AUTOMATION
Stations are building multichannel systems

TOWERS
Put your tower on steroids

DIGITAL RESOLUTION
Understanding lines and pixels
The New TV-1000 Audio Console

LIVE TV – The Way It Has to Be

315-452-5000

Circle (1) on Free Info Card
DIGITAL TELEVISION SYSTEMS

“Harris created an all-digital facility that let us double saleable inventory, and they did it at a near-analog cost.”

Robert Allbritton, Chief Operating Officer, Allbritton Communications

When Allbritton Communications wanted to reach two television markets from a single location, Harris incorporated a centrally located all-digital studio with microwave links to three transmitters over 100 miles apart, two remote news bureaus and 3 additional microwave repeater sites. This solution enables Alabama’s ABC 33/40 to blanket the state with city-grade signals.

“Harris’ digital solution gives us multichannel capabilities which allow us to offer four distinct channels to advertisers,” Robert Allbritton notes. “Not only do we now have twice the product to sell; we have the ability to broadcast DTV as soon as we’re ready. What’s more, Harris designed and implemented our digital solution faster than we ever thought possible – and at a cost only 10-15% greater than analog.”

From an all-digital studio and C/Ku-band teleport facility...to a fleet of Harris ENG and SNG vehicles that proudly bear the ABC 33/40 logo, Harris met Allbritton’s unique challenge with state-of-the-future technology.

Whether your needs call for digital-ready analog, or digital right now, call Harris today. We’ll show you how digital is more of a practical reality than you may think.

HARRIS CORPORATION
BROADCAST DIVISION
7920 Kentucky Drive
Florence, KY 41042 USA
TEL: +1 606 282-4800
FAX: +1 606 283-2818

A new world of broadcast solutions

©1997 Harris Corporation
Not just digital video, advanced digital television and video (ADTV). The basic, video production tools, advanced beyond 525i for both the 1125i and 525p formats. We're developing basic production tools for 1998 and beyond. Welcome to the next generation of digital television. From Panasonic, the company with the most firsts in digital video.
A range of advanced studio monitors constitute a complete set of display tools for the production of Advanced Digital Television and Video.

Panasonic 1125i studio cameras and 525p and 525i camcorders are essential members of the visionary ADTV family of products, offering an extensible, scaleable and affordable path to digital television.

VTRs like the AJ-HD2000 and AJ-HD580/HDP500 combination offer state-of-the-art full bandwidth 10-bit digital video in the 1125i image format.

For more information on the latest Panasonic ADTV products, call: 1-800-528-8601 (Upon request enter product code 03)
Features

106 Automating Master Control for Multichannel
By Peter Douglas
Robust, modular systems provide the keys for the future: flexibility and extensibility.

112 Planning, Controlling and Automating Multichannel Digital Broadcasting
By Michael Ledwich
With all of the possibilities, maintaining control will be a challenge.

116 Engineering the Computer-Based Facility
By Skip Pizzi
Providing support for computer-based operations requires a new set of skills.

120 Tower Augmentation
By Henry J. McGinnis, P.E.
Some relief for the industry.

124 Selecting a DTV Antenna
By Larry Bloomfield
Choosing the best solution for your system.

Beyond the Headlines

NEWS
14 Not all broadcasters are equal under the law
16 First live digital HDTV soccer broadcast
16 Add Brazil to the ATSC list
22 In the world of EAS, all broadcasters are not equal
26 Secondary services may have problems

FCC UPDATE
33 DTV rules and allotment table affirmed

DTV UPDATE
36 Ready or not, here it comes

EXPERT'S CORNER/VENDOR VIEWS
40 Defining HDTV, Part 2

Digital Handbook

TRANSITION TO DIGITAL
44 Digital resolution

COMPUTERS AND NETWORKS
48 Software maintenance

ASK DR. DIGITAL
52 Old scopes never die!
61 Conflicting crosspoint use

(Continued on page 8)
Ikegami's HL-59 Digital Processing Camera.

Ikegami's HL-59 digital processing CCD Camera with 16-bit Digital Signal Processing (DSP) and 10-bit Analog-to-Digital Processing represents a giant leap in digital technology. Featuring newly developed Application Specific Integrated Circuits (ASICs) and improved CCDs, the HL-59 means exceptional quality, improved functionality and reduced power consumption.

The HL-59 employs three 2/3" 520,000-pixel FIT CCDs, which deliver over 850 TVL, and a S/N ratio of 62dB or more. The camera is also available in a switchable aspect version—the HL-59W, with 2/3" 520,000-pixel FIT CCDs, for instant switching between 4:3 and 16:9. The HL-59 is a true field production camera, and can be docked to a variety of 1/2" VCRs. Triax operation can be achieved, and a variety of control panels are available including: Digital Remote Control, Digital Remote Set-up, Maintenance Control (with memory card) and a joystick Operating Control Panel.

Popular Ikegami features, including Emmy-Award Winning "Fountain of Youth" Skin Tone Detail with AHD (Auto Hue Detect), are digitally generated along with Diagonal DTL, Slim DTL, DTL Boost Frequency and Black Stretch. The HL-59 also features a new high-performance viewfinder.

For more information, contact your Regional Sales Office or the Ikegami dealer nearest you.
ON THE COVER: TCI's 32-channel pay-per-view control room. In the background is the system's network response center and quality assurance monitoring area. Photo by Doug Schwartz photography.

WEB SITE DIRECTORY
www.broadcastengineering.com

Feature Articles
Reader Resources
• Editorial calendar
• Article archives
Departments
Contact the Editors
New Products & Reviews
Questions? Contact:
Classifieds/Jobs
Osanna Rood
deanna_rood@intertec.com
Marketing/Advertising
913/967-1905 fax

FREEZE FRAME
A look at the technology that shaped this industry.

Do you remember?
This famous Midwest tower and its station were highlighted in November 1967 Broadcast Engineering. What station is it?

April 1998

www.americanradiohistory.com
The world's most advanced servers

Clipbox
- All the bandwidth, for all the users, all the time.
- Non-compressed, compressed, or both.
- Integrated editing.
- The world's most advanced central server.

Cachebox
- Distributed networked operation.
- Cost effective DV compression.
- Dual system redundancy.
- The world's most flexible distributed server.

CLIPBOX & CACHEBOX
in partnership or stand-alone - the finest in server technology

Call our 24 hour Clipbox Hotline now: 1 800 218 0051 Ext. 777
Quantel Inc., 28 Thorneal Circle, Darien, CT 06820 Tel: +1 203 656 3100 Fax: +1 203 656 3459 http://www.quantel.com

Circle (14) on Free Info Card
Screw the laws of physics, we’re the FCC

New technology often brings as many problems as it does solutions. By now most have heard about the rather serious incident that occurred when WFAA-TV fired up its new DTV transmitter in Ft. Worth, TX. Unbeknownst to them, at the point the transmitter went on-line, all of the portable heart monitors at Baylor University hospital died. Fortunately, it was only the heart monitoring system that died, not the patients.

The engineers at WFAA worked cooperatively with the hospital technicians, but the solution required installing new portable heart monitors. The expense and trouble was something the hospital never planned for. This event may represent just the tip of an iceberg where interference is concerned.

Over the next few years, we’re going to be putting a lot more new transmitters on the air. In the interest of generating useless information, I tried to calculate how many gigawatts of power all of these new DTV stations will be generating and I ran out of zeros. Needless to say, one result of all these new transmitters will be enough interference problems that you won’t be able to keep track of them.

It’s easy for the FCC to make laws and issue regulations, even assign channels and power levels on paper. Unfortunately, it’s the engineers charged with implementing the rules that usually catch hell when something doesn’t work. Frankly, there was no excuse for the WFAA/Baylor incident. Washington bureaucrats dropped the ball with frequency coordination — big time. If a member of my family had died as a result of this action, I’d have wanted someone’s head over the matter.

The lack of frequency coordination symbolizes the commission’s long-lived practice of ignoring engineering expertise in favor of attorney stupidity.

When you stack the FCC with enough attorneys to sink the Titanic, we shouldn’t be surprised when the entire broadcast system runs aground.

This incident reminds me of my days in college when I was researching the FCC. I marveled at how ineffectively it dealt with early frequency interference issues. Early commission rulings seemed totally ignorant of the laws of RF propagation. The FCC often seemed to believe that RF stopped at state lines. A Kansas City, KS, radio station couldn’t possibly interfere with a Kansas City, MO, radio station. After all, they were located in different states. Unfortunately, that belied the possibility that the sites themselves might be only two miles apart; they just happened to be on opposite sides of the Missouri River.

All of this means that TV station engineers need to be aware of the possibility of interference, at all times, but especially when putting their new DTV systems on the air. For those early adopters, you should be prepared to take the slings of arrows as you interfere with users that before had a free ride, at least as far as interference. Those that begin DTV broadcasts later may suffer fewer problems because those sharing the same frequencies might have moved on to new channels or improved their systems by then. Unfortunately, with the lack of planning by the FCC, it’s going to be up to the station engineer to prevent and correct any interference issues that develop.

Brad Dick, editor
We like making television.

That's why we put 8 years of effort and our own money into inventing 22 custom processors and a million lines of software code for Trinity. Now, after the largest development effort in the history of the industry, we've reached our wildly ambitious goal; the world's first no-compromise, network-quality, all real-time, multi-format, multi-channel, digital production suite. Finally, all the high-end professional tools required for online post production and on-air live broadcasting are in one essential box.

8 Input D1 Production SWITCHER

Pull the real-time T-Bar to instantly control Trinity's live production switcher with its wipe and matte generators, graphics alpha channel, upstream and downstream keys, two channels of D1 still store, soft-edged organic wipe patterns and Independent color correctors on each input.

3D Digital Video EFFECTS

Trinity's Warp Engine is the only device in the world that can wrap live video on multiple animating user-defined 3D shapes with highlights, true video reflections, photo realistic texture maps, variable transparency and soft shadows. Create any video effect you've ever seen from next generation page peels and video cubes to video-mapped human faces and spinning logos.

Non-Linear/Linear EDITOR

Trinity's Preditor supports tape-based and disk-based sources on the same non-linear-style timeline with no rendering ever. It arrives ready to edit with four RS-422 VTR controllers. For non-linear sources, just add disk storage with Play's Time Machine in either D1 compressed (3:1-30:1) or D1 non-compressed formats.

CHARACTER GENERATOR

Trinity's TitleWave live CG delivers on-air roll, crawl and key pages at 60 fps with real-time anti-aliasing to an effective broadcast resolution of four nanoseconds. Create infinitely variable font treatments with multi-color gradients, 24 bit textures and variable transparency on each face, border, outline and shadow.

Paint, Compositing & ANIMATION

Panamation gives you the power to paint and composite directly on live video sources. Its flying logos and animated elements will play back from the switcher's downstream keyer or editor timeline, each seamlessly composited over live video in real-time with an animated alpha channel.

Virtual Sets & CHROMA KEY

Generate sharp or soft edged keys with advanced key color spill suppression. Combine the keyer with the over-the-top power of Trinity's dedicated hardware processors to synthesize stunning virtual sets in real-time, each with environmental reflections, refractions and semi-transparent shadows.

Trinity works with a standard Windows PC, no plug-ins, additional software or hardware is required to support your choice of format. Trinity, Warp Engine, Preditor, Panamation & TitleWave are all owned marks and trademarks of Play Incorporated. Patent pending. Copyright © 1998

NOW SHIPPING

$4,995.
Total recall

Unless this was an incredibly early version of this machine, it (the Ampex disk recorder) was designated HS-100 (also A, B and C versions) and recorded only 30 seconds. (See, “Do You Remember?” February, p. 8.) If you look at the clocks on the two controllers and the monitors in the picture, you can see there are two separate systems of 30 seconds each. The trick as an operator was to see how much video you could preserve as the game progressed, without missing subsequent plays. It was actually an entertaining machine to operate, if a little bit temperamental. I’m glad it was never my job to fix one.

MARK GOLDSMITH
FOX SPORTS
OHIO

About audio

The January article from Don Barto at Big Shot Studios was awesome. (See “Lately In Audio Post,” January, p. 62.) He has a great sense of a non-linear board.

I’m interested in finding more articles written by him and would love to see a regular column from him. Any chances of that?

Thanks again. I really enjoy reading your magazine.

DAVID RONA
IN2WISHN@YAHOO.COM

History revisited

The new-style Broadcast Engineering looks great. Too bad that the article “History of Remote Broadcasting” contained two fundamental errors of fact. (See January, p. 86.)

Fact: Forget “50 years of remotes.” Remember the newsreels of Jesse Owens at the 1936 Olympic Games in Berlin and the TV camera with a monster lens? That was covered by live electronic television about 62 years ago.

And, the 1937 coronation of King George VI in London was covered by electronic television. Even David Sarnoff used a live remote to launch electronic television in the USA at the World’s Fair — and that was back in 1939.

Fact: “The zoom lens didn’t exist until the mid-1950s.” Gosh, we’ve been hoodwinked and all those pre-war books and articles on the zoom lens must be cunning fakes! In fact, BBC Television introduced a Watson 5x1 zoom in 1951 for sports telecasts and even they were beaten by you Yanks.

According to Rudy Bretz’s Techniques of Television Production, Zoomar lenses were first used for TV in the USA back in 1947 on football games.

The old pictures were great, though; let’s have more of them to remind us when rigging cameras kept you fit!

ANDY EMMERSON,
TV WRITER AND HISTORIAN
MIDSHIRES@CIX.CO.UK

Andy — leave it to a Brit to correct our history lesson.

re: Lip sync in HDTV

Mr. Bloomfield raises several interesting points in his article, a few of which the Grand Alliance may have headed off at the pass. (See “Is Lip Sync in HDTV Going to be a Problem?” February, p. 18.) The situation regarding voice-overs is a case in point. The ATSC standard lists six audio channels in addition to the 5.1 we discuss so often. One of those is VO. Its purpose is to allow the local station to make those critical announcements over incoming audio without the hassle (and probable quality loss) of putting it through a decode-encode cycle. The viewer’s receiver will be instructed to lower the program volume by up to 24dB and the local station can inject its announcement without fuss. Presumably, the affiliate will have invested in the six-channel associated service adapter from Dolby for this purpose.

I suspect that all of these audio enhancements will be a larger headache than this simplified explanation might suggest, but once the wrinkles are ironed out, it shouldn’t be any more troublesome than the present lash-ups. On the other hand, I haven’t actually seen this adapter yet . . . maybe at NAB.

Kind regards
JIM HEIM
jheim@divl.com

Wireless Video Sender modifications

I would like to see an article on Henry Ruh’s modifications to the Wireless Video Sender, including what modifications were made, what type of external antennas were used and what FCC waiver was needed. (See, “In response to the October Digital Basics — A TV station for less than $150,” January, p. 12.) There are many of us who would love to teach our students about the wonders of live shots on ENG links but can’t afford the $35,000 price tag.

LEE BYERS
byers@suu.edu

Never mind the truth, we’re the FCC

Dear Mr. Bloomfield:

I have reviewed your story and, although you are right that we (the FCC) do not share the same point of view, I do not think you have said anything that is inaccurate or misquoted from the item.

Thank you for taking the time to run this by us. (Editor’s note: For the story the FCC didn’t like, see “Beyond the Headlines” in this issue on p. 14.)

HELGI WALKER
FCC LEGAL ADVISOR TO THE COMMISSIONER, HAROLD FURCHT-GOTT-ROTH
Tiernan produces the most comprehensive range of MPEG-2 equipment:

- High-performance MPEG-2 Encoders for 4:2:2 and 4:2:0 profiles
- MPEG-2/DVB IRDs for broadcast, professional and industrial applications
- Satellite Modulators for QPSK and 8PSK
- Interface products for satellite and terrestrial networking (including ATM)
- Conditional access for simple and complex networks
- Network management and control systems

Tiernan products are the cutting edge of technology.

Contact us for an MPEG-2 compression solution that can put you on the crest of the digital wave.

GUESS WHO'S LEADING THE DIGITAL WAVE WITH PROVEN 4:2:2 MPEG-2 RIGHT NOW?

Others promised. We delivered the TE6 Encoder and TDR600 IRD. The first. The best. Only from Tiernan.

Tiernan Communications
5751 Copley Drive, San Diego, CA 92111 USA
TEL: +1 619 587-0252 • FAX: +1 619 587-0257
EMAIL: info@tiernan.com • WEB: http://www.tiernan.com

Leaders in Digital Television

See us at NAB '98: Sands Booth T515B and our LVCC Outdoor Booth.

www.americanradiohistory.com
Not all broadcasters are equal under the law

BY LARRY BLOOMFIELD

Is the FCC fostering religious discrimination? Such would appear to be the case with the action taken by the FCC on Feb. 25, 1998, when the FCC modified its EEO enforcement policies for religious broadcasters in Report No. MM 98-2. According to the FCC, religious broadcasters may establish religious belief or affiliation as a job qualification for all station employees.

The commission said, "It is reasonable to conclude that it is appropriate for all employees of religious broadcasters to share a common commitment to a licensee's basic religious objective and mission." Furthermore, "The new approach would end the need for the current practice of engaging in case-by-case analysis of particular job categories to determine if they involve espousal of the licensee's religious views."

The question raised, however, is this government-sanctioned religious bigotry? The commission has long been a vanguard of equal employment opportunity rights as part of its trust to be the watchdogs of the public trust — the airwaves.

With this erosion, the commission maintains that "this action does not create a blanket exemption from the FCC EEO rule and does not permit religious broadcasters to engage in employment discrimination against women and minorities." The question is, if the particular station's religious philosophies teach discrimination based on race, color, national origin or gender, where do the exceptions end?

Despite this, the new policy states, "When vacancies occur, religious broadcasters will still be required to recruit without limitation on the basis of race, color, national origin or gender from among those who share their religious affiliation or belief."

It would appear that the commission is shoving under the carpet an area of responsibility it finds uncomfortable and would not care to have to address. The commission's action responds to concerns by religious broadcasters that its prior approach excessively entangled the government in the affairs of religious entities.

To clarify and justify this action, the commission defined a religious broadcaster as "a licensee which is, or is closely affiliated with, a church, synagogue or other religious entity, including a subsidiary of the religious entity. Specific determinations of whether a licensee is a 'religious broadcaster' will be made on a case-by-case analysis."

Apparently, commissioner Harold Furchtgott-Roth's crystal ball is working better than the rest of the commissioners. In a February statement, he said, "I write separately simply to highlight several important points that this item leaves unaddressed." Furchtgott-Roth's statement is available on the FCC's web page at www.fcc.gov.

This action could help the unemployment problem because the commission will have to hire droves of help to keep this situation sorted out. It is said that if we don't learn from history, we will be forced to relive it. For more information, go to www.fcc.gov/Bureaus/Mass_Media/News_Releases/1998/nrmr8005.html.
Leading edge performance has been a defining feature of Audio Precision products since the inception of our company in 1984. Thousands of our system One audio analyzers are in use worldwide, selected by design engineers for high performance and by test engineers for our comprehensive programmable analog and digital audio measurement capabilities.

Now our System Two true Dual Domain audio analyzer joins the System One, setting a new standard for performance and flexibility in audio frequency test & measurement.

System Two is a true Dual Domain analyzer. Other test instruments may have both analog and digital inputs and outputs … but they’re not true Dual Domain! They rely on performance-limiting converters to pass analog signals back and forth to a DSP core of digitally hardware. Passing signals through a/d or d/a converters for every measurement robs the test instrument of performance. System Two includes separate, independent hardware for direct audio measurements in both domains, plus additional and extensive interface measurement capability including jitter measurements, eye patterns and all other parameters described in AES3, the serial audio interface standard.

The new standard of System Two is represented by performance specifications such as guaranteed analog generator and analyzer residual THD-N of -108 dB, guaranteed analog signal flatness of ±0.31 dB for the generator and analyzer; and 24 bit digital signal generation with 48 bit FFT dynamic range.

From aircraft to automobiles, satellites to cell phones, headsets to hearing aids. System Two represents a new standard for audio frequency test & measurement applications. Compare for yourself - our worldwide force of representatives will be pleased to provide comprehensive specifications and a true Dual Domain on-site demonstration.

Audio Precision
PO Box 2205
Beaverton, Oregon 97075-3070
Tel: (503) 627-0852 FAX: (503) 641-8906
US Toll Free: 1-800-251-7350
First live digital HDTV soccer broadcast

The significance of broadcasting the first soccer game in digital high-definition using the ATSC standard is major. The world’s first live DTV broadcast of a soccer game was conducted in Mexico on Jan. 25. Live HDTV coverage of this soccer game in Mexico was provided by the ATSC and Televisa. Prior to this coverage, ATSC and Televisa had been conducting other live over-the-air broadcasts in HDTV. Televisa is the sister company to Univision, the Spanish-language TV network in the United States.

Kicking off the HDTV weekend in Mexico City, digital signals with crystal-clear HDTV pictures and CD-quality six-channel surround sound originated from Televisa’s Chapultepec studios in Mexico City. From there, they were carried by fiber-optic link to Televisa’s Tres Padres transmitting facility outside the city. The signals were broadcast over the air to receiving equipment at the Chapultepec studios.

Five HDTV cameras were used to send signals from Azteca stadium in Mexico City, via fiber-optic link to Tres Padres where they were broadcast to audiences at two TV studios in Mexico City.

Emilio Azcarraga, president of Grupo Televisa, said, “This historic digital HDTV broadcasts mark an important milestone in Televisa’s ongoing efforts to bring the benefits of this new technology to the Mexican people. By conducting these broadcasts, we hope to demonstrate the benefits of digital television using the ATSC digital television standard to Mexican government representatives, to the TV broadcast industry and to the press.” Televisa’s efforts to explain the benefits of high-definition television date back to 1990 when it conducted demonstrations of analog HDTV broadcasts in Mexico City in conjunction with NHK of Japan.

“We are enthusiastic and excited about the advent of digital television,” said Robert Graves, ATSC chairman. “The ATSC DTV standard offers broadcasters around the world the flexibility to provide many different combinations of high-definition television, multiple programs of standard-definition digital television (SDTV) and a virtually limitless set of potential information services. Implementing the ATSC standard will mean a quantum improvement in the technical quality of television service and will provide data delivery capability that represents a fundamental improvement in the information infrastructures of the nations that adopt it.

“What’s more,” Graves added, “implementing common or similar digital television standards in many countries will benefit those countries by providing wider availability of broadcast and consumer equipment at lower prices.”

In addition to being the standard in the United States (beginning this fall), the ATSC standard has been adopted in Canada and South Korea, and is being considered for adoption in Mexico, Brazil and Argentina are considering the ATSC standard. Broadcasters in those countries have expressed a preference for the ATSC standard. Taiwan also has made a preliminary decision to go ATSC.

The favorable aspects of the ATSC standard are its emphasis on HDTV and the economic advantages of aligning with the North American equipment.

Add Brazil to the ATSC list

In addition to the story about Mexico and Televisa, the ATSC digital TV standard is gaining acceptance in South America. Comark Digital Services (CDS) of Alexandria, VA, has been awarded a contract by TV Globo, a national network that covers Brazil through 104 TV stations, to send the “World Cup Soccer” games live from France to Brazil in digital HDTV. The first match is on June 10. What is significant about this event is that it is the first World Cup Soccer coverage to be delivered in the ATSC digital TV standard and it is the first transatlantic broadcast of HDTV of a world class sporting event.

“Comark is proud to work with TV Globo on this historic intercontinental event,” said Mark S. Richer, vice president and general manager of CDS.

“There is no better broadcasting than sports, particularly soccer, to demonstrate what HDTV means to the viewers. There is no better moment than the World Cup to demonstrate this technology, when the Brazilian people will focus their attention to television, anxiously rooting for their national team to win its fifth World Cup.

“For this reason, with the support of CDS, we have decided to undertake this challenging project of being the first to broadcast HDTV live from another continent. We are confident about the project and count upon CDS to make it successful,” said Fernando Bittencourt, director of Engineering of Globo TV Network.

CDS will provide end-to-end facilities, from digital satellite transmission in France to the terrestrial broadcasting in Sao Paulo, Brazil. CDS is providing project management, engineering design, equipment procurement and integration services to TV Globo. The World Cup Soccer games will be transmitted using solid-state UHF transmitters fed by eight-level vestigial sideband (VSB) all-digital modulators for over-the-air broadcast. An in-house production capability that is responsible for more than 60% of airtime programming and for exportation to more than 130 countries, will work in conjunction with the World Cup Soccer feed.
You’ve got 20 seconds to find the spot with the rattle!

Visually search your digital archive without leaving your desk.

Winds of change are blowing through the broadcast industry. In a world of compressed video-data, you will be challenged to stay in touch with your digital assets. Fortunately, there is an answer. The new Bowser Visual Asset Manager from Odetics Broadcast.

Just imagine browsing your entire video library from the convenience of your desktop workstation. With frame accurate video and stereo audio, the Bowser Visual Asset Manager is an excellent companion to your automation or library management system.

With the Bowser Visual Asset Manager you can find the right rattle...or needle...in your digital haystack.

To find out more about how to manage your digital assets, contact your Odetics Broadcast representative today.

Your safe haven from the winds of change.

The Americas (714) 774-2200 Europe +44 (0) 118 927-4600 Asia +65 324-0636
www.odetics.com/broadcast/ Email: broadcast-sales@odetics.com
© Odetics Inc. 1998 12552

Circle (6) on Free Info Card

www.americanradiohistory.com
Events seem to be happening at an ever-faster pace....
Life seems to be speeding up.....and it's not an illusion.

Panasonic video editing systems will put you ahead.
NewsBYTE™ (Fast Transfer Video Editing Workstation) gives you power over a producer's most precious commodity, time. It features the world's first built-in DVCPRO recorder/player with disk transfers to and from tape at four times faster speed. Integrated software includes modules for input/output, sequence assembly, titling and graphics, audio mixing and system maintenance. With the optional disk array, video storage can go up to two hours and twenty minutes.

First generation digital quality is maintained by editing in the DVCPRO compression format, and newsBYTE's built-in switcher provides a host of real-time special effects during editing.

DVEDIT™ is Panasonic's all-digital DVCPRO based nonlinear editor for the NT platform in a pre-configured, fully integrated real time editing system. DVEDIT features a dual-codec DV video engine, a streamlined version of POSTBOX editing software, real time Jog Pad edit controller, over 110 real time transition effects, internal SCSI media hard drives (70 minutes of video) and RS-422 VTR control card, all working under Windows NT®.

NewsBYTE and DVEDIT. No wonder that in the fast-moving business of news and production, people are moving to Panasonic.

For more information call: 1-800-528-8601
Upon request enter product code 07
NewsBYTE and DVEDIT are trademarks of Matsushita Corporation of America.
Windows NT is a registered trademark of Microsoft Corporation.
In the world of EAS, all broadcasters are not equal

Alerting the public in times of emergency is one of the highest charges of the broadcast licensee. Emergencies are the only times when the FCC rules can be bent to the breaking point to save lives and property. The first attempts to bring into being any kind of organized, nationwide alert system was done when President Truman signed into law the CONLRAD system. Remember when we were required to transmit messages on 640kHz, 1,240kHz or go off the air? Although a step in the right direction, it didn’t take into account the people who were listening to FM radio or watching television. In 1976, the emergency broadcast system (EBS) replaced CONLRAD and for many years the vehicle through which emergency messages were disseminated to the public was the EBS. The system was intended for the President to convey messages and information in times of pending disaster. The EBS allowed for the governor of a state to convey the same. In recent years, local operational areas have adapted the two-tone attention signal system to alert smaller groups of the population in times of pending disaster. It is the latter use of the EBS that saw the most actual emergency duty, with the national and state EBS limited to occasional testing.

As technology advanced, the EBS did not. The two-tone attention signal became a tune-out factor as stations were required to transmit it during main broadcast hours once per week. Also, because all EBS broadcasts had to take place on main broadcast channels, it forced broadcasters to become selective in their retransmission of an emergency message, especially if that transmission pertained to a narrow section of the population outside the broadcaster’s coverage. Finally, because the EBS was a serial relay system of main-channel broadcasters, the system became vulnerable to those broadcasters choosing not to retransmit all messages when the relay chain became broken.

Out of a request for input on changing the length of the two-tone EBS attention signal grew a revamp of the method of emergency broadcasting to what is now the emergency alert system (EAS). In the FCC rules adopted a few years ago, a digital protocol was adopted to allow for specific area alerting. In addition, the FCC opened up the path of emergency message transmission to include broadcasters and any other means available then or in the future. As this system develops, this flexibility of transmitting emergency messages should eliminate the vulnerability of the old EBS serial relay system, but there are some glitches.

Keep in mind that the only EAS transmissions a broadcaster must transmit are national messages, the locally generated required weekly test (RWT) and the local stations’ participation in the required monthly test (RMT). All other messages, be they local, regional or statewide, are at the discretion of the individual station or broadcaster.

The FCC addressed mostly national and state issues in their rules, scarcely mentioning how implementation would be accomplished on a local, regional or other area level, leaving the local broadcasters on their own to develop system(s) to meet local needs. Broadcasters and local agencies have been struggling for the past year just to get their required monthly tests aired. The Sacramento area stations first used the EAS during floods last year. Reports have it that it was a success. Yet, others have suffered considerable embarrassment with gross failures.

EAS has been around for just more than a year. Cable companies will be coming on-line by the end of this year. The reasoning was to fill the gaps where viewers not watching over-the-air television could be alerted to impending disasters.

Ken Johnson, spokesperson for Congressman Billy Tauzin, R-LA and chairman of the House Telecommunications subcommittee said that Congressman Tauzin’s office asked the FCC to review its policy concerning emergency alert systems. Johnson said, “We became personally aware of a problem associated with the system in March 1997, when we were conducting a public hearing in Peoria, IL, on the voluntary TV rating system. At that time, Congressman Tauzin and I were in a hotel room watching a local weather forecaster pinpoint, with great accuracy, using Doppler radar, where a tornado had been spotted. He was projecting its path, which by the way, was moving in our direction, when suddenly the local broadcaster, as well as all local stations, were interrupted by a booth announcer who broadcast emergency precautions.”

“It was nothing more than a civil defense announcement, saying that the
If you haven’t already taken these out for a test drive, here’s your chance.

Short/cut Editor

The perfect replacement for generations of reel-to-reel tape recorders. Short/cut delivers hard-disk storage, plus fast cut and paste waveform editing. Add an optional Zip drive and get low-cost copies. This editor is fast enough for on-air use, and tough enough for the road. So take Short/cut out for a test drive and watch it perform.

Instant Replay. Instant sound effects. Instant music. Instant fun. Take it out for a joy ride.

DigiCart/II Plus

The new DigiCart/II Plus puts up to 50 hours of audio on hard disk, and now includes the popular Zip drive for low-cost storage. As always, it’s your choice of linear or Dolby AC-2 recording, plus precise editing and powerful playlisting capabilities. The new “Plus” model delivers all the reliability that has made DigiCart a broadcast standard, and it’s now available at a great new price. Ask for a test drive, and put it through the paces at your station.

Test drive theirs then test drive our DigiCart/II Plus. We’ve got more under the hood.

For more information call (818) 991-0360 / Fax (818) 991-1360 / e-mail: info@360systems.com / Website: www.360systems.com

Attention call letter stations. You’re only a phone call away from a free 10-day Test Drive. So try it out. We’ll understand if you don’t give it back.

(818) 991-0360

Circle (7) on Free Info Card

www.americanradiohistory.com
"Tom, we bought another radio station last night."

Wondering how to handle growth? More groups have placed their trust in Intraplex than any other digital transmission solution. Consolidate program audio, data and phones over one high quality digital line. With STL and TSL at any distance over any terrain. Even better, you'll be ready to handle the next station. And the next. Call us at 978-692-9000 or visit our web site at www.intraplex.com.

The STL PLUS
T1 multiplexer transmits program audio for STL's, TSL's and intercity links, data for remote control, automation, and LAN's and voice for off-premise extensions and intercom.

Intraplex
Intraplex, Inc.
3 Lyberthy Way
Westford, MA 01886
978.692.9000
978.692.2200 fax
http://www.intraplex.com

following counties in the Peoria area, and they were listed, are now under a tornado watch." Well, as you know there is a great difference between a watch and a warning.

"So what I'm saying," Johnson continued, "is, we were watching, as part of the warning, where the tornado was headed. Then all of a sudden, we were interrupted by information that was probably 30 to 40 minutes old — information, by the way, that could have cost us our lives. So Congressman Tauzin asked the FCC to review its position when it comes to emergency override.

Johnson also said, "We were unaware that there is an associated problem with the direct satellite broadcasting industry. And as a result, we will now ask the FCC to explore those issues as well. In addition, Congressman Tauzin intends to, in our next meeting with leaders of the DBS industry, to ask them how they plan to respond to these concerns."

Johnson felt that there should be little or no problem implementing a system with the DBS industry, "It is our understanding that this technology is currently available. It is in place in other parts of the world and there's no reason why it shouldn't be made available to American subscribers as well."

When we called Senator John McCain's office, Pia Pialorsi, Senator McCall's spokesperson said none of this "is currently in the Senator's radar."

One of the players in the EAS game is the National Weather Service. Rod Becker from the Silver Springs, MD, office said that it transmits complete weather alerts over a nationwide radio system. It's up to the individual broadcasters to respond as they see fit. He said, "Except for presidential messages, all other EAS messages are strictly voluntary and no one has to transmit them. It's certainly not federally mandated that they do so."

But there is a growing gap that isn't being filled. There are four players in the direct satellite delivery business: PrimeStar, USSB, DSS and EchoStar. The only one of these four that has mentioned anything about local-to-local delivery is EchoStar. The rest say they are a national service." Much of middle America has gotten its signal via one or more translators. Unless the
We're not just talking MPEG-2 4:2:2.
We're delivering it.

Everyone's talking MPEG-2 4:2:2 because it offers top quality images that are ideal for post-production and distribution to affiliates.

But talk is one thing – delivery is another.

While others are still designing their MPEG-2 4:2:2 products, NDS is already delivering. Our systems have already been used to cover the Hong Kong handover, state occasions and other world events. They've also been selected by the EBU for their Eurovision network.

Only NDS – a world leader in digital broadcasting solutions – can provide proven MPEG-2 4:2:2 solutions today. So if you want the highest quality video image, bandwidth savings with MPEG-2 compression, and you want it now, there's only one company to call – NDS.
translator is owned or maintained by the serving station, many of the associations and local government have been pulling the plug on their translators for any number of reasons. By reason of this attrition, many have become DBS subscribers if they want to watch any television.

If the DBS people can address each and every receiver, turn it on or off and deliver detailed programming information about each channel, they can warn viewers of disasters. The technology is there. If that farmer’s or other rural viewer’s sole source of information is a DBS dish, then that provider has a responsibility to keep them informed of any impending disaster and the details will just have to be worked out.

Secondary services may have problems

Operators of equipment that are considered a “secondary service” on any frequency in the TV broadcast band, Channels 2 through 69, may find that the frequency they are working on may have some powerful company. With the introduction of the digital TV channels, these secondary basis authorizations will have a rude awakening if they are co-located with a DTV channel assignment in their area when it signs on the air. Such was the case in Dallas.

David Johnson, Capital Projects coordinator and a member of the WFAA-TV’s engineering staff said, “On Feb. 27 we signed on our new DTV transmitter for the first time. It operates on Channel 9. We proceeded to do testing and everything looked good. Our initial concern was co-channel interference with our NTSC station on Channel 8 and with the cable companies in and around Dallas. There were no problems. About 3 a.m. on March 1, our news assignments desk got a call from Baylor University Medical Center (BUMC) saying that it had determined that our Channel 9 transmitter was interfering with 12 of their heart monitors. We had already signed off the air at 10 p.m. the night before.” Beaven Els, WFAA-TV’s chief engineer met with the A. Webb Roberts Hospital’s officials at BUMC later on that same morning. Johnson continued, “We came to an agreement to stay off the air with our DTV Channel 9 until they could resolve the problem.” In the meantime, the WFAA-TV’s engineering staff have worked with the BUMC administrators to resolve the problem and have tried to coordinate the same efforts with other hospitals in the area.

Wayne Kube, engineering technical manager and Beaven Els, chief engineer at WFAA-TV, standing in front of the Harris digital transmitter.

Station operators who accept licenses that are designated to operate on a secondary basis must live with any signal levels they encounter from the primary service. As the FCC R&R’s say, they “must not interfere with and must accept interference from current and future full-power stations” on these frequencies. But the WFAA-TV’s engineers couldn’t ignore the life-threatening situation at the local hospital.

Jamie Ramo, director of public relations at Baylor University Medical Center, said, “We are buying and installing 30 new multifrequency wireless heart monitors to avoid future interference. It is my understanding that this will cost the hospital nearly $200,000.” Ramo said, “We have a technology team that maintains all of the medical equipment here at our facility. It was that team that discovered this particular issue. As a solution, our technology team will be working with the FCC and the Dallas/Fort Worth Hospital Council to educate other medical facilities about such situations.”

Larry Bloomfield is a former chief engineer, industry consultant and author, located in Bend, OR.
When everything works together, news travels fast.

SONY
It's good to know that the world has standardized on MPEG-2 for transmission, considering all the uncertain aspects of DTV.

You may also be pleased to know there are some good reasons for making MPEG-2 your standard.

As an open standard, MPEG-2 can be applied to many applications in the broadcast chain. For example, using MPEG-2 for recording at high bit rates with a small group of pictures (GOP) delivers maximum image quality and signal performance for demanding, multi-generation editing requirements. Transmitting at low bit rates and longer GOP is ideal for delivery to the home. The MPEG-2 compression standard is flexible and powerful enough to cover both,
and is scaleable to handle the demands of HDTV.

MPEG-2 is unique in its ability to transcode over a broad spectrum of MPEG-2-compressed bit rates and GOP formats without decoding to baseband. This minimizes the quality loss inherent in the decoding and re-encoding processes required when converting from different compression schemes, such as DV or motion JPEG, to MPEG-2 for transmission.

MPEG-2 is extremely efficient, yielding high-quality images at very low data rates. This means cost effective storage on both linear and nonlinear media. Its scaleability also affords the transmission of contribution-quality material over DS-3, microwave, or satellite services, maximizing signal quality over the given bandwidth.

With all of its advantages, it's no wonder MPEG-2 technology is being integrated into a wide range of products from many of the broadcast industry's leading manufacturers worldwide. Of course, there's one manufacturer we'd like you to consider first.

Choose your standards carefully.
Everything is here. The complete Betacam SX® system. The only digital ENG solution that employs the MPEG-2 compression standard from acquisition, through production, to delivery. The choice is clear. Especially when you consider all the operational advantages of Betacam SX: high quality 4:2:2 digital component video, four audio channels, a low 18 Mb/s video data rate, and analog Betacam® playback capability. But there's more to the story.

New for 1998 is the DNW-A75 VTR. Adding to our extensive line of SX Hybrid Recorders and Players, the A75 offers frame-accurate video and audio insert editing on Betacam SX tape.

All the elements of a great news story.

It includes Preread technology, compressed digital output in either SDTI or MPEG ES formats, and the analog Betacam playback features of the legendary BVW-65. All for a list price of $27,000.

The Betacam SX acquisition products include a dockable recorder and a full-line of one-piece camcorders. Sony's camcorders are known for their ruggedness and reliability. Betacam SX equipment continues this tradition in packages that are smaller and lighter in weight than analog Betacam camcorders. The line-up includes products supporting both 4:3 and true 16:9 aspects with IT or FIT imaging.

New CCDs and DSP processing have significantly extended low light shooting capabilities, improved overall picture quality, and added important new operational aids, including set-up cards and the Good Shot Marker™ system.

©1997 Sony Broadcast, Inc. All rights reserved. Reproduction in any form is prohibited. Sony, Betacam, SX, Betacam, Solid Shot Marker, Manhattan, ProGyc, the Sony logo and the DV-HD logo are trademarks of Sony Broadcast & Professional, or its subsidiaries, and are subject to change without notice.

www.americanradiohistory.com
In the news business, timing is everything. Sony delivers a variety of editing solutions to meet your business demands. The Betacam SX line includes portable editors and efficient nonlinear systems, as well as more traditional linear editing products. All support the SX Good Shot Marker system, streamlining the decision-making process from acquisition to editing. The SX portable editors weigh under 30 lbs, yet include powerful features like DMC and studio-quality audio cueing capabilities. The Betacam SX nonlinear editors provide many time-saving features, including faster than real-time transfer from tape to disk. All of the SX editing systems allow easy integration of analog Betacam material into your work.

Acquisition
- Camcorders
- Dockable Recorder

Production
- Linear Editors
- Hybrid Recorders
- Nonlinear Editors

Delivery
- Flexicart
- Servers
- Recorders/Players

Sony also offers a wide range of newsroom servers, including the NewsCache™ system. This affordable server system takes advantage of MPEG-2 4:2:2 P@ML compression technology to deliver high-quality news playback with efficient disk storage. NewsCache integrates with many popular newsroom computer systems and can grow with your news operation.

When everything works together, news travels fast. That’s the idea behind the Betacam SX format. From acquisition to transmission, the complete line of Betacam SX equipment is news-ready, road-worthy, and here now.

Choose your formats carefully.

SONY
Call 1-800-635-SONY, ext. BetaSX
www.sony.com/professional

www.americanradiohistory.com
Acquisition

DNW-7
DNW-9WS
DNW-90WS
DNV-5 Dockable Recorder

Recorders/Players

DNW-A75
DNW-A22
DNW-A30

Hybrid Recorders

DNW-A100
DNW-A45
DNW-A50

Editing

DNW-A220
DNE-50

Playback/Transmission

DNW-A225
DNE-700

DNW-A25
DLE-110

Flexicart
News Servers
FlexSys™
DTV rules and allotment table affirmed

BY HARRY C. MARTIN

In February, the final digital TV rules and DTV table of allotments were affirmed. Following are the highlights.

- DTV table of allotments. The commission made 71 revisions to its DTV table of allotments, which was published last April. Of those revisions, 42 were primarily to reduce interference due to DTV-to-DTV adjacent-channel situations. The remaining revisions were in response to requests for modifications. Changes will be allowed on an individual basis where such changes are agreed upon by all affected broadcasters or do not result in additional substantial interference to other stations or allotments and/or do not conflict with the commission's other goals for the spectrum. However, almost all of the petitions to change DTV allotments, where the proposed change was challenged by other affected parties, were denied at this stage.

- Increase of UHF power. In response to the Joint UHF Broadcasters' petition, the commission acknowledged UHF broadcasters' concerns about power and responded by adopting a de minimis standard. UHF stations will be allowed to increase power from 50kW up to 200kW ERP (or 1,000kW using beam tilt) or make other changes if they would not result in more than a 2% increase in interference to the population served by another station. The de minimis standard does not apply to stations that already receive interference to 10% or more of its population or the change would result in the affected station receiving interference in excess of 10% of its population. Under the predicted DTV standards, such changes should not cause any new interference.

- Core spectrum expanded. Channels 2 through 6 are suitable for DTV and the core DTV spectrum has been defined as Channels 2 through 51. The extra channels will allow for the minimization of DTV-to-DTV adjacent-channel interference and, by increasing the number of channels, open up new channels for dissatisfied broadcasters.

Many of the petitions for reconsideration that the FCC denied sought a different DTV channel inside the core because the petitioner did not want to move twice. The commission refused to accommodate these licensees, but is open to reallotments on an individual basis. Twelve stations have NTSC and DTV allotments outside the core and they will receive priority treatment as channels become available.

- LPTV/TV translators. The FCC's order attempts to provide some help...
for LPTV and TV translators that will be displaced by the DTV allotments.

The FCC recognizes that low-power stations will be displaced during the transition phase. Applications for displacement relief may be submitted at any time during the transition, commencing on the effective date of the order. The order also provides priority for displacement relief applications over requests to extend or alter existing service not affected by the DTV implementation. After the transition period, displaced LPTV and TV translator stations will be able to apply for channels without being subject to competing applications.

LPTV and TV translators may also apply for digital authorizations pending the release of a rulemaking.

- Pre-emption of local zoning challenged by Audubon Society. The National Audubon Society has asked the FCC to prepare an environmental impact statement (EIS) in connection with the consideration of proposed rules that would allow the FCC to pre-empt local zoning regulations when they obstruct or impede the construction of towers needed to implement DTV.

The Audubon Society alleges that the proposed pre-emption regulations must be analyzed under the National Environmental Policy Act (NEPA) due to the potential environmental impact tower construction might have in situations where local zoning authorities have rejected the proposal.

In early March, the Mass Media Bureau asked for comments on the applicability of NEPA to the proposed pre-emption rules. The bureau pointed out that broadcasters must demonstrate in their CP applications that a proposed tower project will meet NEPA requirements as embodied in Section 1.1307.

The FCC's pre-emption proceeding has caused controversy, prompting FCC chairman Bill Kennard to comment that the commission has no plan to become a "national zoning board." New regulations will be tailored so they will apply only in cases where local zoning authorities impose undue delays or unreasonable standards.

Dateline

TV stations, LPTVs and TV translators in Arizona, Idaho, New Mexico, Nevada, Utah and Wyoming should file license renewal applications by June 1. (Date is optional for Wyoming LPTV and TV translator renewals.) LPTVs and TV translators in Oklahoma and Texas are required to file their renewals by June 1.

Commercial TV stations in the following states must file their annual ownership reports by June 1: District of Columbia, Maryland, Virginia, West Virginia, Michigan, Ohio, Arizona, Idaho, Nevada, New Mexico, Utah and Wyoming.

All licensees must file their Annual Employment Reports (Form 395-B), previously due May 31, now are due on or before Sept. 30.

Dateline

TV stations, LPTVs and TV translators in Arizona, Idaho, New Mexico, Nevada, Utah and Wyoming should file license renewal applications by June 1. (Date is optional for Wyoming LPTV and TV translator renewals.) LPTVs and TV translators in Oklahoma and Texas are required to file their renewals by June 1.

Commercial TV stations in the following states must file their annual ownership reports by June 1: District of Columbia, Maryland, Virginia, West Virginia, Michigan, Ohio, Arizona, Idaho, Nevada, New Mexico, Utah and Wyoming.

All licensees must file their Annual Employment Reports (Form 395-B), previously due May 31, now are due on or before Sept. 30.

AXON

STRETCH AND BALANCE:
AN EXERCISE
IN ASPECT RATIO

Digital technology has permitted a quantum leap in broadcast television. It enables signal processing, transmission and reception of a quality and reach never thought possible a few short years ago. Not least are the increasing requirements for more versatile aspect ratio conversion. Here, Axon has risen to the challenge with a new, more powerful aspect ratio converter - the ARC 2000. Bi-directional with full 10-bit resolution, it converts from 16:9 to 4:3 and vice versa, as well as to 4:3. With an internal processing resolution rate of up to 20 bits, the ARC 2000 is the most accurate aspect ratio converter available today. Rugged construction, 19-inch T1 mounting and forced air cooling ensure reliable operation in all climates and conditions. Eight manual or automatic presets (compatible with Wide Screen Signalling and Video Index) provide outstanding performance and capacity. These, and a host of other innovative features are again examples of how Axon Digital Design remains at the forefront of digital broadcasting technology. With sales and service offices and agents throughout the world, we can serve and support you whatever your requirement and wherever you are located.

AXON DIGITAL DESIGN
P.O. BOX 111 - 5070 AC UDENHOUT - THE NETHERLANDS - PHONE +31 (0)13 511 45 00 - FAX +31 (0)13 511 41 51. http://www.axon.nl
ONE ROCKEFELLER PLAZA - SUITE 1420 - NEW YORK - NY 10020 - PHONE (888) 919 9379. (212) 265 6865 - FAX (212) 265 6402

Circle (10) on Free Info Card
Finally, a place to stick the FCC's DTV requirements.

Introducing the world's only video jacks to surpass SMPTE® 292M specifications for uncompressed HDTV.

You're looking right up the business end of the SVJ-2 Super Video Jack from ADC Telecommunications. A breakthrough jack that can do far more than help convert your station to digital television — it will take you all the way to HDTV. ■ That's because ADC Superjacks don't just pass SMPTE 292M specs, they blow them out of the water. Our standard-size SVJ-2, for example, can handle bandwidths up to 2.4 GHz. And our mid-size MVJ-3 can go to 3.0 GHz and beyond. Which means these jacks could realistically outlive your entire network. That's why we call them "future proof." No matter what DTV format your station adopts now, you won't have to upgrade again. ■ ADC Superjacks. The best place in the world to stick FCC requirements for DTV. ■ As you'd expect, ADC is innovating the broadcast industry.

Call toll-free: 1-800-726-4266
www.adc.com/products/AVproducts/index.html

Circle (11) on Free Info Card
www.americanradiohistory.com
Ready or not, here it comes
BY LOUIS LIBIN

Consumers enjoy television today using the same NTSC standard that was developed and implemented in the late 1940s. Now, broadcasters and equipment manufacturers are prepared to move to digital, and it is a significant and traumatic, but necessary, move.

Recently, there were two unrelated events that are of some significance to DTV implementation. The first event was a frequency coordination issue. On Feb. 27, 1998, WFAA in Dallas, went on the air with the first non-experimental TV broadcast in the United States. By now, most broadcasters are probably aware that there was some interference to unlicensed medical devices on the same channel, VHF Channel 9, at a nearby hospital. As soon as the station was notified, it shut down the transmitter. The devices that were interfered with were cardiac monitors and are now in the process of being replaced. (See “Beyond the Headlines,” p. 26.)

This is a significant occurrence because it will happen in every city. We do know that there are many unlicensed low-power devices on many VHF and UHF channels. The users will soon be aware of the new primary users and there will be some hindrance to these existing users, but on a limited basis. This is surely no cause for alarm.

The second event significant to DTV implementation was a speech by Peter Dare, Sony's chief technology officer, and a close intimate of digital television and the entire process. During Sony’s annual pre-NAB product presentation about the uncertainties regarding the implementation of digital television, Dare did not say that the 26 stations that are to be implemented by this year's end are at risk, but he did say that the unknown issues will not be cleared up before those stations are implemented. Some of the unknowns include the MPEG stream manipulation, potential indoor reception including multipath interference and the lack of common equipment interfaces.

Consumers are just now beginning to hear the news that digital television (DTV) is now officially on its way to market. As DTV begins to receive more publicity, consumers will begin looking for receivers in the stores. This consumer expectation for service excellence does not translate into huge sales volumes quickly. The projected sales numbers are an entirely different issue. The mass confusion that reigned

Introducing the Editing Router.

The Editing Routing System was designed to allow selection of video and audio sources and machine control for linear and nonlinear editing systems. Four inputs select the video and stereo audio sources and a 4x1 Switch Module switches editor control of source machines. Systems can be configured for analog or digital video, Y-C, RGB, or CAV. Standard features include four levels of switching, RS-232/422 Control, and Sigma's 5-Year Parts & Labor Warranty.

For more information or your nearest Sigma dealer, contact:

SIGMA ELECTRONICS INC.

1184 Enterprise Road, P.O. Box 448, East Petersburg, PA 17520-0448
Phone 717-569-2681, Fax 717-569-4056, Web www.sigmaelectronics.com
think of us as your crack pit crew.

Broadcast technology is on the fast track as stations across the country begin converting their technology to digital. If you’re not on track for this important transition, the time to begin is now. And Professional Communications Systems is here with the tools to help.

Professional Communications Systems is a reliable, cost efficient source in the design and integration of today’s digital technology. From turn-key studios for new television and cable operations, to up-grades for existing broadcast facilities.

Technology can be the difference between winning and losing. *Professional Communications Systems* will help you stay in front.

Technology Evolves. We Take You There™
in the world of DTV just a couple of years ago has progressed to only a few substantial issues needing to be resolved:

- Has enough headroom been built into the new channel assignment table?
- What kind of digital service will broadcasters offer to consumers?
- Will all stations in the same market offer the same services?
- How will the consumer receive these services? Indoors?
- What kind of receivers will be available and when?
- Will the first generation of DTV receivers be devoid of features?
- What will the cable position be regarding DTV?
- How will local program insertion be accomplished?
- Will audio synchronization be standardized?
- When will the equipment interfaces be finalized?

The new digital receivers

On the positive side, at the CES show this past January, approximately 15 consumer electronic manufacturers displayed prototype receivers similar to those they will begin to distribute later this fall. The number of manufacturers in itself was heartening to broadcasters who are wondering about the chicken and the egg with regard to the DTV audience and receiver purchases by the consumers. The cost of the new receivers is still predicted to begin at about $5,000 and continue up from there. There will be set-top converters (downconverters) priced at about $800. These price levels are for the first-tier buyers only, and volume should drive down costs.

Fast implementation

The digital TV system needs to be fully implemented before all of its characteristics can be fully documented and the set of rules finalized. The allotment/assignment table may not be absolutely finalized for years to come. Until the industry has developed real experience in dealing with the parameters of the system under the different environmental conditions in the real world, the system will never be fully characterized and the bugs will never be eliminated. Any delays in implementing and fully embracing DTV will only confuse the marketplace and bring down the wrath of the FCC upon the broadcasters. Implementation delays could prove to be severely damaging to the many broadcast interests who have already made major investments leading to DTV.

Broadcast stations will be making huge investments in new equipment and station personnel. The faster that stations can begin to see a payback on this investment, the better off they will be financially. It is important to note that Sony's Peter Dare did not say that DTV would fall on its face because of these open issues. He did say that the back end of the DTV schedule, where the FCC has said that all existing NTSC stations must cease operations by 2006, is probably unrealistic. Both manufacturers and broadcasters have some work ahead of them.

Louis Libin is a broadcast consultant in New York and Washington.
UNPRECEDENTED TECHNOLOGY BREEDS UNPRECEDENTED CHALLENGES – VIDEO SERVERS, FIBRE CHANNEL NETWORKING, DIGITAL ARCHIVING, ASSET MANAGEMENT AND THE AUTOMATION SYSTEM TO ELEGANTLY ORCHESTRATE IT ALL. IT’S A MANDATE RECOGNIZED BY LEADING BROADCAST ORGANIZATIONS WORLDWIDE WHO DEPEND ON LOUTH SOLUTIONS. VISIT US AT WWW.LOUTH.COM. LOUTH AUTOMATION. WE’D LIKE TO HELP YOU MAKE THIS NEW WORLD QUITE FAMILIAR.

See us at NAB Booth #S2344

Circle (19) on Free Info Card
Initially, HDTV was assumed to mean a 1,920-line, interlaced signal. Today, other (and much less-expensive) display formats are being discussed and proposed. Can a facility simply adopt one of these lower-quality image formats and get away with calling it “HDTV” without penalizing themselves in terms of their marketplace perception? After all, will the viewers even know?

(Last month’s column explored the topic from the expert’s side. This month, we will look at it from the vendors’ side.)

VENDOR

Defining HDTV, Part 2

Christian Tremblay, president, Miranda Technologies Inc., St. Laurent, Quebec, Canada.

The two most important aspects of DTV are its digital nature and its use of the 16:9 aspect ratio. The digital nature of DTV provides the broadcaster with a powerful communications channel, perfectly adapted for the information society of tomorrow. The 16:9 screen format is a key marketing issue for TV set manufacturers, whose job is to convince customers to acquire the new technology as was done for microwave ovens, VCRs and compact disk players. On their success depends ours.

Image definition has little to do with the above. What consumers will buy are large flat-screen displays with surround sound. These sets will seduce mainly because of their slim shape and extended viewing angle. As set manufacturers are getting ready, our symbiotic relationship with them implies that we broadcast an appropriate signal capable of convincing the consumer. The marched signal theory stipulates that the best return on investment will be obtained when the quality of the signal will equal the quality displayed at the consumer set. One thing is sure, the first-generation sets will definitely not have the technology to display HDTV and will be closer to VGA quality. Later, the sets will evolve and so will the ability of viewers to appreciate better quality pictures.

As a result, our evolution in sending better TV signals can be spread over a certain time span. The advantage is that the cost of conversion will decrease with time. The strategy would be to invest in 16:9 cameras and use at maximum the conventional definition equipment already installed. Upscaled pictures are not just glorified NTSC pictures, they will produce a quality never seen at home and given the quality of receivers will produce the optimum result.

As ancient Romans used to say, “Festina lente” “Make haste slowly.”

VENDOR

Gary Shapiro, president of the Consumer Electronics Manufacturers Association (CEMA).

The target goal of HDTV is to provide consumers with the most crisp and clear audio and video technology. For today’s movie standards, home theater requires high resolution to avoid artifacts of the picture’s structure and a large screen to immerse the viewer in the program. Only true HDTV replicates 35mm film quality.

The industries involved in bringing DTV to the consumer (i.e., broadcasters and consumer electronics manufacturers) have defined HDTV as having a vertical display resolution of 720p, 1,080i or higher; capable of displaying a 16:9 image at the minimum resolution-level; receiving all ATSC Table 3 formats; and receiving and reproducing/outputting Dolby digital audio. Therefore, there is a difference when the consumer views anything less than HDTV as defined.

In recent focus group studies conducted by CEMA, participants were shown a video and audio demonstration of the improvements offered by digital and HDTV. When participants were shown an HDTV picture, the reaction was unanimously positive among all consumers, and virtually all “strongly preferred” HDTV to any lower-resolution digital sets. Early-adopter-type participants especially preferred the widescreen presentation format of HDTV on today’s sets.

When asked about “multicasting,” the ability to simulcast several channels of digital programming, mainstream adopters expressed dissatisfaction with current programming, saying quality improvements in programming were much more important than access to additional channels.

The HDTV demonstrations at the 1998 International CES produced reactions of “When will it come?” not “How much will it cost?” And, this showing was just the first commercially viable HDTV. The lowest tier of what will be continuing improvements already is so different from NTSC-quality broadcasts that it knocked ‘em dead when shown on a wide screen. Anything lower than HDTV will not pass muster once the average consumer has seen this demonstration. And, to spur sales of the attractive new medium, TV retailers will take the “comparison” road. Once consumers have tasted the true thing, nothing less will suffice.
The new Origin video computing platform. It’s about time. It’s about money.

Introducing the Origin video computing platform from Silicon Graphics. It’s time you had everything you wanted, everything you needed and everything your competitors didn’t want you to have in one, rack-mountable, digital broadcast platform.

Time will tell which digital video formats become the standards of our industry, so the Origin platform supports them all. From the biggest uncompressed formats to the most multi-channel playout streams, from HDTV to low bit-rate MPEG, run them all today.

Time also changes everything, so we’ve given the Origin platform more scalability and flexibility than any dedicated box. Store months of on-line video, fast-network to any local desktop, run world-class applications, support standard automation systems and StudioCentral™ asset management environment. Want advanced graphics? Origin will let you add it. That’s power and flexibility.

When you’re ready to see what the best system in the industry can do, visit us on the Web. But don’t wait too long. Time is money and of the two, we can only make you more of the latter.

SiliconGraphics
From front line to studio, no camera delivers more than the Philips LDK 100 Series. Unbeatable flexibility makes it simple to configure for studio, EFP Triax, Bertacam SP and DVCPRO. Unique Dynamic Pixel Management (DPM)™ sensors let you change between 4:3 and 16:9 instantly, with no loss of resolution or change in horizontal angle of view. LDK 100's superior A/D conversion and signal processing give picture quality that is unparalleled.
to the comfort zone

We’re bringing tomorrow together

performance and accuracy second to none. A Smart Card provides instant set up to suit operators’ needs. And low weight, compact dimensions and logically placed controls free them to concentrate on the action. Add a future-ready design concept, and you’ll see that no camera’s better equipped to help you face the future with confidence. For the full picture, visit Philips Digital Video Systems on Booth #12101 at NAB ’98.
Circle (25) on Free Info Card

PHILIPS

Let’s make things better.
• The common data rate (CDR): This concept is derived from CCIR-601 and is based on a common luminance sampling frequency of 13.55MHz and an identical number of samples per active line of 720 for the luminance information and 360 each for the blue and red color-difference information. This approach was extended to cover HDTV signals by doubling the spatial resolution of CCIR-601 and adapting to a 16:9 aspect ratio. This results in 720x2X16/9x3/4 = 1,920 samples per active line for the luminance information and 960 each for the blue and red color-difference signals.
• The common image format (CIF): CIF specifies the spatial characteristics for the active picture area systems. Common elements include the image aspect ratio, the number of samples per active line and the number of active lines. However, the total number of lines, sampling rate and picture rate may vary. TV frame formats from different image scanning dimensions are made from a common CIF and different inactive horizontal and vertical blanking intervals. As an example, this CIF can be repeated at a rate of 30fps (frames per second) in the 525-line scanning standard and 25fps in the 625-line scanning standard. This approach is commonly used in image compression and computer processing. The CIF advantage is the simple temporal conversion between two progressive format systems.
• The image aspect ratio (IAR): IAR is defined as the ratio of horizontal image dimension (expressed in centimeters or inches) to the vertical image dimension (expressed in centimeters or inches). It takes the value of 4:3 or 16:9 for television and 2.4:2 for film applications. The 16:9 aspect ratio was established by the SMPTE Working Group on High-Definition Electronic Production in 1985. Any program material or motion picture film can be accommodated within the 16:9 format either for production and post-production, distribution or display.
• The pixel aspect ratio (PAR): PAR is defined as the ratio of the horizontal pixel spacing to the vertical pixel spacing. It does not refer to the actual shape of the pixel. This pixel aspect or dot spacing is determined by the IAR and the number of horizontal pixels (Hp) and vertical lines (Vl) in the reproduced picture. The relationship between PAR and IAR is given by PAR = IAR x Vl/Hp. If IAR and Hp/Vl are identical or if the PAR = 1, the image has square pixels or samples. As an example, the SVGA standard image format has 640x480 pixels for a 4:3 picture dimension format. Consequently, PAR = 4/3x480/640 = 1 confirming that computers generate and display square pixels. In video applications, the number of horizontal pixels is determined by the video sampling frequency that is derived from a multiple of the horizontal scanning frequency or the color subcarrier frequency. This results in non-square pixel displays of digitized NTSC or CCIR-601 signals. Figure 1 summarizes the situation for several standard-definition (SDTV) and high-definition (HDTV) formats.

Michael Rubin, former engineer with the CBC engineering headquarters, is an independent broadcast consultant in Montreal, Canada. He is a co-author of "Digital Television Fundamentals," published by McGraw-Hill.

Software maintenance

BY BRAD GILMER

Today, it is no secret that computers are as much a part of our lives as VTRs. It is important to properly maintain these systems. Software maintenance can be broken down into several categories — operating system (OS) maintenance, application maintenance and maintenance of code that you have written yourself. Here are a few tips on performing software maintenance.

OS maintenance

Generally speaking, there are three dominant operating systems in TV stations today: Windows95, WindowsNT and UNIX. Each of these requires care and feeding, and various utilities exist to help alleviate problems.

• Fragmented data on hard disks. After a while, the data on a hard disk becomes fragmented. How does this happen? An empty hard disk contains only contiguous (uninterrupted) data space.

![FILE A](image1.png) ![NEW FILE](image2.png) ![FILE B](image3.png) ![NEW FILE](image4.png)

Figure 1. Files on the hard drives become fragmented when new files are written into several spaces previously used to hold smaller files.

When files are written, they are (usually) written continuously on the disk from beginning to end. When files are erased, a hole is left where the file was. If a file is written back to the disk that is larger than an existing hole, the operating system packs all of the file that will fit into the existing hole and then finds the next available space and places the rest of the file there. It then makes an entry in a table (called the file allocation table or FAT in DOS and Windows systems), noting where the pieces of the file are located. After a while, data can end up fragmented all over the disk.

The problem with data fragmentation is that it slows system response. The slowest part of disk access is seek time, the time that the system waits while the heads move to the appropriate track to retrieve the data. With
Every step in video production affects the next.

Your first is the most critical – start with 4:2:2!

DIGITAL-S Acquisition

To get the most out of today's digital editing systems, you need to begin with the best raw footage possible. And that means shooting in 4:2:2. With DIGITAL-S, you get 4:2:2 color sampling with perceptually lossless compression. This produces an image that remains free of annoying artifacts that could build up through various steps in post production and digital distribution.

DIGITAL-S also offers superior chroma resolution, producing more well-defined colors, chroma keys and effects. In fact, all high-end systems, including the best non-linear editors, require 4:2:2 to achieve these benefits. The result is performance and quality that can stand up through each phase of digital video production. Shooting in a 4:1:1 DV format compromises your image, and you can't bring back the quality once it's lost.

Take your first step into high performance. Make it DIGITAL-S. For more information call:

1-800-JVC-5825
www.jvcpro.com
fragmented data, the head on the hard disk is continually moving back and forth to retrieve files. Disk defragment routines reorganize the data on the hard disk so that no jumps are needed when reading or writing files.

- **File system integrity checks.** In a perfect world, file system integrity checks would never be necessary. Unfortunately, power outages, software lock-ups and other problems can leave trash on your hard disk that can be the source of problems.

 All modern operating systems come with utilities that check the integrity of the file system and repair problems if they are found. Common file utilities include SCANDISK for DOS and Windows, FSCK for UNIX and VRF-PAIR for Novell servers. Fortunately, SCANDISK is fairly automatic and takes care of most problems without any intervention from you. FSCK is another matter. It is a powerful and potentially disastrous tool you should run with caution the first few times.

 File integrity utilities check for a number of problems including:

 1. The FAT should point to files that have a beginning and an end.
 2. FAT entries should point to files that are the same length as the lengths listed in the directories.
 3. Directory entries should point to one and only one file (except in the case of links). The SCANDISK error “cross-linked files” refers to this condition.

 Errors reported by these utilities should be addressed. They can represent wasted space on the hard disk or worse. Sometimes, running a file system utility more than once will fix particularly stubborn problems. So, if you run it once and it cannot repair all errors, don’t give up hope. Try it again and see if the errors are fixed the second time around.

Virus scanning

A regular virus scan should be part of any software maintenance routine. Be sure to download the latest virus definitions from your software vendor before running the scan.

Application maintenance

There are two major categories of software applications in the broadcast facility: broadcast-related apps, such as station automation and desktop applications, such as word processors and CAD programs.

1. **Broadcast-related application maintenance.** Upgrading a system as important as an on-air automation system is something that should be approached carefully. What if the upgrade does not go as planned? Have you ensured that the previous software version can be reinstalled if things do not work as expected? My experience has shown that it is a good idea to allow about twice, perhaps even three, times as much time as you think it will take for an upgrade to these systems. That way, if things do not go well, you are not faced with the double problem of figuring out what went wrong while simultaneously dealing with any on-air problems the de-

Care and feeding

Keep things clean. If you have systems that have been sitting in racks for years, check the fans to see if they are running; clean the floppy drives once a year or so just in case you need them.

Buy good tools and keep them sharp. Use a good disk utility to keep your disk in proper operating condition. Be sure you have the latest version of the software.

Use the right tool for the job. Match your knowledge and skills with the maintenance software you use.

Keep good records. Just as you keep comprehensive records of head hours on tape machines, you should keep complete records of software running on your systems.
Flexible Matrix Solutions

The Matrix 50 Series Switcher

Flexibility in matrix switching means being able to apply composite video, S-Video, component video and stereo audio in 8x4, 8x8, 12x4 and 12x8 I/O configurations. Extron’s Matrix 50 series includes one audio channel (mono or stereo) and three video channels that are capable of being populated, or customized, to suit the requirements of any system.

The Matrix 50 series delivers broadcast quality performance with 80 MHz (-3 dB) video bandwidth and vertical interval video switching. When genlocked to an external sync source the Matrix 50 provides smooth, seamless transitions from various inputs to the display output.

With 28 models available, the Matrix 50 comes in a 2U high, rack mountable enclosure and list prices start at $1,240.

Standard features:

- Four I/O sizes: 8x4, 8x8, 12x4 and 12x8; 28 different models
- Capable of routing video, S-Video, component video and stereo audio signals
- QuickSwitch Front Panel Controller – QS-FPC™
- Capable of switching RGsB analog signals up to 50 kHz
- Vertical interval switching (seamless switching from input to input)
- RS-232/RS-422 control
- Extron’s Simple Instruction Set™ for easy programming
- External sync I/O BNC connectors
- 12 memory presets
- Audio gain and attenuation adjustments via the front panel controller
- Video bandwidth: 80 MHz (-3 dB)
- Internal 100-240 volt switch mode power supply

Extron Electronics

800.633.9876
Old scopes never die!

BY STEVE EPSTEIN, TECHNICAL EDITOR

In the February issue, I highlighted a reader request concerning a modification for the Tektronix 529 waveform monitor. The modification originally appeared in Broadcast Engineering's December 1978 issue, and concerned replacing the (then) hard to find and expensive 7788 tubes with transistors. Well, no sooner than the February issue hit the streets, I received several more requests for that modification.

Dan Zemorah at WXYZ-TV in Southfield, MI, wrote:

I've been looking for the mod for the Tek 529 WFM for awhile. Can you send me the info too? (I'm sorry I can't supply you with fast food coupons; I hope it's not a requirement!)

Rx

Tim Stoffel at WXXI-TV, Rochester, wrote:

No, food coupons are not needed. I'm more than happy to help. The instructions are in the mail.

Rx

I too have a bunch of 529's to fix in my broadcast equipment collection. Is it possible to get a reprint of the December, 1978 article describing how to replace the troublesome 7788 tubes with transistors? Thanks!

I called Tim to get his fax number and it turns out he's rebuilding quite a few old Quads. For those into old Quad parts (are there any new ones?), check out his web page at: www.servtech.com/~lionlamb/quadpark

As I was writing this, I received a call from Doug Moon, the transmitter supervisor at KTBN, Los Angeles. It seems he had a 529 about ready for the dumpster — needing 7788s — when he ran across the article. Those instructions will go out today, Doug!
The Future of Broadcast Is Right Around the Corner...

START

Steering Problem. Can't decide between HD and multi-channel.

Move back 1.

FINISH

Multiple channels. Many more viewers mean more revenue. Move ahead 3 spaces.

Compression. Problems make everything look like old TV. Skip turn.

BAY } Xs more

"Flick"

Flick &"Kung"

The Plan

The Plan

Problems can be solved with the right tools. Build the right tools to solve the problem.
Ladies And Gentlemen, Start Your Engines.

You already know where you want to go. The question is, how will you get there—preferably with your studio and sanity intact. As you come blasting off the starting line the first thing you're going to hit is a fork in the road: Open-System or Closed-System. Go Open-System and you get flexibility. The flexibility to assemble your facility piece by piece, and choose the application software you want as your budget and needs evolve. If say, HDTV gets hot, you can turn on a dime and adjust. So the question isn't can you afford to start making the transition now, it's can you afford not to.

Another way to get where you want to go is simply to buy everything at once. This is the Closed-System approach and it'll cost something like the gross national product of a developing country. Up front. And just because everything is supposed to work together doesn't mean it always will. (Consider some of the people you work with.) It also assumes standards won't change. Again.

Digital Or Bust.

Okay, so you don't have a sum equivalent to the national debt to spend on new hardware tomorrow. With an open-systems approach you can stick closer to your present spending levels and still build a digital facility long before you hit retirement age. Just remember that prior to deciding what kind of hardware to buy, you need to ask yourself what that hardware is going to buy you. Because you're not just creating an open-system, or a digital facility. You're also creating an on-air presence. A look. An identity to compliment your broadcast strategy.

Getting Out Of Neutral.

Is your strategy to wait and see how this HD vs. multi-channel thing is going to shake out before you hit the gas? Bet the farm on HD and if the price of new TVs doesn't drop in a hurry, it's back to the pits. Bet the farm on a multi-channel format to attract viewers and you won't be prepared for HD. And hey, what about compression? Which type? Which standard? Will it even work at all? Aaargh! Hit the brakes. We're going to crash!

No need to panic. You can get in gear simply by following that open road. By keeping yourself and your system open and flexible, you can accommodate multiple channels, SD, or HD without your competition passing you by. And you can deal with stuff that pops up down the road.
Okay, so you still have to test no matter what, but now you've got a great spread.

Manufacture is the first step. You're going to see what you've got there on the graphic card. Make sure you've got the monitor set just right. You'd better have the device in front of you, the camera, and you're going to see it now. Make sure you've got the correct settings and the camera is set up. Make sure the camera is set up correctly. Make sure the camera is set up correctly.

Look at your test equipment. What are you looking at? You've got a great spread. You've got a great spread. You've got a great spread. You've got a great spread.
Central server Crashes into wall.

New master control works with SDTV control.

Move forward 1 space.

Move back 3 spaces.

Old rockets lack bandwidth to move to dry.

Move back 1 space.

Bitstream splicing forces ugly network promo to run over your mega-spot.

Move back 2 spaces.

Yes, you can run that voiceover teaser your station manager's wife recorded.

Move forward 2 spaces.

The question is...
The Road To The Future Is Open
Don't Let Hardware Decisions Drive You Around The Bend.

Any way you look at the road ahead, you're going to hit three big hardware crossroads: master control, servers, and routers. (Stay tuned for testing) Let's start with the master control. The question isn't if you'll replace yours. It's when. Not so fast, you say. I'll just do the bitstream splicing thing and avoid shelling out for a new master control altogether. Well, this is one of those cart before the horse situations. Right now, splice points are far from being standardized. The network feed and your regional feed don't have matching splice points. Which means they may be totally different, which means you could end up paying for a capability you can't even use. Besides, you don't want to give up voice-overs and bugs as you move to DTV Our advice: build your new system step-by-step, using digital building blocks. This way you'll extend the life of your hardware beyond standard definition while you're building the foundation for HDTV.

Will You Live If Your Server Crashes?

Central servers were a nice idea. Of course, the same could be said for bell-bottoms, disco, and powdered orange juice. While fashions have a way of coming back in, central servers seem to be on their way out. Distributed servers, like the Tektronix Profile video servers, on the other hand, are definitely the "in thing." They scale up better; they're flexible, and they're a heck of a lot more reliable. If your central server goes down, everything goes down. If one of your distributed servers goes down, the rest of your servers will still be up and running. The other big issue with central servers is they force you to pay up-front for capability you may never use. Distributed servers, on the other hand, let you add anything from edit suites to extra channels as you go.

The Easiest Route To Routers.

Well cut right to the chase, get those digital routers now. And you don't have to buy a bunch of pricey ones that only support HD. A mix of routers that support compressed and uncompressed signals will probably work fine. The key to router happiness is finding balance. Grasshopper. In fact, 270 or 360 Mbits/s digital routers can already handle compressed HDTV. Just be sure to partner with a vendor knowledgeable enough to help you reach enlightenment.

What Does That Flashing Idiot Light Mean?

Now you're really moving! So what's the problem? In this new digital world signals are supposed to be perfect and you don't have to give a second thought to testing, right? Wrong. The fact is, digital has its own unique testing challenges. So plan on spending as much to monitor digital picture quality as you do monitoring analog. In digital, the need for measurement doesn't change. The measurements do.
Looking over some of the other items in the E-mail inbox, we also received a nice pat on the back from Bob Hammel at NAIT in Canada:

I think “Dr. Digital” is a great piece of work. This is the type of information engineers like to see. I am sure that every engineer has a situation that they have solved that other engineers are sweating blood over. I’ve come across a few quick fixes myself that I know, by meeting guys at conventions, would save a lot of anguish. I’ve also learned a lot from other guys that way. Would it not be possible to set up some kind of a database that engineers could log their major repair techniques, like the capstan thing, so that all could benefit?

Thanks and keep up the good articles.

Bob Hammel, Chief Engineer
Radio & Television Department
Northern Alberta Institute of Technology (NAIT), Edmonton, Alberta Canada.

The database idea is worth considering. If anyone out there is interested, let me know, and I’ll see what we can do.

If you need help finding information or are having trouble with a piece of equipment or a manufacturer, let me help. Send me the pertinent details at dr.digita@intertec.com, and I’ll see what I can do.

Steve Epstein
Hero Productions

Photo: Hero Productions' operations center.
Since 1992, Hero Productions, a full-service TV production and international teleport, has been at the forefront of the development of South Florida as a major production and distribution center for Spanish- and English-language programmers. Foreseeing a growing need for programming for the Latin American and U.S. markets, Hero Productions partners Robert Behar and Daniel Sawicki bet on Miami becoming the U.S. entertainment gateway to Latin America — and won.

Its concept — to offer programmers and producers every possible service from pre-production through distribution, including capacity on satellites beaming into Latin America, all in one place and with a fully bilingual staff — was right on the money.
Growing to fit clients’ needs

The first U.S.-based Spanish-language cable networks to originate from South Florida did so from Hero Productions. Over the past five years, Hero Productions has developed into a 65,000-square-foot and growing TV broadcast center by following a philosophy of anticipating and reinvesting according to clients’ needs. Today, the facility provides programmers from all over the world with a full array of production, post-production, mobile production, master control and transmission services.

Recently, Hero Productions launched a language conversion division. This area provides translation, audio recording, subtitling and layback services to a growing number of programmers looking to enter international markets with programming originally produced for single-language audiences.

With its large client base of international programmers who enjoy one-stop services, Hero Productions recognized a growing need for quality language conversion and felt that this was a natural complement to its comprehensive menu of production and transmission services. To support the new service, Hero Productions added three audio lay-in rooms, two audio layback rooms and four voice-over booths to its state-of-the-art facility.

- Audio lay-in rooms: equipped with Alesis ADAT XT eight-channel digital recorders, Alesis BRC remote controller with SMPTE time-code sync, Mackie CR1604VLZ audio mixers with talkback, DBX 1066 compressor/limiters, Sony Beta SP PVW-2600 players with remote control and Electro-Voice RE27N/D mics with screen, shockmount and retractable arm.

- Audio layback room: features an Alesis ADAT XT eight-channel digital recorder, Alesis BRC remote controller with SMPTE time-code sync, Sony Beta SP PVW-2800, Sony Beta SP BVW-70, Sony Beta BVW-D75 and Protools 4.01 system with eight tracks of record/playback, effect sends of I/O, VSD interface, SSD interface and Macintosh 9600 computer. Plug-ins include DVERB, machine control, pitch shifter, Vocalign and Timemod, Panasonic 4100 DAT machine, Mackie CR1604VLZ audio console with talkback and Tascam DA-60 MKII time-code recorder.

The audio layback room with time-code repair is equipped with Alesis ADAT XT eight-channel digital recorder, Alesis BRC remote controller with SMPTE time-code sync, Mackie CR1604VLZ audio console with talkback, F22 time-code recondition and repair, Electro-Voice RE27N/D mic, Pentium 150MHz system with 20-inch monitor and audio workstation tools Creamware software and T-DAT triple DAT software with Wave Walker, Fire Walker with analyzer, EQ and meters, CD mastering tools and multitrack recording. Plug-ins include Orisir real-time restoration, declicker, denoiser, dehiss, exciter and sub-bass enhancement and Tascam DA-60 MKII time-code recorder.

Providing clients with it all

Hero Productions’ mission has al-
Miranda imaging Series
Digital video & audio interface tools
Simply said - The Smarter choice. The Imaging Series offers a wide range of thoroughly engineered modules for a systems solution that grows with your digital facility. Your choice for high quality, ease of use and reliability at an exceptional price/performance.
Ask about our ICP-S remote control software!

Miranda Technologies Inc.
Tel. 514.333.1772 Fax. 514.333.9828
www.miranda.com

Circle (27) on Free Info Card
LOOKING FOR A WAY TO TEST

THERE'S ONLY ONE

HP ESA-1100A Portable Spectrum Analyzer:
Low cost, high dynamic range, spectrum analyzer for return path and ingress maintenance.

HP 8561Q QAM Analyzer:
Transition smoothly to digital RF testing with comprehensive RF, modulation and data quality measurements.

HP E6277A MPEGscope DVBSplus:
Real-time measurements and monitoring of MPEG streams.

HP 8591C Cable TV Analyzer:
The industry's only one-box tester for all non-interfering RF and video measurements.

Your subscribers depend on you—you can depend on Hewlett-Packard. HP has dedicated itself to keeping your broadband system at peak performance by providing a complete range of test solutions for:
- R & D
- Manufacturing
- Headend
- Field

Be Prepared for the Interactive Technology of the Future.
To stay competitive, you have to be prepared for new digital technologies—including interactive services. And you have to know that the products you buy
today will meet your needs well into the future. HP gives you a unique range of products to make sure your cable system always delivers quality service to your subscribers.

Performance from End to End.
There's only one way to go for broadband test products: HP. No one offers a more complete range of test equipment to keep your entire broadband system up and running today—and down the road.

For more information, call: 1-800-452-4844, Ext. 5663

www.hp.com/go/catv
ways been to provide programmers with every service they could require in one place and to do it all better and more efficiently than anyone else. With more of our clients seeking to serve other-language markets with original programming, we decided to apply our expertise as a full-service international production facility to convert their programming into other languages.

So far, Hero Productions’ language conversion clients have included Hallmark Entertainment Networks, CBS TeleNoticias and Family Channel. Behar believes that language conversion will be the broadcast center’s largest growth area in 1998.

The language conversion division is only the latest addition to Hero Productions complete array of quality TV production and transmission services available in one full-service South Florida complex. Over the past year, the broadcast center has continued to expand in all directions, including facilities, services, clients, revenues and personnel.

Last May, Hero Productions completed a major renovation, extending the facility to 65,000 square feet, expanding and upgrading its production and post facilities to digital, completing a third studio with control room and adding two digital operation centers to the teleport.

The latest renovation and upgrade of the facility was engineered to provide production, post-production and master control clients with the latest technology in an efficient and comfortable working environment.

- Studios: 85’x40’, 75’x40’ and 35’x30’ studios are equipped with Hitachi Z-2000 digital studio cameras, QTV teleprompter system, IDEA 48-input lighting console, assorted lighting fixtures and six-channel RTS communication system with wireless microphones and IFBs.
- Broadcast center: state-of-the-art control rooms feature ECHOLab MVS-9 2-1/2 ME switcher with chroma-key and back-up power supply, Grass Valley 300 rotary wipe switcher with back-up power supply/EMEM, Mackie 32-input audio console, Chyron Max! character generator, Sony BVE-2000 editors, Abekas A-42 still-stores, Abekas A-51 and Microtime Impact DVEs.

Sony Beta SX DNW-30, Sony Beta SP PVW-2800s, Tektronix waveform/vectorscopes, Sony color monitors PVM-1954Q, Panasonic black-and-white monitors TR-930B, DAT/CD/cassette players, Telos 1 and Telos link hybrids, auto-answer couplers and Yamaha digital reverberation.

The facility’s production revenues more than doubled over 1997, with regular shows like CBS TeleNoticias “En Directo con Jaime Bayly” and “Habla America,” United Family Communications’ “Casa Club Magazine” and others joining the ranks of HTV’s exclusive music videos and TV Martí’s “Perspectivas” and “Mesa Redonda,” all produced in Hero Productions’ facilities.

In addition, Hero Productions maintains strong niches in the electronic news gathering and insert studio businesses, with Reuters TV and APTV among its core clientele. The facility also maintains a strong niche in production and international transmission of live sporting events, such as the Olympic Games and World Cup soccer.

Clients have included ABC, NBC, CBS, CNN, CNBC, World Television News and many other international broadcasters worldwide.

Hero Productions’ upgraded post-production facilities provide digital and analog capabilities and include an expanded post-production suite, a new A/B-roll edit room, two cuts-only edit bays and an upgraded transfer room.

- A/B-roll edit room: includes Sony BVE-2000 editor, Sony Beta SX DNW-A50, Sony Beta SP BVW-70, ECHOLab MVS-3 component video switcher, Sony MXP-3905 24-input audio console and DAT/CD player.

- Upgraded digital transfer room: features Sony Beta SX DNW-A50, Sony Beta SP BVW-70, Sony Beta SP PVW-2800, Sony Beta SP PVW-2800P PAL, video/international standards converter, Tektronix WFM/VS, Panasonic black-and-white monitors, Sony color monitors, VHS recorder/players and audio and video patching.

In addition to its production facilities, Hero Productions operates a full-service state-of-the-art teleport — the only one in South Florida to offer switched fiber-optic capabilities. The teleport maintains long-term leases on domestic and international transponders.
Planning Your Trip on the Digital Superhighway?
Go with Someone who Already Knows the Terrain.

Speer WorldWide Digital

STORAGE • DISTRIBUTION • PRODUCTION • CONSULTING • OUTSOURCING

Turnkey Solutions For:
Multi-Station Program Distribution
Network Origination
Content Distribution
Logging, Management and Browsing

Teleport
Network Origination
Space Segments
Uplink/Downlink/Turnaround
Transponder Leasing
Digital Satellite Network

Production
Fully Digital Studios
Mobile Uplink/Production
Analog Studios

Data Storage & Retrieval
Banking
Medical
Corporate
Government
Broadcast

Master Control & Storage
Server-based Digital Master Control
Automated or Manual Playback Control
575 Terabytes Expandable to 1.2 Petabytes
Multi-Level Content Browsing

Speer WorldWide Digital
3201 Dickerson Pike • Nashville, TN 37207 • (888) 828-5833 ext. 6130 or (615) 650-6130

Visit us at NAB LVCC 9181

Circle (29) on Free Info Card
www.americanradiohistory.com
Last year, Hero Productions added teleport and production clients Hallmark Entertainment Networks, CBS TeleNoticias, Family Channel, Casa Club TV and others, increasing its list of full-time uplinks to 24 from 17 in 1996. Occasional-use clients include Reuters, APTV, NBC, EBU, Gol Network, Telemundo, Univision, Embratel, Telefe, and other domestic and international programmers.

Furthermore, Hero Productions is one of a handful of teleporters in the United States to offer master control services. The facility uses its own comprehensive automation software to program the networks.

In another example of Hero Productions' philosophy of reinvesting according to clients' needs, when Travel Channel Latin America first approached the broadcast center three years ago to originate and uplink its signal, the network's needs extended beyond the facility's current offerings. The mission posed by Behar to his engineering team: add ad insertion to the mix within six months. Not only did Hero Productions meet the challenge, but it crafted its own automation software and customized it to meet individual clients' specifications.

For each master control client, the PC-based proprietary software controls a unique set-up of digital file servers, tape machines, switchers, logo inserters and audio equipment. Interstitial materials are stored on a series of 9GB SCSI drives using RAID 3 technology to provide redundancy to protect against disk failure. These drives are controlled by the servers, which are in turn controlled by the automation software.

- 13 master control operating centers: feature DigiBeta SP playback VTR decks, ASC VR digital file servers and delays, Sony DigiBeta DVW-A500s, Sony Beta SX DNW-A30s, Sony Beta SP BVW-60s, Sony Beta SP BVW-70s, Sony Beta SP PVW-2800s, Sony Beta SP PVW-2600s, Chyron character generators, Soundcraft four-channel audio consoles, QSI 908 logo inserters, Tektronix waveform/vectorscopes, Link 800 series video and audio switchers, Sony PVM-1340 color monitors, Panasonic TR930B black-and-white monitors, Videotek RS-10A video/audio switchers, Mackie 1202 audio consoles, Leitch 3211E encoders, Leitch clean switch serial digital switcher, Tekniche series 6000 digital audio embedding, Leitch digital audio de-embedding, screen subtitling systems multilingual subtitle transmission systems and audio, video and RF patching.

Ongoing master control clients include Discovery — Latin America and Iberia, Discovery Kids — Latin America, Travel Channel Latin America, TeleUno, GEMS Television and HTV.

- Teleport: equipped with 10 transmit antennas and 13 receive antennas, as well as Scientific Atlanta Power VU digital video compression system (1:3 analog, 1:1 digital), General Instrument SCPC encoder, General Instrument 1:6 DigiCipher II digital video compression system, Scientific Atlanta SCPC encoder, 3.35kW C-band transmitters, 2kW
Still Store
"1:4:4:4 image quality, fast image capture and recall, TCP/IP based networking, and a diverse range of transition effects."

Character Generator
"A user friendly C.G. that renders postscript and true type fonts with multiple surface, edge and shadow styles. Collage features numerous real-time text animations and works with newsroom computer systems."

Paint System
"Full featured painting tools including variable size and contoured brushes, custom brushes, texture and opacity mapping, and VTR control for frame capture or retoscopying."

Editing
"Affordable timeline based non-linear editing with uncompressed video clips, features 4 layers of DVE, 8 layers of 24 bit audio and all the graphics tools that made Collage famous."

3D Animation
"Quickly create three dimensional graphics with true 3D bevels, extrudes, multiple light types, texture and bump mapping."

2D Animation
"Flexible keyframe animation of object attributes makes Collage 2D a powerful tool for creating complex layered graphic treatments."

With over 550 systems in use worldwide the Collage family offers proven performance at surprisingly affordable prices. There is a Collage solution to almost every broadcast or post-production problem.

To see Collage for yourself contact Majortech at 1-800-461-7814 or visit us at Sands Exhibition Hall, booth #2362 at NAB '98.

Circle (31) on Free Info Card

Majortech
MANUFACTURED BY

DISTRIBUTED BY MAJORTECH

www.americanradiohistory.com
Ku-band transmitter, 1.1kW Ku-band transmitter, 300W Ku-band transmitter, Extensive HPA RF combining and switching system, C-band exciters with multiple audio subcarriers, Ku-band exciter with multiple audio subcarriers, Ku-band upconverters and Ku-band downconverters.

The transmit antennas include an 11.3m Intelsat B-certified step-track RSI, a 10m Scientific Atlanta, two 9.2m Intelsat B-certified RSI, a 9.1m Andrew, an 8.1m Intelsat-certified Ku-band Vertex E-3, a 7m Ku-band RSI, a 4.5m Andrew and two 3.7m Miralite. Receive antennas include a 10m Scientific Atlanta, a 6m Hero, eight 5m Hero, a 4m Hero, a 2m Prodelin and a 2m RYMSA.

To support the expansive broadcast center, Hero Productions employs two 150kVA Liebert uninterrupted power supplies and two 300kVA Onan diesel generators with 500-gallon sub-base fuel tank.

In addition, the broadcast center offers production personnel, microwave interconnectivity and a seven-day, 24-hour operations center to monitor transmissions and provide quality control.

Hero Productions' 1997 revenues exceeded $17 million, a more than 55% increase over 1996 results. The facility currently has more than 100 employees, more than double last year's 40, indicating Hero Productions' commitment to client service, as well as future growth.

The 65,000-square-foot full-service TV broadcast center is located at 7291 NW 74th St., Miami. For further information on Hero Productions, call Robert Behar at 305-887-1600.

Equipment List:

Alesis ADAT digital audio recorders; Sony MPX-900S audio console, Beta SP decks with full editing capabilities, DVS-2000C digital video production switcher, DME-3000 digital video effects, BVE-2000 editor, Digi-Beta DVW-A500, DNW-A50, SX DNW-30 and PVW-2800 cameras, BE 2000 editors; Mackie consoles; Electro-Voice microphones; Tascam recorders; Hitachi Z-2000 digital studio cameras; QT1 teleprompters; IDEA 48-input lighting console; RTS intercom and wireless communication system; Crown D75 power amplifiers; ECH108 MVS-9 and MVS-3 digital production switchers; GV G switcher; Chyron Maxine and MAXI character generator; Atekas A-42 still-stores; Microtime Impact DVEs; ASC video servers; QSI logo inserters; Videotek RS-10A video/audio switchers; Leitch encoders, switchers and audio equipment; Teknirhe 6000 series digital audio embedding; Tektronix monitors/test equipment; Panasonic picture monitors; Telos hybrids for live audio feeds; Yamaha digital reverb systems; teleprompt equipment includes: Scientific-Atlanta Power Vu digital compression and SCPC encoders; General Instrument SCPC encoders and DigitCipher II compression; Scientific-Atlanta and Andrew satellite antennas; Liebert UPS systems.

- The ultimate high-end, cost-effective upgrade for industry standard broadcast analog tape decks and CRV Laser Disk Players
- Superior image quality
- FIBRE CHANNEL now available for faster data transfers at rates above real time speed (a blistering 100MB/sec)!
- SERIAL DIGITAL INTERFACE also available for high-end facilities that demand maximum performance
- Random access playback
- Motion-JPEG compression as low as 2:1
- Multi-channel versions also available
- Priced to start at just $6995
If You Want To Appreciate The Incredible Design and Construction of Sennheiser Lavalier Microphones, You Have To LOOK CLOSELY

You don't actually need to see a Sennheiser lavalier mic to appreciate its benefits. That's the point. Our mics are designed to be visually anonymous, yet they deliver the finest sound you can get from a lavalier.

Our MKE 2 provides outstanding sonic accuracy in an exceptionally tiny package. The ME 102 and 104 capsules are part of a modular family - interchangeable components facilitate their use for virtually any application.

Is it any wonder that EVERY major network chooses Sennheiser for their news teams as well as their entertainers? Or that major broadway shows choose Sennheiser for their productions?

Stop in at your Sennheiser dealer or call us to find out how Sennheiser can help you get the best out of your audio investment.

To Appreciate Our Incredible Fidelity and Performance
JUST LISTEN

Sennheiser Electronic Corporation
P.O. Box 987, Dept. 213, Old Lyme, CT 06371 • Tel: 860-434-9190 Ext. 213 • Fax: 860-434-1759 • California: Tel: 818-845-7106 • Latin America: Tel: 525-639-0956
Sennheiser Canada: 271 Labrosse Ave., P.T.E. (Claire, PQ) H9R 1A3 • Tel: 514-426-3013 Fax: 514-426-3953
World Wide Web: http://www.sennheiserusa.com
Manufacturing Plant: Am Labor 1, 30900 Wedemark, Germany

Circle (23) on Free Info Card
www.americanradiohistory.com
Three years ago, the senior management of Chambers Communications Corporation were bothered by something they saw as they walked through the 3,000-square-foot Eugene, OR, news studio. The sight that greeted them was an on-air suite and approximately $1 million of camera equipment sitting idle from 8 a.m. to 4 p.m. There had to be a way to turn on the equipment and increase revenue at the facility, home to the local ABC affiliate KEZI-TV and Chambers Production Corporation.

The cogitation of company management, chairman and CEO Carolyn Chambers, president Scott Chambers, executive vice president Jack Lawrence and system integrator partner Tektronix, based in Beaverton, OR, have resulted in one of the most advanced facilities in the Pacific Northwest. A decision to invest in a greenfield build-up of a digital facility, instead of migrating the entire existing structure to digital, has
Chambers Media deploys new digital technology

enabled Chambers to be the first in the market to go digital and tapeless and to earn the distinction of being the largest digital broadcast and production center between San Francisco and Vancouver.

Chambers Communications saw a way to migrate its broadcast and production facilities and be in the data transport services business.

Chambers Communications’ new 60,000-square-foot media center and two 14,000-square-foot sound stages are situated in the Willamette Valley. They offer products that span live and post-production, Internet services businesses and engineering and creative resources. The facility also serves as headquarters for Chambers’ Northwest cable systems. KEZI is now on the air broadcasting from Chambers’ new digital facility with newscasts starting at 6 a.m., 5 p.m., 6 p.m. and 11 p.m., with regular programming in between.

Chambers’ original studio completed in 1960 stands only 400 yards away, and is a reminder of how far the company has come. The new facility includes KEZI, the Chambers Production Corporation (formerly the Westcom Creative Group and Westcom Sports Productions) for both production and post, five cable companies with 82,000 subscribers (with a 750MHz hybrid fiber coax architecture and a new two-way cable facili-

The news set relies on new lighting and graphics to create an entirely new on-air look. Philips cameras complete the newsroom setting.
EASY PATCH

The Analog/Digital patch bays for today and tomorrow...from Neutrik®

Two choices to “wire up” Easy Patch for fast termination.

Heavy duty cable bar
Elco/Edac connections
Spring loaded terminal blocks
Metal shielding between ribbon cables top and bottom
Flexible rack depth: NPP-TT/TB-14 allows you to go from 14" to 18" via built-in slider.

The Easy Patch series of easy to use patchbays eliminates signal degradation and offers excellent crosstalk performance required in today's broadcast facilities, mobile trucks, recording studios and audio installations.

Their analog/digital signal capability, reduced wiring time and quality workmanship are unmatched by competitors' patchbays.

The Easy Patch gives you features and options no other patchbay provides:
- Galvanized, heavy duty metal housing.
- Flexible depth from 14" to 18".
- Hard gold plated contacts designed specifically for A/D signals.
- Six jumper switching configurations.
- Ten color coded ID tabs - optional.

You asked for innovation, productivity and value in a patch bay series and Neutrik listened.
Demo Easy Patch for yourself. Call 732-901-9488 and ask for our NEW product guide and the name of your nearest Neutrik representative.

Neutrik... your one stop source for all your audio connector needs...today and tomorrow.
Contrary to popular belief, engineers and physicists are quite capable of celebration.
Engineers and physicists don’t celebrate like the rest of us. They wait for a truly special occasion: like developing the finest 12-bit digital camera on the market! And then they really cut loose.

Our engineers designed an advanced 12-bit Digital Signal Processor. Our physicists developed a revolutionary 16:9 CCD imager. Working together, they figured out how these innovations could give you the best picture available.

And if that weren’t enough to cheer about, they made our camera SDTV-ready with the flexibility and reliability you’ve come to expect from Sony. After you see what our new camera can do, you’ll understand what all the celebration is about.

www.sony.com/professional and 800-635-SONY ext. ADSP

BVP-900/950

8.75 horizontal depth of modulation at 400 TVL

16:9 CCD

12-bit DSP

SONY
Surprising as it may seem, this country’s electrical power distribution system still leaves a little to be desired, even in the major markets. Stations still have a need for auxiliary power generation, as well as power-conditioning equipment. The need varies from an absolute necessity in areas where inclement weather may bring down power lines for an extended period all the way to the two belts and a pair of suspenders approach where the cost of off-air time can be enormous.

As an example of the latter, the Sears Building in downtown Chicago has a utility company substation on one of the subterranean floors. That substation is fed by two separate power company mains. Multiple risers go up through the building and are paralleled for redundancy. There has never been a power outage on the broadcast floors in the history of the building. Yet, two stations have standby power equipment in place and a third is planning such a system. That is what you call security.

In the middle of the spectrum are stations that either face an occasional power outage or that have a problem with the quality of the delivered power. Especially during storms, the primary power can fluctuate as seen by flickering lights or momentary breaks. High-power equipment, especially of the solid-state variety, doesn’t care much for such incidents. At the least, transmitters will shut down and recycle when these problems occur. Due to the overanxious application of fingers on the remote, many viewers will immediately switch to another channel, at least for awhile. This represents an inconvenience to viewers most stations prefer to avoid.

Backup possibilities

Some stations are now installing uninterruptible power supplies (UPSs) at the transmitter site. These units provide two functions. First, they condition the incoming power to remove glitches and flickers (formally known as transients), ensuring the transmitting equipment has a smooth, clean source of power. Second, they power the transmitters for a short period of time while the standby power plant is brought on-line. This means that a partial or complete failure of the primary power will not have any effect on the viewer’s pictures. Obviously, the period of time during which these monsters will operate a transmitter is usually measured in single-digit minutes. However, that is plenty of time for a standby plant to light off and accept the load.
Juno is a completely new range of 'ultimate quality' Up-Converters, offering advanced motion adaptive conversion of SDTV to multiformat HDTV.

The flexible architecture and future proof design ensure JUNO can be configured to meet the exacting demands of the High Definition Broadcaster. The JUNO range features...

- Analog Composite, Component and Serial Digital SDTV inputs
- HDTV Serial Digital, Component and Fibre Optic outputs
- A Motion Adaptive core process
- A highly sophisticated Noise Reduction System
- Variable Aspect Ratio Conversion
- Comprehensive Image Processing Facilities
- Optional Audio Delay/Resynchronisation

Resulting in the ultimate HDTV Up-Converter which delivers...

...pictures of quality, clarity and precision - JUNO.

For more information on JUNO and a complete Product Directory just call, fax or www.tekniche.com
THE DESIRED EFFECT.
Standby power plants are normally set to start upon sensing the failure of any single phase of the three-phase incoming line. With appropriate options, they may also be set to detect reduction of the source voltage, such as during “brownouts” where the load on a system causes the voltage to drop but not fail. For the most critical cases (i.e., hospitals), the generators will start on the loss of a single cycle of line voltage and will be on-line in well under one second. This requires special facilities that are a little extreme for most broadcast stations. The UPS eliminates the need for panic, just concerned action. The normal system starts on failure as described above. Then an adjustable delay holds the system off-line for a short time, allowing the generator to stabilize and warm up a little. Oil pressure comes up and the system is ready to accept a load with less strain on the machinery.

After the system is ready for a load, an automatic transfer panel/first (emphasis added and needed) disconnects the station from the incoming power lines. Then, the load is switched to the generator. Some transfer panels use two large circuit breakers for this function. The second method, preferred by many, consists of large switches with the current protection provided by separate breakers. When power returns on the mains, the system should be set to ignore it until such time as it has proved to be stable. All of us have observed the condition, especially during storms, when the power returns for a few seconds only to kick back off again. These momentary problems can be ignored if the standby system is on-line and running. The conventional method is to set the equipment to ignore a return of service for several minutes up to half an hour. This gives some assurance that the power is reliable, as well as giving the standby system some exercise.

The reverse procedure is used to return to the main power lines. Commercial transfer panels will not allow the generator to be on-line at the same time as primary power. The alternative is cogeneration where the on-site system shares the load with the utility company, but that requires a much more sophisticated system; something that doesn’t offer any advantage to most broadcasters. Following the switch back to the primary power, the system should be set to allow the generator to run for a period of time to cool down. Although most generator sets never return to idle speed, removing the load

Don Markley is president of D. L. Markley and Associates, Peoria, Ill.
DS309 Digital Video Studio Analyser

- Tests composite and component serial digital video signals.
- Continuous on-line monitoring of key parameters.
- Graphic touch screen interface and menu system.
- Errors displayed on the LCD screen, or routed to a printer or stored on the built-in 3.5" floppy drive.
- Real-time detection of illegal colors.

S310 Digital Video Analyser

- Tests composite and component serial or parallel digital video signals.
- Direct readout key signal parameters.
- User selectable alarm thresholds.
- A comprehensive CCIR601 pattern generator. (34 different test patterns.)

AT951 ATSC Stream Player

- Single play or continuously looped playout of ATSC or DVB signals.
- Adjustable playout start and stop points.
- Automatic determination of Transport Stream playout rate.
- Internally generated or external source of playback clock.
- 188 byte packet formats.

SV953P MPEG-2 Portable Transport Stream Analyzer

- Record, playout, monitor and analyze MPEG-2 and DVB signals.
- Conformance test TS layer and PES layer.
- Complete Buffer Analysis.
- Real-time monitoring of MPEG-2 for complete signal analysis.
- Easy-to-use Windows NT™ interface.

For detailed information, call 1-800-SENCore(736-2673)
The African Rhinoceros—while defending its young—charges after intruders at full speed, and is utterly uncontrollable.
Just like the charging rhinoceros, audio and video signals are difficult to control by nature.

For more than 27 years, Leitch has led the industry in using engineering expertise to develop products that harness and direct a signal's power. Today, the company offers solutions for streamlining the analog to digital signal transition, including a new line of HDTV products.

Leitch's Digital Glue® products provide economical, digital interface solutions in simple, single-function modules. And DigitBus® is the industry's only control platform that allows broadcasters to customize their systems, giving them complete control of signal conversion, synchronization and compression. The ongoing development of innovative products like BO/S; Leitch's unified Broadcast Operating System for the DigitBus frame, proves Leitch's commitment to giving customers tools to control the signal.

Leitch products are recognized for their unmatched quality, flexibility and reliability in signal distribution, processing and control. The company's unrivaled customer service and breadth of product offering provides integrated solutions that extend beyond managing signals, to mastering them for optimal performance.

By providing powerful and comprehensive digital solutions, Leitch is leading the charge in the signal control industry.

But you can control its signal.
Java ain’t coffee
BY BRAD DICK, EDITOR

Unless you’ve been asleep for the last two years, Java means something other than a cup of coffee. You’ve probably used Java and maybe didn’t even know it.

Java has been the darling of the Internet set for more than two years. Originally developed from C++, Java is a programming language designed to solve many of the problems common to C++. Developed by Sun Microsystems, Java started out as a part of a larger project to develop advanced software for consumer electronics. Today, we’re seeing only the beginning of what could make Java as common as Windows.

One relatively new development has been the use of Java professional applications. The post and production communities were wowed last year by Quantel’s announcement that it would support Java. It was that support that placed an industry stamp of approval on Java for professional applications. Since that time, other companies have jumped aboard the Java train. As of this writing, just before NAB, Newskitter Systems and Sony announced support for Java in various products. Chyron is currently developing a range of applications that rely on Java. Other companies providing professional graphics and control systems are expected to announce Java products at this year’s NAB show.

Why use Java?

So why the sudden interest in a new computer language for production and broadcast equipment? In short, third-party support. Hundreds of thousands of Java applications and solutions are being developed and manufacturers realize that being able to use those resources can be a marketing advantage. Such compatibility allows a vendor to add value without significant extra product development cost.

That doesn’t mean there are thousands of Java programmers working on new graphics or new applications, rather it means that putting a graphic on the screen, rotating it or making an object jump through a hoop on the screen can be programmed in Java and easily ported to almost any platform, computer or device. The objects (we’ll cover them later) don’t care what kind of computer, phone, television, paint or editing system they run on. They work on any Java-compatible platform, which can now be just about anything.

This also means that if you want the specific look and feel of one manufacturer’s product (for example a CG) on your paint system (or other product), you can have it.

JAVA is designed to be neutral and portable. This means that its applications can be distributed and easily used over work environments.

Object-oriented code

Java is an object-oriented language. Just what the heck are “objects” when it comes to programming? Objects represent other things – tasks or rules/steps. Programmers consider them collections of analysis, designs and programming methodologies that focus design on modeling the characteristics or behavior of real-world systems. In other words, objects are programming models.

For instance, your word processor has a toolbar with buttons that cause certain things to happen. Click on the file button and a window opens and a set of options is displayed. Click on the format button and a window opens with a different set of options. Each button describes a behavior or set of things that need to happen. It shouldn’t matter whether you’re working on a MAC or UNIX system, clicking on the file button could cause the same set of things to happen. That’s how objects work. Given enough objects, you could model just about anything.

Java is designed to be neutral and portable. This means that its applications can be distributed and easily used over work environments. For instance, in a TV station, this could include a networked Avid newsroom editing system, a Chyron CG and Quantel Hal, all interconnected to a Louh automation system and a Columbine traffic system. (This is an example only and does not indicate that these particular products support Java.) Networked systems can share the Java applications without regard to the type of computer the actual application (program) eventually ends up on.

Architecture neutral

Because Java was designed from the beginning to be used on networks, it is architecture neutral. Networks are composed of a variety of systems, often using a variety of CPU and operating systems. Java applications can be executed anywhere on the network because the compiler generates an architecture-neutral object file format. The compiled code is executable on a variety of processors, as long as they have a Java run-time system. This means it doesn’t care what computer you’re using. The same Java applet could run on a remote control, a set-top box or an SGI Onyx, all equally well.

And it’s free

If you’re into programming, the best part is still to come. Java is free. (Hear
Taking remote control to a higher level.

Forget remote control...think facilities management. Gentner's GSC3000 is one step beyond remote control. New augmented macros make the GSC3000 the smartest, most powerful site control system in the industry. Not only is it as accurate as an engineer, it will make the same evaluations and judgement decisions as one...24 hours a day. With the addition of Voice Interface, it can even talk too.
WHAT HAS STANDARDIZERS EVER DONE FOR US?

- TIME TEST AND CERTIFICATION
- HIGH DEFINITION UP CONVERTERS
- HIGH DEFINITION DOWN CONVERTERS
- ENCODERS
- MULTI-MEDIA INTERFACE AND DISPLAY
- TIME BASE CORRECTORS
- DECODERS
that Microsoft! For a copy of HotJava check out the Sun Microsystems Java web site at www.javasoft.com/docs/index.html. The site contains all you need to get started programming with Java.

Even if you never write a line of code, Java will soon become as common and familiar as that Windows 95 screen. Or, for DOS types, the comforting "CA" prompt. Java's icon "Duke" could become as familiar as Windows, and best of all might even make your life a bit less complex.

Brewing up Java

Ever wonder where Java really began and how the name came into being? Well, in case you did, here's the answer.

In 1990, one of Sun Microsystems engineer's Patrick Naughton became so frustrated with his company's need to support the hundreds of combinations of software application-specific interfaces (APIs) used within the company, he decided it was time to quit and move to NeXT. In fact, he told Sun CEO and personal friend Scott McNealy of these plans. While Naughton thought nothing of his decision to quit, McNealy decided that Patrick was too good to lose. Before he made the final decision to change employers, McNealy ask Naughton to create a list of complaints and corresponding set of solutions. In addition, he wanted to know how Naughton would go about solving those problems "if [he] were God."

With little to lose and a personal invite to get some things off his chest, Naughton created a long list of suggestions. Foremost among his suggestions was that Sun should scrap its development of its proprietary NeWS software architecture.

Armed with Naughton's complaints and suggestions, McNealy routed the information to other software engineers. Their responses were forwarded to Naughton. Much to his surprise, many of his own concerns were shared by other software engineers.

On the day Naughton was to leave for NeXT, McNealy made him a unique counter offer. If he would stay, the company would form a team of top software developers, but more importantly, they would be free to do whatever they wanted. All they had to do was develop something "cool."

Green team

A team of six engineers code named "Green" was created. The team worked in self-imposed exile. Armed with a refrigerator full of Cokes and Dove bars, the team embarked on a plan to build a better software platform. They began by disassembling and examining products ranging from Nintendos to set-top boxes and even TV remote controls. The focus behind this seemingly unsoftware-like task was to look for ways these and other electronic appliances could talk to each other in a common language.

As any hardware engineer could have told them, the diversity of consumer products was supported by a far-ranging set of CPUs and custom software. About the only thing in common between these devices was their incompatibility. The team quickly realized that the addition of new features and functions to most devices was impossible without having to replace the CPU and its hardwired programming. Also, it was clear that the CPUs used in these devices had a limited amount of memory available. The Green team quickly recognized that this was an important design bottleneck. However, because they had no control over the actual design of the CPUs and, therefore, the amount of on-board RAM, they needed to find a way to cram more code into the same space. What they needed was a new language.

First effort — Oak

The team's first attempt was an object-oriented computer language called Oak. Loosely based on C++, it was actually named for a tree outside one of the team member's office window. Oak was initially a subset of C++ with many features removed.

Now that they had an efficient software language, they could build a product. The team's first actual product was a hand-held, remote-control device called *7 (Star Seven). Using a visual interface, it featured an animated character Duke. Duke was the visual icon used to guide users through the device's graphical interface. Duke later became Java's mascot.

With the software in place, the team was turned into a wholly owned company called First Person. Development began on products for what at the time was a hot topic — interactive television. Two projects were announced: a set-top box interface for Time-Warner and a graphical interface for 3DO. Both products failed for different reasons. Fortunately, an even more exciting development was surfacing.

Web is born

In 1993 the National Center for Supercomputing Applications announced that Mosaic and the World Wide Web were born. By early 1994, the First Person team recognized an opportunity here and began focusing on a software system for on-line multimedia. The next step was to position Oak as a "language-based operating system. It was Naughton who suggested giving the software source code away on the Internet. Thus Oak moved from being an internal development tool for other products to an actual product itself. Software engineer Arthur van Hoff wrote an Oak compiler entirely in Oak instead of C. The first Oak-ready browser was called WebRunner. The first applet used with the browser WebRunner over the Internet showed the icon Duke waving back to its developers.

Sun backed the decision to give the language away, but only after it was renamed Java. Once the software became freely available, it was quickly adopted by the Internet community. Netscape was among the first to support Java. The success of Java is becoming legendary. Now, with literally millions of Java-enabled browsers out there, Team One and their mascot Duke need never look back.

Acknowledgment: Thanks to Bob Pank, technical communications manager, QuanTel for his help in preparing this article.
Introducing the largest scaleable routing switcher...with the smallest footprint.

- A Digital/Analog Routing Switcher scaleable from 8 x 16 to 144 x 144. Low cost expansion to 288 x 288, or beyond.
- Compact 12RU video chassis handles both 60MHz analog and SMPTE 259M digital cards in the same frame. The audio chassis provides two analog, or two AES/EBU digital levels in 8RU. Both frames include redundant power supplies.
- Two outputs/bus with equalization.
- WIN3500 System Controller with Tieline Management supports a wide selection of control panels. Single or dual controllers can be installed inside the video chassis.

Grab hold of a Tiger...
a smart investment for the DTV transition.

You can do it!
Call...1-800-328-1008
Circle (38) on Free Info Card

Corporate Sales • Melville, NY 11747
www.pesa.com
Photo: Control room for FoxNet and Primetime 24 satellite system. This room runs two channels.
Automating master control for MULTICHANNEL

Robust, modular systems provide the keys for the future: flexibility and extensibility.

BY PETER DOUGLAS
Automation systems have been around for quite a few years and are common in call-letter stations. The National Digital Television Center (NDTC) is the headquarters facility for TCI’s cable operations. Because of this, our needs are complex, requiring a robust master control automation system.

Up-front considerations

Our principal business is master control playback for a variety of clients, including Encore, Animal Planet, Ovation, FoxNet and Odyssey. Currently, more than 60 channels originate at TCI’s NDTC in Englewood, CO. At present, there is really no limitation on the number of channels possible. The system is extensible, based on client needs.

The NDTC is literally a one-stop shop. In addition to master control playback, facilities include production, post-production and digital compression. These include four fully equipped digital studios, with insert stages for production of commercials, movie intros, promos and wraparounds. Uplinking services are available, using either the client’s transponder or our own, and facilities exist for uplinking and monitoring TCI’s Head-end In The Sky (HITS) service. Although the NDTC is not a direct broadcast satellite service, uplinking and downlinking for the Primestar DBS service is provided.

The original headquarters facility concept was developed about six or seven years ago, with the understanding that master control operations would have to be automated. A major consideration was staffing. Enough people must be on-board to be effective, but it’s too expensive to staff a manual, 24-hour, seven-day-per-week operation.

With automation, each operator can accomplish a lot more, running feeds and master control, as well as other tasks, all at the same time.

However, the multichannel facility being planned presented additional challenges. For example, the desire was for each of the master control rooms to be able to run five to 10 channels, depending on programming types. At that time, a big consideration was the need to run pay-per-view (PPV) movies from tape. Because PPV doesn’t require commercial spots, only interstitial material, it was felt that one operator could effectively run 10 channels. With more commercial-intensive channels, the number of channels per operator is limited to about five. Currently, a dozen
master control rooms are used. One room even has two automation systems in it running side-by-side.

Among the other challenges needing to be addressed was the sheer number of switchers and VTRs to be controlled. This required extremely robust software to accommodate the number of operators working on the system at any given time, as well as managing the large number of events taking place.

A variety of technical considerations need to be weighed when selecting an automation system, some of which will be discussed later. First, let’s consider the matter of your on-air look, something that concerns every TV programming distributor. Frame-accuracy is critical, and just about any automation system these days can provide that. Beyond that, versatility is important. For example, automating control of our master control switchers allows us to control chaining and voice-over functions, as well as fades and other transitions that were once done manually. In many of our multichannel rooms where the router is used as the primary switcher, GPI controls are used to handle things like logos coming in and out or serial control of voice-overs that are tied with GPIs to do audio ducking and audio overs.

Automation can greatly enhance your on-air look. And, as we all know, a sharp on-air look can have a positive effect on revenues.

Video servers and automation

Video servers have already had a big impact on our operation and promise even more benefits in the future. Currently, our commercial insertion systems are being migrated to file server systems across the board. Most of the 60-plus channels delivered by the facility are commercial-intensive, making it fairly obvious how important servers — and automation control of them — can be. Servers make life a lot easier, primarily by allowing spots to be changed quickly. We are now so committed to servers that there is no longer a single cart machine operating in the facility.

In the near future, servers will be used for other functions such as archiving. Our goal is to move spots around and get them into an on-line storage area faster. In addition, reducing required operator input will give them more time to deal with other items. At present, each operator in each room needs to input data. In the future, using fiber channel, spot storage will be centralized, then distributed to individual rooms.

Eventually, file servers will be used for net delay. We run a lot of West Coast feeds for multiple movie channels, and servers are used for handling the three-hour delays for each of those. At present, more than 30 servers, including mains and backups, are used. Tape-based feeds go to a server and three hours later out comes the West Coast feed. Servers can also be used for quick turnaround feeds.

Because servers are now such a vital part of our operations, the automation system must be able to effectively interface to the servers. For automated multichannel systems, the importance of an effective server interface cannot be overemphasized.

The move to servers has necessitated the use of compression technology. All the commercial insertion done on our file servers is Motion-JPEG-based. Movies for PPV are compressed using MPEG-2. In the future, a lot of spot playback will also be MPEG-2, because more data can be stored in less space and the data can be moved around a lot faster. Compression technology is also used for uplinking, for the same technical and economic reasons.

Selecting an automation system

With more than six years of experience using automation to run our master control operations, a lot has been learned. For anyone planning a multichannel cable or DBS delivery
Automating master control for multichannel

- **Modularity and reliability.** A modular or building-block approach to software organization certainly plays a role in your ability to expand and upgrade the system, but it's also important for another reason — reliability. Multichannel automation is necessarily complex, but you don't want a problem in one part of the software to pull down the entire system.

- **Application-specific operational software.** In a way, this is another aspect of modularity. A basic automation system will handle such tasks as router switching and machine control, but depending on your configuration and growth, items such as automated database management, satellite resource management, time shift delay and breakaway channel capability for varying regional content may be needed. These functions should be in separate software modules so they can be added if and when needed.

- **Real-time operation.** Although this almost falls into the "obvious" category, there's a corollary here between automation and almost any other kind of computer processing: No sooner do we get used to one speed of operation than we begin to expect more. Real time may mean seconds to some people and microseconds to others. Hard-pressed operators will soon let you know if your system is holding them back, so find out in advance how fast the system really is.

- **Multiple users.** Systems must be able to support multiple users, as well as multiple channels. There's often too much work for one master control operator to handle, requiring others to attend to routine tasks such as data entry, dubbing, remote viewing and editing lists. Two, three or even more users need to be able to access the same system and do different things at the same time. Password protection is important, because it will allow you to restrict the ability to make changes to only certain authorized users.

Handling multiple users and multiple tasks is largely a function of the operating system software. There are several operating systems currently used with automation products and some are distinctly superior to others. System; in the latter case, you don't want to be constrained as to what you design into your system, either now or in the future.

- **Machine interfaces.** As you review various automation systems, determine how well they truly interface with a wide variety of broadcast devices, including routing and production switchers, VTRs, servers, cart machines and even still-stores and character generators. This is important whether you are automating an existing facility or designing a new one. In the former case, you'll want to avoid expensive re-equipping dictated by limitations of the automation system.

The move to servers has necessitated the use of compression technology.

- **Dynamic resource allocation.** This term describes the ability to treat all broadcast resources such as digital video servers, VTRs and other machines as a common pool of devices that can be automatically assigned by the automation system to any channel, greatly simplifying the operator's job. In our operation there are rooms with 40 to 50 machines tied to a router and any machine can be assigned to any channel.

- **Automatic conflict resolution.** In busy operations, conflicting requests for the same commercial or other material are possible when a playlist is being created, loaded, edited or during a traffic system download. When that happens, the automation system should alert the operator immediately and/or automatically resolve the conflict. A method of precluding conflicts is to assign unique user bits to each program, commercial or promo. This works quite well in our operation.

- **Interfaces to third-party software.** This is definitely a big consideration now and in the future, so the more dynamic you can be, the better. The principal concern

Eight-channel control room for Your Choice TV. Note servers in left background.
is how the automation system interfaces to the traffic system, preferably through a network. The automation system should be able to convert data from a traffic schedule to an automation system playlist, then provide traffic with an as-run log for billing purposes. Ideally, this is done seamlessly with no operator intervention or physical transfer of disk files. This allows you to accommodate last-minute changes to the on-air log, based on client requests. Most automation systems will now interface to the most popular traffic systems, but new traffic systems appear from time to time, so look into this aspect thoroughly.

- **Database management.** Keeping track of all the programs, commercials, promos, IDs and other material in your library is a huge task, especially since the inventory is constantly changing. In our system, this function is done on dedicated computers installed in each master control room. The database management system should also keep track of how many times each tape segment has been played so that a new dub can be made before the old one wears out. Our system also keeps track of the hours of operation on each tape machine so we can schedule maintenance accordingly.

In the future, I would like to see automation systems keep track of databases in a more transparent fashion. For example, if a master control room needs a spot or promo that doesn’t happen to be in on-line storage in the room, the system would be smart enough to search for it on a content server. If it’s not there, the system would send an archival storage unit to find the spot and load it onto a server, where it would be fiber-channeled back to master control.

- **Error monitoring.** Operators can use all of the help they can get in early detection of glitches. Our system software monitors the main and backup automation computers constantly so corrective action can be taken if it is necessary.

- **Maintenance alerts.** As mentioned, the automation system’s database management function tracks tape usage and machine hours. We can even program the points at which we want the system to alert us. In the future, more dynamic utilities, such as automatic paging, are possible. In a large facility with a limited number of technicians, that could be helpful.

- **Remote diagnostics and worldwide manufacturer support.** No automation system should be without this feature. For instance, it’s the middle of a holiday weekend and your master control operator runs up against a problem with the automation system. It’s reassuring to know they can dial up the manufacturer and get a call back within minutes by a qualified technician or software engineer. The manufacturer’s technician should also be able to dial into your system’s diagnostic files, analyze the problem quickly and send a fix by modem, all while you’re still on the air. You can’t afford anything less.

Master control automation is much too important within a multichannel environment to make a snap decision when choosing a system. It’s a long-term investment with a lot of ramifications. Take your time to analyze each manufacturer’s product, then do what you’d normally do when looking at any product — talk to other users. Although no automation system is perfect, and it may not yet have all the features you’d like, if it’s easily upgradable and flexible you’ll be able to make the best choice for your needs.

Peter Douglas is senior vice president, operations & engineering at the National Digital Television Center, Englewood, CO.
Planning, controlling and automating multichannel digital broadcasting

With all of the possibilities, maintaining control will be a challenge.

By Michael Ledwich, BSc. BE. Ph.D.

The move to DTV has presented TV stations with an almost staggering array of new broadcasting possibilities. What started as a proposal to broadcast in HDTV has branched into proposals for dividing the digital bandwidth into multiple channels, and even proposals for variable channel configurations. Add to this an array of possible ancillary services such as electronic program guides, selectable audio tracks and subtitles, as well as conditional access programming, and it becomes clear that previous broadcasting paradigms no longer apply.

Whichever route a broadcaster chooses, the move to digital television will create a new set of operational challenges that must be addressed. First, there are a variety of new viewer information services that can be supported. Second, the implicit bandwidth flexibility provides opportunities and headaches for planning and delivery. Third, there are more participating modules from multiple vendors to be synchronized in the transmission room. The fundamental questions that must be addressed involve advance planning of the digital broadcast and control and coordination of all processes and devices involved. New systems will require a higher degree of integration and will include more robust traffic system interfaces and multichannel master control automation that are linked through a central transmission database. Only by centralizing control, will stations be able to coordinate all of the equipment in the subsystems of a digital facility and be able to efficiently manage a more complex operation with minimal staff.

A new workflow for digital delivery

To broadcast DTV, a great deal of equipment and control software will need to be coordinated. Increasing the number of channels increases the complexity in itself, but also consider that the channel lineup may vary during the course of the broadcast day and any number of ancillary services may be added to the standard programming. Looking at the digital workflow outlined in Figure 1, it is easy to see the changes that will be required.

Photo: The MSNBC control room shown at right is capable of handling 86 simultaneous remotes, 54 satellite receivers, all feeding 24 VTRs and multiple output channels all at once. Although local stations won't need that large of a capability, they will need to be able to source and control six or more channels during non-HDTV broadcast time. This will require the use of sophisticated automation software.
to move from conventional broadcasting to digital broadcasting.

A major difference between traditional analog broadcasting and what we will face in digital broadcasting is the need to plan the transmission. Planning broadcasts in advance has always been important, but in the analog world stations could always shuffle material at the last minute. That sort of flexibility with digital will still be available, but it will require a coordinated control system to change all of the related digital parameters on all the channels being broadcast for example — bit rate, system information (SI), electronic program guides, conditional access and subtitles.

With digital broadcasting, stations will have 6MHz and 19.4Mb/s of bandwidth that can be allocated as required. Stations may decide to broadcast three or four channels at all times or they might, on occasion, combine the bandwidth of two or three channels to broadcast HDTV. There are a number of possibilities, but in all cases, the bitstream allocation will have to be carefully planned to assure that all channels have sufficient bandwidth to deliver the proper quality. The planning of the quality and the other related digital parameters should occur with the choice of the material many months in advance.

The first step when putting together a DTV broadcast is to plan the number of channels, the periods during the week that they will operate and the general services that will be provided for each of those channels. Service levels include the resolution, the bit rate
Engineering the computer-based facility

Providing support for computer-based operations requires a new set of skills.

By Skip Pizzi

Unless you've been enjoying an extended sabbatical on another planet, you've probably noticed that broadcasting has become a computer-based enterprise. Increasingly, elements of production and program assembly are created on computer platforms, as the administrative and control elements of broadcast operations have been for some time. Computer networks are now tying these diverse elements into a cohesive whole, and it won't be long before the bulk of a broadcast facility's entire operation will take place within a single, large computer system.

With such a marked transformation in the tools used to produce TV programming, it stands to reason that the nature of technical support required by broadcast facilities is also changing.
Much of today's — and most of tomorrow's — broadcast engineering skills will be centered on designing, installing and maintaining computer-based systems.

The computer engineer
Most businesses employ or contract technicians who are specifically skilled in computer maintenance. Many large broadcast companies already have an Information Services (IS) director and/or department, whose duties are largely concerned with administrative operations.

As the reliance on computers grows into the actual production side of the broadcast facility, the need for application-specific computer maintenance raises its head. This is where the hybrid "broadcast engineer of the future" has a key role to play. Yet at this early stage, it is not clear just what the skill set of this person should be or how duties should be divided among a broadcast facility's technical staff.

Clearly, there are some common areas between broadcast computing and general computing for which a skilled IS person can provide great service. "Bits is bits" as the saying goes. But in other more specialized computer-based areas of broadcast operations, general IS staff is not well-equipped to help. It is in these crossover zones where it is often easier and more successful to have the traditional broadcast engineer learn about computer-based systems rather than the opposite development path.

Just how the nexus between IS and broadcast engineering takes shape will vary with each facility and its staff, but there is no doubt that general and broadcast-specific computer engineering resources will be required.

IS vs. RF
Another key element of traditional broadcast engineering that will continue to require technical expertise is maintaining the operation's RF side.

Naturally, the RF engineer who also has solid computer maintenance skills will be a critical asset on any broadcaster's staff. But the RF environment is also undergoing radical change with the conversion to ATV, so the learning curve is doubly steep for broadcast engineers who want to stay current and viable in these areas.

This gives new meaning to the term "continuing education." Although it's often a difficult sell, smart managers will invest in their best technical staff and allow (or encourage) them to improve their skills through organized training. Broadcasters should take advantage of every opportunity to hone new technologies. This includes short courses at colleges and universities, as well as sessions presented by trade groups and journals or manufacturers. Engineers should bring such opportunities to their management's attention. Management should appropriate funds to this effort and expend them appropriately.

Broadcast engineers also bear some responsibility to manage their own ongoing learning in these areas. As "digital immigrants," today's engineers will be largely self-taught on many new technologies. The key to success in this area lies in not being overwhelmed by the volume and pace of new information, but rather in taking a measured approach. Every new item learned makes an engineer more valuable and learning never ends. Also important to the broadcast engineer is keeping the proper balance between development of improved computer and RF understanding. Television will remain a business equally concerned with production and delivery.

Software vs. hardware
Perhaps the toughest transition for the broadcast engineer to manage is the shift from hardware to software or from "real" to "virtual" domains. Of course, the computer environment is one where both elements apply. Familiarity with hardware-based operations is one skill that can allow broadcast engineers to excel beyond many IS staff members. The computer tech's world is often so laden with layers of code that the physical layer is not given adequate attention. The experienced broadcast engineer will recognize the operation's need for reliability and stressing this can help strengthen the facility's computer systems.

This issue can also become a point of contention between IS and broadcast engineers or between technical and financial parties, so managers may be called upon to make difficult decisions on how much computer hardware reliability is enough.

Beyond this, however, broadcast engineers must become familiar with the process of managing the virtual environment. This includes elements of system design, such as making sure that platform and network performances are adequate for the applications intended and that workstations are ergonomically, yet robustly constructed. It also involves creating routine maintenance schedules for computer hardware and software. These are tough judgment calls for which little or no tradition or resource base exists.

Perhaps most important, the broadcast/computer engineer's work involves maintaining the facility's software — a process that can easily become a full-time job. This includes installing new software and upgrades.
Engineering the computer-based facility

(and the subsequent debugging that is often necessary), plus establishing and upkeeping a software inventory for the facility. The latter can be an extremely tedious exercise, but it is a critically important new duty. Only by scrupulously tracking the various versions of software installed throughout a facility can a computer-based operation run smoothly. Simple exchange of files between users via LAN can become a nightmare without such care.

Of course, computer hardware upgrades are also part of the job, but these are easier to cope with in that they are physical assets and usually stay in the place and form of their installation by engineers. Software, on the other hand, is subject to all sorts of user intervention, from well-intentioned tweaking to outright vandalism. Aggressive users may also install their own “rogue” software on the facility's platforms, often creating havoc with other applications on the network. A little knowledge is truly a dangerous thing in the computer-based facility.

A final element of concern is virtual security. This refers to preserving proprietary data for competitive reasons, as well as protecting computer-based assets from infection by viruses and other corruption.

Virtual troubleshooting

All of this takes place in an environment where engineers are still called upon to put out fires at a moment’s notice. New acuity in assessing problems on computer-based systems is, therefore, another requisite skill. Is it a hardware or a software bug? Is it on the platform or the network? What's the real maintenance history on this machine (i.e., what undocumented reconfigurations or installations have been made by non-engineers)?

To minimize problems, it's important to establish an in-house policy for staff that prohibits the installation of any software (or at least any that does not appear on an approved list). The allowable level of platform reconfiguration by users should be specified, as well. It may also be helpful for the troubleshooter to know who used the problematic computer or system last before it failed. Often, a brief interview with this user can provide clues about the source of the problem. Because this is generally not the person who reports the problem, an accurate scheduling program can help the engineer track the previous user down.

This implies that the computer engineer or department may have to play “cop” from time to time. Ideally, however, these problems are better addressed through proper user training and feelings of mutual respect among staff.

The truly computer-savvy facility will use the station's LAN as a reporting mechanism for technical problems. Users can report technical problems via E-mail or open a discrepancy report on the maintenance page of the facility's intranet. The latter will allow users to see if the problem has already been reported and note what repair action has been taken to date.

Multilingual support

Another challenge in some broadcast facilities is the need to support multiple platforms and operating systems. It's not uncommon for administrative and on-air automation operations to run on Windows-based PCs while non-linear production takes place on Mac-based and/or SGI systems. There may also be some engineering PCs running DOS or even UNIX. Keeping all of these systems running smoothly and interoperating where necessary requires great breadth in the engineering department.

Often, this is best handled by having specialists in each system. Interoperation can be handled by teams. But station management should realize that support costs increase significantly with each new platform or OS introduced to the facility. You'll either have to pay more for a multisystem tech (if you can find/keep one) or you'll need a somewhat larger staff with individual system specialists.

Keeping the number of platforms and OSs to a minimum is recommended. Although a single OS is ideal, this may not be possible at many facilities. A maximum of two (e.g., Windows and Mac or Windows and SGI) may be a more practical goal.

Archival management

The broadcast computer engineer must also maintain the facility's digital archive. The job description is part janitor and part librarian. Keeping the servers from becoming permanent file cabinets is the janitorial part. This includes frequent attempts to have users clear out old files or move them to off-line storage. It is the bane of any IS department's existence and no less so in broadcasting, where uncompressed media files are typically quite large and numerous saved versions of each file are likely to have accumulated on servers.

On the other hand, the archive must also be useful in terms of its search capabilities. If the facility has no dedicated research staff, engineering may be called upon to install and maintain the system's search engine. If there are dedicated researchers on hand, engineers will need to work closely with

Broadcast engineers must become familiar with the process of managing the virtual environment.
them to develop and expand the search software. In either case, engineering will be responsible for keeping close watch on the removable media and drives used for off-line storage.

A related responsibility is establishing the computer system’s backup policy. This includes determining which files will be backed up, the frequency of backup (hourly, daily, weekly, etc.), what media will be used and the recycling schedule of this media.

A team effort

Successful broadcast computer systems require cooperation between specialists in numerous disciplines. Involvement of an experienced broadcast computing specialist is critical at every stage of the process, from initial design through procurement and installation, and then to design and execution of the system’s maintenance, support and upgrade operations.

One of the broadcast specialist’s most important responsibilities is to emphasize the mission-critical nature of any production and on-air components of the facility’s computer system and the extremely stressful conditions and high duty cycles under which these systems operate. Platforms in these areas should be of industrial design, not off-the-shelf desktop systems. Servers should be particularly robust and implemented with adequate redundancy and hot-swappable drive capability (e.g., RAID 3 or higher).

Other points worth stressing during the design phase is scalability and a smart migration path for future development, along with plenty of storage for large media files (including redundancy).

Total cost of operation (TCO)

One of the hottest topics in the computer industry today is TCO. It is defined as the amount that a company will spend on a computer system across its useful lifetime. The usual metric is based on a single desktop PC, for which one recent report indicates that the average company spends in the neighborhood of $7,250 per year.

Figure 1 shows how this cost is broken down. The initial purchase price of hardware and software only accounts for 11% of TCO. Not surprisingly, the single biggest item (at 24% of TCO) was spent on support. Combined with system management (at 19% of TCO), this shows that nearly half of a company’s computer costs — or more than four times its hardware/software expenses — go to the personnel, either inside or outside the firm, who keep the computer system running.

The report tributes 20% of TCO to the indirect cost of lost productivity from system downtime. Nearly the same amount (18%) is ascribed to another indirect expense called end-user IS costs or “user downtime.” This refers to situations in which the system is up, but users can’t do their jobs due to lack of training or understanding of the computer system’s proper operation. So, they spend time unproductively by “futzing” with their PCs. In some cases, this is the fault of poor user-interface design or steep learning curves, while in others it stems from insufficient support — either from the software vendor or the computer owner’s IS department (notwithstanding the steep costs paid for such support).

A conclusion of this analysis for general administrative operations is that computer systems are expensive to operate and that unless there is some substantial improvement in performance, a business would likely be better off with typewriters and adding machines. Of course, most businesses believe that this improvement comes in the form of greater productivity, quality and creativity that computer-based operations allow and encourage.

But for broadcast operations, the comparative analysis differs. The computer systems used for production and program-stream assembly are often substantially less expensive than equivalent traditional equipment, so broadcasters are in a positive position from the start. As long as support equipment and probably also new support personnel. These ostensible start-up costs are not just one-time issues. Moore’s Law (i.e., computer performance doubles every 18 months at the same price point) practically mandates that hardware will need to be replaced frequently.

Unfortunately, Moore’s Law does not apply to support personnel. If anything, the same support levels cost more rather than less over time. Good computer support staff are highly prized and hanging on to your best people can get expensive. The more they know, the more valuable they become — to you and to everyone else looking for competent support staff.

The computer-based broadcast facility cannot function without proper support. Its most appropriate provider is the broadcast computer specialist, an emerging job title that combines elements of IS and broadcast engineering. Becoming such an asset will virtually guarantee job security for broadcast technologists well into the future. Having such quality staff on board will assure broadcast owners that their substantial capital investments in future facilities are well-protected and operating at peak performance.

Unfortunately, Moore’s Law does not apply to support personnel.

Skip Pizzi is editor in chief of BE Radio, Broadcast Engineering’s sister publication.
Tower augmentation

Some relief for the industry.

By Henry J. McGinnis, P.E.

The base portion of a small 18-inch face tower on which the augmentation process has been completed. The new larger augmented foundation is an indication of the load this tower is now prepared to carry. Also shown is the coaxial cable mounting members extending outward from the tower face. (See Figure 2.)
The rush is on! Broadcast tower owners are now becoming concerned about the location of their DTV antennae. Although the engineering and fabrication requirements will represent an awesome expenditure of manpower to meet the expected demands, these requirements can be accommodated. The question of manpower required to build these structures has also been a source of concern within the industry for quite some time.

Landmark Tower Corporation has found a way to relieve the demand on labor to a considerable extent. Relief is by way of a more efficient and less labor and time-consuming patented process of in-place tower enhancement.

There is a consensus in the industry that a shortage of experienced manpower may exacerbate safety problems. Several years ago, Landmark was called upon to construct in Cincinnati a self-supporting tower that was 954 feet in height. Because of the short time line, at one point there were 85 tower climbers working on the project. It was soon learned that many men working together on a project can be a potential hazard because of the lack of experience of working together as a team. Because of these kinds of problems, new solutions must be developed to help the broadcasters meet their DTV schedules.

The need for new towers

Landmark Tower Corporation has developed a patent-pending solution that should greatly relieve many tower construction problems. This solution grows out of a similar need in the wireless industry.

The problems associated with the wireless industry are similar to those beginning to manifest themselves in the broadcasting industry. The proliferation of cellular and personal communications systems (PCS) industries has nearly brought about a revolution within some cities, causing many of them to declare a moratorium on the construction of new towers.

Although the demand for tower space has never been greater, unfortunately, most existing towers are already overloaded.

A case study

There is an axiom in the tower business that towers attract antennae. One of our towers was located in a popular location and quickly reached the point of overloading. The potential for continued loading was still growing and something innovative needed to be done to bring the tower into compliance with the FIA code requirements.

At first, the task seemed impossible and we sought to build a new tower. However, land was not available, and even if it was to become available, the chance of obtaining a building permit was unlikely.

The next plan was to construct a new tower beside the existing tower. The idea was once again frustrated because the space was too small. The original tower was less than 50% guyed and it stood immediately adjacent to a highway. The tower topped out at 500 feet and if it was to collapse, it could fall across the interstate. Because the guy lines would have to be interlaced, this only added to the complexity and increased the possibility of collapsing an already overloaded structure. Finally, the tower was already heavily loaded and moving existing transmission lines and antennae onto an adjacent structure was not only expensive, but there was the chance for damage to the antennas and transmission lines, especially those that were older.

Adding “U” shapes

The solution was to design the required U shape and place the formed leg member around the existing leg member in such a way as to construct a tower around a tower. (See Figure 1.) The towers are constructed with a U-shaped member. Because many of our towers are large, the ability to nest several of these shapes into ever increasing thicknesses of composite members allows any loading problem to be solved. For example, one proposed design of a 1,149-foot, self-support tower planned for the Far East, resulted in leg sections 24” x 24” x 24” by three inches thick. This required four layers of U shapes nested and stitch-bolted together.

This new solution solves many problems. The new leg and
lacing members are placed in a manner that would shield the existing members from wind load. In doing so, the tower windloading is greatly reduced. The technique creates another benefit referred to as the (Ad2) effect. Here, the total of the structural benefits of the composite shape is much greater than the sum of the individual parts. When you consider the composite load-carrying capacity of the built-up cross section consisting of the old leg working in conjunction with the new leg, the resulting cross-section structural capacities show a staggering increase.

The actual benefit of the above is further realized when you consider that the contribution to the composite cross section may be factored to allow for deficiencies in the existing leg member, due to deterioration. Many tower inspectors have found towers with pipe legs that have rusted from the inside, thus rendering them dangerously close to collapse. In cases like these, the existing leg is contributing nothing to the strength of the cross section, and the new U-shape member is increased in size or thickness to carry the extra load.

The old and new leg members are clamped together as frequently as needed to effect the transfer of forces to ensure that the legs will work together in the appropriate sharing of forces. However, the clamps are not tightened until the tower is completely stacked. The new tower compresses, due to added weight from being stacked. In order not to place additional loading on the old tower, the clamps are final torqued when the new steel is in place.

Because the objective is to completely shield all existing members with new members to minimize windloading, the new steel is detailed with splice plates of different gap lengths that vary between successive vertical sections. Therefore, the compressive effect will always allow the proper alignment of the shear bracing of the new tower lacing steel to coincide with the existing tower lacing members, thus maintaining proper shielding.

With respect to the clamping mechanism, while the lightweight clamp is usually sufficient for small towers, the clamp interconnecting large members would require fabrication from a heavy structural plate to apply sufficient clamping strength to effect the structural transfer.

Handling transmission lines

Because the new U-shaped legs must be open to fit around the flanged connection of the existing legs, the coaxial transmission lines are moved onto the tower face at the flange intersections. (See Figure 2.) In most cases, the transmission lines are already on the tower faces and the new tower steel is configured to pass over the transmission lines, which remain undisturbed. In some cases, it is desirable to configure the new augmentation steel much closer to the existing steel. This is accomplished by loosening the coaxial transmission lines from the existing tower over a distance of approximately 40 feet above and below the panel where the new steel is being worked, and sliding the new lacing member in behind the coax. The new lacing steel is thus connected to the tower legs and the coax is fastened to the new steel as work progresses upward.

Because many of the towers to be augmented have narrow face widths, it's often necessary to use small bars that extend out perpendicular from the tower face in order to gain sufficient space to allow for the large quantity of coaxial lines to be deployed. (See Figure 2 on this page and the photo on page 121.) The bars may be configured to use the popular snap-in coax mounting devices or any other mounting device requested by the customer. Because most waveguides are mounted inside the tower structures, they are seldom a problem.

On towers with small face widths, a new climbing device is mounted on the heel of the outside corner surface of the new U-shape leg. In most cases, the coax will be mounted so closely and densely that climbing the tower by any other means is impossible.

The antenna stand-off mounting de-
serves are configured in such a way as to facilitate extending the existing antenna mounting structures at a sufficient distance from the tower face to clear the stack of new coaxial lines running up the faces of the tower. The new stand-off brackets are configured to allow the existing antenna mounting arm to be unbolted from the existing tower leg and swung outward from the tower face while suspended by a cable sling from above. The new tower steel is passed behind the mounting arm and it is attached to its new stand-off bracket with the same hardware originally used. The new antennae to be mounted to the tower also use the antenna stand-off brackets to allow clear passage of the coaxial lines up the face of the tower.

Handling guy wires

The augmentation tower steel is stacked to an elevation approximately two to five feet below existing guy line elevation. At this point, plates A and B (see Figure 3) are installed along with the associated hardware and steel shown. The new augmenting guy lines are attached to plates A and B. Once guy lines A and B are attached to their new augmentation footings, the lines are tensioned to ensure the vertical alignment of the new construction to this elevation. Having done so, the original existing guy line is removed from the original mount-
Selecting a DTV antenna

Choosing the best solution for your system.

By Larry Bloomfield

Now that the FCC has approved channel and power allocations for broadcasters, stations can get on with the business of buying transmitters and antennas. However, getting on the air involves more than just hanging a new antenna from a tower. Although some of the questions looked at here will apply to other areas of the transmitter facility, we will concentrate on the transmission system.

What's the difference?

If a TV antenna is cut for either a specific frequency or a broad band of frequencies and is flat over its designed range, there is no difference between an NTSC antenna and one used in the digital TV service. The RF does not know the difference and the electrical principles apply equally to both.

Most DTV assignments are in the UHF band (Channels 14 through 69). There are about 124 VHF assignments out of the nearly 1,700 for DTV. It would be wise to approach this duality in paralleled operation, where your station will be operating DTV and NTSC, with the concept that it could run for as long as another 15 years.

Keep two things in mind. One, each antenna site is different and a single solution won't meet all needs. Two, some long-range decisions have to be made. Here are the scenarios:

- your NTSC and DTV frequencies are VHF.
- your NTSC and DTV frequencies are UHF.

Addressing all the issues

Crossband situations will require two antennas, but in-band situations can be simple to resolve by using one of several well-designed broadband antennas. If there are several stations sharing a tower and they are in-band, they may be able to share a common transmission system through the use of a combiner network. That's what they're doing at Mt. Sutro in San Francisco.

Remember that you only get to keep one of these two frequencies when this is all over. Are you going to stay with the new DTV assignment and give up the NTSC channel or are you going to convert your DTV over to your old NTSC frequency? Generally, it is best to keep the lowest frequency or channel of the two. However, there may be situations where a station would keep a low UHF channel as opposed to a VHF channel. If all the stations in your market are in the direction of your antenna site were to be UHF over the long term, it would be worth considering. The decision, however, may not be yours to make. If either your NTSC or DTV allocation is outside the designated core spectrum of Channels 2 through 51, you will have to surrender your Channel 52 through 69 allocation. (Editor's note: For a complete discussion of this rule, see the FCC's Sixth Report & Order “Decision” section, paragraph 55 and 56.)

The next step is where are you going to locate your...
An optimum installation for stations would be a top-mounted omnidirectional antenna. Shown here is an Andrew UHF TRASAR at WPME-TV.

antenna? Most stations will try to make use of their existing towers. Of course, this raises a number of questions about the structural integrity of the tower. In some instances, the DTV facility will not be co-located with the NTSC facility.

Two things need to be done initially. First, conduct a preliminary RF study. Examine your channel assignment, ERP and licensed transmitter power. Second, select an example transmission line and type of antenna. Also, do an inventory of the equipment already on your tower. You'd be amazed at how much extra stuff is on some towers that has been forgotten or no one knew existed.

With the RF study and your inventory done, it's time to review your findings and do a structural tower analysis. A reputable structural engineering firm with an established track record should do the structural study. The company will need to know what kind of antenna you want, where to locate it and how you plan to feed it. They can give you information about windloading, reinforcing the tower and other considerations. They will also tell you if your tower is worth upgrading or if it should be replaced.

Don't forget to tell the company about any tenants (FM or other TV stations), STL, TSL, IRL or ENG antennas that you may need to install on the tower at a future date. With all of this information, the structural boys will be able to tell you if you're on track or if you have to go back to the drawing board.

Always keep your long-range plans in mind. It is not good engineering or economic practice to be penny wise and dollar foolish at this point. Investing the extra now may save you a bundle down the road.

First, the transmission line

Before addressing the antenna, let's talk about the transmission line. There are two basic options:
1. install an additional transmission line; and
2. replace the old NTSC with a new DTV line where one transmission line handles both signals.

There are three types of transmission line: rigid coaxial, semiflex coaxial (both cables) and waveguide. The semiflex becomes more rigid as its size increases. Transmission lines
Selecting a DTV antenna

come in either 50Ω or 75Ω impedance. There are exceptions, however.

All things being equal, all three types of feedline will work for DTV just as well as for NTSC. There are trade-offs, however. The larger the size, the greater the power-handling capability and the higher the efficiency, but the greater the windloading. Windloading is the main problem with waveguide. Towers may not be able to handle the additional loading when compared to coaxial cable. Also, the frequencies of operation can impose some limitations when it comes to using coaxial cable. Large-size transmission line has an upper usable channel limit before it starts to support higher-order modes, which is not good. For example, an 8'/4-inch 75Ω line can be used successfully up to Channel 52, but is not suitable for higher channels of operation.

Field trials have demonstrated that the DTV signal is robust. In coaxial lines, there is no group delay, as a function of frequency, so this is not an issue. In waveguide, the group delay slightly varies with frequency. However, this figure is constant, usually negligible and can be corrected if it is a problem. The transmission line’s job is to deliver as much power to the antenna as the transmitter is putting out. Ideally, the only losses will be resistive. To achieve this, impedances must be matched. To help understand how this plays a role, remember that the surge impedance of air-dielectric coaxial transmission line is determined by the equation:

\[Z = 138 \log (d_1 + d_2) \]

To state this equation, the log of the inside diameter of the shield (d1) is divided by the outside diameter (d2) of the center conductor, times the constant 138, therefore, equals Z or the impedance.

Any change in this relationship (dents, couplings and improper connections) will have a dramatic impact on the impedance of the transmission line at that particular point. Transmission line is like a chain; it is only as good as its weakest link. Any discontinuity will be seen as either inductive or capacitive reactance and will reflect power back to the transmitter.

Use a time-domain reflectometer to ensure that you do not have any problems with your transmission line. It will tell you if you have any discontinuities, what kind they are and where they are located in the transmission line. All discontinuities should be corrected before the system is put into service. A reverse wattmeter will indicate any reflected power, but it won’t tell you where the discontinuity is. (For a review of transmission line-matching techniques, see “Transmission & Distribution” in the February 1998 issue.)

On to antennas

First, some theory. The pattern from a perfect or point source antenna — an isotropic device — is a sphere like a round balloon. The outer edge of the balloon can be compared to a given signal level; its cross-sectional pattern would be a circle.

Because there is no such thing as a perfect or point source radiator, the next best thing is the dipole — an antenna with two poles. If you are standing and looking at the tower some distance away with its dipole on top, its cross-sectional pattern will look like two circles on each side of the antenna; sort of like a donut had been dropped down onto the tower and cut, top to bottom. This is the horizontal plane.

Most TV stations radiate in the horizontal plane. This is called a horizontally polarized signal. Antennas can also be made to radiate vertically, elliptically or with circularly polarized signals. If you were to step on the balloon from on top, this once perfect sphere would bulge out in the horizontal plane equally in all directions eventually taking on the shape of a pancake. If dipoles are added by stacking them in elevation, it will have this exact same effect on the pattern. The more dipoles, the flatter the pattern and the more energy that is directed into what becomes the main beam.

This has the effect of concentrating the power into a given direction and is measured in effective radiated power (ERP). This is how we get a 5kW transmitter to appear to transmit 132kW. One disadvantage to having multiple arrays (dipoles) is if you’re on a high mountain and you’ve got too much gain in your antenna you could shoot right over the tops of the homes in the nearby foothills. Yet, on the other hand, viewers some distance away will get a better picture.

There is one other feature that may or may not be advantageous or desirable with respect to your antenna pattern and that is electrical down tilt also called electrical beam tilt. With some electrical down tilt, perhaps those folks
at the bottom of the hill will get your signal when they would otherwise not get it without the electrical down tilt. Just remember, the flatter the pattern, the more you will probably need some down tilt. There are also situations where mechanical beam tilt is appropriate. But remember, while electrical beam tilt is the same all around, the azimuth pattern, mechanical beam tilt is set in only one direction.

One other problem with multiple-element antennas is that this tends to create nulls in the signal for viewers within a few miles of the transmitter site. Basically, a null is a lack of signal that can be caused by any number of factors. The higher the gain, the more nulls. The higher the gain, the further out from the antenna the nulls will extend. NTSC systems having high gain antennas create poor reception and possible ghosting to close-in viewers. This is not much of a problem if the transmitter site is located outside of town in unpopulated areas. However, if the transmitter site is in town, this could be a serious problem.

Despite all of this, typically NTSC full-power VHF antennas have from 6dBd to 12dBd gain and NTSC UHF have even more. An NTSC UHF antenna with 20dBd to 25dBd is considered to have relatively low gain. Because DTV has lower ERP requirements, it is not difficult to understand why one manufacturer recommends a maximum vertical plane antenna gain of 28dBd for DTV situations.

The FCC made one important change when it clarified its report and order; it allowed UHF DTV stations to increase power up to 200kW or modify their antenna height, as long as they don’t increase interference to another station's service area where it would affect more than 10% of the population. Now, within the service area, the station can increase ERP up to 1MW, but in those cases what the station must do is increase its electrical beam tilt such that the fring radiation does not exceed the comparable 200kW limit. For further clarification see the FCC’s web page at www.fcc.gov/daily_releases/daily_business/1998/db980223/fcc98024.txt.

Typical NTSC antennas will also work NTSC and DTV. Single-channel antennas, such as the slotted coaxial cylinder, also known as the pylon, are not suited to solve today’s problem of doubling the number of stations at the same locations. Broadband panel-type antennas have the ability to accommodate two or more DTV stations or combinations of DTV and NTSC. The slot antenna gets its gain from the layers of slots. Increasing the slots at predetermined locations increases the gain. Panel antennas are usually low, so a multiple array of vertically stacked panels is usually used, interconnected in much the same way the internal wiring of each panel is done. A desirable advantage of the panel antenna is its broadband characteristics. One panel can cover the UHF frequency band from 470MHz to 800MHz. The trick is keeping the gain constant over the bandwidth. Relatively flat gain characteristics are important in DTV applications.

Of the two basic types of antennas that are used for broadcast service, the most common type in UHF is a slot antenna. It can be resonant (standing wave) or non-resonant (traveling wave). The other variety employs a dipole radiator. These are most commonly configured as batwing antennas and panel antennas. Generally, slotted antennas are used in high-band VHF and UHF service where the need is confined to one or two adjacent channels that must be transmitted. If there is a requirement to broadcast more than one non-adjacent channel, from a single antenna, then the best choice may be a batwing antenna if both channels are high-band VHF or a broadband panel antenna for UHF.

When comparing a panel antenna with slot-type designs for UHF, bear in mind the following:

• Panel antennas have lower power-handling capability than a slot antenna with the same peak gain. A single-panel antenna will probably not handle two full-power (5,000kW) NTSC UHF broadcast facilities.

• The interpanel cabling will require occasional inspection and repair. In comparison, a modern slot-type UHF antenna, particularly if it is fully radome enclosed, is often maintenance free for its useful life.

• The pattern (azimuth and elevation) for a single UHF panel antenna system will perform differently for each channel that it broadcasts. This is because the fixed panel spacing has different electrical lengths, depending on the channel broadcast. When reviewing operating specifications, the manufacturer generally only specifies gain
LOOK AT WHAT'S HAPPENING AT LeBLANC

LOOK AT WHY.

LeBLANC is one of few companies in the world who have the experience and capabilities to design, manufacture, install and erect integrated broadcast communication systems. This is our business...and has been...for over 30 years.

Our new television group LeBLANC Broadcast Inc., (LBI) is a member of the LeBLANC Group. We are uniquely positioned to offer turnkey services ranging from tower construction to antenna installation and testing for analog and DTV systems. We form teams of highly trained professionals from our staff of 2400. They work directly with your staff and consulting engineers to nail down tight specifications and cost effective solutions.

LeBLANC's specialty is designing, constructing and installing towers up to 2000 feet. Starting with a thorough structural feasibility study of the existing tower...and working with our LARCAN teammates...we provide comprehensive DTV solutions to ensure your tower, transmitter, waveguide and antenna requirements are met...and to your complete satisfaction.

You are always concerned about quality and safety. So is LeBLANC. No other company has achieved the myriad of certifications in as many jurisdictions for our products and services as LeBLANC.

For all your tower solutions...
Look At LeBLANC Broadcast Inc.

LeBLANC BF

Corporate Offices: Dallas: Bob Groothand, President 972.664.1817
Special Projects: New York: Joe Nigro, Vice Pres. 973.790.4778

www.americanradiohistory.com
LOOK AT WHAT'S HAPPENING AT LARCAN

LARCAN pioneered high-power solid-state VHF transmitter technology and is a recognized leader worldwide.

With the advent of Digital TV we contributed to its development and in 1993 LARCAN supplied the VHF solid-state transmitter for ACATS 'air' tests in Charlotte, North Carolina.

At NAB '97 our new LANDMARK Series DTV transmitter demonstrated the Zenith DTV 8-VSB exciter...live...an industry first.

In January 1997 we assisted KOMO-HD to transmit the first HDTV signal west of the Mississippi. In early 1998 we delivered a LANDMARK UHF digital transmitter to KOMO-HD.

These LARCAN pioneering successes translate into major LANDMARK features and benefits for your DTV Transition, and include...

- LARCAN/Zenith exciters ensure ATSC compliance. - Microprocessor control ensures complete system stability. - Touch screen controllers and fiber optic LAN control. - Solid-State LDMOS Class AB Broadband Driver ensures exceptional linearity. - LARCAN conservative power ratings in 8kW to 25kW IOT socket modules...up to 100kW. - Our Quality Assurance System has attained ISO 9001 registration.

For all your transmitter solutions...
Look At LeBLANC Broadcast Inc.

LeBLANC
Ready to change for the better?

BY KARE ANDERSON

Everyone thinks of changing the world, but no one thinks of changing himself," wrote Leo Tolstoy. There is a Tibetan saying, "If you want to know your future, look at what you are doing in this moment." I find it easiest to make a change by picturing a specific reward for the change. What new experience will I get to have? Conversely, what boring, unpleasant or fear-provoking task or person will I experience in a more comfortable light or no longer have to experience at all? The more specific, vivid and deadline-related you make your goal, the more likely that you will achieve it.

I know a broadcast engineer who is going for all his major rewards in 1998. On his own time, he is learning how to take his organization on-line for better customer service and value-added new ways to offer their information, thus creating new profit centers. He plans to propose that he be in charge of this expanded area of the company.

He also plans to stop smoking by the time his first child is born and will reward himself by learning to scuba dive. He's surrounded himself with reminders to his commitments: posting messages on the bathroom mirror and car dashboard, telling his friends and colleagues and penning a cigarette image, crosseed out, on his palm for the first week of his new life.

As Beverly Sills once told a reporter, "You may be disappointed if you fail, but you are doomed if you don't try."

Find your "true north"

There is a Thai word, "sanuk," which means whatever you do, you should enjoy it. Be clear about choosing a habit-changing goal that is valuable to you. Why put effort in an "ought to do" goal based on others' wishes for you, when you can go for the one that you'll find most satisfying? Keep picturing the experience of your success when you are tempted to fall back. As Soren Kierkegaard, the 19th century Danish theologian said, "People celebrate achievements and spotlight heroes, but the truly heroic act is not the outcome but in starting out and not knowing if you will succeed." "A vivid imagination," wrote Aristotle, "compels the whole body to obey it." Emile Couce wrote in Willing, "It is the imagination and not the will that is the dominating faculty of man. It is a serious mistake to advise people to train their wills; they should learn to control and direct their imaginations."

Rather than talking about what you are giving up or how you might fail, think and talk about your goal as the inevitable future.

Use your homing device

Look inside for your "homing device," your powerful motivation or passionate interest that can be related to your goal. As Dr. Beverly Potter wrote in her book, Finding a Path With a Heart: How to Go From Burnout to Bliss, "When we pay attention to our homing devices and follow their guidance, we invariably feel right about ourselves and in perfect harmony with people and activities in which we are involved in the moment. . . Not all targets (goals) are the same. Some are easier to hit. Some are more fun. Compelling targets have a magnetic force that pulls you toward them."

How do you get detoured?

"The hardest thing to learn in life is which bridge to cross and which to burn," wrote David Russell. Notice your pattern for avoiding your course toward your goal. What activities do you use to get sidetracked? What time of day or day of the week is it most likely to happen? What else happens that can numb you into avoidance? What colleagues and friends help or hinder you? Discover these patterns and you will be more productive toward this and all the next goals you set for yourself. But don't be too hard on yourself when you're not perfect. As Charles Garfield wrote in Peak Performance, "On course doesn't mean perfect. On course means that even when things don't go perfectly, you are in the right direction."

Confirm that you're on the right path

Look at what happens to you as you are moving toward a change. What new experiences happen? As Jean Shinoda Bolen wrote in The Tao of Psychology, "Synchronistic events can assure us when we are on the right life path; and advise us when we are not; at the most profound level, they assure us that we are not mere observers, but always participants in an interconnected cosmic web." See how the changes you make affect your self-image and your relationships with others. Simply speaking, do you enjoy your life more?

Be your best

Those who gain the most professional satisfaction in an increasingly changing and competitive world will be those who get good at one single skill. In broadcast engineering, it might be the combination of a technical skill for a certain kind of organization serving a certain kind of market.

Before you start a new habit, plan how you will celebrate when you meet your goal. The bigger the change, the larger the reward you deserve. Let others who supported you, savor it with you. You might be just the inspiration to help them make their own big life change.

Kare Anderson is a speaker and author. Visit her web site at www.sayitbetter.com.
High-end Studio DCT Video Codec

- Compact 6U subrack supporting two video channels
- 10 bits DCT based component video coding
- 270 Mbit/s SDI component video supporting embedded audio and data
- Studio-quality composite video interfaces
- Remote Machine Control option for professional video editing
- Complies with ANSI T1.802.01 and ETS 300 174
We'll never leave you alone in the dark.
Sometimes the only thing that can turn a crisis into a creative opportunity is the company you keep. At Sony, your performance is our priority. Whether you’re on-air or on-line, Sony has the features you want and the critical support you need to beat the clock. The Sony DVS-7000 series of digital video switchers can help you handle anything from a large studio production to a small mobile application. Choose from four models with 18 panel styles or custom configure your switcher with drop-in panels. We’ll do whatever it takes to get you through the night. Extensive training, on-going SUPPORTNET™ services, SOFTWARE™ upgrades, and on-call technical support 24 hours-a-day, every day, just for starters. To arrange a demonstration, contact your Sony Account Manager, call 1-800-635-SONY, ext. DVS, or visit our website at www.sony.com/professional.
University of North Carolina upgrades statewide microwave system

BY WAYNE ESTABROOKS

The University of North Carolina UNC-TV operates a statewide public TV broadcast system consisting of 11 full-service transmitter stations, 23 translators and a statewide video microwave system to provide program delivery. The video microwave system has approximately 1,000 miles of terrestrial paths and is mostly one-way. Over the past few years the audio has been upgraded using the MRC Digital Pro digital audio system.

In 1996, funds became available to purchase new microwave equipment to replace some portions of the statewide microwave system and to extend the system to a new station. In September 1996 we placed the order and in March 1997 we took delivery and began installation.

The makings of an upgrade

With DTV looming on the horizon, one of the most important criteria was to purchase equipment that could be used in the future to carry digital signals. We included the requirement for 45MHz digital capability in our purchase specifications.

Another important requirement was for some type of fault-reporting system. Previously when a failure occurred, it could take considerable time to locate a problem. For example, power would fail and the system would continue on battery power without our knowledge until the low-voltage cutout was activated. Technicians would then travel to sites along the system until the failed site was located. It would have been advantageous to have had a warning. We felt that a fault-reporting remote monitoring system was a necessity.

We asked two microwave equipment manufacturers that submitted bids for the equipment to provide sample equipment to be tested. Fortunately, we had access to a 70MHz digital modem made by Farinon and a Hewlett-Packard 3782B bit-error-rate test set. Henry Morrow, microwave supervisor for UNC-TV, performed analog and digital tests on the vendors' equipment. The Microwave Radio Communications' (MRC) equipment was superior in the digital bit error rate tests. After 24 hours, the MRC FLH-DAR equipment was making less than 10 to 12 bit errors, which is essentially errorless. Inserting path attenuation between the transmitter and receiver being tested until the receive carrier level was -82dBm RCL did not result in a significant bit error rate increase. Based on these tests and other criteria, such as mechanical construction, front-panel metering for power supplies and direct-reading dBm metering for receive carrier level or transmit power, power-on indicator and a comprehensive remote monitor-

Performance at a glance

- Digital ready
- Digital or analog video modulation
- Simplex, full-duplex and hot standby
- SMART network management system
- Overall on-site monitoring and equipment configuration
- Time stamping, recording and display of alarm events

A smart system

UNC-TV shares a statewide 600 chan-
Whether the requirement is in a corporate video facility or large broadcast operation, the new AVM 510 Automated Video Monitor is the economical solution for video signal error detection, reporting and equipment setup in all facets of production. It is an advanced, multistandard/multiformat, measurement system with all the traditional waveform/vector displays you would expect and more. Choose from an array of measurement sets with easy to read graphic displays and numeric read outs on key video signal parameters. When a problem occurs, the operator is alerted with an onscreen display flag for the specific error. Performance reports can also be generated with a PC or printer which indicate each error occurrence with a time/date stamp or time code.

Contact Magni for additional information on our full line of:
- Automated Video Monitors
- Waveform & Vector Monitors
- Test Signal Generators
- VITS Inserters
- Multimedia products.

MAGNI®
Magni Systems, Inc.
22965 NW Evergreen Parkway
Hillsboro, OR 97124 USA
(800) 237-5964 USA toll free
(503) 615-1900 voice
(503) 615-1999 fax
http://www.magnisystems.com

Circle (48) on Free Info Card
GOING FOR THE GOLD - NVISION Receives High Marks for its New \textit{envOy}™ Series of Universal Digital Routing Switches

As a long time leader in the digital audio market, NVISION is bringing its 'customer driven' formula for success to the video market with the \textit{envOy} series of digital video routers. Since 1989, this Grass Valley, California company has earned a solid reputation for providing high quality/high value digital audio, time code and data routers to the television industry.

NVISION routers typically solve problems that have been ignored by other manufacturers. As proof of this statement, NVISION routing switches can be found in almost all of the Hollywood post-production facilities, as well as in major network operation centers around the world, with the majority of these switches operating under other manufacturers' control systems - and the \textit{envOy} should prove to be no exception.

With 1998 seeing the start of DTV transmissions to the home, broadcasting organizations need to build systems that can include multi-channel NTSC, HDTV and surround sound. To accommodate these immediate requirements, the industry needs equipment that has the flexibility to fit today's needs, without being outgrown tomorrow. NVISION has anticipated this need for operational flexibility and has designed the \textit{envOy} series with this in mind.

At the heart of this new router family is a high speed crosspoint architecture that will handle data rates in excess of 1.5 Gigabits. This structure is combined with various I/O modules to accommodate several data rates. \textit{envOy} users will be able to route any standard rate SDI and HD-SDI signals, within the same switch - at the same time.

This fact, combined with the ability to control the switch from an existing control system, provides incredible power and flexibility.

With the \textit{envOy} series, digital video routing is available at competitive pricing and a compact size: a 128 x 128 frame with dual outputs fits in a mere 16 rack units.

Input and output modules include SDI (1/3, 177, 270 & 360 Mbits) and HD-SDI (1.5 Gbits) modules. Different I/Os can be included in the same switch, as can dual references to allow simultaneous dual standard 59.94 and 50Hz vertical interval switching. Output options include dual connectors for each destination, to minimize DA requirements.

NVISION's proprietary technology makes this universal digital video switch a reality, and at a remarkably low cost. In addition to these new technologies, NVISION has developed unique circuits for data reclocking, high speed internal interconnect, and cable driving. See Fig 1.

This new router series will enable users to purchase an expandable SDI router that can also have 1.5 Gbit HD added incrementally, as and when required.

\textbf{EN6064} 11RU frame to accommodate up to 64 x 64 with dual outputs

\textbf{EN6128} 16RU frame to accommodate up to 128 x 128 with dual outputs

\textbf{EN6256} 23RU frame to accommodate up to 256 x 128 with dual outputs

Figure 1. \textit{envOy} 1.5Gbit data output after 75 feet of cable
CBS Selects **envy™** New Control Technology for the Next Millenium

ENVOY, the new router control system under development by NVISION, advances router control to the next generation by providing interfaces and features that will superecede currently available systems. ENVOY is being designed to replace current routing control systems for users who require far greater flexibility and operational ease than existing systems provide.

ENVOY Incorporates:
- Easy to understand GUI for configuration using industry standard database.
- Intuitive GUI for control allowing different modes for control and status.
- Easy to use, operator friendly hardware control panels.
- Intelligent routing and conversion through automatic tie lines.
- Standard hardware using Pentium PC technology.
- Standard operating and networking system using Microsoft Windows NT®.
- Controls all NVISION routers and will control many other manufacturers' installed routers.
- ES-Bus serial port for connection to most automation systems.
- Easily expandable for more routers and control interfaces.
- Virtually unlimited router sizes, 2048 inputs x 2048 outputs.

NSVISION will also provide a 1.5 Gigabit fiber optic link between the SDL booth and their own (both located at the Sands).

For more information, contact: 800-719-1900

www.nvision1.com

See **NVISION** at NAB'98 Booth #52957 at the Sands.

CBS Selects **envy™** for HD-SDI Routing

CBS Network operations center in New York has purchased NVISION equipment for HD-SDI routing and distribution.

Scheduled for installation in September 1998, the initial package includes the ENVOY series 128 x 128 router frame and the 4000 series 1.5 Gbt fiber optic transmission equipment.

The ENVOY router has been chosen to provide the network operations center with an HD-SDI routing layer that will be controlled by a local NVISION panel network. This router is initially loaded as 32¢ and is expandable to 128¢ in increments of 8 inputs and 8 outputs. The router will be controlled to local HD-SDI sources via coax with longer runs being distributed over 1300mm fiber optic cable.

New 4000 series fiber optic transmitter and receiver modules have been included in this purchase to provide an affordable method of HD-SDI connectivity throughout the facility.

The ENVOY series will provide CBS with room for expansion as well as the ability to add extra SDI layers within the same switch, if desired.

The selection of these new NVISION products provides CBS with an affordable and flexible HD-SDI layer that is easily expanded as needs grow.

Minimum switch size

<table>
<thead>
<tr>
<th>Input expansion</th>
<th>Output expansion</th>
<th>I/O options</th>
</tr>
</thead>
<tbody>
<tr>
<td>X x 8</td>
<td>X</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8(x2)</td>
<td></td>
</tr>
<tr>
<td>SDI input module</td>
<td>HD 1.5 Gbit input module</td>
<td>SDI output module</td>
</tr>
</tbody>
</table>

Control System Compatibility

<table>
<thead>
<tr>
<th>NVISION</th>
<th>NVISION ENVOY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix SMS7000</td>
<td>Phillips BTS ES Bus</td>
</tr>
<tr>
<td>Pesa</td>
<td>Utah Scientific</td>
</tr>
</tbody>
</table>
The equipment was installed and checked out by the staff of UNC-TV, which presently consists of the microwave supervisor and one technician. We are monitoring 16 sites with the Smart System. Some of the items we monitor include the battery charger alarm, waveguide pressure, utility power, tower light operation and failure, indoor and outdoor temperature, as well as the several alarms and metering points incorporated into the FLH-DAR radios including transmit power and receive carrier level. The functions and capabilities of the Smart control system are too numerous to be covered in this article. We recently obtained a software upgrade that permitted us to have paging capability with the Smart System. With the paging capability, sites and alarms can be programmed to a designated technician. The technician can then call the Smart System from a remote home computer or laptop using the remote access software and observe where and what the alarm specifically is and then travel to that site to take necessary action. As I was writing this, my pager went off. I called the system and observed that there was a tower light alarm at our Wendell microwave site. We verified that one of the beacon bulbs had burned out and scheduled the tower for relamping. We are delighted to have the remote monitoring capability and it has made our life better.

Wayne Estabrooks is chief engineer of transmission at the University of North Carolina Center for Public Television.

Editor's note: Field Reports are an exclusive Broadcast Engineering feature for broadcasters. Each report is prepared by well-qualified staff at a broadcast, production or consulting company. The reports are performed by the industry, for the industry. Manufacturer's support is limited to providing loan equipment and to aiding the author if requested. It is the responsibility of Broadcast Engineering to publish the results of any device tested, positive or negative. No reports should be considered an endorsement or disapproval by Broadcast Engineering magazine.

"Very few things happen at the right time, and the rest don't happen at all ..."

Herodotus

The Time Is Right For DTV

To make DTV happen for you, it's critical you find an experienced supplier with proven products and services ready to satisfy your unique DTV challenges. It's time you talked to Andrew. We're experts at delivering the custom solutions you'll need for DTV. Take tower loading, for example. To cut windload for Phoenix's KTVW-TV, Andrew recently supplied a new pressurized, slot covered TRASAR® antenna and our new 5" H39HP-50 high power HELIAX® transmission line. These design innovations significantly reduced tower loading: 32% lower weight, 14% lower windload. Time and time again, we deliver the right answer, at the right time. Don't wait. Call today for more information.

1-800-DIAL-4-RF

Andrew Corporation
10500 W 153rd Street
Orland Park, IL 60462
Visit our Web Site at http://www.andrew.com

Circle (50) on Free Info Card

Andrew Is Everywhere
expect a high today of -60 °C, with winds gusting to 160 kph. We'll be back with sports right after this..."

HP MediaStream Video Servers. Who knows what you'll end up broadcasting with them?

When it comes to digital video, Hewlett-Packard offers something we think you'll find reassuring in the days, years and decades ahead: A future.

Our MediaStream family of broadcast servers have a six-year headstart on MPEG technologies, including MPEG 4:2:2. They also come with integrated RAID, capabilities like MPEG jog-shuttle and trim, and a four-year track record of on-air reliability. And of course, they're the only servers on Earth (or anywhere else, for that matter) with HP's proven capabilities in computing, networking, and customer support.

To find out more, stop by booth #S426 at NAB. And for a free white paper on HP's vision of the digital broadcast future, just call 1-800-452-4844, Ext. 5773, or visit our Web site at www.hp.com/go/broadcast.
DON'T WORRY IF YOU CAN'T FIND ALL THE PROBLEMS IN YOUR DIGITAL VIDEO SYSTEM.

THEY'LL SHOW UP EVENTUALLY.

When implementing, evaluating or troubleshooting digital video systems, you have to be confident you've found all the problems, even the ones buried deep in the implementation. Fortunately, HP has developed a complete set of tools for digital video testing from RF and cable transmission to system and protocol verification. One of these tools, the MPEGScope Plus, provides everything you need to make sure your MPEG system works, including:

- Visualization of every detail from DVB and ATSC tables to video elementary stream analysis, including MPEG 4:2:2.
- The most complete, fully automated compliance verification test software on the market with 852 tests.
- Real-time analysis such as ETR-290, PCR jitter and PID bandwidth, error-triggered capture and comprehensive post analysis to pinpoint every problem.

In fact, the MPEGScope Plus is so proficient with MPEG, DVB and ATSC, it was awarded 1997 Test Equipment of the Year by International Broadcasting magazine. Not surprising when you consider HP's reputation for innovation, quality and years of experience supporting engineers implementing digital communication systems.

The HP MPEGScope Plus: the right tool for the future. For a demonstration or more information, call 1-800-452-4844, Ext. 5771*. Or visit our Web site at http://www.hp.com/go/videotest.

There is a better way.

*In Canada call 1-800-387-8154, program number TMI380.
©1998 Hewlett-Packard Co. TM/NSTD807/BE

Circle (160) on Free Info Card

www.americanradiohistory.com
Rosco: Distributed power and control systems

BY JIM CROOKS

KRON-TV (Chronicle Broadcasting) is the NBC affiliate in San Francisco. The station has two production studios housed in a purpose-built facility. Studio design and equipment were "state-of-the-art" when the building opened more than 20 years ago. Cameras and other portable equipment have been updated over the years. The lighting control systems and other fixed equipment were, until recently, little changed.

Updating the lighting control system

Dimming systems, like most, were designed to control incandescent and quartz-halogen lighting loads only. Design of these systems are familiar to most — lighting loads on a pipe grid fed by fixed connector strips, in turn fed by a cross connect (patch) panel and a silicon-controlled rectifier (SCR) dimmer rack. Both the patch panel and the dimmer rack were installed in equipment alcoves, adjacent to each studio.

These dimming systems had served KRON-TV well. However, advancing age made them a maintenance headache. Parts and service were difficult to find.

More important, the needs of the station had changed. KRON-TV couldn't use its SCR dimmers to power or control new fluorescent lighting, automated lighting, monitors and other grid-mounted studio equipment. The station was also obliged to compensate for buzzing, RFI and harmonic noise generated by the dimming system. Frequent use of wireless audio gear made this a particular concern. Finally, KRON-TV management wanted to minimize production costs to the greatest extent possible. The SCR dimming systems made poor use of three expensive resources: studio setup labor, stage/silicon controlled rectifier (SCR) dimmers to power or control new fluorescent lighting, automated lighting, monitors and other grid-mounted studio equipment. The station was also obliged to compensate for buzzing, RFI and harmonic noise generated by the dimming system. Frequent use of wireless audio gear made this a particular concern. Finally, KRON-TV management wanted to minimize production costs to the greatest extent possible. The SCR dimming systems made poor use of three expensive resources: studio setup labor, stage/concerns. With the assistance of lighting designer Bill Holshenikoff, installation of a new IPS distributed power and control system was recently completed in KRON-TV studio B.

Distributed controls locate IPS dimmers within the studio itself, usually in close proximity to the loads controlled. The new dimmers are silent, lightweight, compact and portable. Thus, the size and configuration of the control system can be easily changed in response to changing needs.

Installation of this system was simple. The studio B patch panel and dimmer rack were removed and standard circuit breaker panels installed in their place. Large parts of the old load conduit system were reused. New wiring devices now distribute raw power throughout the studio. Portable IPS dimmers, fixtures, studio monitors, chain motors and other gear can all be hung where they're needed and plugged into the closest power outlet with a flexible cord and connector.

Control of these devices is also simple. USITT DMX512 compatible control outlets are spaced throughout the studio. Powered devices are interconnected locally by a DMX daisy-chain.
control cable then plugged into a nearby outlet. The USITT DMX512 protocol is a standard in the entertainment lighting industry. Virtually all newer studio lighting products are compatible with this protocol.

Dimmer technology

What makes this distributed control system practical is the onset of silent insulated gate bipolar transistor (IGBT) dimmer technology. Use of IGBTs to control lighting is relatively new (less than eight years). Motor controls are the better known application. By contrast, SCR dimmer technology is ancient and little changed from its introduction in 1959.

A microprocessor and two power devices are used in each IGBT dimmer to control a wide range of load types. No passive filter chokes are needed, as voltage transistors are small (half the size of a VHS tape); and they’re efficient (<2.5 V drop across an 800 µs dimmer set at full). SCR dimmer noise, which would normally necessitate a remote dimmer room and heavy dimmer filtering is eliminated.

The microprocessor on each IPS dimmer allows it to sense and intelligently respond to changes detected in incoming power, load size, load type, temperature and other conditions. For this reason, IPS dimmers can power or control inductive and other odd load types without difficulty. Furthermore, the microprocessor enables each dimmer to diagnose problems and report dimmer and load status to the system operator via the DMX control line. This important feature is called IPS Talkback™.

The manufacturer of IPS dimmers also offers a wide range of DMX512 compatible control products. The most powerful of these integrates control of dimmers, automated lighting and other loads. This system is based on the PC computer hardware platform and MS Windows 95-compliant software. Use of standard hardware and software makes the IPS control system scaleable, easy to operate and maintain.

The Intelligent Power System equipment installed at KRON-TV was manufactured by ROSCO/Entertainment Technology Inc. of Portland, OR. Additional information about this equipment is available at: www.rosco.com.

Jim Crooks is vice president of marketing, Rosco Entertainment Technology, Deephaven, MN.

Editor’s note: Field Reports are an exclusive Broadcast Engineering feature for broadcasters. Each report is prepared by well-qualified staff at a broadcast, production or consulting company.

The reports are performed by the industry, for the industry. Manufacturer’s support is limited to providing loan equipment and to aiding the author if requested.

It is the responsibility of Broadcast Engineering to publish the results of any device tested, positive or negative. No reports should be considered an endorsement or disapproval by Broadcast Engineering magazine.
You'll Be Blown Away By Their Performance. Not Their Price.

Angenieux's HR Series features advanced high resolution optics to deliver the closest video quality you can get to film. It's the performance you would expect from the world leader in film lens technology. Together with Assisted Internal Focusing (AIF) -- the first sophisticated zoom focusing system available -- they deliver unsurpassed picture quality and performance for today's high resolution DTV formats.

The new 12X5.3 AIF•HR Wide Super Zoom is the perfect example. Its 12X AIF zoom capability is clearly the best in its class.

And our new 15X8.3 AIF•HR is rapidly redefining the parameters for general purpose ENG applications. The closer you look, the clearer you'll see that nothing else comes close.

Checkout Angenieux's new HR Series lenses. But hold-on tight -- you'll be blown away by their performance. Not their price. For more information call 973-812-3858 · www.angenieux.com · e-mail: angenieux@tctus.com

WideSuperZoom
12X5.3 AIF•HR
15X8.3 AIF•HR
You've Built the Broadcast Network
Now Expand Your Experiences:

- Post Production Studio
- Broadsheet
- Sports Arena
- TV Station

BROADBAND NETWORK

www.americanradiohistory.com
A Breakthrough in Professional TV Networking

ECI Telecom's Hi-TV is a broadband ATM service multiplexer and network access terminal, optimized for switched high-quality TV telecommunications over standard broadband networks. In a single box, Hi-TV handles multiple channels of TV and performs video compression, MPEG multiplexing, ATM adaptation and network termination, providing the cost benefits and operating advantages of a compact, fully-integrated solution.

Hi-TV enables Network Service Providers to offer a range of TV communications services with unsurpassed video quality, in real-time and file-transfer modes - for TV production, post-production, remote review, archival, backhauling, contribution and distribution. With Hi-TV, the broadband network becomes a productivity tool for TV professionals, replacing travel, courier delivery and occasional communications links.

Using plug-in boards, Hi-TV supports a broad range of capabilities for standard and High-Definition TV - including MPEG-2 4:2:2 Profile compression, ATSC 19.4Mb/s and 38.8Mb/s Transport Streams, SDI, DVB, SDTI, IP and ATM studio interfaces, and DS-3, OC-3 and STM-1 network interfaces. So you can cost-effectively configure each Hi-TV for current requirements, field-upgrade as needs grow, and...

You're in the advanced digital TV telecommunications era - now!
Routing switches

BY THE BE STAFF

Facilities have always had to deal with multiple signals and signal types. For most, the answer has been a routing switcher. Today, facilities are faced with the challenge of handling not only composite analog video, but also analog component video, as well as component and possibly composite digital video. Audio in both digital and analog formats must be routed throughout facilities and data and control signal routing has also become common. Compressed signals are more common today, and the future is likely to bring in even more audio and video signal types as we transition to DTV.

Replacing or augmenting an existing routing switcher is a task many would prefer to avoid because most are central to facility operations. Careful planning is required to replace a routing switcher without disrupting normal operations. One of the first steps in the planning phase is to choose a router and determine whether it will replace an existing system or simply be used to expand the existing routing infrastructure. The ability to control several different routers with a single control system makes operation simpler and less error-prone.

Vendors of routing switchers were contacted about the size, flexibility and control of their routers. Their responses are summarized in the following table. For more information, use the Reader Service numbers shown in the first column.

<table>
<thead>
<tr>
<th>Model</th>
<th>Small matrix size</th>
<th>Large matrix size</th>
<th>Expansion possibilities</th>
<th>Rack space required (RU)</th>
<th>Signal types</th>
<th>Control systems</th>
<th>Support other vendor's control systems?</th>
<th>Redundant systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extron Electronics #284</td>
<td>CrossPoint 16x16 Series</td>
<td>16x16</td>
<td>16x16</td>
<td>None</td>
<td>6</td>
<td>Various models can handle RGB, RGBw, Composite, 3 Video and 2 Ch audio</td>
<td>Front panel RS-232/422 and Windows software</td>
<td>Power supply (optional)</td>
</tr>
<tr>
<td>Extron Electronics #285</td>
<td>CrossPoint 16x16 Series</td>
<td>16x16</td>
<td>16x16</td>
<td>None</td>
<td>6</td>
<td>Various models can handle RGB, RGBw, Composite, 3 Video and 2 Ch audio</td>
<td>Front panel RS-232/422 and Windows software</td>
<td>Power supply (optional)</td>
</tr>
<tr>
<td>Kramer #287</td>
<td>25x16</td>
<td>16x16</td>
<td>16x16</td>
<td>16x96</td>
<td>2</td>
<td>Composite, Y/C, RGB and RGBS</td>
<td>RS-232, Manual Microprocessor</td>
<td>Yes, by custom software</td>
</tr>
<tr>
<td>Latch #288</td>
<td>Xpress</td>
<td>12x1</td>
<td>12x1</td>
<td>None</td>
<td>1</td>
<td>Serial digital video, analog video, analog audio, AES audio</td>
<td>Local or remote panels, RS-232/422</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fluorescent light fixtures in the film and TV industries are frequently used. You can imagine an instrument such as a light reflector, which is broadly used in film production, made out of EL that can be placed as close as two inches away or around the subjects. Cool-Lux uses this EL technology to enable a cameraperson to literally wrap the subject. There is no heat or eye discomfort.

Exclusivity

Although other companies may have the capability to produce a predesigned stamped EL panel of one square foot or less, Pana-Tek is licensed for the world-wide patent process of manufacturing EL up to 22 inches in width with continuous runs to 1,500 feet. It can also be sliced and/or customized to any width. Pana-Tek offers the product in any length and widths of one, three, five, 12 and 22 inches. The lighting system comes with power supply, ballast, control panel, connectors and adapters. The control panel allows the user to adjust the brightness level from a brilliant glow to a soft light. This system can be dimmed and can also be traced or chased with computer programming.

The light is available in two colors, a sky blue or a white. When the unit is not lit, the sky blue panel looks white and the white panel looks salmon. It can be overlaid with any color gel or an inkjet printer to create any desired image on its surface.

Where light could never be used before

Just cut the Pan-EL-Lite with a pair of scissors to any size and put it where better light is needed. From creative to difficult — film, stage and TV lighting requirements are easily satisfied as a result of EL in this form. Pan-EL-Lite will be sold in reels, much the same as film.

George Panagiotou is president of Pana-Tek, Inc.
Bridge Over Troubled Waters.

The switch from analog to compressed digital will continue to make waves well into the millennium.

Smooth sailing into the world of digital can be accomplished if the equipment you choose is ready for digital and conforms to all compliance requirements. Our Argus™ encoder is DVB compliant (ETR-154, ETR-211, ETS-300468) and has helped Vela remain at the forefront in developing products that support MPEG-2 MP@ML and the MPEG-2 4:2:2 Profile@ML.

The voyage into 4:2:2 digital video continues as we introduce products like CineView Pro™. CineView Pro is Vela's MPEG-2 4:2:2 Profile@ML decoder which supports SDI and genlock. There's a sea of information on making the switch from analog to digital.

To stay on course, check out our website, or call and ask for a product brochure.

We'll help you bridge the gap between analog and digital...and when you get to the other side...it's going to be smooth sailing.

www.vela.com
813.572.1230

Circle (57) on Free Info Card
www.americanradiohistory.com
<table>
<thead>
<tr>
<th>Mitel</th>
<th>Model</th>
<th>Small matrix size</th>
<th>Large matrix size</th>
<th>Expansion possibilities</th>
<th>Rack space required (RU)</th>
<th>Signal types</th>
<th>Control systems</th>
<th>Support other vendor's control systems?</th>
<th>Redundant systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitch</td>
<td>LA327</td>
<td>32x16</td>
<td>32x32</td>
<td>64x32 or 32x64</td>
<td>2</td>
<td>Serial digital video, analog video, analog audio, AES/EBU audio</td>
<td>Yes</td>
<td>Non-Redundant Control Systems</td>
<td></td>
</tr>
<tr>
<td>Leitch</td>
<td>LA326</td>
<td>4x1 and 4x4</td>
<td>64x64 or 16x16</td>
<td>4096x1</td>
<td>1 or 2</td>
<td>Serial digital video, analog video, analog audio, AES/EBU audio</td>
<td>Yes</td>
<td>Non-Redundant Control Systems</td>
<td></td>
</tr>
<tr>
<td>Metawave</td>
<td>MXA 256</td>
<td>32x32</td>
<td>128x64</td>
<td>To 128x64</td>
<td>4.6 and 8 RU</td>
<td>Serial digital video, analog video, analog audio</td>
<td>Yes</td>
<td>Non-Redundant Control Systems</td>
<td></td>
</tr>
<tr>
<td>Miranda</td>
<td>SEL-1604</td>
<td>16x4</td>
<td>16x4</td>
<td>None</td>
<td>1</td>
<td>42x2 and 96x1 (137, 27.2V, 360Mb/s)</td>
<td>No</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Miranda</td>
<td>SEL-4021</td>
<td>4x2</td>
<td>4x2</td>
<td>None</td>
<td>4 in a single RU</td>
<td>42x2 and 96x1 (137, 27.2V, 360Mb/s)</td>
<td>No</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Novo System</td>
<td>NovaRouter</td>
<td>8x8</td>
<td>32x32</td>
<td>Up to 32x32</td>
<td>1-4</td>
<td>Analog/digital video, composite, Y/C, component, SDI, bit serial analog audio, digital audio</td>
<td>KY control, remote software, AVP or Breakaway</td>
<td>Software control almost flexible support</td>
<td>None</td>
</tr>
<tr>
<td>PSA Switching Systems</td>
<td>Tiger</td>
<td>8x16</td>
<td>144x144 per frame</td>
<td>512x512</td>
<td>12 (video) B channels</td>
<td>Complete analog/digital video, 2ch analog or 2 levels of asynchronous AES/EBU audio</td>
<td>No</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td>Triton</td>
<td>8x16, 16x16, 16x2</td>
<td>16x16</td>
<td>None</td>
<td>1</td>
<td>Analog video/audio, digital video (all bit rates), digital audio (75/110 ohm), telecom data from 34Mb/s to 155Mb/s</td>
<td>Yes</td>
<td>Power supplies</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td>Mars</td>
<td>2x4</td>
<td>2x4</td>
<td>None</td>
<td>1</td>
<td>Analog video/audio, digital video (all bit rates), digital audio (75/110 ohm), telecom data from 34Mb/s to 155Mb/s</td>
<td>Yes</td>
<td>Power supplies</td>
<td></td>
</tr>
<tr>
<td>Philips</td>
<td>Venus</td>
<td>32x32</td>
<td>1024x1024</td>
<td>Unlimited flexibility up to 1024x1024</td>
<td>11RU for 96x1, 1024x1024 or 96x96</td>
<td>Analog video/audio, digital video (all bit rates), digital audio (75/110 ohm), telecom data from 34Mb/s to 155Mb/s</td>
<td>Yes</td>
<td>Power supplies</td>
<td></td>
</tr>
<tr>
<td>Pro-bel</td>
<td>Freeway</td>
<td>16x16</td>
<td>64x64</td>
<td>Up to 64x64 in 16x16 increments</td>
<td>3 includes build in control system & dual power supplies</td>
<td>Serial digital/analog video, AES/EBU and stereo analog audio</td>
<td>Yes</td>
<td>Pro-bel's System 2 or Pro-Controller Through a general purpose protocol</td>
<td>Control module and power supplies (optional)</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>Macintosh</td>
<td>5x1</td>
<td>32x4</td>
<td>None</td>
<td>1</td>
<td>Component, composite, sync, and balanced audio</td>
<td>Digital logic</td>
<td>AMX, Crestron, Lutron</td>
<td>None</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>Tahoe series</td>
<td>16x16</td>
<td>32x128 and 48x48</td>
<td>From 16x16 to 16x48, from 32x32 to 32x128</td>
<td>3-18</td>
<td>Component, composite, sync, 110 and balanced audio</td>
<td>RS-422 control panel, RS-232/222 serial control</td>
<td>AMX, Crestron, Lutron</td>
<td>Power Supply (optional)</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>Shasta series</td>
<td>8x8</td>
<td>128x128</td>
<td>Up to 128x128</td>
<td>4-8</td>
<td>143, 177, 270, 360Mb/s, B and 10-Bit digital video and audio</td>
<td>RS-485 control panel, RS-232/222 serial control</td>
<td>AMX, Crestron, Lutron</td>
<td>Dual Power Supply</td>
</tr>
<tr>
<td>Sierra Video Systems</td>
<td>Ponderosa series</td>
<td>64x64</td>
<td>1024x1024</td>
<td>Up to 1024x1024</td>
<td>19-205</td>
<td>Serial digital/analog video, AES/EBU and stereo analog audio</td>
<td>RS-485 control panel, RS-232/222 serial control</td>
<td>AMX, Crestron, Lutron</td>
<td>Power, Control, Signal path</td>
</tr>
<tr>
<td>Sigma Electronics</td>
<td>Varios</td>
<td>4x6</td>
<td>128x128</td>
<td>From 4x4 to 16x16, from 16x15 to 12x16</td>
<td>1-24</td>
<td>Composite, CAVI, RGB, RSB, AES/EBU. Digital video and digital audio</td>
<td>RS-232/222</td>
<td>AMX, Crestron, Lutron</td>
<td>Power Supply (optional)</td>
</tr>
<tr>
<td>Sigma Electronics</td>
<td>SMS 7000</td>
<td>16x16</td>
<td>1024x1024</td>
<td>In groups of 16 inputs and 16 outputs</td>
<td>Depends on pre-wired matrix size</td>
<td>Serial digital video, digital video (all bit rates), AES/EBU audio, AES/EBU audio, RS-422 data</td>
<td>No</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VidiTek</td>
<td>SDR Series</td>
<td>4x4</td>
<td>16x16</td>
<td>Inputs: Outputs: Levels and Depths</td>
<td>1</td>
<td>Composite component, SDI video, and stereo AES/EBU audio</td>
<td>Internal, External Panels, External PC</td>
<td>Digital Logic</td>
<td>None</td>
</tr>
</tbody>
</table>
Back in the days when the .(dot) was known as a period, you had to actually visit the NAB convention in Las Vegas to get the latest news.

Now you can get there with the click of a mouse.

Broadcast Engineering is going beyond the printed page to bring you direct coverage from the NAB show floor.

Visit our homepage at www.broadcastengineering.com for your link to the 1998 NAB Internet Show Daily.

Broadcast Engineering's editorial staff is doing the leg work to bring you up-to-the-minute updates from NAB...all on-line. With a click of your mouse you can stroll through the convention centers at your own pace. Check out the new product releases. Sit in on a press conference or two. Catch up on the latest industry news.

Just because you're not going to the show, doesn't mean you have to miss the show. Log on to www.broadcastengineering.com for complete coverage from the NAB show floor.

Contact your marketing manager for advertising opportunities on the Internet Show Daily.
FILMCONSOLE
Solid State Logic Avant: this multioperator, all-digital system offers up to three motion control panels, three monitor panels and multiple joy sticks; dynamic and snapshot automation of functions are provided with write operations possible at any speed, on- or off-line; frame sizes include 48, 56, 64, 72, 80, 88 and 96 channels; all sizes offer control surface layering, allowing 192 inputs to be controlled; the control surface channels offer fully automated, four-band EQ accessing a library of different EQ curves, fully automated dynamics section, automated 48 digital delays and 24 reverbs assignable to any channel, automated bus routing and eight auxiliary sends per input channel, configurable as mono or stereo; 212-315-1111; fax 212-315-0251
Circle (250) on Free Info Card

FULLY DIGITAL CAMCORDER
JVC DY-90: this camcorder weighs 15.4 pounds loaded with typical lens, viewfinder, battery and tape; features include 4:2:2 digital signal processing, four channels of audio, superior sensitivity (F11 at 2,000 lux) and 1/4-inch CCDs; Full Auto Shooting Mode (FAS) with continuous automatic white balance allows automatic shooting from four to 24,000 lux; 800-JVC-5825; www.jvcpro.com
Circle (253) on Free Info Card

ENG AND STUDIO-STYLE HDTV LENSES
Canon HDTV lenses: these lenses incorporate Internal Focus (IF) technology for superior optics, reduced chromatic aberrations and higher MTF performance; models include the HJ15X8B IRS/IAS standard zoom lens, HJ18X7.8B IRS/IAS long zoom lens, HJ9X5.5B IRS/IAS wide-angle zoom lens, UJ20X7B HDTV studio lens and UJ65X9.5B HDTV field zoom lens; 800-321-4388 or 201-816-2900; fax 201-816-9702; www.usa.canon.com; bctv@cusa.canon.com
Circle (254) on Free Info Card

TALLY EXPANSION UNIT
Videoframe Systems’ VF100/Tally32: a tally expansion unit that can be configured with a variety of switchers including the Tektronix M2100; it offers 32 dry closures and 16 opto-isolated inputs in a compact 1RU format; setup and configuration are accomplished with a Windows 95 application provided with the unit; 530-477-2000; fax 530-478-0212
Circle (271) on Free Info Card

HIGH-PERFORMANCE AUTOMATION SYSTEM
Sundance Digital Inc. TimeLiner: a low-cost, high-performance automation system designed for tasks where timed machine and router control are needed; the Windows-based system controls up to eight Sony protocol RS-422 machines, 16 GPIs and a router; the base system ships with a Pesa 16x2 router or it can be customized to work with your existing router; TimeLiner also provides clip-based control of Odetis’ protocol digital disk recorders such as the Tektronix Profile and the ASC VR-300; 972-444-8442; fax 972-444-8450; www.sundig.com
Circle (259) on Free Info Card

DIGITAL VIDEO NETWORK SYSTEM
DiviCom MediaView 5.0: a new system for implementing digital head-end operations that support DVB-compliant interfaces, and includes an ATSC-compliant encoder, simplified software upgrades and improved network management capabilities; a state-of-the-art system controller enables automated redundancy in multivendor systems and allows rapid software upgrades to take advantage of software-added enhancements; 408-944-6700; fax 408-944-6705; www.divi.com
Circle (255) on Free Info Card
Some people wake up and go to work. You wake up and you're still at work.

In video, living with your work takes on new meaning. At Quantegy, we're dedicated to the manufacturing of professional media, so we share the very same passion that you do for your craft. From our precision mechanisms to our patented formulations, we examine every detail of the manufacturing process to deliver consistent, unmatched performance. Yes, we're probably both a bit obsessed with our product.

But the way we look at it, our job is to help you keep your mind on work. And not on your tape.

Call 1.800.752.0732 Fax 1.800.628.0535 www.quantegy.com MORE THAN MEETS THE EYE.

Circle (54) on Free Info Card
NEW! XL-1
3-CCD DV Camera System
Incorporating interchangeable Lens Mount System

A new generation of professional camcorders distinguished by unexcelled flexibility and camera performance, designed for the most demanding content creation. The XL-1 enables all the features of a 3-CCD professional camcorder, from a complete AV studio setup to a wide range of ENG applications including photography, shooting, and ENG reports.

- Introduces Ultra Wide Angle Lens Operation
- Use of Wide Angle to 1:3.15
- Camera controls include camcorder input, lens operation, and periphery
- A new generation of professional camcorders distinguished by unexcelled flexibility and camera performance, designed for the most demanding content creation. The XL-1 enables all the features of a 3-CCD professional camcorder, from a complete AV studio setup to a wide range of ENG applications including photography, shooting, and ENG reports.

- Introduces Ultra Wide Angle Lens Operation
- Use of Wide Angle to 1:3.15
- Camera controls include camcorder input, lens operation, and periphery

Canon

J15ax8B
IS

J20ax8B
IR/IRAS

J16ax8B

Interchangeable Lens Mount System

An advanced new generation of professional camcorders distinguished by unexcelled flexibility and camera performance. The XL-1 is designed for demanding content creation. The XL-1 enables all the features of a 3-CCD professional camcorder, from a complete AV studio setup to a wide range of ENG applications including photography, shooting, and ENG reports.

- Introduces Ultra Wide Angle Lens Operation
- Use of Wide Angle to 1:3.15
- Camera controls include camcorder input, lens operation, and periphery

Additional Cutting-Edge Features

- Dual Action Carrying Handle
- Unique Design
- Non-slip Grip
- Ultra Wide Angle
- Easy Load
- 3CCD Image Sensor with Pinting Technology

- Chain Drive Mount System

- Wide Angle to 1:3.15
- Camera controls include camcorder input, lens operation, and periphery

- Introduces Ultra Wide Angle Lens Operation

- Use of Wide Angle to 1:3.15

- Camera controls include camcorder input, lens operation, and periphery

- Introduces Ultra Wide Angle Lens Operation

- Use of Wide Angle to 1:3.15

- Camera controls include camcorder input, lens operation, and periphery
DSR-200 3-CCD Digital (DVCAM) Camcorder

- Uses very high-definition digital technology, the DSR-200 renders an incredible 328 steps of resolution in each independent component of the image.
- The 3-CCD Camera System has a separate chip for each of the red, blue, and green components of the image for maximum color accuracy.
- Digital signal processing technology is used for precise, digital controls to ensure image quality.
- VFW (VHS Full Wave) for improved color sampling.
- Real-time Noise Reduction ensures crisp, clear images.
- MPEG-2 Disc Recorder allows for real-time recording and playback.

DSR-300 DVCAM Digital VCR

- The DSR-300 is Sony's latest professional grade DVCAM VCR. Equipped with 400-frame digital playback and 12-bit DVCAM playback, it delivers unparalleled image quality.
- Electronic zoom allows for smooth and continuous zooming.
- Digital signal processing ensures maximum image quality.
- The 3-CCD Camera System has a separate chip for each of the red, blue, and green components of the image for maximum color accuracy.
- Real-time Noise Reduction ensures crisp, clear images.

PVM-14N1U/14N2U & 20N1U/20N2U 13” & 19” Presentation Monitors

- With high-performance and professional-quality performance, these monitors are ideal for any environment.
- Excellent image quality and color reproduction ensure accurate representation of the original content.
- The design of the front panel is both attractive and functional.
- The equipment is easy to operate and handle.

PVW-2600/PVW-2650/PVW-2800 Betacam SP 2000 Pro Series

- The PVW-2600/PVW-2650/PVW-2800 series is designed for the highest level of performance and reliability.
- The Betacam SP format offers excellent image quality and flexibility.
- The Betacam S can be used with a variety of recording devices.
- The Betacam S format is compatible with a wide range of recording devices.

UHF WIRELESS MICROPHONE SYSTEM

- The system consists of a transmitter, receiver, and power supply.
- The transmitter is used to broadcast the audio signal wirelessly.
- The receiver is used to receive the audio signal and convert it to an electrical signal.
- The power supply is used to power the transmitter and receiver.

VPR-2000 UHF Handheld Wireless Microphone

- For broadcasting and live events, the VPR-2000 offers excellent audio quality and reliability.
- The microphone is lightweight and easy to handle.
- The VPR-2000 is compatible with a variety of recording devices.
- The microphone is available in a range of colors.

WRT-810A UHF Handheld Wireless Microphone

- For use in critical applications, the WRT-810A offers excellent audio quality and reliability.
- The microphone is lightweight and easy to handle.
- The WRT-810A is compatible with a variety of recording devices.
- The microphone is available in a range of colors.

P32000 UHF Belt Pack Transmitter

- For use in critical applications, the P32000 offers excellent audio quality and reliability.
- The transmitter is lightweight and compact.
- The P32000 is compatible with a variety of recording devices.
- The transmitter is available in a range of colors.

Circle (63) on Free Info Card
www.americanradiohistory.com
GRAPHICS

PC-CODI & PC Scribe

Text and Graphics Generator and Video Titling Software

A fast, intuitive, low-cost way to add sophisticated titling and graphics to your videos. PC-CODI features full-screen interactive design, maskable color fills, 16-bit grayscale images and much more. PC Scribe includes the most comprehensive titling and graphics package available for personal computers. Scribe offers over 2500 titling elements, including free-form shapes, fills, text, images, drop shadows and much more. PC-CODI and PC Scribe are fully compatible with each other and with other Windows applications, allowing for seamless integration of graphics and video content. A full trial version of both programs is available at our website or by calling us directly.

5850C VECTORSCOPE

An incredible addition to the TARGA 1000/10000 family, the 5850C Vectorscope allows you to view video images in 2D and 3D, and to analyze them for alignment and distortion. The 5850C is completely compatible with the TARGA 1000/10000 and offers a wide range of features, including a 3D display mode, a 3D measuring tool, and a 3D alignment tool. It also offers a range of adapters and accessories, including a 3D printer and a 3D scanner, to allow you to create 3D models and images from your video content. The 5850C is available in a variety of configurations, including a stand-alone model and a model that integrates with the TARGA 1000/10000.

5860C WAVEFORM MONITOR

An advanced waveform monitor that displays video information in real-time, allowing you to analyze and adjust your video content with ease. The 5860C offers a range of features, including a waveform display, a vectorscope display, and a phase/frequency display. It also offers a range of adapters and accessories, including a waveform generator and a phase/frequency generator, to allow you to create and analyze your own video content. The 5860C is available in a variety of configurations, including a stand-alone model and a model that integrates with the TARGA 1000/10000.

TARGA 1000/10000

Professional Video Production Workstation

TARGA 1000/10000 is a professional video production workstation that offers a range of features, including a full-featured video editing suite, a hardware-accelerated graphics engine, and a range of video and audio processing tools. It is ideal for professional video production, allowing you to create high-quality video content with ease. TARGA 1000/10000 is available in a range of configurations, including a stand-alone model and a model that integrates with other video production software.

TARGA 1000/10000 MCXpress

An all-in-one video production suite that offers a range of features, including a full-featured video editing suite, a hardware-accelerated graphics engine, and a range of video and audio processing tools. It is ideal for professional video production, allowing you to create high-quality video content with ease. TARGA 1000/10000 MCXpress is available in a range of configurations, including a stand-alone model and a model that integrates with other video production software.
Engineered to handle a payload of up to 154 lbs., the new VECTOR 700 pan & tilt head features a Thin Film (TF) Drag System which utilizes a 'non-contacting' calibrated system to ensure consistent performance over an extended temperature range from -40°C to +60°C.

The VECTOR 700 offers a tailored drag characteristic which combines a high level of control at the start of movement, a seamless transition into whip pan, and instant recovery to the original drag setting at the finish of movement. Incorporating its unique patented counterbalance system, the VECTOR 700 needs no time consuming cam changes to provide up to 120° of perfectly balanced tilt range for the digital Studio and OB camera and long lens or teleprompter combinations.
Business

Walk into any pro-audio shop and you'll see such names as Telex, Electro-Voice, Altec Lansing, Klark Teknik, Vega, Dynacord, RTS, ProStar, University Sound and Midas. These well-known companies are part of the merger of Telex and EV International. The new firm will operate under the banner of Telex Communications, Inc.

According to John L. Haled, chairman of the board, president and chief executive officer of the newly combined entity, the combined products are visible in a wide variety of sports, entertainment and public venues. The combined companies will enjoy an extensive worldwide distribution network, multinational manufacturing expertise and the research and development resources of both companies.

The new company expects to have more than $355 million in sales and will employ approximately 3,300 people worldwide to manufacture complete lines of audio, wireless and multimedia communications to commercial, professional and industrial customers in the business.

Thomson Tubes Electroniques completed its first year of service with the Finnish broadcast company, Yleisradio. During this service, Yleisradio installed the TH 760 IOTs in nine new 40kW transmitters. The TH 760 is a water-cooled IOT, featuring a compact electron gun for stability. The IOT design does not require an ion pump.

MegaDrive Systems, Inc. will begin operating under the name DataDirect Networks, Inc. This announcement accompanies the recent public statement of a strategic repositioning to address the network data access needs of high-performance, image-intensive computing environments. The name more accurately reflects the company's broad technology mix, high-speed networking focus and integrated solutions orientation.

Hitachi Denshi America announced that KFSN-TV, an ABC owned-and-operated TV station in Fresno, CA, selected four SK-2600PW portable 16:9/4:3 switchable digital studio cameras for its in-studio production.

Comark Digital Services (CDS) has been awarded a contract by TV Globo to broadcast World Cup Soccer games in France to Brazil in digital HDTV. The World Cup is being delivered in the ATSC digital TV standard.

Snell and Wilcox has been chosen by the British Broadcasting Corporation (BBC) to provide its digital solutions to help form the core of the BBC's broadcast technology. The BBC has recently installed 55 ARC150 widescreen display processors, 30 MDD500 multistandard digital decoders (two-channel version), 21 MDD1100 multistandard digital decoders with integral synchronizers, two MDE1000 multistandard digital encoders, a Magic DaVE DVE and switcher and a large number of modules from the Kudos IQ range.

JVC announced that public access cable channel, Greenbelt Access Television (GATE) of Maryland, has selected its Digital-S with 4:2:2 sampling as its house videotape format. The new station is equipped with JVC's Digital-S BR-D750 VTR and the Digital-S BR-D51 player with S-VHS playback.

Hamlet Video International Ltd. has supplied Digi Scopes to many of the UK's leading TV stations. Six Digi Scopes have been purchased for use at Central TV's Central Court, a recently installed modern news facility with a disk-based media server. Channel 4 has also purchased Hamlet Digi Scopes, one for use in its graphics department and the other for VT.

Discreet Logic has completed its purchase of San Jose, CA-based Lightscape Technologies, Inc., a developer of advanced visualization and lighting software tools for professionals in the design and entertainment industries. Lightscape's technology complements Discreet Logic's production systems comprised of real-time 3-D broadcast graphics and virtual studio systems for the creation of synthetic scenes and characters for films, virtual sets for broadcast television and interactive content for games and the web. Additionally, the acquisition adds Windows NT development expertise and an installed base of entertainment, games and design professionals using Lightscape software.

Avid Technology Inc. announced that FOX Television Stations Inc. will incorporate the new AvidNews newsroom system in each of its 22 owned stations. With the integration of Avid's newsroom computer system, FOX plans to have 200 seats installed by this June. Of the 22 stations, 16 will upgrade from BASYS or Avid NetStation systems, five stations will replace existing newsroom equipment and one station will be part of a new installation.
It’s PORTAMATCH, the Matchbox that runs on batteries! Great for remotes, field recording, ENG, or anywhere you don’t have AC power. Just add two 9-volt batteries and go!

HENRY ENGINEERING
TEL (626) 355-3656 FAX (626) 355-0077 FAX-on-Demand Doc #125 (626) 355-4210 http://www.henryeng.com

Circle (71) on Free Info Card

Circle (70) on Free Info Card

Circle (66) on Free Info Card

Circle (67) on Free Info Card
announced that Panasonic Video Communications Company has joined its Cable Modem Partnership program. Combining Harmonic's cable TV head-end equipment with consumer electronics vendors' cable modems, the program offers operators complete standards-based end-to-end systems for providing high-speed Internet services to subscribers. As part of the partnership, Harmonic and Panasonic will work together to develop and jointly market their complementary digital video solutions.

General Instruments (GI), formerly NextLevel Systems Inc. and **Sony Electronics** announced their strategic alliance to jointly develop digital TV technologies. The companies are discussing future generations of digital cable TV devices and high-definition TV products, as well as incorporating new features like Sony's Home Network architecture into GI's advanced digital set-top boxes.

Scientific-Atlanta announced its contract with Cable Television Laboratories Inc. (CableLabs) to assist the OpenCable project in key areas regarding the system integration of new OpenCable devices and services. This work will help ensure that the individual interfaces specified by the OpenCable project will support an integrated network and set of services.

Scientific-Atlanta will focus on the end-to-end system integration of new digital services on the cable industry's networks. Under the contract, it will produce and document a network architecture reference model. It will also identify scenarios for customer use, billing and third-party applications that involve important OpenCable events and data flows.

Dielectric announced that NBC has signed an agreement to purchase DTV and NTSC TV station equipment. Under the terms of the agreement, Dielectric will be NBC's supplier for its current and future O&O TV stations nationwide. The agreement covers all passive RF components including, but not limited to, antennas, transmission lines, filters, combiners, switches and dehydrators. **Wegener Corporation** has received an additional order from FOX for its UNITY4000 MPEG-2 digital video satellite receivers. The UNITY4000 is a part of the UNITY digital product family and is used by FOX Sports Network, FX Networks and fxM: Movies from FOX. The new order is in addition to an order placed by FOX in May 1997 for UNITY4000 receivers and for Wegener's COMPEL network control system.

NextLevel Systems Inc. and **RELTEC Corporation** announced a joint proposal to market and execute turnkey solutions for voice/video/data networks for the communications marketplace. RELTEC will supply services and associated equipment to support the end-user network architecture. NextLevel will supply active and passive equipment to support the customer's network architecture and service goals.

Digital Vision announced an agreement with Scientific-Atlanta to supply HDTV encoding and decoding products specifically aimed at the upcoming DTV/HDTV markets in the United States. Scientific-Atlanta will market these compression products under the PowerVu brand name.

People

Terry Longfellow has been appointed creative director at Turner Production Effects, Atlanta. **Steve Martin** is national sales manager at JVC Professional, Elmwood Park, NJ. Martin is now responsible for directing the company's sales force and overseeing dealer sales, government sales and imaging products sales at the Elmwood Park headquarters and at corporate locations in Pine Brook, NJ, Aurora, IL, and Cypress, CA.

Tom Jordan, vice president at Leitch, Cesapeake, VA, has been named secretary/treasurer of the SMPTE Board of Governors.

Solid State Logic, Oxford, England, announced that **Michael Mueller** has been named vice president of broadcast and post-production for SSL North America, East Coast. Mueller will be based in SSL's New York office.

Tomohiko Saito has been named president of Ikegami USA, Maywood, NJ. **David A. Tubbs**, of Evans & Sutherland, Salt Lake City, has been appointed to the Academy of Television Arts and Sciences (ATAS), and named to ATAS's Cybercast Committee.

For the record

The National Mobile Television DX4 truck with expanding trailer was manufactured up to the rack-ready stage by Gerling & Associates, Sunbury, OH. The unit's electronic equipment installation was handled by Bennett Systems, Sunbury, OH. (Photo from **BE** January 1998, p. 78.)

Don Barto, sound editor for Big Shot Productions, sitting in front of the SSL Scenario digital audio workstation. ("Production Clips," **BE** January 1998.)
Swager is your worldwide turnkey tower company.

Phone 1-800-968-5601
Fax 1-800-882-3414

Swager Communications, Inc.
P.O. Box 656
3560 East Swager Drive
Fremont, IN 46737 USA

Phone 1-800-968-5601 • Fax 1-800-945-5165
Fax 1-800-882-3414 • Fax 1-800-945-4205
E-mail: sales@swager.com
Internet: www.swager.com
Modern Broadcast Solutions, Inc.

Technical Planning - Implementation - Repairs - OTV
"Over 20 Years of Technical Experience"

Don V. Jones
President
P.O. Box 23007
(704) 882-9554 Voice/Fax
Charlotte, NC 28227-0272
Email: dony@vnet.net

video, audio, & automation electronics serving manufacturers & systems integrators

electronics R & D & custom product design

BARANTI GROUP INC.
Professional Engineers
Vitrovia

phone (905) 479-0149
fax (905) 479-0149

INSPECT - PAINT - REPAIR - HE-GLY - LIGHTING - ANTENNA FEEDLINES - ANALYSIS - ERECT - ORGANIZE - LINE SWEEPING
HERMAN J. JOHNSTON, PRESIDENT
MOBILE (502) 830-2564 / RES (502) 830-0880
NATIONAL TOWER COMPANY

BROADCAST & CATV - MICROWAVE - CELLULAR - PCS - WIRELESS TOWERS
P.O. Box 1829, HENDERSON, KY 42419-1829
TEL (502) 869-6800 / FAX (502) 869-6500 / gil@gilmer.com

Why not run your business card here?
Promote your services and increase business!

Stainless inc.
50 Years of Broadcast Tower Design - Fabrication - Construction
210 S. Third St. Voice 215-699-4871
North Wales, PA 19454 Fax 215-689-8597

Bill Ferster's NewsWire

Summary of the important news events in the worlds of multimedia, video, animation, chips, mass storage and computers. The NewsWire is sent via email bi-weekly for $49 per quarter. Please check out the web site for sample issues and to subscribe for 1 month free. www.cfaslink.net/bferster

REID BROADCAST COMM. INC.
ED REID - PROJECT ENG. SERVICES
RADIO-FM/AM TV-ANALOG DIGITAL
P.O. BOX 170476
Alfington, Texas 78603
(617) 495-6142 (FAX) 495-5835
E-MAIL REID@KNK.NET

East Coast Video Systems
consultants • engineers • systems integrators
3 More Coast
Boothon, NJ 07005
973 402 0104
Fax 973 402 0208
WWW.ECSV.COM

HDTV doesn't have to mean
High Dollar TeleVision™.
Check us out at
www.AstreSystems.com

NETCOM
STATE OF THE ART ENGINEERING FOR AUDIO AND VIDEO
ENGINEERING DESIGN • CAD DRAFTING SERVICES
CARTEL FABRICATION • PRE-WIRE PATCH PANEL RACKS
SYSTEM INSTALLATIONS • EQUIPMENT SALES
(201) 837-8424
Fax (201) 837-8404
185 FAIRDALE AVE. TEANECK, NJ 07666

"Say It Better"
See more than 300 tips
(and related books and tapes)
from "gut insticts" expert,
Emmy-winner and former Wall Street Journal reporter
Kare Anderson at
www.sayitbetter.com

Location - Location - Location
Full time staffing & digital transmission space
available on Prime Cable Birds:
- All ERICSSON equipment & 32 SECTIONS C a 135 m
- 12G/64K in broadcasters at 25 SECTIONS C a 137 m
- 32G/64K in broadcasters at 32 SECTIONS C a 137 m
- Lucrative, skilled labor and uplink equipment available
Our Pricing Is Highly Competitive

GILMER & ASSOCIATES, INC.
TECHNOLOGY / MANAGEMENT CONSULTANTS
BRAD GILMER
1207 FISA Court
ATLANTA, GA 30345
TEL 770-444-3233 / FAX 770-444-3344
Email bgilmer@gilmer今n.com

Why not run your business card here?
Promote your services and increase business!
Only $150.00 per insertion.
Frequency discounts available.
Call 1-800-896-9939

Bill Ferster’s NewsWire

Summarizes the important news events in the worlds of multimedia, video, animation, chips, mass storage and computers. The NewsWire is sent via email bi-weekly for $49 per quarter. Please check out the web site for sample issues and to subscribe for 1 month free. www.cfaslink.net/bferster

JOHN H. BATTISON P.E.
CONSULTING BROADCAST ENGINEER,
FCC APPLICATIONS AM, FM, TV, LPTV
Antenna Design, Proofs, Fieldwork
2684 State Route 60 RD #1
Loudonville, OH 44842
419-994-3849 FAX 419-994-5419

CONSULTING ENGINEERS
2104 West Moss Ave.
Pekioa, Illinois 61604
(309) 773-7511
FAX (309) 773-8118
Member AFCC

Hammett & Edison, Inc.
CONSULTING ENGINEERS
RAIRD AND TELEVISION
DANE E. ERICKSEN, P.E.
Box 290068
San Francisco, CA 94128
717/995-5200 717/995-5280 Fax

Bill Ferster’s NewsWire

Summary of the important news events in the worlds of multimedia, video, animation, chips, mass storage and computers. The NewsWire is sent via email bi-weekly for $49 per quarter. Please check out the web site for sample issues and to subscribe for 1 month free. www.cfaslink.net/bferster

Stainless inc.
50 Years of Broadcast Tower Design - Fabrication - Construction
210 S. Third St. Voice 215-699-4871
North Wales, PA 19454 Fax 215-689-8597

Classifieds

For Sale

http://www.broadcastexchange.com
The new way to buy and sell pre-owned broadcast video gear. Free listings. Online database.
1-888-FAX-GEAR Toll-Free 24-hour Fax-on-Demand
Fax-on-Demand

WhisperRoom
SOUND SOLUTION ENCLOSURES
Vocal Booths Broadcast Booths etc...
PH: 423-585-5827 FAX: 423-585-5831
E-MAIL: whisper@kc.com
WEB SITE: www.whisperroom.com
116 S. Sugar Hollow Road
Maryville, Tennessee 37803

Bill Ferster’s NewsWire

Summary of the important news events in the worlds of multimedia, video, animation, chips, mass storage and computers. The NewsWire is sent via email bi-weekly for $49 per quarter. Please check out the web site for sample issues and to subscribe for 1 month free. www.cfaslink.net/bferster

Bill Ferster’s NewsWire

Summary of the important news events in the worlds of multimedia, video, animation, chips, mass storage and computers. The NewsWire is sent via email bi-weekly for $49 per quarter. Please check out the web site for sample issues and to subscribe for 1 month free. www.cfaslink.net/bferster
TAPE ERASERS
The World's Leader In Degaussers
ERASES ALL VIDEO FORMATS
The Eliminator 4000
There’s nothing better than the Model 4000 to completely erase metal particle media in just seconds, including the hard to eliminate audio and control tracks. It's the only degauser approved by major television networks and production facilities around the world. Join the owners of the Eliminator 4000 and see what a Garner Degauss can do for you.

Maximize your company's exposure in the marketplace by taking advantage of reprints.

Call Cherie Wood for a quote:
Intertec Publishing
Phone: 913-967-7212
Fax: 913-967-1900

Glare-Free Viewfinders!
Hoodman guarantees glare-free monitor images in any environment. Hoods sized to fit 2-inch through 21-inch monitors, viewfinders and teleprompters can be shipped to you today! For more information, call (310) 379-6391

Call (101) on Free Info Card

Special this month!
AVID MC 1000
2-9 gig drives 2-20" monitors $25,000 (one only)

Call for Free Catalog
918-663-4877
TRON-Tek, Inc.
6570-N East 51st Street
Tulsa, OK 74145
(FCC TYPE ACCEPTED)

Call (103) on Free Info Card

SDV 4-4 - Serial Digital and Analog Video Monitoring DA - 4.2.2/270 mpps. Four necrotic SDV outputs plus four CVBS or RGB outputs. 10 bit D/A. For SDV 8500/8800 DA frames $895

TBC-RMT - TBC Remote Control Unit Remote control of up to 3 TBC's. For use with internal TBC's on BVW, DVW, PTV, UWV, and BVH Beta machines or any machine using Sony BVR-50 controller. Purchased with 1, 2, or 3 modules. With 3 modules. New available for JVC machines - Series 22, 80, 85. $960

SCR-4X8 - Serial Machine Control Router - Input/Output Twelve rear mounted 089-F connectors (four controllers, eight devices). Each 422 send and receive. Controls: Twelve lighted pushbuttons for channel assignment. $980

SCP-10 - Serial 422 Patch Panel Ten 10 passive non-normalizing serial data patch panel. Two rack units high. Legrand strips and 10 patch cords included. $350

VU2-P - VU/Peak Meter with Phase Indicator - Simultaneous peak and VU display. Solid state phase indication. Highly readable LED arrays. Adjustable headphone output. Hi-impedance looping inputs $890

SPK-2 - Two Channel Audio Monitor Two channel audio confidence monitoring Accepts both balanced and unbalanced inputs. Five switchable listening modes. Headphone output with speaker mute $650.

Call (102) on Free Info Card

SDV 4-4 - Serial Digital and Analog Video Monitoring DA - 4.2.2/270 mpps. Four necrotic SDV outputs plus four CVBS or RGB outputs. 10 bit D/A. For SDV 8500/8800 DA frames $895

TBC-RMT - TBC Remote Control Unit Remote control of up to 3 TBC's. For use with internal TBC's on BVW, DVW, PTV, UWV, and BVH Beta machines or any machine using Sony BVR-50 controller. Purchased with 1, 2, or 3 modules. With 3 modules. New available for JVC machines - Series 22, 80, 85. $960

SCR-4X8 - Serial Machine Control Router - Input/Output Twelve rear mounted 089-F connectors (four controllers, eight devices). Each 422 send and receive. Controls: Twelve lighted pushbuttons for channel assignment. $980

SCP-10 - Serial 422 Patch Panel Ten 10 passive non-normalizing serial data patch panel. Two rack units high. Legrand strips and 10 patch cords included. $350

VU2-P - VU/Peak Meter with Phase Indicator - Simultaneous peak and VU display. Solid state phase indication. Highly readable LED arrays. Adjustable headphone output. Hi-impedance looping inputs $890

SPK-2 - Two Channel Audio Monitor Two channel audio confidence monitoring Accepts both balanced and unbalanced inputs. Five switchable listening modes. Headphone output with speaker mute $650.

Call (102) on Free Info Card
For Sale

* Studio Exchange *
Burbank

(818) 840-1351 Fax (818) 840-1354

New and Used Video Equipment
Audio/Video Dealer
Starring
Panasonic & Sony

BUY. SELL. TRADE & CONSIGN
816 N. Victory Blvd.
Burbank, CA 91502
e-mail: studioex@ecom.net
www.studio-exchange.com

The 5D Virtual Teleport
Serving USA and Canada
Digital and analog video, data
C Band Transponders available on GE1
Occasional Space
24hr booking
Worldwide Service
Call 1-800-565-1471

Program Playout and Uplink Facility
located in Ottawa, ON, CAN.

Uplink installed at your location, remote controlled and monitored from ours

KU Band Transportable
Hire, lease, sell

Engineering and Technical Services

Call: Grahame Fournier
1-800-267-1221 x152
e-mail: gfournier@5d.com

Test Equipment
Keep Video Recorders Working Right!
Betacam, DVC Pro, U-Matic, +
Mechanical test gauges for tape tension, torque, reel table height, head wear and more...

TENTEL Corp.
El Dorado Hills, CA
(916) 939-4005, FAX 939-4114

Want more information
on advertised products?
Use the Reader Service Card.

Because it works.
Reach over 32,000 professionals in the commercial television industry with the Broadcast Engineering direct mail list.

Free 44 pg. catalog & 80 audio video applic.

O Patt Labs Inc (213) 934-3566
1033 N Yucca Ave, Los Angeles CA 90038
http://www.opamplabs.com

Place your business on top of the world with 39,000+ worldwide circulation!
Advertise in Broadcast Engineering!

STOCK ANSWERS.
For video duplication, demos, audition reels, work tapes, our recycled tapes are technically up to any task and downright bargains. All formats, fully guaranteed. To order call
(800)238-4300

THE 5D VIRTUAL TELEPORT
Serving USA and Canada
Digital and analog video, data
C Band Transponders available on GE1
Occasional Space
24hr booking
Worldwide Service
Call 1-800-565-1471

Program Playout and Uplink Facility
located in Ottawa, ON, CAN.

Uplink installed at your location, remote controlled and monitored from ours

KU Band Transportable
Hire, lease, sell

Engineering and Technical Services

Call: Grahame Fournier
1-800-267-1221 x152
e-mail: gfournier@5d.com

Diversity Miniature Broadcast Microwave

» Eng. Remote Camera to Eng Van for Live Hits
» Full Motion Colour Video/Audio
» Video Signal Processing
» 470 Lines @ 45+ db

Miller Wireless
3212 NW Ave. Suite C, Box 221
Bellingham, WA 98225 USA
tel: (360) 715.3328 fax: (360) 715.1239
e-mail: milwire@telvar.com

Jeff Utter
1-800-896-9939
Classified Advertising Manager

Training-Betacam
Learn 'Factory' theory plus field tips & shortcut methods; lots of hands on.
Your location or ours!

TENTEL Corp.
El Dorado Hills, CA
FAX 939-4114

Want more information
on advertised products?
Use the Reader Service Card.

Because it works.
Reach over 32,000 professionals in the commercial television industry with the Broadcast Engineering direct mail list.

Free 44 pg. catalog & 80 audio video applic.

O Patt Labs Inc (213) 934-3566
1033 N Yucca Ave, Los Angeles CA 90038
http://www.opamplabs.com

Place your business on top of the world with 39,000+ worldwide circulation!
Advertise in Broadcast Engineering!

STOCK ANSWERS.
For video duplication, demos, audition reels, work tapes, our recycled tapes are technically up to any task and downright bargains. All formats, fully guaranteed. To order call
(800)238-4300

THE 5D VIRTUAL TELEPORT
Serving USA and Canada
Digital and analog video, data
C Band Transponders available on GE1
Occasional Space
24hr booking
Worldwide Service
Call 1-800-565-1471

Program Playout and Uplink Facility
located in Ottawa, ON, CAN.

Uplink installed at your location, remote controlled and monitored from ours

KU Band Transportable
Hire, lease, sell

Engineering and Technical Services

Call: Grahame Fournier
1-800-267-1221 x152
e-mail: gfournier@5d.com

Diversity Miniature Broadcast Microwave

» Eng. Remote Camera to Eng Van for Live Hits
» Full Motion Colour Video/Audio
» Video Signal Processing
» 470 Lines @ 45+ db

Miller Wireless
3212 NW Ave. Suite C, Box 221
Bellingham, WA 98225 USA
tel: (360) 715.3328 fax: (360) 715.1239
e-mail: milwire@telvar.com

Jeff Utter
1-800-896-9939
Classified Advertising Manager

Training-Betacam
Learn 'Factory' theory plus field tips & shortcut methods; lots of hands on.
Your location or ours!

TENTEL Corp.
El Dorado Hills, CA
FAX 939-4114

Want more information
on advertised products?
Use the Reader Service Card.

Because it works.
Reach over 32,000 professionals in the commercial television industry with the Broadcast Engineering direct mail list.

Free 44 pg. catalog & 80 audio video applic.

O Patt Labs Inc (213) 934-3566
1033 N Yucca Ave, Los Angeles CA 90038
http://www.opamplabs.com

Place your business on top of the world with 39,000+ worldwide circulation!
Advertise in Broadcast Engineering!

STOCK ANSWERS.
For video duplication, demos, audition reels, work tapes, our recycled tapes are technically up to any task and downright bargains. All formats, fully guaranteed. To order call
(800)238-4300

THE 5D VIRTUAL TELEPORT
Serving USA and Canada
Digital and analog video, data
C Band Transponders available on GE1
Occasional Space
24hr booking
Worldwide Service
Call 1-800-565-1471

Program Playout and Uplink Facility
located in Ottawa, ON, CAN.

Uplink installed at your location, remote controlled and monitored from ours

KU Band Transportable
Hire, lease, sell

Engineering and Technical Services

Call: Grahame Fournier
1-800-267-1221 x152
e-mail: gfournier@5d.com

Diversity Miniature Broadcast Microwave

» Eng. Remote Camera to Eng Van for Live Hits
» Full Motion Colour Video/Audio
» Video Signal Processing
» 470 Lines @ 45+ db

Miller Wireless
3212 NW Ave. Suite C, Box 221
Bellingham, WA 98225 USA
tel: (360) 715.3328 fax: (360) 715.1239
e-mail: milwire@telvar.com

Jeff Utter
1-800-896-9939
Classified Advertising Manager

Training-Betacam
Learn 'Factory' theory plus field tips & shortcut methods; lots of hands on.
Your location or ours!

TENTEL Corp.
El Dorado Hills, CA
FAX 939-4114

Want more information
on advertised products?
Use the Reader Service Card.

Because it works.
Reach over 32,000 professionals in the commercial television industry with the Broadcast Engineering direct mail list.

Free 44 pg. catalog & 80 audio video applic.

O Patt Labs Inc (213) 934-3566
1033 N Yucca Ave, Los Angeles CA 90038
http://www.opamplabs.com

Place your business on top of the world with 39,000+ worldwide circulation!
Advertise in Broadcast Engineering!

STOCK ANSWERS.
For video duplication, demos, audition reels, work tapes, our recycled tapes are technically up to any task and downright bargains. All formats, fully guaranteed. To order call
(800)238-4300

THE 5D VIRTUAL TELEPORT
Serving USA and Canada
Digital and analog video, data
C Band Transponders available on GE1
Occasional Space
24hr booking
Worldwide Service
Call 1-800-565-1471

Program Playout and Uplink Facility
located in Ottawa, ON, CAN.

Uplink installed at your location, remote controlled and monitored from ours

KU Band Transportable
Hire, lease, sell

Engineering and Technical Services

Call: Grahame Fournier
1-800-267-1221 x152
e-mail: gfournier@5d.com

Diversity Miniature Broadcast Microwave

» Eng. Remote Camera to Eng Van for Live Hits
» Full Motion Colour Video/Audio
» Video Signal Processing
» 470 Lines @ 45+ db

Miller Wireless
3212 NW Ave. Suite C, Box 221
Bellingham, WA 98225 USA
tel: (360) 715.3328 fax: (360) 715.1239
e-mail: milwire@telvar.com

Jeff Utter
1-800-896-9939
Classified Advertising Manager

Training-Betacam
Learn 'Factory' theory plus field tips & shortcut methods; lots of hands on.
Your location or ours!

TENTEL Corp.
El Dorado Hills, CA
FAX 939-4114

Want more information
on advertised products?
Use the Reader Service Card.
BROADCAST ENGINEERS
The National Digital Television Center, located in Denver, Colorado, originates 89 channels of video and compresses, authorizes and distributes over 500 channels for DBS, Cable and Digital Cable systems. The NDTC is operated by TCI. The NDTC continues to grow and opportunities are opening for broadcast engineers, uplink engineers, encoder specialists and related fields. TCI is an equal opportunity employer. desire to learn and have a track record successfully dealing with technological challenges in related fields can substitute for direct experience. Drug and background checks are required. For consideration, send your resume and requirements to:

National Digital Television Center • Attn: Amy Volkberg
4100 East Dry Creek Road • Littleton, Colorado 80122
Fax 303-267-7150 • Email: volkberg.amy@tcii.com

We regret that we will only be able to respond personally to those applicants in whom we have an interest.

Uplink Technician: Successful candidates will have experience and or training in high power microwave, satellite communications, monitoring and control systems, RF system design and installation, computer skills, audio and video skills; problem solving and repair maintenance abilities.

Uplink Site Manager: We are seeking a self motivated, broad based, engineer to oversee the installation and operation of our new North Los Angeles uplink facility.

Encoder Systems Specialist: NDTC operates VCH, DCT, DCC, SA and other video compression, encoding, and encryption. If your interest lie in computer networks, video and compression systems, we are interested in talking with you.

Monitoring and Control technician: We are seeking a second full-time position to increase our commitment to providing a state of the art digital transmission system. Networking knowledge and familiarity with Uplink control systems desirable.

Broadcast Technicians: Successful candidates will have two plus years experience in component level VTR repair (Beta, Digital Betacam, etc.) and video monitor repair. Tektronix Profile and Alazar automation experience highly desirable. A high level of digital and analog audio and video knowledge and computer skills is essential.

STUDIO/Maintenance Engineer WICD-TV Channel 15 in Champaign-Urbana, IL is seeking a full-time Maintenance/Operations Engineer. Experience in studio/maintenance along with tape, video, audio and visual editing equipment repair operations is required. Applicant must have a background in electronics (AS or B.S. in electronics preferred). A good troubleshooter and a self-starter. Experience in repair and maintenance of video and audio equipment is a plus. PC's and computer systems are becoming more and more important. Send resume to: WICD-TV Attention: Mark Statzer, 250 S. Country Fair Drive, Champaign, IL 61821. WICD is an Equal Opportunity Employer.

WDEF-TV NEEDS SENIOR MAINTENANCE ENGINEER Minimum of 2 years experience in TV broadcast maintenance, installation, setup, testing, repair of equipment such as video switchers, video & audio routers and DAS, video monitors. Must have knowledge of microwave, video tape format, studio & news field cameras, microwave & satellite equipment, high power VHF transmitters, personal computers & software, strong knowledge of studio production layout & operation. FCC general class radiotelephone license and SBE certification desirable. Send resume to: Mark Statzer, 250 S. Country Fair Drive, Champaign, IL 61821. WICD is an Equal Opportunity Employer.

MAINTENANCE ENGINEER: Top 50 market television station seeking a qualified maintenance person. The person must have a strong background in both broadcast and PC components, as well as strong knowledge of digital electronics and be a good troubleshooter. Must be a self starter and highly motivated. Send resume to the following address: WSMV-TV, Attn: Mike Nichols, 5700 Knob Rd., Nashville, TN 37209, EOE.

TV MAINTENANCE TECHNICIAN Requires self starter having experience with Beta, VPR, 3CC & other studio equipment maintenance. Experience with microwave, satellite, VHF & UHF transmitters, and FCC General Class License preferred. Contact Marty Pesika, Assistant Chief Engineer-Maintenance, WTNH, 1 Elm Street, New Haven, CT 06510, or call: (203) 764-8811, EOE.

MAINTENANCE TECHNICIAN I Live and work in the beautiful, great northwest! KGW, AH Belo's NBC affiliate in the 24th market, has an opening for an electronic maintenance of television broadcast equipment, computer, and telephone systems for the station including project design and installation of new systems. Requires 5 years minimum experience in broadcast maintenance including trouble shooting and repair of studio, audio, graphic, and computer systems. FCC General Class license and SBE certification strongly desired. Knowledge of microwave, satellite, and transmission systems also desired. Send resume to: Kathy Copeland, KGW Northwest NewsChannel 8, 1501 SW Jefferson St., Portland, OR 97201 EOE/M/F/D/V.
FINALLY — THE SIGNALS YOU'VE BEEN LOOKING FOR

When it comes to manufacturing broadcast and dehydrating equipment, we're sending out all the right signals. So, if you're ready to join our growing team and expand your career opportunities, the following positions are currently available:

ELECTRICAL ENGINEERS

As a part of the DTI Technology Group, you will design new antenna, RF systems and related components for DTV/NASC applications while using the latest in RF engineering software/equipment for new/existing stations. You will be involved in new product development, quality, and technical support. This includes determining appropriate test equipment and RF antenna equipment, supporting research and development, attending industry meetings and technical forums; assisting with research and working with the Director of Antenna Engineering. Requires a BSEE or MSEE; RF engineering experience and/or coursework in Electromagnetics, Field, etc.; knowledge of RF systems and TV antenna; ability to use software for engineering and RF system proposals; organization, administrative, and project management skills; and a strong customer support orientation.

TV PROPOSAL ENGINEER

Reporting to the Director of Antenna Systems, you will work with sales staff to evaluate customer requirements, as well as propose TV antenna and RF equipment for DTV/NASC systems. This new position in our Broadcast Sales Department requires analytical and technical capability, a BSEE, 3+ years' sales/marketing experience, and PC skills (MOS Office) to run proposal and pattern software. Experience in a broadcast-related field helpful. Some travel required.

Dielectric offers an excellent wage and benefits package which includes medical, dental, 401(k), pension, education, vacations, holidays and more. Please fax or e-mail a resume to: Human Resources, Dielectric Communications, P.O. Box 949, Raymond, ME 04071. Fax: (207) 655-4989. E-Mail: peter.mitch@dielelectric.com You may also visit our web site at www.dielelectric.com No phone calls, please. Dielectric is a unit of General Signal and an EOE/M/F/D/V employer.

ASSISTANT CHIEF ENGINEER

WNY-TV is seeking a highly motivated, multi-skilled hands-on individual with management ability to become our Assistant Chief Engineer. Minimum 5 years experience in the broadcast field. Must have strong interpersonal skills. Duties include: maintaining and trouble shooting transmitter, translators, microwave and studio equipment, including computers. Ability to work with minimal supervision a must. Please send resume and cover letter to: Chief Engineer, WNY-TV, 100Market Square, Burlington, VT 05401. WNY-TV is an Equal Opportunity Employer.

DIRECTOR OF ENGINEERING AND TECHNICAL OPERATIONS

(Denver, CO) to coordinate with playback facility, establish standards & procedures, develop budgets and capital planning for basic cable network(s). BA in Engineering &/or equivalent experience, FCC license or CBC certification, minimum 5 years broadcast network management experience in cable or related industry & minimum 2 years supervisory experience with technical maintenance of broadcast equipment. Must have thorough knowledge of playback and satellite compression/distribution, digital file servers, strong org and communication skills. Ability to travel as needed. Experience with digital videomation machines in on-air and post-production environments preferred. Resume and salary history to: Engineering - Job 98-13, P.O. Box 641111, LA, CA 90064. Drug test required for successful candidate. EOE.

DIRECTOR OF ENGINEERING AND ENGINEERING

Top live affiliate looking for an experienced Director of Broadcast Operations and Engineering. Person must have strong credentials in personnel and budget management. Emphasis is on experience in the broadcast/telecommunications field. We are seeking someone with the ability to build and manage a strong studio and field operations team. Experience in Engineering desirable but not a must. Please send resume to: Classified Ad Coordinator, Broadcast Engineering, Dept. 791, 9000 Metcalf, Overland Park, KS 66212. EOE.

TV TRANSMITTER SUPERVISOR

WTAE-TV, the Hearst-Argyle, ABC affiliate in Pittsburgh, is seeking an experienced transmitter maintenance supervisor to operate and maintain all station transmitter facilities. Minimum four (4) years' experience with STL, microwave, VHF and UHF transmitters required. Must have excellent recording skills and a strong working knowledge of FCC rules. Should have good mechanical skills. FCC General Class License required. Computer experience and SBE certification preferred. For consideration, send resume and cover letter including source of referral to: Career Tech. 40A244, WTAE-TV, 400 Ardmore Blvd., Pittsburgh, PA 15221. No phone calls, please! EOE.
Maybe the past few years have just made me suspicious or I am beginning to believe in conspiracies after all, but I just hate it when the computer guys act nice or stay too quiet. Parents know that quiet worry feeling when you finish by shouting up the stairs to young Johnny, “Whatever you’re doing, stop it!” So, will that work in Seattle and Santa Clara? I don’t think so.

I thought it would be sneaky of me to at least get a view of next year’s plans and see what Microsoft and Intell are planning to tell us to do in broadcasting. But, they have managed to snag me there, as well. The version 0.30 draft of the PC99 System Design Guide was published at the beginning of February (you can download it at http://developer.intel.com/design/ or www.microsoft.com/hwdev/desguid/).

Off I scoot to the section, “Video and Broadcast Components” where the message is, ‘The proposed changes for this topic are not yet available for review.’ Got me again.

I made a call to someone in one of the above companies. He got back to me with the information — the changes should be available before the end of this month. This is a significant month in broadcasting. Does it mean that NAB is being used as a vetting event? Do they want to see the state of some new products on offer for NT or Macintosh? Could well be.

The levels of broadcasting and video involvement in PC98 are all on the receiver side of things. The specifications call for a cable/off-air tuner which, with other inputs for S-Video and composite signals, feeds a “crossbar filter,” PC-speak for switcher and separate audio and video digitizers (capture filters in PC-speak). The digital signals can be handled uncompressed or compressed for storage or forwarding or the signals can be rendered for viewing and/or listening.

The reasoning behind the whole process, of course, is the hope by the computer developers that the PC will become the core device in the complete audio-video world of the consumer. It is not a new thought, and some of us were involved in implementing such systems five years ago. Back then, the working team — remarkable for their thinking, incidentally — was insistent that a new bus be implemented and their favorite was the new RAM bus. That may at last be the direction that the PC’s are reluctantly finding they are having to go.

Motherboard bandwidths

The ability to handle signals in most PC implementations is abysmal. We have seen demonstrations of CPUs operating at 1GHz and that is extremely impressive, but you can’t get signals across a motherboard at anything like that speed. That is why we have seen over-the-top bus implementations proposed for digital signals.

It has seemingly rung on deaf ears in the PC industry that if the bandwidth of your signal lines is limited to 50MHz it is still 50MHz whether the processor is working at 486 speeds or Pentium speeds or 1GHz. These are serious frequencies and although I am comfortable with RF (I like to say that I am frequency-challenged to 40GHz), I would not care to design a PCB that is carrying signal lines at 1GHz with numerous power lines, multilayers and a plethora of clock signals with direct relationships between them. Ugh.

But, that is exactly what is needed if you want to use the processing power as anything but a fast calculator. Designing for real-world signals can certainly be done, but even the largest board houses have trouble with signal line impedances and crosstalk at only 100MHz. And, power line problems are becoming intense. With variable voltage control on CPUs, using the lowest-possible voltage at any moment to reduce the squared-component in power dissipation, supply currents are rapidly approaching 20A, an amplitude that will be achieved within the next two years.

Re-inventing VBI insertion

On another subject, a number of broadcasters, including Cox Cable and Oregon Public Broadcasting, agreed to accept a kit of parts to try out an alternative income stream. The kit allows data to be placed in vertical blanking as an alternative for Internet downloads. The math says that four inserted lines in an NTSC signal could provide — if everything else is perfect — 32kHz of bandwidth. However, that bandwidth would be shared between many other people trying to download information at the same time. Doesn’t sound too attractive to me.

And, didn’t the broadcasters invent VBI insertion some time ago for test signals, for teletext? I don’t get it. The cable guys have a much better chance of winning the Internet market with two-way systems if they are willing to make the investments. Microsoft has bought into that as well so it has spread itself around the alternates. And, I have no doubt at all that someone out there is working on a way to use their new DTV channel allocation with a single 480P signal and the rest of the capacity devoted to data; but you would still need your telephone line and modem to call up the information you want.

Paul McGoldrick is a free-lance writer and consultant based on the West Coast.
Serial Digital Routing.

Announcing the Only Serial Digital Routing Switchers with Looping Video Inputs!

Meet the RS-12D family of serial digital routers—the only switchers with passive looping video inputs! The RS-12D lets you monitor signals and then redirect them—without signal degradation.

The RS-12D family is full of values. Standard features of the RS-12D family include twelve looping video inputs, two 601 outputs, high quality relengendable switches, serial communications, remote, and GPI ports, joy stick override, and the ability to pass embedded audio. Analog monitoring of video is optional.

The RS-12D family is just another example of Videotek products that solve your problems at prices that make sense. As a Zero Defects company, we're committed to delivering the highest quality in the industry. Every product carries a five year warranty.

And those are the kind of family values everybody can agree on.

Meet the rest of the RS-12D Family:
• RS-12DV for Video Only
• RS-12DVA for Video and Analog Audio
• RS-12DVB for Digital Video and Digital Audio (AES3-1D) on BNC Connectors
• RS-12DV/EAM for Digital Video with embedded audio plus analog audio monitoring.

Premium Quality, Intelligent Design, Smart Price...That's Videotek.

Technically speaking there's no better broadcast video server than ASC's VR300. With 1 Gb/sec bandwidth, it serves up to 24 simultaneous channels and 96 hours of online digital storage.

FibreDrive. All the Difference in the World.
The VR300 is the only on-air server with FibreDrive, ASC's exclusive Fibre Channel technology. FibreDrive is the only server architecture that gives all users true simultaneous random access to Fibre Channel RAID storage.

Serve up Faster, Better Looking News.
For a completely tapeless newsroom, integrate the VR300 with ASC's NEWSFlash, a powerful full-featured news editing solution. Record satellite feeds, edit news stories, and play directly to air - all at the same time with the same media. No tapes. No local buffers. No file transfers.

The World's Most Advanced Video Server is Now Part of the Leitch Family.
Recently, ASC's innovative server technologies became part of the Leitch family of digital broadcast solutions. Now the leader in video servers is backed up by Leitch's global support network and world-class customer service.

USA & Canada call (888) 843-7004
International call (416) 445-9640

www.americanradiohistory.com