systems with faulty power change switch gear that continues to run the daytime power at night—much to the annoyance of people living in the vicinity of the tower. The opposite is more dangerous—reduced night power in daytime is a big NO NO!

Sometimes the flasher rate for the system changes and gives unusual combinations of lights. Some systems carry the high strobe voltage to each light via heavily insulated cables. Check these to be sure that there are no worn or weak insulation spots where a short can occur. Most of the newer systems generate the high voltage at the individual light fixtures. These generally use a power pulse from the ground controller to initiate the discharge.

Gaskets on the individual strobe power generation boxes are a common source of trouble. Make sure that gaskets are replaced as necessary and that they are not caught in the lid or cover as these are replaced, with the consequent risk of water entry.

Be sure that remote-control sensors are working properly and telling the correct story to the control point(s). If you are one of the unfortunate licensees with red and strobe lighting, it is particularly important to check that both systems are working properly and that the remote sensors are actually verifying the condition of the tower lights.

Finally, be sure that your board operators or remote-control personnel are absolutely sure of the correct procedure to follow in the event of light failure. Be sure that the correct FAA number(s) are posted together with the proper instructions. The FCC and FAA take a dim view of incorrect tower light failure reports.

Tower base footings must be checked. Sometimes they develop cracks that can fill with water and allow ice to form and crack the concrete. Sometimes concrete begins to crumble for no apparent reason. Get a good concrete engineer to examine the footing and follow his or her advice. Dig down a little and see what it's like under the ground; but be sure not to damage the connections to the grounding system.

This is also a good time to examine the grounding system if you have a TV-only tower. A surprising number of TV towers were built with inadequate grounding facilities. If your station has been hit more often than your competitors, or more than is reasonable, take a look at what the long-past installer provided to take care of lightning surges.

It is surprising how many TV-only towers have only one or two eight-foot grounding rods loosely tied to the tower base. Although there is no need to be as elaborate as an AM station's system, something better than one rod is essential. A lot depends on the type of soil around the tower. In sandy or rocky soil, it is advisable to install at least eight grounding rods connected to the tower with short four-inch or wider copper straps; not a piece of six- or eight-gauge copper wire. A long run of small-gauge wire offers enough reactance to a lightning strike to divert the strike to the lower impedance transmitter and associated equipment. A copper strap has a far lower impedance. Chemical grounding systems are becoming popular in rocky/dry soil. Generally, these require only a little maintenance during the year, but they are usually worth the trouble in preventing the damage and cost caused by uncontrolled lightning strikes.

If you have a combination AM/TV tower, look at your tower base insulator. It goes without saying that it should not be cracked. Sometimes it is hard to observe cracks, and once again an expert's services might be worth the cost. Remember, a small crack can contain water that will freeze and ice's power of expansion in moving large objects is amazing!

Pay special attention to bonding on the tower between tower lighting, other antenna transmission lines and any other devices that are hung on the tower. Poor bonding to these items can cause all kinds of operating problems in a combination system. Vibration sometimes loosens bolts and holes elongate. Your inspector should check these items.

Guy greasing seems to be ignored in many stations, but it is an important factor in maintaining tower life and can extend guy life.

Tower requirements revision
At this time while thinking about your tower's condition, consider the current tower loading. Over the years, the ANSI standards have been revised upward as far as minimum wind- and ice-loading are concerned.
Consequently, standards for towers have been revised upward in many states, especially for ice- and wind-loading factors.

Most stations carry tower insurance, but if your tower falls and the insurance company can prove it was overloaded, you might have a problem with your claim. Not only could your loss of airtime insurance fail to pay off, but if anyone is injured or property is damaged, the insurance might not cover these events, and they could be even more expensive than loss of air time!

In 1991, the ANSI/EIA/TIA standard 222 was revised and revision E became effective. This gives particular emphasis to the effects of multiple antennas and transmission lines on broadcast towers. The standard is too long to cover fully here, but one of the major items of interest to broadcast engineers is the method of estimating windload requirements.

Prior to revision E, maps of the states carried isobars showing basic wind speeds at an elevation of 33 feet above ground in 10mph increments. These were close together and it was difficult to determine the value in many counties. To overcome this, revision E provides a tabulation of minimum basic wind speeds for each county in each state. Special wind zones, or areas, are highlighted. Ice loads still have to be calculated and general tower windloading determined.

Methods of triangulation to determine tower twist and out-of-plumb conditions are given in the new revision. It is important that the person performing the tower inspection be familiar with the latest ANSI revisions.

If you've received reports of poor TV coverage in some direction check the tower’s vertical alignment.

If a tower falls and causes damage to property or personnel, it may become impossible to obtain permission to rebuild it. Station engineers must consider these things, and if necessary, beat on management’s door to get funding for a thorough tower inspection before the winter winds make it too late and your tower is down for keeps!

John Battison owns John H. Battison and Associates, a consulting engineering company in Loudonville, OH.

ONLY 5 AMPS at 117 VOLTS AC

- Unique Pulse Discharge Technology
- One Pass Erasure
- Continuous Duty Design
- Unattended Erasure with Optional Hopper

Fast, One Pass, Complete Erasure of Up to 400 Metal or Oxide Cassettes per Hour

PULSAR Conveyor Degausser

Send for Pulsar Brochure or Call One of Our Technical Specialists.

800-323-7520

Research Technology International

Made in the USA
4700 Chase, Lincolnwood, IL 60646-1689
Phone: 847-677-3000 Fax: 847-677-1311
E-Mail: Pulsar@RTI-US.com

Circle (52) on Action Card

September 1996 Broadcast Engineering 91
DON'T BE LEFT BEHIND!

On May 9th, the FCC accepted the Grand Alliance standard for broadcast TV. Advanced TV is almost here. What should technical managers do?

Attend Advanced Television '96: Building for ATV and learn how to make the right equipment and design choices to bring your station or production facility into the 16:9 production and multichannel broadcast arena.

Yes, the transition to digital technology has been slow, but the approval of a new ATV system is sure to shift the process into high gear. Broadcasters and production facilities will need to move quickly to implement digital systems. Digital technology offers many advantages including the ability to upgrade to an ATV operation.

The forefront of this movement starts at Advanced Television '96: Building for ATV. Mark your calendars today for November 20-22 and send this coupon in for complete information about attending this leading-edge conference.

MAIL OR FAX TO:

FIRST NAME ____________________________
LAST NAME ____________________________
TITLE ____________________________
COMPANY ____________________________
ADDRESS ____________________________
CITY ____________________________
STATE/PROV. ____________________________
COUNTRY ____________________________
ZIP ____________________________
PHONE* ____________________________
FAX* ____________________________

*Please include your city code and country code.

FOR REGISTRATION INFORMATION AND PROGRAM UPDATES AS THEY OCCUR, CALL FAX ON DEMAND AT 1-800-601-3858.
handsomely. In terms of economics, the idea of a simple, low-cost, effective compression system on a chip is extremely attractive. If I was still running the marketing of a broadcast equipment vendor, my booth at NAB next year would be full of interesting applications using the device. Judging by some of the broadcast/near-broadcast people I saw talking with Analog Device's staff at Comdex, that may well be the case.

"Quality" in the new chip is going to depend on the use, but having been a professional looker at video signals for the better part of 30 years, the signals that I have seen are impressive.

MPEG-4 is going to be complex, and I hope that wavelets are now "grown up" enough to get more than just the hearing they got at MPEG-2. My concerns about MPEG-4 are that the range of people, uses, users and sources is going to be so vast that the committee will be tied up for a long time and that what will eventually emerge will be another "toolbox" standard. In recent conversations with some of those who are readying their submissions for the first work, there seems to be a uncertainty about what they want from the standard.

Thank you for your comments and interest.

Regards,
Paul McGoldrick
Protocol translator

Protocol translator

- SPT-1000-SXY: a translator that allows Leitch routers to be controlled by other manufacturer’s control systems and conversely, allows Leitch’s control systems to control other manufacturer’s routing switchers; the translator fits in the palm of your hand, can be mounted to the side of a rack or left in-line along a length of cable; the translator has sufficient memory to store several protocols.

Leitch, 920 Corporate Lane, Chesapeake, VA 23320; 800-231-9673; fax 804-548-4088
Circle (250) on Action Card

Telescoping camera tower with robotics

Telescoping camera tower with robotics

- TreeTop camera elevating tower & robotics system: the system consists of three modular parts—a telescoping tower, a robotic pan/tilt head and a command control center; the tower reaches a maximum elevation of 21 feet in 30 seconds (40-foot models are available on special order); it is designed to withstand rugged use under a variety of environmental and topographical conditions; the tower retracts into a compact 150-pound, six-foot one-inch long package and is easily transportable in its own high-impact travel case.

TreeTop Systems, 191 Post Road West, Westport, CT 06880; 203-221-2700; fax 203-222-9163
Circle (251) on Action Card

Digital clamp meter

Digital clamp meter

- DCM330, DCM320 & DCM300: advanced digital clamp meters that are convenient to use in any situation; the DC current capability and peak hold function help ensure that you will never miss information; autoranging and 4,000-count resolution make the DCM300 and DCM320 quick and easy to use.

Tektronix, 14180 SW Karl Braun Dr. MS 50-216, Beaverton, OR 97007; 800-426-2200; 503-627-4697; fax 503-627-5593; www.tek.com/measurement
Circle (254) on Action Card

Re-recordable digital optical disc

Re-recordable digital optical disc

- LQ-D5500: a record/erase digital optical video disc recorder/player that provides broadcast-quality, high-density digital recordings; the LQ-D5500 records up to 41.5 minutes of DVCPRO video and two high-quality 48kHz/16-bit digital audio (PCM) channels; with an average access time of 0.5 seconds across the disc, the LQ-D5500 offers a dramatic advantage in editing and production speed.

Panasonic, One Panasonic Way, 2A-2, Secaucus, NJ 07094; 201-392-4319; fax 201-392-6001
Circle (255) on Action Card

Video display system

Video display system

- 2xView: a self-contained, multi-input video display that efficiently houses Electrosonic’s processor, the IMAGESTAR; the upper projector is nestled above the lower projector to save space; with a footprint of 30 inches, this system stands 43-inches wide and 96-inches high and houses screens of 53-inch diagonal.

Electrosonic Systems, 800-328-6202: 612-938-9311; videowall@esonic.usa.com
Circle (255) on Action Card

Computer-based A/B/C/D roll edit controller

Computer-based A/B/C/D roll edit controller

- VideoToolKit 3.0: a multifeatured video editing software program that allows PC-Windows 95 and NT 4.0 users to harness the power of their personal computers to edit video productions; Video ToolKit 3.0 turns a computer into an edit controller allowing you to build on-screen edit decision lists and rearrange scenes with the click of a mouse or with a standard joystick.

Videonics, 1370 Dell Ave., Campbell, CA 95008-6604; 800-338-3348; 408-866-8300; fax 408-866-4859; www.videonics.com/; info@vidreonics.com
Circle (263) on Action Card
Progressive scan camera

Sony Electronics

- DXC-9000: a three-CCD color video camera that dramatically reduces blur and captures clear, high-resolution images of moving objects by incorporating progressive scan technology and both NTSC and VGA output; because the images are stored as square pixels, the DXC-9000 can help avoid aliasing and provide clear image capture and manipulation for computer graphics applications.

Sony, 1 Sony Dr., Park Ridge, NJ 07656, 800-472-SONY
Circle (255) on Action Card

Shortcut personal audio editor

360 Systems

- Shortcut: a self-contained stereo editor that combines a familiar interface with digital editing power; unlike tape, the Shortcut is always ready to record — the record button is always active and it immediately captures incoming audio, no matter what the user was doing before; because Shortcut records directly to a large internal hard disk, all audio material is on-line for immediate access.

360 Systems, 5221 Sterling Center Dr., Westlake Village, CA 91361; 818-991-0360; fax 818-991-1360
Circle (258) on Action Card

Real-time video system

Truvison

- TARGA 2000 RTX: an upgrade to the TARGA 2000 Pro that brings real-time processing and the highest I/O throughput to the desktop; the system is designed to meet the needs for an open-system solution for nonlinear editing and desktop multimedia production; the TARGA 2000 RTX delivers real-time DVE, broadcast-quality video and professional I/O connections with support for industry-standard video file formats under the Apple Mac OS and Microsoft Windows NT operating systems.

Truvison, 2500 Walsh Ave., Santa Clara, CA 95051; 800-522-8783; www.truvison.com
Circle (257) on Action Card

Digital routing switchers

Sierra Video Systems

- Model 64 x 64: line of large serial digital routing switchers including the 6464D, a 4RU modular design available in 16 input or 16 output increments from 32 x 32 to 64 x 64; the inputs are auto-equalized and outputs are reclocked for 143, 177, 270 and 360Mb/s data rates; companion to the 6464D is the 6464E serial digital audio routing switcher.

Sierra Video Systems, PO Box 2462, Grass Valley, CA 95945; 916-478-1000; 916-478-1105; info@sierravideo.com
Circle (260) on Action Card

ISDN audio codec

Comrex

- Nexus: a complete ISDN codec, terminal adapter and NT1 combined into one package; the Nexus can send 15kHz bidirectional audio on BRI ISDN and is compatible with all standard G.722 codecs; it also provides ancillary data capability for linking your laptop with your station.

Comrex, 65 Nonset Path, Acton, MA 01720; 508-263-1800; fax 508-635-0401
Circle (261) on Action Card

SONEX Acoustic Treatments.

SONEX FIBER-FREE acoustic treatments now available in polyurethane and willtec® Class 1 Fire Rated materials. Call today to learn more about the sound qualities of SONEX.

illbruck

1-800-662-0032

Circle (53) on Action Card

September 1996 Broadcast Engineering 99
new products

Agile demodulators

- **Videotek**
 - **DM-145**: a 154-channel, agile cable-ready demodulator that is ideal for monitoring broadcast and cable channels; it provides simultaneous stereo audio and second audio program (SAP) outputs.
 - **DM-154**: a high performance cable-ready agile demodulator ideal for broadcast video testing due to its zero carrier chopper mode, its ICRM quadrature output, its IF loop capability and its composite audio output for stereo testing or re-modulation.
 - **DM-192**: a modulator featuring 192 channels that lends itself to broadcast and cable TV video services and testing; it features zero carrier chopper mode, ICPM quadrature output, IF loop capability and composite audio output for stereo testing or re-modulation.

Hand-held zoom lenses

- **Fujinon**
 - **A18X9 & S18X6.7**: a family of hand-held zoom lenses that bridge the gap between low-cost professional lenses and high-performance lenses designed for broadcast applications; the 18X lenses offer the widest angle and highest magnification of any of the lenses in their class; they are designed for rugged service and are extremely durable; the use of aspheric technology also allows them to be extremely lightweight.

Fiber optic system

- **MULTIDYNE**
 - **FTX-95 / FRX-95 FIBER OPTIC SYSTEM**
 - Exceeds Broadcast and RS-250C specifications.
 - Video S/N > 75 dBs, Diff. Gain < 0.5 %, Diff. Phase < 0.5°.
 - 10 MHz BW for HDTV, NTSC, PAL and SECAM.
 - 1000 feet video cable Equalizer and Clamp.
 - 20 bit Digital Audio, 20 Hz - 20 KHz, AES/EBU.
 - Up to two 10 Hz - 5 KHz Auxiliary Audio channels.
 - Up to two RS-232C, RS422, or CMOS channels.
 - Portable and Rack-mount units available with Singlemode and Multimode optics.

Compositing device

- **Ultimate**
 - **Ultimate-8**: an all-digital, fullFeatured compositing device that produces realistic composite images even when the foreground contains things such as smoke, shadows, soft edges, transparent objects, fine details, reflections and shades of blue; the device features user-selectable input and output that can be individually configured to serial 4:2:2:4 or 4:4:4:4.

Two-way radio interface

- **Clear-Com**
 - **TW-20**: a two-way radio interface that allows communications from walkie-talkies to a wired Clear-Com party-line intercom system; the TW-20 is ideal for touring shows where licensed fixed frequencies might not have clear channels at every venue.
ADVERTISE IN THE GALLERY

- 32,000 TV-only circulation
- Free reader service number
- Frequency discounts
- Agency discounts

Call MATT TUSKEN 800/896-9939

Slo-Mo 8 VTRs For Under $3,000

- Designed for demanding sports production
- 100 to +200% of variable play speed
- Up to 100 cue points
- Powerful setup menu
- System: ST200-S/SM Universal Slo-mo Controller, SW1x8 RS422 switcher

PHONE: (213) 650-5256
FAX: (213) 650-6639

Call For Rigid Line Components

New installation? Facility upgrade? “Right Now” emergency?

MYAT is the solution for dependable quality, maximum performance, long life and on-time delivery.

Call MYAT at 201-767-5380 or FAX 201-767-4147 for our complete catalog and reference guide.

Take Control with Programmable Event Controllers from LEIGHTRONIX!

- AUTOMATED BROADCAST
- UNATTENDED RECORDING
- TIMED EVENT VIDEO & AUDIO SWITCHING
- REMOTE VCR & SWITCHER CONTROL

LEIGHTRONIX, INC.
2530 Joliet Road, Holt, MI 48842
(517) 694-5051, Fax (517) 694-1600

NEW! 2-Way Radio Interface:
- Expands capacity of intercom system
- Interfaces to any 2-way radio or Walkie-Talkie
- Easy to interconnect
- Interface powered by intercom

$249.95
Suggested List
Clear-Com Compatible Unit

$299.95
Suggested List
RTS Compatible Unit

CLEAR-COM + WALKIE-TALKIE

Write or Call:
945 Camelia St, Berkeley, CA 94710
(510)527-6666 Fax: (510)527-6699
In Canada call: (416) 696-2779
Fax: (+1)647-5811

Circle (65) on Action Card
Circle (64) on Action Card
Circle (63) on Action Card
Circle (62) on Action Card
Circle (66) on Action Card
new products

Serial digital synchronizer
Digital Processing Systems
• DPS-465: a serial digital video synchronizer provides a bridge between analog video signals, such as satellite and microwave feeds and your digital production facility; the DPS-465 is also a transponder and a digital test signal generator; in TSG mode, any one of 32 test patterns appear at all four outputs.

Digital Processing Systems, 11 Spiral Dr., Florence, KY 41042; 606-371-5533; fax 606-371-3729; info@dps-inc.com; www.dps-inc.com
Circle (266) on Action Card

High sampling rate DAT recorder
Pioneer/HHB Communications
• D-9601: a high sampling rate DAT recorder that is compatible with Sonic Solutions' Sonic System digital audio workstation; the D-9601 and the Sonic System present a sonically superior option over analog and other digital systems while paving the way to a 96kHz future; the D-9601 records and plays at 88.2 or 96kHz yielding a frequency response of 44,100 or 48,000Hz — this expanded bandwidth ensures that the low level artifacts created by anti-aliasing filters occur beyond the range in which human hearing is most effective.

HHB, 43 Deerfield Rd., Portland, ME 04101-1805; 207-773-2424; fax 207-773-2422; 75671.3316@compuserve.com
Circle (274) on Action Card

Axial editing system enhancements
Accom
• Axial 2010 & 2050 with version 4.0 software: editing systems with new software include new features such as roll-through auto assembly; speed ramps, speed curves and user-defined speed transitions; upload and download of device data to the Axial EDL and enhanced pre-read.

Accom, 1499 O'Brien Dr., Menlo Park, CA 94025; 415-328-3818; fax 415-327-2511
Circle (270) on Action Card

Digital recording console
Yamaha
• 02R: a digital recording console that offers features previously only available in high-end digital console systems including unprecedented real-time automation with snapshot memory and instant reset of all console parameters including control of its internal compressors and effects; the efficient operating style offers the perfect solution for the project studio recording market, audio post facilities and the modular digital multitrack owner — whether hard disk or tape.

Yamaha, PO Box 6600, Buena Park, CA 90622-6600; 714-522-9011; info@Yamaha.com
Circle (271) on Action Card

Amplifier
MCL
• MX3000 TWT: a medium-power amplifier that is part of the MAXXIM series; the MX3000 is a compact, single-drawer amplifier occupying three standard rack units (5.25 inches) of height and is ideally suited for transportable, satellite uplink communications.

MCL; 708-759-9500; 708-759-5018; compuserve 74166,2571
Circle (267) on Action Card

Precision video cable
Belden Wire and Cable
• 1865A video cable: subminiature precision video coax cable that handles analog and component and composite serial digital video systems, yet has a 30% smaller O.D. and weighs 40% less than standard RG-59-type video coax cables; it is ideal for mobile truck applications and production studio environments.

Belden Wire & Cable, PO Box 1680, Richmond, IN 47375; 800-BELDEN-4; 847-577-3618
Circle (272) on Action Card
THE NEW STANDARD IN DIGITAL RECORDING MEDIA

If you work with digital audio, video or multimedia, you already know the importance of reliable, high quality recording media. At HHB, we’ve drawn on 20 years of professional recording experience to specify the highest possible levels of performance and long term security across the entire HHB Advanced Media Products range. It’s therefore no surprise that HHB DAT Tape is independently proven to be the best that money can buy*. Or that the archival security of our new improved CDR74 recordable CD is unsurpassed, thanks to an uprated Phthalocyanine Gold recording layer and a revolutionary matt coated protection layer. Or that our ADAT® tape is fully approved and recommended by the Alesis Corporation.

And as the random access formats of the future emerge, HHB is there already with a MiniDisc that sets new standards of performance and a range of MO disks so reliable, that we’re confident to back them with a lifetime warranty.

Don’t take chances with digital recording media. Make sure it’s HHB.

HHB ADVANCED MEDIA PRODUCTS • THE FUTURE IS SECURE

*Studio Sound ‘DAT On Trial’
HHB Communications Inc: 43 Deerfield Road, Portland, Maine 04101 1805, USA
Tel: 207 773 2424 • Fax: 207 773 2422 • E-Mail: 75671.33160@compuserve.com
HHB Communications Ltd: 73-75 Scrubs Lane, London NW10 6QU, UK
Tel: 0181 962 5000 • Fax: 0181 962 5050 • E-Mail: sales@hhb.co.uk
Studer Canada Ltd: 1947 Leslie Street, Toronto, Ontario M3B 2M3, Canada • Tel: 416 510 1347 • Fax: 416 510 1294
Visit HHB on line at: http://www.hhb.co.uk

Circle (59) on Action Card
BUSINESS

Digital Vision has opened a national office in the United States. The new office is located at 11835 W. Olympic Blvd., Suite 1275, Los Angeles, CA 90064; phone: 310-914-3200; fax: 310-914-0011. In addition, its U.S. distributor, Preferred Video Products of Burbank, CA, will continue to have exclusivity for the digital product line in California.

Quantegy, Inc., Peachtree City, GA, announced the acquisition of assets and inventory of 3M Professional Audio and Video Tape, St. Paul, MN. Quantegy will now assume responsibility for supplying 3M customers with 3M brand tape for as long as inventories last.

Discreet Logic, Montreal, Quebec, announced that Warner Digital Studios has installed two INFERNO and six FLINT visual effects systems from the company.

Florical Automation Systems, Gainesville, FL, has installed a computer automation system for Central Television GTS/BKN.

Acrodyne Communications, Inc., Blue Bell, PA, introduced its diacrode technology into the Phillipine transmitter marketplace with the sale and installation of a 120kW UHF TV transmitter to Radio Mindano Network, Manila, Philippines.

Philips Broadcast Television Systems, Simi Valley, CA, has sold three LDK cameras to Denver PBS affiliate KRMA-TV and three to Denver ABC affiliate KMGH-TV. Patapasco Designs Inc., Frederick, MD, has been awarded a contract to design and integrate a new machine automation system for NBC.

Wegener Corporation, Duluth, GA, announced that Moody Broadcasting Network, Chicago, placed an initial order for primary network conversion to Wegener’s Digital FM subcarrier technology.

JVC, Elmwood Park, NJ, announced that The Fox News Channel, New York, has chosen its Digital-S as the house videotape format for all in-house recording and editing undertaken in the channel’s new all-digital studio.

PEOPLE

Mike Shephard has joined TCS Management Group Inc., Nashville, TN, as managing director of the company’s UK/European office.

Jay Kuca has been appointed director of marketing for Sierra Video Systems, Grass Valley, CA.

Cary Capece has been named director of sales and marketing for MountainGate, Reno, NV. Also announced by MountainGate, Chip Ray has been appointed manager, development engineering.

Debra Buck Huttenburg has been promoted to vice president, antenna systems, for the Andrew Corporation, Orland Park, IL.

Frederick L. Godard has been appointed executive vice president of Leitch Technology Inc., Toronto. In addition, John R. Piercy has been named vice president of marketing for the company.

Susan Kitts has been appointed executive vice president and chief operating officer for the National Captioning Institute.

Donald J. Catledge has been promoted to president and general manager of RF Industries’ Neulink Telemetry Division, San Diego, CA.

Thomas J. Daly has been promoted to senior marketing director for Fuji Photo Film USA, Elmsford, NY.
Logic Series DIGITAL Gold Mount Batteries

The Logic Series DIGITAL batteries are acknowledged to be the most advanced in the rechargeable battery industry. In addition to the comprehensive revisions integral to all Logic Series batteries, each DIGITAL battery features the Quick Dial system that allows for multi-step triggering and 100% continuous output. The DIGITAL battery is equipped with a front panel display that indicates battery life and high performance even under high current loads and advanced conditions. The size and weight of the Digital Pro Pac is created perfect balance with all conditions during working.

NEW! Sachtler CADDY Systems

Sachtler's new line of CADDY systems includes the familiar models.CADDY I, CADDY II, CADDY III, and CADDY IV. The new CADDY IV adds several advanced features to the line, including:

- Patented electronic control of the tripod's load centering system
- Patented electronic control of the tripod's load centering system
- Patented electronic control of the tripod's load centering system
- Patented electronic control of the tripod's load centering system

CADDY I

- Single-Stage ENG Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod
- Single-Stage ENG Carbon Fiber Tripod

CADDY II

- HD Single-Stage ENG Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod

CADDY III

- ENG Single-Stage Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod

CADDY IV

- ENG Single-Stage Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod
- ENG Single-Stage Carbon Fiber Tripod

The new Sachtler CADDY systems offer a greater range of options and configurations to meet the specific needs of your camera or production system. Whether you need a lightweight support system for portable cameras or a more robust setup for larger equipment, the CADDY systems provide the flexibility and reliability you require for your projects.

For more information, please contact us at 705-123-4567. We are confident that the CADDY systems will meet the demands of your production needs, offering both performance and ease of use.

QuickDial Options for Video & Pro-Audio Menu

QuickDial

Industrial/Broadcast Equipment

QuickDial

72

3D Animations

QuickDial

732

Pro Video Equipment & Accessories

QuickDial

74

Pro Audio Equipment

QuickDial

8

Non-Linear Editing & Computer-Based Video

QuickDial

731

Used Video Equipment

QuickDial

75
Real Impact

Real Impact provides the same professional video quality, rich multimedia capabilities, and instant random access capabilities that Avid's Tarra series of digital video editing systems and scores over them by offering an outstanding array of video features. Designed exclusively for Truevision's TARGA 2000, Real Impact lets you present your work with multi-layer audio mixing, video editing, and multilayer video effects in a single frame of video. The TARGA 2000 employs advanced OVR technology to deliver broadcast quality video and real-time digital effects. There is also real-time audio pan-...
in addition to the systems listed on this page, we can further customize any sy
stem to fit particular needs. you can ettoose faster display cards, bigger hard drives,
and video/graphics compositing. because such operations can require many passes,
NETCOM
STATE OF THE ART ENGINEERING FOR AUDIO AND VIDEO
ENGINEERING DESIGN + CAD DRAPING SERVICES
CABLE FABRICATION + PRE-WIRED PATCH PANEL RACKS
SYSTEM INSTALLATIONS + EQUIPMENT SALES
(201) 837-8424
FAX (201) 837-8284
1463 PALISADE AVE., TRAVERSE, NJ 07906

RICH BIGNANO
President
East Coast Video Systems
consultants + engineers + systems integrators
52 Ralph Street
Belleville, NJ. 07109
Fax: (201) 751-8731
102466.250@compuserve.com

WHEN COST IS IMPORTANT AND QUALITY IS CRITICAL
1-800-228-0275
Erases all formats in quantities of 1 to 1,000,000
Industries
4200 North 48th Street Lincoln, NE 68504
Circle (101) on Action Card

FOR SALE
SONY LASER DISC PLAYERS, Model VDP-2000, brand new in factory sealed boxes, $360.00 each fully guaranteed. Plus shipping from Las Vegas. Call Stacey at (702) 646-0510.

HELP WANTED

WRIGHT STATE UNIVERSITY has immediate opening for Senior Broadcast Engineer. Individual will install, operate and maintain all video and audio equipment associated with the Engineering service areas of the department. Additional duties include analyzing systems failures, diagnosing problems and isolating them to the component level, training staff and students in engineering operations of facilities. Requires Associates Degree in Electronics, 4-6 years technical experience in broadcast engineering, maintenance, operations, and 2 years experience as electrical technician or equivalent combination of education and experience in electronics technology. Must have good human relation skills and be willing to work occasional odd hours. Must be physically able and willing to lift and carry equipment. SBE certification and FCC license is desirable. Send letter, resume, and names, addresses, and phone numbers of 3 professional references to Director of TV Center, 104 TV Center, Wright State University, Dayton, OH 45435. Review of resumes to begin September 15, 1996. Position open until filled. EO/AA Employer.

FOR SALE

* Studio Exchange *

Burbank

(818) 840-1351 Fax (818) 840-1354

New and Used Video Equipment

Audio/Video Dealer

Starring

Panasonic & Sony

CALL NOW FOR CURRENT SPECIALS

BUY, SELL, TRADE & CONSIGN

1419 N. SanFernando Blvd.

Burbank, CA 91504

Advanced Television 1996

Building for ATV

3rd Annual Conference & Workshop

November 20-22, 1996

The Westin Hotel O'Hare • Chicago, IL

For more information about attending call

800-288-8606

Outside the U.S. call 303-220-6600.
HELP WANTED

CHIEF ENGINEER: Successful candidate must be well versed with news operation and support, capital budgets and all broadcast engineering practices. Hands-on experience with UHF transmitter, microwave systems, satellite systems, M-2 decks and Panasonic products. Should be a "quick thinker", "quick mover" that has the knowledge to get things done on time and within budget. If you are a trainer, a mentor, and a disciplinarian, send cover letter, resume and salary history to Hugh Breslin, WHAG-TV, Dept. Z, 13 E. Washington St., Hagerstown, MD 21740. Comprehensive benefit package, including 401(k) and Section 125 plans. Drug screen required. EOE.

TELEVISION MAINTENANCE ENGINEER: Immediate opening for an experienced Broadcast Engineer. Must have a minimum of 5 years experience in Broadcast Maintenance including installation, repair and maintenance of studio and transmitter equipment. Qualified applicants should send resume with references and salary history to: Personnel Department, WTVT, 631 Mainstream Drive, Nashville, TN 37228 or Fax to: (615) 254-7139. No calls will be accepted. WTVT is an Equal Opportunity Employer.

MAINTENANCE ENGINEER: Immediate opening for well versed broadcast Engineer. Must have a minimum of 2 years experience in broadcast maintenance, including systems troubleshooting and repair of studio video and audio equipment and computer systems. FCC General Class License or SBE certification is desired. Excellent wage/benefit program. Respond with resume to Personnel Administrator-54, WTOL-TV, P.O. Box 1111, Toledo, Ohio 43699-1111. No phone calls. WTOL is an Equal Opportunity Employer.

CHIEF RADIO/TV ENGINEER: Texas A&M University is seeking an energetic hands-on Chief Engineer for its Educational Broadcast Services department. Educational Broadcast Services operates a public TV and public radio station, a satellite uplink facility, and an extensive statewide data and video network. The successful candidate will serve as the Chief Operator of KAMUTV & FM and will be experienced in system and component level troubleshooting of equipment and systems within a broadcast facility environment. At least eight years of broadcast engineering experience is required, with at least three years of recent supervisory experience. Educational background will include BS degree or significant industry experience. Preference will be given to candidates with a Masters degree. Certification by the Society of Broadcast Engineers is a "Broadcast Engineer" or higher grade is essential. An extensive knowledge, understanding, and maintenance experience of the equipment and infrastructure of education broadcasting is essential. This position reports to the Director of Engineering and is a stable, salaried, full-time position with a wide range of benefits offered by the Texas A&M University System. To apply for this position, please send a letter of application, resume, and at least three professional references to: Texas A&M University, Human Resources Department, Reference NOV # 961334, College Station, TX 77843-1475. 409-845-5154. Texas A&M University is an Equal Opportunity Employer.

CHIEF ENGINEER: ABC affiliate in Santa Barbara. Thorough knowledge and experience with TCS-90, Larson TFP-12, Betacam, Philips Router, CMX, GVG Switchers and computer systems. Candidate must have strong maintenance skills and be client oriented. Ability to work well with New & Production. SBE or General Class License a must. Send resume and references to Don Kitch, KETT-TV, P.O. Box 729, Santa Barbara, CA 93102. No phone calls please. E.O.E.

CHIEF ENGINEER: Market leader CBS affiliate in midwest needs hands on, motivated Chief Engineer. Applicant should have four years background in all technical phases of television broadcast including management and strong emphasis on RF Transmission. Systems include RCA "FH" line VHF transmitters, FCC general class license and/or SBE certification a plus. Computer abilities are a must. This position will manage department and participate in the maintenance of newly rebuilt facility with remote news area area. Above average compensation package. Send resume to Danny Thomas, KOAM-TV, P.O. Box 659, Pittsburg, KS 66762-04659. KOAM News Channel 7 is an Equal Opportunity Employer.

TELEVISION ENGINEERS
Turner Broadcasting System, the leading News, Sports, and Entertainment system in satellite communications, has career opportunities for engineers with broadcast maintenance experience. These positions demand an extensive background in television engineering and at least two years of training in electronics technology. Turner Broadcasting System offers an excellent benefit and compensation program. Send resumes to: Mr. Jim Brown, Corp. Engineering Turner Broadcasting System, Inc. One CNN Center P.O. Box 10536 Atlanta, GA 30348-5366 (404) 827-1638 office (404) 827-1835 fax

WE PLACE CHIEF ENGINEERS
KEYSTONE INT'L, INC.
16 Laflin Road, Suite 900 Pittston, PA 18640 USA
Fax 717-654-5765 Phone 717-655-7143 E-Mail: keydocs@keystone.microserve.com

MAINTENANCE ENGINEER

Bexel CORPORATION
Mail Resumes to: Bob Boynton 801 South Main Street Burbank, CA 91506

IF YOU HAVE A H.S. DIPLOMA, 2 yrs. Elec. Tech School or equiv. 3 yrs. broadcast, ability to read schematics and use elect. test equip. Mechanical skills, general computer & effective communications skills, you may qualify to join the TV9 team. We have immediate opening for Maintenance Engineer to repair & install equip., & set up and operate ENG/SNG equip. This is excellent opportunity for the dependable, detail-oriented person. Send resume to Engineering, KWTV, P.O. Box 14159, OK City, OK 73113. No phone calls. EOE/ M-F.

HELP WANTED - CHIEF ENGINEER KMOT-TV in Minot, ND has an immediate opening for Chief Engineer. Applicants should be familiar with transmitter, microwave, translator and video/audio plant maintenance, design and installation. Salary negotiable. Send resume upon experience. Send resume to Colleen Anderson, General Manager, KMOT-TV, PO Box 1120, Minot, ND 58702 or fax to (701) 838-4195. EOE.

SATELLITE UPLINK ENGINEER - Sure Shot has immediate openings for candidates with 2 years uplinking experience or related Television Production/News Operations experience. Must be willing to travel with good driving record. Please fax resumes to (310) 542-1020.

BROADCAST MAINTENANCE ENGINEER Must install, troubleshoot and repair all types of broadcast related systems to the component level. Applicant must have familiarity with Beta, 1, digital tape, and CCD ENG equipment. Requires two year electronics degree or equivalent and FCC license or SBE certification. Send resume to: WCYPX, Attn: D.O.E., 4466 John Young Parkway, Orlando, FL 32804. EEO.

DIRECTOR OF ENGINEERING: This is the opportunity to work for a progressive company that embraces new technology. RAMAR Communications owns and operates 3 TV and 2 radio stations in Lubbock and 1 TV station in Albuquerque. RAMAR is seeking a motivated professional with proven leadership skills and experience in engineering staff and multiple projects. Position specifications: 7 years combined broadcast experience and Radio, EE or EET degree preferred, Studio and RF experience, SBE certification and/or General Class (formerly FCC First Class) license preferred. This position requires project management, good written and verbal skills, and experience in budget preparation. Send resume to: RAMAR Communications, Inc., Position: Dir. of Engineering, POB 3757, Lubbock, TX 79402. (EOE)

WANTED TO HIRE - CHIEF ENGINEER KMOT-TV in Minot, ND has an immediate opening for Chief Engineer. Applicants should have four years background in all technical phases of television broadcast including management and strong emphasis on RF Transmission. Systems include RCA "FH" line VHF transmitters, FCC general class license and/or SBE certification a plus. Computer abilities are a must. This position will manage department and participate in the maintenance of newly rebuilt facility with remote news area. Above average compensation package. Send resume to: Danny Thomas, KOAM-TV, P.O. Box 659, Pittsburg, KS 66762-04659. KOAM News Channel 7 is an Equal Opportunity Employer.
Discussions about "packet video" are likely to conjure up exotic transmission schemes; schemes that may be in place when future generations send video data into outer space. Thinking about it, you will realize that all the video we have dealt with is packet video: line periods are fixed packets of time, as are field and frame periods. Composite and component video are packet video streams; in these cases, the packets are time-defined and have no dependence on the video signal amplitudes, the picture content. In between these packets of video information is synchronizing information: line timing, field timing and color phasing.

When more than one signal is required on the same channel, the integrity of the packets is maintained by timing all the signals to be synchronous. That is, achieved either with hard-cable wiring lengths, gen-locking or with frame synchronizers. The required buffering effects of the synchronizer are at the cost of introducing time delays (or, to be more politically correct, "latency") through the unit, and it is important to remember that similar delays must be included in the audio chain (for lip sync).

Digital packets
Video and audio are still packetized in the digital world; there are 8- and 10-bit words for video (and my guess is we'll be discussing or using 12-bit words within five years) and 16-, 20- and 24-bit words for audio; all packetized, even if the packets are relatively large, with constant sampling frequencies and structures.

As we progress in the digital world, there are changes to the rigid structures we have seen. Movement is away from real-time processing and there are different compression schemes or ratios, non-linear recording and editing, statistical multiplexing and the like. The latter is perhaps not yet well-known: statistical multiplexing is being suggested and commercialized for more efficient accommodation of a group of compressed signals on a single satellite transponder. Instead of allocating the same proportion of the bitstream to each channel, the multiplexer varies the compression ratio according to the picture content in each channel.

The constant bitstream is going to be a constant desire, and perhaps requirement, for many of the packet schemes in the future. MPEG and JPEG are packet video schemes, so are standard storage files for video, such as TIFF. But perhaps the most interesting potential video packet scheme is Asynchronous Transfer Mode (ATM).

ATM packets
Ask about the possibility of carrying video on ATM and you will probably get as many answers as the number of people you ask. The ATM standards — and that is considered a rather loose term in some societies — are certainly one of the worst compromises ever to be called standards, with just about everybody unhappy.

For the common carriers, the problem is in the perceived latency of the system, a customer no-no since the first satellite delays in calls across the Atlantic. The ATM cell is 53 bytes in length (see Figure 1), with 48 bytes of it being payload. For duplex audio this is close to non-acceptable. For simplex video, the latency is probably immaterial for most applications, but in distributed ATM systems, there is a delay variation that is unpredictable. In an Internet situation, if there is a problem in a circuit, signals will be re-routed at the switchers. The queues that are encountered and changes in switching schedules cannot be forecasted. There is also cell "clumping" (the equivalent of a digital freeway backup) at the interface between the ATM and the physical layers.

Experience shows that given an arrival time window (and a window must be fixed for cost reasons), which will be a fixed delay plus a variable, there will be success cells, errored cells (but delivered within the window), lost cells (outside the window) and "not ours" cells. Add to that the fact that the tolerable cell delay variation for MPEG-2 is about 1ms and the transport stream of 188-byte packets must be broken up for ATM. As you can see, the question of video over ATM is at best "hairy."

Paul McGoldrick is a freelance writer and consultant based on the West Coast.
The DPA-100 with Auto Legal keeps a keen eye on your broadcast signals.

There's no easier way to ensure a Broadcast Legal signal than with the DPA-100 Digital Processing Amplifier. With its one-button Auto Legal feature, the DPA-100 automatically forces a video signal to "Broadcast Legal" by using a phase coherent chroma clip for true dynamic correction. And, while the default is set to broadcast standard, you can easily change the settings to meet any transmission requirement such as microwave, satellite uplink, cable, or for production in the studio and on the road.

The DPA-100 is ideal for any 601 serial digital system including Non-Linear Video Editing, DVC Pro, D-1, D-5, Digital Betacam and Digital S. Real Time control over video parameters allows total adjustment of video, luminance and chroma gains, plus black level, hue shift and Y/C delay. At the touch of a button, you can initiate the active bypass to view the original signal.

Full EDH support is provided, including input verification, flag passing and output recalculation. Our unique design allows 2 units to be rack mounted side by side in 1RU. The DPA-100 can also be used stand-alone in desktop or portable applications. Simple, intuitive controls on both the DPA-100 and its optional remote makes both units a breeze to operate. Make it legal with Videotek’s new cutting edge design. Call today to find out more about this and other innovative 601 digital solutions that will let your standards soar to new heights.

Premium Quality, Intelligent Design, Smart Prices... That’s Videotek.
Why Buy Leitch's DigiBus?

Jim Borgioli, vice president of engineering for Wabash Valley Broadcasting Corp., designed and built one of the first fully-digital independent television stations in the country, WNDY-TV in Indianapolis. He also assisted in the design and building of Indy Teleproductions' 50-foot fully digital production truck. Nearly $2 million worth of Leitch equipment resides in these two facilities, most of it DigiBus equipment.

"Technically, the Leitch digital equipment did what you wanted it to do and then some. And it did it in a smaller package. Power consumption was right. Heat dissipation was right...and the availability was tight. When I needed 10, they sent me 10. I didn't have to wait."

Circle (3) on Action Card

LEITCH

(800) 281-9673
http://www.leitch.com
Service: 1-888-LEITCH